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Abstract
Humans possess a rich semantic knowledge of words and concepts which captures the

perceivable physical properties of their real-world referents and their relations. En-

coding this knowledge or some of its aspects is the goal of computational models of

semantic representation and has been the subject of considerable research in cogni-

tive science, natural language processing, and related areas. Existing models have

placed emphasis on different aspects of meaning, depending ultimately on the task at

hand. Typically, such models have been used in tasks addressing the simulation of be-

havioural phenomena, e.g., lexical priming or categorisation, as well as in natural lan-

guage applications, such as information retrieval, document classification, or semantic

role labelling. A major strand of research popular across disciplines focuses on models

which induce semantic representations from text corpora. These models are based on

the hypothesis that the meaning of words is established by their distributional relation

to other words (Harris, 1954). Despite their widespread use, distributional models of

word meaning have been criticised as ‘disembodied’ in that they are not grounded in

perception and action (Perfetti, 1998; Barsalou, 1999; Glenberg and Kaschak, 2002).

This lack of grounding contrasts with many experimental studies suggesting that mean-

ing is acquired not only from exposure to the linguistic environment but also from our

interaction with the physical world (Landau et al., 1998; Bornstein et al., 2004). This

criticism has led to the emergence of new models aiming at inducing perceptually

grounded semantic representations. Essentially, existing approaches learn meaning

representations from multiple views corresponding to different modalities, i.e. linguis-

tic and perceptual input. To approximate the perceptual modality, previous work has

relied largely on semantic attributes collected from humans (e.g., is round, is sour), or

on automatically extracted image features. Semantic attributes have a long-standing

tradition in cognitive science and are thought to represent salient psychological as-

pects of word meaning including multisensory information. However, their elicitation

from human subjects limits the scope of computational models to a small number of

concepts for which attributes are available.

In this thesis, we present an approach which draws inspiration from the success-

ful application of attribute classifiers in image classification, and represent images and

the concepts depicted by them by automatically predicted visual attributes. To this

end, we create a dataset comprising nearly 700K images and a taxonomy of 636 vi-

sual attributes and use it to train attribute classifiers. We show that their predictions

can act as a substitute for human-produced attributes without any critical information
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loss. In line with the attribute-based approximation of the visual modality, we repre-

sent the linguistic modality by textual attributes which we obtain with an off-the-shelf

distributional model. Having first established this core contribution of a novel mod-

elling framework for grounded meaning representations based on semantic attributes,

we show that these can be integrated into existing approaches to perceptually grounded

representations. We then introduce a model which is formulated as a stacked autoen-

coder (a variant of multilayer neural networks), which learns higher-level meaning rep-

resentations by mapping words and images, represented by attributes, into a common

embedding space. In contrast to most previous approaches to multimodal learning us-

ing different variants of deep networks and data sources, our model is defined at a finer

level of granularity—it computes representations for individual words and is unique in

its use of attributes as a means of representing the textual and visual modalities.

We evaluate the effectiveness of the representations learnt by our model by assess-

ing its ability to account for human behaviour on three semantic tasks, namely word

similarity, concept categorisation, and typicality of category members. With respect to

the word similarity task, we focus on the model’s ability to capture similarity in both

the meaning and appearance of the words’ referents. Since existing benchmark datasets

on word similarity do not distinguish between these two dimensions and often contain

abstract words, we create a new dataset in a large-scale experiment where partici-

pants are asked to give two ratings per word pair expressing their semantic and visual

similarity, respectively. Experimental results show that our model learns meaningful

representations which are more accurate than models based on individual modalities or

different modality integration mechanisms. The presented model is furthermore able to

predict textual attributes for new concepts given their visual attribute predictions only,

which we demonstrate by comparing model output with human generated attributes.

Finally, we show the model’s effectiveness in an image-based task on visual category

learning, in which images are used as a stand-in for real-world objects.
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Lay Summary

Humans possess a rich knowledge of words and their meaning. Such knowledge in-

cludes, among other things, the perceivable physical properties (e.g., visual appear-

ance) of the real-world objects to which the words refer and how these relate to each

other. It enables us to recognise objects by means of our senses, to interact with them

and to say something about them. An extensive amount of work in cognition research

has been devoted to explaining the complex phenomena related to learning, mentally

representing and processing aspects of this knowledge. Different classes of models of

representations of words (in the form of, e.g., lists of continuous numbers) have been

proposed. Typically, such models have been evaluated as to how well they can provide

an account for human behaviour on specific tasks (e.g., categorisation, the grouping

of different objects or words into categories). From a practical perspective, meaning

representations are furthermore crucial for many natural language applications, such

as information retrieval or document classification.

A major class of models automatically construct representations from text corpora.

These models represent words by their relation to other words, based on the hypothesis

that words which appear in similar linguistic contexts tend to have similar meanings.

For example, the words peel and cut are often mentioned together with apple, onion,

potato , etc. Despite their widespread use, this class of models of word meaning has

been criticised for its exclusive reliance on text data, which contrasts with many ex-

perimental studies suggesting that humans learn the meaning of words not only from

exposure to language but also from their interaction with the physical world (e.g., by

means of their visual or olfactory senses). The criticism has led to the emergence of

new models aiming at inducing perceptually grounded meaning representations. Es-

sentially, existing approaches rely on multiple views corresponding to different modal-

ities, i.e. linguistic and perceptual input (e.g., text and images), and combine these

modalities into a joint representation. To approximate the perceptual modality, previ-

ous work has largely used semantic attributes collected from humans (e.g., is round,

is sour), or abstract features automatically extracted from images. Using semantic at-

tributes to represent word meaning is appealing—they have a long-standing tradition

in cognitive science and are thought to represent salient psychological aspects of word

meaning including multisensory information. However, their elicitation from human

subjects is time-consuming and limits the scope of computational models to a small

number of words for which attributes are available.
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In this thesis, we present an approach to learning visually grounded meaning repre-

sentations, in which we draw inspiration from computer vision research and represent

images and the objects depicted by them by automatically obtained visual attributes

(e.g., an image of an apple could evoke the attributes round, green, has a stalk, etc.).

To this end, we create a dataset comprising images labelled with visual attributes and

use it to train a system which, given a new image, predicts the absence or presence

of attributes in the image. In line with the attribute-based approximation of the visual

modality, we represent words in the linguistic modality by textual attributes (e.g., fruit,

harvest, etc. for the word apple) which we obtain with an off-the-shelf text-processing

system. We then introduce a novel model which learns meaning representations by

simultaneously mapping words and images, represented by attributes, into a single

representation. In contrast to previous approaches to multimodal learning, our model

is unique in its use of semantic attributes as a means of representing the textual and

visual modalities.

We present qualitative and quantitative results of our representation model in terms

of its ability to simulate human behaviour on different semantic tasks, including word

similarity (i.e., rating the similarity between two words on an ordinal scale) and cate-

gorisation. With respect to the word similarity task, we focus on the model’s ability to

capture similarity in both the meaning and appearance of the objects the words refer to.

For this purpose, we create a new dataset in an experiment where participants are asked

to give two ratings per word pair expressing their semantic and visual similarity. We

furthermore demonstrate that the presented model is able to predict textual attributes

for new objects given their automatically obtained visual attributes only. Finally, we

show the model’s effectiveness in an image-based task on category learning.
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Chapter 1

Introduction

This thesis addresses the problem of grounding lexical meaning representations in the

visual world. In this chapter we present the motivation for studying this problem, lay

down the central claims of the thesis and give an overview of its structure.

1.1 Motivation and Central Claims

Humans generally possess a rich semantic knowledge of words and concepts. Such

knowledge represents words’ real-world referents and their perceivable physical prop-

erties (e.g., visual appearance), as well as how these interact and relate to each other.

It is this knowledge that enables us to recognise objects and entities by means of our

senses, to interact with them and to verbally convey information about them (McRae

and Jones, 2013). An extensive amount of work in cognition research has been de-

voted to approaches and theories that explain the complex phenomena related to learn-

ing, representing and processing aspects of this knowledge. The ongoing debate over

the properties of mental lexical representations, which underlie the understanding of

linguistic phenomena, has given rise to different classes of models of meaning repre-

sentations. From a practical perspective, meaning representations are crucial for many

natural language applications (Turney and Pantel, 2010), which spurred research on

models for automatic representation learning. Practical advantages of such models of

meaning are, for example, that the same model can be used for different applications

and can be adapted to specific problems (e.g., Landauer and Dumais, 1997; Collobert

et al., 2011).

A well known class of such models automatically constructs representations from

text corpora. They represent words by their relation to other words, based on the dis-

1



Chapter 1. Introduction 2

tributional hypothesis (Harris, 1954) postulating that words which appear in similar

linguistic contexts tend to have similar meanings. For example, the words peel and cut

are collocates of apple, onion, potato, and carrot . Applications in which corpus-based

models have been successfully used include document classification (Klementiev et al.,

2012; Sebastiani, 2002), information retrieval (Manning et al., 2008), word sense dis-

crimination (Schütze, 1998), frame-semantic role labelling (Roth and Lapata, 2015),

and language modelling (Bengio et al., 2003). They have gained popularity in cogni-

tive science being considerably successful at simulating human behaviour in various

tasks (e.g., semantic priming, Lund and Burgess, 1996; Landauer and Dumais, 1997,

or synonym selection, Bullinaria and Levy, 2012; Padó and Lapata, 2007).

There is a clear analogy between modelling semantics on the basis of text data

and human acquisition of knowledge through exposure to linguistic input. However,

many experimental studies suggest that word meaning is acquired not only from ex-

posure to the linguistic environment but also from our interaction with the physical

world (Landau et al., 1998; Bornstein et al., 2004). Beyond language acquisition,

there is considerable evidence across both behavioural experiments and neuroimaging

studies that the perceptual associates of words play an important role in language pro-

cessing (for a review see Barsalou, 2008). It is for these reasons that, despite their

widespread use, corpus-based models have been criticised as “disembodied” in that

they are not grounded in perception and action (Perfetti, 1998; Barsalou, 1999; Glen-

berg and Kaschak, 2002).

In contrast, numerous theories and models in cognitive science are based on rep-

resentations involving semantic attributes (McRae et al., 2005; Vinson and Vigliocco,

2008; Cree et al., 1999; Vigliocco et al., 2004) which represent perceived physical and

functional properties associated with the referents of words. For example, apples are

typically green or red, round, shiny, smooth, crunchy, tasty, and so on; dogs have four

legs and bark, whereas chairs are used for sitting. However, these attributes are not

obtained automatically but are either hand-coded or elicited from humans (e.g., the

attribute norms from McRae et al., 2005), limiting the scope and applicability of com-

putational models based on them.

The present thesis addresses the criticism on corpus-based models and sets forth an

approach to ground meaning representations in the visual world by leveraging textual

and visual information. In other words, the objective of the thesis is to derive and

study bimodal or visually grounded representations of concepts. Our central claims

are therefore:
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Integration Hypothesis: The integration of visual and text-based information of

concrete concepts yields meaning representations which more closely approximate the

conceptual knowledge humans possess than purely text-based models. We test this

hypothesis by assessing the ability of bimodal meaning representations to account for

human behaviour in cognitive tasks, and compare their effectiveness with unimodal

models.

Attribute-based Representation: The visual modality can be approximated by in-

formation which is rendered in natural language attributes and extracted from images.

This underlies the assumption that we can use images as a stand-in for concrete con-

cepts (objects). We examine this claim by assessing whether models leveraging such

visual information (a) can account better for human behaviour than purely corpus-

based models on a task which taps into the ability to judge the visual similarity of

concrete concepts, and (b) are useful for inferring knowledge of new concrete con-

cepts in cases where only images depicting those concepts are available.

Joint Models: The visual and textual modalities are interrelated and it is therefore

beneficial to use joint integration methods which derive bimodal meaning representa-

tions by finding and exploiting intermodal associations. We test this hypothesis firstly

by experimentally comparing different modality integration mechanisms. Secondly, if

the hypothesis is true, it should be possible to infer some aspects of one modality from

the other. We introduce a model which learns visually grounded representations by

considering the two modalities in concert, and test the second claim by showing that

this model can infer linguistic information when presented only with visual informa-

tion.

1.2 Contributions

This thesis makes the following contributions to the problem of visually grounding

lexical meaning representations:

Representation Framework We propose an attribute-centric approach to represent-

ing perceptual information for the purpose of learning visually grounded meaning rep-

resentations. Specifically, we automatically predict the presence or absence of visual

attributes (e.g., made of wood, is furry) in images, and use this as visual representation

of concrete concepts. In doing so, we draw inspiration from computer vision research,
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where the use of such natural language attributes to represent visual phenomena has

experienced a growing interest. To the best of our knowledge, we are the first to use

them in computational models of semantic representation.

Bimodal Modelling of Word Meaning We introduce a novel model for visual ground-

ing which draws elements from connectionist, attribute-based, and distributional mod-

els of semantic memory. Our model is formulated as a neural network architecture that

induces word representations by mapping linguistic and visual input into a common

bimodal space. Both input modalities are rendered in attributes, where visual attribute

information is obtained as outlined above, and linguistic attributes are extracted from

texts using an off-the-shelf distributional approach. We show that the model, firstly,

can account for human behaviour on tasks related to word similarity. Secondly, that

it can infer explicit textual information when only given visual information as input.

Thirdly, we show that the bimodal model yields representations useful for a visual

categorisation task when presented with images only.

Datasets We have created two new datasets, both publicly available,1 which we

hope will be useful for further progress in the development and evaluation of visu-

ally grounded meaning representations. The first dataset (VISA) contains visual at-

tribute annotations for approximately 500 concrete concepts. Specifically, these con-

cepts (listed in Appendix A.1) are represented in the image database ImageNet (Deng

et al., 2009) and the attribute production norms of McRae et al. (2005). Our second

dataset consists of semantic and visual similarity ratings for 7,576 concept pairs. Each

concept is covered by VISA and occurs in approximately 30 pairs. We obtained the

similarity ratings using Amazon Mechanical Turk.

1.3 Terminology and Notation

Terminology (Words). We follow the standard literature and use the term word to

denote any sequence of non-delimiting symbols. Two identical sequences of non-

delimiting symbols are occurrences (tokens) of the same word (type) (Dale et al.,

2000). The distinction between types and tokens is crucial in the context of count-

ing words in a corpus. For example, the sentence They moved out of the flat, the girl

points out. contains 8 types and 10 tokens (punctuation not counted).

1The datasets are available at homepages.inf.ed.ac.uk/s1151656/resources.html.

homepages.inf.ed.ac.uk/s1151656/resources.html
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Terminology (Concepts and Categories). Unless otherwise stated, we will use the

term concept to denote the mental representation (knowledge) of objects belonging to

basic-level classes, such as dog, table, car . We will use the term category to refer to

superordinate-level classes of objects, such as ANIMAL, FURNITURE, VEHICLE. Note

that the standard notion of these terms is less restrictive in that concepts as mental

representations are not bound to a specific level of abstraction, and likewise, categories

refer to equivalent classes of objects of any level of abstraction (e.g., Murphy and

Medin, 1985; Rosch et al., 1976). Concepts and categories are linguistically expressed

through words in italics and SMALL CAPITALS, respectively.

Terminology (Attributes and Norms). By the term attributes we refer to seman-

tic properties or characteristics of concepts (or categories), expressed by words which

people would use to describe their meaning. Our definition of attributes is essen-

tially equivalent to what is commonly known as semantic features2 in the literature

of cognitive science, where they have been used in numerous theories and models of

knowledge representation in human cognition (see, e.g., Yee et al., 2013; McRae et al.,

2005; Rosch et al., 1976, and the references therein). For example, Rosch et al. (1976)

created representations corresponding to attribute lists which they collected from hu-

man subjects (e.g., the category BIRD is represented by has feathers, has wings, has

beak, lays eggs, flies, etc.). In a study involving a large group of participants, McRae

et al. (2005) elicited attribute production norms, i.e. attributes for concepts which are

found to be commonly used by people to describe them. See Chapter 3 (Section 3.1)

for details on these norms. For further details on attributes and their use in models of

knowledge representation, see Chapter 2 (Section 2.1).

We focus on two types of attributes and, conversely to the literature in cognitive

sciences, distinguish them according to the form (modality) in which they can be ac-

cessed. Attributes referring to visually discernible properties are called visual. Exam-

ples are furry, has legs, eats. Attributes referring to properties that can be mined from

text data are called textual or linguistic. Examples are a mammal, dies, gives birth. Note

that our definition of textual attributes does not explicitly exclude properties which are

visually perceivable. For example, the knowledge that dogs have ears may also be

2In order to avoid confusion, we will use the term feature only to refer to a measurable (possibly
abstract) property of a general object, as used in machine learning and pattern recognition. For example,
if the object is an image, a feature is derived from pixels and may denote, e.g., an edge or an interest
point.
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inferred from text data. However, existing studies suggest that information derived

from text corpora prevalently capture encyclopaedic, functional and discourse-related

properties of concepts (e.g., Baroni et al., 2010; Andrews et al., 2009).

Mathematical Notation. We will be using the following mathematical notation through-

out the thesis:

• Matrices are denoted by capital bold-face letters, e.g., W. W j. indicates the jth

row, and W.k the kth column of W. The component of matrix W at row j and

column i is denoted by Wji.

• Vectors are denoted by lower case bold-face letters, e.g., x. A specific vector i is

indicated by superscript in parenthesis, e.g., x(i), or by xi. The jth component of

x is denoted by x j.

• WT denotes the transpose of matrix W. Analogously, xT denotes the transpose

of vector x.

• The cardinality of a set A is denoted |A|.

1.4 Evaluation Methodology

Throughout the thesis we will quantitatively evaluate the models against humans, mostly

on cognitive tasks related to word similarity. Similarity is generally viewed as funda-

mental to cognition, it is found to play a major role in, for example, problem solving

(Bassok, 1990; Novick, 1990; Kolodner, 1993), categorisation (Medin and Schaffer,

1978; Nosofsky, 1986; Rosch and Mervis, 1975), memory retrieval (Hintzman, 1986),

decision making (Medin et al., 1995), and inductive reasoning (Osherson et al., 1990).

Understanding the cognitive processes which underlie the assessment of similarity has

been a central goal in cognitive psychology research (see, e.g., Goldstone and Son,

2005, for an overview of major psychological models of similarity). The evaluation of

models of semantic representations by their ability to account for phenomena associ-

ated with similarity has therefore a long history. Semantic similarity (or the more gen-

eral notion of relatedness) of pairs or groups of words is also crucial for many practical

applications, including automatic thesauri creation (Grefenstette, 1994), information

retrieval (Xu and Croft, 2000), word sense disambiguation (Yarowsky, 1992) and dis-
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crimination (Pantel and Lin, 2002), metonymy resolution (Nissim and Markert, 2003),

etc.

With respect to the previously mentioned corpus-based vector representations, the

key assumption which ties them closely to similarity is that spatial closeness between

vectors estimate similarity. It is therefore common in language research to quantita-

tively evaluate them by their ability to directly predict the semantic similarity between

words, or to account for linguistic phenomena which are found to be dependent on sim-

ilarity, such as categorisation. In Section 1.4.1 we will briefly explain our evaluation

methodology which follows the common practice.

Note, however, that predicting similarity well does not imply that a model of rep-

resentations gives a complete account for human lexical knowledge. It does hence not

imply either that it is generally beneficial for all applications using word representa-

tions, since individual applications may require a lexical model to capture additional

or other aspects of word meaning (e.g., ambiguity).

1.4.1 Correlation Analysis

We explain our general evaluation procedure by means of the explicit word similarity

task, which has become a standard experimental methodology in both natural language

processing and cognition research (Resnik, 1995; Agirre et al., 2009; Finkelstein et al.,

2002, inter alia). The methodology regarding other cognitive tasks (e.g., word asso-

ciation or categorisation) is analogous (see Chapter 3, Section 3.4, and Chapter 6 for

more details).

We evaluate the vector-based models against human-produced semantic similarity

ratings of a set of word pairs. Typically, a dataset of human ratings (a.k.a. bench-

mark) is elicited by presenting human subjects with word pairs and asking them to

rate their semantic similarity along an ordinal scale. These judgements are then av-

eraged over the subjects to obtain a single score (Rubenstein and Goodenough, 1965;

Miller and Charles, 1991; Finkelstein et al., 2002). This elicitation methodology has

been validated to produce reliable mean ratings in virtue of high correlations between

independent studies on the same word pairs. For example, Finkelstein et al. (2002)

and Resnik (1995) elicited ratings for Miller and Charles’s (1991) pairs and reported a

correlation of .95 and .96 with Miller and Charles, respectively.

For each word pair of the dataset, we estimate the similarity of the words by compar-

ing the corresponding vectors using a (geometrical) metric (e.g., the cosine similarity,
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Chapter 2, Section 2.2.1). Applying correlation analysis, we can then compare the

similarity estimates with the human ratings. Regarding the choice of the correlation

coefficient, Spearman’s rank correlation coefficient (ρ) and Pearson’s product moment

correlation coefficient (r) have been used in the literature, depending on the specifics

of the task and the benchmark dataset at hand. If not otherwise stated, we will apply

Spearman’s ρ, since it is less sensitive to extreme values.

Note that the correlation coefficient is generally a poor evaluation measure, since

it can be sensitive to heavy-tailed distributions. An extreme example is the pairwise

comparison of all words in the vocabulary, since every word is highly dissimilar to the

vast majority of words in the vocabulary. However, the selection of the word pairs for

creating an evaluation dataset is usually conducted in such a way that the pairs cover

a range in semantic distances. Ideally, this process leads to a balanced set of pairs and

avoids the problem of a heavy-tailed list of ranked pairs.

1.5 Thesis Structure

We begin by summarising existing work on models of meaning representation (Chap-

ter 2). Next, we present a comparative study of three different perceptually grounded

models (Chapter 3). Chapter 4 describes our approach to representing visual informa-

tion through attributes. Chapter 5 introduces our model for visually grounding lexical

meaning representations. Subsequently, we present a range of experiments (Chapters 6

and 7) which evaluate our attribute-centric approach and our model, and conclude the

thesis in Chapter 8.

Chapter 2 reviews three major classes of computational models of semantic repre-

sentation—attribute-based, distributional, and distributed models—and discusses their

main differences. Furthermore, it gives an overview of existing work on perceptually

grounded models of lexical semantics, and identifies two important criteria by which

the models can be characterised: the source of perceptual information and the mecha-

nism used to integrate perceptual and textual data.

Chapter 3 experimentally compares three perceptually grounded distributional mod-

els. We focus on different modality integration mechanisms, and provide all models

with the same linguistic and perceptual input data, where the latter consists of human

produced information (attribute norms or image labels, respectively). Our experimen-
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tal results (on word association and similarity) show that all models benefit from the

integration of perceptual data. We find that joint models, which perform integration

by exploiting the interrelationships between the perceptual and linguistic data, obtain a

closer fit with human judgements compared to a concatenation approach. We further-

more find that visual attributes from norming data are a beneficial means to represent

visual information and to visually ground meaning compared with image labels.

Chapter 4 elaborates on the idea of using attribute-centric representations of visual

information and presents our approach to obtain these automatically from images. We

first introduce our database (VISA) which comprises a taxonomy of visual attributes,

visual attribute annotations of real-world concepts, and a large set of images depicting

these concepts. We explain how we use VISA to train classifiers which predict visual

attribute occurrences in images. We describe how we leverage the classifiers’ predic-

tions to automatically obtain visual attribute-based representations of concepts, and

show that these can be effectively integrated with textual attribute information (Baroni

et al., 2010) to yield promising results.

Chapter 5 draws on the findings of Chapter 3 that the modalities are preferably in-

tegrated in a joint manner, and presents our novel model for visually grounded lexical

meaning representations. It applies deep learning techniques in a neural network ar-

chitecture for modality integration, using our attribute-centric representation as input.

Specifically, our model is based on stacked denoising autoencoders (SAE) and derives

bimodal meaning representations by jointly mapping the visual and linguistic modali-

ties to a common hidden space.

Chapter 6 assesses the effectiveness of our bimodal SAE model to simulate human

behaviour in cognitive tasks related to concept similarity. To this end, we evaluate the

SAE against human judgements on concept similarity, categorisation and typicality.

Before presenting our experiments, we describe how we collected ratings for the first

task using Amazon Mechanical Turk (AMT), where the annotators were asked to judge

both semantic and visual similarity of concept pairs. The experimental results show

that our model is better across all three tasks in accounting for human behaviour than

comparison models (the model’s unimodal variants and related bimodal models), and

more effective in almost all cases than a purely text-based neural network model.



Chapter 1. Introduction 10

Chapter 7 examines the benefit of our approach for two image-related tasks. We first

demonstrate the ability of our attribute classifiers to generalise to unseen concepts. For

this purpose, we apply the classifiers on images depicting concepts unknown to VISA,

and compare their predictions against human generated normed attributes (Devereux

et al., 2013). Similarly, we show the ability of our SAE model to infer textual at-

tributes when only given visual input (the aforementioned attribute predictions), again

comparing against normed attributes. Our second task evaluates the SAE on visual

concept learning, where the task requires generalisation to a category from images de-

picting concrete concepts (Jia et al., 2013). Specifically, the goal is to decide for each

of a series of concepts (e.g., white fox, leatherback turtle), whether it belongs to a

given category (e.g., CARNIVORE). The category is hereby defined by a set of images

depicting real-world concepts, and, likewise, a concept is represented by an image.

Chapter 8 concludes the thesis with a summary of the main findings in light of our

claims, and highlights avenues for further research.

1.6 Published Work

Some of the work presented in this thesis has been published previously. Most of the

material in Chapter 3 is covered in Silberer and Lapata (2012). Chapter 4 is an elab-

oration of Silberer et al. (2013). The model described in Chapter 5 and its evaluation,

Experiments 5 and 6 in Chapter 6, are presented in Silberer and Lapata (2014).



Chapter 2

Background: Meaning

Representations

Humans possess a rich semantic knowledge of words and concepts. It captures the

perceivable physical properties of their real-world referents, such as their visual ap-

pearance, their behaviour, and the relations that hold between them, including their

interaction with each other. It is this knowledge that enables us to recognise objects

and entities by means of our senses, to interact with them and to verbally convey in-

formation about them (McRae and Jones, 2013). Encoding this knowledge or some of

its aspects is the goal of computational models of semantic representations. Existing

models have placed emphasis on different aspects of meaning, depending ultimately

on the task at hand.

The approach to semantic representation we present in this work, in particular in

Chapters 4 and 5, exhibits characteristics from three different types of models which

we review in this chapter: attribute-based (Section 2.1), distributional (Section 2.2),

and distributed models (Section 2.3). In Section 2.5, we discuss recent approaches to

modelling word meaning which aim to derive representations which are grounded in

perception.

2.1 Attribute-based Models

A long-standing tradition in cognitive science is the assumption that meaning repre-

sentations are based on attributes (e.g., Mervis and Rosch, 1981; Sloman et al., 1998).

These are human-produced natural language properties, such as is-a tree, has bark, is

green, grows, and typically encode knowledge of concepts with respect to their tax-

11
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onomic relations to other concepts (hypernymy – is-a; meronymy – has-a), to their

sensory properties (visual, acoustic, etc.) as well as their motoric characteristics as

components of actions (behaviour). Attribute-based theories of lexical semantic repre-

sentation1 (Cree et al., 1999; Vigliocco et al., 2004; Jones et al., 2015, inter alia) use

such attributes to computationally model phenomena of human cognition, e.g., cate-

gorisation and lexical priming.

Traditionally, attribute-based representations have been either directly hand-coded

by the researchers, or induced in distributed models using the attributes as knowledge

source. Goal of the latter is to investigate the mechanisms which underlie the learning

of representations in the first place as well as to examine the interplay of the repre-

sentations with other cognitive processes (e.g., Rogers and McClelland, 2004, but see

Section 2.3 for details on distributed models). Classical examples of the former, hand-

coded models, are Collins and Loftus (1975) and Smith et al. (1974). Collins and

Loftus (1975) represent semantic knowledge in a network, where each concept (re-

ferred to by a content word of any part-of-speech) is represented by a single node, and

nodes are connected via edges corresponding to the attributes that hold between them

(e.g., cherries–is–red ). The edges are labelled with weights indicating the importance

of an attribute for a concept. Knowledge is accessed by spreading node activations

through the network, starting with the nodes of the concepts in question and following

the edges in decreasing order of their weights. The model of Smith et al. (1974) rep-

resents concepts as sets of attributes of two types: defining attributes common to all

concepts of a (super-ordinate) category (e.g., has wings), and characteristic attributes

essential for a particular concept (e.g., flies). Semantic processing is performed by

computing the intersection of the sets of any two concepts. The model was shown to

account for human behaviour on categorisation. This was assessed by comparing the

reaction times of humans for concept-category pairs with model produced typicality

ratings. An issue with models using experimenter-generated attributes as those men-

tioned above is that these were defined particularly for specific models and are thus

prone to a lack of generality and psychological validity.

Modern attribute-based models use data collected in attribute norming studies, in

which humans are presented with a series of words and asked to list relevant attributes

of the things to which the words refer (Vinson and Vigliocco, 2008; Devereux et al.,

2013; McRae et al., 2005; see also Section 3.1 for more details on the latter). Such
1In the context of semantic representations, attributes are often called features or properties in the

literature. For the sake of consistency of the present work, we will adhere to the former term.
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attribute norms2 capture knowledge in addition to that used in the aforementioned

methods, such as functional knowledge in the sense of the actions one can perform

with objects, or go beyond objects and include events (Vinson and Vigliocco, 2008).

Even though not undisputed, attribute norms are widely regarded as proxy for senso-

rimotor experience. They provide a cue to aspects of human meaning representations

which have developed through interaction with the physical environment (McRae et al.,

2005), and are used to verbally convey perceptual and sensorimotor information (e.g.,

is yellow, smells bad, used by twisting).

Researchers have used attribute norms to test theories and understand phenomena

pertaining to the representation and processing of semantic knowledge, and to induce

computational models of semantic representation (e.g., Grondin et al., 2009; Taylor

et al., 2012), categorisation and its structure (Rosch and Mervis, 1975; Voorspoels

et al., 2008; O’Connor et al., 2009), and category-specific disorders (Tyler and Moss,

2001; Rogers et al., 2004).

2.2 Distributional Lexical Semantics

In analogy with human acquisition of knowledge through exposure to linguistic input,

distributional models of word meaning specify mechanisms for automatically con-

structing semantic representations from text corpora. They represent words by their

relation to other words, based on the distributional hypothesis (Harris, 1954) postulat-

ing that words that appear in similar linguistic contexts tend to have related meanings.

Distributional models thus clearly differ from attribute-based models presented in the

previous section in that they capture information on how to use words.

2.2.1 Vector Space Models

A well known instance of distributional models are vector space models (VSMs). They

are also termed semantic space models, as they typically represent words as points in a

high-dimensional space. The components of the corresponding vectors encode the sta-

tistical distribution over some co-occurring contextual elements or features (e.g., Lund

and Burgess, 1996; Padó and Lapata, 2007; Erk and Padó, 2008). Words (i.e. points)

that are nearby in the space are assumed to be related in meaning, as they exhibit a

2They are often termed semantic feature production norms (e.g., McRae et al., 2005) or property
norms (e.g., Devereux et al., 2013) in the literature.
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similar contextual distribution. Analogously, points that are far away are assumed to

be semantically dissimilar or unrelated.

VSMs have been successfully used in many natural language applications. Exam-

ples include information retrieval (Manning et al., 2008), document classification (Se-

bastiani, 2002), question answering (Tellex et al., 2003), information extraction (Paşca

et al., 2006), semantic role labelling (Pennacchiotti et al., 2008), word sense discrimi-

nation (Schütze, 1998), word sense disambiguation (Padó and Lapata, 2007), thesaurus

construction (Grefenstette, 1994), and many more (see Turney and Pantel, 2010). They

have likewise gained popularity in cognitive science (e.g., LSA, Landauer and Dumais

1997; HAL, Lund and Burgess 1996), being considerably successful at simulating hu-

man behaviour in various tasks including semantic priming (Lund and Burgess, 1996;

Landauer and Dumais, 1997; Padó and Lapata, 2007), deep dyslexia, text compre-

hension, synonym selection (Bullinaria and Levy, 2012; Landauer and Dumais, 1997;

Padó and Lapata, 2007), word association, similarity judgements (Landauer and Du-

mais, 1997), and categorisation (Bullinaria and Levy, 2012) (see Griffiths et al., 2007b,

and the references therein).

Typically, VSMs are constructed by analysing a text corpus and extracting the co-

occurrence frequency of each target word with its contextual elements, such as context

words or documents. Each target word is then represented as a vector whose com-

ponents correspond to contextual elements and whose entries give their frequency of

co-occurrence with the target word. These raw counts are subsequently turned into

weights (e.g., using weighting schemes such as mutual information or tf–idf ) that ab-

stract from raw frequency counts and express the importance of the contextual elements

for a target word. The vectors of all target words are generally stored as row vectors

in a sparse matrix, representing the semantic space. An example is given in Figure 2.1

(on the left), where the contextual elements correspond to documents. The dimension-

ality of the space may further be reduced by means of an appropriate method, such as

singular value decomposition (SVD, Golub and Reinsch, 1970).

Having constructed a VSM, we can mathematically compare the meaning of two

words, for example by geometrically estimating their similarity, e.g., as the cosine

of the angle (Deerwester et al., 1990) between their vectors. An example in a two-

dimensional space is presented in Figure 2.1 (on the right), where the angle between

the vectors of cake and bread is very small and the two words are therefore considered

highly similar, as opposed to cake and apple .

Researchers have used various types of contextual elements, weighting schemes,
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d1 d2 d3 d4 d5 d6

table 8 8 23 12 66 2

dog 30 16 14 70 56 12

apple 3 10 203 1 8 2

chick 1 3 3 3 3 4

snake 8 2 8 1 0 1

cake 4 1 11 3 11 1

bread 5 2 17 1 9 5

d2

d1

apple

cake
bread

Figure 2.1: Left: Example of a word-document matrix extracted from a text corpus.

Target words are represented by row vectors over documents they occur in (columns).

Right: Representations of the words cake, bread , and apple in a two-dimensional se-

mantic vector space. (Word counts extracted from British National Corpus (BNC).)

dimensionality reduction techniques, and comparison measures. We will give details

to each of them below, as far as relevant for this thesis (see also Turney and Pantel,

2010, for a more detailed overview).

VSM Types Contextual elements can be text passages of an underlying corpus, e.g.,

paragraphs or whole documents (word-document matrices, e.g., Landauer and Dumais,

1997), context words (word-word matrices, e.g., Lund and Burgess, 1996; Bullinaria

and Levy, 2012), or more sophisticated elements, such as syntactic dependencies (Padó

and Lapata, 2007), selectional preferences (Erk and Padó, 2008), or semantic attributes

(Baroni et al., 2010).

Word-document matrices are derived by counting the frequency with which each

target word occurs in each document (or paragraph) of an underlying text corpus. An

example for this matrix type is given in Figure 2.1 (left-hand side). Word-word ma-

trices, in turn, represent words by other words (the context words) with which they

co-occur in a text corpus. They are created by counting the frequency with which a

context word occurs within a window of words surrounding the target word, aggre-

gated over all occurrences of the target word in the text corpus. An example of context

snippets is given in Figure 2.2, and Figure 2.3 (left-hand side) shows a word-word

matrix.

Other approaches represent word meaning by means of word-attribute matrices.
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. . . was sitting at the first table past the kitchen, finishing his lunch.

And without another word he left the table , went out of the kitchen,. . .

. . . chef patissier of The Connaught, prepared the apple pastry dessert.

They finished with a dessert of nuts, honey and apple .

He went off into the kitchen and came back with an apple pie.

As the chicks hatched , they were moved into an out-building, . . .

As soon as a domestic hen chick hatches it starts pecking at grains . . .

Moreover, snakes never inject all their venom in a single strike, . . .

. . . the upas tree (Moraceae), or venom from toadskin or snakes .

Figure 2.2: Example context snippets for the target words table, apple, chick, and

snake . Words highlighted in blue are examples of co-occurring words. Context snippets

were extracted from the BNC.

They are similar to word-word matrices, with the difference that context words for a

given target word are extracted in such a way that these can be interpreted as attributes

of the latter. With reference to the previous section on attribute-based models (Sec-

tion 2.1), these VSMs employ the distributional approach to word meaning as a means

to automatically acquire attribute-based descriptions of words from text corpora. An

example is the model by Baroni et al. (2010), whose approach is based on the co-

occurrence counts of the target, its context words and the contextual elements linking

them. We will describe the model in more detail in Chapter 4 (Section 4.3).

Weighting Schemes For word-document matrices, the tf–idf (term frequency–inverse

document frequency) family of schemes for weighting co-occurring contextual ele-

ments is widely applied. We will use the following definition (see, e.g., Salton and

Buckley, 1988, for alternatives):

tf-idf(w,d) = tf(w,d) · idf(w) = frequ(w,d) · log
N
n
, (2.1)

where frequ(w,d) denotes the frequency of occurrence of word w in document d, N

denotes the total number of documents in a corpus collection, and n is the number of

documents containing w. The idf-factor leads to a higher weight for words that occur

only in a few documents, and a lower weight for those occurring in many documents

as these are supposedly not meaningful with respect to a specific document. Note that
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bake dessert venom hatch computer chair kitchen

table 0 7 0 3 23 473 347

dog 0 0 0 0 2 7 24

apple 2 27 0 0 369 0 3

chick 0 0 0 23 0 0 0

snake 0 0 28 2 0 0 0

cake 101 12 0 0 0 2 8

bread 75 5 0 0 0 0 16

bake

dessert
apple

cake

bread

Figure 2.3: Left: Example of a word-word matrix extracted from a text corpus. Tar-

get words are represented by row vectors over co-occurring context words (columns).

Right: Representations of the words cake, bread , and apple in a two-dimensional se-

mantic vector space. (Word counts extracted from BNC.)

the idf-factor plays no role in that it is cancelled out when used in conjunction with the

cosine similarity (see Equation (2.4)).

For word-word matrices, several weighting schemes have been used in the litera-

ture (see Bullinaria and Levy, 2007, for an overview). As an example, we give the

ratio weighting below which proved to be a robust measure in Mitchell’s (2011, p. 45)

experiments on similarity and synonymy tasks. It is defined as follows:

ratio(wi|w j) =
P(wi|w j)

P(wi)
=

frequ(wi,w j)∑
K
k=1 frequ(wk)

frequ(wi) frequ(w j)
, (2.2)

where the probability P(wi) of word wi denotes the maximum likelihood estimate of its

occurrence frequency in the dataset, the conditional probability P(wi|w j) of wi given

word w j is estimated by the frequency with which the words co-occur, and K denotes

the total number of considered context words (i.e. the columns of the word-word ma-

trix).

Dimensionality Reduction Techniques Singular value decomposition (SVD, Golub

and Reinsch, 1970) is a standard mathematical technique for reducing the dimension-

ality of semantic spaces, which has particularly proven useful for uncovering latent

(i.e. hidden) semantic structure of text data (Deerwester et al., 1990; Landauer and

Dumais, 1997).
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Let M be a real matrix with n rows and m columns, i.e. M ∈Rn×m. SVD computes

a factorisation of M into three component matrices, i.e.

M = UΣVT, (2.3)

where U ∈ Rn×n and VT ∈ Rm×m are orthonormal matrices3 and Σ ∈ Rn×m is a diago-

nal matrix of rank r with the singular values of M on its main diagonal in descending

order.

Landauer and Dumais (1997) used SVD for their latent semantic analysis (LSA)

model of word meaning, in which a semantic space of dimension r≤min(n,m) , repre-

sented by a word-document matrix M, is transformed to a (lower-dimensional) latent

space of dimension d < r. This is accomplished by setting all but the first d singu-

lar values in Σ, which are the latent components explaining best the co-occurrence of

words, to zero and re-multiplying the matrices. Md is then an approximation of M,

where similar words and documents, respectively, are now geometrically close to each

other even if they have never co-occurred in the original space. Note, that Md ∈ Rn×m

still applies.

SVD has since been applied to all types of VSMs, including word-word matri-

ces (Bullinaria and Levy, 2012) and vector spaces whose word representations were

constructed on the basis of text and image data (Bruni et al., 2014).

Similarity Measures We can quantify the similarity between two words, wu and wv,

by calculating the similarity between their vector representations, u and v, using a

variety of similarity measures (see Weeds et al., 2004; Turney and Pantel, 2010, for

overviews). Throughout this thesis, we will be using the cosine similarity measure,

which returns the cosine of the angle between the vectors:

cosine(u,v) =
u ·v
|u||v| =

n

∑
i=1

uivi√
∑

n
i=1 u2

i

√
∑

n
i=1 v2

i

(2.4)

We give a two-dimensional example in Figures 2.1 and 2.3 (right-hand side), where the

word cake is estimated to be more similar to bread than to apple due to their vectors

being geometrically closer in space.

3For an orthonormal matrix Q it holds that QTQ = QQT = I, where I is the identity matrix. That is,
the columns and rows of Q are orthogonal unit vectors.
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2.2.2 Generative Latent Variable Models

Topic models for word meaning represent words in a probabilistic way, namely by a set

of topics which are modelled by probability distributions over words. Latent Dirichlet

allocation (LDA, Blei et al., 2003) is a well-known example of such topic models. This

hierarchical Bayesian model views each document as a finite random mixture over a

set of latent, i.e. unobserved, topics, and each topic as an infinite mixture over an

underlying set of topic probabilities (Blei et al., 2003). LDA, akin to SVD, can be used

as a means for reducing the dimensionality of a word-document matrix. In contrast

to SVD, however, it is a generative model, specifying the creation of a collection of

documents (represented by the word-document matrix) by inferring the latent variables

that are most likely responsible for the observed data, i.e. the words of the documents.

The generative process is broken down into probabilistic steps as follows: In order

to generate a collection of documents, a set of topics is generated by sampling a multi-

nomial probability distribution φ from a Dirichlet distribution. For each document d to

be created, a distribution over topics θ is sampled from a Dirichlet distribution. Then,

for each of the words in d to be generated, a topic is drawn from θ, and a word is

finally drawn from the multinomial distribution over words associated with the topic.

Learning of the latent variables that best fit the word-document matrix, (i.e. which ex-

plain best the generation of the document collection), is performed through Bayesian

inference.

2.3 Distributed Lexical Semantics

Distributed models of word meaning specify mechanisms for learning representations

corresponding to vectors of distributed patterns of activation across neuron-like units.

The activation of a unit is caused by the weighted activations of other units it is con-

nected to. Unlike the components in distributional or attribute-based models, the in-

dividual units do not usually correspond to interpretable features or words. Instead, a

meaningful feature may be encoded by a distribution of activities across several units

(Rogers and McClelland, 2004, p. 77).

Distributed representations with artificial neural networks as their most common

type of architecture lie at the core of connectionist models (Hinton, 1981, 1986; Rumel-

hart et al., 1986a). The basic architecture of an artificial neural network (henceforth

network) contains one layer of input units and one layer of output (or target) units
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Figure 2.4: Example of a basic (artificial neural) network consisting of one input layer

(with n units), one hidden layer (with k units), and one output layer (with 1 unit). The

arrows represent the direction in which the activation of one unit is passed as input to

another unit. Parameter θ comprises all weight parameters to be learned.

which are often, but not necessarily, connected through internal units, referred to as

hidden units (see Figure 2.4).

Early Connectionist Models Connectionist models have been extensively used to

study and simulate phenomena of semantic knowledge as well as the consequences

of its impairments and disorders by introducing damage to the architecture of the net-

work (see Cree and Armstrong, 2012; Jones et al., 2015, inter alia, for a review). Many

early network models were trained using hand-crafted features in the form of semantic

attributes (e.g., has legs) or labels (e.g., cat). These either explicitly correspond to

the units of the semantic representations (e.g. Farah and McClelland, 1991), or they

are given as input or target output to learn abstract distributed representations in the

network’s hidden layer (e.g. Hinton and Shallice, 1991; Westermann and Mareschal,

2014). Other work (Tyler et al., 2000; McRae et al., 1997; Cree et al., 1999) does not

rely on features specifically created for a network model, but instead makes use of se-

mantic attributes empirically elicited in norming studies (see Section 3.1 for details on

attribute norms). In the model by Rogers et al. (2004), the hidden semantic represen-

tation to be learned functions as connecting layer between both verbal units informed

by attribute norms and visual units corresponding to visual properties of objects.

(Deep) Neural Networks As briefly discussed above, connectionist approaches have

a long tradition in cognitive science (dating back to Hinton, 1981, 1986), but only re-

cent achievements (LeCun et al., 1990; Hinton and Salakhutdinov, 2006; Hinton et al.,
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2006; Ranzato et al., 2006) and advances in computer technology made learning in

more complex network architectures feasible. This led to the emergence of a new re-

search area in machine learning commonly referred to as deep learning, along with a

surge/resurrection of interest in their application in natural language processing, com-

puter vision and other disciplines (see, e.g., the NIPS 2013 and 2014 Workshops on

Deep Learning4 and Representation Learning5, the ICML 2013 Workshop on Deep

Learning for Audio, Speech, and Language Processing6, and the ACL 2012 Tutorial

on Deep Learning for NLP7.)

Since then, a variety of (deep and shallow) network architectures have been pro-

posed that learn word representations corresponding to vectors of activation of network

units, and are often referred to as word embeddings. A notable difference between

these models and the early models outlined above is that learning is performed on the

basis of unlabeled text corpora.

The model we propose in this thesis employs deep learning methods to learn vi-

sually grounded distributed word representations. We will give more details on deep

learning along with the presentation of our model in Chapter 5.

Here, we will confine ourselves to briefly refer to models whose induced word rep-

resentations have been leveraged in a wide range of NLP tasks (Collobert and Weston,

2008; Mnih and Hinton, 2009; Huang et al., 2012). These network models embed

each word into a continuous space via an embedding matrix to be learned. Subse-

quent layers of the network use these embeddings by mapping them to a prediction of

the target output. Typically, the embeddings are initialised randomly and then learned

by backpropagating the derivative of the objective function (with respect to the net-

work weights) through the network to the embedding matrix. Focusing on language

modelling,8 the network by Bengio et al. (2003) is trained to predict a probability dis-

tribution over the next word given preceding words, and, similarly, Mnih and Hinton’s

(2009) objective is to predict the embedding of the next word. Collobert and Weston

(2008) introduced the use of a (pairwise) ranking criterion by which their network is

trained to give a higher score to correct word sequences than to noisy ones, where noise

was introduced by replacing the middle word of a sequence by a random word. Sim-

ilar paradigms have been used by other neural network approaches to inducing word

4https://sites.google.com/site/deeplearningworkshopnips2013/
5https://sites.google.com/site/deeplearningworkshopnips2014/
6https://sites.google.com/site/deeplearningicml2013/
7http://www.acl2012.org/program/tutorial2-2.asp
8Neural network language models can be employed, e.g., during decoding for statistical machine

translation (i.e. to ensure a fluent translation; Vaswani et al., 2013; Schwenk, 2007, 2010).

https://sites.google.com/site/deeplearningworkshopnips2013/
https://sites.google.com/site/deeplearningworkshopnips2014/
https://sites.google.com/site/deeplearningicml2013/
http://www.acl2012.org/program/tutorial2-2.asp
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embeddings (e.g., Turian et al., 2010; Huang et al., 2012; Mikolov et al., 2013b), or

to associating visual and linguistic data (e.g., Kiros et al., 2014b; Socher et al., 2013b,

see Chapter 5). Collobert and Weston (2008) showed how thereby pre-trained word

representations can be used to initialise a deep neural network architecture applicable

to several NLP tasks, such as part-of-speech (PoS) tagging and semantic role labelling,

and jointly optimised the network parameters (including those for the word embed-

dings) on the different tasks using labelled data (see also Collobert et al., 2011).

In later work, Mikolov et al. (2013a,b) present the continuous skip-gram model

which has become one of the standard choices for NLP approaches leveraging word

representations. We will give more details on this model in Chapter 6, where we com-

pare it experimentally to our own model.

Word embeddings induced by the aforementioned methods have been used to ini-

tialise neural network models addressing, inter alia, sentiment analysis, semantic re-

lation classification (Socher et al., 2012), parsing (Socher et al., 2013a), question an-

swering (Iyyer et al., 2014), and image caption generation (Kiros et al., 2014b), or

have served as word features in existing systems for, e.g., chunking, NER (Turian

et al., 2010), dependency parsing (Bansal et al., 2014), or frame-semantic role la-

belling (Roth and Lapata, 2015) Moreover, they have been used directly as seman-

tic representations for measuring relational similarity or answering analogy questions

(e.g., Mikolov et al., 2013a,c; Levy and Goldberg, 2014)

These distributed models, however, usually cannot deal with out-of-vocabulary

words. Some models adopt hybrid approaches of distributional and distributed meth-

ods and learn an encoding matrix which maps distributional word representations (Sec-

tion 2.2) into a distributed space and which hence can be applied to encode new words

(e.g., Bespalov et al., 2011). Similarly, our model presented in Chapter 5 learns dis-

tributed representations by leveraging attribute-based representations obtained with,

inter alia, a distributional model.

2.4 Discussion

Connectionist models are in parts similar to semantic space models which arise from

the application of mathematical techniques (e.g., singular value decomposition) and

project word representations to a new space over latent variables. A key difference

between the two types of models, however, is that connectionist representations are

learned gradually by iteratively adjusting the weights that connect the units, whereas
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representations of the latter type arise from a one-time computation (Rogers and Mc-

Clelland, 2004, p. 77) applied onto count-based representations. Both, distributional

models and modern network approaches applied to natural language processing, are

based on the hypothesis that the meaning of words is determined by their relation

to other words. Their induced word representations capture language use as a result

of their induction from naturally occurring linguistic information, i.e. text corpora.

Whether one type of the two corpus-based approaches is in general preferable over the

other has been subject of recent studies (e.g., Lebret et al., 2013; Baroni et al., 2014;

Lebret and Collobert, 2014; Levy et al., 2015). In contrast, attribute-based models cap-

ture taxonomic, sensorimotor and perceptual characteristics of concepts, by virtue of

using human-produced information (hand-coded or empirically derived attributes) of

concepts.

2.5 Grounded Models of Lexical Semantics

In the previous sections we discussed three major strands of models of lexical repre-

sentations which focus on different aspects of word meaning. Despite their widespread

use, corpus-based models have been criticised as “disembodied” in that they are not

grounded in perception and action (Barsalou, 1999; Glenberg and Kaschak, 2002; Per-

fetti, 1998). This lack of grounding contrasts with many experimental studies suggest-

ing that word meaning is acquired not only from exposure to the linguistic environment

but also from our interaction with the physical world (Landau et al., 1998; Bornstein

et al., 2004). Beyond language acquisition, there is considerable evidence across both

behavioural experiments and neuroimaging studies that the perceptual associates of

words play an important role in language processing (for a review see Barsalou, 2008).

In recent years, new types of models of word meaning have emerged that integrate

both corpus-based (textual) and perceptual data in order to derive grounded representa-

tions. The models differ in terms of the source of perceptual information used as well

as the methods that are applied for integrating different modalities. In this section we

will give a review of these models.

2.5.1 Sources of perceptual information

Some models use attribute norms obtained in longitudinal eliciation studies (cf. Sec-

tions 2.1 and 3.1) as an approximation of the perceptual environment (Andrews et al.,
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2009; Steyvers, 2010; Johns and Jones, 2012; Silberer and Lapata, 2012). Others focus

on the visual modality as a major source of perceptual information and exploit image

databases, such as ImageNet (Deng et al., 2009, see Section 4.2.2 for details) or ESP

(von Ahn and Dabbish, 2004, see Section 3.2 for details). With a few exceptions that

leverage human produced image labels (e.g., red, dog) as a proxy (Bruni et al., 2012a;

Hill and Korhonen, 2014), most methods automatically extract visual information from

images (Feng and Lapata, 2010; Silberer et al., 2013; Kiela and Bottou, 2014; Bruni

et al., 2011, 2012a,b, 2014; Silberer and Lapata, 2014).

Feng and Lapata (2010) and Bruni et al. (2011, 2012a,b, 2014) use the bag-of-visual-

words (BoVW) model to represent images as histograms over visual words. The

BoVW model is an analogy to the bag-of-words approach in natural language pro-

cessing, in which documents are represented by means of the words they contain.9 A

dictionary of visual words (codebook) is first derived by clustering feature descrip-

tors extracted from a collection of images. An image can then be represented by the

histogram of visual words, obtained by accumulating, for each cluster, the descrip-

tors found in the image that are members of the particular cluster. With the purpose

to introduce weak geometry, Bruni and colleagues partition an image uniformly into

smaller regions and perform the BoVW approach on each image region instead of a

whole image, applying spatial binning (Lazebnik et al., 2006). That is, an image is

represented as the concatenation of histograms of visual words, where each histogram

is derived from a spatial region of the image. Feng and Lapata (2010) and Bruni et al.

(2011, 2012a,b, 2014) use SIFT (scale-invariant feature transform, Lowe, 2004) de-

scriptors, which is an approach to extract descriptions of visual image features that

are invariant to scaling and rotation and partially to changes in illumination and affine

transformations. Bruni et al. (2012a) additionally use color space features as an alter-

native to SIFT descriptors. Kiela and Bottou (2014) follow the recent trend in image

representation learning and learn distributed representations for the visual modality by

means of convolutional neural networks, which directly operate on the pixel-level of

images. Finally, combinations of different sources of perceptual information have also

been suggested. Roller and Schulte im Walde (2013) combine visual information ob-

tained with the BoVW model with data from norming studies, and Hill and Korhonen

(2014) combine the latter with image labels.

With exception of the model by Feng and Lapata (2010), who extract all informa-

9Technically, the document representation as a bag of words is the transpose of a word-document
matrix.
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tion from a corpus of bimodal documents (i.e. BBC news articles and their associated

images), data sources for the perceptual and textual modality in the aforementioned

approaches are decoupled in that they are gathered independently and do not co-occur

(i.e. linguistic data from text corpora and perceptual information from attribute norms

or image databases).

In this thesis, we present another approach which draws inspiration from the suc-

cessful application of attribute classifiers in object recognition, and represents im-

ages by visual attributes (e.g., has legs, is round; see Chapter 4). We will show that

these (automatically predicted) attributes can act as substitutes for attribute norms

in grounded models of semantic representation without any critical information loss

(Chapters 4 and 6; Silberer et al., 2013; Silberer and Lapata, 2014).

2.5.2 Integration mechanism

Existing models can be broadly distinguished by the integration mechanism that is

applied in order to obtain a perceptually grounded semantic space, and whether the

process exploits the interrelationships between the modalities.

A shallow approach is to derive a new grounded space by concatenating the vectors

(or matrices) corresponding to a word’s perceptual and linguistic representation (or to

the two semantic spaces), respectively (Kiela and Bottou, 2014; Bruni et al., 2011,

2012a), without performing any further methods on the concatenation. For example,

given two vectors v = [a1,a2, . . . ,an] and w = [b1,b2, . . . ,bm], their combined repre-

sentation in the new space is [a1,a2, . . . ,an,b1,b2, . . . ,bm]. In the case of integration

by concatenation, the components of the original unimodal spaces are directly adopted

as the individual components that constitute the new grounded space. This mecha-

nism is illustrated in Figure 2.5 (a). Bruni et al. (2011, 2012a) create an individual

distributional space for the visual and linguistic modality, respectively, prior to their

concatenation. Kiela and Bottou (2014) perform the same two-step approach, but use

distributed representations for the modalities. Johns and Jones (2012) also concatenate

distributional representations, but they focus on inferring missing perceptual informa-

tion by leveraging the redundancies between the perceptual and linguistic modality

prior to their concatenation. The approach is illustrated in Figure 2.5 (b). We discuss

this model in more detail in Chapter 3 (Section 3.3.2).

Other approaches infer bimodal representations over latent variables responsible

for the co-occurrence of words over featural dimensions. A model akin to Latent Se-
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1Figure 2.5: Illustration of different integration mechanisms.

mantic Analysis (Landauer and Dumais, 1997) is proposed by Bruni et al. (2012b,

2014) who concatenate the two matrices pertaining to a linguistic and visual VSM and

subsequently project them onto a lower-dimensional space using SVD (Section 2.2.1).

We will give a more detailed description of this model in Chapter 6. In the grounded

space obtained by applying SVD, perceptual and linguistic components of the origi-

nal matrices may now be collapsed to one latent variable. Yet, two matrices can be

directly derived by means of the mappings ΣdVT
L and ΣdVT

V (see Section 2.2.1), con-

sisting only of the columns corresponding to the linguistic and visual components,

respectively. Namely by projecting the original matrix to a visually grounded linguis-

tic space (UΣdVT
L) and a linguistically grounded visual space (UΣdVT

V), respectively.

(See Figure 2.5 (c) for an illustration of this mechanism.)

Several models (Andrews et al., 2009; Steyvers, 2010; Feng and Lapata, 2010; Roller

and Schulte im Walde, 2013) present an extension of latent Dirichlet allocation (LDA,

Section 2.2.2). This type of perceptually grounded models treat both, words in doc-

uments and other perceptual units, as observed variables to learn topic distributions.

The hereby inferred perceptually grounded representations of the words correspond to

distributions over components (i.e. topics) which can not be attributed to a particular

modality (Figure 2.5 (d)). We will give more details of this approach (Andrews et al.,

2009) in Chapter 3 (Section 3.3.1). Hill and Korhonen (2014) propose a distributed

approach and extend Mikolov et al.’s (2013a) skip-gram neural language model (de-

scribed in Section 2.3), in a fashion analogous to Andrews et al. (2009).

In summary, despite differences in formulation, most existent models conceptu-

alise the problem of perceptually grounding meaning representations as one of learning
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from multiple views corresponding to different modalities. These models still repre-

sent words as vectors resulting from the combination of representations with different

statistical properties that do not necessarily have a natural correspondence (e.g., text

and images). These new grounded models of word meaning have been shown to ac-

count for human behaviour on a range of cognitive tasks, including lexical substitution

(Andrews et al., 2009), word association (Andrews et al., 2009; Feng and Lapata, 2010;

Silberer and Lapata, 2012; Roller and Schulte im Walde, 2013), semantic priming (An-

drews et al., 2009; Johns and Jones, 2012), word similarity (Feng and Lapata, 2010;

Silberer and Lapata, 2012, 2014; Bruni et al., 2014; Kiela and Bottou, 2014), compo-

sitionality (Roller and Schulte im Walde, 2013), and concept categorisation (Silberer

and Lapata, 2014).

Other models that leverage linguistic and visual information from images have

been developed with particular tasks in mind. We can distinguish between approaches

that exploit visual information for linguistic tasks, such as measuring word relatedness

(Leong and Mihalcea, 2011), retrieving word translations (Bergsma and Van Durme,

2011), or predicting selectional preferences (Bergsma and Goebel, 2011), and those

that integrate linguistic information for image-oriented tasks, such as image or de-

scription retrieval (e.g., Gong et al., 2014; Weston et al., 2010; Socher et al., 2014;

Kiros et al., 2014a,b), image annotation or caption generation (e.g., Barnard et al.,

2003; Feng and Lapata, 2013; Kiros et al., 2014b; Mao et al., 2014), or object classifi-

cation and zero-shot learning (e.g., Frome et al., 2013; Socher et al., 2013b; Lazaridou

et al., 2014).

The models addressing linguistic tasks do not learn a joint representation. With

respect to the image-related models, most researchers adopt a distributed approach

and learn a joint representation by projecting both modalities to a bimodal space (Fig-

ure 2.5 (c), (d)), or by performing cross-modal learning, projecting the representa-

tions in one modality into the space of the other modality via a projection layer (Fig-

ure 2.5 (e), e.g., Socher et al., 2013b; Lazaridou et al., 2014). These models intersect

with multimodal (deep) learning in networks, which we will discuss in more detail in

Chapter 5. An alternative to the latter is to directly train a mapping from one space

to the other (Socher et al., 2014). In this case, however, no bimodal representation is

learned (Figure 2.5 (f)).

In Chapter 5 (Section 5.3), we present our approach to visually grounded models
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of word meaning. It employs multimodal deep learning methods to map visual and

textual information into a joint space, corresponding to the mechanism illustrated in

Figure 2.5 (d). Our preference for this mechanism over the other methods is based

on two assumptions: Firstly, the perceptual and linguistic modalities share correlated

information and their unification in a joint space is cognitively more plausible than sim-

ply adding the modalities ((a) and (b)), since it is unlikely that humans have separate

representations for different aspects of word meaning (Rogers et al., 2004). The joint

space is derived by exploiting the interrelationships between the modalities, which is

not the case with mechanism (a). Mechanism (e) (and (f)) relies upon a single in-

put modality which contradicts the central assumption discussed above that humans

learn word meaning through the exposure to both perceptual and linguistic experience,

providing complementary information. In fact, mechanism (e) can be interpreted as

learning meaning representations by trying to produce one modality (e.g., language)

through the exposure to the respective other modality (e.g., perception), and prior to

the experience of the former. Finally, mechanisms (d) and (c) both perform integration

by jointly taking into account the two modalities. Whether one type is preferable over

the other may therefore depend on the specific algorithms employed.

2.6 Conclusions

In this chapter, we reviewed three major strands of computational models of semantic

representations, which derive lexical meaning representations either on the basis of

text corpora or by means of human-produced attributes of concepts. We referred to

the criticism on corpus-based approaches of not being grounded in the physical world

as a result of their use of purely distributional statistics. We discussed recent work

which deals with this issue and approaches the problem of perceptually grounding

meaning representations by integrating perceptual and corpus-based information. In

our discussion we focussed on the source of information which existing approaches use

to approximate the perceptual modality, and the mechanism they employ for modality

integration.



Chapter 3

Grounded Models Using Human Input

In the previous chapter we reviewed existent work on perceptually grounded models

of lexical semantics and distinguished them according to the used type of perceptual

information and the employed integration mechanism. The subject of this chapter is

a closer examination of the latter. More precisely, we present a comparative study of

three perceptually grounded distributional models and focus on the different mecha-

nisms used for the integration of textual and perceptual data, addressing the following

questions:

1. Does the integration of perceptual and textual information yield a better fit with

behavioural data compared to a model that considers only one data source?

2. What is the best way to integrate the two information sources?

3. How accurately can we approximate perceptual information for words that do

not have any?

4. What type of readily available perceptual information can we exploit? (e.g., vi-

sual, auditory, etc.)?

The first model, described in Section 3.3.1 and originally proposed by Andrews

et al. (2009), is an extension of latent Dirichlet allocation (LDA, Blei et al., 2003, see

Section 2.2.2). The integration mechanism of the model is an instance of type (d)

illustrated in Figure 2.5 (page 26). The second model is based on Johns and Jones

(2012) who represent the meaning of a word as the concatenation of its textual and its

perceptual vector (Section 3.3.2). It is an instance of type (b) (Figure 2.5, page 26).

Finally, we propose canonical correlation analysis (CCA, Hotelling, 1936; Hardoon

29
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et al., 2004) as our third model in Section 3.3.3. CCA is a data analysis and dimension-

ality reduction method for joint dimensionality reduction across two (or more) spaces

that provide heterogeneous representations of the same objects. The assumption is

that the representations in these two spaces contain some joint information that is re-

flected in correlations between them. This model is an instance of type (c) (Figure 2.5,

page 26).

In our experiments (Section 3.4), we first compare the three models using attribute

norms as a proxy for perceptual information (Sections 3.4.1 and 3.4.2). Subsequently,

we approximate perceptual information with image labels (Section 3.4.3). We start

with a description of these two data sources (Sections 3.1 and 3.2), followed by details

on the three models (Section 3.3).

3.1 Semantic Attribute Production Norms as a Proxy

for Perceptual Information

As discussed in Chapter 2 (Section 2.1), attribute norms can stand in as a proxy for sen-

sorimotor experience, and are therefore useful for studying the integration of percep-

tual and textual information without being susceptible to the effects of noise, e.g., com-

ing from processing of images and other modalities. Norms often cover a small frac-

tion of the vocabulary of an adult speaker due to the effort involved in eliciting them,

which makes their large-scale use difficult, but they provide a good starting point, serv-

ing as an upper bound of what can be achieved when integrating detailed perceptual

information with text-based distributional models.

In this thesis, we rely on the widely used norming study of McRae et al. (2005,

henceforth referred to as McRae norms). The norms contain attribute lists for con-

crete nouns referring to 541 animate and inanimate concepts. The authors unified

synonymous attributes during recording and included in the list for a given concept

only attributes that had been listed by at least five (out of thirty) participants. In total,

the norms contain 2,526 unique attributes out of which 824 co-occur with at least two

different nouns. Each attribute is assigned its production frequency, i.e. the number of

participants who listed a specific attribute for a concept, and is furthermore categorised

into one of nine knowledge types, such as visual or taxonomic information.

Table 3.1 presents examples of attributes participants listed for the nouns apple ,

dog , and table together with their knowledge types. The table shows probability dis-
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Attributes Concepts Type
table dog apple

has 4 legs .25 .36 0 visual-form/surface

used for eating .44 0 0 function

furniture .12 0 0 taxonomic

is red 0 0 .51 visual-colour

is crunchy 0 0 .21 tactile

is round .19 0 .16 visual-form/surface

beh - barks 0 .42 0 sound

beh - chases 0 .12 0 visual-motion

tastes sour 0 0 .12 taste

is domestic 0 .10 0 encyclopedic

Figure 3.1: Attribute norms for the nouns table , dog , and apple shown as distributions.

tributions over attributes given the words obtained by normalising the attribute produc-

tion frequencies:

P(ak|w) =
frequ(ak,w)

A
∑

m=1
frequ(am,w)

, (3.1)

where frequ(ak,w) is the production frequency of attribute ak for word w and A is the

total number of attributes. Recently, another set of attribute norms has been released

(Devereux et al., 2013), which is similar in fashion to the McRae norms and covers 639

nominal concepts.

3.2 Image Labels as a Proxy for Perceptual Information

The visual modality is a major source of perceptual information and, as the experi-

mental results reported later in this chapter suggest (Section 3.4.2), constitute a strong

complement to textual information for modelling word meaning.

Images represent a natural and direct source of visual information. Moreover, they

are ubiquitous and therefore provide easily accessible information for a potentially un-

restricted number of target concepts (in contrast to, e.g., attribute production norms).

In recent years, many collections of images annotated with object labels have emerged
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proving invaluable for computer vision research, especially as training and evaluation

benchmarks for object detection and recognition. These object labels can be regarded

as a human generated proxy for the visual modality, lying between information di-

rectly extracted from image data by means of computer vision techniques and attribute

production norms.

Most datasets focus on a relatively small number of object classes and provide no

(e.g., Caltech-101, Fei-Fei et al., 2007; Caltech-256, Griffin et al., 2007) or little infor-

mation that goes beyond class labels, such as categories1 (e.g., Cifar-100, Krizhevsky,

2009) or bounding boxes localising the objects present in an image (e.g., Pascal-VOC,

Everingham et al., 2012). Some datasets have been created as part of online crowd-

sourcing efforts engaging a large number of humans and as a result cover thousands of

different object classes with annotations ranging from object labels, image tags, bound-

ing boxes, semantic attributes etc. (ESP, von Ahn and Dabbish, 2004; ImageNet, Deng

et al., 2009; MIRFlickr, Huiskes and Lew, 2008; LabelMe, Russell et al., 2008).

In this chapter, we will make use of the ESP and LabelMe datasets, which contain

five labels (out of 19K types) and four labels (out of 8K types) on average for each

image, respectively, with 68K and 75K images in total (see also Table 3.1).2 Figure 3.2

shows examples of images and their labels from the two datasets. ESP (von Ahn

and Dabbish, 2004) was acquired through an online game, where online users were

paired up and presented with the same image picked from a pool of images randomly

collected from the web. Both players then typed in descriptive strings for the objects

shown in the image, trying to guess what their partner was entering with respect to the

objects. Once there was a matching string among the guesses, that is, they agreed on

an appropriate label, the game continued with another image. The rationale behind this

protocol was that matching guesses are typically good descriptive labels for the image.

To increase the number of different labels for an image, labels that had been agreed

upon by a certain number of pairs were listed as prohibited words for the next players

being presented with the image.

LabelMe (Russell et al., 2008) is a database and a web-based annotation tool for

sharing, annotating, and querying images. Image annotation consists of drawing a

polygon around each object or parts of it (i.e. providing their outline and location) and

1Krizhevsky (2009) refer to categories as superclasses. For example, the object classes beaver,
dolphin and otter are members of the superclass AQUATIC MAMMAL.

2The numbers refer to the LabelMe version downloaded in April 2012, and the ESP dataset obtained
from the website of J. Langford (http://www.hunch.net/˜jl/). Von Ahn has made available a larger
version of ESP of 100K images at http://www.cs.cmu.edu/˜biglou/resources/ (last accessed in
May 2015).

http://www.hunch.net/~jl/
http://www.cs.cmu.edu/~biglou/resources/
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ESP LabelMe

number images 67,796 75,243

avg number labels/image 5.1 4.0

number labels 346,794 302,613

number labels (types) 19,354 7,873

number labels associated with ≥ x images

x = 40 911 645

x = 80 529 463

x = 160 290 314

x = 320 161 206

Table 3.1: Statistics of the ESP and LabelMe image datasets.

assigning a name and, optionally, attributes to the object.

There is a notable difference between ESP and LabelMe with respect to the avail-

able image labels (cf. Table 3.1). Despite containing a larger number of images, La-

belMe has considerably less label types than ESP (8K and 19K types, respectively).

Furthermore, LabelMe contains primarily images that do not focus on a certain object.

An example are street scenes where houses, streets, or cars are illustrated. Since the an-

notators in LabelMe were asked to draw a polygon around a certain object and provide

a descriptive label for that area, the labels of an image in LabelMe often correspond to

objects co-occurring in the image. ESP, in contrast, consists exclusively of images and

their labels, with the images often focussing on a particular object. Hence, labels in

ESP tend to name objects and parts and attributes. The statistics of the dataset labels

reflect this observation: the ten most frequent labels in LabelMe are person, walking,

tree, window, building, sky, car, road, table, door. In ESP, the most frequent words are

white, black, blue, man, red, green, woman, logo, yellow, tree.

3.3 Models

This section presents the three models which we will experimentally compare in the

subsequent section. Recall that the comparative study performed in this chapter ad-

dresses the question of what is the best way to integrate linguistic and perceptual

information. We thus chose models which represent the different core integration
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apple, tree, green, red, leaf,
fruit

dog, leash, beagle, red,
black, cute, nose, tail,
brown, puppy, white, snow

table, floor, couch, chair,
sofa, phone, black, wood,
shirt, green, brown, room
apartment, bowl, window

E
S
P

apple, banana, hand,
bottle, bowl

dog, arm, head, leg, tree,
people, person sitting,
torso

table, flowers, fork, glass,
knife, mug, napkin, plate

L
A
B
E
L
M
E

1Figure 3.2: Examples of images and labels in ESP and LabelMe.

mechanisms identified in the previous chapter and illustrated in Figure 2.5 (Page 26):

concatenation approaches ((a),(b), Section 3.3.2) and the two joint mechanisms ((c),

Section 3.3.3, and (d), Section 3.3.1).

3.3.1 Attribute-topic Model

Andrews et al. (2009) present an extension of LDA (Blei et al., 2003) where words in

documents as well as their associated attributes are treated as observed variables that

are explained by a generative process. The underlying training data consists of a cor-

pus D where each document is represented by words and their frequency of occurrence

within the document. In addition, those words of a document for which also attribute

information is available (e.g., they are included in attribute norms) are paired with one

of their attributes, where an attribute is sampled according to the attribute distribution

given that word (see, e.g., Equation (3.1), Page 31).

For example, suppose a document d j consists of the sentence Mix in the apple,

celery, raisins, and apple juice. Suppose further that for all content words except of

mix and juice attribute information is available. Then, a representation for d j is mix:1,

apple;is red:2, celery;has leaves:1, raisin;is edible:1, juice:1.

The plate diagram in Figure 3.3 illustrates the graphical model in detail. Each

document d j in D is generated by a mixture of components {x1, ...,xc, ...,xC} ∈ C ;
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π

x

ψ w,a φ

α

γ β

∀xc ∈ C ∀i ∈ {1, ...,n j}

∀ j ∈ {1, ...,D}

∀xc ∈ C

Figure 3.3: Attribute-topic model. The components x ji of a document d j are sampled

from π j. For each xc = x ji, a word w ji is drawn from distribution φc and an attribute a ji

is drawn from distribution ψc.

a component xc comprises a latent discourse topic coupled with an attribute cluster

originating from an external source of perceptual information (e.g., attribute norms).

A discourse topic belonging to xc, in turn, is a distribution φc ∈ φ = {φ1, ...,φC} over

words, and an attribute cluster is a distribution over attributes, ψc ∈ ψ = {ψ1, ...,ψC}.
In order to create document d j, a distribution π j over components is sampled from a

Dirichlet distribution parametrised by α. To generate each word w ji ∈ {w j1, ...,w jn j},
a component xc = x ji is drawn from π j; w ji is then drawn from the corresponding

distribution φc. If there is attribute information available for w ji, it is coupled with

an attribute a ji which is correspondingly drawn from ψc. A symmetric Dirichlet prior

with hyperparameters β and γ is placed on φ and ψ, respectively. The probability of

the corpus D is defined as:

P((w∪a)1:D|φ,ψ,α)=
D

∏
j=1

∫
dπ j

n j

∏
i=1

P(π j|α)
C

∑
c=1

P(w ji|x ji = xc,φ)P(a ji|x ji = xc,ψ)P(x ji = xc|π j)

(3.2)

where D is the number of documents and C the predefined number of components.

Computing the posterior distribution P(φ,ψ,α,β,γ|(w∪a)1:D) of the hidden variables
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[ x1 x2 x12 ... x28 x75 x107 x119 x125 x148 x182 ... x266 x326 x349 x350

apple 3e-5 3e-5 0 . . . 5e-4 9e-4 .09 .002 7.6e-5 2e-4 .003 . . . 0 0 3e-6 0
]

Figure 3.4: Example of the representation of the meaning of apple with the model of

Andrews et al. (2009) .

given the data is generally intractable:

P(φ,ψ,α,β,γ|(w∪a)1:D) ∝ P((w∪a)1:D|φ,ψ,α)P(φ|β)P(ψ|γ)P(α)P(β)P(γ) (3.3)

Equation (3.3) may be approximated using the Gibbs sampling procedure described in

Andrews et al. (2009).

Inducing attribute-topic components from a document collection D with the ex-

tended LDA model just described gives two sets of parameters: word probabilities

given components PW (wi|X = xc) for wi, i = 1, ...,N, and attribute probabilities given

components PA(ak|X = xc) for ak, k = 1, ...,A. For example, most of the probability

mass of a component x would be reserved for the words apple, fruit, lemon, orange,

tree and the attributes is red, tastes sweet, is round and so on.

Word meaning in this model is represented by the distribution PX |W over the learned

components (see Figure 3.4 for an example). Assuming a uniform distribution over

components xc in D , PX |W can be approximated as:

PX=xc|W=wi =
P(wi|xc)P(xc)

P(wi)
≈ P(wi|xc)

C
∑

l=1
P(wi|xl)

(3.4)

where C is the total number of components. The model can be also used to infer

attributes for words for which no attribute information is available. The probability

distribution PA|W over attributes given a word wi is simply inferred by summing over

all components xc for each attribute ak:

PA(ak|W = wi) =
C

∑
c=1

P(ak|xc)P(xc|wi) (3.5)

3.3.2 Global Similarity Model

Johns and Jones (2012) propose an approach for generating perceptual representations

for words by means of global lexical similarity. Their model does not place so much
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[ ... d16 ... d322 ... d2469 d2470 ... dD

apple . . . 1 . . . 1 . . . 0 1 . . . 0
] [a f ruit has f angs is crunchy ... is yellow is red is green is round

0 0 0 . . . 0 0 0 0
]

[ ... d16 ... d322 ... d2469 d2470 ... dD

apple . . . 1 . . . 1 . . . 0 1 . . . 0
] [a f ruit has f angs is crunchy ... is yellow is red is green is round

.006 1.8e-5 8e-4 . . . .004 .004 .006 .02
]

Figure 3.5: Example of the representation for apple before (first row) and after (second

row) applying the perceptual inference method of John & Jones (2012).

emphasis on the integration of perceptual and linguistic information, rather its main

focus is on inducing perceptual representations for words with no perceptual correlates.

Their idea is to assume that lexically similar words also share perceptual attributes and

hence it should be possible to transfer perceptual information onto words that have

none from their linguistically similar neighbours.

Let T∈ {1,0}N×D denote a binary word-document matrix, where each cell records

the presence or absence of a word in a document. Let P ∈ [0,1]N×A denote a per-

ceptual matrix, representing a probability distribution over attributes for each word

(see, e.g., Equation (3.1), Page 3.1). A word’s meaning is represented by the concate-

nation of its textual and perceptual vectors (see Figure 3.5, second row). If a word is

lacking attribute information, its perceptual vector will be all zeros. Johns and Jones

(2012) propose a two-step estimation process for words without perceptual vectors.

Initially, a perceptual vector is constructed based on the word’s weighted similarity to

other words that have non-zero perceptual vectors:

pin f =
N

∑
i=1

ti ∗ sim(ti,p)λ (3.6)

where p is the representation of a word with a textual vector but an empty perceptual

vector, ts are composite representations consisting of textual and perceptual vectors,

sim is a measure of distributional similarity such as the cosine similarity, λ a weighting

parameter, and pin f the resulting inferred representation of the word. The process

is repeated a second time, so as to incorporate the inferred perceptual vector in the

computation of the inferred vectors of all other words. An example of this inference

procedure is illustrated in Figure 3.5.
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3.3.3 Canonical Correlation Analysis

Our third model uses canonical correlation analysis (CCA, Hotelling, 1936; Hardoon

et al., 2004) to learn a joint semantic representation from the textual and perceptual

views. Given two random variables x and y (or two sets of vectors), CCA can be

seen as determining two sets of basis vectors in such a way, that the correlation be-

tween the projections of the variables onto these bases is mutually maximised (Borga,

2001). In effect, the representation-specific details pertaining to the two views of the

same phenomenon are discarded and the underlying hidden factors responsible for the

correlation are revealed.

In our case the linguistic view is represented by a word-document matrix, T ∈ RN×D,

containing information about the occurrence of each word in each document. The per-

ceptual view is captured by a perceptual matrix, P ∈ [0,1]N×A, representing words as a

probability distribution over attributes (see, e.g., Equation 3.1).

CCA is concerned with describing linear dependencies between two sets of vari-

ables of relatively low dimensionality. Since the correlation between the linguistic and

perceptual views may exist in some nonlinear relationship, we use a kernelised version

of CCA, kernel canonical correlation analysis (kCCA, Hardoon et al., 2004), which

first projects the data into a higher-dimensional feature space and then performs CCA

in this new feature space. The two kernel matrices are KT = TT′ and KP = PP′.
After applying kCCA we obtain two matrices projected onto L basis vectors, Ct ∈
RN×L, resulting from the projection of the textual matrix T onto the new basis and

Cp ∈ RN×L, resulting from the projection of the corresponding perceptual attribute

matrix.

The meaning of a word can thus be represented by its projected textual vector in

CT , its projected perceptual vector in CP or their concatenation. Figure 3.6 shows an

example of the textual and perceptual vectors for the word apple which were used as

input for kCCA (first row) and their new representation after the projection onto new

basis vectors (second row).

The kCCA model as sketched above will only obtain full representations for words

with perceptual attributes available. One solution would be to apply the method from

Johns and Jones (2012) to infer the perceptual vectors and then perform kCCA on the

inferred vectors. Another approach which we assess experimentally (see Section 3.4.1)

is to create a perceptual vector for a word that has none from its k-most (textually)

similar neighbours, simply by taking the average of their perceptual vectors. This
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[ ... d16 ... d322 ... d2470 ... dD

apple . . . .006 . . . .003 . . . .1e-6 . . . 0
] [a f ruit has f angs is crunchy ... is yellow is red is green is round

.13 0 .06 . . . .04 .14 .09 .04
]

[ k1 k2 k3 ... k409 k410

apple −.003−.01 .002 . . .−.002−.01
] [ k1 k2 k3 ... k409 k410

.008−.03−.008 . . . −.02−.07
]

Figure 3.6: Example representation for apple before (first row) and after (second row)

applying CCA.

inference procedure can be applied to the original vectors or the projected vectors in

CT and CP, respectively, once kCCA has taken place.

3.3.4 Discussion

Johns and Jones (2012) primarily present a model of perceptual inference, where tex-

tual data is used to infer perceptual information for words for which no attribute infor-

mation is available. There is no means in this model to obtain a joint representation

resulting from the mutual influence of the perceptual and textual views. As shown in

the example in Figure 3.5, the textual vector on the left-hand side does not undergo

any transformation whatsoever.

The generative model put forward by Andrews et al. (2009) learns meaning repre-

sentations by simultaneously considering documents and attributes. Rather than simply

adding perceptual information to textual data, it integrates both modalities jointly in a

single representation which is desirable, at least from a cognitive perspective (see Sec-

tion 2.5.2). Similarly to Johns and Jones (2012), Andrews et al.’s attribute-topic model

can also infer perceptual representations for words that have none. The inference is

performed automatically in an implicit manner during component induction.

In kCCA, textual and perceptual data represent two different views of the same

objects and the model operates on these views directly without combining or manipu-

lating any of them a priori. Instead, the combination of the two modalities is realised

via correlating the linear relationships between them. A drawback of the model lies in

the need of additional methods for inferring perceptual representations for words that

have none.
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3.4 Experiments

3.4.1 Experiment 1: Perceptual Information from Attribute Norms

The first experiment addresses our hypothesis that representations obtained by inte-

grating textual and perceptual information yield a better fit with behavioural data than

unimodal models. Goal of the experiment is furthermore to shed light on the question

of which is the best integration mechanism. We therefore experimentally compare the

bimodal models presented above on two tasks related to word similarity and associa-

tion, respectively, and also contrast them to their unimodal variants. We furthermore

evaluate the models also in terms of their ability to infer absent perceptual information.

Data All our simulations used a lemmatised version of the British National Corpus

(BNC) as a source of textual information. The attribute norms of McRae et al. (2005,

McRae norms) were used as a proxy for perceptual information. We encoded per-

ceptual word vectors as a probability distribution over attributes computed according

to Equation (3.1) (Page 31). The BNC comprises 4,049 texts totalling approximately

100 million words. The McRae norms consist of 541 words and 2,526 attributes; we

used the 824 attributes which occur with at least two different words.

Evaluation Tasks Our evaluation experiments compared the models discussed above

on three tasks. Two of them have been previously used to evaluate semantic represen-

tation models, namely word association and word similarity. In order to simulate word

association, we used the human norms collected by Nelson et al. (1998).3 These were

established by presenting a large number of participants with a cue word (e.g., rice)

and asking them to name an associate word in response (e.g., Chinese, wedding, food,

white). For each cue word, the norms provide a set of associates and the frequencies

with which they were named. We can thus compute the probability distribution over

associates for each cue. Analogously, we can estimate the degree of similarity between

a cue and its associates using our models (see the following section for details on the

similarity measures we employed). Word association norms can be considered a re-

flection of the links between words as manifested in semantic memory, with the links

most likely to be driven by semantic relations (McRae and Jones, 2013). The norms

contain 63,619 unique normed cue-associate pairs in total. Of these, 25,968 pairs were

3Available at http://w3.usf.edu/FreeAssociation/ (last accessed in April 2015).

http://w3.usf.edu/FreeAssociation/
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covered by all models and 520 appeared in the McRae norms. Using correlation anal-

ysis, we examined the degree of linear relationship between the human cue-associate

probabilities and the automatically derived similarity values. We follow previous work

(Griffiths et al., 2007b; Nelson et al., 1998) in reporting correlation coefficients using

Pearson’s r.4 A rank correlation measure may be less informative on this dataset, since

many cue-associate pairs share the same probability.

Our word similarity experiments used the WordSimilarity-353 test collection (Finkel-

stein et al., 2002)5 which consists of similarity judgements for word pairs. For each

pair, a judgement (on a scale of 0 to 10) was elicited from 13 or 16 human subjects

(e.g., tiger-cat are very similar, whereas delay–racism are not). The average rating

for each pair represents an estimate of the perceived semantic similarity of the two

words. The task varies slightly from word association. Here, participants are asked

to rate perceived similarity rather than to generate the first word that came to mind in

response to a cue word. The collection contains ratings for 353 word pairs. Of these,

76 pairs appeared in our corpus and 3 in the McRae norms. We created grounded rep-

resentations by inferring missing perceptual information with the models presented in

Section 3.3 and, again, evaluated how well model produced similarities correlate with

human ratings. We report Pearson’s r for comparison reasons and Spearman’s rank

correlation coefficient (ρ). The latter is the commonly used measure for this dataset

(Agirre et al., 2009).

Our third task directly assessed the ability of the models to infer perceptual vectors

for words that have none. To do this, we conducted 10-fold cross-validation on the

McRae norms. We treated the perceptual vectors in each test fold as unseen, and

used the data in the corresponding training fold together with the models presented in

Section 3.3 to infer them. Then, for each word, we examined how close the inferred

vector was to the actual one, via correlation analysis.

Model Parameters The attribute-topic model has a few parameters that must be in-

stantiated. These include, C, the number of predefined components and the priors α, β,

and γ. We adopted all parameter settings determined by Andrews et al. (2009). Specif-

ically, we set the components C to 350 and placed a vague inverse gamma prior on α,

4Griffiths et al. (2007b) furthermore report how many times the word with the highest score under
the model was the first associate in the human norms. This evaluation metric assumes that there are
many associates for a given cue which unfortunately is not the case in our study which is restricted to
the concepts represented in the McRae norms.

5Available at http://www.cs.technion.ac.il/˜gabr/resources/data/wordsim353/ (last ac-
cessed in May 2015).

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/
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β, and γ.6 To allow for comparison to a unimodal variant, we trained a vanilla LDA

model on the BNC only and, following Andrews et al. (2009), set parameter C to 250.

For estimating word similarity within the attribute-topic model, we adopt Griffiths

et al.’s (2007b) definition. The underlying idea is that word association can be ex-

pressed as a conditional distribution. If we have seen word w1, then we can determine

the probability that w2 will be also generated by computing P(w2|w1). Assuming that

both w1 and w2 came from a single component, P(w2|w1) can be estimated as:

P(w2|w1) =
C

∑
c=1

P(w2|xc)P(xc|w1) (3.7a)

P(xc|w1) ∝ P(w1|xc)P(xc), (3.7b)

where P(xc) is uniform, a single component xc is sampled from the distribution P(xc|w1),

and an overall estimate is obtained by averaging over all C components.

Johns and Jones’ (2012) model uses binary textual vectors to represent word mean-

ing. If the word is present in a given document, that vector element is coded as one; if

it is absent, it is coded as zero. We built a binary word-document matrix from the BNC

over 14,000 lemmas. The value of the similarity weighting parameter λ was set to the

same values reported by Johns and Jones (λ1 = 3 for Step 1 and λ2 = 13 for Step 2).

For the kCCA model, we represented the textual view with a word-document ma-

trix. Matrix cells were set to their tf–idf values (cf. Equation (2.1), Page 16).7 The

textual and perceptual matrices were projected onto 410 vectors. As mentioned in Sec-

tion 3.3.3, kCCA does not naturally lend itself to inferring perceptual vectors, yet a

perceptual vector for a word can be created from its k-nearest neighbours. We inferred

a perceptual vector by averaging over the perceptual vectors of the word’s k most sim-

ilar words; textual similarity between two words was measured using the cosine sim-

ilarity of the two vectors representing them (cf. Equation (2.4)). To find the optimal

value for k, we used one third of the cues of Nelson’s (1998) norms as development

set. The highest correlation was achieved with k = 2 when the perceptual vectors were

created prior to kCCA and k = 8 when they were inferred on the projected textual and

perceptual matrices.

Results In order to assess whether integrated perceptual and textual information ac-

count more for human behaviour than only one type of data source we measure the

6That is P(•) = exp(− 1
• )•−2.

7Experiments with a binarised version of the word-document matrix consistently performed worse.
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Pearson’s r

Models T P T+P

Attribute-topic .12 .22 .35

Global similarity .11 .22 .23

kCCA .14 .29 .32

Upper Bound .91

Table 3.2: Performance of attribute-topic, global similarity, and kCCA models on a sub-

set of the Nelson norms when taking into account the textual and perceptual modalities

on their own (columns T and P, respectively) and in combination (T+P). All correlation

coefficients are statistically significant (p < 0.01).

performance of the models on the word association task when textual and perceptual

information are both available. The results in Table 3.2 are thus computed on the sub-

set of Nelson’s norms (520 cue-associate pairs) that also appeared in the McRae norms

and for which a perceptual vector was present. The table shows different instantia-

tions of the three models depending on the type of modality taken into account: textual

(column T), perceptual (P) or both (T+P).

As can be seen, Andrews et al.’s (2009) attribute-topic model provides a better fit

with the association data when both modalities are taken into account (column T+P).

A vanilla LDA model constructed solely on the BNC (column T) or the McRae norms

(column P) yield substantially lower correlations. We observe a similar pattern with

Johns and Jones’ (2012) global similarity model. Concatenation of perceptual and

textual vectors yields the best fit with the norming data (T+P), relying on perceptual

information alone comes close (P), whereas textual information on its own seems to

have a weaker effect (T). Note, that in this evaluation setting, the global similarity

models does not infer any perceptual representations, since perceptual vectors are pro-

vided directly by the McRae norms for all words. The kCCA model takes perceptual

and textual information as input in order to find a projection onto basis vectors that are

maximally correlated. Although by definition the kCCA model must operate on the

two views, we can nevertheless isolate the contribution of each modality by consider-

ing the vectors resulting from the projection of the textual matrix (T), the perceptual

matrix (P) or their concatenation (T+P). We obtain best results with the latter represen-

tation; again we observe that the perceptual information is more dominant.
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Models Pearson’s r

Attribute-topic .15

Global similarity .03

Global similarity� kCCA .12

k-NN� kCCA .11

kCCA� k-NN .12

Upper Bound .96

Table 3.3: Performance of the attribute-topic, global similarity and kCCA models on the

Nelson norms (entire dataset). All correlation coefficients are statistically significant

(p < 0.01).

Overall we find that the attribute-topic model and kCCA perform best. In fact the

correlations achieved by the two models do not differ significantly, using a t-test (Co-

hen and Cohen, 1983). The performance of the global similarity model is significantly

worse than the attribute-topic model and kCCA (p < 0.01). Recall that the attribute-

topic model (T+P) represents words as distributions over components, whereas the

global similarity model simply concatenates the textual and perceptual vectors. The

same input is also given to kCCA which in turn attempts to interpret the data by in-

ferring common relationships between the two views. In sum, we can conclude that

the higher correlation with human judgements indicates that integrating textual and

perceptual modalities jointly is preferable to concatenation.

However, note that all models in Table 3.2 fall short of the human upper bound

which we measured by calculating the reliability of Nelson et al.’s (1998) norms. Reli-

ability estimates the likelihood of a similarly-composed group of participants presented

with the same task under the same circumstances producing identical results. We split

the collected cue-associate pairs randomly into two halves and computed the corre-

lation between them; this correlation was averaged across 200 random splits. These

correlations were adjusted by applying the Spearman-Brown prediction formula (Voor-

spoels et al., 2008).

The results in Table 3.2 are computed on a small fraction of Nelson et al.’s norms.

One might even argue that the comparison is slightly unfair as the global similarity

model is more geared towards inferring perceptual vectors rather than integrating the

two modalities in the best possible way. To gain a better understanding of the models’
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behaviour and to allow comparisons on a larger dataset and more equal footing, we also

report results on the entire dataset (20,556 cue-associate pairs).8 This entails that the

models will infer perceptual vectors for the words that are not attested in the McRae

norms. Recall from Section 3.3.3 that kCCA does not have a dedicated inference

mechanism. We thus experimented with three options (a) interfacing the inference

method of Johns and Jones (2012) with kCCA (global similarity� kCCA) (b) creating

a perceptual vector from the words’ k-nearest neighbours before (k-NN� kCCA) or

(c) after kCCA takes place (kCCA� k-NN).

Our results are summarised in Table 3.3. The upper bound was estimated in the

same way as for the smaller dataset. Despite being statistically significant (p < 0.01),

the correlation coefficients are lower. This is hardly surprising as perceptual informa-

tion is approximate and in several cases likely to be wrong. Interestingly, we observe

similar modelling trends, irrespective of whether the models are performing percep-

tual inference or not. The attribute-topic model achieves the best fit with the data,

followed by kCCA. The inference method here does not seem to have much of an

impact: kCCA � k-NN does as well as global similarity � kCCA. This is perhaps

expected as the inference procedure adopted by Johns and Jones (2012) is a generalisa-

tion of our k-nearest neighbour approach. The global similarity model performs worst;

we conjecture that this is due to the way semantic information is integrated rather than

the inference method itself. KCCA works with similar input, yet achieves better cor-

relations with the human data, due to its ability to represent the commonalities shared

by the two modalities.

Taken together, the results in Tables 3.2 and 3.3 answer the question of what is

the best way to integrate the modalities: models that capture latent information shared

between the two modalities create more accurate semantic representations compared

to simply treating the two as independent data sources.

In order to isolate the influence of the inference method from the resulting semantic

representation we evaluated the inferred perceptual vectors on their own by comput-

ing their correlation with the original attribute distributions in the McRae norms. The

correlation coefficients are reported in Table 3.4 and were computed by averaging the

coefficients obtained for individual words. Here, the global similarity model achieves

the highest correlation, and for a good reason. It is the only model with an emphasis on

inference, the other two models do not have such a dedicated mechanism. KCCA has
8This excludes the data used as development set for tuning the k-nearest neighbours for kCCA.
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Models Pearson’s r

Attribute-topic .17

Global similarity .25

Global similarity� kCCA .21

k-NN� kCCA .19

kCCA� k-NN .13

Table 3.4: Mean correlation coefficients between original and inferred attribute vectors

in McRae et al.’s norms.

Models Pearson’s r Spearman’s ρ

Attribute-topic .35 .43

Global similarity .08 .09

Global similarity� kCCA .38 .38

k-NN� kCCA .39 .39

kCCA� k-NN .28 .26

Upper Bound .98

Table 3.5: Model performance on predicting word similarity. All correlation coefficients

are statistically significant (p < 0.01), except for the global similarity model.

in fact none, whereas in the attribute-topic model the inference of missing perceptual

information is a by-product of the generative process. The results in Table 3.4 give an

indicative answer to our question on how well we can approximate perceptual informa-

tion for words that do not have any: the perceptual vectors are not reconstructed very

accurately (the highest correlation coefficient is r = .25), hence, better inference mech-

anisms are required for perceptual information to have a positive impact on semantic

representation.

In Table 3.5 we examine the models’ effectiveness on semantic similarity rather

than association using the WordSimilarity-353 dataset (Finkelstein et al., 2002). The

models were evaluated on 76 word pairs that appeared in the BNC. We inferred the

perceptual vectors for 51 words. We computed the upper bound using the reliability

method described earlier. Again, the joint models achieve better results than the simple

concatenation model. The attribute-topic and kCCA models perform comparably, with
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the global similarity model lagging substantially behind.

3.4.2 Experiment 2: Feature Engineering Attribute Norms

In the previous experiments we have used the McRae norms without any extensive

feature engineering other than applying a frequency cut-off. However, these norms do

not exclusively encode perceptual but also linguistic knowledge, such as taxonomic

information (e.g., a fruit), or specify the function of a concept (e.g. eaten in pies; see

Section 3.1).

Subject of this experiment is to unravel the contribution of attributes capturing

purely visual information. For that purpose, we distinguish between models obtained

by only integrating visual attributes contained in the McRae norms and models ignor-

ing those by integrating all but the visual attributes of the norms (non-visual models).

This provides a first insight into whether modelling word meaning based on textual and

visual information represents a valuable approximation to grounded semantic models.

Data Analogously to the previous experiment, we used the BNC as a source of tex-

tual information, and the McRae norms as a proxy for perceptual information. As

described in Section 3.1, the McRae norms contain a classification of each attribute

into one of nine knowledge types. We use the attributes classified as visual (i.e. visual-

motion, visual-form/surface, visual-colour) for the models integrating visual informa-

tion and all other attributes, including other sensory attributes (e.g., sound, smell) and

non-perceptual attributes (e.g., taxonomic), for the models integrating non-visual in-

formation. There are 676 visual attributes in the norms; we used the 295 attributes

which are listed with at least two distinct concepts.

Evaluation Task We compare the models on the word association task employed in

the previous experiment (Section 3.4.1) using Nelson et al.’s (1998) norms. Recall that

our goal in this experiment is to specifically assess the contribution of visual informa-

tion. For this reason, we do not perform inference of perceptual or, more precisely,

visual vectors for words that have none. Consequently, we do not assess the perfor-

mance of the models on a word similarity task as in the previous experiment, since this

required the inference of vectors for 51 words.

Model Parameters We adopted all parameter settings from the previous experiment

except for the global similarity model, which we now augmented with the same matri-
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Models Attributes Pearson’s r

T P T+P

Attribute-topic visual .12 .23 .25

Attribute-topic non-visual .12 .17 .30

Attribute-topic all .12 .22 .35

Global similarity visual .14 .23 .24

Global similarity non-visual .14 .17 .19

Global similarity all .14 .22 .24

kCCA visual .19 .31 .37
kCCA non-visual .17 .23 .28

kCCA all .14 .29 .32

Upper Bound — .91

Table 3.6: Performance of the models on a subset of the Nelson norms when taking into

account the textual and perceptual modalities on their own (columns T and P, respec-

tively) and in combination (T+P). All correlation coefficients are statistically significant

(p < 0.01). The results differ according to which attribute class of the McRae norms

was used.

ces as given to the kCCA model. More precisely, we now used the better performing

tf–idf-weighted word-document matrix for the textual view instead of a binary matrix.

Note that the global similarity model was obtained without performing inference (see

Section 3.3.2).

Results Table 3.6 reports the results on the 493 pairs (101 cues) for which word rep-

resentations were computed. Column T+P gives the effectiveness of the models in the

bimodal setting, i.e. when integrating textual and either visual, non-visual or all McRae

attributes. Overall, the two joint approaches, kCCA and the attribute-topic model, yield

a better fit to human data irrespective of the attribute set (visual, non-visual, all). kCCA

using visual attributes (row visual) achieved the highest correlation coefficient across

all settings. Moreover, models augmented with visual input (columns T+P and P) per-

form comparably or even better in most cases than their variants using non-visual or

all attributes (rows non-visual and all). Only the attribute-topic model seems to suffer

from the lower number of attributes in the visual setting (column T+P), performing
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comparably to the much simpler global similarity model, and being more effective

when using all attributes.

In conclusion, the results in Table 3.6 suggest that visual attributes alone are the

most salient and valuable source of perceptual information provided by attribute norms.

The results moreover confirm the conclusion made in the previous experiment: joint

models integrate the two modalities more effectively than a concatenation approach.

3.4.3 Experiment 3: Visual Information from Image Labels

As demonstrated in the previous experiments, attribute norms are a useful first ap-

proximation of perceptual and especially visual data. However, the effort involved in

eliciting them limits the scope of any computational model based on normed data. We

now shift to image datasets as a source of visual information and exploit the natural

language descriptions the datasets provide for each image.

Data Analogously to the previous experiments, we used a lemmatised version of

the BNC as a source of textual information. For the visual information, we used the

image datasets ESP (von Ahn and Dabbish, 2004) and LabelMe (Russell et al., 2008)

described in Section 3.2.

Evaluation Tasks Our evaluation experiments compared the models discussed in

Section 3.3 on the word association task using the human norms collected by Nelson

et al. (1998). The models covered 2,482 pairs of the Nelson norms.

Model Parameters The models outlined in Section 3.3 were built on either the ESP

dataset, or the LabelMe dataset, or on a combination of both by treating them as one

corpus (ESP+LabelMe). For integrating the image labels, we computed a word-word

matrix representing the weighted co-occurrence frequency of the labels occurring in

the respective dataset. We applied ratio weighting (Equation (2.2), Page 2.2). The

dimensions (co-occurring labels) were determined experimentally on the held out Nel-

son development set from Experiment 1 (see Section 3.4.1). For the attribute-topic

model, all labels with a frequency of at least 5 were considered. For kCCA, an optimal

frequency threshold was found at 320 for the ESP dataset, 40 for LabelMe, and 100

for ESP+LabelMe. For the kCCA model we set an additional parameter, namely the

number of basis vectors considered for the projection of the input data onto the new

dimensions. We experimentally determined this number of dimensions on the Nelson
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Models Dataset Pearson’s r

T V T+V

Attribute-topic ESP .124 .133 .342

Attribute-topic LabelMe .124 .111 .330

Attribute-topic ESP+LabelMe .124 .112 .331

Global similarity ESP .172 .178 .179

Global similarity LabelMe .172 .130 .131

Global similarity ESP+LabelMe .172 .239 .248

kCCA ESP .230 .140 .191

kCCA LabelMe .220 .096 .181

kCCA ESP+LabelMe .196 .241 .254

Table 3.7: Performance of the attribute-topic, global similarity, and kCCA models on

a subset of the Nelson norms (2,482 pairs) when taking into account the textual and

perceptual modalities on their own (columns T and V, respectively) and in combination

(T+V).

development set. For ESP, we employed the 150 basis vectors with highest correla-

tion coefficients resulting from the application of kCCA, and for ESP+LabelMe the

dimensions were set to 100. For LabelMe, all basis vectors were chosen.

As in Experiment 2 (Section 3.4.2), the global similarity model was obtained with-

out performing inference, and the vectors of the two modalities are the same as we

used as input for the kCCA model.

Results Table 3.7 shows the results on the Nelson pairs which were covered by the

models obtained on the different databases. All models yield a lower correlation co-

efficient when using LabelMe compared to their variants based on ESP. The reason

for this might be the different types of information provided by ESP (object labels

and their parts and attributes) and LabelMe (labels of co-occurring objects) as pointed

out in Section 3.2. The attribute-topic model based on both modalities (column T+V)

yielded overall the best fit to human data independent of the database. The global sim-

ilarity model and kCCA perform comparably when using the combination of ESP and

LabelMe (ESP+LabelMe). Global similarity does not benefit from the information

provided by either ESP or LabelMe; its textual representations (T) achieve compara-
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ble or higher correlation coefficients than the visual modality (V) or their concatena-

tion (T+V). Interestingly, the kCCA projections of the textual input onto the bimodal

space (column T), despite using input identical to global similarity, outperform global

similarity, which indicates that kCCA does benefit from visual information.

In summary, we confirm our conclusions from the previous experiments with lim-

itations: only the joint models, derived on the basis of textual and visual informa-

tion (image labels), yield a better fit with behavioural data than just a single modality.

Also, the true benefit of using image labels as an approximation of the visual modal-

ity is less clear than it was the case with visual attributes from the McRae norms (see

Section 3.4.2) and depends on the choice of the dataset. Finally, in order to leverage

image labels, we had to determine an optimal threshold of label frequencies for each

dataset. We find that the main advantage of image labels over norms is that the former

have a higher word coverage (in the form of image labels). Since they can therefore

provide an approximation of visual information for a larger number of words, addi-

tional inference methods such as those performed in Experiment 1 (Section 3.4.1) are

not necessary to the same extent for our purpose of modelling word meaning repre-

sentations. Moreover, we demonstrated that image datasets can be extended, e.g. by

merging different datasets, in order to obtain better coverage. An extension of attribute

norms is less straightforward.

3.5 Conclusions

In this chapter, we compared three different models of semantic representation which

compute word meaning on the basis of textual and perceptual information. The mod-

els differ in terms of the mechanisms by which they integrate the two modalities. In

the attribute-topic model (Andrews et al., 2009), the textual and perceptual views are

integrated via a set of latent components that are inferred from the joint distribution

of textual words and perceptual words (attributes or image labels). The model based

on canonical correlation analysis (Hardoon et al., 2004) integrates the two views by

deriving consensus representations based on the correlation between the linguistic and

perceptual modalities. Johns and Jones’ (2012) similarity-based model simply con-

catenates the two representations. In addition, it uses the linguistic representations of

words to infer perceptual information when the latter is absent.

Experiments on word association and similarity show that all models benefit from

the integration of perceptual data. We find that joint models (i.e. of types (c) and (d)
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in Figure 2.5, Page 26) are superior as they obtain a closer fit with human judgements

compared to the simple concatenation of the two views (Figure 2.5 (a),(b)) .

We also examined how these models, when augmented with attribute norms as

source of perceptual information, perform on the perceptual inference task which has

implications for the wider applicability of grounded semantic representation models.

Johns and Jones’ (2012) inference mechanism goes some way towards reconstructing

the information contained in the attribute norms, however, further work is needed to

achieve representations accurate enough to be useful in semantic tasks.

On the basis of these results, we formulate the following desiderata for models of

perceptually grounded meaning representations (in descending order of importance):

(1) The models should integrate different modalities by means of a joint mechanism

(Figure 2.5 (c),(d)).

(2) The models should offer the flexibility to map new words into the shared space,

i.e. it should be able to derive meaning representations for out-of-vocabulary

words which were not part of the underlying training data.

(3) It would be desirable if the models had the flexibility to map just one modality

into the shared space, and were possibly capable of inferring information about

the missing modality.

In Chapter 5 we present our model which has been designed with these requirements

in mind.

We furthermore examined in isolation the contribution of the visual modality as

one type of perceptual information, which we approximated either with the visual at-

tributes of McRae et al.’s (2005) norms or with human-generated image labels. Our

experimental results on word association suggest that visual information plays a strong

role in grounding meaning representations. Unfortunately, the applicability of both

types of data sources, attribute norms and image labels, is limited in scope since their

creation requires human efforts. This shortcoming is even more so the case with at-

tribute norms due to their elicitation through laborious experimental studies. Despite

the higher coverage of image labels, which gives them in this respect an advantage

over norming data, inference methods are needed in both cases if we want to transfer

perceptual information to words which have none. We hypothesise that the carefully

coded visual attributes are more appropriate than image labels for transferring visual
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knowledge to new concepts, since the latter are more susceptible to noise and may also

provide non-visual information (e.g., training is used as a label in ESP co-occurring

with bike).

A natural avenue is the development of semantic representation models that exploit

automatically induced perceptual information from data that is both naturally occur-

ring and easily accessible, such as images, whilst retaining the features of attribute

norms. The latter include interpretability (i.e. they are transcribed in language), cogni-

tive plausibility (i.e. they describe visual phenomena similarly to how humans describe

them, Section 2.1), and potential to generalise to new concepts.



Chapter 4

Attribute-centric Representation

In the previous chapter we concluded that visual attributes are a valuable source of in-

formation for perceptually grounded meaning representations. In the remainder of the

thesis we will therefore adopt an attribute-centric approach to meaning representations

and focus on the visual modality as a major source of perceptual information. Instead

of relying on attribute norms (or image labels), we will use computer vision techniques

to automatically obtain visual attribute representations from images. Consequently,

this alleviates issues of the former information sources, namely their dependence on

human input whatsoever or on inference methods for concepts for which visual infor-

mation is absent. This automatic, image-based approach furthermore benefits from the

fact that image data is ubiquitous and easily accessible.

Our choice of an attribute-centric approach is also motivated by theoretical ar-

guments from cognitive science and computer vision research, as we will outline in

Section 4.1. In line with the attribute-centric representation for the visual modality

(presented in Section 4.2), we represent the textual modality by means of textual at-

tributes which we automatically extract from text data using an existent distributional

method (Baroni et al., 2010, Section 4.3). Analogously to the extraction of visual at-

tributes from images, this approach is scalable to a large number of arbitrary concepts

with little effort in contrast to the labour-intensive human-based elicitation of norms.

In experiments on human word association data (Section 4.4), we demonstrate the

benefit of these attribute-based representations when using them as input to the models

presented in the previous chapter. Specifically, the experiments address the following

three questions:

(1) Do automatically predicted visual attributes improve the effectiveness of distri-

butional models?

54
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(2) Are there performance differences among different models, i.e. are some models

better suited to the integration of this type of visual information?

(3) How do computational models fare against human-produced norming data?

For the sake of clarity it may be helpful to recall the definition of the term attribute

which we have already introduced in Chapter 1 (Section 1.3). We use the term attribute

to refer to a semantic property of a concept in natural language. Attributes referring

to visually discernible properties are called visual. Examples are furry, has legs, eats.

Attributes referring to properties that can be mined from text data are called textual or

linguistic. Examples are a mammal, dies, gives birth. By the term feature we refer to a

measurable property of an object in general as used in machine learning and pattern

recognition. If the object is an image, a feature is derived from pixels and can denote,

e.g., an edge or an interest point.

4.1 Motivation for (Visual) Attributes

From a cognitive perspective, the use of attributes for meaning representations is en-

dorsed by its long-standing tradition in cognitive science, as discussed in Chapters 2

and 3 (Sections 2.1 and 3.1). In brief, attributes are the medium humans naturally use

to verbally convey perceptual, taxonomic, sensorimotor, and functional knowledge of

concepts in natural language.

From a computer vision perspective, attributes are advantageous for several rea-

sons. In order to describe visual phenomena (e.g., objects, scenes, faces, actions) in

natural language, computer vision algorithms traditionally assign each instance a cat-

egorical label (e.g., apple, sunrise, Sean Connery, drinking). Attributes, on the other

hand, offer a means to obtain semantically more fine-grained descriptions. They can

transcend category and task boundaries and thus provide a generic description of visual

data and, consequently, their depictions (e.g., both apples and balls are round, forks

and rakes have a handle and have tines). In addition to facilitating inter-class connec-

tions by means of shared attributes, intra-class variations can also be captured, hence

offering a means to discriminate between instances of the same category (e.g., birds

can have long beaks or short beaks). Moreover, attributes allow to generalise to new

instances for which there are no training examples available. We can thus say some-

thing about depicted entities without knowing their object class. This makes attributes

efficient, since they obviate the training of a classifier for each category.
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From a modelling perspective, attributes occupy the middle ground between non-

linguistic (low- or mid-level) image features and linguistic words. More precisely,

attributes constitute a medium that is both, machine detectable and human understand-

able. They crucially represent image properties, however by being words themselves,

they can be easily integrated in any text-based model thus eschewing known difficulties

with rendering images into word-like units.

4.2 Visual Attributes from Images

For the reasons given in the previous section, the use of attributes for computer vision

tasks, such as image classification, has experienced a growing interest in recent years.

We discuss related work on supervised methods for the prediction of visual attributes

from images (Section 4.2.1) along with existing data sets created for this purpose (Sec-

tion 4.2.2). Since our work differs from previous work in focus and scope, we require

a new dataset, and describe its creation in Section 4.2.3. We subsequently explain how

we use the dataset to train attribute classifiers (Section 4.2.4), which we then apply

to derive visual attribute-based representations for concepts depicted in images (Sec-

tion 4.2.5).

4.2.1 Visual Attributes in Computer Vision

The field of computer vision deals with the automation of visual processing, aiming for

computers to understand image data at the same level as humans. In practice, computer

vision systems extract information from images useful for solving tasks including, inter

alia, image classification (i.e. the determination of the classes of the objects present

in an image), object detection (i.e. the determination of the class and the location of

objects present in an image), or scene classification. Methods addressing such tasks

require the images to be represented by means of extracted features, where the choice

of specific feature types and their representation (feature descriptors) is a critical part.

Popular approaches to vision tasks have used local descriptors, such as SIFT (scale-

invariant feature transform, Lowe, 2004) or HOG (Histogram of Oriented Gradients,

Dalal and Triggs, 2005), which represent images by means of low-level features. Re-

cently, new types of methods have been proposed aiming at more sufficient descrip-

tions of visual content in form of intermediate or mid-level features. One class of such

methods derives part-based image representations (e.g., Felzenszwalb et al., 2010).
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Another class of approaches learns hierarchical mid-level feature representations. Ex-

amples of the latter include bag-of-visual-words (Sivic and Zisserman, 2003) or spatial

pyramids (Lazebnik et al., 2006), which build upon low-level feature descriptors by

combining them to a more global image representation. More recently, a new class of

feature learning methods has emerged which directly operates on the pixel-level using

convolutional neural networks (CNNs). CNNs learn hierarchical representations in an

unsupervised way using a deep network architecture (see Chapter 5 for more details

on the latter). Another class of methods emphasises the need of compact, seman-

tically meaningful intermediate-level representations which are interpretable by both

machines and humans, and thus promotes the use of visual attributes (a.k.a. semantic

features in the literature).

Initial work on visual attributes for image data (Ferrari and Zisserman, 2007) fo-

cussed on simple colour and texture attributes (e.g., blue, stripes) and showed that

these can be learned in a weakly supervised setting from images returned by a search

engine when using the attribute as a query. Farhadi et al. (2009) were among the first

to use visual attributes in an object recognition task. Using an inventory of 64 at-

tribute labels, they developed a dataset of approximately 12,000 instances representing

20 objects from the PASCAL Visual Object Classes Challenge 2008 (Everingham, M.

and Van Gool, L. and Williams, C. K. I. and Winn, J. and Zisserman, A., 2008). Vi-

sual semantic attributes (e.g., hairy, four-legged) were used to identify familiar objects

and to describe unfamiliar objects when new images and bounding box annotations

were provided. Lampert et al. (2009) showed that attribute-based representations can

be used to classify objects when there are no training examples of the target classes

available (a task referred to as zero-shot learning), provided their attributes are known.

Their dataset contained over 30,000 animal images and used 85 attributes (e.g. brown,

stripes, furry, paws) from the norming study of Osherson et al. (1991). Similar work

was done by Parikh and Grauman (2011), who use relative attributes indicating their

degree of presence in an image compared to other images (e.g. more smiling than).

The use of attributes for zero-shot learning was also explored in the context of scene

classification (Patterson et al., 2014) and action recognition (Liu et al., 2011).

Russakovsky and Fei-Fei (2010) learned classifiers for 20 visual attributes on Im-

ageNet (Deng et al., 2009) with the goal of making visual inter-category connections

across a broad range of classes on the basis of shared attributes (e.g., striped animals

and striped fabric). The ability of attributes to capture intra-category variations has in
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turn been leveraged in approaches for face verification1 (Kumar et al., 2011), domain-

specific image retrieval (Kumar et al., 2011; Patterson et al., 2014; Rastegari et al.,

2013), and fine-grained object recognition (Duan et al., 2012). The use of visual at-

tributes extracted from images in models of semantic representations is novel to our

knowledge.

4.2.2 Image Collections

A key prerequisite for learning attribute classifiers for images is the availability of

training data comprising a large number of images along with attribute annotations.

Existing image databases of objects and their attributes focus on a small number of cat-

egories (Farhadi et al., 2009), or on a specific category, such as animals (Animals with

Attributes, Lampert et al., 2009), birds (Caltech-UCSD Birds-200-2011, Wah et al.,

2011), faces (FaceTracer, Kumar et al., 2008), or clothing items (Chen et al., 2012).

Some databases provide attribute annotations for scenes (Laffont et al., 2014; Patterson

et al., 2014). Other, general-purpose image collections cover a broad range of object

categories, but provide no (ESP, von Ahn and Dabbish, 2004; MIR Flickr, Huiskes and

Lew, 2008)2 or little (ImageNet, Russakovsky and Fei-Fei, 2010; Deng et al., 2009;

LabelMe, Russell et al., 2008) attribute information.

Since our goal is to develop models that are applicable to many words from differ-

ent categories, we created a new dataset. It shares many features with previous work

(Lampert et al., 2009; Farhadi et al., 2009), but differs in focus and scope, covering a

larger number of object classes and attributes. We chose to create the dataset on top

of ImageNet due to its high coverage of different objects, its use of the hierarchical

structure of WordNet (Fellbaum, 1998) to organise the objects, and the high quality

of its images (i.e. cleanly labelled and high resolution). We describe our dataset in

Section 4.2.3, but first give a brief overview on WordNet and ImageNet.

The WordNet and ImageNet Databases

WordNet (Fellbaum, 1998) is an English lexical database which groups synonymous

content words (i.e. words denoting the same concept) into sets (synsets). The synsets

1The task of face verification is to decide whether two faces are of the same individual (Kumar et al.,
2011).

2ESP and MIRFlickr contain image tags which could potentially be used to automatically gather
attribute annotations. See, for instance, Sharma and Jurie (2011); Rohrbach et al. (2010) and also
Chapter 3 (Section 3.2).
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Figure 4.1: Extract of the WordNet/ImageNet hierarchy. Dots represent synsets that we

have omitted from the hierarchy (for the sake of brevity).

denoted by words of each individual part-of-speech (PoS) are interlinked by means

of semantic relations, such as hypernymy (e.g., synset {motor vehicle, automotive ve-

hicle} is a hypernym of {car, auto, automobile, machine, motorcar}), or meronymy

(e.g., {car wheel} is a part of {motor vehicle, automotive vehicle}).

ImageNet3 (Deng et al., 2009) is an ontology of images organised according to

the nominal hierarchy of WordNet (Fellbaum, 1998). Figure 4.1 shows an example

of the WordNet/ImageNet subnetwork where synsets of nominal concepts are inter-

linked by hypernymy relations, and are populated with images of the corresponding ob-

jects. ImageNet has more than 14 million images assigned to more than 21K WordNet

3ImageNet is available at http://www.image-net.org.

http://www.image-net.org
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Figure 4.2: Images from ImageNet for dog (synset {dog, domestic dog, Canis famil-

iaris}, n02084071) and screwdriver ({screwdriver}, n04154565) with bounding box

annotations (green rectangles).

synsets of all levels of categorisation, i.e. superordinate-level synsets (e.g., {vehicle},
{animal,...,fauna}, or {plant}; Figure 4.1), basic-level synsets (e.g., {boat}, {zebra},
{apple}), and subordinate-level synsets (e.g., {mountain zebra}, {Granny Smith},
{ferryboat}). The database provides additional information for a subset of images,

including SIFT features (Lowe, 2004), attribute annotations, and bounding box infor-

mation (see Figure 4.2 for an example of the latter). Currently, each of 3,000 synsets

have 150 images on average with bounding boxes, and 400 synsets have images with

attribute annotations from a set of 25 attributes. In our experiments we will use the

bounding box information when available.

Deng et al. (2009) harvest images for ImageNet for an individual synset by query-

ing several image search engines. These candidate images are then verified by human

annotators using Amazon Mechanical Turk (AMT). The annotators are presented with

a set of candidate images and the definition of the target synset, and are asked to de-

cide for each image whether it depicts an object of the synset. Every candidate image

is labelled by several annotators, where the number of annotators depends on a synset-

dependent confidence score threshold that has to be reached.

4.2.3 The Visual Attributes Dataset (VISA)

Concepts and Images We created the dataset for the nominal concepts contained in

the attribute production norms of McRae et al. (2005, henceforth McRae norms), as

they cover a wide range of concrete concepts including animate and inanimate things

(e.g., animals, clothing, vehicles) and are widely established in cognitive science re-
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Figure 4.3: Attribute categories and examples of attribute instances and images. Paren-

theses denote the number of attributes per category.

search (see the description of the norms in Section 3.1).

Images for the concepts in the McRae norms were harvested from ImageNet (Deng

et al., 2009, Section 4.2.2). The McRae norms contain 541 concepts out of which

516 appear in ImageNet4 and are represented by nearly 700K images overall. The

average number of images per concept is 1,310 with the most popular being closet

(2,149 images) and the least popular prune (5 images). See Appendix A (Section A.1)

for a list of all concepts and the synsets to which we mapped the former in order to

gather the corresponding images from ImageNet.

Attribute Annotation Our aim was to develop a set of visual attributes that are both

discriminating and cognitively plausible in the sense that humans would generally use

4Some words had to be modified in order to match the correct synset, e.g., tank (container) was
found as storage tank.
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1

anatomy has mouth, has head, has nose, has tail, has claws
has jaws, has neck, has snout, has feet, has tongue

behaviour eats, walks, climbs, swims, runs

colour patterns is black, is brown, is white

diet drinks water, eats anything

shape size is tall, is large

1

botany has skin, has seeds, has stem, has leaves, has pulp

colour patterns purple, white, green, has green top

shape size is oval, is long

texture material is shiny

1

behaviour rolls
colour patterns different colors, is black, is red, is grey, is blue, is white

parts has 4 wheels, has steering wheel, has seat<ne>, has windows
has engine<ne>, has mirror, has number plate, has bonnet
has trunk, has windshield wiper, has roof, has bumper, has handle
has belts, has light, has windshield, has door, has brakes<ne>

texture material made of metal

1

colour patterns is black, is brown

parts has rest (musical), has 4 strings, has bridge (musical)
has board, has scroll, has tail piece, has curved body

has pegs

shape size is hollow

texture material is shiny, has f holes, made of wood

Table 4.2: Human-authored attributes for bear , eggplant , car , and violin . <ne> stands

for <no evidence>.

them to describe a concrete concept. As a starting point, we thus used the visual

attributes from the McRae norms. Attributes capturing other primary sensory informa-

tion (e.g., smell, sound), functional or motor properties, or encyclopaedic information

were not taken into account. For example, is purple is a valid visual attribute for an

eggplant, whereas a vegetable is not, since it cannot be visualised. Collating all the vi-

sual attributes in the norms resulted in a total of 676. Similar to Lampert et al. (2009) in

their creation of the Animals with Attributes dataset (see Section 4.2.1), we conducted

the annotation on a per-concept rather than a per-image basis (as for example Farhadi

et al., 2009). However, our methodology is slightly different from Lampert et al. (2009)

in that we did not simply transfer the attributes from the norms to the concepts in ques-

tion but modified and extended them during the annotation process explained below,
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using a small fraction of the image data as development set (see Section 4.2.4.1 for

details on the development set).

For each concept (e.g., bear or eggplant), we inspected the images in the develop-

ment set and chose all visual attributes contained in the McRae norms that applied. If

an attribute was generally true for the concept, but the images did not provide enough

evidence, the attribute was nevertheless chosen and labelled with <no evidence>. For

example, a plum has a pit, but most images in ImageNet show plums where only the

outer part of the fruit is visible. We added new attributes which were supported by

the image data but missing from the initial set as given by the norms. For example,

has lights and has bumper are attributes of cars but are not included in the norms. In

general we were conservative in adding new attributes as our aim was to preserve the

cognitive plausibility of the original attribute norms. For this reason, we added entirely

new attributes only when we considered them to be on the same level of granularity as

the attributes of the McRae norms.

Appendix A (Section A.2) shows an example of the annotation interface that was

used for this annotation procedure.

There are several reasons for choosing the described annotation scheme instead of

transferring the McRae attributes directly. Firstly, it makes sense to select attributes

corroborated by the images. Secondly, by looking at the actual images, we could

eliminate errors in the McRae norms. For example, eight study participants erro-

neously thought that a catfish has scales. Thirdly, during the annotation process, we

normalised synonymous attributes (e.g., has pit and has stone) and attributes that ex-

hibited negligible variations in meaning (e.g., has stem and has stalk). Finally, our

aim was to collect an exhaustive list of visual attributes for each concept which is

consistent across all members of a category. This is unfortunately not the case in the

McRae norms. Participants were asked to list up to 14 different properties that de-

scribe a concept. As a result, the attributes of a concept denote the set of properties

humans consider most salient. For example, both, lemons and oranges have pulp. But

the norms provide this attribute only for the second concept.

Annotation proceeded on a category-by-category basis, e.g., first all food-related

concepts were annotated, then animals, vehicles, and so on. Two annotators (one of

them is the author of this thesis) developed the set of attributes for each category. One

annotator first labelled concepts with their attributes as described above, and the other

annotator reviewed the annotations, making changes if needed. Finally, annotations

were revised and compared per category in order to ensure consistency across all con-
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cepts of that category. Attributes were grouped in ten general classes (e.g., anatomy,

parts) shown in Figure 4.3.

Overall, we discarded or modified 262 visual attributes of the McRae norms, and

added 294 attributes. On average, each concept was annotated with 15 attributes; ap-

proximately 11.5 of these were not part of the set of attributes created by the partic-

ipants of the McRae norms for that concept even though they figured in the attribute

sets of other concepts. Furthermore, on average two McRae attributes per concept were

discarded. Examples of concepts and their attributes from our database5 are shown in

Table 4.2.

4.2.4 Automatically Extracting Visual Attributes

4.2.4.1 Data

For each concept in the VISA dataset, we partitioned the corresponding images into a

training, development, and test set. For most concepts the development set contained

a maximum of 100 images and the test set a maximum of 200 images. Concepts

with less than 800 images in total were split into 1/8 test and development set each,

and 3/4 training set. Image assignments to the splits were done randomly in general.

However, we wanted the test set to be composed of as many images with bounding box

annotations as possible (recall that ImageNet does not provide bounding boxes for each

image, see Section 4.2.2). We therefore first assigned images with bounding boxes to

the splits, starting with the test set, before assigning the remaining images. To learn

a classifier for a particular attribute, we used all images in the training data, totalling

to approximately 550K images. Images of concepts annotated with the attribute were

used as positive examples, and the rest as negative examples.

4.2.4.2 Training Attribute Classifiers

In order to extract visual attributes from images, we follow previous work (Farhadi

et al., 2009; Lampert et al., 2009) and learned one classifier for each attribute that had

been assigned to at least two concepts in our dataset. We furthermore only considered

attribute annotations that were corroborated by the images, that is, we ignored those

labelled with <no evidence>. This amounts to 414 classifiers in total.

We used an L2-regularised L2-loss linear support vector machine (SVM, Fan et al.,

5Available at http://homepages.inf.ed.ac.uk/s1151656/resources.html.

http://homepages.inf.ed.ac.uk/s1151656/resources.html
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2008)6 to learn the attribute predictions, and adopted the training procedure of Farhadi

et al. (2009). We optimised cost parameter C of each SVM on the training data, ran-

domly partitioning it into a split of 70% for training, and 30% for validation. The final

SVM for an attribute was trained on the entire training data, i.e. on all positive and

negative examples.

Features We used the four different feature types proposed by Farhadi et al. (2009)7,

namely colour, texture, visual words, and edges. For each feature type, an image (or

the image region defined by a bounding box) was represented using a bag-of-words

approach.

Background: Bag-of-visual-words (BoVW) Approach The bag-of-words ap-

proach in computer vision (Sivic and Zisserman, 2003), analogous to the bag-of-words

model described in Chapter 2 (Section 2.2), represents an image as a distribution (his-

togram) over words. In contrast to text processing, the set of words (i.e. the vocabulary

or codebook) has to be learned automatically from an image collection in form of a

set of quantised feature descriptors. This is typically conducted as follows: First, fea-

tures in the images are detected and subsequently represented as compact numerical

vectors (feature descriptors), describing local patches of pixels around the feature lo-

cation. Then, a codebook of size k is generated by quantising the descriptors to k

words, e.g., by clustering the feature descriptors using k-means clustering (Sivic and

Zisserman, 2003), where each cluster center represents one word.

In order to transform an image to a bag-of-words representation using a given code-

book, each feature descriptor of the image is assigned to the nearest word (i.e. cluster

center), and the image is then represented as k-dimensional histogram of word counts

resulting from the counted number of descriptors assigned to each word.

Texture descriptors (Varma and Zisserman, 2005) were computed for each pixel

and quantised to the nearest 256 k-means centers. Edges were detected using a stan-

dard Canny detector and their orientations were quantised into eight bins. Colour de-

scriptors were computed in the LAB (CIE 1976 L*a*b*) colour space. They were

6For a given set of instance-label pairs (xi,yi), i = 1, ..., l,xi ∈ Rn,yi ∈ {−1,+1}, the SVM solves
the optimisation problem minw

1
2 wT w+C ∑

l
i=1 ζ(w;xi,yi), where the L2-loss function is ζ(w;xi,yi) =

max(1− yiwT xi,0)2.
7The code by Farhadi et al. (2009) is available at http://vision.cs.uiuc.edu/attributes/

(last accessed in May 2015).

http://vision.cs.uiuc.edu/attributes/
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sampled for each pixel and quantised to the nearest 128 k-means centers.

Visual words were constructed with a HOG (Histogram of Oriented Gradients,

Dalal and Triggs, 2005) spatial pyramid. In the spatial pyramid approach (Lazebnik

et al., 2006), descriptors are computed on different resolution levels (scales) of the

image. This scale space is represented in octaves, where an increase of the scale by

one octave means roughly halving the resolution of the image, and each octave is a

set covering a fixed number of intermediate scale steps. In our case, 2 scales per

octave were used. HOG descriptors themselves were computed using 8×8 blocks and

a 4 pixel step size. This means that an image is decomposed into spatial regions (cells),

and for each cell a histogram of gradients is created over the pixels it contains, by first

computing a gradient vector for each pixel and then quantising the vectors into 9 bins

(orientations). Several adjacent cells are grouped into blocks, and a HOG descriptor is

obtained for each block as a result of concatenating the corresponding histograms and

subsequent normalisation. The algorithm follows a sliding window approach, in which

a block is created by grouping adjacent cells every pixel-step-size pixels. In order to

obtain the final visual words, the HOG descriptors were quantised into 1000 k-means

centers.

For each of the four feature types, individual histograms were computed for the

whole image or a bounding box (if available). With the purpose to represent shapes

and locations, six additional histograms were generated for each feature type. These

were obtained by dividing the image (or region) into a grid of three vertical and two

horizontal blocks, and computing a histogram for each block in the grid separately.

The resulting seven histograms per feature type were individually normalised with

the l2-norm and then stacked together resulting in the feature vector for an image.

4.2.4.3 Evaluation

Figures 4.4 and 4.5 show classifier predictions for eight test images from concepts seen

by the classifiers during training, and eight images from new, i.e. unseen, concepts not

part of the VISA dataset, respectively. Most attributes predicted for the images from

seen concepts (Figure 4.4) do indeed describe the depicted objects. However, not all of

them are actually present in the image (e.g., has tongue was wrongly predicted for the

image showing rats). Such mistakes indicate that some classifiers confused features

relevant for recognising a particular attribute from features pertaining to correlated

attributes (e.g., has snout). The attribute predictions for images from unseen concepts

(Figure 4.5) demonstrate that the classifiers are indeed able to generalise to concepts
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is shiny is deep made of plastic
is round made of stainless steel
made of iron has screws has lid
has lever

is blue has string made of wool
has different sizes of grains textures

has fur has jaws has whiskers
has tongue has nose has eyes
has toes has mouth has neck
has teeth has ears has tail is grey
has claws has 4 legs has feet
has head has snout has paws

has windshield has windows has roof
has windshield wiper has door
has light has steering wheel differ-
ent colours has 4 wheels is large
has bonnet has number plate
has bumper has mirror has wheels
made of aluminium has coachwork

has pointed end floats is large
has windows has rope differ-
ent colours swims has deck has mast
has railings has sails made of steel
has fins made of nylon has spire

made of wood has 4 legs
is rectangular has drawers has handle
is brown has flat surface has fur
has carving has legs is box shaped
has glass panel

has windows has many floors
made of stone has chimney
has tiled roof made of brick
has door has roof has walls has spire
has balcony is grey has wires is large
has carving

has fur has jaws has tail has tongue
is slender has 4 legs chases has spots
has mouth has neck has eyes
has claws has snout has feet
has teeth has ears has black spots
has head is beige has paws has nose

1

Figure 4.4: Attribute predictions for concepts encountered during training. (From top

left to bottom right: kettle, scarf, rat, jeep, yacht, bureau, house, cheetah .)

they have not encountered during training. However, now, errors are not primarily due

to attribute correlations (e.g., has buds for ailanthus), but some predictions are plainly

wrong in that they lack a relation to the object class (e.g., has windows for basket or

made of wood for espresso maker).

We also quantitatively evaluated the attribute classifiers by measuring the inter-

polated average precision (AP, Salton and McGill, 1986) on the test set. Since the

reference annotations contained in VISA are concept-based, we perform the evaluation

on the basis of concept-level predictions as the centroid of all attribute predictions for

the images belonging to the same concept (see Section 4.2.5 for details on how we

compute the concept-level predictions); specifically, we plot precision against recall

based on a threshold.8 Recall is the proportion of correct attribute predictions whose

prediction score exceed the threshold to the true attribute assignments given by VISA.

Precision is the fraction of correct attribute predictions to all predictions exceeding

the threshold. The AP is then the mean of the maximum precision at eleven recall

levels [0,0.1, ...,1]. The precision/recall curve is shown in Figure 4.6; the attribute

classifiers achieved a mean AP of 0.52.
8Threshold values ranged from 0 to 0.9 with 0.1 stepsize.
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has bark has branches
has buds has cones
has flowers has leaves
has needles has stem is green

has cord has ferrule is shiny
has patterns has pointed end
has semicircular handle
is concave is cylindrical is long
made of enamel is round
made of plastic

has carving has chimney
has door has many floors
has roof has walls has wheels
has windows is high is large
is rectangular made of logs
made of wood

has 6 legs has antennae
has eyes has compound eyes
has claws has layers is small
has mouthparts has shell
has stinger has toes has top
has warts has wings is green

has long handle has windows
is braided is concave
is parabolic made of fibres

has lid has monitor
has push-buttons
has shelves is deep is silver
made of wood has stock
has tap made of plastic
made of stainless steel
is rectangular made of metal

has branches has flowers
has green top has layers
has leaves has stalks has stem
is green is leafy is red

climbs trees hops has 4 legs
has bushy tail has claws
has ears has eyes has feet
has fur has head has jaws
has mouth has neck
has paws has snout has tail
has whiskers is beige

1

Figure 4.5: Attribute predictions for concepts not encountered during training. (From

top left to bottom right: ailanthus, mortar, boathouse, cicada, shopping basket, espresso

maker, coraltree, titi monkey.)

4.2.5 Deriving Visual Representations of Concepts

Note that the classifiers predict attributes on an image-by-image basis; in order to

describe a concept w by its visual attributes taking into account multiple images rep-

resenting w, we need to aggregate their attributes into a single representation. We

use a vector-based representation where each attribute corresponds to a dimension of

an underlying semantic space and concepts are represented as points in this attribute

space. Just as in text-based semantic spaces (see Chapter 2, Section 2.2.1), we can thus

quantify similarity between two concepts by measuring the geometric distance of their

vectors. Since we encode visual attributes, however, the underlying semantic space is

perceptual, and so is the similarity we can measure.

We construct visual vector representations as follows. For each image xw ∈ Iw of

concept w, we output an A-dimensional vector containing prediction scores scorea(xw)

for attributes a = 1, ...,A.9 We transform these attribute vectors into a single vec-

tor pw ∈ R1×A, by computing the centroid of all vectors for concept w. That is, we

9For simplicity, we use the symbol w to denote both, the concept and its index. Analogously, sym-
bol a denotes the attribute and its index.
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Figure 4.6: Attribute classifier performance for different thresholds δ (test set).

average the scores for the various attributes:

pw = (
1
|Iw| ∑

xw∈Iw

scorea(xw))a=1,...,A (4.1)

The construction process is illustrated in Figure 4.7 by the example concepts chick

and balloon . In Table 4.3 (second column) we give the eight nearest neighbours for

seven example concepts (first column) from our dataset. Nearest neighbours for a con-

cept were found by measuring the cosine similarity (Equation (2.4), Page 18) between

the visual attribute vectors p of that concept and all other concepts in our dataset and

choosing the ten concepts with the highest similarity. The examples show that the vi-

sual attribute representation is able to capture semantic similarity, attesting words of

the same semantic category (e.g., vehicles or animals) as closest nearest neighbours.

For comparison, the table also shows the eight nearest neighbours when the example

concepts are represented by their textual attribute vectors (Table 4.3, third column)

whose creation is discussed in the following section, and by their bimodal vector rep-

resentations as learned with our bimodal stacked autoencoder (SAE) model (Table 4.3,

last column), which will be described in Chapter 5 (Section 5.3).

4.3 Textual Attributes

Leveraging text corpora for the automatic extraction of attributes that describe concepts

in a comparable way as attribute norms do has been the objective of several recently

proposed approaches.
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Figure 4.7: Construction of the visual representation for the concepts chick and bal-

loon . Attribute classifiers predict attributes for example images depicting chicks and

balloons . These prediction scores are then converted into vectors (first arrow). To com-

pute a single visual attribute vector for the concepts, all vectors are aggregated into

pchick and pchick, respectively, according to Eq. (4.1) (second arrow).

Barbu (2008) used shallow methods in a bootstrapping approach on the basis of the

McRae norms, where attributes were extracted by means of a combination of a pattern-

based method and co-occurrence association measures. Devereux et al. (2009) ex-

tracted concept–relation–attribute triples from dependency-parsed corpora (e.g., chick–

be–bird , screwdriver–has–blade), with the relation corresponding to the verb that oc-

curs within the dependency path between the concept and the attribute. Their method

relied on external semantic knowledge, WordNet (Fellbaum, 1998) and the McRae

norms, from which they derived conditional probabilities of attribute classes given con-

cept categories (e.g., P(body part|REPTILES)) in order to re-rank and filter extracted

candidate triples. Kelly et al.’s (2010) extension of Devereux et al.’s (2009) system

additionally relied on manually generated extraction rules, leading to an improved pre-

cision (see also Kelly et al., 2014). Kelly et al. (2012) and Kelly et al. (2013) applied

semi-supervised and minimally supervised methods, respectively, for concept-relation-

attribute extraction.

A fully unsupervised template-based approach was proposed by Baroni et al. (Strudel,

2010) which extracts weighted concept-attribute pairs (e.g., chick–bird:n, chick–brood:v)

from a text corpus. We opt for using Strudel to obtain textual attributes for concepts



Chapter 4. Attribute-centric Representation 71

Concept Nearest Neighbours
Visual Textual Bimodal (SAE)

ambulance van truck taxi bus
limousine jeep car train

helicopter trolley van
taxi train truck scooter
tricycle

taxi van truck bus
train trolley limousine
scooter

bison ox bull pony elephant
bear cow camel calf

elk buffalo deer caribou
bear otter pig pony

buffalo bear elephant
caribou deer sheep pig
elk

brush paintbrush pencil ladle
hammer screwdriver pin
bow (weapon) hook

comb paintbrush vest
scissors doll coat bag
pencil

comb paintbrush pen-
cil scissors razor pen
screwdriver skis

dress robe blouse camisole
nightgown vest
hose (leggings) cloak
pants

gown shirt skirt blouse
jacket robe pants jeans

gown blouse robe skirt
nightgown pants jeans
vest

hut shed shack barn cabin
house church chapel
cathedral

shack cottage bungalow
cabin tent house build-
ing barn

shack cabin house
cottage bungalow barn
apartment tent

microwave oven shelves stove cabi-
net freezer radio bureau
bin (waste)

stove oven freezer radio
pot colander pan squid

radio stove oven freezer
stereo fridge telephone
dishwasher

scarf gloves shawl socks
sweater veil pajamas
doll cap (hat)

shawl sweater cloak veil
gown robe vest coat

shawl sweater pajamas
skirt socks veil cape
cloak

Table 4.3: Seven example concepts (column 1) and their eight most similar concepts
computed on the basis of visual and textual attribute-based representations (columns 2
and 3, respectively) and bimodal representations learned by the SAE model (column 4)
in order of decreasing cosine similarity.

due to its knowledge-lean approach—it merely expects PoS-tagged input—and the

fact that it has a bias towards non-perceptual attributes such as actions, functions or

situations (Baroni et al., 2010).

4.3.1 Textual Attributes from Strudel

In Baroni et al.’s (2010) system Strudel10, weighted word–attribute pairs (e.g., chick–

bird:n (60.1), chick–brood:v (67.5), chick–precocial:j (45.8)) are extracted from a PoS-

tagged and optionally lemmatised corpus in a fully automatic and unsupervised way.

The weight between a word and an attribute expresses their strength of association. The

attributes are not known a priori, but are directly acquired from the corpus. Strudel is

10The software is available at http://clic.cimec.unitn.it/strudel/ (last accessed in
May 2015).

http://clic.cimec.unitn.it/strudel/
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Attribute llr (chick ) llr (snake) llr (cake) llr (bread )
bake:v – 1.5 540.0 541.3
eat:v 23.4 253.4 244.3 539.8
hatch:v 422.5 9.9 – –
nest:n 413.0 26.5 – –
venom:n – 405.1 – –
flour:n – – 244.3 403.3
bite:v 3.7 278.2 7.8 1.9
sandwich:n – – 8.1 265.7
feed:v 216.5 115.6 5.3 7.7
kill:v 51.08 172.4 -1.0 -2.7
toast:v – – 14.3 142.0
dessert:n – – 133.8 21.7
prey:n – 128.5 – –
sugar:n – – 114.0 15.2
hiss:v – 93.3 – –
reptile:n – 90.1 – –
bird:n 60.1 35.4 – 0.7
egg:n 59.6 44.9 40.1 31.3
precocial:j 45.8 – – –

Table 4.4: Extracted attributes and their weights (llr for log-likelihood ratio) for the con-
cepts chick , snake , cake , and bread . Sorted in descending order of llr scores.

an instance of distributional models of meaning (Chapter 2, Section 2.2), but unlike the

majority of these models, it induces meaning representations that describe a concept

by means of its attributes instead of a bag of co-occurring words or text passages (see

Chapter 2, Section 2.2.1).

Given a list of nominal target concepts, Strudel first scans a PoS-tagged corpus to

identify, for each target concept, potential attributes which can be nouns, adjectives, or

verbs co-occurring with the concept, using a set of 15 general rules. These rules act as

filter for plausible attributes and are imposed on the tokens connecting the potential at-

tribute–target concept pairs (e.g., if adjective follows concept, connecting tokens must

contain be; the connecting tokens can contain maximally one noun). The connecting

tokens are extracted along with the pairs in a generalised form, where all content words,

aside from a few exceptions, have been replaced by their PoS tag. The distinct gen-

eralised connectors are subsequently used to obtain a score for each attribute–concept

pair that denotes the importance of the potential attributes for the concept and can

thus be used to rank the candidate pairs. The ranking approach is motivated by the

assumption that true semantic attributes co-occur with the target in various constella-
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Text Corpus

Cake is often the dessert of choice for meals at ceremonial occa-

sions, particularly weddings, anniversaries, and birthdays. There

are countless cake recipes; some are bread-like, some rich and

elaborate, and many are centuries old. Cake making is no longer

a complicated procedure; while at one time considerable labor

went into cake making (particularly the whisking of egg foams),

baking equipment and directions have been simplified so that

even the most amateur cook may bake a cake. Particular cakes

Venoms contain more than 20 different compounds, mostly pro-

teins and polypeptides.[3] A complex mixture of proteins, en-

zymes, and various other substances with toxic and lethal prop-

erties[2] serves to immobilize the prey animal,[5] enzymes play

an important role in the digestion of prey,[4] and various other

substances are responsible for important but non-lethal biologi-

cal effects.[2] Some of the proteins in snake venom have very

specific effects on various biological functions including blood

is used in baking as a leavening agent, where it converts the

food/fermentable sugars present in dough into the gas carbon

dioxide. This causes the dough to expand or rise as gas forms

pockets or bubbles. When the dough is baked, the yeast dies

and the air pockets ”set”, giving the baked product a soft and

spongy texture. The use of potatoes, water from potato boiling,

eggs, or sugar in a bread dough accelerates the growth of

yeasts. Most yeasts used in baking are of the same species com

agamids, xantusiids, and typhlopids. Some reptiles exhibit

temperature-dependent sex determination (TDSD), in which

the incubation temperature determines whether a particular egg

hatches as male or female. TDSD is most common in turtles

and crocodiles, but also occurs in lizards and tuatara.[87] To

date, there has been no confirmation of whether TDSD occurs

in snakes.[88] Many small reptile
s, such as snake and lizards

that live on the ground or in the water, are vulnerable to being

clade with various other saurian species. Although a wide range

of reproductive modes are used by snakes, all snakes employ in-

ternal fertilization. This is accomplished by means of paired,

forked hemipenes, which are stored, inverted, in the male’s

tail.[47] The hemipenes are often grooved, hooked, or spined in

order to grip the walls of the female’s cloaca.[47] Most species

of snakes lay eggs, but most snake abandon the eggs shortly

after laying. However, a few species (such as the king cobra)

water by evaporation depends on the ambient relative humidity.

Evaporation can be assessed by candling, to view the size of the

air sac, or by measuring weight loss. Relative humidity should

be increased to around 70% in the last three days of incubation

to keep the membrane around the hatching
chick from drying

out after the chick cracks the shell. Lower humidity is usual in

the first 18 days to ensure adequate evaporation. The position

of the eggs in the incubator can also influence hatch rates. For 0.00 0.98 0.66 0.99 0.00 0.00 0.00 0.00 0.98 0.00
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Figure 4.8: Construction of textual semantic space with Strudel for four example con-

cepts (chick, snake, cake, and bread ).

tions, whereas simply co-occurring words do not necessarily. To this end, the score is

computed by measuring a log-likelihood ratio statistic (Dunning, 1993) based on the

number of connector types (instead of tokens), with the results that potential attributes

which are connected with a concept by various patterns receive a higher score than

those connected (possibly frequently) by a single pattern. Strudel furthermore uses the

generalised connectors to compute type sketches for concept-attribute pairs. As we

will not make use of them we refer the interested reader to Baroni et al. (2010) for

more details. Table 4.4 gives examples of attributes extracted for the concepts chick ,

snake , cake , bread , weighted by their log-likelihood scores (llr).

We convert the output from Strudel into textual meaning representations by con-

structing a textual semantic space over the extracted attributes, subject to some addi-

tional attribute filtering, and representing each target word as vector of that space, with

the corresponding log-likelihood ratio scores as its entries. Figure 4.8 illustrates this

with an example.

In accordance with the terminology for the visual modality, we will henceforth

refer to the Strudel attributes as textual attributes.

4.4 Experiment 4: Grounding Lexical Models with At-

tributes

We evaluate the effectiveness of our attribute classifiers presented in Section 4.2.4 for

visually grounding meaning representations in a preliminary experiment. Specifically,

we integrate their predictions with textual attribute representations using the models

described in Chapter 3 (Section 3.3), namely the attribute-topic model (Section 3.3.1),
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the model based on kernel canonical correlation analysis (kCCA, Hardoon et al., 2004)

(Section 3.3.3), and the global similarity model (Section 3.3.2). Recall, however, that

the latter places emphasis on the inference of missing perceptual information from the

linguistic modality, which is not necessary here since we acquire visual information

through the attribute classifiers. We will therefore just retain the model’s integration

mechanism consisting of the concatenation of the vectors representing the two modal-

ities, and call it concatenation model instead (cf. Chapter 2, Figure 2.5, Page 26).

4.4.1 Data

We represent the visual modality by the attribute vectors computed as shown in Equa-

tion (4.1) (Page 56) using the concepts and their images contained in the VISA dataset.

The linguistic environment is approximated by textual attribute vectors derived from

Strudel as explained in the previous section. We learned the underlying word–attribute

pairs from a lemmatised and PoS-tagged (2009) dump of the English Wikipedia.11

Recall that the attribute-topic model requires a distribution over visual attributes

from which it can sample attribute observations for a given word (cf. Chapter 3, Sec-

tion 3.3.1). We thus normalise the attribute vector pw of each word w by dividing

through the sum of its values:

p̂w =
p̃w

∑
A
i=1 p̃wi

, (4.2)

where A denotes the number of attributes and p̃w is derived from pw by setting all

scores less than a threshold δ to 0:

p̃wi =

pwi if pwi ≥ δ

0 if pwi < δ

(4.3)

Training data for the attribute-topic model is a corpus D of textual attributes. Each

attribute is represented as a bag-of-concepts, i.e. words demonstrating the property

expressed by the attribute (e.g., vegetable:n is a property of eggplant, spinach, car-

rot), coupled with their attribute weight. For some of these concepts, our classifiers

predict visual attributes. In this case, the corresponding concept w is paired with

one of its visual attributes, sampled from the distribution given by p̂w. An example

would be the representation of anchor:n ∈ D through boat ,has windows:71, rope:75,

yacht , has sails:71, chain:38.

11The corpus can be downloaded at http://wacky.sslmit.unibo.it/doku.php?id=corpora
(last accessed in May 2015).

http://wacky.sslmit.unibo.it/doku.php?id=corpora
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The kCCA model (Section 3.3.3) receives as input a visual matrix, V ∈ [0,1]N×A,

where each row corresponds to a normalised visual attribute vector (see Equation (4.2))

representing one of N target words, and a textual matrix, T ∈ RN×D, containing nor-

malised textual attribute vectors as rows. Normalisation in the case of the textual

modality is performed analogously to the visual modality, as given in Equation (4.2).

D and A denote the number of textual and visual attributes, respectively.

The concatenation of matrices T and V directly yields the concatenation model.

4.4.2 Evaluation Task

As in Chapter 3 (Section 3.4.1), we evaluate the three models on the word associa-

tion norms collected by Nelson et al. (1998). The norms contain 63,619 unique cue-

associate pairs. Of these, 435 pairs are covered by the VISA dataset and our models.

We also experiment with 1,716 pairs that are not part of the McRae norms but belong

to categories covered by our attribute taxonomy (e.g., ANIMALS, VEHICLES), and are

present in our text corpus and ImageNet. Using correlation analysis, we examine the

degree of linear relationship between the human cue-associate probabilities and the

automatically derived similarity values.

4.4.3 Model Parameters

In order to integrate the visual attributes with the models described in Section 3.3

we must select the appropriate threshold value δ (see Equation (4.3)). We optimised

this value on the development set of VISA (Section 4.2.4.1) and obtained best results

with δ = 0. We also experimented with thresholding the attribute prediction scores for

individual images and with excluding attributes with low precision. In both cases, we

obtained best results when using all attributes.

We could apply CCA to the vectors representing each image separately and then

compute a weighted centroid on the projected vectors. We refrained from doing this as

it involves additional parameters and assumes input different from the other models.

With regard to the textual attributes, we obtained a 9,394-dimensional semantic

space after discarding word-attribute pairs with a log-likelihood ratio score less than

19.12 We also discarded attributes co-occurring with less than two different words. For

the attribute-topic model, the number of predefined components C was set to 10. We

adopted the similarity measures used in the experiments of Chapter 3 (Section 3.4): In

12Baroni et al. (2010) use a similar threshold of 19.51.
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Nelson Concat kCCA TopicAttr TextAttr

Concat 0.24

kCCA 0.30 0.72

TopicAttr 0.26 0.55 0.28

TextAttr 0.21 0.80 0.83 0.34

VisAttr 0.23 0.65 0.52 0.40 0.39

Table 4.5: Correlation matrix for seen Nelson et al. (1998) cue-associate pairs and

five models. All correlation coefficients are statistically significant (p < 0.01, N = 435).

Correlation was measured using Spearman’s ρ.

the kCCA and concatenation model, we measured the similarity between two words

using the cosine similarity (Section 2.2.1); in the attribute-topic model, similarity was

measured as defined by Griffiths et al. (2007b) (see Chapter 3, Equation (3.7), Page 42),

where the underlying idea is that word association can be expressed as a conditional

distribution.

4.4.4 Results & Discussion

Our results are broken down into seen (Table 4.5) and unseen (Table 4.6) concepts. The

former are known to the attribute classifiers and form part of VISA, whereas the latter

are unknown and are not included in the McRae norms (or VISA). We report the corre-

lation coefficients (Spearman’s ρ) we obtain when human-derived cue-associate prob-

abilities (Nelson et al., 1998) are compared against the simple concatenation model

(Concat), kCCA, and Andrews et al.’s (2009) attribute-topic model (TopicAttr). Ta-

ble 4.7 displays the corresponding coefficients obtained with Pearson’s r. We also

report the performance of a model that is based solely on the output of our attribute

classifiers, i.e. without any textual input (VisAttr), and conversely the performance

of a distributional model that uses textual attributes only without any visual input

(TextAttr). The results in Tables 4.5 and 4.6 are displayed as a correlation matrix

so that inter-model correlations can be observed.

As can be seen in Tables 4.5 and 4.7 (second column), two modalities are in most

cases better than one when evaluating model performance on seen data. Differences in

correlation coefficients between models with two versus one modality are all statisti-

cally significant (p < 0.01 using a t-test), with the exception of Concat when compared
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Nelson Concat kCCA TopicAttr TextAttr

Concat 0.11

kCCA 0.15 0.66

TopicAttr 0.17 0.69 0.48

TextAttr 0.11 0.65 0.25 0.39

VisAttr 0.13 0.57 0.87 0.57 0.34

Table 4.6: Correlation matrix for unseen Nelson et al. (1998) cue-associate pairs

and five models. All correlation coefficients are statistically significant (p < 0.01,

N = 1,716). Correlation was measured using Spearman’s ρ.

Models Seen Unseen

Concat 0.18 0.12

kCCA 0.24 0.17

TopicAttr 0.19 0.32

TextAttr 0.14 0.10

VisAttr 0.17 0.13

Table 4.7: Model effectiveness on seen and unseen Nelson et al. (1998) cue-associate

pairs. Correlation was measured using Pearson’s r. All correlation coefficients are

statistically significant (p < 0.01, N = 435 seen and N = 1,716 unseen).

against VisAttr. It is also interesting to note that TopicAttr is the least correlated model

when compared against other bimodal models or single modalities (Table 4.5). This

indicates that the latent space obtained by this model is most distinct from its con-

stituent parts (i.e. visual and textual attributes). Perhaps unsuprisingly, Concat, kCCA,

VisAttr, and TextAttr are also highly intercorrelated.

On unseen pairs (see Tables 4.6 and 4.7), Concat fares worse than kCCA and

TopicAttr. kCCA and TopicAttr are significantly better than TextAttr and VisAttr

(p < 0.01). This indicates that our attribute classifiers generalise well beyond the con-

cepts found in our database and can produce useful visual information even on unseen

images. Compared to Concat and kCCA, TopicAttr obtains a better fit with the human

association norms on the unseen data. The reason for this might be that TopicAttr ben-

efits more from the size of the unseen data which is larger than the seen data. TextAttr
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Models Seen
ρ r

All Attributes 0.28 0.25

Text Attributes 0.20 0.19

Visual Attributes 0.25 0.23

Table 4.8: Model effectiveness on seen Nelson et al. (1998) cue-associate pairs; mod-

els are based on gold human generated attributes (McRae et al., 2005). All correlation

coefficients are statistically significant (p < 0.01, N = 435).

performs worse on the unseen data, which could be a result of our attribute selection

in which we discarded attributes co-occurring with less than two different words con-

tained in VISA.

To assess how computational models fare against human-produced norming data,

we obtained distributional models from the McRae norms and measured their effec-

tiveness on predicting Nelson et al.’s (1998) word-associate similarities. Each concept

was represented as a vector with dimensions corresponding to attributes generated by

participants of the norming study. Vector components were set to the frequency with

which participants generated the corresponding attribute when presented with the con-

cept. We measured the similarity between two words using the cosine similarity. Ta-

ble 4.8 presents results for different model variants which we created by manipulating

the number and type of attributes involved. The first model uses the full set of at-

tributes present in the norms (All Attributes). The second model (Text Attributes) uses

all attributes but those classified as visual (e.g., functional, encyclopaedic, auditory),

representing the correspondence to our textual attributes. The third model (Visual At-

tributes) considers solely visual attributes.

We observe a similar trend as with our computational models. Taking visual at-

tributes into account increases the fit with Nelson’s (1998) association norms, whereas

visual and non-visual attributes on their own perform worse. Interestingly, kCCA’s

performance is comparable to the All Attributes model (see Tables 4.5 and 4.7, second

column), despite using automatic attributes (both textual and visual).

In summary, our results demonstrate that the integration of visual attributes to a

distributional (corpus-based) model improves its effectiveness across the board. On

the word association task, kCCA and the attribute-topic model give a better fit to hu-

man data when compared against simple concatenation and models based on a single
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modality. KCCA consistently outperforms the attribute-topic model on seen data (its

effectiveness is in fact comparable to the model that uses the human-generated McRae

norms), whereas the attribute-topic model generalises better on unseen data (see Ta-

bles 4.5, 4.7, 4.8, and 4.6).

4.5 Conclusions

In this chapter, we presented the VISA dataset and described how we used it to learn

classifiers which predict the absence or presence of visual attributes in images. We

explained how these classifier predictions can ground the meaning of words in terms

of the visual attributes of their real-world referents. We showed the effectiveness of

the classifiers for learning visually grounded representations by integrating their pre-

dictions with textual attribute information, and evaluating the obtained representations

on a word association task (Section 4.4). We used the same integration models as in

the experiments conducted in Chapter 3 (Section 3.4). The results confirmed the su-

periority of the two joint models—the kCCA (Section 3.3.3) and the attribute-topic

(Section 3.3.2) model—over the concatenation approach (see Section 4.4.4).

However, both joint models have shortcomings with respect to our desiderata for

models of perceptually grounded meaning representations (see Chapter 3, Section 3.5).

Recall that the attribute-topic model induces attribute-topic components from a corpus

collection of words and their attributes in a generative process (see Section 3.3.1). It is

not possible to embed out-of-vocabulary words (i.e. words which have not occurred in

the corpus collection) in the bimodal space constructed over the inferred components.

Likewise, its ability to infer missing perceptual information is limited to known words.

On the other hand, our experimental results showed that the attribute-topic model is

more effective on words unseen to the classifiers than kCCA. The kCCA model in

turn is able to project new words not part of its training data into the space, and can

even operate on just one modality by projecting a new word’s input vector onto the

corresponding basis (see Section 3.3.3). However, it cannot infer information on the

missing modality.

In the following chapter, we will introduce a new model which aims to combine the

merits of the methods discussed above. More precisely, the model has the following

properties, among others: (1) Like TopicAttr and kCCA, it uses a joint mechanism to

integrate the modalities (Figure 2.5 (d), Page 26). (2) Like kCCA, it can yield mean-

ing representations for new words and, (3), deal with missing modalities in the sense
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that it allows to map concepts into the bimodal space for which only one modality is

given. Moreover, due to our use of natural language attributes, it would be particu-

larly desirable to be able to infer information rendered in one modality (e.g., textual

attributes), given information of the respective other modality (e.g., image represen-

tations of new concepts). A model potentially owning this property could be used in

applications going beyond those benefiting from meaning representations, e.g., image

classification or description. Whereas the architecture of our model has the potential

for this kind of inference, it figures difficult for both the kCCA and the attribute-topic

model (cf., Chapter 3, Table 3.4, Page 46).

Among the models discussed so far (Concat, kCCA, TopicAttr) we will keep Concat

(as an instance of a concatenation approach) and kCCA (as an instance of a simple

joint approach) for comparison to our new model in the following chapters. We drop

TopicAttr due to its limitation to concepts it has encountered during training.



Chapter 5

Visually Grounded Semantic

Representations with Autoencoders

In Chapter 3, we experimentally compared different models of semantic representa-

tions which compute word meaning by integrating linguistic and visual information,

and discussed their strengths and shortcomings. The models were augmented with vi-

sual information obtained from human input. We concluded that chapter by (i) listing

desiderata with respect to the properties models of visually grounded meaning repre-

sentations should fulfil, and (ii) pointing out the necessity of automatically obtaining

visual information. In the previous chapter, we described our approach to automati-

cally deriving visual and textual attribute-centric representations. In this chapter, we

will present a novel model for visually grounded meaning representations which was

designed with the above desiderata in mind. It applies deep learning techniques in a

neural network architecture for modality integration, using our attribute-centric repre-

sentations as input.

When presented with a mass of signals (e.g., sensory data such as visual or audi-

tory signals), an essential key for making use of this input is to be able to capture the

critical structure of its patterns. What humans achieve efficiently and robustly, deep

learning tries to accomplish by inducing distributed representations (or features) of

input data that are organised into multiple levels of non-linearity. Artificial neural net-

works, biologically inspired by our knowledge of the human brain, are the major kind

of architectures used for deep learning (e.g., Arel et al., 2010; Hinton, 2007). Such

connectionist approaches have had a long tradition in cognitive science, but only re-

cent achievements (LeCun et al., 1990; Hinton and Salakhutdinov, 2006; Hinton et al.,

2006; Ranzato et al., 2006) and advances in computer technology have rendered struc-

81
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ture learning in deep architectures feasible which has subsequently led to the emer-

gence of a new research area in machine learning. Since then, deep neural networks

(NNs) have proven overwhelmingly successful in various tasks, as will be outlined in

Section 5.1.1 (see also, e.g., Bengio et al., 2013, and the references therein).

There are several reasons why deep NNs are so powerful: Representation learning

of the input data is accomplished in an unsupervised fashion. That is, features are not

manually engineered for nor guided by a specific task at hand. Instead, regularities in

large amounts of unlabelled data drive the learning process, whose goal is to unravel

the factors underlying the structure of the data, and discard noise or other kinds of

irrelevant information. Another crucial aspect of deep architectures is that they are

arranged in multiple layers, where each layer evokes a representation composed by

non-linear transformations of the patterns it receives as input from the previous layer.

This potentially gives rise to learning a hierarchy of feature abstractions, corresponding

to basic-level features on the lower layers to more abstract features on the higher levels.

Learning representations independently of a particular task also facilitates their use

for a whole range of different tasks (e.g., Collobert et al., 2011). Once a good rep-

resentation of the input, i.e. one with high expressive power, is learned (unsupervised

pre-training), it can be refined (fine-tuned) for solving a specific task by means of an

appropriate supervised criterion and labelled data.

Furthermore, (deep) NNs allow the composition of multiple types of information,

e.g., different sensory sources, as has been demonstrated by various researchers. We

give an overview of relevant work in this area in Section 5.1.2 (see also Chapter 2, Sec-

tion 2.5). Finally, NNs can be used as a means for non-linear dimensionality reduction

by decreasing the number of units in at least one of the internal layers. Autoencoders,

presented in Section 5.2, were traditionally used for this purpose.

We will use deep learning techniques in a stacked autoencoder architecture to

project linguistic and visual information onto a unified representation that fuses the

two modalities together (cf. Figure 2.5 (d), Page 26). We introduce the details of our

model in Section 5.3.
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5.1 Deep Learning in Artificial Neural Networks

An artificial neural network (henceforth just network) consists of layers of units, where

units of adjacent layers are fully1 connected by weights. The basic network has a layer

of input units and a layer of output (or target) units. Deep networks contain multiple

hidden (a.k.a. latent) layers in between the input and output layer (see Figure 2.4,

Page 20, for an illustration of a basic neural network with one hidden layer).

5.1.1 (Deep) Neural Networks

The application of deep network architectures is gaining increasing popularity for di-

verse tasks of natural language processing and computer vision, examples of which

we will briefly give in this section. Please refer to, e.g., Deng (2014) or Bengio et al.

(2013) for a more comprehensive overview.

As discussed in Section 2.3, neural networks have been employed on unlabelled

text corpora to induce distributed lexical representations which capture word co-oc-

currence statistics. A great deal of work has initialised deep networks with these

representations which used them to produce sentence representations in order to ad-

dress NLP tasks, such as PoS-tagging, named entity recognition, semantic role la-

belling, chunking, (Collobert and Weston, 2008; Collobert et al., 2011), parsing, para-

phrase detection, and sentiment analysis (Socher, 2014). The architecture of Collobert

and Weston (2008) performs convolution on word windows of the sentence, whereas

Socher (2014) presents deep learning architectures based on recursive neural networks

(Goller and Küchler, 1996; Pollack, 1990). The latter operate on hierarchically struc-

tured data, where the same network model is recursively applied at every node of the

structure. Socher’s (2014) models can thus produce sentence representations by com-

bining word representations according to the structure of the sentences (e.g., parse

trees). Glorot et al. (2011), addressing domain-adaptation for sentiment classification,

employ stacked denoising autoencoders (Vincent et al., 2010; see Section 5.2) to learn

feature extractions from unlabelled review texts and use these to train sentiment classi-

fiers on one source domain. In contrast to the former approaches, they do not make use

of pre-trained word embeddings, but simply encode the input texts directly by binary

vectors over n-grams.

All previously mentioned architectures are instances of feed-forward NNs which

1An exception are convolutional layers, in which each unit is connected to a small subset of contigu-
ous units of the previous layer, where the weights are usually replicated over the previous layer.
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differ from recurrent neural networks (RNNs) in that the latter have cyclic connections

which allow them to model sequential data of arbitrary length. RNN-based language

models have been successfully applied to speech and phoneme recognition (Mikolov

et al., 2010 and Hochreiter and Schmidhuber, 1997; Graves et al., 2013, respectively),

and to language generation conditioned on different inputs, e.g., in an end-to-end ap-

proach for machine translation (Sutskever et al., 2014), for Chinese poetry generation

(Zhang and Lapata, 2014), and image description generation (see Section 5.1.2 for

details).

In the area of computer vision, deep convolutional neural networks (CNNs) have

proven highly effective for object classification and recognition. They have led to a ma-

jor breakthrough on the ImageNet large-scale visual recognition challenge (Krizhevsky

et al., 2012; Simonyan and Zisserman, 2014; Russakovsky et al., 2014), they have been

used by the top systems of the challenge on facial expression recognition (ICML 2013

Workshop on Representation Learning2, Goodfellow et al., 2013), and have achieved

performance superior to the state-of-the-art on handwriting recognition (Cireşan et al.,

2012).

CNNs and the feature representations they induce are widely used in computer vi-

sion systems and in approaches leveraging image data including multimodal models

(Section 5.1.2, e.g., Frome et al., 2013; Mao et al., 2014; Kiros et al., 2014a,b; Kiela

and Bottou, 2014). Recently, they have been also employed for large-vocabulary con-

tinuous speech recognition (Sainath et al., 2013). Models based on (deep) autoencoders

haven been successful on knowledge-free handwriting recognition (Rifai et al., 2011)

and were shown to be able to learn selective features for face and human body detectors

from unlabelled data (Le et al., 2013). A hybrid approach was proposed by Kahou et al.

(2013) for emotion recognition from videos (Dhall et al., 2013). They leveraged dif-

ferent features which were extracted with modality-specific deep networks (e.g., deep

CNNs (Krizhevsky et al., 2012) for facial expressions, deep belief nets (DBNs) for

audio features, and autoencoders for local motion features).

The approaches mentioned above exemplify most of the beneficial properties of

(deep) network architectures listed in the beginning of this chapter (e.g., unsuper-

vised/hierarchical feature learning and applicability to different tasks or domains). In

contrast to our work, the networks operate on a single modality, i.e. language (text or

speech) or vision. In the following section we outline related work on exploiting deep

networks for modality composition.

2http://deeplearning.net/icml2013-workshop-competition/

http://deeplearning.net/icml2013-workshop-competition/
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5.1.2 Multimodal Deep Learning

The use of stacked autoencoders to extract a shared lexical meaning representation is

new to our knowledge, although, as we explain below related to a large body of work

on deep learning in network architectures.

Srivastava and Salakhutdinov (2012) and Ngiam et al. (2011) were the first to

address the problem of multimodal representation learning in neural network archi-

tectures which project different modalities onto a bimodal space (Figure 2.5 (d)).

These networks are typically composed of different levels: the lower levels pertain

to modality-specific layers or (sub-)networks (which are possibly pre-trained with a

different type of architecture) whereas higher modality-unifying layers operate on top

of them. Work which focusses on integrating words and images has used a variety of

architectures including deep Boltzmann machines (DBMs; Srivastava and Salakhut-

dinov, 2012, 2014), restricted Boltzmann machines (RBMs; Sohn et al., 2014), and

autoencoders (Feng et al., 2013). Similar methods were employed to combine other

modalities such as speech and video or images using RBMs and DBNs (Ngiam et al.,

2011; Huang and Kingsbury, 2013; Kim et al., 2013), deep autoencoders (Ngiam et al.,

2011), or DBMs (Srivastava and Salakhutdinov, 2014).

Although our model is conceptually similar to these studies (especially those ap-

plying stacked autoencoders), it differs in at least two aspects. Firstly, many former

models learn bimodal representations with the aim to reason about one modality given

the respective other modality (e.g., Ngiam et al., 2011; Huang and Kingsbury, 2013;

Sohn et al., 2014). In contrast, our goal is to learn bimodal representations in which

complimentary and redundant information from different modalities is unified in an

optimal way. Secondly, most approaches deal with a particular end task (e.g., image

classification or speech recognition, but see Srivastava and Salakhutdinov, 2014, for

an exception). They join the modalities in a task-independent unified representation by

means of an unsupervised criterion (e.g., with an RBM or autoencoder), and fine-tune

the network parameters with an appropriate supervised criterion on top of the joint rep-

resentations (e.g., Huang and Kingsbury, 2013), or use the latter as features for training

a conventional classifier (e.g., Ngiam et al., 2011; Sohn et al., 2014). In contrast, we

do not address a specific task and fine-tune our autoencoder using a semi-supervised

criterion. Specifically, we use a combined objective comprising the reconstruction of

the input representation and the classification of the input object. The latter, supervised

criterion is used as a means to drive the learning process, as we will explain in more
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detail in Section 5.3.

Furthermore, our model is defined at a finer level of granularity than most previous

work—it computes representations for individual words—and leverages information

from decoupled data sources, i.e. image collections and text corpora. Former work

on multimodal representation learning builds upon images and their accompanied tags

(Srivastava and Salakhutdinov, 2014; Sohn et al., 2014; Feng et al., 2013), or senten-

tial descriptions of the image content for the purpose of image and description retrieval

(Kiros et al., 2014b; Mao et al., 2014; Socher et al., 2014; Karpathy and Fei-Fei, 2015).

Previous work on image description and retrieval differs from our model in that it

directly derives task-specific bimodal representations. Existing models often initialise

their networks with unimodal task-independent feature representations pre-trained in

deep networks (e.g., CNNs trained on ImageNet; Krizhevsky et al., 2012), but integrate

the modalities using a training criterion and an architecture suited to a particular task.

For example, Mao et al. (2014) and Karpathy and Fei-Fei (2015) combine the modali-

ties in an RNN which is trained to predict the next word given an image and previous

words for the purpose of generating image descriptions or retrieving images given sen-

tences or vice versa. Retrieval is also addressed by Kiros et al. (2014b) who project

image representations onto the hidden states of an RNN representing a sentence, and

optimise the projection matrix and the RNN parameters using the pairwise ranking

loss as cost function (Weston et al., 2010; see also the winning system from Feng et al.

2013 of the multimodal learning challenge of an ICML 2013 workshop3). In Socher

et al.’s (2014) approach to the retrieval task, the same training objective was used to

optimise the parameters which project image embeddings onto sentence embeddings,

hence performing cross-modal learning4 (cf. Figure 2.5 (f), Page 26).

Cross-modal learning was also performed on the word- (or object-)level for the

purpose of zero-shot learning (see Chapter 4, Section 4.2.1), where images of unseen

classes were mapped onto the textual space so as to classify them by applying a k-

nearest neighbours approach within this space (Socher et al., 2013b; Figure 2.5 (e)).

Similarly, Frome et al. (2013) learn image-to-word embeddings and use a nearest

neighbour approach to perform large-scale object recognition and zero-shot learning

(in their deep network, the pre-trained image subnetwork was fine-tuned during the

3In this challenge, systems were presented with an image and two candidate sets of word tags and
had to choose the correct set (Goodfellow et al., 2013).

4Socher et al.’s (2014) model formulation allows for the joint optimisation of the image and sentence
embeddings, but they do not report results for this.
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Figure 5.1: Basic autoencoder whose hidden layer y yields a latent representation of

some input x.

cross-modal learning phase). Similar to our approach, the two latter cross-modal learn-

ing methods are instances of multimodal learning in deep networks using disjoint data

sources, but unlike our work, their goal is not to learn joint bimodal meaning represen-

tations, but to tackle an image-based task by exploiting the textual modality.

5.2 Autoencoders

In this section, we review autoencoders with emphasis on aspects relevant to our model,

which uses this type of neural network architecture to learn higher-level lexical mean-

ing representations, as we describe in the subsequent section.

5.2.1 Basic Autoencoders

An autoencoder (a.k.a. auto-associator or diabolo network) is an unsupervised feed-

forward neural network which is trained to reconstruct a given input from its latent

distributed representation (Rumelhart et al., 1986b; Bengio, 2009). The architecture of

the basic autoencoder is shown in Figure 5.1. It consists of an encoder fθ which maps

an input vector x(i) to a hidden (latent) representation y(i) = fθ(x(i)) = s(Wx(i)+b),
with s being a non-linear activation function, such as a sigmoid function, and W and b
being the weight matrix and an offset vector, respectively. A decoder gθ′ then aims to

reconstruct input x(i) from y(i), i.e. x̂(i) = gθ′(y(i)) = s(W′y(i)+b′). The training ob-

jective is the determination of parameters θ̂ = {W,b} and θ̂′ = {W′,b′} that minimise

the average reconstruction error over a set of input vectors {x(1), ...,x(n)}:

θ̂, θ̂′ = arg min
θ,θ′

1
n

n

∑
i=1

L(x(i),gθ′( fθ(x(i)))), (5.1)

where L is a loss function, such as cross-entropy. Parameters θ and θ′ can be optimised

by gradient descent methods.
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Autoencoders are a means to learn representations of some input by retaining useful

features in the encoding phase which help to reconstruct (an approximation of) the

input, whilst discarding useless or noisy ones.

Beyond their application in natural language processing and computer vision (Sec-

tion 5.1), this type of architecture has been previously shown to account for phenom-

ena in human category learning (Kurtz, 2007), in particular in infant category learning

(e.g., Westermann and Mareschal, 2014; French et al., 2004; Mareschal et al., 2000).

Mareschal et al. (2000) (inter alia) draw an analogy between autoencoders and infant

concept learning by suggesting to interpret the latter as an iterative process, where an

infant, during the period of stimulus fixation, encodes the stimulus into an internal

representation and assesses this encoding by using it to predict the properties of the ac-

tually perceived stimulus. The infant iteratively updates and re-assesses this encoding

until predicted and actual properties are congruent. In this sense, the network recon-

struction error is related to looking-time of an infant, that is, the less familiar an object,

the higher the error and looking-time of the infant, respectively.

Common to the instances of autoencoders employed in the above-mentioned work

is the use of a bottleneck hidden layer producing an under-complete representation

of the input by having a smaller number of units than the input layer. In this setting

autoencoders are similar to techniques such as principal component analysis (PCA,

Jolliffe, 2002) since they both can be leveraged to reduce the dimensionality of often

high-dimensional input data. Unlike PCA which performs a linear transformation of

the input, autoencoders (with non-linearities and a cross-entropy loss function) are able

to model non-linearities and are thus potentially more powerful for capturing complex

structure of the input. Furthermore, autoencoders may benefit from using multiple

hidden layers (Japkowicz et al., 2000; Hinton and Salakhutdinov, 2006; Vincent et al.,

2010).

The use of a bottleneck hidden layer to produce under-complete representations of

the input is one strategy of guiding parameter learning towards useful representations.

The literature describes further strategies, such as constraining the hidden layer to yield

sparse representations (Ranzato et al., 2006), or denoising.

5.2.2 Denoising Autoencoders

The training criterion with denoising autoencoders is the reconstruction of clean input

x(i) given a corrupted version x̃(i) (Vincent et al., 2008, 2010). The reconstruction error
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Figure 5.2: Denoising autoencoder whose hidden layer y yields a latent representation

given a corrupted version x̃ of some input x.

for an input x(i) with loss function L then is:

err(x(i), x̃(i)) = L(x(i),gθ′( fθ(x̃(i)))) (5.2)

One possible corruption process is masking noise, where the corrupted version x̃(i)

results from randomly setting a fixed proportion v of units of x(i) to 0. Figure 5.2 gives

an illustration.

The underlying idea of denoising autoencoders is that if a latent representation

is capable of reconstructing the actual input from its corruption, it presumably has

learned to capture the regularities and interrelations of the structure of the input and can

therefore be deemed a good representation. From a cognitive perspective, denoising

can be construed as learning to activate knowledge about interrelated factors when

being exposed to partial information about a concept. An example for this is the ability

of humans to recognise objects that are partially occluded or which are depicted in

corrupted images (Vincent et al., 2008).

5.2.3 Stacked Autoencoders

Several (denoising) autoencoders can be used as building blocks to form a deep neural

network (Bengio et al., 2006; Vincent et al., 2010). For that purpose, the autoencoders

are often pre-trained layer by layer, with the current layer being fed the latent repre-

sentation yielded by the previous, already pre-trained, autoencoder as input. When

stacking denoising autoencoders, input corruption is only applied during pre-training.

Encodings propagated to the next autoencoder are obtained from uncorrupted input.

Using this unsupervised pre-training procedure, initial parameters are found which

approximate a good solution. Subsequently, the original input layer and hidden repre-

sentations of all the autoencoders are stacked yielding a deep network.

The parameters of this network can then be optimised (fine-tuned) with respect to

the objectives at hand. More precisely, a supervised criterion can be imposed on top of
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V
is

ua
l eat seeds has beakhas clawshas handlebarhas wheelshas wings is yellowof wood

canary 0.05 0.24 0.15 0.00 –0.10 0.19 0.34 0.00
trolley 0.00 0.00 0.00 0.30 0.32 0.00 0.00 0.25

Te
xt

ua
l bird:n breed:v cage:n chirp:v fly:v track:n ride:v run:v rail:n wheel:n

canary 0.16 0.19 0.39 0.13 0.13 0.00 0.00 0.00 0.00 –0.05
trolley –0.40 0.00 0.00 0.00 0.00 0.14 0.16 0.33 0.17 0.20

Table 5.1: Examples of attribute-based representations provided as input to our autoen-
coders. (Some attributes are abbreviated for space reasons.)

the last hidden layer such as the minimisation of a prediction error on a supervised task

(Bengio, 2009). Another approach is to unfold the stacked autoencoders and fine-tune

their parameters with respect to the minimisation of the global reconstruction error

(Hinton and Salakhutdinov, 2006). Alternatively, a semi-supervised criterion can be

used (Ranzato and Szummer, 2008; Socher et al., 2011) through combination of the

unsupervised training criterion (global reconstruction) with a supervised criterion, that

is, the prediction of some target given the latent representation.

5.3 Grounded Semantic Representations with Autoen-

coders

To learn meaning representations of single words from textual and visual input, we

employ stacked (denoising) autoencoders. Both input modalities are vector-based rep-

resentations of words or, more precisely, the objects they refer to (e.g., canary, trolley).

The vector dimensions correspond to textual and visual attributes, examples of which

are shown in Table 5.1. We obtain these input vectors automatically with the methods

described in Chapter 4 (Sections 4.2 and 4.3).

5.3.1 Architecture

We determined the architecture including the number of hidden layers and the activa-

tion function, as well as the training procedure in preliminary experiments, in which

we, additionally to optimising for the training objective, took into account the per-

formance of the model on a subset of the free word association norms collected by

Nelson et al. (1998)5 (see Section 3.4 for details on this dataset and task). Specifically,

5Available at http://w3.usf.edu/FreeAssociation (last accessed in April 2015).

http://w3.usf.edu/FreeAssociation
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Figure 5.3: Stacked autoencoder trained with semi-supervised objective. Input to the

model are single-word vector representations obtained from text and images. Vector

dimensions correspond to textual and visual attributes, respectively (see Table 5.1).

The edges are labelled with the weight matrices to be learned (bias vectors are omitted

for the sake of clarity).

we used correlation analysis to monitor the correlation between model cue-associate

cosine similarities (see Chapter 2, Section 2.2.1) and human probabilities. We describe

the architecture of the best model in the following.

We first pre-train a stack of two autoencoders (AEs) for each modality separately.

Then, we join the modalities by feeding the latent representations (encodings) induced

by their respective second AE simultaneously to another AE. Its hidden layer y̆ yields

word representations that capture the meaning of words across both modalities. In the

final training phase, we stack all layers and unfold them in order to fine-tune this bi-

modal stacked autoencoder (SAE). Figure 5.3 illustrates the architecture of the model.

As can be seen from the figure, we additionally add a softmax-layer on top of the bi-

modal encoding layer (shown in the center of Figure 5.3, labelled as softmax), which

outputs predictions with respect to the object label of an input (e.g., dog, baseball ). It

serves as a supervised training criterion in addition to the unsupervised reconstruction

objective during fine-tuning, with the aim of guiding the learning towards descriptive

and discriminative (bimodal) representations that capture the structure of the input pat-

terns within and across the two modalities and discriminate between different objects.

The influence of object labels on categorisation and word learning has been the
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subject of many studies which observed that labels can affect prelinguistic category

formation during infancy (Plunkett et al., 2008; Sloutsky and Fisher, 2012, inter alia).

A reason for this might be the formation of similar representations for objects that

share the same label, which in turn causes infants to perceive dissimilar objects with

an identical label as more similar (Westermann and Mareschal, 2014).

Adopting a progressive representation learning strategy and modality integration

in the form of pre-training each layer separately is expedient for technical reasons, as

outlined in the previous section (Section 5.2.3). It can also be interpreted as allow-

ing the model to first learn meaning representations by detecting correlations between

attributes within a modality, and later on across modalities, gradually enriching the

representations. This is not unreasonable in view of studies suggesting that the abil-

ity of infants to integrate information from multiple sources during category learning

develops with increasing age (see Westermann and Mareschal, 2014, for a review).

After training, a word is represented by its encoding in the bimodal layer, corre-

sponding to a vector y̆ of distributed unit activations (shown in the center of Figure 5.3).

Recall that an individual unit of y̆ does not represent a nameable attribute, but it is

rather part of a pattern formed by the interplay between the visual and linguistic char-

acteristics of the word it represents (cf. Chapter 2, Section 2.3). Two words can then

be compared on the basis of their encoding vectors (e.g., by measuring their cosine

similarity, Equation 2.4 in Chapter 2), and the more their activation patterns coincide,

the more similar the words are assumed to be.

5.3.2 Model Details

For both modalities, we use the hyperbolic tangent function as activation function for

encoder fθ and decoder gθ′ and an entropic loss function for L. The weights of each

autoencoder (AE) are tied, i.e. W′ = WT . We employ denoising AEs for pre-training

the textual modality.

Regarding the visual autoencoder, we derive a new (‘denoised’) target vector to be

reconstructed for each input vector x(i), and treat x(i) itself as corrupted input. The

target vector is derived as follows: each object o (or concept) in our data is represented

by multiple images. Each image in turn is rendered in a visual attribute vector x(i). The

target vector is the weighted aggregation of x(i) and the centroid x(o) of all attribute

vectors collectively representing object o. This denoising procedure compensates for

prediction errors made by the attribute classifiers on individual images. Moreover, not
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all attributes which are true for a concept are necessarily observable from a relevant

image. Attribute predictions for individual images therefore introduce corruption with

respect to the overall concept they represent.

The bimodal autoencoder is fed with the concatenated second hidden encodings of

the visual and textual modalities as input and maps these to a joint hidden layer y̆ of B

units. We normalise both unimodal input encodings to unit length. Again, we use tied

weights for the bimodal autoencoder. We also actively encourage the autoencoder to

detect dependencies between the two modalities while learning the mapping to the bi-

modal hidden layer, and therefore apply masking noise to one modality with a masking

factor v (see Section 5.2.2 on denoising autoencoders), so that the corrupted modality

optimally has to rely on the other modality in order to reconstruct its missing input

features. Motivation for this is to simulate the information available to an infant during

word learning, where the child typically can see the object and how it is referred to,

but it may not have gained (rich) conceptual knowledge about it yet.

In the final step, we build a bimodal stacked autoencoder (SAE) with all pre-trained

autoencoders and fine-tune their parameters with respect to a semi-supervised criterion.

That is, we unfold the stacked autoencoder (as shown in Figure 5.3) and furthermore

add a softmax output layer on top of the bimodal layer y̆ that outputs predictions t̂ with

respect to the inputs’ object labels (e.g., boat):

t̂(i) =
exp(W(6)y̆(i)+b(6))

∑
O
k=1 exp(W(6)

k. y̆(i)+b(6)
k )

, (5.3)

with weights W(6) ∈ RO×B, b(6) ∈ RO×1, where O is the number of unique object la-

bels. The overall objective to be minimised is then the weighted sum of the reconstruc-

tion error Lr and the classification error Lc:

L =
1
n

n

∑
i=1

(
δrLr(x(i), x̂(i))+δcLc(t(i), t̂(i))

)
+λR (5.4)

where δr and δc are weighting parameters that give different importance to the partial

objectives, Lc and Lr are entropic loss functions, and R is a regularisation term with

R = ∑
5
j=1 2||W( j)||2 + ||W(6)||2, i.e. we use an L2 weight decay penalty (penalisation

of the sum of squared weights). Finally, t̂(i) is the object label vector predicted by the

softmax function for input vector x(i), and t(i) is the correct object label, represented

as an O-dimensional one-hot vector6.
6In a one-hot vector (a.k.a. 1-of-N coding), exactly one element is one and the others are zero. In

our case, the non-zero element corresponds to the object label.
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5.3.3 Model Properties

Our model benefits from its deep learning architecture, obtaining meaning representa-

tions from multiple layers. The first layers operate on individual modalities, whereas

the final hidden layer combines them to a bimodal representation. This architecture al-

lows us to test different hypotheses with respect to word meaning. Specifically, we can

disentangle the contribution of visual or textual information, for instance by represent-

ing words based on their unimodal encoding and contrasting them with their bimodal

representation. Related bimodal models have used SVD (Bruni et al., 2014, Chap-

ter 6, Section 6.1.2), LDA (Roller and Schulte im Walde, 2013), or kCCA (Silberer

et al., 2013, Chapter 4, Section 4.4) to project the input data into a joint space directly

(see also Chapter 2, Section 2.5 for the former two models). There is no hierarchy of

representations with potentially increasing complexity, nor an intermediate unimodal

representation naturally connecting the input to the bimodal representation. Similarly

to models employing SVD or kCCA, our model can also perform dimensionality-

reduction in the course of representation learning by mapping to lower-dimensional

hidden layers. However, in contrast to SVD, this is performed non-linearly which we

argue allows to model complex relationships between visual and textual data.

Furthermore, the semi-supervised architecture affords flexibility, allowing to adapt

the model to specific tasks. For example, by setting the corruption parameter v for the

textual modality to one and the weighting parameter for the reconstruction error, δr,

to zero, a standard object classification model for images can be trained. More im-

portantly, it has the potential for inductive inference with respect to attributes of new

objects (cf. Johns and Jones, 2012, Chapter 3, Section 3.3.2). Particularly training a

model that infers a (missing) modality given the other modality can be done by setting

the corruption parameter v close to one for either modality (cf., cross-modal learning,

Section 2.5.2, and Ngiam et al., 2011). As our input consists of natural language at-

tributes, the model would infer textual attributes given visual attributes and vice versa.

For example, when presented with an unknown object (e.g., an unseen bird species)

and assuming that the object is visually similar to other objects of the same category

(e.g., other birds), the visual input representation will be similar to the seen examples of

the same category and will be mapped closely to these examples in the bimodal seman-

tic space. Reconstructing the input from the bimodal representation, that is, mapping

the bimodal representation to the output layers, textual attributes not perceived as in-

put can be inferred. We show this in an experiment in Chapter 7 (Section 7.1; see also
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Griffin et al., 2013). This inference ability follows directly out of the model, without

additional assumptions or modifications. Previous models either do not have a simple

way of projecting one modality onto a joint space (e.g., Andrews et al., 2009), or al-

together lack a mechanism of inferring missing modalities (see Silberer and Lapata,

2012, and Chapter 3).

5.4 Conclusions

We presented our bimodal stacked autoencoder (SAE) model for deriving visually

grounded meaning representations by mapping textual and visual information into a

bimodal space. Its architecture was designed with respect to our desiderata for mod-

els of perceptually grounded meaning representations (see Chapter 3, Section 3.5). In

summary, the model has the following characteristics:

(1) It learns to map the input modalities to a modality-unifying hidden layer in a

joint fashion (see Figure 2.5 (d), Page 26). In the next chapter, we will assess the

effectiveness of the derived bimodal representations and compare it to related

models.

(2) In contrast to other network models which learn word embeddings from ran-

domly initialised input, our input vectors are meaningful (they are attribute-

based). The model can therefore derive bimodal representations for out-of-

vocabulary words, provided that there is attribute-based information for these.

(3) It offers the possibility to map just one modality into the bimodal space. In

Chapter 7, we will apply the SAE to infer textual attributes when only presented

with visual input from out-of-vocabulary words (Section 7.1). Similarly, we will

apply the bimodal representations obtained from visual input for a categorisation

task (Section 7.2).

Finally, due to its semi-supervised architecture, it has the potential to be explicitly

trained for cross-modal mapping or supervised tasks, such as image classification (Sec-

tion 5.3.3).



Chapter 6

Experiments: Simulating Human

Behaviour in Cognitive Tasks

In this chapter we evaluate our bimodal stacked autoencoder (SAE) model presented

in the previous chapter for its ability to explain human behaviour. To this end, we eval-

uate the model against human judgements in three semantic tasks related to concept

similarity. All tasks focus on essential phenomena of cognition for which any lexical

semantic model should account.

Many cognitive tasks, such as semantic priming (Thompson-Schill et al., 1998;

Jones et al., 2006) or association, are based on the ability to judge similarity. More-

over, estimating similarity of pairs or groups of words is crucial for many practical

applications (e.g., document retrieval, Manning et al., 2008). Vector-based models

aimed at representing the meaning of individual words are therefore commonly eval-

uated by their ability to measure the strength of semantic similarity between lexical

units. Likewise, in our first experiment described in Section 6.1, we evaluate the ca-

pacity of our model to simulate human behaviour on judging similarity in meaning

and, furthermore, appearance between pairs of nominal concepts.

Semantic categorisation, the mental grouping of objects and events into meaning-

ful classes, is a classic topic in the field of cognitive science, central to perception,

learning, and the use of language. Categories enable us to structure the world and

inductively predict or infer properties of newly encountered objects by generalising

pre-established knowledge from similar objects, i.e. that share the same category. We

will assess how well our model can simulate this aspect of cognition on a concept

categorisation task in Section 6.2.

The internal structure of categories is graded in that some members are rated more

96
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representative for a specific category than others. For example, both, pythons and

cats are exemplars of PETs. However, humans generally consider a python to be a less

typical exemplar for a PET than a cat . In our third experiment, presented in Section 6.3,

we simulate typicality ratings to evaluate how well our model can account for such

graded category membership.

6.1 Experiment 5: Word Similarity

We first give details on the evaluation dataset we used for the word similarity task.

Then, in Section 6.1.2, we explain how the model was trained and describe the ap-

proaches used for comparison with our own work.

6.1.1 Elicitation of Evaluation Dataset

In this experiment, we collected similarity ratings that capture the concepts contained

in the attribute production norms of McRae et al. (2005, henceforth McRae norms).

Although several relevant datasets exist, such as the widely used WordSim353 (Finkel-

stein et al., 2002, see Section 3.4.1) or the more recent Rel-122 norms (Szumlanski

et al., 2013), they contain many abstract words, (e.g., love–sex or arrest–detention)

which are not covered in the McRae norms. This is for a good reason, as most ab-

stract words do not have discernible attributes, or at least attributes that participants

would agree upon. The new dataset we created consists exclusively of nouns from the

McRae norms, and contains similarity ratings not only for semantic similarity, but also

for visual similarity. We hope that the dataset will be useful for the development and

evaluation of grounded semantic space models.1

Participants We used Amazon Mechanical Turk (AMT) to obtain similarity ratings

for the word pairs grouped into tasks. Each task was completed by five volunteers, all

self-reported native English speakers. They were allowed to complete as many tasks as

they wanted. A total of 46 subjects (27 women, 18 men, 1 unspecified, mean age: 38.5

years, age range: 18–67) took part in the experiment and completed between one and

147 tasks each. Participants were paid $0.5 per completed task.

1Available at http://homepages.inf.ed.ac.uk/s1151656/resources.html.

http://homepages.inf.ed.ac.uk/s1151656/resources.html
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Word Pairs Semantic Visual Word Pairs Semantic Visual
bag–sack 5.0 5.0 bat (baseball)–baton 2.8 4.0
pistol–revolver 5.0 5.0 bracelet–chain 2.8 4.0
couch–sofa 5.0 5.0 pencil–wand 1.8 4.0
airplane–jet 5.0 5.0 bullet–thimble 1.0 3.0
frog–toad 5.0 5.0 closet–elevator 1.5 2.8
hornet–wasp 4.8 4.8 banner–scarf 1.3 2.7
curtains–drapes 5.0 4.8 shield–tray 1.2 2.6
colander–strainer 5.0 4.8 cantaloupe–plum 4.5 1.8
gloves–mittens 5.0 4.2 clarinet–keyboard (musical) 4.3 1.3
cup–mug 5.0 4.3 car–scooter 4.0 1.7
blouse–shirt 4.8 5.0 gun–missile 4.0 1.0
missile–rocket 4.8 5.0 screwdriver–wrench 3.6 1.4
tortoise–turtle 4.8 5.0 microwave–skillet 3.5 1.3
gun–shotgun 4.8 5.0 airplane–truck 3.4 1.2

Table 6.1: Mean semantic and visual similarity ratings for the concepts of the McRae
norms with varying degrees of similarity. Averaged across experiment participants.

Materials and Design Initially, we created all possible pairings over the concepts of

the McRae norms and computed the semantic relatedness of the corresponding Word-

Net (Fellbaum, 1998) synsets using Patwardhan and Pedersen’s (2006) WordNet-based

measure. We opted for this specific measure as it achieves high correlation with human

ratings and has a high coverage on our nouns. Next, we randomly selected 30 pairs

for each concept under the assumption that they are representative of the full varia-

tion of semantic similarity. More specifically, for each individual concept, we ordered

the pairs according to their relatedness scores and assigned them into bins. We then

iteratively sampled pairs from the bins of all concepts in such a way that each bin con-

tributed as equally as possible to the final set of overall concept pairs. This resulted

in 7,576 pairs.2 We split the pairs into overall 255 tasks; each task consisted of 32 pairs

covering examples of weak to very strong semantic relatedness, and furthermore con-

tained at most one instance of each target concept. Two control pairs from Miller and

Charles (1991) were included in each task to potentially help identify and eliminate

data from participants who assigned random scores.3

2For two concepts, yacht and wall , only 25 pairs were created.
3To obtain exactly 32 pairs per task, we used three filler pairs if necessary, which we removed again

after the annotation.
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Procedure Participants were first presented instructions that explained the task and

gave examples. They were asked to rate a pair on two dimensions, visual and semantic

similarity using a 5-point Likert scale (1 = highly dissimilar and 5 = highly similar).

All 32 word pairs comprising one task were presented on a single web page and partic-

ipants were required to scroll down in order to process through the list of pairs. Note

that they were not provided with images depicting the concepts. In order to judge

visual (and semantic) similarity they were required to use their visual knowledge of

concepts. Our instructions are given in Appendix B.

Results Examples of the stimuli and elicited mean ratings are shown in Table 6.1.

The similarity data was post-processed so as to identify and remove outliers. Simi-

larly to previous work (Szumlanski et al., 2013), we considered an outlier to be any

individual whose mean pairwise correlation coefficient (Spearman’s ρ) fell outside

two standard deviations from the mean correlation. 11.5% of the annotations were

detected as outliers and removed. After outlier removal, we further examined how

well the participants agreed in their similarity judgements. We measured inter-subject

agreement as the average pairwise correlation coefficient between the ratings of all

annotators for each task. For semantic similarity, the mean correlation was ρ = 0.76

(Min = 0.34, Max = 0.97, StD = 0.11) and for visual similarity ρ = 0.63 (Min = 0.19,

Max = 0.90, StD = 0.14). These results indicate that the participants found the task

relatively straightforward and produced similarity ratings with a reasonable level of

consistency. For comparison, Patwardhan and Pedersen’s (2006) measure achieved a

coefficient of ρ = 0.56 on the dataset for semantic similarity and ρ = 0.48 for visual

similarity. The correlation between the average ratings of the AMT annotators and the

Miller and Charles (1991) dataset was ρ = 0.91.

6.1.2 Experimental Setup

Data We learned meaning representations for the concepts of the McRae norms

which are contained in the VISA dataset (see Section 4.2.3). As shown in Figure 5.3

(Chapter 5, Page 91), our bimodal stacked autoencoder (SAE) model takes as input two

(real-valued) vectors representing the visual and textual modalities. Vector dimensions

correspond to textual and visual attributes, respectively. We maintained the partition of

the VISA image data into training, validation, and test set and acquired visual vectors

for each of the sets by means of our attribute classifiers (see Chapter 4, Section 4.2.4).
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We used the visual vectors of the training and development set for training the autoen-

coders, and the vectors for the test set for evaluation. Visual vectors were scaled to

the [−1,1] range. We derived textual attribute vectors by means of Strudel (Baroni

et al., 2010) as explained in Chapter 4 (Section 4.3.1). Specifically, we ran Strudel

on a 2009 dump of the English Wikipedia of about 800M words.4 We only retained

the ten attributes with highest log-likelihood ratio scores for each target word, amount-

ing to a total of 2,362 dimensions for the textual vectors. Analogously to the visual

representations, association scores were scaled to the [−1,1] range.

Model Parameters Model hyper-parameters5 were optimised on the same subset of

the free word association norms collected by Nelson et al. (1998)6 as we used in the

experiments which assessed the effectiveness of our attribute-based representations

(i.e. 435 word pairs), described in Chapter 4 (Section 4.4).

During training we used correlation analysis (ρ) to monitor the degree of lin-

ear relationship between model cue-associate cosine similarities (see Chapter 2, Sec-

tion 2.2.1) and human probabilities. The best autoencoder on the word association

task obtained a correlation coefficient of ρ = 0.33. This model has the following ar-

chitecture: the textual denoising autoencoder (see Figure 5.3, Page 91, left-hand side)

consists of 700 hidden units which are then mapped to the second hidden layer with 500

units (the corruption parameter was set to v = 0.1; see Chapter 5, Section 5.2.2); the

visual autoencoder (see Figure 5.3, right-hand side) has 170 and 100 hidden units, in

the first and second layer, respectively. The 500 textual and 100 visual hidden units

feed a bimodal autoencoder containing 500 units, and masking noise was applied to

the textual modality with v = 0.2. The weighting parameters for the joint training ob-

jective of the stacked autoencoder were set to δr = 0.8 and δc = 1 (see Equation (5.4),

Page 93).

We used the meaning representations obtained from the output of the bimodal layer

for the experiment.

Comparison Models We compare our SAE against unimodal autoencoders based

solely on textual and visual input (left- and right-hand sides in Figure 5.3, Page 91,

4The corpus is downloadable from http://wacky.sslmit.unibo.it/doku.php?id=corpora
(last accessed in April 2015).

5We performed random search over combinations of hyper-parameter values, including also the
number of unimodal hidden layers and the number of units in each layer.

6Available at http://w3.usf.edu/FreeAssociation (last accessed in April 2015).

http://wacky.sslmit.unibo.it/doku.php?id=corpora
http://w3.usf.edu/FreeAssociation
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respectively). We also compare our model against a concatenation model as well as

two latent inference approaches which differ in their modality integration mechanisms

(both perform joint integration illustrated by Figure 2.5 (c) on Page 26, however). The

first one is based on kernel canonical correlation analysis (kCCA, Hardoon et al., 2004)

with a linear kernel (see Chapter 3, Section 3.3.3, for details on kCCA). The second

one emulates Bruni et al.’s (2014) integration mechanism based on singular value de-

composition (SVD, see below). All these models run on the same data and are given

input identical to our model, namely attribute-based textual and visual representations.

We furthermore report results obtained with Bruni et al.’s (2014) full model as well

as results of the state-of-the-art word embeddings learned with Mikolov et al.’s (2013b)

continuous skip-gram model. We describe these models in the following.

Bruni Model Bruni et al. (2014) use SVD (Golub and Reinsch, 1970) to integrate

co-occurrence-based textual representations of words with visual representations con-

structed on the basis of low-level image features. As we explained in Chapter 2, SVD is

a mathematical technique used for reducing the dimensionality of vector spaces (Sec-

tion 2.2.1). Specifically, Bruni et al. concatenate the (normalised) textual and visual

vectors to create one matrix, where the rows correspond to words, and the columns

correspond to either textual or visual features. They then perform SVD and retain the

k largest singular values. Re-multiplication of the factorisation gives a bimodal seman-

tic space with rank k. We apply this integration mechanism on our textual and visual

attribute-based input vectors for direct comparison of the integration mechanisms.

In order to build Bruni et al.’s (2014) full model7 we used their publicly avail-

able system (Bruni et al., 2013). Their textual modality is represented by a 30K-

dimensional word-word co-occurrence matrix extracted from text corpora.8 The en-

tries of the matrix correspond to the weighted co-occurrence frequency of a target

word (rows) and a context word (columns). Two words were considered co-occurring

if one of them occurred in the window of two content words on each side of the other

word. The visual modality is represented by bag-of-visual-words histograms built on

the basis of clustered SIFT (Lowe, 2004) descriptors (see Chapter 4, Section 4.2.4.2

for details on bag-of-visual-words).

Bruni et al.’s (2014) and our model first of all differ with respect to the source

7The authors call the model Feature Level fusion since similarity scores are estimated from the bi-
modal representation arising from fusing the textual and visual representations in contrast to combining
similarity scores estimated from each modality separately.

8We thank Elia Bruni for providing us with their data.
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corpora from which visual and textual information is derived. For the textual repre-

sentations, they use the larger ukWaC (2 billion tokens) in addition to WaCkypedia

(800 million tokens),9 we rely solely on the latter. In order to extract visual informa-

tion, Bruni et al. exploit the ESP dataset (von Ahn and Dabbish, 2004). This dataset

comprises 100K images randomly downloaded from the internet and tagged by hu-

mans (see Chapter 3, Section 3.2, for more details on ESP). The average number of

images per tag is 70. The core difference between Bruni et al.’s model and ours lies in

the visual input representation. Bruni et al. represent an image as a histogram over not

nameable visual words corresponding to quantised SIFT descriptors, and a concept as

the weighted sum of the histograms of all images tagged with the concept name. We

also leverage information extracted from images. However, we represent an image and

consequently a concept by means of interpretable attributes.

Skip-gram Model Mikolov et al.’s (2013a; 2013b) skip-gram model is a shal-

low neural network architecture that learns distributed vector representations for words

(and phrases) from text corpora. The network architecture consists of an input layer

encoding a word wt with a one-hot vector, a continuous embedding layer to which

the input is projected, and an output layer which is fed by the embedding layer and

which encodes words wt−c, . . . ,wt−1,wt+1, . . . ,wt+c. The latter correspond to the con-

text words within a window of c words surrounding word wt . Training objective is

to find word embeddings (representations) from which the context words can be pre-

dicted.

In contrast to our model, representations are directly learned from experience ap-

proximated by a huge amount of text data. In our evaluation, we used the 300-

dimensional vectors trained on part of the Google News dataset which comprises

100B words.10 They were trained using negative sampling, where the objective is

the distinction between the target, i.e. a correct context word of word wt , from ran-

domly sampled negative examples using logistic regression. This objective is reported

to be especially valuable for the learning of representations for frequent words. The

model furthermore employed sub-sampling of frequent words, which is geared towards

learning improved representations for less frequent words (Mikolov et al., 2013b).

9Both corpora are available at http://wacky.sslmit.unibo.it/doku.php?id=corpora (last ac-
cessed in May 2015).

10The vectors and the code are both available at https://code.google.com/p/word2vec/ (last
accessed in April 2015).

http://wacky.sslmit.unibo.it/doku.php?id=corpora
https://code.google.com/p/word2vec/
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Semantic Similarity Visual Similarity

Models T V T+V CI T V T+V CI

McRae 0.71 0.49 0.68 (-.018/+.018) 0.58 0.52 0.61 (-.021/+.020)

Attributes 0.63 0.62 0.71 (-.014/+.013) 0.49 0.57 0.60 (-.018/+.017)

SAE 0.67 0.61 0.72 (-.014/+.014) 0.55 0.60 0.65 (-.016/+.017)

SVD — — 0.70 (-.014/+.015) — — 0.59 (-.018/+.018)

kCCA — — 0.58 (-.020/+.017) — — 0.56 (-.019/+.019)

Bruni — — 0.50 (-.023/+.027) — — 0.44 (-.025/+.024)

skip-gram 0.73 — — (-.014/+.013) 0.56 — — (-.020/+.020)

Table 6.2: Correlation of model predictions against similarity ratings for the noun pairs

of the McRae norms (using Spearman’s ρ).

Evaluation We evaluate the models on the word similarity dataset gathered in the

elicitation study described in Section 6.1.1. With each model, we measure the cosine

similarity of the given word pairs and correlate these predictions with the mean human

similarity ratings using Spearman’s ρ.

6.1.3 Results and Discussion

Table 6.2 presents our results on the word similarity task. As an indicator to how

well automatically extracted attributes can approach the effectiveness of clean human

generated attributes, we also report results of a distributional model induced from the

McRae norms (see the row labelled McRae in the table). Each noun is represented

as a vector with dimensions corresponding to attributes elicited by participants of the

norming study. Vector components are set to the (normalised) frequency with which

participants generated the corresponding attribute. We show results for three models,

using all attributes except those classified as visual (columns labelled T), only visual

attributes (V), and all available attributes (T+V). The concatenation model (see row

Attributes in Table 6.2) is based on the concatenation (T+V) of textual attributes (which

we obtain from Strudel) and visual attributes (obtained from our classifiers; columns T

and V, respectively). The automatically obtained textual and visual attribute vectors

serve as input to SVD, kCCA, and our bimodal stacked autoencoder (SAE). The third

row in the table presents three variants of our model trained on textual and visual

attributes only (T and V, respectively) and on both modalities jointly (T+V).
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# Pair # Pair # Pair

1 pliers–tongs 8 pistol–rifle 15 cedar–oak

2 cathedral–church 9 cloak–robe 16 bull–ox

3 cathedral–chapel 10 nylons–trousers 17 dress–gown

4 pistol–revolver 11 cello–violin 18 bolts–screws

5 chapel–church 12 cottage–house 19 salmon–trout

6 airplane–helicopter 13 horse–pony 20 oven–stove

7 dagger–sword 14 gun–rifle 21 iguana–tortoise

Table 6.3: Word pairs with highest semantic and visual similarity according to

SAE model. Pairs are ranked from highest to lowest similarity.

We report 95% confidence intervals based on 5000 bootstraps for the results ob-

tained with the bimodal models (T+V) and skip-gram (columns labelled CI). Recall

that participants were asked to provide ratings on two dimensions, namely seman-

tic and visual similarity. We would expect the textual modality to be more domi-

nant when modelling semantic similarity and conversely the perceptual modality to be

stronger with respect to visual similarity. This is borne out in our unimodal SAEs.

The textual SAE correlates better with semantic similarity judgements (ρ = 0.67) than

its visual equivalent (ρ = 0.61). And the visual SAE correlates better with visual sim-

ilarity judgements (ρ = 0.60) compared to the textual SAE (ρ = 0.55). Interestingly,

the bimodal SAE (T+V) is better than the unimodal variants on both types of sim-

ilarity judgements, semantic and visual. An explanation could be that both modali-

ties contribute complementary information and that the SAE model is able to extract

a shared representation which improves generalisation performance across tasks by

learning them jointly. Since the bimodal SAE has one more layer than its unimodal

variants, however, it cannot be ruled out that the improved effectiveness is by virtue

of its higher complexity. The bimodal autoencoder (SAE, T+V) outperforms all other

bimodal models on both similarity tasks. It yields a correlation coefficient of ρ = 0.72

on semantic similarity and ρ = 0.65 on visual similarity. Human agreement on the for-

mer task is 0.76 and 0.63 on the latter. Table 6.3 shows examples of word pairs with

highest semantic and visual similarity according to the SAE model.

We also observe that simply concatenating textual and visual attributes (Attributes,

T+V) performs competitively with SVD and better than kCCA. This indicates that
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the attribute-based representation is a powerful predictor on its own. With respect

to models that do not make use of attributes, we see that Bruni et al. (2014) is out-

performed by all other attribute-based systems (see columns T and T+V in Table 6.2).

Interestingly, skip-gram is the best performing model on the semantic similarity task

(see column T, first block), but falls short on the visual similarity task.

6.2 Experiment 6: Concept Categorisation

Concept learning and categorisation have been subject to many experimental studies

and simulation approaches (see, e.g., Goldstone et al., 2012, for an overview). Ex-

isting models typically focus on a single modality, either perception or language. For

example, perceptual information is represented in form of hand-coded (binary) val-

ues on a few dimensions (e.g., colour or shape (Anderson, 1991; Vanpaemel et al.,

2005), artificial stimuli (Griffiths et al., 2007a; Sanborn et al., 2006), geometric shapes

(Austerweil and Griffiths, 2010; McKinley and Nosofsky, 1995)) or by real-object im-

ages (e.g., Hsu et al., 2012). And linguistic representations are often derived from

large text corpora (e.g., Fountain and Lapata, 2011; Frermann and Lapata, 2014).

Very few approaches exist that use both, perception and language (Bruni et al., 2014;

Westermann and Mareschal, 2014). Furthermore, many models focus on adult cat-

egorisation, assuming categories have already been formed. In this experiment, we

induce semantic categories following a clustering-based approach which uses the bi-

modal word representations learned by our model. The clustering approach we employ

is not performed in an incremental fashion in contrast to related work (Fountain and

Lapata, 2011; Frermann and Lapata, 2014).

6.2.1 Experimental Setup

Data We evaluate model output against a gold standard set of categories created by

Fountain and Lapata (2010). The dataset contains a classification, produced by human

participants, of the nouns from the McRae norms (McRae et al., 2005) into (possibly

multiple) semantic categories (40 in total).11 We transformed the dataset into hard cat-

egorisations by assigning each noun to its most typical category as extrapolated from

human typicality ratings (for details see Fountain and Lapata, 2010). Furthermore, we

excluded 82 nouns which we used for optimising the clustering, as described below.
11The dataset can be downloaded from http://homepages.inf.ed.ac.uk/s0897549/data/ (last

accessed in May 2015).

http://homepages.inf.ed.ac.uk/s0897549/data/
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Category Words

STICK-LIKE UTENSILS baton, ladle, peg, spatula, spoon
RELIGIOUS BUILDINGS cathedral, chapel, church
WIND INSTRUMENTS clarinet, flute, saxophone, trombone, trumpet,

tuba
AXES axe, hatchet, machete, tomahawk
FURNITURE W/ LEGS bed, bench, chair, couch, desk, rocker, sofa,

stool, table
FURNITURE W/O LEGS bookcase, bureau, cabinet, closet, cupboard,

dishwasher, dresser
LIGHTINGS candle, chandelier, lamp, lantern
ENTRY POINTS door, elevator, gate
WRITING/BRISTLED DEVICES brush, comb, crayon, paintbrush, pen, pencil
UNGULATES bison, buffalo, bull, calf, camel, cow, donkey,

elephant, goat, horse, lamb, ox, pig, pony, sheep
BIRDS crow, dove, eagle, falcon, hawk, ostrich, owl,

penguin, pigeon, raven, stork, vulture, wood-
pecker

Table 6.4: Examples of clusters produced by CW using the representations obtained
from the SAE model.

Method To obtain a clustering of nouns, we used Chinese Whispers (CW, Biemann,

2006), a randomised, agglomerative graph-clustering algorithm. CW assumes that se-

mantic information is organised like a network, where words are nodes and the weight

of an (undirected) edge linking two nodes denotes the similarity of the respective

words. In the categorisation setting, CW partitions the nodes of the weighted graph

into disjunct groups in a bottom-up approach: At the beginning, each word (i.e. node)

forms an own, basic-level category. All words are then iteratively processed for a few

repetitions in which each word is assigned to the category (i.e. cluster) of the most sim-

ilar neighbour words, as determined by the maximum sum of (edge) weights between

the word and the neighbour nodes pertaining to the same category. CW is a non-

parametric model, it induces the number of clusters as well as which words belong

to these clusters from the data. In our experiments, we initialised CW with different

graphs resulting from different vector-based representations of the McRae nouns. CW

can optionally apply a minimum weight threshold which we optimised using the cate-

gorisation dataset from Baroni et al. (2010). The latter contains a classification of 82

McRae nouns into 10 categories.
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Category Words

REPTILES alligator, crocodile, frog, iguana, platypus, rat-
tlesnake, salamander, toad, tortoise

KNITWEAR carpet, gloves, mat, mittens, pillow, scarf, shawl,
socks, sweater

TREES or TREE-LIKE PLANTS birch, broccoli, cedar, oak, parsley, pine, vine,
willow

ANIMALS (W/ BEAK

or BLACK&WHITE)
crow, dolphin, dove, eagle, goose, pelican, pen-
guin, pigeon, raven, seagull, skunk, swan, whale,
woodpecker

Table 6.5: Examples of clusters produced by CW using the representations obtained
from the visual SAE model.

Category Words

LIGHT-RELATED DEVICES candle, chandelier, lamp, lantern, microscope,
mirror, projector

SOUND-RELATED DEVICES radio, stereo, tape, telephone
ROCKS/ROCK CONSTRUCTIONS brick, fence, marble, pyramid, stone, wall
(SEA)FOOD catfish, cod, crab, eel, lobster, mushroom, octo-

pus, salmon, shrimp, squid, trout, tuna
SANITARY WARE bathtub, bin, faucet, pipe, sink, tank, toilet

Table 6.6: Examples of clusters produced by CW using the representations obtained
from the textual SAE model.

Model Parameters We use the SAE model described in Experiment 5 (Section 6.1).

Some performance gains could be expected if (hyper-)parameter optimisation took

place separately for each task. However, we wanted to avoid overfitting, and show that

our parameters are robust across tasks and datasets. We furthermore compare to the

same models as in Experiment 5 (see Section 6.1.2), and again estimate the similarity

of two words with the cosine similarity.

Evaluation We evaluate the clustering solution S produced by CW using the F-score

measure introduced in the SemEval 2007 task (Agirre and Soroa, 2007); it is the har-

monic mean of precision and recall. Precision is defined as the number of correct

members of a cluster S ∈ S divided by the number of items in the cluster. Recall is

the number of correct cluster members divided by the number of items in the gold-

standard category G ∈ G . The F-score of the entire set of clusters S , evaluated against
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Models T V T+V

McRae 0.52 0.31 0.42

Attributes 0.35 0.37 0.33

SAE 0.36 0.35 0.43

SVD — — 0.39

kCCA — — 0.37

Bruni — — 0.34

skip-gram 0.37 — —

Table 6.7: F-score results on concept categorisation.

gold standard G , is:

FS = ∑
G∈G

|G|
|S |F(G), (6.1)

where F(G) is the maximum F-score of category G obtained at any cluster.

6.2.2 Results and Discussion

Our results on the categorisation task are given in Table 6.7. In this task, simple con-

catenation of visual and textual attributes does not yield improved performance over

the individual modalities (see row Attributes in Table 6.7). In contrast, all bimodal

models are better (SVD and SAE) than or equal (kCCA) to their unimodal equivalents

and skip-gram. The SAE outperforms both kCCA and SVD by a large margin deliv-

ering clustering performance similar to McRae’s human-produced norms. Table 6.4

shows examples of clusters produced by CW when using vector representations pro-

vided by the SAE model, and Tables 6.5 and 6.6 list clusters obtained from its visual

and textual equivalent, respectively. Note that we added the cluster labels manually for

illustration purposes.

6.3 Experiment 7: Typicality Ratings

An important finding in the study of natural language concepts is that categories show

graded category-membership structure. For example, humans generally judge a trout

to be a better example of the category FISH than eel. In the same way, an apple intu-

itively seems to be a better example of the category FRUIT than olives . Several experi-
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mental studies underline the pervasiveness of typicality (or “goodness of example”) in

a wide variety of cognitive tasks such as priming (Rosch, 1977), sentence verification

(McCloskey and Clucksberg, 1979), and inductive reasoning (Rips, 1975). Because of

its importance, typicality is also an evaluation criterion for models of categorisation

and concept representation. Any such model should be able to give an account of the

graded category structure and correctly predict differences in the typicality of category

members. We therefore assess our SAE model on a typicality rating task (O’Connor

et al., 2009) where the model is presented with instances of a category and must predict

the degree to which the instances are typical amongst members of that category.

6.3.1 Experimental Setup

Data Our experiments use the dataset created by O’Connor et al. (2009). They col-

lected typicality ratings by presenting participants with a category name and an in-

stance of that category, and asking them to rate the goodness of the instance as an

example for the category using a 9-point scale (where 9 means the member is a very

good example, and 1 means it is a very poor example). Categories were presented in

blocks. Typicality ratings for each category-instance pair were then averaged across

21 participants. The dataset contains typicality judgements for 33 categories, however

we use the same 20 categories (611 category–instance items) which they used in their

typicality experiments.

Method Assuming that all members of a category are known, the task is to determine

each member’s typicality. We estimate the degree to which a member is representative

of its category by measuring its similarity to the prototype of the category. The proto-

type is simply the mean of the semantic representations of its members (i.e. bimodal

encodings in our case). We evaluate the models by correlating their predictions against

elicited typicality ratings.

Model Parameters We use the SAE model and all comparison models described

in Experiment 5 (Section 6.1.2). In addition, we compare against O’Connor et al.

(2009) who model typicality ratings by means of an attribute-based attractor network.

Their network learns concept and category representations using the attributes of the

McRae norms12 as target output. The learned representations correspond to the output

12They excluded taxonomic attributes from the norms.
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Typicality

Models T V T+V

McRae 0.45 0.14 0.41

Attributes 0.37 0.17 0.40

SAE 0.42 0.24 0.43

SVD – – 0.38

kCCA – – 0.19

Bruni – – 0.42

skip-gram 0.40 – –

Table 6.8: Mean Spearman’s ρ between gold typicality ratings and model produced

ratings over 20 categories used in O’Connor et al. O’Connor et al. (2009).

activations of the network. It is similar to our SAE model in that it yields semantic

representations from attributes, however in our case the attributes are learned from

data. We again used the cosine similarity to estimate the similarity between two words.

6.3.2 Results and Discussion

Our results are summarised in Table 6.8. As can be seen, the SAE falls slightly behind

the human-produced McRae textual attributes (see row McRae, column T in the table)

and is consistently better at predicting typicality ratings compared to all other bimodal

models except Bruni’s model, for which this is the first experiment where it comes

close to the effectiveness of the SAE. Interestingly, the SAE unimodal representations

also outperform comparison models based on a single modality. Textual SAE (see

column T in Table 6.8) is better than textual Attributes and skip-gram. And visual

SAE (see column V) is better than McRae and Attributes. O’Connor et al.’s (2009)

attractor network yields a correlation coefficient of 0.39 on the same dataset using

human-produced attributes.

We also provide a more detailed comparison to O’Connor et al.’s (2009) model in

Table 6.9 where we show typicality correlation coefficients for individual categories.

Note that their model (AttrNN), perhaps counterintuitively, yields negative correlations

for some categories, whereas this is not the case for the SAE. Although we would

expect AttrNN to perform overall better given that it is trained on human-produced

attributes, we observe that SAE does better on most categories.
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Category AttrNN SAE Category AttrNN SAE

FURNITURE 0.76 0.75 BIRD 0.62 0.24

APPLIANCE 0.69 0.64 INSECT 0.55 0.13

WEAPON 0.63 0.57 VEGETABLE 0.47 0.29

UTENSIL 0.50 0.32 FISH 0.38 0.50
CONTAINER 0.49 0.71 ANIMAL 0.12 0.38
CLOTHING 0.46 0.55 PET 0.08 0.23
MUSICAL 0.44 0.56 MAMMAL 0.02 0.12
TOOL 0.38 0.16 CARNIVORE 0.61 0.66
VEHICLE -0.02 0.45 HERBIVORE -0.14 0.14
FRUIT 0.73 0.30 PREDATOR -0.05 0.27

Table 6.9: Correlation (Pearson’s r) between model and human typicality ratings for 20

categories used in O´Connor et al. (2009). Comparison between their attractor network

and SAE.

An analysis of the performance of the unimodal SAEs on individual categories

(correlation coefficients not shown) reveals that the textual SAE is better at judg-

ing typicality for categories whose formation underlie functional or behavioural com-

monalities (e.g., APPLIANCE, CARNIVORE, MAMMAL, MUSICAL INSTRUMENT, PET,

WEAPON). This is not surprising in view of Strudel’s bias (from which we obtained

the textual input representations) towards attributes denoting actions, functions, or sit-

uations (Baroni et al., 2010). Furthermore, the bimodal SAE is better than or equal to

both unimodal SAEs on many individual categories (e.g., ANIMAL, APPLIANCE, CON-

TAINER, TOOL, VEHICLE). This indicates, as we have already noted in the previous

experiments, that the model yields representations which capture shared and comple-

mentary information provided by the two modalities.

6.4 Conclusions

We assessed the ability of our SAE model, presented in Chapter 5, to account for

human behaviour in cognitive tasks related to word similarity. Its visual and textual

input modalities were approximated by attribute-based representations (see Chapter 4).

We evaluated the SAE in comparison to other attribute-based models applying different
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integration mechanisms (kCCA, SVD, concatenation), an approach which uses SVD

to integrate visual and textual input based on bag-of-(visual-)words-representations

(Bruni), and a text-based neural network model (skip-gram). We found that our model

gave in most cases a better fit to behavioural data (see Tables 6.2, 6.7, 6.8).

Specifically, we demonstrated the effectiveness of SAE’s integration mechanism,

performing overall better than other bimodal models augmented with the same in-

put (kCCA, SVD, concatenation). Furthermore, in direct comparison of our visual

attribute-based representations (Attributes) to human-produced attribute norms (McRae),

the former achieved consistently better results across all tasks (see columns V in Ta-

bles 6.2, 6.7, 6.8). This indicates that we can utilise the attribute classifiers (Sec-

tion 4.2.4) to derive visual representations which are not less informative than human-

produced visual attributes.



Chapter 7

Image-related Tasks

In the previous chapter we made the claim that the learning of semantic represen-

tations benefits from language and vision. This was experimentally demonstrated on

language-based tasks, where visually grounded models of word meaning simulated hu-

man behaviour better than their unimodal counterparts. A question that naturally arises

is whether such bimodal models can also benefit vision-related tasks. We address this

question in this chapter and present two experiments in which only visual input in the

form of images is provided. In both experiments we use our attribute-centric, bimodal

stacked autoencoder (SAE). In the first experiment, linguistic information needs to be

explicitly inferred by the SAE. Specifically, the task is to produce visual and textual

attributes for concepts when only presented with their images. The second experiment

uses images as a stand-in for real-world objects for a task on visual category learning,

where a system has to indicate whether a given object belongs to a category repre-

sented by a few example objects. This task does not rely on linguistic information in

any way. However, it allows us to test whether bimodal image representations implic-

itly representing linguistic information are nevertheless useful.

7.1 Experiment 8: Generation of Attributes

In this section, we conduct a small-scale experiment which evaluates how accurately

our approach to visually grounded meaning representations (Chapters 4 and 5) can pro-

duce visual and textual information for new concepts. By new concepts we mean those

which neither the attribute classifiers (Section 4.2.4) nor the SAE model (Section 5.3)

have encountered during training since they are not covered in the VISA dataset (Sec-

tion 4.2.3). In Chapter 3 attribute norms were used as an approximation of the percep-

113
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Concept Visual Attributes

one-
armed bandit

is box shaped has keys has symbols has speakers is rectangular
has keyboard has shelves made of wood made of metal
has handle has legs has racks has windows made of plastic

scabbard has guard has blade is silver made of steel made of metal
has shaft is T shaped

beer glass is deep has lid is transparent has semicircular handle is concave
is cylindrical

lychee has skin has stalks has leaves has seeds is pink has green top
has peel is red is round has layers has pit is small is green
comes in bulbs is orange is yellow

Table 7.1: Examples of concepts not covered by VISA and their visual attributes obtained
by deriving the centroid of the attribute vectors of individual images (Equation (4.1),
Page 69). Attributes are ordered in decreasing order of their scores.

tual modality and combined with the textual modality to infer perceptual information

for concepts contained in the norms. In the present experiment, we obtain visual and

textual information for new concepts using the visual modality, as approximated by

images depicting them. We focus on the following two questions:

(1) Can our visual attributes and the attribute classifiers generalise to new concepts,

yielding accurate descriptions of their visual properties?

(2) Can the SAE model infer textual information for new concepts when presented

only with their predicted visual attributes?

To address these questions, we automatically obtain attributes for new concepts

and evaluate them against human-produced attribute norms.

7.1.1 Data

As an approximation of a gold standard, we use the CSLB norms (Devereux et al.,

2013, see Chapter 3, Section 3.1). The norms cover 639 basic-level concepts (e.g., frog,

shoe, flower), 416 of them are also in the McRae norms1. Our test set is based on the

data provided for the ImageNet Large Scale Visual Recognition Challenge (ILSRVC,

Russakovsky et al., 2014). This dataset comprises 1.2 million images from ImageNet

1The list of overlapping concepts between the McRae norms and CSLB norms can be found in the
supplementary material of Devereux et al. (2013).
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CSLB attributes ILSVRC attributes
γ = 0.0 γ = 0.1 γ = 0.2

is cylindrical is cylindrical is cylindrical —
is long is long is long —
is white is white — —
(is thin) — — —
(has roots) — — —
has a stalk stem has stalks has stalks has stalks
has leaves has leaves — —
is green is green is green is green
has layers — — —
(is green and white) — — —
— has flowers has peel has flowers has peel

is yellow has top has top (has core
has green top has skin has ferrule
is small (has core has pointed end)
has ferrule
has pointed end)

Recall 0.86 0.57 0.28
abs. Recall 0.60 0.40 0.20
Precision 0.46 0.57 1.00

Table 7.2: Example of comparing CSLB attributes and generated attributes for concept
leek . Attributes in parentheses were not found among the set of attributes of the re-
spective other ’norm’, and ’—’ denote attributes only listed in one ’norm’ for the concept.

(Deng et al., 2009) for 1,000 subordinate-level synsets (e.g., spring frog, running shoe,

dahlia; see Section 4.2.2 for details on ImageNet).

Since the CSLB and the ILSVRC concepts are not on the same level of abstraction,

we leverage WordNet’s taxonomy (Section 4.2.2) in order to find correspondencies

between them. Specifically, we retrieve all hypernyms for an ILSVRC synset. For

example, the hypernyms for the synset marmoset are New World monkey , monkey ,

primate , mammal , and so on. Then we map the synset to the hypernym found in

the CSLB concepts. For example, the ILSVRC synsets marmoset and baboon are both

mapped to the CSLB concept monkey. Excluding the CSLB concepts covered by VISA

and those not contained in the ILSVRC data yields a test set of 62 target concepts, for

each of which we sample approximately 600 images.

7.1.2 Visual Attribute Generation

In order to generate a list of visual attributes for each target concept, we derive visual

attribute vectors using Equation (4.1) (Page 69) and subsequently keep all attributes
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Figure 7.1: Effectiveness of the prediction of visual attributes for CSLB concepts un-

known to VISA. Predictions were obtained by means of visual attribute classifiers.

with a score greater than a cutoff γ ∈R. Examples of concepts and the obtained visual

attributes are shown in Table 7.1. Since the attributes of the CSLB norms and our at-

tributes do not necessarily coincide, we lemmatise them using the Stanford CoreNLP

toolkit (Manning et al., 2014) and automatically align them across all target concepts.

For cases where there is no string match2, we choose the attribute with the lowest Jac-

card distance d < 1.0 to the source attribute. For example, has a hingeCSLB is mapped

to has hinges, is a cylinderCSLB to is cylindrical, has a long handleCSLB is mapped to

has long handle, and has four tinesCSLB to has prongs, whereas has controlsCSLB is

left unaligned.

7.1.3 Textual Attribute Generation

We generate a list of textual (Strudel) attributes for each of the target concepts, rep-

resented by a visual attribute vector, by means of our SAE model, which we used in

the experiments presented in the previous chapter (see Section 6.1, Page 100, for a

description of its training data and its parameters). More specifically, the SAE receives

the visual centroid vectors of the target concepts as input and maps them to the textual

2We ignore concrete numbers, for example, has 4 legsCSLB and has 2 legs are considered a match.
Furthermore, we make use of the alternative attribute strings provided in the CSLB norms for each
attribute (e.g., has four prongsCSLB has the alternative has four tinesCSLB).
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Figure 7.2: Effectiveness of the prediction of textual attributes for CSLB concepts un-

known to VISA. Predictions were obtained by projecting visual input vectors to textual

attributes using the SAE model.

output layer, while leaving the textual input layer unclamped. To compensate for some

potential bias towards certain textual attributes in the VISA training data, we discard

all predicted attributes for a target concept with an output value lower than a thresh-

old ζ. We estimate ζ on the VISA training images, by first obtaining textual attribute

predictions for each VISA concept in the same way as explained above, i.e. by feeding

the visual centroid vectors into the SAE while leaving the textual input unclamped,

and obtaining textual attribute predictions X̂ ∈ RN×A as output. Threshold ζ(a) for an

individual attribute a is then computed as the median of all its output values x̂a
3 plus

2 times the Median Absolute Deviation (MAD; Leys et al., 2013):

ζ(a) := median(x̂a)+2MAD(x̂a), (7.1)

where x̂a contains the predicted scores for attribute a for all VISA concepts, and MAD

is computed as

MAD(x̂a) = bmedian(|x̂a−median(x̂a)|), (7.2)

with b = 1.4826, assuming normally distributed data. From the remaining attributes

we select the γ ∈ N textual attributes with highest score as final predicted attribute list

for a concept.
3For simplicity, we use a to denote both an attribute and its index.
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CSLB attributes are not thresholded, but only non-visual attributes are considered.

Our textual attributes are aligned with CSLB non-visual attributes by applying the

same alignment procedure as for the visual attributes. For example, is dangerousCSLB

is mapped to dangerous:j, is sat onCSLB to sit:v , and is a crustaceanCSLB to crustacean:n,

whereas does clean floorsCSLB is left unaligned as no correspondence could be found.

7.1.4 Evaluation measures

We evaluate the generated attribute lists against the gold standard using average preci-

sion, recall and their harmonic mean, i.e. F1-score. The true positives are the attributes

contained in both our derived lists and in the CSLB norms for an individual concept.

We report two recall scores: one assumes the gold positives to be all attributes listed

for a concept by the CSLB norms, and the other limits the gold positives to attributes

that also appear in the derived attribute lists, and could thus be potentially listed for a

concept. We also report the effectiveness for varying cutoff levels γ. Table 7.2 shows

an example of how we compare visual attributes across the two norms.

7.1.5 Results and Discussion

Figure 7.1 presents the results on the visual attribute prediction task varying cutoff

levels from γ = 0 to 0.6. Recall that γ is imposed on each concept’s visual attribute

vector. The best F1-score is obtained with γ = 0.2 (P = 0.33, R = 0.40, F1 = 0.36).

With respect to absolute recall, (i.e. when considering all CSLB attributes including

those which could not be aligned to VISA attributes) γ = 0.1 yielded the best tradeoff

(P = 0.27, absR = 0.30, F1 = 0.22). The oracle recall, i.e. the proportion of CSLB

attributes which could be aligned with the VISA attributes, is R = 0.60. Although there

is a large margin between model and oracle recall, the results on this intrinsic exper-

iment demonstrate that automatically derived visual attribute norms are a promising

approximation of human generated visual concept information, which is particularly

valuable for concepts for which such information is not available.

The results on predicting textual attributes are given in Figure 7.2 for cutoff levels

ranging from 10 predicted attributes per concept to 60. The best F1-score is obtained

when considering γ = 30 attributes (F1 = 0.22, P = 0.23). The best absolute F1-score

is fairly low (F1 = 0.13) with an absolute recall of 0.10, whereas oracle recall is 0.60.

Recall that the set of textual attributes has not been predefined, but was extracted

automatically from a text corpus by means of Strudel (Baroni et al., 2010), and the
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Concept Textual Attributes

Inferred (SAE) Extracted (Strudel)

currant fruit:n sugar:n pickled:j flavor:n
salad:n pick:v sour:j juice:n ripe:j
cultivate:v

bun:n fruit:n pastry:n cake:n dough:n

needle become:v use:v cut:v sharpen:v
insert:v enchant:v nylon:n bend:v
wrist:n end:n

syringe:n stitch:n insert:v compass:n
yarn:n inject:v skin:n loop:n vein:n
deflect:v

jellyfish silver:j color:v fisherman:n catch:v
swim:v fish:v carpet:n white:j
ocean:n fishing:n

tentacle:n sting:n bloom:n gene:n
venom:n hydrozoan:n water:n bell:n
feed:v creature:n

newspaper glossy:j storey:n eat:v publish:v
diner:n interview:n travel:v wait:v
dinner:n column:n

publish:v article:n editor:n write:v cir-
culation:n print:v column:n journal-
ist:n publication:n headline:n

Table 7.3: Examples of concepts not covered by VISA and their 10 textual attributes
inferred by the SAE model (left column) or extracted by running Strudel (Baroni et al.,
2010) on Wikipedia (right column). Attributes are ordered in decreasing order of their
scores.

attributes which apply for an individual concept are predicted by the SAE model

solely on the basis of visual attribute predictions extracted from images. As a con-

sequence, errors can be attributed to various factors. An analysis shows that errors are

not only made by the SAE, which might predict plainly wrong attributes for a concept

(e.g., fish:v was predicted for bikini ), or wrong attributes which are related in meaning

to the concept’s category (seedless:j for mango). In addition, the disparity of the two

underlying attribute sets hampers the alignment of their attributes. For example, wear:v

(predicted for mask ) and don:v (suit) had not been aligned to the CSLB attribute is

wornCSLB, and appliance:n was predicted for can opener , but CSLB lists the related

attributes is a utensilCSLB, is a toolCSLB for this concept. On the other hand, many pre-

dicted attributes were assessed as wrong since they do not have a correspondence in

the CSLB norms, mostly because they are related to the concept in a very broad sense

(e.g. fried:j for mussel , aroma:n for currant , frequency:n for television , animated:j for

monkey, cultivar:v for daisy), or because they are visual and therefore not considered

in this evaluation (carapace:n for mussel , bark:n, green:j for elm). It is generally correct

to consider these cases as errors when addressing the task of automatically generating

attribute norms. However, a human-based evaluation could provide a fairer answer to

how well the SAE is able to output textual information from visual input.
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To determine an upper bound on how well textual attributes obtained with Strudel

can approximate the gold standard norms, we ran the system on the Wikipedia corpus

which we had used to train the SAE model (see Section 6.1.2). For 53 concepts of

the 62 test concepts, Strudel extracted at least one textual attribute. We evaluated the

output for cutoff levels ranging from the 10 highest scored attributes per concept to 60,

and obtained the best F1-score when considering 10 attributes (F1 = 0.42, P= 0.62,

R= 0.32, absR= 0.11, absF1 = 0.19). Strudel’s precision is more than twice as high

as the precision achieved with our inferred textual attributes (P = 0.23). Table 7.3

gives four example concepts and their 10 highest scored inferred and extracted tex-

tual attributes, respectively. As suggested by the large difference in precision, the

extracted attributes are more closely related to the corresponding concept (e.g., bun:n,

fruit:n for concept currant) than the inferred attributes (e.g., fruit:n, sugar:n). We hy-

pothesise that the SAE learned inter-modal associations between visual attributes and

category-specific textual attributes through the mediation of textual information in-

jected during training. Since the examined concepts are not even part of our SAE

training data, it is not surprising, though, that the inferred attributes do not capture

their concept-specific semantic details.

7.2 Experiment 9: Visual Category Learning

A continuously increasing body of work as focussed on tasks lying at the boundaries

of computer vision and natural language processing. Examples include image anno-

tation, image description generation (see, e.g. Yatskar et al., 2014, and the references

therein; Kulkarni et al., 2013), image retrieval for text queries, and so on. Recent

methods tackling these tasks by jointly modelling image and text data were discussed

in Sections 2.5 and 5.1.2. In contrast to these applications, topics that lie at the core

of computer vision research can be approached without the involvement of language,

such as image classification4 Subject of the latter is the retrieval of images using im-

ages as query. Even though the need of linguistic information is not apparent for these

tasks, they might still benefit from its integration, assuming that it renders images more

like the way humans perceive them (e.g., Zhang et al., 2013; Frome et al., 2013).

4Image classification tasks expect systems to list the class names of the objects present in images,
but these names are mere symbols and could as well be not interpretable by humans (e.g., Russakovsky
et al., 2014; Everingham et al., 2014).
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Figure 7.3: Example of the variants one can use in order to refer to an object. In the

context of the leftmost pair of images representing category dog or Setter , the target

object in the image in the bottom center can be referred to by the category name (dog

or Setter , see label above images), or, for the purpose of a unique reference, by Gordon

Setter . With varying contexts (image pairs in the middle and on the left, respectively),

possible references for the target object also vary according to the level of abstraction.

Recently, new tasks have been introduced which require the development of algo-

rithms that account more for how humans learn concepts and refer to real-world objects

(Jia et al., 2013; Ordonez et al., 2013; Wang et al., 2014). Borrowing from research

on infant category learning (e.g., Quinn and Einas, 1986; Behl-Chadha, 1996) in cog-

nitive science, Jia et al. (2013) define a visual category learning5 task which taps into

the ability of humans to learn new categories from just a few example objects (e.g., Xu

and Tenenbaum, 2007). The task simulates corresponding experiments by using im-

ages as a stand-in for real-world objects. Given a set of example images representing

a category, the system needs to infer an appropriate level of generalisation which en-

ables it to decide whether the object present in a new image belongs to the category.

A useful application scenario for this task may be image retrieval, where a user has

some example images at query time representing a single category and wants to find

other images from the same category (Torresani et al., 2014). Figure 7.3 illustrates the

problem. Let us assume a user defines a query by means of the leftmost pair of images,

representing (the subordinate-level) category Setters. It should be rather straightfor-

ward for a system to return the image (Gordon Setter) in the bottom center (target

5Jia et al. (2013) call the task visual concept learning. We will use category instead in order to stay
in line with our use of the term concept to refer to basic-level objects.
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henceforth) as a retrieval hit. A query comprising the image pair in the middle is more

difficult – it would require the system to generalise from the given subordinate-level or

basic-level categories (viscacha or house cat , respectively) to the superordinate-level

category mammal in order to correctly recognise the target as a retrieval hit. The right-

most query represents a category of an even higher level of abstraction, requiring the

system to infer the category animal from the given examples.

In the following section, we will describe our approach for Jia et al.’s (2013) task

on visual category learning. Our research questions can be summarised as follows:

(1) Are image representations derived from visual and linguistic information bene-

ficial for Jia et al.’s visual category learning task?

(2) Is our attribute-centric approach to meaning representations able to generalise to

unseen concepts (i.e. those which the attribute classifiers have not seen during

training)?

(3) To which extent are representations from the SAE useful for the present task

(i.e. without using them within a model specifically tailored for the task)?

7.2.1 Visual Category Learning

Category learning is also known as concept learning (Quinn and Einas, 1986; Tenen-

baum, 1999; Ashby and Maddox, 2011). We use the former term in order to stay in

line with our use of the term concept to specifically denote the mental representation

(knowledge) of basic-level objects, such as turtle . Henceforth, we deviate from our no-

tion of the term category given in Chapter 1 (Section 1.3), and use it to denote a set of

objects at any level of categorisation, i.e. subordinate-level (e.g., terrapin), basic-level

(e.g., turtle), or superordinate-level (e.g., animal ) categories.

The task defined by Jia et al. (2013) can be formulated as follows:

Task definition. Given a set of example images representing a category as well as a

series of new images, indicate for each new image (query), whether it belongs to the

same category as the example images.

Note that the system is not required to output an explicit object label. Implicitly,
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1Figure 7.4: Example test item. The five example images (top) represent a cate-

gory (synset {reptile, reptilian}, sampled as level 3 (’super-basic-level’ category) from

synset {garter snake, grass snake}). For each of the 20 query images (of which four

images are shown in the center), the task is to give a score denoting whether the query

image is a member of the given category. Model answers are compared against human

answers collected from five annotators per query (boolean answers; bottom). Cate-

gories are labelled with fantasy words (e.g., “ish”; top).

though, the name of the category transcends to all new query images (i.e. objects)

which belong to the category. Figure 7.4 gives an example of the task.

Jia et al. (2013) approached this task with a Bayesian generalisation model which

uses probabilistic predictions from image classifiers as input. The classifiers, at the

time reportedly state-of-the-art, were trained on the ILSVRC2010 data (Russakovsky

et al., 2014) with linear multinomial logistic regression using 160K-dimensional fea-

ture vectors obtained from a pipeline system (Lin et al., 2011). The ILSVRC2010

data comprises 1.2 million images categorised into 1,000 ImageNet/WordNet leaf node

classes (synsets; see Chapter 4, Section 4.2.2 for details on ImageNet and WordNet).

The core of their Bayesian model is a normalised confusion matrix A which they ob-

tained on top of these classifiers. Entry A j,i of the matrix denotes the probability that

the true synset is j given the classifier predicted synset i. The model operates on a hier-

archy of nodes, where the set of nodes is denoted by H . The hierarchy corresponds to

the part of the WordNet/ImageNet taxonomy that comprises the 1,000 ILSVRC synsets

as leaf nodes, denoted by S ⊂ H . The probability that a query image xq belongs to

the category Cat represented by N example images, X , is then given by the following
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equation:

P(xq ∈Cat|X ) = ∑
h∈H

P(xq|h)P(h|X ), (7.3)

where P(xq|h) denotes the probability that query xq belongs to the category rooted at

h (e.g., {reptile}), and is given by

P(xq|h) =
|S |
∑
j=1

A jŷq1h( j), (7.4)

where ŷq is the classifier prediction for xq, and 1h( j) the indicator function denoting

whether node j is a member of hypothesis h. The posterior distribution of a category

rooted at h given example images xi ∈ X with classifier predictions ŷi is

P(h|X ) ∝ P(h)
N

∏
i=1

P(xi|h) = P(h)
1
|h|N

N

∏
i=1

|S |
∑
j=1

A jŷi1h( j). (7.5)

The prior probability of h was set to P(h) ∝
|h|
σ2 exp(−|h|

σ
), with σ = 200.

Jia et al.’s two best-performing baselines represent example and query images by

the L1-normalised output of the image classifiers. In their prototype model (PM), the

score of a query is computed as its χ2 distance to the closest example image. The

histogram of classifier outputs model (HC) computes the score of a query as its χ2

distance to histogram of classifier outputs, aggregated over the examples.

7.2.2 Method

As discussed earlier in this chapter, linguistic information is not required for addressing

the task of visual category learning. We could therefore apply a method that uses

our visual attribute representations of images only. However, this would not give an

answer to the question of whether the task benefits from linguistic information. Hence

our method leverages the SAE architecture introduced in Chapter 5 which is trained to

integrate textual and visual information of objects.

Specifically, we first train the SAE (see Section 5.3) on visual and textual attribute-

based representations of images which depict real-world objects. We obtain these input

representations from our visual attribute classifiers and Strudel, respectively (see Chap-

ter 4). At test time, we are presented with a set of example images from a category

and a query image of an object. Our goal is to compute a score which denotes whether

the object is an instance of the category. To this end, we derive a representation for

each image from its SAE encoding and use this for membership scoring as we describe
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Figure 7.5: Example computation of the category-based representation s(I) for image

I on the basis of its softmax representation ŝ(I) and a small taxonomy.

below. Note that since the object labels of all test images are unknown, we do not have

textual attribute information at test time. The SAE is therefore fed with the images’

visual attribute vectors while its textual input layer is set to zero.

A straightforward approach to deriving a representation from the resulting SAE

encoding is to directly use its bimodal encoding (see Figure 7.6). A more sophisticated

way is to derive a category-based representation similarly to Jia et al. (2013), by using a

taxonomy as follows (see Figure 7.5 for an example of the procedure using a taxonomy

of 15 nodes):

Category-based representation We assume that we have access to a taxonomy,

such as WordNet (Fellbaum, 1998). Let x denote an image represented by its en-

coding ŝ(x) obtained from the softmax layer of the SAE. ŝ(x) denotes a probability

distribution over all object labels o ∈ O (the leaf nodes in the taxonomy): ŝ(x) =
(P(o j|x)) j=1,...,|O|. We derive a category-based vector representation s(x) whose en-

tries correspond to all (leaf and internal) nodes h ∈H of the taxonomy (e.g., dog is an
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internal node in Figure 7.5), thus covering different possible levels of categorisations.

The value of component h, sh(x),6 is the weighted accumulation of the predictions of

the leaf nodes o which are (direct or indirect) hyponyms of category h (i.e. the object

labels subsumed by h), that is,

sh(x) =
1

log(|h|+1) ∑
o∈O

P(o|x)1h(o), (7.6)

where |h| is the number of object labels subsumed by h, and 1h(o) is the indicator

function denoting whether leaf node o is a member of h (see example shaded in red in

Figure 7.5). The weighting factor causes score sh(x) to favour basic-level categories

which is in compliance to the level of abstraction humans tend to choose (Mervis and

Rosch, 1981). (An example of the resulting representation s(x) is shown at the bottom

of Figure 7.5.)

Membership Scoring Given a representation for all example images of a category

and a query image, we compute a score indicating whether the query is a member of

the category. We distinguish between two scoring paradigms which are similar to the

baselines employed by Jia et al. (2013)7

PM Prototype Model

The score for a query is its cosine similarity to the most similar example.

AM Aggregation Model

The score for a query is its cosine similarity to the centroid of the category,

computed as the average representation of all examples.

Comparison to Jia et al. (2013) Our category-based approach in combination with

the AM scoring paradigm is technically akin to Jia et al.’s Bayesian model: Equa-

tion (7.4) (for P(xq|h)) is similar to the second factor of Equation (7.6) (for sh(x)), with

the difference that Jia et al. use a confusion matrix while we directly use the probability

of an object class given an image. Instead of Jia et al.’s prior for the posterior distri-

bution (Equation (7.5)), we use a weighting term (first factor in Equ. (7.6)) and apply

it to both the query and example images. Furthermore, we compute the average of the

examples’ category-based representations (the AM scoring paradigm) instead of Jia et

al.’s multiplication of the examples’ scores. Finally, we compute the final score using

6For simplicity, we use the symbol h to denote both, an index of s and its corresponding category.
7The exact application of Jia et al.’s (2013) baselines performed worse than our PM and AM models.
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the cosine similarity, which corresponds–figuratively–to applying Jia et al.’s function

(Equation (7.3)) to the normalised category-based representations.

7.2.3 Experimental Setup

7.2.3.1 Evaluation Data

We evaluate the models on the test data created by Jia et al. (2013).8 It comprises

4,000 tasks of twenty test items each. Every task defines a category of a particular de-

gree of generalisation, represented by five example images, and twenty query images.

For each of the 1,000 ILSVRC synsets (e.g., {garter snake, grass snake}) there are four

tasks, one pertaining to the subordinate-level category (the synset, e.g., {garter snake,

grass snake}), one basic-level (e.g., {colubrid snake, colubrid}), one ‘super-basic-

level’ (e.g., {reptile, reptilian}) and one superordinate-level category (e.g., {vertebrate}).
Figure 7.4 exemplifies a task, where five example queries were sampled from synset

{reptile} pertaining to the ’super-basic-level’ category of {grass snake}. The figure

shows four of the twenty query images (see center of Figure 7.4).

All images were sampled from the ILSVRC2010 test images. Jia et al. used

the WordNet/ImageNet taxonomy to determine the different generalisation levels per

synset and sample the corresponding example and query images. Please refer to Jia

et al. (2013) and the supplemental material for details on how the categories and im-

ages were selected.

The authors collected human judgements for all tasks by means of AMT, where

they asked the participants to decide, for each query image, whether it belongs to the

category represented by the five example images. They obtained binary judgements

from five AMT participants per task (see bottom of Figure 7.4).

7.2.3.2 Model Parameters

In order to train the SAE model, it received both the visual and the textual modality

as input. For the visual modality we followed Jia et al. (2013) in their use of the

ILSVRC2010 training images (Russakovsky et al., 2014) and sampled 400 images for

each of the 1,000 synsets. We obtained visual vectors for each image by means of our

attribute classifiers (see Chapter 4, Section 4.2.4), and scaled them to the [−1,1] range.

For the textual modality we relied on the same output as we used in Chapter 6

and that was obtained by running Strudel (Baroni et al., 2010) on a 2009 dump of the
8We are grateful to Jia Yangqing for providing us with the data.
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Figure 7.6: Illustration of SAE model and the representations obtained on different

levels of the SAE.

English Wikipedia (see Section 6.1.2 for details). Since many of the ILSVRC synsets

are often fine-grained (e.g., siamang), not all of them could be found in the Strudel

data. We therefore leveraged WordNet and retrieved as textual representation of each

synset the Strudel representation of its most specific hypernym which was available

in the Strudel data (e.g., ape). In cases where a hypernym synset consisted of several

lemmas (e.g. trumpet, horn), the corresponding vectors were averaged. The rationale

for this procedure is that humans might not have gained (linguistic) knowledge of a

certain object of a subordinate-level category, such as a siamang , but they can visually

recognise the more general, probably basic-level, category of which it is a member

(ape) and can activate their knowledge of this category. The values of the textual

vectors were scaled to the [−1,1] range.

For training the models, we set the corruption parameter (see Section 5.2.2) for

pre-training the textual denoising autoencoder to 0.2, and to 0.99 for fine-tuning the

SAE. The size of the bimodal layer was set to 150 units.

For the category-based representation we used two different taxonomies: First,

we leveraged WordNet (Fellbaum, 1998) and obtained a subtaxonomy of 1,640 nodes

which contains all ILSVRC synsets as leaves. Second, we automatically built a tax-

onomy by clustering the bimodal representations of the training data. That is, we

computed the centroid representation of each synset on the basis of the encodings of

the training data. We clamped both, the textual and visual vectors to the input layers of

the SAE. We then performed agglomerative clustering on these embeddings to obtain
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a hierarchical tree, using Cluto (Zhao et al., 2005).9

7.2.3.3 Comparison Models

In our experiments, we compare the performance of the image representations obtained

by the category-based approach (using WordNet or the clusters) and by different layers

of the SAE (see the highlighted layers and their labels in Figure 7.6). The baseline

model represents images with their visual attribute vectors obtained from the attribute

classifiers (Attributes in Figure 7.6). Mapping these vectors onto the second hidden

visual layer gives the encodings SAE-vis. SAE-bimodal is the bimodal encoding layer,

and SAE-softmax the encoding layer that outputs a probabilistic prediction with respect

to the object label for a given input. Note that all encodings take into account linguistic

information during training except for Attributes, i.e. the visual input vectors. The two

category-based models obtain image representations using the SAE-softmax layer and

either WordNet or the clusters (see Equation (7.6), Page 126). During test time, only

the image represented by visual attribute predictions is given as input to the models,

while the textual vectors are set to zero.

We furthermore compare our models to Jia et al.’s (2013) visually-grounded Bayesian

model developed for the present task as well as their two best-performing baselines.

7.2.3.4 Evaluation

For comparison reasons, we adopt the evaluation measures applied by Jia et al. (2013).

That is, we evaluate the performance of a model by comparing its answer scores to

the ground truth data using average precision (AP, Everingham et al., 2014) as well as

F1-score at the point of intersection between the precision and recall curves (Jia et al.,

2013). We additionally report results obtained in a binary setting in which the system

has to provide a binary score indicating whether a query image is or is not member of

the category. We evaluate the models by means of 4-fold cross-validation, where each

training fold was used to determine a model’s decision threshold.

7.2.4 Results

The overall results are given in Table 7.4. All our prototype-based models (*–PM in

the first block in Table 7.4) perform worse than their corresponding variants based on

aggregated example representations (*–AM, second block). This is not unexpected, as

9The command was vcluster.exe -clmethod=agglo <encodingfile> <tokenfile> 500.
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Models AP F1 F1 (binary)

Attributes–PM 49.1 54.9 54.8

SAE-vis–PM 54.0 56.0 58.3

SAE-bimodal–PM 56.6 57.4 60.1

SAE-softmax–PM 56.7 57.4 59.8

Attributes–AM 50.9 55.7 55.7

SAE-vis–AM 56.4 57.5 60.2

SAE-bimodal–AM 59.0 59.4 61.9

SAE-softmax–AM 57.5 60.0 62.3

SAE-WN–AM 62.3 61.6 62.8
SAE-cluster–AM 58.8 59.2 60.8

Jia–PM 61.74 56.07 —

Jia–HC 60.58 56.82 —

Jia–VG (actual model) 72.82 66.97 —

Human Performance — 75.5 —

Table 7.4: Results on the visual category learning task as defined by Jia et al. (2013).

We report average precision (AP) and F1. Models ending with –PM apply the proto-

type paradigm for membership scoring, and –AM stands for the aggregation paradigm.

Results on human performance were reproduced.

the most specific category to which the object present in a query image belongs might

not be present in one of the example images, but can yet belong to the same (possibly

superordinate) category (cf. the example in Figure 7.3).

Our best performing baseline models are SAE-bimodal–AM and SAE-softmax–

AM which are based on the bimodal encoding layers (see Figure 7.6). Attributes–*

perform worst. These are the only models which did not receive any linguistic infor-

mation during training. Recall that at test time no linguistic information was input

into the SAE either. One reason for the difference in effectiveness of the models may

be their increasing complexity. However, SAE-bimodal and SAE-softmax perform en

par, even though the latter has a higher complexity due to its additional layer. Taken

together, these results suggest that the SAE learned beneficial associations between

visual attributes and categories through the mediation of textual information present

during training.
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We report results with the category-based representations, derived using hierarchi-

cal information, only for the better performing scoring paradigm based on aggregated

example representations (third block in Table 7.4). SAE-WN–AM, which uses the

WordNet taxonomy, performs better than all baseline models, including the two base-

lines by Jia et al. (Jia–PM and Jia–HC). Yet, its difference in F1-score is marginal

compared to SAE-softmax–AM, which leverages only object label predictions. This

gives an answer to our third question regarding using the image representations pro-

vided by the SAE directly: these representations are relatively strong on their own,

even though they do not exploit hierarchical information. Furthermore, we observe

that the taxonomy automatically obtained by clustering the bimodal encodings of the

training data (SAE-cluster–AM) does not result in any performance gains, which indi-

cates that the produced clustering does not provide more useful information over and

above the SAE encodings (bimodal–AM, softmax–AM) themselves. We could sys-

tematically study to which extent it is possible to induce a more useful taxonomy on

the basis of the SAE model, but we leave this for future work.

Compared to the models by Jia et al. (2013), we observe that all SAE-*-AM mod-

els perform better than Jia–PM and Jia–HC in terms of F1-score (fourth block in Ta-

ble 7.4). Recall that Jia et al.’s models are very similar to the SAE-softmax–* models,

with the main difference being their use of state-of-the-art image classifiers but no

integration of linguistic information during training. Overall, Jia-VG is the best per-

forming model. However, the difference in F1-score is only 7 percentage points (to

SAE-softmax–AM) and 5.4 points (to SAE-WN–AM), despite the fact that this model,

firstly, was developed for this specific task and directly exploits hierarchical informa-

tion from ImageNet/WordNet (as does SAE-WN–AM), secondly, uses state-of-the-art

image classifiers, and thirdly, additionally benefits from a confusion matrix learned on

top of the image classifiers. Their model does not make use of direct linguistic infor-

mation, such as textual attributes, to which our SAE-model is exposed during training.

We performed experiments with a confusion matrix which we obtained as de-

scribed by Jia et al. However, in our case, the use of the matrix did yield comparable

or even inferior results. A reason for this might be that our attribute-based image rep-

resentations (of 414 dimensions) are simply less effective in discriminating between

the subordinate-level target classes compared to the 160K-dimensional image vectors

used by Jia et al.

We report human performance in the last line in Table 7.4. Following Jia et al.

(2013), it was estimated by randomly sampling one human participant per task and
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In VISA Not in VISA

Models All levels Level 0 All levels Level 0

AP F1 AP F1 AP F1 AP F1

SAE-bimodal–AM 56.5 57.3 56.0 57.0 60.5 60.6 61.6 61.6

SAE-softmax–AM 55.2 57.8 57.3 58.8 58.8 61.3 62.1 62.8

SAE-WN–AM 56.7 58.6 55.6 56.7 60.8 62.3 62.3 61.7

SAE-cluster–AM 55.9 56.7 56.6 56.8 59.6 59.8 61.4 60.9

Human Performance — 74.2 — 79.8 — 76.2 — 80.3

Table 7.5: Results on category learning task as defined by Jia et al. Distinction between

known and unknown objects in the VISA dataset. We report microaverage precision

(AP) and F1.

comparing her prediction against the others.

Comparison between seen and unseen objects To answer our second question

on whether our attribute-centric approach can generalise to unseen object classes, we

evaluated our best performing models by contrasting the synsets available in the VISA

dataset (see Section 4.2.3) with those unknown to the dataset.

We considered all synset matches as known (13.7% of the 1,000 leaf synsets), and

those synsets whose subsumed words are in VISA (e.g., synset {chard, Swiss chard,

spinach beet, leaf beet} is not in VISA, but spinach is). This resulted in a set of 628 un-

seen synsets. The evaluation data only provides the synsets of the example images

representing a task of the subordinate-level category (i.e. the images all depict one of

the 1,000 leaf synsets). As a consequence, example images of higher-ordinate cate-

gories (e.g., {reptile}) could still depict an object known to VISA, since the examples

are sampled from the leaf synsets subsumed by the category. We therefore report the

results obtained for the categories of all levels and for the subordinate-level categories

only.

Recall that the attribute classifiers which we use to obtain visual representations

were trained on the concepts in VISA. We would thus expect to achieve higher perfor-

mance for the synsets that are also available in VISA, as the dataset might be missing

attributes necessary to sufficiently describe the unknown synsets. As shown in Ta-

ble 7.5, this is not the case. Similarly to the human performance, our models achieve

even higher performance on the tasks for unknown synsets (column labelled Not in
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Figure 7.7: The performance of the best models for the different levels of categorisation.

Shown is the AP (left) and the F1-score (right).

VISA in Table 7.5). This indicates that our attribute-centric representation approach is

indeed able to generalise to unseen objects.

Comparison between different levels of abstraction For a deeper insight into the

effectiveness of the learned meaning representations, we evaluated the performance

of our best models grouped according to different degrees of generality of the cat-

egories. Figure 7.7 shows the results. Interestingly, the model which uses the ob-

ject predictions as image representations (SAE-softmax–AM) performs better than

the other models only for subordinate-level categories (level 0). With an increasing

level of abstraction, the model that utilises the WordNet taxonomy (SAE-WN–AM)

becomes superior to the other models (level 1 to level 3). Best results are obtained

on level 1 and level 2, which roughly correspond to basic-level and ’super-basic-level’

categories. This gives a more conclusive answer to our third question: even though

the general-purpose meaning representations (SAE-bimodal–AM) are effective on the

task of learning visual categories and are at least as good as representations based on

object predictions (SAE-softmax–AM), they fall short in comparison to models that

are more tailored to inferring the correct level of abstraction (SAE-WN–AM).

7.3 Conclusions

We addressed the question whether bimodal models can benefit image-related tasks

and presented two experiments in which only images were provided. We used our

attribute-centric, stacked bimodal autoencoder (SAE) in both experiments which was
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trained on visual and textual information, but was presented with visual information

only at test time.

The task of the first experiment was to produce visual and textual attributes for

new concepts represented by images. We generated visual attributes using our attribute

classifiers. These attribute predictions were input to our SAE in order to infer textual

attributes. We evaluated the attribute predictions against the CSLB attribute norms

(Devereux et al., 2013). The second task on visual category learning was to indicate

whether an image is an instance of a category represented by a few example images.

Model output was evaluated against human judgements.

In summary, the experimental results demonstrated the ability of our attribute clas-

sifiers to generalise to new concepts. Moreover, we showed that the SAE is able to

activate linguistic information from purely visual input. Firstly, it inferred textual at-

tribute descriptions for new concepts from their visual representations, and secondly,

the representations obtained by the bimodal autoencoder proved more effective on the

visual categorisation task compared to its visual input representations or unimodal au-

toencoders.



Chapter 8

Conclusions

We conclude the thesis with a summary of the main findings in light of the claims put

forward in the introduction, and discuss avenues for further research.

8.1 Main Findings

This thesis presented an approach to grounding lexical meaning representations by

integrating linguistic and visual information. The key aspects of our approach are two-

fold. Firstly, information is rendered in natural language attributes for both modali-

ties, and is obtained automatically from text and image data, respectively (Chapter 4).

Secondly, our grounding method is based on a deep stacked autoencoder architecture

(SAE) which learns bimodal meaning representations from visual and linguistic input

in a joint manner by means of a semi-supervised criterion (Chapter 5). Feeding the

attribute-based representations as input to the SAE yields a bimodal framework which

we used to test the main claims of this thesis.

Our first claim was that the integration of visual and textual information of con-

crete concepts yields meaning representations which more closely approximate human

conceptual knowledge compared to purely text-based models. The ability of our model

to simulate human behaviour was evaluated on three semantic tasks related to concept

similarity. Experimental results showed that the SAE model yields an overall better

fit with behavioural data than unimodal (textual or visual) models (Chapter 6). The

claim was further supported in Chapter 3 in similar evaluation settings, where we used

existing methods to integrate standard distributional models with human-produced at-

tributes as a proxy for the visual modality.

135
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Our second claim stated that the visual modality can be approximated by infor-

mation rendered in natural language attributes and extracted from images. We first

demonstrated that we can automatically obtain visual attribute predictions from im-

ages which can be used as a substitute for human-produced visual attributes in visual

grounding models (Chapter 4, Section 4.4). In Chapter 6 (Section 6.1), we further

showed models using our visual attributes were dominating in predicting visual sim-

ilarity of concepts, whereas textual attributes were dominating in predicting semantic

similarity judgements. Also, in Chapter 7, we demonstrated the generalisation ability

of our visual attribute classifiers in two tasks, i.e. generating visual attributes for un-

seen concepts (Section 7.1), and in visual (image-based) categorisation (Section 7.2).

Our third claim stated that the visual and textual modalities are interrelated and

that it is therefore beneficial to use joint integration methods which derive bimodal

meaning representations by finding and exploiting their associations. This claim was

empirically validated in Chapters 3, 4, and 6, where we experimentally compared joint

integration methods to a simple concatenation approach. We found that joint mod-

els can better simulate human behaviour on different cognitive tasks related to word

similarity and association. Furthermore, in Chapter 6 we demonstrated that our mod-

elling approach yields bimodal representations which simulate human behaviour more

effectively than all bimodal comparison methods across all tasks.

The benefits of a joint integration mechanism from a more practical perspective

were addressed in Chapter 7 in image-related tasks, where our model was trained

on visual and textual information, but was presented with visual information only at

test time. In Section 7.1, we generated textual attributes for concepts when provided

with their images, and showed that our model can activate linguistic information from

purely visual input. That the latter can be useful even in purely image-based tasks

is indicated in the visual categorisation task (Section 7.2), where representations ob-

tained by the bimodal autoencoder proved more effective compared to visual input

representations or unimodal autoencoders.

8.2 Future Work

In this section we discuss avenues for future work. Specifically, we focus on how

the visual and textual modalities could be further improved and highlight applications
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which could benefit from our approach.

Visual Modality As outlined in Chapter 4 (Section 4.1) and experimentally demon-

strated (in Chapters 4, 6, and 7), there are good reasons for adopting an attribute-centric

approach in the context of the visual grounding problem. A shortcoming, however, is

that the information visual attributes can capture is limited to knowledge that can be

easily verbalised. For example, information about extraordinary shapes or patterns, re-

lations between parts of objects, and so on, cannot be provided. Furthermore, in order

to learn the visual attribute classifiers, we trained support vector machines on rather

shallow image representations (based on bag-of-visual-words), which themselves may

be missing relevant information from the images. Even though our attribute classi-

fiers proved to be sufficient for approximating the visual modality, the training method

and therefore probably their accuracy falls short of what might be possible with state-

of-the-art methods. In Section 5.1 we mentioned the success of convolutional neural

networks (CNNs) for computer vision tasks (e.g., image classification) which is due to

their ability to learn powerful feature representations from (almost) raw pixels values

(Krizhevsky et al., 2012). CNNs typically consist of a stack of alternating convolu-

tional1 and (optionally) pooling2 layers as lower layers, and fully connected upper

layers, with a supervised layer on top.

Related work on visually grounded representations (Kiela and Bottou, 2014) used

the features yielded by the last hidden layer of a CNN trained for object classifica-

tion. An appealing alternative would be to apply a training paradigm which retains

our attribute-centric approach, e.g., by simply training attribute classifiers with CNN

features (Escorcia et al., 2015), which could result in more accurate classifiers.

Note that the SAE model is not attribute-specific, but could be used to derive bi-

modal meaning representations on the basis of any text and image features, including

distributed input representations. We could therefore apply the SAE to integrate vi-

sual vectors obtained from a CNN with word representations learned by means of,

e.g., Mikolov et al.’s (2013b) skip-gram model. As a side effect, this would allow for

a more direct and fairer comparison of attribute-based image vectors and distributed

1In a convolutional layer, each unit is connected to a subset of contiguous units of the previous layer,
where the weights (convolution kernel or filter) are shared by all units. There may be several different
filters in each layer. A convolutional layer acts as feature extractor (e.g., it detects edges in the lower
layers).

2Each unit in a pooling layer is connected to a subset of contiguous units of the previous layer from
which it subsamples its output (e.g., by taking the maximum). The purpose of pooling layers is variance
reduction.
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state-of-the-art representations. In our experiments in Chapter 6, we compared models

using our attribute-based approach only to a model which integrates bag-of-visual-

words (BoVW) representations, which was clearly outperformed by the former.

With respect to the way information is exploited from image data, an extension

would be possible by, in analogy to the distributional hypothesis, including information

explicitly extracted from outside the bounding boxes of objects (see also Bruni et al.,

2012b).

Textual Modality We employed Strudel, an off-the-shelf method (Baroni et al., 2010)

for acquiring textual attributes. The latter are typically single words and provide

rather general information. For example, for the word blender , Strudel extracts the

attributes use:v , drink:n or liquid:n, whereas the norms of McRae et al. (2005) contain

used for making drinks|mixing liquids or used for chopping food . Future work could focus

on the development of methods for deriving more informative textual attributes. We

could for example learn extraction patterns, or feature representations, with indirect

supervision provided by McRae et al.’s (2005) non-visual attributes. Specifically, we

could learn a mapping from textual information (e.g., a target word’s context words or

textual attributes from Strudel) to human-produced attributes (a simple example is use,

drink, liquid which corresponds to used for making drinks).

Concepts In the evaluation of our model on cognitive tasks (Chapter 6) we focussed

on concepts known to the VISA dataset. A natural and obvious extension of the pre-

sented work is the inclusion of unseen concepts. An extension to other concrete nouns

is straightforward and only a minor step into the direction of a full modelling account

of visually grounded semantic representations. More intriguing is to enhance our work

to action verbs, which raises new research questions, for example: How can we ex-

tract and capture visual information from images with respect to the motion and the

participants involved in the action referred to by a verb?

In this context, it is necessary to point out that a model of semantic representation

should also account for abstract concepts which make up a large part of the vocabulary.

However, this is outside the scope of the thesis.

Applications In this thesis, we have we only scratched the surface of image-based

applications which could potentially benefit from linguistic information (Chapter 7,

Section 7.2). In the future we could apply our bimodal model to zero-shot learning
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(i.e. the classification of objects for which there are no training examples; see Sec-

tions 2.5.2 and 4.2.1), or entry-level categorisation (i.e. the prediction of the word

people most likely use to refer to a depicted object; Ordonez et al., 2013). Further-

more, as discussed in this thesis, visual attributes enable a system to give information

about depicted objects of classes unknown to image classifiers. A less straightforward

application would therefore be some form of hybrid object classification, in which ob-

jects are labelled with their closest class and additionally described with distinctive

attributes with respect to that class (e.g., horse and stripes for the unknown class ze-

bra).



Appendix A

VisA Dataset

A.1 Concepts and Synsets in VisA

Concept Synset ID Words denoting synset
accordion n02672831 accordion, piano accordion, squeeze box
airplane n02691156 airplane, aeroplane, plane
alligator n01698434 alligator, gator
ambulance n02701002 ambulance
anchor n02709367 anchor, ground tackle
ant n02219486 ant, emmet, pismire
apartment n02726305 apartment, flat
apple n07739125 apple
apron n02730930 apron
armour n02739668 armor, armour
ashtray n02747802 ashtray
asparagus n07719213 asparagus
avocado n07764847 avocado, alligator pear, avocado pear, aguacate
axe n02764044 ax, axe
bag n02774152 bag, handbag, pocketbook, purse
bagpipe n02775483 bagpipe
ball n02779435 ball
balloon n02782093 balloon
banana n07753592 banana
banjo n02787622 banjo
banner n02788021 banner, streamer
barn n02793495 barn
barrel n02795169 barrel, cask
basement n02800497 basement, cellar
basket n02801938 basket, handbasket
bat (animal) n02139199 bat, chiropteran
bat (baseball) n02799175 baseball bat, lumber
bathtub n02808440 bathtub, bathing tub, bath, tub
baton n02809605 baton

Table A.1: List of concepts, their WordNet synset IDs, and the corresponding synsets
(continues on next page).
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Concept Synset ID Words denoting synset
bayonet n02812949 bayonet
bazooka n02813752 bazooka
beans n07724943 bean, edible bean
bear n02131653 bear
beaver n02363005 beaver
bed n02818832 bed
bedroom n02821627 bedroom, sleeping room, sleep-

ing accommodation, chamber, bedchamber
beehive n02822865 beehive, hive
beetle n02164464 beetle
beets n07719839 beet, beetroot
belt n02827606 belt
bench n02828884 bench
bike n02834778 bicycle, bike, wheel, cycle
bin (waste) n02839910 bin
birch n12281241 birch, birch tree
biscuit n07693972 biscuit
bison n02410509 bison
blackbird n01558594 blackbird, merl, merle, ouzel, ousel, Euro-

pean blackbird, Turdus merula
blender n02850732 blender, liquidizer, liquidiser
blouse n02854926 blouse
blueberry n07743544 blueberry
bluejay n01580870 blue jay, jaybird, Cyanocitta cristata
boat n02858304 boat
bolts n02865665 bolt
bomb n02866578 bomb
bookcase n02870880 bookcase
book n02870526 book
boots n02872752 boot
bottle n02876657 bottle
bouquet n02879087 bouquet, corsage, posy, nosegay
bowl n02881193 bowl
bow (ribbon) n02880189 bow, bowknot
bow (weapon) n02879718 bow
box n02883344 box
bracelet n02887970 bracelet, bangle
bra n02892767 brassiere, bra, bandeau
bread n07679356 bread, breadstuff, staff of life
brick n02897820 brick
bridge n02898711 bridge, span
broccoli n07714990 broccoli
broom n02906734 broom
brush n02908217 brush
bucket n02909870 bucket, pail

Table A.1: List of concepts, their WordNet synset IDs, and the corresponding synsets
(continues on next page).
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Concept Synset ID Words denoting synset
buckle n02910353 buckle
budgie n01821869 budgerigar, budgereegah, budgerygah, budgie,

grass parakeet, lovebird, shell parakeet,
Melopsittacus undulatus

buffalo n02410702 American bison, American buffalo, buffalo,
Bison bison

buggy n02912557 buggy, roadster
building n02913152 building, edifice
bullet n02916350 bullet, slug
bull n02403325 bull
bungalow n02919792 bungalow, cottage
bureau n03015254 chest of drawers, chest, bureau, dresser
bus n02924116 bus, autobus, coach, charabanc, double-decker,

jitney, motorbus, motorcoach, omnibus, passen-
ger vehicle

butterfly n02274259 butterfly
buzzard n01607962 buzzard, Buteo buteo
cabbage n07713895 cabbage, chou
cabinet n02933112 cabinet
cabin n02932400 cabin
cage n02936714 cage, coop
cake n07801508 oil cake
calf n01887896 calf
camel n02437136 camel
camisole n02944075 camisole
canary n01533339 canary, canary bird
candle n02948072 candle, taper, wax light
cannon n02950632 cannon
canoe n02951358 canoe
cantaloupe n12164656 cantaloupe, cantaloup, cantaloupe vine, can-

taloup vine, Cucumis melo cantalupensis
cap (bottle) n02954938 cap
cape n02955767 cape, mantle
cap (hat) n02955065 cap
caribou n02433925 caribou, reindeer, Greenland caribou,

Rangifer tarandus
car n02958343 car, auto, automobile, machine, motorcar
carpet n04118021 rug, carpet, carpeting
carrot n07730207 carrot
cart n03484083 handcart, pushcart, cart, go-cart
catapult n02981911 catapult, arbalest, arbalist, ballista, bricole,

mangonel, onager, trebuchet, trebucket
caterpillar n02309337 caterpillar
catfish n02517442 catfish, siluriform fish
cathedral n02984203 cathedral, duomo

Table A.1: List of concepts, their WordNet synset IDs, and the corresponding synsets
(continues on next page).
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Concept Synset ID Words denoting synset
cat n02121620 cat, true cat
cauliflower n07715103 cauliflower
cedar n11623105 cedar, cedar tree, true cedar
celery n07730406 celery
cellar n02991847 cellar, wine cellar
cello n02992211 cello, violoncello
chain n02999410 chain
chair n03001627 chair
chandelier n03005285 chandelier, pendant, pendent
chapel n03007130 chapel
cheese n07850329 cheese
cheetah n02130308 cheetah, chetah, Acinonyx jubatus
cherry n07757132 cherry
chickadee n01592084 chickadee
chicken n01791625 chicken, Gallus gallus
chimp n02481823 chimpanzee, chimp, Pan troglodytes
chipmunk n02360282 chipmunk
chisel n03020692 chisel
church n03028079 church, church building
clam n01956481 clam
clamp n03036866 clamp, clinch
clarinet n03037709 clarinet
cloak n03045337 cloak
clock n03046257 clock
closet n04550184 wardrobe, closet, press
coat n03057021 coat
cockroach n02233338 cockroach, roach
coconut n07772935 coconut, cocoanut
cod n02522399 cod, codfish
colander n03066849 colander, cullender
comb n03074855 comb
cork n03108853 cork, bottle cork
corkscrew n03109150 corkscrew, bottle screw
corn n12144580 corn
cottage n02919792 bungalow, cottage
couch n04256520 sofa, couch, lounge
cougar n02125311 cougar, puma, catamount, mountain lion,

painter, panther, Felis concolor
cow n01887787 cow
coyote n02114855 coyote, prairie wolf, brush wolf, Canis latrans
crab n01976957 crab
cranberry n07743902 cranberry
crane (machine) n03126707 crane
crayon n03128248 crayon, wax crayon
crocodile n01697178 crocodile

Table A.1: List of concepts, their WordNet synset IDs, and the corresponding synsets
(continues on next page).
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Concept Synset ID Words denoting synset
crossbow n03136369 crossbow
crowbar n03138344 crowbar, wrecking bar, pry, pry bar
crow n01579028 crow
crown n03138669 crown, diadem
cucumber n07718472 cucumber, cuke
cupboard n03148324 cupboard, closet
cup n03147509 cup
curtains n03151077 curtain, drape, drapery, mantle, pall
cushion n04198797 shock absorber, shock, cushion
dagger n03158885 dagger, sticker
dandelion n12024176 dandelion, blowball
deer n02430045 deer, cervid
desk n03179701 desk
dish n03206908 dish
dishwasher n03207941 dishwasher, dish washer, dishwashing machine
dog n02084071 dog, domestic dog, Canis familiaris
doll n03219135 doll, dolly
dolphin n02068974 dolphin
donkey n02389559 domestic ass, donkey, Equus asinus
door n03221720 door
dove n01812337 dove
drapes n03151077 curtain, drape, drapery, mantle, pall
dresser n03015254 chest of drawers, chest, bureau, dresser
dress n03236735 dress, frock
drill n03239726 drill
drum n03249569 drum, membranophone, tympan
duck n01846331 duck
dunebuggy n03256788 dune buggy, beach buggy
eagle n01613294 eagle, bird of Jove
earmuffs n03261603 earmuff
eel n01444339 electric eel, Electrophorus electric
eggplant n07713074 eggplant, aubergine, mad apple
elephant n02503517 elephant
elevator n03281145 elevator, lift
elk n02431785 wapiti, elk, American elk,

Cervus elaphus canadensis
emu n01519873 emu, Dromaius novaehollandiae,

Emu novaehollandiae
envelope n03291819 envelope
falcon n01610955 falcon
fan (appliance) n03320046 fan
faucet n04559451 water faucet, water tap, tap, hydrant
fawn n02430830 fawn
fence n03327234 fence, fencing
finch n01529672 finch

Table A.1: List of concepts, their WordNet synset IDs, and the corresponding synsets
(continues on next page).
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Concept Synset ID Words denoting synset
flamingo n02007558 flamingo
flea n02186153 flea
flute n03372029 flute, transverse flute
football n03378765 football
fork n03384167 fork
fox n02118333 fox
freezer n03170635 deep-freeze, Deepfreeze, deep freezer, freezer
fridge n03273913 electric refrigerator, fridge
frog n01640846 true frog, ranid
garage n03416489 garage
garlic n07818277 garlic, ail
gate n03427296 gate
giraffe n02439033 giraffe, camelopard, Giraffa camelopardalis
gloves n03441112 glove
goat n02416519 goat, caprine animal
goldfish n01443537 goldfish, Carassius auratus
goose n01855672 goose
gopher n02358091 ground squirrel, gopher, spermophile
gorilla n02480855 gorilla, Gorilla gorilla
gown n03450230 gown
grapefruit n07749969 grapefruit
grape n07758680 grape
grasshopper n02226429 grasshopper, hopper
grater n03454885 grater
grenade n03458271 grenade
groundhog n02361587 groundhog, woodchuck, Marmota monax
guitar n03467517 guitar
gun n03467984 gun
guppy n01448594 guppy, rainbow fish, Lebistes reticulatus
hammer n03481172 hammer
hamster n02342885 hamster
hare n02326432 hare
harmonica n03494278 harmonica, mouth organ, harp, mouth harp
harp n03495258 harp
harpoon n03495671 harpoon
harpsichord n03496296 harpsichord, cembalo
hatchet n04449966 tomahawk, hatchet
hawk n01605630 hawk
helicopter n03512147 helicopter, chopper, whirlybird, eggbeater
helmet n03513137 helmet
hoe n03524574 hoe
honeydew n07756325 honeydew, honeydew melon
hook n03532342 hook
hornet n02213107 hornet

Table A.1: List of concepts, their WordNet synset IDs, and the corresponding synsets
(continues on next page).
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Concept Synset ID Words denoting synset
horse n02374451 horse, Equus caballus
hose (leggings) n03540267 hosiery, hose
hose n03540090 hose
housefly n02190790 housefly, house fly, Musca domestica
house n03544360 house
hut n03547054 hovel, hut, hutch, shack, shanty
hyena n02117135 hyena, hyaena
iguana n01677366 common iguana, iguana, Iguana iguana
inn n03541696 hostel, hostelry, inn, lodge, auberge
jacket n03590306 jacket
jar n03593526 jar
jeans n03594734 jean, blue jean, denim
jeep n03594945 jeep, landrover
jet n03595860 jet, jet plane, jet-propelled plane
kettle n03612814 kettle, boiler
keyboard (musical) n03614532 keyboard instrument
key n03613294 key
kite n04284869 sport kite, stunt kite
knife n03624134 knife
ladle n03633091 ladle
lamb n02412440 lamb
lamp n03636248 lamp
lantern n03640988 lantern
lemon n07749582 lemon
leopard n02128385 leopard, Panthera pardus
lettuce n07723559 lettuce
level n03658858 level, spirit level
lime n07749731 lime
limousine n03670208 limousine, limo
lion n02129165 lion, king of beasts, Panthera leo
lobster n01982650 lobster
machete n03699591 machete, matchet, panga
mackerel n02624167 mackerel
magazine n06595351 magazine, mag
mandarin n07747951 mandarin, mandarin orange
marble n03721047 marble
mat n03727837 mat
menu n07565083 menu
microscope n03760671 microscope
microwave n03761084 microwave, microwave oven
mink (coat) n03770954 mink, mink coat
mink n02442845 mink
minnow n01442972 minnow, Phoxinus phoxinus
mirror n03773035 mirror

Table A.1: List of concepts, their WordNet synset IDs, and the corresponding synsets
(continues on next page).
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Concept Synset ID Words denoting synset
missile n04008634 projectile, missile
mittens n03775071 mitten
mixer n03775199 mixer
mole (animal) n01889520 mole
moose n02432983 elk, European elk, moose, Alces alces
moth n02283201 moth
motorcycle n03790512 motorcycle, bike
mouse (computer) n03793489 mouse, computer mouse
mouse n02330245 mouse
mug n03797390 mug
mushroom n07734744 mushroom
muzzle n03803284 muzzle
napkin n03201895 dinner napkin
necklace n03814906 necklace
nectarine n07751148 nectarine
nightgown n03824381 nightgown, gown, nightie, night-robe, night-

dress
nightingale n01560105 nightingale, Luscinia megarhynchos
nylons n03836976 nylons, nylon stocking, rayons, rayon stocking,

silk stocking
oak n12268246 oak, oak tree
octopus n01970164 octopus, devilfish
olive n12301445 olive
onions n07722217 onion
orange n07747607 orange
oriole n01575745 Old World oriole, oriole
ostrich n01518878 ostrich, Struthio camelus
otter n02444819 otter
oven n03862676 oven
owl n01621127 owl, bird of Minerva, bird of night, hooter
ox n02403003 ox
paintbrush n03876231 paintbrush
pajamas n03877472 pajama, pyjama, pj’s, jammies
pan n03880323 pan
panther n02128925 jaguar, panther, Panthera onca, Felis onca
pants n02854739 bloomers, pants, drawers, knickers
parakeet n01821203 parakeet, parrakeet, parroket, paraquet, paro-

quet, parroquet
parka n03891051 parka, windbreaker, windcheater, anorak
parsley n07819896 parsley
partridge n01797886 ruffed grouse, partridge, Bonasa umbellus
peach n07751004 peach
peacock n01806143 peacock
pear n07767847 pear
peas n07725531 green pea, garden pea

Table A.1: List of concepts, their WordNet synset IDs, and the corresponding synsets
(continues on next page).
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Concept Synset ID Words denoting synset
peg n03051249 clothespin, clothes pin, clothes peg
pelican n02051845 pelican
pencil n03908204 pencil
penguin n02055803 penguin
pen n03906997 pen
pepper n07815956 white pepper
pepper n07815839 black pepper
perch n02555863 perch
pheasant n01803078 pheasant
piano n03928116 piano, pianoforte, forte-piano
pickle n07824988 pickle
pier n03934042 pier
pigeon n01811909 pigeon
pig n02395406 hog, pig, grunter, squealer, Sus scrofa
pillow n03938244 pillow
pineapple n07753275 pineapple, ananas
pine n11608250 pine, pine tree, true pine
pin n03940256 pin
pipe (plumbing) n03206158 discharge pipe
pistol n03948459 pistol, handgun, side arm, shooting iron
plate n03960490 plate
platypus n01873310 platypus, duckbill, duckbilled platypus, duck-

billed platypus, Ornithorhynchus anatinus
pliers n03966976 pliers, pair of pliers, plyers
plug (electric) n03968293 plug, male plug
plum n07751451 plum
pony n02382437 pony
porcupine n02348173 Canada porcupine, Erethizon dorsatum
potato n07710616 potato, white potato, Irish potato, murphy,

spud, tater
pot n03990474 pot
projector n04009552 projector
pumpkin n07735510 pumpkin
pyramid n13917690 truncated pyramid
python n01743605 python
rabbit n02324045 rabbit, coney, cony
raccoon n02508021 raccoon, racoon
racquet n04039381 racket, racquet
radio n06277135 radio, radiocommunication, wireless
radish n07735687 radish
raft n04045397 raft
raisin n07752664 raisin
rake n04050066 rake
raspberry n07745466 raspberry
rat n02331046 rat

Table A.1: List of concepts, their WordNet synset IDs, and the corresponding synsets
(continues on next page).
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Concept Synset ID Words denoting synset
rattlesnake n01754876 rattlesnake, rattler
raven n01579260 raven, Corvus corax
razor n04057047 razor
revolver n04086273 revolver, six-gun, six-shooter
rhubarb n07713267 pieplant, rhubarb
rice n07804323 rice
rifle n04090263 rifle
robe n04097866 robe
robin n01558993 robin, American robin, Turdus migratorius
rocker n04098513 rocker
rocket n04099175 rocket, rocket engine
rock n09416076 rock, stone
rooster n01792158 cock, rooster
rope n04108268 rope
ruler n04118776 rule, ruler
sack n04122825 sack, poke, paper bag, carrier bag
saddle n04123740 saddle
sailboat n04128499 sailboat, sailing boat
salamander n01629276 salamander
salmon n02534734 salmon
sandals n04133789 sandal
sardine n02533209 pilchard, sardine, Sardina pilchardus
saxophone n04141076 sax, saxophone
scarf n04143897 scarf
scissors n04148054 scissors, pair of scissors
scooter n03791053 motor scooter, scooter
screwdriver n04154565 screwdriver
screws n04153751 screw
seagull n02041246 gull, seagull, sea gull
seal n02076196 seal
shack n03547054 hovel, hut, hutch, shack, shanty
shawl n04186455 shawl
shed n04187547 shed
sheep n02411705 sheep
shelves n04190052 shelf
shield n04192698 shield, buckler
ship n04194289 ship
shirt n04197391 shirt
shoes n04199027 shoe
shotgun n04206356 shotgun, scattergun
shovel n04208210 shovel
shrimp n01986806 shrimp
sink n02998563 cesspool, cesspit, sink, sump
skateboard n04225987 skateboard

Table A.1: List of concepts, their WordNet synset IDs, and the corresponding synsets
(continues on next page).
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Concept Synset ID Words denoting synset
skillet n03400231 frying pan, frypan, skillet
skirt n04230808 skirt
skis n04228054 ski
skunk n02445715 skunk, polecat, wood pussy
skyscraper n04233124 skyscraper
sledgehammer n03731695 maul, sledge, sledgehammer
sled n04235291 sled, sledge, sleigh
sleigh n04235291 sled, sledge, sleigh
slippers n04241394 slipper, carpet slipper
snail n01944390 snail
socks n04254777 sock
sofa n04256520 sofa, couch, lounge
spade n04266486 spade
sparrow n01527347 hedge sparrow, sparrow, dunnock,

Prunella modularis
spatula n04269944 spatula
spear n04270891 spear, lance, shaft
spider n01772222 spider
spinach n07736692 spinach
spoon n04284002 spoon
squid n01971280 squid
squirrel n02355227 squirrel
starling n01576695 starling
stereo n04315948 stereo, stereophony, stereo system, stereo-

phonic system
stick n04317420 stick
stone n09416076 rock, stone
stool (furniture) n04326896 stool
stork n02002075 stork
stove n04330340 stove, kitchen stove, range, kitchen range,

cooking stove
strainer n04332243 strainer
strawberry n07745940 strawberry
submarine n04347754 submarine, pigboat, sub, U-boat
subway n04349306 subway train
swan n01858441 swan
sweater n04370048 sweater, jumper
swimsuit n04371563 swimsuit, swimwear, bathing suit, swim-

ming costume, bathing costume
sword n04373894 sword, blade, brand, steel
table n04379243 table
tack n04383130 tack
tangerine n07748416 tangerine
tank (army) n04389033 tank, army tank, armored combat vehicle, ar-

moured combat vehicle
Table A.1: List of concepts, their WordNet synset IDs, and the corresponding synsets
(continues on next page).
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Concept Synset ID Words denoting synset
tank (container) n04388743 tank, storage tank
tape (scotch) n02992795 cellulose tape, Scotch tape, Sellotape
tap n04559451 water faucet, water tap, tap, hydrant
taxi n02930766 cab, hack, taxi, taxicab
telephone n04401088 telephone, phone, telephone set
tent n04411264 tent, collapsible shelter
thermometer n03043423 clinical thermometer, mercury-in-

glass clinical thermometer
thimble n04423845 thimble
tie n03815615 necktie, tie
tiger n02129604 tiger, Panthera tigris
toad n01645776 true toad
toaster n04442312 toaster
toilet n04446276 toilet, lavatory, lav, can, john, privy, bathroom
tomahawk n04449966 tomahawk, hatchet
tomato n07734017 tomato
tongs n04450749 tongs, pair of tongs
tortoise n01670092 tortoise
toy n04461879 toy
tractor n04465501 tractor
trailer n04467099 trailer, house trailer
train n04468005 train, railroad train
tray n04476259 tray
tricycle n04482393 tricycle, trike, velocipede
tripod n04485082 tripod
trolley n04397027 tea cart, teacart, tea trolley, tea wagon
trombone n04487394 trombone
trousers n03688605 long trousers, long pants
trout n02537085 trout
truck n04490091 truck, motortruck
trumpet n03110669 cornet, horn, trumpet, trump
tuba n02804252 bass horn, sousaphone, tuba
tuna n02626762 tuna, tunny
turkey n01794158 turkey, Meleagris gallopavo
turnip n07735803 turnip
turtle n01663401 sea turtle, marine turtle
typewriter n04505036 typewriter
umbrella n04507155 umbrella
unicycle n04509417 unicycle, monocycle
van n04520170 van
veil n03502331 head covering, veil
vest n04531873 vest, waistcoat
vine n13100677 vine
violin n04536866 violin, fiddle
vulture n01616318 vulture

Table A.1: List of concepts, their WordNet synset IDs, and the corresponding synsets
(continues on next page).
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Concept Synset ID Words denoting synset
wagon n04543158 wagon, waggon
wall n03252637 dry wall, dry-stone wall
walnut n07771212 walnut
walrus n02081571 walrus, seahorse, sea horse
wand n04549629 wand
wasp n02212062 wasp
whale n02062744 whale
wheelbarrow n02797295 barrow, garden cart, lawn cart, wheelbarrow
wheel n04574999 wheel
whip n04577769 whip
whistle n04579667 whistle
willow n12724942 willow, willow tree
woodpecker n01838598 woodpecker, peckerwood, pecker
worm n01922303 worm
wrench n04606574 wrench, spanner
yacht n04610013 yacht, racing yacht
yam n07712267 yam
zebra n02391049 zebra
zucchini n07716358 zucchini, courgette

Table A.1: List of concepts, their WordNet synset IDs, and the corresponding synsets.
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A.2 Annotation interface

Figure A.1: Interface for the annotation of the concept duck with its visual attributes
on the basis of example images. The list of visual attributes only contains the McRae
attributes listed for at least one concept of the currently processed category. For exam-
ple, the current list contains only the attributes listed for the concepts of the category
BIRD, which excludes, for example, the attributes made of wood or has leaves.



Appendix B

Instructions to Participants in Word
Similarity Study

In this experiment you will be presented with a series of word pairs. The words in each
pair are separated by a dash (’-–’). Your task is to rate the pair along two dimensions.
First, you will rate the degree to which the two words have the same meaning (seman-
tic similarity). And then, you will rate the degree to which the objects the words refer
to look the same (visual similarity). You will make these judgements by choosing a
rating from 1 (highly dissimilar) to 5 (highly similar).

Rating Examples
Before taking part in the experiment, please read carefully the examples below. They
illustrate word pairs with varying degrees of similarity in appearance and meaning and
provide explanations for the provided ratings.

Word Pair Rating Explanation
Semantic;Visual

butter — cheese: 3;3 Butter and cheese are both types of dairy
products. They are produced and used dif-
ferently. They might be rated as vaguely
similar. Some types of cheese can have a
similar appearance as butter, so they could
be rated as visually vaguely similar.

bathroom -– towel: 2;1 The words bathroom and towel are some-
how related, as towels can be found in
bathrooms. However, their meanings
don’t have anything in common. Towels
and bathrooms don’t have a similar ap-
pearance either.
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aquarium -– cage: 3;2 Aquariums and cages are vaguely similar
as they have a loosely common function
(they are both enclosures in which usually
animals are kept). Aquariums are made
of glass and cages are often made of bars
or wires and can be of different shapes.
Visually they are thus different.

aquarium -– water: 2;2 Aquariums are filled with water, so water
can be seen as being part of an aquarium,
which makes the two words somehow re-
lated, but yet different in meaning. Water
is a visually salient part of an aquarium,
but nevertheless it looks different.

semolina -– sand: 1;5 Semolina is food whereas sand consists of
rock and mineral particles. As the mean-
ings of the words don’t have anything in
common, they would be rated as highly
dissimilar. Visually, however, semolina
and sand look almost identical, so they
would be rated high in terms of their ap-
pearance.

Notes
Some words are ambiguous, i.e., they have more than one meaning. In such cases, we
will disambiguate the word for you, indicating the meaning we are interested in within
parentheses. For example, mouse (computer) is an electronic device, whereas mouse
(animal) is a rodent. Please make your similarity judgements with respect to the pro-
vided meaning.

Please do not forget to accept the HIT before you begin to work on it.



Glossary

AMT
Amazon Mechanical Turk 4, 9, 60, 97, 99, 127

AP
interpolated average precision 67

attribute
Property of a concept xi, xiii, 2, 4, 8, 11–13, 15, 16, 19, 20, 22, 23, 25, 30–32,
34–36, 39, 40, 45, 47–49, 51, 52, 54, 60, 63, 69–74, 97

BNC
British National Corpus 15–17, 40

BoVW
bag-of-visual-words 24, 65, 137, 138

CCA
Canonical correlation analysis. A data analysis and dimensionality reduction
method (Hotelling, 1936). 29, 38

CNN
Convolutional neural network 24, 57, 84, 137

CW
Efficient graph clustering algorithm that clusters undirected, weighted graphs
(Biemann, 2006). 106–108

HOG
Histogram of Oriented Gradients. Feature descriptors used in computer vision
and image processing generated by counting occurrences of gradient orientation
in spatial regions of the image (Dalal and Triggs, 2005). 56, 66

ILSVRC
The ImageNet Large Scale Visual Recognition Challenge (Russakovsky et al.,
2014) 114
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kCCA
Kernel canonical correlation analysis. A kernelised data analysis and dimension-
ality reduction method (Hardoon et al., 2004). 38, 44, 45, 48, 74–77, 79, 80, 94,
101, 103, 108, 112

LAB
Uniform colour scale recommended by the International Commission on Illumi-
nation (CIE) in 1976 (see, e.g., ?). 65

McRae norms
The semantic attribute production norms by McRae et al. (2005). 30, 31, 40, 41,
43, 45, 47, 48, 51, 60–64, 70, 75, 76, 78, 97–99, 103, 105, 109, 114

PoS
part-of-speech 12, 22, 59, 71, 72, 74, 83

SAE
bimodal stacked autoencoder xi, xiv, 69, 71, 91, 93, 95, 96, 99, 100, 103, 104,
106–111, 113, 114, 116, 117, 119, 122, 124, 128–131, 135

SIFT
An approach to extract descriptions of visual image features that are invariant to
scaling and rotation and partially to changes in illumination and affine transfor-
mations (Lowe, 2004). 24, 56, 60, 101, 102

StD
standard deviation 99

SVD
Singular value decomposition. A mathematical standard technique for reducing
the dimensionality of vector spaces. 14, 17–19, 22, 26, 94, 101, 103, 108, 112

SVM
support vector machine 64, 65, 137

VSM
vector space model 13, 14, 16, 18, 26
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Bibliography 177

Szumlanski, S., Gomez, F., and Sims, V. K. (2013). A New Set of Norms for Semantic
Relatedness Measures. In Proceedings of the 51st Annual Meeting of the Association
for Computational Linguistics, pages 890–895, Sofia, Bulgaria. 97, 99

Taylor, K. I., Devereux, B. J., Acres, K., Randall, B., and Tyler, L. K. (2012). Con-
trasting effects of feature-based statistics on the categorisation and basic-level iden-
tification of visual objects. Cognition, 122(3):363–374. 13

Tellex, S., Katz, B., Lin, J., Fernandes, A., and Marton, G. (2003). Quantitative Eval-
uation of Passage Retrieval Algorithms for Question Answering. In Proceedings of
the 26th Annual International ACM SIGIR Conference on Research and Develop-
ment in Informaion Retrieval, pages 41–47, Toronto, Canada. 14

Tenenbaum, J. B. (1999). Bayesian Modeling of Human Concept Learning. In Kearns,
M., Solla, S., and Cohn, D., editors, Advances in Neural Information Processing
Systems 11, pages 59–68. MIT Press. 122

Thompson-Schill, S. L., Kurtz, K. J., and Gabrieli, J. D. E. (1998). Effects of Se-
mantic and Associative Relatedness on Automatic Priming. Journal of Memory and
Language, 38(4):440–458. 96

Torresani, L., Szummer, M., and Fitzgibbon, A. (2014). Classemes: A Compact Im-
age Descriptor for Efficient Novel-Class Recognition and Search. In Cipolla, R.,
Battiato, S., and Farinella, G. M., editors, Registration and Recognition in Images
and Videos, volume 532 of Studies in Computational Intelligence, pages 95–111.
Springer Berlin Heidelberg. 121

Turian, J., Ratinov, L., and Bengio, Y. (2010). Word Representations: A Simple and
General Method for Semi-supervised Learning. In Proceedings of the 48th Annual
Meeting of the Association for Computational Linguistics, pages 384–394, Uppsala,
Sweden. 22

Turney, P. D. and Pantel, P. (2010). From Frequency to Meaning: Vector Space Models
of Semantics. Journal of Artificial Intelligence Research, 37(1):141–188. 1, 14, 15,
18

Tyler, L., Moss, H., Durrant-Peatfield, M., and Levy, J. (2000). Conceptual Structure
and the Structure of Concepts: A Distributed Account of Category-Specific Deficits.
Brain and Language, 75(2):195–231. 20

Tyler, L. K. and Moss, H. E. (2001). Towards a Distributed Account of Conceptual
Knowledge. TRENDS in Cognitive Sciences, 5(6):244–252. 13

Vanpaemel, W., Storms, G., and Ons, B. (2005). A Varying Abstraction Model for
Categorization. In Proceedings of the 27th Annual Conference of the Cognitive
Science Society, pages 2277–2282, Stresa, Italy. 105

Varma, M. and Zisserman, A. (2005). A Statistical Approach to Texture Classification
from Single Images. International Journal of Computer Vision: Special Issue on
Texture Analysis and Synthesis, 62(1–2):61–81. 65



Bibliography 178

Vaswani, A., Zhao, Y., Fossum, V., and Chiang, D. (2013). Decoding with Large-
Scale Neural Language Models Improves Translation. In Proceedings of the 2013
Conference on Empirical Methods in Natural Language Processing, pages 1387–
1392, Seattle, Washington, USA. 21

Vigliocco, G., Vinson, D. P., Lewis, W., and Garrett, M. F. (2004). Representing the
Meanings of Object and Action Words: The Featural and Unitary Semantic Space
Hypothesis. Cognitive Psychology, 48(4):422–488. 2, 12

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A. (2008). Extracting and
Composing Robust Features with Denoising Autoencoders. In Proceedings of the
25th International Conference on Machine Learning, pages 1096–1103. ACM. 88,
89

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P. (2010). Stacked
Denoising Autoencoders: Learning Useful Representations in a Deep Network with
a Local Denoising Criterion. Journal of Machine Learning Research, 11:3371–
3408. 83, 88, 89

Vinson, D. P. and Vigliocco, G. (2008). Semantic Feature Production Norms for a
Large Set of Objects and Events. Behavior Research Methods, 40(1):183–190. 2,
12, 13

von Ahn, L. and Dabbish, L. (2004). Labeling Images with a Computer Game. In
Proceedings of the SIGCHI conference on Human factors in computing systems,
CHI ’04, pages 319–326, New York, NY, USA. ACM. 24, 32, 49, 58, 102

Voorspoels, W., Vanpaemel, W., and Storms, G. (2008). Exemplars and Prototypes in
Natural Language Concepts: A Typicality-based Evaluation. Psychonomic Bulletin
& Review, 15:630–637. 13, 44

Wah, C., Branson, S., Welinder, P., Perona, P., and Belongie, S. (2011). The
Caltech-UCSD Birds-200-2011 Dataset. Technical Report CNS-TR-2011-001, Cal-
ifornia Institute of Technology. http://www.vision.caltech.edu/visipedia/
CUB-200-2011.html. 58

Wang, J., Yan, F., Aker, A., and Gaizauskas, R. (2014). A Poodle or a Dog? Evaluat-
ing Automatic Image Annotation Using Human Descriptions at Different Levels of
Granularity. In Proceedings of the Third Workshop on Vision and Language, pages
38–45, Dublin, Ireland. 121

Weeds, J., Weir, D., and McCarthy, D. (2004). Characterising Measures of Lexical
Distributional Similarity. In Proceedings of the 20th International Conference on
Computational Linguistics, pages 1015–1021, Geneva, Switzerland. 18

Westermann, G. and Mareschal, D. (2014). From Perceptual to Language-mediated
Categorization. Philosophical Transactions of the Royal Society B: Biological Sci-
ences, 369(1634):20120391. 20, 88, 92, 105

http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
http://www.vision.caltech.edu/visipedia/CUB-200-2011.html


Bibliography 179

Weston, J., Bengio, S., and Usunier, N. (2010). Large Scale Image Annotation: Learn-
ing to Rank with Joint Word-image Embeddings. Machine Learning, 81(1):21–35.
27, 86

Xu, F. and Tenenbaum, J. B. (2007). Word learning as Bayesian Inference. Psycho-
logical Review, 114(2):245–272. 121

Xu, J. and Croft, W. B. (2000). Improving the Effectiveness of Information Retrieval
with Local Context Analysis. ACM Transactions on Information Systems, 18(1):79–
112. 6

Yarowsky, D. (1992). Word-sense Disambiguation Using Statistical Models of Roget’s
Categories Trained on Large Corpora. In Proceedings of the 14th Conference on
Computational Linguistics - Volume 2, pages 454–460, Nantes, France. 6

Yatskar, M., Galley, M., Vanderwende, L., and Zettlemoyer, L. (2014). See No Evil,
Say No Evil: Description Generation from Densely Labeled Images. In Proceed-
ings of the Third Joint Conference on Lexical and Computational Semantics, page
110–120, Dublin, Ireland. 120

Yee, E., Chrysikou, E. G., and Thompson-Schill, S. L. (2013). Semantic memory. In
Ochsner, K. N. and Kosslyn, S., editors, The Oxford Handbook of Cognitive Neuro-
science, volume 1: Core Topics. Oxford University Press. 5

Zhang, H., Zha, Z.-J., Yang, Y., Yan, S., Gao, Y., and Chua, T.-S. (2013). Attribute-
augmented Semantic Hierarchy: Towards Bridging Semantic Gap and Intention Gap
in Image Retrieval. In Proceedings of the 21st ACM International Conference on
Multimedia, pages 33–42, Barcelona, Spain. 120

Zhang, X. and Lapata, M. (2014). Chinese Poetry Generation with Recurrent Neural
Networks. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, pages 670–680, Doha, Qatar. 84

Zhao, Y., Karypis, G., and Fayyad, U. (2005). Hierarchical Clustering Algorithms for
Document Datasets. Data Mining and Knowledge Discovery, 10(2):141–168. 129


	cover sheet
	thesis_csilberer_print
	List of Figures
	List of Tables
	Introduction
	Motivation and Central Claims
	Contributions
	Terminology and Notation
	Evaluation Methodology
	Correlation Analysis

	Thesis Structure
	Published Work

	Background: Meaning Representations
	Attribute-based Models
	Distributional Lexical Semantics
	Vector Space Models
	Generative Latent Variable Models

	Distributed Lexical Semantics
	Discussion
	Grounded Models of Lexical Semantics
	Sources of perceptual information
	Integration mechanism

	Conclusions

	Grounded Models Using Human Input
	Semantic Attribute Production Norms as a Proxy for Perceptual Information
	Image Labels as a Proxy for Perceptual Information
	Models
	Attribute-topic Model
	Global Similarity Model
	Canonical Correlation Analysis
	Discussion

	Experiments
	Experiment 1: Perceptual Information from Attribute Norms
	Experiment 2: Feature Engineering Attribute Norms
	Experiment 3: Visual Information from Image Labels

	Conclusions

	Attribute-centric Representation
	Motivation for (Visual) Attributes
	Visual Attributes from Images
	Visual Attributes in Computer Vision
	Image Collections
	The Visual Attributes Dataset (visa)
	Automatically Extracting Visual Attributes
	Deriving Visual Representations of Concepts

	Textual Attributes
	Textual Attributes from Strudel

	Experiment 4: Grounding Lexical Models with Attributes
	Data
	Evaluation Task
	Model Parameters
	Results & Discussion

	Conclusions

	Visually Grounded Semantic Representations with Autoencoders
	Deep Learning in Artificial Neural Networks
	(Deep) Neural Networks
	Multimodal Deep Learning

	Autoencoders
	Basic Autoencoders
	Denoising Autoencoders
	Stacked Autoencoders

	Grounded Semantic Representations with Autoencoders
	Architecture
	Model Details
	Model Properties

	Conclusions

	Experiments: Simulating Human Behaviour in Cognitive Tasks
	Experiment 5: Word Similarity
	Elicitation of Evaluation Dataset
	Experimental Setup
	Results and Discussion

	Experiment 6: Concept Categorisation
	Experimental Setup
	Results and Discussion

	Experiment 7: Typicality Ratings
	Experimental Setup
	Results and Discussion

	Conclusions

	Image-related Tasks
	Experiment 8: Generation of Attributes
	Data
	Visual Attribute Generation
	Textual Attribute Generation
	Evaluation measures
	Results and Discussion

	Experiment 9: Visual Category Learning
	Visual Category Learning
	Method
	Experimental Setup
	Results

	Conclusions

	Conclusions
	Main Findings
	Future Work

	VisA Dataset
	Concepts and Synsets in VisA
	Annotation interface

	Instructions to Participants in Word Similarity Study
	Bibliography


