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ABSTRACT

A general model for a CAD system is presented, having the following basic
components:

i) A generalised representation environment for describing things, offering a range of
logical operators for instancing and manipulating descriptions within a hierarchical
framework.

ii) A drawing machine which interprets instances of drawings (depictions) into forms
recognised by the representation environment, and depicts logical representations of
drawings. The drawing machine possesses knowledge of drawing operations in
general, including arbitrary modifications and attachments between separate pieces of
drawing, and subsequent regeneration of drawing objects. The drawing machine
allows the description of drawings in terms of their primitive elements, and the
expression of relationships between drawing parts. The manipulation of descriptions
of drawings by means of transformational rules preserve the topologies of drawings
and allow user-controlled distortions of shapes.

The original work and contributions of the author lie in the partial description and
implementation of these basic components, with particular emphasis on the definition of the
drawing machine.



Preface

This thesis is concemed with the description and manipulation of drawings using
computers. Its central aim is to assist description in accordance with Pye’s [Pye, 1978] 2nd
requirement for design, viz.

"The components of the device must be geometrically related - in extent and position -

to each other and to the objects, in whatever particular ways suit these particular
objects and this particular result."

A linguistic approach is investigated here for communicating descriptions of
architectural drawings to a logical representation environment. Drawings are described
using more formal methods for expressing and dealing with syntax and semantics than is
commonly found in conventional CAD systems. After a discussion of the analogical vs
symbolic nature of drawings in chapter 1, the assumption made is that drawings can be
represented symbolically. Symbolic representations for drawings are those in which
graphical primitives have arbitrary significance. This is to be contrasted with iconic
representations, where shapes gain their meaning as a consequence of their depictive
relation to visual objects.

This thesis has approached the design of a drawing system to be used by architects,
in a radically different way from those adopted for conventional drawing systems. There
were several objectives in the design of this system.

Firstly, it was to sit squarely within that area of CAD which attempts to build
integrated design systems, and therefore, although the focus of the thesis was primarily on
the description of a design by means of drawings, it was anticipated that this part should fit
into a larger whole. The objective of integrated systems embraces such things as verbal
descriptions, analysis by means of functions, multiple views, and many other features
which in conventional systems manifest themselves as discrete packages, if at all. Such an
anticipation was to be reflected to as large an extent as possible in the form of the

knowledge representation used.

An essential part of this problem of knowledge representation conceming drawings is
that in order for the representation of drawings to be potentially interconnected with
symbolic representations of other (non-spatial) properties of depicted objects, they too have
to be represented symbolically. A symbolic representation of drawings is one which is
independent of the drawing space (co-ordinate values). This leads on to the important point
that drawings represented in this way share the same logical structure as representations of
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other, non-graphical, objects. This can be contrasted with conventional systems in which
separate representation structures (for drawings and for non-graphical objects) have to be
known and understood, in addition to thinking about a design object.

Secondly, conventional CAD systems tend to be too tightly bound to particular
knowledge domains, such that system operations become very prescriptive in their use. The
knowledge embodied within the system presented in this thesis was to be of a very general
nature, thus allowing the description of, and operations upon, a wide range of objects.

The body of this thesis consists of a semi-formal description of a drawing machine.
The drawing machine is described in terms of a transformational grammar with a context-
free base component, and a context-sensitive transformational component. The advantage of
such an approach is that the meanings of system operations become relatively
unambiguous. This is in contrast to many systems in conventional practice which have
been designed without rigorously defined semantics.

The thesis contains a modest amount of theoretical material, and the results are
essentially pragmatic. The applicability of this approach to drawing manipulation problems
in the context of architectural design is demonstrated.

Organisation

The layout of the thesis is in three parts. Part One outlines different aspects that
impinged upon the design of the system, including thinking of drawing as language,
looking at examples of drawings obtained from an architectural practice (the Scottish
Special Housing Association), a study of the properties of conventional CAD systems, and
a look at altemnative approaches to the development of CAD systems.

Part Two contains the central contribution of this thesis, outlining the different
aspects and properties of the system. These include the representation environment, the
drawing generation component which communicates with the representation environment, a
transformational component which supports transformations and user-controlled distortions
of shapes, and a component which supports the attachment of graphical objects by means
of logical merging, together with transformations.

Part Three concludes the thesis with a look at unresolved problems and observations

arising from this thesis.
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Part One

A Linguistic Approach to the Representation of Drawings

"In my judgement, there is no mode of exercising the faculty of observation and the
faculty of accurate reproduction of that which is observed, no discipline which so
readily tests error in these matters, as drawing properly taught. And by that I do not
mean artistic drawing; I mean figuring natural objects, making plans and sections,
approaching geometrical rather than artistic drawing..... Nothing has struck me more in
the course of my life than the loss which persons who are pursuing scientific knowledge
of any kind sustain from the difficulties which arise because they have never been
taught elementary drawing."

[Huxley, Science and Art in relation to Education]

-12 -



1. Categories of Representation

A central concen of this thesis will be with representation for the purpose of
supporting the activity of designing through drawing, with a bias towards the domain of
architectural drawing. It will be claimed that such an activity is linguistic in nature. The
investigation will begin by looking at some examples of existing drawing practice. This
will lead to some general observations and objectives for computer representations of
drawing objects and operations upon those objects.

1.1. Drawings as Design Objects

Architects produce drawings from which buildings are built. Just as buildings are
seen to be the finished products which emerge from the design process, so too can
drawings, which also emerge from this process, be considered as finished products, or
objects. The difference between the two is that although drawings appear as finished
products to different people during the course of a design, such as to quantity surveyors or
building managers, they are also operated upon by architects when they design.

Figure 1-1 was one of a set of architects’ drawings presented to a structural engineer
after the architect had made preliminary sketches. The purpose was to seek advice on the
suitability of the proposed structures. The set of drawings denoted the primary structural
load-bearing walls. Also denoted was the floor material. The coloured areas represent doors
(coloured black), structural walls (coloured red), and floors (coloured green and yellow).

Doors are objects within other objects (walls) and are seen to be significant from a
structural engineer’s point of view because of the fact that things may be bearing on those
walls, and consequently the points at which bearings (of loads) can be taken may be
affected. The stability of a whole wall may be affected if it has too many openings in it.

As well as those flights of stairs indicated by solid lines, other dotted lines show
other flights of stairs. The dotted lines at the top represent the top floor. The structural wall
did not necessarily need to go up into the top floor, so the drawing became vaguer, with
more dotted lines in that region.

In constructing such drawings, the architect has to be aware of what kind of
knowledge the structural engineer possesses in order to be able to distinguish such features
as flights of stairs, doors, walls and openings. Both the architect and the structural engineer
share a view of the world which assumes the actual existence of objects with certain
properties and structural organisation.

18



figure 1-1
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1.2. Drawings for Communication

The role of drawings in communicating an architect’s perception of buildings both to
other people, and to himself, makes these objects vitally important to architects. A good
exposition of architecture as communication, in contrast to architecture as function, is
provided by Eco [Eco, 1980]. Eco also describes how the form of communication invoked
by architectural objects is more than just responding to stimuli (e.g. walking up stairs).
Rather, it is communication involving ‘intellective operations’ within a semiotic

framework.

Klein argues [Klein, 1987] for the adoption of a Saussurean approach to graphics, the
essential feature of which is the arbitrary nature of linguistic signs. Klein makes the
following observation:

"A system of graphical signs has to be negotiated ad hoc by participants in the

communicative exchange, and can be adapted to the particular purposes of that

exchange.
The exchanges that we are interested in are of the following kind. Participant

A defines the meaning of some graphical representation. The information provided is

sufficient for Participant B to infer (i) what the basic shape elements are, and (ii) how

the meaning of complex shape elements is constructed on the basis of their primitive

components. These inferred conventions dynamically define a graphical language. As a

result, either participant can then go on to create new shape instances within the

language such that their interpretations are governed by the just-established

conventions. Moreover, new basic shape elements and new composition rules can be
added to the language in the course of further interaction."

The above is an accurate description of how dialogue is conducted between people
such as architects through the medium of drawings. As an illustration, consider again
another drawing from the set of architectural drawings obtained from the SSHA. In figure
1-2, the floors appear relatively thick in relation to the walls, making them look out of
proportion. Floors and walls were both considered to be structural elements, and therefore
coloured appropriately (floors in green and yellow, walls in red). The new shape instances
of floors produced by the architect emphasise the property of thickness, which he hopes
will be recognised by the structural engineer when he comes to look at this drawing. The
thickness of the floors may be denoting floor zones, since a floor zone will include
finishes. A structural member might only be 200mm, but 300mm may be considered to be
the thickness of a complete floor.

For other people to understand an architect’s perception of buildings, they must
already know how to interpret architects’ drawings. Communication from architects
depends on pre-existing knowledge possessed by recipients. If the recipient is a computer,
then it too has to know about drawings. Even in the example of dumb drawing systems
[Bijl, 1982], in which the computer is not expected to know what is being depicted by a

=15 -
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drawing, a certain amount of interpretation is required in order to understand intended
changes to a drawing, in order to construct and edit it.

The system that will be described in this thesis, although also not an intelligent
system, goes some way towards being an integrated system. The starting point for the
development of such a system will be to devise an approach to systematically representing
knowledge about drawing operations in a formal way. This knowledge can then be used by
a computer program to create representations of design objects as they are depicted.

One can refer generally to any systematic representational method as a scheme
[Hayes, 1974]). Examples of schemes include logical calculi, some programming
languages, the systematic use of data structures to depict a world, musical notation, map
making conventions, circuit diagrams, etc. Using Hayes' definition, a configuration is a
particular expression in a scheme: an assertion, a program, a data-structure, a score, a map,
a diagram, etc. Thus one can, formally, define a scheme to be a set of configurations.

All of the above configurations are formal in that there is a definite notion of well-
formedness, from which one can establish whether a particular arrangement of marks is a
well-formed configuration. We will come back to the notion of well-formedness later.

1.3. Symbolic vs Analogic Representations

A distinction is often made between representations consisting of a symbolic
description in some language, and representations which are in some sense more analogic
models or pictures of the things represented [Sloman, 1975]. Sloman’s emphasis on
analogical representations is a plea for the consideration of a wider class of languages other
than those in which the only semantic primitive is the application of a function to
arguments.

However, a representation which appears to be an analogic model at one level of
analysis, may itself be represented symbolically, so that it becomes impossible to describe
the overall representation as purely either one or the other. For example, a room may be
analogically represented by a 2-dimensional array of values which denote the occupants of
various parts of the room: but this array may itself be implemented as a list of triplets
< ij,a[ij] >, i.e. by a sort of symbolic description. It seems essential, therefore, to use a

notion of level of representation in attempting to make the distinction precise.

Drawings can be seen as analogical representations of things. An architect’s drawing,
for example, conveys meaning by virtue of the fact that its parts are physically arranged in

s 1=



some definite way. This physical arrangement of drawing parts is an analogical
representation of the way in which meanings of certain parts are compounded to give
meanings of larger parts, and, ultimately, the meaning of the whole drawing. From the
perspective of constructing representations of drawings within CAD systems, it is
important to develop systems which can reflect analogical interpretations of this nature.

One can view any representation scheme for drawings both at an analogic and at a
symbolic level. An analogical analysis requires a kind of comparative study between two
different media, whereas a symbolic treatment is often more self-contained. The former is
vitally important for people such as architects who already use conventional, non-
computerised drawing systems, and are interested in how their drawings relate to buildings
that are going to be built. The latter, however, is the way in which computerised drawing
systems are commonly presented, often at the expense of allowing users of them to express
analogical mappings between depicted and logical objects. The approach adopted in this
thesis is to aim for an integrated CAD system which places emphasis on supporting the
establishment of mappings between graphical objects, and logical descriptions that reflect
the structure of the depictions they refer to.

The type of analogical mapping of interest in this thesis therefore, is that based upon
a distinction between depictions, and logical descriptions which say something about these
depictions. There will be a distinction, therefore, between depicted, and abstract logical
objects. This natural distinction reflects alternative modes of expression used by designers.
Conventional CAD systems, however, invariably maintain distinctions between depictions
and representations of depictions on the one hand, and abstract (non-graphical) objects and
alternative representations for these abstract objects on the other. In such systems, there are
usually only tenuous links between the two forms of representation (e.g. pointers), which
makes it difficult to connect textual descriptions of graphical parts to their depictions
(figure 1-3).

=18
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figure 1-3

The proposed strategy for an integrated system would be to support the two
altenative modes of interaction with a common representation environment (figure 1-4).

Proposed Strategy

|
/‘“5:2 Depictions |
elss)
| \ Common
I Representation
>, Ses /
m Abstract |

Environment
I Objects |

figure 14

It has already been indicated how the notion of analogical representation seems to
depend upon some similarity between the medium in which a representation is embedded,
and the thing represented. Consider plan drawings, for example. A plan is an imaginary
slice taken horizontally through a building, thus revealing its arrangement of solids and
voids. Sections are slices usually taken vertically through a building to reveal the same
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kind of thing. What both plans and sections do is to draw attention to spatial relationships
seen in the mind’s eye. Similarly, a hierarchical logical structure intended to represent a
building for example, when depicted as a graphical tree structure, can be seen to have
some visual semblance to a drawing of the building in that connectivities between parts
correspond in some way.

Figure 1-5 shows part of the location plan of a school. On the same sheet there may
also be location sections and location elevations. All such drawings are intended to show
the location of the building elements and components. These drawings are typically drawn
at a scale of 1:100 and are valuable in that they are usually the first reference in any search
for information. A typical location drawing will show all the rooms, walls, partitions,
doors, windows, stairs and fittings, and the main dimensions. (Also indicated are the code
numbers of all doors, windows, stanchions, and other repetitive features, as well as cross-
references to detail drawings.)

It is apparent from such an example that a plan drawing of a room is an analogical
representation of the spatial relationships (in the horizontal plane) in the room, by virtue of
the similarity between the 2-dimensional plane of the paper, and the 2-dimensional plane of
the floor of the room. The paper is a direct homomorph of the room: they are the same
sort of structure (2-D Euclidean space), admitting the same sorts of operations (translation,
rotation, measurement). The drawing is a simplification of the reality, in the sense that
certain properties present in reality (colour, exact shapes, etc.) and certain relations (the
third dimension, comparisons of value) are missing in the drawing.

In contrast to plans and sections, elevations come reasonably close to depicting what
the eye would see of the depicted object. An elevation is an orthographic projection in
which all the features of a vertical surface of a building are projected in horizontal lines
onto an imaginary vertical plane. The result is an image of of the building as it could only
be seen, theoretically, from an infinite distance.

1.4. Lines

One can see that architectural drawings constitute a representational scheme,
consisting of a medium in which one can construct configurations of lines i.e. arrangements
of lines in which relations exhibited analogically in the medium hold between the lines.

Figure 1-6 shows a part of an engineer’s drawing of floor plans. The purpose of the
drawing is to show all the structural concrete work, which consists of floors and stair

flights and landings, and these generally are dimensioned in plan and section so that their

- 20 -



33-77% % 2] fs _ﬂ3’0’4 30 (v
BE 1 = 5
P WIKDoW S r [Lt\ +
FIXED, R —
| By L. PRIMARY CLR S
) (#RLL WooD )
DZ20.
— %= &;___ ; Ty + | 3 — F
< | W4 wwp VR T L W22 ©OW33 kWA W24
= C8. e ¢/l - cll.
RN A Wi e " e
O PG Y A q“!o R N A TV A
N ; LT . ;
b P T IR - o s A -
. e | TR
) P taw i ; ’
S ;ﬁ\}lé"ﬁ?/ R 50 . $EE .
! J *Iiﬂ; 9&3 . ol = i‘_
b ™ L T T
\\o | E Iﬁ-ﬁ—v-rw::-—-- T ——
R B _
R *;:—— \32.. | ;2 é‘: "X ._El
& | T 180 |
& 2 | brmeemoriasrid) il
0N = . “ = (MIHKNY TILES) o =
| WAITING | RM. mm. A sTacF LA VM‘S_“T':
Y, - o 35 ’
e /3705 | ¢5°) 570" [|PZ /370% ! &
e - |
* 023 vedk M e N
S - I =1 = ' N | ﬁ LDJ B Qg lll
’ ‘ - i 2 we | ne | e ; | s
o = ™ | < 30 S %
> = g2 3 180 = ?
-~ i | o | S
ﬁo}_ S | ) '4 ..___i....w.* s - Qﬁﬂf/\f “wEs) P g o
. meorcAL g\ 2 R sare ande]
(TvepmorLAsTIC ) Q |
—3 3 = —[
RWP o | o®e P ewe
® ke L I I
Q _/{_l & 335" Y/ 3
. s 148 %
= e g | ' N
. STAFFRlo o;if. (HAKDOWOOD) £
1
—
S g W ? w8 Wis. i
'f 2% "DIpM TUBES
¥ L B A
/3% no” i o” Ho” /’:3’{ figure 1-5
b o
357"
Sl A
—A)

e



location in the building can be seen and checked against the dimensions of the building.
Such drawings would probably be used by the manufacturer of the precast units. The
dashed lines indicate the extent of the support provided by walls below the floor. This
drawing was reconstructed from part of a larger sheet showing floor plans and sections of
5-storey maisonettes.

It is interesting to speculate as to how the engineer may have constructed such a
drawing using the implements at his disposal. Apart from a drawing board, two of the
principal items of his drawing equipment would have been a T-square and a set-square.
The former would have been used in conjunction with the board for drawing horizontal
lines such as line 1. The set-square would have been used to produce vertical and inclined
lines such as line 2 and line 9 respectively. Lines are usually combined in order to
construct figures and shapes such as wall A and wall B which represent supporting walls.
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The construction of wall A and wall B and their intersection could well have been
done as follows:

First draw two faint parallel horizontal lines whose exact length is not important, at
the required separation. These would have been done solely with the aid of the T-square
and a pencil, and are not visible on the final drawing as they would have been rubbed out.
They are the lines that would give rise to lines 4 and 1, and lines 5 and 8.

On the lower line, two points would have been marked whose separation was the
same as the distance between the lines, since the final figure is intended to represent the
intersection of walls of the same type. Using the set-square, two faint vertical lines are
drawn through these points to cross the first two lines. All such faint lines are termed
construction lines, and to bring out the required shape they have to be strengthened where
necessary. This is usually done by inking-in where necessary, and in this case dashed ink
lines are used to produce lines 1 to 8.

Construction lines offer candidate locations for points and line segments of a finished
drawing, and any pattern of construction lines may be infinitely variable. Every instance of
a construction line is positioned according to some particular anticipation of drawing lines.
Construction lines represent a specific anticipation of the geometric properties of real-world
objects that are to be represented by a drawing.

Viewed in this way, a regular and uniform grid of lines is simply a set of
construction lines arranged according to a loose anticipation of building objects. The more
precise the anticipation of building objects, so the grid pattern may become less uniform,
as in the case of tartan grids. Irregular construction lines are then an extension of this
progression, defining the locations of actual drawing lines. Commonly, construction lines
appear as light pencil lines setting out a drawing, prior to being selectively overdrawn with
final inked drawing lines.

Because any pattern of construction lines is irregular, it is not possible to create a
pattemn by using an expression describing regular drawing operations. Unique effort is
required to position each construction line. This effort is dependent on knowledge of the
building objects that are to be represented by the drawing. Construction lines may be
positioned with respect to other construction lines, employing geometric constructions
together with distance values.
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1.5. Drawing as Language

Returning to the role of drawings in communicating information, it is useful to look
at how drawing expressions are constructed and interpreted by people. Analysis of the form
of expressions sometimes comes into play when people experience difficulty in
composition or interpretation. In the case of drawing interpretation, people can recognise
drawing parts and then match them to things they have in mind. Conversely, for generation
people think of things they want to communicate before embarking upon expressing these
things in a particular medium. It is possible to separate out the construction of drawing
expressions into the syntactic form that such expressions might take, and the semantic
content in the mind of the person doing the drawing. According to Chomsky, however:

"In general, one should not expect to be able to delimit a large and complex domain

before it has been thoroughly explored. A decision as to the boundary separating

syntax and semantics (if there is one) is not a prerequisite for theoretical and
descriptive study of syntactic and semantic rules. On the contrary, the problem of

delimitation will clearly remain open until these fields are much better understood than
they are today."

[Chomsky, 1965]

The approach to building a drawing machine described in this thesis, will assume a
separation between syntactical rules that can be used to generate or represent depictions,
and the semantic interpretation of syntactic structures with respect to the domain that is
being depicted. Such an approach resembles syntactic analysis in natural language
understanding which assumes the autonomy of syntax hypothesis [Chomsky, 1965]. This is
consistent with a view of drawing which presupposes that any notion of correctness of a
drawing must lie outside such a drawing machine. A good description of the sorts of
problems that can arise in attempting to construct formal theories of the semantics of
pictures has been provided by Goodman [Goodman, 1966; 1968]. Of course, such
syntactic rules can be provided with an internal semantics for syntactic primitives and
combinations thereof. In this case, there is a sense in which one can say that such a
drawing machine does capture a notion of well-formedness.

Convergence upon the ambition of treating drawings as language, therefore, can be
achieved if the objects that are known to any drawing machine can be defined in terms of
drawing primitives from which drawing objects can be composed according to a syntax.
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1.6. Language

A language is defined syntactically by a set of primitive elements and a set of
grammatical rules which define new configurations in terms of old ones. A grammar allows
one either to parse or to generate sentences of a language. A model for such a language
could be provided by a set of entities acting as meanings for the primitive elements; and,
for each grammatical rule, a semantic rule which defines the meaning of the configuration
in terms of the meaning of its parts. This is the Tarskian idea of truth-recursion,
generalised to this general notion of language.

For a semantic representation to be analogical, it is necessary for each medium-
defined relation used in constructing configurations to correspond to a similar relation in
the meanings. The representation is then a structural homomorph of the reality with respect
to these relations. That is, the meanings of configurations must exist in a space which is
similar to the representing medium, and the syntactic relations which are displayed directly
by the symbol-configurations of the language, must mirror semantic relations of the
corresponding kind. The directness of an analogical representation lies in the nature of the
relationship between the configurations and the reality they represent (it is a relation of
homomorphism rather than denotation). A scheme is not analogical because of any
syntactic features (such as being 2-dimensional), or because of any special qualities (such
as being continuous; cf. [Goodman, 1968], pp.159-164) of the worlds it describes. To
emphasise how the above account fits practice, formal grammars for simple maps have
been constructed, along the lines of Rosenfeld’s isotonic grammars [Rosenfeld, 1971].

This thesis claims that drawing operations can be viewed as constituting a language,
in which the drawings are expressions. The relationship of these expressions to reality is
that the primitive elements (lines) denote features of a building according to some
prescribed convention or key, and the positional relationships between elements directly
display corresponding relationships between the denoted features. The choice of graphical
primitives, therefore, is arbitrary. The graphical primitives described in Part Two (chapter
8) of this thesis were chosen because of some interesting properties which facilitate the
expression of transformations upon shapes, such that parts may be included and others
omitted, thus allowing controlled distortions of them. Such features make for richer
communicative possibilities. Other graphical representations could have served just as well
in illustrating the communicative nature of drawing, provided they could be fitted into a
logical framework. The exact nature of the relationships that we are claiming are being
represented will be given a fuller account in Part Two (chapter 9) of this thesis. It will
suffice here to mention that they will be concemed with the topological structure of
objects.
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1.7. The Syntax of a Descriptive Language

Things drawn on paper can range from symbolic characters that form an alphabet, to
pictorial simulations of objects perceived in the physical world. These things are visible
elements of verbal and pictorial languages, they are written and read. Note that we are
discussing objects as they exist on paper, and the functions of these objects in conveying
messages. We start by regarding both symbolic characters and pictorial drawings as
drawing objects, with possible classifications of other drawing objects in between, as
shown in figure 1-7.

SYMBOLIC
LHera’I . |
— letters are general purpose
hat sa:mbolss that gombinepinfg words
that refer to specific things
Numeral
64 — numbers are a class of symbols

that refer to quantitative
properties of things

Idiographic
= symbols rafarrin% to specific

things which need bear no
shape semblance to them

Schematic . . .
— depictions of ideas in which
shape expresses quantitative
properties of non—graphical things
Diagrammatic
WS g drawings In which primitives
g

represent elements in g particular
domain; configuration is important

4

§ A : Depictional "
aat” : - drawings showing selected
=5 = shape properties o? an object,
L. needed for its exposition
. Verisimilar
= da?lcﬂons of objects having
visua

semblance of actuality
PICTORIAL

%0
-O
B

figure 1-7

Such a subclassification is necessary in order to establish the thesis that pictures of
certain kinds have a syntactic structure capable of being described to a machine. One
possible subclassification is as follows:

i)  Literal
These are objects that combine to form symbols, which in tum map on to specific
other things.
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v)

vi)

vii)

Numeral.

This is a class of symbols that map onto quantitative properties of other things.

Idiographic. These are symbols that refer to some specific other thing, but that need
bear little or no shape semblance.

Schematic

These depict an idea, such that the shape expresses the quantitative properties of
some non-graphical thing. To this category belong those schematic pictures that occur
in documents, such as histograms and pie-charts.

Diagrammatic.

For any picture in this category, it is evident that there are primitive elements that
represent elements in a particular domain. The structure of diagrams is of more
importance than the elements from which they are constructed. Examples are electric
circuit diagrams, chemical structure diagrams, and flow charts.

Depictional

These show selected features needed for exposition. Their shape properties convey
instructions. This class of pictures consists of synthesised images which purport to be
representational and thus include drawings such as architectural sketches and working
drawings.

Verisimilar.

These contain a visual semblance of actuality. Depicted shapes correspond to shape
properties of the depicted thing. This last class of pictures contains such things as
photographs of natural objects. This class goes beyond the scope of this thesis.

In both the diagrams and the schematics, it is evident that there are primitive

elements that represent elements in a particular domain. Thus in an electrical circuit

diagram, the primitive elements are such things as capacitors, resistors, and transistors.

These can be considered as being the "words" in schematic drawings. Lines joining

elements directly denote, in their topological structure, the electrical connectivities in an

actual circuit.

Identifying specific elements in a circuit diagram, however, is not enough to identify

all the significant information in the diagram. Of more importance than the recognition of

the elements themselves, is the recognition of the way in which they are connected by lines

and related to each other by juxtaposition. The interconnection of the elements is the

syntactical structure of the diagram. The information content of a diagrammatic drawing is

oy



conveyed as much by its syntactic structure as by the elements within it. It is fairly
evident, furthermore, that a syntactic structure does exist, and has the usual properties of a
syntactically structured language, viz. that there are allowable as well as disallowed
juxtapositions of the primitive elements.

For pictures belonging to the depictional category, the existence of a syntactic
structuring is not as evident as it is for schematics. This category was surveyed by
Gombrich, an art historian, who was concermned with a variety of forms of graphic art,
drawing and sketching in particular. His view was that:

"The phrase ‘the language of art’ is more than a loose metaphor. Even to describe the
visible world in images we need a developed system of schemata."

[Gombrich, 1960]

Gombrich’s schemata are what we refer to as rules of syntax, and the point he
develops through his study is that the syntactic structure of graphic art, in particular
representational art (thereby including drawings and sketches), is determined largely by a
set of syntactic rules.

1.8. Summary

The view that the analogical nature of drawings is compatible with their
representation in terms of symbolic descriptions has been set out. The symbolic
descriptions constitute a language which can be given a formal syntax independent of the
semantic content which is to be conveyed by it. The analogic/symbolic distinction is
captured by the notion of levels of representation which are distinguished by the mediums
in which they occur. A medium may not be physically directly present, but may itself be
represented by configurations in some other medium. The analogical mapping that is seen
to be fundamental for the design of integrated CAD systems, and will be explored in this
thesis, is that between depictions and logical descriptions of them.

Sloman's arguments for the utility of analogical representations, based on the idea
that they are somehow more efficient in use than logical representations is a valid view to
take, but not one that is explored in this thesis. It is valid because something that can be
expressed logically, may still be more efficient to a user (for some purpose) when
expressed in analogic form, e.g. a drawing may be more revealing as a drawing than its
symbolic representation. The drawing may reveal things to a designer that are not captured
in its symbolic representation. This is the distinction between what can be known to a
human designer and a machine. However, the fundamental assumption that will be made in
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this thesis is that an analogical representation (a depiction) may be embedded in a medium
which is itself represented logically in some other medium (some logical representation
environment in a machine). Any discussion of efficiency must take into account the
computational properties of the medium. The interest in this thesis, however, is not with
the efficiency of one form of representation in comparison to another. Rather, it is in the
integration of representations of graphical depictions with representations of (non-
graphical) logical objects.
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2. Partial Descriptions and Plastic Representations

"A model is something to be admired or emulated, a pattern, a case in point, a type, a
prototype, a specimen, a mock-up, a mathematical description - almost anything from a
naked blonde to a quadratic equation - and may bear to what it models almost any
relation of symbolization."

[Goodman, 1968]

2.1. Partial Descriptions

An important fact to take into consideration in any model of design drawing, is that
any drawing (a configuration in a representation scheme) is, in general, a partial
description of a design object. Consequently, the drawing will constrain the form of
construction of the object, but will not, in general, uniquely determine any particular object
instance. And even if a drawing did uniquely determine a design object (i.e. it was
categorical), this fact could only be determined by analysis outside of the representation
scheme itself. There is no sense in which one could say within any scheme that "this is a

complete description”.

One can therefore, further specify a design object by adding information ad lib. The
added information can even cause the whole configuration to become inconsistent with the
object that it is intended to represent. This ability to accept new pieces of information and
to gradually accumulate knowledge piecemeal is essential for any representation scheme
which claims to model activities such as design. Thus the idea of a knowledge base of
separate pieces of information, to which new pieces can be added freely without a need to
pay attention to control flow or other organisational matters, is very important.

2.2. Plasticity vs Exhaustiveness

This possibility of adding information is one aspect of a scheme’s plasticity, i.c. the
ease with which changes can be made to configurations in the scheme. Plasticity is
essential for any system working on limited information in an uncertain world, as is the

case for a drawing system accepting information from a user working on some design.

One could envisage situations in which one would like to be able to claim
exhaustiveness for some particular aspect of a representation. For example, we might want
to represent that all the relations of a certain kind, between the entities represented in a

configuration, are also represented in the configuration; or that all the facts about some
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entity, which are in some sense relevant to some problem or task, are present in the
configuration.

According to Hayes [Hayes, 1974], an analogic representation can only be exhaustive
if its semantic rules are constrained in such a way that the medium-defined relations of a
configuration completely mirror the corresponding relations in the reality. That is, that a
medium-defined relation would hold between subconfigurations if and only if the
corresponding relation holds in the world between the entities denoted by the
subconfigurations. Such a representation would be strongly analogic.

It would seem that, in general, such a constraint upon any representation that is
intended to represent design objects is not feasible, since, in the first place, these objects do
not have any existence in the ‘real world’, other than in the imagination of the designer.
We would not want to make any claim of exhaustiveness of any representation of peoples’
ideas.

For example, a map is strongly analogic in the sense that the 2-dimensional spatial
relationships which hold between towns, rivers, etc. also hold in the map between the
symbols denoting them. Maps are also often exhaustive in a stronger sense: all the entities
(towns, rivers, etc.) present in the reality are denoted by symbols in the map. Thus we say

of a map with a river missing, that it is wrong, not just incomplete.

An example of an analogic representation which isn’t strongly analogic is a network.
A relation may very likely not be displayed in it. However, a network can also be used as
a strongly analogic representations if it is insisted that either all or none of the instances of
a certain relation are displayed in it. A family tree is a strongly analogic representation in
this sense, relative to the relationships ‘child of’ and ‘married’, for example.

Strongly analogic representations are less plastic than analogic or Tarskian
representations, in that information cannot be accumulated piecemeal in them. To add
information to a strongly analogic representation is to alter the information expressed by it.
Alterations, as opposed to mere additions, raise problems of their own. This difference

between plastic and strongly analogic representations is a fundamental one.

The trouble with alterations is that the information being altered may have been used
earlier as a premiss in a deduction of some kind. Thus, other pieces of information which
obtain their support in some sense, from the altered information, are now endangered, and
should probably be re-examined. This seems to require the system to keep an explicit
record of how it formed its beliefs: a history of its own thinking. This seems prohibitively

expensive (of either space or time), due to exponential factors in the amount of material
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generated.

Under some circumstances, it may be possible to re-evaluate a belief on criteria
independent of its original derivation, but in general, one cannot avoid the problem. This
seems like an insoluble dilemma.

More far-reaching alterations to a representation which one can envisage include
changes to the basic ontology, to the sorts of entity to which it refers. This would involve
a change to the actual grammar.

23. Example

figure 2-1

Given a choice between different representational schemes, one can represent a
particular thing in any of them. Consider the problem of assembling a bird table consisting
of a single leg supporting a table as shown in figure 2-1.

One can think of at least three different ways of doing this:

1 By relating the coordinates of the leg and table to the overall coordinates of the bird
table.

e



2 The prepositional approach, where coplanarity and "on" facts describing the parts’
spatial relation are listed.

3 Assembly drawing, where parts of a drawing of the bird table are identified with the
parts of the design object representation.

The first approach is the one that has been adopted in most conventional CAD
systems, and is the standard way of planting symbols in such systems. It has the drawback
that once symbols have been planted, one can no longer access parts of a symbol in a
composite picture other than by editing the symbol itself. Such a model discourages partial
description.

The problem with the prepositional approach is the linking of high-level predicates
such as "touches" and "orthogonal to", to low-level graphical objects such as lines to
which such predicates are intended to refer. The problem therefore, is one of translation
between two different domains. If one says "The table is on top of the leg", this ought
have an effect on the drawing. The problem of deciding exactly what effect is awkward. In
the case of the bird table, how could one infer from such an expression which sides were
in contact, for example. Answering such a question entails knowing a lot about the objects
to which such an expression refers. The translation the other way, from facts about the
coincidence of lines to what one might call "prepositional" expressions like "on top of" is
equally hard. Either way, it is a difficult gap to bridge. One can envisage having two
parallel and independent sets of expressions; one for directing drawing, and one as
vocabulary for the data of inference. Although each set of expressions may potentially
allow partial description, there remains a problem of integration. The TOPOLOGY-1
system [Gero, Akiner, and Radford, 1983] for example, fits strictly into the category of
inference, since it makes no attempt to integrate the prepositional expressions that it deals
with, with graphical objects.

The last approach, although low-level, is more flexible than the first, since the parts
that can be included in assembly relationships are at the discretion of the user, and not
prescribed by the system. It is this approach which will be explored during the course of
this thesis, for two reasons. Firstly, because the flexibility of expression gained by such an
approach goes beyond the expressive possibilities of conventional CAD systems to express
assembly relationships, and is therefore an interesting exercise in itself. Secondly, given
one of our objectives is an integrated CAD system, a way of working towards such an
objective is to develop a system in which high-level assembly relationships can be mapped
directly onto low-level graphical objects and properties. It is crucial to such an approach
that the underlying representation should be plastic, since assembly relationship
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descriptions themselves are likely to be partial descriptions which get modified in response
to the behaviour of composite graphical objects whose descriptions contain geometrical and
topological relationships. One can envisage an abstract configurational relationship existing
in a representation such that it forms part of the description of the lowest-level object
whose description contains parts which are terms in such relationships. This should be true
whether or not the objects referred to represent graphical objects.

A way of working towards a plastic representation environment is to begin by
abolishing the distinction between wholes and parts, since one would want to be able to
add to descriptions of objects relatively freely without continually having to revise what
counts as a whole and what counts as a part of it. This would be similar to Goodman'’s
dismissal of the type/token distinction in favour of what he calls replicas [Goodman, 1968,

pp-131].

24. Summary

The whole issue of plasticity in representation is crucially important for design, since
we must be able to modify and improve the representations of knowledge as it changes
over time. Plastic representations seem to be the most effective representational structures

for the domain of architectural drawing.
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3. Design and Evolutionary Representations

3.1. Sketching

Free-hand sketching is often incorporated in otherwise precisely constructed drawings.
Sketching is used to convey a visual but dimensionally imprecise impression of objects
forming part of a drawing. A common example is sketches of people and trees on
elevation drawings. The link between sketched and constructed parts of a drawing is an
interesting one. In the early stages of design, sketches form the bulk of architects’
externalisations. At some stage, certain sketched objects turmm into more precisely
constructed drawings, whilst others may retain their impressionistic nature. In this chapter,
we will look at sketching with a view to determining properties required of drawing
environments that purport to support it.

3.2. Examples

Consider the sketch of the 5-storey block (figure 3-1) in which a tree is prominent.
The architect intended there to be a row of trees between the building and the main road,
in keeping with the local authority’s brief. The slight increase in level off the road denotes
the pavement. Another increase denotes the zone between the pavement and the building.
The tree is in that zone.

The tree has been shown to remind the architect and others of the existence of the
row of trees. This has certain implications in the way the root systems are allowed to
grow in relation to changes in level and foundations and so on, which will come out in
more detail later, and rather differently from that shown. The height of the tree in the
sketch is not so significant. A mature tree might be up to 50-60 feet and it might be
drawn as being 10 feet. It is important in that it reminds the architect that trees will have
roots and they have to be thought about.

Consider the sketches of basic spaces (figure 3-2). The intention in these drawings
was to see how different groups of dwellings in section might possibly work, and to have a
visual note of what this means. For example, one at the lower level has a maisonette. A
flat is by definition one floor, and a maisonette is 2 floors, denoted by thicker lines. There
are other maisonettes above it, and small dwellings up on the roof. The line drawn across

is indicative of the sort of height above street level which could be served by direct access
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without lifts.

Some of the sketch drawings showed the vagueness of early ideas which were later to
become more definite. In figures 3-2 to 34, spaces were shown detached from each other
with adjacent zig-zag looking things. The gaps were part of a convention emphasising the
boundaries of each dwelling indicating their extent. The zig-zags show the access systems.
These zig-zags, having been drawn a little fainter than the rest of the picture, give a vague
indication of stairs being within parts of the building. At these early stages, the architects
didn’t really know where the stairs were going to be - whether they were to be tacked on
to the outside of the building, or partly in the building, or completely in the building. The
convention used was effective shorthand for:

" there must be a stair there somewhere ",

It seemed to be more important to represent balconies earlier on, rather than doors,
windows etc. (figure 3-4). This was probably because the basic concept of the solution
required, in the mind of the architect, to include a notion of how peoples’ dwellings were
related to the ground and to private open space, which not only is required for drying
facilities, but in relation to ideas about how people should be able to have private open
space. The bottom dwelling for example, has a garden which is actually indicated by a
thicker line, and an upstand at the end denoting ‘fence’ or ‘end of private space’. The next
3 dwellings up have their private open space provided as some kind of terrace or balcony,
whereas it looks as though it is indicated that the very small ones on the top probably

don’t get it or might have it in some other form.

3.3. Representing Sketches Formally

The preceding section has shown that sketches are the first in a series of drawings
which become progressively more refined and detailed, particularly with respect to
dimensions. Now we need to look at the particular problems posed by attempting to
interpret sketches formally within a plastic representation environment. There are several
angles to this problem. There is the problem of re-describing the representation of a sketch
with a view to constructing a more dimensionally accurate drawing. Once this has been
done, should the old sketch be thrown away and redrawn in its new form? Should the old
sketch and the new one exist as separate objects? Should no new object be created, and the

additional information ‘tagged-on’ in some way?

To a certain extent, the answer depends on what one wants to do. Different

strategies will be capable of achieving certain goals but not others.
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figure 3-3
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3.4. Maintaining Consistency

Given a sketch, and using this as a starting point for the description of a more
detailed drawing, one would like at some stage to say something about the actual
dimensions of certain parts as they are ultimately intended to appear in the design object
the drawing is intended to represent. One could envisage that the original architect’s brief
may constrain the dimensions of certain things. The problem for an integrated CAD system
which allows updates to representations both graphically and textually, is how to deal with
non-graphical updates in which dimensions are being changed. Will the new
representations subsequently be graphically realisable?

One approach would be to attempt to integrate dimensions derived by scaling
intended design object dimensions, with the physical dimensions of the sketch drawing.
This cannot be done by means of a straight one-for-one swap of old lines for new ones,
since this would result in all sorts of irregularities such as the breaking of previously

connected chains of lines, overlapping of lines, etc.

To deal with this problem in a methodical manner, one would need to know which
properties of the initial sketch the user thought important and which should therefore be
retained, and which were trivial and could be recalculated thus allowing the new scaled
dimensions to fit. Most conventional CAD systems have at any one time a representation
of a fully scaled drawing. Each time any change to the representation of the drawing is
made, the relevant properties are recalculated. An alternative would be to keep a copy of
the initial sketch distinct from a scaled representation of the design object. This may even
mean that the object representation has a different topology to the sketch (eg. when it has
extra detail that the sketch doesn’t have).

The problem that is emerging here has to do with the separation of the logical
representation of a graphical object from its depiction. In order for any drawing
representation to have a depiction, it must be fully dimensioned. It cannot have flexible

undetermined parts.

Given an initial sketch drawing, and a non-graphical representation of properties of
an intended design object, how can new depictions be generated from such constraints? We

can envisage the following possibilities:

1) A partially dimensioned design object representation which differs from the initial
sketch.

It seems that in this case, if the drawing is a composite one (i.e. consisting of several
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sub-parts), the siting of its sub-parts becomes difficult, since not all dimensions are known.
2) A design object representation fully and explicitly dimensioned before it is drawn.

The implication of this approach is that either the sketch drawing will have to have
original dimensions overwritten (in order for it to be depicted); or, in the case of it being a
composite drawing where parts of sub-parts may well be underdetermined (sub-parts being
related to each other through parts that are dimensioned), it becomes impossible to draw it.
Without any kind of explicit dimensioning, all one can do in such a system is to input the
original sketch drawing and assign (by default) its dimensions to be overwritable.

Restricting oneself to a system in which graphical objects have to be explicitly
dimensioned, means that it becomes difficult to propagate changes to certain
dimensions, to others. In figure 3-5 suppose the 8 is changed to a 10. What should
happen to the dimensions of those lines adjacent to, and opposite to, this line?

8

figure 3-5

Creating composite objects by bringing two or more shapes together becomes a trivial
pursuit with this approach, since only lines of exactly the same length can be attached
to each other. Attachment of lines of different length is impossible, since such a

system would not allow for lengths to be overwritten.

3) Explicitly dimensioned objects, but with some dimensions fixed and some

changeable.

This variant of 2) makes attachment of objects more interesting, in that it now seems
to be possible to attach lines of different length, since one of the line’s dimension can be
overwritten by the other’s value. There are other problems associated with this option,
however. For example, what happens if one of the lines in the object that is to be attached

has to be shortened? Do the lines that previously met this line change in any way? Or do

.42 -



they just get left behind?
4)  Draw only lines with fully determined properties, and omit the rest.
This is a strange possibility which will produce odd-looking drawings.

5) Draw only objects that, though they do not have all dimensions made explicit, can
have them all calculated.

This possibility gives rise to parameterised shapes. In other words the representation
of such objects contains explicitly-stated relations between parts of drawings which allow
for the propagation of knock-on effects whenever changes to dimensions are made. This
looks like a more promising alternative. There is no problem in integrating intended design
object dimensions with current physical dimensions, since in this set up, design object

dimensions which have been scaled become new explicit dimensions.

Consider figure 3-6. Suppose the segment labelled "x" can be calculated as 4 before
drawing. Then if the 8 is changed to 10, x should be calculated to 6.

X X

%

figure 3-6

Adopting this approach, it would be preferable for only the explicitly-stated
dimensions to be alterable. It should be impossible to change calculable dimensions. This
requirement may be hard to enforce if the calculation is difficult. If the angles of all the
construction lines in figure 3-7 are known, as well as one edge, the figure is fully known.
But the calculations to do this will be awkward. To find inconsistency, one must calculate
dimensions in all possible ways. How can one abandon some of these checks? Abandoning
checks may lead to inconsistency. But if the system hasn’t done all the necessary checks, it

won't know how inconsistencies arise.
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figure 3-7

An interesting question concemns whether one can abandon non-paraxial construction
lines. One could handle the angle of a segment in either of the two ways shown in figure
3-8. Segments could run between points whose x and y coordinates on a regular grid are
derived from angle value properties of the segments themselves. This seems over-
elaborate, and also precludes a slanting construction line being used to align several
segments. The second part of figure 3-8 shows the same object drawn from slanting
construction lines.

figure 3-8

3.5. Logical Representation of Sketches

By looking at the properties of sketch drawings, and listening to how people talk
about them (thus revealing their thinking about them), it becomes evident that the
representation environment will have to allow users of it to construct some form of logical
parts hierarchy in which things can be described by reference to their parts, so that
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collections of parts form descriptions. In keeping with this approach, the part/whole
distinction is an unnecessarily restrictive one. Any potential whole should be regarded as a
temporal state in that it is a candidate part of some other part. Things should be described
by reference to partial descriptions of other things and links between things should be
preserved so that descriptions of things can inherit changes to other things, thus forming a
variant hierarchy. Similarly, the type/instance distinction is unnecessary. Any instance
should be capable of spawning variants as further instances.

One strategy would be to name some thing and then to describe what is meant by the
name by naming its parts, bottoming out with names that are unambiguously understood in
the knowledge base of the recipient, either human or machine. This is a top down
approach. It should also be possible to first describe things and then attach these
descriptions to higher level things. This is the bottom up approach.

3.6. Summary

The problems posed for formal systems that purport to represent sketches, give
indications to some of the basic properties that will be required of any representation
environment for drawings. The examples of the previous sections have focused in some
detail on the problems of logical consistency in the maintenance of drawing representations
from the sketch stage onwards.

The examples point to a need for the representation environment to allow users of it
to construct particular models of things, comresponding to their own perceptions of their
world, in this case in the form of sketches. The environment has to possess knowledge of
how people express what they think about things such as dimension values, in order to
represent any particular instance of description, and to build up a representation from
logically related but temporally disjoint sequences of user declarations. In this respect, the
representation environment will need to be a plastic one, having a range of logical
operators for instantiating and manipulating descriptions. Additionally, the representation
environment must provide mechanisms for the expression of parametric relationships

between dimension properties of drawing parts.

Models should be nothing more than temporal states of the representation
environment, instantiated on demand and representing what users have told the system
about their own worlds. Models may be changed as people’s perceptions change, and they
may be built out of collections of information supplied by different people. The

representation environment, therefore, is crucial to the contribution of this thesis.
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4. Minimalist Representations

4.1. Introduction

So far we have argued for the general need for representations that allow partial
description of design objects and thus support the evolution of a design. If such
representations are to be used by designers rather than programmers, then they should be
as perspicuous as possible. One way of hoping to realise this ambition is by aiming for a
representation which has a minimum of conceptual objects and operations, whilst at the

same time supporting a range of descriptional activities.

4.2. Language Paradigms

Potential candidates for such representation environments are object-oriented
programming systems (OOPS). Despite the fact that many object-oriented systems exist,
however, there is hardly any agreement on what object-oriented programming is and what
should be provided by a system that supports it. Object-oriented languages seem to lie
somewhere between conventional languages (e.g. C [Kemighan and Ritchie, 1978]) and
knowledge representation languages (e.g.KRL [Bobrow and Winograd, 1977], and KL-
ONE [Brachmann and Schmolze, 1985]). An interesting property of OOPS is that they

only possess one operation, namely, the operation of sending a message.

It is claimed [Anjewierden, 1986] that object-oriented programming is a natural
paradigm for building user interfaces, and that the virtue of having only one operation is
that any programming interface is potentially small. Having only one principal operation
(message passing) and one kind of data type (objects), the claim is that a small amount of
code is sufficient to make an object-oriented programming system available externally.
Anjewierden [op.cit.], writing about PCE-Prolog, an object-oriented extension to Prolog,
states that:

"Where other OOPS revert to special languages with their own syntax (Smalltalk) or a

multitude of predicates (50 or so in Loops), PCE simply takes advantage of the main

characteristics of object-oriented programming and provides a few predicates for

sending messages and creating objects. RISC architectures for both hard- and software
must have a good future."

To investigate how a ‘RISC’ (Reduced Instruction Set Computer, [Patterson, 1985])

approach to the design of a representation environment might work, we need to look in
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more detail at the structure of design objects, the relationships between design objects, and
the range of phenomena that will arise as a consequence of representing such objects in
terms of such relationships. We will show how the representation environment will need to
be able to handle such notions as copying, inheritance, and the use of different instances in
different parts of a design. In this chapter, we will focus on the particular demands
presented by detail drawings.

4.3. Complex Objects

Figure 4-1 shows part of an engineer’s production drawing of a roof. It is intended to
give a contractor detailed information to build a roof. It may also be used by a roof truss

manufacturer to prefabricate roof trusses. Figure 4-2 shows a part of it in more detail.

The drawing shows truss-girders running between party walls which then support
rafters. The architects’ intention was to create a space within the roof usable by residents
for storage or as ancillary accommodation.

The components involved in the detail of part 4 include a brick cavity wall 270mm
wide, and a timber wallplate (100x50) - (a piece of timber which runs along the top of the
wall), seen in section, upon which the joists rest. The wallplate is shown in bold outline
for clarity. In this drawing, the wall is in section, the wallplate is in section, but the pins
are in elevation. The dotted line shows that the ceiling joist goes across the rafter and is
nailed to it with 4 nails.

We note at this point that we can talk about the detail drawing in the same terms as
the main drawing into which it is supposed to fit. There is no essential difference in the
nature of these two types of drawing. From the point of view of the representation
environment which will ultimately represent such drawings, they can be seen as being the
same kind of object. This ties in with an interesting property of OOPS, namely, that all
objects are considered to be first class citizens [Rentsch, 1982].

The builders use the roof detail drawing for constructing the main timberwork of the
roof. There is sufficient information there to show that everything is in the right place
down to the last inch of detail, for example at the eaves. When the builders construct the
eaves and do the tiling in more detail, they will then refer to another architect’s drawing
which will show the tiles, felting, fascia boards, gutters, ledge to keep the birds out, and so
on.

According to Anjewierden [Anjewierden, 1986], complex objects can be loosely
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defined as a dynamic collection of interconnected parts. In this example, the roof is a
complex object consisting of truss-girders, party walls, and rafters. The detail itself is
another complex object consisting of a brick cavity wall, timber wallplate, joist, rafter, and
nails. It is clear that the roof is an object, but it is not so clear how the roof can be
defined as a specialisation of its parts (or vice versa), since as the example clearly shows,

one can always go on to describe things in ever finer detail.

Although the relations between the roof and its parts cannot be defined by
specialisation, we obviously still want to treat a roof as an object, and, in a CAD system,
move its representation around on a screen. Conventional geometrical transformations on a
graphical representation of a roof, for example, are relatively easy to define [Foley and Van
Dam (Ch.7), 1984; March and Steadman, 1971] but how can we ensure that all the

associated details move as well?

Anjewierden [op.cit.] claims that delegation can provide an answer by describing
roofs as complex objects with dynamically changing parts, and move behaviour as being
delegated to each part in tum. Another example cited is the definition of behaviour to paint
all roofs, say, in a certain colour. One can then tell the roof (by message passing
presumably) to delegate the paint behaviour to all its parts. Anjewierden admits that PCE
does not address the issue of complex objects in a structured way, but also seems to
believe that inheritance is not sufficient to describe them in a natural way. This
presupposes a particular notion of inheritance as manifested in certain systems, and stems
from the apparent absence of procedurality associated with inheritance in such systems.
Admittedly, some form of quantification mechanism such as delegation would be desirable
in a representation environment. However, before this can be done, of primary importance
is the description of design objects in a declarative fashion, allowing a designer to look at

and modify his descriptions.

4.4. Inheritance

The function of detail drawings in general is to show the method of fixing, and the
dimensions in detail. For example, the roof detail drawing shows the dimensions in relation
to the wall, which is fairly critical in relation to the eaves design, and thus the way in
which the tiles are put on. This would be too small if it appeared in the main drawing.
Very often, it occurs that some of the parts of a detail drawing are replicated in another
drawing somewhere else. There will probably be an eaves drawing which shows some of

the same information.
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In cases when there are natural specialisations of object descriptions as in the above
example of a main drawing and its details, but when knowledge still needs to be shared
between them, some form of inheritance mechanism is necessary. Inheritance is often used
in knowledge representation languages to build hierarchies of related concepts [Brachman
and Schmolze, 1985]. Furthermore, in design, in so far as a designer wants to relate
drawings with each other, this would inevitably necessitate the dynamic creation of
relationships across object hierarchies in any representation environment that attempts to
model design drawing. Certainly, one would not want to prescribe static relationships
between objects, as was the trend in many conventional CAD systems [Bijl, Stone, and
Rosenthal, 1979]. Anjewierden expresses his worry that:

"In many practical situations the design and implementation of inheritance hierarchies
is extremely difficult and often more a restriction than an asset."

Anjewierden introduces the idea of delegation as being a more general way to
specialise classes than inheritance, and claims that delegation allows the creation of more
flexible object hierarchies but also seems to introduce unpredictability.

4.5. Context

The representation of part 4 in figure 4-1 is less detailed than in figure 4-2. Because
of this coarse/fine distinction, we can always look at a drawing as a whole, or alternatively,
we can look at a part of a drawing in finer detail, which is the case when we focus on part
4 in figure 4-2. What has happened in moving from the coarse detail of part 4 in figure 4-1
to the fine detail in figure 4-2 is that more lines have been added, notably those
representing the brickwork and the locations of the nails, more dimensioning has taken
place, and the new objects "wallplate” and "nails" have been introduced with explicit

names.

Looking at examples such as the detail drawing above, it is difficult to see how the
access mechanisms of OOPS can help to access object descriptions in order to update
them. We need to be able to access object descriptions directly. But this would clearly
violate the information hiding principle of an OOPS.

OOPS enthusiasts believe that the biggest advantage of object-oriented programming
over procedural programming, from a software engineering point of view, is the ability to
create self-confined objects which may be tested in isolation and when they are proven to

work correctly under all circumstances, will continue to do so forever [Booch, 1986].

Such a strategy is counter-productive to systems which require transparency such that
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the designer can relate properties of one object to those of another (as in detailing).

The example presented in this chapter is typical of how details are drawn, distinct
from a main drawing into which the detail fits without the necessity of having a new
drawing showing everything assembled in more detail. Another interesting feature of this
example is the role played by the brickwork in the detail. Is the brickwork a part of the
detail, or is it that a necessary function of detailing is to show the relationship between
something that is not part of the detail, and the detail itself? The latter is probably closer to
what was intended. In other words, detailing not only involves the addition of extra lines
such as the dimension lines in this example, but may also require a change of context for
the object in question. Relations between the object and other objects may be considered
important in one context and not in another. Within the context of a conventional design
practice, separate drawings are related to each other by having drawings at different scales.
There will be a drawing of the whole thing to a small scale with references on it to show
how separate details, which will be on a larger scale, will refer to the overall layout.

There is continual detailing from a drawing of a site layout to a particular detail.

4.6. Criticisms of OOPS

Message passing in OOPS is used to customise objects to a certain application. This
dynamic specialisation of objects is supposed to make programming OOPS easier and is an
example of using message objects for specialisation. However, this also implies that
customisation (by a programmer) takes place before a user even touches the system, thus
making the end product that the user receives highly prescriptive.

In a traditional OOPS the definition of an object could be created by first defining a
class for that object and then instantiating a particular instance of that object. This is a
laborious procedure which is very inflexible in that when new attributes of objects need to
be added, the whole procedure has to be repeated. We would like to be able to create
instances of things on demand, without having to type them first.

Some object-oriented programming systems make it possible for the program to a
create a new class while it is running, others don’t. It is absolutely necessary in design for
the user to be able to interactively redefine objects and their attributes.
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4.7. Summary

In this chapter, we have looked at some properties of OOPS which may prove useful
in design applications, and others which may not. In particular, their usefulness for the
representation of structured, complex objects in terms of a minimum of conceptual objects
in the representation environment. An essential feature of most OOPS which would be
positively harmful in the design context is information hiding. A designer using a CAD
system can be considered as being on a par with the programmer of an OOPS. To him, the
design representation must be accessible at all times, and therefore, it must be transparent.

Because of the nature of formal systems in machine environments, any user of such a
representation environment will inevitably have to reconcile himself to a rationalist way of
thinking. There is no reason to suppose however, that such an approach should not also be
capable of sustaining the user’s own aesthetic position in which the construction of an
object points towards an immediate, legible geometric description describable directly in
the representation environment. A way of ensuring this goal is to work towards a

representation environment which has a minimum of conceptual objects.
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5. Anti-Evolutionary Approaches in CAD

5.1. Introduction

The strategy for design advocated in this thesis is antipathetic to design by
enumeration of geometric possibilities. In this respect, it is opposed to other strategies
exemplified by shape grammar and expert system approaches to design. Having argued for
the need for plastic representations to support partial description and design evolution, it
becomes difficult to reconcile such descriptive representation environments with the
prescriptiveness of shape grammars and expert systems. The essential feature of plastic
representation environments is that they are directed towards supporting the description of
drawing objects with a view to their further manipulation and transformation. Shape
grammars and expert systems on the other hand, as used in practice, are invariably based
upon highly prescriptive rule definitions. This implies that the objects to which such rules
can be applied must themselves have prescribed structures. We will here take a brief
critical look at these altemnative approaches to design.

5.2. The Limitations of Expert Systems in Design

Expert systems [Amarel, 1980; Amarel, 1986; Lansdown, 1982] rest on the view that
human experts commonly employ knowledge that they cannot express overtly in the form
of complete step-wise deterministic procedures, when working towards some specified
goal. This knowledge can be elicited from experts and can be represented in some non-
deterministic, rule-based machine environment, typically built on inference rules of the
form: if--(condition)--then--(action)--. Knowledge represented in a rule-based system can
then be applied to new instances of problems, by presenting the system with symptoms and
goals. The idea is that expert systems can function in place of human experts.

Design, however, is dependent on combinations of overt and intuitive knowledge, and
the role of intuition is decisive. When expert systems are imported into the field of design,
the knowledge which they are intended to handle is presented as being similar to intuitive
knowledge. But there are important differences. The firm goal specifications required by
expert systems cannot capture a weak anticipation of design objects. Neither can they
accommodate the lack of prior knowledge of the properties that will describe such objects.
Consequently, while the external products of the intuition of designers may be conveyed to
an expert system, it does not follow that the system will be able to employ those products
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as knowledge when dealing with a new instance of design. The role of expert systems in
design is inherently limited to discrete analytic subtasks of design and cannot contribute to
design synthesis. Thus expert systems cannot function in place of human designers.

Furthermore, we should not believe that it is possible to elicit knowledge from
experts which they do not know they possess, then represent that knowledge within expert
systems without ourselves having to understand the knowledge, and then expect these
systems to use such knowledge to produce meaningful results for people. The argument
presented here is not intended as a general refutation of expert systems, but is intended to
moderate the ambitions associated with these systems.

5.3. Design is not Problem Solving

Bijl [Bijl, 1985a] has questioned the concepts that have been imported from problem
solving fields into the field of CAD, and concluded that design is not problem solving.

A typical problem solving approach can be identified by the following necessary
constituents:

1 a known state of being, within a single well-defined domain;

2  knowledge of procedures that can operate within the domain, by which a given state
may be changed;

3 a goal expressed in terms that
i) specify some new state, including the conditions that have to be met by
a solution,
ii) specify boundaries to the selection of procedures for changing the
existing state.

This definition excludes design only if we add that a problem solving approach has to
rely solely on overt knowledge. When we do so we also exclude many other activities not
usually associated with design. This observation suggests that advances in design theory
are likely to prove significant well beyond particular fields of design application.

For any problem solving process, any instance of problem has to have a start and a
finish, and is contained within those boundaries as a whole and discrete thing. Typically,
problem specifications and solutions can be undone by moving those boundaries. The
wholeness of a problem then gets decomposed into discrete parts, as sub-problems, until

parts present the conditions that are required by the available change procedures. To ease
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the task of matching part instances with procedures, emphasis is placed on prior typing of
parts. Sequences of change procedures provide solution paths. Solutions are found by
aggregating results, and problems have to have single (or very few) solutions. A match
between a solution and a goal can then be recognised as a correct result. This view of
problem solving rests on the following notions that are important to the internal functions
of problem solving systems:

wholeness of things;

differentiation between whole and parts;
discreteness of parts,

prior typing of parts;

cormrectness of results.

These notions have become widely and firmly established in many fields. The effects
on design are evident in CAD systems. What we see is the selective decomposition of ill-
defined design practices into well-defined sub-tasks that are amenable to a problem solving
approach. So we get programs that perform analytic functions to evaluate thermal
performance and energy requirements of proposed designs for buildings. In most cases,
these systems contribute nothing to our understanding of design synthesis.

Are the notions that support problem solving valid for design and, if not, can we
formulate valid alternative notions?

5.3.1. Wholeness of Things

In general, the start and finish of a design appears to be circumstantial. The context
in which design occurs is people and they decide when a design is to start and is finished.
There are few overt criteria for recognising that a design is complete, and in the case of
buildings there are none.

The boundaries to any instance of design are ill-defined. A design process includes
responses to ever more unforeseen considerations. In the case of buildings, these
considerations come from an unbounded domain of any arbitrary subset of all people. We
do not know how to draw a boundary around the design interest in a building, so that we

know we have the whole building.

Typically, the design of a door handle sits in the context of a door, in a room, in a
dwelling, in a building, in a locality, in a town, etc. Equally, the door handle sits in the
context of fire safety, affecting the ease of escape through doors, with bumnt hands, and it
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is relevant to social concemn for welfare and health provision, etc. And the handle has to
be manufactured with available machining technology, marketed and installed. We can say
more about the door handle, but we don’t know where to draw a boundary around it to

define a complete and discrete design interest.

5.3.2. Differentiation Between Whole and Parts

Decomposition of design into parts has the effect that the parts are differentiated
according to different domains, with no known relationship between domains that allows
results to be aggregated into design solutions. In the case of buildings, we do not know
how to add the result of a thermal performance evaluation to a result of a daylight
distribution appraisal.

Design has to reconcile different arbitrary and contradictory interests in a design
object, and this reconciliation cannot be achieved by overt processes alone. Parts are
defined by the perceptions of different people, and their synthesis with respect to any
perception of whole is dependent on contributions from those individuals.

5.3.3. Discreteness of Parts

If we recognise the existence of parts, we do not know how to define them as
discrete parts. In the case of buildings, a part tends to be defined by the context of other
parts. The definition will change when the context changes. It is not practical to work with
discrete parts where changes to one part are likely to propagate unforeseen changes to
many other parts.

53.4. Prior Typing of Parts

In design, part instances typically develop in unpredictable ways and are thus not
amenable to prior typing. Attempts at typing either have to be undone as new instances
make unforeseen demands on type specifications, or they compel conformity of instances

which adds extraneous constraints on a design product.

The difficulty presented here becomes still more instructive if we also question the
usual distinction between parts as objects, which may be represented by data, and parts as
functions which can be performed by or on objects. It is not clear whether this is a useful
differentiation for purposes of a theoretical understanding of design; it is possible to

consider functions as parts of descriptions of objects.
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§.3.5. Correctness of Results

Lastly, we come to the notion of correctness of results. Design goals generally do
not include explicit specifications that allow us to match design products so that we can
know that we have correct results. In the case of buildings, it is interesting to note that
there is no abstract formal definition of a building that will enable us to tell buildings apart
from other things. Nor do we have rigorous classifications of buildings that differentiate
between, say, houses and offices among all other instances of buildings. In the absence of
such knowledge, goals cannot be explicit and we have to accept uncertainty in our

solutions.

5.3.6. Alternative Notions

What other notions can we think of that will be more appropriate to design, and,
incidentally, to many other human activities that exhibit properties similar to those of
design? The answers could have far reaching implications, but we are at present ill-
equipped to provide them. Our thinking is too much conditioned by established concepts
associated with successful problem orientated systems. We need to bring to the surface
concepts that exist in other theoretical fields, such as mathematics, linguistics, philosophy,
and reshape them into a theory that describes design.

Meanwhile, we can identify promising areas of research. We should think of parts as
unbounded instances of things, with no notion of whole and independent of types, just
parts of parts of parts.... We should try to conceive of a notion of things that uniformly
embraces objects and functions, as well as activities and events. We should represent
relationships between parts that will enable us to bridge across arbitrarily different
domains, to work with divergent interests in design objects. We should aim for the
construction of an overt systematic environment that will be able to represent any
unrehearsed thing in the head of any designer. Working towards these objectives is
essential if computational support of design activity is to succeed.

5.4. Shape Grammar

The view of design adopted by shape grammarians is one consisting of objects, both
existing instances and those yet to be instanced, with certain explicitly defined and
typically highly specialised properties. Design language then consists of such objects
occurring in designs, with relationships between them that can be expressed in an algebraic

environment. Formal shape grammars consist of sets of relationships between symbolic
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entities plus transformation rules for instantiating new symbolic expressions [Stiny, 1975;
Gips, 1975].

Shape representation of design objects in shape grammars are typically expressed as
rclationships between parts of shapes made up of lines (line primitives). Shape grammars
are implemented as sets of replacement rules. Within the domain of shape grammar,
design refers to spatial properties manifest in drawings. Line objects that are composed
into shapes exist without reference to other things in a design domain that the lines may
represent. Labels may be attached to shapes to differentiate between similar shapes, and
these labels may invoke semantic information in the user, but they are only of syntactic
significance within a shape grammar system. Additional design grammars dealing with
non-shape aspects of design are envisaged, separate from shape grammars and interacting
with shape grammars by means of translations. A design grammar is intended to generate
new instances of design, within the bounds of a design language (the class of objects that
is recognised as forming constituent parts of designs).

Shape grammars are based on the view that significant properties of design objects
can be abstracted from existing instances of designs, and these can be understood in terms
of a syntactic structure. Formal grammars can be devised which correspond to perceived
abstract structures of designs [Krishnamurti, 1980, 1981]. These grammars can then be
used to generate new instances of designs which preserve properties of existing good
designs [Knight, 1980; Koning and Eizenburg, 1981]. The prescriptive nature of shape
grammar rules reduces users of such systems to passive roles in the design process. In
shape grammar systems,

..... the mode of operation is to identify by pattern-matching opportunities to which the

user reacts;"
[Wojtowicz and Fawcett, 1985],

meaning that the user can say yes or no to the system instantiation of design changes. It is
this characteristic of shape grammars in use which make them more akin to expert systems
than to CAD systems.

5.4.1. Questions Posed by Shape Grammar

Where do the relationships that determine shapes come from? This question is
crucial since it is the declared intention of shape grammarians that grammars should
perform a generative role, they should be capable of generating new instances of designs.
The practice has been to study exemplars of good design, the past works of individual

designers who are widely acknowledged to have been good designers, and to infer from
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their drawings the abstract relationships between line objects which they are believed to
have employed (implicily or explicitly). These relationships are then interpreted as
particular grammars and implemented as rule systems. Thus we have examples of newly
designed Palladio villas [Stiny and Mitchell, 1978] Frank Lloyd Wright houses [Koning
and Eizenberg, op. cit.], generated by their respective grammars, long after these designers
have died. In our present time, it is argued that we should be able to develop grammars
that encapsulate the abstract structure of designs of contemporary good designers, and that
these grammars could make good designs widely available to others who would not
otherwise have access to the services of good designers.

This line of argument is presented as a general and practical justification for the
intellectual effort invested in studies of shape grammar, but this particular argument is
weak and unnecessary. A test of this argument is to ask whether Frank Lloyd Wright, if
he were alive and practising to-day, would still be designing in his style of the first quarter
of this century? If the answer is yes, it should then be asked whether his buildings built
now would be widely acknowledged as good designs. These questions raise two general
issues that are inherent in good design. The first is the designer’s reference to the world as
he or she sees it, and the evolution of design responses. The second is the world’s own
reference to itself, how it sees itself, which changes the rules by which it judges good
design. Both issues are untouched by the above general argument. This argument of
shape grammarians appears to rest on a classicist view of design, a belief in absolute
truths, in permanent good qualities of design irrespective of world context.

5.4.2. Generalised Shape Grammars

If shape grammars can detach themselves from particular instances of design such as
Palladio villas, then we can envisage how they might be made more generally useful.
Objects could be viewed more generally as lines with certain properties: linearity (straight,
curved); intensity (thick, thin); continuity (dotted, dashed, solid); length (linear measure).
These properties describe instances of lines and may have given values or their values may
be parameterised i.e. values found from some relationship to values of other properties.
Shapes could be considered as assemblies of one or more lines which are bound together
by relationships that exist between them, such as connected lines, angle relationships and
distance apart. Relationships instance shapes. In the general formalism of shape grammar,
line objects and their relationships can be represented in a symbolic form in an algebraic
environment, so that shapes can acquire mathematical properties such as symmetry, and
can be subjected to algebraic functions, add, deduct, etc. to effect shape transformations.
A given set of relationships targctqd at a selected class of line objects constitutes a shape

grammar, implemented as a set of replacement rules.
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The abstract definition of shape as used in shape grammar refers to lines in 2, 3 or
more space, and is independent of any notion of other objects that may be described by
shapes, such as planes or surfaces, and polygonal or polyhedral objects. The abstract
definition does not rest on Euclidean geometry. Shapes can be considered as representing
geometric properties of physical objects, but that is a matter of choice for a system

implementor.

5.4.3. Evolutionary Shape Grammars

Without negating the goal of shape grammar, we can adopt a different view. We
have already argued that design, including expression of style in the medium of drawings,
is essentially evolutionary and that any design system has to accommodate unanticipated
evolutionary change. The consequence then is that a rule system must enable a user to
modify existing rules and add new rules. The abstract grammars from which rules are
devised must become a familiar part of the environment in which designers work. Systems
then need to be devised which enable designers to formulate their own grammars and add
their own rules. Designers will then be able to evolve their own design languages,
employing formal definitions that give them access to the power of computers.

This proposal for evolutionary rule based systems requires a non-trivial extension to
current work on shape grammars. Single systems that can support implementations of
different shape grammars and permit users arbitrarily to change the rules pose fundamental
questions.

5.5. Summary

In conclusion, it appears that the evolutionary approach to design first put forward in
chapter 2 has advantages over the prescriptive approaches typified by shape grammars and
expert systems. We reject therefore, the kind of shape grammar rule application to shapes.
The core of this thesis presented in part 2 will be concerned with the manipulation of low-
level descriptions of objects such as length and angle values, in a drawing environment
whose geometric primitives are conlines, conpoints and segments. In other words, the
strategy will be one of allowing a drawing description to evolve by changing relationships
between graphical parts. This entails a representation environment which will allow for the
expression of required relationships such that salient features of shapes can be maintained.
The description of both the drawing environment and the representation environment will

be the essence of this task.
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6. Features of Drawing Environments

6.1. Introduction

This chapter will describe a range of drawing operations, including those related to
grids, construction lines and segments. Each graphical operation or graphical object will be
analysed first of all from the point of view of how these operations/objects are tackled in
conventional CAD systems. We need to ascertain to what degree the representation of
graphical objects in conventional CAD systems reflects what actually happens in
architectural practice. The object of this exercise is to begin to outline a range of
operations that would be required of any line-based drawing machine.

In designing a line-based drawing machine, it will be argued that the choice of
operations should reflect to as large an extent as possible those used in conventional
architectural practice, not merely for reasons of user convenience, but also because such
operations possess certain characteristics that can be exploited in order to express
relationships between graphical parts and objects, such that these relationships can then be
exploited inside of a machine. The range of drawing operations, and hence the range of
drawing objects upon which they operate, takes us through the process of drawing, from a

blank sheet of paper to a completed drawing.

6.2. Conventional Point-Based Systems

In most forms of drawing, lines are typically defined by end points plus something
that happens between. In architectural practice, architects make use of continuous straight
or curved lines of varied thickness, colour, dotted and dashed lines, and blank lines. It is
evident however, that in many cases, particularly in the earlier stages of a design, architects
are not very concemed about the exact locations of the endpoints of lines (cf. the sketch
drawings of chapter 3). An inherent feature of most CAD systems is that the position of
lines with respect to other lines are determined solely by means of endpoints. This is
somewhat restrictive in that it makes it awkward to express relationships such as ‘two lines
are parallel and displaced by a certain amount’, or ‘two lines are orthogonal to each
other’. Such general relationships cannot be easily expressed in systems which make use
of particular instances of lines with particular endpoint coordinate values. In conventional
systems, it is also difficult to maintain the consistency of an intended relationship should

the properties of a line change. Typically, the only way to do this would be to redescribe
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(by the deletion of existing lines and by the addition of new ones) that part of the drawing
in which the relationship occurs. Ideally, one would prefer the drawing machine to
maintain such consistency i.e. if the drawing changes, the relationship should still be valid.

6.2.1. Point Location

In conventional CAD systems, point location is the critical beginning of any drawing
operation. The problem is how to get points to be where you intend them to be. There are
essentially two responses to this question. The first comes from architectural practice, and
the second is the one actually used by the majority of CAD systems.

In architectural practice, one first draws straight lines of any length anywhere on the
drawing surface and then positions further points and lines by specifying geometric
constructs and distance values. The most commonly used constructs are perpendicular and
parallel, facilitated by the conventional use of T-squares and setsquares (figure 6-I).
Drawings produced in this way are influenced by the chosen geometric constructs, but are

dimensionally infinitely variable.

line 1 cut by perpendicular line 2 gives p1.
line 2 cut by line 3 parallel to line 1 gives p2.

| distance between lines 1 & 3 gives position of
l p2 with respect to p1 along line 2.
l

line 3 2
line 1 p

1

|

| line2

figure 6-1: Positioning points by geometric constructs.

The alternative response used in CAD systems, is to use some form of grid of points
or lines. The function of a grid is to predefine the parts of a drawing surface that offer
candidate locations for points in a drawing. Drawing then consists of planting points on
selected grid locations and linking points with lines that are not necessarily on grid. Grids

represent some logical ordering of dimensions that may correspond to the physical
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properties of objects that constitute a building, such as a structural system or a coordinated
component system. Grids may also come about as a consequence of properties of the
drawing surface itself, as in the case of computer graphics displays with associated
pointing operations. Drawings produced by means of a grid are influenced by the
dimensional system of any given grid.

In some CAD systems, these two approaches to positioning points are combined. It
is possible to position any point by specifying a geometric construct and distance value
with reference to one or more grid points. If the drawing surface favours the use of grids,
then positioning points off grid in this way incurs extra effort. This is a disincentive to
dimensional freedom.

The virtue of a grid, for the person doing the drawing, is that the dimensional system
governing the possible location of points is visible and, by locking a point on to a grid, the
point can be positioned exactly. For this virtue to be effective, a grid pattern needs to be
regular and, for visual clarity, the interval between grid points or lines as seen on the

drawing surface needs to be as coarse as the intended drawing will permit.

There is a distinction between the physical presence of a grid on a drawing surface
and the real-world dimensions which the grid represents, as in scaled drawings. The
physical grid interval needs to be as large as possible, whereas the real-world dimension of
the interval needs to be small enough to provide the dimensional variability appropriate to
the building objects represented in a drawing. This tension results in the need to change the
grid interval value as the scale of a drawing is changed. As the scale is increased, finer
detail becomes visible requiring a smaller grid interval value.

6.2.2. Sketching

Accepting the idea that a grid interval value may change and if the value can be
reduced close to zero, it then becomes possible to discuss free-hand sketching on blank
paper in terms of grids. Free-hand sketching can be described as conforming to a grid
where the interval is determined by how close the drawing instrument allows you to place
two separately resolvable points, at the scale at which you are drawing. On paper, using a
fairly average pencil, a 1:50 drawing may in effect be using a square grid with a real world
interval of 10mm. This effect is more apparent when sketching on a computer graphics
display, where the screen‘s resolution will set limits to the fineness of the drawing grid.
By going down to very fine grids you lose the benefit associated with a coarse grid. If you
scale up a sketch on a display, you will discover that points and lines are not precisely

where you intended them to be.
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figure 6-2: Regular and uniform grid pattern.
6.2.3. Grid Patterns

Considering grid regularity and size of interval, we get square grids with uniform
intervals of 300mm and 100mm for house design (figure 6-2). If the grid were irregular it
would bias the possible arrangement of lines in a drawing, and if the interval were finer it
would lose clarity at the scales at which general arrangement plans of houses are normally
drawn (1:100 and 1:50).

Some building construction systems (e.g. OXSYS [Bijl, Stone, and Rosenthal, 1979])
present regular rthythms of dimensions which can be abstracted and represented as grids.
Thus we get tartan grids and, less commonly, non-orthogonal grids (figures 6-3 and 6-4).

=N =



figure 6-3: Tartan grid.

figure 6-4: Non-orthogonal grid.

When different interests are represented in a drawing, such as the structural system
overlaid on the general arrangement of partitioning walls, doors and windows, we can get
different grid pattemns overlaid on each other. Thus we may have a tartan grid overlaid on

a square grid where the tartan may be a subset of the square grid (figure 6-5).
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figure 6-5: Superimposed grids.

A drawing may represent a building that has parts with varied structure or geometry
that call for different grids. Thus we can get discontinuous grid pattemns or grid orientation

over the surface of a single drawing (figure 6-6).

figure 6-6: Discontinuous grids.
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6.2.4. Optional Grids

When considering some detail part of a building, detached from a general
arrangement drawing, such as the section through a doorframe, it might well be appropriate
to call up a finer grid at a larger drawing scale. In practice, given a relatively small
number of dimensionally critical lines that constitute a detail, it is common to draw an
isolated detail with no grid. Instead, geometric constructs and distance values are used
(figure 6-1). The lines are thus positioned with respect to each other and to some datum
which permits the completed detail subsequently to be located with respect to a grid on the
general arrangement drawing (figure 6-7).

figure 6-7: Isolated detail with locating reference point.

After planting isolated details on a general arrangement drawing, it must be possible
to ignore the grid when joining up the separate details, as the drawing is being developed
to show complete fine detail. In the example of a doorway in a plan drawing, the section
details through the door frames will contain lines that do not lie on the coarse grid, and the
end points of these lines will be required as start points for further lines in order to draw
the door leaf, to show the completed door.

More obviously, the "grid off" state is also required when combining sketched objects
with precisely constructed drawing objects. It is necessary to be able to ignore the presence
of any coarse drawing grid.
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6.3. Construction Lines

In architectural practice, construction lines function in a similar manner to the grid
lines of CAD systems by offering candidate locations for points and line segments of a
finished drawing, but any pattern of construction lines may be infinitely variable. Indeed,
grids can be viewed as a special case of assemblies of construction lines. Every instance of
a construction line is positioned according to some particular anticipation of line segments.
Construction lines represent a specific anticipation of the geometric properties of real-world
objects that are to be represented by a drawing (figure 6-8).
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figure 6-8: Construction lines.

Viewed in this way, a regular and uniform grid of lines is simply a set of
construction lines arranged according to a loose anticipation of building objects. The more
precise our anticipation of building objects, so the grid pattern may become less uniform,
as in the case of tartan grids. Irregular construction lines are then an extension of this
progression, defining the locations of segments. Commonly, construction lines appear as
light pencil lines setting out a drawing, prior to being selectively overdrawn with final
inked segments.
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6.3.1. Locating Construction Lines

Because any pattern of construction lines is irregular, it is not possible to create a
pattern by using an expression describing regular drawing operations. Unique effort is
required to position each construction line. This effort is dependent on knowledge of the
building objects that are to be represented by the drawing.

The task of drawing construction lines is subject to the same considerations that were
made about grids. Construction lines may be positioned with respect to other construction
(or grid) lines, employing geometric constructs plus distance values, or they could be
positioned directly along selected points of a regular grid.

6.3.2. Construction Sub-Pictures

If knowledge of building objects is purely in terms of their geometry, and if the
purpose of the drawing is solely to convey a graphic picture of the building objects, then
the location of construction lines can be decided solely with a view to establishing the
location of the subsequent segments that will depict the building geometry.

Location of construction lines may be decided one at a time, or construction lines
may be grouped and preassembled (anticipating composite geometric properties of the
building objects) and the assemblies positioned.

As a simple example, a building may be known to possess walls which in section
present a constant geometry of parallel lines with a known distance between them, but with
variable length. The construction line assembly may then consist of parallel lines with
fixed distance apart and indeterminate length, and subsequent segments would then be
defined as segments of the construction lines (figure 6-9).

6.3.3. Parameterised Symbols

Commonly, the purpose of a drawing is to say something about a building during its
design and construction. The purpose is to explore questions of the form ‘what if ....°,
‘where is ....", ‘what is the result of this function applied to ....", ‘how much ....", relevant
to the perceptions of architect, client and builder. In reconciling differences in perception,
most questions lead back to the "what if" question that is central to design and has a

dominant influence on drawing operations.

It is this that has lead to thinking of drawings as constituting a symbolic language.
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line segment

figure 6-9: Stretchable wall symbol.

Lines are formed into symbols that convey meaning and the requirement to convey
meaning determines the arrangement of lines (cf. chapter 1). As people’s perception of a
building develops and changes during the course of its design, so the meaning read from
the drawing has to change and the symbolic objects that constitute the drawing also have to
change. We get the familiar view of continually changing and never finished drawings.

This view of drawing introduces uncertainty into the task of positioning lines. There
is no fixed and correct target. Any line may have to be moved, subject to the need to
preserve intended meaning associated with a collection of lines of which it is a part. For
example, in parameterised symbols, lines are associated with collections of other lines and
the parameterisations are expressed as relative values. A line might be associated with
more than one other collection of lines and the relative values may be constrained, to
conform to properties of building objects.

If we return to the earlier example illustrated in figure 6-9, we may know that
buildings in general possess walls whose section can generally (but not always) be
represented by parallel lines, but the distance between the lines may vary as well as their
length. A parameterised symbol for walls may consist of two construction lines positioned
alongside each other, and the symbol requires values to be set for the distance between the
lines and (for tapering walls) the change in distance apart over a unit length (figure 6-10).

=7 f) W=



\/Iine segment
\

P—
—
—

% variable distance value

fixed length +

-

figure 6-10: Parameterised tapering wall symbol.

The values may be bounded if, for instance, we consider that a wall is no longer a
wall when its thickness is greater or less than specified amounts, or if its width is greater
than its length (figure 6-11).

\<line segment

Is this a wall too?

figure 6-11.

If we add to our knowledge of walls in buildings further knowledge of materials from
which walls are constructed, we can then set conditional values for the parameterised wall
symbol, dependent on specifying choice of material. Thus a brick wall may result in
parallel construction lines drawn 300mm apart. Similarly, if we know the implications of
where the wall is placed within a building on wall thickness, an inside brick wall may
result in parallel construction lines 250mm apart.

6.4. Segments

Grids and construction lines have been described as devices for positioning line
segments. Grids and construction lines provide points, lines and assemblies of lines from

which points and line segments can be selected to construct drawings. Segments can be
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described as objects that represent edges of building objects. Collections of edges may be
interpreted as surfaces or volumes and further (non-geometric) properties can be attached to

these derived objects to arrive at a useful description of a building.

There is a link between thinking about building objects and drawing these objects.
When we consider positioning and assembling segments, this link becomes increasingly
important.

Once a designer knows what a drawing is supposed to be a drawing of, the problem
of actually positioning segments on a drawing surface is one of knowing which segments
are needed, where, connected to which other segments. The answer lies not in the drawing
operations but in the designer’s perception of the building that the drawing is intended to
represent. The drawing operations must then enable him to draw what he decides is
necessary, and these operations must permit him to change the drawing as his perception of
the building changes.

Returning to the example illustrated in figure 6-10, the representation of a wall
becomes a little more complex if we consider junctions between walls of varying thickness.
Consider a T junction where the upper left leg, B, is thicker than the upper right, C, and
lower, A, legs (figure 6-12).

A

figure 6-12: T junction.
If, for any reason, wall A has to be shifted some distance to the right, what happens
to the junction? Does the thicker wall B extend to the right along with wall A, or does

wall A simply move along wall C leaving a kink in the new wall B, and what sort of

junction or gap exists at the new junction between A and C (figure 6-13)?

.o



""“""""‘I

[ A

(a) (b) (c)

figure 6-13: Possible effects of moving wall A.

These questions can only be resolved by knowing what the drawing means, which
may not be evident in the drawing itself. The answers will reflect values which are also
not visible in the drawing. For instance, why is one wall thicker, and is the reason at all
connected with the other two walls, and what is our tolerance of kinks and gaps? The
thicker wall may form part of a support structure which is unconnected with the thinner
walls but, since we do not tolerate meaningless small kinks or gaps, the thick wall may
extend if wall A is shifted less than a certain amount. Thus we may decide on the first
solution shown in figure 6-13 (a), and our decision would have to be reflected in the

drawing operations used to draw the junction before and after it has changed.

If in setting up the drawing of the junction we had first employed construction lines
(figure 6-14 (a)) and indicated that wall A extends to the construction lines passing through
a and e and intersecting at b, and if we have indicated that points a, ¢, and e, d, similarly
define the extent of walls B and C respectively (such that B meets C along bc), and if we
have also declared that line ab is common to walls A and B, then the desired junction as a
result of moving A will appear (figure 6-14 (b)).
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figure 6-14: Recovering construction lines to specify new junction.

Altemnatively, if line af had been indicated as terminating wall A and not common to
both wall A and wall B, the in figure 6-13 (c) would appear.

We have described the decomposition of the junction as though it has to be decided
when the junction is first drawn, and the prior decomposition then determines the effect of
any subsequent modification. But, if we regard the drawing as an object with its own
integrity, independent of any building object that it may represent, then all the variants in
figure 6-13 (and more) are legitimate. Someone altering the drawing, not necessarily the
original draughtsman, may require a different result than the one dictated by the prior
decomposition. It then becomes necessary to be able to respecify the extent and
connectivity between the parts to produce a post-hoc decomposition of the junction.

This somewhat heavy explanation results from an attempt to offer a rational
description of conventional drawing practice. A person drawing would resolve these issues
spontaneously to achieve a specific goal, following the same logical path. Incidentally, the
drawing operations outlined in the T-junction example apply equally to non-orthogonal

junctions, where walls join each other at angles other than 90°.

A further step in complexity of drawing operations is introduced when we consider
interpretation of collections of segments as derived objects that relate to our perception of
building objects. These derived objects may be bounded subsets of the 2-D drawing
surface which we understand as polygons, and the polygons may represent 2-D surfaces or
section planes through building objects. Further derived objects may be assemblies of

segments on the drawing surface which we understand as polyhedra representing 3-D
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properties of building objects. We then have to know which segments describe which
derived objects, which segments belong to more than one such object, and the nature of
attachment of segments to these objects. What happens if we remove, change or add
segments? Similarly, what happens if we change properties associated with derived objects
that affect their edges and the corresponding segments? Again the answers lie more in the
draughtsman’s perception of the building than in the drawing operations that are visible on
paper. To discover what is happening when a person draws it would be necessary to get
people to voice their knowledge of buildings as they draw.

An illustration of the kind of problems that emerge can be found in housing site
layout [Holmes, 1979]. The goal of a layout drawing is to map all the real-world objects
that completely cover a site so that each object is represented by a polygon, all polygons
are completely bounded by other polygons, and all the edges that describe polygons can
individually be assigned properties derived from the contents of the pairs of polygons that
they bound. Typically, polygons represent houses, garages, footpaths, roads, gardens and
communal open space, and lines represent edge details such as kerbing between grass and
tarmac. As the drawing progresses, more lines are added forming more polygons that
represent more site objects. New polygons may change existing polygons by, for example,
sub-division or overlapping. A footpath may sub-divide the front lawn to a house, yet the
two halves of the lawn may have to be retained as a single object for purposes of assigning
properties. Edges of polygons may overlap or fail to meet, requiring adjustment of the
shape of objects to achieve common boundaries. A house is a hard edged object, whereas a
path may be viewed as relatively soft edged and a lawn still more so. Thus if there are
edge conflicts the lawn will give way to the path and the path will give way to the house.
Such combined set operations and dominance ordering is common during drawing
operations, even if executed spontaneously by people as they draw. Although this kind of
operation is common, instances tend to be executed uniquely depending on the state of
knowledge about the objects that are being drawn.

So far, we have described a range of drawing operations related to grids, and the
ways in which they are treated in conventional CAD drawing systems. It has been shown
how construction lines, when treated as primitive graphical objects, can not only support
these conventional operations, but also, because of their function in the logical description
of drawings, may be exploited by a reflective drawing system, i.e. a system which models
the intentions of the designer using it. We will now illustrate the difficulties of using

conventional CAD techniques with reference to the construction of an actual drawing.
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6.5. Illustration of how conventional CAD techniques do not support the kinds of

operations used in architectural practice

We will focus in this section on a worked example based upon one of the most
predominant paradigms used by architects when they design, namely, detailing. Detailing
implies understanding of relationships between parts of design drawings, and corresponding
parts of detail. This entails knowledge of attachment relationships between parts. The
previous chapter indicated the problems associated with the integration of fine detail into
already-existing coarse sketches. In a CAD system, one would like to be able to draw a
detail, and have it integrated into all the places it ought to occur. Specifying which places
these are needs to be done explicitly (in the absence of a general and powerful spatial
pattern recognition system). Given a detail, and a place to put it, exactly how to insert the
detail can still be obscure. From chapter 4, it is evident that one needs a systematic way of
mapping points and lines at one level of detail into points and lines at another level of
detail. Here we will concentrate on the actual construction of a drawing of a particular
detail, from which it will become evident that conventional CAD systems do not give

adequate recognition to the qualities of this prevalent architectural paradigm.

This example will be developed using the Macintosh MacDraw and MacDraft
programs [Apple Computer Inc., 1984]. There are of course other CAD drawing systems
that offer different and variously more sophisticated functionalities, and it is difficult to
select one as being truly representative of all drawing systems. The problems that will be
discussed can be illustrated by the use of MacDraft and MacDraw as they are not resolved
by other commercially marketed systems.

Consider the drawing of a steel roof truss shown in figure 6-15, [Jackson, 1962]. We
can put ourselves in the position of a structural engineer intending to produce detail
drawings of each of the joints shown for an architect, and focus on the joints at b and c in

particular.
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figure 6-15: a roof truss structure

We can begin by drawing a basic symbol for angle beams which are used for all the
members. Suppose this is as shown in figure 6-16.

figure 6-16: Angle beam symbol

Because the beams used for different members are likely to be of different sizes, we
hope to be able to scale and stretch the symbol accordingly. Having done the force
calculations for each member in the structure, we can set about drawing the details for each
joint. At ¢ for example, four members meet. Structural calculations show that members ac
and bc should both be 2.5" x 2" x 0.25" angle beams. Members ¢d and ce are both 3" x
2.5" x 0.25" angle beams, and can therefore be depicted by symbols of relatively greater

size. The configuration consisting of the four members meeting at ¢ looks like figure 6-17.
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figure 6-17: Junction ¢

Members ac and bc are represented by rectangular symbols of the same size. The
symbol depicting bc can be derived from the symbol depicting ac using the MacDraw
facility for rotating objects through a fixed angle of 90°. Member ce can also be produced
using MacDraw by scaling in one direction only in order to provide the different relative
size in relation to the size of ac. Member cd, however, which meets the other members at
an angle of 45°, cannot be produced solely from within MacDraw, since MacDraw
(version 1.9.5) does not have a facility for rotating objects by angles other than 90°. By
using the Macintosh clipboard facility, however, this picture can be transferred to be
operated upon by MacDraft which allows arbitrary angle rotation, so that cd can be rotated
by the required amount. MacDraft does have a disadvantage, however, in that the only
scaling function it has is one that scales any given object equally in both x and y
directions. Therefore any scaling in only one direction can be done only by using the
clipboard, this time in the reverse direction, such that the picture can be operated upon by
MacDraw.

Here we can identify a general problem. Any CAD drawing system offers certain
operations on certain collections of lines that form pictures, or sub-pictures. These
operations rest on certain assumptions about the representation of pictures. No one system
will allow any user to declare any arbitrary operation on any arbitrary collection of lines,
that does not conform to its assumptions. The problem presented by existing systems is
that their assumptions are built into implementations at too high (or specific) a level of
abstraction, resulting in conflict with users’ intentions in circumstances where more general
operations are required. This points to the need for representations for drawing objects and

operations that allow users to describe operations as specialised or as general as is required
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in any particular context. Such a representation should be implemented in a manner that
remains accessible to users, so that users can declare what operations, to what degree, are
to be applied to what collection of lines.

A more demanding test for the Mackintosh drawing programs is presented by the
junction detail at b, where three members come together. From the force calculations, it
has been deduced that member ab is of the 3" x 2.5" x 0.25" type. Members bc and cd are
both 2.5" x 2" x 0.25". The drawing of the detail using conventional CAD systems such as
the MacDraw/MacDraft systems can proceed as indicated above for junction c. The three
symbols representing the members ab, bc, and bd can be positioned as in figure 6-18.

— d

figure 6-18: Junction b

Now suppose that one of the intentions of the structural engineer is to preserve the
continuity of the outer structural members, for whatever reason; the reason might be to
provide added strength in joints where two or more compression members meet, or to be
aesthetically satisfying. This implies that the ends of members ab and bd will have to be
tapered to provide a tight fit. How does one go about depicting such a tapering using
conventional systems? One would intuitively like to grab hold of one comer of a symbol
and pull it out a little, at the same time leaving the other endpoints of lines that meet at
this comer fixed. Once a taper of a certain angle has been obtained on one of the members,
one might want to extend the tapered end further whilst preserving both its angle and
attachment relationships between connected segments. This process could then be repreated
for the other member, ensuring that the tapered end is parallel to the tapered end of the
first member. A more sophisticated system such as MacArchitrion [MacArchitrion, 1987]
provides a ‘move point’ function which allows an endpoint of an existing segment to be

moved, together with a ‘move node’ function, which allows a node to be moved to a new
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origin by shifting the segments attached to it. However, neither of these functions allows
one to further describe other properties that one might want to preserve throughout the
transformation (such as an angle or length value for example), nor to selectively include or
exclude any segment from the transformation. The intention of moving a node whilst
preserving the angle value of one of the segments at this node, and at the same time
preserving attachment relationships between segments, is one that is not handled by
conventional CAD systems. Such a goal involves a non-standard way of transforming
graphical objects. Typically, the members ab and bd would have to be redrawn as newly
defined pictures showing tapering ends.

The general problem that is identified here is the problem of applying transformations
selectively to parts of symbols, or to selected constituents of sub-pictures. Systems need to
support arbitrary partial transformations. An implication is that the logical representation of
drawing objects and transformation operations must allow a user to describe an operation

with reference to parts that are to move, in a context of parts that are to remain stationary.

In redrawing the members ab and bd, these had to be drawn as sets of four lines (no
longer Mac boxes). For member ab, this procedure had to be carried out prior to rotation
to its correct position. We then have a new version of figure 6-18 which is logically
different from it. Only now are we in a position to delete the ends that need to be
modified, as shown in figure 6-19.

figure 6-19: Junction b redrawn

The question of where to put the new ends is problematic. An apparently obvious
place to put them is at the bisection of the angle between the two members. The angle

between the former ends of the two members was 45°, resulting in a bisection of 22.5°.
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The principle of bisection for drawing tapers is made use of in more sophisticated systems
such as MacArchitrion and Autocad [Autocad,1987]. In MacArchitrion, this is known as
the ‘L-Join’ function, and in Autocad, as the ‘trace’ command. Suppose, however, that the
user realises that machining of a 22.5° angle is very difficult, but that it is known that
standard machined tapers are available at intervals of 15°. A possible solution that would
allow members ab and bd to meet as required would be to put a 30° taper on bd, and a
15° taper on ab (figure 6-20).

\

\

Sfigure 6-20: Tapered Ends

The actual placement of the new tapered ends is problematic using conventional CAD
systems such as MacDraft/MacDraw, since these ends will certainly not meet lines that
were ptéviously adjacent to them at the same points. The technique that was used in the
construction of figure 6-20 was to first extend in length the outer lines of each member
along their current angles until they meet (indicated as dotted lines in figure 6-21). The
tapered ends can be located by drawing a construction line of screen angle 120° from this
intersection point, as shown in figure 6-21, after which the inner lines of each member
have to be redrawn. To ensure that lines meet, one has to rely upon eyeballing unless
locking mechanisms are provided (e.g. the ‘L-Join’ or ‘T-Join’ functions in
MacArchitrion). Finally, the extended lines have to be redrawn at the correct lengths in
order to obtain figure 6-21.
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figure 6-21: The Construction of Tapered Ends
By adding detail such as rivets, plates, and lines of force, we get figure 6-22.

Suppose now that the angles of tapers on both members have been evaluated, and we
later want to produce the detail drawing for the junction at f. It would be useful to be able
to make use of the angles that were evaluated at b; in other words, to parameterise the
angles of tapers at f in relation to the angles of tapers at b. Parameterisation might also be
required at either of these joints, by describing one of the angles with reference to the
other, such that when the angle of one tapered end changes, so does the other.

There is a general difficulty in specifying intended spatial relationships in
conventional CAD systems, which stems from the type of representation they use. The
representation of objects used in most conventional CAD systems consists of lists of
Cartesian co-ordinates. Two types of move are allowed: namely translation and rotation.
Each of these is described in terms of changes to the co-ordinates of points of an object.
Objects can be moved around in the reference co-ordinate frame by using combinations of
translations and rotations. The problem with a co-ordinate approach to the construction of
spatial relations, however, is that spatial relations (understood in some algebraic form) are
typically ancestral to co-ordinates i.e. one may know the desired spatial relation (e.g. extent
of a line or face, relative angles of lines, contiguity of regions, intersections of lines,
interpenetrations of regions, etc.) without necessarily anticipating the co-ordinate location
of graphical parts in order that these relations can be satisfied. If a CAD system cannot
support the expression of intended spatial relations, then it is inadequate in comparison to
traditional methods, which, through their provision of a variety of implements (rulers,

compasses, set-squares, t-squares, etc.), allow architects to construct such relations.
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6.6. Summary

By observing the deficiencies of conventional CAD systems, we can identify
requirements for systems that support the kinds of operations used in architectural practice.

The most fundamental criticism of conventional CAD systems stems from the lack of
recognition given to the importance of the role of the person using the system - the lack of
teleological thinking that lies behind their design. Teleological concepts - such as functions,
goals, purpose, choice, and free will - are an integral part of design in general. According
to Checkland [Checkland, 1981],

"Man as designer is a teleological being, able to create means of enabling ends to be
pursued, and to do so on the basis of conscious selection between alternatives.”

Conventional CAD systems prescribe the alternatives available to users when
depicting and transforming objects. There seems to be a serious mismatch in conventional
CAD systems between depictions and their representations. Of course we can never expect
to have a ‘complete’ representation of any depiction. We can always ‘read in to’ a picture
more than is represented by any formal system. However, given a formal representation,
we should expect that users can exercise their teleological instincts by expressing new
relationships between represented parts, and to define new types with reference to known
objects. The junction detail example can certainly be drawn using conventional CAD
systems, but with a lack of correspondence between the drawing of the junction, and the
intentions of the user producing the drawing.

Ideally, representations for drawing objects and operations should allow users to
describe operations as specialised or as general as is required in any particular context.
Specialisation, however, will always be limited by the primitives known to the system.
Starting with known primitives, however, generalisation is in principle unbounded. Rather
than have a system which provides relatively high-level system defined operations, it is
preferable to aim for systems that provide only low-level operations upon low-level
primitives, together with means for user-definition of more complex operations upon more
complex objects.

Any representation environment should be implemented in a manner that remains
accessible to users, so that users can declare what operations, to what degree, are to be

applied to what collection of lines.

A CAD system should support the application of transformations selectively to parts
of symbols, or to selected constituents of sub-pictures. Systems need to support arbitrary
partial transformations. An implication is that the logical representation of drawing objects
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and transformation operations must allow a user to describe an operation with reference to
parts that are to move, in a context of parts that are to remain stationary.

CAD systems should support the expression of intended spatial relationships between
parts of drawings. The facilities for the expression of such relationships should be in a
form which subsumes, rather than is different from, or in opposition to, those
functionalities available in traditional practice. The expression of relationships in algebraic
form is one way of achieving this aim. Reliance upon co-ordinate descriptions and relative
co-ordinate frames is not.
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Part Two

An Environment for the Representation of Drawings

"To-day we have naming of parts. Yesterday,
We had daily cleaning. And to-morrow morning,
We shall have what to do after firing. But to-day,
To-day we have naming of parts."

[Henry Reed, Lessons of the War: Naming of Parts, 1946]

- 87



7. A Representation Environment

7.1. Introduction

This chapter will outline in a general way a representation scheme which will be used
to represent design objects. It will be described in as general a way as possible since a
multiparity of implementations of the representation environment have emerged over a
period of time, with each implementation itself subject to change. The representation
environment was an essential component in the initial development of the drawing machine
that will be described in the following chapter [Steel and Szalapaj, 1983]. It was
subsequently developed in more detail [Bijl and Szalapaj, 1984, Szalapaj and Bijl, 1984].

Since then, the predominant concermn of this thesis has been in the use of the
representation scheme to support the representation of graphical objects having particular
properties which allow user-controlled distortions of shapes - a powerful feature which I
consider to be the central contribution of my thesis work [Szalapaj, 1987]. Parallel
EdCAAD/SERC research has included a formalisation of the representation scheme
[Krishnamurti, 1986]. The philosophical implications of how a formalism such as the
representation scheme of the representation environment can assist or restrict users of any
system that depends upon it, are explored in [Bijl, 1989]. Current EQCAAD/SERC research
is concerned with the functional specification of an integrated CAD modelling system to
support evaluative techniques that are used in building design [Tweed, 1986].

7.2. Primitives for a Representation Environment

7.2.1. Describing Things in terms of Parts and Properties

The quintessential element of the representation environment is the description.
Things, including graphical objects, get represented by means of descriptions in the
representation environment. A description is a set of parts each consisting of an attribute-

name, part-instance pair, e.g.
My_house = {roof=Tiled, door=Brown, no_of_bedrooms=3}.

Attribute names are unique within a description. They can refer to logical parts or
properties of any kind of thing. Part instances need not be unique and may occur in
different parts of a description. A description may consist of any number of attribute-name,

part-instance pairs.
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7.2.2. Kinds, Slots, and Fillers

Using terminology that is common to certain object-oriented representation systems
such as KRL [Bobrow and Winograd, 1977], we can interpret attribute-names in terms of
two further basic constituents, kinds and slots. An attribute-name in general then consists
of a kind name plus any number of slot names denoting a path to a part-instance of the
kind e.g.:

K:sl:52:53:..........:sn

where:

K is a kind name,
s, is a slot name for some attribute of K,

successive slot names (s ......sn) are linked through kind names which are not

T
included in attribute-name expressions.

The entity that an attribute-name refers to is called a filler (figure 7-1).

Kind names can refer to any kind of thing, concept, event, function or object. In this
context, drawings and drawing primitives can be regarded as objects. Kinds refer to
something that is to be described and which may form part of a description of something
else. Filler names represent the parts of some thing that, as yet, have no further
description, the bottom level of any current parts hierarchy. Slot names name parts of a
description and slots are the means for attaching fillers to a kind. Operators are required
for linking these elements in different ways to build up descriptions of whatever a designer
may have in mind.

PARTS HIERARCHY

any kind of thing, objects
events, functions ...,

naming parts of kinds,

and

figure 7-1: Constituents of the Representation Environment

parts of descriptions of kinds.
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The notion of description that has been defined above employs a notion of parts that
all belong to a single entity type, represented by kinds. The descriptive power of the
representation environment relies wholly on relationships between part-instances. In other
words, there is no reliance upon any form of entity typing that corresponds to typing of
parts in some user domain.

Descriptions may arbitrarily have slots and fillers added, replaced and deleted.
Further operators are needed in order to reveal names of existing kinds, fillers and slots,
and the structures of existing descriptions. More complex operators, such as those for
copying descriptions will be described in a later section.

PARALLEL STRUCTURES OF THINGS AND DESCRIPTIONS

REAL WORLD  <---emmmemmeeee DESCRIPTION
THINGS
ANY KIND OF  <-eccmccccmmanaas KIND
THING I
| | slots
| I
PARTS OF parts of ) FILLERS
THING description)

The naming convention is to use upper case names (i.e. names beginning with upper
case letters) for kinds and fillers, and lower case names for slots. Kind and filler names
may be defined by the user or system-generated. Typically, names will be assigned to
empty fillers when they become kinds and receive their own further descriptions, taking the
name of the slot that names the part which is the filler. Kind names are automatically
given instance identifiers which are incremented whenever their descriptions are changed
(see § 7.4.). Slot names are always declared by the user. Operators are generally
represented by symbols, such as <+ for add to, <= for replace with or <~ to make a variant
of.
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7.3. Basic Operations

Given the primitive constituents of the representation environment as described
above, it is necessary to define precisely the operators that will work upon them to produce
representation structures. In the simple case, things (represented by kinds) are described in
terms of parts and properties (fillers of slots). Typically however, descriptions of things are
relative to descriptions of other things ("John’s coat is like Chris’ but has more holes in
it."). Relative descriptions can refer to specific individual properties ("The colour of Chris’
door is the same as John’s."). Such interdependence of description ought to be reflected in
any representation environment. We will take the ability to be able to express such
descriptions as a starting point for the definition of basic operations within the
representation environment, and use diagrams to illustrate their effects.

We start from a world description of two kinds A and B, as in figure 7-2.

A B

World consisting of descriptions of
two kinds A and B.

figure 7-2

One of the most basic operations that can be carried out is shown in figure 7-3.
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A <+ [slot_B=B]

But B still has its independent
existence, and may be part of
some other description.

figure 7-3

<+ is the operation of adding a part to a description, and can be interpreted as
meaning the addition of the right to the left. As well as adding an explicitly specified
part as shown in the example ( A <+ [slot_B=B] ), this operator can be used to add
unassigned attribute-names ( A <+ [b] ), or any combination of the two (e.g. A <+
[b, c=C, d] ).

The example given above (adding an extant part to a kind) necessitates the explicit
specification of a name for the part to be added. Using the <+ operator to update the
description of a particular attribute-name rather than the description of a kind, can be
achieved by constructing an attribute-name from the kind that is having a part added,
followed by the name of the part that is being added to it. This attribute-name can then be
used on the Lh.s. of the <+ operator, followed by a kind name on the r.h.s. (or some other
attribute-name which refers to a kind). Thus A:slot_ B <+ B is equivalent to A <+
[slot_B=B].

7.4. Instances and Inheritance: the operational semantics of <+

The operator <+ , has been referred to as the add operator. This is a reasonable
description whenever the Lh.s. of the operator is a kind, and the r.h.s. consists of slots and
fillers. The effect of the <+ operator is effectively to link the description of B to A via
some explicitly specified slot name. It would be wasteful to have to copy over the whole

of the description of B into A's description, and preferable therefore for the operator <+

0



to assert that A's B is a new instance of B, whose description is elsewhere. A’s B
continues to inherit B's description, but itself becomes part of A’s description. The most
common occurrence of instances arises when a new kind is being introduced into the
representation environment, and is given the description of a kind which already has a
description.

Instance relationships are implicit inheritance relations established within the
representation environment. If an inheritance relationship was set up as a consequence of
using the <+ operator to link the description of one kind to the description of another (e.g.
A <+ [slot_B=B] as in the example above), then subsequent changes to sub-parts of any
instance so created have the effect of taking precedence over corresponding inherited sub-
parts. We can label this form of inheritance as instance inheritance.

With instance inheritance therefore, a kind appearing on the r.h.s. of the operator <+
becomes a new instance of its former self (initially receiving the same system-generated
instance identifier). The new instance becomes the child of its parent instance. The child
instance continues to inherit the description of its parent, but any change to any inherited
slot will have the effect of superseding that inheritance. This means that if the filler to a
slot of an instance is changed, then the changed filler takes precedence over the equivalent
inherited filler. This remains true even when the parent’s description changes.

To ensure that changes which are intended to be local to particular kinds are not
propagated to other kinds, the representation environment operates a general rule which
says that:

For any change to a part-instance that is accessed by an attribute-name beginning
with a kind name K, all kind names along the path described by the attribute-name
will have their instance identifiers incremented by one.

The effect of this is that the description of K and only K will include a changed
description which retains the same attribute-name but receives a new part-instance. A
simple illustration of this process is shown in figure 7-4.

o o
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A:slot_B <+ [f=FOO] I B .
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A’sslot_B. gets created.
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figure 74

Assuming that B was initially made a part of A by means of A <+ [slot_B=B],
suppose that a part of B with attribute name f, was now changed rhrough A from some
initial value to FOO. In order to ensure that this change is local to A, a new instance (B~ 1)
of B needs to be created having the changed filler, and replacing the old instance.

Any part of a description of a kind can be passed along a chain of successive child
instances, provided that each successive instance has been declared using the <+ relation.
However, nothing that happens locally to a child instance can affect descriptions of its

parent instance or any successive grandparents.

Thus, if a particular instance of kind B is to be included in the description of kind A,
and this instance already exists in another description, say C’s q part, and it is desirable for
B’s q part to be modifiable through B itself (rather than by having to access C), then this

can be achieved as shown in figure 7-5.
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B : q <+ C:q

figure 7-5

If the system knew of C’s q part as instance Q 44 then it would make B’s q part Q 44
as well. In the case of instance inheritance, it is preferable for a user not to have to know
about such things as instance identifiers. The same effect as the above expression could
therefore be achieved by:

B:q <+ Q.

This expression basically says that B’s q is Q (i.e. that Q which exists as part of C’s
description), letting the representation environment take care of instance identifiers. B's
and C’s instances of Q would initially have the same description consisting of further slots
and fillers, until B’s q part gets changed. B would continue to see any subsequent changes
to C’s Q, provided those changes are not preceded by local changes to B’s Q. Instance
inheritance therefore is affected by the subsequency (and hence supersession) of local
changes to fillers of inherited slots.

A further important observation to be made about instance inheritance is that any new
instance can have only one parent instance, or a single linear chain of antecedents. We now
look at a common way of viewing inheritance relationships, and show how this can be
implemented in terms of instance inheritance.
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7.5. The Expression of Variant Relationships

Instance inheritance is an implementational mechanism which supports the inheritance
of properties between object descriptions. From the psychological point of view, it is often
convenient to think of objects as being in some ways like other objects, or, in the old KRL
terminology [Minsky, 1975], "seeing-as". For example, a "POT" can be seen as some sort
of container, or as a shot in snooker which has the effect of pocketing a ball, or as some
other thing. If "POT" had yet to be defined within the representation environment, but
"CONTAINER" and "SHOT" had, then it should be possible to define "POT" in terms of
both "CONTAINER" and "SHOT". In other words, "POT" is a variant of "CONTAINER"
and of "SHOT", and can inherit properties from both.

Variant relationships therefore, are explicit (and possibly multiple) inheritance
relationships which need to be expressed as such by a user of the representation
environment. Variant inheritance allows for multiple views, and is therefore concerned
with the selection of attribute-names from a potential multitude of ancestral bequeathers of
identical slots. The representation environment has therefore, when supporting a change to
the filler of a slot of a kind, to provide a mechanism for identifying where the slot is:
whether it is local to the kind itself, or within the description of one of its ancestors. This
is the case since the same slot name may exist as part of the local kind description or part
of the descriptions of any of its ancestors.

There are several possible ways of providing such a mechanism, the least complicated
of which is to do it in terms of the already existing instance inheritance mechanism. This
can be done simply by creating new child instances of parent kinds, and then attaching
these newly created part-instances via appropriate slot names to the required kind. In the
"POT" example, with "POT" inheriting properties from both "CONTAINER" and "SHOT",
suppose both "CONTAINER" and "SHOT" have a "unit_of volume" slot filled by
"CUBIC_CENTIMETRE" and "DECIBEL" respectively. What will the "unit_of_volume"
slot of "POT" be filled by? There are two solutions, each dependent upon the context of
description that is being looked at. It has already been shown how contexts can be
described by means of attribute-names. For example, something like
"POT:as_container:unit_of _volume" would refer to "CUBIC_CENTIMETRE", and
"POT:as_shot:unit_of_volume" would refer to "DECIBEL".

In conclusion, therefore, we can sece how the psychological mechanism of variance

can be implemented in terms of instances.
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7.6. Deletion

7 %
/ \
A:slot_ B <- B I B '
\ /
\ P
~ -
B is no longer But may still
a part of A. exist elsewhere.

figure 7-6

Equally basic is the operation of deleting a part from a description, as shown in
figure 7-6.

<- means delete the right from the left. At the simplest level, this is used to
remove parts from descriptions, e.g. A <- [c].

7.7. Breaking of Inheritance Relationships
Users have the power to break inheritance relationships.

A - left is no longer to be an instance of right e.g. one kind is to discontinue
inheriting changes to the description of another kind (A <\ B).

When an inheritance is stopped, the currently inherited description is copied to the
inheriting instance which can then continue to exist as an independent kind with a new
kind label.

=07 .



7.8. Copying a Description

A's description is same as B's.

figure 7-7

Make the description of the kind on the left the same as that of the kind on the right.
No inheritance takes place. A new kind (A) is created and B’s description copied into it.

7.9. Merging Descriptions

A < B '
\ /
\ /

A has whole of B added,
including parts that were the same.

figure 7-8

The kind on the left becomes an aggregation of its own original description together
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with the description of the kind on the right. In this case the whole of B's description
becomes merged with that of A, and the kind B disappears. B may still be referenced
within other descriptions, but the description of B will be empty (until redescribed). The
difference between <> and <+ is that with the former, no new part-instance relationship is
created. The usefulness of <> will become more obvious in chapter 11.

7.10. Renaming Descriptions

A << B | B~1 1 | B '

\ / \ /
\ / \ P4
-~ - -~ -

A disappears. It is replaced by B~1.

figure 7-9

<< - within the context of the description on the left hand side, replace every
occurrence of the named kind on the left with the kind name on the right. The changed
kind becomes a new instance of the kind on the right. Again, the usefulness of << will
become evident in chapter 11.

7.11. Indirection

Indirection is an instruction to view an instance of a part of another kind. It is a
mechanism which will be used frequently in setting up relationships between graphical
parts (see following chapter).

An indirection is invoked in the representation environment by the symbol >>, which
establishes a relationship in which no change can be specified from the viewing kind - this
is a view only slot. An indirection slot ensures that its kind sees only the viewed kind, and

goes on seeing any changes that might subsequently be made to the viewed kind.
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Returning to the earlier example, we now want kind B to see another kind and its
description, C’s Q, but without any intention to change the description of the viewed kind
from B. This can be done as indicated in figure 7-10.

B :q >3 C:q

figure 7-10

The system’s interpretation would be the same as before, but in this case any change
to the description of Q can be made only from C. For example, in adding D to the
description of Q, as in figure 7-11.

figure 7-11
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Such a change would mean that the representation environment would then know of
B:q:s, and that the filler of this slot was also D.

7.12. Naturalness of Representation

The most natural representation for any problem domain can never be determined
objectively, but varies with different people, and even with different states of mind.
Typically, the most natural and uniform representation for any system is always the most
psychologically convenient one. According to Goodman [Goodman, 1966], the degree of
naturalness does not affect the legitimacy of any system, but may affect efforts to
determine what Goodman calls the criterion of extensional isomorphism. Basically, the
criterion of extensional isomorphism is concemed with whether or not a reference to
something in terms of explicitly named entities refers to the same thing as that referred to
by an altemnative description obtained by replacing these entities by their definitions. In
other words, this criterion is satisfied when there is an equivalence between extensional and
intensional objects.

Extensional isomorphism would only become problematic in our system if it allowed
the expression of intensional statements which did not get evaluated. For example, suppose
the user tries to set

Kitchen7:floor:covering <+ linoleum.

One can see that a user may want to construct such expressions, and one can
envisage how such an expression might be preserved in its intensional form by storing it in
the knowledge base in exactly the same way as it is expressed. Suppose Kitchen7 is then
given a floor, Floor64 say, which is given a covering of linoleum. This is done by means
of two separate evaluable expressions, an evaluable expression being one which consists of
a Lh.s. which is a kind (rather than a part-name), and a r.h.s. which is a list of slot-filler
pairs. The evaluation of an evaluable expression entails the assertion of facts about kinds,
slots, and their fillers.

Kitchen7 <+ [floor=Floor64]. Floor64 <+ [covering=linoleum].

In this case, everything is fine, since the stored intensional description is isomorphic
to the extensional objects that have been asserted as kinds, slots, and fillers. Suppose now,
however, that Kitchen7 is given a new floor, Floorl1, say, which happens to be already
covered in tiles.
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Kitchen7 <+ [floor=Floor11].

In this case, the old extensional references are deleted, and replaced by new ones
referring to Floorll. The intensional description, however, remains, and contradicts the
extant extensional objects. Furthermore, a system which considers all expressions to be
intensional would be even more inconsistent since new intensional expressions are likely to
contradict earlier ones.

The system as it stands then, makes no use of intensional expressions other than to
resolve them with extensional references, which in tum can be overridden by new
extensional facts. This same principle can be extended to those cases in which intensional
expressions occur on the r.h.s. of expressions. In this case, at the time of stating the
expression, intensional expressions may become part of the description of some kind, but
only if the intensional expression is first evaluated, and found not to be inconsistent with
extant descriptions. If subsequently, the extensional referents for these intensional
expressions are changed or deleted, the intensional expressions still remain as part of the
description of some kind, and will refer either to changed values/kinds, or, in the case of
deletion, to nothing at all.

Additionally, a user of the system described so far can effect the extensional identity
of kind names, by binding the same value to the two different names (more about this will
be said in the following chapter). Similarly for the intensional identity between two kind
names, which is achieved by binding each of the two kind names to some intermediate
part-name which refers to some kind which has a value bound to it.

7.13. Summary

A list of representation environment operators together with their descriptions has
been presented in this chapter. The aim was to provide abstract operators that are generally
useful in creating descriptions. The set of operators evolved and changed over a period of
time as it became clear that certain operators were redundant and could be replaced by
other, more general ones. In some cases it was necessary to introduce new operators. It
should be mentioned here that this is an ongoing process which was frozen for the purpose
of this thesis. We are not claiming here therefore, that the set of operators presented here is
a definitive one.

The personal view of the author is that the richness of any representation lies not
only in the range of things that it can represent, but also in the scope that it itself offers for

exploration of its limits. In this latter activity, even what appear to be only minor changes
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to the system will often lead in unexpected directions, the result of which may well a
radically different representation. The strategy was to select a potential representation
environment, and study its behaviour in coping with a range of problems, watching out for

evidence pointing towards a more appropriate altemative structure.

We can think of this strategy as one of working with an evolving representational
formalism. We have shown how, from the basic operations of adding something to a
description and deleting something from a description, it becomes possible to represent
things in a simple static way. Following on from this, we have added certain operations
which can do additional useful things with this static structure. These include operations
for copying, where the semantics of such an operation are clearly understood. Copying
may or may not involve the creation of new object instances. Sometimes it is necessary to
establish a variant relationship between kinds such that inheritance relationships can be
expressed in a controlled way by a user.

It can be seen that, given a basic representation environment which supports the
representation of parts hierarchies, and a limited number of conceptual ideas that work
upon the hierarchic structures, such as adding to a description, looking at a description,
copying a description; one finds that each of these permit a great amount of variation, but
in limited directions, and on a limited number of themes. According to particular needs in
particular domains, the representation environment can evolve appropriately to deal with
them. The representation itself, has no concept of completeness, all descriptions being
considered as partial. This is a vital feature for the support of design evolution.
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8. A Syntax for the Generation of Logical Representations of Drawings

"black black on white white

not vague darkness

black defined, black concentrate
crystal-pointed white

rigging, a line of land
nails, wires

lines alive, acts of language
constellations of black

counter to ‘unlived life’ (passing
repassing, drooping,
senselessly reviving)

energy, gay, terrible, rare,
a hope, man-made."
[[INK DRAWINGS by Denise Levertov (Here and Now)]

8.1. Introduction

Given the representation environment outlined in chapter 7, we now aim to use it to
represent the general structure of drawings in the domain of architectural drawings. As
drawing takes place, we would like representations of drawings to be created autogenously
i.e. without explicitly stating what it is that is being drawn. To do this, a drawing machine
has to be able to communicate with the representation environment in some way. It is
proposed to do this by means of a grammar whose semantic rules refer to general
knowledge about drawings. The semantic component, and in particular its topological
content, will be given a fuller account in the following chapter. The syntactic rules are
aimed at invoking cormresponding representations in the representation environment
autogenously as drawing takes place. The activity of drawing, therefore, invokes this
grammar, which in tumn invokes descriptions of logical objects (i.e. logical equipollents of
drawing objects) in the representation environment.

This chapter contains a description of a proposed drawing machine which is capable
of generating logical representations of 2-D straight line drawings, without restricting
drawing objects to be polygonal. The general motivation for such a system is to support
the types of drawing operations that are to be found in conventional architectural practice.
A specification of the rules required to draw specific types of graphical objects is presented

in the form of a context-free syntax with a compositional semantics.
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8.2. Definitions
Here we make a distinction between:

1 Depictions
- arrangements of physical objects in a drawing space; the objects that depictions
depict are referred to as depicted objects. The objects from which depictions are

constructed are drawing objects.

2 Representations

- logical equipollents of drawing objects, replicated in a symbolic representation
environment. The objects from which representations are constructed are logical
objects. The concern of this chapter is the generation of both the depictions and the
representations of 2-D line drawings, but not to transform the representations so
constructed. What is being described in this chapter, therefore, are the operations
essential to the editing of object descriptions. It will subsequently be possible to
modify these representations in two distinct ways:

a) firstly, by means of transformations which transform representations into
new representations, preserving the constituents of descriptions but not
necessarily their properties (chapter 10); and

b) secondly, by means of attachment between two or more objects.
Attachment takes place when two or more objects come together and
implies the removal or addition of graphical constituents, having the
effect of combining objects together or of decomposing an object into
parts. This way of achieving changes to object descriptions will be
described in chapter 11.1

There is a clear demarcation between drawing machine knowledge and knowledge
about corresponding logically determined objects in the representation environment. The
former, although concemed with communicating graphical depictions to the representation
environment, is also concerned with the production of graphical depictions on physical
devices (and in this latter respect can be supported by available graphics production

1 The two ways of modifying object descriptions suggested here, and presented in chapters 10 and
11 respectively, are presented in this way for historical reasons only. The transformations of
chapter 10 will be shown to be distinct from the edit rules described in this chapter. It will
become evident in chapter 11, however, that attachment operations have a great deal more in
common with the types of edit rules described here. In fact, they can be said to be an extension
of them.
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systems, e.g. window management systems). The drawing machine developed in this thesis
was supported by a graphics extension to C-Prolog known as Seclog [Pereira, 1982].
Seelog depends upon co-ordinate values for the production of lines and the delimitation of
regions. The drawing machine, however, in order to carry out its communicative function,
has also to have knowledge of the structure of graphical objects, together with a facility
for the expression of spatial relationships between them. An example is the structure
provided by construction lines from which points are defined, which in tum define
segments.

Note that graphical output is only a temporal depiction of the representation
environment's objects. As a user draws using the drawing machine, graphical objects with
certain properties are instantiated. The drawing machine in tum invokes structures of
logical objects in the representation environment. Consequently, the historical development
of a drawing becomes significant in determining subsequent depictions. This will become
more evident through looking at the examples both of this chapter, and those of chapters
10 and 11.

8.3. Graphical Primitives

Architectural drawings are essentially 2-D composite objects (compositions )2
irrespective of whether they depict projections of 3-D objects. The pencil lines that appear
in architectural drawings (see chapter 1) can be considered as construction lines (conlines)
that are used to position the ink lines (segments) that appear in finished drawings. In a
drawing machine, these could be presented as effectively infinite lines visible across a
screen. The intersection of any two conlines will produce a construction point (conpoint)
which may be used subsequently to delimit a segment. Any segment will lie between any

two such conpoints.

Conlines can be viewed as a more general case of grid lines, in which the grid
pattern is infinitely variable. Every instance of a conline is positioned according to some

particular and possibly tentative anticipation of the final segments.

Conlines can either be horizontal, vertical, or inclined, reflecting the traditional way
of producing drawings in a 2-D plane. Once a set of conlines has been constructed, it is
then possible to traverse them, picking out segments to determine the desired shape of a

drawing object.

2 Bracketed words denote the graphical primitives known to the drawing machine.
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Segments and conlines are the primary graphical objects from which graphical
representations of depicted objects can be constructed. It is primarily the boundaries of
shapes (which can be represented using segments) that define them [Steel, S. & Szalapaj,
P.J., 1983]. Segments can represent edges (which is the usual interpretation of segments),
slices (non-physical boundaries of regions), and notional lines such as dimension lines and
centre lines. The logical object representations in the representation environment, of
graphical objects constructed from segments and conlines, can then constitute partial
descriptions of depicted objects, in that they can be further described, both graphically and
textually.

8.4. Properties of Graphical Primitives

8.4.1. Length and Angle Values

Any line, drawn in the X-Y plane, which is intended to represent an edge in 2-D
space, has two design object dimensions associated with it; length, and angle relative to a
bearing. Conlines, however, are effectively of infinite length, but do have the attribute of
angle. In architectural drawing, it is typically conlines that are drawn first, and they
therefore determine what angles segments shall have. Consequently, we associate angles
with conlines and lengths with segments.

Upon completion of the segments representing parts of a new shape, the default
design object dimensions of the lines contained in it are those that can be calculated from
corresponding screen values, applying a current scale factor. Subsequently, it should then
be possible to overwrite these values by intended design object dimensions.

8.4.2. Status Values

The fact that dimension values other than those of the screen co-ordinate system can
be given to segments, implies that segments should have a status with respect to whether
their lengths can/cannot be overwritten. Such overwriting may be done either explicitly by
a user, or as a consequence of other drawing operations such as attachment (see chapter
11). This property of segments can be represented by an attribute of a segment which
states whether or not the dimension is fixed (i.e. cannot be overwritten), or unfixed (i.e. can
be overwritten). This status value might be conditioned by further intentions such as
transformations. Status values can also be given to conlines with respect to their angles.
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8.4.3. Symbolic Origin

A set of conlines has no logical origin. An origin is needed in order to establish the
co-ordinates of conpoints in order that graphical output can be produced. If a logical
origin were to exist, then the lengths of segments could be expressed in terms of the
distances of their endpoints from the origin. However, it is preferable for lengths to be
expressed in terms of distances between the endpoints of segments. If distance is
expressed in this way, and a graphical object consists of a connected chain of segments,
then it is necessary to have directed line segments or vectors. If direction is a property of
segments, then any point can be taken as a temporary origin, and the other points located
relative to it. The co-ordinate of a single origin would then be sufficient for a drawing
machine to generate any drawing consisting of connected chains of lines. The origin is an
attribute of a graphical object which can refer to some symbolic point. This point will
need to have a co-ordinate value for purposes of the drawing machine, but not necessarily
for the representation environment. Whenever an object needs to be drawn, the drawing
machine can generate co-ordinates for all of the conpoints in the representation
environment's description of that object, in order for a picture to be produced. The
drawing machine can do this using the knowledge it has about lengths of segments.
Providing a different co-ordinate value for the origin will effectively translate the object.

8.4.4. Scalability

Since the drawing machine will require drawing input within a co-ordinate system,
and since upon completion of a drawing, screen values can provide inferable design object
dimensions, it makes sense to scale the co-ordinate system in order to provide as
meaningful values as possible until they need to be refined at some later date.

The drawing machine, therefore, should be capable of scaling its symbolic
descriptions. Just as it is possible to express the co-ordinates of points relative to an
origin, it should also be possible to scale an object relative to a particular segment length.
Consequently graphical objects have a scale attribute which can refer to a segment

whenever a scale operation takes place.

8.4.5. Rotatability

The drawing machine may also need to rotate its graphical objects, so a rotate
attribute is a further part of their description. This will typically refer to a construction line

whose angle is used as the reference angle at the time of rotation, such that all other angles

- 108 -



are expressed in terms of it; previous numeric values for angles can be expressed

parametrically in terms of the rotated construction line.

8.4.6. Handing Represented by Sense

Having observed how a single origin would suffice to re-generate a shape consisting
of a connected chain of lines, it follows that an additional property of segments is their
sense, giving the direction of the segment with respect to its endpoints. A segment drawn
from the origin along a construction line of angle 45 degrees, say, may be drawn either
north-east or south-west. Sense is typically one of two values "+" and "-" , depending on
whether a directed line segment is on the clockwise or anti-clockwise side of a north-south

axis (figure 8-1).

N

T "
Starting at north, and
moving in a clockwise

direction, sense can
be defined by:

N £ + <SS
and:
s £ - <N

figure 8-1 : Sense

The role of sense is limited to the task of recording the direction in which a segment
is drawn, from its first conpoint to its second conpoint. Sense can be affected by rotation
that may result as a consequence of transformation (see chapter 10). Such changes have no
direct effect on any sequencing of segments within a shape. ‘Handing’ of shapes is effected
by binding angle values (chapter 10), and then specifying a reversal of sense for a
particular segment.
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8.5. Symbolic Dimensioning

We would like the dimensions of segments to be expressible in terms of the
dimensions of other segments. Parameterised shapes require only a minimum number of

dimensions to determine all the line dimensions for a given shape.

Part of the description of conlines and segments is an attribute which contains status
information with respect to whether their dimensions can subsequently be overwritten (§
8.4.2.). Typically, parameterisations are relationships that need to be maintained and hence
the values of the fillers of their fixed/unfixed slots are usually "fixed". Wherever such
parameterisation information exists in the description of an object, the appropriate
dimensions need to be calculated in order to depict it. Where dimensions have been
declared as unique numeric values they may have either "fixed" or "unfixed" status.
Values obtained directly from the drawing machine will have "unfixed" status.

Apart from explicit user-defined parameterisations, there are also implicit system-
generated ones which occur during the course of scale/translate/rotate/hand operations, and

which also result in symbolic expressions in place of actual numeric values for dimensions.

The advantage of symbolic dimensioning lies not so much in its use for stretching
and shearing independent shapes, a feature which is used in some working CAD systems
such as CADRAW [Hamilton and Scoins, 1980], and CAD systems such as CAM-X
[Murray, 1982], but in its use in the composition and decomposition of objects, where it is
applied to the conline/segment representations that we have already discussed.

8.6. A Context-Free Syntax For Generating Line Drawings

Using the above primitives, it is possible to devise a context-free syntax for
generating representations of 2-D straight line drawings in the representation environment.
In defining the base component of the syntax, object descriptions at certain levels will
typically be decomposed in non-enumerable ways, i.e. there may be many segments to a
shape, or construction lines (conlines) meeting at a construction point (conpoint). This is
indicated by the recursive nature of the rules. The rules are presented in tables where the
left hand side denotes a syntactic rule (or rules, depending on whether a particular
graphical object needs to be defined recursively), and the right hand side a corresponding
(brief) semantic description of this rule (or rules). In this section, the semantic constraints

are expressed verbally, but will be treated more formally in the following chapter.
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A particular set of rules that reflect the structure of drawings is:

Composition — Shape
Composition — Shape +

A shape is, in effect, a composition. But
a composition can consist of several

Scale> + Segment
Shape — Shape + Segment

Composition shapes.
Shape — <Origin, Shapes are defined as collections of
Rotate, segments with origin, rotate, and scale

attributes. To draw collections of
segments, segments need to be
connected. Therefore connected chains
of segments, in which the endpoints of
segments coincide with the startpoints of

other segments, are generated.

The origin is typically an indirection to a
particular conpoint within a shape
description. In the regeneration of a
shape, the drawing machine assigns this

conpoint a co-ordinate value.

(continued overleaf)
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Segment —  Conpointl +
Conpoint2 +
<Length,
Fixed,
Bearer,
Sense>

A segment is effectively a line drawn
between any two conpoints. A segment
cannot exist between a conpoint and
itself. A segment drawn from an existing
conpoint, or fo an existing conpoint, does
not form a new conpoint at the point it is
coming from or going to. Rather, the
existing conpoint becomes a common
conpoint. Consequently, the logical
representation of such points changes to
accommodate new attributes (e.g.
additional conline) that the new segment
might bring with it. Common points can
be avoided by indicating the termination
of a segment before the beginning of a
new one, by introducing a new conpoint
instead of starting (or terminating) at an
existing one. The bearer is the conline
that bears the segment.

Conpoint — Conline + Conline
Conpoint — Conpoint + Conline

A conpoint is the intersection of two or
more conlines. Given an existing
conpoint, further conpoints can be
generated by extending segments from
the existing point along the conlines that
bear them, then generating the conlines
that belong to the segment’s other end.

(continued overleaf)
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Conline = <Angle, Fixed> A conline is an infinitely long straight
line, and therefore, for purposes of
generation, can be described by the
general equation for a straight line ax +
by + c = 0.

Length — { an element of Length is described by a numeric value

the REALS } for the distance between the two
conpoints.
Fixed - YES | NO The fixed statuses of angle and length

values are indicated by truth values.

Sense — + | - Sense is the direction of a segment

between its conpoints.

Angle — ( an element of The angles of conlines are given in
the REALS } degrees.

From the above set of rules, it can be seen that an attempt at a definition of
"shape" has been made. A shape is a collection of segments with an origin. We need
to be able to distinguish between one shape and another in the representation of the
syntactic structure for a composition, and this is achieved by means of attaching natural
number subscripts to each shape instance. These names are system-generated, and
allow textual, as well as graphical reference to shapes. Similarly, segments are so
differentiated, as are conpoints, conlines, and compositions. Each segment has a
unique length value and fixed status for its length, and hence these attributes do not
need to be distinguished from one segment to another. Similarly for conline angle
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values and fixed statuses for angles.

An important feature of the drawing machine is that any graphical object or its
attribute (i.e. composition, shape, segment, conpoint, conline, length, fixed, sense, or
angle) can be described by indirect reference to another graphical object or its
properties. For example, for shapes with more than one segment, at least one conpoint
must also belong to another segment’s description, and is described by the mechanism
of indirection (see following section) through the other segment. Under an attachment
transformation (see chapter 11), a conpoint may take the name of a conpoint in another
shape, or be described by indirection through another shape.

8.7. Indirection

An indirection is effectively a path through a parse tree generated by the
syntactical rules, denoting that a description in one part of the tree takes the description
of another part. It is typically of the form:

Constituent_name:constituent_1:..........:.constituent_n

where "Constituent_name" is the name of a particular graphical object instance,
and the constituents are of different types, with suffixes distinguishing between
instances. Un-suffixed constituents will typically appear as the last elements in such
indirection chains, since they cannot be further decomposed according to the base rules.
Indirections of the latter type indicate terminals within the syntax.

The mechanism of indirection is relied upon heavily in order to be able to access
parts of a description which are then transformed in some way. It also provides the
means for testing structural descriptions w.r.t. their adequacy in having transformations
applied to them (see chapter 10).

In generative grammar, the corresponding mechanism is to use labelled
bracketings, whereby a structural description is represented by means of embedded lists
in which each bracket has a corresponding label [Bresnan, 1976]. Such a schema
requires that there be a complete structure for transformational rules to be applicable
e.g. a sentence or a relative clause. In drawings, however, there is no concept of
completeness, and transformations should therefore be defined upon only those parts of
a description that are involved. It may turn out that the effect of a particular
transformation upon a part is to propagate changes to all other parts with similar

descriptions e.g. all segments within a picture. In such cases, we need a notation for
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expressing such effects. Consider the shape shown in figure 8-2:

seg2
(on conli2)

segl
(on conl1)

/ seg4 , (;I‘ID'!_

figure 8-2 : shapel

Using the base component rules, a parse tree for such a shape can be generated.
The general form of descriptions of shapes and compositions is as shown in figure 8-3.
The convention used to obtain the structure of figure 8-3 is that the first endpoint of a
segment is described within this segment’s description. The second endpoint’s
description is referenced by means of indirection to another segment which contains the
instance of the description. Similarly for conline descriptions within conpoints.
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Composition1
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shape2 shape3
shape
origin — =5 ~ =
segl
( T Y 7

conpl conp2

3
sense i
|vcl |v0l val

S
conl2

conl1

)

angle fixed

val val

figure 8-3 : Logical description of shape

The rules defined above are unordered. The nature of the constituents referred to
by the rules, however, imposes an ordering on the possible steps. Conlines need to be
drawn before conpoints can occur, and conpoints must exist before segments can be
placed between them. This implies a bottom-up parsing strategy for generation. In
linguistics the parsing strategy is typically top-down, since there is a notion of a
"complete" top-level object in the form of a sentence. A sentence consists of a linear
sequence of words which are retraced once the sentence boundaries have been
recognised. In drawing, however, there is no analogous notion of completeness, and
what may start out initially as a group of lines, may end up as being the elevation of
the west facade of a building, for example. In other words, one can go on defining the
drawing at progressively more abstract levels, and hence bottom-up processing is the
natural choice for generation of logical representations of drawings.

Regeneration is slightly different, however. To regenerate a graphical depiction of
a logical representation that is already known about in the representation environment,
one already knows what the top-level object is. This object may itself consist of sub-
parts which are logically separate, each having a graphical depiction. Each depictable
object should have its own symbolic origin. Starting from this origin, one can draw the
conlines that pass through it, then recursively extend segments along these conlines to
locate further conpoints and conlines. For each graphically separate object therefore,

the process of regeneration is again a fundamentally bottom-up one, although the pre-
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processing of logical objects that precedes it is top-down.

8.8. Logical Objects

Once a drawing has been produced using the rules and primitives described, the
representation environment can associate it with a kind name forming part of the
description of some logical object. A graphical object can be thought of as being an
instanced logical object in that its structural description reflects properties of the
drawing it is intended to represent. The representation environment’s logical
representation of a drawing will include automatically assigned slot and kind names,
such as SEG-25 for a segment, C-15 for a conline, or P-37 for a conpoint, and these
names can subsequently be linked with non-drawing parts of a description.

Typically, drawings are constructed by a combination of operations: making
variants of already extant graphical objects; copying extant objects; adding further
primitive objects; describing attachment relationships between graphical parts.
Subsequently, further naming of abstract parts can occur in order to map them onto
parts of the drawing. This may lead to renaming of system-generated logical objects to
correspond to the newly created abstract parts to which they belong.

When a variant of a logical object is created, all the conlines, conpoints and
segments of the variant are described systematically by means of relative naming.
Thus the variant "SHAPES2" of a "SHAPE" with segments "S1", "S2", "S3", "S4",
has parts that can be referred to as "SHAPE:segl"”, "SHAPE:seg2", "SHAPE:seg3",
"SHAPE:seg4" respectively at the time of creation. If subsequently the length property
of "SHAPES2"’s "S3" changes, then the part name "SHAPE:seg3" within the context
of SHAPES2, can no longer be referred to as such, and is instead replaced by a
complete description of the new seg3 local to SHAPES2, and the new logical objects
created within this new description are added to the database.

As well as being able to access objects graphically via the drawing machine, it is
also possible to access them textually through their logical names. This is particularly
useful in the case of dimensions (angles and lengths) which are typically updated by
text input.
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8.9. Drawing Machine/Representation Environment Interaction

It should be noted that the attributes that describe constituents of drawings, whose
values are numeric values, truth values, +/- conditions, or instances of other
constituents of drawings (referred to by means of indirections), map onto slots
(parts/properties of objects) in the representation environment. Constituent names and
instances map onto kinds and fillers respectively. For example, “"segmentl of a
particular shape" constitutes a part-name to a part-instance of segment. The base
component of the syntax is defined with reference to constituents which map onto slots
in the semantic representation. A syntactic tree consists of constituents with constituent

names or values.

Conlines are represented as kinds with slots for angle values, their fillers referring
to some angle datum (conventionally O for horizontal). Conpoints are described in
terms of conlines, and become parts of a description in the representation environment
only when they are used to delimit segments. The coordinate value of a point is
initially taken from the space in which the drawing first occurs (the display screen
coordinate, suitably translated into some real world value), but thereafter coordinate
values are calculated by the representation environment from information it knows
about a current (modified) description, from segment lengths and conline angles, related
to some coordinate datum. Finished line segments have slots for their end points,
length value and sense (direction from first point).

Conlines and finished line segments are the basic drawing machine primitives in
the sense that these are used to build up further descriptions of objects. Point
coordinates in the drawing machine are used only to give a single value to position a
drawing shape, and to calculate initial values for segment lengths when segments first
occur in a drawing; coordinates are not used to manipulate a description. Conpoints
are inferred from conlines and segments, and are manipulated by the user saying things
about conline angles and segment lengths.

An illustration of an instance of the representation of a graphical primitive in
terms of its properties is given by the example in figure 8-4.
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figure 84 : The description of a segment instance

Since we define shapes in terms of conlines and segments, it is not always
obvious what is the set of conlines that belongs to a particular shape, and not to
another, or whether there are unused conlines (those that do not define conpoints or are
not the bearers of segments). Shapes can only be displayed with those conlines that
are necessary to position all segments, and hence an object drawn initially as in figure
8-5a will be regenerated as in figure 8-5b.

A shape is adequately defined if only those conlines that describe conpoints of
segments are presented, and the drawing machine will have no way of knowing how to
place conlines that are not bearers or do not pass through conpoints; it will have no
way of deducing distance information in order to place them. These conlines are not

lost therefore, but just cannot be displayed as parts of a current shape.

Conpoints are determined by the intersection of conlines. However, several lines
may pass through each other to produce many intersections. If new points were to be

created whenever two conlines crossed, then there would be redundant conpoints.
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Figure 8-5a: An object drawn with conlines

Figure 8-5b: A necessary and sufficient

graphical presentation
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Consequently, the drawing machine only generates conpoints when they are defined as
being the end points of segments.

Further problems can arise when different shapes make use of the same conlines
or conpoints. This becomes problematic when a dimension of one of the shapes later
changes. Is the change propagated to the neighbouring shape, or does the latter retain
its original dimensions? Often sharing of dimensions is necessary, but this is not
always the case. The solution adopted is to let the user explicitly state such
relationships using attachment operations (see chapter 11).

MARY'S.HOUSE

ground.floor

ground
H
L’;:f % B angle GRND.FL

west.gable  south.wall north.wall

. L (W.cBL ) C S.W|ALL D C N‘\&rLL B}
| / length
Tl (8000)

| == 6000
drawing mochine
sl Lol SEG—35 \l/ interpretation of
length drawing operctions
e W.GBL:length
=" - epl ep2

1103 46

| conl con2 conl con2

| (CON-45) (CON—-46 ) (CON-45) (CON-47)
I e angle angle angle
104~ I I |
_ 4 (GRND.FL:angle ) (GRND.FL:angle — 90) (GRND.FL:angle — 70)
|

Figure 8-6: Logical Structure

Figure 8-6 illustrates the relationship between a description in the representation
environment and a design drawing. For convenience, the representation is presented as
a logic diagram of a virtual structure of parts of Mary's house. This is a virtual
structure in the sense that it is not a physical structure stored in the computer. The
structure is created by the system from information contained in the separate
declarations of the user, in response to the user invoking the "virtual” operator, and the
structure disappears when the user no longer wants to see it. The diagram exists
outside the system and its purpose is solely to illustrate to the reader the relationships
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between parts of a description inside the system.

The drawing is shown in the process of being constructed (from the bottom
upwards), with conlines drawn first and then a segment added, on the way to a ground
floor plan of a house. The segment forms part of the west gable wall description. The
representation environment builds up a representation of the thing that the particular

drawing describes, and the information it holds is sufficient to regenerate the drawing.

In this illustration the description below the dotted line is generated automatically
by the drawing machine as drawing takes place. The sequence of logical expressions
that are communicated by the drawing machine to the representation environment in the
description of the ground floor west gable wall are as follows:

W.GBL <+ [line1=SEG-35].

SEG-35 <+ [length=W.GBL:length,ep1=PT-103,ep2=PT-104].
PT-103 <+ [con1=CON-45,con2=CON-46].

PT-104 <+ [con1=CON-45,con2=CON-47].

CON-45 <+ [angle=GRND.FL:angle].

CON-46 <+ [angle=GRND.FL:angle-90].

CON47 <+ [angle=GRND.FL:angle-70].

Note that angle values are established with reference to a user-declared
angle value for the ground floor (so that if the completed ground floor part is
later reused in different orientations, relationships between the drawing parts of
the ground floor description will hold true), and the length value for segment
35 is overwritten by a user-declared length value for the west gable wall
(affecting the position of lines that will appear on a subsequent regeneration of
the drawing on the display screen).

8.10. Use of Fixing

Dimensions are typically overwritable by other dimensions, and problems
arise when certain dimensions need to be kept fixed during the course of a
design. When "fixed" dimensions clash with "unfixed" ones, you would expect
the latter to get the former values. When two "unfixed" dimensions are to be
matched, there should be some system convention which will resolve the
assignment of dimension values. When basic shape transformations are being

executed, (see chapter 10), the convention adopted is that the location drawing
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provides the dimension for the component that is going fit into it. For a
complicated shape which has both "fixed" and "unfixed" dimensions, it is not
immediately obvious as to which of the "unfixed" dimensions should be
calculated first, and the order of calculation will typically provide different final
solutions. The best way of overcoming this problem is for the user to have
control over such inferences. All dimension values are initially assigned
"unfixed" status values. The user may subsequently wish to modify these
statuses, as will the system when trying to satisfy structural conditions prior to
executing transformations (see chapter 10).

8.11. Use of Binding to express Spatial Relationships

Values of fillers may be bound to the values of other fillers by means of
indirection. The effect of an indirection as the filler of a slot is to tell the
system to look for the value at the end of the path described in the indirection.
Binding allows for the expression of relationships such as "parallel to",
"orthogonal to". More on this will be said in chapters 10 and 11.

8.12. Summary

This chapter has presented the kind of knowledge needed by a drawing
machine to communicate structures of drawing objects produced by a user, to a
logical representation environment. This allows one to subsequently execute
operations upon the logical representations of drawings, and to regenerate
modified drawings. This knowledge can be divided into knowledge of the way
in which the drawing machine works, in order that it can converse with a user
in terms of drawings, and knowledge about drawings in general which includes
topological knowledge (about which more will be said in the following
chapter). The way in which the structure of graphical objects is understood by
the representation environment has been described. This knowledge is reflected
in the properties of the graphical primitives used in the drawing machine, and

the ways in which operations on these primitives are interpreted by the system.

The strategy of regarding drawings as objects that describe other things,
means that the representation environment can ‘understand’ drawings in the
same manner that it understands any other things and therefore an integration
between drawing and text descriptions which refer to design objects can be

achieved.
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9. Preserving Object Topology

“Let us consider some substance which is being used by man for his own purposes.
However plastic it is to his designs, whatever transformations he makes it undergo,
there remains something which he cannot alter, and which seems indeed to dictate the
limits within which his transforming power over the substance shall extend."

[Sydney Herbert Mellone]

9.1. Introduction

The drawing machine described in the previous chapter, although capable of
generating and regenerating graphical object descriptions, is inadequate, since although it
can represent graphical objects with various topologies, it has no facility for the
preservation of these topologies in the light of further changes to object descriptions.
March and Steadman [March and Steadman, 1971] provide the following categorisation of

commonly used mappings, or more precisely, transformations, found in architectural
drawing:
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figure 9-1: Transformations used in architectural drawing
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From this table, it can be seen that different transformations arise as a consequence of
a progressive relaxation of constraints (position, length, etc.). The least constrained, and
therefore most general transformations are topological. Topological transformations
preserve ‘neighbourliness’ (see below for definition). Further constraints upon such

transformations can give rise to any of the other transformations mentioned.

A central objective of this thesis work was to devise a drawing machine which would
allow for the expression of transformations upon drawings and drawing parts in a
controlled way by a user of the drawing machine, as distinct from an approach in which
transformations are already prescribed within the drawing environment. A natural way of
achieving this goal, therefore, is to think of transformations as being essentially topological
in nature (i.e. as unconstrained as possible). One should then be able to allow any user of
the drawing machine to progressively constrain such transformations to achieve an
intended result.

To proceed with this approach, we need to take a more formal look at how
topological ideas relate to the domain of 2-D straight line drawings.

9.2. The Topology of 2-D Line Drawings

Topology is the study of those properties of geometrical objects which remain
unchanged under continuous transformations of an object. A continuous transformation is
one in which elements ‘close together’ to start with are ‘close together’ at the end of the
cycle of transformation, such as bending or stretching.

The basic objects of topology are topological spaces. Intuitively, they can be thought
of as geometrical figures. Mathematically they are sets endowed with some extra structure
called a topology which allows one to set up an idea of continuity. A topological space is
just a set of arbitrary elements in which a concept of continuity is defined.

The idea of continuity is based on the existence of relations, which may be defined as
local or neighbourhood relations - it is precisely these relations that are preserved in a
continuous mapping of one figure onto another. A topological space therefore, is a set in
which certain subsets are defined and are associated to the elements of the space as their
neighbourhoods. Usually, these subsets are open sets. Thus the neighbourhood of an
element x in a topological space is any subset of the space that contains an open set that
contains x. Depending upon which axioms the neighbourhoods satisfy, one distinguishes

between different kinds of topological spaces.
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In terms of the constituents of the syntax described in the previous chapter, we define
a simplicial complex (or complex) as consisting of a collection V of conpoints together with
a prescribed collection S of nonempty subsets of V, called simplexes, such that every
conpoint is a simplex, and every non-empty subset of a simplex is also a simplex. The
dimension of a simplex is one less than the number of conpoints in it; that of a complex is
the maximum dimension of any simplex in it. In these terms, a 2-D line drawing is a
complex of dimension 1 or 0. A segment is a 1-dimensional simplex. A complex is O-
dimensional if and only if it consists of a collection of conpoints, but no segments or other
higher dimensional simplexes. Aside from these "totally disconnected" drawings, every

drawing is a 1-dimensional complex.

We can define the neighbourhood of a conpoint of a 2-D line drawing to be the set
union of all simplexes of an arbitrary simplicial decomposition of the drawing which
contain the given conpoint in their interior or on their boundary. Thus neighbourhood is
defined in terms of the set of segments that meet at a conpoint. This definition will
therefore use closed sets rather than open ones (figure 9-2).

The neighbourhood of the conpoint P;
is the closed set {Sq, Sz, S3, S4}

=y

figure 9-2: The neighbourhood of a conpoint

Using this notion of neighbourhood, we can define continuity for 2-D line drawings.
A mapping f of the topological space of 2-D line drawings X onto a (proper or improper)
subset of this topological space Y is called continuous at the conpoint x (x € X), if for
every neighbourhood U(y) of the conpoint y = f{x) (y € Y) one can find a neighbourhood
U(x) of x such that all segments of U(x) are mapped into segments of U(y) by means of f.
If fis continuous at every conpoint of X, it is called continuous in X [Alexandroff, 1961].

We are primarily interested in those 2-D line drawings that possess the topological
property of connectivity. Intuitively, a connected space is a topological space which
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consists of a single piece. A connected 2-D line drawing is one which is not composed of
several disjoint 2-D line sub-drawings. Connectivity is perhaps the simplest, yet most
important property a topological space may have. Any continuous mapping will always
take one connected space into another. Each transformation, therefore, will have the
property of preserving connectivity. More precisely, a connected space is a topological
space X which cannot be represented as the union of two disjoint non-empty sets. In
analytic topology, these sets are open sets. Since we are effectively using algebraic
topology, closed sets will do [Alexandroff, op. cit.].

Two topological spaces are topologically equivalent if we can pass from one to the
other in a continuous way, and also come back in a continuous way. In terms of set theory,
topological equivalence between two topological spaces A and B demands a function f: A
— B such that f is a continuous bijection, and its inverse function is also continuous.

The following chapter will attempt to outline the way in which the properties of
graphical objects presented in chapter 8 might be exploited in order to be able to invoke
topological transformations which may be additionally constrained in a controlled way by a
user of the drawing machine.

9.3. Summary

We have defined in this chapter those properties of drawings that will be preserved in
transformations. The connectivity of a 2-D line drawing will affect the outcomes of
transformations applied to local neighbourhoods. This feature can be used within a drawing
machine to reflect intended relationships between parts of drawings.
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10. Transformations

10.1. Introduction

Given the need to be able to carry out topological transformations upon shapes using
the primitives of the drawing environment (conlines, conpoints, and segments), we need to
find a way in which the properties of primitives can be exploited in order to effect such

transformations. Firstly, let us recall what these primitive properties are.

In the case of conlines, they have the property of angle, expressed in degrees. Angles
of conlines can be related to or bound to angles of other conlines by means of indirection.
Angle values are by default obtained from screen values. In addition, conlines have status
values to denote whether their angle values can be overwritten. If they can, then they are
said to be unfixed, if not, they are known to be fixed. A conline is always part of at least
one conpoint.

A conpoint has at least 2 sub-parts which are distinct conlines. A conpoint is part of
at least one segment.

Segments have the property of length expressed in length units. Lengths can be
bound to lengths of other segments by means of indirection. Length values are by default
obtained from screen values. Just as with conlines, segments also have status values to
denote whether their length values are fixed or unfixed.

Each segment has two endpoints (conpoints), a sense and a bearer. A segment is
always part of at least one connected chain of segments (a shape). The origin of a shape
can be any conpoint of any segment within it.

Transformations therefore, can be defined upon those and only those parts described
above. Changes to object representations, with the intention of preserving their topology,
are effected by qualifying any parts that should take part in such changes.
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10.2. How Transformations Work

Changing the properties of the graphical primitives described above is the essence of
graphical transformation. Changes to segment lengths and conline angles provide us with
basic transformations. The effect of such changes on the representation environment is to
establish replacement fillers to slots of kinds. Such destructive updates are achieved using a
sequence of two expressions, the first one containing the logical operator ‘<-’, followed by

a second expression containing the logical operator ‘<+’.

The transformations of interest are those in which the shape before the transformation
is topologically equivalent to the shape after the transformation (irrespective of what
happens in between - see §10.6.). If a particular shape is not topologically equivalent to a
known shape object, then this could have been produced only by an edit rather than a
transformation of the object.

If the end product of a transformation is a topologically equivalent shape, then any
change to a property value will unavoidably have knock-on effects upon adjacent
(connected) parts. An obvious transformation of this nature is one in which a conpoint of a
shape is moved to a new location. This transformation could be invoked in a variety of
possible ways, each producing a different outcome:

(i) Firstly, when rotating the angle of a conline about a conpoint. Besides changing the
angle value of the conline, such a change may affect the length of any segment lying
along this conline, as well as the lengths of segments which have endpoints that meet
this conline.

(ii) Secondly, when changing the length of a segment. In this case, the direction in which
the change takes place has to be indicated. The endpoint that moves may pull with it
any other segments that meet at this conpoint, thus affecting both their lengths and
the angles of their conlines.

(iii) By moving the conpoint itself. The lengths of all segments that meet at this conpoint
are liable to change, as are their conline angles.

Other candidates for transformations include moving a segment to a new location. We
can envisage such a transformation occurring when the endpoints of a segment are mapped
onto two new endpoints. Furthermore, such a transformation can be directly extended to a

set of connected lines that get mapped onto some other set of conpoints.

Note that each of the examples cited refers to local changes to some part of a shape,
which may in turn cause changes to adjacent parts. For such knock-on effects to occur, we
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can expect that transformations can be compounded, i.e. certain shapes can be explained
only by assuming that they have undergone several transformations in sequence. As far as
a user of the drawing machine is concerned, the general strategy will be to indicate a
change to be made, and then to indicate the segment which is to receive the change
parameters. The drawing machine should then receive this information and automatically
apply change operators to the shape name and execute the consequential changes to the
shape description. Different change operations can be used in combination, to effect

required changes to one or more shapes.

For a transformational rule to be applicable to some part of a shape, it is necessary to
define local conditions upon the part structure, under which the transformation could
conceivably take place. We can express structural conditions in terms of indirections,
which are implicit conjunctions of basic predicates constructed from categories of the
syntax. A transformation T is an ordered pair (C,M), where C is a structural condition,
and M is a transformational mapping [Bresnan, 1976], i.e.

T =(CM)

For a transformation upon a structure to be possible, the condition C must be true of
that structure, and the mapping M must be defined upon it. A transformational mapping is
composed from a set of elementary operations, each of which can be defined in terms of

the representation environment’s own change operations. A transformational mapping
M= {01.............,011} : ’

consists of n elementary operations. Suppose a particular ox (1<x<n) is defined with
reference to a kind K, having an attribute R1, which may or may not have a current value.

Then ox can take one of the following forms:

{Ti, R1, V1) - identity (implemented as a meta-logical comparison between
the evaluation of K:R1 and the evaluation of V1)

{Ta, R1, V1} - adjunction (implemented as K:R1 <+ V1.)
(Td, R1, V1} - deletion (implemented as K:R1 <- V1.)

(Ts, R1, V1, V2} - substitution (implemented as K:R1 <- V1.
followed by K:R1 <+ V2.)
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where V2 is a new value that replaces the previous value V1.

10.3. Effect of Basic Transformations on a Simply Connected Shape

In this section, we will illustrate the effect of applying basic transformations (of
which there are three: rotate conline, change length, translate point) upon a simply
connected shape (a rectangle). We will assume for the purposes of this example that each
segment meets each segment adjacent to it at a common point. The definition of both
structural conditions and transformational mappings will be given here in terms of
indirections. By convention, each segment description contains an explicit description of
one of its endpoints, which in tum contains an explicit description of one of its conlines
(typically, the ‘bearer’). The other endpoint is indirected to its description in the context of
another segment. Any other conline is indirected to its description in the context of another
segment’s conpoint.

figure 10-1: An initial shape

The series of examples in this section is intended to illustrate how parts in the logical

representation of shapes can be accessed to support the execution of transformations.
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10.3.1. Changing a Conline Angle

Suppose we want to rotate the conline z, about the conpoint Y, by some value
specified in degrees. Local structural conditions need to be identified for the connectivity

of the shape to be preserved:

O1, consisting of the following element, requires the conline angle in question to be

variable:
{Ti, Shape_a: seg_xj: conpoint Yy conline_,zlz fixed, NOJ}

02 and O3 identify the status of the length of the segment lying along the conline, and
similarly for the following segment. Suppose the values returned are:

(Ti, Shape_a: seg_,xj: fixed, NO}
{Ti, Shape_a: sc:g_;l:j\L It fixed, NO}

Given these conditions, the transformation can be executed by means of the following
three mappings:

Firstly, O4 which changes the angle of the conline:
{Ts, Shape_a: seg X conpoint_y,: conline_z: angle, Angle}
Next, O5 and O6 have the effect of re-evaluating segment lengths:

{Ts, Shape_a: seg_xj: length, L1}
{Ts, Shape_a: sngj+ I length, L2}

A possible end product of such a transformation is shown in figure 10-2.
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figure 10-2: The shape after rotation of conline z about Y

10.3.2. Changing a Segment Length

Suppose instead, starting from the initial shape shown in figure 10-1, we want to
increase the length of the segment X, by an amount specified in the direction Y 10 Y
The structural conditions are:

First, O1 requiring the segment length in question to be variable:
{Ti, Shape_a: seg_xj: fixed, NO}

Next, O2 and O3 identify the status of the length of the adjoining segment, and similarly
for the angle of the conline upon which this segment lies. Note here that fixed statuses are
typically one of two values. The choice in these examples has intentionally been to assume
that values are variable, and to illustrate the kinds of outcome that will arise in this case.
The way in which fixed statuses are handled will be described in § 10.6. Suppose that in

this example, the values returned are as follows:

(T4, Shape_a: seg_xjH: fixed, NOJ)
(Ti, Shape_a: scg_,tj.”: conpoint_ka: oonlinc_zih,: fixed, NO}
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Again, given these three conditions, the following three mappings can be executed:
First, O4 consisting of a single mapping which changes the segment length:
{Ts, Shape_a: seg_x.: length, L1}

OS5 and O6 have the effect of re-evaluating the length of the adjoining segment along with
the angle of its conline:

{Ts, Shape_a: seg_,\:j+ It length, L2}
{Ts, Shape_a: S E A conpoint Vel oonlinc_zh It angle, Angle}

A possible result is as shown in figure 10-3.

Z =1

Z,

figure 10-3: The shape after increasing length of segment X,

10.3.3. Translating a Conpoint

From the initial shape in figure 10-1, suppose the conpoint Yerl needs to be moved to
a new location. The structural conditions are:
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Firstly, O1 and O2 consisting of two elements, which identify the statuses of the following
two conline angles:

{Ti, Shape_a: ch_;(jl conpoint Yy conline_z‘,: fixed, NO}
(Ti, Shape_a: scg_,::j.+ It conpoint Vit conline_zI+ / fixed, NO}

03 and O4 identify the statuses of the lengths of the segments lying along the conlines:

(Ti, Shape_a: seg_;cj_' fixed, NO}
{Ti, Shape_a: Seg X, )’ fixed, NO}

These conditions having been satisfied, now allow for the following transformation to
be carried out.

OS5 and 06 change the angle of the conlines:

{Ts, Shape_a: scg_xj: conpoint Y conline_zl: angle, Anglel}

(Ts, Shape_a: seg__x}.+ | conpoint_y, . (:J:Jnlme_zrl+ It angle, Angle2}

O7 and O8 have the effect of re-evaluating segment lengths:

{Ts, Shape_a: seg_xj: length, L1}
{Ts, Shape_a: seg_xJF+ I8 length, L2}

This gives us figure 104.
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figure 10-4: The shape after moving the point Yt

10.4. Generalised Transformations

The previous example illustrates the kind of results we wish to achieve with
transformations applied locally to parts of shapes. Changes in properties of primitives
transform shapes whilst preserving their topology. We can generalise these three basic
transformations to any shape by recursive compilation of local structural conditions,
together with recursive application of transformational mappings. The recursion is with

reference to any graphical parts that are connected to the part that is being transformed.

Starting at a conpoint (the translate conpoint transformation), the segment having this
conpoint as an endpoint can be determined, and the properties (structural conditions) of this
segment can be established. Similarly for other segments sharing this common conpoint.
The application of a transformation proceeds by first applying a transformation to a chosen
segment, and then proceeding to the next segment. Similarly for the other transformations.

In the case of changing a conline angle, the connectivity is that between segments
that meet other segments having this conline as their bearer (other than those segments that
meet the conline at its conpoint of rotation). This allows for the transformation of a figure
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such as 10-5a into 10-5b.

figure 10-5a

figure 10-5b

In the case of changing a segment length, the connectivity is between the segment
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whose length is being changed, and any segment that meets this segment (excluding those
that meet it at its stationary endpoint).

In the case of translating a conpoint, the connectivity is between all segments that
meet at this conpoint, together with any other segments that meet these segments (other
than at the unmoved endpoint). ‘Meeting’ depends upon forms of attachment which will
be described in the following chapter.

A further important point to be made at this juncture, is that any of the basic
transformations can be applied equally well to ‘loose’ segments i.e. segments unconnected
to any other segments. This will be of importance when we come to treat the preservation
of ‘fixed’ values within transformations (see § 10.6.).

10.5. Transformations, Binding, and Fixing

Transformations, in conjunction with the mechanisms for fixing values, and binding
values to other values as described in the previous chapter, constitute a powerful tool for
manipulating shapes. These three mechanisms working in combination with each other
allow changes to individual shapes by means of controlled distortions. An illustration of
particular distortions are shown in figure 10-6.

Rotate conline, Rotate conline, Rotate conline,
other angles other angles segment length
bound. fixed. fixed.
(a) (b) (c)
figure 10-6

Figure 10-6a can arise when a rotate conline transformation is applied to a rectangle

- 138 -



in which all the other conlines are bound to the one that is being rotated. This is in effect
what is understood in conventional systems as a ‘rotate’ transformation. The conventional
transformation of ‘translation’ can also be effected. Translation can be achieved by
assigning a new co-ordinate value to the origin of a shape. Similarly, ‘scaling’ of a shape
can be effected by binding all the segment lengths to the length of a particular segment.
The system presented in this thesis, however, also allows for a wider variety of distortions.
In the case of the rectangle, outcomes such as those shown in figure 10-6b and 10-6¢ are
easy to achieve. Controlled distortions, therefore, allow for parts of shapes to be included
or exempted from transformations. How this works when two or more objects come
together will be described in the following chapter.

We will first illustrate the use of fixing and of binding to effect controlled distortions
in more detail.

10.6. Use of Fixing to Effect Controlled Distortions

Consider shape A shown in figure 10-7a, and suppose its conline angles and segment
lengths have fixed statuses as indicated. Suppose also that the intention is to translate P, 1o
P2 (or P3 to P3 , or P‘1 to P4’).
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KEY:
Af
Au
Lf
Lu

Angle value fixed

Angle value unfixed

Length value fixed

Length value unfixed P;;
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figure 10-7a . Shape A about to be translated

The drawing machine carries out this transformation as follows.

of their bearer angles and of their length values are noted. Any fixed values in this set are
made unfixed so that one of the basic transformations can be applied. P2 is then moved to

P2‘ by means of the (basic) move conpoint transformation.

The next step is critical to the preservation of fixed values. Each segment involved in
the move conpoint transformation that possessed either a fixed length or a fixed bearer
angle prior to the move conpoint transformation is detached at its other end (i.e. the other
end to Pz)‘ This is achieved by creating a new conpoint ( Pn’ ) made up from conlines

whose angles are the same as those of the old conpoint.
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Py Py

figure 10-7b : P, moves to Pz' - fixed values restored

This now allows for the restoration of previous fixed (angle or length) values (figure
10-7b). If new conpoints and old conpoints are coincident (i.e. their description in terms of
conlines is the same), then segments can be reconnected by restoring the old conpoints. If
new conpoints are not coincident with their corresponding old conpoints, then for each
such pair (in any order), the drawing machine translates the old conpoint onto its
corresponding new conpoint by repeating the procedure described thus far (figure 10-7c).

P

P P
G

P

A e . =
‘-'___..-F-'-'
- /
P e s o ©
P, P,

figure 10-7c : P3 moves to P3‘

This procedure is repeated until there are either no new conpoints (i.e. of the form
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P “), the result constituting a successful transformation. If the resolution of a new point
with an old point entails retranslating the initial point @2 in this example), then this
outcome results in failure of the transformation. In the example, the transformation is
successfully completed by moving 1:'l onto Pl’ (figure 10-7d), and finally P 4' onto P,
(figure 10-7e).

P P

P, P,
@
s G &
K : Py Ps

figure 10-7e : Pd‘ moves to P4"

This last heuristic safeguards against regressive application of the recursive point
translation transformation. In this respect, it is analogous to a heuristic used by Briderlin
[Briiderlin, 1985] for the construction of points. The procedure to which the heuristic used
here is applied (recursive point translation) however, is mechanistically more complex than
Briderlin’s recursive point construction. However, unlike Briderlin, the procedure
described here obviates the need for special geometrical construction techniques such as

Briderlin’s circle intersections.

The same procedure applied to the goal of moving 13’3 onto P, is illustrated in figures
10-8a to 10-8¢. Moving P 4 onto Pd’ in this example will give rise to yet another way of
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arriving at a similar result.

P Py

e
P4 rd !
P l NP
G Q
-6
Py P

figure 10-8b : P, moves to P,” - fixed values restored
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figure 10-8c : P 4, moves to P 4'
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1 P2
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figure 10-8d : Pl moves to Pl’
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Ple: 7%
Ps — p: Ps

figure 10-8e : Pd‘ moves to P4"

The general procedure outlined here allows translations to be defined on any point in
a shape, such that the result preserves any fixed values of any parts anywhere within the
shape.

It is evident from the above example that the procedure for implementing topological
transformations permits the introduction of breaks within connected chains of segments. At
first sight, this appears to contradict the aims of the previous chapter to support
topological, and therefore continuous transformations. Since we are talking about
transformations however, we are not interested in what happens anywhere except at the
beginning and at the end. It is therefore permissible to introduce a break at some point
provided it is eventually joined up again in the same way [Stewart, 1975].

Examples of outcomes of the transformation procedure when applied to the same
shape (shape A), but with different parts fixed, are shown in figure 10-9a-c.
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figure 10-9c¢

10.7. Use of Binding to Effect Controlled Distortions

Consider figure 10-10, in which the angle of a conline (not shown) passing through
P, and P3 (o say) is bound to the angle of the conline passing through Pl and P4 B).
Suppose a is increased from its initial value of 90° in figure 10-10a. Now suppose that a
depiction of this figure has to be generated. The outcome is as shown in figure 10-10b. The
length of the segment between P, and P, is recalculated in accordance with the rotate
conline (about Pl) transformation. After P1 P2 has been drawn, the conline through P3 is
drawn at the same angle as the conline through P4 according to the binding relationship.
With no fixed values having been specified in this example, the length of the segment
between P, and P, stays as it was prior to the transformation.
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KEY:
Af  Angle value fixed
Au  Angle value unfixed
Lf Length value fixed
Lu Length value unfixed
Ab  Angle value bound
Lb Length value bound
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(a) (b)

figure 10-10

Suppose instead, that the binding had been expressed between the conline passing

through P, and P,, and the conline through P, and P, (y say), in a relationship of the
form:

Y=o-90° (figure 10-11a).

If a similar change (to o) now takes place as before, we get figure 10-11b (or 10-
11¢).
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(e)

figure 10-11

Both of these examples show how binding relationships allow us to immediately
deduce the bound value. The two alternative outcomes of figure 10-11b and figure 10-11c
depend on whether the segment between P2 and P3 (case (b)) or the segment between P3
and P 4 (case (c)) was regenerated first. The avoidance of such ambiguities is the
responsibility of the user, and depends upon greater constraints being put upon the initial
shape (e.g. fixing the angle value of the conline P2 P3 would guarantee the outcome in
().

Binding relationships can also be expressed between segment lengths (e.g. figure 10-
12a). In this example, the length of the segment between P5 and P6 (Lz) has been set to be
twice the length of the segment between P, and P, (L)). If L, now increases, then so will
Lz' as shown in figure 10-12b.
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figure 10-12

10.8. Use of Fixing with Binding to Effect Controlled Distortions

Greater control over distortions can be achieved by the use of fixing and binding in
conjunction with each other. A simple example is shown in figure 10-13. In this example,
the segment between P1 and P, has a fixed length, producing a slightly different outcome
(figure 10-13b) to the one arrived at in figure 10-10b. In this case, the length of P1 P 4 is
preserved, and, as a consequence of the angle binding, so too is the length of P2 P3.

Pr Au Lu P2 Pi Au Lu P2

& >
Y 3 ) S
Y o
3(”“~.F§’ = ?ﬁ ?L
< <<

Ps Au Lu Ps
Ps Au Lu Ps3
() (b)
figure 10-13

A more complex example is shown in figure 10-14.
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figure 10-14

Staring from an initial figure as in 10-14a, there are a variety of possible outcomes

depending on which segment is regenerated first. Again, these could be reduced by further

constraints upon the initial shape prior to the change length transformation.
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10.9. Treatment of Transformations in Conventional CAD Systems

The transformations used in conventional CAD systems are forms of translation,
rotation, and scaling. Transformations are typically applied to instances of system-defined
elements, such as lines, boxes, circles, polylines and polygons. They can also be applied to
groups of elements that have been indicated as such by means of a ‘grouping’ operation. In
conventional systems such as MacDraft, MacDraw, and MacArchitrion, such grouping
implies the geometrical grouping of a set of elements within a region such that the region
can move as a whole. Such a grouping can be achieved by means of defining regions
within an existing picture. Regions themselves are usually box-shaped, but can also be
free-hand drawn. Grouping can also be achieved by selectively picking out particular
elements from amongst a set of elements. However the grouping is formed, the group
itself (sometimes referred to as a ‘symbol’) can only be selected through its identifier or
reference point (e.g. origins for symbols). A group formed using the Macintosh systems
behaves as a rectangular region with its origin at the lower left-hand comer of the
rectangle. This group can be transformed either by translating its origin, or by rotating
about its origin, or by scaling along axes that meet at this origin.

Other forms of transformations, namely, boolean operations, are to be found in some
2-D CAD systems, and in 3-D solid geometry modelling systems. In these systems,
relations between objects are usually represented by relations between their local co-
ordinate frames, and the representation of compound objects consists of some relation
between primitive objects, together with what are known as ‘shape operations’ [Earl,1987].
Shape operations can be represented in graph form. The problem with such systems,
however, is that on the one hand one has objects which constitute logical wholes, and on
the other one has some sort of hierarchical description of how such an object was
constructed. At any moment in time, one cannot recover the individual parts from which a
composite object was constructed other than by undoing the boolean join operations which
formed it. Once a composite object has been formed, the distinction between its parts

becomes blurred.

In architectural practice, objects are typically thought of as occurring in assemblies in
which relations do not include interpenetrations formed as a consequence of applying
boolean operations. In an assembly, objects touch one another, and this can occur in a
number of ways. Any representation of assemblies invariably requires reference to
vertices, edges, and, in 3-D systems, to faces. Each of these necessarily have to be viewed
as symbolic objects that form parts of some graphical object. A single object, therefore,
needs to be represented by relations between these primitive elements. The representation

of assemblies can then be given by similar relations between vertices, edges and faces of
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the assembled objects. However, in an assembly, components may move and so these
relations may be variable. The representation of objects in terms of primitive elements such
as vertices, edges, and faces, is at variance with the representation of objects purely in
terms of the co-ordinates of endpoints of lines, and therefore with the way in which
graphical objects are represented in most conventional CAD systems and solid geometry
modellers. Relations between objects in assemblies are often variable and need to be
represented as such. According to Earl, [Earl,op.cit.]:

"The interaction of a number of variable relations between objects and how they
restrict actual variation is generally a difficult problem."

The representation of design objects in conventional CAD systems leads to an
unsatisfactory treatment of variable relations. We have seen in this chapter, however, how
the mechanisms of fixing and binding in the transformational component of the drawing
machine can support the expression of variable relations.

An important observation to make about groupings in conventional CAD systems is
that they are not logical groupings in the sense that the representation of a group
constitutes a structure to which further properties can be ascribed and existing properties
modified independently of the graphical effect of such changes. Grouping as it is used in
conventional systems, prevents further access to individual elements within the group. The
only way of recovering access to individual elements is to ‘ungroup’ the set of elements
that were grouped. One is then again in the situation that the effect of moving any
individual element is not to propagate changes to adjacent elements since there is no

logical relationship between this element and any other element.

There is no way in conventional systems of saying things about other parts that meet
any member of the group to be moved, and how these parts relate to the parts that are
being moved. The question of how parts that abut onto/ touch/ have some particular spatial
relation to a group that is being moved is unresolved in conventional CAD systems. Do
these parts move with the group, or stretch onto the group, or do they get left behind? This
criticism is true even of conventional CAD systems that have limited abilities to handle
parameterisations within individual shapes. According to the Design Office Consortium
report [Hamilton and Scoins, 1980], a system such as CADRAW [Ove Arup Partnership,
1973] is capable of parameterising the shape shown in figure 10-15(a) such that any of
figures (b), (c), or (d) can be produced. The report considered CADRAW to be the best of
its kind for handling parameterisation. This example, however, reflects the limited
ambitions at the time of the report, since it is only length values that are parameterisable.
The interplay between the parameterisations of angles and lengths is something that is not

treated by any conventional CAD system.
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Once transformations are applied in conventional systems, they are applied uniformly
to all members of a group. A translation of a group of segments translates each segment
by the same amount. Scaling a group of segments in the x-direction scales each segment by
the same amount in the x direction. In conventional systems, segments are defined in terms
of the co-ordinates of their end points. Conventional transformations therefore, apply to
point sets. There is a sense therefore, in which conventional systems do preserve
connectivity, since shared points prior to a transformation remain shared points after a
transformation. In applying a conventional transformation to a group of segments,
however, one cannot describe any segment within this group separately to any other
segment, such that the graphical effect of the transformation upon this segment will be
different from the graphical effect of the transformation upon any other segment. One
could apply two or more consecutive conventional transformations to separate parts of a
picture, but in this case, the connectivity relations between segments will invariably be
broken as a consequence of defining the groups to which any transformation will apply.

The user of a conventional system frequently has to re-draw parts that previously
existed, but that got ‘left-behind’ as a consequence of some transformation. Additionally,
parts that one thought were not part of a transformation but were included in the group
also have to be redrawn back in their original positions. There is often a mismatch between
any conventional grouping of lines and the user’s intentions for these lines. This points to a
lack of topological knowledge embodied in conventional CAD systems. Topology is
concemed with those properties of graphical objects that remain invariant under

transformation, such as the connectivities between parts. Conventional systems not only
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lack expressive mechanisms for describing the connectivities between parts, but also lack

the underlying representations that would be required to support such mechanisms.

The essence of the transformational component of the drawing machine described in
this thesis is that topology combined with logical operations can allow a user to describe
graphical parts and to describe relationships between these parts, such that these
relationships can be preserved during the course of transformations. The deficiences of
conventional CAD systems stem primarily from the opacity of their logical representations
of graphical objects to the users of these systems. Through the transformational component
of the drawing machine described in this thesis, we can begin to see how giving users
some form of direct access to logical representations, even if only read-only access, can
enable them to see the correspondence between depictions and the system’s representation
of these depictions. The interpretation of transformations becomes more transparent since
the logical structures prior to and after a transformation are visible. Allowing users to
constrain the individual elements involved in a transformation by changing their properties,
or by relating properties of elements to properties of other elements, can only be achieved
if users have write access to the logical representations of drawings. Constraints on
transformations of shapes might affect all or only some conline angle or segment length
values within a shape. The binding mechanism means that changing a conline angle value
can have the effect of rotating a shape, or that moving a conline intersection point can have
the effect of translating a shape, or that changing the length of a segment can have the
effect of scaling a shape. In each case, the corresponding conventional transformation is
only one of many transformations that are possible with the transformation component of

the drawing machine.

The form of knowledge contained within conventional CAD systems is essentially
geometrical. In architectural and other forms of design, there are numerous cases in which
the designer has a particular view of the logical and topological structures of objects. It is
essential that CAD systems should reflect not only the geometrical appearances of a design,
but also the logical structure of any particular design. One can envisage a situation in
which the logical structure of a machine depiction is completely at variance with the
logical structure in the mind of the person looking at the depiction. This may be alright at
the time of observation, but as soon as the user wants to do something with the machine
depiction, this requires understanding of the logical structure of the machine representation
to invoke the required responses in the system. If the user had himself produced the
drawing by describing the logical structure as he went along, then there would not be so
much conflict between the user and the machine. But then this assumes that the system
possesses a representation environment which is capable of accepting expressions which

convey a user’s intentions for any particular logical structure.
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10.10. Summary

We have outlined in this chapter the mechanisms by means of which transformations
and controlled distortions can be produced. The outcome of any transformation that a user
of the drawing machine might intend is inextricably governed by the combination of fixed
and unfixed status values (associated with conline angles and segment lengths) prior to the
transformation taking place, together with any bound values. It also irrevocably depends
upon the state of connectivity between graphical parts prior to the transformation taking
place.

There is a limit to the kinds of shapes that can be handled or produced by the
transformation procedure outlined in this chapter. Possibilities are limited by the
availability of only straight conlines, conpoints, and segments. It is possible to conceive of
conlines with curvature such as circles, but these in tum would raise further problems. In
the system proposed here, shapes and transformations need to be specified in such a way
that new shapes can be produced by the drawing machine without resorting to the use of
other familiar Euclidean geometrical constructs. This may in turn mean that some shapes

and transformations will need to be overspecified in relation to a users’s understanding of

geometry.

This chapter has shown how shapes can be distorted in controlled ways by allowing
users to redescribe the logical properties of these shapes prior to the execution of
transformations. This represents a significant advance over conventional geometrical
transformations.
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11. Attachment

11.1. Introduction

The concem of this chapter is with the ways in which two or more objects can be
attached to each other, both graphically and logically. The need for attachment arises from
the view of CAD which places emphasis on the importance of description of object
configurations. The link between the drawing machine as it has been described so far, and
the practical concems of architects and designers, will become evident in the operations of
attachment between two or more objects. Attachment operations allow the possibility of
creating a variety of formal constructions which are not constrained by any direct practical
application. It is through the use of such operations that designers can explore design
possibilities.

Attachment between shapes can give rise to a multiplicity of possible outcomes. The
interest here is not in the quantitative enumeration of these possibilities; rather, it is in the
qualities of their expression. Again, this can be contrasted with other approaches such as
shape grammars (chapter 5).

11.2. Changing Shapes

An important part of CAD systems is the extent to which they support the expression
of configurational relationships between shapes. Shape configurations arise as a
consequence of interactions between objects. Artachment is the label given to a
conglomeration of processes that take place when two or more objects are brought together
into some kind of configuration. These processes involve edits (changes to object
descriptions), transformations, and the exploitation of features such as fixed statuses and
bound values. One of the nice features of the representation of shapes used in this thesis is
that configurational relationships between objects do not need to be expressed in any
explicit fashion, such as "A is next to B"; or "A touches B"; or "A overlaps B", etc. Rather,
such relationships are implicit in the representation of attached objects, and follow as a
direct consequence of how much or how little the attached objects have in common. For
example, the implicit representation of an explicit relationship such as "If B is rotated then
wherever it ends up, A will be drawn from the point it has in common with B" is achieved
by making the origins of both A and B refer to the origin of the composite object by

means of indirections.
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A consequence of the fact that the representation consists of named lines that bear
symbolic dimensions and angles is that it becomes possible to express configurational
relations between objects. Typically, these implicit relations are maintained even when the
drawings change. For instance, consider a drawing such as figure I1-1a. A house is 40°
wide, 20” of which is the sitting room, and 20" the kitchen. Suppose now that the width of
the sitting room needs to be increased to 25°. What should the new drawing now look like?
Will it end up as figure 11-1b or figure 11-1¢? The outcome should be decidable from the
way in which the original drawing was constructed.
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e e
sitting room kitchen

figure 11-1

The strategy proposed here is that configurational relationships should be expressed in
terms of indirections, in which one part of an object indirects to the description of some
other part. An example of indirection during attachment occurs, for example, when the
lengths of segments between pairs of pairs of points that are being attached (each pair
belonging to a distinct object) are made symbolically equal to each other. Another example
occurs when the conlines on which pairs of pairs of points lie are declared to be the same

in a composite drawing.

Such facts will interact with concrete details about a picture, to fix the eventual
drawing. For instance, to solve the problem about house width, a suggested order of events

could be as follows.
Pictures of the sitting room and the kitchen are first drawn. The widths of the sitting
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room and the kitchen are initially set to be 20°. Both widths are initially of unfixed status
(figure 11-2a). First the drawing of the sitting room is planted as part of the drawing of
the whole house (figure 11-2b). Then conlines are added to the planted drawing until there
are enough conpoints onto which enough points of the kitchen can be mapped in order to
hold it fixed relative to the sitting room (figure 11-2c¢). Then the conpoints in the drawing
to be added can be associated with conpoints in the drawing already located (figure 11-2d).
This will establish the topological relation between the kitchen and the sitting-room. The
drawing of the house should now look like figure 11-2e, except for the dimensions
between the conlines A,B,C.
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figure 11-2

How can altemnative dimensional relationships be expressed?
First, the lengths AB and BC are initially 20" each. Then one can either:

1 Declare the length of the segment AC, which is the total width of the house, to be
fixed at 40°. Expressing the relationship in this way means that the width of the
kitchen will follow by subtraction once the length of the sitting room is increased.
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2 Declare the length of the segment BC, which is the width of the kitchen, to be fixed
at 20°. Using this method of expression implies that the width of the total house will
follow by addition.

What happens if the sitting-room is made wider depends on which of these possibilities is
chosen. If the first, then the width of the house is constant, and so the kitchen will shrink.
If the second, the width of the kitchen is constant, so the width of the house will increase.

This approach handles another type of problem as well. Imagine that both a bath and
the walls of a bathroom have been drawn (figure 11-3a). Now one puts the bath in the
bathroom. Suppose (as is common in drawing systems) one locates the bath relative to
some fixed point in the bathroom - say at the lower left-hand comer. (figure 11-3b). Now
suppose the bathroom changes width, from 7.5” to 9°. What happens to the bath? If no
configurational relationship has been expressed, then it will be stranded in the middle of
the enlarged bathroom. (figure 11-3c).

What should have happened is that the left-hand side of the bath and the left-hand
wall of the bathroom should have been attached to each other. Thus when one moved the
other would have been dragged with it. How is this done? Figure 11-3d is like figure 11-
3a. If the conpoints are attached as shown, the conlines on which lie the left-hand sides of
the bath and bathroom will be declared to be the same, and if one of them is moved in the
composite drawing, they will move together, to produce, not figure 11-3c, but figure 11-3e.
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figure 11-3

This last example illustrates how the way in which objects are attached will have
implications for subsequent changes that might be made to the new configuration. The
behaviour of a composite object in which sub-objects are tightly bound to each other (i.e.
sub-objects have several graphical parts in common with each other) is such that if any
sub-object is moved, then the rest of the sub-objects will also move (to a greater or lesser
degree). On the other hand, a composite object whose sub-objects are loosely bound may
appear to break up once any of its sub-objects is moved, leaving others behind in the

process (although logically it may still remain a composite object).
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11.3. Attaching Two Shapes

Consider the apparently simple task of attaching together two objects such as those
shown in figure 11-4. Each of the shapes A and B has its own origin defined in a separate
co-ordinate space.
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figure 11-4: Two objects to be attached

Depending upon the intentions of the user, one of several possible outcomes could
arise, some of which are shown in figure 11-5.

The logical representation of a composite object requires a common point of
reference between the attached objects. This implies at least one conline in common, as
otherwise the two objects remain independent. Figure 11-5a illustrates a case in which the
user may want to constrain the conlines of two separate shapes to be parallel. Figure 11-5b
expresses a colinear relationship between conlines. Figures 11-5¢ to 11-5j assume that there
is at least a conline, and one or more conpoints in common. In order to be able to
distinguish between these different outcomes, the drawing interpreter needs to possess
knowledge of drawing operations to arrive at these user-described outcomes. This
knowledge embraces drawing operations and how they may interact with each other, rather

than an exhaustive classification of possible outcomes.

Typically one works with a location drawing into which one can fit objects that may
have been previously defined. When such insertions take place, either segments of the
location can fix dimensions of the component drawing, or vice versa. There is no reason to

suppose that one drawing should be dominant over another with respect to length
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dimensions. However, for angles, it is reasonable to assume that one of the drawings
should be fixed in this dimension, since it is effectively providing a grid upon which the
attachment can take place.

Already specified graphical objects are presented in separate screen windows if they
are needed for attachment. Attachment chains (sequences of conpoints) are indicated on
location and component drawings in order that the drawing machine can establish which
graphical parts are to be attached. Shapes need to be dimensioned before they can be
drawn for the purpose of indicating attachment chains.
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figure 11-5: Possible attachment goals
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11.4. The Logic of Attachment

“Attachment brings objects together not only graphically, but also logically, to create a
composite object. The graphical ‘moving together’ involves the invocation of the
transformations described in the previous chapter. Logical attachment, on the other hand,
can best be described in terms of the edit operations provided by the representation
environment. Logical attachment can take several forms, and we need to explore the
various kinds of attachments by which graphical objects (shapes) combine to form new
graphical objects (compositions). Each kind of attachment is essentially simple, but can
lead to the creation of complex constructions, both in terms of the refinements in
description that led to the creation of a new composition, and in terms of the richness of
new forms that may arise as a consequence of operating upon this composition. Some
logical possibilities are shown in figure 11-6:

- 164 -



A < _—8B Logical Attachment

aggregation

A B
c//l \\ O// ‘\\ — B's origin indirected to a
R

symbalic point in A's description

cohesion

A B
O//l \\ 7/1\\ — replacement of parts of B

with parts of A

A— fusion
IS %

sub—part parent
aggregation =} aggregation

°//T\\B A/l B
VN I 7N

sub—part parent
cohesion = composition

A
O//l\\B A/ B
e AN ZAN

figure 11-6 : Logical Representations of Graphical Attachments

11.4.1. Aggregation

— all of B's parts merge with A

The component is loosely placed over the location by specifying its origin as taking a

co-ordinate value of one of the points of the location. This is done by means of an
indirection. The effect on the dynamics of the resultant object is that whenever what used
to be the location part is subsequently moved, the attached object (what used to be the
component) is dragged with it by means of its origin. This is the most tenuous form of
attachment in that the attachment can be broken relatively easily by replacing the origin
indirection that binds the two objects together by some symbolic point which can be given
an independent coordinate value. The effect of this breaking would mean that although the

two shapes are logically attached, they would be graphically separate.
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For two objects A and B, as in figure 11-6, aggregation can be achieved by
indirecting B’s symbolic origin to some symbolic point in A’s description. In terms of the
representation environment’s logical operators, this can be expressed by an expression of
the following form:

B:origin <+ A:seg_xj:conpoim Y,

11.4.2. Cohesion

Parts of the component take the descriptions of parts of the location (implemented in
terms of the << operator of the representation environment). The sub-objects behave as if
they have been ‘stuck-together’. The effect of this is that whenever transformations are
subsequently applied to the location part of the composite object, they will invariably have
‘knock-on’ effects upon the attached object (what was the component). This form of
attachment binds objects together in a tighter fashion in that it becomes more difficult to
unpick the sub-objects from the composite object. Such an unpicking would have to be
done by re-establishing those graphical parts that were replaced during the attachment.

In terms of figure 11-6, logical parts of B that have graphical depictions (i.e.
segments, conpoints, or conlines) replace the descriptions of corresponding parts of A, e.g.:

A:seg_xj << B:seg_):j, , OI:
A:seg_,tj:conpoint Y << B:seg_xj.:conpoinl Y , Or.

A:seg_xj:conpoint _yk:cm]linc_zl << B:seg_xj.:conpoint _yk,:conlinc_zf,

11.4.3. Fusion

The component loses its identity and its description fuses into the description of the
location. It does this by having certain of its parts taking the descriptions of parts of the
location, and all the remaining parts declared to be parts of the location. Fusion effectively
adds graphical parts from one object (the component) to the location. Undoing this form of
attachment would involve a considerable amount of re-description. Fusion is implemented
in terms of the < operator described in chapter 7. Those parts of the component that take
descriptions of parts of the location do so by means of renaming (implemented in terms of
the << operator). Referring to figure 11-6, the fusion of B onto A can be described by:
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11.4.4. Sub-Part Aggregation

Same as aggregation except that the component becomes a logical sub-part of the
location. In figure 11-6, sub-part aggregation between A and B can be achieved by means

of the following two logical expressions:
B:origin <+ A:seg_xj:oonpoim Y, , and:

A <+ [subpart=B].

11.4.5. Sub-Part Cohesion

Same as cohesion except that the component becomes a logical sub-part of the
location. In terms of figure 11-6, logical parts of B that have graphical depictions replace
the descriptions of corresponding parts of A, e.g.:

A:seg_,tj << B:segjj, , Or:
A:seg_xj:conpoint Y << B:seg__xj,:conpoint Y- , Or:
A:seg_,xj:conpoint _yk:conline_zl << B:seg_;cj,:conpoint Jk,:mmme_zi,

And, additionally,

A <+ [subpart=B].

11.4.6. Parent Aggregation

A parent object is created. Both component and location are related to the parent
through their origins. In figure 11-6, once P has been defined as being a graphical object,
parent aggregation can be achieved by means of two additional expressions of the

following form:

Acorigin <+ P:seg_xj:conpoim Yy , and:
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B:origin <+ P:scg_,tj,:conpoint Y-

11.4.7. Parent Composition

A logical parent is created, with component and location becoming parts of it. It is
not clear how such an object can be realised graphically, since there is not necessarily any
graphical relationship between the parent and the component, or between the parent and the

location. The two expressions that establish parent composition in figure 11-6 are:
P <+ [subpart_/=A], and:

P <+ [subpart_2=B]

11.5. Worked Example

How the drawing machine operates on the representation environment when executing
changes is illustrated in figure 11-7. Beginning with a drawing of two shapes, a rectangle
A and a triangle B (figure 11-4), we want to make a new shape C which is to be formed
by joining B to A, an example of an attachment operation. The user has to declare which
of the basic transformations is to apply, rotate conline, scale segment, or translate
conpoint. The segments that will be used to effect the change are indicated by the user
hitting the end points of a line (S5) of shape B and then hitting the end points of a line
(S3) of shape A on the drawing. This has two effects. Firstly, that B has to be rotated
about its point P5 with respect to the conline C4, and secondly that P5 is to be translated
onto P4. The user may want to add that S5 is also to be scaled such that it matches S3’s

description.

The two logic diagrams in figure 11-7a and figure 11-7b show the description of the
separate shapes A and B prior to being changed, with reference to the segments, conpoints
and conlines that make up the drawing of these shapes. We may assume, if nothing else is
said, that length values of segments have been taken from the drawing, and that these
values fill slots attached to segment kinds (not shown).
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figure 11-7b: Representation of Shape B
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figure 11-7c: Rotation and Translation of B
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figure 11-7d: Scaling of B

To attach B to A, a new shape C is declared that has as its parts A and B. The
drawing machine then fills the "rotate" slot of B with an indirection to the angle value of
the conline bearing the segment of B that has been indicated by the user. All angle values
of B are then bound together so that if one changes all change.

Next, shape B has to be moved up against A. The logic diagram in figure 11-7¢
shows the drawing machine having replaced all instances of conpoint PS5 with P4, and all
instances of conline C5 by C4. At this stage, the drawing machine has enough information
to regenerate the drawing as shape C(i) which may represent what the user said he wanted.

Additionally, the user may have stated that S5 is to be scaled to match S3. To
change the scale of shape B so that its edge joining A is equal to the length of the edge it
joins in A, the drawing machine fills the "scale" slot of B with an indirection to the
segment that forms the drawing line that has been indicated by the user, as shown in the
last logic diagram figure 11-7d. All length values of B are then bound together so that if
one changes all change. Finally, all instances of segment SS in B are replaced by S3 (only
one in this example) and all remaining length values of B are adjusted with reference to
the length value of S3. The drawing machine is then able to regenerate the drawing as
shape C(ii).
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figure 11-8a: Fixing one segment length and one conline angle

11.5.1. Fixing

Recall that the representation of conlines and segments includes a reference to
whether or not their dimension values can subsequently be overwritten, indicating whether
they are "fixed" or not. This is a truth value which is the filler of the fixed slot of the
segment kind.

In the previous example, all segment lengths and conline angles in B were left as
inferable from values in A. It is possible to fix any of these values so that they are
excluded from a change operation, with consequent changes in the resulting new shape.
For example, one might want to preserve the angle of conline C7 and the length of
segment S7 while making the same attachment as before. The user needs to indicate that
these are the dimensions he needs to fix, and the drawing machine would generate an
initial description of shape B as shown in figure 11-8a.
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figure 11-8b: Rotation and Translation of B

If the user proceeds with the attachment in the same manner as before, then rotation
and translation produces the representation shown in figure 11-8b. Notice that this time the
value of C7’s angle has not been affected by the binding of angles relative to C4’s angle.
Similarly in the translation operation, the fixed values remain fixed. Notice that with a
fixed length dimension, it will scale the object relative to the part to which the fixed
dimension belongs.

When this attachment was done without fixing, S5 was taken to be the default
reference segment for scaling purposes. This time, moving P6 onto P3 cannot be done
using the scale operation, but instead requires an edit of the composite object C such that
P6 stays where it is, but the common endpoint of S5 and S6 moves to P3. At first sight
this doesn’t look quite right since S6 has lost its bearer. But it is not essential that
segments should lie on bearers provided their end points are at existing conpoints. The
final shape is shown in figure 11-8c.
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A

figure 11-8c: Moving a segment end point

Making use of fixed statuses in this fashion, as was done by fixing values associated
with shape B in this example, again allows one to produce controlled distortions when
shapes are attached.

11.5.2. Types of Attachment

In the previous example, the description of B was merged with that of A so that the
merged segments of B disappeared. Altemnatively, B could have been attached to A in a
manner that would have kept B’s segments as distinct parts of B lying on top of the
corresponding segments of A.

By now it should be apparent that there are different kinds of attachment, different
goals that a user may have in mind when joining one shape with another. The purpose of
the representation environment’s change operations is not to anticipate correct results for
particular kinds of change, such as an attachment between two drawing objects, but is to
allow a user to describe any required result. Again, it is evident that controlled distortions
can take place just as easily when objects are attached, as they could with individual
shapes. The equivalent attachments to the controlled distortions illustrated in figure 10-6 in

the previous chapter are shown in figure 11-9.
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figure 11-9

11.6. Knock-On Effects of Qualitative Changes

Returning to the discussion of details in chapter 4, suppose that at some stage in the
design process one would like to insert a detail into a more general layout drawing.
Suppose the detail is something like the detail of the floor covering for a floor. Typically,
such a drawing is bound to include information which, when combined with the
- representation for the layout of the whole floor, should be propagated to the whole of the
floor, and not just stop where the detail meets the rest of the drawing. How does one know
where such extrusion information should stop, or how it should be joined to other parts
when it does stop?

This problem can be solved by indicating on the location drawing, the precise points
which will delimit the extent of the component detail when it gets inserted, and the
corresponding points on the detail itself. An invariable consequence of most attachments
that take place in this fashion, is that any subsequent transformation which is applied to
either of the sub-parts of the newly formed composite object, will have knock-on effects
upon the other sub-part to which it is attached. These are a direct consequence of the
transformation of one object onto another during the attachment, in that the transformation
procedure attempts to preserve fixed and bound values.
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11.7. Treatment of Attachment in Conventional CAD Systems

We saw in the previous chapter how conventional CAD systems treat the movement
of objects in comparison with the greater control over movement that is possible with the
transformation component of the drawing machine. We now have to consider how
attachment is dealt with in conventional systems. We observed during the course of the
worked example in chapter 6, that a 2-D drafting system such as MacDraw or MacDraft
has very little concept of attachment whatsoever. In these systems, the user cannot join
graphical parts with other graphical parts such that the connectivity of these parts is
preserved despite subsequent changes to properties (such as angle and length values) of
any of the connected parts.

A more sophisticated system such as MacArchitrion [MacArchitrion, 1987] provides
functions (the ‘L-Join’ and the ‘T-Join’ functions) which enables two segments to be
joined together. The 3-D version of MacArchitrion has equivalent 3-D functions which
operate on ‘blocks’. The most significant observation to be made here is that the joining of
segments using these functions is not a logical one, but purely a geometrical one. There is
no sense in which the joined segments are considered as being parts of the same composite
object. In contrast, in the system described in this thesis, the drawing machine, in
conjunction with the representation environment, works on the principle that making
attachments between shapes is a general means of building up shape information. At the
most primitive level, drawing a single line, adding one line to another or adding one line to
a collection of other lines (a shape) involves attachments to lines or line intersections
(conlines and conpoints). Line by line additions to a logical reprcset.nalion of a design are
generated by the drawing machine. Attachments between shapes that each consist of
separately assembled collections of lines, and may each exist in separate drawing spaces,

require direct use of the logical operators of the representation environment.

From the geometrical point of view, the MacArchitrion ‘L-Join’ and the ‘T-Join’
functions work on the principle that the join will be located at the intersection point formed
between the implicit ‘construction lines’ upon which the segments to be joined lie. One can
envisage many situations in which this default assumption would be an incorrect one.
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figure 11-10

Consider a drawing such as figure 11-10(a), consisting of two segments. The
MacArchitrion “T-Join’ function would produce figure 11-10(b), by extending segment 1 to
meet segment 2 at the intersection of the implicit ‘construction lines’ of both segments. As
an altemnative goal, one might want to join the two segments by preserving the length of
segment 1 as well as its angle (figure 11-10(c)). Figure 11-10(d) is an outcome that can
be obtained using the MacArchitrion ‘L-Join’ function. Notice how in this case the length
of segment 2 is not preserved since this segment is truncated at the intersection point of the
two segments. One might also want to fix the opposite endpoint of segment 1, changing
both the length and angle of this segment (figure 11-10(e)). There is no reason to suppose
that one would not want an ‘L-Join’ between these two segments such that the lengths of
both segments stay fixed as in figure 11-10(f). There are many other possible attachments
between these two segments. Although the phenomenon of attachment is one that is
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beginning to be acknowledged in conventional systems, it is not yet one that has been
given a principled treatment. The only form of logical join that is used in solid geometry
modelling systems corresponds to a ‘fusion’ type of attachment, which, as we have already
seen, is only one of several possible logical attachments.

To conclude this section, we give a simple illustration of how the logical operators of
the representation environment can support a variety of alternative attachments between
shapes which may lead to alternative outcomes during the course of subsequent
transformations. The variety of outcomes is not only as a consequence of having a variety
of logical operators, but, more importantly, as a consequence of applying them within
different contexts in the logical representation of any particular object. It is this variety of
possibilities that is absent from the operations that are available in conventional CAD
systems. Consider figure 11-11.

conline_64=C'

segment_1=8

segment_64=S,

1 1 % e,
i i ep1=P-4 " \‘
1 1 e \
. 4 \
conline_1=C \
figure 11-11

Examples of attachment operations include the following:
1 Conline C” << C.

C’ is renamed as C and therefore takes its angle value. By this means shape B can be
rotated onto A. Subsequently, if C as a nested part of A is transformed, B’s C part will be
left behind, since A’s C and B’s C are two different instances. This kind of transformation
can be invoked by by means of a logical expression having the following form:

-

A:segment_1:epl:conline_1 <+ [angle=40].

If C’s kind name is referenced directly in the transformation expression, then the C
part of B will also change, and such a transformation will also affect B, perhaps to the
extent that B moves with A, depending upon the logical structure of the remainder of B.
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Such a transformation can be invoked by a logical expression of the form:
C <+ [angle=40].
2 Conline C” <= [angle=[A:segment_1:epl:conline_1]].

In this case, C’ takes the value of C, and B is rotated onto A. Subsequently, this
attachment will be preserved under any transformation of C in A, until the indirection
filling the angle slot of C” is changed, e.g. by means of:

C << (C , or
C” <+ [angle=40].
3 S <= 8.

The description of S” is replaced with the conpoints, conlines, and angle values of S.
B is rotated, translated, and scaled onto a segment of A. In this case, having used the <=
operator, the attachment can be preserved under transformations of A only by directly
referencing a kind name below S in the transformation expression, e.g.

P-4:conline_1 <+ [angle=40].
4 S << S

As in 1 above, S” no longer exists as a part of B. Note that S now exists as
separately identifiable parts of A and B as though the line represented by S is formed of
two coincident segments. This property is important to the decomposition of shapes that
are made up of separate sub-shapes.

11.8. Summary

This chapter has been predominantly concerned with the nature of logical attachment
between graphical objects. The expression of configurational relationships between objects
determines the subsequent behaviour of composite objects. In other words, it determines
when a particular part moves, to what extent it will pull other parts with it. Different
outcomes will arise depending on the exact nature of the attachment relationships between
the sub-parts.

The most significant part of the syntax as far as attachment is concerned is the part

that deals with drawing compositions. A composition in itself is nothing other than a
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syntactic primitive of the grammar as described in chapter 8, which materialises when a
user of the representation environment says he is going to create one. Subsequent
interactions may include: naming of objects that will constitute the composition;
description of common parts; description of hierarchical relations; description of
inheritance relationships. It is these subsequent interactions, each of which can take place
within various logical contexts, that determine the final nature of the resultant composition.

Attachment of objects in conventional CAD systems is typically geometrical and not
logical. In conventional systems, there is no sense in which joined elements are considered
to be parts of the same composite object. In contrast, the system described in this thesis
works on the principle that making attachments between shapes is a general means of
building up shape information.
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12. The Flow of Control in the System

12.1. Introduction

The essential flow of control in the drawing machine as implemented is outlined in
figures 12-1, 12-2, 12-3 and I2-4 respectively, in which the procedures for editing,
regeneration, transformations, and attachment are described. Apart from standard graphical
operations such as saving the current drawing, plotting the current drawing, etc, these four
components are the most complex parts of the drawing machine. The figures themselves
make use of Nassi-Schneiderman (NSD) diagrams [Pong and Ng, 1983], which clearly
illustrate the logic flow in the system. If ..... then constructs are represented by conditional
boxes which redirect control to further boxes depending on whether a condition is satisfied
(T) or not (F). This redirection may be preceded by some action associated with the truth
condition.

12.2. Editing

The description of graphical objects is effected by means of edits which add to the
description of any such object further graphical primitives standing in some relation to
existing parts. New instances of primitives which are to become part of a shape or
composition are instantiated by particular key-hits as shown in figure 12-1.

Consecutive non-coincident conpoint hits instantiate by default a connected chain of
segments. Collections of conlines, conpoints and segments form shapes. Collections of
shapes form compositions. Figure 12-1 also indicates the presence of save and plot
facilities.
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12.3. Regeneration

The regeneration of shapes and compositions begin by allocating a screen co-ordinate
value to some symbolic point (figure 12-2). Through this point the drawing machine can
then regenerate a conline that passes through it, together with the segment for which the
conline is a bearer. The segment’s other endpoint provides a new point for the continuation

of this process for connected chains of segments.
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12.4. Transformations

Transformations are sequences of rotate, scale, and translate operations, each
operation being applied locally to a part of a drawing and executed in sequence (figure 12-
3). The type of connectivity relationships that exist between the part that is being
transformed and adjacent parts, will determine the knock-on effects of each transformation.
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12.5. Attachment

Expression of conditions upon both location and component objects prior to
attachment is essentially menu driven. Conditions include logical sub-part relationships, and
form of attachment (aggregation, cohesion, or fusion) - figure 12-4. Additionally, the
corresponding chains of segments from both objects need to be indicated. The drawing
machine establishes the attachment relationships between each segment of the component
attachment chain in tum, and its corresponding segment in the location attachment chain.
The remainder of the component object is transformed onto the location using the

transformations (illustrated in figure 12-3).

In addition, figure 12-5 indicates facilities for the expression of binding relationships,
and for the expression of precise angle and length values associated with the actual

dimensions of depicted objects.

- 187 -



@ """"""" [ — T o e emeThArenSe @

Attach Fix
Indicals logical
M!a![ondxlf;‘
batwaun lscalion .
m&mww
T ﬂif?*’"‘ AREL g;u.mna ¥ ® e 4 bl
e D [Comale ] Bt Sdond T
vy S vl e anghe by :ﬂ:ffv
sub—pants. g
Fiz A Fix Langth
bositom | qompanst] ol  alladkmant
IFWM % é ? IF Cehusinn ¥ IF Fusien %
chaima ; ...;.L b&,. S,
saipine. dinact pante.

figure 12-4

-~ 188 -~



Real World

Angle
pe
Indicats
nnn&n-.
Kitbing
m
Sndicals
naal—world
ﬂd.

'
i

Real World

Length
Jndicats
e
2 .
Indicals

mal—wonld

vl

'
ol "}

;urw-z . M..WZ

Bind

i o

o~

- 189 =

figure 12-5

'
"

L




Part Three

Conclusions, Observations, and Open Problems
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13.1. An Instrumental Approach to Design Systems

By way of introduction to the concluding section of this thesis, it is useful to restate
the context in which this system fits, namely its use in design. Design is different from
other activities that are already amenable to computerised techniques in that it is more a
process of problem generation and problem exploration which refers to individual human
intuitions and judgements. Design is not subject to separate criteria for correctness of
results. Good designs are decided, never proved.

This lack of criteria for correctness compels anyone working on design theory and
CAD systems to adopt an instrumentalist approach. One interpretation of instrumentalism
[Flew, 1979] is as a term applied to a view about the status of theories held by anti-realist
philosophers. According to the instrumentalist view, theories are merely instruments, tools,
or calculating devices for deriving some predictions from some data. Consequently, there is
no question of such theories being true or false, since theories cannot be either true or false
(at least not w.r.t. anything outside the theory). Instrumentalism is thus opposed to most
realist theories of science.

The interest in viewing drawing as language is aimed at formulating and interpreting
expressions, without looking for a correct language with the right vocabulary for designers.
Instead, we have to consider more fundamentally how any language works. Any study of
this kind inevitably involves some speculation.

Knowledge is passed between people in the form of extemalised expressions, and the
things indicated by expressions are further expressions which, ultimately, are interpreted
intuitively. This poses a question about the way in which people arrive at and share truths
about the objective existence of things and the correctness of objective knowledge. Such
truths can exist only as expressions that refer to intuition - and this position applies to both
scientific and non-scientific knowledge. Domain knowledge then refers to specialisations
of knowledge that people attribute to other people.

It is not our intention to find an explanation of how people read drawings, in order to
arrive at procedures that might produce uniquely correct results. The intention has been to
discover just enough about how people make drawings, in order to define a drawing

machine which provides a communication medium (chapter 1).

The end to which the means of the representation scheme described is being applied,
is to support construction and manipulation of expressions in the form of drawings, where
the purpose of the drawings is to communicate object assembly and construction

information.
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Drawing systems should be as natural as possible in that they should allow users to
express changes to drawings, and have the system respond appropriately. It was this goal
that has guided the development of the system described in this thesis, even though the

success achieved in attempting to satisfy this goal has been limited.

The drawing machine described is intended to produce and manipulate drawing
objects constructed from lines in a 2-D drawing space, and to describe states of attachment
between lines. It cannot do this without having a particular understanding of
geometry/topology. We can regard this domain as being one at which the representation is
to be targeted. In other words, such a knowledge domain is an application of the
representation scheme. Domain knowledge of this nature is contained in the drawing
machine, and should be distinguished from knowledge associated with the application
domain which will be referred to as application-domain knowledge.

An implication of viewing the drawing machine as a linguistic system, is that one can
define the internal structure or syntax of drawing objects, such that these definitions are
independent of shape descriptions and application-domain knowledge. Shape descriptions
can then be defined as parts of drawing objects, so that the drawing system can depict
shapes. Shape descriptions themselves will ultimately be context sensitive in the sense that
they are conditioned by intentions with respect to application-domain knowledge. Thus
representations of shape descriptions and application-domain knowledge will be user-
defined, and will vary from person to person.

We have decided upon lines as basic constituents of drawings, defined between end-
points. Attachments between lines can vary, affecting what happens when a line is moved.
Lines can be translated, rotated and scaled, affecting properties and arrangements of other
lines, conditioned by states of attachment (see chapter 11). These are properties of drawing
objects, they are not obvious in instances of drawings, they become apparent when
drawings are changed, and they have to be controlled by the user of the drawing machine.

Shapes correspond to single connected (open or closed) chains of lines. Angle and
length values of lines describe properties of a shape and its sub-shapes. Lines arranged in
2-D drawing space depict angle, length and attachment, as shape properties that can be
mapped directly to corresponding shape properties of other things. Interpretations of
drawings are externally determined, outside drawings and inside the minds of people who
produce and read them.

Part One of this thesis was an informal attempt to discover some fundamental issues
presented by drawing practice, to inform the more disciplined work of Part Two. Here in
Part Three the salient points of the thesis will be reviewed.
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13.2. Relation of Drawing Machine to Representation Scheme

A clear separation was made between a depiction and its logical representation. Each
is an analogy of the other. The distinction is explicit in that one can work in either
medium. Conventional CAD systems give the impression of working with the depiction.
Carrying out transformations with conventional systems can produce unexpected and
unintended results as a consequence of the fact that the user cannot adequately localise the
effect of transformations by constraining the logical representations of depictions. This is
firstly because the representations are not accessible, and secondly because those

transformations that do exist have been prescribed by a system programmer.

Having logical representations of each part of a drawing allows reference to these
parts for the purpose of intended changes. This allows one to design better, if by design
you agree with Pye’s description [Pye, 1978], viz.

"..... the business of ensuring that at least you get the change you want along with all
the others which you don't ....."

Ensuring the change you want becomes possible if the parts to which you want a
change to apply are explicitly represented. The representation environment supports partial
description, and is founded on the principle that architectural design description consists of
a variety of aggregative processes in which discrete parts are brought together to form a
representation of some new thing, with parts preserving, to some degree, their individual
identities. This can be contrasted with CAD systems which work on the strict principle
(often defined in terms of boolean operations) that whenever two or more objects come
together, they fuse into a single discrete object such that ancestral objects vanish. This is
adequate for domains such as mechanical engineering in which the empbhasis is typically on

‘sculpting’ particular desired components.

Transformations for executing changes provided for users of conventional systems are
typically applicable to discrete sub-parts of drawings (commonly referred to in CAD
systems as symbols). Consequently, although they can initially be used in such a way as to
effect a particular desired change, any further required changes pose severe problems in the
unravelling of the description of the discrete sub-part to which a change is being applied.

The drawing machine, therefore, is essentially a user of the representation scheme. It
can be used both to generate logical representations of graphical objects within the
representation scheme, and to generate depictions of such logical representations (figure
13-1).
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The drawing machine is defined in terms of primitives and relationships such that instances

of graphical objects automatically receive logical representations.

13.3. Depiction-Representation Equivalence

When any system (human or otherwise) looks at a drawing together with its
representation, there is a problem of equivalence between these two forms. We need to
characterise the nature of the relationship between the user and the drawing machine, and
between the user and the representation scheme.

A user interacts with the system in the manner shown in figurel3-2. The user can
either draw things using the drawing machine, or input descriptions directly into the
representation environment. The former will indirectly generate logical descriptions of
graphical objects in the representation environment. The latter is a means for integrating
non-graphical (i.e.textual) descriptions with graphical descriptions, although there are
limitations on the form that such integration may take, at least within the context presented
by this thesis.
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An illustration of the problem for a user trying to make some sense of the underlying
logical representation of a graphical object, occurs when he may want to undo an operation
that has been carried out, such as a transformation that may have produced an undesirable
outcome. One could argue that there is no need for an undo operation, given that
transformations preserve topology. Such a view would imply that a user should be able to
recover his original object by applying inverse transformations to the newly depicted
graphical object. The user could not, however, recover exact positions easily, since
topological equivalence does not imply geometrical equivalence. Attempting to recover the
original object via its logical representation implies that the user would have to be aware of
logical relationships that existed between graphical parts prior to the initial transformation
in order to re-establish them. This he may not always be able to do.

To marry closer the two forms of representation, the depiction and its equivalent
logical representation, one can work at presenting the representation in relatively
transparent ways. An example is the use of the virtual operator, by means of which the
representation system constructs (from a mess of bottom-level facts) and displays the
structure of a kind in terms of slots (paths) and fillers, the presentation being in a

hierarchical form.

The strategy adopted in the system described in this thesis has been to allow users to
access the representation environment directly in order to be able to say further things
about the graphical objects that have been produced. The logical representation scheme
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which is the target representation for the representation of drawings, is the same as that
used to represent depicted (design) objects i.e. non-spatial aspects. Thus potentially, one

can integrate representations of drawing objects with representations of depicted objects.

Users are not allowed, however, to make destructive changes to graphical parts (i.e.
the removal or deletion of graphical objects) by accessing the representation environment
directly. One can envisage how the ability to do this kind of thing may easily lead to
inconsistencies in the logical representation, which the drawing machine has been explicitly
designed to avoid. The extent to which one can allow the user of such a system to make
destructive graphical changes directly through the representation environment is an
outstanding issue which has not been resolved in this thesis. The system described does not
have the capacity for such changes, but one can envisage situations in which such a facility
would be desirable (cf. the junction example in chapter 9 of [Bijl, 1989]).

One could argue, as Bijl [Bijl, op.cit.] does, that inconsistency should be permissible
in a representation environment for the support of evolving designs (i.e. in a plastic
representation environment), but from the point of view of a drawing machine, inconsistent
logical descriptions of graphical objects may mean that such objects cannot be depicted.
More importantly from an implementational point of view, different categories of
inconsistency would have to be specified in order for the drawing machine to recognise
them without itself falling over when it encounters an inconsistent description. A separation
has been maintained, therefore, between those operations executable by the drawing
machine which are capable of making destructive changes to logical representations of
graphical objects, and those operations executable by the representation environment which
have ‘read-only’ access to such representations.

An important observation is that the modification of drawings does not require
knowledge of a storage structure that is separate from that used for design object
representations. It becomes possible to refer to any part of a drawing through associated

user-described names which form part of the representation of the drawing.

Furthermore, there is a separation of the drawing representation from the physical
(and logical) drawing space. The representation of drawings is not dependent upon
coordinate point values in some computerised drawing space. The instantiation of
depictions, however, is. The drawing machine is responsible for the construction of

representations from depictions and vice versa.
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13.4. Drawing Compositions

According to Pye:

"Everything everywhere may be regarded as a component of a system. It is fruitless to
consider the action of a thing without considering the system of which it is a
component. This fact has special importance for designers in various fields because
they tend to think of things separately and to design them separately. We ought not to
do this if we can help it. We ought at least to remind ourselves that we are concerned
with a whole system even if we are only able to effect the design of one component."

[Pye, op.cit.]

Pye proposes an anti-reductionist stance which he observes runs counter to the way
designers typically work. The fact that the representation environment only deals with
descriptions, allows the user to view some graphical objects as being more ‘complete’ than
others, or alternatively as being part of other objects. In either case, no distinction is made
within the representation environment. The top-level object within the drawing machine is
the composition. Compositions can be representations of particular details, or ‘whole’
drawings, or anything in between; in all cases, any composition can be part of some other
composition.

The way in which drawing compositions are defined is such that arrangements of
graphical primitives (which constitute parts of some logical object) are significant.
Compositions are non-discrete in that they typically consist of interrelated shapes, whose
parts may also refer to other compositions. A central feature of the drawing machine is its
support for the propagation of parametric changes across shapes and drawing compositions.
The design of the drawing machine arose out of the observation of the inadequacy of
conventional CAD systems in their support for the expression of such relationships. The
expression of such relationships allows for the control of transformations such that parts
are included in or exempted from them. Transformations, therefore, become controlled
distortions. A current trend in computer graphics is to move more towards icon and menu
driven systems, in which users can select from a range of prescribed operations, and
interact less with the graphical domain to which the icons and menus refer. The ability to
be able to access specific graphical parts, to describe relationships between them, to re-
describe them (by means of edits, transformations, and post-hoc decomposition) in order to
describe new relationships, are activities that are crucial to design. It is advances in this

direction that are offered by the work of this thesis.
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13.5. The Structure of Design Objects

The structure of design objects rests upon a view of design as being essentially
hierarchical. Evidence in support of this view was obtained primarily from looking at
drawings such as detail drawings which are obviously hierarchically structured (chapter 4).
It is also evident just by talking to designers that design itself can be viewed as being
hierarchical. However, within such a view, it is never clear when the description of one
object ends and the description of another begins. Consequently, one cannot imposes
part/whole typing upon design objects. Each object is of equal status.

Although we have adopted the view that architectural design is essentially an
aggregative process in which known objects are brought together, the nature of this process
may resemble one of several markedly different types. Those types identified in this thesis
arise naturally from the representation scheme itself. It would be an interesting exercise to
study in more detail the types of combinations that can occur between objects, and how
these could in tumn be represented in a logical representation environment. Informal studies
of forms of relationships between objects was conducted by Soviet constructivists such as
Chemikhov [Cooke, 1984]. According to Chemnikhov:

"The fundamentals of constructivism consist of all the various possible kinds of unions

by which elements can be combined into a structure. Each kind of union is in essence

simple, but especially when supplemented by dynamics, they can create complex
combinations which amaze us with the refinement and richness of their forms."

Chemikhov identified several kinds of union between 3-D objects:

Penetration - a way of combining bodies where one is inserted into the other.
Embracing - in which one body sits in a loose fashion next to, or around another.
Clamping - is when one body seems to be seized by another which grips it.

Integration - occurs when a single, integral body is given a shape which in itself
demonstrates graphically constructive principles.

Mounting - where a series of volumes come together with a single crowning body
which unites all the rest.

Interlacing - a synthesis of dynamic and constructive properties.

Of these, 1, 2, 3, and 5, can all be seen as being particular forms of attachment; 4
and 6 on the other hand, are more concemed with particular properties of individual
objects, and would have to be defined more precisely before they could be recognised by
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any formal system.

Pye [Pye, op.cit.] also mentions categories of change:

“....energy is capable of producing changes, changes in things; more exactly,
redistributions of matter. The various ways in which matter can be redistributed are:
shifting - that is to say, moving bodily; deforming - bending, stretching, compressing,
etc.; dividing - splitting, powdering, cutting, abrading, etc.; joining - welding, fusing,
adhesion, etc.; change of state - melting, solidifying, vapourising. But all of them in the
last analysis amount to shifting."

Again, some of the above could be interpreted in terms of attachment operations.
Others, such as dividing may prove useful for functions such as post-hoc decomposition of
object descriptions, and therefore require further investigation. For example, a desirable
feature would be to allow lines to be subdivided by other lines without intersections being

specified as new end-points.

13.6. Post-Hoc Decomposition

Starting with elements that are combined to form more complex objects is ante-hoc
composition. The reverse procedure, of splitting up what you already have into new parts,
is post-hoc decomposition. Although it has been claimed that the representation
environment is potentially capable of supporting post-hoc decomposition, not much effort
has been invested in exploring the significance of this claim, particularly in the context of
multiple users of the same system. There is much scope for further work in this direction.

Any object may be decomposed by different people in different ways. For example,
an architect and an engineer triay divide a wall differently. One will see it as parts of
different rooms, the other as part of a support. The extent of these may not be the same.
Alternative analyses can be imposed on extant conlines and segments, by pointing out the
intended extents. In a representation environment that supports multiple views (as indeed
the representation environment of this thesis does), the interactions that take place when the

description in one set of terms is altered requires detailed characterisation.
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figure 13-3

Consider figure 13-3, drawn by an architect on dotted construction lines. An engineer
might define the dashed construction lines, and base an object on it. He might then produce
Sfigure 13-4,

figure 13-4

Where then is the architect’s room? It should still be extractable from the new
context since the architect’s description will still be part of the representation. The architect
could have defined some object(s) bounded by construction lines which interacted with the

structural engineer’s drawing. For example, as in figure 13-5.

2N =



figure 13-5

The problem referred to at the end of chapter 6 involved being able to extract a figure
such as /3-7 from 13-6.

figure 13-6

The solution would be straightforward if one had made figure 13-6 by assembling
walls, so that the construction lines needed were all available, and just had to have their
separation increased by a small amount in order that objects moved apart. This is indeed
quite feasible with the system described, given that a ‘loose’ form of attachment existed
between the walls in question. But if one had drawn the junction on conlines ABCDE in
figure 13-7, and the decomposed wall needed conlines XYZ (figure 13-8) as well, where
do these conlines come from?
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It will have to be possible to point out construction lines as well as segments, in a
way that will have the effect of duplicating the construction lines in order to detach parts
of drawings. Parts then become available to be moved apart, i.e. X should come from the

duplication of B.

—_— ==
=== =N

figure 13-8

Looking at drawing objects alone, it is evident that any drawing can receive different
decompositions. For example, different people may read into a picture different numbers of
lines. Any two objects can refer to the same parameterised shape which, in turn, refers to
different possible states of its referent in domain knowledge. The differences are revealed
by changes made to the depictions, which reveal the kinds of attachment between the lines
in the drawings. The changes are executed by applying transformations to the constituents

of drawings. The decision that two drawings refer to the same shape, despite exhibiting
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different shape properties, is dependent on human recognition of correspondence to domain
knowledge. Results can differ within and between individuals.

13.7. Consistency Maintenance

Consistency, in a general sense, refers to a property of a collection of things, such
that all things relate to each other in a manner that is true to the collection, to some
‘whole’ thing. A body of facts which constitutes the current contents of a knowledge base
(in a person or a computer) is said to be consistent if each fact can be related to another
fact so that all facts contribute to a single and unambiguous state of knowledge. For formal
systems, the necessary pattemn of facts is determined by logical truth values. A state of
knowledge that is to be supported by the consistency of its constituent facts, has to be
specified from outside the system and must be communicated to the system, as a

specification of goal. Consistency then refers to facts being true to some goal.

13.7.1. Recognising Consistency

Consistency maintenance is a widely recognised problem [Hofstadter,1979]. It is
commonly categorised into separate issues of internal consistency (with respect to internal
functions of anything exhibiting external behaviour) and extemal consistency (with respect
to the acceptability of such behaviour to some other thing, or person). As Hofstadter
[op.cit.] points out, this distinction is itself problematical, relying on clear demarcations
between things, and people. A commonly observed phenomenon is that something, such as
a computer, can be internally consistent and yet behave in a manner that a person regards

as inconsistent.

Basically, for any body of facts to be consistent, it has to exist in a form that is
acceptable to the representation scheme employed by the thing or person in which the facts
occur, or to which the facts are presented. This suggests that any parties exchanging facts
need to be employing the same representation scheme. Indeed, this seems to be so in many
cases where people use computers - the person has to use the representation scheme of the
computer (this condition being ensured by a good and perhaps ‘user-friendly’ user
interface), and the person might be able to employ results in further representation schemes
that are not available to the computer.
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13.7.2. Consistency As Contradiction

A common characterisation of inconsistency (whether intemal or extemal) is to say
that facts logically contradict other facts, and to say that facts have ambiguous
relationships with other facts - those facts are said to be not true, or without meaning
[Earle, 1973; Frost,1986]. We nced to establish what is meant by contradiction and by
ambiguity, and to establish whether the same meaning can be applied equally to different
representation schemes used by computers and people. The problem is reduced if it is
claimed that the meaning needs to hold only for computable representation schemes,
leaving it to people to resolve their own further difficulties if they employ any further

representation schemes.

Inconsistency in the form of a contradiction can mean that a body of facts includes
one or more facts that cannot be resolved with other facts as known in a representation
scheme. The effect of a contradiction is to produce an unacceptable body of facts within a
representation. The resolution of a contradiction may necessitate the rejection of a
particular fact.

13.7.3. Application of Internal Consistency Checking to Design

As a design develops, and facts are accumulated in a representation environment, one
could attempt to ensure that those facts were internally consistent in order to preserve the
coherence of further interactions. Further facts added, either explicitly by a user, or as a
consequence of invoking system functions, could be checked against all existing facts to
establish whether any constraint violations and inconsistencies have been introduced into
the design description.

Internal inconsistencies could arise both as a consequence of establishing
contradictory relationships between parts, and also at a more basic level when facts, not
necessarily related by dependency relations, are introduced into the representation
environment. In the system described in this thesis, this problem is potentially most serious
in the context of non-graphical updates to the representation environment, where they can
potentially contradict those logical representations produced by the drawing machine (this
problem can also occur in the reverse direction i.e. drawing machine changes to non-
graphical representations). This form of update (i.e. across different forms of expression)
was not allowed in the implementation described in this thesis, and consequently greatly
reduced the amount of intermal consistency checking required. However, there are
situations in which one could envisage such changes as being essential [Bijl,1989]. In this

case some form of intenal consistency checking would also be essential.
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From the illustration of the problems associated with sketching in chapter 3, it was
observed that in the case of calculable dimensions (i.e. in the case of dimensions that can
be propagated from other explicit dimensions), one makes changes to explicitly
dimensioned parts, and expects to see calculable dimensions calculated. One could expect
that only explicit dimensions should be alterable, and that it should be impossible to
change dimensions that can be calculated, However, one can envisage situations in which
the required calculations might be very difficult, in which case this requirement might be
hard to enforce. Again, by means of non-graphical updates rather than via the drawing
machine, suppose that we have constructed a logical representation which one might
consider to be sufficient to generate a figure such as figure 13-9. Suppose that the angles of
all the conlines are known explicitly, but only the length of one of the segments. (If the
logical representation of such an object had been produced graphically, then there would be
length values for all the segments.) There are geometrical techniques which would allow
one to determine the lengths of all the remaining segments, and potentially, therefore, to
generate the graphical depiction of the whole object. The calculations to do this, however,
would be awkward. To find if a logical representation so generated produces geometric
inconsistency, one would have to calculate dimensions in all possible ways. Abandoning
such checks could produce logical representations that were geometrically inconsistent.

0 14°

135° 158

2.125"

figure 13-9

An intemnal consistency checker might be able to find sets of facts that were not
cotenable, perhaps by looking at all facts in all possible ways, and then informing the user
about which facts were inconsistent. A standard way of checking for intemnal
inconsistencies and redundancies would be, for each fact in the representation environment,
to first delete that fact, then check whether it’s negation is derivable from the remaining

facts [Frost, op.cit]. If it is, then the representation environment is inconsistent. If the fact
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itself is derivable from the remaining facts, then the representation environment is

redundant. Otherwise you have an independent fact.

The system described in this thesis provides a mechanism that reduces the problems
of internal consistency, namely, the creation of new instances of objects, which, as far as
the system is concerned are unique and separate. Given that there will be multiple views,
we do not take the view that they should all be views on a single central model. Rather,
they all have equal status and may well be inconsistent with each other. Demanding
consistency of a central model system would involve the arbitration of incompatible
updates; and no system can do that. In a central model system, if one user says that the
roof material is tile, and another user system says that the roof material is slate, such a
system would have to enforce agreement before the second user could carry on with his
own variant. The representation environment described in this thesis can be configured
such that whenever a new user begins to use the system, his top-level kind corresponds to
himself as a user. This would distinguish the objects that this user is working on from the
objects that some other user is working on. Any user can begin work by starting with
another’s definition of a kind, and creating his own variant of it. Changes to another user’s
kind are prevented as a consequence of the context in which it sits. A whole design project
can contain several views, one per person, or function. Each view has access to the whole
machinery of the representation environment. An implementational simplification is that
each user can only make read-only indirections to other views. Indirections being read-
only is justified on the grounds that the system shouldn’t solve the problem of different
people wanting different designs - the users themselves should do that. In other words,
there is no central model. Each view is itself a model, which may use bits of other
people’s views (circular reference might be a problem). Different people might also be
responsible for the fillers of different slots.
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Imagine the set-up in figure 13-10(a). Suppose Mary makes the update

Mary:house <+ [bedrooms = 2]

- 207 -



Mary John

0

- e mm e e s e o e e e e e e Em e em R N e R e e e e S S e M MmN R e e e e e R e e e e Em e e e

house house

John:house

.
]
]
I
]
i
: Prefab
]
1
]
l
1
:
1
1
]

(1)

bedrooms

e T R R et

A SINGLE VIEW

figure 13-10(b)

If Mary’s and John's descriptions were part of the same view, then one would expect
the result shown in figure 13-10(b). But updates of someone else’s view are not allowed.
Altemnatively, one should have an equivalent change, inside the changer’s own domain, as
in figure 13-10(c), such that a new instance of the kind "John" is created, as well as new
instances of kinds along the path to the kind that is being changed.
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13.7.4. The Problems of Internal Consistency Checking in Design

The above account is inadequate in the context of design activity. The progression of
a design in some ways runs counter to conventional logic programming concepts. As well
as checking for the truth of something, or whether some action is possible (such as the
system being able to depict an object) , there is also a notion of forcing a fact to be true.
This is a form of update. One can introduce a fact that one wants to be true into the
representation environment at a point when the introduction of this fact would make the
representation environment inconsistent. One wants to be able to continue adding facts into
the representation environment until the fact that was introduced is no longer inconsistent

with the rest of the representation environment. One could envisage this kind of
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circumstance arising when non-graphical updates are being made to the logical
representation of an object that the system itself knew to be graphically depictable, perhaps
to the extent that further functions depended on this being the case. Such changes may
result in the temporary removal of certain properties from the logical description of this
object, which would then not allow this object to be depicted. However, by making
additional non-graphical updates, one might subsequently be able to depict this object, and
arrive at the desired outcome. This observation leads one to suspect that internal
consistency maintenance should only be carried out when required, and not at every
possible opportunity, such as after every update.

Clearly one can envisage situations in which one might want some form of intemnal
consistency maintenance to be carried out in a CAD system. We have already observed,
however, the close relationship that exists between intenal and external consistency. In
the context of design activity, where a designer is using a computer, the criteria for
recognising a contradiction ultimately has to rest with the designer. Those criteria are not
likely to be externalised in some prior and objective form - indeed some criteria cannot be
externalised. This position has the positive consequences that any contradiction can be
regarded as temporal and resolvable. Although one can build internal consistency checkers
directed at particular tasks or goals, it should be evident that the design context provides a

particular application domain in which external consistency is paramount.

13.7.5. External Consistency

Inconsistencies can exist between things represented in a representation environment
and things extemal to the representation environment that they are intended to represent.
Suppose we are thinking of some material which we know has a reflectance value of 0.6
units, but we wish to represent this material in the representation environment according to
information about this material’'s properties obtained from available textbooks. This
material might be represented by a kind "MATERIAL". We may first have added a slot to
this kind called "brightness" filled by a value of "0.5" units. At some subsequent stage,
we add a slot "albedo" to this kind with value "0.7". At this point, as far as the
representation environment is concerned, there is no internal contradiction. But if we
discover that what we knew of as reflectance was synonymous with brightness, then the
external interpretation of the representation becomes inconsistent. We could replace the
slot "brightness" by "reflectance" thus removing this inconsistency. If we later find out that
reflectance is synonymous with albedo and replace "albedo" by "reflectance", then the
representation environment itself would be intemally inconsistent, since it would now have

two slots with the same name, but with different values. In this case, no object that we
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have in mind could be represented by the kind "MATERIAL". Which attributes an object
has, therefore, are as vital to its identity as the values of these attributes. The same
phenomenon can occur between different views. There could be two objects, in different
views, both intended to represent the same material. They could have the same or different
names, They could have identically or differently named slots, to represent reflectance, and
those slots could have different fillers. Inconsistencies of this nature can only ever be
expressed intersubjectively, and not objectively. The owners of the views may have notions
of what parts of their view they wish to equate, and this can always lead to inconsistency.

The problem of locating a contradiction is usually resolved by some formulation of
external reference, meaning that facts can be verified by the actual presence of objects
externally to representations of objects within computers and people [Wittgenstein,1922].
This line of argument does not hold for design objects, or for certain properties of design
objects. The basic position for design (as described in chapter 5) is that design objects exist
as propositions prior to the existence of their corresponding designed artefacts.
Furthermore, design objects are not wholly describable by reference to parts that will be
found in already existing concrete or artefactual objects - designing is more than a process
of searching among candidate solutions (c.f. chapter 5). A contradiction, then, has to be
considered as occurring between parties that are employing different representations, and it
can be resolved only by one or more parties accepting another’s representation and
amending their own. When the parties are a person and a computer, intrinsically it is only
the person who can adapt her or his own representation.

Designers using a computer have to know and work with the representation scheme
that defines the computer system, just as they have to when they use any other artefactual
tool. The design of the tool must be visibly consistent with designers’ views of its
functionality, as in the case of a system for producing drawings. The idea that a computer
system can serve as a tool that behaves in a manner consistent with different designers’
views of its functionality, is problematical. This prompts a strategy for system design
which focuses on minimum functionality, presented in a manner which designers can

exploit in their own more complex and varied tasks.

This is the strategy that has been adopted for this thesis. The goal has been an
abstract and general structure for drawings, based on line primitives and their properties
and relationships, plus edits and transformations to chains of lines. The system’s
functionality is minimal in that it is targeted at the production of lines to form drawings,

without anticipating their meaning in terms of higher-level structures.

Consistency in such use of the drawing system to describe other things, has to be the
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responsibility of the users of the system. The system designer can be responsible only for
the consistency of the abstract and general structure for drawings, taking due (but informal)
regard of how other designers use drawings. It should be noted that the work presented in
this thesis focuses on the abstract logical structure of drawings, as a necessary precursor to
any future implementation to make that structure visible and accessible to users. The
drawing structure that has been presented has to be judged in terms of its potential to
support the varied (and idiosyncratic) depictions that designers draw, which depict varied
and unforseen knowledge of designers (refer to examples). The structure is intended as a
basis for a general tool for designers, by which they can link their drawings to other
logical representations of design objects. Consistency maintenance, within the drawing
structure itself, is targeted primarily at the general drawing transformations and as such, is
concemed with the satisfaction of structural conditions upon logical representations prior to

the invocation of transformations (see chapter 10).

It is evident from the above discussion that design activity invariably introduces
consistency problems. Consistency maintenance seems to be a natural consequence of the
exploratory nature of the design process, where different possibilities, and different views
will be compared. The relevance of Al techniques for dealing with this type of problem
(Truth Maintenance techniques - and Assumption-based Truth Maintenance Systems in
particular [deKleer,1984]), based as they are upon consistency as logical contradiction, is
unclear. Providing consistency maintenance support to teams of designers working

together on a large design project is as yet an unsolved problem requiring further research.

13.8. Drawing as Language

Viewing drawing as language should be differentiated from drawing as linguistics.
The view of drawing as language presented in this thesis can be interpreted on two levels.
Firstly, as an analogy, in which generalised linguistic concepts can be seen to relate to the
activity of drawing; and secondly, at a theoretical level, in which linguistic techniques are

applied.

The extent to which one can regard the grammar used in this thesis as being

transformational is best described by a general definition given by Lyons:

"The term ‘transformational’ has unfortunately engendered a good deal of unnecessary
controversy and confusion in the recent literature of linguistics. If we use the term in a
general and rather informal sense, rather than in the particular sense in which it is
defined in any one theory, we can say, quite reasonably, that the ‘deeper connexions'
between sentences which ‘cut across the surface grammar' are {(ransformational
relationships: this is a perfectly legitimate use of the term ‘transformational’.

[Lyons, 1968]
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The ‘deeper connexions’ are the topological relationships between parts of drawings.
These ‘cut across the surface grammar’ in the sense that such relationships are formed
from the way in which drawings are constructed, rather than from how they appear as

depictions.

Transformational components of grammars in linguistics are driven by the premiss of
the preservation of meaning between sentences whose surface structures appear to be
different [Radford, 1981]. The equivalent for drawings is topology. One can say that in the
system presented in this thesis, the semantics of a graphical object is just its topology.
Semantics as topology is valuable in architectural CAD systems since attachment
(connectivity) between parts is vitally important, both from a designer’s conceptual view of
a design, and from the point of view of being able to express relationships between parts
of drawings. These two aspects are more closely related than might first appear, since how
a designer conceptually thinks of objects will affect his expectations of how ‘plastic’
representations of them ought to behave when properties are changed (cf. the early
examples given in chapter 11 of bedroom/sitting room and bath/bathroom). Lyons goes on
to say:

"Any grammar that claims to assign to each sentence that it generates both a deep-

structure and a surface-structure analysis and systematically to relate the two analyses

is a transformational grammar (whether it uses the label or not)."
[Lyons, op.cit.]

One can regard the logical representation of the topological relationships between
parts of drawings as constituting the deep-structure analysis. A depiction is a surface-
structure analysis. Representations and depictions are systematically related through the
transformational grammar of the drawing machine.

No attempt has been made to conduct a detailed and formal comparative study
between the particular transformational grammar presented, and transformational grammars
as they exist in linguistics. As has already been stated at the beginning of this chapter, the
philosophical strategy adopted was an instrumental one. A transformational approach was
adopted because of the fact that it seemed to arise naturally as a direct consequence of the
logical representation environment. In so far as one would like to have at least a brief
comparison between the two forms of transformational grammar, a brief description of the
similarities between the transformational grammar for graphics (GTG) of this thesis, and
transformational grammar (TG) in linguistics will be given here. It has to be stressed that
this is only a rough, and not exact comparison. The following observations can be made:
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(i) Use of the notion of constituent structure (‘bracketing’ in TG; indirection in GTG) to

establish well-formed objects (sentences/drawings).

(ii) Diversification exists in both TG and GTG; i.e. two objects may differ in surface-
structure, but be identical in their deep-structure. For example, a graphical object A,

and a translated copy of it A" have the same logical representation structure.

(iii) Neutralisation exists in both TG and GTG; i.e. two objects having different deep
structures may produce identical surface structures. For example, a composite object
produced by the attachment of two objects such that the two objects are sub-parts of
the composite object, can look identical to a single discrete shape that was drawn
during the course of a single edit.

(iv) A distinction between generalised (or ‘double-base’) transformations and singulary
(or ‘single-base’) transformations exists both in TG and GTG. Singulary
transformations in GTG are those which apply to an individual object or some
particular part of an object. They are the transformations of rotation, translation, and
scaling defined in chapter 10. Generalised transformations in GTG are those involving
the combination of two or more objects through the process of attachment, described
in chapter 11.

(v) Just as in TG, generalised transformations are optional, and singulary transformations
can be either optional or obligatory.

13.9. Modularity of the System Components

The representation environment and the drawing system, together constitute a system
in which each of these components work relatively independently of each other.

The representation environment could equally well be used to satisfy other ambitions
within other research areas. It is quite probable, therefore, that in these other cases, it
would fit into an altenative larger system - a natural language system for example. The
point is that each of the system components is, t0 a certain extent, modular. However, they
are also inter-dependent. In this respect, each of the components contributes towards

system integration.

It would be interesting to explore to what extent the representation environment
would be capable of supporting drawing systems, natural language systems, vision sysiems,
etc. Some of the larger systems so formed would be more efficient than others if one views

the representation environment as being part of some larger system. It may turn out that
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the representation environment is only appropriate to a particular problem domain.
Consequently, the larger structure containing the representation environment that has been
outlined so far, together with some drawing system such as the one described so far, would
inevitably be more efficient than other larger systems since the intent was to construct a
representation environment for the specific purpose of representing drawings. In other
words, to construct a natural representation for this domain.

13.10. Extension to 3-D

One can envisage how the 2-D line drawing system presented in this thesis might be
extended to take into account graphical depictions of 3-D objects. There is a natural
progression into 3-D which preserves a mode of working using lines in 2-D, if one
assumes that the graphical domain is one consisting of 2-D projections (of whatever kind -
isometric, for example) of laminae in 3-D space.

HOUSE_INSIDE_ FACES

figure 13-11

Consider figure 13-11 for example. This is essentially a 2-D drawing which can be
associated in the representation environment with a named kind, such as
HOUSE_INSIDE_FACES. This in turn can be part of the description of a whole house
such as that depicted in figure 13-12. In such a system, a closed connected chain of lines
identifies a lamina, which, when attached to other closed chains of lines, form depictions of
laminar objects, which, if closed, can constitute depictions of polyhedral objects. One
would have to assume that the base generation component in a 3-D system would support
the construction of connected chains of laminae. A lamina would in such a system be an

additional primitive object.
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figure 13-12

A user can interact with the 2-D depiction in a way analogous to the strategy for
interaction proposed in this thesis, namely, by means of applying transformations (rotate
conline, scale segment, translate conpoint) to local parts. The effect of such
transformations, whilst still preserving topology, would be different in this domain, in that
they would additionally take into account the type of projection that is being modelled. A
method for the extraction of planes from depictions of transparent objects and wire models,
involving the interpretation of ‘decussate’ vertices, has been described by Szalapaj
[Szalapaj, 1980].

In figure 13-12, the translation of a conpoint in the description of the
HOUSE_INSIDE_FACES object has been indicated. This point is topologically connected
to the other parts of the HOUSE description, causing the transformation indicated to have
an effect such as that shown in figure 13-13. Notice that a prerequisite for the application
of such a transformation would be the introduction of the new lamina PQR formed as a
consequence of adding the line PQ. One could maintain a distinction between edits and
transformations of laminae, just as was done in the domain of 2-D line drawings. Edits
would be the addition/deletion of lamina, and transformations, topology-preserving property

changes.
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figure 13-13

One can see how attachment of 3-D laminar objects can be controlled through
interactions with the graphical primitives of their 2-D depictions. For example, figure 13-14
is a depiction of a composite object consisting of two logical parts which represent two
attached polyhedra.

figure 13-14

Suppose a further attachment relationship needs to be expressed in which the logical
object RIDGE of the lower part is intended to coincide with the EAVES of the upper part.
This could be achieved by means of translating a segment (indicated by an attachment
chain consisting of two conpoints) onto another segment, with a possible outcome such as
that shown in figure 13-15.
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figure 13-15
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13.11. Conclusion

During the course of the thesis, the objectives described in the preface were largely
adhered to. A certain amount of prescription was inevitably introduced by restricting the
system to work only with 2-D line drawings, although from the brief account given in this
chapter, an extension of the system to work in 3-D should in principle not be too difficult.

A leitmotiv of the thesis was the consideration of graphical elements and drawing
compositions as logical objects. The basic graphical objects have properties such as length
and angle which can be used to establish relationships between parts of a drawing. Point
coordinates do not play a role in the logical representation of an object since they do not
contribute to the expression of such relationships.

Certain operations provided by the system allow the user to express more complei
relationships (e.g. parameterisation) between parts of objects. Such relationships have
significance for the user in that he would like them to be maintained during the course of
further changes to the drawing. The effect of having expressed such relationships is that
changes to any elements within the relationship will be propagated to the other elements.
This form of logical consistency checking arises naturally from the choice of knowledge
representation, and is far more powerful than locating objects by means of absolute
geometrical position as in most conventional systems.

Transformations upon graphical objects differ fundamentally from conventional
transformations in that the user can effect partial transformations, and is not bound by a
prior commitment to the wholeness of parts. This is done by including/exempting parts of

graphical objects in/from a transformation thus producing controlled distortions.

The knowledge representation itself allows for the description of objects in a
hierarchy with the expression of relationships between parts within it. Such a representation
has some psychological basis in that it seems to reflect the way in which architects think of
objects. It also has affinities with some of the current developments of object-oriented

environments in Artificial Intelligence.
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