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1 .

A Statistical Thermodynamics of a Crystal -i . L l GIGS

The Free Aner,--:v of a nattiee

The free energy A of a rigid "body is a

function of the temperature and of the six homo¬

geneous strain components. All other thermodynamic

properties are found "by differentiation ,

the entropy S

the energy £

h A
V

R -t Si,

and the generalized forces corresponding

to any molar parameter f ^3 ■

/

I A

A*" .ti
A*

Let us consider the free energy of a cubic

lattice of the Bravais type (simple, face-centred

or body-centred). The cell of such a lattice is

described by the three lattice vectors a. cx a, ." -ii ii -j

The shape of the cell is given by the scalar products

of these vectors with one another

'1 *1 ^
) ^3 3 , <2=, ■ ^

i.e. by three lengths and three angles. These six

Parameters are invariant with respect to rigid motion

of the crystal; they play the part of the molar



parameters for this type of lattice.

Assuming that thermic motion can "be consider'

ed as harmonic we obtain the following expression

for the free energy of a crystal lattice at high

temperatures

(1.2) A , 6 -t ,*
4T

where is the potential energy of the non-

vibrating but homogeneously deformed lattice and

uJ is a logarithmic mean frequency per AT seconds.

2.

The Mean Frequency and Potential hnei. y

The position of any lattice point is

represented by the vector x*' where for equilibrium

(2.1) « Or, e., -+ q^ ^ -+ cc3 l3 •>

being three arbitrary integers. Consider

a small displacement from the equilibrium

position so that the vector

(2.2) ^rL _ /r Lo -+•

now defines the position of the particle L . The

distance between two particles t and A' will be

U.j) ^a' „ It""/ . |si_

V/e assume that the potential energy between two

such particles depends only on their distance
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a'
apart , and we denote it "by y

For the undeformed lattice one has

(1-4) 9^ , cp( I - f-l'l) = <p(/~/ ' 0.
Omitting the suffix zero which denotes the equilibrium
values we introduce the notation ,

91 - 9 0^0 ,

(2.5) <p< __ OC.4
q*- a 5 X>9<" +

where ID is the operator V ^ •
W

For the deformed lattice 9 can be
IJU1

expanded as a series in ascending powers of «■

a' r»C-L' <- ✓>, l-l' (JL'
'

- 9 + | 9 *.
, _ _ €-6' /X' W

-f '/, £ Y x-o o- -f
*3- * V

The definitions (2.5) are meaningless when

1 = o We define Q> ,9 by

(4.7) 9^ =■ O S (pL - ° •

If we sum the potential energy (a.6) over

both 6 and £' , we get twice the potential energy

of the deformed lattice, since the potential between

each pair of particles has been counted twice.

This total potential energy of the deformed lattice
-t~ il'
y can be developed as a power series in <a,

(1.8) <j> , £ + y + ^ t v-
i where
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(4-9)
t 'i Z 2. ? **_

<JL' x

V ZL.l Vy (JL

L-t,

>u*

lL fJL'
A^KJ /ij—

x r

LLl jLL*
aj, _ ax. - a±. t v;e can with the help of (4.7)Since

write (2.9) in the form

$ - £ £
-t ^

(4.10)
- 2

t [21 9^'L- V *-

£ £ 9
c-t' 0 0'

A>0
X M-

(4.12)
A

r
.. o

-

A 0a aaj
„

Z Z 9 ^
V "M- ^ ^

We write the solution in the form

UO — ujt
(2.13)

(J u

■a "■ eh ^
The force of all particles on one is

(2-1D &l ■ ~ ■
—— O

The equilibrium condition is & = o , and this

is satisfied since 2 9 vanishes.
r =c

The equation of motion of any particle ■*- ,

of mass m. is

where *>J is the frequency of one of the independent

normal modes of vibration and + •

Then if we restrict our choice of wave vector by

the cyclic lattice condition whi ch p o stulat e s

Born, M. 'Atomtheorie des Festen
Zustandes\ and ed. (1943) Leipzig, p.386.
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that the displacement shall "be periodic in a volume

having the same shape as the elementary cell and

containing N (=. v- 0 cells, we can write the

equations of motion in the form

(2-14) ^ __ £ J
where

(2-15) Ist-**] ^ " J
It follows from (2.7) that

4 "
(2.16) [=c^J , A 9' _ 9^

i n , -1 c
^ <p (i- *. y
c ^

where the dash denotes that the term corresponding

to i., - = 4, = 0 is omitted.

Writing the determinant of the coeffic¬

ients as l£*-y]j , we obtain for the mean
I #
| logarithmic frequency used in equation (1-2)

(2.17) ~ t "S- >

where the average taken over ut ux0<3 ^ the phases
of the waves is ffr^
(6.18) . c^»

For an undeformed lattice of ^ particles
.

J the total potential energy is

(2-15) ih . q ^ q>£.

Born, Ivl. 'Atomtheorie des Festeii Zustandes',
2nd ed. (1525), Leipzig, p.677-
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3.

The lix-pansion of the Frequency

let us consider a cubic lattice, in

which the cells have sides of length oo , then

vc ■= (A* + + ~) ^ - aX

v 3 • 1 ) , . , § .

**- = CJL, , ^ , V*

where ^^and take all integral values for
the simple lattice, are either all even or all

ocld for the body-centred lattice and. are either

all even or two.odd and one even in the case of

a face-centred lattice.

In order to obtain an explicit express¬

ion for we must choose a suitable function

cp^ . We take a law of force of the form

+ hCV
where the first term denotes the attractive and

the second, term the repulsive effect of the potent¬

ial; hv, must be greater than v is

the equilibrium distance for two particles since

i-?) , O
($ ^ JV-- y

°

7N I SL
Differentiating (3-2) since - "v
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i
1) Cp = ufHSYy^ 5(vr*-A (>- A)

(3*3) Av+U ->+tT
r_^+iYVij + ^0(S*j !

^(0.-0.) 1 AW v f y .
Substituting these expressions in equations (d.5)

f'-- ^[(vr-^'Xvrey
-or - ^orryl

^ A"1 f <Vw-»- 0. - C
k) I <- V*"*rr^~ (V, - \

-(A"A "H)<^
whiere t * (1(X-A + O; and

OW 9' - aawwv Rw U) 1

v h7^u J
Now if we write

g-",^\ s'
'

/) •

(3.6) ^S* , sA ,
'K *K,

from symmetry considerations
!>-0 ^ r%\n pOG^- I Q 0

(5.7) (i) s ■ S . -5 - '<% ,
-KV1 'K*r

and

(5.7) (ii) V" . S- , C . o.O,
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Hence "by summing (3-4) and "by summing (3-3) we find
the coefficients (2.1 6) are

(3.8) L«:- l
o

(i.n bb -

or x(^w v
where

(3.10)

Sb-O S*"(--) + S°" _ -HrZ 'K.+ 0 ^ *»-+.

(%+ 0 S GO ,
0v •+• if

with similar expressions for OO , an<3- [$*] , M •

In general the sums denoted bj mean

the sums over all points in the lattice; the same

results hold however if we only consider the effect

of a limited number of near neighbours and sum

over those. We shall work out the results for

the general case in which we assume that the same

law of force acts between all lattice points.

as we are concerned with deviations from

the equilibrium position we introduce cxg , the
f1

equilibrium value of ex. , given by [ — I - ° ,
a. i o-0

instead of xo . From (2,19) and (3-2)

(.3.11 ) ® N Z Q - N ajwivu (" i /V Oc0 i \ Q °
0

<t —7——; y { i J + <:i °/)g i
Therefore a I _ A A
(3.12) »J- . . (cvT"" S" - (VT" S."

^ ('K. - Ov-) ^
so that for equilibrium

C^J O
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S* - PV) SV a- 'o

It follows that

/ 7 A '7 \ ^ /^>v»(3-13) , V

Ou. - 'Vw,

o
'H.

O-v. — ^

O-

cb
*V o

where

(3.14) ^ 's

If first neighbours only act <*•„ is the projection
L_

of <*- on the cubic axes, so that "" is I foro '

a simple lattice, Vs for a body-centred lattice

and n/sl for a face-centred lattice. Considering

the effect of more neighbours )f assumes values

slightly larger than these values..

liquations- (3.8) and (3-3) now become

r- 0 - /• xWi f (->vd) <S> , -K.-0
ti.i5) h*J-- c(p>) {-«■■ - *(°"0- J

, \V •+1 r iyrJ) (*.") x v*.}
(i.u) - H i) v * "» < H J
wnere

ft

(3.1 7)

/K, - 'Vyv^

(> _ A>y>\/>v^ Y
C -X, - xO

We now introduce, instead of the lattice

constant
. o- , the volume at- of a cell

(3.18) -V c C-cO/
CX-

Further since we are concerned with deviations

from the equilibrium and wish to express the

frequency in terms of change of volume, we write

(3-13) (*o.KX) - - U1
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We now write for shortness

(*0
»n

(A
^11

( 3 - 20 ) CK)
°n

- (tl3 M

00
ft'u ^13

. cO
33

and let

__

1 ("0
1 ®,

0~)

(M M ("0 |

3). =

(■*■) (■Vv.) ("H-)
f*, ^3

(O (-*.) (O
ft>i /°3

| ("►«.) ("V"-) O) I|ft, ftx ft3 J
(3.21 )

D.
(<0 (-w) C-h.)

^3
. (.">*.) (w) C*v3

-+- ®x

(*|T) (tS) (?w) I

3 =

+ K ' «i ' *»
I C'yS) ('>0 ("k) 1
I ft, Ax ftj / •

Then the determinants l[x^]| can "be expressed as a

function of "[ : -

£3.22) |[x^]i = CJ(^y + M + VT+ V*}
where

&. =. -
C'Wv) ^3

ft. Y®.
CW) (-A (o~") (•>>.)

^3 + Y®3

= - D0 -+ X3^
(n0 M ...^ V/1^ |

(/W..} (W) ("^-) c*)

(3.23)

(O (->0 C»h (■») CO
- - l"»i

+ j-ft, -+Yft< /-+ |-^'+r#.
3

yd, - Vl\ + 3x ^
(wO (W)

Az = J -A + r3- Y
(»0 (A

Y®*ft^
(%vJ) (f>^) 60

-+ |y®
X^X + 3Y-^3
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Talcing logarithms the mean frequency (2.17.) can "be

expressed as

(3.24) ^ t" jO (i-+ 7^)
f a-(Ov-Trv)

+ '4^ (4*+ M + Mv .

Expanding the logarithm

(3-23) - k^c/ +3
/*- aK-w.)

o) -f '/fe{A,V AJV ]
» 1 fiV

where

4.

The Average Frequency

In order to express the energy of the

crystal in terms of temperature and volume change

we must determine the average of the ^ . It would
appear impossible to integrate the functions of
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directly even if we consider the action of first

neighbours only, so I have calculated the average

for a face-centred lattice by numerical integration

talcing account of the action of all neighbours.

Having chosen a suitable range of values

oi( (ctx } of the phase, I have calculated the
(m-~)

sums /a, for each of the set of <l , and from these
h

sums the corresponding determinants A . It

is then only a short step to the actual coefficients

of t in 0.25)
We can limit the number of points ^

which it is necessary to consider if we notice some

simplifications due to cubic symmetry.

(4.1 ) (i) Consider where

then
_ o) '(■>-') r h> - ') •*- 3 3
^ - Sf.

—Ow') on — o*-) 00 _oo
P

, - ^ p , — /» /S ,i ' ~ ^ii z*, ' II ,x > '■*

(>v )
Hence if we .know the values of p . for a set

of <*3 which lie in the positive octant of

the cube bounded by

oc , ± Tr U - ± IT oC i s ± "TT
J ) }

we can determine all for the whole cube.

ue therefore restrict our ^ to values

such that

0 < <4, 4 TT 0 < < TP 0 i 1 .
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(ii) Consider
- K)
3

K
where

11 ,
1

oC. _

1 -
cxL

2> * 3 >

then
— bO
n>

n *=

CO
IX >

_(0
*

X, -
co,

CD
M J

__ CO
/h -

0>O
P

-CO
/O

X3

(Ox.")
A)

.3 ^

— CO
/t>

•i 1

cO
/D

— 6~)
CD

> "

CO
p

1 ■>_

Hence we can find all - corresponding to

the permutations of . We can

further restrict our phase "by the planes

*1 « * *3

and choose those points for which

(O*. )
(iii) Finally consider a> ^ where

- "T
, * o^+TT ) s <*2^ TT .

Then

. (l~0+ 7r(±0
For a face-centred lattice t, -+ tx + £3 is
even so that we are only altering

"by some multiple of ITT . Hence
— (O CO — (°0 ('v*^
" f* " ; * ^ •

Therefore together with condition (i)

el.,* a, and TT-ot _ ir-oi, . tt-<2J ) 2- > 1 1 * «- * ■*

will give identical values of .

K
This means that \)\>\ is a centre of
symmetry, so we can divide our octant "by

the plane -+ * 3JT and consider points
<2.
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oil one side of it only. We choose those

for which

i -t- -t ^ air .

a.

The portion of the phase space satisfying

the three restrictions (4.1) is illustrated in

Figure I.

I have divided my phase space into interva

Tp and writing oL = KF , I have chosen integers
° 8"

j3, ifci >j°3 such that are or aH
even. From (4.1 ) it follows that we need only con¬

sider integers such that

Q < * . °^K^8> 0 ^ ^ 8

(4.2) ^ K ^ ^

t3, ^ K + ta -

In this way we get uy distinct points in the phase
space .and each of these points has a certain weight

depending on its position in the cube and on the

number of similar points.
(/Vv)

The sums ,o can be summed directly for
ft

a limited number of neighbours acting, or they can

be transformed into rapidly convergent series and

summed over all neighbours. These series have been

calculated in the next part of the paper.
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5.

agressions for Periodic Lattice Suns

The elements (3-10) involve two

types of lattice sums, the periodic sums
o

and the non-periodic . The numerical values

of the latter have been calculated for the Bravais
36"

_

cubic lattices for a large range of ^ . We

shall now calculate expressions for S^)(3-6).
Unlike the non-periodic lattice sums,

those S 6°0 which involve odd powers of ^
•Vv s

in the numerator are not identically zero, and

in general simplifications of the kind (3-7) do

not occur. The six sums obtained by permuting

-*-,,^,^3 in (3-6) may be found from one another by

suitably permuting ^ ■ so for second
order sums it is only necessary to calculate

expressions for

s^c-). - s;v).
When we have calculated the zero order

[sum those involving higher powers of £
in the numerator may be found by successive partial

(differentiation with respect to <* > °ci and (or) .
'

There are two methods of transforming

Born, M. and Lisra, E.B., Proc.
Cambridge Phil. Soc. 36. (1/4C).
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our sums into rapidly convergent series, and "both

methods lead to the same result. The methods are

worked for the face-centred, lattice, "but they

may equally well be applied to the simple and

body-centred lattices.

6/

Summation by Use of & -Functions

Using the well-known formula

(6.1) * = *■ ^

we get for any lattice sum of the form the

integral representation

. c ° / a I C ' ~ f ~1(6.2) ^(°0 r J e J

Hence the sum for a face-centred lattice denoted

I ]. in which are all even or two odd
'{

and one even is
oo

r ,v.

tan - -^J <rMou.
where

, I - th*. -

(6.4) <x~'■(**■) = F S ^U j-t t
/-> —*-1*^ 0<, 0 - P -

- ikj
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. J i • I *J — *A. - <. t, x J

+ f s e-V—^V, 2 J1' — s <-
U,,o,*v- t ti.is,—-

- I .

1 L denotes the sum of the three terms obtained

by cyclic interchange of * .

how let us write

(6.5) 4. n. =

and introduce instead of

(6.6) <r(p) - or(/s5 h- or(p - I
where

«t(p> , s n™'18- S«-irVf-^ S*rt,>
A t

(6./) o-^p) • (. t, ^ x
-ir(i4+ 0

hi/

x S
Then

(6.8) S°W • ^fK4)
where /> = °bi~* ' •

We shall consider the integral as the

sum of two integrals, between the limits 0 and / ,

and I and c*d . The integral from / to do

may be obtained directly from o~0{fi) , but for the

integral from o to 1 we must consider each part

of cr(j5) in (6.6) separately so we write
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(6>?) ac?)-
+ /

where

jj7) ,I/^\w^
(6-10>

JL,{f) * £ Av *■■ to **
JJv) -- I' fi 7 ^(/5) ^ •

The complete expression for oZ(/i) is
(6.11) (/3) = [s I - rrt»-/V - u (*-><>

aS ^.-o
£>6

where S means that the sum is to "be extended
o

over half the lattice points in such a way that

i

of the two points and one is

omitted.

It follows immediately that

(6.12) /fo (°)) = j^S <^i°0 9y ( V•£>0 J,

where a (x) are the well-lcnown integrals

(6.13) (x) . y3 e oCy'S .

The series for yJ0(°p) may "be written in
the form

(6.14)
^ -

kTT<P,

where a are given m Tin Table I, ^
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TABLE I
•

I 7-* afe

C°, ' > /) /
1 CLtn oLx L

o °) d a

(a, 1 > o 3 g 1" do/( Cino/j o<rw3 ^

(o, 7

(°, '> o 5 If c(n -f- c<ra C*-iol

(a, a, a) G §■ c<ra d0^

6, a, 3) 7 & ^ cctd <*, c«-a do/j. ■+• c<n> 3°g c<ri Ho/3 c^n

Of, °> °) g 4°~ ^'Lfcp

To calculate (/>>) and 4/t>) second

integrals in (6.10) we express crrT/s) and °I(tO in
terms of

imaginary

,5- -functions and make use of Jacobi's

transformation . We can then changee

our limits of integration from 0 and / to /

and , and obtain an expression involving the

functions (6.13).

From definition

Whittaker and Watson, 'Modern Analysis'
(1517) Cambridge, p.474.
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_ 7rt* fi - 31
e

2> ' "
(6-15) & («, , e'^) , S

c

and Jaeo"bi's imaginary transformation is

(6.16) & Of,8-" ) - ;ft ] £3 v-r/3 y

T H f* Y* f** *Pn T*

(6.17) COO-
V /x O^"" j ^
X" ^C^o6iV) -e. r^)/9

where V is the reciprocal of /3

S inc e

~Tj\
e y

(6.1 8) znJp J S-J^ulvj «- y ^ ^ ^x|3p'^-(0'i+ V1.
l

(6.19) 07(/s) = a/ ^ S -t^f3^ + er°]
where

2. X Z

(6.20) (^+67r)X- (S+ 6,-nr) -+ + 6/) + 63TT)
and where the sum is taken over all positive and

negative integral values of 6,6^3 . It follows that

(6.21) /^(?) = S J 1/ eoc/o/^-^ + 6'0 J oCv
.; 9 ^ •h ~7"A ^

The calculation of Jis similar. We

have

)
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(6"22)
. s

and

{t.z}) UK,t~"'7 - p Hf--*' )&fes,t ytt^> / Y
Henc e

(6.24) OpC/a) - ^ 0 \(.^ ^

. 7 S l>i)v<w eo^t c-o1'*t,J^7("«^
l

where the sum is again tahen over all positive and

negative values of . It follows that

(6.25) 77- S kit'1'* (ro"1-^-'^
Comhining this with (6.21)

(6.26) 77) , Y s
where f I means that 111, are all even ora (i3

all odd as in the case of a "body-centred lattice.

So.(u) is

(6

b

.27) ^_1^) S°0) -
<3.

r 6* +■ 6tt)
-t

(6.28) -

, f c a (k-^) 1
-+■ *

, 2 -7- J
b
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7-

The Derivation of Sums of Higher Order

9

If we differentiate the sum S^(?0 part¬
ially with, respect to ot, } or 7 we o'btain a

sum involving -6, >7 or l3 respectively in the
numerator

,7.1)
*7 L I

Repeating the partial differentiation we find

,7.2) r\s>. -c . - Shu
L

and similarly

(7.3) S°7) - - . - Q" r.i
KH ~ £ —7^" " 77 ' '

Differentiating an integral of the type (6.13) we

find

. , u ® <?us_£t) , - a, O^e/ir)^ <tii1r7"•4> K "7-'i TT h -r'-i if

Henc e

(7.3) 7\9 . -3-/9 7-^)

/ i+ (7,^ ® 7 +■t70
—-——— 1-t) + 3, —; ~

1 (°v7
1 3 i 7T --tr1 "D+v 11
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Thus the expressions for the second order sums

corresponding to (6.28) are

(7.7) SV) -
ir

-h

9 (k- )
^r(S) ■ " **

g. f S 9 9^95^ - ^ttLI71^ tt J, "m, -v^TT

(7.8) s. w
4^ -4 . u,-

e -V34tt J

u ?■>, (Y)
b'

/4, S(-t. VO? c°u9}i
t ~W 7T J

where

(7-c;) - ^ %. >
6ot;

c& -

The 6^ and , corresponding to the o-^ given
in Table I, are to he found in Table II.

hwald' s I'ethod

If q} , a., 6, + t3
and 6 is the lattice vector of the reciprocal

lattice•

(8.1 ) a. ■
— <-

. k ■

5
k> a. x a-.
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TA3Ij5 II

n
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ri
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where u- is the volume of a eel

(8.2) - I -*■ -3

val c. 's transformation formula is

(8.3) S e ' /

aj~ AA/
S

_ (irb/^H- a-iri(fet.r))

This may be written in the form

iOt- '(8.4) 5 at,Vk S -
e i

Using equation (6.1 ) as before we get

(8.5) J

_TT(bt- r)/
' AA

I - aTT^C 2rc- *0
e

( 2:0*
OO

"""■"a. I ' f' — CtfTj
(3 3l

l
jl
r(\)

ol^

Divide the integral into two parts by

talcing the limits o to T and T to 00 ,

and using (8.4) we find
— air*" -") "*"4 i -iTi(a...v)

(8.6) S t TT S

oO

r '«

/S ® ^

r

-t
ii at. 5
r(X) £

%/

nr 1 r

•>-r(\)

r(va) e

fT ^x'%. -ttC^-
L p * *

"Va.

(8.7) r it 'a. ( /

5
rno (. t

-ivC(a.t.r^) / v -TI-O4 Tv
V •«- of V

-u

+ «lt 'S ^ -t i
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Because of (6.1 j>) the sum may now "be

written in the form
- a.-rr. C<^- e) ^ ^ f .

_ auifc**)
$ ± = J Se, 9 (r%k)(8.B) L (o^y^ r<>0 [. t T^

i_
I+- at T

b l/»- ' i

For a face-centred lattice,the lattice

vectors are

a, = (o, b, c. ) Q:* = (<S o, O 9r3 ° ^ >

hence has components

o-CA-r *,) , b(Ca + <-,) , a K + M
or

(8.5) o.£, , ^ , a3
where is even.

The reciprocal lattice vectors are

k -- (- L. 1 k' 'ic) k- Oao.'-^'L) ab'ic
hence has components

or

i fii
(«-10) V • ^ - -ic '
where i ,4,,^ are all even or all odd as in the
Case of a body-centred lattice.

Talcing

(8.11) a, = b = c = I

and

3.TT x: ; "'m ^I)

we get the following expression for the sum
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(8.12) s (*) r it

r(-vj
a S <^>(^-0 <p C>

-t T
-3/.

where L ], > I J and ^ have the same meaningb
l>o

as before.

Finally we choose T - and we get

an expression for £ (°0 which is identical with

that found in (6.27) by the use of 5- -functions.

(S.u) S>) -- -JL-*
•v "rK)

a. S '-Uu)
l>o ^

■_u - * | s ? ^
V T 1 ( LV^ IT

The sums of higher order are found by

partial differentiation and will give the same

results as (7 - 7) and ( 7•8)

If we had used a different substitution

(6.^) or had taken a different value for T

we should have obtained expressions for the sums in

another form involving more terms of the first

type ana fewer of the second, or vice versa.

The formulae given are however more suitable for

practical purposes.
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9.

Sums for the Other Cubic Lattices

Corresponding expressions for the lattice

sums in tlie cases of the simple and body-centred

lattices may be found by the methods used above

for the face-centred lattice. I shall' however

only quote the results.

a) The simple lattice. In this case the sum

is taken over all positive and negative integers

ix and . The zero order and second order

sums are

<5-1 ) SV) •
II

4^ r(\)

i__
y -t i

-+

(9-2) J ) TP

1+^

[ i 5 o hrl
O

S Q)
c "rr

. -t)o 7X 9

-+• ur

s

s 9 (h_ + DjLTT)
tT

3Vi
S"W .

___ A/
i

krfx)
ja s Vj ^ (cldo

3i

Tf1
C («l + Sl/X+i* ^3ir)(?
r ~^3f



where L ]s means the sum over the values of ^
for the simple lattice.

b) The "body-centred lattice. For this lattice

we consider only those values of iitixf-3 which are

either all odd or all even. Then

(9.4) $°C-0 *
TT^

k

i^ys 9>^„
- -C ^ a. TT

(5.5) S Ju~) JL
r(\)

faS b

(9.6) gM
•Vv

S " C-)

u S 9,

8/ s 0
L «

TT^ I

^P(^/x)

r1

(oL+ t-n-y
TT

3. S ^(^/J 9 (wVrhV7

Q y l+ + <p4 - '-0^3 TT

where 1 ], and ' ' mean the sum over a body-
b i

centred and a face-centred lattice respectively.

10 .

hue numerical Calculation of the hnera:;

Before we can proceed with the numerical
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calculation of the energy, we must choose values

for M, and ^ which occur in the potential

energy (j>. 2)

WE SHALL ASSUME THAT 2

AND CONSIDER IN PARTICULAR THE CASE ^ - 4,

We have calculated the sums /o, and

for these values in the case of a face¬
ts

centred lattice, in which the effect of all

neighbours is taken into account, by means of

the expressions derived in (6.28), (7.7) and

(7.8). These are tabulated for our set of

ol = |pj~ in Tables III ana IV.
8-

In the case ^
o

(10.1 ) y - Igr- = ^ '°
s°

We now calculate the determinants ^
corresponding to these elements,and from the

symmetry considerations (4.1) the determinants

are symmetrical about the planes

h -- -- h' °

K - K , K ~ K > ^ " fa
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TiVBIE III

K t*!>
co n

A,
a) |

/>iv
(4)

/°31
CO

' /°/l
<0

/°ii -i'
i 40 l-oaso l-l 333 a-oxso

... ... .., ..

0 O 0

811 a-45-4/ l- 3187 /-3/87 0

'
.

0-986 A 0

8lO 2- 7 2.77 /• 0994. /• 349-3 0 0 0

800 3 • OJL23 /• 0 63T3- /• 0 6i"3T 0 O 0

7 3 / a -as /<? /•/5"49 /• 5"7S6 0-39.47 0-394-3 0 • '440-

7" a • 785" 6 /• /057 i-iosy 0 -/43T9 0 -/4 og 0/45-9

6 to / • a 1 8 y /• 3/87 X-l+Slt! 0 -9-86 a • 0

4 4 a. /■ 6990 /• as"o9- /• 699 0 0 ■ 69 6 O 0-4960 0 -4 936

64Q l -8 toif. /•ao3a /• 80i<9 0-6968 0 0

(.XI a • 26f(j /• aogg / -aoeg 0-4903 0-494/ 0-4908

6 10 a -42/0 I X llX 11683 0 • 5T006 O 0

6 0 O a- 665-g 0-9/29 0- 9/A9 0 0 0

5" 5" / »-V?4Y (-9.947 l-y/66 0 8409. 0-3491 0 -348a

A" "3 3 1-6 163 /• 3 a 0 a /■ 3aoA 0-84/9 0-84/8 0-84/9

^ 3. 1 I- 8 383 /• /a3o l-XS-33 0 ■ 85\r<r >7 3473 0 - 3STA&

5" / / a•/^a4 0 839a 0839a 0 ■ 35*94 0 • /4 3 8 0 -35-94

4 4-4 1-3 68 3 /•34S 3 1-3683 0-9906 0■9906 0 -99 06

t+ h a- I-3 7 74 / 3779- 1 3/ 89 o-99 8 a 0-70/6 O-70/C

4 4 0 1-3 8 66 1-3866 '■<2699 / - 0 A64 0 O

4 A A IS"XS~S- 0-95-2.9 0-95-29 0 • 7/5 0 0 -5-039 0 ■ 7/8 0

(f X 0 i-ryil 0 - 809. 7 0 79 39 0- 7 a 8 8 0 O

4 a 0 /■68lf 4 0-5igg <3-5"a8S 0 0 O

3 3 3 //S-/I I- 18 II 118 II 0-8 3'47 0-g54 7 0 -8S-9 7

3 3 / '6937 1 6939 0 - 7909 0 ■ 8 793 o- 35-93 0 -35-93

3 1 1 / ■ O907 0 4 70S" (> «s> 0 0 3 73/ & / v> / 0-3 73 /

XXX 0 ■ 7/oy 0■7/0Y 6-7/0Y
1

0 -3*2./7 6-&2I Y 0 • a' A / y

X X O 0 • 6 / a' 7 0 • 6 / a* y 1 0-323"8 0 S~3S 1 0 0

2.0 O 0 • /5"7, 1 0 • /a'9 / 0 O O

1 ( / 0-1138 0 XlSSr O-XISS 0 ■ /fc 0 9. O • /*> 0^ 07406
L_ _ .1
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TABLs iy

p> t>>■ y=3
OIL) C.i) oO

P31
0v>

,
Cii)

*»
(.1)

"13

% 4 a 0-5-3/3
j

0 -3 157 0 - S"3 1 3 0 O O

81i O- 6 A4S" 0 ■ 3 fa A3 0•3 faA3 0 0 -109a O

8 A o 0 • fa 8 fa O 0-3/44 0 • 3 749 0 0 0

8 o o 0-75TOA 0-3/3/ 0-3/3 1 0 0 0

V 3 / O -5"8 / fa 0-3/9 9 0 4A7o 0 0 yy3 0-0771 00 3 A 0

V 1 / 0- 4>9' A 0 - 3 /go 0 3/8O
1

0 - 0 3 AO 0 0 3 A 0 0-0 31 0

6 6 o 0 • 3 fa A3 0 3fa A3 0 ■ fa A45- 0/093.
O O

6 4 A 0-4 39 0 0■ 3 3 / A 0 4390 O ■ /6"4 fa

•

0 -/5-4 fa 0 • /o

fa v o 0 4780 0 ■ 3A48 0 4 7fa A 0/5-44, 0 0

aj O-S-^8 5- o- 3A9 8 0 ■ 3A 9 8 0 ■ /09a 0 ■ /0 94 0 /0 9 £

fa J- o 0 ■ 5"9 4 o 0 3 A99 G • 3 A 8 3 0 ■ / 0 7 3 0 0

0 0 0 ■ fa fat a / 0 -At 7/ 0 Afa 7 / O 0 0

5" 5" / 0 -374 3 0 - 374 3 04989 0 /?fafa 0 0773 0 0773

5" 3 3 0 -405-9 0-34/7 0-34/7 o- /fffafa 0-/846

5 3 1 0 -4 5-/3 0 -59 fafa 6-339S- 0 78 4,8 0 • 0773 0 0 773

5" / / 0 -5-06.2 0 A394 0-a3 7fa 0-oyy4 0- 0S2O 0- 0 3 A O

HV 0 -34 1 7 0 -34 fa 7 o-34fa7 0•A/8 7 01/87 0 A/8 y

a 0 -3459 0 - 34 fa 9 0 ■ 345-a 0 - 1/SS 0 4.5-4 fa 0/5-44,

0-3470 0 -347 0 0-3434 o-a/8 8 0 O

4 a. a. 0 • .34,17 0 - A575- 0 • 2.57 5" 0 • M"4 8 0/093 0 • /5"4 8

4 A 0 0-34.94 0 • a / a s 0 a/ // 0 /5"4 9 0 0

00 0 iy?» 0 ■ '5-9 a 0 • / i"9 a 0 0 O

333 0 • A 7 fa 0 0 • A 9 fa 0 0-1740 0 • /« fa 8 0 ■ / 8 fa 8 O •/ « fa 8

3 3 / 0 ■ Afa3? 0 -At 3 8 O•A/t/ 0 • / 84,9 0-0773 o-0773

3 / 1 0 • .2 o'/s^o 0 • /A9 0 0 • 0 7 7 fa- 0-031/ 0 • 0775-

| A A A 1 0-/735" 0 ■ / y35" 0 • / 73 5- 0/095- 0 -4095 O • / O 9 5-

a a. 0 ! 0 • / 4 / 3 0-/4/3 0- 09 4 ' ^ 0 -/o7 4, 0

.

0

O O 0 •111 y 0-0 4ctf0 0- 045"5> O 0 0 O

/ / / 0 • o5"og-7 0 • 0 6"0 ? 7 0-OS"087 ! 6-03a/54
[

0-032/1 0 ■ 0 3 a / a
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and atout the point

C />, » /h , ^3 ) - >. 4- > ^ )
The space bounded by these planes, as

illustrated in Figure I, is of the whole

cube, so that points lying wholely within the

space have a weight cj g . Points lying on the
faces have in general a weight and the

weights attached to points on the different edges

and corners are given in the figure. All weights

can be found as follows

(i) For points not on the planes

f=i , o , . g
the weight is equal to the number of

different permutations of {*,, ± K > - K
and of ± (s-K) i fe~!pi)since
these are the number of times the determinants

tame a particular value. In general this

equals 2 P, since p, - , but for points

on £»-+ ^3= i a. , j f^3 is a Permu"ta'fc-
ion of S - K , 8-K> > so "^he actual number

of different permutations is

(ii) For points in the plane

h = O but not in /», » 8 or „ o

those with the smrne determinants as 5 o }
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are the P, permutations of (± ft, > -t , o) and

the Px permutations of ±(S-K3> ± (g--^^ } ± g
when these are distinct. The latter lie on

the faces of the cube and so have a weight ''x. ■,

but Px „ S.P, , so the weight of °

is again aP, v/hen K t /=3 ^ 'a

ana P( when i°i u ■+ ^

(iii) For points on o> p3 „ o

but not on ^,= 8 , we have P, » &> points

on the axes and Pj. *. points on the

edges of the, cube with the same determinants

as (f>,, oj o) . The weight of a point on .

the edge of the cube is so the total

weight of points (/>,, oj o) is 2 P r / 3.
(iv) Finally for points on the 'face

•= 8 ; we have P, permutations of

± 8,^^, ±.jb and Pt = p,/a permutations
of Oj ± (S"-pv} ±(8-^, the former have a weight

so the total weight is P, if

^^ ana p'/^ if (»,■+ K + ^ « /a .

The calculated values of A^ are given
in Table V and the coefficients /t in Table VI.

k

The complete table of weights is given in the last

column of Table VI.

The averaged coefficients are in the last row of

this Table.
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TABLE V

f>, /H Ac A ,
A 3

8 A ° /V - A<? g 5- -40 /40 -6 77 /6

* a. a. /4 • &6~ 7 A - 8 / // 5 g 6 4 ' 3

/6 A 5" 79 • -5" A 'A 9 - 6 70 3 Sr

goo / 5" • A 0 Y 3 • 5" 9 / / 8 • 6 6 3-67

Y 3 / 'A ' 4 9 7 / • A4 / / 6 • 7 6>3 * 6> A

7 i i '3 • §9 6 Y - VA /09-8
■

-5*9 -35"

(a O /A • 8-T
|

7 A- 8/ H9-8 6 4 -5"3

64 a. 8 -8-5"9 43-35" y 0 -5-4 3S - /9

4 4 0 /A • io 60-5-6 9?- AS" 3*4 •/ 6

6 a a. <j -S6> / 46-84 78 • 3 iT 4/-4A
-

6 a 0
9-7 3 4

A
A*-* 7

SY-94
•

. y0 • 70
9 f * 3-9

4 6 ' 6S4
.5" A. • 3 /

6 0 0 ? A09 4 5"- 0 3 7 3 A6 3 9-66

5" 5" ( 9- 3 AS

•

.

4^ -8 / 7 8-46 4 3 ■ 5*A

S" 3 3 4 " 7' 3 22- 75" 36-4 7 ' 9 • 4<V

5" 3 1 <3 3 77 3<5 • 76 5"o • / / 27- 4$

5" 1 1 <5* • '5"8 A5" • 3 7 4/.49 a A • <T6

b b 4 2-916 /3 • 7? A /" 6"0 // • / A

4 4 A 4-004. / 9 • A8 30 • g A /6 • 36

A A 0 3" • /4 9 A 5~ - 0 3 40-3 5" SLI ■ S~S

4. A a
1

2-429 H-8! /? -06 <0-2.1

/* A 0 A • A 8 / u ■ A4 '8 -38 9 • ?S 0

4. 0 a . /• 85 A
•

9304 / 5" • A 6 8 • 3 / q

3 3 3 /• 7 8 8 8 - 4 7 r / 3 • 3 0 6 • 9/ A

3 3 / <• 380 6 • 69 A /o- 73 5T • 6 90

3 / / 0 • 5"a 4 3 A- 5"05" 4 • /A / 2-247

AAA 0 • 3 ;S"/ 9 / - 6 8 A A • 6 5" 9 / • 39 A
1

A A 0 0 • /S"7 A 0 - 763 9 ''225" 0 - 6 4 8 O

A O O 0 • 0 4 / (5" 0 0 - 2/3 / 0-36/6 0 • A 0 AS

/ i / 0 ■ 0 055-5- / 0-04149 O -0664 A
j

0-03490
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TABLE VI

»

Is i K h «. 1 «> V «.r We 1 ^ h 1"

8 Lf 0 4 -9^ - f - 06 443 - 3"- 3"0 1- XI /a

m 4 • 9 o -400 4 ' 37 -r.34 b ■ 9? j a

? a o 4 8 7 - 3- 9 ? 4-29 -sxq
1

9- 84 Xlf

£ o o 484 - 3 ■ 9 0 4/8 -Sob 9 -54 b

7 3 I /f q 1 -400 4-29 -szs fc- 87 9 6

7 / / k ■ ?* -((.■ 0 1 442 -if- 3 0 7/o 4S

4 4 O 4-90 -400 4' 37 -5"- 34 (,■ 49 IX

t>4 a 4 89 - 4 00 4'3t - r ■ 3 / b ■ 98 Lfg

to Lf- o 4 • 9 2 -4-0 Li 4-40
- r-4 3 7-/' 4 &

<o a a 4.9 o -4 0 a 4-43 -3-34 7 / a 4?

e> a o 4 9V
Lb

- 4' & 9 4 ■ to / '
,

-f-Slf 7 • i"4 4g

6 O O 4 -s 9 -400 If-ib - S - 3 > b -<j? IX

6" 1 i'Ol -4/9 4 • 4 a - S- 8 7 7- 77 Lfg

6'3 J 4-83 -3-qa 4- 17 -foe (. • 7 / 4S

6' 3, 1
.

4-9 o
'

-403 4-47 - f-3 s 4/5 qb

f i 1
j

4 • 9 A "

- 4 • 04 4 47 -f -if b
'

7-av 4S

4 4 4 4 • 7 / - 3-74 3 • 99 - if.- b 1 S-q% ?

4 4 X 4 ■ 8 I -3 - S- 7 4 /9 - 4 9 y 6-4 3 4 ?

V ^ O b -8L -3-47 4 • 34 - r- at t* ■ eg 24

4 A a Lf -S-6 -3-44 4 • 3o - 4T ■ a <r 4 s- a 4 ?

4 2 O
1

4-93 -4.04 4 • 5"8 -3~ ^-a 1-S! 4 ?

If O O 4 ■ 94 -4-09 444 - S-- A"4 9 • 5-9 /a

a 3 3 4-74 j -3-79 j
J

4 • / a -4-71 6 - 29 ib

3 3 / 4- ■ 8 5" '4 4a - 3T- Jo 704 4?

3 > 1 4-97 - 4 •' « 4 • 73" _

3'- 74 Y ■ 9 3" 4 s

m 4-7 s- jJ -3-84 4 -25" _ 4 • ? fe 6*66 !b

4 ■ £6 -

4 • oa 4 •*-/ - s--3a. 1 ■ Xb a 4

a o o •T- / 3 — 4 • 45"
I

6~-a a ~~ 4 • «5" 0 9 -a9 ' a

.' 7 ; 1 4 ■ 85" Ai.J4JLI.-4 „ 4 *4^ ^
~ fi" • a- * | 7-0 3 tb,

<A*V 1
4 ■ 9 0 S - 4 • 0 v ~ S-34 y-/a
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The variations of the with the

different phases are small, e.g.

Ay / h A , <, 6*. 13

so thp,t the A^ seem to "be almost independent of
the phases of the waves for our particular and

u, • Further in calculating the coefficients

^ it was found numerically that the relations
T*-

O0.2) *

held to within about >7b for every point in the

phase space. This means that to within possible

numerical error

x r l 3
(10.3) *«,-♦- M+M+M - ^3
I did not use this simplification in the numerical

calculation of the expansion of

"but obtained the A. from direct calculation.
■k

The determinants A>^ , Table V vary
with the phase but their quotients are practically

constant, so that the A^ which are functions of
these quotients also vary only slightly. This

linvariance appears to arise from the connections
■ (■**) M
between corresponding p and p . From

I

iTabl.es III and IF vie can see numerically that
I

<b>~) h-)
1(10.4) ^ - up

01 ^ K
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where A is a constant, in the neighbourhood of If

and cr-^ is a quantity which varies with the phase.
"but which is small compared with k .

*>■!,

a similar connection with A = ^ can
C ^)

he found from the general expressions for
' A/

(*0
and n hut cry is a complicated function of oy

f\ "> H
and I have not heen ahle to show that in general it

y ('*')
is small compared with

For first neighbours only it can he shown

that

[ h - c^> oer^*( j
(10,5') — Q ( I — C*ra Cxn

^ 1/^ (*.+ 2-) i

Therefore

(10.6) 2 } (l -

When -h, = this gives ■

nr n) 2~'*~' o Ca^} - 1/^ C <-(10./) k d h.
3.

so that for first neighbours only

(10.8) o-j( ^ !/^ ( t - oa-> y •

The. maximum value of cy is I so for -u = o

(10.9)
2. A-' (2^_)

° 4 <• ) t,llen ^ ■ t •
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For the non-diagonal elements however

(10.10) /o

so that

(a**)

H

V/. -

D. /7)
r/x ' (a/Kv,)

n -Yv\- -h I

- Is when , f5 + %
n

Eence since is always positive
If>%

(10.11 ) 7
<:

i
H- & «^ f"V

< Y5" '

(s-)
If we substitute (10.4) for /5k in theIs 1,

determinants ^ (2.23), we find, writing

/S . r- ^ ^

Ifi"' + <37 'f
<rO

th

A Y | V cr cr;

+ V J

(■>-)

lO
(rM (^) /K

(*■)
-+

-+
1 « (M '-•M D - >-^-3 __

Y J /ip, + cr; /S^i -+ °!
(V.) ^ (-K.)

(10.1 2)
^ X ! (•>.) (-A.)Y / /3/a, -c cr /ax /si

-+ Y I

-+

(M 0 (V) (>v)ft,o, + OY Pi

A>,
M ^(vv)

v 1 I l-M Cv.) fcO j 1 T)Y Z p, /Oj. A, i - Y 3 -
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Now if we let

3£ . _J_ T | .'J*1 p™ I +
' ^

i «■» *•» a- a+ \ft, ^ SI J

(10.13) ^ i 1 'C '°i I ■+ K ^
— I -u l rr- cr

(M
-+ I °7 °T

£3 = -4- I a- a- (T I* /e>3D3 1 1 x a
from (10.11) for first neighbours only,

(10.14) (i) - Jt. < E ^ A_
7/» r/a

i.e. approximately
— '//o ^ ^ S

and

(10.14) (ii) 0 <c <; '/^
!/ < -c 3 ^ // .

( Hi ) UO-TTO """" -5 3/^3

Then we can express the determinants in

terms of E.

- P'M '+ 3£, - 3£^ £34]
A, = ^l3 )

(10.13)

-- ^/v*,*-•}

6, . Y5D3
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Therefore

A,
yK

P>
ie1+ C]l<- *£,-nvJ

- 3-V [ /- e< + 3 &,v — at* ^ — ]
(10.16)

y « ^ [/- 1£|+ tE,*- 3£> ---.]Z3

^3 y3
4„ - V [|- 3 £, + ^ j £* + ---• ]

Using these results we can find an accurate express¬

ion for the functions (10.2), which, were numerically

zero .

*; * V i ^ r 3
(ic .1 7)

S , - ',{s> u- --• y
These are "both zero if we neglect second and higher

order quantities, such as , sj~ .

We can also find expressions for the

coefficients in terms of £

(10.18) A, = l- £, + 3£*-
ft L

etc

Heglecting second and higher order terms and

I assuming £, lies between the values (10.14) (i)

! I a r a r \ L I 1 ft A i' 6 V(10.19) A • 4 X ^ , - / •
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The A^ given in Tahle VI lie well within
this range.

As these maximum and minimum values are

so widely different it does not seem possible to

find an averaged from this result. The

lower limit depends on the diagonal elements of

the determinants and the upper limits on the

non-diagonal elements, and since the latter are

generally small compared with the diagonal elements,

the averaged A, must be more nearly equal to
the smaller value than the larger. If it were

possible to prove that (£,) was about '/^o ,
'Av

equation (10.1 8) .would give the coefficients

immediately, but I have not been able to find a

method for averaging the expressions (10.13).

The following approximation gives a

fairly accurate result. Let us assume that

, etc. obey the simplifications (3-7),

which S* , etc. obey, so that
r\.

c II o
(ci) "

(1 0.20 )
loo

S 00 -

Then

(rK.~)
(10.21 ) o

m

S,oV-0
r 0 "

cilo

S (O
p ooaS oo '/, s°O 4^.

(<*).

O if J* V- %
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and oM S if ft ~ ^

For first neighbours only

6*0 (<>o i

(10.22) « If n> \ I- —!—
, K i W-l

Then

(10.23) £. . _A_ ^ '/,r1 II fi
3 3

£ z = £* £ £C1 C| > 3

Therefore

(10.24) « _AX- j AL = 3 y*~ j
^ /3(»H-0 Ac p*0 + Z}x

^ V » ^ /ir \s
giving /a (|+ £,)

(10.23) /f-8 4 , ft^-3-c)a. ; etc

The error in the value of A, is less

than i°/o , and JU^ [ao + A(} + M3]
becomes exactly •+- 3 L I-+- ,
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11 -

The ■iiinergy and Equation, of State

Considering the action of all neighbours,

we find using the averaged values of ,

that the mean frequency (3-23) is

(11 .1 ) hcrcj AX> _ '/^ CTho -f he(/-f 7"

'4 f ^' 9 0 T ~ • o 4 ) V 4- • 4 a- ^ ^
where

(11 . 2) o ' '3 *\ '^cr<3 ^ o /*A v

The potential energy _^0 of the whole
lattice is given in (p.11 ). Introducing

'K — ^Vv - O-^N.
= y^o we get

(11.3) 0 = '/V °-h > V cX^S°<a(^-x)L ^ ^ ^ ^ ^ Q -J
/- /K» —

From the value of y (3-14), and since ,ay() = /-f-7
T*" ^ ° —2^ — x .

(11.4) = rv_3hh Y C 1 -+- 1) (-XX + j .
d. (x - 'Vvh)

For
X, a^.

01.5) h - - wnr2x o- W)
a.

Thus for -u-, C the potential energy is

(11 .6 ) ^To = — 8 • (>i ^ ( i - T 0

Substituting (11.1) and (11.6) in (1.2)
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the free energy of a face-centred lattice, taking

into account the action of all neighbours, in

| terras of volume change T , is1

(11,7)
= ■ (, a. ^ (i - ~$'1) -+- 3 4T-to^rV AT-

-I- "i ° £ A T C / ■+■ ^ ^
SL

-f 4T| - i-oal'-f a.(,&

Our law of force (3-4) contains four

arbitrary constants,- ^ , <v-o , and the numbers
u*. and ^ . 'We have used the particular case

'K. „ - l X
0 so that our energy expressioxi

contains only two arbitrary constants m- ,

The arbitrary distance >v-o has been changed to a

unit of volume,<^a —equations (p-13) and (3-1&) -

which is the equilibrium volume of a cell. We

now write the other constant as a quantity

with the dimensions of temperature, ;

wrhere O can be regarded as the unit of temperature.
'

On differentiating with respect to

the volume aV of the cell, we obtain the

equation of state for the crystal, connecting the

pressure p , temperature "A and volume
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(11.8) f - ^(V)

= ate (/+ 7)V*{ 'v • ^ J -+ Te
/O"

o

where

p/_.\ ("—«b__ -+ —
(11.5) 1 ' I'-M

— i o- va. 7 3 -t / y ■ S" s~ ^ ---• j
Now if we write

(11 .10) f>«, - ^

the equation of state becomes

(11.11) b « + "^Q F 0)"^
i3 <•

where we have three constants, , © and -^~0

connected "by (11 .10)

We can now construct curves which give the

volume in terms of either pressure or temperature,

liquation (11.11) is linear in bu0 and ,

so we can draw a system of straight lines for

different values of It is only necessary

to calculate two points for each line.

Figure II represents the isobars giving

* (/-+- ^) /a" as a function of for
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constant pressure.

Figure III represents isotherms,
o

as a function of P/ for constant tempera'ture.
N

V«e notice that in Figure II increases
o

linearly with respect to T/^ at first but later
the increase becomes more -rapid until it is

eventually infinite. This is the same type of

curve as that found by 11. Born for a body-centred

lattice, but the values of corresponding

to the extreme points differs widely in the two

cases.

Before we can compare the two sets of curves

we must compare the .scales • used. The constant of

temperature has the same meaning, but the \r°

used above is the actual equilibrium volume and is

slightly smaller than the , used by

tBorn, which is the equilibrium volume if first

neighbours only act. Hence our constant of

pressure is slightly larger than ( '• / times) the

fo defined by Born. These differences are slight

and are not sufficient to account for the differences I

in the two sets of graphs.

...... . . - — ■ — ■■ ■

^ Born, M., Journ. of Cham. Physics.,
Vol. 7 • ,So . 6 . , (17p7) •
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To obtain a closer analogy with Bom's

results I have considered the equation of state

under simplified assumptions. Born considered

first neighbours only in the thermic term and

first and second neighbours in the static term.

I have first derived considering the

action of first neighbours only in the thermic term,

but I have considered the action of all neighbours

in the static term, so that j>0 , Q and u are the
same constants as before. Since the variations in

the were so slight I have assumed that there

will only be a small percentage error if we average

over only a few points in the phase space. If we

choose oCpoil)<^3 equal to o , % or TT , we get 3"
distinct points in the phase space. I used this

approximation to obtain the value of F(]) .

when the action of first neighbours only is taken

into account.

(11.12) F, (]) = —- + 2. 33- 3-65") -+■ S
i+ t

For , i.e. when J is negative, F, (~Y) < fCt)>
so that for a given pressure and volume, is

greater when we consider first neighbours onlp in

the thermic term, than when we consider the action
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I of ail neighbours. The differences are not great.

The graphs of the isobars, f5/ * 0 are compared in
po

Figure IV.

Secondly I considered, first neighbours

only in both static and thermic terms, defining <r(o)
as the new equilibrium volume, ft (o) as the

| corresponding pressure, and ^(o) c (' + 50
'In this case Y - % • Then

(11.13) J- .
j? (o)

where

(11.14) Fv(y) '

was found by averaging over a few points in the phase

:space as before. The isobar, ^y0) = 0 correspond-
I ing to this equation is also shovel in Figure IV,

land this corresponds most nearly to the isobar,

h _ 0 of Born.
V " '

The differences in the curves depend

mainly on the number of neighbours considered in

the static potential ; in this type of crystal

|lattice it seems that a consideration of the action
,

of first neighbours only in the thermic term is a

fairly good approximation, but that the static

potential must be determined accurately.
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