THESIS SUBMITTED BY
MARY BRADBURN, M.Sc.
(University of London)
FOR THE DEGREE OF Ph.D.

Edinburgh. May, 1942.

A Statistical Thermodynamics of a Crystal Iattice

1.

The Free mergy of a Iattice

The free energy A of a rigid body is a function of the temperature and of the six homogeneous strain components. All other thermodynamic properties are found by differentiation,
the entropy $S=-\frac{\partial A}{\partial T}$,
the energy $\quad E=A+S T$,
and the generalized forces corresponding to any molar parameter $F_{r}=-\frac{\partial A}{\partial a_{r}}$.

Let us consider the free energy of a cubic lattice of the Bravais type (simple, face-centred or body-centred). The cell of such a lattice is described by the three lattice vectors $\underline{a}_{1}, \underline{a}_{2}, \underline{a}_{3}$. The shape of the cell is given by the scalar products of these vectors with one another
(1.1) $\underline{a}_{1}^{2}, \underline{a}_{2}^{2}, \underline{u}_{3}^{2}, \quad \underline{a}_{2} \cdot \underline{a}_{3}, \underline{a}_{3}, \underline{a}_{1}, \underline{a}_{1} \cdot \underline{a}_{2} ;$ i.e. by three lengths and three angles. These six parameters are invariant with respect to rigid motion of the crystal; they play the part of the molar
parameters for this type of lattice.
Assuming that thermic motion can be considered as harmonic we obtain the following expression for the free energy of a crystal lattice at high temperatures
(1.2) $A=\Phi_{0}+3 N k T \log \frac{\hbar \bar{\omega}}{k T}$,
where Φ_{0} is the potential energy of the nonvibrating but homogeneously deformed lattice and $\bar{\omega}$ is a logarithmic mean frequency per 2π seconds.

2.

The Mean Frequency and Potential Mersy

The position of any lattice point is represented by the vector v^{ℓ} where for equilibrium (2.1) $\underline{v}_{0}^{l}=\underline{a}_{1} l_{1}+\underline{a}_{2} l_{2}+\underline{a}_{3} l_{3}$, $\ell_{1}, \ell_{2}, l_{3}$ being three arbitrary integers. Consider
a small displacement $\underline{\mu}^{\ell}$ from the equilibrium position so that the vector
(2.2) ${\underset{v}{l}}^{l}=\underline{v}_{0}^{l}+\underline{u}^{l}$
now defines the position of the particle l. The distance between two particles l and l^{\prime} will be (2.3) $v^{u^{\prime}}=\left|\underline{v}^{u \prime}\right|=\left|\underline{v}^{l}-\underline{v}^{\prime \prime}\right|$.

We assume that the potential enersy between two such particles depends only on their distance
apart $\boldsymbol{r}^{u^{\prime}}$, and we denote it by $\varphi^{\mu^{\prime}}$.
For the undeformed lattice one has
(2.4) $\varphi_{0}^{l^{\prime}}=\varphi\left(1 \underline{v}_{0}^{l}-r_{0}^{l^{\prime}} \mid\right)=\varphi\left(\left|r_{0}^{l-l^{\prime}}\right|\right)$.

Omitting the suffix zero which denotes the equilibrium values we introduce the notation,

$$
\varphi^{l}=\varphi\left(1 \underline{v}^{l} 1\right)
$$

(2.5)

$$
\begin{aligned}
& \varphi_{x}^{l}=x^{l} D \varphi^{l} \\
& \varphi_{x y}^{l}=\delta_{x y} D \phi^{l}+x^{l} y^{l} D^{2} \varphi^{l}
\end{aligned}
$$

where D is the operator $/ v \frac{\partial}{\partial r}$.
For the deformed lattice $\varphi^{l l^{\prime}}$ can be expanded as a series in ascending powers of $\underline{u}^{u^{\prime}}$ (2.6$) \quad \varphi^{u^{\prime}}=\varphi^{l-l^{\prime}}+\sum_{x} \varphi_{x}^{l-l^{\prime}} \mu_{x}^{u^{\prime}}$

$$
+1 / 2 \sum_{x y} \varphi_{x y}^{l-l^{\prime}} \omega_{x}^{u^{\prime}} w_{y}^{u^{\prime}}+\cdots .
$$

The definitions (2.5) are meaningless when $l=0$. We define $\varphi_{x}^{\circ}, \varphi_{x y}^{0} \mathrm{by}$
$(2.7) \quad \varphi_{x}^{\circ}=0$
$\sum_{l} \varphi_{x y}^{l}=0$.

If we sum the potential energy, (c.6) over both l and l^{\prime}, we get twice the potential energy of the deformed lattice, since the potential between each pair of particles has been counted twice.
This total potential energy of the deformed lattice. Φ can be developed as a power series in \underline{u}^{u}
(2.8)
$\Phi=$
$\Phi_{0}+$
$\Phi_{1}+\Phi_{2}+\cdots$
where
(2.9) $\Phi_{2}=1 / 4 \sum_{\mu} \sum_{x y} \Phi_{x y}^{l-e^{\prime}} \omega_{x}^{\mu^{\prime}} \mu_{y}^{e^{\prime}}$.

Since $\underline{u}^{\mu^{\prime}}=\underline{u}^{\ell}-\underline{u}^{\ell^{\prime}}$, we can with the help of (2.7) write (2.9) in the form
(2.10)

$$
\Phi_{1}=\sum_{l} \cdot \sum_{x} u_{x}^{l}\left[\sum_{l^{\prime}} \phi_{x}^{l-l^{\prime}}\right]
$$

$$
\Phi_{2}=-1 / 2 \sum_{u^{\prime}} \sum_{x y} \phi_{x y}^{l-l^{\prime}} w_{x}^{l} w_{y}^{l^{\prime}} .
$$

The force of all particles on one is
(2.11) $\underline{k}^{\ell}=-\frac{\partial \Phi}{\partial \underline{u}} e$.

The equilibrium condition is $\underline{K}^{l}=0$, and this is satisfied since $\sum_{\ell^{\prime}} \phi_{x}^{\ell^{\prime} \ell^{\prime}}$ vanishes.

The equation of motion of any particle l, of mass μ is
(2.12)

$$
\begin{aligned}
\mu \ddot{\mu}_{x}^{l} & =\mathscr{K}_{x}^{l}=-\frac{\partial \Phi_{2}^{l}}{\partial_{\mu_{x}^{l}}^{l}} \\
& =\sum_{l^{\prime}} \sum_{y} \Phi_{x y}^{l-l^{\prime}} u_{y}^{l^{\prime}} .
\end{aligned}
$$

We write the solution in the form

$$
\underline{u}^{l}=\underline{U}^{l} e^{-i \omega t}
$$

(2.13)

$$
\underline{u}^{l}=\underline{U} e^{i(l, \alpha)}
$$

where ω is the frequency of one of the independent normal modes of vibration and $(\ell, \alpha)=l_{1} \alpha_{1}+l_{2} \alpha_{2}+l_{3} \alpha_{3}$. Then if we restrict our choice of wave vector by the cyclic lattice condition * which postulates

* Born, M. 'Atomtheorie des Fester Zustandes: and ed. (1923) Leipzig, p. 588.
that the displacement shall be periodic in a volume having the same shape as the elementary cell and containing $N\left(=n^{3}\right)$ cells, we can write the equations of motion in the form
(2.14) $\quad \mu \omega^{2} U_{x}=\sum_{y}[x y] U_{y}$
where
(2.15) $[x y]=-\sum_{e} \varphi_{x y}^{l} e^{-i(\ell, \alpha)}$.

It follows from (2.7) that
(2.16) $[x y]=\cdots-\sum_{l}^{1} \varphi_{x y}^{l} e^{-i(l, \alpha)}-\varphi_{x y}^{0}$ $=\sum_{l}^{\prime} \varphi_{\text {my }}^{l}\left(1-e^{-i(l, \alpha)}\right)$
where the dash denotes that the term corresponding to $\quad l_{1}=l_{2}=l_{3}=0$ is omitted.

Writing the determinant of the coefficients $[x y]$ as $|[x y]|$, we obtain for the mean logarithmic frequency used in equation (1.2) * (2.17) $\log \bar{\omega}=\frac{1}{6}\langle\log |[x y]| \rangle_{A V}-1 / 2 \log \mu$, where the average taken over $\alpha_{1} \alpha_{2} \alpha_{3}$, the phases of the waves is
(2.18) for the waves is $=\frac{1}{(2 \pi)^{3}} \iiint_{-\pi} f\left(\alpha_{1} \alpha_{2} \alpha_{3}\right) d \alpha_{1} d \alpha_{2} \alpha \alpha_{3}$. For an undeformed lattice of N particles the total potential energy is
(2.19) $\Phi_{0}=1 / 2 N \sum_{i}^{1} \varphi^{l}$.

* Born, II. 'Atomtheorie dis Festen Zustandes', and ed. (1923), Leipzig. p.677.

The Expansion of the Frequency

Let us consider a cubic lattice, in which the cells have sides of length a, then

$$
v^{e}=a\left(l_{1}^{2}+l_{2}^{2}+l_{3}^{2}\right)^{1 / 2}=a l
$$

(3.1)

$$
x^{l}=a l_{1}, y^{l}=a l_{2}, z^{l}=a l_{3}
$$

where l_{1}, l_{2} and l_{3} take all integral values for the simple lattice, are either all even or all odd for the body-centred lattice and are either all even or two odd and one even in the case of a face-centred lattice.

In order to obtain an explicit expression for $[x y]$ we must choose a suitable function φ^{l}. We take a law of force of the form (3.2) $\varphi^{l}=\frac{\text { un }}{n-m}\left\{-1 / m\left(v_{0} / r^{l}\right)^{n}+1 / n\left(r_{0} / x^{l}\right)^{n}\right\}$
where the first term denotes the attractive and the second term the repulsive effect of the potential; n must be greater than m. r_{0} is the equilibrium distance for two particles since $\left(\frac{\partial \varphi}{\partial r}\right)_{r=r_{0}}=0$.

$$
\text { Differentiating (3.2) since } D=1 / r \frac{\partial}{\partial r}
$$

7.

(3.3)

$$
D \Phi^{l}=\frac{\text { wnm }}{r_{0}^{2}(n-m)}\left\{\left(r_{0} / r^{l}\right)^{m+2}-\left(r_{0} / l\right)^{n+2}\right\}
$$

$$
D^{2} \varphi^{l}=\frac{\text { unsm }}{v_{0}^{4}(n-m)}\left\{-(m+2)\left(r_{0} / r^{2}\right)^{m+4}+(n+2)\left(v_{0} /{ }^{l}\right)^{n+4}\right\} .
$$

Substituting these expressions in equations (2.5)
where $l=\left(l_{1}^{2}+l_{2}^{2}+l_{3}^{2}\right)^{1 / 2}$; and

$$
\begin{array}{r}
\text { (3.5) } \varphi_{z y}^{l}=\frac{- \text { unm }}{r_{0}^{2}(x-m)}\left(r_{0} / a\right)^{m+2}\left\{\frac{(m+2) l_{2} l_{3}}{l^{m+4}}\right. \\
\left.-\left(r_{0} / a\right)^{n-m} \frac{(n+2) l_{2} l_{3}}{l^{n+4}}\right\} .
\end{array}
$$

Now if we write
(3.6)

$$
\begin{aligned}
& S_{n}^{k_{1} k_{2} k_{3}}(\alpha)=S^{1} \frac{l_{1}^{k_{1} l_{2}^{k_{2}} l_{3}^{k_{3}} e^{-i(l, \alpha)}} l^{n}}{n} \\
& S_{n}^{k}=S_{n}^{k}(0),
\end{aligned}
$$

from symmetry considerations

$$
(3.7) \text { (i) } S_{n+2}^{2 n n}=S_{n+2}^{n 20}=S_{n+2}^{002}=\frac{1}{3} S_{2}^{0} \text {, }
$$

and

$$
(3.7) \text { (ii) } \quad S_{n}^{011}=S_{n}^{101}=S_{n}^{110}=0
$$

$$
\begin{aligned}
& \text { (3.4) } \varphi_{x x}^{l}=\frac{\text { unm }}{v_{0}^{2}(x-m)}\left\{\left(\frac{v_{0}}{r_{l} l}\right)^{m+2}-(m+2)\left(r_{0} / r_{l}\right)^{m+4}\left(\frac{x^{l}}{v_{0}}\right)^{2}\right. \\
& \left.-\left(\frac{r_{0}}{r^{l}}\right)^{n+2}+(n+2) \cdot\left(r_{0} / r\right)^{n+4}\left(\frac{x^{l} / r_{0}}{r_{0}}\right)^{2}\right\} \\
& =\frac{\text { unm }}{r_{0}^{2}(n-m)}\left(r_{0} / a\right)^{m+2}\left\{1 / l^{m+2}-\left(r_{n+2}\right) l_{1 / m+4}^{2}\right. \\
& \left.-\left(r_{0}\right)^{n-m}\left[\frac{1}{l^{n+2}}-(n+2)^{l_{1}^{2}} l^{n+4}\right]\right\}
\end{aligned}
$$

Hence by summing (3.4) and by summing (3.5) we find the coefficients (2.16) are
(3.8) $[x x]=\frac{\text { una }}{r_{0}^{2}(n-m x)}\left(r_{0}\right)^{m+2}\left\{-\rho_{11}^{(n)}+s_{11}^{(n)}\left(r_{0}\right)^{n-m}\right\}$
(3.9) $[y z]=\frac{\text { un }}{r_{0}^{2}(n-m)}\left(r_{0}^{2}\right)^{m+2}\left\{-\rho_{23}^{(n)}+s_{23}^{(n)}\left(r_{0}^{2}\right)^{n-m}\right\}$,
where

$$
S_{11}^{(n)}=S_{n+2}^{0}(\alpha)-(n+2) S_{n+4}^{200}(\alpha)+\frac{n-1}{3} S_{n+2}^{0}
$$

(3.10)

$$
\rho_{23}^{(n)}=-(n+2) S_{n+4}^{011}(\alpha) ;
$$

with similar expressions for $[y y],[z z]$ and $[z x],[x y]$.
In general the sums denoted by S_{n} mean the sums over all points in the lattice; the same results hold however if we only consider the effect of a limited number of near neighbours and sum over those. We shall work out the results for the general case in which we assume that the same law of force acts between all lattice points.

As we are concerned. with deviations from
the equilibrium position we introduce a_{0}, the equilibrium value of a, given by $\left[\frac{\partial \Phi_{0}}{\partial a}\right]_{a=a_{0}}^{0}=0$, instead of r_{0}. From (2.19) and (3.2)
(3.11) $\left.\Phi_{0}=\frac{1}{2} N \sum_{l}^{1} \varphi^{l}=\frac{N \text { um }}{2(n-m)}\left\{-\frac{1}{m}\left(v_{0} /\right)^{m}\right)_{m}^{0}+\frac{1}{n}\left(r_{0}\right)^{n} S_{n}^{0}\right\}$
Therefore
(3.12) $\frac{\partial \Phi_{0}}{\partial a}=\frac{N \text { una }}{2 r_{0}(n-m)}\left\{\left(r_{0}\right)^{m+1} S_{m}^{0}-\left(r_{0}\right)^{n+1} S_{n}^{0}\right.$. so that for equilibrium

$$
9
$$

$$
S_{m}^{0}-\left(\frac{r_{0}}{a_{0}}\right)^{n-m} S_{n}^{0}=0 .
$$

It follows that
(3.13)

$$
r_{0}^{n-m}=\gamma a_{0}^{n}
$$

where
(3.14) $\gamma=S_{m / S_{n}^{\circ}}^{0}$.

If first neighbours only act a_{0} is the projection of r_{0} on the cubic axes, so that $\gamma^{\frac{1}{n-m}}$ is 1 for a simple lattice, $\sqrt{3}$ for a body-centred lattice and $\sqrt{2}$ for a face-centred lattice. Considering the effect of more neighbours γ assumes values slightly larger than these values.
Equations (3.8) and (3.5) now become
(3.15) $[x x]=c\left(a_{o}^{a}\right)^{m+2}\left\{-s_{11}^{(m)}+\rho_{11}^{(n)} \gamma\left(a_{o}\right)^{n-m}\right\}$
(3.16) $[y z]=C\left(a_{2}\right)^{m+2}\left\{-s_{23}^{(m)}+\rho_{23}^{(n)} \gamma\left(a_{o}\right)^{n-m}\right\}$
where
(3.17) $C=\frac{\text { unsmr }}{a_{0}^{2}(n-m)}$.

We now introduce, instead of the lattice constant a, the volume v of a cell (3.18) $\quad v_{0 / v}=\left(a_{o}\right)^{3}$.

Further since we are concerned with deviations from the equilibrium and wish to express the frequency in terms of change of volume, we write (3.19) $\left(\nu_{0}\right)^{\frac{n-2 n}{3}}=1+\xi$.

We now write for shortness
(3.20)

$$
\left|\begin{array}{ccc}
\rho_{11}^{(p)} & \rho_{12}^{(q)} & \rho_{13}^{(r)} \\
\rho_{12}^{(p)} & \rho_{22}^{(q)} & \rho_{23}^{(r)} \\
(p) & \rho_{13}(q) & \rho_{(\gamma)}^{(r)}
\end{array}\right|=\left|\rho_{1}^{(p)} \rho_{2}^{(q)} \rho_{3}^{(r)}\right|
$$

and let

$$
\begin{aligned}
D_{0}= & \left|\rho_{1}^{(n)} \rho_{2}^{(m)} \rho_{3}^{(m)}\right| \\
D_{1}= & \left|\rho_{1}^{(n)} \rho_{2}^{(m)} \rho_{3}^{(m)}\right|+\left|\rho_{1}^{(m)} \rho_{2}^{(n)} \rho_{3}^{(m)}\right| \\
& +\left|\rho_{1}^{(m)} \rho_{2}^{(m)} \rho_{3}^{(n)}\right|
\end{aligned}
$$

(3.21)

$$
\begin{aligned}
D_{2}= & \left|\rho_{1}^{(n)} \rho_{2}^{(n)} \rho_{3}^{(n)}\right|+\left|\rho_{1}^{(n)} \rho_{2}^{(n)} \rho_{3}^{(n)}\right| \\
& +\left|\rho_{1}^{(n)} \rho_{2}^{(n)} \rho_{3}^{(n)}\right| \\
D_{3}= & \left|\rho_{1}^{(n)} \rho_{2}^{(n)} \rho_{3}^{(n)}\right| .
\end{aligned}
$$

Then the determinants $|[x y]|$ can be expressed as a function of $\}$:-
(3.22) $\left.\left.\left.|[x, y]|=C^{3}\left(v_{0} / v\right)^{m+2}\left\{\Delta_{0}+\Delta_{1}\right\}+\Delta_{2}\right\}^{2}+\Delta_{3}\right\}^{3}\right\}$
where
(3.23)

$$
\begin{aligned}
\Delta_{0}= & \left|-\rho_{1}^{(m)}+\gamma \rho_{1}^{(n)}-\rho_{2}^{(m)}+\gamma \rho_{2}^{(n)}-\rho_{3}^{(m)}+\gamma \rho_{3}^{(n)}\right| \mid \\
= & -D_{0}+\gamma D_{1}-\gamma^{2} D_{2}+\gamma^{3} D_{3} \\
\Delta_{1}= & \left|\gamma \rho_{1}^{(n)}-\rho_{2}^{(m)}+\gamma \rho_{2}^{(n)}-\rho_{3}^{(m)}+\gamma \rho_{3}^{(n)}\right| \\
& +\left|-\rho_{1}^{(m)}+\gamma \rho_{1}^{(n)} \gamma \rho_{2}^{(n)}-\rho_{3}^{(m)}+\gamma \rho_{3}^{(n)}\right|+\left|-\rho_{1}^{(n)}+\gamma 0_{1}^{(n)}-\rho_{2}^{(n)}+\gamma \rho_{2}^{(n)} \gamma \rho_{3}^{(n)}\right|
\end{aligned}
$$

$$
\begin{aligned}
= & \gamma D_{1}-2 \gamma^{2} D_{2}+3 \gamma^{3} D_{3} \\
\Delta_{2}= & \left|-\rho_{1}^{(n)}+\gamma \rho_{1}^{(n)} \gamma \rho_{2}^{(n)} \gamma \rho_{3}^{(n)}\right| \\
& +\left|\gamma \rho_{1}^{(n)}-\rho_{2}^{(n)}+\gamma \rho_{2}^{(n)} \gamma \rho_{3}^{(n)}\right|+\left|\gamma \rho_{1}^{(n)} \gamma \rho_{2}^{(n)}-\rho_{3}^{(n)}+\gamma \rho_{3}^{(n)}\right| \\
= & -\gamma^{2} D_{2}+3 \gamma^{3} \cdot D_{3} \\
\Delta_{3}= & \gamma^{3} D_{3} .
\end{aligned}
$$

Taking logarithms the mean frequency (2.17) can be expressed as

$$
\begin{aligned}
(3.24) \log \bar{\omega}=1 / 2 \log c / \mu & +\frac{(m+2)}{2(n-m)} \log (1+\xi) \\
& \left.\left.\left.+1 / 6\left\langle\log \left(\Delta_{0}+\Delta_{1}\right\}+\Delta_{2}\right\}^{2}+\Delta_{3}\right\}^{3}\right)\right\rangle_{A v} .
\end{aligned}
$$

Expanding the logarithm

$$
\begin{aligned}
(3.25) \log \bar{\omega}= & 1 / 2 \log c / \mu+\frac{(m+2)}{2(n-m)} \log (1+\xi) \\
& \left.\left.\left.+1 / 6\left\langle\log \Delta_{0}\right\rangle_{A V}+1 / 6\left\{A_{1}\right\}+A_{2}\right\}^{2}+A_{3}\right\}^{3}+\cdots\right\}
\end{aligned}
$$

where
(3.26) $\quad A_{1}=\left\langle\frac{\Delta_{1}}{\Delta_{0}}\right\rangle_{A V}$

$$
\begin{aligned}
& A_{2}=\left\langle\frac{\Delta_{2}}{\Delta_{0}}-\frac{\Delta_{1}^{2}}{2 \Delta_{0}^{2}}\right\rangle_{A V} \\
& A_{3}=\left\langle\frac{\Delta_{3}}{\Delta_{0}}-\frac{\Delta_{1} \Delta_{2}}{\Delta_{0}^{2}}+\frac{\Delta_{1}^{3}}{3 \Delta_{0}^{3}}\right\rangle_{A V}
\end{aligned}
$$

$$
4
$$

The Average Frequency

In order to express the energy of the crystal in terms of temperature and volume change we must determine the average of the A_{k}. It would appear impossible to integrate the functions of Δ_{k}
directly even if we consider the action of first neighbours only, so I have calculated the average for a face-centred lattice by numerical integration taking account of the action of all neighbours.

Having chosen a suitable range of values $\alpha_{1}, \alpha_{2}, \alpha_{3}$ of the phase, I have calculatea the sums $\delta_{p q}^{(n)}$ for each of the set of α, and from these sums the corresponding determinants Δ_{k}. It is then only a short step to the actual coefficients of $\}$ in (3.25)

We can limit the number of points $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$
which it is necessary to consider if we notice some simplifications due to cubic symmetry.
(4.1) (i) Consider $\bar{\rho}_{p q}^{(n)}$ where

$$
\bar{\alpha}_{1}=-\alpha_{1}, \quad \bar{\alpha}_{2}=\alpha_{2}, \quad \bar{\alpha}_{3}=\alpha_{3},
$$

then

$$
\begin{aligned}
& \bar{\rho}_{p p}^{(n)}=\rho_{p p}^{(n)} \quad(p=1,2 \text { or } 3) \\
& \bar{\rho}_{23}^{(n)}=\rho_{23}^{(n)}, \bar{\rho}_{12}^{(n)}=-\rho_{12}^{(n)}, \bar{\rho}_{13}^{(n)}=-\rho_{13}^{(n)}
\end{aligned}
$$

Hence if we know the values of of for for set of $\alpha_{1} \alpha_{2} \alpha_{3}$ which lie in the positive octant of the cube bounded by

$$
\alpha_{1}= \pm \pi, \quad \alpha_{2}= \pm \pi, \quad \alpha_{3}= \pm \pi
$$

we can determine all $\rho_{p q}^{(x)}$ for the whole cube.

$$
\text { We therefore restrict our } \alpha \text { to values }
$$

such that

$$
0 \leqslant \alpha_{1} \leqslant \pi, \quad 0 \leqslant \alpha_{2} \leqslant \pi, \quad 0 \leqslant \alpha_{3} \leqslant \pi .
$$

(4.1) (ii) Consider $\bar{\partial}_{p q}^{(n)}$ where

$$
\bar{\alpha}_{1}=\alpha_{2}, \quad \bar{\alpha}_{2}=\alpha_{1}, \quad \bar{\alpha}_{3}=\alpha_{3},
$$

then

$$
\begin{aligned}
& \bar{\rho}_{11}^{(a)}=\rho_{22}^{(n)}, \bar{\rho}_{22}^{(n)}=\rho_{11}^{(n)}, \bar{\rho}_{33}^{(n)}=\rho_{33}^{(n)} \\
& \bar{\rho}_{23}^{(n)}=\rho_{13}^{(n)}, \quad \bar{\rho}_{31}^{(x)}=\rho_{23}^{(n)}, \bar{\rho}_{12}^{(n)}, \rho_{12}^{(\alpha)} .
\end{aligned}
$$

Hence we can find all $\rho_{p q}^{(\alpha)}$ corresponding to the permutations of $\alpha_{1}, \alpha_{2}, \alpha_{3}$. We can further restrict our phase by the planes

$$
\alpha_{1}=\alpha_{2}, \quad \alpha_{2}=\alpha_{3}
$$

and choose those points for which

$$
\alpha_{1} \geqslant \alpha_{2} \geqslant \alpha_{3} .
$$

(iii) Finally consider $\bar{\rho}_{p q}^{(\alpha)}$ where

$$
\bar{\alpha}_{1}=\alpha_{1} \pm \pi, \quad \bar{\alpha}_{2}=\alpha_{2} \pm \pi, \quad \bar{\alpha}_{3}=\alpha_{3} \pm \pi .
$$

Then

$$
(l, \bar{\alpha})=(l, \alpha)+\pi\left(\pm l_{1} \pm l_{2} \pm l_{3}\right) .
$$

For a face-centred lattice $l_{1}+l_{2}+l_{3}$ is even so that we are only altering (ℓ, α) by some multiple of 2π. Hence

$$
\bar{r}_{p p}^{(n)}=\rho_{p p}^{(x)}, \quad \bar{\rho}_{p q}^{(n)}=\rho_{p q}^{(n)} \text {. }
$$

Therefore together with condition (i)

$$
\alpha_{1}, \alpha_{2}, \alpha_{3} \text { and } \pi-\alpha_{1}, \pi-\alpha_{2}, \pi-\alpha_{3}
$$

will give identical values of $p_{p q}^{(\alpha)}$.
This means that $\pi / 2, \pi / 2, \pi / 2$ is a centre of symmetry, so we can divide our octant by the plane $\alpha_{1}+\alpha_{2}+\alpha_{3}=\frac{3 \pi}{2}$ and consider points

on one side of it only. We choose those for which

$$
\alpha_{1}+\alpha_{2}+\alpha_{3} \leqslant \frac{3 \pi}{2} .
$$

The portion of the phase space satisfying the three restrictions (4.1) is illustrated in Figure I.

I have divided my phase space into intervals
$\pi / 8$ and writing $\alpha=\frac{p \pi}{8}$, I have chosen integers p_{1}, p_{2}, p_{3} such that p_{1}, p_{2}, p_{3} are all odd or all even. From (4.1) it follows that we need only consider integers such that

$$
0 \leqslant p_{1} \leqslant 8, \quad 0 \leqslant p_{2} \leqslant 8, \quad 0 \leqslant p_{2} \leqslant 8
$$

(4.2) $\quad p_{1} \geqslant p_{2} \geqslant p_{3}$

$$
p_{1}+p_{2}+p_{3} \leq 12
$$

In this way we get 29 distinct points in the phase space and each of these points has a certain weight depending on its position in the cube and on the number of similar points.

The sums $s_{p q}^{(n)}$ can be summed directly for a limited number of neighbours acting, or they can be transformed into rapidly convergent series and summed over all neighbours. These series have been calculated in the next part of the paper.

5.

Expressions for Periodic Iattice Sums

The elements $\int_{p q}^{(n)}$ (3.10) involve two types of lattice sums, the periodic sums $S_{n}^{k}(\alpha)$ and the non-periodic S_{n}^{0}. The numerical values of the latter have been calculated for the Bravais cubic lattices for a large range of n. * - We shall now calculate expressions for $S_{n}^{k}(\alpha)(3.6)$. Unlike the non-periodic lattice sums, those $S^{k}(\alpha)$ which involve odd powers of l in the numerator are not identically zero, and in general simplifications of the kind (3.7) do not occur. The six sums obtained by permuting k_{1}, k_{2}, k_{3} in (3.6) may be found from one another by suitably permuting $\alpha_{1}, \alpha_{2}, \alpha_{3}$; so for second order sums it is only necessary to calculate expressions for

$$
S_{n}^{2}(\alpha)=S_{n}^{200}(\alpha), \quad S_{n}^{1 \prime}(\alpha)=S_{n}^{011}(\alpha) .
$$

When we have calculated the zero order
sum $\quad S_{n}^{0}(\alpha)$ those involving higher powers of l in the numerator may be found by successive partial differentiation with respect to α_{1}, α_{2} and (or) α_{3}. There are two methods of transforming

* Borr, in. and inisra, E.D. Proc. Cambriage Phil. Soc. j6. (194c).
our sums into rapidly convergent series, and both methods lead to the same result. The methods are worked for the face-centred lattice, but they may equally well be applied to the simple and body-centred lattices.

$$
6 .
$$

Summation by Use of Q -Functions

Using the well-known formula

(6.1) $\Gamma(n / 2) r^{-n}=\int_{0}^{\infty} e^{-r^{2} \mu} \mu^{n / 2-1} d u$
we get for any lattice sum of the form $S_{n}^{0}(\alpha)$ the integral representation
(6.2) $\quad S_{i}^{0}(\alpha)=\frac{1}{\Gamma(n / 2)} \int_{l}^{1} e^{-i(l, \alpha)} \int_{0}^{\infty} e^{-l i \mu \mu^{n / 2-1}} d u$.

Hence the sum for a face-centred lattice denoted by []$_{f}$ in which $\ell_{1} \ell_{2} \ell_{3}$ are all even or two odd and one even is
(6.3) $\quad S_{n}^{0}(\alpha)=\frac{1}{\Gamma(n / 2)} \int_{0}^{\infty} w^{n / 2-1} \sigma(u) d u$
where

$$
\begin{aligned}
(6.4) \sigma(\mu) & =\left[S_{l}^{\prime} e^{-l^{2} \mu-i(\ell, \alpha)}\right]_{f} \\
& =S e^{-\ell_{1}^{2} \mu-i l_{1} \alpha_{1}} S e^{-l_{2}^{2} \mu-i l_{2} \alpha_{2}} S e^{-l_{1}^{2} \mu-i l_{3} \alpha_{3}}
\end{aligned}
$$

$$
+\left\{\begin{array}{lll}
\int_{l, 0, \pm 2, \cdots} e^{-l_{1}^{2} \mu-i l_{1} \alpha_{1}} & \int e^{-l_{2}^{2} u-i l_{2} \alpha_{2}} & S e^{-l_{3}^{2} u-i l_{3} \alpha_{3}} \\
l_{2}= \pm 1, \pm 3, \cdots & l_{3}= \pm 1, \pm 3, \cdots \cdots
\end{array}\right\}_{\alpha_{p}}
$$

$$
-1
$$

$\left\}_{\alpha_{p}}\right.$ denotes the sum of the three terms obtained by cyclic interchange of $\alpha_{1}, \alpha_{2}, \alpha_{3}$.
Now let us write
(6.5) $\quad 4 u=\pi \beta$
and introduce instead of $\sigma(\boldsymbol{u})$
(6.6) $\quad \sigma_{0}(\beta)=\sigma_{1}(\beta)+\sigma_{2}(\beta)-1$
where

$$
\sigma_{1}(\beta)=\int_{l_{1}} e^{-\pi l_{1}^{2} \beta-2 i\left(l_{1} \alpha_{1}\right)} \int_{l_{2}} e^{-\pi l_{2}^{2} \beta-2 i l_{2} \alpha_{2}} \int e^{-\pi l_{3}^{2} \beta-2 l_{3} \alpha}
$$

(6.7) $\sigma_{2}(\beta)= \begin{cases}S e^{-\pi l_{1}^{2} \beta-2 i l_{1} \alpha_{1}} & S_{e^{\left.-\pi l_{2}+\frac{1}{2}\right)}{ }^{2} \beta-i \alpha_{L}\left(2 l_{2}+1\right)}^{l_{1}}\end{cases}$

$$
\left.\times \int_{l_{3}} e^{-\pi\left(\ell_{3}+\frac{1}{2}\right)^{2} \beta_{2}-\sim \alpha_{3}\left(e_{3}+1\right)}\right\}_{\alpha_{p}} .
$$

Then

$$
S_{n}^{0}(\alpha)=\frac{\pi^{n / 2}}{4^{2 / 2} \Gamma(n / 2)} \int_{0}^{\infty} \beta^{\eta} \sigma_{0}(\beta) \alpha \beta
$$

where $\quad \eta=n / 2-1$.
We shall consider the integral as the sum of two integrals, between the limits 0 and 1 , and \mid and ∞. The integral from \mid to ∞ may be obtained ảirectly from $\sigma_{0}(\beta)$, but for the integral from 0 to $/$ we must consider each part of $\sigma_{0}(\beta)$ in (6.6) separately so we write
$(6.9) \int_{0}^{\infty} \beta^{\eta} \sigma_{0}(\beta) \alpha \beta=s_{0}(\eta)+s_{1}(\eta)+s_{2}(\eta)-\frac{1}{\eta+1}$
where

$$
S_{0}(\eta)=\int_{1}^{\infty} \beta^{\eta} \sigma_{0}(\beta) \alpha \beta
$$

(6.10) $s_{1}(\eta)=\int_{0}^{1} \beta^{\eta} \sigma_{1}(\beta) \alpha \beta$

$$
S_{2}(\eta)=\int_{0}^{1} \beta^{\eta} \sigma_{2}(\beta) \alpha \beta .
$$

The complete expression for $\sigma_{0}(\beta)$ is
(6.11)

$$
\begin{aligned}
\sigma_{0}(\beta) & =\left[S_{l}^{1} e^{-\pi l^{2} \beta / 4-i(l, \alpha)}\right]_{l} \\
& =\left[2 \int_{l>0} \cos (l, \alpha) e^{-\pi l^{2} \beta / 4}\right]_{l}
\end{aligned}
$$

where $\int_{l>0}$ means that the sum is to be extended over half the lattice points in such a way that of the two points l_{1}, l_{2}, l_{3} and $-l_{1},-l_{2},-l_{3}$ one is omitted.

It follows immediately that

(6.12) $S_{0}(3)=\left[2 S_{l>0} \cos (l, \alpha) \varphi_{3}\left(\frac{e^{2} \pi}{4}\right)\right]_{f}$
where $\varphi_{3}(x)$ are the well-known integrals
(6.13) $\varphi_{3}(x)=\int_{1}^{\infty} \beta^{\eta} e^{-\beta x} \alpha \beta$.

The series for $S_{0}(3)$ may be written in
the form
(6.14) $S_{0}(3) \quad \sum_{k}^{\infty} a_{k} \varphi_{3}\left(\frac{k \pi}{2}\right)$
where a_{k} are given in Table $I,(k \leqslant 8)$.

To calculate $f_{1}(3)$ and $f_{2}(3)$ the second integrals in (6.10) we express $\sigma_{1}(\beta)$ and $\sigma_{2}(\beta)$ in terms of Q-functions and make use of Jacobi's imaginary transformation * . We can then change our limits of integration from 0 and \mid to $/$ and ∞, and obtain an expression involving the functions (6.13).

From definition
(6.15) $\vartheta_{3}\left(\alpha_{1}, e^{-\pi \beta}\right)=\int_{\ell_{1}} e^{-\pi l_{1}^{2} \beta-2 i l_{1} \alpha_{1}}$
and Jacobi's imaginary transformation is
(6.16) $\vartheta_{3}\left(\alpha_{1} e^{-\pi / \beta}\right)=\beta^{-1 / 2} \exp \left(\frac{-\alpha_{1}^{2}}{\pi \beta}\right) \vartheta_{3}\left(\frac{i \alpha_{1}}{\beta}, e^{-\pi / \beta}\right)$.

Therefore
(6.17) $\sigma_{1}(\beta)=\vartheta_{3}\left(\alpha_{1}, e^{-\pi \beta}\right) \vartheta_{3}\left(\alpha_{2}, e^{-\pi \beta}\right) \vartheta_{3}\left(\alpha_{3}, e^{-\pi \beta}\right)$

$$
\begin{aligned}
= & \nu^{3 / 2} \exp \left\{-\nu / \pi\left(\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}\right)\right\} \times \\
& \times \vartheta_{3}\left(i \alpha_{1} \nu, e^{-\pi \nu}\right) \vartheta_{3}\left(i \alpha_{2} \nu, e^{-\pi \nu}\right) \vartheta_{3}\left(\nu \alpha_{3} \nu, e^{-\pi \nu}\right)
\end{aligned}
$$

where v is the reciprocal of β.
Since
(6.18) $\exp \left(-\frac{N \alpha_{1}^{2}}{\pi}\right) \vartheta_{3}\left(i \alpha_{1} \nu, e^{-\pi \nu}\right)=\int_{l_{1}} \exp \left\{-\frac{\nu}{\pi}\left(\alpha_{1}+l_{1} \pi\right)^{2}\right\}$,
(6.19) $\sigma_{1}(\beta)=\nu^{3 / 2} \int_{l} \exp \left\{-\nu / \pi(\alpha+l \pi)^{2}\right\}$
where
(6.20) $(\alpha+l \pi)^{2}=\left(\alpha_{1}+l_{1} \pi\right)^{2}+\left(\alpha_{2}+l_{2} \pi\right)^{2}+\left(\alpha_{3}+l_{3} \pi\right)^{2}$ and where the sum is taken over all positive ana negative integral values of $\ell_{1} \ell_{2} l_{3}$. It follows that (6.21) $S_{1}(\eta)=\int_{l} \int_{1}^{\infty} \nu^{-\eta-\frac{1}{2}} \exp \left\{-\nu_{\pi}(\alpha+l \pi)^{2}\right\} \alpha \nu$ $=\int_{l} P_{-3-1 / 2} \frac{(\alpha+l \pi)^{2}}{\pi}$.
The calculation of $f_{2}(3)$ is similar. We have
(6.22) $\vartheta_{2}\left(\alpha_{2}, e^{-\pi \beta}\right)=\int_{l_{2}} e^{-\pi\left(l_{2}+1 / 2\right)^{2} \beta-i\left(2 l_{2}+1\right) \alpha_{2}}$ and
(6.23) $\vartheta_{2}\left(\alpha_{2}, e^{-\pi \beta}\right)=\beta^{-1 / 2} \exp \left(-\frac{\alpha_{2}^{2}}{\pi \beta}\right) \otimes_{4}\left(\frac{\nu \alpha_{2}}{\beta}, e^{-\pi / \beta}\right)$.

Hence

$$
\text { (6.24) } \quad \sigma_{2}(\beta)=\left\{\vartheta_{3}\left(\alpha_{1}, e^{-\pi \beta}\right) \vartheta_{2}\left(\alpha_{2}, e^{-\pi \beta}\right) \vartheta_{2}\left(\alpha_{3} ; e^{-\pi /}\right)\right\}_{\alpha}
$$

$$
=v^{3 / 2} \int_{l}\left[(-1)^{l_{2}+l_{3}}+(-1)^{l_{2}+l_{1}}+(-1)^{l_{1}+l_{2}}\right] \exp \left\{-\frac{N}{\pi}(\alpha+l \pi)^{2}\right\}
$$

where the sum is again taken over all positive and negative values of l_{1}, l_{2}, l_{3}. It follows that

$$
(6.25) \quad A_{2}(3)=\int_{l}\left[(-1)^{l_{2}+l_{3}}+(-1)^{l_{3}+l_{1}}+(-1)^{l_{1}+l_{2}}\right] \varphi_{-2-1 / 2}(\alpha+l \Pi)^{2} .
$$

Combining this with (6.21)
(6.26) $S_{1}(3)+S_{2}(3)=4\left[\int_{i} \varphi_{-3-1 / 2} \frac{(\alpha+l \pi)^{2}}{\pi}\right]_{b}$ where []$_{b}$ means that $l_{1} l_{2} l_{3}$ are all even or all odd as in the case of a body-centred lattice.

Our final expression for $S_{\sim}^{\circ}(\alpha)$ is
(6.27) $4^{n / 2} \frac{\Gamma(n / 2)}{\pi^{n / 2}} S_{n}^{0}(\alpha)=\left[2 S_{l>0} \cos (l, \alpha) P_{3}\left(\frac{l^{2} \pi}{4}\right)\right]_{f}$

$$
+4\left[S_{l} \varphi_{-3-1 / 2} \frac{(\alpha+l \pi)^{2}}{\pi} \cdot\right]_{b}-\frac{1}{3+1}
$$

(6.28)

$$
\begin{aligned}
&=\sum_{k=1}^{\infty} a_{k} P_{3}\left(\frac{k \pi}{2}\right)-\frac{1}{3+1} \\
&+4\left[\int_{l} P_{-\eta-1 / 2} \frac{(\alpha+l \pi)^{2}}{\pi}\right]_{b}
\end{aligned}
$$

7.

The Derivation of Sums of Higher Order

If we differentiate the sum $S_{n}^{0}(\alpha)$ partially with respect to α_{1}, α_{2} or α_{3} we obtain a sum involving l_{1}, l_{2} or l_{3} respectively in the numerator
(7.1) $\quad \frac{\partial}{\partial \alpha_{1}} S_{n}^{0}(\alpha)=\int_{l} \frac{-i l_{1} e^{-i(l, \alpha)}}{l^{n}}$.

Repeating the partial differentiation we find
(7.2) $\frac{\partial^{2}}{\partial \alpha_{1}^{2}} S_{n}^{0}(\alpha)=-\int_{l} \frac{l_{1}^{2} e^{-i(l, \alpha)}}{l^{n}}=-S_{n}^{2}(\alpha)$
and similarly
(7.3) $\frac{\partial^{2}}{\partial \alpha_{2} \partial \alpha_{3}} S_{n}^{0}(\alpha)=-\int_{l} \frac{l_{2} l_{3} e^{-i(l, \alpha)}}{l^{n}}=-S_{n}^{\prime \prime}(\alpha)$.

Differentiating an integral of the type (6.13) we find
(7.4) $\frac{\partial}{\partial \alpha_{1}} \phi_{-\eta-1 / 2} \frac{(\alpha+l \pi)^{2}}{\pi}=-2 / \pi\left(\alpha_{1}+l, \pi\right) \varphi_{-j+1 / 2} \frac{(\alpha+l \pi)^{2}}{\pi}$.

Hence
(7.5) $\frac{\partial^{2}}{\partial \alpha_{1}^{2}} \varphi_{-\eta-1 / 2} \frac{(\alpha+l \pi)^{2}}{\pi}=-2 / \pi \varphi_{-\eta+1 / 2} \frac{(\alpha+l \pi)^{2}}{\pi}$

$$
+\frac{4\left(\alpha_{1}+l_{1} \pi\right)^{2}}{\pi^{2}} \varphi_{-3+3 / 2} \frac{(\alpha+l \pi)^{2}}{\pi}
$$

(7.6) $\frac{\partial^{2}}{\partial \alpha_{2} \partial \alpha_{3}} \varphi_{-3-\frac{1}{2}} \frac{(\alpha+l \pi)^{2}}{\pi}=4 / \pi^{2}\left(\alpha_{2}+l_{2} \pi\right)\left(\alpha_{3}+l_{3} \pi\right) \varphi_{-3+3 / 2}(\alpha+l \pi)^{2}$.

Thus the expressions for the second order sums corresponding to (6.28) are
(7.7) $S_{n}^{2}(\alpha)=\frac{\pi^{n / 2}}{4^{n / 2 \Gamma(n / 2)}}\left\{\sum_{k, 1,2 \ldots} b_{k} \varphi_{n}\left(\frac{k \pi}{2}\right)\right.$
$\left.+\frac{8}{\pi}\left[\int_{l} \varphi_{-3+1 / 2}(\alpha+l \pi)^{2}\right]_{b}^{\pi}-\frac{16}{\pi^{2}}\left[\int_{l}^{\int(\alpha,+l, \pi)^{2} \varphi(\alpha+l \pi)^{2}}{ }_{-3+3 / 2}^{\pi}\right]\right\}$
(7.8) $S_{n}^{\prime \prime}(\alpha)=\frac{\pi^{n / 2}}{4^{n / 2} \Gamma(n / 2)}\left\{\sum_{k=1,2, \cdots} c_{k} \Phi_{3}\left(k \frac{\pi}{2}\right)\right.$

$$
\left.\left.-16 \pi^{2}\left[\int_{l}\left(\alpha_{2}+l_{2} \pi\right)\left(\alpha_{3}+l_{3} \pi\right) \varphi_{-3+3 / 2}(\alpha+l \pi)^{2}\right]_{b}\right]\right\}
$$

where
(7.9) $\quad b_{k}=-\frac{\partial^{2}}{\partial \alpha_{1}^{2}} a_{k}, \quad c_{k}=-\frac{\partial^{2}}{\partial \alpha_{2} \partial \alpha_{3}} a_{k}$

The b_{k} and c_{k}, corresponding to the a_{k} given in Table I, are to be found in Table II.

$$
8 .
$$

Ewald.'s Method

$$
\text { If } \quad \underline{a}^{l}=\underline{a}_{1} l_{1}+\underline{a}_{2} l_{2}+\underline{a}_{3} l_{3}
$$

and \underline{b} is the lattice vector of the reciprocal lattice
(8.1) $\underline{a}_{i} \cdot \underline{b}_{j}=\delta_{i j}, \quad \underline{b}_{1}=\frac{\underline{a}_{2} \times \underline{a}_{3}}{v_{a}}$

TABIE II

TABLE II
where v_{a} is the volume of a cell
(0.2) $\quad v_{a}=\left|\underline{a}_{1} \quad \underline{a}_{2} \quad \underline{a}_{3}\right|$

ANal's transformation formula is
(8.3) $\int_{l} e^{-\pi\left(\underline{a}_{l}-\underline{r}\right)^{2} \mu}=\frac{1}{v_{a} \mu^{3 / 2}} \int_{l} e^{-\left(\pi \underline{b}_{e}^{2} \mu+2 \pi i\left(\underline{b}_{e} \cdot \underline{v}\right)\right)}$.

This may be written in the form
(8.4) $\left.\int_{l} e^{-\left(\pi \underline{a}_{l}^{2}\right.}+2 \pi i\left(\underline{a}_{l} \cdot \underline{r}\right)\right) \quad=v_{b / 3 / 2} \int_{l} e^{-\pi\left(\underline{b}_{l}-\underline{r}\right)^{2} / \mu}$.

Using equation (6.1) as before we get
(8.5) $\quad S^{1} e^{-2 \pi i\left(o_{l} \cdot v\right)}$.

$$
\begin{aligned}
& \left(\underline{a}_{l}^{2}\right)^{2 / 2} \\
& =\frac{\pi^{n / 2}}{r(n / 2)} \int_{0}^{\infty} \beta^{n / 2-1} \int_{l}^{1} e^{-\pi \underline{a}_{l}^{2} \beta-2 \pi i\left(\underline{o}_{e} \cdot \tilde{\sim}\right)} d \beta .
\end{aligned}
$$

Divide the integral into two parts by taking the limits 0 to τ and τ to ∞, and using (8.4) we find
(8.6) $\int_{l}^{\prime} \frac{e^{-2 \pi i\left(\underline{a}_{l} \cdot \underline{r}\right)}}{\left(\underline{a}_{l}^{2}\right)^{n / 2}}=\frac{\pi^{n / 2}}{\Gamma(n / 2)} \int_{l}^{1} e^{-2 \pi i\left(\underline{o}_{l} \cdot \gamma\right)} \int_{\tau}^{\infty} \beta^{n / 2-1-\pi \underline{o}_{l}^{2} \beta} \alpha \beta$

$$
+\frac{\pi^{n / 2} v_{b}}{\Gamma(n / 2)} S_{l}\left[\int_{0}^{\gamma} \beta^{n / 2-5 / 2} e^{-\pi / \beta\left(b_{l}-v\right)^{2}} \alpha \beta\right]
$$

$$
-\frac{2 \pi^{n / 2} \tau^{n / 2}}{n \Gamma(n / 2)}
$$

(8.7) $=\frac{\tau^{n / 2} \pi^{n / 2}}{\Gamma(n / 2)}\left\{\int_{l}^{1}\left[e^{-2 \pi i\left(\underline{a}_{l} \cdot \underline{n}\right)} \int_{1}^{\infty} v_{e}^{n-\pi e_{l}^{2} \tau v} d \nu\right]\right.$

$$
\left.+v_{b} \tau^{-3 / 2} \int_{l}\left[\int_{1}^{\infty} \nu^{-\eta-\frac{1}{2}} e^{-\pi \nu / \tau\left(\underline{b}_{e}-r\right)^{2}} d \nu\right]-\frac{1}{\eta+1}\right\}
$$

Because of (6.13) the sum may now be written in the form
(8.8) $\quad S_{l}^{\prime} \frac{e^{-2 \pi i\left(\underline{o}^{2} \cdot n\right)}}{\left(\underline{a}_{l}^{2}\right)^{n / 2}}=\frac{\tau^{m / 2} \pi^{2 / 2}}{\Gamma(n / 2)}\left\{\int_{l}^{1} e^{-2 \pi i\left(\underline{o}^{l} \underline{\varphi}\right)} \underline{\varphi}_{3}\left(\tau \underline{o}_{e}^{2} \pi\right)\right.$ $\left.+v_{b} \tau^{-3 / 2} \int_{e}\left[\varphi_{-3-\frac{1}{2}} \pi / r\left(b_{c}-x\right)^{2}\right]-\frac{1}{\eta+1}\right\}$
For a face-centred lattice, the lattice
vectors are
$\underline{a}_{1}=(0, b, c)$
$\underline{a}_{2}=(a, 0, c)$
$\underline{a}_{3}=(a, b, 0)$,
hence \underline{a}_{l} has components

$$
a\left(l_{2}+l_{3}\right), \quad b\left(l_{3}+l_{1}\right), c\left(l_{1}+l_{2}\right)
$$

or
(8.9) $a l_{1}, b l_{2}, \quad c l_{3}$
where $l_{1}+l_{2}+l_{3}$ is even.
The reciprocal lattice vectors are
$\underline{b}_{1}=\left(-1 / 2 a, \frac{1}{2 b}, \frac{1}{2 c}\right) \quad \underline{b}_{2}=\left(1 / 2 a,-\frac{1}{2 b}, \frac{1}{2 c}\right) \quad \underline{b}_{3}=\left(1 / 2 a, \frac{1}{2 b},-\frac{1}{2 c}\right)$
hence b_{l} has components
$\frac{1}{2 a}\left(-l_{1}+l_{2}+l_{3}\right), \frac{1}{2 b}\left(l_{1}-l_{2}+l_{3}\right), \frac{1}{2 c}\left(l_{1}+l_{2}-l_{3}\right)$,
or
(8.10) $l_{1 / 2 a}, l_{2} b, \quad l_{3 / 2 c}$,
where l_{1}, l_{2}, l_{3} are all even or all odd as in the case of a body-centred lattice.
Taking
(8.11) $a=b=c=1$
and

$$
2 \pi \underline{v}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)
$$

we get the following expression for the sum
(8.12) $S_{n}^{0}(\alpha)=\frac{\tau^{n / 2} \pi^{n / 2}\left\{\left[2 S_{l>0} \cos (l, \alpha) \varphi_{3}\left(r \pi l^{2}\right)\right]_{f}\right.}{\Gamma(n / 2)}$ $-\frac{1}{3+1}$

$$
\left.+\frac{\tau^{-3 / 2}}{2}\left[\int_{l}^{3+1} \varphi_{-3-\frac{1}{2}} \frac{(\alpha+l \pi)^{2}}{4 \tau \pi}\right]_{b}\right\}
$$

where []$_{f},[]_{b}$ and $\underset{\ell>0}{S}$ have the same meaning as before.

Finally we choose $\tau=1 / 4$ and we get an expression for $S_{\sim}^{0}(\alpha)$ which is identical with that found in (6.27) by the use of ϑ-functions.

$$
\begin{aligned}
\text { (8.13) } S_{n}^{0}(\alpha)= & \frac{\pi^{n / 2}}{4^{n / 2} \Gamma(n / 2)}\left\{\left[2 S_{l>0} \cos (l, \alpha) \varphi_{3}\left(\frac{\pi l^{2}}{4}\right)\right]_{f}\right. \\
& \left.-\frac{1}{3+1}+4\left[S_{l} \varphi_{-3-\frac{1}{2}} \frac{(\alpha+l \pi)^{2}}{\pi}\right]_{b}\right\} .
\end{aligned}
$$

The sums of higher order are found by partial differentiation and will give the same results as (7.7) and (7.8)

If we had used a different substitution
(6.5) or had taken a different value for τ we should have obtained expressions for the sums in another form involving more terms of the first type and fewer of the second, or vice versa.
The formulae given are however more suitable for practical purposes.

$$
9
$$

Sums for the Other Cubic Lattices

Corresponding expressions for the lattice sums in the cases of the simple and body-centred lattices may be found by the methods used above for the face-centred lattice. I shall however only quote the results.
a) The simple lattice. In this case the sum is taken over all positive and negative integers l_{1}, l_{2} and l_{3}. The zero order and second order sums are :-

$$
\begin{aligned}
(0.1) S_{n}^{0}(\alpha) & =\frac{\pi^{n / 2}}{4^{n / 2} \Gamma(n / 2)}\left\{\left[2 S_{l>0} \cos (l, \alpha) \varphi_{3}\left(\frac{\pi l^{2}}{4}\right)\right]_{5}\right. \\
& \left.-\frac{1}{\eta+1}+8\left[\int_{l} \varphi_{-3-1 / 2} \frac{(\alpha+2 l \pi)^{2}}{\pi}\right]_{S}\right\}
\end{aligned}
$$

(9.2) $S_{2}^{2}(\alpha)=\frac{\pi^{2 / 2}}{4^{2 / 2} \Gamma(n / 2)}\left\{\left[2 \int_{l>0} l_{1}^{2} \cos (l, \alpha) \varphi_{3}\left(\pi l_{4}^{2}\right)\right]_{S}\right.$ $+16 / \pi\left[\int_{l} \varphi_{-3+1 / 2} \frac{(\alpha+2 l \pi)^{2}}{\pi}\right]_{S}$
(9.3)

$$
\left.-32 / \pi^{2}\left[\int_{l}\left(\alpha_{1}+2 l_{1} \pi\right)^{2} \varphi_{-3+3 / 2} \frac{(\alpha+2 l \pi)^{2}}{\pi}\right]_{s}\right\}
$$

$$
\left.\left.\begin{array}{rl}
S_{n}^{\prime \prime}(\alpha) & =\frac{\pi^{n / 2}}{4^{n / 2 \Gamma(n / 2)}}\left\{\left[2 S_{l>0} l_{2} l_{3} \cos \left(l_{1} \alpha\right) \varphi_{3}\left(\frac{\pi l^{2}}{4}\right)\right]_{S}^{s}\right. \\
& -\frac{32}{\pi^{2}}\left[\int_{l}\left(\alpha_{2}+2 l_{2} \pi\right)\left(\alpha_{3}+2 l_{3} \pi\right) \varphi_{-3+\frac{3}{2}}(\alpha+2 l \pi)^{2}\right. \\
\pi
\end{array}\right]\right\}
$$

where []$_{s}$ means the sum over the values of $l_{1} l_{2} l_{3}$ for the simple lattice.
b) The body-centred lattice. For this lattice we consider only those values of $\ell_{1}, \ell_{2}, \ell_{3}$ which are either all odd or all even. Then :-

$$
\text { (9.4) } \begin{aligned}
S_{n}^{0}(\alpha) & =\frac{\pi^{2 / 2}}{4^{2 / 2} \Gamma(n / 2)}\left\{\left[2 S_{l>0}^{\left.\cos (l, \alpha) \varphi_{3}\left(\frac{\pi l^{2}}{4}\right)\right]_{b}}\right.\right. \\
& \left.-\frac{1}{3+1}+2\left[\int_{l} \varphi_{-3-1 / 2} \frac{(\alpha+l \pi)^{2}}{\pi}\right]_{l}\right\}
\end{aligned}
$$

$$
\text { (9.5) } S_{n}^{2}(\alpha)=\frac{\pi^{n / 2}}{4^{n / 2} \Gamma(n / 2)}\left\{\left[2 \int_{l>0} l_{1}^{2} \cos (l, \alpha) \varphi_{3}\left(\frac{\pi l l}{4}\right)\right]_{h}\right.
$$

$$
+4 / \pi\left[\int_{l} \varphi_{-n+1 / 2} \frac{(\alpha+l \pi)^{2}}{\pi}\right]_{l}
$$

$$
\left.-\frac{8}{\pi^{2}}\left[S_{l}\left(\alpha_{1}+l, \pi\right)^{2} \varphi_{-3+3 / 2} \frac{(\alpha+l \pi)^{2}}{\pi}\right]_{f}\right\}
$$

(9.6) $S_{n}^{\prime \prime}(\alpha)=\frac{\pi^{n / 2}}{4^{n / 2} \rho(n / 2)}\left\{\left[2 \int_{l>0} l_{2} l_{3} \cos (l, \alpha) \varphi_{n}\left(\frac{\pi l^{2}}{4}\right)\right]_{b}\right.$

$$
\left.-\frac{8}{\pi^{2}}\left[\int_{l}\left(\alpha_{2}+l_{2} \pi\right)\left(\alpha_{3}+l_{3} \pi\right) \varphi_{-3+3 / 2} \frac{(\alpha+l \pi)^{2}}{\pi}\right]_{l}\right\}
$$

where []$_{b}$ and []$_{f}$ mean the sum over a bodycentred and a face-centred lattice respectively. 10.

The Numerical Calculation of the Energy
calculation of the energy, we must choose values for m and n which occur in the potential energy (3.2)

We SHAII ASSUNE THAT $n=2 m$

AND CONSIDER IN PARTICULAR THE CASE $m=6$

We have calculated the sums $s_{p q}^{(m)}$ and $\rho_{p q}^{(\sim)}$ for these values in the case of a facecentred lattice, in which the effect of all neighbours is taken into account, by means of the expressions derived in (6.28), (7.7) and (7.8). These are tabulated for our set of $\alpha=\frac{p \pi}{8}$ in Tables III and IV.

In the case $x=2 m=12$
(10.1) $\quad \gamma=\frac{S_{m}^{\circ}}{S_{n}^{\circ}}=9.5310$.

$$
\text { We now calculate the determinants } \Delta_{k} \text {. }
$$ corresponding to these elements, and from the symmetry considerations (4.1) the determinants are symmetrical about the planes

$$
\begin{aligned}
& p_{1}=0, \quad p_{2}=0, \quad p_{3}=0 \\
& p_{1}=p_{2}, \quad p_{2}=p_{3}, p_{3}=p_{1}
\end{aligned}
$$

$p_{1} p_{2} p_{3}$	$\rho_{11}^{(6)}$	$\begin{aligned} & (6) \\ & \rho_{22} \end{aligned}$	$\rho_{33}^{(6)}$	$\rho_{12}^{(6)}$	$\rho_{23}^{(6)}$	$\rho_{31}(6)$
840	2.0280	1.1333	2.0280	0	0	0
822	2.4541	1.3184	1.3187	0	0.4862	\bigcirc
820	2.4247	1.0994	1.3443	-	\bigcirc	\bigcirc
800	3.0223	1.0655	1.0655	0	0	0
431	2.2819	1.1569	1.5486	$0.346 y$	$0 \cdot 3443$	0.1445
Y1,	2.9856	1.1054	1.1054	0.1459	0.1408	0.1459
660	1.3184	1.3184	$2 \cdot 4541$	0.4862	-	-
642	1.6990	1.2504	1.6990	0.6960	0.6960	0.4936
640	1.8604	1.2032	1.8039	0.6968	0	0
6.22	$2 \cdot 2059$	1.2088	1.2088	0.4908	0.4941	0.4908
620	2.4210	1.2112	1.1693	0.5006	\bigcirc	0
600	2.6658	0.9129	0.9129	\bigcirc	0	\bigcirc
551	1.4964	1.4964	1.9166	0.8404	0.3482	0.3482
533	1.6163	1.3202	1.3202	0.8419	0.8418	0.8419
531	1.8383	1.1230	1.2533	0.8555	a. 3443	0.3526
511	$2 \cdot 1426$	0.8392	0.8392	0.3594	0.1438	0.3594
444	1.3683	1.3683	1.3683	0.9906	0.9906	0.9906
442	1.3974	1.3444	1.3189	0.9982	$0 \cdot 9016$	0.9016
440	1.3866	1.3866	1.2694	1.0264	0	0
422	1.5255	0.9529	0.9529	0.9180	0.5039	0.4180
420	1.5939	0.8047	0.4439	0.4288	\bigcirc	0
400	1.6846	0.5288	0.5288	0	0	\bigcirc
333	1.1811	1.1811	1.1811	0.8547	0.8547	0.8547
331	1.0939	1.0939	0.7909	0.8493	0.3593	0.3593
311	1.0907	0.4705	0.4905	$0.3 \mathrm{ys} /$	0.1514	0.3431
222	0.710%	0.710%	$0.710 y$	0.5217	0.5214	0.5217
220	0.6157	0.615%	0.3258	0.5351	0	0
200	0.5443	0.1541	0.1541	0	0	0
111	0.2158	0.2158	0.2158	0.1604	0.1604	0.1604

TABIE IV

$p_{1} p_{2} p_{3}$	$\rho_{11}^{(12)}$	$\rho_{22}^{(12)}$	$\begin{array}{r} (12) \\ p_{33} \end{array}$	$\begin{aligned} & (12) \\ & 0_{12} \end{aligned}$	$\rho_{23}^{(12)}$	$\rho_{13}^{(12)}$
840	0.5313	0.315%	0.5313	0	0	0
822	0.6245	0.3623	0.3623	0	0.1092	0
820	0.6860	0.3144	0.3469	0	0	0
800	0.7502	0.3131	0.3131	0	0	0
431	0.5816	0.3199	0.4240	0.0 yyz	0.0 YY2	0.0320
$y 11$	0.6912	0.3180	0.3180	0.0320	0.0320	0.0320
660	0.3623	0.3623	0.6245	0.1092	0	0
642	0.4390	$0 \cdot 3312$	0.4390	$0 \cdot 1546$	$0 \cdot 1546$	0.1094
640	0.4480	0.3248	0.4962	$0 \cdot 1546$	0	0
622	0.5485	0.3298	0.3298	$0 \cdot 1092$	0.1094	0.1092
620	0.5940	0.3299	0.3283	0.1093	0	0
600	0.6421	0.2641	0.2641	0	0	0
551	0.3743	$0 \cdot 3443$	0.4989	0.1866	$0.0 y \mathrm{yz}$	$0.0 y 73$
533	0.4059	0.3417	0.3417	0.2866	$0 \cdot 1866$	0.1866
531	0.4513	0.2966	0.9395	0.1868	0.0 ¢Yz	$0.0 y y 3$
511	0.5062	0.2396	0.2396	0.0974	0.0320	0.0320
444	0.3467	0.3467	$0.346 y$	0.2184	0.2184	0.2184
442	0.3469	0.3469	0.3452	0.2188	0.1546	0.1546
440	0.3470	$0.34 y 0$	$0 \cdot 3436$	0.2188	0	0
422	0.3624	0.2515	0.2515	0.1548	$0 \cdot 1093$	0.1548
420	0.3694	0.2128	0.2111	0.1549	0	0
400	0.3488	0.1592	0.1592	0	0	0
333	0.2960	0.2960	0.2960	0.1868	0.1868	0.1868
331	0.2638	0.2638	0.2161	0.1869	$0.0 y y 3$	0.0443
311	0.2409	0.1290	0.1290	0.0975	0.0321	0.09 ys
222	0.1935	0.1935	0.1735	0.1095	0.1095	0.1095
220	0.1413	0.1413	0.09418	0.1096	-	0
200	0.1117	0.04580	0.04580	0	0	0
111	0.05087	0.05087	0.05087	0.03212	0.03212	0.03212

and about the point

$$
\left(p_{1}, p_{2}, p_{3}\right)=(4,4,4)
$$

The space bounded by these planes, as illustrated in Figure I, is $1 / 96$ of the whole cube, so that points lying wholely within the space have a weight 96 . Points lying on tre faces have in general a weight 48 and the weights attached to points on the different edses and corners are given in the figure. All weights can be found as follows :-
(i) For points not on the planes

$$
p_{3}=0, p_{1}=8
$$

the weight is equal to the number of different permutations P, of $\pm p_{1}, \pm p_{2}, \pm p_{3}$ and p_{2} of $\pm\left(8-p_{1}\right), \pm\left(8-p_{2}\right), \pm\left(8-p_{3}\right)$ since these are the number of times the determinants take a particular value. In general this equals $2 P_{1}$ since $P_{1}=P_{2}$, but for points on $p_{1}+p_{2}+p_{3}=12,\left(p_{1}, p_{2}, p_{3}\right)$ is a permutation of $8-p_{1}, 8-p_{2}, 8-p_{3}$, so the actual number of different permutations is P_{1}.
(ii) For points in the plane
$p_{3}=0$ but not in $p_{1}=8$ or $p_{2}=0$,
those with the same determinants as $\left(p_{1}, p_{2}, 0\right)$
are the P_{1} permutations of $\left(\pm p_{1}, \pm p_{2}, 0\right)$ and the p_{2} permutations of $\pm\left(8-p_{1}\right), \pm\left(8-p_{2}\right), \pm 8$, when these are distinct. The latter lie on the faces of the cube and so have a weight $1 / 2$, but $p_{2}=2 p_{1}$, so the weight of $p_{1}, p_{2}, 0$ is again $2 p_{1}$ when $p_{1}+p_{2}+p_{3} \neq 12$ and p_{1} when $p_{1}+p_{2}+p_{3}=12$.
(iii) For points on $p_{2}=0, p_{3}=0$ but not on $p_{1}=8$, we have $p_{1}=6$ points on the axes and $P_{2}=24$ points on the edges of the cube with the same determinants as $(p, 0,0)$. The weight of a point on. the edge of the cube is $1 / 4$ so the total weight of points $\left(p_{1}, 0,0\right)$ is $2 P_{1}=12$
(iv) Finally for points on the 'face $p_{1}=8$; we have P_{1} permutations of $\pm 8, \pm p_{2}, \pm p_{3}$ and. $P_{2}=P_{1 / 2}$ permutations of $0, \pm\left(8-p_{2}\right) \pm\left(8-p_{3}\right)$, the former have a weight $1 / 2$ so the total weight is P_{1} if $p_{1}+p_{2}+p_{3} \neq 12$ and $\quad p_{1 / 2}$ if $p_{1}+p_{2}+p_{3}=12$. The calculated values of Δ_{k} are given
in Table V and the coefficients A_{k} in Table VI.
The complete table of weights is given in the last column of Table VI.

The averaged coefficients are in the last row of this Table.

$p_{1} p_{2} p_{3}$	Δ	Δ,	Δ_{2}	Δ_{3}
840	14.29	85.40	140.6	47.16
822	14.85	72.81	118.8	64.53
820	16.25	49.52	129.6	Y0.38
800	15.20	43.59	$118 \cdot 6$	63.64
Y 31	$14 \cdot 49$	41.24	116.4	63.62
411	13.89	64.42	109.8	59.35
660	14.85	42.81	118.8	$64 \cdot 53$
642	8.859	43.35	y0. 54	$38 \cdot 19$
640	12.30	60.56	99.25	$54 \cdot 16$
622	9.561	46.84	48.35	41.42
620	9.561 $11: 42$	$\begin{aligned} & 48.57 \\ & 5 y \cdot 94 \end{aligned}$	$88 \cdot 30$ 88.39	41.42 ${ }^{46} 584$
600	9.209	45.03	43.26	39.66
551	9.328	46.81	48.46	$43 \cdot 52$
533	$4 \cdot y / 3$	22.45	36.44	19.44
531	$6.2 y y$	$30 \cdot 76$	50.11	24.45
511	5. 158	$25 \cdot 34$	41.49	22.56
444	2.926	13.48	21.50	11.12
442	4.004	19.28	30.82	$16 \cdot 36$
440	5.149	25.03	$40 \cdot 35$	21.58
422	2.429	11.81	19.06	10.21
420	2.281	11.24	18.38	9.980
400	1.882	$9 \cdot 304$	$15 \cdot 26$	8.310
$3 \quad 3 \quad 3$	1.788	8:475	13.30	6.912
$\begin{array}{ll}3 & 3\end{array}$	1.380	6.692	10.43	5.690
311	0.5043	2.505	4.121	2.247
222	0.3519	1.682	2.659	1.392
220	0.1572	0.7639	1.225	0.6480
200	0.04150	0.2131	0.3616	0.2028
11	0.008551	0.04149	0.06642	0.0349

$p_{1} p_{2} p_{3}$	A,	A_{2}	A_{3}	A_{4}	A_{5}	Weight
840	$4 \cdot 94$	-4.06	4.43	-5.50	7. 21	12
822	4.90	-4.00	$4 \cdot 34$	-5.34	6.99	12
820	4.89	- 3.98	4.29	-5.29	6.84	24
800	4.84	$-3: 90$	$4 \cdot 18$	-5.06	6.54	6
Y 31	4.91	-4.00	$4 \cdot 29$	$-5 \cdot 35$	6. 84	96
411	$4 \cdot 88$	-4.01	4.42	$-5 \cdot 30$	4.10	48
660	4.90	-4.00	$4 \cdot 34$	-5.34	6.99	12
642	4.89	-4.00	$4 \cdot 36$	-5.31	6.98	48
640	$4 \cdot 92$	-4.04	$4 \cdot 40$	$-5 \cdot 43$	4.11	48
622	4.90	-4.02	4:43	$-5 \cdot 36$	4.12	48
620	4.94	4.16 -4.99	$4 \cdot 64$	-5.54	4. 54	48
600	4.89	-4.00	$4 \cdot 36$	-5.31	6.98	12
551	5.02	-4.19	$4 \cdot 62$	-5.84	9. 71	48
533	$4 \cdot 83$	-3.92	$4 \cdot 24$	-5.08	6.41	48
531	4.90	-4.03	$4 \cdot 42$	-5.38	4.12	96
511	$4 \cdot 92$	- -4.06	4.47	-5.46	y. 24	48
444	4.41	-3.74	3.99	-4.61	5.98	8
442	$4 \cdot 81$	-3.84	$4 \cdot 14$	-4.97	6.43	48
440	4.86	-3.9y	$4 \cdot 34$	-5.26	6.88	24
422	4.86	-3.96	$4 \cdot 30$	-5.25	6.82	48
420	$4 \cdot 93$	-4.09	$4 \cdot 58$	-5.52	7.51	48
400	4.94	-4.09	$4 \cdot 64$	-5.54	7. 59	12
333	$4 \cdot 74$	$-3 \cdot 99$	$4 \cdot 12$	-4. 41	6.26	16
331	4.85	-3.98	. $4 \cdot 42$	-5.20	7.04	46
311	4.97	$-4 \cdot 18$	4.75	-5.94	$4 \cdot 95$	48
222	4.48	-3.86	$4 \cdot 25$	-4.86	6.66	16
220	$4 \cdot 86$	-4.02	4.51	-5.32	4. 26	24
200	5.13	-4.45	5.22	-6.50	$9 \cdot 26$	12
111	4.85	-3.99	4.42	-5.22	y. 03	16
$\left\langle A_{k}\right\rangle_{\text {Av }}$	4.90	-4.04	$4 \cdot 42$	$-5 \cdot 36$	y. 12	

The variations of the A_{k} with the
different phases are small, egg.

$$
4 \cdot y_{1} \leqslant A_{1} \leqslant 5.13
$$

so that the A_{k} seem to be almost independent of the phases of the waves for our particular m and
n. Further in calculating the coefficients
$A_{k} \quad$ it was found numerically that the relations (10.2) $\frac{\Delta_{1}^{2}}{\Delta_{0}^{2}}-3 \frac{\Delta_{2}}{\Delta_{0}}=0, \frac{\Delta_{2}^{2}}{\Delta_{0}^{2}}-3 \frac{\Delta_{1} \Delta_{3 /}}{\Delta_{0}}=0$ held to within about 1% for every point in the phase space. This means that to within possible numerical error
(10.3) $\left.\left.\left.\Delta_{0}+\Delta_{1}\right\}+\Delta_{2}\right\}^{2}+\Delta_{3}\right\}^{3}=\Delta_{0}\left[1+\frac{\Delta_{1}}{3 \Delta_{0}}\right]^{3}$.

I die not use this simplification in the numerical calculation of the expansion of $\left.\left.\left.\log \left(\Delta_{0}+\Delta_{1}\right\}+\Delta_{2}\right\}^{2}+\Delta_{3}\right\}^{3}\right)$ but obtained the A_{k} from direct calculation.

The determinants Δ_{k}, Table V vary with the phase but their quotients are practically constant, so that the A_{k} which are functions of these quotients also vary only slightly. This invariance appears to arise from the connections between corresponäine $s_{p_{q}}^{(m)}$ and $\rho_{p_{q}}^{(m)}$. From Tables III and IV we can see numerically that
(10.4) $\rho_{p q}^{(m)}=k \rho_{p q}^{(n)}-\sigma_{p q}$
where k is a constant, in the neighbourhood of 4 . and $\sigma_{p q}$ is a quantity which varies with the phase, but which is small compared with $k \rho_{p q}^{(a)}$.

A similar connection with $k=4$ can be found from the general expressions for $\rho_{p q}^{(m)}$ and $\delta_{p q}^{(\alpha)}$, but $\sigma_{p q}$ is a complicated function of α and I have not been able to show that in general it is small compared with $k \rho_{p q}^{(n)}$.

For first neighbours only it can be shown
that
(10.5) $x^{\rho_{11}}=\frac{1}{2} 2\left(2\left(1-\cos \alpha_{2} \cos \alpha_{3}\right)\right\}$

$$
\rho_{23}^{(x)}=\frac{1}{2} \pi / 2(x+2) \sin \alpha_{2} \sin \alpha_{3} \text {. }
$$

Therefore
(10.6) $2^{m / 2} n \rho_{11}^{(n)}-2^{n / 2} m \rho_{n}^{(n)}=-2(n-m)\left(1-\cos \alpha_{2} \cos \alpha_{3}\right)$.

When $n=2 m$ this gives
(10.7) $\rho_{11}^{(m)}=2^{m / 2-1} \rho_{1 i}^{(2 m)}-\frac{1}{2} m^{(2 / 2}\left(1-\cos \alpha_{2} \cos \alpha_{3}\right)$,
so that for first neighbours only
(10.8) $\quad \sigma_{11}=\frac{1}{2} m / 2\left(1-\cos \alpha_{2} \cos \alpha_{3}\right)$.

The maximum value of $\frac{\sigma_{11}}{2^{m / 2-1} \rho_{11}^{(2 m)}}$ is $\frac{1}{m-1}$ so for $m=6$
(10.9) $0 \leqslant \sigma_{p q} \leqslant 1 / 5\left(40_{p q}^{(2)}\right)$ when $p=q$.
39.

For the non-diagonal elements however

$$
(10.10) \rho_{p q}^{(m)}=2^{m / 2-1} \rho_{p q}^{(2 m)}\left[1+\frac{1}{m+1}\right]
$$

so that $\sigma_{p q}=-1 / 4\left(4 \rho_{p q}^{(2 m)}\right)$ when $m=6, p \neq q$. Hence since $\rho_{p q}^{(n)}$ is always positive

$$
(10.11)-1 / 4 \leqslant \frac{\sigma_{p q}}{4 \rho_{p q}^{(w)}} \leqslant 1 / 5 .
$$

If we substitute (10.4) for $\rho_{p q}^{(m)}$ in the determinants Δ_{k} (3.23), we find, writing

$$
\begin{aligned}
& \beta=\gamma-k=9.53-4=5 \cdot 53 \text {, } \\
& \Delta_{0}=\left|\beta \rho_{1}^{(n)}+\sigma_{1} \quad \beta \rho_{2}^{(n)}+\sigma_{2} \beta_{\rho_{3}^{(n)}}^{(n} \sigma_{3}\right| \\
& \Delta_{1}=\gamma\left|\beta \rho_{1}^{(n)}+\sigma_{1} \beta \rho_{2}^{(n)}+\sigma_{2} \rho_{3}^{(n)}\right| \\
& +\gamma\left|\rho_{1}^{(x)} \quad \beta \rho_{2}^{(x)}+\sigma_{2} \quad \beta \rho_{3}^{(x)}+\sigma_{3}\right| \\
& +\gamma\left|\beta_{\rho_{1}^{(n)}}^{(n)} \sigma_{1} \rho_{2}^{(n)} \beta \rho_{3}^{(n)}+\sigma_{3}\right| \\
& \Delta_{2}=\gamma^{2}\left|\beta \rho_{1}^{(n)}+\sigma_{1} \rho_{2}^{(n)} \rho_{3}^{(n)}\right| \\
& +\gamma^{2}\left|\rho_{1}^{(n)} \quad \beta \rho_{2}^{(x)}+\sigma_{2} \rho_{3}^{(n)}\right| \\
& +\gamma^{2}\left|\rho_{1}^{(n)} \quad \rho_{2}^{(n)} \quad \beta \rho_{3}^{(n)}+\sigma_{3}\right| \\
& \Delta_{3}=\gamma^{3}\left|\rho_{1}^{(n)} \rho_{2}^{(n)} \rho_{3}^{(x)}\right|=\gamma^{3} D_{3}-
\end{aligned}
$$

(10.12)
40.

Now if we let

$$
\begin{aligned}
& 3 \varepsilon_{1}=\frac{1}{\beta D_{3}}\left\{\left|\sigma_{1} \rho_{2}^{(n)} \rho_{3}^{(n)}\right|+\left|\rho_{1}^{(n)} \sigma_{2} \rho_{3}^{(n)}\right|\right. \\
& \left.+\left|\rho_{1}^{(x)} \rho_{2}^{(x)} \sigma_{3}\right|\right\} \\
& \text { (10.13) } 3 \varepsilon_{2}^{2}=\frac{1}{\beta^{2} D_{3}}\left\{\left|\rho_{1}^{(n)} \sigma_{2} \sigma_{3}\right|+\left|\sigma_{1} \rho_{2}^{(n)} \sigma_{3}\right|\right. \\
& +\left|\sigma_{1} \sigma_{2} \rho_{3}^{(x)}\right| \\
& \varepsilon_{3}^{3}=\frac{1}{\beta^{3} D_{3}}\left|\sigma_{1} \sigma_{2} \sigma_{3}\right| \\
& \text { from (10.11) for first neighbours only, } \\
& (10.14)(i) \quad-\frac{4}{4 \beta} \leqslant \varepsilon_{1} \leqslant \frac{4}{5 \beta} \\
& \text { ide. approximately } \\
& \text { and } \\
& \text { (10.14) (ii) } 0 \leqslant \varepsilon_{2}^{2} \leqslant 1 / 49 \\
& \text { (iii) }-1 / 1000 \leqslant \varepsilon_{3}^{3} \leqslant 1 / 343 \text {. }
\end{aligned}
$$

Then we can express the determinants in terms of ε

$$
\begin{aligned}
\Delta_{0} & =\beta^{3} D_{3}\left\{1+3 \varepsilon_{1}+3 \varepsilon_{2}^{2}+\varepsilon_{3}^{3}\right\} \\
(10.15) \quad \Delta_{1} & =3 \beta^{2} \gamma D_{3}\left\{1+2 \varepsilon_{1}+\varepsilon_{2}^{2}\right\} \\
\Delta_{2} & =3 \beta \gamma^{2} D_{3}\left\{1+\varepsilon_{1}\right\} \\
\Delta_{3} & =\gamma^{3} D_{3} .
\end{aligned}
$$

Therefore
(10.16)

$$
\begin{aligned}
\Delta_{1} \Delta_{0} & =\frac{3 \gamma}{\beta}\left[1+2 \varepsilon_{1}+\varepsilon_{2}^{2}\right]\left[1-3 \varepsilon_{1}-3 \varepsilon_{2}^{2}+9 \varepsilon_{1}^{2}+\cdots\right] \\
& =\frac{3 \gamma}{\beta}\left[1-\varepsilon_{1}+3 \varepsilon_{1}^{2}-2 \varepsilon_{2}^{2}+\cdots\right]
\end{aligned}
$$

$$
\begin{aligned}
& \Delta_{2} \Delta_{0}=3 \gamma^{2} \beta^{2}\left[1-2 \varepsilon_{1}+6 \varepsilon_{1}^{2}-3 \varepsilon_{2}^{2}+\cdots \cdot\right] \\
& \Delta \Delta_{3}=\gamma \beta_{0}^{3}\left[1-3 \varepsilon_{1}+9 \varepsilon_{1}^{2}-3 \varepsilon_{2}^{2}+\cdots \cdot\right] .
\end{aligned}
$$

Using these results we can find an accurate expression for the functions (10.2), which were numerically zero.
(10.17)

$$
\frac{\Delta_{1}^{2}}{\Delta_{0}^{2}}-\frac{3 \Delta_{2}}{\Delta_{0}}=9 \gamma^{2} / \beta^{2}\left\{\varepsilon_{1}^{2}-\varepsilon_{2}^{2}+\cdots\right\}
$$

$$
\frac{\Delta_{2}^{2}}{\Delta_{0}^{2}}-\frac{3 \Delta_{1} \Delta_{2}}{\Delta_{0}^{2}}=-9 \gamma_{\beta^{4}}^{4}\left\{\varepsilon_{1}^{2}+\varepsilon_{2}^{2}+\cdots\right\} .
$$

These are both zero if we neglect second and higher order quantities, such as $\varepsilon_{1}^{2}, \varepsilon_{2}^{2}$.

We can also find expressions for the
coefficients A_{k} in terms of ε
(10.18) $\quad A_{1}=\frac{3 \gamma}{\beta}\left\{1-\varepsilon_{1}+3 \varepsilon_{1}^{2}-2 \varepsilon_{2}^{2}+\cdots\right\}$, etc.

Neglecting second and higher order terms and assuming ε, lies between the values (10.14) (i) $(10.19) \quad 4.42 \leqslant A_{1} \leqslant 5.67$.

The A_{1} given in Table VI lie well within this range.

As these maximum and minimum values are so widely different it does not seem possible to find an averaged A_{1} from this result. The lower limit depends on the diagonal elements of the determinants and the upper limits on the non-diagonal elements, and since the latter are generally small compared with the diagonal elements, the averaged A, must be more nearly equal to the smaller value than the larger. If it were possible to prove that $\left\langle\varepsilon_{1}\right\rangle_{A V}$ was about $1 / 20$, equation (10.18) would give the coefficients immediately, but I have not been able to find a method for averaging the expressions (10.13).

The following approximation gives a
fairly accurate result. Let us assume that $S_{2}^{2}(\alpha), S_{n}^{\prime \prime}(\alpha)$, etc. obey the simplifications (3.7), which S_{n}^{2}, etc. obey, so that
(10.20)

$$
\begin{aligned}
& S_{n}^{10}(\alpha)=S_{n}^{101}(\alpha)=S_{n}^{011}(\alpha)=0 \\
& S_{n+2}^{200}(\alpha)=S_{n+2}^{020}(\alpha)=S_{n+2}^{002}(\alpha)=1 / 3 S_{n}^{0}(\alpha) .
\end{aligned}
$$

Then
(10.21) $s_{p q}^{(x)}=0$ if $p+q$
43.

$$
\text { and } \int_{p q}^{(n)}=\frac{2(n-1)}{3} \int_{l>0} \frac{1-\cos (l, \alpha)}{l^{n+2}} \text { if } p=q \text {. }
$$

For first neighbours only

$$
(10.22) \rho_{p q}^{(m)}=4 p_{p q}^{(n)}\left\{1-\frac{1}{2 m-1}\right\} .
$$

Then

$$
\begin{aligned}
(10.23) & \varepsilon_{1}
\end{aligned}=\frac{4}{11 \beta} \bumpeq 1 / 15 .
$$

Therefore

$$
\begin{array}{ll}
(10.24) & \frac{\Delta_{1}}{\Delta_{0}}=\frac{3 \gamma}{\beta\left(1+\varepsilon_{1}\right)}, \frac{\Delta_{2}}{\Delta_{0}}=\frac{3 \gamma^{2}}{\beta^{2}\left(1+\varepsilon_{1}\right)^{2}}, \\
\text { giving } & \Delta_{3}=\Delta_{0}^{3} / \beta^{3}\left(1+\varepsilon_{1}\right)^{3}
\end{array}
$$

(10.25) $\quad A_{1}=4.84, \quad A_{2}=-3.92, \quad$ etc.

The error in the value of A_{1} is less than 2%, and $\left.\left.\log \left[\Delta_{0}+\Delta_{1}\right\}+\Delta_{2} \xi^{2}+\Delta_{3}\right\}^{3}\right]$ becomes exactly $\log \Delta_{0}+3 \log [1+1.61 \xi]$.

The Energy and Equation of State

Considering the action of all neighbours, we find using the averaged values of A_{k}, that the mean frequency (3.25) is

$$
\text { (11.1) } \begin{aligned}
\log \bar{\omega} & =1 / 2 \log \frac{c I_{0}}{\mu}+2 / 3 \log (1+\xi) \\
& \left.\left.+1 / 6\{4.90\}-4.04\}^{2}+4.42\right\}^{3}-\cdots\right\}
\end{aligned}
$$

where
(11.2) $\log I_{0}=1 / 3\left\langle\log \Delta_{0}\right\rangle_{A V}$.

The potential energy Φ_{0} of the whole
lattice is given in (3.11). Introducing
$x_{0}^{n-m}=\gamma a_{0}^{n-m}$ we get
(11.3) $\Phi_{0}=\frac{N \text { nm }}{2(n-m)}\left\{-1 / m^{\gamma / n-m}\left(\frac{a_{0}}{a}\right)^{m} S_{m}^{0}+1 / n \gamma^{n / n-m}\left(\frac{a_{0}}{a}\right)^{n} S_{n}^{0}\right\}$ From the value of $\gamma(j .14)$, and since $\left.\left(a_{0}\right)^{n-m}=1+\right\}$
(11.4) $\Phi_{0}=\frac{N u S_{m}^{0}}{2(n-m)} \gamma^{\frac{m}{n-m}(1+\xi)^{m / n-m}(-n+m+m \xi) .}$

For $n=2 m$
(11.5) $\Phi_{0}=-\frac{N \mu \gamma S_{m}^{0}}{2}\left(1-\xi^{2}\right)$

Thus for $m=6$ the potential energy is
(11.6) $\Phi_{0}=-8.62 \mu\left(1-\xi^{2}\right)$
the free energy of a face-centred lattice, taking into account the action of all neighbours, in terms of volume change $\}$, is
(11.7) $A / N=-8.62 \mu\left(1-\xi^{2}\right)+3 k T \log \frac{\hbar}{k T}$ $+\frac{3 k}{2} T \log \frac{C I_{0}}{\mu}+2 k T \log (1+\xi)$ $\left.\left.\left.+k T\{2.45\}-2.02\}^{2}+2.21\right\}^{3}-2.68\right\}^{4} \ldots\right\}$

Our law of force (3.2) contains four arbitrary constants, $-\mu, r_{0}$, and the numbers m and n. We have used the particular case $n=2 m=12$, so that our energy expression contains only two arbitrary constants μ, v_{0}. The arbitrary aistance r_{0} has been chanced to a unit of volume, v。-equations (j.1j) and (j.18) which is the equilibrium volume of a cell. We now write the other constant u as a quantity with the dimensions of temperature, $u=k \theta$, where θ can be regarded as the unit of temperature On differentiating A / N with respect to the volume v of the cell, we obtain the equation of state for the crystal, connecting the pressure p, temperature T and volume v.
(11.8) $p=-\frac{\partial}{\partial v}(A / N)$

$$
\left.=\frac{2 k \theta}{v_{0}}(1+\xi)^{3 / 2}\{14 \cdot 24\}+T / \theta F(\xi)\right\}
$$

where
(11.9)

$$
\begin{aligned}
&\left.F(\xi)=\left\{\frac{2}{1+\xi}+2.45-4.04\right\}+6.63\right\}^{2} \\
&\left.-10.42\}^{3}+14.85 \xi^{4}-\cdots\right\} .
\end{aligned}
$$

Now if we write
(11.10) $\quad p_{0}=\frac{k \theta}{v_{0}}$
the equation of state becomes
(11.11) $\left.p p_{0}=2(1+\xi)^{3 / 2}\{14.24\}+T / \theta F(\xi)\right\}$
where we have three constants, p_{0}, θ and v_{0} connected by (11.10)

We can now construct curves which give the
volume in terms of either pressure or temperature. Equation (11.11) is linear in P / p_{0} and T / θ, so we can draw a system of straight lines for different values of $\}$. It is only necessary to calculate two points for each line.

Figure II represents the isobars giving $v / v_{0}=(1+\xi)^{-1 / 2}$ as a function of T / θ for

constant pressure.
Figure III represents isotherms, $\mathrm{v} / \mathrm{v}_{0}$ as a function of p / p. for constant temperature.

We notice that in Figure II v / w_{0} increases linearly with respect to T / θ at first but later the increase becomes more rapid until it is eventually infinite. This is the same type of curve as that found by 1. . Born for a body-centred lattice, * but the values of T / θ corresporiaing to the extreme points differs widely in the two cases.

Before we can compare the two sets of curves we must compare the scalestused. The constant of temperature has the same meaning, but the v_{0} used above is the actual equilibrium volume and is slightly smaller than the $v_{0}\left(0.92 v_{0}\right)$, used by Born, which is the equilibrium volume if first neighbours only act. Hence our constant of pressure is slightly larger than ($1 \cdot 1$ times) the po defined by Born. These differences are slitht and are not sufficient to account for the differences in the two sets of graphs.

* Born, In., Journ. of Chem. Physics., Vol. 7.,No. E., (1939).

To obtain a closer analosy with Born's results I have considered the equation of state under simplified assumptions. Born considered first neighbours only in the thermic term and first and second neighbours in the static term.

I have first derived $F(\})$ considering the action of first neighbours only in the thermic term, but I have considered the action of all neighbours in the static term, so that p_{0}, θ and v_{0} are the same constants as before. Since the variations in the A_{k} were so slight I have assumed that there will only be a small percentage error if we average over only a few points in the phase space. If we choose $\alpha_{1}, \alpha_{2}, \alpha_{3}$ equal to $0, \pi / 2$ or π, we get 5 distinct points in the phase space. I usea this approximation to obtain $F_{1}(\xi)$, the value of $F(\xi)$. when the action of first neishbours only is taken into account.
(11.12) $\left.\left.\left.\quad F_{1}(\}\right)=\frac{2}{1+\{ }+2.33-3.65\right\}+5.55\right\}^{2}-\cdots$ For $v>v_{0}$, i.e. when ξ is negative, $\quad F_{1}(\xi)<F(\xi)$, so that for a given pressure and volume, T / θ is greater when we consider first neighbours only in the thermic term, than when we consider the action

Iage 48 a.

of all neighbours. The differences are not oreat. The graphs of the isobars, β / p_{0}. 0 are compared in Fig̉ure IV.

Secondly I considered first neighbours only in both static and thermic terms, defining w(0) as the new equilibrium volume, $p(0)$ as the corresponding pressure, and $v / v(0)=(1+J)^{-1 / 2}$ In this case $\gamma=8$. Then
(11.13) $\left.\frac{p}{p(0)}=2(1+J)^{3 / 2}\{12\}+\frac{T}{2} F_{2}(\zeta)\right\}$ where
(11.14) $\quad F_{2}(J)=\frac{2}{1+J}+2.61-4.43 J+8.96 J^{2}-\cdots$ was found by averaging over a few points in the phase space as before. The isobar, $p_{p(0)}=0$ corresponding to this equation is also shown in Figure IV, and this corresponds most nearly to the isobar, $p_{p_{0}}=0$ of Born.

The differences in the curves depend mainly on the number of neichbours considered in the static potential ; in this type of crystal lattice it seems that a consideration of the action of first neighbours only in the thermic term is a fairly good approximation, but that the static potential must be determined accurately.

I wish to express my gratitude to Professor M. Born, who suggested this problem to me, for his advice on many occasions.

