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A Statistical Thermodynamics of a Crystal Tattice
9

The free energy A of a rigid body is a
function of the temperature and of the six homo-
geneous strain components. All other thermodynamic

properties are found by differentiation

the entropy S . — &A
T
the energy £ - A+ ST,

and the generalized forces corresponding

to any molar parameter F — AR
we —_

| é'o-.,,

i Let us consider the free energy of a cubic

|

lattice of the Bravais type (simple, face-centred

or body-centred). The cell of such a lattice is
described by the three lattice vectors o, o o .
The shape of the ecell is given by the scalar products

pf these vectors with one another

(1.1) o’ o’ W’ e, i - R 9 o

T | e T Y =3 ] Ealh T T | = 5= ) &,

(I 3 3

il

L.e. by three lengths and three angles. These six
parameters are inveriant with respect to rigid motion

bf the crystal; +they play the part of the molar




parameters for tinis type of lattice.

Assuming that thermic motion can be consider-
ed as harménic we obtain the following expression
for the free encrgy of a crystai lattice at high
temperatures

(1.2) A - + AINATLeg O
@, log et

where _@& is the potential energy of the non-
vibrating but homogeneously deformed lattice and

w is a logarithmic mean frequency per AN seconds.

The Mean Freguency and Fotc

The position of any lattice point 1is

1, ‘L L) . - - -
represented by the vector ~ where for equilibrium

£

(2.1) Yo = Sy ¢+ ot 4+ o L oo

T ) % being three arbitrary integers. Consider

[ T

i L o, ;
a small displacement 4 from the equilibrium

vosition so that the vector

(2.2) . ol et

/'I%

now defines the position of the particle L . The
distance between two particles € and L' will be

(2.2) N P R [

W

Wie agsume that the potential energy betvieen Lo

such particles depends only on their distance




@' o'
apart 7" , and we denote it by ¢

For the undeformed lattice one has
e’ ' L-et
(£.4) qao - (p(#z"'f.— /r-:' f) E @(M—b :"),

Omitting the suffix zero which denotes the equilibrium

valueg we introduce the notation {
ot . @zt
(2.5) q\i ] «t Do,
cpiﬁ = 5,%D@L oyt Dot

where D 1is the operator 4% 3 .

For the deformed lattice @ can be

ul
expanded as a series in ascending powers of «
@' L-¢! L-¢' w'
(.’:.6) 9 4 (P '+‘ i:- (P x Wk
T L-¢' '
- C +‘/;_Z @,L T N L
deay 4 +
The definitions (<.5) are meaningless when
L= 0 | Ve define CP:._ qug by
(4] . - L
(r_.?) (P'X- = o] Z ga = (G
¢ x4

If we sum the potential energy (c<.6) over
both L ana -t', ve get twice the potential energy

of the deformed lattice, since the potential between

each pair of particles has been counted twice.
This total potential energy of the deformed lattice

o' -|
j? can be developed as & power series in «w ]

0§ B g dro



of massfﬁu is

b
(C].cf/) I ! ]
L~ L o
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w' oy 4 >
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Since a. - g}Flg- , we can with the help of (<2.7)
write (2.9) in the form
L aﬂ&’J
?;i - %’:%‘, P %‘Cp*-
(2.10) . ; .
-t' ¢ L
ey "_9 Z Z AAS A .
éa B L u" g q)k‘é > +
The force of all particles on one is
{211) ¥t - -—%f,_.
The equilibrium condition is ¥*. o , and this
44!
is satisfied since 2 _  venishes.
el

The eqﬁation of motion of any particle L,

, ~ .. L
(d'lld) /M-"'“Ec. = \y{JL = o é'él'
/ 3tk
- L-e! Lt
s Z G .
= e c;ow. *
We wiite the solution in the form
TR
kS
0 . Ue |

P )
where «J 1ig the frequency of one of the independent
: £ ot : s (L o) ot + L o
normel modes of vibration amd (£,¢) - {+ L4+ £,%,
Then if we restrict our choice of wave vector by

) = = - e} . T~ P P 1 4 3
the cyeclic lattice condition which postulates

* Born, M. 'At

'4tomtheoric des Festen
Zustandes! c¢nd ed. (19«

23%) Leipzig, p.5886.



that the displacement shall be periodie in a volume
having the same shape as the elementary cell and
containing NE w*) cells, we can write the

equations of motion in the form

(2.14) w Uy S [x~4])U
2t Vs > [=4] Yy
where . (6,0
7 2 =A%y
(2.15) [=n] - — T @, °

It follows from (<.7) that
¢~ <) @’

2.16 - i e 5 B
(2.16)  [xx] 2 .o g

=

' —k(2,2)
= £ (,__ s 3 )
: P |

where the dash denotes that the term corresponding
to AL, = £ =4,-0 is omitted.

liriting the determinant of the coeffic-

ients [>~] as /[x4])], we obtain for the mean

logarithmic frequency used in equation (1.2) : -

B » o o
(2.17) oy & = %\4F3Hx%l%v b Aoq p~

where the average taken over “;“1‘*3, the phuases

of the waves is

+1m
N e, oty et
(2.18) 4o, = @O //[(f"“%*s) R
-

For an undeformed lattice ¢cf N particles

the total potential energy is

(2.19) b , N S 9,

a = ‘el 1A T 4 2 |4
cnd ed. {1925), Leipzig. p.6717.

* Born, 1. "Atomtheorie des Festen Zustandes', |
e
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Let us consider a cubic lattice, in

which the cells have sides of length oo , then
o w wfdbe £ BDYE o
{3411
£ L
1L= aL"’ A’J'FQJLZ-) %’cuis

where 4 4 and EJ take all integral values for
the simple lattice, are either all even or all
odd for the body-centred lattice and are either
all even or two .odd and one even in the case of
a face-centred lattice.

In order to obtain an explicit express-
ion for f[x~] we must choose a suitable function

(pL . We take a law of force of the form

¢ "~ \
Vo l "
Gy gte e oy () a(w)}

where the first term denotes the attractive and
the second term the repulsive effect of the potent-
ial; . must be greater than M . 4, 1is

the equilibrium distance for two particles since

(abf >%= v, - “

Differentiating (5.2) since D.
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e

D‘@LI - = %){ (MHL)(/L) +Q~*"O( ) } |

Substituting these expressions in equations (2.5)

{;.4} @im_: :;%55235i;(?ﬁéjw+%“(bm+2>62€jwycﬁa5
RO ORC]

s (7 e &%

L e e z%wﬁ

(5.3)

; : o
where L - (L,‘—*Lz.*f';); and

(3:5) Qo - - (3 {mea)tt

l(M#M) M £ Iy
" M=y (M+Q_)LL }
il ( 'k-l-L'
Now if we write ,
Ik, k. I sd{la
3 ‘hlklkB (q) _ S E'L_f.}__—-!‘?’z % >)
(3.6) 5 . | %
Sm- ¥ 81-\. (o) d
from symmetry consideraztions
nnn a1 n ~ 002 o
(3.7 (1) 8§77 L 8™ o 8T L WS,
* ML
and
(3,70 ¢4 § . 8% . B e ©.

" e W




Hence by summing (3.4) and by summing (5.5) we find

the coefficients (2.16) are

(5.8) [} - “”‘”"'—-'*)C" ”‘”{_ N ?J-m}

(5.9) [93) - _wmom ("’*’/)WL{* R (”"/0_)%'%},

where _
(e ) o . 210 _ o
u 2 = S-uu-?.(d) - 6\‘ 2) S’k.-r.e_,(o;) N % S"‘*"
(3.10) (=) on
Pia . Sl (m,«»— 9.) Sh*q(u.) s

with similar expressions for [44], f}}] andlgdﬂ ,[}ﬁ]-
'In general the sums denoted by S, mean
the sums over all points in the lattice; +the same
results hold however if we only consider the effect
of & limited number of near neighbours and sum
over those. We shall work out the results for
the general case in which we assume that the same
law of force zcts between «ll lattice points.
A8 we are concerned with deviations from
the equilibrium vosition we introduce o  , the

T : 3¢,
equilibrium value of o , given by {_§J = 0

=] -
instead of ~, . From (2.19) and (5-;) ) |
(511) 8 . INS Q' . Nemww (e, ) \%SO?:
Therefore ¢ Qﬁn-wm)i w\a) T W%/ %J
ae) M o N [ 5050 (58

- Loy (=) | 3

so that for ecullibrium



- (fef ST . o
Ly 5 S o A =
It follows that
D = Ty
(5-15) /Tom'm = \6’0—0
where R
e Sh
(5.14) ¥ o= 52"

If first neighbours only act o

of

-
a

e simple lattice,

and. J& for a
the

on the cubic axes,

effect of more neighbours

is the projection

o O
so that Y is | for

V3

face-centred lattice.

¥

for & body-centred lattice
Considering

assumes values

slightly larger than these values..

sguations

(3.15) [5ca] =

(5.16) [43])

(5.9) now become
(%~ e
P R h,(o.,,/) }
M =,
> }

(5.8) and
(%) 1
()t

()
Ry Y

where . "w/m —_—
i C o AR L Y
(5.17) ok T
We now introduce, instead of the lattice
constant o , the volume «r of a cell
> «\3
(3.18) Yo, = CT%»}-

Fuorther sinee we are concernced

from the equil

frequency in

( ) ’1 5 ) -'/'dﬂf

\ %

with deviations

ibrium and wish to

terng of change of volume, we write

Mo = T,

T

I+ j
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We now write for shortness

0] («) <2)
! L S B - 5) @
™) = Kdy iy o |
- (g,) . o 2
(3.20) nfﬂ "’\3’ Py
(p) m"'ﬂ 5 )
Rya 13_ 33
and let
™) (=) ()
DO L lﬂ)' ny '03 I ’
( () m) () O
D i ]/3,%) !.‘).,(_M) b J -+ ]nl ny ﬁa J
1
( ()
bR Ea T B
(.21
(") . =) ) (W
el |r—». sl
3 (~ ('M)
== {9 -) R"; M3 /
("~ () ('h)
D& = lml ) m.‘;h. R3 ).

Then the determinants |[11]I can be expressed as a

funetion of T s -

t3.22) |Ix~)] = c;%(»%)“‘“{ Do+ BT+ DI 45333}
where B bl
Qu L I_Dfml- Yr;‘fl'w\J —Di%)‘* Kmi‘h\ —p, TYP, )

= =Dy + XD: - \61])1# 3'13.1\.'3

b, = l‘so:ﬂ f‘ra(?)+a'r°iq "Pth“)* ”(ﬂl
i B + |- ram+ ‘(noM Xra(:) -—nim) )}-+ ]ﬂﬁ, +r°m ““ch*)* h"g‘]) L4 f“fh)
£5.23)
| _ ¥D - .:)_\fDl-f 33'3D3
D, - g me“) \m(:) M} o o & )\
—+ Hm&w —-ra(:)—r ‘(n‘:) ‘{"’?)J "t ]T“ WP, A"

3 #Klbl‘i‘ 3\53D3
o, - ¥iD,
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Teking logarithms the mean frequency (2.17) can be
expressed as .

(3.24) log & - _;flan}c;/h 2 Gerd) by 153)

a(n-m)

+ 1/6 <L°T} (&o"— &17 2 A»il* Al‘i 3)}\ .

Expanding the logarithm

(5.25) AL . O + @M‘-@ ima,(h*?)
g : 183 :3‘”3 ey A(n-on)

it - g1 3
i n) v g {AT AT AT

where

(‘5.26) A, = <%{:>

Av
3
p\3,= <é3 &;A‘ 23 géh‘3>
k= i [
Ao Ao ve-i;c
40
The Average Frequency

In order to express the energy of the
crystal in terms of temperature and volume change
wve must determine the average of the Ay . It would

appear impossible to integrate the functions of At
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directly even if we consider the action of first
neighbours only, so I have calculated the average
for a face-centred lattice by numerical integfétion
talting account of the action of all neighbours.
Having chosen a suitable range of values
L,y o, Oof the phase, I have calculated tiwe
sums ;fW) for each of the set of «

kg
sums the corresponding determinants 43& P -
is then only a short step to the actual coefficients
of ¥ in (35.25)

We can limit the number of points («, «,#3)

, and from these

which it is necessary to consider if we notice some

simplifications due to cubic symmetry.

N “ — )}
(4.1) (1) Consider ni% where
;r: —y = di- > d"g = 043 ?
then
el (~) (P - ]).'L o—-r3)
/9 = o
153 bp .
—(n) (=) — (=) ) ) - &)
2k 013 5 P P LT y W g F m:a
2 . , o)
Hence if we tnow the values of » ry for = set

of «,«, 4, which lie in the positive octant of
the cube bounded by

T o + T . = 0
OLJ-: —]‘_-"I : o, = _,_.“J OL.L,

we can determine all B hy for the whole cube.
we therefore restriet our <« +to values

such that

i
¥
h

-

ol

4]

178
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(4.1) (i1) Consider Eew)where
; b,

] 2 b - c'L| ) .3 = 043 3
then
—bv) (o) —b9) o), ) (=)
S S SR T B G p“
() (=) — (=) ) . g e )
~ = ® 3 o) = r n B - n .
n3 3 a9 23 2 " bW

Hence we can find all pt:-eorresponding to

the permutations of &, ,«,,«, . We can

further restrict our phase by the planes

and choose those points for which

°{| >/ o"l- >/ 0{3 .

—6)
(iii) Finally consider ¥ e where
E;* U R T S B I S
Then
@,z) - (@0 + TELELEL),
b LI

For a face-centred lattice L,+ £ +4, 1is

even so that we are only altering (£,«)

by some multiple of W . Hence
= ) (=) = () ()
PR e . P 7 Cry

Therefore together with condition (i)

. and T-o,, T-o, , W-do,
will give identical values of ,;(:' .
q"

This means that %, 7

i, % 1s a centre of
symmetry, so we can divide our octant by

the plane -+ < 44, 3T and consider points
2




13a.

4

ond. We.a%h s

S[an.ct

Phase

The

F!%Ur‘-e.
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on one side of it only. e choose-those
for which

oL+ o+ &, < BT

CY
The portion of the phase space satisfying

the three restrictions (4.1) is illustrated in
Fignre 1.

I have divided my phase space into intervals
ﬁ% snd writing o - ﬁ?’ , I have clLosen integers
P, P Pa such that f,,p,p, are all odd or all
even. From (4.1) it follows that we need only con-

sider integers such that

0o < p, % &, O < h, ¢ 8, 0« P, & €

(4.2) > b ZPa

b+ i Ié 1,

In this way vie get xq distinet poihts in the phase
space and cacih of these points has a certain weight
depending on its position in the cube and on ihe
number of similar points.

()

The sums ny can be summed directly for

n limited number of neighbours acting, or they can

be transformed into rapidly convergent series and
surmed over all neighbours. These series have been

calculated in the next part of the paper.




@ifferentiation with respect to «,%, and (or) «

5.

Hxpressions for Periodic ITattice Sums

The elements Jt; (5.1C) involve two
types of lattice sums, the periodic sums Sf;@*)
and the non-periodic SZU . The numerical values
of the latter have been calculated for the Bravais
cubic lattices for a large range of =m . & e
shall now calculate expressions for Sf@)(j.é).

Unlike the non-periodic lattice sums,
those St(d) whieh involve odd powers of L
in the numerator are not identically zero, and
in general simplifications of the kind (3.7) do
not occur. The six sums obtained by permuting
A k &R, in (5.6) may be found from one another by

sultably permuting o , « % so for second

73
order sums it is only necessary to calculate
expressions for

€L 2o e L] ooy

5. 0) = B 6 S, D - S%@),

When we have calculated the zero order

(3 Y - - -

sum Sx“” those involving higher powers of <L
in the numerator may be found by successive partial
5 -

There are two methods of transforming

* Born, M. and lisra, R.D., ZProc.
Cambridge Phil. Soc. 36. (1%4L).
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our sums into rapidly convergent series, and both
methods lead to the same result. The methods are
worked for the face-centred lattice, but they

may equally well be applied to the simple and
body-centred lattices.

Summation by Use of & -Iunctions

Using the well-known formulsa
' ~ = R T
(6‘1) P{%'S-/ * * = / < A : ol

ol

we get for any lattice sum of the form S. ) the

integral representation

I . ] 1
| S — L(L,.) (‘ LT Y
_I“)/m, < lll o Ado OLAJ\, .
k él.) 1 & -JL\

(6.2) S_ () =

!Hence tiie sum for a face-centred lattice denoted

| by [_Jﬁ in which ££,{, are all even or two odd
|end one even is

(==}

o / r M A :
by —t— | T () ok
sl g"“ s ra) |,
here
R = L)
(6.4) G 1) = | B =

< f
TR, -l St il |
S e < +-

i 5 S e

| G .oz € .oz - b B 1A
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1 =
. = s of
‘.L:u.-x..Lh'*‘_ £'3 e "Li‘ 3

+_ { S e_ﬂ.llu-a‘..(-ld.' S e S '

a: =0,%+2,--- le A3 e‘.‘. e

“p

{ }“h denotes the sum of the three terms obtained
by cyelie interchange of <« ,%, <, .
Now let us write
(6.5) bw = TP
and introduce instead of o (w)
(€.6) G - (R« ()~ |

where
1 - o >
s e_m" p - wulLs,) S o ST - b, SJ{“’ -l

L ﬁa ¢

, 3
{ & o TR - UL, S . F@_‘-h-gﬁ-i-%(ﬁlﬂ')
L, ) X

ql— ({5‘) =

(6.7) o (p -

= + Ly I'— Aol 9.!-3* I) .
X S o Tus :L) > ( }
L o

Then > - J
S° il f/a'? (&)
] o = ag_ ol

where 2 = P |
| VWie shall consider the integral as the

sum of two integrals, between the limits O and |/ ,

wnd [ oand 00 . The integral from /| 1o oo

@

%may be obtained directly from o;(p) , but for the

integral from o0 to ! we must consider each part

|
of g (p in (6.6) separately so we write ' :
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ot fo;’o:(/s) we o AGI+A0)+ L) - L

’7—9—!
where
L) o | ATE®p
(6.19) j‘('p) i -/o‘ /3'7 U‘;(ﬁ') 0{./3
4= [ AT i,
The complete expression for o:(ﬁ) is
(611 o - [§eT T2

[a § @) «f’""ﬂ

L>e

t

where S means +that the sum is to be extended
Lso

over half the lattice points in such a way that
of the two points £,4,,l, and - -4, -4 one is
omitted.

It follows immediately that

: &Wr-7
(6.12) A (%) - LQS cen @) 9"7[ 5 )j
L20
{
where @(x) are the well-Xnmovm integrals
7 »
_ P D - R

i

The series Tor Jjﬁ) may be written in

the form

~o
.-_',"

: g 5 [k
(6.14) 4, (») . o e, (A )
<

where c%hare given in Table I, (& = E)-




TQBI-J I

4 gﬁﬁ i

(O, | ’- ;) y “ {c.mat,_ e, }&h
(-1 0, 0){ 2 2 {em au,}
_(_Q, L I) 3 ‘3{ Cos A, Lo, CareL, }"‘b

@, 2 7)) i - . h {C-n Ao, Co> Q'ﬁ“‘}“‘h

(O’ 1, 3) § K,_{Ca-: o, con 3&:3 + cm 3"(1. mo‘E‘Su‘.h

(2, 2,2)| 6. _ 8 conls, coddu, Cod LAy

_(1, 2, 3) 9 g{cdaoe,maalmfsds + oo 3o, co Ad, mfj-ﬁﬂ
(/f, o, o) g Q{m hq‘}«t#

To calculate 4 (») and 4(») the second
integrals in (6.10) we express o;(p) and o,(p) in
|terms of & -functions and mzke use of Jacobi's
imaginary transformation o . We can then changec
our limits of integration from O and / +to /
and ¥ , and obtain an expression involving the
functions (6.13).

From definition

¥ wWhittaker and ha‘afson, 'llodern Analysis'
(1527) Cambridge. p.474.
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. _ et oy 3-4-1.1
(6.15) 9—@*.;eﬂﬁﬁ) S e B i
3
[

and Jacobi's imaginary transformation is
T -"{-1. -1‘;,3
.-,g _ r s _q
(6.16) S (e ) P w("‘&')‘gs(“‘”& )
3 TR B

Therefore

: =R - -Ta
(6.17) GT(fS) = ’83(&"& )"93(,“'2.39" ﬂ) 9‘3(“3)9' )
3 o s el
I W{ﬂ%(x,+dl+da)§ DY
' X r%‘ii-ec‘a),e.,"m‘?,\‘}-}(;ibq},e,‘“_d) /93 (WadJ&—w«D
where + 1is the reciprocal of [f3 .

Since

(£.18) %{o(—g‘?) »93@,@,;‘“"9 . Sw{.a,r(d,u,wj‘},
I L'

(6.19) GT(P) R ,\)3/1 S %{_’:%r (¢+€ﬂj2‘}
£

where

= FE 1 <
(6.20) @+eM) = @+LT) + &+ 4T) + (L+ LT)
and where the sum is taken over all positive and

negative integral values of ¢ L, . It follows that

o0 _,-7__;/1 e
6.2 ( ) S/ _ {_.‘; (m’.+€ﬁ)} it
dl) /‘{1\7> L / v efx_/a; 41‘ v
S @ (oc.+'(-77)
oL Ty ™
The calculation of '{C%)is similar. Ve

have
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(6.62) ,8- (D{ e.—h‘f.") S Q-W(zld—iﬁ)lﬁ_a;(u.-*l)da
2 :

i

"

and

(6.23) &z(dl,e"fﬁ)

peep

Hence :
(6.24) or (@ = 19&HeT™) 8., ™) 8 (45 & }

Lo+
1

5
where the sum is again taken over all positive and

negative values of A L Ls. I+t follows that

3 L)

] Lt Lat, : G+, (o + %}T)t-
(6.25) A (»)-= %[(—D + D . ED J%,-g_ T

Combining this with (6.21)

TS
(6.26) 'd;(b) T 'Jl(q)) = L’L)’g (P—';),-'/ (‘__]:I-: J
% b

where [ Jbzneans that £ 4, { are all c¢ven or

all odd as in the case of a body-centred lattice.

(=]
! Our final expression for §3%Gi)is

(€.27) 4 _:'_:E;) S5 () - [aéumé’->°‘-)9ﬁ.,)(£;w§
8 (]_0 (f:w(t‘ﬁ'lT)l 1 3
ﬁ-zf[ ¢ T T Jg YAl

5 N /

5 Ny .

3 v(&‘) e

](6.58) - Ar‘_"c.f‘at

é-,,lw(_fs)& %),

R N




Th ivation S Higher Ord

If we differentiate the sum S:GO part-
ially with respect to o, ,a, or «, we obtain a
sum involving Ll,ll or is respectively in the

numerator

° . . - (te)
(7.1) 2 SL@) - G-ite
det, ¢ ™

Repeating the partial differentiation we find

1

| d & 2 - @) :
(.5) S5, 0= =Q 4 R N
du,” e .
L
and similarly
. at © (2,9 .
(7.5% - 2= & ) = L2, = - .
¥ty Doy ™ % i S, (=)
Differentiating an integral of the type (6.15) we
find
(2@ ErUD L a (aetme @D
’ ?’NL: _")_”1 R w _7*1/1 m
Hence i
(1.5) ¥ @ Estl) g @ (xtm)
6::(‘ b T /n' el -—;—_‘_—"
+ 4+ UT)@ (o + L)
T2 ¥ __:-’_}—
o 2l
.6 i ; _r{aji" \
(7.6) L J ] (d+tw>(dl+; o \“L{’_ﬁ)]




Thus the expressions for the second order sums
corresponding to (€.28) are

(1.1 S.6) - { Z b P, )

l‘.hfl r'(m/g_) s 12 -

g0, g7 i

b

—~

b

7
-a."!/ﬂ. m b -]T '7)434‘
(7.8) A -ﬁ%&
S‘.‘-u(dh) - g Z- Cg_ CP (A_IF)
Fs " ' bR
YA e b
— [ (d +LTj(~l +4 T)Sb Qx.ptTl')]
...f&_'__g I
where
(7-9) b 2 —_5: ou & & "__éi- a
. ol k2 R Sof, daty
The b, and Cp corresponding to the @, given

in Table I, are to be found in Taeble II.

Lwald's Nethod

1L %L-_ a,l + a t + o L

and b is the lattice vector of the reciprocal

lattice-

(8.1) . B. = S .. kb
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where W is the volume of a cell

(E:2) o, = | &« 22 2, |
aveld's trangformation formuls is
= TI_(Q' — ’_t)zm o ‘|'|'b€/q'.|. QJTJ..(E ‘r)

L JJ‘AA..

This may be written in the form

. (T2g + ameeen) b~ %)
(8.2) o~ 4, Se = B
L e L

Using equation (6.1) as before we get

(8.5) ' o = T(eE)
E T AN o0

()™ ‘]T‘v" J"ﬁﬂx_, Sna_m__‘cﬁ_ ati (2. x) ol./a

ED ¢ :

Divide the integral into two parts by
taking the limits o0 to 7 and 7T to

and using (8.4) we fing

S S CED) Ny _:m (o ,,,.)/‘ .»4_,__1_&
((8.6) . P - _1_[
k (%1)’* (*4) e
% -»11‘(';;-»4'-)
. d.,aJ
D_TM‘ T
o ]"'( ) .
(8.17) = TR "[ 3 F '-11"_'.'(.9?.'"'-")/\0 » T T owj
' (™) L |

| '

2 m_. -4 _Wﬁ(bc_r)lo{,v U [
+ e %U,\,v%? P
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Because of (6.13) the sum may now be

written in the form

For a face-centred lattice,the lattice

vectors are

hence o, has components

alt+ 4. BleEL) e (¢,+ L)
or
(8.9) wt, , ke, el

where ¢+{+¢, is even.

The reciprocal lattice vectors are

I by 5=
b,': (_ f/au.‘ %.h) lﬁ‘) ( %.b c) b3=</£1‘3" ﬁb
hence bc has components
k(e re) b (-00) , 4 bt )
or .
¢ L
(5.10) ﬁ’/:m_ 2 ‘?‘J'.b ? Qe ?

where £ ,¢,, 4, are all even or all odd as in the

case of a body-centred lattice.

Taking
([:-11) [+ ) = (&) = c = !
i
'pnd
| Fifay w Oy By )

we get the following expression for the sum

) - AT (x) h’a. L(atr)
Cs'e . T IS T e
(8.8) ¢ @iy~ f‘<”‘ ) L

e R ;’::}

(Ol bbc') Q":.:(OHJOJQ) Q—'_a: <&>b'o)!
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(8.12) S («) = e [1{% r_m(ej-:)(pﬁ)(“r'rr(,‘)}
e ]"(""/1_) 20 i
IR,
+ Il
L s, oD
_ Y ¢ Ty R N
where | ]{ , L Jb end § have the same meaning
L>0

as before.
Finally we choose T - Hf and we get
an expression for 9:@3 which is identical with

that found in (6.27) by the use of § -functiouns.

e

8151 500+ T | [5meon()

L>o0

| Giﬁr>l]
T v 13 %, .

The sums of higher order are found by
partial differentiation and will give the same
results as (7.7) and (7.8)

If we had used a different substitution
(€.5) or had taken & different value for T
we should have obtained expressions for the sums in
anocther form involving more terms of the first
type and fewer of the second, or vice versa.

The formulae given are however more suitable for

rractical purposes.
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90

Sums he Cther Cubic L

Corresponding exprcssions for the lattice
sums in the cases of the simple and body-centred
lattices may be found by the methods used above

for the face-centred lattice. 1 shall:however

only quote the results.

a The sim attice In this case the sum

is taken over all positive and negative integers

L. L

[ 2

and L; The zero order and second oréer

(nt‘)Js

sums are @

(9.1) So(ot) &

25 el ) P
b

' )
o 13@ (raeT J
o e —= I ‘ g
2 8 "’“f
(9.2) S (D{) = 1T {1 St" @,.{)@(NL"\)
i ]_f_‘va' l"(""/j Lrs S
[- S (:K.-I' QLTI—)LJ
/6 e
R S (?’W*V T ¢
- + T
N 337Tf1i S (Utl‘* ufﬂ-) (P"?-f]/t d.__._;ﬁf- )J
£ T
5
G v 7] o
(9.3) S, ) . I {FSLL o) (TT'{ )}
™, o b
L 1rYﬂa> &) , \j- )
- 31,]ajﬁxlfatu L+ UT) P ’“15?? J[ 7
:E_LL }1..' -;_,3:1 T _jS J




where | ]s means the sum over the values of 4;&1é3
for the simple lattice.

b The b -centred lattice. For this lattice

we consider only those wvalues of ¢, ¢, which are

either all odd or all even., Then ;-

(9.4) S, = _TC* Lflsmc,-t —“J
1,”"!"(“6,){ L ( )‘RJC”; )h

(-?L—; Lﬁ)l} }
. == —+ Q[S qj_'?'"a. = 'ﬂ

7+ | L

(5.5) S - L){ [28 £t o, ()]

Mo Lo

N
et (320 7 ]

Ei

i
% i k)
sl g 9 6] |

(9.6) s'* T [ ¢t v
(d) = . Q. S 3 m@;"‘) __{a
; - LA r(n) { s %’ Crr‘f )J b

) .{;ﬁ (T )4yt £, (x+ L W)lj
St !

"’)43/2 m
{

1

where | | mean the sum over a body-

centred and a face-centred lattice respectively.

| 10.

Before we can proceed with +the numerical
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calculation of the energy, we must choose values

for m and mwm which occur in the potential

energy (3.2)

WE SEATL ASSUME THAT _ % = %

AND CONBIDER IN PALTICULAR THE CASH m = b

)
/‘Jf"l,
for thesge values in the case of a face-

We have calculated the sums and

o)
e

P
centred lattice, in which the effect of all

neighbours is taken into account, by means of
the expressions derived in (6.28), (7.7) and
(7.8). These are tabulated for our set of

o= pW in Tables III and IV.

&
In the case Nz A o= 1D
(10.1) Y= S = 99%i0
S’)'\.a

We now caleculate the determinants hﬁ
corresponding to these elements,and from the
symmetry considerations (4.1) the determinants

are symmetrical about the planes

Pi - Q, P 9y 733’ 9,
f“.-‘f_“_;_; p. = F_:_.; {a-""ﬁ"




I I IT

' © | @ ] © (&) &) ©)
il i 5 B WL S0 ... R . B
8 4,0 20280 11333 1-0280 o o ' o
222 A L8541 318y . 1-3187% Q 0-4862 | [e]
20 2929y | 10994 '; 13443 o o o
go0o0 3:-0223 I-0655 | Iroess Q o 0
131 1-2%19 11569 1 I 5786 0-346Y 0:3443 0 l4 45
Yid 2-785¢ /-165Y f l-105y 0 145G 01408 0-1459
66O it318Y /-318Y | 2454y ;; 0-4862 o o i
642 6990 21504 I 16990 '; 0-6960 0 6960 0-4936
64Q (-8 ¢ok 12032 -803g 0-696% o o
622 2:2659 | 1088 iI-108§ 0-4908 LR 6-4908
620 L-Lajo . iFalia 11673 | 0-5006 o o 1
bao | mese | 0-9129 0-9i29 I o o 2
s51 ! L6y 46y | 19166 I 0-8404 03482 03482
§33 16163 r3a0a l /-3202 | 0:8419 0-541% 0:8419
S0 1-8383 11230 | 1-2633 | 0-855s  a4-34%93 0-3852¢
510 L l4a6 0-8392 | 0-839a 5 0:3594 01438 0-3594
4 kB 13683 1-36% 3 | 13653 ' 0-3906 0-9906 0:9906
bl 2 3% 14 139, 13189 | 0-998Q 0-Yo16 G-YolcC
Wk © 143846 | 13%66 1-2694 I- 0264 6 I |
haa 1-508s 0-352q 0:9529 | o-YiS0 0-5039 0-ig0 :
4ao 1-5939 0-804Y 0 Y439 | 0-YarE | o o !
400 16846 0-518§ 0-5288% . o la] o |
333 11511 118 1 118 1 0-85 4 085477 68§54 |
331 16939 ; 1-6939 01909 0-8793 03593 63593
30 I-cgoy ' o405 e 4ves 6°3 Y514 0 iy 9-3%3y
2929 o -Jroy | 0-Yiory | 6:Yloy o "§Lly o6-521Y g-sal g
220 66157 i 0-6157 0-3258 o §381 o o
2100 o-ﬂ,q:si 0-/5Li 015 Y Q Q o !
[ 0-2158 l 0-2ISH O-L15 38 0-l6oy a-leoy 01604 |




6 &6 0
6@_.1
6 4 O
62

6 Lo

5§51

§33

531

bty by
bt 2
4 ho

b

K
| g a

33%

(GO
Po | P P3s
"0-85313 0-315Y 0-5313
0-62u5 ’ 0-3623 0:3623
6-6860 f 0-31yk 0-37%¢9
o-Ysoa | 0-3131 0-313
°0-s816 | 0-3199 0haMo
0-eQld ' 0-31%0 0-3180
0:3¢23 ! 0-3623 0-6ays
|
04390 i 0-331Q 04390
a0-4Y%%0 I 0-3248 0-LeY62
0 SL8S | 0-329% 0-3198
0:-5940 | 0-3299 6-3283
0 -6kl 0.26Y/ 0261
0-3%43 0-3Y43 0 4q%q
04059 03417 93417
04513 6-29¢6 0-8395
05062 0-23G¢ 0-239¢
0-34677 034677 oval.p:.‘f
03469 03469 0345 Q
0340 | 0:34Y0 0-343¢6
03624 0-255 0-25/5
0:'36G4 0-2ide o2l
0-3vge 01592 01592
63960 0"1760 0’19.60
0-2A63F% 0-263% 021614
0-2409 0-/290 0-/29 0
0 :735-._ 0-1Y35 01738
0143 O i4d 0-09 418
8- 111y : 0-045€0 0-0458 0
0-0f§0g7 | 0-0502Y I £

LN

© o

o O-loQa

Q [}

o] o]
0-0YY13 0-0YY2
0-0320 00320
o-toqa_ Q
O- 186 o 'J-Q‘Q 6
0 ISk o
0-/092 | o0-1094
601093 o

& 0
6- (RGG i 0-0YY3
01864 o IF66
0iR6E 0-0YY3
0-0YY4 0- 0320
0-218Y 0-2IRY
6-2188 0546
0-21%8 8 o
0. ISHE 0-/093
0-/V49 o]

o e]
0-IE68 O |BEE
0-1%69 0:0773
00y 0-032}
0109 4§ 0-109F
0:109 & 9

O Q

1.6321 9

| 0:03242
! o

0-0320

. 00320

01094

0-lo g 2

g-0%773
0-IREE

0-0773
0-0320

0-2IBY

0-1§446

0154 §
o
[}
0 E6E
0-0YY3
0-0YYs
O 109357
o

(o]

in L] I
?\. o3l .



55,

and abvout the point
(oo 2o bs) = Gy oy 8)

The space bounded by these planes, as
illustrated in Figure I, is /g, of the whole
-cube, so that points lying wiolely within the
space have a weight 96 . Points lying on tue
faces have in general a weight 48 and the
weights attached to points on the different edges
and corners are given in the figure. 4Lll weights
can be found as follows ;-

(1) ‘Tor points not on the planes
o= O h- 8
the weight is equal to: the number of
different vermutations F. of =*h,, k., 2P

and P of =+ (8-p,) ,i@"h)}@'h)since

L

these are the numrber of times the deterninants

tuke a particular value. In general tnis
equals aP, since P .P , but for points
on f,+ P+ Py= 12 (ﬁ,,p“fn) is a permutuat-

ion of $-Pp,, 8-p,,8-p, , so the actual number

of different rermutations is P,

(ii) For points in the plane

py = O but not in p,=8 or P, - Q )

- g : k
those with the same determinants as (fp,,p,,9 )




are the P, permutations of Ctﬁ%,t.pl,o) and

the P, permutations of £(E-p), +@-p), T 8

when these are distinct. The latter lie on
the faces of the cube and so have a weight "o
but P,- 2P, , so the weight of 4, ,f,, 0
is again aP,  when P+ Pt Py o+ 12
and i when P+ po+py, = 1

GELD For points on  f,. o, f,. o
but not on $,- 8 , we have P, . ¢ points
on the axes and P, - 24 points on the
edges of the cube with the same determinants
as (},,O, ©) . The weight of a point on
the edge of the cube is ¥, so the total
weight of points (p,, 0,0) 1is 2F-12 .

(iv) Finally for points on the face
fp,= 8 ; we have P, permutations of
+8,%+h,,%tp, and P, s R@_ permutations
of o, + &-p) *@-p), the former have a weight

Y, so the total weight is P,if
Porby+ by #12 and Ty 1P P+ o+ by . 2.

The calculated values of A, are given
in Table V and the coefficients Ag in Table VI.
The cpmplete table of weights is given in the last
column of Table VI,
The averaged coefficients are in the last row of

this Table.
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TABLE VI

P.psbs R, L A LAy L AL [ Ae | Weight
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g:;:i 4-Go0 — L 00 437 ~-5-34 ‘ 699
€20 | 89 | -3-98 | Kk-29 -5-29 b 8L
% oo L - 84 | -3:90 ! L;_‘!R - 506 t b -S4
T3 -9 -4 -00 : L-29 -5:35 ‘ b- %
o IR .i Lb-%¥% | —4-01 e -5:30 1-10
L 6o ' Iy -Go #4-0_0 Iirs‘f | -5-3Y4 F - 6-99
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§33 488 | -3.92 | 42y I —§-08 | 6oy
531 h-90 | —f4-03 b4 ‘ - 538 . g1
sl 92 1" 1 -06 | b I —5‘-4(».: S Y-
I e e | 3-499 r — 4 b | s-qe
bt 24 o8 4 ey | gy ;—4-91 643
L4 O f h&8C | -3-9¥ L3y E -5-26 | 6-K&
baal| u-8¢ C -3-9¢ 430 | -s.af 6- 82
20| 4.93 1 ~4-0q | 4S8 | —sigg Y5
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3/ E ke i S MY TR ANAY =Wy 195
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Theivariations of the H;{ with the
different phases are small, e.g.

b - Y1 < A, &I 513
so that the AR, seem to be almost independent of

the phases of the waves for our paerticular 7 and

" : Further in calculating the coefficients
Ay it was found numerically that the relations
z 3A Al 38 A
= Q = O 3 - =
o2y % - Mo BT %My - oo

held to within about /9% for every point in the
phase space. Tris means that to within possible

numerical error
3 I 3 b 3
(10.5) & 83+ AT% 870 o 8 [1e 23],

I did not use tiis simplification in the ﬁumerical
caleculation of the expansion of Log (B.+ 8,7+ hliu-%}‘)
but obtained the | H& from direct calculation.

The determinants &k , Table V vary
with the phase but their qqotients are practically

constant, so that the ﬂ& wiich are functions of

these quotients also vary only slightly. This

invarisnce appears to arise from the connections

() ) -
between corresponding P pg &nc o’i : From

Tables III and IV we can see numerically that
(f'nu)

o)
((10.4 ' " = . - g
!(1 ) PY ) Py
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where R 1is a constant, in the neighbourhood of 4

and is a quantity whieh varies with the phase,

a—

P,
g P 5 SR (=)

but which is small compared with ﬁmm .

A similar connection with 4. 4 can

y ()
be found from the general expressions for nr P,
o)
and Qr1)bU¢ (ﬁ%’ is a complicated function of oL

and I nave not been able to show that in general it
) . (=)
is small compared with 4-0P$ .

For first neighbours only it can be shown

that

p'(l’"') B %"a{“[& — o Lo, — md_‘} )
(10.5) = &= mﬂmd,)}
S ) 2) o, B o
013 - ,im,: (’)\“" Aasrs &y 3 .
Therefore
My “h (
(10.6) 2 2ol — 2 Pmman) L = alnmom) (1= e, ety |

When m = dn this gives

(™) Tamb () ( [— canel. Coa ekt
1(10.7) &, - | Ry = %_M/‘L L 33:
so tnat for first neighbours only ‘
|
(10.8) o, = "ﬁ”’w;,a_ (1= Cod o, ey ). |
The maximum valve of Ty is I so for m .- 6
g-'m.,&_‘, R (%“_) . — | ‘
(10.9) . i, (2 8 when - :
0 < ar < elheyl A/ |
|
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For the non-diagonal elements however

) Q""/a-* (3mm) ;
@)
so that = el » when = G, + 9 .
C.—F:% . 2 (4 m) Pty
Hence since ra(; is always positive
o= I
e T B s P R
4 mt‘")
P9 )
If we substitute (10.4) for BLg in the
determinants Aﬁ (3.23), we find, writing
ﬁ = . Y"'ﬁ- e qu_. L’ = 5.5-3)
e ,[30ch+ ! ﬁﬂih)"rqi ﬁﬁa(m)'*"i l
=) N ()
AT XI{S,@‘ o (S‘oi)“"c—x 75 [
o) ) . g /lfa(h)-r o ]
+ Y 1 n, Lry "+ T 3 3
b lpeles o8 pels ]
(10.12)
L™ (1'\-) ()
AL o= i ){Solt)a»crl Ny Py l
L ) () ()
* ¥ l""l fr T+ 93 Py I
. e (~) ()
+ a7 e |
3 (™) (W) G 3
DS = X.}pl Ry Ry J“ X D.S'
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Now if we let

" (~) ) ()
Y o her <4 ]<ﬁ‘pi] 5 I [py™ o, Py
I
A,
( o
*‘lp:) £ r;l}
(10 15) 3&1 o —_— i I@I G_‘l. cj;l -+ \q‘-l Ry 3
bt p*D,
o7 o o0
-+ Q 9; P,
=3
& ._L— g O, g
Bt e 5, | o o

from (10.11) for first neighbours only,

(10.14) (1) St < el

i.e. approximately

i
o e & S 7y
and

(10,049 (11) 0 LN g W

J L]
R

{
(111) {ooo
Then we can express the determinants in

terms of &

Ao ” pl:DBg. b 38| & 3811+ 83;}
b, o 3Pl [ am e BY
(10.15)

A, - 385D, {|+ s,}

A . ¥°D

3 3
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Therefore
Ay = Sj’[’* 1El+ E:][lﬂ-galﬂgs:ﬁ"qgh:
B A
s 3% [ 1 2 5 208 g e |
[
(10.16)
A 2
L 3 3 2
. - ‘%L[;ﬁnsﬁu, T R
3 T
63'//& - Y/ﬁl [!— 3El F* qall-‘ 3&1 +-"“" ]|

[+)

Using these resu.ts we can find an accurate express-

ion for the funetions (10.2), which were numerically

Zero.
Qf N O - Xl 2 1 )
o %L I fere et ]
(101 %) .
&3/ - 3&'&1 e (?h:/‘f {E‘L—f ?_1_1- . }
S ARSI -

These are both zero if we neglect second and higher

. . =
order quantities, such as €, ¢

T

We can also find expressions for the

coefficients Qk_ in terms of £
| (10.18) A, - 3{:}’{1— g, + 3§~ A4 b, ete.

Neglecting second and higher order terms and

assuming <, lies between the values (10.14) (1)

P

A L e

1

(10.19) ho-ha
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The A; given in Table VI lie well within

tiiis range.
| As these maximum and minimum values are

so widely different it does not seem possible to
find an averaged A, from this result. The
lower limit depends on the diagonal elements of
the determinants and the upper limits on the
non-diagonal elements, and since the latter are
generally small compared with the diagonal elements,
the averaged A, must be more nearly egual to
the smaller value than the larger. If it were
possible to prove tiat S%ikhfwas about /a0
equation (10.18) would give the coeffieients
immediately, but I have not been able to find a
method for averaging the expressions (10.153).

The following approximation gives a
fairly accurate result. Let vs assume that

i Si(d)-, S;Id), ete. obey the simplifications (,.7),

which S;‘ , etec, obey, so that
i |0i o ol 3
SJ D(od_) = (»:‘)% (C*) = D'}\. (a{.) = (@]
' T
(10.20) . . .
Loo ) 5 o R ! p
S%J—)‘C“ = %%4‘1(‘"3 = S%*_i( J = /3 Skl.“‘-)
Then
(10.21) 6. = O it P oo

9,
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and o(%) ) 39“_‘1')8 I- el if = 9.
P9 3 B g SeAA

For first neighbours only -

on) 3 (=)
10.22) n i P {1-— B N
Y ” Py S
Then
(10.23) SO B ST
2 2 3 3
e Bt €,
Thefefore
O g s e B o TR AT S g e
Famtl b /3(;4-5') Aa fil(J—PE')l
! A i 1{3 3
giving 343‘, é(:-«- E,)

(10.25) By 58 7y By =379 & 4 etc.

The error in the value of A, is less

than 29 , and Lo, [A°+ AnJ+ BT+ 1—\3'531

becomes exactly Loe, By + 3 dog [ I-H}].
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1.

The imergy and Iguation of State

Considering the action of all neighbouré,
we find using the averaged values of Ai ,

that the mean frequency (5.25) is

(1) kg & o g ley OL 4 2 ey (0 )
/A-
1 oy o
+ 1 { L4-Q0f — 404§ w4425 —---

where

(11.2) &”%-ZQ = é% <{”% A°>av'

The potential energy g{ of the whole

o]

lattice is given in (5.11). Introducing
ﬁ““m, X“ﬁf% we get
{5— N e Nh S "
(11.5} = { '/Y O-q S —+ J/Y o, S
o U W (2 L% S

5 M=
TFrom the value of Yy (,5.14), and since ﬁﬁ,) - I+

lifl§”w X = %” (L*}) h %-C"%*”%m+ »»T)
Q_OL 4w)

A0
N =

2
G5 @, - = MeySe Gy

o

Thus for m-= 6 the potential energy is

(11.6) @, - —%62.(i-7")

Substituting (11.1) and (11.6) in (1.2)

§
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the free energy of a face-centred lattice, taking
into account the action of all neighbours, in

terms of volume change T , is

(11.7) A/ . - ‘E-é,;)_u-(!-'“g‘) -+ 3'&.7_/(4:-:}_‘&_‘
N BT

34T cI, AT C1+
_f._ 2 Lu-c} /..._, —+ /(JJ'C} I ?)

4-kﬁ_{2-457-2:0a71+ 8-21F? - Qﬁs}in}

Our law of force (5.<) contains four
arbitrary constants,- « , », , and the numbers
m  and "~ . lle have used the particular case
mo= Qm = & ., 8o thal our energy expression
contains only two arbitrary constants '?L , M
The arbitrary distance », has been changed to a
unit of volume,#, —equations (2.13) and (5.18) -

which is the equilibrium volume of a cell. we

[

now write the other constant s« as a quantity
with the dimensions of temperature, An = é_@)

where O can be regarded as the unit of temperature.

On differentiating A4y with respect to
the volume ~ of the cell, we obtain +the
equation of state for the crystal, connecting the

pressure f , bemperature 7  and volume - .
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(v P~ ‘%U("‘/N)
= 2kO (Hs)”‘{*%ﬂ-ﬂ + T F(7>}
UO
where
i F(3) - L 2k~ Lo + 6 635"
(11.9 I+
o ;o-yQTs—f I'Y-S's'_i('-—---- }

Now if we write

(11.10) b = #8

&J‘o

the equation of state hecomes

Ya ‘
(11.11) #;: .2l ) {‘“"‘“ﬂ + %F(?)‘g

o
where we have three constants, 4, , © and &,
connected by (11.10)
We can nov construet curves which give the
volume in terms of either pressure or temperature.
Equation (11.11) is linear in £ and Tj
so we can draw a system of straight lines for
different values of T ' It is only necessary
to calculate two points for each line.

Figure II represents the isobars giving
vy = (t+—}>ﬂ%‘ &s a funétion of T, for

]

[¢]
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constant pressure.
Figure III represents isotherms, *,
< o

as a function of P? for constant temperature.

e notice that in Figure II 47 increases
linearly with respect to Ths- at first but later
the incerease becomes more rapid until it is
eventually infinite. This is the same type of
curve as that found by';.Born for a body-centred
A corresponding
to the extreme points differs widely in the two

lattice, * but the values of T

cases.

Before we can compare the two sets of curves

we must compare the scalesiused. The constant of
temperature has the same meaning, but the ar
used above is the actual ecuilibrium volume and is
slightly smaller than the w~, (0-92«,) , used by
Born, which is the equilibrium volume if first
neighbours only sact. Hence our coustant of
bressure is slightly larger than ( /-1 <+times) the

3 Jrr

fpo, defined by Born. These differences are slight

and are not sufficient to account for the differences

[
3
et
o
[

wo sets of graphs.

*x Born, I,

' , dourn. of Chem. Physics.,
Vol. 7.,K0. &., (1939 .

0
)

|
|
1
|
1
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To obtain a closer analogy with Born's
results I have considered the equation of state
under simplified assumptions. Born considered
first neighbours only in the thermic term and
first and second neighbours in the static term.

I have first derived F(5) considering the
action of first neighbours only in the thermic term,
but I have considered the action of all neighbours
in the static term, so that p,, © and #, are the
-same constants as before. Since the variations in
the Hﬂ were so slight I have assuned that there
will only be a small percentage error if we average
over only a few points in the phase space. If we
choose o, o, 4, equal to O , @i or T , we get 5
distinect points in the phuase space. I used this
approximation %o obtein F(f) the value of F(}).
when the action of first neighbours only is taken

into wecount.

(11.12) F*(?) = . I 3657 + s-ss'fz----
J-—rf
For ~>w, , i.c. when 7 is negative, (%) « F(3),

so that for a given pressure and volume, ’Ce i

w

=

greater when we consider first neighbours only in

.

the thernic term, than when we consider the action
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of all neighbours. The differences are not great.
The graphs of the iéobars, Hba* 0 are compared in
Figure IV.

Secondly I considered. first neighbours
only in both static and thermic terms, defining « (o)

as the new equilibrium volume, p{c) as the

_J’,
corresponding pressure, and ﬁﬂ(o) = (:+- 3) 2
In this case Yy - § ; Then
i 3/1_ = E
* T
(11.13) P - A(HT) {‘QT‘* /@':L(T)}
F(o) - -
|where
F()= - -+ mg:ﬁzr73§+ gyGTK“_
{(11.12) R\§ i+ T

was found by averaging over a few points in the phase

space as before. The isobar, h;m)= O correspond-
ing to this equation is also shown in Figure IV,
and this correspcnds most nearly to the isobar,
h%ot (6} of Born.

The differences in the curves depend
mainly on the number of neigjhbours considered in
the static'potential ;  In tais tﬁpe of crystal

lattice 1t seems thaet a consideration of the aetion

of first neighbours only in the thermic term is a

fairly good approximation, but that the static

[lrotential must be determined accurately.
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I wish to express my gratitude to
Professor M. Born, who suggested this problem to

me, for his advice on many occasions.




