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Abstract

Customization of processors with instruction set extensions (ISEs) is a technique

that improves performance through parallelization with a reasonable area over-

head, in exchange for additional design effort. This thesis presents a collection of

novel techniques that reduce the design effort and cost of generating ISEs by ad-

vancing automation and reconfigurability. In addition, these techniques maximize

the perfomance gained as a function of the additional commited resources.

Including ISEs into a processor design implies development at many levels.

Most prior works on ISEs solve separate stages of the design: identification,

selection, and implementation. However, the interations between these stages

also hold important design trade-offs. In particular, this thesis addresses the lack

of interaction between the hardware implementation stage and the two previous

stages. Interaction with the implementation stage has been mostly limited to

accurately measuring the area and timing requirements of the implementation

of each ISE candidate as a separate hardware module. However, the need to

independently generate a hardware datapath for each ISE limits the flexibility

of the design and the performance gains. Hence, resource sharing is essential in

order to create a customized unit with multi-function capabilities.

Previously proposed resource-sharing techniques aggressively share resources

amongst the ISEs, thus minimizing the area of the solution at any cost. However,

it is shown that aggressively sharing resources leads to large ISE datapath la-

tency. Thus, this thesis presents an original heuristic that can be parameterized

in order to control the degree of resource sharing amongst a given set of ISEs,

thereby permitting the exploration of the existing implementation trade-offs be-

tween instruction latency and area savings. In addition, this thesis introduces an

innovative predictive model that is able to quickly expose the optimal trade-offs
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ii Abstract

of this design space. Compared to an exhaustive exploration of the design space,

the predictive model is shown to reduce by two orders of magnitude the number

of executions of the resource-sharing algorithm that are required in order to find

the optimal trade-offs.

This thesis presents a technique that is the first one to combine the design

spaces of ISE selection and resource sharing in ISE datapath synthesis, in order

to offer the designer solutions that achieve maximum speedup and maximum

resource utilization using the available area. Optimal trade-offs in the design

space are found by guiding the selection process to favour ISE combinations that

are likely to share resources with low speedup losses. Experimental results show

that this combined approach unveils new trade-offs between speedup and area

that are not identified by previous selection techniques; speedups of up to 238%

over previous selection thecniques were obtained.

Finally, multi-cycle ISEs can be pipelined in order to increase their through-

put. However, it is shown that traditional ISE identification techniques do not

allow this optimization due to control flow overhead. In order to obtain the ben-

efits of overlapping loop executions, this thesis proposes to carefully insert loop

control flow statements into the ISEs, thus allowing the ISE to control the it-

erations of the loop. The proposed ISEs broaden the scope of instruction-level

parallelism and obtain higher speedups compared to traditional ISEs, primar-

ily through pipelining, the exploitation of spatial parallelism, and reducing the

overhead of control flow statements and branches. A detailed case study of a

real application shows that the proposed method achieves 91% higher speedups

than the state-of-the-art, with an area overhead of less than 8% in hardware

implementation.
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Chapter 1

Introduction

Embedded systems are expected to efficiently perform a small set of specific tasks

such as processing sound, video or data packets. Moreover, the rapid proliferation

of electronic devices puts pressure on industry to offer not only high performance,

multi-purpose devices but also long lasting battery lives, low cost, and new gen-

erations of products in short periods of time.

Thus, embedded systems designers have to customize their solutions in order

meet strict requirements: performance, cost, power consumption and time-to-

market. Unfortunately these requirements are, very often, conflicting. While

power consumption and performance are better achieved with custom hardware

implementations, cost and time-to-market might drive the design towards soft-

ware running on embedded processors. Thus, designers have a variety of im-

plementation alternatives that ranges from a custom hardware implementation

whose functionality matches exactly the application’s requirements, to an em-

bedded processor that can be programmed to perform the functionality of many

applications. The flexibility offered by software is a tempting alternative when

design cycles and cost are restrictive. However, high performance and power ef-

ficiency, achieved by hardware implementations, are key features for the success

of any embedded design.

Hardware/software partitioning is an alternative that combines the flexibility

of processors with the efficiency of hardware implementations. Thus, critical por-

tions of the application are mapped directly to hardware implementation, whereas

the non-critical parts are executed in software by a processor. The partitioning
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2 Chapter 1. Introduction

process consist of identifying the portions of the application that will be exe-

cuted in hardware. A complex design space of trade-offs is then available where

different partitioning decisions create solutions with particular characteristics of

flexibility, performance, cost and power efficiency.

Application-Specific Instruction-set Processors (ASIPs) are often tailored to

target applications with a hardware/software partitioning approach. Numerous

design methodologies for ASIPs have been proposed. There are two general ap-

proaches: loosely coupled co-processors, such as loop accelerators, and customiza-

tions to the Instruction-Set Architecture (ISA) with custom Instruction-Set Ex-

tensions (ISEs).

A co-processor can provide substantial acceleration, but requires significant

area and often has a large communication overhead. At present, the designer is

most often responsible for partitioning the application; however, once the parti-

tion is defined, advanced behavioural synthesis methods can automatically gen-

erate the accelerators.

ISEs, on the other hand, offer speedups by exploiting fine grain parallelism.

Unlike co-processors, which are loosely coupled, ISEs are tightly coupled to the

processor pipeline, and can exchange scalar data with the processor’s register file

every cycle. ISEs have evolved to the point where they have their own local mem-

ories, and, as a consequence, can achieve speedups comparable to co-processors.

ISEs are complex instructions that perform the functionality of a group of

basic arithmetic or logic operations that are dependent in the application. For

instance, an application might often need to add three numbers. This would

translate into an instruction stream with two add instructions, where one of the

inputs of the second add instruction is the result of the first one. On the other

hand, an ISE can be created to perform these chained operations. In which case,

an Application-specific Functional Unit (AFU) is built to execute in hardware two

chained additions and then it is attached to the execution stage of the processor.

As the hardware delay of an adder is in most cases much smaller than the clock

period of the processor, a chain of 2 adders can be still executed in one cycle.

Thus, two instructions in the instruction stream can be replaced by one that will

require three inputs and will give the result in one single cycle. Similarly, more

complex instruction patterns can be found in the applications.
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1.1 The Problem

Much research in recent years has focused on ASIP design automation in order

to find the best partition of an application. When the hardware partition is to be

implemented as ISEs, the partitioning process takes place in two stages: in the

first stage potential ISEs are identified in the application, while in the second stage

the best set of ISEs is selected. However, there is a gap between the partitioning

process and the hardware datapath synthesis of the ISEs. Some of the datapath

synthesis issues that have been ignored in the partitioning process are addressed

in this thesis. Namely, resource-sharing amongst the ISEs and pipelining of the

ISE hardware datapath.

Flexibility and performance can be improved by increasing the number of ISEs

included in the processor, more software routines and more segments of code can

be accelerated. However, to independently generate a hardware datapath for each

ISE would lead to an unacceptable increase in die area. Hence, resource sharing

is essential to create a customized unit with multi-function capabilities.

The problem of identifying ISEs in the application and selecting the optimal

set for implementation is solved based on the gain and the cost of implementing

the functionality of the ISEs in hardware. A typical selection process, under area

constraints, would include ISEs in the design until the area constraint is met.

When resource sharing is being used for implementation, adding one ISE to the

AFU datapath may cost anywhere from a few multiplexers to implementing all

of its operators. Therefore, the selection process needs to be aware of the effects

of resource sharing over potential ISEs in order to make informed decisions.

On the other hand, the benefits of pipelining a datapath are well understood.

When the datapath of an ISE is already implemented in hardware, a clear perfor-

mance improvement is to make use of a pipelined datapath to overlap execution

of consecutive calls to the same ISE. For instance, consecutive execution of the

same ISE could take place when the ISE covers the execution of an entire inner

loop. However, current identification techniques constrain this optimization by

keeping, by all means, the control of the program flow in the software partition.

To address this concern, this thesis proposes a new concept to identify ISEs that

borrows ideas from zero-overhead loop instructions to permit pipelined execution
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of loops in the customized unit.

Additionally, previous works also lack the ability to explore the trade-offs that

can be obtained in the process of partitioning an application. Instead, the solution

has been always considered to be one clear optimal. The concept of extending

a processor with an AFU is already a trade-off: area is spent for the sake of

obtaining application speedups, and as more area is spent, more speedups are

obtained. Hence, a variety of trade-offs are exposed in the process of partitioning

an application. Similarly, trade-offs between speedup and area exist when a set

of ISEs is considered for an implementation that performs resource sharing. The

more resources are shared, the more the speedup obtained from the ISEs is likely

to decrease. Thus, it is important for the designer to be aware of all of the existing

trade-offs between speedup and area in order to choose the one that better suits

the design goals and constraints of the project.

Figure 1.1 and 1.2 show two hypothetical examples that illustrate some of the

mentioned problems. In Figure 1.1 two ISEs, ISE 1 and ISE 2, are identified in

the most critical section of an application. Each ISE groups three basic operations

and thus, their software execution takes three clock cycles, while the hardware

implementation of each ISE has an execution latency of one clock cycle. The areas

occupied by the hardware implementation of ISE 1 and ISE 2 are 8 and 7 area

units, respectively. The selection process is performed under an area constraint

of 10 units. A traditional ISE selection process makes a decision based on the

area required by individual ISEs. In which case, only one ISE can be selected

since implementing both of them would require 15 units. As both ISEs represent

the same speedup to the application, ISE 2 is chosen as it requires less area.

However, when the implementation shares resources amongst the ISEs, and when

the selection process is aware of such an implementation strategy, both ISEs can

be selected as they can be implemented together using only 10 units. In this case,

a single datapath that implements the functionality of both ISEs can be used.

This simple example shows that it is important to take into account the available

implementation alternatives in the selection process, as ISE area requirements can

be considerably reduced by using resource sharing and thus, important speedups

can be obtained.

On the other hand, both solutions: ISE 1+ISE 2 requiring 10 area units, and
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Operator Type Area

x 4 units

+ 2 units 

- 2 units

& 1 unit

mux 1 unit

x +

–

x &

–

&

smux

(a x b) – (c + d) (a x b) – (c & d)

ISE_1

Area = 8 units

SW latency = 3 cycles

HW latency = 1 cycle

ISE_2

Area = 7 units

SW latency = 3 cycles

HW latency = 1 cycle

Implementation-aware selection: ISE_1 and ISE_2

Area = 10 units

ISE that are identified in 

the critical sections of 

the application

Traditional selection: ISE_2

Area = 7 units

x &

–

(a x b) – (c & d)

a      b     c      d

a      b     c      d a      b     c      d

Selection of ISEs under 

an area budget of 10 

units

when s = 1 : (a x b) – (c + d)

when s = 0 : (a x b) – (c & d)

x

–

+

c      d c      d

a      b

Figure 1.1: Example where two ISEs are identified in the most critical section of
an application. ISE selection takes place under an area budget of 10 units. Tra-
ditional selection techniques consider ISEs that are implemented as independent
hardware datapaths. Thus, only one ISE can be selected, as implementing both of
them would require 15 area units. On the other hand, an implementation-aware
selection process can select both ISEs by sharing resources amongst the ISEs,
therefore obtaining more speedups in the given area budget.

ISE 2 requiring 7 area units, represent different trade-offs between speedup and

area. When ISE 1 and ISE 2 are implemented, more area is spent in order to

increase the speedup returns. As each solution is characterized by two important

metrics: speedup and area, there is no single best, but instead, there are trade-

offs in which more resources can be invested in return for gaining application

speedups. Thus, unlike previous ISE selection methods, the techniques proposed

in this thesis focus on exploring the design space of available trade-offs between

speedup and area.

Figure 1.2 shows a loop in which an ISE is identified. This ISE can be imple-

mented in hardware to perform the main operations of the loop in two cycles, in
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i = 0

while i <|a| 

d[i] = ((a[i] x a[i]) + b[i]) x c[i]

i = i +1

i = 0

while i <|a| 

d[i] = ISE_1(a[i], b[i], c[i])

i = i +1

x

x

+

a            b                  c

Stage 1

Stage 2

loop_ISE_1(a,b,c)

1 2 3 4 5 6 7

i = 0  (stage 1)

i = 0 (stage 2)

Increment

Compare

Branch

i = 1 (stage 1)

i =1 (stage 2)

...

1 2 3 4 5 6 7

i =  0 (stage 1)

i =  0 (stage 2)

i =  1 (stage 1)

i =  1 (stage 2)

i =  2 (stage 1)

i =  2 (stage 2)

i  =  3(stage 1)

...

time (clock cycles) time (clock cycles)

((a x a) + b) x c

Figure 1.2: Example where an ISE is identified to perform the main operations of
a loop body. A pipelined implementation of the ISE allows for the overlap of the
execution of consecutive iterations. However, this is not possible due to control
flow overhead. This thesis proposes an ISE that can absorb the instructions that
control the iterations of the loop, in order to obtain the speedups offered by a
pipelined datapath.

contrast with the three cycles required by the execution of the software sequence.

Thus, one cycle is saved for each iteration of the loop. The ISE is implemented

as a pipelined hardware datapath, i.e, it is executed in two independent stages.

Moreover, the operations of consecutive iterations do not present data depen-

dencies. In theory, when an iteration starts execution of stage 2, the following

iteration could start the execution of stage 1. However, the first time table of

Figure 1.2 shows that this is not possible for two reasons. Firstly, the instructions

that control the iteration of the loop are issued after every ISE. Secondly, an ISE

whose execution time takes more than one cycle typically stalls the processor

pipeline and no other instruction can be issued until its completion. Thus, in

order to exploit the speedup potential of pipelined implementations, important

changes need to be made in the ISE identification and selection stages. The

second time table of Figure 1.2 shows how the execution of the loop developes

when the control of the loop is given to the ISE itself, as it is proposed in this
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thesis. This example shows that important speedups can be obtained not only

by overlapping the execution of loop iterations, but also by significantly reducing

loop control overhead.

1.2 Hypotheses

This section presents the statements that motivated this thesis. A process of

research and experimentation was carried out in order to prove the validity of

these statements. Therefore, this thesis is based on the following hypotheses:

• Resource sharing amongst ISEs can be applied in order to obtain flexibility

and area efficiency. Furthermore, the design space of resource-sharing solu-

tions can be explored in order to find the available implementation trade-offs

between instruction latency and area savings.

• Given a set of ISEs that is considered for implementation, the optimal trade-

offs can be quickly found by learning the behaviour of previously explored

resource-sharing design-spaces via predictive modeling techniques.

• Given a set of ISE candidates, the unified design space of ISE selection

and resource sharing can be explored in order to find solutions that achieve

maximum speedup and maximum resource utilization.

• Additional parallelism can be exploited by pipelining the hardware data-

paths of the customized unit. Application loops may be sped up in this

fashion when control flow statements are appropriately inserted into the

ISEs.

• The aforementioned optimization processes can be implemented as an au-

tomated tool to aid and speed up the design of extensible processors.



8 Chapter 1. Introduction

1.3 Contributions

This thesis presents novel techniques in the field of automated processor synthe-

sis, which advance the state-of-the-art and enable the design of more efficient

processors. The main contributions of this thesis are summarized below:

• A novel heuristic that can be parameterized to control the de-

gree of resource sharing amongst a given set of ISEs, thereby

permitting the exploration of the existing implementation trade-

offs between instruction latency and area savings. As solutions that

aggressively share resources present the highest ISE datapath latency, pa-

rameters are used to control the ISE latency increments in strategic points

of the resource-sharing process. Parameters are also used to enable the cre-

ation of multi-function operators such as adder-subtractors as well as the

compression of ISE operators that allow synthesis optimizations to create

modules such as multiply-adders and carry-save adders. The design space of

implementation trade-offs can be explored by varying the parameter values

within their allowed ranges. This contribution is discussed in Chapter 3.

• An original method to quickly expose the optimal trade-offs be-

tween instruction latency and area savings, given a set of ISEs

that is considered for implementation. Based on previously explored

design spaces, predictive modeling is used to generate the parameteriza-

tion that the resource-sharing process requires in order to directly find the

optimal trade-off solutions. This contribution is discussed in Chapter 4.

• A complete hardware/software partitioning framework that, for

the first time, combines the design spaces of ISE selection and

resource sharing in ISE datapath synthesis. This integration exposes

a wide range of design points that can offer the designer previously unseen

solutions that maximize utilization and speedup within a given area bud-

get. An exploration of this unified design space is performed by guiding

the selection process with resource-sharing considerations, thereby favour-

ing combinations that are likely to share resources with low speedup losses.
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The result of this exploration is a set of selection-implementation alterna-

tives, each of which represents a unique trade-off between performance gain

and cost. On the benchmarks analyzed, the proposed technique finds solu-

tions that under a fixed area constraint, achieve speedups from 9% to 251%

higher than previous selection techniques. This contribution is discussed in

Chapter 5.

• An innovative method to allow multi-cycle ISEs, implemented as

pipelined datapaths, to overlap the execution of consecutive calls.

This is achieved by giving the extension unit the control over loop iterations,

when ISEs can cover the entire loop body. To further expose instruction-

level parallelism, the proposed loop ISE supports loops whose bodies form

hyperblocks, by providing the extension unit the means to communicate to

the processor the next instruction address. Loop ISEs broaden the scope

of instruction-level parallelism and obtain higher speedups compared to

traditional ISEs, primarily through pipelining, the exploitation of spatial

parallelism, and by reducing the overhead of control flow statements and

branches. A detailed case study of the JPEG application shows that the

proposed method achieves a speedup of 3.1×, while the state-of-the-art so-

lution achieves a speedup of 2.2× over pure software execution, with an area

overhead of less than 8% in hardware implementation. This contribution is

discussed in Chapter 6.

1.4 Structure

This thesis is organized as follows:

Chapter 2 introduces basic concepts of processor extensibility as well as

previous relevant works found in academia and industry. Additionally, the tech-

niques proposed in this thesis are further introduced and contrasted with the

state-of-the-art.

Chapter 3 presents a heuristic that can be parameterized to expose a broad

range of trade-off solutions to the implementation of an area-efficient AFU that

is able to share resources amongst a selection of ISEs.



10 Chapter 1. Introduction

Chapter 4 develops a machine learning technique to quickly find the optimal

trade-offs in the design space of resource-sharing solutions that can be exposed

with the heuristic proposed in Chapter 3.

Chapter 5 explores a heuristic to solve the ISE selection problem while taking

into account a resource-sharing-based implementation. The proposed heuristic

explores the design space in order to offer the designer a set of unique trade-offs

between cost and performance gain.

Chapter 6 introduces a new type of ISE that is able to take the control of

an inner loop in order to exploit the pipelined datapath of ISEs that cover a

complete loop body.

Chapter 7 presents concluding remarks and explores some ideas that could

complement or improve the work presented in this thesis.



Chapter 2

Background and Related Work

This chapter introduces basic concepts of processor extensibility. Additionally,

it explores existing architectures and tools developed by academia and industry

and compares them with the techniques proposed in this thesis.

Section 2.1 introduces the concept of processor extensibility and refers to some

of the extensible processors available in industry and academia. Section 2.2 de-

fines ISEs and describes how application speedups can be achieved with their

implementation. Section 2.3 describes other works that have approached the

resource-sharing problem, and discusses how the techniques proposed in this the-

sis advance the state-of-the-art. Section 2.4 presents exisiting solutions for the

ISE identification problem while Section 2.5 presents existing solutions for the

ISE selection problem. Section 2.6 reviews other works that have proposed so-

lutions to speedup the execution of loops and describes their difference with the

techniques explored in Chapter 6. Finally, Section 2.7 gives an overview of the

machine-learning techniques that are used in Chapter 4.

2.1 Extensible Processors

The term extensible processors refers to microprocessors that offer the possibility

to augment their ISA with ISEs. ISEs are executed in custom functional units or

AFUs that are part of the processor datapath.

There are several extensible processors available in the market. The most

visible of these are provided by ARC and Tensilica.

11
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ARC 600TMand ARC 700TM are configurable processor families that can be

configured using the ARChitectTMProcessor Configurator tool [1], from ARC.

The designer can customize a processor from a wide range of configuration op-

tions such as inserting special functional units, peripherals and closely coupled

memory, specifying register file type and size, interfaces, interrupts and cache

typical parameters. Processors can also be extended with ISEs by specifying the

AFU as a hardware module in Verilog.

Similarly, Tensilica Xtensa processor generator [2] offers the designer some

configuration options such as special functional units, register files and zero over-

head loop support. The processor can also be extended with ISEs. The designer

can specify the ISE’s functionality in the Tensilica Instruction Extension (TIE)

language, based on Verilog. Alternatively, the designer can use the XPRES com-

piler tool to automatically scan the application code to generate fusion candi-

dates [3]. Fusion operators are chains of basic operations compressed into one.

The concept of fusion is similar to ISEs but focuses on reusability of small chains

of operations.

ARC and Tensilica offer a complete tool chain for the design and development

stages. The techniques proposed in this thesis can be used in conjunction with

these tools to extend either of the offered core architectures. Additionally, soft

processors such Altera Nios II [4] and Xilinx MicroBlaze [5] can also be coupled

with the extensions created by the tools described in this thesis.

EnCore Extensible Processor

EnCore, introduced in [6], is an extensible processor based on the ARCompactTM

ISA. A base-line implementation of EnCore is an in-order single-issue processor

with a 5-stage pipeline. The gate count of the pipeline is approximately 25 Kgates.

Gate count is a technology-independent metric that refers to an estimation of the

number of 2-input NAND gates that are needed for the hardware implementation

of the design. It is calculated as the standard cell area given by the synthesis tools

divided by the area of a strength-1 2-input NAND gate in the same technology.

The EnCore processor can be extended with an AFU that implements ISEs

and that is closely coupled with the processor pipeline.
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The extension registers of the ARCompact ISA provide a route through which

the main core and the AFU exchange operands and results. A collection of scalar

registers are mapped to a set of short vector operands, each containing 4 scalar

registers. Each extension instruction can specify up to three source vectors and

up to two destination vectors. Source vector elements can also be permuted

as part of the extension instruction, thereby removing positional constraints on

input operands.

EnCore is the target processor for the techniques developed in this thesis.

2.2 Introduction to ISEs

ISEs are complex instructions that are added to a predefined processor ISA and

execute subgraphs of the program Data Flow Graph (DFG). A DFG forms a

basic block in the Control Flow Graph (CFG) of an intermediate compiler repre-

sentation of a program. In the DFG, graph nodes represent basic operations and

edges represent data dependencies. On the other hand, the CFG represents all

of the possible execution paths of the entire program.

In order to create a single complex instruction from a subgraph S of the DFG,

the three following conditions are checked:

• All of the nodes in the subgraph must be executable in the AFU. Thus,

nodes that correspond to memory operations or function calls, that need to

be individually handled by the processor, are usually forbidden.

• There is no path from a node x ∈ S to another node y ∈ S through a

node z /∈ S This property is commonly referred to as the convexity of a

graph. In order to exploit more parallelism, ISEs may group two or more

disconnected subgraphs as long as the ISE remains convex. Figure 2.1(a)

shows an example of a subgraph that does not meet this condition.

• The third condition is dependent on the architecture of the extensible pro-

cessor and is referred to as I/O architectural constraint. As the AFU ex-

changes input and output values with the register file of the processor, the

number of inputs and outputs of the ISE must agree with the number of
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Figure 2.1: (a) Shows how ISEs are identified in the DFGs of a program. (b)
Shows an extensible processor augmented with an AFU to execute an ISE.

inputs and outputs of the register file of the processor. This condition al-

lows the AFU to obtain in a single clock cycle all of the inputs that are

required for ISE execution. Similarly, it allows the processor to store in a

single clock cycle all of the outputs generated by the ISEs.

Figure 2.1(a), shows an example of an ISE that is chosen to replace a chain

of operators in one of the basic blocks or DFGs of the CFG of a program. ISEs

are executed in a custom functional unit or AFU. The AFU has a hardwired

datapath that corresponds to the functionality of the ISE. Figure 2.1(b) shows a

typical scheme for an extensible processor that executes ISEs in an AFU.



2.3. Resource Sharing in ISEs 15

Performance improvements are achieved by the parallel execution of opera-

tions, together with the chaining of basic operations in the same clock cycle. Ad-

ditionally, the use of ISEs can improve energy consumption for several reasons.

Firstly, the number of instruction fetches decreases as the ISEs replace several

native operations in the application code. Secondly, the number of read and write

operations to the register file decreases, as the chaining of hardwired operations

removes the need for temporary registers. Another positive consequence of using

ISEs is that the code of the application is reduced in size.

2.3 Resource Sharing in ISEs

Typically, one AFU is constructed for each ISE that is adopted to be part of

the ISA of the processor. However, most embedded processors are single-issue

architectures, thus, only one ISE will be in execution at any point in time. There-

fore, resources can be shared amongst the adopted ISEs in order to increase the

hardware utilization. As a consequence, more instructions could be allocated

in a given area and the overall cost and performance of the system could be

considerably improved.

Minimizing the area required to implement a set of ISEs is equivalent to the

minimum-area common super-graph problem, where a graph is the representation

of an ISE. Nodes represent operations and edges represent data dependencies.

Thus, given a set of graphs G, the minimum-area common super-graph problem

aims at finding a set of graphs G′ where every graph gi ∈ G is isomorphic to at

least one subgraph of a graph g′
j ∈ G′, and G′ minimizes the total area of the set.

A graph gi with vertices Vi and edges Ei is isomorphic to graph gj with vertices

Vj and edges Ej , if there is an edge-preserving bijection between Vi and Vj.

A variant of the minimum-area common super-graph problem has been demon-

strated to be NP-complete in [7].

A path-based heuristic approach to this problem is presented in [8], which

transforms a set of ISEs into a single hardware datapath based on the classical

problem of finding maximal subsequences and substrings thereof in the graph

representation of ISEs. Their aim is to maximize die area reduction through the

construction of a consolidation graph representing merged ISEs.
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Similarly, [9] introduces a heuristic that uses the construction of a compatibility

graph to reduce the problem of merging two datapaths to a maximum weight

clique problem, which is NP complete. They propose non-exact methods to solve

this problem in polynomial time. This approach operates on Control/Data Flow

Graphs (CDFG) which correspond to application loops that are to be mapped

into a reconfigurable unit which is closely coupled to a processor. Therefore,

the nature of their input graphs is different as the work in this thesis focuses on

acyclic graphs. Consequently, they do not prevent final graphs from containing

false loops.

The heuristic proposed in [9], is extended in [10] to account for the cost

of including multiplexers in the merged graphs. Based on this heuristic, [10]

proposes a high-level synthesis flow for ISEs, where ISE graphs are scheduled

first in order to generate from every multi-cycle ISE several single-cycle ISEs

that can be merged with each other in the following binding process. As this

methodology performs high level synthesis at the same time as merging the ISEs,

the resulting datapaths are limited and cannot be used if a pipelined AFU is

desired.

The heuristic presented in Chapter 3 of this thesis, uses a path-based ap-

proach to perform resource sharing, because it allows for control of every step

during the datapath merging process. The resource-sharing heuristic proposed

in Chapter 3 differentiates itself from previous approaches in the introduction of

latency constraints in the merging process, while they focus only on maximizing

the area savings. Furthermore, the space of possible implementation alternatives

is explored instead of trying to find a unique solution.

Another approach to resource sharing in ISEs is presented in [11]. The tech-

nique proposed in [11] performs ISE identification, selection and resource sharing

in the same heuristic. At first, small patters are identified in the application

and referred to as building blocks. Building blocks are then combined in order to

create more complex patterns that constitute ISEs. The motivation for creating

ISEs from building blocks is the possibility to reuse the hardware implementa-

tion of these blocks. Although the heuristic proposed in [11] simplifies the ISE

generation process significantly, as a consequence, the speedup potential of ISEs

is not fully explored as ISEs are limited to be built from a combination of the
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selected small patterns. Similarly, the resource sharing possibilities are limited

since ISEs can share only the whole predefined building blocks.

Hardware resource sharing is also a design goal in the field of high-level syn-

thesis. [12] presents an algorithm for dynamically generating templates of re-

occurring patterns for resource sharing in CDFGs. The approach in [12] is meant

to be used by compilers that translate complete applications described in a high-

level language into detail hardware specifications. The high-level representation

is first translated into an intermediate CDFG. Then, reoccurring patterns are

extracted from the CDFG and selected patterns represent the hardware blocks

that can be reused during in the application. As the input of the process is

the complete CDFG of the application, the problem is more related to the tem-

plate extraction problem in the ISE identification phase that is discussed in the

following section.

Subgraph isomorphism is another field of study that has been used to find

resource-sharing solutions in the domain of behavioural synthesis. The prob-

lem can be seen as enumerating all isomorphic subgraphs within a given set of

graphs. This problem, however, is even more relevant at the ISE identification

stage, where increasing the reusability of the chosen ISEs requires the identifica-

tion of isomorphic subgraphs in the DFGs of the application. However, another

generalization of the subgraph isomorphism problem: finding the Largest Com-

mon Subgraph (LCSG) within a given set of graphs, is part of the procedure to

find resource-sharing solutions proposed in Chapter 3. The LCSG problem is to

find the largest subgraph which appears to be common in a given set of graphs.

When only two graphs are given, this problem is polynomial, while it is NP-hard

for three or more graphs. In this thesis, the main objective of performing meging

is to reduce area, the LCSG problem is reduced to finding the maximum-area

common substring within the graphs. Nevertheless, approximation algorithms to

the LCSG problem, such as [13] and [14], can be used to replace the search for the

largest common substring within graphs in the algorithm proposed in Chapter 3.



18 Chapter 2. Background and Related Work

2.4 ISE Identification

Extending an ISA with new complex instructions is generally divided into in-

struction identification and instruction selection. Instruction identification starts

from the CFG of an application, extracted from high level code, such as C. Then,

it operates over each basic block in the CFG to identify potential subgraphs that

can be implemented as ISEs. The identification process involves clustering basic

operations to create larger and more complex ones, while taking into account a

set of constraints and a guide function that captures the designer’s objectives.

While ISE identification operates on a basic block, selection looks over the entire

application to choose the set of candidates that best suits the designer’s goals

and constraints.

Early works on ISE identification for reconfigurable processors considered the

identification of Multiple-Input Single-Output (MISO) subgraphs in the hot basic

blocks of the application [15]. The goal was to find maximal MISO connected

subgraphs whose implementation is feasible in a reconfigurable unit attached a

base processor. The complexity of this problem is linear, however, the number of

nodes that can be clustered under the single output constraint limits the potential

speedup that can be achieved by a dedicated hardware datapath.

Motivated by architectures that could commit more than one value per cycle,

such as the VLIW ST200 [16], later works aimed at identifying Multiple-Input

Multiple-Output (MIMO) subgraphs. Relaxing output constraints allowed the

identification of larger subgraphs that could exploit more parallelism. On the

other hand, the problem of finding the optimal MIMO subgraph from the DFG

of a basic block has a solution space that grows exponentially with the number of

nodes of the DFG. Thus, enumerating all of the subgraphs from a given graph is

an intractable problem. However, as in [17], it has been shown that the number

of feasible subgraphs is much smaller than the exponential worse case since the

feasibility of the subgraphs is constrained by factors such as I/O ports of the

register file, forbidden operations and convexity.

The ISE identification phase is commonly recognized as the enumeration of

all of the feasible subgraphs of a basic block such that the selection phase cannot

miss the global optimum. In [17], a heuristic to quickly enumerate all of the fea-
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sible subgraph from a given graph was presented. When only feasible subgraphs

are to be enumerated, the design space can be pruned given I/O architectural

constraints. In [17], the design space was also pruned by allowing only connected

subgraphs.

An exhaustive enumeration of feasible subgraphs which allows disconnected

nodes to be part of MIMO subgraphs was presented in [18]. This enumeration is

performed in order to find the optimal subgraph of one basic block according to a

merit function. The merit of a subgraph is taken to be the speedup obtained by

its hardware implementation during the execution of a program. This algorithm,

based on the violation of I/O and convexity constraints, prunes a complete binary

decision tree, where decisions are to include or not a node of the DFG in the

subgraph that is being created. This enumeration is extremely computationally

expensive for large graphs and for very loose I/O constraints.

Other works coupled the speedup potential of the subgraphs with their capa-

bility to be reused by other sections of the program [19, 20, 21, 22, 23]. When

reusability is considered, candidate subgraphs tend to be small, thus restricting

the potential performance of ISEs. [19] further simplified the complexity of the

search by limiting the latency of the subgraphs. Similar constraints have been

used in other works, such as limiting the number of operators in the candidate

subgraphs [20].

Other exact solutions to the problem of finding the optimal subgraphs from

basic blocks are based on Integer Linear Programing (ILP) [24].

In [25], a polynomial time algorithm to fully enumerate all of the feasible

subgraphs in a given graph is presented. This is achieved by reformulating the

problem on a polynomial solution space.

[26] proposed a heuristic to find the optimal subgraph from a basic block

given a gain function that is taken to be, as in [18], the speedup obtained by

the hardware execution of the subgraph during the execution of the program.

The authors in [26] refer to their heuristic as ISEGEN. ISEGEN follows the

basic principles of the Kernighan-Lin (K-L) min-cut partitioning heuristic, which

identifies subgraphs in a bottom-up fashion using iterative improvement. The

K-L min-cut heuristic toggles nodes between software and hardware partitions

based on the gain function. Results in [26] show that ISEGEN is able to find
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solutions with speedups comparable to those obtained by exhaustive search.

Works such as [27] and [28] proposed solutions to overcome the limitations

imposed by the number of I/O ports of the processor register file. [27] proposed

to schedule input and output transactions throughout the ISE execution such

that the number of reads and writes to the register file fits the number of I/O

ports available for the AFU. On the other hand, [28] suggested to have internal

memory in the AFU to store the data requested during ISE executions.

Previous identification techniques had used the I/O constraints to significantly

prune the design space of solutions. However, as the number of I/O ports available

to the AFU does not necessarily limit the number of inputs and outputs of the

ISEs, as demostrated in [27] and in [28], new heuristics were needed given that full

subgraph enumeration techniques do not scale under unlimited I/O conditions.

The work presented in [29] shows that the speedups generated by ISEs behave

monotonically. This means that increasing the number of nodes that the ISE

comprises cannot reduce its speedup gain. Under this assumption, there is only

need to enumerate maximal convex subgraphs from basic blocks to guarantee that

the subgraph that maximizes speedup gain is enumerated. Later, other works

such as [30] and [31] have proposed algorithms that, under the same assumption,

improve the runtime to enumerate all maximal convex subgraphs in a basic block.

2.5 ISE Selection

The subgraphs listed from each basic block by identification methods become the

candidate ISEs to be evaluated by a selection process.

Given a set of candidates C, the selection process searches to find the subset

S ⊆ C such that the overall speedup of the application is maximized under a set

of design constraints.

As seen in the previous section, there is a significant body of previous work

on ISE identification. However, the selection phase is often neglected or com-

bined with the identification phase, when identification provides disconnected

subgraphs, by iteratively selecting the subgraph that maximizes the gain until a

global design constraint is met.
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A common global design constraint taken by some approaches is the maximum

number of ISEs that can be selected, referred to as Nmax in this chapter [24,

32, 26]. An optimal solution to the selection problem under this global design

constraint is described in [32]. It uses an exact algorithm to enumerate the best

set of disjoint subgraphs from each basic block of the application to generate

the final set of ISEs. Then, all possible combinations of Nmax or less candidates

from the generated set of subgraphs represent possible solutions to the selection

problem. As pointed out in [32], exact solutions are computationally expensive

and heuristics need to be applied. An approximate solution proposed in [32],

iteratively identified the best subgraph from each basic block in order to select

the global best. Once a global best is found, their nodes are contracted into

one node, thus preventing them from being included again in another candidate.

The iterative process ends when Nmax candidates are selected. Another heuristic,

presented in [32], combines identification and selection using genetic algorithms.

This solution appears to have better scalability when the I/O constraints get

looser.

Another global design constraint that has been considered is the maximum

area that the AFU can use, referred to as Amax in this chapter. [33] studies the

different global constraints that are commonly taken during ISE selection in order

to simplify the design space or to meet design goals. An ILP formulation to solve

the problem of ISE selection given a set of candidates is proposed in [33], this

formutation can be constrained by Nmax or Amax. By experimenting with relaxed

constraints it is concluded that reasonable limits for either constraint, in most

cases, can perform close to the maximum observed speedup. [33] also highlights

the computational expense of performing ILP candidate selection and proposes a

greedy approach with three possible ranking metrics: speedup, speedup per area

and software execution time of the templates.

Area, as a constraint in the selection process, has been considered by many

others, which have solved the problem either under ILP formulations [34, 35]

or by using greedy algorithms [36, 37]. However, implementation considerations

have been limited to check the real area and delay of the ISEs in hardware.

Other attempts for a more accurate solution have been also proposed. [38]

considered timing and area constraints for the selection phase. Prior to selec-
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tion, an identification phase prunes inferior candidate subgraphs in order to limit

the candidate list to promising subgraphs. Hardware synthesis is attempted in

every candidate subgraph. A candidate subgraph can be discarded if the syn-

thesis process fails because of timing or area constraint violations. From each

candidate subgraph, several ISE candidates can be generated. Each ISE candi-

date corresponds to a synthesis alternative and it is characterized by its area, its

critical path and the number of cycles to complete its execution. The first ISE

candidate generated from a candidate subgraph is to be executed in one clock

cycle, however, if its critical path is larger than the critical path of the proces-

sor, other ISE candidates are generated by increasing the number of cycles one

by one until the critical path of the ISE is equal to or smaller than the critical

path of the processor. Then, Pareto optimality is used to compare the generated

set of ISE candidates in terms of area, critical path and execution cycles. ISE

candidates dominated by others are discarded. The selection process takes place

over the remaining ISE candidates. The goal of the selection phase is to select

the combination of ISE candidates, selecting only one version of every candidate

subgraph, that maximizes the application speedup under a given area constraint.

A few assumptions are made in order to simplify the problem and solve it with

a branch and bound algorithm that finds a set of best selection alternatives to

evaluate accurately.

In [39], an identification heuristic makes use of a guide function to priori-

tize different growing directions during the exploration of the DFGs. The guide

function takes into account factors such as criticality, which tends to give more

priority to the nodes in the critical path of the DFG, latency and area of the

operators in hardware, and I/O constraints. The candidates identified in this

process are then passed through an isomorphism check. Graphs that are equiv-

alent are grouped to form one AFU candidate. Then, two passes through the

AFU candidates annotate information to them. The first pass records which

AFU candidates can be subsumed by others; AFU1 can be subsumed by AFU2

if the functionality of AFU1 can be reproduced by AFU2 by using the identity

input values on some of its operators to pass data through them with no effects.

The second pass records wildcard options for each AFU candidate; wildcards are

AFU candidates that are equivalent except for the operations on one node (wild-
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cards). The addition of wildcards and subsumed subgraphs adds complexity to

the subsequent AFU selection phase as identified templates may be implemented

by several AFU candidates. Thus, the gain of implementing each AFU candidate

has to be updated every time one AFU candidate is selected. When an AFU

candidate is selected, the templates that are comprised in it are removed from

the annotations of the remaining AFU candidates. For AFU candidate selection,

the problem is simplified by taking a greedy approach that repetitively takes the

AFU candidate with maximum gain and subsequently updates the gain of the

remaining AFU candidates.

[40] proposes a complete framework, from subgraph enumeration to selection,

that takes into account technology mapping results. Prior to selection, isomor-

phism is sought amongst candidate subgraphs. Isomorphism information is then

annotated in the candidate list. [40] highlights the importance of performing tech-

nology mapping on every candidate in order to discard any clear suboptimal. A

candidate may be a clear suboptimal if technology mapping reports that it cannot

fit the target or that hardware execution is not faster than software execution.

Technology mapping also allows the selection process to have precise information

about the area and timing that can be obtained after implementing a candidate.

In order to select a set of candidates for implementation, [40] reworks a greedy

selection algorithm presented in [32] to deal with isomorphism information.

Thus, mapping issues, namely isomorphism between ISE candidates and delay

and area of each ISE candidate in synthesized hardware, have been approached by

some research groups. Isomorphism, is important in order to avoid implementing

separately ISEs with equivalent functionality, and to allow a selection process

aware of template reusability across the complete application.

Mapping information such as exact area and timing of each ISE candidate

has been considered under the assumption that each ISE will form a separate

AFU. However, current demands for more and bigger ISEs that are able to yield

application speedups comparable to thread level parallelism, require sharing re-

sources amongst ISEs to create AFUs that can be reconfigured to perform the

functionality of several ISEs.

Resource sharing for ISE datapath synthesis has been also considered in [8]

and [9]. However, they assume that the set of ISEs has previously been selected
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under different considerations.

In summary, area constraints are a proven type of global constraint that should

be considered in the selection process, since maximizing speedup as a unique

constraint and goal assumes the availability of unlimited resources. Therefore,

a selection process should be aware of the area requirements of a subset of ISE

candidates. However, when resource sharing is used for ISE datapath synthesis,

the area and profitability of the subset cannot be known until resource sharing

is attempted. Furthermore, the trade-offs between speedup and area that are

found in a selection of ISEs depend not only on the area and speedup that the

individual ISEs require or yield but also on the way that they can be merged with

each other. Thus, a clear limitation of previous selection techniques is the lack

of interaction with the implementation phase of the design. In order to solve this

limitation, Chapter 5 of this thesis proposes a framework in which the selection of

ISEs takes into account results of ISE datapath synthesis with resource sharing.

This integration allows to offer the designer solutions that use more efficiently the

given resources, thus obtaining greater speedups. Furthermore, unlike previous

approaches, the framework presented in this thesis explores the design space of

trade-offs between speedup and area that are available to the designer at the

selection level.

2.6 Pipelining ISEs to Speedup Loops

Chapter 6 of this thesis proposes a new type of ISEs, referred to as loop ISEs,

that are able to execute entire loops in the AFU in order to leverage the pipelined

datapath of ISEs that can cover entire loop bodies. In order to increase the

number of loops that can be converted to loop ISEs, loops whose bodies form

hyperblocks are also supported. This section presents previous works in contrast

with the proposed loop ISEs.

[41] proposed a hyperblock loop acceleration model for use in the Garp re-

configurable coprocessor. They decomposed the runtime of two applications with

two distinct data sets, into single-exit loops, multi-exit loops, hyperblock loops,

unfruitful loops, and other. The hyperblock loops ranged from 9.0% to 57.6%

of the different applications. The speedups achieved by implementing the differ-
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ent loops as hardware accelerators were not reported. [42] advocated the use of

hyperblock formation to implement efficient loops in VLIW multimedia proces-

sors. The loops were stored in an external loop buffer which was distinct from

the instruction cache. The use of the buffer reduces instruction fetch power and

eliminates branch penalties, similar in principle to zero-overhead loops.

The method proposed in this thesis to handle hyperblock side exits shares

some principle similarities to both of these proposals. The reconfigurable co-

processor in [41] transfers all of its data back to the main processor upon every

hyperblock exit. The approach presented in Chapter 6 does not suffer from this

overhead as the loop ISE is tightly coupled to the processor and writes its results

to the processor’s register file; if a local memory is used, then DMA transfers all

written data back to the main memory after the loop executes. In [42], to handle

side exits, a predicated jump instruction branches to a decode block that points

to the appropriate destination. Rather than using a predicated jump, the ap-

proached proposed in this thesis stores the different exit points in a local register

file. The appropriate index in the local register file corresponding to each side

exit is stored in the control logic of the ISE.

The work on loop ISEs is also closely related to the design and implementation

of application-specific loop accelerators and software pipelining using hyperblocks,

which were originally proposed to facilitate predicated execution. Therefore, the

following sections discuss some existing works in these two areas.

Loop Accelerators

Behavioural synthesis for loops expressed in high-level languages is a mature

field [43]. Loop accelerators are typically realized as external co-processors that

are connected to the main processor by a system bus, unlike ISEs, which are more

tightly coupled. [44] proposes a mixed approach to accelerate applications using

a mixture of coarse-grained co-processors and fine-grained ISEs.

In the technique proposed in this thesis, unlike in prior loop accelerators, there

are no restrictions on the hardware implementations of the AFUs, beyond the I/O

interface to the processor. In contrast, most loop accelerator architectures are

modeled with traditional arithmetic units and the operations of the loop body



26 Chapter 2. Background and Related Work

are map to the available units. This constrains the speedup gains, as only one

operation can be executed at ever clock cycle.

For example, the Program-in-Chip-Out (PICO) project [45] proposed a loop

accelerator that consisted of a synchronous array of customized processor data-

paths, including register files and a programmable interconnect. Data transfers

between datapaths in the accelerator follow the principles of systolic arrays. [46]

developed modulo scheduling and hardware synthesis methods for this type of ac-

celerator. The Streamroller synthesis system extended these ideas by generating

multi-accelerator pipelines, connected by double buffers [47].

To reduce area costs, several groups have proposed methods to generate ac-

celerators that can execute multiple loops [48, 49]. Loop accelerators based

primarily on coarse-grained reconfigurable components have also been proposed

[50, 51, 52, 53, 54, 55]. The work in this thesis is orthogonal to both of these

strains of research. The datapath of loop ISEs can be shared either with the

datapath of other loop ISEs or with the datapath of other traditional ISEs. Ad-

ditionally, loop ISEs generated following the techniques presented in Chapter 6

can be mapped to a wide range of reconfigurable logic units. [56] compared several

ASIP acceleration methods for JPEG applications. They compared traditional

ISEs, and two co-processors, one generated automatically from a behavioural

synthesis tool, and one developed by hand. The best result was the lattermost,

which achieved a speedup of 2.57× over an original processor. It is difficult to

compare results in this thesis directly against theirs, as the base processors are

different, and they used cycle-accurate simulation while for the results reported

in this thesis soft-processor emulation was used.

A number of other papers have focused on the appropriate use of dependence

analysis and loop optimizations, such as unrolling, pipelining, and vectorization in

the context of hardware synthesis of loop-based accelerators [57, 58, 59]. The work

performed in this thesis emphasizes hyperblock formation and irregular control

flow in the presence of loops, but could easily benefit from these analyses and

transformations as well. This thesis does not consider the possibility of unrolling

loops prior to pipelining, and the scheduling method is not sophisticated. More

aggressive optimization and scheduling techniques could improve the quality of

the loop ISEs proposed in this thesis.
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Software Pipelining

Software pipelining techniques seek to improve loop performance by overlapping

the execution of different iterations; typically, software pipelining is used for

VLIW processors that have parallel functional units and require static scheduling

at compile-time. The works most relevant to this thesis are those that focus

on software pipelining loops that have multiple control flow paths or function

calls [60, 61]. The solution presented in this thesis is to generate a hardware

pipeline rather than a software pipeline, and to form hyperblocks to best deal

with control flow within loops.

2.7 Machine-learning Background

Machine learning attempts to simulate human intelligence in order to allow ma-

chines to make accurate predictions based on past observations.

More formally, the goal is to automatically learn a functional mapping between

an input that is processed and the generated output.

Input → Function → Output

This function can be modeled by extracting statistical phenomena from sample

input-output pairs. Such samples represent incomplete information belonging to

a complex pattern. The constructed model can later predict the correct output

from previously unseen inputs.

Inputs and outputs are vectors whose components can be real-valued numbers,

discrete-valued numbers or categorical values.

There are a great number of theories, algorithms, techniques and heuristics

that tackle differently the task of learning. In practice, the incorporation of

prior knowledge of the problem is crucial in choosing the statistical modeling

method that best suits the problem. In this section, some of these approaches

are introduced.
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Clustering

Clustering is a technique to partition a set of samples into c subsets. It agglom-

erates samples that are similar. One of the most popular clustering algorithms is

known as k-means. This is a procedure to classify a given data set into k clusters,

where k is a number fixed a priori. k centroids, one per cluster, need to be found

in the space. Each sample will belong to the cluster of the closest centroid.

The Expectation-Maximization (EM) algorithm [62] was used in the work

reported in Chapter 4. First, it randomly assigns items to clusters and then it

iterates to find a clustering solution with the smallest in-cluster sum of distances.

At every iteration, the centroid of each cluster is found. Then, each item is

reassigned to the cluster with the closest centroid. The algorithm terminates

when no further reassignments take place. Distances are typically calculated in

Euclidean space.

Probability Distribution

Given a set of samples of a variable X, one can extract a statistical model that

defines the probability of X falling within a particular interval. A common prob-

ability distribution that can approximate many different naturally-occurring dis-

tributions is the normal distribution. Due to its convenient properties, data with

unknown distribution are commonly assumed to be normal.

A normal distribution is characterized by a mean and a variance, which are

calculated from the available samples of the variable [63]. The equation used to

describe a continuous probability is the probability-density function, which for

normal distributions is the following:

P (x) = 1
σ
√

2π
e

−(x−µ)2

2σ2

The one-dimensional normal distribution can be generalized to k dimensions.

In which case, a value for the variable X is expressed as a k-vector. The param-

eters of such distributions are a mean k-vector µ and a kxk covariance matrix

Σ.
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Sampling Distribution

From any probability distribution, sample numbers can be generated at random.

The objective is to generate values for a variable X that are distributed according

to the nature of the original variable [63]. A common method for sampling a

multi-dimensional normal distribution is used in the work reported in Chapter 4.

It can generate a random vector X from a k-dimensional normal-distribution

characterized by a k-vector µ and a kxk covariance matrix Σ. X is computed as

follows:

X = µ + LZ

L is the Cholesky decomposition of Σ. In other words, L is the unique lower

triangular matrix such that LLT = Σ and the diagonal elements of L are positive.

Z is a vector of independent random samples from a normal distribution whose

mean vector is a zero vector and covariance matrix is the kxk identity matrix.

Cross-validation

Cross-validation is a statistical method to evaluate or compare models by testing

their accuracy with data that has not been used during the training phase [64]. In

other words, cross-validation gauges the generalizability of a model. The available

data are divided into two segments: one is used to train the model, and the other

one is used to validate it.

A typical procedure is called k-fold cross-validation. The data is partitioned

into k equally-sized segments. One segment is used for validation while the re-

maining k − 1 segments are used to train the model. This process is repeated

k times so that every segment is validated. Finally, the validation results are

averaged over the rounds.

A special case of k-fold cross-validation, where k equals the number of available

training instances, is called leave-one-out cross-validation. Therefore, in each

iteration nearly all of the data are used for training except for one sample that is

used for validation. This procedure is particularly useful when the amount of data

available for training is small. It avoids over-fitting the model by maintaining the

training set as large as possible. On the other hand, leave-one-out cross-validation
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tends to be computationally expensive as the training process has to be repeated

a large number of times.

k-Nearest Neighbours

k-nearest neighbours is one of the simplest machine-learning algorithms. It bases

its predictions on the response of the k closest training samples. Distances are

measured in the feature space and, for continuous variables, these are typically

calculated as Euclidean distances. The heuristic to transform the response of

the nearest neighbours into a prediction for a new instance can be adapted from

numerous existing heuristics according to the nature of the problem. Amongst

these, a simple method predicts the output corresponding to a new input to be

the same as that of its nearest training sample in the feature space. The choice

of k depends on the nature of the data and can be selected by heuristics such as

cross-validation.

Standard Error of the Mean

The standard error of the mean (SEM) is used to estimate how much variation

can be expected from the sample mean when the true mean is unknown.

It is usually estimated as follows:

SEM = s√
n

Where n is the number of available samples and s is the sample standard

deviation. The larger the sample size, the smaller the error.

If the data are assumed to be normally distributed, the SEM can be used to

calculate the confidence intervals of the sample mean. For 95% confidence, the

lower and upper limits of the mean are:

Upper 95% limit = x̄ + 1.96 x SEM

Lower 95% limit = x̄ − 1.96 x SEM



Chapter 3

Resource Sharing in ISEs

3.1 Introduction

Customized processor performance generally increases as additional custom in-

structions are added. However, performance is not the only metric that modern

embedded systems must take into account; die area and energy efficiency are

equally important. Resource sharing during synthesis of ISEs can significantly

reduce the die area and energy consumption of a customized processor and, ad-

ditionally, it can greatly increase the flexibility and reusability of the extended

processor. These properties are achievable by reusing hardware datapaths, thus

allowing reconfiguration of the customized unit in order to target different in-

structions and/or applications.

As more custom instruction can be synthesized within a given area budget,

the well known performance and energy benefits of ISEs can be increased [38].

Moreover, as the utilization of the synthesized logic increases, static power con-

sumption, dominant factor in deep sub-micron technologies, is reduced.

Resource sharing involves combining the graph representations of two or more

ISEs which contain a similar subgraph. This coupling of multiple subgraphs, if

performed naively, can increase the latency of the extension instructions consid-

erably. However, as it is shown in this chapter, an appropriate level of resource

sharing provides a significantly simpler design with modest increases in average

latency for ISEs. Thus, this chapter presents a new heuristic that controls the

degree of resource sharing between a given set of custom instructions in order to

31



32 Chapter 3. Resource Sharing in ISEs

generate optimal trade-offs between area and instruction latency.

This chaper is organized as follows. Section 3.2 presents a simple example

that shows the problem that motivated the work presented in this thesis, which is

solved by the resource-sharing heuristic that is discussed in detail in Section 3.3.

Section 3.4 describes the methodology that is used in order to model the area

and the delay of the graphs that are processed by the algorithm. Section 3.5

discusses how the customization of a processor is finalized, making used of the

AFU solution that is generated by the resource-sharing heuristic. Section 3.6

describes the experiments that were carried out. Section 3.7 presents the results

that were obtained, and Section 3.8 concludes this chapter.

3.2 Motivation

It is possible to find a large number of potential extension instructions in embed-

ded applications. Also, when extending an instruction set to cover a complete

class of applications, a larger number of extension instructions is expected to be

identified, effectively representing the union of the extension instructions required

by each application in the class. Each new instruction adds to the die area of the

system. However, to avoid bloating the die area with a large number of extension

instructions, it is important to identify and exploit any commonality between in-

structions and, where possible, to share hardware resources when this represents

a good trade-off between die area and execution time. The problem addressesed

in this chapter is how to merge such a collection of graphs to reduce the overall

die area, whilst minimizing the increase in execution latency.

Depending on the alignment of shareable paths in ISE graphs, it might be

found that the resulting latency is almost unchanged after merging, or that la-

tency increases significantly for some or all merged operations. Naturally, it is

desired to avoid merging a frequently used ISE with an infrequently used ISE if

such a merge would add to the latency of the one that is frequently used. Thus,

the optimization process becomes highly complex when instruction latencies may

be modified by merging.

Figure 3.1 illustrates a situation that frequently occurs in the process of merg-

ing the hardware implementation of a set of ISEs. (a) and (b) show the graphs
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Figure 3.1: Example of path merging. ISEs in (a) and (b) can be merged into a
single multi-function datapath. (c) represents the solution with minimum area,
however, the latency of both ISEs is increased. Instead, (d) represents a merging
solution where slightly fewer area savings are obtained but the latency of the ISEs
remains unchange.

that represent ISE 1 and ISE 2 respectively. (c) corresponds to the minimum-area

common-graph that is obtained in order to implement ISE 1 and ISE 2 in a single

datapath. Multiplexers are used to isolate the graphs according to the operation

they implement. As shown in (c), the datapath generated is significantly longer.

Thus, the latency of both ISEs has increased with the merge and therefore, the

speedup that each ISE yields decreases. Another solution to merging ISE 1 and

ISE 2 is shown in (d). In (d), ISE 1 and ISE 2 share fewer resources, and thus,

the area of the solution is greater than that of the solution in (c). However, the

latency of the instructions remains unchanged after the merge. Therefore, the
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speedups obtained from implementing ISE 1 and ISE 2 are maximum and at the

same time area savings are obtained.

On the other hand, both solutions: (c) and (d) represent different trade-offs

between ISE latency and area. (c) represents a solution that requires less area

than (d), but (d) represents a solution that generates greater speedups than (c).

Thus, as each solution is characterized by two important metrics: ISE latency and

area, there is no single best solution. Instead, there are trade-offs in which the

more resources are shared, the more the speedup obtained from the ISEs is likely

to decrease. Therefore, unlike previous resource-sharing methods, the techniques

proposed in this chapter focus on exploring the design space of available trade-offs

between ISE latency and area.

3.3 Parametric Resource-sharing Heuristic

The proposed resource-sharing heuristic is a path-based algorithm that operates

on a DFG. A DFG is, in turn, a directed graph with no cycles or a Directed

Acyclic Graph (DAG). These graphs are represented by a set of vertices V and

a set of edges E, where vertices can be inputs, operators or outputs, and edges

indicate the data dependencies between them. A path within a DFG is a sequence

of vertices that traverses the graph, through a subset of edges, from an input to

an output.

A collection of such DFGs represents a set of compound operators requiring

an efficient micro-architectural implementation. As it will be shown later in this

chapter, there are many ways in which the operators of such DFGs can be shared,

resulting in a complex design-space. The goal of this algorithm is to expose this

design space, allowing other tools to search the space in order to select the most

appropriate cost-performance point according to higher-level design constraints.

Algorithm Parameters To allow the algorithm to find many alternative solu-

tions it is parameterized by three real-valued thresholds and two binary switches,

which trigger different behaviors during the process of merging DFGs. The thresh-

old parameters are αT , βT and θT , each taking a real value in the range [0, 1].

Their combined role is to limit the increase in the ISE execution delay in relation
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to the area saved by merging operators. The two binary parameters are multiOp

and grouping. The multiOp parameter controls the creation of multi-operation

vertices from similar, but not identical, operators. The grouping parameter deter-

mines whether or not certain idiomatic operator groupings will be recognized and

exploited during the merging process. Such groups are treated atomically and

are expected to allow downstream optimizations amongst their components when

logic synthesis is performed. These parameters are introduced in detail later in

this section.

Sharing Resources Resource sharing is induced by the search for maximum-

area common-substrings between two paths belonging to different graphs. A ver-

tex is common between two paths when the operators of the two vertices are the

same. There are also some special cases where vertices with different operators

can be merged, as explained in Section 3.3. Area reduction is maximized by the

fact that a substring is chosen according to the expected area saved by merging

two instances of that substring, rather than by simply considering the substring

length. The area of a substring is therefore defined as the sum of the areas of

each operation within the substring. As the sharing of this common substring

will remove one instance of the substring from the final system, this area mea-

surement approximates the expected area savings. Function findMaxSubstring,

in Algorithm 1, shows how the search for a maximum-area common-substring

between two paths can be implemented.

Algorithm Phases The main merging process is divided into a global and a local

phase. A worked example to illustrate these phases can be found in Figure 3.2.

The purpose of the global phase is to locate the maximum-area common-substring

between any pair of graphs. This identifies good initial candidates for merging

and defines how they will be merged. The purpose of the local phase is to take

a merged pair of graphs from the global phase and search for additional pairs

of vertices in the merged graph that can themselves be merged. In each phase,

there is an exhaustive search for a maximum-area common-substring, comparing

all pairs of paths belonging to different graphs. In the global phase, a maximum-

area common-substring, referred to as MaxStrGlobal, is chosen from all of the
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available graphs. If Gx and Gy contain MaxStrGlobal, Gx and Gy can be merged

through MaxStrGlobal to form a combined graph G′. The local phase performs

further merging in G′ by iteratively finding new common substrings that can be

merged between Gx and Gy. The common substrings found during the local phase

are referred to as MaxStrLocal.

Overview A formalized definition of the merge function, is given in Algorithm 4.

This function operates on a set of m graphs Gout, where initially m = n. For each

Gi ∈ Gout, a set of paths Pi is created from all possible paths in Gi. P aggregates

all sets of paths from P1 to Pm. Function findMaxStrGlobal, shown in Algo-

rithm 2, finds the maximum-area common-substring MaxStrGlobal by comparing

every path in Pi with all other paths that belong to Pj 6=i. The merge function then

creates a candidate replacement graph G′ by merging the graphs Gx and Gy that

contain MaxStrGlobal. The local phase, defined by function findMaxStrLocal

shown in Algorithm 3, then searches iteratively for MaxStrLocal. This considers

all pairs of paths with one path from Px and one from Py. Nodes that were shared

already between Gx and Gy in G′ are excluded from the search. The local search

excludes any MaxStrLocal that creates a cycle in the merged graph. This iterative

local search finishes when no further MaxStrLocal instances can be found. Lines

15–21 of Algorithm 4 use parameter θT to decide whether G′ should be permitted

to replace Gx and Gy. The reason for introducing this threshold test is explained

in Section 3.3. The sequence of global and local phases repeats until no further

MaxStrGlobal is found during the global search, or when there is only one graph

remaining in Gout.

Multi-operation Vertices

In practice it is common to find vertices that perform similar but different oper-

ations. In some cases these vertices could be merged with a small overhead to

produce a multi-operation vertex. For example, an adder and a subtracter can

be implemented by a vertex that represents a generic functional unit of similar

complexity to both the adder and the subtracter.
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Figure 3.2: Example of merging two DFGs. In (a), two graphs, G1 and G2,
are presented as candidates for merging, together with the area of each kind of
operator. In (b), global merging is performed after finding MaxStrGlobal between
G1 and G2. In (c), (d) and (e), local merging is performed iteratively until no
MaxStrLocal is found.
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Algorithm 1: Subroutine to find maximum common area substring be-
tween two paths

1: findMaxSubstring (pi, pj, multiOp)
{Opx represents the operator type of vertex x.
Fx represents the operator family of vertex x.
|X| represents the length of substring X.
Ax represents the area of substring or vertex x.
getAreaSavings(x, y) returns the area savings obtained from merging operator
type x and operator type y into one multi-operation vertex, as indicated in
equation 3.1}

2: for all common Substrings between pi and pj do

3: if multiOp = 1 then

4: newType = false

5: {∀ l from 1 to |Substring|, Substring[i] has been formed from pi [a + l] and
pj [b + l] where Fpi[a+l] = Fpj [b+l]}

6: for l = 1 to l = |Substring| do

7: if Oppi[a+l] 6= Oppj [b+l] then

8: ASubstring += getArea(pi [a + l] , pj [b + l])
9: newType = true

10: else

11: ASubstring += ASubstring[l]

12: end if

13: end for

14: else

15: {∀ l from 1 to |Substring|, Substring[i] has been formed from pi [a + l] and
pj [b + l] where Oppi[a+l] = Oppj [b+l]}

16: for l = 1 to l = |Substring| do

17: ASubstring += Asubstring[l]

18: end for

19: end if

20: if not (newType and (|substring| = 1)) then

21: if ASubstring > AMaxSubstring then

22: MaxSubstring = Substring
23: end if

24: end if

25: end for

26: return MaxSubstring

The resource-sharing algorithm can combine a pair of vertices whose opera-

tions are different provided they can be implemented by a single unit that per-

forms both operations with an acceptable overhead in area and delay. Vertices

with different operations may be merged, if those operations belong to the same

family. These families of operations are defined in Table 3.1.



3.3. Parametric Resource-sharing Heuristic 39

Algorithm 2: Subroutine to find MaxStrGlobal

1: findMaxStrGlobal (P , multiOp)
{AX represents the area of substring X}

2: for all Px ∈ P do

3: for all Py 6=x ∈ P do

4: for all pi ∈ Px do

5: for all pj ∈ Py do

6: MaxSubstring = findMaxSubstring (pi, pj, multiOp)
7: if AMaxSubstring > AMaxStrGlobal then

8: MaxStrGlobal = MaxSubstring
9: end if

10: end for

11: end for

12: end for

13: end for

14: return MaxStrGlobal

Algorithm 3: Subroutine to find MaxStrLocal

1: findMaxStrLocal (Px, Py, G′, multiOp)
{AX represents the area of substring X}

2: for all pi ∈ Px do

3: for all pj ∈ Py do

4: MaxSubstring = findMaxSubstring (pi, pj, multiOp) such that
MaxSubstring does not create cycles in G′ when merged {Every vertex ∈
MaxSubstring has not been merged between x and y}

5: if AMaxSubstring > AMaxStrLocal then

6: MaxStrLocal = MaxSubstring
7: end if

8: end for

9: end for

10: return MaxStrLocal

Family 1 Integer addition and subtraction
Family 2 FP addition and subtraction
Family 3 Shift left and shift right
Family 4 Logic operations: OR, AND, NOT, XOR
Family 5 Integer comparisons: <, >, =, ≤, ≥, 6=
Family 6 FP comparisons: <, >, =, ≤, ≥, 6=

Table 3.1: Families of operations

If two vertices are merged under these conditions there will be significant

area savings since the synthesis of the multi-operation unit will be cheaper than

building them separately. However, this flexibility, which increases the area, delay
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Algorithm 4: Subroutine for global and local merging

1: Merge (Gout, θT , multiOp, groups)
2: S∗ ← ∅
3: repeat

4: if groups = 1 then

5: find paths in each graph of Gout that only contain recently created MAC
and/or 4-adder type of vertices: P = {P1...Pm}

6: else

7: find paths in each graph of Gout: P = {P1...Pm}
8: end if

9: MaxStrGlobal = findMaxStrGlobal (P , multiOp) such that
MaxStrGlobal 6∈ S∗

10: form G′ merging graphs Gx and Gy that contain MaxStrGlobal

11: repeat

12: MaxStrLocal = findMaxStrLocal (Px, Py, G′, multiOp)
13: until no MaxStrLocal is found
14: find critical path and area of G′

15: find θx and θy

16: if θx < θT and θy < θT then

17: replace Gx by merged graph G′

18: remove Gy from Gout

19: m← m− 1
20: else

21: S∗ ← S∗ + MaxStrGlobal
22: end if

23: until no MaxStrGlobal is found
24: return Gout

and complexity of the design by requiring some additional logic and control, might

be unnecessary when there are sufficient vertices amongst the graphs that share

the same operations to exploit resource sharing. For this reason, the use of multi-

operation vertices must be controlled somehow.

The creation of multi-operation vertices is governed by the parameter referred

to as multiOp. When this parameter is True, a new multi-operation vertex can

be created, but only if it belongs to a common substring containing more than one

vertex. This condition enables the sharing of vertices in a multi-operation vertex

only when additional savings can be found through the sharing of interconnect be-

tween vertices, which in many cases will offset the overheads of a multi-operation

vertex. Every common substring is assigned an area-saving value that will be

used later in the process to rank that substring against others when choosing
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MaxStrGlobal and MaxStrLocal. The larger the area-saving of a substring the

more likely it is to be chosen as MaxStrGlobal or MaxStrLocal.

The area-saving of a substring is computed as the sum of the areas associated

with the operators of each vertex in the substring. However, the area assigned

to a vertex created from vertices with different operators is a special case. In

general, a multi-operation vertex will have an area that is slightly larger than

the maximum of the areas of the two operators being combined. If vertex x and

vertex y are to be merged into vertex xy, when operator x is different to operator

y, the area-saving value assigned to vertex xy is given by Equation 3.1, below:

getAreaSavings (x, y) = Ax + Ay − Axy (3.1)

where Ax and Ay represent the area of the vertex x and vertex y respectively, and

Axy represents the area of a unit that is able to perform operations of both vertex

x and vertex y.

Controlling the Area-Latency Trade-off

When a pair of graphs have been selected as the next most profitable candidates to

be merged, the heuristic must decide whether the increased function unit latency

resulting from the merge is sufficiently offset by the area savings to make the

merge beneficial. As there is no absolute metric of whether any given trade-off is

beneficial, the metric θ to quantify the area-latency trade-off is introduced.

When candidate graphs Gx and Gy can be merged to create graph G′, θx and

θy are computed according to Equations 3.2 and 3.3, below:

θx =
LG′ − Lx

LG′

×

(

AG′

Ax + Ay

)

(3.2)

θy =
LG′ − Ly

LG′

×

(

AG′

Ax + Ay

)

(3.3)

where LG′ , Lx and Ly are respectively the critical paths of G′, Gx and Gy,and

AG′ , Ax and Ay are respectively the areas of G′, Gx and Gy. The first term in θ

represents the relative decrease in latency perceived by not performing the merge,
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whereas the second term represents the area savings that do result from merging

Gx and Gy.

Every time a MaxStrGlobal is found, a G′ is formed and local merging is ap-

plied. When no further merging is possible in G′, θx and θy are calculated. If

either θx or θy is greater than θT , G′ will not be considered and other opportuni-

ties for sharing will be searched for between the available graphs. Thus, the global

phase starts again with Gout unchanged, forcing the search for another MaxStr-

Global. The MaxStrGlobal substrings exceeding the θT threshold, and that have

therefore been discarded, are recorded in S∗ and are not eligible for merging.

Figure 3.3 depicts an example containing three input graphs. Figure 3.3(a)

and Figure 3.3(b) show respectively the three original graphs, and the areas and

latencies of each of the operators in these graphs. In the first global phase, all

common substrings amongst the three graphs are found and listed in Figure 3.3(c).

The common substring with greatest area is chosen as MaxStrGlobal. Since several

substrings have the same maximum area, any one of them could be chosen. If

the substring G1(3)G2(0) is chosen as MaxStrGlobal, then graphs G1 and G2 are

merged through G1(3) and G2(0) as illustrated in Figure 3.3(d). This also shows

the subsequent local phase in which vertices G′(1) and G′(4) are merged. Then,

θ is calculated for G1 and G2 using Equations 3.2 and 3.3. In this example it is

assumed that either θ1 or θ2 is greater than θT , so G′ is rejected as a candidate

for merging and is added to the set S∗ as a forbidden substring. The next most

profitable candidate substring is then taken from the list shown in Figure 3.3(c)

and considered for merging.

In this example G1(0)G2(0) is selected as the next MaxStrGlobal, suggesting

that G1 and G2 should be merged through G1(0) and G2(0). This is illustrated

in Figure 3.3(e), where again the local phase is also shown. As this merge does

not affect the latency of the original graphs, LG′=L1=L2, and hence θ1 and θ2

are zero, and the condition θ1 < θT and θ2 < θT will clearly be met. This

allows the merge to be committed, creating the intermediate set Gout shown in

Figure 3.3(f). A further iteration of the outer search loop then takes place, from

which all candidate substrings are found and listed in Figure 3.3(g). According to

their associated areas, the substring G1(1)G3(3) is selected as MaxStrGlobal. In

Figure 3.3(h), G1 and G3 are merged through G1(1) and G3(3) forming a new G′.
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Operator Type Area Latency

a 10 1

b 6 1

c 5 1

d 5 1

e 4 1

f 3 1
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G1(3)G2(0): area=10

G1(3)G2(3): area=10

G1(0)G2(0): area=10

G1(0)G2(3): area=10

G1(1)G2(1): area=6

G1(1)G3(3): area=6

G2(1)G3(3): area=6

G2(2)G3(2): area=5

(c)

MaxStrGlobal: G1(3) G2(0)

MaxStrLocal: G’(1) G’(4)
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a

b
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b

a

d

a
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b
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d

a

G’
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3

5

4

6

(d)

if 

θ1 or θ2 > θT

MaxStrGlobal: G1(0) G2(0)

MaxStrLocal: G’(0) G’(2)

G’(5) G’(6)

S* ={ G1(0) G2(3)}

c d
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b
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b
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6G’
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c d
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e
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(f)

MaxStrGlobal: G1(1) G3(3)
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a

a

c
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b

G’
(h)
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b

c

a e
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d

θ1 and θ2 < θT

G’

MaxStrGlobal: G1(1) G3(3)

MaxStrLocal: none

a

a

b

c

a e

b

f

d

Gout
S* ={ G1(1) G3(3)}

(i) (j)

Common substrings:

G1(1)G3(3): area=6

G1(3)G3(2): area=5

(g)

if

θ1 or θ2 > θT

Figure 3.3: Example of merging several graphs using θT as a constraint to protect
the latency of the instructions.
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Local merging is not performed since there is no MaxStrLocal in this G′. θ is then

calculated for G1 and G3, and assuming that either θ1 or θ3 is greater than θT ,

this merge is also rejected. The substring G1(1)G3(3) is also recorded in S∗ and

another substring is selected from the list given in Figure 3.3(g). In this example,

G1(3)G3(2) is then selected as MaxStrGlobal, as shown in Figure 3.3(i), and hence

G1 and G3 are merged through G1(3) and G3(2). Since L′=L1 and L′=L3, θ1 and

θ3 are zero. Thus the merge is committed, forming the final merged graph shown

in Figure 3.3(j). Multiplexers have been omitted from this example to simplify

the representations though in practice the algorithm will insert these as required.

Note that the opportunity to merge vertices G1(1) and G3(3) in Figure 3.3(g)

is not taken, despite the fact that it saves more area than the alternative of

merging vertices G1(3) and G3(2). This illustrates how the threshold θT limits

the increase in latency that is tolerated for a given area saving.

Controlling the Execution-time Impact of Merging

If a graph Gi originates from a frequently-executed section of code, then the

degree to which the latency of Gi is increased by merging Gi with other graphs

should be controlled in some way. Although the θT threshold test is important for

preventing the pairwise merging of two graphs when it represents a poor trade-off

between area savings and increased latency, this is not sufficient.

Consider the example shown in Figure 3.4(a), where G1, G2, G3 and G4 can

all be merged together. This increases the latency of the original computations in

G1, and also to a lesser extent those in G2 and G3. If G1 is a frequently executed

graph, then the resulting Gout is not a good solution. However, this may not be

detected by the θT test, as each individual merge may represent a good trade-off

between area-savings and the incremental increase in latency. To counteract this

effect, the proposed heuristic computes an additional metric αi for each Gi in the

original Gin, given by Equation 3.4, below:

αi = Fi ×
L′

i − Li

L′
i

× (1−Mi) (3.4)

where Fi is the normalized execution frequency of Gi, i.e., the execution frequency

of Gi divided by the maximum execution frequency in the set Gin. Li is the
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Graph Latency

G1 1

G2 2

G3 3

G4 4

Graph Latency

G1 7

G2 3
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G4 3
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if

α1  > αT

G1

G2

G3

G4

G1

G1

G2
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G2

G3

G1

G2

G3

G4

if

β1  > βT

G1

G2

G3

G4

(a)

(b)

Figure 3.4: Abstract example of merging graphs using αT (a) and βT (b).

original latency of Gi, i.e., before the merging process. L′
i is the latency of Gi

after being merged with other graphs. Mi is the percentage of area corresponding

to operations in Gi that can be merged with other graphs, divided by the total

area that could be merged in the whole process.

When all merging opportunities have been found, each αi is compared with

a parametric threshold αT and, if it exceeds the threshold, the corresponding Gi

is excluded from the set of input graphs when the merging process is repeated a

second time. αi depends on: the latency increase perceived by Gi in its merged

form; its execution frequency; and the amount of merging that it can sustain.

The effect of the αT test is to leave Gi unmerged if the merging process would

increase its latency beyond an acceptable threshold.

A similar issue exists when a graph with high latency is merged with a set

of graphs that have lower latency. Consider the example shown in Figure 3.4(b),

where G1 has the highest latency and the other graphs have lower latencies that

are all quite similar. Again, depending on the order in which merges take place,

the first pass may merge all four graphs into one high-latency graph. Or perhaps,

having merged G1 with G2, the opportunities for merging G2 with G3 or G4 may

no longer exist, due to the θT test. Therefore, an additional metric is introduced:

βi for each Gi in the original Gin. It is given by Equation 3.5, below:

βi =
|L̂− Li|

maxm
j=1 Lj

× (1−Mi) (3.5)
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Algorithm 5: Subroutine to merge groups

1: mergeGroups (Gout, θT , multiOp)
2: for all Gi ∈ Gout do

3: identify possible MAC or 4-in adder instances and group each into one vertex
4: end for

5: merge (Gout, θT , multiOp, 1)
6: for all Gi ∈ Gout do

7: revert grouping of MAC and 4-in adder instances that are not shared
8: end for

9: for all Gi ∈ Gout that has been merged do

10: repeat

11: find all paths in G′: P ′

12: MaxStrLocal = findMaxStrLocalG’(P ′, G′, multiOp)
13: merge MaxStrLocal in G′

14: until no MaxStrLocal is found
15: end for

16: return Gout

where n is the number of input graphs and:

L̂ =

∑n
j=1 Lj

n
(3.6)

The βT test is applied at the same time as the αT test, and its effect is to

exclude input graphs from the merging process if their latency is much larger

than the other ISE graphs. This is characterized by the difference between the

average latency of all input graphs and the latency of the graph in question. If

βi is greater than βT , Gi will not be considered during the merging process, thus

preventing Gi from affecting the latency of the other graphs.

Vertex Grouping

There are certain operator sequences that can be combined during logic synthe-

sis to yield smaller and faster solutions than their individual components. For

example, the marginal cost of an adder following a multiplier is less than the cost

of an adder in isolation. [65] present examples of how arithmetic optimizations

can reduce the combined latency of sequential operations. Modern logic synthesis

tools have the ability to perform similar arithmetic optimizations, such as folding

add or subtract operations into the carry-save tree of a combinational multi-
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Algorithm 6: Subroutine to find MaxStrLocal for mergeGroups

1: findMaxStrLocalG’ (P ′, G′, multiOp)
{AX represents the area of substring X}

2: for all pi ∈ P ′ do

3: for all pj 6=i ∈ P ′ do

4: MaxSubstring = findMaxSubstring (pi, pj, multiOp) such that
MaxSubstring does not create cycles in G′ when merged {Every vertex ∈
MaxSubstring has been created from vertices that originate from different
input graphs}

5: if AMaxSubstring > AMaxStrLocal then

6: MaxStrLocal = MaxSubstring
7: end if

8: end for

9: end for

10: return MaxStrLocal

plier. Similarly, multiple-input adders could be implemented as a Wallace-tree

compressor followed by a carry-propagate adder.

However, if graphs are merged in order to share vertices, the resulting graph

will often have multiplexers at the inputs to those shared vertices. These mul-

tiplexers will normally prevent a synthesis tool from combining the operators

within adjacent vertices. For this reason, a boolean parameter, referred to as

grouping, is introduced in the heuristic. Parameter grouping controls whether

operator groups should be identified and retained instead of trying to merge each

operator independently.

The heuristic is aware of common idiomatic groupings, recognizing a MAC

for example when there is a multiplier connected uniquely to an adder, as shown

in Figure 3.5(a). In the same way, a multiple-input adder is recognized when

consecutive adders are connected. As more adders are grouped, the savings in

area and delay increase. However, delay savings can be negated by the late arrival

of the inputs of the deepest adders. Moreover, as more adders are combined,

it becomes more difficult to find such instances in the input graphs. For these

reasons, a 3-adder grouping is chosen for the exploration of this feature. Grouping

three adders generates a 4-input adder and this can occur in two ways, as depicted

in Figure 3.5(b) and 3.5(c). Vertex grouping is implemented by the mergeGroups

function, illustrated in Algorithm 5.

Table 3.2 shows the area and delay of these operations when treated as an
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Figure 3.5: Operators that can be collapsed into one vertex when the grouping
feature is enabled during the resource-sharing exploration.

atomic unit and when synthesized separately. These values were obtained by

synthesizing the operators using Synopsys’ DC Ultra synthesis tool and a 0.13µm

standard cell library, optimizing for minimum delay.

Function mergeGroups starts by identifying and grouping all possible in-

stances of MACs and 4-input adders in every Gi ∈ Gout. Then, function merge is

called with its last parameter, groups, equal to 1. This causes every Pi ∈ P to be

filled with all the paths found in Gi ∈ Gout that contain only the newly-created

instances of MACs and 4-input adders. Hence, this function aims to merge only

those groups of operators. Following this, all MAC and 4-input adder instances

that have not been merged will be ungrouped, and their individual operators will

be now exposed to the regular merging process.

Grouped Area (gates) Delay (ns)
Units Separate Grouped Separate Grouped

MULTIPLIER + ADDER 5346 4408 3.42 2.69
3 ADDERS 1704 1362 2.64 1.39

Table 3.2: Area and delay of grouped versus separate operators

Top-level Description of the Heuristic

A top-level description of the proposed heuristic is illustrated in Algorithm 7. The

main function, called runRS, receives as inputs a set of n DFGs Gin, where each

Gi ∈ Gin represents an ISE to be synthesized, and values for the five parameters:

θT , αT , βT , multiOp and grouping. The merging processes operate on Gout, which

is initially copied directly from Gin. Consequently, before any resource sharing is
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Algorithm 7: Parametric resource-sharing heuristic

1: runRS (Gin, αT , βT , θT , multiOp, grouping)
2: Gin ← {G1 ... Gn}
3: Gout ← Gin

4: if grouping = 1 then

5: mergeGroups (Gout, θT , multiOp)
6: end if

7: G∗ ← ∅
8: merge (Gout, θT , multiOp, 0)
9: for all Gi ∈ Gout do

10: insert multiplexers needed in Gi

11: find critical path and area of Gi

12: for all Gj ∈ Gin that has been merged in Gi do

13: find βj and αj

14: if αj > αT or βj > βT then

15: G∗ ← G∗ + Gj {exclude Gj}
16: end if

17: end for

18: end for

19: if G∗ 6= ∅ then

20: Gout ← Gin - G∗

21: if grouping = 1 then

22: mergeGroups (Gout, θT , multiOp)
23: end if

24: merge (Gout, θT , multiOp, 0)
25: for all Gi ∈ Gout do

26: insert multiplexers needed in Gi

27: end for

28: end if

29: return Gout

applied, the number of input graphs is the same as the number of output graphs,

i.e., m = n, where m = |Gout|.

When grouping is enabled, the mergeGroups function described in Algorithm 5

identifies operator groups and merges instances of those groups where appropri-

ate. The merge function then searches for opportunities to merge graphs in Gout,

applying the local and global phases using θT as a constraint, as explained in

Section 3.3. When no further suitable common substrings can be found between

graphs in Gout, or when there is only one graph remaining, the values of α and

β are calculated for every Gi ∈ Gin. These determine if each input graph is to

be left unmerged according to the given threshold parameters αT and βT , as ex-
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plained in Section 3.3. The set of graphs G∗ keeps track of the graphs that are

excluded from merging. If G∗ 6= ∅, the merge function is called again to recom-

pute the merging process over all graphs that are not excluded. Finally, the set

of graphs Gout contains the result of resource sharing, where some or all of the

graphs representing individual ISEs have been merged and the logic for common

operators is therefore shared.

Multiplexer Insertion

Multiplexers have to be added at the inputs of a vertex when it has more than

one predecessor per input as a result of sharing the resource associated with that

vertex. In the case of vertices with just one input the solution is straightforward:

an N -input multiplexer is added when there are N unique predecessors, and

the number of selection bits is given by ⌈log2N⌉. Vertices with two inputs can

potentially have multiplexers in each input. Since multiplexers are inserted as a

result of merging two different graphs, the predecessors are always from different

operators. For this reason the input balancing problem exposed in [66] is not an

issue in this process. Commutativity of operations is exploited where any ISE

input is part of the inputs of a two-input vertex in order to balance the assignment

of ISE inputs to the multiplexers. The final area of the merged graphs in the

experiments presented in this chapter includes the contribution of all multiplexers

inserted.

Algorithm Runtime

The runtime of the resource-sharing algorithm depends on the characteristics of

each graph, which is most likely different for every graph in the input set Gin.

In order to estimate the runtime of some of the functions, average values across

the input sets will be taken. Thus, L represents the average length of a path, P

represents the average number of paths per graph and V represents the average

number of vertices per graph.

It has been shown in Section 3.3 that the datapath merging algorithm is

divided into two phases: global and local. The global phase is executed as many

times as there are graphs in Gin. Every time a global phase is performed, a local
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phase takes place. The local phase, where two graphs are fully merged after a

common string has been merged between them, is executed V times, in the worst

case. This would be the case if all of the vertices are merged and all are merged

individually.

The innermost and most executed function in the algorithm searches for the

Maximum Common Substring (MCS) between two paths, requiring O(L2) com-

parisons. In the global and local phases, the MCS is computed between all pairs

of paths that belong to different graphs, which requires O(P 2L2) operations. The

P 2 element arises from the consideration of all possible pairs of paths, and the

L2 element is the cost of the MCS. Therefore, the runtime of the algorithm is

O(L4P 2).

The value of the parameters, αT , βT and θT , also influence runtime. When

θT 6= 1, the global phase can be executed more times than the number of graphs

in Gin. Whenever two graphs are merged, the global phase could have been

executed as many times as there are strings in the set S∗, which contains banned

substrings. In order to prevent a long runtime due to very low values of θT , which

lengthens the search for eligible substrings, S∗ can be limited to a maximum size.

When the number of substrings in S∗ reaches its limit, the merging process is

finished. Conversely, when θT and αT are different from 1, the runtime tends to

decrease, as fewer graphs are likely to be merged.

Theoretically, the path enumeration within a graph can be exponential in the

number of vertices. However, in practice, the average number of paths per graph

is several orders of magnitude less than the calculated worst case.

Due to the nature of the problem tackled in this work, the runtime of the

algorithm is not critical. Input graphs correspond to data-flows taken from soft-

ware applications to be implemented in hardware, which means that graphs are

constrained in several ways. Graphs are constrained in hardware, since they are

to be implemented in silicon and area is always limited. Overall graph sizes for

each ISE are also limited in practice by the disruptive influence of control flow

instructions and memory operations.



52 Chapter 3. Resource Sharing in ISEs

Design Space

Section 3.3 has described a heuristic to find a resource-sharing solution given a set

of input graphs. In addition to input graphs, the algorithm uses five parameters

to guide decisions that will have an impact on the characteristics of the output

graphs. These parameters (αT , βT , θT , multiOp and grouping), have been ana-

lyzed in the previous sections and create a multi-dimensional space of possible

solutions as their values are changed. The next section demonstrates that this

space can be explored in order to find optimal implementation alternatives based

on resource sharing.

3.4 Area and Delay of Graphs

The resource-sharing heuristic depends on the area and delay of each operator

instance in each graph when deciding whether to merge. However, it is infeasible

to perform full logic synthesis for each graph during the execution of resource-

sharing algorithm. Therefore, a piecewise-linear model of area and delay has

been developed. Each operation is modeled in terms of four discrete points in

its curve of area versus delay. Specific area and delay values are then found by

linear interpolation from these four discrete points. Figure 3.6 shows the curves

that were obtained for a selection of common operators.

In order to obtain precise area and delay values for the operators, Register-

Transfer Level (RTL) synthesis was performed by using the Synopsys Design

Compiler Ultra (DC) synthesis tool and a 0.13µm standard cell library. DC takes

an RTL hardware description in Verilog and the standard cell library as inputs,

and produces a gate-level netlist, as well as reports on area and timing of the

resulting netlist. In addition, design constraints can be configured in order to

create a netlist that meets the design requirements.

The four design points of the operators were obtained by synthesizing each op-

erator four times under different constraints. Figure 3.7 shows the Verilog module

used to characterize a 32-bit adder. Similar modules were used for the rest of the

integer arithmetic and logic operators. Figure 3.8 shows the Verilog module used

to characterize a 32-bit floating-point adder. Floating-point operations are im-
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Figure 3.6: Area-delay curves for some of the operators that appear in the input
graphs. The curves of area versus delay for each operator were obtained by using
the Synopsys Design Compiler Ultra synthesis tool and a 0.13µm standard cell
library.

plemented by instantiating a module of the DesignWare (DW) libraries provided

by Synopsys [67], as shown in Figure 3.8. DW libraries provide highly optimized

RTL for commonly used arithmetic components.

The fastest implementation of the operators requires maximum area, as more

sophisticated circuits are used. This corresponds to the first design point of the

curves in Figure 3.6. On the contrary, the minimum-area implementation of the

operators is the slowest solution, which corresponds to the last design point of

the curves in Figure 3.6.

In order to constrain the synthesis process such that it meets a specific area

constraint, the following DC command is used:

set max area AREA CONSTRAINT

The slowest solution is found by constraining the design with the command above,

replacing AREA CONSTRAINT with the number 0. This forces the synthesis tool to

generate the minimum-area solution, and therefore the slowest solution.
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module add ( x, y, z );

input   [31:0]  x;

input   [31:0]  y;

output  [31:0]  z;

reg     [31:0]  z;

always @(x or y)

begin

        z = x + y;

end

endmodule

Figure 3.7: Verilog module used for the characterization of a 32-bit adder.

In order to constrain the synthesis process such that it meets a specific timing

constraint, the following DC command is used:

set max delay from [all inputs] to [all outputs] TIME CONSTRAINT

The fastest solution is found by constraining the design with the command above,

replacing TIME CONSTRAINT with the number 0. This forces the synthesis tool to

generate the minimum-delay solution, and therefore the largest solution.

The two intermediate design points are forced to be uniformly distributed be-

tween the fastest and the slowest solution previously found. This creates two

delay constraints that can be imposed by using the DC command above, replac-

ing TIME CONSTRAINT with the delay that is required in each case. Thus, the

synthesis tool finds an implementation for the operator that is close to timing

constraints.

Figure 3.6 shows how the gate count of a synthesized 32-bit floating-point

adder can vary by more than a factor of 2 as timing constraints are varied. For

a 32-bit fixed-point adder the relative variation is even greater. Gate counts can

easily reduce by a factor of two or more when timing constraints are relaxed. An

operator that is off the critical path will therefore have a much lower synthesized

area than a similar operator that is on the critical path. This phenomenon is

modeled and exploited by the presented heuristic. The latency of graph Gi is

estimated by the sum of the minimum modeled delays for each operator on the

critical path of Gi.

The heuristic estimates the area of each graph by adapting the budget man-

agement technique presented in [68]. Each operator in Gi is initially assigned a
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module fp_add (inst_a, inst_b, inst_rnd, z_inst, status_inst);

parameter sig_width = 23;

parameter exp_width = 8;

parameter ieee_compliance = 0;

input [sig_width+exp_width:0] inst_a;

input [sig_width+exp_width:0] inst_b;

input [2:0] inst_rnd;

output [sig_width+exp_width:0] z_inst;

reg    [sig_width+exp_width:0] z_inst;

output [7:0] status_inst;

reg    [7:0] status_inst;

DW_fp_add #(sig_width, exp_width, ieee_compliance)

U1 ( .a(inst_a), .b(inst_b), .rnd(inst_rnd), .z(z_inst),.status(status_inst) );

endmodule

Figure 3.8: Verilog module used for the characterization of a 32-bit floating-point
adder. A component of the DW libraries is instantiated.

latency and area given by the minimum delay point for that operator. Then a

zero slack algorithm is applied to Gi in order to relax the area of the operators

that are off the critical path. This iterative slack distribution process assigns

additional latency to non-critical operators, reducing their area according to the

model, until no further slack is found in the graph. After latency estimation, each

operator has the smallest possible area, corresponding to the maximum delay the

operator can tolerate without extending the critical path of Gi. The sum of the

areas of all operators in the graph then gives the total estimated graph area.

3.5 Processor Customization

The resource-sharing process generates a set of graphs, some of which might be

merged. Each graph forms an AFU that will be attached to the processor.

The AFUs that can execute the functionality of several ISEs contain mul-

tiplexers that configure the datapath accordingly. Therefore, these AFUs need

to internally generate a microcode that constitutes the selection bits for all of

the multiplexers. This microcode is provided by a decoding block which receives

the relevant segment of the instruction opcode from the decoding stage of the

processor. An example of this scenario is illustrated in Figure 3.9.
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Figure 3.9: Processor pipeline extended with AFUs. The AFUs that are gener-
ated from merged graphs are configured by selecting the appropriate multiplexer
inputs. The selection signals are generated from the instruction opcode provided
by the decode stage of the processor.

Synthesis There are several alternatives to perform logic synthesis of the

provided AFU datapaths.

Long latency ISEs can be pipelined in order to work at the same operating

frequency as the target processor. In this case, registers are inserted in the

datapath in order to obtain a critical path delay, from register to register, that

does not exceed the clock period.

Another synthesis alternative is to use high level synthesis techniques [69] in

order to reuse registers and possibly operators between the different execution

cycles of an AFU. A process of scheduling and binding must take place, and

further multiplexers need to be inserted and addressed according to the sequence

that is generated in the scheduling and binding processes.



3.6. Experimental Evaluation 57

3.6 Experimental Evaluation

A set of 10 benchmarks were selected from a wide range of embedded applica-

tion areas to evaluate the resource-sharing heuristic experimentally. The selected

benchmarks were: LMS, JFDCTINT, ADPCM, LUDCMP and FIR from the

SNU-RT benchmark suite [70]; LPC, FFT, SPECTRAL, COMPRESSOR and

ADPCM from the UTDSP benchmark suite [71]; From these benchmarks, ISEs

are identified using an existing technique and the resource-sharing heuristic is

aplied under a wide range of constraints. Tables 3.3 and 3.4 show some charac-

teristics of the set of ISEs obtained from each benchmark.

Design-space Exploration

The parameterized resource-sharing algorithm receives input graphs expressed in

XML format, performs resource sharing, and outputs a description of the resulting

merged logic in Verilog, for AFU implementation.

For each experiment, the algorithm was executed several times with different

values of αT , βT and θT , varying from 0 to 1 in steps of 0.05. In turn, every set

of values for αT , βT and θT , was run with the four combinations of values for the

parameters multiOp and grouping.

This resulted in 37,044 experimental points in the design space of potential

solutions. The execution time of the resource-sharing algorithm varied slightly,

depending on the value of θT . Across the chosen sets of inputs the average execu-

tion time was 0.93 seconds. The average time to complete the whole exploration

was 2.5 hours per benchmark, using four parallel threads; one for each of the

four combinations of multiOp and grouping. Such times are not excessive in com-

parison with the time taken at the physical implementation stage of chip design.

For later reference, the static latency of a particular ISE, L′
out, is defined as the

critical path of the (possibly merged) graph in which it appears. The evaluation

of each design point is based on two metrics: AFU area, denoted A; and average

ISE latency, denoted L. A is the total area of the AFU, and is given by the sum

of the areas of each output graph in Gout. L is the average of the product F
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Source Benchmark LMS JFDCTINT ADPCM LUDCMP FIR

Number of ISEs 22 15 21 15 11

Largest area (gates) 73,188 35,637 38,358 19,449 66,149
Smallest area (gates) 870 4,368 403 3,369 857

Longest latency (ns) 35.07 21.50 38.36 11.73 35.00
Shortest latency (ns) 1.52 0.09 0.91 4.41 0.90

Max. num. of ops. 18 12 10 4 8
Min. num. of ops. 2 4 2 2 2

Max. num. of inputs 9 12 8 6 4
Max. num. of outputs 4 8 3 2 2

AFU input ports 12 12 8 8 4
AFU output ports 8 8 4 4 2

Table 3.3: Characterization of ISE input graphs and AFU port constraints for
each benchmark application taken from the SNU-RT benchmark suite

Source Benchmark LPC FFT SPECT. COMP. ADPCM

Number of ISEs 24 15 12 29 16

Largest area (gates) 81,680 49,485 67,171 32,548 24,876
Smallest area (gates) 1,090 1,749 2,259 366 857

Longest latency (ns) 22.82 9.03 18.31 18.22 9.78
Shortest latency (ns) 0.90 0.55 1.53 0.50 0.90

Max. num. of ops. 12 15 12 3 3
Min. num. of ops. 2 2 3 2 2

Max. num. of inputs 9 10 9 4 4
Max. num. of outputs 4 8 4 2 2

AFU input ports 12 12 12 4 4
AFU output ports 8 8 8 2 2

Table 3.4: Characterization of ISE input graphs and AFU port constraints for
each benchmark application taken from the UTDSP benchmark suite

× L′
out, over all ISEs considered as inputs. This metric quantifies the impact of

merging on execution time.

Thus the design space is bounded by two opposing and extreme solutions:

maximum resource-sharing, with highly compromised delay, and no resource-

sharing, with minimal delay. The objective of our experiments is to expose a

wide range of potentially interesting points in the design space, each showing a

different trade-off between area and delay.
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Input Generation

In this chapter it is assumed that all of the ISEs candidates listed by the identifi-

cation phase are selected for hardware implementation. ISEs are DAGs annotated

with its execution frequency obtained from profiling.

ISEs were identified from the benchmarks using an implementation of an ex-

isting identification heuristic, ISEGEN, described in [26]. In this implementation,

ISEs can include a full range of integer, logical and floating-point operations, in-

cluding divisions. The ISE identification algorithm was set up to constrain the

maximum number of input and output values for each ISE, as shown in the bot-

tom two rows of Tables 3.3 and 3.4. As the target processor connects AFUs

with up to 12 inputs and 8 outputs, five benchmarks were targeted with these

constraints. The other five benchmarks had varying constraints, from 8-in 4-out

down to 4-in 2-out, chosen arbitrarily to illustrate the behavior of the heuristic

under progressively tighter I/O resource constraints.

3.7 Results

At the beginning of this section, the results obtained using the input set extracted

from the ADPCM program from the SNU-RT benchmark suite are analyzed. This

input set comprises 21 initial graphs as candidate ISEs. In order to illustrate the

specific effect of varying αT , βT and θT , this section shows first the resource-

sharing solutions found as a result of executing the algorithm several times, while

varying these three parameters, and keeping multiOp = 0 as well as grouping =

0.

Solutions found in this multi-dimensional space are plotted on a plane formed

by the chosen metrics: L (on the horizontal axis) and A (on the vertical axis).

In Figure 3.10, three values of θT were selected, and for each value, αT and

βT were varied across the range [0, 1]. As θT is reduced, the resulting solutions

are pushed to the left. This illustrates how θT can be used to place a cap on the

latency increase that will be tolerated when searching the design space with α

and β. Similarly, in Figure 3.11, three values of αT and βT were chosen, and for

each of them, θT was varied over the range [0, 1]. In this case, αT and βT tend
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Figure 3.10: αT and βT variation when: θT = 1, θT = 0.7, θT = 0.3.
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Figure 3.11: θT variation when: αT = βT = 1, αT = βT = 0.75, αT = βT = 0.25.

to partition the design points into overlapping area ranges. Each value of αT or

βT , by excluding some of the graphs from the resource-sharing process, decreases

the minimum area threshold of the curve, thus sacrificing area for the sake of

solutions with better average latency. In summary, θT tends to generate an area-
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Figure 3.12: αT , βT and θT variation when multiOp = 0 and grouping = 0. Filled
circles correspond to Pareto-optimal solutions.

wise exploration of the design space, for given values of α and β. Conversely, αT

and βT generate mainly a latency-wise search for a given value of θT . Figure 3.12,

shows all of the points found as a result of varying αT , βT and θT in the range

[0,1] in steps of 0.05, while keeping multiOp = 0 and grouping = 0. In this plot, a

curve formed by all of the Pareto-optimal solutions, delimits the space. A solution

can be considered Pareto-optimal if there is no other solution found in the design

space that performs at least as well on A and L and strictly better on either A

or L.

In contrast, Figure 3.13 shows the effect of varying all parameters, includ-

ing multiOp and grouping. This illustrates the complete design space of distinct

solutions exposed by the parameterized heuristic for the SNU-RT ADPCM bench-

mark, over the full range of all parameters.

The different marks on Figure 3.13 represent the 4 combinations of the binary

parameters multiOp and grouping. Additionally, five solutions that correspond

to Pareto points in the design space have been highlighted. Table 3.5 details

the solutions represented by each of these points. The solution given by the No

RS point has no resource sharing applied, and therefore has the smallest L but
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Figure 3.13: Solutions found in the design space when: multiOp = 0 and grouping
= 0, multiOp = 1 and grouping = 0, multiOp = 0 and grouping = 1, multiOp =
1 and grouping = 1.

the largest A. In contrast, for Max RS, where all of the threshold parameters

are set to 1, the algorithm merges all ISEs without any restrictions, as in non-

parameterized approaches. This yields the smallest A, but also the largest L.

Points Pareto 1, Pareto 2 and Pareto 3, represent possible implementation alter-

natives with varying trade-offs between L and A. As shown in Table 3.5, a small

reduction in area savings can yield a major reduction in latency, and a small

increase in latency can yield a major reduction in area, when the Pareto curve is

traversed from the extreme end points.

The values of the three parameters that produce the five solutions are specified

in Table 3.5. For Pareto 1, five graphs were left separate as they did not meet

the constraint αT = 0.3 and the rest were merged with θT = 0.25 as a constraint.

Similarly, the solution that represents Pareto 2 is constrained by θT = 0.7 and
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No RS Pareto 1 Pareto 2 Pareto 3 Max RS

L 10.35 11.25 15.15 22.26 38.65
Area Saved 0% 50% 60% 66% 68%
Out Graphs 21 9 4 3 1

αT 0 0.3 1 1 1
βT 0 1 0.75 0.75 1
θT 0 0.25 0.7 0.85 1
M 0 1 1 1 0
G 0 0 1 0 0

Speedup 2.31× 2.25× 1.81× 1.5× 1.04×

Table 3.5: Interesting points in the design space for the SNU-RT ADPCM bench-
mark

separates one graph as it did not meet the constraint βT = 0.75. In a different way,

Pareto 3 results in three output graphs that were a consequence of constraining

the merging process with βT = 0.75 and θT = 0.7. Thus, it is apparent that the

combination and variation of the three threshold parameters is useful in finding

a range of good solutions.

Table 3.5 also shows the estimated speedup of the complete application in

the target processor. The application speedup can be approximated from the

hardware latency of the ISEs and the instruction count obtained from profile

information. The latency of the ISEs has been calculated as the number of clock

cycles taken in the target architecture given the chosen hardware implementation.

Thus, the following equation is used:

speedup =
λSWapp

λSWapp
−
∑i=ISEn

i=ISE1
(λSWi

− λHWi
)× C

(3.7)

where n is the number of ISEs that are included in the design, λSWapp
is the

overall execution latency of the application. This measure does not account for

control flow statements nor for cache misses. C is the number of times ISEi is

executed, λSWi
is the execution latency of the ISE in software, and λHWi

is the

execution latency of the ISE in hardware and is calculated as follows:

λHWi
=

⌈

Li + ((tco + tsu)× ⌈
Li

T
⌉)

T

⌉

(3.8)

T is the clock period of the target architecture, e.g. 4 ns. Li is the critical path of
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Figure 3.14: Summarized results of design-space exploration for 10 different
benchmarks showing 5 Pareto points in each case. The upper chart shows the
relative latency (L) of each point, as a percentage of the latency of the solution
Max RS. The lower chart shows the relative area (A) of each point, as a percent-
age of the area of the solution No RS. The values of A and L, to which area and
latency are relativized, are presented in Table 3.7.

Source Benchmark LMS JFDCTINT ADPCM LUDCMP FIR

L of Max RS (ns.) 67.5 11.6 38.65 11.7 35.9

A of No RS (gates) 568,270 196,100 363,64 189,784 140,000

Table 3.6: Max values of A and L found in the design space of each experiment
with source benchmark taken from the SNU-RT benchmark suite

Source Benchmark LPC FFT SPECT. COMP. ADPCM

L of Max RS (ns.) 29.25 10.03 23.59 18.429 14.58

A of No RS (gates) 512,000 247,500 278,290 124,412 157,300

Table 3.7: Max values of A and L found in the design space of each experiment
with source benchmark taken from the UTDSP benchmark suite

ISEi. Finally, tco and tsu are the clock-to-data delay and data set-up time of the

flip-flops that need to be inserted in the circuit and their values are dependent

on device technology.
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Pareto-optimal Solution Space

Figure 3.14 shows the summarized results of the experiments performed with all

of the input sets described in Tables 3.3 and 3.4. Latency and area values of five

points in the design space were extracted in each of the experiments. The five

points are: Max RS, No RS and three solutions that have been taken from the

resulting Pareto curve. These Pareto points are chosen to be equally distributed

along the Pareto curve and are referred to as Pareto 1, Pareto 2 and Pareto 3.

Additionally, in every experiment these points are compared with the solution

that would be given by the heuristic proposed by Brisk et al. in [8] using the

same input set. In the figure, this is referred to as Brisk Sln.

In order to compare the results of the different experiments in the same range,

the values are taken as percentages with respect to, in Figure 3.14(a), the area of

the point No RS and, in 3.14(b), the average latency of the point Max RS. These

values, for each of the experiments, are presented in Table 3.7. For all of the

experiments, Max RS, as expected, has long latency and small area. The point

No RS shows always short latency and large area. In contrast, solutions Pareto

1, Pareto 2 and Pareto 3 represent solutions found as a result of the exploration

of the parameterized space, each with a different trade-off between average ISE

latency and area saving.

As expected, Brisk Sln is broadly comparable with Max RS, as both focus

purely on area reduction. In four of the experiments, the minimum-area solution

Max RS, yields a solution with smaller area than that found by Brisk Sln. In

the case of JFDCTINT and LPC, the corresponding average latency is notably

lower at the point Max RS found in our exploration. In contrast, for LMS and

SNU-RT ADPCM, the average latency was slightly longer in Max RS as a result

of more extensive merging.

Even when the AFU I/O constraints are low, as in the case of the experiments

with UTDSP ADPCM, COMPRESSOR and FIR, the area savings are significant.

Furthermore, in most cases the area could be decreased by at least 50% before

a serious increase in latency is perceived. If the maximum-area values shown in

Table 3.7 are reduced by 50%, the AFU would then represent between 6% and

53% of the extended target-processor, depending on the benchmark.
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Distribution of Pareto-optimal Parameter Settings

Figure 3.15 illustrates how the settings of the five parameters were distributed

as a function of their resulting area and latency, in order to produce the Pareto-

optimal design points shown in Figure 3.14. For each benchmark, the Pareto

points were initially ranked from smallest to largest area. This list was then

partitioned into 10 deciles according to the magnitude of the area. For each

parameter, the boxplots in Figure 3.15(a) show the maximum value, the minimum

value, the lower quartile and the upper quartile within each decile across all

benchmarks. The same process was used to determine how the parameter settings

are distributed in order to achieve average latency results in each decile, as shown

in Figure 3.15(b).

In this graphical representation, 50% of the samples have values between the

lower quartile and the upper quartile. On the other hand, when the maximum

value equals the upper quartile, at least 25% of the samples have values equal

to the maximum. Similarly, when the minimum value equals the lower quartile,

at least 25% of the samples have values equal to the minimum. In the cases

where the upper quartile is very close or equal to the maximum value and the

lower quartile is very close or equal to the minimum value, there is a strong

bias towards extreme values: maximum and minimum. This is the case in the

distributions of the binary parameters: multiOp and grouping

Pareto points benefited from αT and βT in the first deciles of the latency

ranking and in the last deciles of area ranking. In the first decile of the latency

ranking there are many points, so the effect of changing the parameters is better

described over the area range. For larger areas the corresponding β value reduces.

Conversely, the effect of varying θT can be seen throughout the whole ranges of

latency and area, having small value for solutions with short latency and large

area and having a greater value for solutions with long latency and small area. In

the graphs corresponding to αT and θT in Figure 3.15(b), these values decrease

while area increases. However, in the last groups there is a slight increase in

their values. This shows an inter-parameter effect; when one parameter becomes

tighter the other parameter can relax or increase its value in order to obtain small

delay solutions.
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Figure 3.15: Value distribution of the 5 parameters used to find the Pareto points
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The effect of changing the parameters multiOp and grouping on latency and

area can be seen spread through both ranges, which means that a large percentage

of Pareto points benefited from either multiOp or grouping.

Synthesis and Pipelining of Merged Graphs

The results presented up to this point are all derived from the model of delay

and area. To establish the correlation between model and reality the output

graphs of the resource-sharing algorithm were taken through logic synthesis and

the areas and latencies achievable in practice were measured. Figure 3.16 shows
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Figure 3.16: Synthesis results for the FIR benchmark, showing latency and area
for the 5 Pareto-optimal points given in Figure 3.14.

the synthesis results for 5 representative points on the Pareto curve of the FIR

benchmark.

The merged ISEs obtained at each of the five selected Pareto points were

synthesized both non-pipelined and pipelined versions.

The non-pipelined implementation of a complex ISE will typically create a

blocking multi-cycle instruction. This may be appropriate in some systems, but

it is often more useful for long latency ISEs to be pipelined to work at the same

operating frequency as the target processor. Therefore, each of the 5 Pareto

points are re-timed, by pipelining them to meet the 4ns clock period of the target

processor. Re-timing was achieved by determining the number of pipeline stages

required for each merged ISE and, for each stage, adding the clock-to-data delay

and data set-up time of a typical flip-flop to the overall timing budget. This kept

the time budget unchanged for the critical path through each merged ISE after

pipeline register delays are taken into account. The optimize registers command

in Design Compiler was used to automatically balance the inter-stage pipeline

registers in each case.

Figure 3.16 compares the original Pareto points, obtained from the operator

timing and area models within the resource-sharing heuristic, with the actual
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points obtained from both the non-pipelined and the pipelined implementations.

The area overheads due to the addition of pipeline registers are shown separately

from the logic area of the pipelined ISEs, as this allows a direct comparison

of the model and the implementation. Overall, the absolute area differences

between the modeled and the synthesized design points are 5.01% and 5.66% for

the non-pipelined and pipelined implementations respectively. The P1 solution

yields a 20% reduction in logic area compared with No RS, with minimal increase

in latency, and with the same number of pipeline stages. Conversely, the P3

solution yields a 32% decrease in latency compared with Max RS, with only a

1.7% increase in logic area.

In conclusion, the values obtained from logic synthesis follow the proportions

observed when using the model. Thus, comparisons made between solutions,

given their characteristics in area and average instruction latency, are likely to

remain valid when logic synthesis is performed.

3.8 Conclusions

This chapter presents a new parametric algorithm for sharing hardware resources

between multiple instruction set extensions that have been selected a priori for

the performance improvements they can make to a given application. The al-

gorithm combines a path-based resource-sharing algorithm with a timing budget

management scheme to merge ISE graphs and allocate slack time in the resulting

graphs so as to minimize implementation cost. The primary goal has been to

develop a method by which the design space of resource sharing can be explored.

Results show that die area is excessive when resource sharing is disabled, whereas

very aggressive resource sharing leads to large instruction latency. This chapter

presented a novel heuristic that is the first method to be able to explore the de-

sign space between these two extremes to find solutions that achieve the desired

compromise between latency and area.

Previous resource-sharing techniques aim at obtaining the maximum possible

area-savings. However, it has been shown that there exist other intermediate so-

lutions with a better compromise between area savings and latency. Typically, a

solution that aggressively shares resources generates one large graph that can be



70 Chapter 3. Resource Sharing in ISEs

configured to perform the functionality of all of the given ISEs. A single multi-

functional graph, appart from greatly increasing the latency of the ISEs, causes

a complex logic synthesis process due to the large number of paths, generated by

multiplexers, that needs to be analyzed and optimized by the tools. Additonally,

a single large AFU represents a suboptimal solution when clock gating or power

gating is to be used during logic synthesis in order to reduce the dynamic power

consumption of the processor extensions. This is because the entire AFU would

need to be active every time any ISE is executed. Instead, when resource shar-

ing is carefully performed, several AFUs are generated, thus permitting a finer

granularity for techniques such as clock gating and power gating.

The following chapter shows how the Pareto solutions of the resource-sharing

design-space can be quickly obtained based on the intrinsic characteristics of the

input ISE set.



Chapter 4

Fast Exploration of the

Resource-sharing Design-space

4.1 Introduction

As seen in Chapter 3, the resource-sharing algorithm is parameterized by five

threshold values that are used to take decisions during its execution. As these

threshold values represent trade-off decisions, such as whether or not to merge at

different points, several optimal solutions might be found with different threshold

values. Each parameter has a unique impact when evaluating trade-offs in the

design space. Additionally, as all of the five parameters can be varied at the same

time, inter-parameter effects can take place, thus creating a much larger range of

possible solutions.

Solutions might be optimal or suboptimal in comparison to others in terms

of the target metrics: area and latency. Every combination of parameter values

affects differently each input set; therefore, the parameter space has to be explored

exhaustively for every input. After the exploration is completed, the Pareto-

optimal solutions can be extracted. A solution is said to be Pareto-optimal when

no other solution is better in both metrics.

Exhaustive processes are extremely time-consuming and make the exploration

at the ISE selection level prohibitive. However, machine-learning approaches

could make use of previously explored spaces in order to predict the combina-

tion of parameters that results in Pareto-optimal solutions. The ideal scenario

71
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being that the model can predict the parameter combinations that lead to the

Pareto curve. Consequently, in this ideal scenario the resource-sharing algorithm

is executed only as many times as Pareto points can be found in the resource-

sharing design-space. In this case, the number of executions required to find the

Pareto curve would be three orders of magnitude smaller than when the space is

exhaustively explored.

In the previous chapter, Figure 3.15 shows how the settings of the five pa-

rameters were distributed as a function of their resulting area and latency, when

delivering the Pareto-optimal design points. This figure is partly reproduced in

Figure 4.1, which shows the distribution of values, along the Pareto curves found

throughout several explorations, for the parameters with continuous values: αT ,

βT , θT .

As shown in the figure, the values of the parameters in a given segment of the

curve are likely to fall in the same range throughout different input sets. This

is due to the intrinsic behaviour of each parameter during the execution of the

algorithm. From these behaviours, it could be possible to derive some parameter

settings that are unlikely to lead to a Pareto-optimal solution. This would prune
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the parameter space, making it smaller for exploration. Alternatively, these be-

haviours and patterns can be automatically extracted by using machine-learning

techniques. These techniques could, for instance, show that similar set of graphs

respond likewise to parameter configurations. The similarities across input sets

can be inferred from a number of characteristics extracted from the graphs. These

characteristics can describe the set as a whole and can include details of delay

and area of the comprising graphs.

In this chapter, it is shown that a predictive model can be trained, using data

obtained in previous explorations, in order to speed up the exploration of the

resource-sharing design-space of a set of graphs given its characteristics.

This chapter is organized as follows. Section 4.2 shows how the design-space

exploration flow is formulated such that a predictive model can be inserted in

order to speedup the process. Additionally, the input-output requirements of the

model are discussed. Section 4.3 shows how a set of ISEs can be quantitatively

represented by extracting a set of characteristics of the graphs that represent

the ISEs in the set. These characteristics constitute the input of the model.

Section 4.4 describes the fully-explored design-spaces from which predictions are

generated. Section 4.5 presents the process carried out to design a predictive

model that is able to generate the parameter configurations that lead to Pareto

points in the resource-sharing design-space, given the characteristics of a set of

ISEs. In Section 4.6, experimental results show the efficiency of the model. In

Section 4.7 the model is used to predict the resource-sharing design-space of

previously unseen inputs. Finally, Section 4.8 summarizes the results and presents

some concluding remarks.

4.2 Formalizing the Problem

As seen in the previous chapter, when a selection of ISEs is to be implemented

and attached to a processor, it is sensible to attempt to reduce area by shar-

ing resources amongst the ISEs. However, in most cases, the sharing comes at

the cost of degrading the critical path of the ISEs, and therefore, the speedup

obtained with their implementation. It has been shown that exploring the multi-

dimensional space created by the parameters: αT , βT , θT , multiOp and grouping ;



74 Chapter 4. Fast Exploration of the Resource-sharing Design-space

gives rise to another space, whose dimensions are our metrics. This transfor-

mation is obtained by executing the resource-sharing algorithm with every point

in a discretized parameter-space. The result of every execution is a netlist of

hardware components that is needed to execute all of the ISEs. Every time the

algorithm attempts to obtain different resource-sharing trade-offs, according to

the set parameter values. The result can be characterized by the metrics: area

of the solution and weighted average critical path of the ISEs.

For a designer, it is important to know the resource-sharing solutions that

represent a trade-off between the metrics for a chosen set of ISEs. Figure 4.2(a),

depicts the process that is required to obtain the optimal trade-offs. A set of ISEs,

with each ISE represented as a DAG, is the input for the resource-sharing algo-

rithm. The algorithm is executed iteratively for all of the possible combinations

of the parameter values in the permitted ranges. This represents the hot-spot

of the process, as it implies an exhaustive exploration of the resource-sharing

design-space. From the solutions that are found, the designer needs to extract

the solutions that are Pareto-optimal as these are the only interesting points for

making a design decision.

In contrast, Figure 4.2(b) shows the corresponding process when a model is

built to speedup the exploration of the parameter space. With the assistance of

the model, instead of testing all of the points in the discretized parameter space,

only a few points that are likely to be reflected as Pareto points in the resource-

sharing space are considered. As indicated in the figure, a set of quantitative

features should be extracted from the set of ISEs in order to be used as inputs

for the model. Details about the features will be given in the following section.

Given a set of features, the model will give a set of parameter values that are

predicted to lead to the Pareto curve in the resource-sharing design-space. The

parameter values suggested by the model are then tested in the resource-sharing

algorithm in order to get their performance in terms of the metrics.

Therefore, the particularization of the learning goal is now represented as:

ISE Input-set Features → Model → Parameter Settings
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Figure 4.2: (a) Flow chart of the process to exhaustively explore the design space
of resource-sharing solutions and find the optimal trade-offs. (b) Updated flow
chart of the exploration with the intervention of a predictor to determine the best
parameter configurations in order to directly find the optimal resource-sharing
trade-offs.

4.3 Input-set Features

The input of the model needs to be a quantitative representation of the set of

ISEs that will be merged and implemented.

The selection of features is important to any machine-learning-based technique

as these have a direct impact on how the model differentiates between inputs and

how it can gauge similarities. Features can describe the set as a whole and can

include details of delay and area of the comprising graphs.

The features extracted are: number of ISE graphs, standard deviation, 1st

quartile, 2nd quartile and 3rd quantile of the set of critical paths of the graphs

weighted with their corresponding frequency of execution. The values are nor-

malized so that their maximum value is 1. Thus, the features form a multi-

dimensional space where each point represent a set of feature values F .
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4.4 Generating the Training Data

In order to obtain explored design-spaces from which patterns can be extracted,

56 benchmarks were taken from the UTDSP [71] and SNU-RT [70] benchmark

suites.

ISE identification was performed on each benchmark using an implementation

of ISEGEN [26]. In this implementation, ISEs can include a full range of integer,

logical and floating-point operations, including divisions. The identification was

set to constrain ISEs to have a maximum of 12 input values and 8 output values

corresponding to the register file I/O port constraints of the target processor.

For the sake of obtaining a large training set, more than one training case

was extracted from each benchmark. Given a set of ISE candidates found by the

algorithm, ISEs were randomly selected to be included in the set of graphs to be

merged, thus forming a new training case. This was repeated more than once for

each benchmark, depending on the number of ISE candidates available. In this

way, 95 training sets were obtained. The smallest training set contains 5 ISEs

and the largest training set contains 26 ISEs.

The design space of resource-sharing solutions was explored for every training

case. The exploration of this space was done by executing the resource-sharing

algorithm several times with different values of αT , βT and θT , varying from 0 to

1 in steps of 0.05. In turn, every set of values for αT , βT and θT , was run with

the four combinations of values for the parameters multiOp and grouping.

Training input-output pairs are then composed by coupling the features ex-

tracted from each set of graphs and the parameter configurations that were used

by each of the Pareto points found during the exploration.

A point in the resource-sharing design-space can be generated by several pa-

rameter configurations. Therefore, for each Pareto point found in the design

space, the configuration that was selected was the one with the lowest values ac-

cording the following comparison priority order: αT , βT , θT , multiOp and group-

ing.
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4.5 Building a Model

Figure 4.1, was a first attempt to analyze the behaviour of the parameter space

when reflected in the resource-sharing design-space. The model needs to capture

the patterns of the parameter values that generate a Pareto-optimal point in the

resource-sharing design-space. This figure suggests that a point in a given section

of the curve, generated with a point P in the parameter space, might be generated

for a different input set with a point that is in the vicinity of point P .

As an example, the extreme cases seen in the resource-sharing design-space

are, as shown in Chapter 3, Max RS and No RS. These points are generated for

the majority of the input sets with P1 = (αT = 1, βT = 1, θT = 1, multiOp = X,

grouping = X) and P2 = (αT = 0, βT = 0, θT = 0, multiOp = X, grouping =X),

respectively. Thus, these two points in the resource-sharing design-space: Max

RS and No RS, represent two different sections of the Pareto curve and are found

throughout different input sets with parameter configurations that are in the

vicinity of P1 for Max RS solutions and in the vicinity of P2 for No RS solutions.

Consequently, a set of points that represent different trade-offs in the resource-

sharing design-space are likely to be generated by points from different regions

of the parameter space. Therefore, as the goal of the model is to find all optimal

trade-offs in the resource-sharing design-space, different regions of the parameter

space need to be explored.

As suggested in the previous example, the key regions of the parameter space

are given by the parameters αT , βT , θT . The values of these parameters are

continuous, share the same range and complement each other during the execution

of the algorithm when driving the solution from Max RS to No RS in the resource-

sharing design-space. Hence, the three-dimensional space given by αT , βT , θT will

be explored in several regions.

In order to generate predictions, the following procedure is adopted:

1. Given an unseen set of features Funseen, located in the feature space along

with each Ftrain from the training set, Euclidean distance is calculated from

Funseen to each Ftrain in order to find the k training case closest to the new

case.
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2. The parameter settings of the k closest training cases are stored in Pk−train

and are used in order to generate predictions for parameter settings Punseen.

3. Points in Pk−train are clustered into c groups, thus forming regions in the pa-

rameter space that can be independently explored. Therefore, every Pk−train

is classified into one of the c clusters and then referred to as Pk−c−train.

4. The normal probability distribution of a set of points Pk−c−train is extracted

from each cluster. Therefore, c probability distributions are obtained from

this step.

5. In order to generate predictions for Punseen, the c distributions are sampled

one by one to generate points that follow the same trend as the training

points Pk−c−train that belong to one cluster. A prediction Punseen is issued

from each cluster, sampling its corresponding probability distribution, in a

round-robin fashion. Punseen assigns values to the parameters αT , βT and

θT . The values for the parameters multiOp and grouping are predicted to

be the same as the ones associated with the closest training point to Punseen.

The exploration in every cluster is expected to target different regions of the

Pareto curve and is based on the values of the parameters taken from the k

training cases most similar to the unseen one. Figure 4.3 graphically describes

these processes.
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Figure 4.3: Graphical representation of the internal processes that must take
place in order to predict the Pareto parameter-values given the features of the
new input set of ISEs.
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Number of Clusters and Neighbours

Having defined the procedure to generate a prediction, the values assigned to k

(number of neighbours) and c (number of clusters) are key to the finalization of

the model for future use.

Every pair of values (k, c) creates a new model that will predict differently. For

this reason, several configurations should be evaluated in order to choose these

values. It is impractical to evaluate all of the possible configurations for the pair

(k, c). Therefore, a reasonable list of possible values was taken for consideration.

The values in k = {10, 20, 40} and in c = {5, 10, 15, 20} were mixed in order to

create a different model from every possible combination. Then, cross-validation

was used for model selection.

4.6 Experimental Evaluation of the Model

A 10-fold cross-validation has been performed to evaluate the model. On the

other hand, the parameters k and c have been learned on the training set by

nested cross validation.

For the sake of evaluating the final configuration of the model on data that

has not been used to decide the values of k and c, the training set is partitioned

in two. 90% of the training set is used to evaluate the different configurations of

k and c. With each configuration, this 90% is further partitioned and a leave-

one-out cross-validation process takes place to evaluate its performance. The

remaining 10% is left as a test set to later evaluate the chosen (k, c) configuration

using the 90% as training set. This process is repeated with every 10% of the

initial training set. Hence, every round, the remaining 90% is used to test every

configuration (k, c) using leave-one-out cross-validation. Thus, the parameters k

and c are tuned using only the training set and never the test set, in order to

demonstrate the generalization of the technique by evaluating it on completely

unseen cases.

Every round, a best configuration is selected. The configuration (k, c) that

has been best for most rounds is selected and tested against every 10% as the

final round of cross-validation.
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As sampling the distributions found per cluster has a random component, each

experiment was repeated 10 times and the results were averaged. The number of

repetitions was determined empirically, as no changes were observed when more

than 10 repetitions of the experiments were performed.

Performance Measure

The model in practice will suggest values of parameters Punseen to be used in the

resource-sharing algorithm given a set of features extracted from a set of ISEs

that are to be merged. It will attempt to suggest Punseen points in the parameter

space that will lead to a Pareto-point in the resource-sharing design-space. The

performance of the model can be a measure of how many Punseen points need

to be suggested in order to ensure that all of the possible optimal points will

be found. Such points compose the Pareto-curve that can be found during an

exhaustive exploration of the parameter space and will be referred to as the true

Pareto-curve. Therefore, the number of Punseen points that are needed in order to

find the true Pareto-curve will be used as a metric and will be referred to as R.

Consequently, for future explorations, the resource-sharing algorithm will have

to be executed only R times. R will be determined with the experiments that

evaluate the model with the training data.

Additionally, there is a need to measure, for a given R, the similarity between

the true Pareto-curve and the curve that has been found so far. In Figure 4.4(a),

the Pareto-curve formed by the red circles represents the true Pareto-curve, and

the green triangles represent the Pareto-curve found after testing the R Punseen

points suggested by the model.

A metric dpp is created for this purpose and it can be found by summing up

the distances from each point of the true Pareto-curve to the closest point of

the Pareto curve found after R executions of the resource-sharing algorithm. In

Figure 4.4(b), the green lines indicate how this distance is found for each point in

the true Pareto-curve. In order to normalize the distance-based metric, this sum

is divided by the length of the true Pareto-curve. In Figure 4.4(b), the length

of the segments that are formed between the red circles can be summed up to

obtain the length of the true Pareto-curve used for normalization.
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Figure 4.4: Example in the resource-sharing space to visualize the metric dpp

that is used to evaluate the model after R parameter predictions are tested in
the resource-sharing algorithm. (a) The red circles represent the true Pareto-
curve: found after exploring the entire parameter space. The green points repre-
sent the Pareto-curve found by running the resource-sharing algorithm R times
with parameter configurations Punseen suggested by the predictor. (b) Illustrates
components to calculate dpp. The green lines are the distances from each true
Pareto-point to the closest green point. The segments that are formed between
the red circles form the length of the curve used to normalize dpp.

Choosing the Optimum Number of Neighbours and Clusters

In order to see how the performance of the model grows as a function of R, every

10 Punseen points predicted by the model, dpp were calculated. Figure 4.5 shows

the result of 10 experiments in which cross-validation was perform on 90% of

the training sets available. Every experiment corresponds to 10% left out. As

explained in the previous section, the same process is repeated for every possible

configuration of c and k.

All values obtained for dpp in the cross-validation rounds, for a certain value

of R and a certain (k, c) configuration, were averaged. Also, the 95% confidence

interval of this mean is shown.

Figure 4.6 shows the averaged results across the 10 experiments, for every

R, in increments of 10. The configuration k = 10 c = 20, which means 10

neighbours and 20 clusters, has smaller dpp values for most values of R. Based

on this observation, the number of neighbours k was fixed to 10 and the number

of clusters c was fixed to 20. The model with this configurations will be referred

to as model-nearest-k10-c20.
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Figure 4.5: Every chart corresponds to an experiment where 10% of the training
set was left out. Every remaining 90% was used to perform cross-validation on
every configuration (k, c). Mean values of dpp and their 95% confidence intervals
are plotted as a function of R.

Performance of the Model

After finalizing the design of the model by assigning the number of neighbours

to 10 and the number of clusters to 20, its performance can be tested iteratively
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Figure 4.6: For every configuration (k, c), results obtained across 10 experiments
are averaged. Mean values of dpp are plotted as a function of R. Shaded areas
correspond to the 95% confidence interval of the mean values.

over each 10% slice of the training set. Figure 4.7, shows mean values of dpp

and their 95% confidence intervals, for every R, in increments of 10. Figure 4.7

also shows the results obtained when using a modified model, referred to as

model-random-k10-c20, that makes its predictions based on 20 random training-

sets instead of the 20 nearest training-sets. As mentioned before, distances are

measured in a Euclidean space formed by the features that are extracted from the

sets. Comparing the results of model-nearest-k10-c20 with model-random-k10-c20

allows an evaluation of the effectiveness of the features in extracting the relevant

characteristics of the set. In 8 of the 10 experiments, the prediction of model-

nearest-k10-c20 is better than the prediction of model-random-k10-c20 that does

not take into account input-set features. The prediction of model-random-k10-

c20 is, however, relatively close to the predictions of model-nearest-k10-c20. This

is because the predictor does not follow the behaviour of the most similar or

nearest input set, instead, it creates a distribution of the parameter values along
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R dpp dpp dpp

model-nearest-k10-c20 model-random-k10-c20 no-model

10 0.2419 0.2778 0.7695
50 0.0141 0.0274 0.1348
100 0.0051 0.0068 0.0587
150 0.0025 0.0031 0.0342
200 0.0005 0.0012 0.0241
500 0.0002 0.0001 0.0084
1000 0 0.0001 0.0021
2500 0 0 0.0005
3000 0 0 0.0002

Table 4.1: Performance comparison of the three predictors for various values of
R.

the Pareto curve based on 10 input sets fading out the impact of feature distances.

Finally, these results are compared with a random exploration of the parame-

ter space. Instead of using a model to suggest parameter combinations, these are

generated as a vector composed of random numbers uniformly distributed in the

range allowed by the parameters.

Subsequently, the results of the 10 experiments in Figure 4.7 are averaged

to show the final results in Figure 4.8. When using model-nearest-k10-c20, at

R=200, dpp stabilizes to its smallest value. This means that after 200 Punseen

parameter configurations suggested by the model, the majority of the inputs find

the true Pareto-curve in the resource-sharing design-space. When the model

is used for future predictions, it will generate 200 parameter configurations to

parameterize the resource-sharing algorithm. Thus, the Pareto curve found after

these 200 executions will be the same or very close to the Pareto curve that would

be found if the algorithm was executed exhaustively for all possible parameter

configurations.

As shown in Figure 4.8, the random exploration is not a good solution to con-

verge rapidly to the smallest possible value of dpp. As it find solutions randomly

located in the resource-sharing design-space, it slowly gets closer to the Pareto

curve, however it fails to focus its search in the exploration of the curve.

Table 4.1 contains exact dpp values for 9 R values in each of the three curves

shown in Figure 4.8. Random exploration rapidly drops its dpp values during
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Figure 4.7: Experimental evaluation of model-nearest-k10-c20, in contrast with
model-random-k10-c20 and with no-model or random prediction. Every chart
corresponds to an experiment where 10% of the training set was validated using
the remaining 90% for training. Mean values of dpp are plotted as a function of
R. Shaded areas correspond to the 95% confidence interval of the mean values.
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the first 200 runs. Afterwards, the exploration slows down reaching, only after

2500 runs, the same dpp value obtained by the model after 200 runs. Thus, in

comparison with random exploration, the predictive model reduces by 12.5 times

the number of executions of the resource-sharing algorithm that are needed in

order to find the optimal trade-offs in the design space.

Even though the number of features that the model processes is not very

large, principal component analysis [63] was attempted in order to reduce the

dimensionality of the feature space. However, the performance of the model was

not improved; thus, the feature set was not transformed.

At this point, the model to predict Pareto parameters has been built. Given

a set of ISEs, the predictive model can be used to effectively explore the design

space of resource-sharing solutions, based on the patterns that are extracted from

the previously exhaustively-explored spaces. The parameters of the model: k =

10, c = 20, and R = 200 have been determined, thus the model can now be used to

predict unseen design spaces. In order to use the model, the quantitative features

of a new set of ISEs need to be extracted. Based on these features, the model

generates 200 parameter configurations that are expected to lead to the true

Pareto-curve of the resource-sharing design-space. This means that the resource-

sharing algorithm will be executed only 200 times instead of 37,044 times, which

is the case in exhaustive exploration. This represents a speedup of more than two

orders of magnitude achieved by the predictive model over exhaustive exploration.

4.7 Practical Usage of the Model

The previous sections explained in detail the design of a predictive model that

speeds up the exploration of the resource-sharing design-space of a set of ISEs

that is to be implemented. Once the model is designed and evaluated, it can be

used to explore the resource-sharing design-space of new sets of ISEs. The sets

used for training and evaluation of the model were extracted from the SNU-RT

and UTDSP benchmark suites. Training sets comprised between 5 and 26 ISEs.

In this section, model-nearest-k10-c20 is evaluated on 4 ISE sets extracted

from benchmarks of a different suite, namely EEMBC [72] and CoreMark [73].

These 4 benchmarks have been chosen to be large in comparison with the bench-
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Figure 4.8: Experimental evaluation of model-nearest-k10-c20, in contrast with
model-random-k10-c20 and with no-model or random prediction. Results ob-
tained across 10 experiments are averaged. Mean values of dpp are plotted as a
function of R. Shaded areas correspond to the 95% confidence interval of the
mean values.
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Figure 4.9: Practical usage of the predictive model to speedup the exploration of
the resource-sharing design-space, given a set of ISEs extracted from the CJPEG
benchmark.

marks used for training. This was done in order to assess the effectiveness of

the model in scaling its predictions to new and vastly different input sets, thus

demonstrating the generalization of the techninque. The chosen bencharks are:

TTSPRK, QoS, CJPEG and CoreMark.

From TTSPRK a set of 20 ISEs was formed, from CoreMark a set of 40 ISEs,
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from QoS a set of 49 ISEs and from CJPEG a set of 104 ISEs. Given the set

of ISEs that will improve the execution time of the application or benchmark,

the processor designer needs to be aware of the optimal trade-offs between area

and speedup that represent alternatives for the hardware implementation of the

ISEs. In order to find the optimal area-speedup trade-offs, the resource-sharing

design-space needs to be explored by varying the parameters of the resource-

sharing algorithm explained in Chapter 3. The exhaustive exploration of the

design-space can be reduced by discretizing the values of the parameters with

continuous values. Thus, the exhaustive exploration of the space implies running

the resource-sharing algorithm 37,044 times. As this is impractical, specially

when a large ISE set is to be merged, the model constructed in this chapter can

be used.

The input of the model is the set of features extracted from each of the sets of

ISEs. These features are: number of ISEs, standard deviation, 1st quartile, 2nd

quantile, 3th quartile of the set of critical paths of the ISEs, weighted with their

corresponding frequency of execution. Based on these characteristics, the predic-

tive model suggests 200 parameter configurations that attempt to find the opti-

mal trade-offs in the resource-sharing design-space. Then, the resource-sharing

algorithm is run 200 times, one for each parameter configuration suggested by

the model. At that point, the majority or the totality of optimal area-speedup

trade-offs of the resource-sharing design-space will have been found.

In summary, the practical effect of having a model to predict the best param-

eter configuration for a given set is the reduction of the number of times that

the resource-sharing algorithm has to be parameterized and executed. Instead of

37,044 executions, 200 is sufficient to have a set of optimal alternatives.

Figure 4.9 shows the process needed to use the model to explore the resource-

sharing design-space of one of the EEMBC benchmarks and Algorithm 8 formal-

izes the process.

In order to see the effectiveness of the predictions, the resource-sharing design-

space was also explored exhaustively and the predictor was configured to give 800

additional parameter configurations for a total of 1000 configurations. This ex-

periment was performed for each of the 4 benchmarks and the results are shown

in Figure 4.10. The figure also shows the results of predicting the parameter
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Algorithm 8: Subroutine to generate predictions with model-nearest-k10-
c20 given a set of ISEs expressed as DAGs.

1: predictParetoParams (S) {extractFeatures(S) returns a vector of feature
values extracted from the set of graphs in S.
getNearestPtrain(FS) returns a vector that contains all parameter settings that
belong to the 10 Ftrain nearest to FS .
cluster(Pk−train) returns the elements Pk−train clustered in 20 groups.
getDistributions(kClusters) returns the probability distribution of each cluster
in kClusters.
getParamSet(iDistribution) returns parameter settings p from a sample of the
probability distribution iDistribution.}

2: ParetoParams← ∅
3: FS = extractFeatures(S)
4: Pk−train = getNearestPtrain(FS)
5: kClusters = cluster(Pk−train)
6: kDistributions = getDistributions(kClusters)
7: repeat

8: for all iDistribution ∈ kDistributions do

9: p = getParamSet(iDistribution)
10: ParetoParams = ParetoParams + p
11: iterationCount = iterationCount + 1
12: end for

13: until iterationCount ≥ 200
14: return ParetoParams

configurations with model-random-k10-c20 and with no-model or random predic-

tion. As stated in previous sections, model-random-k10-c20 randomly chooses 20

training sets to generate its predictions instead of picking the 20 most similar

training sets.

The value of dpp was measured at every 10th execution of the resource-sharing

algorithm. As explained in previous sections, dpp measures the distance between

the Pareto curve found after an exhaustive exploration of the space and the Pareto

curve found after R executions of the resource-sharing algorithm parameterized

by the model.

As there are random components in the predictor, each experiment was per-

formed 10 times. Figure 4.10 shows the mean values and the 95% confidence

intervals of the measured dpp values over the repetitions.

When the predictive model was used, TTSPRK and QoS reached dpp=0 much

faster than CoreMark and CJPEG. For all 4 benchmarks, after 200 parameter

configurations tested, dpp values were low enough to conclude that the majority of
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Figure 4.10: Results of predicting parameter values with model-nearest-k10-c20
over 3 programs from the EEMBC benchmark suite and CoreMark. This is
constrasted with results obtained with model-random-k10-c20 and with no-model
or random prediction. Mean values of dpp are plotted as a function of R. Shaded
areas correspond to the 95% confidence interval of the mean values.

the area-speedup trade-offs in the resource-sharing design-space had been found.

On the other hand, for model-random-k10-c20 dpp values dropped slightly slower

than model-nearest-k10-c20, and no-model was the worst search method in all of

the experiments.

In conclusion, model-nearest-k10-c20 predicted parameter values as expected

for benchmarks that vastly differ from the ones that were used for training. This

confirms that fixing the number of suggested parameter configurations to 200

adjusts well to a variety of input sets and leads to an acceptable approximation

of the Pareto curve of the resource-sharing design-space.
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model-nearest-k10-c20 no-model
Benchmark dpp R Running time R Running time Speedup

TTSPRK 0.0002 200 21 min. 6950 605 min. 28×
CoreMark 0.004 200 111 min. 5440 2314 min. 21×

QoS 0 200 75 min. 5190 1937 min. 26×
CJPEG 0.0039 200 305 min. 1900 2850 min. 9×

Table 4.2: Running time to explore the resource-sharing design-space for each
benchmark. Speedups are calculated as the running time of the random ex-
ploration: no-model, over the running time of the exploration with the model:
model-nearest-k10-c20

Design-Space Exploration Running-time

Table 4.2 shows the running time that was measured on the actual exploration

of the resource-sharing design-space for each benchmark. Experiments were per-

fomed on a workstation equiped with 4 Xeon processors running at 3 GHz, and 4

GB of RAM. The running time shown for model-nearest-k10-c20 corresponds to

the time spent in the exploration of the 200 parameters suggested by the model.

The dpp that is calculated at R = 200 on the exploration with model-nearest-

k10-c20, was used to find the value of R for no-model. This is, the value of R

for no-model is the number of randomly-generated parameter configurations that

need to be explored in order to reach the dpp that the model achieved at R = 200.

The running time shown for no-model corresponds to the time spent on these

exploration.

Speedups are calculated as the running time of the random exploration: no-

model, over the running time of the exploration with the model: model-nearest-

k10-c20. The predictive model achieved speedups between 9× and 28× on run-

ning time over random exploration, thus confirming the predictive power of the

model, and demonstrating important time savings in the exploration of new de-

sign spaces.

4.8 Conclusions

This chapter has explored a practical and novel predictive model that can be

used to quickly find the optimal implementation trade-offs in the resource-sharing
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design-space of a set of ISEs. Compared to an exhaustive exploration of the design

space, the predictive model is shown to reduce by two orders of magnitude the

number of executions of the resource-sharing algorithm that are required in order

to find Pareto-optimal solutions.

The next chapter makes use of this model in order to explore the design

space at the ISE selection level. More specifically, the alternatives found for the

implementation of a set of ISEs are used to decide what ISEs to select, given a

large set of candidates and some area constraints.

The power of the design-space exploration at the selection level lies in the

capability to actively interact with the implementation stage, where resource

sharing takes place. This interaction is only possible with the presence of the

proposed predictive model, as repeated calls to an exhaustive exploration would

be absolutely infeasible.

Thus, it is shown that learning techniques that extract patterns from previously-

explored spaces can be effectively used in order to solve complex problems, that

create large design spaces but that are likely to give rise to more efficient designs.



Chapter 5

ISE Selection

5.1 Introduction

Previous chapters have assumed that a fixed set of ISEs is to be implemented.

This is the case either when all of the ISEs that can be identified in the application

are chosen to be implemented, or when a subset of them is chosen to fit a given

area constraint.

The selection problem has been, so far, tackled by considering that each ISE

is to be implemented individually. This consideration dismisses important imple-

mentation issues such as resource sharing, by assuming that speedups and area

requirements of the ISEs remain unchanged after hardware implementation.

However, when resource sharing is considered for implementation, the area

requirements of a set of ISEs could vary significantly. Moreover, for every possible

subset that can be formed from the ISE candidate set, there is a subspace that can

be explored, and the result of this exploration is only available after attempting

to share resources amongst the selected ISEs under different constraints. The

exploration of this subspace, as seen in Chapter 3, finds many implementation

solutions to the given subset of ISEs. This design space, however, is not complete

as the outcome of its exploration would be different if one or several ISEs were

removed and/or added to the subset.

If n instructions are identified in the application code, the design space of

solutions would only be completely discovered when the 2n selection alternatives

are considered and their corresponding resource-sharing trade-offs are explored.

93
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The trade-offs between speedup and area that are found in a selection of ISEs

depend not only on the area and speedup that the individual ISEs require or yield

but also on the way that they can be merged with each other.

The unpredictability of the solutions that can be obtained from a given selec-

tion implies that the problem cannot be formulated as a conventional optimization

problem. Thus, exhaustive exploration is the only option to guarantee the finding

of all possible trade-offs. However, as the number of alternatives is exponential

in the number of ISE candidates, an exhaustive exploration is intractable.

This chapter presents a heuristic to iteratively explore the design space of

selection alternatives given a set of ISE candidates and a given area range that

is available for the AFU. This heuristic is in turn used to perform a global explo-

ration of the selection alternatives that is able to show the designer a wide range

of trade-offs between speedup and area that can be obtained from a set of ISE

candidates.

This chapter is organized as follows. Section 5.2 presents two motivational

examples that illustrate the trade-offs that can be found in the design space of se-

lection alternatives when resource sharing is used for implementation. Section 5.3

presents a new heuristic where the ISE selection problem is combined with the

implementation process in order to maximize utilization and speedup within a

given area budget. Section 5.4 shows how this heuristic can be extended in order

to explore the entire design space of solutions. The result of this exploration is

a set of selection-implementation alternatives, each of which represents a unique

trade-off between performance gain and cost. Section 5.5 describes a complete

hardware/software partitioning framework that uses the techniques presented so

far in this thesis, and that represents a complete solution to efficiently map an

application onto an extensible processor. Section 5.6 presents the experiments

that were performed and the results that were obtained, thus demonstrating that

the heuristic proposed in this chapter advances the state-of-the art in the ISE

selection problem. Finally, Section 5.7 concludes this chapter.
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Figure 5.1: Example from the AES application. The ILP solution to the selection
problem under an area constraint of 20 Kgates is contrasted with a better solution
that is available in the selection + resource-sharing design-space.

5.2 Motivational Example

In order to compare the solutions obtained from different subsets of the ISE

candidate set, these are characterized by their area requirements and by the

application speedup that yields their implementation.

Figure 5.1 shows an example taken from the AES application of the EEMBC

benchmark suite. A set of 44 ISEs is identified from the application code. It is

assumed that the area constraint imposed on the design is 20 Kgates. If the ISEs

were to be implemented individually, a conventional ILP solution1 would select

10 of the ISEs that fit in 20 Kgates and yield a speedup of 1.09×. However, when

resources can be shared amongst the ISEs, one could find that a different selection

of 10 ISEs can yield a higher speedup in the given area. When no resources are

shared amongst the ISEs the area occupied by that selection would be far beyond

the area constraint. However, when the resource-sharing design-space is explored,

it is found that, the 10 ISEs are highly compatible and can be merged to share

resources with no penalties in speedup occupying only 18 Kgates and yielding a

significantly higher speedup of 1.13×.

1ILP formulations are solved using an implementation of a dynamic programing algorithm
that makes use of a recursive procedure to obtain an exact solution [74].
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Figure 5.2: Example from the LPC application. The resource-sharing trade-offs
found for 3 different ISE selections are compared.

Another example is presented in Figure 5.2. This figure shows a set of speedup-

area solutions that can be obtained from a set of 26 ISEs identified in the LPC

application from the UTDSP benchmark suite. When all of the 26 ISEs are cho-

sen for implementation, a solution with no resource-sharing requires 945 Kgates

yielding 1.18× speedup. After exploring the resource-sharing design-space, it is

found that the same speedup can be obtained using only 647 Kgates. When the

resource-sharing algorithm attempts to share more resources in order to further

reduce area, it can get down to 430 Kgates, but at that point, the application is

slowed down as the critical path of the ISEs is drastically increased as a result

of an aggressive merging process. On the other hand, when only 5 of the ISE

candidates are selected, a maximum of 1.17× speedup can be achieved using 101

Kgates without resource sharing and using 78 KGates with resource sharing. This

area requirement can be further reduced to 60 Kgates to yield just 1.15× speedup.

Finally, Figure 5.2 also shows that by selecting one of the ISEs, a 1.13× speedup

can be obtained using only 16 Kgates. This means that 92% of the maximum

speedup achievable with the 26 ISE candidates can be obtained by implementing

only one ISE demanding 2.5% of the area that the maximum-speedup solution

requires. Similarly, 98% of the maximum speedup can be obtained by imple-

menting 5 ISEs demanding 9.2% of the area that the maximum-speedup solution
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requires. In this case, selecting all of the ISEs for implementation does not seem

a good alternative, even if there is enough die area available for the custom unit.

The area that needs to be spent to achieve the last 2% of the maximum speedup

might very likely give better returns by considering other alternatives such as

caches, registers or functional units.

In conclusion, important trade-offs can be found when selecting different com-

binations of ISEs to form the candidate set, and when these ISEs can share

resources in their implementation. Therefore, a thorough exploration of the

speedup-area space at the selection level should be considered before commit-

ting to any particular ISE selection.

5.3 Local Iterative Exploration

This section describes a heuristic to explore the trade-offs between speedup and

area that can be generated from a set of ISE candidates, C, extracted from an

application, within a given area range. Given C, speedup-area solutions can

be obtained by selecting any combination of ISEs. This means that there are

2|C| selection alternatives. Each of these alternatives, in turn, generates a set of

resource-sharing trade-offs, where each trade-off represents a solution in terms of

speedup and area.

Each ISE is characterized by the area that it requires for hardware imple-

mentation, and by the maximum speedup that the application can obtain by

including this ISE. These characteristics are extracted under the consideration

that only the ISE in question is to be implemented.

The set of ISEs selected from C for implementation will be denoted as S.

Initially, S is an empty set and all of the candidates extracted from the application

belong to the set C. The algorithm then iterates to form the set S that generates

maximum speedup within the area range.

Selecting an ISE to be moved from C to S

This decision is based on the speedup associated with the ISEs in C and their

structural compatibility with the ISEs already in S. The metric η is used to guide
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this decision. It is calculated for each ISE in C, ci, as follows:

ηi = w1 · compatibility(ci,S) − w2 · speedupi (5.1)

compatibility(ci,S) expresses how a candidate ISE ci matches the set S in terms

of potential area savings and its impact on the critical path of the ISEs. It is the

average amongst the maximum θ values found in merging ci with every sj. It is

computed as follows:

compatibility(ci,S) =

∑|S|
j=1 max(θci

, θsj
)

|S|
(5.2)

As seen in Chapter 3, the metric θ is a quantification of the trade-off between

area and latency when merging two ISEs. When the graphs corresponding to ci

and sj are merged into G′, θci
and θsj

are calculated according to the following

equations:

θci
=

LG′ − Lci

LG′

×

(

AG′

Aci
+ Asj

)

(5.3)

θsj
=

LG′ − Lsj

LG′

×

(

AG′

Aci
+ Asj

)

(5.4)

Lci
, Lsj

and Aci
, Asj

are respectively the critical path and area of ci and si,

and LG′ and AG′ are respectively the critical path and area of G′. The first term

in θ represents the relative decrease in latency perceived by not performing the

merge, whereas the second term represents the area savings that do result from

merging ci and sj.

Smaller values of compatibility(ci,S) express a better match between a candi-

date ci and S, in terms of area savings and critical path implications. In contrast,

higher values of speedup indicate that the selection of ci might have a good im-

pact on the solutions obtained from merging the set S + ci. Therefore, relatively

small values of ηi imply greater chances to include ci into the selected set S.
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Selecting an ISE to be moved from S to C

This decision is based on the speedup associated with the ISE in S and on a

measure of how well they merge with the other ISEs in S. The metric γ is used

to guide this decision. It is calculated for each ISE in S, sj, as follows:

γj = w1 · βj − w2 · speedupj (5.5)

As seen in Chapter 3, βj is a metric that quantifies the effect of merging sj

on the average critical path of S. This, in turn, is amortized by the area savings

obtained by including sj in the merging process.

βj can be found after merging the set S by executing the resource-sharing

algorithm with no restrictions. That is, the execution is parameterized with the

maximum values of αT , βT and θT . βj is calculated as follows:

βj =
|L̂− Lj |

max
|S|
k=1 Lk

× (1−Mj) (5.6)

where:

L̂ =

∑|S|
k=1 Lj

|S|
(5.7)

and Mi is the percentage of area corresponding to operations in sj that can be

shared with other ISEs in S, divided by the total area that could be shared in

the whole process.

Higher values of β express a worse match between sj and S in terms of area

savings and critical path implications. In contrast, higher values of speedup

indicate that sj has a good impact on the solutions obtained from merging S.

Therefore, relatively large values of γj imply greater chances to exclude sj from

S.

The optimal relation between the weights w1 and w2 has been determined

experimentally to be w1 = 1.2 · w2, favoring slightly the speedup component

when calculating η and γ. By construction, compatibility(ci ,S) in equation 5.1

and βj in equation 5.5 have values in the range [0,1]. On the other hand, speedup

values are normalized and scaled to have values of speedupj and speedupj in the

range [0,1].
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Iterative Search for Maximum-speedup Solutions

The set S is initialized with one ISE randomly chosen from C. Then, in every

iteration only one ISE is removed or added to S. The iterations are set to add

ISEs to S when the implementation of S with maximum area requirements falls

below the given area range. Similarly, the iterations are set to remove ISEs from

S when the implementation of S with minimum area requirements falls below the

given area range. Either of these two cases means that the solutions found with

S do not contribute to the exploration of the area range. Thus, ISEs candidates

that by themselves require area out of the area range cannot be included in S.

At the start of the process the iterations are set to add ISEs to S. The

number of iterations are ideally continued until no better solutions can be found

in the area range. As this is unknown when the exploration is being performed,

the number of iterations is constrained to a maximum value. Experimentally, a

maximum value of 100 iterations gave the same results as higher values.

If the iteration is set to add ISEs to S, ηi is calculated for every ci and the

ci with smallest ηi will be selected to be part of S. On the other hand, if the

iteration is set to remove ISEs from S, γ is calculated for every sj and the sj with

greater γj will be selected to return to C.

Subsequently, the minimum and the maximum area requirements of S are

checked to confirm that solutions found in the exploration of the resource-sharing

space of S contribute to the exploration of the given area range. The minimum

area requirement is found by merging the ISEs belonging to S with no constraints

by executing the resource-sharing algorithm described in Chapter 3 Algorithm 7

with parameters: αT =1, βT =1, θT =1, multiOp=0, grouping=0. Under these

parameters, the process maximizes sharing amongst the input ISEs in order to

obtain the minimum-area solution. The maximum area required to implement S

can be found by summing up the area of the ISEs belonging to S, and corresponds

to the case when no resource sharing is performed amongst the ISEs in S. The

maximum area requirement of S can also be found by executing the resource

sharing algorithm with parameter values that do not allow any merging in the

process: αT =0, βT =0, θT =0, multiOp=0, grouping=0.
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Algorithm 9: Local Exploration

1: localExploration (C, areaUpperBound, areaLowerBound, ThetaArray)
{getParetoPoints(X) returns the Pareto points in a set X of (area,speedup)
pairs. getRandom(x, y) returns a random number uniformly in the range [a,b].
getSpeedup(x) returns the speedup corresponding to ISE x}

2: S ← cgetRandom(1,|C|)
3: ParetoPoints← ∅
4: setting = add

5: repeat

6: if setting = add then

7: for all ci ∈ C do

8: compatibility(ci,S) = getCompatibility (C, S, i, ThetaArray)
9: ηi = (w1 · compatibility(ci,S) − w2 · getSpeedup(ci)) · getRandom(0.9, 1.1)

10: if ηi < ηk, ∀ k < i then

11: min = i
12: end if

13: end for

14: S ← S + cmin

15: C ← C − cmin

16: end if

17: if setting = remove then

18: BetaV ector = runRS(S, αT = 1, βT = 1, θT = 1, multiOp = 0,
grouping = 0)

19: for all sj ∈ S do

20: γj = (w1 · BetaV ector[j]− w2 · getSpeedup(sj)) · getRandom(0.9, 1.1)
21: if γj > γk, ∀ k < j then

22: max = j
23: end if

24: end for

25: S ← S − smax

26: C ← C + smax

27: end if

28: maxArea(S) = runRS(S, αT = 0, βT = 0, θT = 0, multiOp = 0, grouping = 0)
29: if maxArea(S) < areaLowerBound then

30: setting = add

31: else

32: minArea(S) = runRS(S, αT = 1, βT = 1, θT = 1, multiOp = 0,
grouping = 0)

33: if minArea(S) > areaUpperBound then

34: setting = remove

35: else

36: SolutionsRS(S) = exploreRS(S)
37: ParetoPoints = getParetoPoints(ParetoPoints + SolutionsRS(S))
38: end if

39: end if

40: iterationCount = iterationCount + 1
41: until iterationCount ≥ 100
42: return ParetoPoints
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When either the minimum or the maximum area requirement of S is proved to

fall in the given area range, the resource-sharing design-space of S is completely

explored in order to find the optimal implementation trade-offs between area and

speedup that can be obtained from S.

Optimal implementation trade-offs are found by using the predictive model,

presented in Chapter 4, to generate a set of parameter combinations that will

parameterize consecutive executions of the resource-sharing algorithm. Every

execution will generate a potentially different solution, with a specific trade-off

between area and speedup.

Thus, information of resource-sharing compatibility amongst the ISEs is used

in order to drive exploration of the selection design-space towards implementation

solutions that are likely to increase the utilization of the given area resources. This

iterative process is detailed in Algorithm 9.

Prior to the iterations, every possible pair of candidate ISEs (ci, cj) is merged

in order to find θi and θj . This corresponds to the function described in Algo-

rithm 10. The maximum value between θi and θj will be stored in ThetaArray[i][j]

and ThetaArray[j][i]. ThetaArray[i][j] values are used during the algorithm it-

erations to calculate η. The initialization of ThetaArray implies executing the

resource-sharing algorithm |C|2−|C|
2

times.

The inputs of the main routine are the set of ISE candidate identifiers C,

annotated with their corresponding area and application speedup, the area range

to explore, and the ThetaArray array that can be previously found from C using

the function in Algorithm 10. The resulting output is the set of Pareto points,

expressed as (area,speedup) pairs, that have been found throughout the iterative

search.

As γ and η are used to guide an iterative search, and are not absolute metrics

to guarantee an optimal choice, every time their values are calculated they are

randomly modified by a maximum of 10% of its value. This is done by multiplying

the original γ and η values by a randomly generated number between 0.9 and

1.1. This transformation implies that the instruction ci with minimum original

η value has the highest likelihood of having the minimum transformed η value.

And similarly, the instruction sj with maximum original γ value has the highest

likelihood of having the maximum transformed γ value. This transformation
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Algorithm 10: Subroutine for function getThetaArray.

1: getThetaArray (C)
{max(x,y) returns the greatest value between x and y. }

2: for i = 1 to i = |C| do

3: for k = i + 1 to k = |C| do

4: (θi, θk)=runRS({ci, ck}, αT =1, βT =1, θT =1, multiOp=0, grouping=0)
5: ThetaArray[i][k] = max(θi, θk)
6: ThetaArray[k][i] = max(θi, θk)
7: end for

8: end for

9: return ThetaArray

Algorithm 11: Subroutine for function getCompatibility

1: getCompatibility (C, S, i, ThetaArray)
2: compatibility(ci,S) = 0
3: for all sj ∈ S do

4: compatibility(ci,S) = compatibility(ci,S) + ThetaArray[i, j]
5: end for

6: compatibility(ci,S) = compatibility(ci,S)/|S|
7: return compatibility(ci,S)

Algorithm 12: Subroutine for function exploreRS

1: exploreRS (S)
2: ParetoParams=predictParetoParams(S)
3: SolutionsRS(S) ← ∅
4: for all p ∈ ParetoParams do

5: αT = p[0]
6: βT = p[1]
7: θT = p[2]
8: multiOp = p[3]
9: grouping = p[4]

10: (area, speedup) = runRS(S, αT , βT , θT , multiOp, grouping)
11: SolutionsRS(S) = SolutionsRS(S) + (area, speedup)
12: end for

13: return SolutionsRS(S)

prevents the iteration from falling into local optima or deadlocks that explore

repetitively the same solutions.

Function runRS(S, αT , βT , θT , multiOp, grouping), in Algorithm 7 of Chap-

ter 3, can be modified to return internal values of the process such as: the values

of θ found during the last merge, the values of β corresponding to each ISE of

the input set, the area of the resulting solution, and the speedup of the resulting
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solution.

Function exploreRS(S), in Algorithm 12, executes the parameterization of the

merging process. Function predictParetoParams, in Algorithm 8 of Chapter 4,

is used in order obtained the predicted parameters that lead to find the optimal

implementation trade-offs available from a selection set S.

Finally, function getCompatibility, in Algorithm 11, is called for the calcu-

lation of compatibility(ci,S).

5.4 Global Iterative Exploration

Implementation solutions derived from C may have area requirements ranging

from the area of the smallest ISE to the area of all of the ISE candidates im-

plemented without sharing resources. This is the case where at least one ISE is

chosen for implementation. This area range can be explored incrementally from

the minimum area to the maximum area using the local iterative exploration de-

scribed in Algorithm 9. Area subranges for local explorations were chosen to be

as wide as the area of a 32-bit multiply-adder. Algorithm 13 describes the rou-

tine that can be used to explore globally the design space of selection alternatives

given a set of ISE candidates C. The function getMaxMinArea in Algorithm 14

obtains the values of minimum area and maximum area from the candidate set C

in order to find the area range in which the exploration should be performed. The

result of the exploration is the set of Pareto-optimal solutions, which represent

the trade-offs between speedup and area, that are available to the designer given

the ISE candidates extracted from the application.

5.5 Hardware/Software Partitioning Framework

This thesis proposes a framework that represents a complete solution to efficiently

map an application onto an extensible processor. Given a software application, a

set of trade-off solutions are exposed to the designer. Each solution corresponds

to a selection of ISEs and its corresponding hardware implementation. This

hardware implementation describes the low level details of the AFU and can be

connected to the extensible processor.
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Algorithm 13: Global Exploration

1: globalExploration (C)
{getParetoPoints(X) returns the Pareto points in a set X of (area,speedup)
pairs.
getArea(x) returns the area required by operator x.}

2: ThetaArray =getThetaArray(C)
3: ParetoPoints← ∅
4: (maxArea,minArea) = getMaxMinArea(C)
5: areaStep = getArea(Multiply-Adder)
6: areaLowerBound = minArea
7: areaUpperBound = minArea + areaStep
8: repeat

9: ParetoPointsLocal = localExploration(C, areaUpperBound,
areaLowerBound, ThetaArray)

10: ParetoPoints = getParetoPoints(ParetoPoints + ParetoPointsLocal)
11: areaLowerBound = areaLowerBound + areaStep
12: areaUpperBound = areaUpperBound + areaStep
13: until areaUpperBound ≥ maxArea
14: return ParetoPoints

Algorithm 14: Subroutine for function getMaxMinArea

1: getMaxMinArea (C)
{getArea(x) returns the area required by operator x.}

2: for i = 1 to i = |C| do

3: maxArea = maxArea + getArea(ci)
4: if getArea(ci) < minArea, ∀ k < i then

5: minArea = getArea(ci)
6: end if

7: end for

8: return (maxArea,minArea)

The proposed flow of an extension generation unit is depicted in Figure 5.3.

An ISE identification phase generates ISE candidates from the source code of an

application. Identification algorithms such as [26] and [29] can be adopted for

this stage. For each basic block, the most profitable ISE is selected iteratively

until no more subgraphs are feasible. Since the ISEs that are listed as candi-

dates are non-overlapping, a subsequent isomorphism check is straightforward.

ISEs with equivalent functionality are combined and their execution frequency is

accumulated.

The modified ISE candidate list is then passed to the selection unit. The selec-

tion process can obtain information about the resource-sharing implementation
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Figure 5.3: Proposed design flow to extend a processor with an AFU tuned in
order to speedup an application.

of any preliminary selected subset. From the selection unit, the designer obtains

a set of solutions that represents trade-offs between speedup and area from which

the designer can choose the one that best suits the design goals and constraints.

The extension generation unit is in turn connected to the processor design

framework. Since the ISA of the processor is to be extended, the compiler must

be extended accordingly such that the application stream can take advantage of

the newly-generated functional unit. The complete processor design framework

is depicted in Figure 5.3.

5.6 Experiments and Results

Six benchmarks were taken for the evaluation of the proposed approach: LPC and

ADPCM from the UTDSP benchmark suite [71], FIR and LMS from the SNU-RT

benchmark suite [70], and AES from the EEMBC benchmark suite [72] and from

CoreMark [73]. ISE identification was performed on each benchmark using an
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Figure 5.4: Characteristics of the set of ISE candidates extracted from the chosen
benchmarks. The first plot shows the number of ISE candidates extracted per
benchmark. The second plot shows the distribution of the speedups that can
be obtained from individually implementing the ISE candidates. The third plot
shows the distribution of the areas required to individually implement the ISE
candidates. Blue + marks represent outlier values.

implementation of ISEGEN [26]. In this implementation, ISEs can include a full

range of integer, logical and floating-point operations, including divisions. The

identification was set to constrain ISEs to have a maximum of 12 input values

and 8 output values corresponding to the register file I/O port constraints of the

target processor.

Figure 5.4 shows the characteristics of the set of ISE candidates that was

obtained from each benchmark: the number of candidates that was obtained

from the identification phase, the distribution of the area requirements of the

ISE candidates, and the distribution of the speedups that are expected with the

separate implementation of each ISE candidate.

In order to evaluate the local exploration, an area constraint is imposed for

the selection of ISEs given the candidates obtained from the chosen benchmarks.

The area constraint or the area that the designer can invest on ISEs was chosen

to be the same as the area occupied by the baseline target processor which is

approximately 25 Kgates. The local exploration was performed using the rou-

tine described in Algorithm 9, in order to find the selection that maximizes
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Figure 5.5: Results of the local exploration and of the ILP solution, given an area
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Figure 5.8: Speedups obtained with the local exploration and with the ILP solu-
tion, under an area constraint of 25 Kgates.

speedup using the given area and considering resource sharing for ISE imple-

mentation. The areaUpperBound provided for the exploration was 25 Kgates

and the areaLowerBound was 25 Kgates minus the area of a 32-bit multiply-

adder. For the sake of comparison, the selection problem was solved using a

standard ILP formulation [33], which maximizes the obtained speedup under an

area constraint of 25 Kgates, given a set of candidates with their corresponding

areas and speedups.

Figures 5.5 to 5.7 shows the results of this experiment performed for each of

the benchmarks. Each plot shows the speedup-area solutions that were obtained

from the local exploration and one speedup-area solution obtained from the ILP

formulation. In all cases, higher speedups were obtained, within the given area

constraint, with the local exploration. In comparison with the ILP solutions,

the local exploration showed speedup improvements from 8% in LPC to 238% in

LMS, as shown in Figure 5.8. Hence, the integration of selection and resource

sharing in ISEs yields better solutions by driving the exploration of the selection

design space towards implementation alternatives that are likely to increase the

utilization of the given area resources.

Due to the varied characteristics of the ISE candidate sets obtained from

different benchmarks, local explorations develop differently. For instance, as dis-

played in Figure 5.7, more solutions were found in the local exploration of AES

and CoreMark. This is due to the higher number of candidates and the small size
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of most of them, as shown in Figure 5.4. As candidates to include in a selection

need to be smaller than the area constraint, candidate sets with large ISEs such

as in LPC, ADPCM, FIR and LMS, present a reduced set of candidates under

area restrictions. Thus, the more ISE candidates, the more selection alternatives

and resource-sharing opportunities to explore.

Unlike traditional solutions [33], the local exploration is able to give the de-

signer a range of trade-offs in the vicinity of the given area from which the designer

can choose. The visibility of such trade-offs can, for instance, show that less area

needs to be spent in order to get the maximum speedup. Such is the case in AES,

where the maximum speedup that is obtainable with 25 Kgates can be achieved

with 18 Kgates. Thus, a local exploration has already hinted that constraining

the solution to an exact area requirement does not always lead to the best uti-

lization of the available resources, and therefore, other area requirements might

offer a better trade-off between speedup and area.

In order to see all of the trade-offs that can be obtained from the ISE can-

didate set, one can perform global exploration using the routine described in

Algorithm 13. The global exploration was stopped when 99.999% of the maxi-

mum obtainable speedup is achieved at the end of a local exploration. The result

of performing a global exploration for each of the benchmarks is shown in Fig-

ures 5.10 to 5.12. These results show that local explorations provide a part, small

in some cases, of the design space. Figure 5.9 shows the maximum speedups found

in global exploration in comparison with the speedups found in local exploration.

An advantageous trade-off was unveiled in the global exploration of ADPCM

in Figure 5.10. Solutions obtained with a local exploration that constrained

the solution to use less than 25 Kgates yielded a maximum speedup of 1.03×.

However, it is discovered that a speedup of 1.07× can be obtained with 26 Kgates.

As the local exploration was constrained to 25 Kgates, ISEs that required more

than 25 Kgates were never included in the selection. As seen in Figure 5.4, a

large number of ISE candidates in ADPCM require from 25 to 30 Kgates. Thus,

when the area constraints get slightly looser, the number of selection alternatives

increase, enabling the combination of larger ISEs that can potentially absorb each

other, thus increasing the speedup with very little area increments. Similarly, the

global exploration in AES, shown in Figure 5.12, can show the designer that with
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Figure 5.9: Speedups obtained with local exploration in comparison with the
maximum speedup found in global exploration.

only 6 Kgates, half of the obtainable speedup can be reached.

Figures 5.10 to 5.12 also highlight the Pareto points that can be offered to the

designer. They represent all of the optimal trade-offs that have been found. Thus,

choosing any of the given Pareto points guarantees that no other solution is better

in speedup and area. Nevertheless, the shape of the curve can be interpreted by

the designer in order to choose the most suitable trade-off. Steep sections of the

curve can be interpreted as costly speedup gains, since large increments in area

yield small increments in speedup. On the contrary, flat sections of the curve can

be interpreted as low-cost speedup gains, since small increments in area yield large

increments in speedup. Therefore, points of the curve that show a visible change

from flat sections to steep sections can be of special interest to the designer. In the

case of the design space found in CoreMark, interesting trade-offs can be noted

at an area expense of 11 Kgates where a speedup of 1.18× is obtained and at

22 Kgates where a speedup of 1.27× is obtained. These advantageous trade-offs

are not displayed in local explorations. For instance, if the designer was given

80 Kgates for ISEs, the maximum speedup is achieved. However, the resource

utilization of the solutions that require 80 Kgates is notably poor, since 90% of

the speedup can be obtained with 25% of the area.

Thus, it is demonstrated that rather than finding a unique solution to the

selection problem, exploring the space is more important in order to find the

implementation solution that best suits the complete design.
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Figure 5.10: Results of globally exploring the design space of solutions derived
from the ISE candidates obtained from the two benchmarks of the UTDSP bench-
mark suite. This is contrasted with the results of local exploration. The Pareto
solutions that can be offered to the designer are also highlighted.
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Figure 5.11: Results of globally exploring the design space of solutions derived
from the ISE candidates obtained from the two benchmarks of the SNU-RT bench-
mark suite. This is contrasted with the results of local exploration. The Pareto
solutions that can be offered to the designer are also highlighted.
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Figure 5.12: Results of globally exploring the design space of solutions derived
from the ISE candidates obtained from the benchmark of the EEMBC benchmark
suite and from CoreMark. This is contrasted with the results of local exploration.
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5.7 Conclusions

The techniques presented in this chapter complete the hardware/software parti-

tioning framework proposed in this thesis that, for the first time, combines the

design spaces of ISE selection and resource sharing in ISE datapath synthesis.

The results presented in this chapter demonstrate, that such an integration un-

veils new trade-offs between speedup and area that are not identified by previous

selection techniques.

On the benchmarks analyzed in this chapter, the proposed heuristic finds

solutions that under a fixed area constraint, achieve speedups from 8% to 238%

higher than previous selection techniques.

This chapter presents an original technique to find the optimal trade-offs in

the design space. This technique aims at guiding the selection process to favour

ISE combinations that are likely to share resources with low speedup losses.

This is achieved by using metrics that quantify the resource-sharing compati-

bility amongst the ISE candidates.

Thus, when there are specific area requirements for ISE implementation, a

local exploration can find the solutions that achieve maximum speedup and max-

imum resource utilization using the available area. Additionally, a global ex-

ploration of the design space is proposed in order to generate a set of unique

trade-offs between speedup and area that can be offered to the designer.





Chapter 6

Pipelining ISEs to Speedup Loops

6.1 Introduction

The ISE implementation flow proposed in Chapter 3 produces AFUs with RTL

specifications that are fully compatible with hardware pipelining. This allows the

processor to issue ISEs at every clock cycle regardless of their execution latency,

and therefore several ISEs can be in execution at the same time. This is possible

due to two properties of the generated AFUs. Firstly, ISEs that share resources

form an AFU with a fixed execution latency. Therefore, within an AFU, all

inputs are expected to arrive at the same time and all outputs are expected to be

ready at the same time. Secondly, operations within an AFU execution cycle are

independent from operations of any other execution cycle of the same AFU. This

is because ISEs share resources only with other ISEs and operators that belong

to the same ISE are never merged.

Under these circumstances, multi-cycle ISEs do not necessarily stop the pro-

cessor from issuing another ISE at the next cycle. Instead, AFU pipeline stages

can, at the same time, operate over different input data and perform the function-

ality of different ISEs. These pipelined AFUs can be exploited by out-of-order

architectures which allow several instructions to be simultaneously in the execu-

tion stage and also allow results to be generated in a different order from the

order given in the sequential instruction stream.

The scenario that motivated the creation of early out-of-order execution archi-

tectures is similar to the one represented by an in-order single-issue architecture

119
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extended with a number of AFUs. In both scenarios, there are several functional

units available in parallel. These can be pipelined, and have different instruction

latencies. Thus, extended single-issue in-order architectures can be adapted to

take advantage of their pipelined AFUs.

However, a desired feature in processor extensibility is to be able to leverage

the design of a baseline processor core that has been optimized and verified in

order to achieve customization by only plugging in additional functional units.

Thus, when a typical embedded processor with single-issue in-order execution

is extended with a multi-cycle AFU, the processor pipeline is stalled until the

execution stage completes its execution. Therefore, only one instruction can be

in the execution stage at any point in time. This constitutes the first motivation

for the work presented in this chapter: most embedded processors cannot exploit

the benefits of an already-present pipelined AFU.

The second motivation is the realization of the potential that pipelined AFUs

have to generate significant speedups in application loops. Most programs spend

the bulk of their running time in a few deeply nested loops, and this is particularly

true in embedded applications. Hence, small improvements in the execution time

of the instructions within a loop have a great impact in the overall execution

time of the application. On the other hand, loops are able to create a stream

of repeated calls to the same ISE during program execution. This represents an

ideal scenario for overlapping execution of the repeated instruction calls by using

hardware pipelining.

The previous chapters have approached the ISE generation problem according

to the traditional methods of identifying ISEs introduced in Section 2.2 [18, 26,

29]. ISEs are identified within a basic block, thus leaving any operation that

deals with the control flow of the program to the processor. Furthermore, the

techniques presented so far are fully compatible with state-of-the-art ISE identi-

fication techniques.

This chapter explores a novel technique that allows a typical single-issue in-

order processor to obtain the performance improvements offered by pipelined

AFUs. This is achieved, with no modifications to the baseline architecture, by

appropriately inserting control flow statements into ISEs. However, the proposed

technique implies a major change in the way ISEs are identified in the program,
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since it requires analysis of the application that goes beyond the DFGs to include

control structures.

The purpose of the work presented in this chapter was to evaluate the feasi-

bility and the potential benefits of the proposed method. Thus, the technique is

independently and manually verified in a benchmark application, prior to spend-

ing effort on automation and on the integration with other tools.

This chapter is organized as follows. Section 6.2 analyzes in detail the chal-

lenges that need to be faced when a pipelined AFU is to be used to overlap the

execution of consecutive loop iterations. An example extracted from a real appli-

cation is used in order to show how current techniques are unable to provide this

overlap. This example also shows how the introduction of a special case of ISE,

referred to as loop ISE, removes the existing limitations by taking control of the

iterations of the loop. Section 6.3 presents, through a different example appli-

cation, how the proposed technique can also include loops whose bodies present

control flow disruptions. In these cases, hyperblocks are formed in the loop body

using compiler control flow transformations. These hyperblocks are covered by

loop ISEs, thus creating ISEs with multiple exits, and therefore with multiple

destination addresses. Section 6.4 shows how the functionality of loop ISEs can

be implemented and generalized to support loops that contain either a single ba-

sic block or a hyperblock. Additionally, Section 6.4 provides details about how

to implement AFUs that execute loop ISEs and about how these AFUs interact

with the rest of the system. Section 6.5 shows, through an example, how the code

of an application is transformed to include the loop ISEs. Section 6.6 explores the

challenges that the construction of an automated framework for loop ISE genera-

tion presents. Additionally, an outline of the steps that can be followed are listed

and analyzed. Section 6.7 introduces the experimental setup and the platform

that was used in order to test the proposed techniques. Section 6.8 presents the

results obtained from these experiments and compares them with state-of-the-art

solutions. Finally, Section 6.9 concludes this chapter.
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6.2 Pipelining ISEs

Multi-cycle ISEs can be pipelined in order to increase their throughput. Pipelin-

ing divides the circuit into several execution stages, allowing it to operate con-

currently on different inputs. This permits the simultaneous exploitation of both

spatial and temporal parallelism in order to increase throughput. However, to

fully exploit a hardware pipeline, several ISEs must be emitted in consecutive

cycles. On the other hand, application loops create repetitive streams of instruc-

tions by their nature. Furthermore, in most cases, application loops represent a

large percentage of the application execution time. Nevertheless, in order to take

advantage of a pipelined AFU to speedup a stream of instructions created by an

application loop, an ISE must cover the entire loop body.

Prior ISE identification methods, e.g., [32], are insufficient to cover complete

loop bodies as ISEs cannot include memory accesses. Loads and stores are histor-

ically only executed by the base processor. Early ISEs were designed to exchange

data only with the processor’s register file, hence memory operations were sched-

uled before and after the ISE. However, in order to create a stream of ISEs from a

loop without memory operations in between, a large amount of data needs to be

available. Thus, the register file is not sufficient to provide the data to a complete

loop as, most commonly, entire arrays are used and transformed within loops.

[28] and [75] introduced methods that allow ISEs to exchange data with a

scratchpad memory that is attached to the AFU. This local memory is called

by the authors architecturally visible storage (AVS). Thus, within an ISE there

might be load and store operations that access the scratchpad memory. Under

this scheme, Direct Memory Access (DMA) operations, that move data between

the scratchpad memory and off-chip RAM, can be scheduled before and after the

execution of the loop. In [75], the authors stress the need for coherency proto-

cols between the scratchpad memory and the cache as a requirement for correct

execution. This scheme is used in the experiments presented in this chapter and

is depicted in Figure 6.1(a).

Another solution that can provide a large amount of data to the AFU is pre-

sented in [76]. [76] proposes a technique, way stealing, that allows the AFU to

exchange data directly with the data cache. Although this method requires major
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Figure 6.1: (a) Architecturally Visible Storage (AVS): local memory in the
AFU [28, 75]. (b) Way stealing: the data cache can be directly accessed from the
AFU [76].

architectural modifications to the processor, it does not require the implementa-

tion of coherence protocols as it does not duplicate data. Way stealing comprises

techniques to preload the data that will be accessed during the loop in the data

cache, before the iterations start. This scheme is depicted in Figure 6.1(b).

Motivational Example

Figure 6.2 shows an example extracted from the DCT kernel of the JPEG encod-

ing application. The body of the main loop of the kernel is identified as an ISE.

The data required for the execution of the loop can be previously loaded in a

scratchpad memory attached to the AFU. Thus, when 8 inputs are available, the

AFU requires 4 cycles. As there are no loop-carried dependencies, this instruction

can be pipelined, yielding a speedup of 2.9× for this kernel.

Apart from the blocking condition of the multi-cycle ISE, which stalls the

pipeline until the AFU completes its execution, there is another limiting factor:

several operations relating to the loop itself must be done in software. In partic-

ular, the loop counter must be incremented, compared with the maximum loop

count, and a conditional branch that determines whether the loop continues, must

all execute in software.

This will require that the processor issues at least three instructions per it-

eration to facilitate the loop. Hence, instructions that control the iterations of

the loop would cancel any benefits from the pipelined AFU even in the case

where multi-cycle ISEs are non-blocking, i.e. the operations following them can

be issued before their completion.
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Figure 6.2: (a) A basic block extracted from the control flow graph of the DCT
kernel in the JPEG application. In this basic block, a multi-cycle ISE is identified
using traditional techniques. This instruction takes 4 clock-cycles to complete in
the AFU. Assuming that ISEs are non-blocking instructions, or assuming that
they are blocking instructions, the computations in the AFU cannot be over-
lapped in order to take advantage of a pipelined AFU. (b) All operations in the
basic block are included in one ISE, and the AFU issues every iteration. Thus,
operations in the AFU can overlap in time, yielding a speedup of at least 2.9×
on the loop execution by taking advantage of a pipelined AFU.
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As shown in the time table in Figure 6.2(a), the computations in the AFU

cannot be overlapped in order to take advantage of a pipelined AFU. The shaded

squares account for the number of cycles taken by the execution stage of each

instruction. Following the ISE, the processor issues the three consecutive instruc-

tions. When the branch is taken, the processor issues another ISE. At this point,

the AFU has already finished the computations of the previous instruction.

To address the mentioned limitations, the work presented in this chapter

proposes to create a loop ISE that covers the loop body as well as the instructions

that control the execution of a loop. A loop ISE executes the operations that

correspond to the break condition of the loop in hardware, and a simple control

module is added to the AFU to continuously trigger the start of a new execution

of the pipelined loop body until the break condition is met. Thus, the automatic

issue of ISEs every clock cycle permits the use of every stage of the pipeline during

loop iterations.

This situation is shown in Figure 6.2(b), where operations in the AFU can

overlap in time, considerably reducing the execution time of the loop by taking

advantage of a pipelined AFU.

6.3 Allowing Loop Bodies with Multiple Exits

Significant performance improvements can be obtained by pipelining critical loops.

However, loops often contain structures that cannot be included in a single ISE

without introducing control dependencies. These structures include multiple con-

trol flow paths, multiple exits, inner loops and calls to functions that cannot be

inlined. In these cases, unimportant paths with high resource usage can prohibit

the optimization of the execution of more important paths. To mitigate this

problem and further expose instruction-level parallelism, loop ISEs support loops

whose bodies form hyperblocks [77].

A hyperblock is a single-entry, multiple-exit region of the control flow of a

program, with no internal join points and no loops. Hyperblocks support predi-

cated execution, which has already been considered in the field of custom instruc-

tions [78]. The use of predication increases the size of regions that correspond

to a single path of control flow, which in turn increases the likelihood of finding
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Figure 6.3: An example of control flow transformations to create single-entry
regions. (a) Original control flow. (b) Predication: both branches are included
in the region. (c) Tail duplication: one branch is included in the region.

instruction-level parallelism. Unfortunately, predication does not always remove

all control flow disruptions, and many blocks that can be predicated are poor can-

didates for custom intructions. Additionally, unbalanced branches may be costly

to predicate, as if-conversion always executes both sides of a branch. Moreover,

one side of the branch may contain forbidden operations, such as a function call,

that cannot become part of an ISE.

To construct hyperblocks, applications are profiled to identify hot loops and

determine which branches are taken most frequently; heuristics are then applied

to select which basic blocks are consolidated into a hyperblock. Furthermore,

techniques such as loop unrolling, tail duplication, and loop peeling can assist

hyperblock formation without altering the correctness of program execution.

Figure 6.3 shows an example where some of the above-mentioned compiler

transformations are used in order to create a single-entry region.

Motivational Example

Figure 6.4(a) shows an example of a loop extracted from the entropy encoding

kernel of the JPEG encoding application. Traditional techniques can find an

ISE in the first basic block of the control flow segment. Unfortunately, there is

a control flow disruption that prevents the complete loop from being converted

into an ISE. Profiling indicates that the branch leading to a function call is

rarely executed. Additionally, the function call cannot be executed in the AFU.

Therefore, predication cannot be used to eliminate this control flow disruption.
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Figure 6.4(b) shows that a compiler transformation, namely tail duplication,

can be applied in order to form a multi-exit hyperblock. The hyperblock is now

an independent branch of the loop, and moreover, it is the most executed path

during the iterations of the loop.

Figure 6.4(c) shows how the side of the loop that forms a hyperblock can be

covered by a loop ISE to be executed in custom hardware. For the common case,

where the disruption does not occur, the entire loop body will benefit from the

speedup achieved through the loop ISE. The loop ISE contains the operations

corresponding to two conditions, one to exiting the loop, and another one to

executing the branch that has been excluded.

6.4 AFU Implementation

Figure 6.5 shows the components that the AFU requires in order to execute loop

ISEs. Additionally, the figure shows the interface between the AFU and the base

processor.

The processor provides control signals to initiate the ISE, along with read-

/write interfaces to its register file. In typical RISC processors, the register file

can provide two inputs and read one output from the AFU at every cycle. An

AFU controller, which receives the initialization signals, enables the pipelined

datapath execution and activates the AFU’s local storage units.

The AFU has its own architecturally visible local memory. This memory can

provide inputs to the ISE and store its results after the loop executes. DMA

is used to transfer data from the main memory to the local memory for ISE

execution, and to copy the data back after the loop terminates, without stalling

the processor. As noted in [75], this type of memory access creates coherence

problems, as data that is modified in the AFU local memory and written back

to the memory may be different from the values of the same data that reside in

the data cache. A hardware or software coherence mechanism needs to be used

to prevent the cache to AFU local memory coherence problem.

Additionally, a local register file is used to store loop-carried variables. Spe-

cialized load and store instructions are included in the set of ISEs to permit the

reading and writing to this local register file.
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The AFU outputs that correspond to loop break conditions are passed to its

control unit, which transfers control back to the processor.

To facilitate correct execution in the presence of multiple exit points, the

AFU also returns the next instruction address associated with the met break

condition to the processor. A loop ISE has itself as the default destination,

which is achieved by implicitly issuing the same instruction within the AFU. The

remaining destinations are the other hyperblock exits, e.g., break instructions in

the original program’s control flow, including the eventual completion of the loop.

The local register file also stores the next instruction addresses associated with

each of the break conditions of the loop ISEs. The ISE store instruction is used

to load these values at the beginning of the execution of each loop ISE. Although

this data is all compile-time constant, the register file would be quite large if

it must store every exit address for every loop ISE. In actuality, the number of

local registers required by an ISE is the sum of the number of exit point plus

the number of loop-carried variables, and the maximum number of local registers
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needed in the AFU corresponds to the number of local registers of the ISE that

requires the most.

Due to the use of hyperblocks, loop ISEs can be viewed as a complex multi-

target branch instruction. Implicitly, this suggests that the AFU would need

to modify the Program Counter (PC) in the fetch stage of the base processor

pipeline. Sidestepping this issue by directly providing the next instruction address

to the processor is beneficial, as the architecture of the base processor can remain

unchanged.

In a sense, the formation of a hyperblock can be viewed as a type of profile-

guided static branch prediction. Consequently, branches that have been absorbed

into the hyperblock, including hyperblock exits, are removed from the program

and are no longer issued to the branch predictor; conflicts involving these branches

are eliminated as a consequence.
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Initiation Constraints

The Initiation Interval (II), in the context of pipelining, is the number of cycles

that the AFU must wait before issuing the next iteration of the loop. To initiate

a new ISE at every clock cycle, the aggregate I/O bandwidth required for its

computations cannot exceed the number of available memory and register file

read and write ports. If these conditions are not met, then the input and output

operations must be scheduled accordingly. This can be taken as the resource

constraints of the initiation interval of the loop, and can be formalized as follows:

ResII = max

(⌈

numberOfInputs

numberOfInputPorts

⌉

,

⌈

numberOfOutputs

numberOfOutputPorts

⌉)

(6.1)

In other words, ResII is the initiation interval, as determined solely by resource

constraints.

The greatest dependency distance, in clock cycles, found between iterations is

another constraining factor of the initiation interval. This is known as recurrence

constraint RecII.

The maximum instruction throughput is the inverse of stage delay or initiation

interval of the AFU. It specifies the number of clock cycles between the initiations

of sequential instructions into the AFU. It is calculated as follows:

II = max (ResII,RecII) (6.2)

Pipeline Scheduling

As-Soon-As-Possible (ASAP) scheduling [69] is applied to the ISE so that the

loop break conditions are evaluated at the earliest possible point. However, the

pipelined execution of several loop iterations at once, technically, is speculative.

Therefore, write operations must not be scheduled before the break conditions of

the previous iterations are resolved. An example of this is given in Figure 6.6.

Inputs and outputs are then scheduled along different pipeline stages making sure

that the number of read and write accesses does not exceed the number of ports

at any time.
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Figure 6.7: Code abstraction, taken from the JPEG entropy encoding kernel,
showing the transformations needed in order to use a loop ISE.

6.5 Code Example

Figure 6.7 shows the high-level code transformations that are required to facilitate

the use of a loop ISE for the JPEG entropy encoding kernel shown in Figure 6.4.

Before the loop, the addresses of the exit points are stored, as discussed in the

previous section, using a dedicated instruction, ISE STORE. In these addresses,

the next instruction that correspond to the exit point that took place can be

found. One exit point takes place when the condition to execute the excluded

branch of the loop is met. Label else label represents this address and its value

is stored in position 1 of the local register file, as indicated in line 1 of the code in

the figure. The second exit point correspond to the case where the loop finishes

its execution. In this case, label continue label represents the address where

the following instructions are found, and its value is stored in position 2 of the
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local register file, as indicated in line 2 of the code in the figure. In addition

to the next instruction address corresponding to the exit points of the loop ISE,

two local variables that are accessed during the execution of the loop need to be

stored in the register file. This corresponds to lines 6 and 7 of the code. k and r

are stored in positions 3 and 4 of the register file, respectively.

The for loop is replaced with a LOOP ISE in line 8 of the code. This instruc-

tion returns the next instruction address corresponding to the exit point that

internally took place. This is, either else label or continue label. A jump

instruction following the loop ISE, in line 9 of the code, then transfers control to

the appropriate point of continuation.

In the case where else label is the following instruction address, the opera-

tions that where excluded of the loop are executed in software. This operations

correspond to lines 11 to 17 of the code in the figure.

Data that was modified in the AFU and is used in the excluded branch must

be moved from the AFU back into the processor in advance. This is accomplished

with the ISE LOAD instruction, which moves variable r back into the register file

as indicated in line 10 of the code. If data in the AFU local memory is required,

then a DMA transfer may be initiated as well.

Afterwards, any values modified by the software code that may be needed

by future iterations of the loop are written back to the AFU. In this case, r is

re-initialized to 0 and sent back to the AFU using an ISE STORE instruction. This

is indicated in line 18 of the code. Then, the execution re-enters the loop ISE for

the next iteration as indicated in line 19 of the code.

If the loop terminates in the AFU, the next instruction address provided by

the ISE corresponds to the continue label in line 20. In this case, there is no

return to the ISE, so normal software execution continues after the loop.

6.6 Loop ISE Generation Framework

The experiments that were performed in the work presented in this chapter manu-

ally recognized the hyperblocks to form and the loop ISEs to implement. However,

as it has been proved that loops can be considerably sped up with this technique,

further efforts can be made in the future in order to automate its design flow.
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The identification of loop ISEs presents different challenges from those found

in identification of typical ISEs. In loop ISE identification, the search is simplified

as it focuses on loops. The main challenges are now centered on developing

heuristics to form hyperblocks and on evaluating the feasibility and gain of their

hardware implementation.

This section gives an overview of the steps that can be taken to generate loop

ISEs from applications and the aspects that need to be considered in the process.

1. Profiling:

The application is executed with representative input sets in order to rec-

ognize the most executed paths of the code.

2. Loop identification and hyperblock formation:

As the proposed technique focuses on loops, these are first identified using

compiler intermediate representations. Loops that do not contain control

flow disruptions are listed as loop ISE candidates as long as all of the oper-

ations on its loop body can be implemented in the AFU. These operations

are arithmetic operations and memory operations that can be transformed

later into reads/writes from/to the AFU local memory.

Loops that contain control flow disruptions are further analyzed in order

to create hyperblocks that cover the most commonly taken path of loop

iterations.

Hyperblock formation is a common compiler technique that is guided by

profile information. It is typically used to create a single manageable block,

free of control dependencies, in which optimizations and scheduling strate-

gies can be freely applied.

Two steps take place during hyperblock formation:

a) The basic blocks to be part of the hyperblock are selected.

b) Compiler transformations are applied in order to create a region that

satisfies the conditions of valid hyperblocks. These conditions are:

• There exists an entry basic block which is the only block of the

selected blocks that can have incoming control flow arcs.
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• No nested inner loops exist inside the selected blocks.

Heuristic functions are used in the process of forming hyperblocks, and

these are primarily guided by the execution frequency of the basic blocks

found during the profiling phase.

As hyperblocks are normally used to generate code that targets multiple-

issue architectures, heuristic functions also consider characteristics of the

target processor such as issue rate. Thus, as the purpose of forming hyper-

blocks in this case is different, new heuristics are needed.

Operations in the hyperblock must be executable in the AFU, blocks that

are selected must comprise only arithmetic operations and memory oper-

ations that can be transformed later into reads/writes from/to the AFU

local memory.

As the blocks included in the hyperblock are to be implemented entirely in

hardware, the area required in order to implement the functionality of the

basic blocks must be one of the considerations.

Another interesting consideration that would strengthen the heuristic func-

tions is the cost of the data transfers that are required in order to execute

the excluded blocks in the base processor when these exchange data with

the blocks that are to be executed in the AFU.

Thus, loops in which valid hyperblocks can be formed are considered as

loop ISE candidates.

3. Memory requirement check:

Data structures accessed in the basic block or hyperblock are identified

using existing disambiguation techniques. Load/store instructions to data

structures that cannot be disambiguated cannot be included.

On the other hand, if the data structures that are used or transformed in

the loop ISE do not fit in the area available for the local memories of the

AFU, the loop ISE candidate cannot be implemented.

Thus, loop ISE candidates that are formed by basic blocks or hyperblocks

that fail the memory requirement check are discarded.
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4. Gain and cost estimation:

The loop ISE candidates are analyzed independently in order to estimate

their gain and the area cost that they imply. The gain represents the

speedup that the application can obtain from the implementation of a can-

didate. This can be derived from the execution frequencies of the basic

blocks of the loops obtained from profiling. However, other factors need to

be considered. Firstly, the execution overlap of loop iterations that can be

obtained during uninterrupted execution of the loop ISE. This factor de-

pends on loop carry dependencies, and on input and outputs requirements

in contrast with input and output ports of the register file and of the local

memory. Secondly, the gain estimation must also consider the additional

instructions that need to be inserted in the code that account for data trans-

fers of data between the AFU local storage units and the main memory or

the processor register file. On the other hand, area cost can be estimated

from the datapath of the loop body, from the requirements of the control

unit and from the local memory space that is needed.

5. Standard ISE identification:

Traditional ISE identification can be carried out in the remaining basic

blocks in the application. This process lists a set of ISE candidates.

6. Selection and AFU implementation:

Given a set of loop ISE and ISE candidates, this phase makes use of the

estimations of gain and cost of the candidates in order to select a subset

that maximizes speedups in the available area. The techniques described in

Chapters 3 to 5 can be adapted to support loop ISE candidates in addition

to standard ISE candidates. The datapath of the loop body of loop ISEs

can share resources with the datapath of other loop ISEs or standard ISEs.

7. Code transformation:

Instances of the selected ISEs and loop ISEs are inserted in the program

at the appropriate locations. DMA transfers and additional load and store

operations are placed in the most profitable positions.
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6.7 Experimental Setup

In order to evaluate the loop ISEs, the JPEG encoding/decoding chain was taken

from the EEMBC benchmark suite [72]. As shown in Figure 6.8, JPEG com-

pression is comprised of three kernels: Discrete Cosine Transformation (DCT),

quantization, and entropy encoding; likewise, JPEG decompression is composed

of entropy decoding, de-quantization, and Inverse DCT (IDCT). For all of the

experiments, a 24-bit RGB-encoded picture with a resolution of 1024x768 pixels

was used. This resolution is comparable to the image resolution found in current

web-cams and mobile phone cameras. JPEG was chosen because many of the

smaller kernels in EEMBC contain straightforward loops with no internal control

flow, and therefore do not require hyperblocks.

The evaluation platform is an OpenRISC processor, with an interface for

custom instructions that is similar in principle to Altera’s Nios II soft processor.

For the purpose of comparison, prior methods for ISE generation that do not

encompass full loops were implemented.

Loop ISEs are compared with ISEs identified by the techniques presented

in [32] which cannot access data in memory. These type of ISEs can only interface

with the processor’s register file; the register file of the target processor has two

read ports and one write port, so ISE identification uses these constraints. For this

approach, instruction identification, C code generation and ISE implementation

in VHDL have been done by automated tools.

Loop ISEs are also compared with ISEs identified by techniques presented
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in [28], which can access architecturally visible local memory. The latter was

reimplementated including speculative DMA transfer techniques to ensure coher-

ence between the processor’s data cache and the AFU’s local memory, as described

in [75]. For this approach, instruction identification, C code generation and ISE

implementation in VHDL were done by hand.

The proposed approached can also access architecturally visible local mem-

ory and was also implemented including speculative DMA transfer techniques as

described in [75]. Instruction identification, C code generation and ISE implemen-

tation in VHDL was by hand. Nevertheless, in order to make a fair comparison

with other methods, efforts were made to keep generality in the manipulations in

order to enable future automation.

For ISEs enhanced with architecturally visible storage, I/O constraints of 8

reads and 8 writes per cycle were assumed. Each macroblock in JPEG is an

8× 8 array of 16-bit integers, and can be placed into a single local memory that

has 8 independent read ports and 8 independent write ports. This local memory

was implemented as a 64-entry register multi-ported register file. This was an

application-specific decision that was only feasible because of the small memory

size; a 1 kB memory with 8 read and 8 write ports would be prohibitive in terms

of both delay and area.

The modified C programs are cross-compiled using gcc 3.4.4 based on newlib

for the OpenRISC. The OpenRISC, including AFUs, is synthesized on a Xilinx

Virtex II FPGA with 32 MB of external SDRAM. The performance numbers re-

ported here are taken from the system running on the FPGA. For the experiments

a 8 kB 2-way set associative instruction cache and a 8 kB 4-way set associative

data cache were used. Both caches use the LRU replacement policy and coher-

ence between the AFU local memory and data cache is maintained by a MESI

Level 1 protocol.

6.8 Results

The complete JPEG application was run on four configurations of the soft pro-

cessor platform. The baseline uses the processor with no AFUs. Then, the three

ISE-based strategies outlined in the preceding section were used for comparison.
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RF 2-1 refers to the strategy where ISEs are identified as described in [32] and

read their data from the processor’s register file, which has 2 read ports and 1

write port. AVS 8-8 refers to the strategy where the ISEs may use architecturally

visible storage in the form of local memories, as described in [28] and a coherence

protocol as described in [75]. loop ISE AVS 8-8 refers to the strategy proposed

in this paper, which uses loop ISEs with the same architecturally visible storage

organization as AVS 8-8.

Figure 6.9 shows the relative execution times of the three strategies listed

above, normalized to software execution without ISEs. Additionally, this figure

decomposes the execution time of the complete application into the execution

time of each individual kernel. RF 2-1 could only speed up quantization. The

OpenRISC processor does not include a hardware divider, so the baseline imple-
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mentation performs division in software. The ISE found by RF 2-1 is a hardware

divider. This yields a speedup of 1.4×. In addition to the hardware divider, AVS

8-8 finds multi-cycle ISEs that speed up the DCT and IDCT kernels, yielding an

overall speedup of 2.1×. loop ISE AVS 8-8 finds speedups in DCT, IDCT, quan-

tization, and entropy encoding. The ISEs found in each kernel are different from

RF 2-1 and AVS 8-8, because they are loop bodies, which include some control

flow operations. Additionally, it is important to observe that RF 2-1 and AVS 8-8

achieve the same execution time for the quantization kernel, i.e., they both find

the same hardware divider. loop ISE AVS 8-8 is able to find an ISE that includes

local memories in addition to the divider. Although AVS 8-8 can find these types

of ISEs in general, the ISE identification method estimated that control flow in

the loop would lead to excessive DMA transfers, which would eliminate much of

the speedup achieved by the ISE. By converting the loop to a hyperblock, loop

ISE AVS 8-8 is able to find an ISE that includes local memories. Overall, the

speedup achieved by loop ISE AVS 8-8 is 3.1× compared to the baseline.

Figure 6.10 compares the execution time of each kernel using AVS 8-8 and

loop ISE AVS 8-8; the results are normalized to the former. These execution

times only account for the computation time of the kernels and do not account

for the overhead of DMA transfers, which occur prior to the kernel invocation;

moreover, some of the DMA transfer activity may overlap with software execution
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Strategy N. of flip flops N. of LUTs
base processor 10,924 21,879

AVS 8-8 11,124 29,196
loop ISE AVS 8-8 12,006 32,988

Table 6.1: FPGA usage of the base processor and of the extended soft processor
with the proposed approached and with the state-of-the-art.
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Figure 6.11: FPGA usage of the extended soft processor with the proposed ap-
proached and with the state-of-the-art in comparison with the usage of the base
processor.

of earlier parts of the application.

Table 6.1 shows the number of flip flops and the number of Look-Up Tables

(LUTs) used by the base processor and the strategies AVS 8-8 and loop ISE AVS

8-8. Similarly, Figure 6.11 graphically shows the percentage of the base processor

that is increased with the solutions AVS 8-8 and loop ISE AVS 8-8.

The base processor used 10,924 flip flops and 21,879 LUTs, while the processor

extended with strategy AVS 8-8 used 11,124 flip flops and 29,196 LUTs, and the

processor extended with strategy loop ISE AVS 8-8 used 12,006 flip flops and

32,988 LUTs. This shows that the area required to facilitate the AFU’s control

logic does not represent an important overhead in the design.

6.9 Conclusions

This chapter has demonstrated a method to create ISEs that cover the execution

of loops with exits, with the main purpose of supporting pipelined functional

units. This approach broadens the scope of instruction-level parallelism for ISEs
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and obtains higher speedups compared to traditional methods, primarily through

pipelining, the exploitation of spatial parallelism, and reducing the overhead of

control flow statements and branches.

Specific examples have been analyzed in order to show the benefits of the

approach. Furthermore, performance improvements have been shown in the con-

text of the JPEG application, which contains a wide variety of kernels where the

technique has been applied and tested in an FPGA emulation platform. This

method permits to measure, rather than estimate, the performance gain of the

proposed approach in comparison to existing techniques that employ smaller ISEs

that cannot affect control flow.

A detailed case study of the JPEG application shows that the proposed

method achieves a speedup of 3.1× over pure software execution; in contrast,

the most sophisticated ISEs that exist prior to loop ISEs, which can access local

memories but without pipelining or support for hyperblocks, achieve a speedup

of 2.1× over software.

The main goal of the work presented in this chapter was to prove that in-

cluding loop ISEs in the application code has great potential to speedup loops,

mainly due to the overlapping of loop iterations that can be obtained in the AFU

pipeline. Although this chapter has demonstrated the effectiveness and feasibility

of loop ISEs through non-automated tools. The procedures and challenges for fu-

ture integration and automation of the loop ISE generation tools were explored.

Moreover, manipulations in the experiments were performed making sure that

they could be reproduced by automated tools.



Chapter 7

Conclusions

Although driven by the same physical laws, every application domain shapes

and sizes its computing systems under different constraints, goals and demands.

Moore’s law is a fundamental influence on all computing systems: transistor den-

sity of semiconductor chips doubles roughly every 18 months. However, power

consumption seems to follow the same trend, and as transistors reach deep-

nanometer scales, manufacturing cost rises, variability increases and reliability

decreases [79]. Thus, before physical limits stop the transistor density trend,

other challenges have appeared. Therefore, every application domain has to ad-

just their designs in order to improve the computing power of every new genera-

tion of products while meeting particular constraints.

Embedded systems require small processors with low power consumption, as

they are very often battery powered. Meeting performance goals under power

constraints is more challenging than ever, as users demand an increasing number

of features in a single device. Personal and high performance computing, although

less constrained by area and power, have already reached the limits of obtaining

performance gains by increasing complexity and clock rates of a single processor.

In this scenario, customization and parallelization represent the alternatives

to be able to scale in performance while keeping power consumption to reasonable

levels. Customization leads to more efficient designs, as resources are spent to

meet the exact requirements of the application. On the other hand, paralleliza-

tion distributes the computational load amongst several existing resources, thus

allowing to scale performance at the cost of increasing transistor count.

143
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ISEs represent an alternative to customize a processor by providing the addi-

tional resources that exploit the exact level of instruction-level parallelism that

a particular application offers. ISEs have been used in embedded applications

because they allow systems to exploit parallelization and reduce power consump-

tion within a reasonable area overhead, as only execution units are replicated.

Therefore, the rest of Central Processing Unit (CPU) resources can be shared,

and there are no synchronization costs.

Software applications express several other levels of parallelism, such as thread,

data and task parallelism that can be exploited by systems with large computa-

tional resources such as multi-processor systems. Although these levels of paral-

lelism are more costly to exploit, computing systems with looser area and power

consumption requirements have used it as the only alternative to scale in com-

puting power at the expense of resources.

The potential of multi-processor systems is not yet fully exploited by all do-

mains, as most applications are not designed to take advantage of these platforms.

However, the limit is imposed by the applications and the amount of parallelism

that they present. Therefore, customization and instruction-level parallelism re-

main important as they complement the parallelism offered by multi-processor

systems. Moreover, heterogeneous multi-processor systems, with each core cus-

tomized to a different application domain, have shown to be more efficient than

multi-processor systems composed of general purpose cores [80].

Thus, ISEs play an important role in the design of high-performance, energy-

efficient computing systems, not only for today’s embedded platforms but also for

tomorrow’s heterogeneous multi-processor architectures. However, designers still

regard ISEs as an expensive design decision, as design cycles are long, manufac-

turing costs are high, and the flexibility is limited. In order to reduce design time

and effort, automation techniques need to advance. The trade-offs involved in

ISE synthesis are complex and techniques to effectively explore the design space

are required. On the other hand, flexibility is important as the possibility to reuse

the design on more than one application reduces significantly the design costs.

Thus, reconfigurability is a feature that must be looked at.

This thesis presented a collection of novel techniques that join different stages

that take place in the process of hardware/software partitioning applications
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through ISEs. These techniques advance the state-of-the-art in automation and

reconfigurability while generating ISEs that maximize the perfomance gained as

a function of the additional commited resources.

Most previous works on ISEs solve separate stages of the design: identification,

selection, and implementation [18, 33, 8]. However, the interactions between

these stages also hold important design trade-offs. In particular, this thesis has

addressed the lack of interaction between the hardware implementation stage

and the two previous stages. Interaction with the implementation stage has been

mostly limited to accurately measuring the area and timing requirements of the

implementation of each ISE candidate as a separate hardware module. However,

the need to independently generate a hardware datapath for each ISE limits the

flexibility of the design and the performance gains. Hence, resource sharing is

essential in order to create a customized unit with multi-function capabilities.

Previously proposed resource-sharing techniques aggressively share resources

amongst the ISEs, thus minimizing the area of the solution at any cost. How-

ever, it is shown that aggressively sharing resources leads to large ISE datapath

latency. Thus, this thesis presented an original heuristic that can be parame-

terized in order to control the degree of resource sharing amongst a given set of

ISEs, thereby permitting the exploration of the existing implementation trade-offs

between instruction latency and area savings.

This thesis has also presented an innovative predictive model that is able to

quickly expose the optimal trade-off solutions between instruction latency and

area savings in the resource-sharing design-space of a given set of ISEs. Predic-

tions are generated by capturing patterns from previously explored design spaces.

Compared to an exhaustive exploration of the design space, the predictive model

is shown to reduce by two orders of magnitude the number of executions of the

resource-sharing algorithm that are required in order to find the optimal trade-

offs.

Additionally, the scope of the proposed resource-sharing heuristic, together

with the predictive model to effectively explore the created design space, goes

beyond the field of ISE synthesis. The problem that has been solved can appear

in other application domains in which RTL synthesis is performed. Moreover,

this work presents a step towards more intelligent logic synthesis tools, that are
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able to offer optimization alternatives such as resource sharing amongst hardware

modules, and that in addition, are able to provide the user the optimal trade-offs

of the design space.

Thus, a thorough study of resource sharing as an implementation alternative

for ISEs, demonstrated that the area requirements of a set of ISEs is not just the

sum of the individual area requirements, and that the instruction latency might

change in hardware implementation. Moreover, it has been shown that there is an

important design space that must be explored and considered at higher levels of

the design. Therefore, an interaction with the ISE selection stage is required, and

it presents a highly complex combinatorial problem space, in which exhaustive

exploration is infeasible.

The techniques presented in this thesis are the first ones to combine the design

spaces of ISE selection and resource sharing in ISE datapath synthesis, in order

to offer the designer solutions that achieve maximum speedup and maximum

resource utilization using the available area. The results presented demonstrate

that such an integration unveils new trade-offs between speedup and area that are

not identified by previous selection techniques. Optimal trade-offs in the design

space are found by guiding the selection process to favour ISE combinations

that are likely to share resources with low speedup losses. This is achieved by

using metrics that quantify the resource-sharing compatibility amongst the ISE

candidates. On the benchmarks analyzed, the proposed heuristic finds solutions

that under a fixed area constraint, achieve speedups from 8% to 238% higher

than previous selection techniques.

Another observation made at the implementation level is that the datapath

of multi-cycle ISEs can be pipelined in order to increase their throughput. An

interesting case of this potential is that of application loops, where the loop body

is identified as an ISE. In this case, the loop would create a stream of instruc-

tions that could feed the pipelined datapath, thus overlapping the execution of

consecutive loop iterations. However, it has been shown that traditional ISE

identification techniques do not allow this optimization due to control flow over-

head. In order to obtain the benefits of overlapping loop executions, this thesis

has proposed to carefully insert loop control flow statements into the ISEs, thus

allowing the ISE to control the iterations of the loop. The proposed technique
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broadens the scope of ISE identification by providing the methods to go beyond a

basic block in order to obtain greater impact in performance. Thus, performance

gains exceed those of traditional ISEs by effectively exploiting hardware pipelin-

ing of ISE computations and by reducing the overhead of control flow statements

and branches. A detailed case study of a real application shows that the pro-

posed method achieves 91% higher speedups than the state-of-the-art, with an

area overhead of less than 8% in hardware implementation. These results demon-

strated that the proposed technique is able to exploit an already present hardware

pipeline, thus permitting further speedups at the cost of a small area overhead.

In summary, this thesis has presented a deep analysis of the ISE implemen-

tation stage, and propagated its findings back through the selection and identifi-

cation stages, in order to enable the design of more efficient processors through

an intelligent exploration of the available design space. This approach has ex-

posed new trade-offs that were not previously understood or exploited, and has

revitalized the area of processor customization with new synthesis techniques and

analytical tools.

7.1 Critical Analysis

This section provides a critical review of the methodology and the results that

are presented in this thesis.

Chapter 3 has presented a technique to explore the design space of imple-

mentation solutions using resource sharing. During the execution of the resource

sharing process, datapath area and delay estimations are required. These esti-

mations do not consider that the circuit might be re-timed in order to match

the clock frequency of the processor. This decision was made for two reasons.

Firstly, as these metrics are calculated several times during the algorithm, an

accurate estimation would greatly increase the running time of the algorithm.

Secondly, the simplified estimation that was adopted allows for an architecture-

independent comparison between the solutions, as the clock cycle of the processor

can be varied in other stages of the design. Moreover, it has been shown that

relative positions in the design space are preserved when re-timing is performed

during datapath synthesis.
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Chapter 5 has used application speedup as a metric in order to compare

different selection and implementation solutions. Although this metric considers

the effects on area and delay of the instructions due to re-timing, the estimation

of the total running time of the benchmarks is calculated based only on the

execution time of arithmetic, logic and memory operations. Thus, overhead due to

control flow statements and cache misses are dismissed. This can be alleviated by

performing simulation of the application with every solution that is considered in

the design space. However, the running time of the heuristic would be prohibitive

if simulation was performed for every design point. Nevertheless, it would be

interesting to see the results on simulation of the Pareto optimal solutions, in

order to demonstrate that the same proportions are maintained when the precise

execution time of the application is considered.

Chapter 6 uses only two benchmarks, namely JPEG encoding and JPEG

decoding, in order to demonstrate the benefits of the technique. However, as

the technique was applied manually, and these two chained applications comprise

a wide variety of kernels, the experiments performed were considered sufficient.

Moreover, the kernels present in the JPEG encoding-decoding chain are similar

to other kernels present in other streaming applications such as MPEG.

7.2 Future Work

There are many interesting extensions that can be made to the resource-sharing

heuristic proposed in this thesis. Further optimizations can be performed in

hardware synthesis if the bit-width requirements of each operation are taken into

account. This would require a more detailed representation of the graphs and

more information to be extracted from the compiler intermediate representation

of the application. Also, when some of the inputs of the ISEs are constant, other

hardware optimizations can be found. This information can also be extracted

from the compiler intermediate representation of the application. For example,

shift operations where the number of shifts is constant can be replaced by simple

wires.

In order to improve flexibility, the reconfigurability of the generated AFUs

could be further exploited by reusing the existing multi-functional datapaths with
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different multiplexer configurations. Thus, ISEs that were not considered in the

design might be mapped in the existing datapath, by creating new microcodes to

drive the execution. Transformation techniques could be used to break some of

the limitations of the existing AFUs. The identity of the operators can be used

in order to bypass an operation that is not required in the function to map in the

existing datapath. For example, an adder can be bypassed by setting one of its

inputs to zero.

On the other hand, a thorough study of the impact of the different resource

sharing trade-offs in power consumption could open up new research directions.

Although there is not a direct relationship between the level of merging and the

power consumption of the resulting datapath, observations made upon experi-

mentation could be used to derive conclusions and to extract patterns. From this

study, energy models could be derived, and potentially, estimations can be used

in the execution of the resource-sharing heuristics in order to guide the merging

process towards more energy-efficient solutions.

This work has demonstrated, with a case study, that the proposed loop ISEs

have great potential to leverage existing pipelined ISE datapaths, in order to

increase performance gains. Thus, the identification of this special type of ISE

as an automated process has been left for future work. However, this thesis has

outlined the challenges that the construction of an automated framework for loop

ISE generation presents, as a starting point for this future work. Additionally,

the resource sharing and selection heuristics developed in this thesis can be aug-

mented to process loop ISEs in addition to traditional ISEs.

Finally, another possible research direction is the customization of multi-

processor systems through ISEs. Given a collection of applications, AFUs can be

generated to extend each of the cores in the system. For example, two ISEs that

are likely to be in the same program thread should be in the same core. On the

other hand, two ISEs that are likely to be in parallel threads should be mapped

to different cores. This scenario creates a design space of different trade-offs and

imposes new challenges for its exploration. ISEs should be mapped and merged

while taking into account resource-sharing compatibility and contention in order

to maximize the utilization of the ISEs. Thus, the heuristics presented in this

thesis can be extended to address this new design space.
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