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Abstract 

 

An Allele Sharing Method for Fine Mapping Linkage Loci: Application to 

Bipolar Affective Disorder 

 

Large family studies of complex disorders can be used to detect a genomic region 

linked with a particular illness.  Where multiple families are found with common 

regions of linkage, this could be due to an ancestral mutation common to these 

families.  In this thesis, I describe a method for studying allele sharing in families that 

share a linkage region, to identify a common founder mutation, thus maximising the 

results of replicated linkage studies. 

The method tests the hypothesis that the evidence for shared linkage is derived from 

the sharing of a common affected ancestor.  By comparing the allelic similarity of 

haplotypes across common linkage regions, it is possible to identify any regions that 

are identical by descent between the families.  A method of permutation analysis 

followed by a nested permutation technique have been developed to assess the 

statistical significance of allele sharing scores.  Chapter 3 describes the proof of 

principle of the method through its application to known cystic fibrosis mutations and 

through simulated datasets.  This provides both a real dataset and a much more 

diverse range of simulated conditions on which to test the method.  The range of 

simulated data was also used to develop a set of criteria for the effective us of the 

method. 

In Chapter 4, the allele sharing method was applied to two replicated linkage regions 

on chromosome 4p15-16 that segregate with bipolar affective disorder.  This was 

done over two phases, first taking in markers covering the genic regions of the shared 

linkage region and then followed up with a complete coverage of the region.  This 

analysis identified a 200kb region with significant confidence within the 8Mb of the 

two linkage regions.  The study of this region presents a clear example of how 

replicated linkage results that are caused by some founder effect, can be examined, 

and refined using this allele sharing method to vastly reduce the region under 

investigation. 
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Large families with multiple members affected with a specific disorder can be used to 

detect genomic regions linked to that disorder, however the regions identified are 

usually large.  One of the challenges facing those tackling the genetic analysis of 

complex disease is how best to capitalise on linkage results, without having to scan 

the entire region for association.  If multiple families with overlapping linkage regions 

exist, then these regions may harbour a common ancestral mutation.  It has been 

shown that a region of the ancestral haplotype flanking such a mutation should be 

expected to be found in linked families.  A new method is required to take advantage 

of advances in genotyping technology to allow the search for these ancestral regions 

of shared haplotype.  Such a method could provide an invaluable tool in bridging the 

gap between genome wide linkage studies and the identification of a disease gene. 

Bipolar affective disorder (BPAD) presents a complex genetic etiology and large 

family studies have been used to generate a number of linkage signals across the 

genome.  Yet none of these have led to the identification of a causal variant.  In 

particular, a number of families have been shown to display linkage to the 

chromosome 4p15-16 region.  While there are many genes in the region that could be 

implicated in BPAD, there is no stand-out functional candidate gene in the region on 

which to focus further research.  A new method to reduce the region under 

investigation could prove invaluable in this study of BPAD, as well as in similar 

studied of other complex disorders.   
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1.1 Finding disease genes 

Genetic and environmental factors have a role in the development of any disease.  

Finding the genes that are responsible for causing susceptibility to illness is important 

in a number of areas: (i) to help understand the pathophysiology of disease; (ii) to 

help in understanding the biology of specific systems or organs; (iii) to improve the 

diagnosis of disease and (iv) to aid the identification of drug targets.  The 

development of linkage studies using genetic markers has revolutionised gene 

discovery and genetic linkage, or positional cloning, is now commonly used to try and 

identify the genes that are responsible for, or that contribute to, the development of 

disease.  Positional cloning identifies a disease gene solely using information about its 

chromosomal location.  The basic principles of positional cloning are to first map the 

disease as finely as possible in affected families, then identify candidate genes and, 

finally, detect mutations of these genes in patients. 

 

1.1.1 Genetic linkage 

The purpose of a linkage study is to identify a chromosomal region that contains a 

susceptibility gene by studying the pattern of inheritance within families.  This is done 

in three stages, (i) the clinical assessment of the subjects to determine a specific 

phenotype; (ii) testing genetic material from the subjects at a series of genetic markers 

and (iii) using statistical techniques to test whether a specific phenotype and genetic 

markers segregate independently or together (cosegregate).  If they cosegregate, it is 

assumed that the genetic marker is located close to the gene that is causing 

susceptibility to the phenotype.  The principle underlying this is that the further away 

a genetic marker is from the disease causing gene, the greater the chance of a 

recombination event taking place between the two and therefore the chances of 

cosegregation decreases (see Figure 1.1).  This can typically identify a region 

harbouring a disease gene to around 20cM if sufficient number of meioses are 

available (e.g. Hu et al. 2000, Wiesner et al. 2003, Koskenmies et al. 2004, Duggal et 

al. 2007).  LOD (log of odds) scores are usually used to measure the probability of 

linkage and calculate the likelihood of attaining the observed results based on an 

assumption of linkage compared with the likelihood based on chance alone.  See Ott 

(1999) for a detailed discussion of genetic linkage.  In this way, linkage has been used 
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to help identify many genes that are linked to disease although there has been less 

success in its application to complex disorders.  This is discussed in section 1.1.4. 

Throughout this thesis, the term ‘linkage region’ is used to refer to these genomic 

locations that are found to be of interest through these linkage studies.  Such regions 

are defined by the chromosomal location that contains those markers (or marker) that 

have been shown to cosegregate with a trait or disease and are flanked by those 

makers that are shown to segregate independently.  The generally accepted definition 

of a significant region of genome-wide linkage, as provided by Lander & Kruglyak 

(1995) was of a LOD score of 3.3 for primary evidence.  Where primary evidence of 

linkage exists, additional studies showing LOD score of 1.9 should be taken as 

evidence of replication.   

 

Figure 1.1: Principle of linkage analysis. 

 

(i) shows two parental chromosomes aligned in a germ cell during meiosis. A, B and 
C represent three different genetic locations.  (ii) shows how recombination can 
occur, involving the crossing over of DNA strands.  (iii) shows the resulting 
chromosomes.  If, for example, A is a disease gene and B and C are genetic markers, 
recombination is more likely to occur between A and C than A and B and marker B is 
therefore more likely to cosegregate with the disease. Image reproduced from 
Twyman (2003). 
 

(i) 

 

 

(ii) 

 

 

(iii) 
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1.1.2 Genetic association 

Genetic association is defined as the non-random association of two or more traits, 

where at least one of these is genetic.  Genetic association studies aim to detect 

association between one or more genetic polymorphisms and a disease or trait.  An 

association exists if an allele, genotype or haplotype is seen more often than expected 

by chance in individuals presenting the trait.  Therefore an individual carrying the 

relevant allele, genotype or haplotype is at an increased risk of presenting the 

associated trait.  Genetic association is closely linked to the concept of genetic 

linkage, differing in that association requires the same allele to be associated with the 

disease in a similar way across a population, while linkage allows for different alleles 

to be associated with the disease in different families.  However, it has been argued 

that, as genetic associations are due to common ancestry in a population, they are just 

a special case of linkage in which the population can be considered as the extended 

family.  In linkage analysis, smaller regions are more likely to be detected by studying 

distantly related individuals than closely related individuals, although a higher density 

of markers is required as the linkage will extend over a shorter region, due to greater 

genetic recombination in more distant relatives.  It could be argued that association 

between apparently unrelated individuals represents the ultimate extension of this 

effect, leading association studies to have greater power than linkage studies, but 

requiring many more markers to be studied.  The association itself can be due to a 

direct or indirect effect, or be due to confounding.  Direct association refers to the 

case of a putative causal variant while indirect association refers to the association of 

locus that is a proxy for the causal locus.  Indirect association allows association 

studies that don’t need to have a candidate variant, allowing a candidate region to be 

tested. Confounding can be caused by features of the test population such as 

population stratification or admixture.   

The mapping of susceptibility genes for complex disorders by indirect association 

relies on the existence of association between causal variants and nearby markers at 

the population level.  Such an association is referred to as Linkage Disequilibrium 

(LD).  LD can also be used more generally to refer to any situation where some 

combinations of alleles occur more or less frequently in a population than would be 

expected if the loci were segregating independently even when not due to association.  
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Non-random associations between alleles at different loci are measured by the degree 

of linkage disequilibrium.  Unless some countervailing process maintains it, LD is 

expected to vary at a rate that is the inverse of the local recombination rate (Nachman 

et al. 2002).  The appearance of significant LD is generally found in natural 

populations for genes that are tightly linked or for genes that are within or near an 

inverted segment of chromosome.  Significant LD can also result from admixture of 

two or more sub-populations with differing allele frequencies.  LD may also be 

caused by inbreeding.  

 

There are two main types of association study, population-based, or family-based.  

These both have different strengths and weaknesses and should be viewed as 

complimentary both to each other and to other methods such as genetic linkage 

studies.  Population based, or case-control, studies generally compare the frequency of 

alleles or genotypes in subjects carrying a disease or trait (cases) with those who don’t 

(controls; randomly selected from the same population).  Where there is a difference 

in allele or genotype frequency between the two groups, this would indicate that the 

allele or genotype in question is associated with the disease or trait either directly or 

indirectly.  Family-based designs generally use the parents of affected individuals as 

the controls.  These types of tests tend to compare the alleles that were transmitted 

from parents to affected offspring against those that were not transmitted.  So if an 

allele or genotype is transmitted more often than expected in equal transmission then 

that allele or genotype is regarded as showing association with the disease in question.  

The most common example of this is the transmission disequilibrium test (TDT; 

Speilman et al. 1993).  TDT was first proposed in the context of family trios where it 

tests the transmission of alleles from heterozygous parents to affected offspring.  

There have since been many similar methods published that provide some extension 

to the original method, such as those based on analysis of large families (Martin et al. 

2000), multi-allelic markers (Cucca & Todd 1996) and those that include covariate 

information (Lunetta et al. 2000).  The advantages and disadvantages of some of these 

methods will be discussed in more detail below.  Approaches related to the traditional 

family based association study, but focussing on patterns of haplotype sharing, have 

also been developed and these are discussed in section 1.2. 
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The main use for genetic association studies is in testing candidate genes and 

regulatory regions and in fine mapping linkage regions.  This means that the short 

range effect of genetic association can be tested with a dense array of markers.  

Candidate genes and regulatory regions can be tested for their association by testing 

whether a particular allele is found to be more common in (usually unrelated) people 

with the disease than those without.  Association mapping can also be used to try and 

localise a disease causing locus where a linkage region does not contain any obvious 

functional candidate gene(s) or where there are many plausible functional candidate 

genes.  An association between a phenotype and an allele at a locus indicates either 

that the allele in question leads to susceptibility to the phenotype or that the allele is in 

LD with the susceptibility allele.  The most basic method of mapping simply involves 

plotting estimates of association with disease for each marker. The location of the 

disease gene is estimated to be near the marker with the strongest evidence of 

association.  For an example of association mapping applied, see Corder et al. (1993) 

who used this approach to show an association of ApoE-4 with late-onset Alzheimer’s 

disease or Davies et al. (1994) for a review of how this approach was used to show an 

association of a variation in the major histocompatibility HLA region and the insulin 

gene region with Type 1 diabetes.  

The candidate gene approach is the most common strategy for going from a linked 

region to a gene.  There will often be loci of known function that have previously 

been identified and cloned from the region to which the linkage signal maps.  Any of 

these loci that could potentially give rise to the phenotype linked to the region are 

referred to as candidate loci.  These candidates are then searched for associations with 

the phenotype.  Of course, the candidate gene approach can be used directly, 

bypassing the need of a linkage study.  

To return to the methods for testing association study, as described above, they 

traditionally break down into two groups: population based, case-control studies or 

family based studies of the form of the TDT.  Population based studies have been 

more popular with the main reason being the higher statistical power (Morton & 

Collins, 1998).  In addition to reduced power, resources to collect family data are 

usually higher (in terms of both time and money) than individuals from a population.  

To achieve the same power, one needs the same number of triads as cases in a case 

control study, which means extra resources in gathering triads rather than individual 



Chapter 1  Introduction 

 

  8

cases and control and also additional extra genotyping (as where one case and one 

control are genotyped in a case-control study, to gain the equivalent power, three 

members of a parent child triad would have to be genotyped).  However, family based 

studies have the distinct advantage of being less likely to suffer the effects of 

confounding. 

One of the causes of confounding is population stratification.  This refers to the 

systematic difference in allele frequencies between subpopulations and is often due to 

different ancestry of these subpopulations. Migration, where individuals from one 

population migrate into another, is one of the most obvious causes of population 

stratification. After some generations, population stratification will become less due to 

admixture. Population stratification can lead to high rates of false positives in case 

control association studies (Knowler et al. 1989; Lander & Schork 1994; Marchini et 

al 2004).  A number of methods have been developed to detect and correct for 

population structure (Pritchard & Rosenberg 1999; Bacanu et al. 2000; Pritchard et al. 

2000).  Another cause of confounding is cryptic, or spurious, relatedness.  This refers 

to the case where non-random mating results in a certain subpopulation that are more 

related to each other compared to the rest of the population.  This is thought also to 

potentially inflate the false positive rate in some case control association studies 

(Devlin & Roeder 1999). Voight & Pritchard (2005) published a study into the impact 

of cryptic relatedness on association studies and they showed that ‘for well-designed 

studies in outbred populations, the degree of confounding due to cryptic relatedness 

will usually be negligible’, however, ‘studies where there is a sampling bias toward 

collecting relatives may indeed suffer from excessive rates of false positives’.  They 

also showed that the impact of cryptic relatedness can be a problem where founder 

populations that had grown rapidly and recently from a small size.  These issues 

relating to population effects are clearly less of a problem for family studies where 

controls are related to the individuals under study (Spielman et al., 1993).  Family 

based studies also have the ability to infer parent-of-origin effects (genomic 

imprinting; Weinberg, 1999).  Plus, family-based studies can also offer a solution to 

model building and multiple testing.  In summary, case-control studies have proven 

popular mainly due to the statistical power/resource play off, but the family-based 

approach is still often used as a complimentary strategy due to its robustness to 

population stratification.   
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1.1.3 Whole genome association 

In recent years, since the completion of the Human Genome Project and as the costs 

have decreased, it has become feasible to study association across the entire genome, 

these are known as whole genome association (WGA) studies.  Genome-wide 

association studies have been proposed as an alternative to linkage studies.  Initial 

studies have proven to be successful in replicating previously identified loci (Pearson 

& Manolio 2008) at least in some illnesses (not in the case of psychiatric illnesses).  

However, due to the large number of markers involved there are issues with the 

statistical rigour of such studies, in particular the risk of false positives due to the 

large number of statistical tests that are preformed (Hunter and Kraft 2007, Pearson & 

Manolio 2008).  Other complicating issues include the requirement of large sample 

sizes, possible confounding due to population substructure and genotyping errors, 

genetic and phenotypic heterogeneity (Pearson & Manolio 2008).  The NCI-NHGRI 

Working Group on Replication in Association Studies (2007) have tried to create a 

basic criteria for the reliable reporting of genome-wide association studies, however 

many published studies have not presented enough detail to assess whether they are 

taking these factors into account. 
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1.1.4 Complex genetics 

It is important to consider more closely the characteristics of complex genetic 

disorders and how they affect the implementation of the techniques described above.  

While the genetic contributions to risk are beyond dispute the genetic architecture of 

liability to such complex disorders is less clear cut.  The major prevailing view holds 

that multiple common variants, each of small effect size, underlie the genetic liability.  

This common disease, common variant (CDCV) hypothesis (Chakravarti 1999; Weiss 

& Clark 2002) is compatible with the commonly observed non-linear decay in risk 

from proband to first and lesser degree relatives, and with the paucity of evidence for 

loci of major and widespread effect.  A number of high density genome-wide 

association studies have recently been reported (Wellcome Trust Case Control 

Consortium (WTCCC) 2007, Diabetes Genetics Initiative of Broad Institute of 

Harvard and MIT et al. 2007, Tomlinson et al. 2007) that provide evidence for 

common variants that act as risk factors, but they explain only a modest fraction of the 

estimated variance.  The novel variants discovered in each of the studies were 

characterised by common minor allele frequency (MAF), in both cases and controls 

(MAF > 0.067), and modest effect sizes (Odds Ratios (ORs) mostly < 1.5).  The 

WTCCC study looked at associations in cases of seven major common diseases, 

including BPAD.  One independent association was found be significant (P value < 

5x10-7) in BPAD and this variant had a MAF 0.282 in controls and 0.248 in cases and 

the OR was estimates ~2.1.  More recently genome wide association studies of BPAD 

have been carried out, Baum et al. (2008) found no SNPs of large effect and the 

strongest signal was found within diacylglycerol kinase (P=1.5 x 10-8), Sklar et al. 

(2008) also reported no SNPs of large effect and reported two strongly significant 

SNPs, one in myosin5B (P=1.66 x 10-7) and one in tetraspanin-8 (P=6.11 x 10-7).  The 

CDCV hypothesis does not exclude the possibility that there are also multiple rarer 

variants of greater relative risk, as recently demonstrated by direct mutational analysis 

in genes involved in the regulation of HDL cholesterol where rare variants were found 

to contribute significantly to low plasma levels of HDL-C (Cohen et al. 2004).   

There are several challenges specifically involved in identifying the genes related to 

complex disease such as genetic heterogeneity, where one genetic variant may cause 

the disease in one family, but a variant in another gene (or a different variant in the 

same gene) may cause the disease in another family; incomplete penetrance, where an 
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individual may carry a susceptibility gene, but not present the illness; phenocopies, 

where an individual presents the illness but does not carry a susceptibility gene and 

epistasis, where two or more genes interact to create a different effect than would be 

expected if the genes were expressed independently.  While there has been limited 

success in using linkage and positional cloning in common disorders, some of these 

problems can be overcome by looking at large families and studying rare subsets of a 

common disorder that is due to an inherited mutation of large effect.  This has led to 

success in aspects of breast cancer (Hall et al. 1990, Miki et al. 1994), colon cancer 

(Bodmer et al. 1987) and Alzheimer’s disease (Slooter and van Duijn 1997).  These 

successes in identifying variants and genes has not been limited to just the rare subsets 

used to identify them but they have also proved useful in furthering the understanding 

of the etiology of the general disease.  One of the best examples with application to 

the field of psychiatric genetics is the study of Stefansson et al. (2002), which found 

NRG1 to be associated with schizophrenia through a combination of linkage and fine 

mapping in the Icelandic population. 

 

1.1.5 Copy number variation 

Another area that has recently shown potential as a cause of disease is de novo copy 

number variation (CNV).  CNV refers to the variation in the number of copies of a 

particular DNA sequence that an individual carries.  Array-based technologies have 

been developed to allow DNA copy number variation to be studied on a large scale 

(Feuk et al. 2006).  These methods have recently been used to show that CNV is 

widespread in humans (Sebat et al. 2004, Iafrate et al. 2004) and have since also been 

used to show evidence for the association between regions of CNV with autism 

spectrum disorders (Sebat et al. 2007).  Lachman et al. (2007) discuss a number of 

schizophrenia and BPAD candidate genes that are affected by CNVs and show one 

significant CNV in the GSK3beta locus (P=0.002).  CNV analysis may emerge as a 

significant alternative in the search for genetic risk factors for disease.  
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1.2 Allele sharing 

To reiterate from the previous section, genetic linkage has been used to help identify 

genes that are linked to disease and although there has been less success in its 

application to complex illness, it has still provided strong evidence, albeit of relatively 

large genomic regions, for loci linked to disease.  More recently, the focus has shifted 

to association studies focusing on candidate regions (many identified through linkage 

studies) or candidate genes (from functional studies).  More recently still, has been the 

possibility of whole genome association studies.  Association studies have greater 

power and resolution than linkage but although association studies have increasingly 

reported positive results, replication has often not been so forthcoming.  This is most 

likely due to genetic heterogeneity, low statistical power, multiple testing, variability 

in study design, phenotype definition, statistical modelling and population structure. 

While these existing strategies have proven invaluable, allele sharing (or haplotype 

sharing) provides another approach to investigate allelic association that can 

compliment the existing methods already described and generate additional 

information in the search for genetic cause of disease.   

In the previous section I also discussed family based association studies, this section 

will now focus on how an allele sharing methods provide different opportunities when 

analysing family data.  I will discuss how such methods can be used and modified to 

identify regions of allelic association between large families showing linkage to the 

same loci.  The aim is to use date from families with replicated linkage results for a 

particular genomic location to be ‘recycled’ in a between-family analysis.  Such an 

approach seeks to use large, well characterised, families that are linked to a common 

region to test for the existence of a shared haplotype that would possibly hold a 

common causal mutation.  

 

1.2.1 Allele sharing background 

Test of association in family based studies, such as TDT, are the most popular type of 

family based test.  These type of tests focus on comparing transmitted with non-

transmitted haplotypes and in the case of the traditional TDT test, this is carried out in 

a set of parent-child trios where the child is affected.  In the basic case, statistical 
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significance is usually tested by some goodness-of-fit type test such as chi-squared 

tests or logistic regression.  While the traditional TDT is not able to analyse more than 

one marker at a time, various extensions have been created to allow the use of 

multiple markers (Clayton & Jones 1999; Dudbridge et al. 2000; Zhao et al. 2000).  

Other methods have taken a different approach such as the Haplotype Pattern Mining 

method which looks at haplotype patterns associated with disease and method such as 

the Haplotype Sharing Statistic (Van der Meulen & te Meerman 1997) and the 

Maximum Identity Length Contrast statistic (MILC; Bourgain et al. 2000) which 

search for excess haplotype identity amongst affected individuals. These methods 

tend to go beyond just looking at parental haplotypes as they are transmitted (or not) 

to affected offspring, but to include information on the common inheritance of a 

haplotype between families.  The main benefit from these types of test is that they can 

incorporate information held within a population while retaining robustness to 

confounding. 

Fan & Lange (1998) described how disproportionately large clusters of affected 

individuals sharing common haplotypes in the region flanking some disease mutations 

of recent origin would be expected and Jorde (2000) showed how investigation of the 

different distributions of the transmitted and non-transmitted haplotypes provides 

strong evidence for a disease mutation within the extended transmitted haplotype.  So, 

where a disease mutation exists, a region of haplotype sharing flanking that locus may 

also exist.  The corollary of this stands equally: where we find haplotypes that are 

specifically inherited by affected individuals, we expect such a haplotype to contain a 

disease causing mutation.  The size of the flanking region inherited in common by 

unrelated individuals depends on the age of the mutation and how distantly related the 

families or individuals are (de la Chapelle & Wright, 1998).  So allele sharing 

methods are identifying excess allele sharing, or unusually high levels of sharing of 

consecutive alleles or haplotypes above that which would be expected due to linkage 

disequilibrium (i.e. that which is seen in the control population).   

In the haplotype sharing statistic method of Van der Meulen and te Meerman (1997), 

they studied markers in the transmitted haplotypes of parent offspring trios and then 

counted the overlap in shared markers between all pairs of haplotypes.  The 

Haplotype Sharing Statistic (HSS) was calculated as the standard deviation of the 

shared distance between haplotypes and this was compared to 100 random 
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permutations of marker alleles over haplotypes using non-transmitted haplotypes.  

The MILC method (Bourgain et al. 2000, 2001, 2002) also scores transmitted 

haplotypes in parent offspring trios, but this time, they are compared directly with the 

scores between non-transmitted haplotypes.  Statistical significance is calculated by 

comparing the maximum difference in scores between the transmitted and non-

transmitted groups of haplotypes to the distribution of the maximum difference in this 

score for randomly permuted datasets of transmitted and non-transmitted haplotypes.  

Other methods have been developed such as the haplotype-sharing TDT (HS-TDT) of 

Zhang et al. (2003) and the sequential peeling TDT (SP-TDT) of Yu et al. (2005) that 

builds on the sequential peeling method developed for case-control studies (Yu et al. 

2004).  The sequential peeling procedure goes through case haplotypes sequentially 

deleting those found not likely to belong to larger clusters creating a clearer set of 

clusters to test.  Statistical significance is again tested through permutation 

procedures.  Most cases tend to rely on permutation testing (Van der Meulen & te 

Meerman 1997; Bourgain et al. 2000), and Allen and Satten (2007) describe the 

statistical analysis of these methods as having been developed in an ad-hoc manner 

and that certainly appears to be the case.  This is most likely symptomatic of the fact 

that these methods were developed in order answer to a specific need rather than as a 

goal in its own right.  As the use of these methods is increasing, there seems to be 

greater thought put into the development of a statistical basis for these methods.  

Allen and Satten (2007) go on to describe how permutation testing may be invalidated 

in the situation where haplotypes are reconstructed due to missing data and there are a 

number of papers, including their own that try to present a statistical framework for 

these models.  Tzeng et al. (2003a, 2003b) tried to describe the statistical properties of 

such haplotype sharing methods, describing them in quadratic form and including a 

very complex description of variance in their model. Beckmann et al. (2005) suggest 

the use of Mantel statistics similar to the HSC method of Qian and Thomas (2001).  

Mantel statistics (Mantel 1967) are a method of spatial clustering that can be used to 

test the distance between groups of haplotypes.  These methods are favoured as they 

may be more adept at detecting relationships between clusters where only a subset of 

cases are correlated (Legendre 2000).  This appears to be a novel application of a 

technique used in other fields.  Allen and Satten (2007) themselves try to create a 

general framework that for haplotype sharing statistics for the analysis of parent 
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offspring trios and it should be possible to extend such a framework to accommodate 

large pedigrees.   

Tzeng et al. (2003) and more recently Klei & Roeder (2007) have investigated the 

power of various goodness of fit and haplotype similarity tests through simulation.  

Tzeng et al. (2003) compared haplotype similarity tests designed for a sample of 

unrelated cases and controls and found that frequency-based statistics show relatively 

more power for low frequency alleles and matching-based statistics work well when 

the disease allele frequencies are relatively common.  In that study, the marker allele 

was assumed to be the causal allele.  Klei & Roeder’s (2007) simulations explore a 

more complex set of scenarios.  Similarly to Tzeng et al. (2003), they found that 

frequency-based methods are more powerful when the disease allele is linked to a low 

frequency allele (they used short tandem repeats (STRs) rather than SNPs) and 

haplotype sharing statistic showed more power when the disease allele was linked to a 

common allele. They also found that the matching and frequency-based approaches 

had low correlation, suggesting that it is often worthwhile to analyze a given data set 

with both approaches.  Klei & Roeder (2007) also investigated the similarity between 

the marker and causal allele frequencies. They found that the haplotype sharing 

statistic achieved its peak power when the marker allele frequency was relatively 

large, regardless of the disease allele frequency.  For the goodness of fit based 

methods, peak power was achieved when the allele frequencies of the disease and 

marker alleles matched closely. These results were obtained for a fixed level of LD.  

They also found that, for high frequency marker alleles, haplotype sharing statistics 

were more powerful in detecting association. For low frequency marker alleles the 

goodness of fit based statistics are more powerful. Additionally, the relative 

performance of goodness of fit based statistics and haplotype similarity statistics 

depended on how closely the disease allele frequency matches the frequency of the 

linked marker allele. In conclusion, they reported that the haplotype similarity and 

goodness of fit based statistics exhibited little correlation and as such both approaches 

could be used together to optimize the chances of finding association between a 

disease and a marker allele. 
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1.2.2 An alternative approach to allele sharing 

The intention of this thesis was to study a number of families who share a linkage 

region on chromosome 4p for bipolar affective disorder (these families are described 

in section 1.3).  Linkage analysis had been carried out and a case control association 

study was underway.  What this thesis aimed to do was to investigate whether there 

was any additional value to be gained from a comparative study of the four large 

families that generated the linkage signals.  This centred on the possibility that there is 

some shared ancestry between (at least some of) the families, and that some analysis 

of the haplotypes of these families might be able to reveal such a shared ancestry.  In 

addition, it was hoped that should such a common ancestry exist, that such an analysis 

might be used to identify a sub-region defined by the shared ancestral haplotype.  

Allen & Satten  (2007) commented that the statistical basis of most existing methods 

was designed in a something of an ad hoc manner, and this method is not different.  It 

is with this in mind that the following method was proposed. 

Based on the studies of Tzeng et al. (2003) and supported by the later work of Allen 

and Satten (2007) and others, it was decided that a haplotype similarity test would be 

the best when studying haplotypes linked with complex disorders that are expected to 

carry common alleles as such methods that incorporate the haplotype level 

information should be more powerful.  A method was therefore required that would 

extend the development of some of the existing methods described above for the 

analysis between multiple large families.  The methods of Van der Meulen and te 

Meerman (1997) and Bourgain et al. (2000) were used as the basis for a new method.  

As described above, both applied their methods to families, though they focussed on 

large numbers of trios rather than large families, as have most subsequent methods.  

The case described in this thesis is that of large families where a consistent disease-

linked haplotype can be defined with a degree of certainty due to the ability to phase 

haplotypes and determine the existence of the observable inheritance of a particular 

haplotype among infected individuals.  This provides a much more certain basis for a 

test of allele sharing than the uncertain transmission and non-transmission of 

haplotypes in trios.  On the other hand, the scenario described in this thesis is that of a 

small number of families, so there is a trade off between fewer families, but more 

certainty in the haplotypes being tested.  Another limitation of existing methods (such 

as MILC, HSS, HS-TDT and SP-TDT) is that the statistical test developed to test 
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entire haplotypes for a significant difference in sharing.  This may be appropriate 

when only a very small region is being genotyped, but when a much larger number of 

genotyped covering a large region is available, the number of different haplotypes 

becomes large and this sort of test is less appropriate.  Tzeng et al. (2003a) showed 

how complex the statistics become when trying to model the results of such a 

contrast.  Permutation analysis provides a simple mechanism for testing the 

significance of a result and, unlike the haplotype dependent test of Bourgain et al. 

(2000), it can do so on an individual marker basis.  Nested permutation analysis can 

be used to take multiple testing into account and also to test an expanded haplotype 

identified by the initial permutation analysis.  Allen and Satten  (2007) suggested that 

permutation analysis might not be a valid tool to use, as missing haplotypes require 

that haplotypes must be permuted based on an invalid model, but this should not be an 

important issue in the scenario in which this method is being developed where 

haplotypes are well defined by segregation analysis in a relatively large and well 

characterised family. 

This work started with the assumption that there are multiple families that share a 

locus linked with a disease and that these families share some common mutation in 

the region linked with the disease, which is due to a common ancestor.  Individuals 

from each family are required to be genotyped across the relevant region and it is 

expected that a haplotype that is carried by affected individuals will be identified 

within each family.  This haplotype is referred to as the ‘disease-linked’ haplotype 

and there will be one for each family included in the study.  The remaining haplotypes 

will be form a set of control haplotypes for each family.  Clearly, not every scenario 

where one might wish to use such a method will meet these assumptions, however, it 

was felt that it was more appropriate to have a tool that met the specific requirements 

of this thesis rather than over generalising and not developing something practical. 

Having Established a set of disease-linked and control haplotypes from a number of 

families, the next step is to measure how similar the disease-linked haplotypes are and 

to contrast this with the similarity found between control haplotypes.  Measuring 

similarity amongst a group of haplotypes was carried out using a scoring system 

similar to that described by Bourgain et al. (2000).  This was judged to be an efficient 

and accurate means of scoring, marker by marker across the region, of how similar a 

group of haplotypes are.  Scores were allocated to each marker based on the extent to 
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which the haplotype was shared in both directions around it (details of the scoring 

system are presented in chapter 2).  The same system of scoring was used to score 

similarity amongst control haplotypes.  The differential between sharing at each 

marker between the disease-linked and control groups of haplotypes can be calculated 

to give an indication of whether there is some sharing of alleles in one group that 

doesn’t appear in the other.  This calculation should also take some account of the LD 

structure in the underlying population as this would be reflected equally in both 

disease-linked and control groups of haplotypes. 

The next step is to calculate whether any differential scoring is significant.  This is the 

main point of divergence from existing methods, e.g. the MILC method looks at the 

maximum of the contrast between haplotypes groups (in their case transmitted and 

non-transmitted).  This is probably historical, because methods like MILC were 

designed for studying a small number of markers as a way to provide further evidence 

for a region.  A new method should take the test a step further, to generate a 

significance value for markers and for blocks of shared makers, thus identifying any 

region of excess allele sharing within the wider region being tested.  This is done 

through two stages of permutation analysis.  The first stage is testing whether the 

contrast score between the two groups of haplotypes (disease-linked and control) are 

significant, by permutation.  Permutation testing tests the null hypothesis that there is 

no difference between haplotypes in either group, so a large number of permutations 

are carried out with random selection of disease-linked and control haplotypes from 

the combined set of haplotypes.  This produces a significance value for each marker 

and provides some evidence whether some regions contain markers where there is a 

significant difference in allele sharing scores in the disease-linked group compared 

with the control haplotypes.  Clearly, if there are many markers being tested, there 

will be a high number of tests being carried out.  A secondary permutation analysis 

intends not only to correct for multiple testing, but also to take account of the size of 

the region of sharing.  This involves comparing the significance of the results 

following the first permutation analysis with the results of each permuted dataset 

following a comparison of a randomly permutated dataset with a large number of 

others.  These analyses are described in more detail in the next chapter in this thesis. 

It was felt that these analyses of significance of allele sharing scores was the most 

transparent and straight-forward approach.  There are many assumptions and 
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simplifications, such as the use of a permutation test rather than a more rigorous 

statistical test, that made that may allow this method to be somewhat simpler than 

many other published methods, but it was felt that these assumptions were not too 

unreasonable, given the data under study in this thesis and that such a scenario is 

likely to be found in the study of other disorders, where there are multiple linkages to 

a particular region for a particular disease.   

Ideally, this thesis would report the results of more than just the analysis based on the 

new allele sharing method described above, both to validate any significant results, 

but also to allow a more practical comparison between methods.  While a case-control 

study of the chromosome 4p BPAD linked region was carried out by others 

(Christoforou et al. 2007) and discussed in this thesis, there has not been alternative 

family based analysis.  Just such analysis was attempted, however, it was found that 

published methods were not necessarily easily available for use nor were they always 

easy to use should they be available.  Some comparison of the results of the new 

method described above and an existing published method are described in chapter 4. 

 



Chapter 1  Introduction 

 

  20

1.3 Bipolar affective disorder 

Bipolar affective disorder (BPAD) is amongst the leading causes of disability in the 

world (Lopez & Murray, 1998).  The lifetime prevalence for bipolar I is estimated to 

be around 1% although rates vary widely between 0.1% and 2.5% (e.g. Faravelli C et 

al. 1990, Weissman et al. 1996, Szádóczky et al. 1998, ten Have et al. 2002, Regeer et 

al. 2004, Pini et al. 2005).  The annual cost of BPAD to society is estimated to be 

almost £2 billion per year in the UK alone (1999/2000 prices; Das Gupta & Guest, 

2002). 

BPAD is characterised by severe mood swings from periods of extreme depression to 

an overly high and irritable mood (happy, excitable, self-confident, but also angry and 

impatient), usually with normal moods interspersed.  Some people can also 

experience a combination of depression and mania at the same time (known as mixed 

state).  BPAD was formerly known as manic-depressive illness and was considered to 

be a well-defined disorder and was seen as distinct from dementia praecox (now 

known as schizophrenia).  Later, the term bipolar affective disorder was used to 

describe manic-depressive illness, as distinct from unipolar depression.  To enable 

consistent diagnosis, the American Psychiatric Association publishes the Diagnostic 

and Statistical Manual of Mental Disorders, now on its fourth edition (DSM-IV; 

American Psychiatric Association).  DSM-IV lists many sub-types of BPAD; BPII 

refers to slightly less extreme version of BPAD and BPIII-BPVI reflect other 

variations of the disorder.  Schizoaffective disorder (SAM) is now used to refer to 

patients where the mood disorder is similar to BPAD sufferers, but whose mental and 

cognitive functions are altered in such a way as to suggest the presence of 

schizophrenia.  It would appear that BPAD may share an underlying etiology with 

unipolar major depression and schizophrenia and there is also genetic evidence for 

this (Berrettini 2003).  BPAD is also associated with mental disorders such as 

alcoholism and substance abuse (Regier et al. 1990). 

Despite the high social and economic impact of the illness, the research carried out to 

date has been unable to reveal the cellular and molecular function of the disease.  As a 

result, diagnosis tends to rely solely on clinical observation, and treatment tends to 

focus on alleviating the symptoms rather than the cause.  Identifying a causative gene 

could improve the diagnostic procedure by providing physical evidence for the 
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disorder and may also allow pre-symptomatic diagnosis and the identification of 

genetically susceptible individuals.  Perhaps most importantly, the identification of a 

causative gene could lead to the development of drug targets to treat the illness. 

 

1.3.1 Genetic evidence for bipolar affective disorder 

There has long been evidence for an inherited aetiology for BPAD.  Since the 1920’s 

family and twin studies have established a strong genetic contribution to the disorder.  

Many studies have documented the increase in risk of BPAD in the relatives of 

probands with BPAD and the lifetime risk to a first-degree relative of a proband with 

BPAD is thought to be up to 10%, compared with 1% in the general population 

(Craddock and Jones 1999).  Most of these studies have also found higher than 

expected levels of unipolar disorder in relatives of BPAD probands.  There is also 

evidence to suggest that relatives of probands with BPAD are also more likely to 

suffer from other psychiatric disorders within the schizophrenia-affective disorder 

spectrum (Valles et al. 2000, Berrettini 2003).  It is likely that this in part reflects the 

unreliability of diagnosis, but may also reflect the shared underlying etiology within 

the range of mental disorders (Berrettini 2003). 

Twin and adoption studies have been carried out to further investigate the genetic 

cause of the disease.  The largest of these used the Danish Twin Register, where they 

found a proband-wise concordance in monozygotic twins of 0.62, compared to 

dizygotic twins with concordance of 0.08 (Bertelsen et al. 1977) for BPAD.  

Craddock et al. (1995) have carried out a survey based on many of the published 

studies.  In combining many published results, they reported a concordance of 0.6 in 

monozygotic twins, and 0.07 in dizygotic twins and 0.01 in the general population.  If 

common environmental factors can be assumed to be the same for the mono- and 

dizygotic twins, then under and additive genetic model of gene action, the 

monozygotic concordance rate should equal twice the dizygotic concordance rate; the 

large difference between them implies non-additive gene action.  The concordance 

between monozygotic twins is not 1, suggesting that the disorder is not completely 

genetic in nature, and that environmental elements are also important, which may also 

interact with genetic risk factors. 

While no gene has been shown to directly confer susceptibility to BPAD by positional 

cloning, a number of linkage and association loci and candidate genes have been 
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proposed for BPAD and related affective disorders (BP-related).  Figure 1.2 presents a 

summary of significant affective disorder linkage regions published up to 2005.  A 

limited number of these have been widely replicated, but with very few exceptions the 

evidence for causative mutations is lacking.  There are two main exceptions, variants 

at the D-amino acid oxidase activator (DAOA) locus on chromosome 13q, have been 

shown to influence susceptibility to BPAD in five different datasets (Hattori et al. 

2003, Chen et al. 2004, Schumacher et al. 2004, Williams et al. 2006) and the DAOA 

gene product is thought to activate the D-amino acid oxidase (DAO) enzyme which is 

itself found on a region linked to BPAD.  Brain derived neurotrophic factor (BDNF) 

is a functional candidate gene with one functional polymorphism that has been 

reported in three family based association studies to show association with BPAD 

(Sklar et al. 2002, Neves-Pereira et al. 2002, Geller et al. 2004), although some case 

control studies have reported no association (Oswald et al. 2004, Skibinska et al. 

2004, Hong et al. 2003, Nakata et al. 2003). Other genes such as GRK3 (Barrett et al. 

2003), XBP1 (Kakiuchi et al. 2003), P2SX7 (Barden et al. 2006), MAOA (Preisig et 

al. 2000), COMT (Jones and Craddock 2001) and 5HTT (Anguelova et al. 2003, 

Lasky-Su et al. 2005) have been implicated but findings remain to be tested.  See 

Craddock and Forty (2006) for a recent review.  More recently, Venken et al. (2008) 

have published evidence of a region on chromosome 10q which displays significant 

genome-wide linkage with bipolar disorder. 

Most cases of family studies of BPAD have comprised sib pairs or multiple simplex 

families (Levinson et al. 2003).  Where large extended pedigrees have been studied, 

the pattern of disease is usually compatible with a quasi-dominant mode of 

inheritance, with reduced penetrance (e.g. Blackwood et al. 1996, Morissette et al. 

1999, Macgregor et al. 2004 and Herzberg et al. 2006).  
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Figure 1.2: Genomic regions linked with affective disorders. 

 

Shows the genomic locations that have shown genome-wide significance in at least 
one scan, for major affective disorder.  The predominant phenotype presented in each 
case is identified as UP: unipolar disorder, BP: bipolar disorder or SABP: 
schizoaffective disorder (bipolar type).  Image reproduced from Craddock & Forty 
2006.   
 

1.3.2 Chromosome 4p linkage region 

The original evidence of linkage to a region on chromosome 4p came from a genome-

wide linkage study in a large pedigree (F22) from the South East of Scotland that 

segregates for major affective disorder (Blackwood et al., 1996).  Patients from the 

South East region of Scotland has been under clinical investigation by collaborators 

Prof Douglas Blackwood and Dr Walter Muir (University of Edinburgh, UK) for 

many years.  A whole-genome scan of F22 found significant linkage to chromosome 

4p15-4p16, with a LOD score of 4.09 (Blackwood et al. 1996); implying that this 

regions is likely to contain a susceptibility locus for BPAD.  Additional support for 

this result came from variance component analysis of the same data by Visscher et al. 

(1999) who found a LOD score of 3.7.  Variance component models are based on the 
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correlation between the genetic similarity of relatives at a given locus and the 

relatives’ similarity with respect to the phenotype.  It is very encouraging that an 

alternative model with differing statistical properties should identify significant 

linkage at the same region.  A re-evaluation of the family was carried out recently (Le 

Hellard et al 2006) where the clinical status of several family members were updated 

identifying a maximum LOD score of 4.41 on chromosome 4p16.  Evidence from a 

number of other studies, has since been published in support of this region.  In 

particular, three additional families presented linkage to approximately the same 

region of chromosome 4p (Blackwood et al. 1996, Asherson et al. 1998, Detera-

Wadleigh et al. 1999).  Figure 1.3 shows how the F22 linkage region, and of those 

from three other families, overlap to form two priority regions (B and D).  These 

families are described in greater detail in chapter 4.   

One candidate gene in the region (GPR78) has shown some evidence for association 

in females with BPAD however sequence analysis of the coding region of the gene 

has produced no evidence for segregation of the functional variants in F22 or the other 

three linked families.  A recent association study of the region (Christoforou et al. 

2007) found three clusters of SNPs and haplotypes that were significant in region B 

and eight clusters of significant haplotypes in region D.  Five known genes were 

found in these associated regions: GPR125, PPARGC1A, CCKAR, KIAA0746 and 

DKFZp761B107 all of which would make plausible candidate genes.  There are other 

good candidate genes in the region, including DRD5.  However, there is still a lack of 

evidence to point to a particular gene or region. 

The chromosome 4p15-16 region provides a good example of the trend in the study of 

complex disorders.  Many linkage signals have been reported, but the follow ups have 

been mostly unproductive to date.  While some propose that genome-wide association 

studies can provide an alternative solution, it may be the case that where linkage 

signals overlap, a new technique can be used to generate more information from the 

families responsible for these linkage results.  In doing so, it may be possible to order 

to narrow down the region under study even further, thus increasing the likelihood of 

being able to use the full range of tools available, such as building clone contigs and 

sequencing the region, as they become cost effective on that scale. 
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Figure 1.3: Chr. 4p regions of overlap.  

 

The linked regions that segregate with illness in the four families are found to 
overlap.  Regions A to D indicate sub-regions of the F22 linkage region that show 
linkage in at least one other family.  The sizes (in Mb) of these regions refer to the 
genomic distances between the points marked by the horizontal lines.  The numbers 
are from NCBI build 35 (http://www.ncbi.nml.nih.gov) and are the map co-ordinates 
of each of the markers that define the boundaries of the linked haplotypes.  The 
illnesses observed in the families are indicated in the figure as follows: AFD – major 
affective disorder, SCZAFF – schizoaffective disorder and schizophrenia, SCZAFD – 
schizophrenia, major affective disorder and others. Reproduced from Le Hellard et al. 
(2006). 
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1.4 Aims of Study 

The principal aim of the study was to test the two overlapping regions of linkage with 

BPAD on chromosome 4p for significant allele sharing.  However towards that end I 

have also developed and tested the efficacy of the method, offering a significant new 

approach in the analysis of complex genetic disorders. 

 

1. In chapter 2 I describe a novel method for testing allele sharing between 

groups of haplotypes. 

2. In chapter 3 I have developed a simulation model to be used in testing the 

efficacy of the allele sharing method. 

3. Also in chapter 3, I have analysed the sets of families with known mutations 

(presumed to be founder) using the allele sharing method. 

4. In chapter 4 I have applied this method to the chromosome 4p linkage region 

and used this method to greatly reduce the region under investigation and 

significantly progress the study of this region. 

5. The study undertaken in chapter 4 also provides a clear example of how the 

method could be used for any complex disorder. 

6. Also in chapter 4, I have analysed data from the chromosome 4p linkage 

region with a family-based association test. 
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2.1 A method for measuring allele sharing 

In section 1.2, I proposed a method for testing the level of allele sharing where 

multiple families present a common linkage to a genomic region for a particular trait 

or disease.  In this section I describe the methods that were developed to do this, as 

well as describing the preparation of data that was required, the means of generating a 

statistical interpretation of the results and an overview of how these methods were 

implemented.  Although the methods described here attempts to describe the methods 

in general terms, there were specific issues relating to the families studied that require 

discussion also. 

 

2.1.1 Data preparation 

The starting point of the analysis described in this thesis is of a number of families 

identified as sharing some genetic region that is linked in some way with a particular 

disease or trait (e.g. through a linkage study).  Furthermore, these families were 

required to display a particular haplotype that segregates with the disease or trait in 

question.  It is this ‘disease-linked’ haplotype which can be compared across families 

to and assess whether there is significant allele sharing.  In addition to simulation 

studies, a number of families were studied in this thesis and these families all required 

a great deal of study prior to any allele sharing analysis being carried out.  In the 

cystic fibrosis example, members of the Férec lab identified a number of families that 

carried one of three known mutations, these families were genotyped at a small 

number of markers, haplotypes were phased by hand (see section 2.2).  In the study of 

the BPAD and BP-related families, four families had been identified through linkage 

studies as showing a region on chromosome 4p linked with BPAD, members of each 

family had been genotyped to a high density, by colleagues, and haplotypes had then 

been constructed using the MERLIN (Abecasis et al. 2002) software package 

followed by some refinement of haplotypes by hand (see section 2.4).  In each of the 

above cases, once each family had been phased to the greatest degree possible, the 

haplotypes of the affected individuals were examined by hand and where it was clear 

that there was one haplotype in common amongst the majority of cases, that haplotype 

was identified as a disease-linked haplotype.  The assumption was made that if there 

was some common mutation causing the illness amongst these related individuals, 
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then it would lie on this haplotype.  All other unique haplotypes that were carried by 

the family were defined as control haplotypes.  It is important to note that the allele 

sharing method carried out in this thesis investigated the allele sharing among disease-

linked haplotypes between families and not within families.  Similarly control 

haplotypes were compared between families and not within.  So this method is not 

simply selecting a haplotype that is carried by most cases within a family and testing 

to see whether this haplotype occurs more often than I would expect by chance, it is 

testing whether this haplotype shares a sub-haplotype in common with haplotypes 

found to segregate with the same illness in other families. It is assumed that each 

family carries a distinct identifiable disease-linked haplotype across the region under 

investigation, so there is no need to compare within haplotypes in such a way within 

each family. A description of the general basis of this method is outlined in section 

1.2.2 and the specific details of the method are described in the sections following this 

one. 

 

2.1.2 Scoring 

The degree of allele sharing was calculated within the groups of disease-linked and 

control haplotypes.  A pairwise comparison of the alleles at each marker was carried 

out between all pairs of haplotypes in each of the two groups. For each pair of 

haplotypes, each marker was assigned a score based on the size (measured by the 

number of markers) of the region of sharing in which it was found (based on the 

methods of Van der Meulen and te Meerman 1997; Bourgain et al. 2000).  If a marker 

was shared between the two haplotypes then the number of markers that were shared 

around it determined the score for that marker (e.g. if three markers were shared then 

each marker received a score of three.  Scores at markers with ambiguous genotypes 

were weighted based on the ambiguity (e.g. if it is known that a chromosome could 

carry one of two alleles at a particular marker then that marker would contribute a 

score of 0.5 to the block of sharing and a score would be generated for that marker 

accordingly).  Missing data does not contribute to the score of a region, but neither 

does it break up a shared region, so a marker carrying missing data is scored based on 

the level of sharing in the markers around it.   
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Figure 2.1: Allele sharing scoring. 

 

(A) is an example of the standard scoring system used to measure allele sharing 
between a pair of haplotypes.  (B) shows how missing and ambiguous data are dealt 
with. The first instance of missing data (? on haplotype 2) is flanked by one marker on 
either side that is shared by both haplotypes, so all three markers receive a score of 2.  
The second instance (? on haplotype 1) is not flanked by any shared alleles, so it 
receives a score of 0. The case of ambiguity (G/C on haplotype 1) has a 50% chance 
of being a case of sharing with the allele of the other haplotype, so the score for that 
marker is 2.5 (0.5 +2, as it is in a region of sharing containing two other markers).  
 
 
See Figure 2.1 for an example of the different scoring issues described.  The scores 

from each of the pairwise tests were averaged to generate a length statistic for each 

marker for both the disease-linked and control groups of haplotypes.   

An alternative length statistic was developed based on the physical distance 

encompassed by a shared region but after some investigation, was not used further 

during this thesis. 

 

2.1.3 Permutation Testing 

Upon calculating a score for each marker, it is desirable to attach a degree of 

significance to each score.  To ask the question of whether the variation in scores are 

expected or whether they are likely to happen by chance.  The distributional 

properties of the length statistic are complex (Tzeng et al. 2003a), so permutation 

analysis was used to assess the statistical significance of the null hypothesis of no 

difference in sharing between linked and control haplotypes.   

This permutation process involved the randomisation of all the disease-linked and 

control haplotypes.  These were then reallocated to disease-linked and control groups, 

Haplotype 1 A ----- A ----- C ----- G ----- C ----- G ----- A ----- G ----- G ----- A 

Haplotype 2 T ----- A ----- C ----- G ----- G ----- C ----- A ----- G ----- C ----- T 

Score  0         3        3        3         0         0         2        2         0        0 

Haplotype 1 C ----- A ----- C ----- G ----- G --- G/C --- A ----- G ----- C ----- ? 

Haplotype 2 C ----- A ----- ? ----- G ----- G ----- C ----- A ----- G ----- C ----- A 

Score  0         2        2        2         0       2.5      2.5     2.5       0        0 

A 

B 
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while retaining the proportion of haplotypes allocated to each group.  The allele 

sharing analysis was then repeated with these redefined (permuted) haplotype groups.  

This process was generally carried out 9,999 times.  A ‘standard’ permutation test was 

then carried out whereby the results of the permuted datasets were used to create an 

exact distribution of possible differences under the null hypothesis.  The P value for 

the length statistic at each marker was calculated as p=s/10,000, where s was the 

number of times the length statistic for the permutated replicates exceeded the length 

statistic using the actual disease-linked haplotypes.  Statistical significance was 

implied when P ≤ 0.05.   

 

2.1.4 Correcting for multiple testing 

It is important to consider the number of tests being carried out.  The permutation test 

described above are not comparing one score calculated in a pairwise comparison 

between haplotypes, but one score at each marker.  So if there are n individual 

markers being studied, there will be up to n individual test being carried out.  One 

possibility would be to use a Bonferroni correction, however this is considered to be a 

fairly conservative approach and even more so considering that some of the markers 

being tested are likely to be in linkage disequilibrium thus should not be considered as 

independent tests (Becker & Knapp, 2004).  Other tests may require some assumption 

about the distribution of the data.  So, as process of nested permutation analysis, 

where the permutation replicates themselves were tested against another set of 

permuted datasets, to account for multiple testing.   

Another reason for not using a simple permutation test is that in creating a nested 

permutation test, we could study much more than just the corrected significance of 

individual markers.  Nested permutations provided the opportunity to take into 

account the LD properties of the region being studied.  This makes the assumption 

that we know the LD structure (see section 2.4.2 for a description of how the LD 

structure of the chromosome 4p-linked region was defined).  As well as generating the 

permuted datasets, the initial permutation analysis was used as a filter to identify 

those areas of interest based on the P values generated.  For those regions where the 

initial permutation analysis had identified at least two consecutive markers with a P 

value of 0.05 or less, the average allele sharing score was calculated along with the 

number of LD blocks that were contained within the defined region.  The real dataset 
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and each permutated dataset, were then compared with another set of 9,999 permuted 

datasets contained a region of as many LB blocks of the same or greater significance.  

In a slight modification of a standard permutation test, a P value was then calculated 

for each region found to be significant by the initial permutation analysis, by P =  

r/10,000, where r was the number of times a permutation replicate upon its 

permutation analysis was found to generate a region containing at least as many 

haplotype blocks as the region found in the linked haplotypes and at a greater or equal 

level of significance. 

Due to computational limitations, rather than creating a further set of permutations to 

test against each of the original permutations, the remain 9,998 permutated replicates 

(plus the real dataset) were used in an approximation of nested permutations (Ge et al. 

2003). 

 

2.1.5 Implementation 

The methods described above were implemented using programs written in Java (Java 

Platform, Standard Edition, Version 1.4.1; Sun Microsystems).  Allele sharing scores 

and the initial permutation analysis were run through a program called JavaAS .  

JavaAS  required that the path was specified to a comma delimited text file containing 

the alleles of the linked haplotypes followed by the alleles of the control haplotypes at 

each of the markers included in that particular analysis.   

 

Figure 2.2: The JavaAS  GUI. 

 

The GUI used to carry out allele sharing scoring and permutation analysis. 
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The program also required that the number of disease-linked and control haplotypes 

be specified, the type of length statistic to be used (the length statistic could be based 

on the number of alleles, or number of base pairs).  Finally, the program requires the 

user to select whether permutation testing is required, selecting the type of 

permutation analysis and the number of permutations.  The program was run through 

a user interface (Figure 2.2). 

Upon running this program, the principle class used to carry out the allele sharing 

scoring and permutation analysis was called AsCalculate.java .  In brief, 

AsCalculate.java  reads in the data from the comma delimited data file and calls 

the calcAS  method (Figure 2.3), which carries out the comparison and scoring of 

each pair of haplotypes in the linked and the control groups.  These are then averaged 

and difference between the two groups calculated.   
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Figure 2.3: The calcAS  method. 

 
   
  private Vector calcAS(Vector inputData, int colSt art, int colEnd){ 

Vector pairCases = new Vector();//create a vector o f each pairwise comparison 
//create a loop of number of cases factorial (!) 
for (int i=colStart;i<colEnd;i++){ 
   //within this loop, carry out the pairwise compa rison, and enter into 
   //the first row of pairComp vector  
   for (int j=i+1;j<colEnd;j++){ 
   Vector pairTemp = new Vector();//new vector for each pairwise comparison 
   pairTemp = asLength((Vector)inputData.get(i),(Ve ctor)inputData.get(j)); 
   pairCases.add(pairTemp); //add the result of eac h pairwise comparison to  
                            //the pairComp vector 
} 

     }//end of loop around the no of pairwise compa risons 
     return pairCases; 
  }//end of calcAS 
 
 
 
 
 
  private Vector asLength(Vector col1,Vector col2){  
    Vector pairTemp = new Vector(); 
    int n=0;//to count where strings of matches occ ur 
    int m=0;//take into account the number of missi ng points 
    int p=0;//counts the number of matches 
    double pscore=0.0;//keep track of the mounting score allocated from  
                      //ambiguous matches 
    for (int k=0;k<col1.size();k++){ 
      String st1 = (String)col1.get(k); 
      String st2 = (String)col2.get(k); 
      if (st1.equals("?") || st2.equals("?")){//dat a missing in hap1 or hap2 
        pairTemp.add(new Double(n+pscore)); 
        if(n>0)//this means that if there is a ?, i t only gets a score if there is 
               //a score immediately prior, even if  there is one immediately after 
          m++; 
      } else if(!isInteger(st1) || !isInteger(st2)) {//if !integer, then must  
                                                    //be ambiguous genotypes 
        double match = 0; 
        if (!isInteger(st1)){//if the hap1 genotype  also ambigous 
          String st1s[] = st1.split("_");//get the two options 
          if (!isInteger(st2)){//if the hap2 is als o ambiguous 
            String st2s[] = st2.split("_");//get th e hap2 options 
            for (int i=0;i<st1s.length;i++){ 
              for (int j=0;j<st2s.length;j++){ 
                if (isInteger(st1s[i]) && isInteger (st2s[j])){//check that that  
                                                        //part of the ambiguity for  
                                                        //either hap is not ‘?’ 
                  if ( (new Double(st1s[i])).equals (new Double(st2s[j])) ) 
                    match += 1.0; 
                } 
              }//end of for st2s.length 
            }//end of for st1s.lenght 
            match /= 4.0; 
          } else {//only hap1 is ambiguous 
            for (int i=0;i<st1s.length;i++){ 
              if (isInteger(st1s[i])){//check that this part of the ambiguity is  
                                      //not '?' 
                if ( (new Double(st1s[i])).equals(n ew Double(st2)) ) 
                  match += 1.0; 
              } 
            } 
            match /= 2.0; 
          } 
        } else {//it must be that only hap2 is ambi guous 
          String st2s[] = st2.split("_");//get the hap2 options 
          for (int i=0;i<st2s.length;i++){ 
            if (isInteger(st2s[i])){//check that th is part of the ambiguity is not 
                                    //'?' 
              if ( (new Double(st1)).equals(new Dou ble(st2s[i])) ) 

A 

B 
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                match += 1.0; 
            } 
          } 
          match /= 2.0; 
        } 
        if (match > 0.0){ 
          pscore += match; 
          pairTemp.add(new Double(n+pscore)); 
          for(int l=0;l<(n+p+m);l++){ 
            pairTemp.set((k-l-1),new Double(n+pscor e)); 
          } 
          p++; 
        } else if (match == 0.0){//there is no matc h even from the ambiguous data 
          pairTemp.add(new Double(0.0)); 
          n=0; m=0; p=0; pscore=0.0; 
        } 
      } else if ( (new Double(st1)).equals(new Doub le(st2))   ){ 
        pairTemp.add(new Double(n+pscore+1)); 
        for(int l=0;l<(n+p+m);l++){ 
          pairTemp.set((k-l-1),new Double(n+pscore+ 1)); 
        } 
        n++; 
      } else { 
        pairTemp.add(new Double(0.0)); 
        n=0; m=0; p=0; pscore=0.0; 
      } 
    }//end of loop around the length of the pair of  columns 
    return pairTemp; 
  } 
 
 

The first excerpt of code (A) shows the calcAS method which calculates the allele 
sharing scores between each pair of haplotypes.  The input is a vector matrix holding 
all the allelic information and markers for the start and end of the group being 
calculated (linked or control).  pairCases is a vector used to hold each pairwise 
comparison in the group and a loop is created to score each haplotype vector against 
each other.  asLength (B) runs through each allele in the haplotypes and calculates 
the score, taking account of missing and ambiguous data before returning a vector 
holding the score at each marker back into the calcAS method. 
 

If permutation analysis is being carried out on the data, the program uses a random 

number generator to select random haplotypes from the data and place them into the 

linked and control groups, whilst keeping the number in each group the same as the 

original data.  The program then calls the calcAs  method for the randomised data.  

This is repeated for each of the number of permutations specified initially.  A method 

permStats  (see Figure 2.4) is then called to calculate the statistical significance of 

the original results by comparing those results with that of the permutations. 

 

Figure 2.4: The permStats  method. 
 
 
 
  permOut = new Vector[noPerms]; 
  for(int i=0;i<noPerms;i++){ 
    //get random nos 
    Vector permTempIn = new Vector();//temp vector to hold the randomised  
                                     //input column s 
    Random rand = new Random(System.currentTimeMill is()); 
    Thread.sleep(10);//to make sure there is a uniq ue seed for the random  

A 
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                     //number generator 
    Vector randList = new Vector(); 
    for (int j=0;j<inputData.size();j++){//for each  haplotype 
      int randNo = getRnd(inputData.size(),rand); 
      if (randList.contains(new Integer(randNo))){/ /if we have already taken that hap 
        j--;//repeat loop 
      } else { 
        permTempIn.add(inputData.get(randNo));//add  hap to permTempIn 
        randList.add(new Integer(randNo));//add to vector randList so it doesn’t  
                                          // get se lected again 
      }//end of get random nos 
      //use progCount to keep track of the number o f permutations that  
      //have beencarried out 
      progCount = i; 
      //now use permuted dataset as the input for t he AS score calculations 
      permOut[i] = difference( average(calcAS(permT empIn,0,nocases)), 
        average(calcAS(permTempIn,nocases,(nocases+ nocontrols))) ); 
      } 
    }//end of permutations 
    //now calc permutation statistics 
    pStats = permStats(permOut, outputData); 
  } 
 
 
 
  private Vector permStats(Vector[] perm, Vector[] out){ 
     Vector vDiffs = new Vector(); 
     for (int i=0;i<perm[0].size();i++){ 
        int temp = 0; 
        double nDiffs = 0.0; 
        for(int j=0;j<perm.length;j++){ 
           If(((Double)(perm[j].get(i))).doubleValu e()<( 

      (Double)(out[2].get(i))).doubleValue()) 
              nDiffs++;// 
           temp = 0;//diff columnn 
        }//end of for perm.length (columns) 
     nDiffs /= noPerms; 
     vDiffs.add(new Double(nDiffs)); 
     }//end of for perm[0].size (rows) 
  return vDiffs; 
  } 
 
 

The code in part (A) is part of the main AsCalculate program.  Here the program 
uses a random number generator to select random haplotypes from the full dataset 
and then call the calcAS method described in Figure 2.3.  The program loops for n 
permutations being carried out.  The results of each permutation are stored and then 
used in the call to permStats.  The permStats method (B) is used to calculate the 
statistical significance of allele sharing scores compared with randomly permutated 
data.  This is done be comparing the results of n permutation with the real results. 
 

A tool to display the results of the allele scoring and permutation analysis was 

developed.  This tool was kept as straight-forward as possible and in the case of the 

allele sharing scores, simply involved generating a graph that displayed the marker 

position along an x-axis, allele sharing score along a y-axis.  At the position of each 

marker, a point was plotted for each group of disease-linked and control haplotypes. 

The two groups were identified through colour and the shape of the point.  The graph 

developed to display the significance value attached to each marker was similar.  One 

point was plotted representing the P value for each marker along a scale on the y-axis.  

The position of the marker was again along the x-axis.  A line representing the 0.05 

B 
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significance threshold was added and points the lay above the 0.05 value were 

coloured red.  Other features of both graphs were tool-tips that could be used to 

identify the exact values at any point, a legend and the ability for the user to modify 

the title of the graphs.  Figure 2.5 shows an example of the graphs. 

 

Figure 2.5: ASGraph and PermGraph. 

 
An examples of the graphs used to display the results of the allele sharing scoring and 
initial permutation analysis.  In (A) each marker’s position is shown on the x-axis and 
allele sharing score on the y-axis.  At each marker involved in the analysis, two points 
are plotted, o represents the score between the control haplotypes and x the score 
between the disease-linked haplotypes.  (B) shows the significance value at each of 
these same markers.  The 0.05 cut-off is shown by the dashed line. 
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A separate program was used to carry out the nested permutation analysis that 

generated the corrected significance values.  This was implemented in a program 

called NewAsPermAnalysis.java  (some key components of this program can be 

found in Figure 2.6 below, the full program is listed in Appendix A).  The input for 

this program was the allele sharing score at each marker for the original allele sharing 

analysis, as well as for each permuted dataset and data on how each marker fitted into 

the LD structure of the region.  Where the initial permutation analysis (described 

above) compared the real allele sharing score to that found in the permuted datasets, 

NewAsPermAnalysis.java  compared the allele sharing scores across a specific 

number of LD blocks in each of the permuted datasets in turn with the scores for 

similar sized regions for all the other permuted datasets.  This program also took the 

haplotype structure of the region into account by comparing the average allele sharing 

score for each haplotype block rather than the score for individual markers.  The 

proportion of permuted datasets that identify regions of greater significance than that 

found in the original analysis were used to generate a corrected significance value. 

The full AsCalculate  and NewASPermAnalysis  methods can be found in 

Appendix A.1 and A.2 respectively.  Other programs were created to provide the 

JavaAS  GUI and to generate the ASGraph and PermGraph  graphs.  These programs 

are not listed in this thesis. 

 

Figure 2.6: The NewASPermAnalysis  class. 

 
 
 
  Vector realBlockData = getBlockAvs(realData);//ge t the average score for  
                                               //ea ch block, for the real data 
  //now store the average scores or each block, for  each permutation 
  Vector permBlockData = new Vector(); 
  for (int i=0;i<permData.size();i++){ 
    permBlockData.add(getBlockAvs((Vector)permData. get(i))); 
  } 
  //calc the average of each seq of n blocks for ea ch permutation 
  Vector permTestNBlocksData = new Vector(); 
  for (int i=0;i<permBlockData.size();i++){ 
    permTestNBlocksData.add(new Double(getBestNBloc kScore( 
      (Vector)permBlockData.get(i)))); 
  } 
 
  //compare the best score for n consecutive blocks  in each of the  
  //permutations against the real result 
  int noMoreSigPerms = 0; 
  for (int i=0;i<permTestNBlocksData.size();i++){ 
    if(  ((Double)permTestNBlocksData.get(i)).doubl eValue() >= realAvScore){ 
      noMoreSigPerms++;//store the total number of permutations that have a region  
                       //of n blocks that are at le ast as significant as in the real 
                       //data 
    } 
  } 
 

A 
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  private double getBestNBlockScore(Vector blockDat a){ 
    //go through each of the list of block averages  
    //for te first n-1 add to a vector 
    //then for n go on and take the average again 
    //then for each additional block remove the fir st and add the new and take 
    //another average 
    Vector consecBlocks = new Vector(); 
    Vector avBlockScores = new Vector(); 
    double bestNBlockScore = 0.0; 
    for (int i=0;i<blockData.size();i++){ 
      //if we have been through less than the requi red number of blocks so far 
      //add the latest block to the list 
      if(consecBlocks.size() < (testNBlocks-1)){ 
        consecBlocks.add(blockData.get(i)); 
      }//else if we have just 1 less than required 
      else if (consecBlocks.size() == (testNBlocks- 1)){ 
        //add the newest block 
        consecBlocks.add(blockData.get(i)); 
        //and calc the average score 
        double sum = 0.0; 
        for (int k=0;k<testNBlocks;k++){ 
          sum += ((Double)consecBlocks.get(k)).doub leValue(); 
        } 
        bestNBlockScore = sum/testNBlocks; 
      }//else we then add new block to the end and remove the oldst block from 
      //the start 
      else { 
        //remove the oldest blcock 
        consecBlocks.remove(0); 
        //add the newest block 
        consecBlocks.add(blockData.get(i)); 
        //and calc the average score 
        double sum = 0.0; 
        for (int k=0;k<testNBlocks;k++){ 
          sum += ((Double)consecBlocks.get(k)).doub leValue(); 
        } 
        if ( (sum/testNBlocks) > bestNBlockScore) 
          bestNBlockScore = sum/testNBlocks; 
      }//end of final else 
    } 
    return bestNBlockScore; 
  } 
 

In (A), the average score for each block is calculated and stored for the real data and 
for the permuted data, the average is also calculated for each sequence of n blocks 
(where n is the number of blocks found in the region for which the corrected P value 
is being generated).  The getBestNBlockScore method (B) is then called to 
calculate the most significant region that covers n blocks in that permuted dataset.  
The program (A) then calculates the proportion of permutations that have a sequence 
of n blocks with a score higher than the sequence of blocks identified in the real data. 
 
 

 

 

B 
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2.2 Cystic fibrosis study 

2.2.1 Cystic fibrosis data 

The cystic fibrosis data was based on sixty families from Brittany where some 

individuals, from each of the families, were known to carry one or other of three 

cystic fibrosis mutations (W846X2, 9 families; 1078delT, 27 families and G551D, 24 

families; De Braekeleer et al. 1996).  These families had been genotyped at ten 

microsatellite markers flanking the CFTR locus with an average spacing of ~900kb 

and covering a total region of 8.34Mb.  Genotyping had been carried out by members 

of the Férec laboratory (Universite de Bretagne Occidentale) and data from was 

kindly provided for use in this study. 

 

2.2.2 Cystic fibrosis analysis 

Members of the Férec laboratory (Universite de Bretagne Occidentale) had examined 

the pattern of inheritance in each family studied and a disease-linked haplotype 

common to in the affected individual in each family was defined.  A number of 

control haplotypes from each family were also identified.  Three datasets were 

defined consisting of the families that carried each of the three different mutations.  

Allele sharing scores were calculated for each dataset and 10,000 permutations were 

carried out on each of these results to test significance at the individual marker level.  

It was not possible to use the secondary permutation analysis due to the lack of a 

shared region between the disease-linked haplotypes of different families and so a 

Bonferroni correction was used to modify the significance threshold to take account 

of the multiple testing that occurred in the permutation analysis (see section 3.4 for a 

discussion of this).  The modified significance threshold was calculated as α’ = α/n 

where n is the number of tests being conducted.  In this case n = 10 as there are 10 

markers being tested, so if α is taken to be 0.05, α' = 0.005. 
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2.3 Simulation study 

2.3.1 A method for simulating a founder mutation 

The simulation took a starting population for which the genotypes at a number of 

markers across a particular region were predicted.  A hypothetical mutation at a 

random point on the genotyped region was recorded.  The individuals carrying the 

mutation were declared to have some phenotype caused by the mutation.  The 

individual who developed the mutation was defined as having had two children with a 

random member of the population.  At each base pair, the chance of a recombination 

event was defined as 1x10-8 per generation.  These children would each, along with a 

random member of the population, produce two children themselves and so on.  If the 

mutation established itself in the population, this process would continue for a 

predetermined number of generations (see Figure 2.7).  After which, the most recent 

generations could be broken up into apparently unrelated families.  A pre-specified 

number of these families would then be chosen on which to test the allele sharing 

method.  One disease-linked haplotype and a number of control haplotypes from the 

three most recent generations were identified from each family that was selected.  The 

allele sharing method was then used to identify any regions of significant allele 

sharing and the locations of any such regions could be compared with the known 

mutation location to determine success.  The simulation makes the assumption that no 

recurrent, independent mutations occur amongst the control population and that the 

mutation, and its associated haplotype, can be distinguished from other haplotypes. 

 

2.3.2 Implementation of simulation 

The simulation was developed in Java (Java Platform, Standard Edition, Version 

1.4.1; Sun Microsystems.  Data was simulated through a new program that was 

developed called PedSimMain.java .  The program firstly required that the path to a 

starting population, the number of families that are to be generated and the range into 

which the numbers of generations between the families and a common ancestor 

should fall, were all defined on use.  The starting population consists of a number of 

haplotypes each of which contains genotype information at a number of markers on a 

particular chromosome.  The region covered by the genotypes was expected to model 
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the type of region that a replicated linkage study might identify.  There were no set 

requirements as to the number of haplotypes that make up the starting population and 

the number of markers that were included in the model other than that each haplotype 

had to contain genotype information on the same markers.  The data was comma 

delimited with each row representing a marker and each column representing a 

haplotype. 

 

Figure 2.7: Simulating a founder mutation in a population. 

 

An example of how the first few generations of a simulation might progress.  The 
arrow represents the random position on the haplotype that the mutation occurs. The 
haplotype of the original mutation carrier is shown as the red haplotype and all the 
population haplotypes are shown as green haplotypes.  A * indicates where a 
recombination event has occurred.  An X marks where a branch comes to an end as 
the mutation is no longer carried and is discontinued from the simulation.   
 

 

The simulation itself involves an iterative process (for each of n simulations) where 

the starting population first had one haplotype randomly allocated as the mutation-

carrying haplotype with the mutation occurring at a user specified position.  A method 

…
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simulator  was used to carry out the core simulation.  Figure 2.8 shows the section 

of the simulator  method that created each generation of the population and also the 

getChildChr  method that models the genetic inheritance in each individual.  In 

order to minimise the computational requirements, only those lineages that carry the 

mutation were stored and tracked for the entire simulation. 

 

 

Figure 2.8: simulator  and getChildChr  methods 
 
 
 
//for each generation 
for (int i=1;i<noGenerations;i++){ 
  //store the data for each generation in a new has htable 
  peopleHT = new Hashtable(); 
  //get the data from the previous generation 
  prevGenHT = (Hashtable)generationsHT.get((new Int eger(i-1)).toString()); 
 
  //for each parent from previous generation 
  Vector sortedKeys = new Vector(); 
  sortedKeys = sort(prevGenHT.keys()); 
  for (int j=0;j<sortedKeys.size();j++){ 
    //initialise child1 
    Vector child0 = new Vector(); 
    Vector child1 = new Vector(); 
    //select 50/50 whether to start from parent0 ch r 0 or 1 
    String key = ((Integer)sortedKeys.get(j)).toStr ing(); 
    Vector v = new Vector(); 
    v = (Vector)prevGenHT.get(key); 
    //store affection status from 1st parent 
    String parentDS = (String)v.get(1); 
    //child0 
    Vector c0c0temp = new Vector(); 
    c0c0temp = getChildChr((int[])v.get(2),(int[])v .get(3),(String)v.get(1),key); 
    int[] child0Chr0 = (int[])c0c0temp.get(0); 
    String child0DS = (String)c0c0temp.get(1); 
    //child1 
    Vector c1c0temp = new Vector(); 
    c1c0temp = getChildChr((int[])v.get(2),(int[])v .get(3),(String)v.get(1),key); 
    int[] child1Chr0 = (int[])c1c0temp.get(0); 
    String child1DS = (String)c1c0temp.get(1); 
 
    //use to select which chromosome and model reco mbination 
    j++; 
    String key2 = ((Integer)sortedKeys.get(j)).toSt ring(); 
    Vector v2 = (Vector)prevGenHT.get(key2); 
    //child0 
    Vector c0c1temp = new Vector(); 
    int[] t = (int[])v2.get(2); 
    int[] t2 = (int[])v2.get(3); 
    String t3 = (String)v2.get(1); 
    c0c1temp = getChildChr((int[])v2.get(2),(int[]) v2.get(3),(String)v2.get(1),key); 
    int[] child0Chr1 = (int[])c0c1temp.get(0); 
    //child1 
    Vector c1c1temp = new Vector(); 
    c1c1temp = getChildChr((int[])v2.get(2),(int[]) v2.get(3),(String)v2.get(1),key); 
    int[] child1Chr1 = (int[])c1c1temp.get(0); 
 
    //add data 
    child0.add(key.concat(",").concat(key2));//pare ntID 
    child1.add(key.concat(",").concat(key2));//pare ntID 
    child0.add(child0DS);//disease status 
    child1.add(child1DS);//disease status 
    child0.add(child0Chr0);//haplotpye1 
    child1.add(child1Chr0);//haplotpye1 
    child0.add(child0Chr1);//haplotype2 

A 
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    child1.add(child1Chr1);//haplotype2 
 
    //if the parent is affected 
    if(parentDS.equals("D")){ 
      //put child1 into the generation 
      peopleHT.put(new Integer(idCount++).toString( ),child0); 
      //if this is not the last generation, make a married in and add 
      if(!(i==(noGenerations-1))){ 
        Vector min = new Vector(); 
        min = makeMarriedIn(controlHaps[(int)Math.f loor(Math.random()* 

(controlHaps.length))],controlHaps[(int)Math.floor( Math.random()* 
(controlHaps.length))]); 

        peopleHT.put(new Integer(idCount++).toStrin g(),min); 
      } 
      //put child2 into the gen 
      peopleHT.put(new Integer(idCount++).toString( ),child1); 
      if(!(i==(noGenerations-1))){ 
        Vector min = new Vector(); 
        min = makeMarriedIn(controlHaps[(int)Math.f loor(Math.random()* 

(controlHaps.length))],controlHaps[(int)Math.floor( Math.random()* 
(controlHaps.length))]); 

        peopleHT.put(new Integer(idCount++).toStrin g(),min); 
      } 
    } 
  }//end of for each person in prev generation 
 
  //now, put this generations info into generations HT 
  if (peopleHT.size()>0){ 
    generationsHT.put((new Integer(i)).toString(),p eopleHT); 
  } 
  else 
    break; 
} 
 
 
 
 
 
public Vector getChildChr(int[] chr0, int[] chr1, S tring parentDS, String key){ 
  String ds = ""; 
  int[] childChr = new int[chr0.length]; 
  double rand = Math.random(); 
  int chr2Use = 0; 
 
  //get 1st chr from parent1 
  //50% chance of each 
  if(rand<=0.5){ 
    //set chr2Use to 0 
    chr2Use = 0; 
  } else { 
    chr2Use = 1; 
  } 
 
  //go through each marker 
  for (int k=0;k<chr0.length;k++){ 
    //add the markers, one by one to the childs chr  
    if(chr2Use==0){ 
      childChr[k] = chr0[k]; 
      if(k==mutMarker) 
        ds=parentDS; 
    }else if (chr2Use==1){ 
      childChr[k] = chr1[k]; 
      if(k==mutMarker) 
        ds="U"; 
    }  
    //test for recombination at each marker 
    //get rand no 
    rand = Math.random(); 
    //if rand<(1x10(8)*dbm) then we have a recombin ation event 
    if(rand < (recombRate*distBetweenMarkers)){ 
      //therefore change parental chromosomes 
      if(chr2Use==0) 
        chr2Use=1; 
      else if(chr2Use==1) 
        chr2Use=0; 
    } 
  } 

B 
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  Vector v = new Vector(); 
  v.add(childChr); 
  v.add(ds); 
  return v; 
} 
 
 

Following the initialisation of variables, (A) shows the simulator method which 
looped through each generation and modelled the inheritance of the genetic markers.  
(B) presents the getChildChr method that was called to model each individual case 
of inheritance, showing how parental chromosomes were selected randomly and how 
recombination was taken into account. 
 
 
Having modelled the impact of the mutation in a population, the simulator method 

then proceeded to identify a number of families from the final generations.  A family 

was defined a group of individuals that were directly related in the last four 

generations of the simulated population.  The method then calculates the number of 

generations separating each of these families.  The number of families and the 

distance between them can then be selected to match the initial criteria determined by 

the user.  Figure 2.9 shows the two sections of the simulator method that select 

complete families from the most recent generations of the simulation and then identify 

the most distantly related. 

 

 

Figure 2.9: simulator  methods to generate families 
 
 
 
Vector families = new Vector();//store a vector of each family 
Enumeration gkeys = generationsHT.keys();//ennumera tion of the key(id) for each gen 
Vector gkeysSorted = sort(gkeys);//sorted list of t hese keys 
//for fourth last (n-4)th generation, get the hash table 
Hashtable ht=(Hashtable)generationsHT.get(((Integer )gkeysSorted.get 
 (gkeysSorted.size()-4)).toString()); 
Enumeration keys=ht.keys();//enumeration of the key s within (n-4)th generation 
Vector keysSorted=sort(keys); 
//for each individual in (n-4)th generation  
for (int i=0;i<keysSorted.size();i++){ 
  if(((String)((Vector)ht.get(((Integer)keysSorted. get(i)).toString())).get(1)). 
   equals("D")){//create a family only if this indi vidual is affected 
    Vector family_temp=new Vector(); 
    Vector individual_temp=(Vector)((Vector)ht.get( ((Integer)keysSorted.get(i)). 
     toString())).clone(); 
    individual_temp.add(0,(Integer)keysSorted.get(i ));//add key to start of the vector 
    family_temp.add(individual_temp);//now add them  to the family temp vector 
    i++;//get that persons spouse 
    individual_temp = (Vector)((Vector)ht.get(((Int eger)keysSorted.get(i)). 
    toString())).clone(); 
    individual_temp.add(0,(Integer)keysSorted.get(i ));//add key to start of the vector 
    family_temp.add(individual_temp); 
    families.add(family_temp); 
  } else 
  i++; 
} 
for (int i=(gkeysSorted.size()-3);i<gkeysSorted.siz e();i++){//for 3 subsequent gens 
  ht = (Hashtable)generationsHT.get(((Integer)gkeys Sorted.get(i)).toString()); 

A 



Chapter 2  Materials and Methods 

  46

  keys = ht.keys();//enumeration of the keys within  generation i 
  keysSorted = sort(keys);//these keys sorted 
  for (int j=0;j<keysSorted.size();j++){//for each individual j 
    String parents=(String)((Vector)ht.get(((Intege r)keysSorted.get(j)).toString())). 
     get(0);//get j's parents 
    String[] parent = parents.split(","); 
    for (int k=0;k<families.size();k++){//for each family k 
      Vector family = (Vector)families.get(k); 
      for (int l=0;l<family.size();l++){//for each member in that family 
        //if j has parents in family k, 
        if(parent[0].equals(((Integer)((Vector)fami ly.get(l)).get(0)).toString())){ 
          Integer in = (Integer)keysSorted.get(j);/ /get individual j's details 
          Vector individualj=(Vector)((Vector)ht.ge t(((Integer)keysSorted.get(j)). 
           toString())).clone(); 
          individualj.add(0,in);//add the key to th e start of the vector 
          ((Vector)families.get(k)).add(individualj );//add j to that family 
          Vector individualjplus1=(Vector)((Vector) ht.get(((Integer)keysSorted.get( 
           ++j)).toString())).clone();//also add j+ + to that family 
          individualjplus1.add(0,(Integer)keysSorte d.get(j)); 
          ((Vector)families.get(k)).add(individualj plus1); 
          break; 
        } 
      } 
    } 
  } 
} 
 
 
 
 
Vector famDistances=new Vector();//vector to hold t he comparisons between families 
//for the 1st member of each family (apart from the  last) 
for(int i=0;i<families.size()-1;i++){ 
  Vector famiid0=(Vector)((Vector)families.get(i)). get(0); 
  Vector ijDistances=new Vector();//vector to hold the distances between fami and famj 
  for(int j=i+1;j<families.size();j++){// for each other family 
    //test this person from famiid0 against famjid0  
    Vector famjid0 = (Vector)((Vector)families.get( j)).get(0); 
    //initialise parents 
    String parents0 = famiid0.get(1).toString(); 
    String parents1 = famjid0.get(1).toString(); 
    //store the level of separation 
    int sep = 1; 
    //go up through all the generations until we fi nd a common ancestor 
    boolean comAn = false;//is there a com(mon)An(c estor)? 
    while (!comAn){ 
      //if they have common parents, then store the  no of gen separate 
      if((parents0).equals(parents1)){ 
        comAn = true; 
      } else { 
        //go back a further generation 
        sep++; 
        //and get the parents from the previous gen eration 
        //generationsHT contains info on all the ge nerations 
        int noGens = generationsHT.size(); 
        //we are starting from the last generation 
        //so we now want to get the partners of tho se individuals named as 
        //parents 0 and 1 
        //so we look at generation (noGens-sep) 
        Hashtable generationN=(Hashtable)generation sHT.get((new Integer( 
        (noGens-sep-3))).toString()); 
        //and find the individuals that are named a s parents0 and 1 from 
        //need to split up the parents0 and 1 
        String[] parent00 = parents0.split(","); 
        Vector ind0 = (Vector)generationN.get(paren t00[0]); 
        String[] parent10 = parents1.split(","); 
        Vector ind1 = (Vector)generationN.get(paren t10[0]); 
        //now, get ind0 and 1s parents 
        parents0 = (String)ind0.get(0); 
        parents1 = (String)ind1.get(0); 
      }//and loop round again with these new parent s 
    } 
    ijDistances.add(new Integer(sep));//store the n umb of gens of separation 
  } 
  famDistances.add(ijDistances);//store the compari sons 
} 
 

B 
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(A) shows the section of the simulator method that created family units from the 
last four generations of the simulation.  First it identifies all affected individuals from 
the fourth last generation of the simulation, it then goes through the subsequent 
generations and stores together all those individuals that are related.  (B) shows how 
the program then takes these families and calculates the distance (in number of 
generations) between them by tracing back to a common ancestor. 
 

 

Following the identification of a group of families from a simulated population, the 

program then assumes that the haplotypes from each family can be classified as 

disease-linked or control.  The two haplotype groups from each of the families were 

then be brought together and used as the input for the calcAS  (Figure 2.3) and 

permStats  (Figure 2.4) methods used to generate allele sharing scores and run the 

permutation analysis.  The haplotypes were then studied (see Figure 2.10 for the code) 

and shared regions of the disease-linked haplotypes of the simulated families were 

identified along with information from the allele sharing analysis (calcAS  and 

permStats ).  These data were then used as the input for the NewASPermAnalysis  

method which ran the secondary permutation analysis to generate corrected 

significance values for each shared region.  These programs were run automatically 

without requiring and user interaction.  As the program knows where the mutation 

lies, it took these results and determined whether the allele sharing analysis did indeed 

identify a significant region that encompassed the simulated mutation.  It also 

determines the number of regions that were found to be significant elsewhere along 

the haplotype under study (i.e. false positive regions). 

 

Figure 2.10: FindSigRegions  methods 

 
//go through disease-linked haps and search for sha red regions 
double rSum=0.0;//sum of scores 
double pSum=0.0;//sum of p values 
int count=0; 
String lastBlockNo=""; 
int numBlocks=0; 
Vector blockScore=new Vector(); 
Vector blockP=new Vector(); 
Vector blockBlocks = new Vector(); 
int mutBlock=100; 
boolean mutBlockActive = false; 
for (int i=0;i<col0.size();i++){//for each marker 
  //if all markers are equal store the score and p values 
  if(((String)col0.get(i)).equals((String)col1.get( i)) && ((String)col0.get(i)). 
   equals((String)col2.get(i))){ 
    //sum the score and p vlaues 
    rSum += (new Double((String)ASScores.get(i))).d oubleValue(); 
    pSum += (new Double((String)ASPValues.get(i))). doubleValue(); 
    count++; 
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    //++ the no of blocks if it is a new block 
    if( ((String)blockNos.get(i)).equals("null") ) 
      numBlocks++; 
    else if (  !((String)blockNos.get(i)).equals(la stBlockNo) ) 
      numBlocks++; 
    //if it crosses the mutation, then mark this bl ock as true 
    if(i==mutMarkerIndex){ 
      mutBlockActive = true; 
    } 
    //if this is the last marker and it is shared, then add as a shared block 
    if (i == col0.size() && count > 1  && ((pSum/co unt) > 0.949)){ 
      blockScore.add(new Double(rSum/count)); 
      blockP.add(new Double(pSum/count)); 
      blockBlocks.add(new Integer(numBlocks)); 
      if(mutBlockActive){ 
        mutBlock = blockScore.size() - 1; 
        mutBlockActive = false; 
      } 
    } 
  } 
  //else if there is no sharing 
  else{ 
    //if previous sharing >1, store the last blocks  results 
    if(count > 1  && ((pSum/count) > 0.949) ){ 
      blockScore.add(new Double(rSum/count)); 
      blockP.add(new Double(pSum/count)); 
      blockBlocks.add(new Integer(numBlocks)); 
      if(mutBlockActive){ 
        mutBlock = blockScore.size() - 1; 
        mutBlockActive = false; 
      } 
    } 
    rSum = 0.0; 
    pSum = 0.0; 
    numBlocks = 0; 
    count = 0; 
  } 
} 
//add the last block in it is still being shared 
if(count>1  && ((pSum/count)>0.949)){ 
  blockScore.add(new Double(rSum/count)); 
  blockP.add(new Double(pSum/count)); 
  blockBlocks.add(new Integer(numBlocks)); 
  if(mutBlockActive){ 
    mutBlock = blockScore.size() - 1; 
  } 
} 
 
 

Shows how the program goes through the disease-linked haplotype of the simulated 
families and store the average score and P value within each shared region as well as 
the number of markers and haplotype blocks covered by that region. 
 

 

An example of the full simulation program can be found in Appendix A.3.  A 

different version of the program was developed for the different number of families, 

the example in Appendix A.3 is the program used to create three families. 

 

2.3.3 Initial population and variables 

For the purpose of testing the allele sharing method, 458 individuals from the Scottish 

population were used as the founder population in the simulation.  Genotype 



Chapter 2  Materials and Methods 

  49

information from these individuals at 149 markers over a ~5Mb region of 

chromosome 4 was used.  These individuals constituted the control population of a 

case control study testing for association with BPAD and/or schizophrenia 

(Christoforou et al. 2007).  This provided a realistic dataset of unrelated, healthy 

individuals from the same population.  The markers genotyped had previously been 

selected to describe the haplotype structure of the region.  On average, there was one 

marker every ~18kb.  For the purposes of the simulation, the simulated mutation was 

chosen to occur at the 74th marker on the haplotype.  Simulations were run on 

between three and six families and up to 400 generations between the end families 

and a common ancestor.  For computational reasons, it was not possible to run the 

simulation for more than 400 generations and less than this as the number of families 

were increased. 
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2.4 Chromosome 4p data 

Four families (F22 F59, F50 and F48) had previously been shown to be linked with 

BPAD or BP-related disorders at chromosome 4p15-16.  These families were studied, 

in the genomic regions where the linkage signals overlapped, to see if a region of 

allele sharing could be identified that might signify a common founder mutation. 

 

2.4.1 Families studied 

In the original F22 family study, a clinical description was obtained for 120 individual 

family members.  This found 11 with a diagnosed with BPAD, 16 with recurrent 

unipolar depression and 12 received minor psychiatric diagnoses  (Blackwood et al. 

1996).  Partners were also interviewed to ascertain the bi-lineal descent of affective 

disorders.  This family was recently re-evaluated (Le Hellard et al. 2006), although 

not all family members could be interviewed.  As a result, five new cases were 

identified and the offspring in one family were removed from the analysis after major 

psychiatric illness was detected in the first degree relatives of the married in parent.  

A follow up to the original study (Blackwood et al. 1996) found another family F59, 

where 11 individuals were studied and six individuals were diagnosed with BPAD.  

F50 (Asherson et al. 1999) was a family of 16 family members of which five were 

diagnosed with schizoaffective disorder or schizophrenia.  F48 had 39 members that 

were investigated, six of which were affected under their affection status model I 

(which encompasses in BPAD, major depression and schizoaffective disorder).  See 

figures 4.1 and 4.2 to see the pedigrees of the families and how the linkage signals 

overlap. 

DNA samples from the individuals of the four families were made available.  A 

number of these individuals were selected such that genotypes could be phased to 

form haplotypes and identify the haplotype common to affected individuals in each 

family.  31 members of F22, 5 members of F59, 7 members of F50 and 3 members of 

F48 were genotyped.  This data was then subjected to the allele sharing analysis. 
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2.4.2 Genotyping 

Genotyping was conducted in two phases with the first phase based on SNPs found in 

genic regions within the four families.  SNPs were identified by amplifying and 

sequencing exons, exon-intron boundaries and the region approximately 1kb up and 

down-stream of known genes from regions B and D using DNA from family 

members.  Known genes were defined as those with predicted, provisional, reviewed 

or validated RefSeq status codes as well as those that had a protein described in 

Swissprot.  Two genes thought to be unlikely candidates for psychiatric illness met 

these criteria, yet were not analysed.  216 publicly available SNPs and 68 novel SNPs 

were identified and used in the analysis (127 in region B and 157 in region D).  This 

work was carried out by colleagues. 

The second phase of the analysis was based on a complete coverage of regions B and 

D.  559 SNPs (175 in region B and 384 in region D) were selected to account for most 

of the haplotype structure in these two regions.  This work was also carried out by 

colleagues (Christoforou et al.  2007).  They downloaded SNP genotype data for the 

30 CEPH trios (Utah residents with ancestry from northern and western Europe) 

(CEU) in overlapping segments of approximately 1 Mb from HapMap Release 7 

(May 2004) (http://www.hapmap.org).  LD maps of the priority regions were 

constructed from this data using Haploview v 2.5 (http://www.broad.mit.edu/mpg 

/haploview/index.php; Barrett et al. 2005).  Pair-wise comparisons of markers more 

than 500 kb apart were ignored (Haploview default) and only markers with a minor 

allele frequency (MAF) greater than or equal to 0.10, a Hardy-Weinberg (HW) P-

value greater than 0.001 (Haploview default) and a genotyping success rate of 0.75 or 

better (Haploview default) were included in the LD analysis.  Haplotype blocks were 

defined using the solid spine of LD approach, which creates blocks only when the 

first and last SNPs are in strong LD (|D'|>0.80) with all of the intermediate SNPs 

(Barrett et al. 2005).  For haplotypes with a frequency of at least 0.01, adjacent 

haplotype blocks with a Hedrick's multiallelic D' (MAD'; Hedrick et al. 1987) greater 

than or equal to 0.95 were merged manually and this process was repeated until the 

MAD' between any two adjacent blocks was less than 0.95.  The final step involved, 

using Haploview's internal tagging program, which selected htSNPs on a block-by-

block basis to represent haplotypes of frequencies greater than or equal to 0.10. 
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Individual SNPs (singletons) that fell between blocks were also included in the set of 

htSNPs.  The LD between them and adjacent blocks was not determined. 

 

2.4.3 Haplotype Analysis 

The MERLIN (Multi-Point Engine for Rapid Likelihood Inference ) software package 

(Abecasis et al. 2002) was used to determine distinct haplotypes for the individuals 

genotyped.  The phasing of these genotypes was verified manually and in some cases, 

where MERLIN had failed to place alleles onto a particular haplotype, this was done 

by hand.  However, in some cases it was not possible to be sure which allele lay on 

which haplotype.  In such cases, this ambiguity was retained in the following analysis.  

For each family, the haplotypes of the affected individuals were studied by hand and a 

‘disease-linked’ haplotype was identified as that haplotype which was found in 

common among most affected individuals. 

 

2.4.4 Allele sharing analysis 

The allele sharing methods described in section 2.1.4 was used to identify any regions 

of significant allele sharing between the disease-linked haplotypes. 

 

2.4.5 Association analysis 

It was also important that these data were also tested against existing methods, 

including what could be considered more traditional methods such as TDT.  I was 

unable to get hold of a functioning implementation of any of the published haplotype 

sharing methods (e.g. MILC or HSS).  There are numerous implementations of TDT 

available through freely available programs such as WHAP (Purcell et al. 2007), 

FBAT (Laird et al. 2000), TDTae (Gordon et al. 2001, 2004), LAMP ((Li et al, 2005; 

Li et al, 2006) and other.  Each of these programs were investigated to identify what 

association tests could be carried out.  While association analysis at singe marker 

level was straight forward, there were problems in trying to carry out any haplotype-

based analysis.  This would appear to be due to computational limitations of the 

computers I had access to.  As a consequence, it was only possible to carry out the 

most superficial analysis of the data using such methods.  The analysis of association 
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using the TDT method reported in this thesis was carried out using the WHAP 

program.  WHAP is a software tool that performs a haplotype based association 

analysis described as being designed for both candidate gene studies and studies of 

small to moderately size chromosomal regions.   

The software was used in this thesis to analyse 10 parent offspring trios that were 

derived from those families (F22, F50 and F59) that showed linkage to region B of the 

chromosome 4p linkage region for BPAD.  The relevant input files were created 

based on those markers genotyped in region B (see section 2.4.2).  WHAP was used 

to carry out single marker and two-marker haplotype sliding window association tests.  

1000 permutations were carried out for each test.  One individual haplotype test was 

carried out on a region found to be significant through the allele sharing analysis. 

 

2.4.6 Gene identification and bioinformatics analysis 

Bioinformatics analysis was performed to assess the biological relevance of any 

significant allele sharing regions.  Significant regions were investigated in the UCSC 

genome browser (Kent et al. 2002) and the Ensembl ContigView (Hubbard et al. 

2007) for known genes, protein coding genes based on protein data from UniProt and 

mRNA data from RefSeq and GenBank; RefSeq genes, known protein coding genes 

from the NCBI mRNA reference sequence collection; and for main prediction class 

AceView gene models (Thierry-Mieg & Thierry-Mieg 2006) that do not correspond 

to Known or RefSeq genes.  Evolutionary conservation in non-coding regions in 17 

vertebrates was examined using the “Vertebrate Multiz Alignment & Conservation” 

track on the UCSC Genome Browser.  The conservation track is based on a 

phylogenetic hidden Markov model, phastCons. 
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3.1 Introduction 

In the previous chapter, I described a scoring system for calculating allele sharing 

between a set of haplotypes.  I further described how the allele sharing scores of two 

groups of haplotypes can be compared and tested for significant differences.  In this 

chapter I describe how the efficacy and characteristics of this method were 

investigated using simulated and real data. 

 

3.1.1 Cystic fibrosis dataset 

In order to test the allele sharing method, I required access to a dataset for a number 

of families that showed linkage to a common region due to a shared founder mutation.  

Genotype information around the mutation and knowledge of the mutation location 

were also required.  There is, however, a paucity of confirmed founder mutations 

where a number of families have been densely genotyped.  This is because such 

mutations have usually been found through linkage studies followed by candidate 

gene studies and it is only recently that it has become cost-effective to genotype a 

large region to the level at which I expect the allele sharing method to be most 

effective.  However, one appropriate dataset was identified upon which the method 

could be tested.   

This dataset was based on three cystic fibrosis mutations (W846X2, 1078delT and 

G551D) that had been identified in the Breton population.  Cystic fibrosis is a 

severely debilitating illness that affects the digestive system and lungs and is 

relatively common in Caucasian populations.  The population of Brittany is thought to 

be a distinct and relatively isolated population where many people are the descendants 

of the Celtic people displaced from England in the fifth and sixth centuries (Scotet et 

al. 2002) and the three mutations were found to be much more common in the Breton 

population than the wider French population (De Braekeleer et al. 1996), it is 

therefore very possible that these mutations were exist due to some degree of founder 

effect.  The dataset consisted of ten microsatellites subtending the CFTR locus and 

spanning ~8Mb.  This marker density was less than ideal, but I expected that the 

sparse coverage of the region would be compensated to some degree by the large 

number of families with each of the mutations. 
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3.1.2 Simulated dataset 

While the cystic fibrosis data provided a reasonable exemplar dataset on which the 

allele sharing method could be tested, it only provided three mutations with sparse 

genotyping.  Ideally, it would have been possible to go back and genotype a 

chromosomal region at high density in a number of families known to carry the same 

founder mutation.  However, this was not feasible due to the costs involved.  An 

alternative to using real data was to build a simulation of a population carrying a 

founder mutation.  Simulated data provided a means to test the allele sharing method 

and had the advantage of being able to generate data under a whole range of 

conditions.  The simulation study involved modelling the development of a mutation 

in a hypothetical founder population and following its establishment in the population 

from which, after some number of generations, multiple, seemingly unrelated, 

families could be gathered to test for allele sharing.  This provided a means to 

generate families under various conditions and more fully test the effectiveness of the 

method.  This also allowed the development of a set of criteria under which the 

method is expected to perform well. 
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3.2 Allele Sharing in Cystic Fibrosis Families 

A study of Cystic Fibrosis patients in Brittany identified three mutations (W846X2, 

1078delT and G551D) that were thought to be prevalent due to a founder effect.  60 

families that each carried one of these mutations had been genotyped at ten 

microsatellite markers about the mutation.  This data was used to test the allele 

sharing method’s ability to identify the region that contained the mutation.  The data 

was split into three groups based on the three mutations.  For each group of families, a 

disease-linked haplotype and a number of control haplotypes were defined.  These 

data were then analysed using the allele sharing method. 

For each dataset (based on the three mutations), allele sharing scores were calculated 

for both the disease-linked haplotypes and the control haplotypes.  Plots of these 

results are shown in Figures 3.1 (A), (B) and (C).  In all three cases, the peak allele 

sharing among the disease-linked haplotypes occurs at one of the markers 

immediately adjacent to the mutation.  However, in the case of the 1078delT and 

G551D families, the control haplotypes also show a slight peak in allele sharing at 

one of the markers immediately adjacent to the mutation, although at much lower 

levels than for the disease-linked haplotypes.  In the W846X2 families, the allele 

sharing between the control haplotypes is also much lower than the disease-linked 

haplotypes and in this case, the peak allele sharing occurs three markers away from 

the mutation location. 

Permutation analysis was used to test whether there was a significant difference in the 

allele sharing between disease-linked and control haplotypes in the three datasets, 

generating a significance value for each marker.  In all of these cases, a significant 

difference was found between the allele sharing in the mutation carrying and control 

chromosomes.  For the W846X2 families, the markers on either side of the mutation 

displayed the peak P values (P = 0.0001), while the analysis of the G551D carrying 

families found the peak significance values at the marker immediately upstream of the 

mutation and the three markers immediately downstream from the mutation (P = 

0.0001).  For the 1078delT families, the peak P value occurred in the two markers 

adjacent to the marker immediately downstream from the mutation (P = 0.0002).  

Figure 3.1 (D) shows that for the distribution in significance values across the region.   

In each of the three datasets, there was no specific haplotype block that was shared by 

all disease-linked haplotypes.  It was therefore not possible to test the likelihood of 
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these peaks in P values through the nested permutation analysis.  The reasons that this 

might be the case are discussed in section 3.4.  As an alternative, a Bonferroni 

correction can be used to define a modified significance threshold.  Based on ten 

individual tests (one for each of the ten markers) a significance threshold of 0.05 

becomes 0.005.  In Figure 3.1(D) the significance threshold is marker with a dashed 

line.  It is clear that the mutation carrying region shows significant sharing for each of 

the three mutations.  This is especially apparent for the families carrying the W846X2 

and G551D mutations.  It is worth noting that the analysis of the W846X2 families 

also finds markers 1 and 2 to be just significant. 

 

Figure 3.1: Allele sharing in cystic fibrosis families. 

 

(A) Allele sharing in between disease-linked (♦) and control (■) haplotypes from a 
number of families known to carry the W846X2 mutation. (B) Allele sharing between 
families carrying the 1078delT mutation. (C) Allele sharing between families carrying 
the G551D mutation. (D) The significance value determined for each marker based 
on the permutation analysis of the allele sharing scores for the three mutations: 
W846X2 (▲), 1078delT (■) and G551D (♦).  The P value is presented as the negative 
log of the P value.  The Bonferroni derived significance threshold is identified as the 
dashed line. 
The * indicates the location of the mutation. 
 

The analysis of each of each dataset is successful in identifying a significant region 

that contains the founder mutation.  In each case, the original region of study of over 

8Mb is effectively reduced to 1.53Mb for the W846X2 families, 2.12Mb for the 
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1078delT families and 3.24Mb for the G551D families.  The study of the G551D 

families also identified a marginally significant region of 2.41Mb that doesn’t contain 

the mutation.   
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3.3 Defining the operational limits of the allele sharing 

method through simulation 

The simulation was developed to model the establishment of a founder mutation in a 

population.  This allowed us to identify distantly related families carrying the 

theoretical mutation, providing a number of datasets upon which to test the allele 

sharing method.  There were three main variables in the simulation: the number of 

families included in the analysis; the number of generations between the families and 

a common ancestor; and genotyping density across the region.  The analysis identified 

(i) whether the mutation carrying region was detected; (ii) if so, what the size of the 

shared haplotype region in which it was found was; (iii) what the significance of this 

result was and (iv) what the size and P values of any false positive regions identified 

were. 

Figure 3.2 displays the results of a series of simulations where the genotype coverage 

was varied for three families with between 30 to 50 generations (approximately 750-

1250 years) to a common ancestor.  500 simulations were run at each datapoint.  

Figure 3.2 (A) shows that the detection rate remains close to 100% until the genotype 

coverage drops to 1 marker every ~80kb where after it drops off sharply.  Also shown 

in Figure 3.2 (A) is the average relative size of mutation carrying region (true 

positive) and the false positive regions.  It was found that, as the marker coverage 

decreases, the relative size of the mutation carrying region decreases and eventually 

overlaps, and becomes indistinguishable from, the false positives.  Figure 3.2 (B) 

shows that the same pattern occurs for the significance levels (P values), where the 

significance of the mutation carrying regions falls until it becomes indistinguishable 

from that of the false positives.  The key results were the drop off in the detection rate 

and the convergence points of the region sizes and P values for the true-positive and 

false-positive regions.  The detection rate falls to the 95% level at marker density of 1 

marker per 96kb.  At this density, the size and P value associated with the true 

positives are significantly different.   

A similar pattern was observed when the number of families was increased and when 

the number of generations between the families and a common ancestor was 

increased, but the convergence points differed.  These are discussed in the following 

section.
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Figure 3.2: Sample simulation results. 

 

(A) Shows the percentage of simulations from which the mutation carrying region is 
correctly identified for different genotype densities where there are between 30 and 
50 generations between three families. Close to 100% of the mutations are found in 
all cases where the genotype density is greater than one marker per 100kb.  Beyond 
this point, the success rate decreases steadily to a plateau of around 8% success rate 
when the marker density drops to one marker per 1000kb.  The graph also shows that 
the average size of the mutation carrying region (measured in number of markers) 
and false positive regions. The size of the mutation carrying regions decrease sharply 
at a genotype density of one marker per 200kb at which point the size of the region 
tends towards that of false positive carrying regions. (B) shows that the average P 
values of the mutation carrying region and false positives steadily increase, linearly 
and in parallel, up until they flatten out somewhat at a genotype density of around one 
marker per 240kb.  After the marker density drops to about one marker per 390kb, the 
P values of the two groups converge and then overlap.  
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The graphs in Figure 3.2 serve to highlight the minimum genotype coverage required 

to be confident of finding the mutation carrying region and to be able to distinguish 

that region from false positives for one particular case.  Table 3.1, below, shows the 

minimum marker density required to give a 95% detection rate for the scenario 

described in Figure 3.2 as well as a range of mutation ages and number of families 

being studied. 
 

 

Table 3.1: Detection limits table. 

Age of Mutation 
Range Generations 

Number of 
Families 

Expected size of 
region (kb) 

Min density of markers required to meet 
95% accuracy (kb between markers) 

30-50 39 3 1779 116 
 40 4 1801 117 
 39 5 2458 201 
 40 6 2101 208 

50-80 64 3 1298 71 
 65 4 1424 92 
 65 5 1274 109 
 65 6 1503 152 

80-110 94 3 906 44 
 95 4 936 67 
 96 5 1004 76 
 95 6 1020 91 

110-140 124 3 692 36 
 126 4 774 48 
 126 5 790 60 
 125 6 795 68 

140-170 156 3 580 30 
 156 4 563 43 
 - 5 - - 
 - 6 - - 

170-200 186 3 470 27 
 187 4 511 36 
 - 5 - - 
 - 6 - - 

200-230 215 3 405 23 
 216 4 435 31 
 - 5 - - 
 - 6 - - 

230-260 244 3 361 20 
 246 4 389 26 
 - 5 - - 
 - 6 - - 

260-290 275 3 311 18 
 - 4 - - 
 - 5 - - 
 - 6 - - 

290-320 303 3 274 15 
 - 4 - - 
 - 5 - - 
 - 6 - - 
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Table 3.1: Detection limits table (continued). 

Age of Mutation 
Range Generations 

Number of 
Families 

Expected size of 
region (kb) 

Min density of markers required to meet 
95% accuracy (kb between markers) 

320-350 335 3 250 14 
 - 4 - - 
 - 5 - - 
 - 6 - - 

350-380 364 3 231 12 
 - 4 - - 
 - 5 - - 
 - 6 - - 

380-410 395 3 202 11 
 - 4 - - 
 - 5 - - 
 - 6 - - 

 
Shows, for varying age of a mutation, the minimum marker density genotyped across 
the region in order to achieve a 95% success rate in the detection of a mutation 
carrying region. 
 

 

3.3.1 Defining the criteria for the use of the allele sharing method 

In addition to understanding the situations where the method proves to be effective in 

detecting these simulated mutations, it is important to investigate the details of how 

the method performs in these different scenarios.  In this section, the effect of the key 

variables of the numbers of families, numbers of generations between a group of 

families and their common ancestor on the relevant parameters is reported and marker 

density are studied and the output of the allele sharing method compared. The data 

that corresponds to that described in the following sections can be found in tables 3.2 

and 3.3. 

 

3.3.1.1 Varying the marker density 

The effect of changing the marker density was investigated by holding the number of 

families constant at three and the number of generations between the families and 

their common ancestor within the range of 90 to 120 generations.  It was found that as 

the density of the markers increased, the detection rate of the mutation carrying 

region, where the significance cut-off was placed at P=0.05, increased significantly 

while the size of the mutation carrying region fell slightly.  At the same time, the P 

values associated with the mutation carrying region became more significant, as did 
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the P values associated with the false positives.  The number of false positives, 

however, rose.  These results are summarised and quantitated in Table 3.2 (A) and 

Figure 3.3.  Table 3.3 shows how the number of false positives seen relates to the 

expected number of false positives.  As the marker density is increasing, and the 

number of false positives are increasing, the expected number of false positives is 

actually decreasing.  It is interesting to note that by modifying the significance 

threshold so that the observed number of false positives matches the expected 

number, also leads to a detection rate around the 95%. 

 

3.3.1.2 Varying the number of families 

The underlying effect of increasing the number of families was studied by keeping the 

marker density constant (at an average of 1 marker per 80kb) and the number of 

generations between the families and their common ancestor within the range of 90 to 

120 generations.  The average size of the mutation carrying region fell slightly as the 

number of families was increased (from 995kb for three families to 919kb for six 

families).  The P values associated with the mutation carrying region became more 

significant, however, a similar pattern was found to occur in the P values associated 

with the false positives.  The variation in the number of false positives detected did 

not correlate with an increasing number of families.  These results are also presented 

in Table 3.2 (B) and Figure 3.3. 

As expected, as the number of families included in the analysis was increased, so the 

level marker coverage required to find the mutation carrying region with a good 

degree of certainty (≥95%) declined.  For example, where the families were separated 

by between 80 and 110 generations, the required marker density was 1 per 44kb for 

three families and 1 per 91kb for 6 families (Table 3.1).  This had an effect on most of 

the variables under observation and the combined effect of an increasing number of 

families with the decreasing marker coverage required to achieve a 95% detection rate 

was a slight increase in the size of the mutation carrying region detected (779kb for 

three families to 983kb for six families, in the example where 105 generations 

separate the families).  An additional effect of the decreasing marker density and 

increasing number of families was a fall in the number of false positives (an average 

of 2.61 false positives for three families to 1.20 false positives for six families, in the 

example where 105 generations separate the families).  The number of markers 
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contained in these false positive regions remained constant for different numbers of 

families (three to four markers), although because the density of markers was falling, 

the actual (physical) size of the false positive regions rose.  Another effect of 

decreasing the marker density to meet the 95% success-rate point was that the average 

P value of the mutation carrying region became less significant as the number of 

families rose (from P=0.0029 for three families to P=0.0042 for six families in our 

example).  A similar pattern was found to occur in the P values associated with the 

false positives (these decreased from P=0.0095 for three families to P=0.0161 for six 

families).   

 

Figure 3.3: Detection limits graph. 
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Shows the drop-off in the genotype density required to detect a founder mutation 
through the allele sharing method for the increasing age of the mutation for three to 
six families.  Computational limitations meant that the age of the mutation was 
limited as the number of families rose. 
 

 

3.3.1.3 Varying the number of generations between the families and a 

common ancestor 

The number of generations between a group of families and a common ancestor was 

varied between a range of 90 to 120 generations and 340 to 370 generations while 

keeping the genotype density constant (at an average of 1 marker every 80kb) and the 
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Table 3.2: Trends in the simulation study results. 

(A) Shows how increasing the average marker density while keeping the number of families and the average age of the mutation static, leads to 
a fall in the average size of the mutation carrying region, but an increase in the average number of false positives, and a reduction in the 
average significance of the mutation carrying region and the false positives.  In section (B) increasing the number of families while keeping the 
average genotype density and the average age of the mutation static, leads to an increase in the average size of the mutation carrying region, but 
increase the average number of false positives, and increases in the average significance values for both the mutation carrying region and the 
false positives.  (C) Shows that if the number of families and the average genotype density are held constant, but the average age of the mutation 
is increased, then the average size of the mutation carrying region falls, as does the average number of false positives, however the average 
significance values associated with the mutation carrying region and the false positives also falls. 
 

Number of 
families 

Marker 
density (kb-1) 

Age of mutation 
(generations) 

Detection 
rate (%) 

Size of mutation 
carrying region (kb) 

Size of false positive 
regions (kb) 

Significance of mutation 
carrying region (P value) 

Significance of false 
positive regions (P value) 

(A)        
3 80 105 70.5 995 209 0.009 0.0197 
3 60 105 83.3 824 181 0.0078 0.0165 
3 40 105 93.8 854 144 0.0043 0.011 
3 20 105 98.8 779 128 0.0029 0.0095 

(B)        
3 80 105 70.5 995 209 0.009 0.0197 
4 80 105 76.1 940 244 0.007 0.0169 
5 80 105 81.4 926 241 0.0051 0.016 
6 80 105 89.1 919 232 0.0037 0.0149 

(C)        
3 20 105 98.8 779 129 0.0029 0.0095 
3 20 174 99.3 526 136 0.0016 0.0085 
3 20 234 96.9 391 131 0.0044 0.0145 
3 20 303 94.1 286 141 0.0061 0.0165 
3 20 364 92.6 281 128 0.0076 0.0161 
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significance value were both found to fall as the number of generations was increased.  

The average number of false positives was found to decrease as the number of 

generations between the families and a common ancestor increased.  The average size 

of any false positive regions detected was found to remain constant and the average 

level of significance associated with the false positive regions was found to fall.  

Again, these results are represented in Table 3.2 (C) and Figure 3.3. 

As was found when the number of families rose, as the number of generations 

between the families and a common ancestor was increased, so the marker density 

required (for a 95% detection rate) increased (from 1/116kb where three families are 

separated by 39 generations to 1/11kb where three families are separated by 394 

generations; see Table 3.1).  Again, the effects of both the increasing number of 

generations and the increasing marker density need to be taken into account when 

studying the effect of increasing the number of generations on the 95% detection 

point.  Here it was found that the size of the shared region decreased (from 1779kb to 

202kb as the number of generations separating the three families was varied between 

39 and 394; Table 3.1).  While the number of false positives remains constant (at 

between two and four cases), the average size of the false positive regions was found 

to fall (from 449kb when the three families are separated by 39 generations to 40kb 

for 394 generations).  The significance levels remained fairly constant at levels of the 

95% detection rate (varying between P=0.0028 and P=0.0045 for the mutation 

carrying region and between P=0.0097 and P=0.0141 for the false positive regions).   

 

3.3.1.4 Performance of the false positive rate 

In order to check on the veracity of these results I studied the false positive rate in the 

same varying conditions as those described above.  These are reported in table 3.3 

below which links in to the same scenarios reported in table 3.2 above.  It is clear 

from these results that the observed false positive rate is not acting in the expected 

manner.  Note, that the average expected number of false positives is not 0.05 because 

there is more than one test being carried out.  The number of tests is based on the 

number of regions of sharing that are identified and therefore this varies depending on 

how many regions of sharing are found between haplotypes.  The ratio of the 

observed false positive rate to the expected false positive rate varies from the 

expected ratio of 1 depending on the simulation conditions.  This is clearly 
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problematic as it indicates that the tests used to generate the P values are not accurate.  

This issue seems to worse affect those cases where there is very dense or very spare 

genotyping as well as more recent mutations. 

Clearly this will have a large impact on any results based on this method and this is 

something that will be discussed in the next section.  However, it is also interesting to 

view how the significance cut-off can be changed to give the expected level of false 

positives and what impact this has on the detection rate of the mutation carrying 

region.  These data are also shown in table 3.3.  Here we see that those cases where 

the observed and expected false positive rates are most out of synch, we also see the 

detection rate vary similarly.  So, those cases where we see less false positives than 

expected, we also see a low detection rate, and those cases where we have a very high 

level of false positives compared to the expected rate, then we also see a very high 

detection rate.  It is interesting to note that as the significance cut-off is altered to 

provide an observed false positive rate that matches the expected rate, then the 

detection rate tends towards the 95%. 

 

Table 3.3: Performance of the false positive rate. 

Number 
of 

Families 

Marker 
Density 
(kb-1) 

Age of 
Mutation 

(gens) 

Observed 
false positives 

(α=0.05) 

Expected 
False 

positives 

P(obs)/ 
P(exp) 

α where 
P(obs)/ 

P(exp)=1 

Detection 
rate 

(α=0.05) 

Detection 
rate (α’) 

(A)         
3 80 105 0.52 3.64 0.14 0.272 70.5 96.3 
3 60 105 1.32 3.49 0.34 0.146 83.3 96.1 
3 40 105 2.26 3.26 0.69 0.073 93.3 96.3 
3 20 105 4.43 2.59 1.71 0.010 98.8 95.0 

(B)         
3 80 105 0.52 3.64 0.14 0.272 70.5 96.3 
4 80 105 0.96 2.36 0.41 0.190 76.1 96.5 
5 80 105 1.20 1.45 0.83 0.151 81.4 96.8 
6 80 105 1.94 2.98 0.65 0.124 89.1 95.2 

(C)         
3 20 105 4.43 2.59 1.71 0.010 98.8 95.0 
3 20 174 4.01 3.21 1.25 0.059 99.3 95.3 
3 20 234 3.11 2.20 1.41 0.061 96.9 96.1 
3 20 303 1.84 3.30 0.56 0.072 94.1 94.8 
3 20 364 1.52 3.22 0.47 0.078 92.6 95.2 

Shows the difference between observed and expected false positive rate for (A) 
varying marker density, (B) varying number of families and (C) varying number of 
generations to a common ancestor.  Also shows how the significance cut-off could be 
modified to give the expected false positive rate and what effect this has on the 
detection rate. 
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3.4 Discussion 

There is a general lack of published datasets from families genotyped at an 

appropriate density and range about a known founder mutation on which the allele 

sharing method could be tested.  One dataset, however, was forthcoming.  This data 

consisted of three cystic fibrosis mutations that were found in 60 Breton families (De 

Braekeleer et al. 1996).  Individuals from these families had been genotyped at 10 

microsatellite markers across an 8Mb region containing the mutations of the CFTR 

gene.  These mutations were found to be much more common in the Breton 

population than the surrounding French population.  Given the relatively isolated 

nature of the Breton population, it is possible that these three mutations are found to 

be so prevalent due to a founder effect.  If that were the case, we would expect there 

to be an ancestral haplotype about the mutation that is shared across the families and 

that this would be detectable using the allele sharing method outlined in Chapter 2. 

For each of the three mutations, the allele sharing method found the peak scores 

between the disease-linked haplotypes to be at one of the markers flanking the 

mutation, as would be expected if there was a shared ancestral haplotype in the region 

containing the mutation.  In each case, the allele sharing scores was much higher in 

the disease-linked group of haplotypes than the control group.  However, like the 

disease-linked haplotypes, the 1078delT and G551D families also saw a small peak in 

allele sharing within the control group of haplotypes at one of the markers flanking 

the mutation.   

Upon testing for significance on an individual marker basis through permutation 

analysis, it was found that the P values for individual markers peaked at the markers 

flanking the mutation in two of the datasets (W846X2 and G551D).  For the other 

dataset (1078delT), the peak is displaced by one marker from the nearest mutation 

flanking marker.  This demonstrated that even with the very limited genotyping 

density around these mutations, the method was correctly able to identify the region 

containing the mutation.  Unfortunately it was not possible to carry out the secondary 

permutation analysis on these regions as there was no consistently shared disease-

linked haplotype between all the affected individuals carrying a particular mutation.  

This could be due to one or all of the following reasons: (i) the markers used were 

microsatellites which are relatively mutable and therefore lead to possible differences 

in alleles on what would otherwise be the same haplotype background; (ii) the 
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markers are very sparsely spaced, so if the mutation is old enough, the shared 

haplotype might not be large enough to cover more than one of the markers included 

in the analysis and (iii) there are a large number of families involved in the analysis, 

so it is possible that some of these are included due to allelic heterogeneity.  However, 

due to the low number of markers involved and their more sparse distribution, it was 

feasible to use the Bonferroni correction instead of permutation testing.  Using this 

correction, the region flanking the mutation was found to remain significant for all 

three mutations. 

Based on these results, the analysis of each of these datasets accurately defines a 

significantly reduced sub-region within which we would correctly expect to find the 

causative mutation.  The study was conducted over 8Mb and for each of the datasets, 

this is substantially reduced to 1.53Mb, 2.12Mb and 3.24Mb for the W846X2, 

1078delT and G551D carrying families respectively.  Another region of 2.41Mb was 

found to be marginally significant in the G551D families.  This would appear to be a 

false positive region, which, given the results of the simulation study, is not wholly 

unexpected. 

 

A much more extensive test of the allele sharing method was made possible by 

generating simulated data.  Families carrying a founder mutation in a simulated 

population were generated and used to test the ability of the allele sharing method to 

detect the mutation carrying region.  These families can be though of as apparently 

independent families that might be identified as showing linkage to a particular 

region.  The minimum genotype density required for there to be confidence in the 

method successfully identifying the mutation carrying region was defined for a range 

of numbers of families, and ages of mutations (see Table 3.1.).  These results give an 

indication of the difference in power obtained by varying the number of families 

versus increasing the genotype density in such studies.  For example, if a mutation has 

been established in a population for 125 generations (~3125 years), three families 

would have to be genotyped at an average of 1 marker per 36kb, but if a fourth family 

were to become available, genotyping would only need to be carried out at an average 

of 1 marker per 48kb.  Thus these results can be used to inform study design.  They 

can also be used to estimate the age of a mutation when a mutation has been detected 

via this method. 
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The same set of markers were used to represent the haplotypes that formed the 

population of each of the simulations, regardless of marker density.  The difference 

between the datasets being the distance between these markers.  While the increased 

distance between markers led to an increased breakdown of haplotypes as the 

generations were simulated, this may have resulted in a higher than usual LD in the 

starting population due to the markers in the original dataset having been in closer 

proximity than the simulated data.  LD will certainly affect the haplotype transmission 

through the generations.  This may have distorted results at very low densities 

somewhat.  Due to the distribution of the makers, some of the markers were tightly 

linked together even at low densities.  However, as described in section 2.1, this is 

something that should be accommodated for by the method.  At lower densities, even 

what were the most tightly linked makers used in the study should act independently.  

Figure 3.2 shows, for one series of simulations, how the changing marker density 

affects some of the key characteristics.  It appears to be the case that at the very 

lowest marker densities, the method is just picking up random signals. 

Due to computational limitations, it was not possible to run the simulation over large 

numbers of families for very old mutations.  Up to 410 generations could be studied 

for three families, 260 generations for four families and 140 generations for five and 

six families.  However, the trends are made clear by the studies that were conducted.  

For recent mutations, the method was found to be effective at a low density of 

genotyping (an average of 1 marker every 40kb would detect a mutation 100 

generation (2500 years) old with three families).  As the age of the mutation increases 

so does the density of genotyping required (an average of 1 marker every 11kb would 

detect a mutation 400 generation (10000 years) old with three families.  Every 

additional family included in the analysis reduces the level of genotyping required. 

The simulation was designed to allow any initial population to be used.  Rather than 

generating a completely artificial dataset, it was decided that genotype data from a 

real control population would be more informative.  Although the small starting 

population is clearly a limiting factor, it was thought that it was more important to use 

a realistic population within which we could then model the establishment of a 

founder mutation.  It will be useful in future to test the robustness of the simulation to 

different starting populations.  However, although most similar studies use a larger 

founder population, the starting population of over 450 individuals used here is 

similar to that used by published simulations (e.g. Bourgain et al. 2000).  Another key 
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approximation of the simulation study was to estimate that each couple would 

produce two children in each generation.  The number of generations was converted 

into mutation age by estimating that a new generation occurred every 25 years. 

The main purpose of the simulation was to test the method in similar circumstances to 

those seen in the chromosome 4p linked families that are studies in chapter 4.  These 

families were identified as a result of linkage studies identifying linkage to a common 

region of chromosome 4p.  They have been well characterised both phenotypically 

and genetically.  So, although it was clear that the assumption of 100% penetrance 

and no allelic heterogeneity in the simulation was unrealistic, this did not affect the 

purpose of the simulation, which was to model how the haplotypes were broken up 

over the period that was being simulated.  Lower penetrance would mean that the 

affected family members were less likely to display the disorder and allelic 

heterogeneity would mean that some affected individuals might not carry the same 

disease-linked haplotype.  But we are only interested in those families that are likely 

to identified through linkage or some other means and where we are able to identify a 

consistent disease-linked haplotype for the family.  Both these cases are unlikely in a 

low penetrance, high allelic heterogeneity model.  Even in a model with less than 

100% penetrance or slight effects of allelic heterogeneity, it is only the ability to 

identify suitable in the first place and not on the performance of the allele sharing 

method that will be affected.  It was therefore decided that it was an acceptable 

assumption that no account would be made of these effects in the simulation.  Effect 

size is treated in a similar way to penetrance and allelic heterogeneity in that it is 

viewed as a factor that will affect the identification of suitable families rather than the 

analysis of allele sharing between families once identified.  It is assumed that 

although we expect a small effect size of the genetic contribution for psychiatric 

disorders, the reason families have been identified is because in these cases, we 

expect to see a mutation of large effect size.  Perhaps due to the contributing factors 

of some other effect.  This is exactly the reason why we benefit from looking at 

families in addition to the population studies.  Of course, it would be desirable to 

carry out a more complex simulation that did account for such factors as this would 

allow some insight into the processes that produce sets of families such as those under 

study in this thesis.  This was not something that was found to possible within the 

timescales that this work was carried out in.  Although it may be harder to identify 

suitable families for study where there are confounding factors such as small effect 
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sizes, this should not effect the ability of this allele sharing method to identify a 

region of allele sharing should it exist.   

 

The most pressing concern in the results of these simulations studies is that of the 

number of false positives.  It is clear that the number observed in these simulations 

does not correspond to the expected number.  It is likely that there is some feature in 

the test of significance that is leading to P values being miscalculated.  For example, 

in the case where the marker density of the simulated dataset was increased, the 

average number of tests was found to decrease.  This was expected as we are more 

likely to find congruous blocks without recombination between markers where the 

markers are closer together, therefore we would expect to see less tests carried out.  

With fewer tests, we would expect to see less false positives, yet what we observe is 

the opposite.  When the marker density was as high as a marker every 20kb, the 

number of false positives matches with the expected number.  One explanation for 

this effect may be that at lower marker densities, P values are being underestimated as 

the regions of sharing become smaller.  This needs to be traced back to the initial 

method developed however, the results described here also allow us to be aware of 

this feature and to take it into consideration when analysing any data using this 

method.  So, for lower marker density studies, we can lower our significance 

threshold and this would increase the likelihood of detecting the mutation carrying 

region while generating only the expected number of false positives. 

 

Despite these issues, it is apparent from these simulation studies that for reasonable 

estimates of founder mutation age and effect size, only a modest number of core 

family datasets, genotyped at affordable marker densities are required to detect allele 

sharing and thus map founder mutations with high resolution.   
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4.1 Introduction 

A significant body of evidence to suggests that chromosome 4p carries a locus of 

importance for major psychiatric illness.  This was first brought to light by 

Blackwood et al (1996) who described a large Scottish family (F22, Figure 4.1) where 

many family members presented the symptoms of BPAD or recurrent major 

depressive disorder (unipolar depression [MIM 125480]).  Clinical and genotype data 

had been obtained from 120 individuals, including 11 with BPAD and 16 with 

recurrent unipolar depression.  A whole genome scan of F22 using 87 microsatellite 

markers found significant linkage of major affective disorder to chromosome 4p (with 

a maximum LOD score = 4.09).  Variance component analysis of the same data 

provided further evidence supporting this result (LOD = 3.7; Visscher et al. 1999).  

Recently, a re-evaluation of the family was carried out (Le Hellard et al, 2006) where 

the clinical status of several family members were updated.  Some family members 

were newly diagnosed cases and the offspring of one individual was removed from 

the analysis because major psychiatric illness was detected in a first degree relative of 

the married in parent.  This study identified a maximum LOD score of 4.41 on 

chromosome 4p16. 

 

Figure 4.1: Pedigree of Family F22.  

 
Family F22 was the first family that showed linkage to chromosome 4p15-16 for 
major psychiatric illness. 
 

11 Bipolar Affective Disorder 

16 Recurrent Major Depression 

Minor Psychiatric Diagnosis 
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Blackwood et al. also studied another 56 families and found evidence for linkage in a 

second Scottish BPAD family (F59; LOD = 1.15; Figure 4.2).  This maximum LOD 

score for this family is limited due to its size, but despite this it still comes very close 

to meeting the replication criteria as defined by Lander and Kruglyak (1995). 

Following the Blackwood study, a number of other groups have also reported 

evidence for linkage to both BPAD and SCZ in this region. Asherson et al. (1998) 

found linkage in a Welsh schizoaffective family (F50, LOD = 1.97; Figure 4.2.); 

Ewald et al. (1998) reported linkage in two Danish BPAD families (LOD = 2.00); 

Detera-Wadleigh et al. (1999) investigated families with major mental illness and 

their largest family, an American family of Ashkenazi Jewish descent (F48; Figure 

4.2), generated a LOD score of 3.24; Williams et al. (1999) found increased sharing in 

SCZ sibpairs (LOD = 1.73); Lerer et al. (2003) found a non-parametric LOD score of 

2.2 in families with SCZ and schizoaffective disorder and Als et al. (2004) found 

excess haplotype sharing (best P value, P = 0.00007) in families with BPAD and SCZ 

using an χ2 test (See Section 1.3 for a discussion of such approaches related to the 

allele sharing method described in this thesis).   

 

Figure 4.2: Pedigrees of families F48, F50 and F59. 

 

Families (A) Part of F48, (B) F50 and (C) F59 also show linkage to chromosome 
4p15-16.  Only the branch of F48 that was studied for allele sharing is presented 
here. 
 

 

Recently Le Hellard et al. (2006) used a high resolution haplotype analysis of the 

linked regions of families F22, F59, F50 and F48, to refine these regions of overlap 

between linkage signals (Figure 4.3).  Sub-regions of the F22 linkage signal can be 

Major Psychiatric Diagnosis 
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defined based on the evidence presented.  Regions B and D both have three of the four 

families showing linkage.   

 

Figure 4.3: Regions of overlap. 

 

The linked regions that segregate with illness in the four families are found to 
overlap.  Regions A to D indicate sub-regions of the F22 linkage region that show 
linkage in at least one other family.  The sizes (in Mb) of these regions refer to the 
genomic distances between the points marked by the horizontal lines.  The numbers 
are from NCBI build 35 (http://www.ncbi.nml.nih.gov) and are the map co-ordinates 
of each of the markers that define the boundaries of the linked haplotypes.  The 
illnesses observed in the families are indicated in the figure as follows: AFD – major 
affective disorder, SCZAFF – schizoaffective disorder and schizophrenia, SCZAFD – 
schizophrenia, major affective disorder and others. Reproduced from Le Hellard et al. 
(2006). 
 

 

These replicated linkage results could reflect independent mutations at the same locus 

(allelic heterogeneity) or a common ancient origin (founder mutation).  The fact that 
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there are two priority sub-regions may even indicate the presence of two susceptibility 

genes (or loci), one in region B and the other in region D.  Region B would be the 

more likely of the two to carry a founder mutation as all three families have Celtic 

ancestry, while F48 is an American family of Ashkenazi Jewish origin.  In this 

chapter I present the work I have carried out using the allele sharing analysis method 

to investigate the possibility that founder mutation exists in one of these regions.  

Initially, most of the known genes in regions B and D were genotyped at SNPs found 

within these four families.  This was followed up by a study based on the haplotype 

structure of the entirety of regions B and D.  Markers were selected to describe the 

haplotype structure of the region.  In each of these cases the allele sharing method 

described in chapter 2 was used to analyse allele sharing based on these data.  Here I 

report those results. 

I also report on the basic TDT analysis of region B for the purposes of comparison 

and validation. 
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4.2 Allele Sharing in priority region B 

Region B was the first of the two high priority regions investigated.  Region B is 

delineated by the overlap of the linkage regions of F22, F59 and F50. 

 

4.2.1 Phase I: Allele sharing at known genes 

Initially, markers covering the genes in region B were genotyped for reasons 

explained above. These markers were used to test for excess allele sharing. The 

results of this analysis are described in Le Hellard et al. (2006). Although individuals 

from all four families were genotyped, only the three families that show linkage to 

region B are likely to carry an ancestral founder mutation in this region. In this phase 

of the analysis, three haplotypes (one from each linked family) were allocated as 

disease-linked and 38 haplotypes were determined as controls and they were 

genotyped at 127 markers in the region.  

One haplotype consisting of 48 consecutive markers over five LD blocks (covering 

~200kb) showed excess allele sharing between the three linked haplotypes when 

compared to the control haplotypes (see Figure 4.4-A). Permutation analysis of the 

data indicated that the excess sharing was significant (average P value for the region 

=0.007, see Figure 4.4-B). The linked haplotype responsible for this result was found 

in 7.9% of the control samples.  This suggests that the disease-linked haplotype is 

fairly common in the population and it could indicate that the disease-linked 

haplotype carries a susceptibility loci rather than a causative mutation.  In order to 

correct for multiple testing, the secondary permutation analysis was carried out that 

tested how often a region of equivalent or greater significance would occur by chance. 

A region of sharing across this number of LD blocks and with this level of 

significance was found in only a small percentage of permuted chromosome sets, 

giving a corrected P value of P=0.009. 
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Figure 4.4: Phase I: Allele sharing in priority region B. 

Shows allele sharing for markers genotyped around genic regions of region B. (A) 

Allele sharing scores and (B) significance values determined through permutation 

analysis. Reproduced from Le Hellard et al. (2006). 

 

 

There are three other groups of markers in region B that are significant on an 

individual marker basis. The first of these consists of nine markers within one LD 

block; these markers are separated from the significant region described above by just 

one marker (and 10kb). Here permutation analysis to assess significance gives an 
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average P value of 0.05. However, when the additional permutation analysis is carried 

out to correct for multiple testing, this region is no longer significant (P=0.193). 

Secondly, there is an individual marker with a P value of 0.048 that is corrected to 

0.195. The final region is an individual marker that covers one LD block with a P 

value of 0.049. After correction for multiple testing, this is no longer significant (P = 

0.215). A caveat to this analysis of the above three regions is that, unlike the 

significant region described above, the limits of these regions are not defined by a 

lack of sharing between the linked haplotypes, but by the end of a gene. The further 

genotyping that was carried out for phase II allowed a more accurate measure of the 

significance of sharing in these regions. 

 

4.2.2 Phase II: Allele sharing across the region using haplotype-

tagging markers 

Following on from the study of the markers found in genic regions, a study of the 

entire region was undertaken.  175 markers were genotyped across the region.  As 

before, three disease-linked and 38 control haplotypes were identified and tested for 

excess allele sharing. 

Figure 4.4(A) shows the allele sharing scores between disease-linked and control 

haplotypes in region B when the haplotype-tagging markers are studied.  There are 

two areas where the sharing between disease-linked haplotypes is noticeably greater 

than that seen in the controls.  The distal region corresponds to a peak in sharing 

between the control haplotypes.  Permutation analysis of this data, Figure 4.4(B), 

identifies a large significant region that corresponds to the region that displayed much 

greater allele sharing scores in the disease-linked haplotypes compared with the 

control haplotypes.  There is also a second smaller significant group of markers that 

appear to be significant, corresponding to a region of high sharing between disease-

linked haplotypes, but the significance level falls off where the sharing between 

control haplotypes reaches a peak.  We carried out a multiple testing correction on all 

the regions where the disease-linked haplotypes are common by descent within these 

significant regions and at least one marker was significant on an individual marker 

basis.  Table 4.1 shows 11 of these shared regions that were found to be significant 

after this test was carried out.  One of these regions, shared region 1, which spans 

197kb or 17 LD blocks, is much more significant than the others (P = 0.008).  The 
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rest of the significant regions have an average P value of 0.035 and cover an average 

of 64kb or 3.67 blocks.  Shared region 1 is found at NCBI Build 36 March 2006 

assembly coordinates: 10,814,974 - 11,012,802.  The disease-linked haplotype that 

forms shared region 1 is found to be common amongst controls, ~21% of whom carry 

the haplotype.  Again, this may indicate that the mutation is common and only 

increases susceptibility to BPAD rather than actually causing the disorder. 

 

Figure 4.5: Phase II: Allele sharing in priority region B 

Allele sharing for markers tagging haplotypes across all of region B. (A) Allele 

sharing scores and (B) significance values derived through permutation analysis.
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Table 4.1. Priority Region B shared regions. 

Shared 

region 

No. shared 

markers 

No. LD blocks 

shared 

Length of shared 

region (kb) 

Individual P value Corrected P value  Genomic location 

1 18 17 197 0.007 0.008 10,814,974 – 11,012,802 

2 1 1 n/a 0.017 0.046 11,023,135 

3 1 1 n/a 0.009 0.048 11,034,055 

4 1 1 n/a 0.012 0.05 11,071,052 

5 7 6 38 0.005 0.026 11,088,565 – 11,126,790 

6 1 1 n/a 0.013 0.046 11,144,685 

7 1 1 n/a 0.006 0.048 11,200,245 

8 3 3 191 0.014 0.041 11,243,225 – 11,435,085 

9 2 1 62 0.014 0.046 11,468,817 – 11,531,810 

10 3 1 41 0.012 0.036 11,647,264 – 11,688,697 

11 2 2 3 0.01 0.039 11,821,735 – 11,824,876 

 

The table lists the properties of the regions of excess sharing in region B of the F22 linkage region, the number of shared markers within 

them, the number of LD blocks they cover, their length, the P-value after the test for significance and the P-value corrected for multiple 

testing and their genomic location (chromosome 4 NCBI Build 36 March 2006 assembly coordinates). 
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4.3 Allele Sharing in Priority Region D 

Region D was the second of the high priority linkage regions and was the most 

statistically significant (in terms of LOD scores). Three families (F22, F50 and F48) 

showed linkage to the region. One of these families was Scottish, one was Welsh and 

the other was an American family of Ashkenazi Jewish descent. 

 

4.3.1 Phase I: Allele sharing at known genes 

As with region B, the initial analysis of region D only included markers about some 

of the genes in the region. Three disease-linked and 37 control haplotypes were tested 

for excess allele sharing at these 157 markers.  These results have been published in le 

Hellard et al. (2006). 

Allele sharing analysis identified two sub-haplotypes that showed a shared haplotype 

between the three disease-linked haplotypes and also contained some markers that 

were significant on an individual marker basis.  The first haplotype, consisting of 10 

markers over two LD blocks (over 55kb) showed higher sharing between disease and 

control chromosomes (see Figure 4.4-A). Permutation analysis showed that two of 

these markers had a P value < 0.05 while the others were not deemed significant.  The 

average P value for the shared region was P=0.054 (Figure 4.4-B). After the 

secondary permutation analysis this region was clearly not significant (corrected P 

value P=0.52).  The second haplotype consists of three markers over one LD block 

(over 9kb), all three markers are significant and the average P value was 0.031.  

However, the corrected P value for this region is 0.416. 
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Figure 4.6: Phase I: Allele sharing in priority region D. 

Shows allele sharing for markers genotyped around genic regions of region B. (A) 

Allele sharing scored and (B) significance values generated through permutation 

analysis. 

 

 

 



Chapter 4 Allele Sharing in Families Linked with Bipolar Affective Disorder 

  86

4.3.2 Phase II: Allele sharing across the region using haplotype-

tagging markers 

In phase II of the analysis of priority region D, 384 markers were genotyped across 

the region.  The disease-linked and control haplotypes were tested accordingly.  

Figure 4.5-A shows the allele sharing scores in the region D where there appears to be 

four peaks in the allele sharing across the region for both disease-linked and control 

haplotypes.  Although the peaks are higher in the disease-linked haplotypes, there are 

only two clusters of markers that are significant on an individual marker basis. 

There also appear to be a number of regions where the sharing is higher between the 

disease-linked and control haplotypes.  However, the differences are not as high as in 

the priority region B and seem to match to regions where the sharing between control 

haplotypes peaks.  Upon carrying out the permutation analysis, two shared regions 

were found to carry at least one significant marker (Figure 4.5(B); Table 4.2).  

However, none of these regions remains significant after correcting for multiple 

testing. 
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Figure 4.7: Phase II: Allele sharing in priority region D. 

Allele sharing for markers tagging haplotypes across all of region B. (A) Allele 

sharing scores and (B) significance values determines through permutation analysis. 
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Table 4.2. Priority Region D shared regions. 

Shared 

region 

No. shared 

markers 

No. LD 

blocks shared 

Length of shared 

region (kb) 

P value Corrected P value  Genomic location 

12 10 9 117 0.062 0.520 20,556,005 – 20,672,923 

13 11 10 101 0.031 0.416 23,898,753 – 23,999,911 
 

The table lists the properties of the regions of excess sharing in priority region D of the F22 linkage region, the number of shared markers 

within them, the number of LD blocks they cover, their length, the P value after the test for significance, the P value corrected for multiple 

testing and their genomic location (chromosome 4 NCBI Build 36 March 2006 assembly coordinates). 
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4.4 TDT analysis of priority region B 

Region B was the location of a region of allele sharing that was found to be significant 

based on the allele sharing method developed in this thesis.  The WHAP program was 

used to provide a more traditional test of association in region B.  Ten parent 

offspring trios were selected from the three families showing linkage to the region 

(F22, F59 and F50).  The first test was an individual test of each marker in the region 

and was run with the default WHAP settings and significance tested through 1,000 

permutations.   The distribution of P values across the region is shown in figure 4.7 

below.  The two markers with highest level of significance (P=0.006, P=0.010) are 

both found within shared region 1 which was found to be significant through the 

allele sharing analysis.  Four other markers showed marginal significance in regions 

that also corresponded to peaks in allele sharing.  Two-marker haplotype analysis was 

carried out and showed similar results.  The 17 marker haplotype was also tested and 

was found to be very significant (P=1.85x10-33). 

 

Figure 4.8: Single marker association in priority region B. 
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4.5 An investigation of a significant shared region 

Bioinformatics tools were used to assess the biological significance of the significant 

shared regions.  This focussed on shared region 1 found in priority region B (section 

4.2.2), which was the most significant region found through the allele sharing analysis 

based on the complete genotyping coverage.  Figure 4.8 shows the Ensembl 

ContigView of the region. 

 

Figure 4.9: Shared region 1 on Ensembl ContigView 

 

This shows the annotation of shared region 1 in priority region B, showing the OST1 
gene (HS3ST1). 
 

 

One known gene is found in this shared region, heparan sulfate (glucosamine) 3-O-

sulfotransferase 1 (HS3ST1; MIM 603244).  The HS3ST gene is highly expressed in 

the brain and kidney and weakly expressed in the heart, lung and placenta. It 

possesses both heparan sulfate glucosaminyl 3-O-sulfotransferase activity and 

anticoagulant heparan sulfate conversion activity, is a rate limiting enzyme for 
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synthesis of anticoagulant heparin and is an intraluminal Golgi resident protein. 

However, HS3ST1-deficient mice did not show the expected anticoagulant 

phenotype. Instead, they developed unexpected non-thrombotic, perinatal phenotypes, 

including eye degeneration and postnatal lethality.  This suggests that the HS3ST1 

enzyme might have additional or alternative biological roles.  There is a also an 

miRNA sequence, hs-mir-572, a non-human RefSeq gene and one main class gene 

predicted by Aceview  within the shared region, as well as number of spliced ESTs 

and regions of multi-species conservation.  
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4.6 Discussion 

The evidence for a susceptibility or causative locus or loci in the chromosome 4p15-

16 region is strong.  However, due to the complex genetic nature of the disorder, it 

has proven difficult to pin point any such loci.  In this chapter I have reported on a 

study of allele sharing in the region, investigating the possibility that a common 

founder mutation is shared between the families. 

Figure 4.3 shows the genomic location at which four particular families display 

linkage with BPAD and BP-related illness.  Two priority regions were identified 

where the linkage signals of three of the four families overlapped.  The fact that two 

sub-regions were identified may indicate the presence of two susceptibility loci, one 

in priority region B and one in priority region D.  In each of the two sub-regions, it is 

possible that the three families that show linkage do so because they share the same 

mutation and that mutation has been inherited from a common ancestor.  However, it 

may be the case that some of the families have inherited the same mutation, but from 

a different source, meaning that they would not share the same genetic background 

around the mutation and it is also possible that any of the families could carry more 

than one mutation in the region.  Priority region B is made up from three families 

(two Scottish and one Welsh) thought to be of Celtic origin, so it is particularly 

plausible that an ancestral mutation could be shared by these three families.  The 

second priority region (D) is made up of a Scottish, Welsh and US family of 

Ashkenazi Jewish origin.  A mutation of common ancestral origin would most likely 

have to be very old to have occurred in a lineage shared by these three families.   

 

The initial investigation into allele sharing in the region relied on genotype data only 

from markers in the areas around known genes.  This clearly limited the analysis by 

leaving substantial areas in the regions untested; it may also have had a negative 

impact on the scoring system due to some wide gaps between some markers.  This 

analysis did uncover one significant region, with a P value of 0.009, in priority region 

B.  It was clear that the results would be uncertain while there was incomplete 

genotype coverage of the region.  The allele sharing peaks at this shared region in the 

disease-linked haplotyped, but it also peaks in the level of sharing between the control 

haplotypes.  The increased sharing in the disease-linked group may just be an artefact 
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due to there being only three families in that group, compared with 38 in the control 

group, giving a broader picture of haplotype diversity in the population. 

In the second phase of the study, markers were selected to encompass the LD 

structure across the two priority regions.  This was intended to provide an almost 

complete coverage of the region, where a marker was genotyped that would cover any 

haplotype block that occurred with 10% or greater frequency in the CEPH trios.  This 

should have made the scoring system much more consistent as the spread of markers 

was even across the LD variation map of the region.  The most interesting results lay 

in the large non-genic region that had not previously been genotyped.  Here, a large 

extended region of 71 markers was found in which all the makers were significant on 

an individual marker basis.  There was found to be consistently low allele sharing 

between control haplotypes and high allele sharing between disease-linked haplotypes 

across this region.  The region that was previously found to be significant in region B 

following the phase one analysis, still corresponded to peak in the allele sharing 

scores, although it was no longer found to be significant after multiple testing was 

taken into account.  In region D, there was one individual marker and another cluster 

of 11 markers that were significant.   

After the correction for multiple testing, there were 11 regions that are found to be 

significant.  All of these were in region B, and in common with the phase I study, 

there were no significant regions found in region D.  These 11 regions ranged in size 

from 1 marker to 18 markers; accounting for, between 1 LD block and 17 LD blocks; 

spreading across up to 197kb; and with P values ranging from 0.01 to 0.005 on an 

individual marker basis and between 0.05 and 0.008 after correcting for multiple 

testing.  One region in particular stood out, shared region 1 covers a much larger 

region than the other significant regions (17 LD blocks compared with 1-6 LD blocks 

in the other regions) and is much more significant than the others (P = 0.008 

compared with P = 0.026-0.05).   

 

It is also useful to compare the results of the BP-linked families with those of the 

simulation study.  We can look for the simulations that present similar results to those 

of the chromosome 4p study.  Here we find that if three families are generated with a 

similar density of markers genotyped and with an average of around 400 generations 

between the families, then we see a similar pattern of results in terms of the size of the 

shared regions identified and their associated P values.  The analysis of simulated data 
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of this form tended to identify one relatively large region that was very significant 

which would contain the mutation and a number of smaller regions that were of more 

marginal significance that were false positives.  It was also important to consider the 

anomalies identified in the false positive rates from the simulation study.  It was clear 

from the results of the simulation study that the P values being reported were not 

always accurately reflecting the genuine significance value.  However, it was possible 

to estimate what sort of adjustment to the P values being reported in shared region I 

were necessary.  Looking at the range of simulation results that the results reported 

for shared region I fall into, then we might expect that P values are being over-

estimated.  The closest category studied in the simulation corresponding to the results 

described above suggest that correcting P values by a factor of about 5 would be more 

accurate representation of probability values.  This would still suggest that the 197kb 

region was a true positive results within which we would expect to find a mutation.  

Although clearly, this issue will cast doubt on this result, there was some evidence 

that this result is genuine. 

We can also use the comparison with the simulation study to estimate the age of the 

mutation.  The results, in terms of the significance values, number of false positives 

etc, match most closely with those simulations where there were ~400 generations 

between the families being tested and a common ancestor.  A very simple 

approximation could put this at something like ~8000 years separation.  Of course this 

would be further complicated by the fact that two of the families (Scottish families 

F22 and F59) are likely to share a much more recent common ancestor than they do 

with the third (Welsh family F50).  It does give a broad outline of the region we are 

looking at.  The fact that it is region B within which we find a region of significant 

sharing and not region D backs up our original assumption that it would be much 

more likely that the three families of Celtic origin would share a common founder 

mutation than two Celtic families with a family of Ashkenazi Jewish descent.  This 

hypothesis is supported by a closer study of the shared haplotype between the three 

families in priority region B.  All thee families share the haplotype that forms shared 

region 1, the two Scottish families (F22 and F59) share a haplotype that extends far 

beyond shared region 1. 

 

There is one known gene in shared region 1, where the significant region overlaps 

with 5kb of HS3ST1 (MIM 603244).  Although HS3ST1 is not an obvious candidate 
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for BPAD, it is highly expressed in the brain and recent studies on knock-out mice 

have shown that it may have a much more diverse function than just as a rate limiting 

enzyme for synthesis of anticoagulant heparin.  Some further evidence to back up 

HS3ST1 as a candidate disease gene has come from the PROSPECTR tool (Adie et 

al. 2005) which found HS3ST1 to be the most likely candidate to be a disease gene 

out of all the genes in the two priority regions.  PROSPECTR works on the 

assumption that certain sequence based features such as larger gene lengths and 

broader conservation through evolution can indicate that a gene is more likely to be 

implicated in disease.  It found that HS3ST1 was ~2.1 times more likely to be 

implicated with disease than a random gene.  The majority of shared region 1 consists 

of 193kb upstream of HS3ST1.  In this region are a number of predicted genetic 

features and are likely to be regulatory elements relating to HS3ST1.  Further 

evidence for this region has been reported recently.  Christoforou et al. (2007; section 

4.1) described an association study where they found a haplotype in shared region 1 

that was significantly associated with Schizophrenia (uncorrected P value = 0.00046; 

OR = 2.2; 95% CI: 1.3-3.6) in a Scottish cohort.  

 

Further evidence for the shared region 1 comes form the association analysis of 

region B where the two most significant results of the single marker analysis are 

found.  Unfortunately, this is the limit of the analysis that was carried out using 

existing published methods.  As discussed in the introduction, it is very important that 

the new allele sharing method described in this thesis be tested against existing 

published methods, unfortunately this proved difficult.  Those haplotype based 

methods similar to the one described in this thesis were not found to be readily 

available and therefore I was not able to test the chromosome 4p data using them.  

Equally, other haplotype sharing methods were found difficult to find available 

programs that allowed them to be run with the data used in this thesis.  TDT is 

perhaps a more established method and there are many versions implemented in many 

different software packages that are easily available.  They were not always found to 

be the most intuitive nor with the most helpful documentation.  There was also a 

problem when it came to running this analysis on a personal computer that failed to 

carryout much more than the basic single marker analysis.   

This situation leaves some important work that needs to take place before the above 

method can be taken forward.  Especially in light of the problems encountered with 
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the false positive rate.  It may also reflect the situation in the field whereby the 

motivation of those developing new methods is not to develop a polished software 

program, but rather to aid their own research.  It is a similar situation that led to the 

development of the allele sharing method described in this thesis as it was felt that 

existing methods were difficult to apply to the scenario that I encountered.   

 

In summary, this study has shown how genotype data from families presenting a 

common linked region can be used to greater effect.  Here an initial linkage result of 

20Mb was reported in the family F22 (Blackwood et al. 1996), this was reduced to 

8.1Mb (4.3Mb and 3.8Mb) through studying the overlap between F22 and three other 

families (F59, F50 and F48) that also showed linkage to this region (Le Hellard et al. 

2006).  I have now shown how the allele sharing method presented in this thesis has 

been used to reduce the region even further, to 197kb.  Shared region 1 should now be 

prioritised for further study. 
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One of the key challenges in the field of medical genetics is to identify ‘disease 

genes’ or loci that cause or confer susceptibility to disease.  The traditional approach 

of genetic linkage and positional cloning has not achieved the same success for 

complex disorders as it has for simple single gene diseases.  While new approaches 

such as large scale and genome wide association studies and copy number variation 

analysis may provide new avenues for mapping disease loci, genetic linkage can still 

provide very good evidence that a relatively large genomic region contains a 

susceptibility locus.  While more traditional family based approached exist to test for 

association, haplotype sharing statistics have been shown, in at least some 

circumstances, to have greater power in identifying genetic associations with disease 

(Tzeng et al. 2003; Allen and Satten 2007).  In this thesis I have described and applied 

a method for investigating allele (or haplotype) sharing in large families, with 

common regions of linkage, to identify a common founder mutation.  
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5.1 A method for studying allele sharing 

In the case of the extended chromosome 4p linked families studied in this thesis, 

families were identified for study having shown to segregate with BPAD through 

linkage analysis.  Study of genotype data from these families then clearly showed one 

haplotype that was carried by almost all affected individuals.  It is to be expected that 

a large family that shows significant linkage for a region, that those individuals 

displaying the trait being studied should share a haplotype across that region.  It was 

the question of how to analyse such data that lead to this thesis.   

Family based methods for investigating association exist with many modification of 

the original transmission disequilibrium test (TDT) of Spielman et al. (1993), but 

there is greater value to be found by incorporating the information of the haplotype 

into such analysis.  Extensions to traditional family based association studies to allow 

haplotype information to be used have been developed, however a newer type of 

analysis based on shared haplotypes has become popular.  A number of methods for 

measuring allele (or haplotype) sharing were discussed in the introduction to this 

thesis.  While it proved not to be possible to apply any of the existing methods 

directly to the family data such as that generated from the BP-related families linked 

with chromosome 4p15-16, the scoring system developed by Van der Meulen & te 

Meerman (1997) and Bourgain et al. (2000, 2001, 2002) provided a good basis from 

which to develop a new method.  The initial concept of carrying out a pairwise 

comparison of groups of case and control haplotypes and system for scoring the 

similarity of a pair of haplotypes were sound.  The aim of this thesis was to develop a 

method, based on the principles developed for other haplotype sharing methods, that 

was suitable for the study of multiple, large family and large scale genotyping data 

such as that produced from the chromosome 4p linked BPAD families. 

The basic scoring system involved counting the number of markers shared 

consecutively between haplotypes (Bourgain et al. 2000).  An alternative to using the 

number of markers in a shared region would have been to score sharing based on the 

actual size (in base pairs) of the region thus accounting for the distribution of the 

markers.  An initial investigation suggested that the simple counting scoring system 

generated sounder results and was more robust.  It was thought that the scores 

obtained by the incorporating the actual distance between markers were too strongly 

influenced by the uneven distribution of markers across the regions under 
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investigation.  In the case of the BPAD-linked families, there were very large regions 

between markers (as a consequence of the LD structure in the region) and this gave 

some markers too much weight.  There was also a choice of methods to manage 

ambiguous and missing data.  The method used for dealing with missing data is 

logical, given that it is impossible to say whether that marker is shared or not shared 

between haplotypes, it can be ignored, and it will be possible for a shared region to 

extend around it while that marker will not contribute to the total number of markers 

in that region that are used to form the score.  Ambiguous data is dealt with in a 

similar way, with a sharing region allowed to extend around an ambiguous marker so 

long as one of the potential allele combinations does mean a match between the two 

haplotypes.  Unlike the missing data, ambiguous data will  contribute to the score of 

the region, this score it contributes is in proportion with the likelihood that the maker 

is expected to be shared.  A brief investigation indicated that this has limited effect the 

results although it might be expected to have greater effect if the level of missing or 

ambiguous data in much greater that in the samples reported in this thesis.   

Bourgain et al. (2000) also developed a test to determine statistical significance based 

on their allele sharing measure.  Their test compared the maximum difference in 

sharing between transmitted and non-transmitted haplotypes to that of a series of 

simulated haplotypes with no difference.  While a useful statistic for identifying a 

region as significant, it has the limitation of being unable to investigate the variation 

in sharing across a region and the possibility of identifying a sub-region.  It is also 

uncertain how appropriate their group of haplotypes that were constructed to be used 

in this test are.  Tzeng et al. (2003a) showed just how difficult a job it is to model the 

statistical complexity of this type of method.  I developed a method of permutation 

analysis to test the statistical significance on an individual marker basis and then 

nested permutation analysis to account for the multiple testing.  By permuting 

randomly reassigned disease-linked and control haplotypes, it is assured that 

differences in haplotype structure will not confound the result.  Nested permutations, 

to generate a modified P value, which accounts for multiple testing, for any 

significant region will similarly benefit from using a same genetic background.  The 

computational requirements of nested permutations are high and a method of 

approximating nested permutations by reusing the permutations generated in the 

initial permutation analysis was used.  This method was proposed by Ge et al. (2003) 

to generate corrected significance values for microarray analysis and was later used 
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by Becker & Knapp (2004) to generate corrected significance values for association 

fine mapping.  Both showed that the significant computational and time gains could 

be made with little loss of power.  While the initial permutation analysis was 

concerned with comparing individual markers, the nested permutation analysis was 

interested in generating a corrected significance value for a region that had been 

identified initially as significant.  For this process, it was important to take the size of 

the region into account.  Rather than physical size, the number of LD blocks that a 

region encompassed was used.  This reflected the lack of independent inheritance 

between markers in strong LD with each other.  So, the nested permutation analysis is 

asking the question of whether any sub-region anywhere in the wider region under 

study is as significant over the same size of region (in LD blocks) as the one which 

the corrected significance value is being calculated.  The LD structure for the BPAD 

linked regions under study in this thesis was defined using data from HapMap Release 

7 (May 2004; http://www.hapmap.org).  This data is based on the 30 CEPH trios who 

were Utah residents with ancestry from northern and western Europe (CEU) and so 

should form a reasonable sample from which to make conclusions regarding the LD 

structure of northern European and Ashkenazi Jewish families that have been studied 

in this thesis.  

Since the work of Bourgain et al was published (2000, 2001, 2002), the body of 

literature in the area of haplotype sharing methods has grown substantially with 

methods being published based on a variety of approaches.  While many of these 

methods produced tests for significance, often relying on permutation analysis, there 

has been some attempt to produce a common statistical framework for these methods.  

Unfortunately, the work reported in this thesis to apply statistical test based on 

permutation analysis was undertaken some time ago and was also carried out in an 

‘ad-hoc manner’ like many of the other methods and it fails to take advantage of the 

work done to develop such a statistical framework.  It is likely to be due to this ad-hoc 

development that the false positive rate is found to be problematic. 

It is also important to consider such an analysis as part of a range of tools available 

for studying family data.  While some have concluded that haplotype sharing methods 

are more powerful than more traditional association type methods, Tzeng et al 

(2003a) and Klei & Roeder (2007) both show that there is a lack of correlation in 

power between the two main approaches to studying allele sharing.  Even if this is not 

the case, it appears to be sensible to pursue a multi-method strategy in analysing such 
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data.  Only very superficial analysis was carried out using more established TDT 

method, but even that appeared to support the results of the allele sharing analysis.    

Further development of this method, however, could also allow it to be used in wider 

circumstances.  Of course, some of the general issues that arise in the use of haplotype 

sharing and association study methods will still be of concern.  Population 

stratification and cryptic relatedness are generally not a problem in family based 

studies, however, between-family studies like that proposed here could suffer from 

unknown relationships between the families. In the specific study of the Chr. 4p 

linked families they are well defined and very geographically disparate, so this is 

unlikely to be an issue, but it should be kept in consideration.  Power may also be an 

issue, given that there are not necessarily large numbers of families that would be 

available in the scenario outlined above, indeed the Chr. 4p linked region study 

provides just three families in two regions of study and two of the families are smaller 

families displaying only supportive LOD scores.  This provides good reason to pursue 

multiple strategies in investigating the linkage region with the allele sharing method 

just one of these. 
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5.2 Testing and proving the method 

Although I felt I had developed the method on a sound theoretical basis, before 

applying it to experimental data, I felt that it was important to provide evidence for its 

efficacy in identifying founder mutation carrying haplotypes between families.  This 

proved to be challenging, as there are few cases where there are a number of families 

known to carry the same disease susceptibility or disease causing mutation and that 

have been genotyped to a significant degree and it would have been a very expensive 

undertaking to genotype families with a known mutation just for the purpose of this 

study.  Data was eventually sourced that proved adequate to test most aspects of the 

method.   

 

5.2.1 Cystic fibrosis study 

This data was consisted genotype data from individuals of 60 Breton families known 

to carry any one of three cystic fibrosis mutations.  The Breton population is thought 

to be fairly distinct and relatively isolated from the rest of France and it considered 

very possible that a number of the families carrying the same mutation would do so 

courtesy of a common ancestor and that this would be detectable through the study of 

allele sharing around these mutations (De Braekeleer et al. 1996).  Individuals from 

these families had been genotyped at 10 markers across an 8Mb region encompassing 

the CFTR locus that carried the cystic fibrosis mutations.  While it would have been 

preferable to have a much more dense genotyping of the region, it was felt that given 

the large number of families, if enough of them shared a common ancestor that was 

recent enough, the we should be able to detect a shared region that extends across 

multiple of these markers.  The analysis itself showed that almost all the markers were 

significant on an individual marker basis.  However, there was a clear peak, in each of 

the three cases, at the markers around the CFTR locus, where the sharing was much 

more significant than the rest of the region.  It was not possible to use the nested 

permutation analysis to generate a corrected significance value for any shared region 

as there were no haplotypes that were consistently shared by all disease-linked 

haplotypes.  This was most likely due to there being a large number of families which 

may have brought in some families from a different genetic background; the sparse 

genotyping meant that it was unlikely that all the families would share a consistent 
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haplotype across such a large region; finally, the markers studied were microsatellites, 

which are known to be much more mutable than SNPs.  However, due to the small 

number of markers being tested, it was felt that a Bonferroni correction would be a 

feasible approach to take.  Following the Bonferroni correction, in the case of each 

mutation, the region formed by the markers flanking the mutations was found to 

remain significant, while the rest of the markers fell either into insignificance or 

marginal significance.   

The analysis of these families is slightly unnatural due to the families being split into 

groups based on which mutation if carried by the affected individuals.  This analysis, 

however, is still appropriate in that it was designed to prove the case whereby the 

allele sharing method would identify the common mutation carrying region where it is 

known to exist.  However, in the more realistic scenario where these families would 

have been mixed up together, the method does still find the those markers flanking the 

mutations to be the most significant, albeit at a much reduced level than in the three 

subgroups (data not shown).  It is clear that this might not always be the case.  To 

avoid positive results being lost by the inclusion of families that do not share a 

common haplotype around a founder mutation, it should be possible to study allele 

sharing between different combinations of families in order to identify whether any 

particular combination of families produce a particularly significant result.  This 

would, of course, increase the number of test being carried out and this would have to 

be dealt with on assessing true significance.  This would be a very useful area of 

future research that might allow the method to be used more fully. 

Although the data studied here was not ideal, the study of these three cystic fibrosis 

datasets does provide a clear example of the method being successful in identifying a 

region surrounding a known disease causing mutation.  This backs up the assumption 

that these mutation lie on some shared ancestral haplotype that was inherited by most 

of the families used in this study.   

 

5.2.2 Simulated data study 

To test the method further, a simulation was developed to generate distantly related 

families that carry a shared mutation.  An initial mutation and its expansion (or 

otherwise) into a population was simulated.  After a number of generations, families 

could be identified on which to test the allele sharing method.  Although the 
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simulation method assumed that there was 100% penetrance and no allelic 

heterogeneity, it was felt that these were fair assumptions as far as the purpose of this 

study was concerned.  The initial premise for the use of the allele sharing method was 

that families had been identified (probably though a linkage study) showing a genetic 

region that segregates with a disease or trait.  This was not something that was 

simulated, rather the assumption was made that for it to have been possible to identify 

the simulated families prior to testing the allele sharing method, it is unlikely that 

these cases would display such linkage should the not show high penetrance and low 

levels of allelic heterogeneity.  It was therefore deemed acceptable, within this basic 

model, that the best case scenario be taken as even in cases of high, but less than 

100%, penetrance and low levels, but non zero, allelic heterogeneity, it should still be 

possible to identify a common haplotype found in most affected individuals in our 

simulated families and therefore identify a disease linked haplotype. 

The simulation study did allow for a number of more relevant scenarios to be 

modelled.  The method was tested using various numbers of families, genotyped at 

various different densities, while varying the number of generations between the 

families and a common ancestor.  These test showed that for as few as three families, 

where genotyping was carried out to a sufficient density (~one marker every 11kb), 

all but the most ancient ancestral haplotypes would be expected to be detected.  It was 

unfortunate that the computational limitations of the simulation meant that the 

simulation could not be extended for more than 410 generations (8250 years) between 

the simulated families and their common ancestor, however, the trends were clear.  

The data presented in Table 3.2 can be used as a rough guide to show the density of 

genotyping required in a study.  While the simulation study showed that the allele 

sharing method proved to be highly successful at identifying the simulated mutation 

carrying region under a variety of conditions, the difference between the expected and 

observed false positive rates casts doubt on the accuracy of the significance values.  

This would appear to be due to a fundamental error in the way the significance values 

are generated and will need a thorough re-evaluation of these methods. 

Another aspect that arose from the study of the simulated families was how the results 

could be used to compare against the results from novel studies.  Data was generated 

in a wide range of condition, by comparing the results of a novel study with those of 

the simulated data, it is possible to draw conclusions on aspects of the result, such as 

the nature of true and false positives and of the age of any ancestral haplotype block 
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discovered.  However, due to the simplistic nature of the simulation, this may not 

stand up to scrutiny. 

These two avenues were pursued to develop confidence in the ability of the allele 

sharing method to accurately detect the ancestral haplotype expected to flank a 

mutation inherited from some common ancestor.  Although the CF study data is not 

quite similar to the data that this method was created to study and the simulation study 

is very simplistic, I feel that these studies have proven that the method is successful in 

identifying mutations under a range of conditions.  However, it has also thrown up 

some worrying features, namely the unexpected false positive rate.  While this is 

something that creates doubt as to the veracity of the method and the significance 

values it generates, and this is something that should be resolved, it should be negate 

the value that the use of the method can provide.  It does mean that the results 

reported in chapter 4 of this thesis should be treated with some caution. 
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5.3 Implementation of the method 

All the methods described here were developed as a suite of programs.  These 

programs included the allele sharing methods themselves, a program to present the 

output of the allele sharing scoring and permutation analysis visually, a program to 

generate the simulated data and test it and many other programs relating to the 

necessary data manipulation and formatting.  The programs were developed in Java 

primarily as it was the language I was most familiar with and was perfectly suitable 

for these tasks, but Java also had the advantage of meaning that the programs are 

portable across platforms.  This work, in particular the computationally intensive 

simulations, was conducted on a number of different machines running Windows, 

Linux and Solaris platforms, so it proved very useful to be able to transfer programs 

without needing to significantly recode them.   

While it would have been preferable to have designed the programs completely prior 

to coding them, due to the nature of the way the work developed (i.e. development 

continued even while the initial analysis had begun), the programs were developed in 

a piecemeal manner.  As a consequence, there are many features that should be easily 

variable to the user that were hard coded, meaning that the code must be altered to 

change some aspects of how the program runs.  While this code is available publicly, 

it would be preferable to create a more polished executable that does not require the 

source code to be visible at all.  There are other aspects of the programs that could 

also be improved, such as merging the programs that calculate the allele sharing 

scores and initial permutation analysis with the program that carries out the nested 

permutation analysis that corrects for multiple testing.  It would also be possible to 

automate certain aspects that are required to be carried out by hand at present, such as 

the identification of shared blocks and the incorporation of the haplotype structure of 

a region.  Both these features were incorporated into the simulation study, which was 

almost fully automated, so much of this code could be reused to create a more 

complete program for the study of allele sharing. 

The most relevant classes and methods have been included in this thesis, either in 

sections 2.1.5 and 2.3.2 or in Appendix A. 
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5.4 Testing the allele sharing method and applying it to BPAD 

linked families 

The four families that present genetic linkage with BPAD and BP-related illness at the 

chromosome 4p15-16 locus (Blackwood et al. 1996, Detera-Wadleigh et al. 1999, 

Asherson et al. 1998) provided the initial motivation for developing the allele sharing 

method described in this thesis.  These four families that showed strong evidence for 

the same location being implicated in major mental illness, yet the pace of progress in 

identifying the cause of those linkage signals was slow.  Some candidate gene studies 

in the region had shown little more than slight evidence for an association with BPAD 

and there were no other obvious candidates amongst a number of genes in the region 

that would be plausible to related to BPAD.  Allele sharing analysis developed in this 

thesis was intended to provide a new use for the families that generated the initial 

linkage results and to use them to narrow down the region under investigation even 

further. 

The original linkage results in F22 highlighted a region of ~20Mb (Blackwood et al. 

1996), this was reduced to two priority regions encompassing ~8Mb as additional 

linkage results were taken into account (Le Hellard et al. 2006).  The allele sharing 

analysis aimed to reduce that further more.  The families were genotyped and studied 

in two phases, with the second phase providing a high level genotypic description of 

two priority regions.  Disease-linked and control haplotypes from the four families 

were compared in the two regions and a number of significant results were found, 

with one significant shared region in particular standing out, shared region 1.  This 

region covered 197kb, 17 LD blocks (as defined by the CEPH trios in haploview) and 

was significant after correcting for multiple testing with a P value = 0.009.  While this 

appears to show strong evidence for a susceptibility or causative mutation to be found 

in this region, it is worth considering how accurate the reported P value is.  The 

simulation study showed that there was a problem with the false positive rate, casting 

doubt on the veracity of the significance values being generated.  Further analysis of 

the simulation study data suggested that accuracy of p values varied widely.  It was 

possible to show that those simulation that were most similar to the chromosome 4p 

linked family study showed an overestimation of P values of about an order of 5.  It is 

unfortunate that such doubt has been cast on what appears to be a very positive result.  
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It has to be hoped that, through the redesign of the significance testing or through 

further investigation of the simulated datasets, that this issue can be resolved and that 

the reported P values can be believed with greater confidence. 

It is hoped that the issue of uncertainty relating to the significance values does not 

detract too much from the value of the results reported here.  These results still 

provide evidence for a substantially reduced sub region that should be prioritised for 

further research.  These results should also demonstrate how such a method should be 

able to similarly allow shared haplotypes to be used to generate priority sub regions of 

large candidate regions where the appropriate family data exists.  However, it is 

important that allele/haplotype sharing methods are used as part of a mixed set of tests 

as they all have different strengths and weaknesses and it is not always easy to tell 

which method will be most successful for a particular study. 
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5.5 Final conclusions 

Genetic linkage can provide very good evidence for a susceptibility locus, but this is 

usually over a relatively large genomic region.  While the results of linkage studies 

have proven useful where simple Mendelian disorders are concerned, for complex 

disease, it has proven difficult to make progress from this point.  Therefore one of the 

main challenges facing those tackling the genetic analysis of complex disease is of 

how best to capitalise on linkage results without having to scan the entire region for 

association.  In cases of large families showing replicated linkage thought to be due to 

an ancestral mutation in common between the families, the method presented in this 

thesis addresses this problem through the investigation of allele sharing throughout 

the linked region(s).  Although it might appear quite limiting for this method to be 

restricted to quite a specific scenario, this situation is increasing common and there 

appears to be a need for such a method in this area.  Complicating issues such as 

population stratification and cryptic relatedness, add to the reasons for continuing to 

pursue a family based approach in narrowing down such linkage regions in the pursuit 

of disease causing loci.  Allele, or haplotype, sharing methods such as the one 

described in this thesis attempt to use the value stored in the haplotypes of families 

under study to identify a region linked with a disease mutation.  There is also no 

reason why this method cannot also be extended for use in other areas, although 

perhaps existing methods are more appropriate.  While there are a number of 

published methods that have looked at how alleles of haplotypes can be compared, 

none of them have been developed into a practical method that could carry out the 

specific role required for this, and similar, studies.   

 

In chapter 3 I have shown extensive evidence that the method developed here is 

effective in identifying an ancestral region for most founder mutations.  I have also 

identified a set of criteria that shows how its efficacy varies under different 

conditions.  In many cases, it will prove to be the most cost-effective approach to 

genotype and test for allele sharing where a founder mutation is expected, as this 

could reduce substantially the region for fine-scale (sequence level) investigation.  In 

reality, allele sharing will probably be used alongside other tools.  This work has also 

identified some discrepancies in the false positive rate.  While the method is shown to 

be able to accurately identify the mutation carrying region through simulation, the 
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accuracy of P values is in doubt.  Investigation into the variation in the false positive 

rate allowed some estimation of the error involved, but this is a problem that needs to 

be solved through the redesign of the statistical test itself. 

 

Chapter 4 describes the application of the methods described here to a genomic region 

that has shown evidence in a number of families of linkage to BPAD.  This study 

detected a number of significant regions, but on comparison with the results of 

simulated data, on region of 197kb appears to stand out.  It is hoped that this region 

will undergo further study to uncover the likely mutation.  It is expected that this 

scenario where a number of families are linked to the same region will becoming 

more common in studies of complex disease and the process described in chapter 4 

describes how these allele sharing methods can be used to combine these linkage 

studies in order to make progress in the search for a mutation or causative locus. 

While future advances in technology (namely cheap rapid large scale sequencing) 

may lead to linkage based methods being completely superseded.  However at present 

this method should be a valuable addition to the tools available in the study of the 

genetics of complex disorders such as bipolar affective disorder. 
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5.6 Summary 

The following is a summary of the main achievements of the work presented in this 

thesis: 

 

• Identified a gap in the positional cloning process for complex disorders; 

• Developed a method for studying allele sharing that could help bridge this 

gap, building upon the existing published body of work and extending it to 

become allow application to a specific, but not uncommon, scenario; 

• Presented evidence to show that this method was effective in taking genotype 

data from families carrying three CFTR mutations responsible for cystic 

fibrosis and used this data to identify the region that contains these mutations; 

• Developed a basic simulation that models how a founder mutation developed 

in a population through a variable number of generations; 

• Presented evidence to show that the allele sharing method was effective in 

identifying the mutations in this simulated data under most normal conditions 

of the simulation (i.e. a study of at least three families, where there is less than 

400 generations separating the families from a common ancestor); 

• Presented the results from a wide range of simulated data that shows how the 

allele sharing method would be expected to perform under a variety of 

conditions and characterised the variation in the false positive rate; 

• Showed how the allele sharing method has been applied to data from a number 

of families showing linkage to chromosome 4p15-16 for bipolar affective 

disorder to identify a sub-region within the existing linkage region; 

• Described how these results can provide the basis for more focussed research 

into the cause of this linkage signal; 

• Developed an initial insight into the age of the BPAD mutation carried by the 

4p-linked families; 

• Described how the study of these chromosome 4p15-16 linked families can be 

used as a basis for getting greater use out of large families that show replicated 

linkage with complex genetic disease. 
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5.7 Further work and recommendations 

In order to progress this work further, there is one major issue that needs to be 

resolved, that of the false positives identified in the analysis of the simulated data.  

There is clearly some feature of the test being carried out that is leading to an 

unexpected false positive rate that needs to be identified and corrected.  Until this is 

carried out any results based on this method will have some doubt case upon them.  If 

the issue of false positives cannot be resolved, alternative methods based on more 

recent work should be used.  Provided the issue of false positives is resolved one way 

or another, it would be useful to look at the following areas: 

 

Allele sharing method and program 

• A much more thorough comparison between the results of the method 

described in this thesis and other existing methods is required; 

• It may be worth testing the effect of different scoring systems; 

• It would be very useful to have additional datasets upon which to test the 

method; 

• I would like to implement a more ‘user friendly’ version of the program so 

that it could be more widely used; 

• Investigate how the method could be extended for use in testing for allele 

sharing between unrelated cases; 

• Provide a mechanism and statistical basis for the method to be used in sub-

combinations of families. 

 

Simulation study 

• Increase the computational power available to allow the datasets that can be 

simulated to be expanded; 

• Improve the simulation to allow more variability in the manner of population 

expansion; 

• Generate and test simulated datasets based on alternative and more diverse 

starting populations and genetic models. 
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Chromosome 4p15-16 

• Use the results presented in this thesis to prioritise the future analysis.  This 

may include resequencing of significant region 1 and a study of gene 

expression data; 

• Investigate the possibility of gaining access to data from an additional family 

to be included in the analysis. 
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Appendix A: Key programs written during this thesis 

A.1 ASCalculate 

 
import java.io.*; 
import java.util.Random; 
import java.util.Vector; 
import java.util.StringTokenizer; 
import java.lang.Thread; 
 
/** 
 *   Main class 
 */ 
public class ASCalculate{ 
 
  private int progCount; 
  private String inputPath; 
  private int nocases; 
  private int nocontrols; 
  //ASType - use to determine whether /no of marker s/ or /marker dist/ is used as  
  //measure of allele sharing 
  private int ASType;//0 for no of markers dist, 1 for bp dist 
  //0 for ingnore missing data, compare ambigous/1 for ignore all missing and  
  //ambiguous 
  private int missingType; 
  //attributes relating to permutation analysis 
  private boolean permAnalysis; 
  private String permType; 
  private int noPerms; 
 
  Vector pStats_ = new Vector(); 
 
  /** 
  *  1. The ASCalculate class initiates the variabl e only 
  */ 
  public ASCalculate(String st, int nocases, int no controls, int ASType, int  
  missingType, boolean permAnalysis, String permTyp e ,int noPerms) { 
      inputPath = st; 
      this.nocases = nocases; 
      this.nocontrols = nocontrols; 
      this.ASType = ASType; 
      this.missingType = missingType; 
      this.permAnalysis = permAnalysis; 
      this.permType = permType; 
      this.noPerms = noPerms; 
      progCount = 0; 
  } 
 
  /** 
   *  2. This method is called to actually begin th e procedure 
   **/ 
  public void jbInit() throws Exception { 
 
    //****** 
    //input the data from designated file 
    File f = new File(inputPath); 
    //create a vector of vectors, one for each case  and control column of data 
    Vector inputData = new Vector(); 
    for (int i=0;i<(nocontrols+nocases);i++){ 
      Vector vect_temp = new Vector(); 
      inputData.add(vect_temp); 
    } 
    //create bufered reader to read in the data fro m file 
    BufferedReader br = new BufferedReader(new File Reader(inputPath)); 
    String line = br.readLine(); 
    StringTokenizer tok = new StringTokenizer(line, ","); 
    int noTokens = tok.countTokens(); 
    Vector[] outputData;//hold results of basic ana lysis 
    //hold results of permutation analysis should i t be applicable 
    Vector[] permOut = new Vector[0]; 
    Vector pStats = new Vector();//hold stats resul ts of permutation analysis 
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    if (noTokens != (nocontrols+nocases)){//there i s an error 
      Vector v = new Vector(); 
      outputData = new Vector[1]; 
      outputData[0] = v; 
    } else { 
      while (line != null){//for each line at a tim e 
        //tokenize each row, and put into the diffe rent vectors 
        int i=0; 
        tok = new StringTokenizer(line,","); 
        while(tok.hasMoreTokens()){ 
          String st = tok.nextToken(); 
          if (missingType == 0)//take all data as a  string for now 
            ((Vector)inputData.get(i)).add(st); 
          else {//convert data to doubles, where da ta is not a double, take as '-1' 
            if(isInteger(st)) 
              ((Vector)inputData.get(i)).add(new Do uble(st)); 
            else 
               //use -1 to recognise a missing or u ndefined genotype 
              ((Vector)inputData.get(i)).add(new Do uble(-1.0)); 
          } 
          i++; 
        } 
        //get new line and loop 
        line = br.readLine(); 
      } 
      br.close(); 
 
      //******************************* 
      //3. implement the AS algorithm 
      //return two vectors 
      //now, use the  method to take the average of  both sets of pairwise comparisons 
      outputData = new Vector[3]; 
      //get average of cases pairwise AS and 
      outputData[0] = average(calcAS(inputData,0,no cases)); 
      //get average of ctrls pairwise AS 
      outputData[1] = average(calcAS(inputData,noca ses,(nocases+nocontrols))); 
      //get the difference between the two averages  
      outputData[2] = difference(outputData[0],outp utData[1]); 
 
      //**************************************** 
      //4. implement PermAnalysis (if requested) 
      //return Vector[3] 
      if(permAnalysis == true){//if we choose to ca rry out permutation analysis... 
        Vector permTempTemp = new Vector(); 
        for (int n=0;n<diseaseHap.length;n++) 
          permTempTemp.add(new Double(diseaseHap[n] )); 
        String outputPath = f.getParent() + "\\perm utations.log"; 
        BufferedWriter bwPermLog = new BufferedWrit er(new FileWriter(outputPath)); 
        bwPermLog.newLine(); 
        bwPermLog.write("Permutations of input chro mosomes are as follows:"); 
        if(permType == "standard") 
          permOut = new Vector[noPerms]; 
        else if (permType == "modified") 
          permOut = new Vector[noPerms]; 
        for(int i=0;i<noPerms;i++){ 
          //get random nos 
          bwPermLog.newLine(); 
          //temp vector to hold the randomised inpu t columns 
          Vector permTempIn = new Vector(); 
          Random rand = new Random(System.currentTi meMillis()); 
          //to make sure there is a unique seed for  the random number generator 
          Thread.sleep(10); 
          Vector randList = new Vector(); 
          if(permType == "standard"){ 
            for (int j=0;j<inputData.size();j++){ 
              int randNo = getRnd(inputData.size(), rand); 
              //if we have already taken that chr 
              if (randList.contains(new Integer(ran dNo))){ 
                j--;//repeat loop 
              } else { 
                //write the chr taken to log 
                bwPermLog.write( (new Integer(randN o)).toString() ); 
                bwPermLog.write(",");//write the ch r taken to log 
                permTempIn.add(inputData.get(randNo ));//add chr to permTempIn 
                //add to vector so it doesnt get ta ken again 
                randList.add(new Integer(randNo)); 
              } 
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            }//end of get random nos 
            //use progCount to keep track of the nu mber of permutations that have  
            //been carried out 
            progCount = i; 
            permOut[i]=difference(average(calcAS(pe rmTempIn,0,nocases)), 
            average(calcAS(permTempIn,nocases,(noca ses+nocontrols))) ); 
          } 
          } else if (permType == "modified"){//MODI FIED PERMUTATION ANALYSIS 
            //first add the known disease hap to pe rmTempIn 
            permTempIn.add(permTempTemp); 
            //now find (nocases-1) random haplotype s and add them to permTempIn 
            for (int j=0;j<nocases-1;j++){ 
              int randNo = getRnd(inputData.size(), rand); 
              //if we have already taken that chr 
              if (randList.contains(new Integer(ran dNo))){ 
                j--;//repeat loop 
              } else { 
                //write the chr taken to log 
                bwPermLog.write( (new Integer(randN o)).toString() ); 
                bwPermLog.write(",");//write the ch r taken to log 
                permTempIn.add(inputData.get(randNo ));//add chr to permTempIn 
                //add to vector so it doesnt get ta ken again 
                randList.add(new Integer(randNo)); 
              } 
            }//end of get random nos 
            //in the modified version, only want to  get the average of cases 
            permOut[i] = average(calcAS(permTempIn, 0,nocases)); 
          }//end of if modified 
        }//end of for(noPerms) 
        //close the log file 
        bwPermLog.close(); 
        //calc permutation statistics 
        if (permType == "standard"){ 
          pStats = permStats(permOut, outputData); 
        } 
        else if (permType == "modified") 
          pStats_ = permStats_(permOut,outputData);  
      }//end of if (permAnalysis==true) 
    }//end of else no tokens 
 
    /************************* 
    * 5. print results to file 
    ***/ 
    //************ 
    //Main Results 
    String outputPath = f.getParent() + "\\AS.out";  
    BufferedWriter bw = new BufferedWriter(new File Writer(outputPath)); 
    if(outputData[0].isEmpty()){ 
      bw.newLine(); 
      bw.write("There is a different number of colu mns of input data found compared to 
      that identified by the user"); 
    } else { 
      for(int i=0;i<outputData[0].size();i++){ 
        bw.write(((Double)outputData[0].get(i)).toS tring()); 
        bw.write(","); 
        bw.write(((Double)outputData[1].get(i)).toS tring()); 
        bw.write(","); 
        bw.write(((Double)outputData[2].get(i)).toS tring()); 
        bw.newLine(); 
      }//end of for 
    }//end of else 
    bw.close(); 
 
    //******************* 
    //Permutation Results 
    if(permAnalysis == true){ 
      String outputPathPermStats = f.getParent() + "\\AS_permutations.stats"; 
      BufferedWriter bwPermStats = new BufferedWrit er(new FileWriter 
      (outputPathPermStats)); 
      bwPermStats.write("Permutation Analysis Resul ts"); 
      bwPermStats.newLine(); 
      bwPermStats.write("===================="); 
      bwPermStats.write("\n\nPermutation Type: " + permType); 
      bwPermStats.write("\nNumber of Permutations: " + noPerms); 
      bwPermStats.write("\nOriginal data from file:  " + inputPath); 
      bwPermStats.write("\nResults of the analysis of the real data can be found in 
      file: AS.out"); 
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      bwPermStats.write("\nRecord of the randomisat ion of haplotypes can be found in 
      file: permutations.log"); 
      bwPermStats.write("\nRecord of the actual res ults of each permutation can be  
      found in file: Perm_diffs_all.txt"); 
 
      if (permType == "standard"){ 
        bwPermStats.write("\n---------------------- ---------------------------------- 
        ------------------"); 
        bwPermStats.write("\nColumn 1 shows (for ea ch marker) the proportion of  
        permutations that were gave the difference in allele sharing greater than that 
        seen in the real results\n"); 
        for(int i=0;i<pStats.size();i++){ 
          bwPermStats.newLine(); 
          bwPermStats.write( ((Double)pStats.get(i) ).toString() ); 
        } 
      } else if (permType == "modified"){ 
        bwPermStats.write("\n---------------------- ---------------------------------- 
        ------------------"); 
        bwPermStats.write("\n\nData shows (for each  marker) the proportion of  
        permutations that were gave allele sharing greater than that seen in the real  
        results for cases"); 
        for(int i=0;i<pStats_.size();i++){ 
          bwPermStats.newLine(); 
          bwPermStats.write( ((Double)pStats_.get(i )).toString() ); 
        } 
      } 
      bwPermStats.close(); 
 
      //****** 
      //also want to print out the difference data for EVERY marker 
      //- for sig analysis 
      String outputPathPermDiffs = f.getParent() + "\\AS_permutations.all"; 
      BufferedWriter bwPermDiffsAll = new BufferedW riter(new 
      FileWriter(outputPathPermDiffs)); 
      //if we are using standard perm analysis - pr int to file, the diffs of 
      //each permutation 
      if(permType == "standard"){ 
        for (int i=0;i<(permOut.length);i++){ 
          for (int j=0;j<((Vector)(permOut[i])).siz e();j++){ 
            bwPermDiffsAll.write(  ((Double)permOut [i].get(j) ).toString() ); 
            bwPermDiffsAll.write(","); 
          } 
          bwPermDiffsAll.newLine(); 
        } 
      } 
      //if we are using modified perm analysis - pr int to file the actual 
      //sharing for each permutation (no diffs caus e we do not calc for ctrls) 
      else if (permType == "modified"){ 
        for (int i=0;i<(permOut.length);i++){ 
          for (int j=0;j<((Vector)(permOut[i])).siz e();j++){ 
            bwPermDiffsAll.write(  ((Double)permOut [i].get(j) ).toString() ); 
            bwPermDiffsAll.write(","); 
          } 
          bwPermDiffsAll.newLine(); 
        } 
      } 
      bwPermDiffsAll.close(); 
    }//END OF PERM ANALSIS OUTPUT (if requested) 
  } 
 
  /*** 
  *          _calcAS_ method to carry out AS calcul ation 
  *          takes the input data and the set of co lums that are relevant 
  *          carries out pairwise comparison for ea ch of them 
  *          returns a vector of the results. 
  ***/ 
  private Vector calcAS(Vector inputData, int colSt art, int colEnd){ 
    Vector pairCases = new Vector();//create a vect or of each pairwise comparison 
    //create a loop of nocases factorial(!) 
    for (int i=colStart;i<colEnd;i++){ 
      for (int j=i+1;j<colEnd;j++){ 
        //whithin this loop, carry out the pairwise  comparison, and enter into 
        //the first row of pairComp vector 
        Vector pairTemp = new Vector();//new vector  for each parwise comparison 
        if (ASType == 1)//meansuring length in bp d istance 
          pairTemp = ASBp((Vector)inputData.get(i), (Vector)inputData.get(j)); 
        else if (ASType == 0)//measuring length as number of alleles 
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          pairTemp = ASLength((Vector)inputData.get (i),(Vector)inputData.get(j)); 
        //add the result of each pairwise compariso n to the pairComp vector 
        pairCases.add(pairTemp); 
      } 
    }//end of loop around the no of pairwise compar isons 
    return pairCases; 
  }//end of calcAS 
 
  private Vector ASBp(Vector col1,Vector col2){ 
    Vector pairTemp = new Vector(); 
    int n=0; 
    int m=0; 
    for (int k=0;k<col1.size();k++){ 
      if ( ((Double)(col1.get(k))).doubleValue() ==  -1.0   ){ 
        pairTemp.add(new Double(-111111.0)); 
        m++;//if missing in col1 m++ 
      } else if ( ((Double)(col2.get(k))).doubleVal ue() == -1.0   ){ 
        pairTemp.add(new Double(-111111.0)); 
        m++;//if missing in col2 m++ 
      } else if ((col1.get(k)).equals(col2.get(k))) { 
        pairTemp.add(new Double(-111111.0)); 
        n++;//if matching, n++ 
      } else { 
        //when there is no match, or no missing dat a, go back and fill in the distace 
        //for the previos string of matches, and al so add a zero entry for this  
        //non-match 
        double distTemp = 0.0; 
        if(n>1) 
          distTemp = MRI[k-1] - MRI[k-(n+m)]; 
        for(int l=0;l<(n+m);l++) 
            pairTemp.set((k-l-1),new Double(distTem p)); 
        pairTemp.add(new Double(0.0)); 
        n=0; 
        m=0; 
      } 
    }//end of for 
    if(m>0 || n>0){//if the loop has not ended on a  non-match, need to tidy up 
      if(n>1){ 
        double distTemp = MRI[col1.size()-1] - MRI[ col1.size()-n-m]; 
        for(int l=0;l<(n+m);l++) 
          pairTemp.set((col1.size()-l-1),new Double (distTemp)); 
      } else{ 
        for(int l=0;l<(n+m);l++) 
          pairTemp.set((col1.size()-l-1),new Double (0.0)); 
      } 
    } 
    return pairTemp; 
  } 
 
  //**** 
  //*         calcAS sub-method - length measure 
  //**** 
  private Vector ASLength(Vector col1,Vector col2){  
    Vector pairTemp = new Vector(); 
    int n=0;//to count where strings of matches occ ur 
    int m=0;//take into account the number of missi ng points 
    int p=0;//counts the number of matches 
    //keep track of the mounting score allocated fr om abiguous matches 
    double pscore=0.0;  
    for (int k=0;k<col1.size();k++){ 
      if (missingType == 0){//ignore missing, compa re abmbiguous method 
        String st1 = (String)col1.get(k); 
        String st2 = (String)col2.get(k); 
        if (st1.equals("?") || st2.equals("?")){//d ata missing in hap1 or hap2 
          pairTemp.add(new Double(n+pscore)); 
          if(n>0)//this is important - it means tha t if there is a ?, it only gets a 
                 //score if there is a score immedi ately prior, even if there is one 
                 //immediately after - this can be changed 
            m++; 
        } else if(!isInteger(st1) || !isInteger(st2 )){//need to do pairwise if either 
                                                      //hap1 or hap2 are ambiguous 
                                                      //genotypes 
          double match = 0; 
          if (!isInteger(st1)){//if the hap1 genoty pe also ambigous 
            String st1s[] = st1.split("_");//get th e two options 
            if (!isInteger(st2)){//if the hap2 is a lso ambiguous 
              String st2s[] = st2.split("_");//get the hap2 options 
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              for (int i=0;i<st1s.length;i++){ 
                for (int j=0;j<st2s.length;j++){ 
                  //check that thas part of the amb iguity for either hap is not '?' 
                  if (isInteger(st1s[i]) && isInteg er(st2s[j])){ 
                    if ( (new Double(st1s[i])).equa ls(new Double(st2s[j])) ) 
                      match += 1.0; 
                  } 
                }//end of for st2s.length 
              }//end of for st1s.lenght 
              match /= 4.0; 
            } else {//only hap1 is ambiguous 
              for (int i=0;i<st1s.length;i++){ 
                //check that this part of the ambig uity is not '?' 
                if (isInteger(st1s[i])){ 
                  if ( (new Double(st1s[i])).equals (new Double(st2)) ) 
                    match += 1.0; 
                } 
              } 
              match /= 2.0; 
            } 
          } else {//it must be that only hap2 is am biguous 
            String st2s[] = st2.split("_");//get th e hap2 options 
            for (int i=0;i<st2s.length;i++){ 
              //check that this part of the ambigui ty is not '?' 
              if (isInteger(st2s[i])){ 
                if ( (new Double(st1)).equals(new D ouble(st2s[i])) ) 
                  match += 1.0; 
              } 
            } 
            match /= 2.0; 
          } 
          if (match > 0.0){ 
            pscore += match; 
            pairTemp.add(new Double(n+pscore)); 
            for(int l=0;l<(n+p+m);l++){ 
              pairTemp.set((k-l-1),new Double(n+psc ore)); 
            } 
            p++; 
          } else if (match == 0.0){//there is no ma tch even from the ambiguous data 
            pairTemp.add(new Double(0.0)); 
            n=0; m=0; p=0; pscore=0.0; 
          } 
        } else if ( (new Double(st1)).equals(new Do uble(st2))   ){ 
          pairTemp.add(new Double(n+pscore+1)); 
          for(int l=0;l<(n+p+m);l++){ 
            pairTemp.set((k-l-1),new Double(n+pscor e+1)); 
          } 
          n++; 
        } else { 
          pairTemp.add(new Double(0.0)); 
          n=0; m=0; p=0; pscore=0.0; 
        } 
      } 
      else if (missingType == 1){//ignore missing a nd ambiguous method 
        if ( ((Double)(col1.get(k))).doubleValue() == -1.0   ){ 
          pairTemp.add(new Double(n)); 
          if(n>0) 
            m++; 
        } else if ( ((Double)(col2.get(k))).doubleV alue() == -1.0   ){ 
          pairTemp.add(new Double(n)); 
          if(n>0) 
            m++; 
        } else if ((col1.get(k)).equals(col2.get(k) )){ 
          pairTemp.add(new Double(n+1.0)); 
          for(int l=0;l<(n+m);l++){ 
            pairTemp.set((k-l-1),new Double(n+1.0)) ; 
          } 
          n++; 
        } else { 
          pairTemp.add(new Double(0.0)); 
          n=0; m=0; 
        } 
      } 
    }//end of loop around the lenght of the pair of  columns 
    return pairTemp; 
  } 
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  //**** 
  //*         method to take the average of a group  of vectors 
  //**** 
  private Vector average(Vector pairCases){ 
    Vector av = new Vector(); 
    for (int i=0;i<((Vector)pairCases.get(0)).size( );i++){ 
      double sum = 0; 
      for(int j=0;j<(pairCases.size());j++){ 
        sum += ((Double)(((Vector)pairCases.get(j)) .get(i))).doubleValue(); 
      } 
      double avg = sum/pairCases.size(); 
      av.add(new Double(avg)); 
    } 
    return av; 
  } 
 
  /** 
   *    Calculate the difference between content of  two vectors 
   */ 
  private Vector difference(Vector cases, Vector ct rls){ 
    Vector diff = new Vector(); 
    for (int i=0;i<cases.size();i++){ 
      diff.add( new Double( ((Double)cases.get(i)). doubleValue() - 
((Double)ctrls.get(i)).doubleValue()) ); 
    } 
    return diff; 
  } 
 
  /** 
   *      Method to test if a string is an integer 
   */ 
  private final boolean isInteger( String s ){ 
    try{ 
      Integer d = new Integer( s ); 
      return true; 
    }catch(NumberFormatException e){ 
      return false; 
    }//end try/catch 
  }//end isInteger() 
 
  /** 
   *    Get a random no 
   */ 
  private static int getRnd(int nCealing, Random r)  { 
      int nRet = r.nextInt(); 
      nRet = Math.abs(nRet); 
      nRet = nRet % nCealing; 
      return nRet; 
  } 
 
  /** 
   * 
   */ 
  private Vector permStats_(Vector[] perm, Vector[]  out){ 
    Vector statsSum = new Vector(); 
    for (int i=0;i<perm[0].size();i++){ 
      int temp = 0; 
      double nCase = 0.0; 
      for (int j=0;j<perm.length;j++){ 
        if( ((Double)perm[j].get(i)).doubleValue() < ((Double)out[0].get(i)) 
        .doubleValue() ) 
          nCase++; 
      }//end of for perm.length 
      nCase /= noPerms; 
      statsSum.add(new Double(nCase)); 
    } 
    return statsSum; 
  } 
 
  private Vector permStats(Vector[] perm, Vector[] out){ 
    //store the no of permutations that are less th an what is seen in the real results 
    Vector vDiffs = new Vector(); 
    for (int i=0;i<perm[0].size();i++){ 
      int temp = 0; 
      double nDiffs = 0.0; 
      for(int j=0;j<perm.length;j++){ 
          if(((Double)(perm[j].get(i))).doubleValue ()< ((Double)(out[2].get(i))). 
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          doubleValue() ) 
            nDiffs++;//CHANGE THIS 
          temp = 0;//diff columnn 
      }//end of for perm.length (columns) 
 
      nDiffs /= noPerms; 
      vDiffs.add(new Double(nDiffs)); 
    }//end of for perm[0].size (rows) 
    return vDiffs; 
  } 
 
  //publicly accesible method that returns the prog ress made in carrying out the 
  //permutation analysis 
  public int getProg(){ 
    return progCount; 
  } 
} 
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A.2 NewASPermAnalysis 

 
import java.io.*; 
import java.util.StringTokenizer; 
import java.util.Vector; 
 
public class NewASPermAnalysis { 
 
  //store the marker position of the end of each bl ock 
  Vector endofblock = new Vector(); 
  //and the size of each block 
  Vector blocksize = new Vector(); 
  //the number of consecutive blocks that make up t he best region of sharing 
  int testNBlocks; 
  //and the average score for these blocks in the r eal data 
  double realAvScore; 
 
  public NewASPermAnalysis(String inputPath, String  inputPath2, String inputPath3) { 
    //**************** 
    //1. Get the data 
    //inputPath1 is AS.out 
    //get the data 
    Vector realData = new Vector(); 
    try { 
      BufferedReader br = new BufferedReader(new Fi leReader(inputPath)); 
      String line = br.readLine(); 
      while (line != null){ 
        StringTokenizer tok = new StringTokenizer(l ine,","); 
        tok.nextToken();//ignore first token 
        tok.nextToken();//ignore second token 
        realData.add(tok.nextToken());//store the t hird token 
        line = br.readLine(); 
      } 
    } catch (Exception e){ 
      System.out.println("Error reading from AS.out  file: " + e); 
    } 
    //inputPath2 is AS_permutations.all 
    //get this data 
    Vector permData = new Vector(); 
    try { 
      BufferedReader br = new BufferedReader(new Fi leReader(inputPath2)); 
      String line = br.readLine(); 
      while (line != null){ 
        Vector permDataTemp = new Vector(); 
        StringTokenizer tok = new StringTokenizer(l ine,","); 
        while (tok.hasMoreTokens()) 
          permDataTemp.add(tok.nextToken());// 
        line = br.readLine(); 
        permData.add(permDataTemp); 
      } 
    } catch (Exception e){ 
      System.out.println("Error reading from AS_per mutations.all file: " + e); 
    } 
    //inputPath3 is data.dat 
    //get this data 
    try { 
       BufferedReader br = new BufferedReader(new F ileReader(inputPath3)); 
       String line1 = br.readLine(); 
       StringTokenizer tok = new StringTokenizer(li ne1,","); 
       while (tok.hasMoreTokens()) 
         endofblock.add(tok.nextToken()); 
       String line2 = br.readLine(); 
       StringTokenizer tok2 = new StringTokenizer(l ine2,","); 
       while (tok2.hasMoreTokens()) 
         blocksize.add(tok2.nextToken()); 
       String line3 = br.readLine(); 
       testNBlocks = new Integer(line3).intValue();  
       String line4 = br.readLine(); 
       realAvScore = new Double(line4).doubleValue( ); 
    } catch (Exception e){ 
      System.out.println("Error reading from data.d at file: " + e); 
    } 
    //end of 1. 
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    //*********** 
    //2. now we want to compare 
    //first, get the average score for each block, for the real data 
    Vector realBlockData = getBlockAvs(realData); 
    //secondly, store the average scores or each bl ock, for each permutation 
    Vector permBlockData = new Vector(); 
    //for each permutation 
    for (int i=0;i<permData.size();i++){ 
      permBlockData.add(getBlockAvs((Vector)permDat a.get(i))); 
    } 
    //2.b. we also want to then go on and take the average of each seq of N 
    //blocks for each permutation 
    Vector permTestNBlocksData = new Vector(); 
    for (int i=0;i<permBlockData.size();i++){ 
      permTestNBlocksData.add(new Double(getBestNBl ockScore( 
      (Vector)permBlockData.get(i)))); 
    } 
    double bestScore = 0.0; 
    for (int i=0;i<permTestNBlocksData.size();i++){  
      if(  ((Double)permTestNBlocksData.get(i)).dou bleValue() >= bestScore){ 
        bestScore = ((Double)permTestNBlocksData.ge t(i)).doubleValue(); 
      } 
    } 
 
    //****************** 
    //3. compare the real data to each of the permu tations 
    Vector realBlockPValues = new Vector(); 
    for (int k=0;k<((Vector)permBlockData.get(0)).s ize();k++){//for each block 
      double score = 0.0; 
      for (int i=0;i<permBlockData.size();i++){//fo r each permutaiton 
        if ( ((Double)((Vector)permBlockData.get(i) ).get(k)).doubleValue() > ((Double) 
        (realBlockData).get(k)).doubleValue()  ){ 
              //add 1.0 to the score if the permuta tions score is > the realData score 
              score += 1.0; 
        } 
      }//end of for each permutation 
      //now calc the proportion of the permutations data > real data 
      double propn = score/permBlockData.size(); 
      //add the propn (or P value) to the p-values vector 
      realBlockPValues.add(new Double(propn)); 
    }//end of each marker 
    //3.b. we also want to compare the best score f or N consecutive blocks in 
    //each of the permutations against the real res ult 
    int noMoreSigPerms = 0; 
    //for each perm 
    for (int i=0;i<permTestNBlocksData.size();i++){  
      //now compare 
      if(  ((Double)permTestNBlocksData.get(i)).dou bleValue() >= realAvScore){ 
        //and score as the number of significant pe rmutations 
        noMoreSigPerms++; 
      } 
    } 
 
    //4. compare the results for each permutation t o all the others 
    Vector permBlockPValues = new Vector(); 
    for (int k=0;k<((Vector)permBlockData.get(0)).s ize();k++){//for each block 
      Vector permBlockPValuesTemp = new Vector(); 
      for (int i=0;i<permBlockData.size();i++){//fo r each datai (permutaiton) 
        double score = 0.0; 
        //go though all the rest j (other permutati ons) 
        for (int j=0;j<permBlockData.size();j++){ 
          if (i!=j){//apart from itself 
            //if datai>dataj 
            Vector v = (Vector)permBlockData.get(i) ; 
            if ( ((Double)((Vector)permBlockData.ge t(j)).get(k)).doubleValue() > 
            ((Double)((Vector)permBlockData.get(i)) .get(k)).doubleValue()  ){ 
              score += 1.0;//add 1.0 to the score 
            } 
          } 
        }//end of all other perms 
        //now calc the proportion of datai > dataj 
        double propn = score/permBlockData.size(); 
        //add the propn (or P value) to pOut vector  
        permBlockPValuesTemp.add(new Double(propn)) ; 
      }//end of for each permutation 
      permBlockPValues.add(permBlockPValuesTemp); 
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    }//end of each marker 
 
    //5. write these results to file 
    //first the reaData vs permData 
    String outputPath = (new File(inputPath3)).getP arent(). 
    concat("//newASRealPermutationsPValues.out"); 
    try{ 
      BufferedWriter bw = new BufferedWriter(new Fi leWriter(outputPath)); 
      bw.write(""); 
      for (int i=0;i<realBlockPValues.size();i++){ 
        bw.write("" + realBlockPValues.get(i)); 
        bw.write("\n"); 
      } 
      bw.close(); 
    } catch (Exception e){ 
      System.out.println("Error writing to file: " + e); 
    } 
    //then the permData vs all other perms 
    String outputPath2 = (new File(inputPath3)).get Parent(). 
    concat("//newASPermPermutationsPValues.out"); 
    try{ 
      BufferedWriter bw = new BufferedWriter(new Fi leWriter(outputPath2)); 
      bw.write(""); 
      for (int i=0;i<permBlockPValues.size();i++){ 
        bw.write("" + ((Vector)permBlockPValues.get (i)).get(0)); 
        for (int j=1;j<((Vector)permBlockPValues.ge t(i)).size();j++){ 
          bw.write("," + ((Vector)permBlockPValues. get(i)).get(j)); 
        } 
        bw.write("\n"); 
      } 
      bw.close(); 
    } catch (Exception e){ 
      System.out.println("Error writing to file: " + e); 
    } 
    //also add a new file that outputs the scores f or each permutation for each 
    //block 
    String outputPath3 = (new File(inputPath3)).get Parent(). 
    concat("//newASPermPermutationsScores.out"); 
    try{ 
      BufferedWriter bw = new BufferedWriter(new Fi leWriter(outputPath3)); 
      bw.write(""); 
      for (int i=0;i<permBlockData.size();i++){ 
        bw.write("" + ((Vector)permBlockData.get(i) ).get(0)); 
        for (int j=1;j<((Vector)permBlockData.get(i )).size();j++){ 
          bw.write("," + ((Vector)permBlockData.get (i)).get(j)); 
        } 
        bw.write("\n"); 
      } 
      bw.close(); 
    } catch (Exception e){ 
      System.out.println("Error writing to file: " + e); 
    } 
    //finally, write the results where we compared the av scores for n consec 
    //blocks 
    String outputPath4 = (new File(inputPath3)).get Parent(). 
    concat("//new2ndPermAnalysis.out"); 
    try{ 
      BufferedWriter bw = new BufferedWriter(new Fi leWriter(outputPath4)); 
      bw.write("There were " + noMoreSigPerms); 
      bw.write(" permutations where there was a seq uence of " + testNBlocks); 
      bw.write(" blocks that showed an average alle le sharing score >= that found in 
      the real data"); 
      bw.close(); 
    } catch (Exception e){ 
      System.out.println("Error writing to file: " + e); 
    } 
  } 
 
  /** 
   * Get block averages 
   * 
   * this is a method to go through a vector of dat a where each cell is a marker 
   * and calculate a score for each block 
   */ 
  private Vector getBlockAvs(Vector markerData){ 
    //keep track of the block we are at 
    int blockCount = 0; 
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    //sum of datapts in a block 
    double dataptSum = 0.0; 
    //store the av score for each LD block 
    Vector blockScores = new Vector(); 
    //for each marker 
    for (int i=0;i<markerData.size();i++){ 
      double datapt = (new Double((String)markerDat a.get(i))).doubleValue(); 
      //add up the scores for all blocks, and avera ge 
      dataptSum += datapt; 
      //if we are at the end of a block 
      if(i == (new Integer((String)endofblock.get(b lockCount))).intValue() ) { 
        //get the average datapt for the block 
        double dataptAv = dataptSum/( (new 
        Integer((String)blocksize.get(blockCount))) .intValue() ); 
        blockScores.add(new Double(dataptAv)); 
        blockCount++; 
        dataptSum = 0.0; 
      } 
    } 
    return blockScores; 
  } 
 
  /** 
   * Get best score for N consecutive blocks 
   * 
   * this is a method to go through a vector of dat a where each cell is a block 
   * and calculate the best average score for a seq uence of N consequtive blocks 
   */ 
  private double getBestNBlockScore(Vector blockDat a){ 
    //go through each of the list of block averages  
    //for te first n-1 add to a vector 
    //then for n go on and take the average again 
    //then for each additional block remove the fir st and add the new and take 
    //another average 
    Vector consecBlocks = new Vector(); 
    Vector avBlockScores = new Vector(); 
    double bestNBlockScore = 0.0; 
    for (int i=0;i<blockData.size();i++){ 
      //if we have been through less than the requi red number of blocks so far 
      //add the latest block to the list 
      if(consecBlocks.size() < (testNBlocks-1)){ 
        consecBlocks.add(blockData.get(i)); 
      }//else if we have just 1 less than required 
      else if (consecBlocks.size() == (testNBlocks- 1)){ 
        //add the newest block 
        consecBlocks.add(blockData.get(i)); 
        //and calc the average score 
        double sum = 0.0; 
        for (int k=0;k<testNBlocks;k++){ 
          sum += ((Double)consecBlocks.get(k)).doub leValue(); 
        } 
        bestNBlockScore = sum/testNBlocks; 
      }//else we then add new block to the end and remove the oldst block from 
      //the start 
      else { 
        //remove the oldest blcock 
        consecBlocks.remove(0); 
        //add the newest block 
        consecBlocks.add(blockData.get(i)); 
        //and calc the average score 
        double sum = 0.0; 
        for (int k=0;k<testNBlocks;k++){ 
          sum += ((Double)consecBlocks.get(k)).doub leValue(); 
        } 
        if ( (sum/testNBlocks) > bestNBlockScore) 
          bestNBlockScore = sum/testNBlocks; 
      }//end of final else 
    } 
    return bestNBlockScore; 
  } 
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A.8 PedSimMain 

import java.io.*; 
import java.lang.Math; 
import java.lang.Thread; 
import java.util.StringTokenizer; 
import java.util.Random; 
import java.util.Vector; 
import java.util.StringTokenizer; 
import java.util.Hashtable; 
import java.util.Enumeration; 
 
public class PedSimMain { 
 
 
  /****** 
   * Variables 
   */ 
  //number of simlations 
  private int noSims = 200; 
  //number of generations 
  private int noGens = 50; 
  //no of end families we want to generate 
  private int noFams = 3; 
  //store the recombination rate (chance per base t hat there is a recomb event) 
  private double recombRate = 1.0E-8; 
  //dist between markers (in bps) 
  private double markerDist = (16778.0*150.0); 
  //number of markers 
  private int noMarkers = 149; 
 
  //number of permutations to carry out the AS anal ysis over 
  private int noASPerms = 1000; 
 
  /***** 
   * 
   */ 
  //store the location of the mutation on the disea se chr 
  private int mutMarker; 
  //folder in which to work 
  private String infolder = "//net//uisdein//export //usr0//s9636861//code//sim2//"; 
  //create a miclcalculate object to run the AS 
  private ASCalculate mc; 
  //create a newASpermanalysis object to run the ad ditional perm analysis 
  private NewASPermAnalysis nmpa; 
 
  public PedSimMain() { 
 
    //1. getData - starting data 
    int[][] population = importHaps(); 
    //and then generate a log file with the sim det ails 
    try{ 
      BufferedWriter bwLog = new BufferedWriter(new  FileWriter(infolder +  
      "AllStatsSummary.txt")); 
      bwLog.write("Simulation study"); 
      bwLog.newLine(); 
      bwLog.write("Number of simulations:" + noSims ); 
      bwLog.newLine(); 
      bwLog.write("Number of families generated:" +  noFams); 
      bwLog.newLine(); 
      bwLog.write("Number of AS permutations:" + no ASPerms); 
      bwLog.newLine(); 
      bwLog.write("Recombination rate:" + recombRat e); 
      bwLog.newLine(); 
      bwLog.write("Dist between markers (evenly spa ced):" + markerDist); 
      bwLog.newLine(); 
      bwLog.write("Number of markers:" + (populatio n[0].length) ); 
      bwLog.close(); 
    } catch (Exception e){ 
    } 
    //carry out a number of sims of this population  data 
    //place each of these sims in a separate folder  
    //in each of these folders, the resuts of the s im are analysed using AS 
    //and then the additional perm analysis 
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    //this means that for each sim, we generatate a  p value for the region about the  
    mutation 
    //and we also look at any other significant reg ions that appear 
 
    //2. for each sim 
    for (int i=0;i<noSims;i++){ 
    String outfolder = "//net//uisdein//export//usr 0//s9636861//code//sim2//sim" + i +  
    "//"; 
    File f = new File(outfolder); 
    //if the folder doesn't already exist, make it 
    if(!f.exists()) 
      f.mkdir(); 
    //list files in the folder 
    File[] files = f.listFiles( new FileFilter(){ 
      public boolean accept(File f){ 
          return true; 
      } 
    } ); 
    //go through and delete all these files 
    for (int j=0;j<files.length;j++){ 
      if( files[j].isDirectory() ){ 
        File [] files2 = files[j].listFiles(); 
        for (int k=0;k<files2.length;k++){ 
          files2[k].delete(); 
        } 
      } 
      files[j].delete(); 
    } 
 
    //3. the sim 
    //identify one of these to be the disease hap 
    double x = population.length; 
    double rand = Math.random(); 
    int diseaseHapIndex = (int)(rand*x); 
    int[] diseaseHap = population[diseaseHapIndex];  
    //specify the markers closest to the disease mu tation 
    //at present assume that the central marker is the one *********************** 
    mutMarker = diseaseHap.length/2; 
    //send data to similate class 
    //keep trying until a successful simulation is carried out 
    //this sim creates (amongst others) a ASIn.csv file 
    boolean status = false; 
    int j=0; 
    int noASCtrls = 0; 
    while (!status){ 
      Simulator2 sim = new Simulator2(diseaseHap, p opulation, noGens, noFams,  
      markerDist, mutMarker, recombRate, outfolder) ; 
      status = sim.getStatus(); 
      noASCtrls = sim.getASNoCtrls(); 
    } 
 
    //4. use inputs to calc AS 
    String ASInPath = outfolder + "ASIn.csv"; 
    try{ 
      mc = new ASCalculate(ASInPath,noFams,noASCtrl s,0,1,true,"standard" 
      ,noASPerms); 
      mc.jbInit(); 
    } catch (Exception ioe){ 
      System.out.println("IOException e: " + ioe); 
    } 
 
    //5.the additional perm analysis 
    //use the AS.out file 
    String ASOutPath = outfolder + "AS.out"; 
    //and the AS_permutations.all file 
    String ASPermsAllPath = outfolder + "AS_permuta tions.all"; 
    //and the AS_permutations.stats file 
    String ASStatsPath = outfolder + "AS_permutatio ns.stats"; 
    //and the MyHapMap.out file 
    String blockDefPath = infolder + "dat//MyHapMap .out"; 
    //and the data.dat file 
    String datPath = infolder + "dat//data.dat"; 
    //need to go through the ASIn.csv file and find  all the shared regions 
    FindSigRegions fsr = new 
FindSigRegions(ASInPath,ASOutPath,ASStatsPath,block DefPath,datPath,mutMarker); 
    //the fsr method generates muliple data.dat fil es allowing the add perm analysis 
    //to be carried out on each of them. 
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    //run the add perm analysis 
    int n=0; 
    String datFile = outfolder  + "sr" + n + "//dat a.dat"; 
    while( (new File(datFile).exists()) ){ 
      nmpa = new NewASPermAnalysis(ASOutPath,ASPerm sAllPath,datFile); 
      n++; 
      datFile = outfolder  + "sr" + n + "//data.dat "; 
    } 
 
    /********************************************** * 
     **  6.log the sig regions 
     */ 
    Vector sigValues = new Vector(); 
    Vector sigRegBlocks = new Vector(); 
    int mutIndex_temp = 1000000; 
    n=0; 
    //count the non-sig regions 
    int nonCount = 0; 
    datFile = outfolder  + "sr" + n + "//new2ndPerm Analysis.out"; 
    while( (new File(datFile).exists()) ){ 
      try { 
        BufferedReader br = new BufferedReader(new FileReader(datFile)); 
        String st = br.readLine(); 
        StringTokenizer tok = new StringTokenizer(s t,"\t"); 
        double sigValues_temp = (new Double((String )tok.nextToken())).doubleValue(); 
        if (sigValues_temp <= (0.05*noASPerms)){ 
          sigValues.add(new Double(sigValues_temp)) ; 
              sigRegBlocks.add(tok.nextToken()); 
        } else { 
          nonCount++; 
        } 
        br.close(); 
      } catch (Exception e){ 
        System.out.println("Error reading new2ndPer mAnalysis.out: " + e); 
      } 
      if (  (new File(outfolder + "sr" + n + "//MUT ATION")).exists()  ){ 
        mutIndex_temp = (n-nonCount); 
      } 
      n++; 
      datFile = outfolder  + "sr" + n + "//new2ndPe rmAnalysis.out"; 
    } 
    //delete content of sr folder 
    n=0; 
    File srFolder = new File(outfolder + "sr" + n);  
    while ( srFolder.exists() ){ 
      File[] contentSRFolder = srFolder.listFiles(n ew FileFilter(){ 
        public boolean accept(File f){ 
          return true; 
      }}); 
      for (int k=0;k<contentSRFolder.length;k++){ 
        contentSRFolder[k].delete(); 
      } 
      n++; 
      srFolder = new File(outfolder + "sr" + n); 
    } 
    try { 
      BufferedWriter bw = new BufferedWriter(new Fi leWriter((outfolder +  
      "StatsSummary.txt"))); 
      bw.write("SR,P,IsMutReg,NoBlocks"); 
      bw.newLine(); 
      for (int k=0;k<sigValues.size();k++){ 
        bw.write(k + "," + sigValues.get(k) + ",");  
        if (mutIndex_temp == k){ 
          bw.write("1,"); 
        } else { 
      bw.write("0,"); 
    } 
        bw.write("" + sigRegBlocks.get(k) ); 
        bw.newLine(); 
      } 
      bw.close(); 
    } catch (Exception e){ 
      System.out.println("Error writing to StatsSum mary.txt: " + e); 
    } 
    sigValues.removeAllElements(); 
    sigRegBlocks.removeAllElements(); 
    }//END OF FOR EACH SIM 
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  //call SummarStats 
  SummarStats ss = new SummarStats(); 
  for (int i=0;i<noSims;i++){ 
    String simFolder = infolder + "sim" + i; 
    (new File(simFolder)).delete(); 
    } 
  } 
 
  //import the haplotypes 
  // 
  //each line is a haplotype 
  // 
  private int[][] importHaps(){ 
    int[][] haps = new int[916][noMarkers]; 
    try { 
      BufferedReader br = new BufferedReader(new Fi leReader(infolder +  
      "hapsin//regb_haps.in")); 
      String line = br.readLine(); 
      int i=0; 
      while (line!=null){ 
        StringTokenizer tok = new StringTokenizer(l ine,","); 
        int[] hapTemp = new int[noMarkers]; 
        int j=0; 
        while (tok.hasMoreTokens()){ 
          hapTemp[j++] = (new Integer(tok.nextToken ())).intValue(); 
        } 
        haps[i++] = hapTemp; 
        line = br.readLine(); 
      } 
      br.close(); 
    } catch (Exception e){ 
      System.out.println("Error importing haps: " +  e); 
    } 
    return haps; 
  } 
 
  public static void main(String[] args) { 
    PedSimMain psm = new PedSimMain(); 
  } 
} 
 
class Simulator2 { 
 
  /** 
   * global variables 
   */ 
  private int noFams;//store the final no of fams w e want to generate 
  private boolean status;//use to infom main if sim ulation successful 
  private double distBetweenMarkers;//dist between each marker 
  private int mutMarker;//store the location of the  mutation on the disease chr 
  private double recombRate;//store the rate of rec ombination 
  private String infolder;//location of job 
  private int noASCtrls;//store the number of contr ol haps in the ASIn file 
  private Hashtable generationsHT;// 
  private Hashtable peopleHT_;// 
  private Hashtable prevGenHT;// 
  private Hashtable peopleHT;// 
 
  public Simulator2(int[] diseaseHap, int[][] contr olHaps, int noGenerations, int 
noFams, double distBetweenMarkers, int mutMarker, d ouble recombRate, String infolder) 
{ 
    this.noFams = noFams; 
    this.distBetweenMarkers = distBetweenMarkers; 
    this.mutMarker = mutMarker; 
    this.recombRate = recombRate; 
    this.infolder = infolder; 
 
    /***** 
     * Initialise 
     */ 
    //set status = false 
    setStatus(false); 
    //select a disease chromosome 
    int[] hapDisease = diseaseHap; 
    //to start, call the original affected individu al the first offspring 
    //they will carry the the disease haplotype and  1 control chromosome 
    peopleHT_ = new Hashtable(); 
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    //for the first affected individual 
    //store the two haplotypes (chromsomes) and the  affection status. 
    Vector affectedPerson = new Vector(); 
    affectedPerson.add("N,N");//parentID (N is no p arent) 
    affectedPerson.add("D");//disease status 
    affectedPerson.add(hapDisease);//haplotpye1 
    affectedPerson.add(controlHaps[(int)Math.floor( Math.random()* 
    (controlHaps.length))]);//random haplotype2 
    peopleHT_.put("0",affectedPerson); 
    //for the first married in 
    Vector minPerson = makeMarriedIn(controlHaps[(i nt)Math.floor(Math.random()* 
    (controlHaps.length))],controlHaps[(int)Math.fl oor(Math.random()* 
    (controlHaps.length))]); 
    peopleHT_.put("1",minPerson); 
    //create hashtable to store results 
    generationsHT = new Hashtable(); 
    //add the first generation 
    generationsHT.put("0",peopleHT_); 
    //keep count of all the individuals 
    int idCount = 2; 
 
    /********************************** 
     * 
     * Actual sim 
     * 
     **/ 
    //1. for each generation 
    for (int i=1;i<noGenerations;i++){ 
      //store the data for each generation in a new  hashtable 
      peopleHT = new Hashtable(); 
      //get the info from the previous generation 
      prevGenHT = (Hashtable)generationsHT.get((new  Integer(i-1)).toString()); 
 
      //2. for each parent 
      Vector sortedKeys = new Vector(); 
      sortedKeys = sort(prevGenHT.keys()); 
      for (int j=0;j<sortedKeys.size();j++){ 
        /** 
         * Here we model the recombination 
         */ 
        //initialise child1 
        Vector child0 = new Vector(); 
        Vector child1 = new Vector(); 
        //select 50/50 whether to start from parent 0 chr 0 or 1 
        String key = ((Integer)sortedKeys.get(j)).t oString(); 
        Vector v = new Vector(); 
        v = (Vector)prevGenHT.get(key); 
        //store affection status from 1st parent 
        String parentDS = (String)v.get(1); 
        //child0 
        Vector c0c0temp = new Vector(); 
        c0c0temp = getChildChr((int[])v.get(2),(int [])v.get(3),(String)v.get(1),key); 
        int[] child0Chr0 = (int[])c0c0temp.get(0); 
        String child0DS = (String)c0c0temp.get(1); 
        //child1 
        Vector c1c0temp = new Vector(); 
        c1c0temp = getChildChr((int[])v.get(2),(int [])v.get(3),(String)v.get(1),key); 
        int[] child1Chr0 = (int[])c1c0temp.get(0); 
        String child1DS = (String)c1c0temp.get(1); 
        // 
        j++; 
        String key2 = ((Integer)sortedKeys.get(j)). toString(); 
        Vector v2 = (Vector)prevGenHT.get(key2); 
        //child0 
        Vector c0c1temp = new Vector(); 
        int[] t = (int[])v2.get(2); 
        int[] t2 = (int[])v2.get(3); 
        String t3 = (String)v2.get(1); 
        c0c1temp = getChildChr((int[])v2.get(2),(in t[])v2.get(3), 
        (String)v2.get(1),key); 
        int[] child0Chr1 = (int[])c0c1temp.get(0); 
        //child1 
        Vector c1c1temp = new Vector(); 
        c1c1temp = getChildChr((int[])v2.get(2),(in t[])v2.get(3), 
        (String)v2.get(1),key); 
        int[] child1Chr1 = (int[])c1c1temp.get(0); 
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        //4. 
        child0.add(key.concat(",").concat(key2));// parentID 
        child1.add(key.concat(",").concat(key2));// parentID 
        child0.add(child0DS);//disease status 
        child1.add(child1DS);//disease status 
        child0.add(child0Chr0);//haplotpye1 
        child1.add(child1Chr0);//haplotpye1 
        child0.add(child0Chr1);//haplotype2 
        child1.add(child1Chr1);//haplotype2 
 
        //if the parent is affected 
        if(parentDS.equals("D")){ 
          //put child1 into the gen 
          peopleHT.put(new Integer(idCount++).toStr ing(),child0); 
 
          //if this is not the last generation, mak e a married in and add 
          if(!(i==(noGenerations-1))){ 
            Vector min = new Vector(); 
            min = makeMarriedIn(controlHaps[(int)Ma th.floor(Math.random()* 
            (controlHaps.length))],controlHaps[(int )Math.floor(Math.random()* 
            (controlHaps.length))]); 
            peopleHT.put(new Integer(idCount++).toS tring(),min); 
          } 
          //put child2 into the gen 
          peopleHT.put(new Integer(idCount++).toStr ing(),child1); 
          if(!(i==(noGenerations-1))){ 
            Vector min = new Vector(); 
            min = makeMarriedIn(controlHaps[(int)Ma th.floor(Math.random()* 
            (controlHaps.length))],controlHaps[(int )Math.floor(Math.random()* 
            (controlHaps.length))]); 
            peopleHT.put(new Integer(idCount++).toS tring(),min); 
          } 
        } 
      }//end of for each person in prev generation (for sortedkeys) 
      //now, put this generations info into gneerat ionsHT 
      if (peopleHT.size()>0){ 
        generationsHT.put((new Integer(i)).toString (),peopleHT); 
      } 
      else 
        break; 
    }//end of for no generation 
 
    /********************************************** ***************************** 
     * Build the families using last 4 generations 
     */ 
    //we must have simulated at least 5 generations  to be able to do this 
    if(generationsHT.size()==noGenerations){ 
 
      /** 
       * Split the last four generations into famil ies 
       */ 
      //store a vector of each family 
      Vector families = new Vector(); 
      //Initialise 
      Enumeration gkeys = generationsHT.keys();//en numeration of the key for each 
      generation 
      Vector gkeysSorted = sort(gkeys);//sorted lis t of these keys 
      //for oldest 0 generaion 
      //get the hash table 
      Hashtable ht = (Hashtable)generationsHT.get(( (Integer)gkeysSorted.get 
      (gkeysSorted.size()-4)).toString()); 
      Enumeration keys = ht.keys();//enumeration of  the keys within generation 0 
      Vector keysSorted = sort(keys);//these keys s orted 
      //for each individual in generation 0 
      for (int i=0;i<keysSorted.size();i++){ 
        //create a family if the person is affected  
       if(   ((String)((Vector)ht.get(((Integer)key sSorted.get(i)).toString())). 
       get(1)).equals("D")  ){ 
          Vector family_temp = new Vector(); 
          Vector individual_temp = (Vector)((Vector )ht.get(((Integer)keysSorted. 
          get(i)).toString())).clone(); 
          //add the key (individual id) to the star t of the vector) 
          individual_temp.add(0,(Integer)keysSorted .get(i)); 
          //now add them to the family temp 
          family_temp.add(individual_temp); 
          i++;//get that persons spouse 
          individual_temp = (Vector)((Vector)ht.get (((Integer)keysSorted. 
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          get(i)).toString())).clone(); 
          //add the key (individual id) to the star t of the vector) 
          individual_temp.add(0,(Integer)keysSorted .get(i)); 
          family_temp.add(individual_temp); 
          families.add(family_temp); 
        } else 
          i++; 
      } 
      //for each of the subesequent 3 generations 
      for (int i=(gkeysSorted.size()-3);i<gkeysSort ed.size();i++){ 
        //for generation i 
        ht = (Hashtable)generationsHT.get(((Integer )gkeysSorted.get(i)).toString()); 
        keys = ht.keys();//enumeration of the keys within generation i 
        keysSorted = sort(keys);//these keys sorted  
        //for each individual j 
        for (int j=0;j<keysSorted.size();j++){ 
          //get j's parents 
          String parents = (String)((Vector)ht.get( ((Integer)keysSorted. 
          get(j)).toString())).get(0); 
          String[] parent = parents.split(","); 
          //for each family k 
          for (int k=0;k<families.size();k++){ 
            Vector family = (Vector)families.get(k) ; 
            //for each member in that family 
            for (int l=0;l<family.size();l++){ 
              //if j has parents in family k, 
              if (parent[0].equals(     ((Integer)( (Vector)family.get(l)). 
              get(0)).toString()        ) ){ 
                //get individual j's details 
                Integer in = (Integer)keysSorted.ge t(j); 
                Vector individualj = (Vector)((Vect or)ht.get(((Integer)keysSorted. 
                get(j)).toString())).clone(); 
                //add the key (individual id) to th e start of the vector) 
                individualj.add(0,in); 
                //add j to that family 
                ((Vector)families.get(k)).add(indiv idualj); 
                //also add j++ to that family 
                Vector individualjplus1 = (Vector)( (Vector)ht.get(((Integer) 
                keysSorted.get(++j)).toString())).c lone(); 
                individualjplus1.add(0,(Integer)key sSorted.get(j)); 
                ((Vector)families.get(k)).add(indiv idualjplus1); 
                //and break 
                break; 
              } 
            } 
          } 
        } 
      } 
 
      /** 
       * filter families 
       * if a family has 6 or less memebers (i.e. o nly 2 generations large) 
       * then is is deleted 
       * NB, this is based on the model of two kids  per fam 
       */ 
      for (int i=0;i<families.size();i++){ 
        if(((Vector)families.get(i)).size() < 7){ 
          families.remove(i); 
          i--; 
        } 
      } 
      //only continue if there are at least 3 famil ies 
      if(families.size()>=3){ 
        //set status = true 
        //this means that we have cheived a result and have generated three 
        //families on which to test the allele shar ing methods 
        setStatus(true); 
 
        /**** 
         *   now, want to calculate the relatedness  of the families 
         * 
         */ 
        //create a vector to hold all the compariso ns between families 
        Vector famDistances = new Vector(); 
        //for the 1st member of all the family (apa rt from the last) 
        for(int i=0;i<families.size()-1;i++){ 
          Vector famiid0 = (Vector)((Vector)familie s.get(i)).get(0); 
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          //create a vector to hold the distances b etween fami and famj 
          Vector ijDistances = new Vector(); 
          //for each other family (exluding compari sons already done) 
          //compare parents to those from each of t he other families 
          //keep going back a generation till you f ind a common ancestor and store the  
          //number of generation difference 
          for(int j=i+1;j<families.size();j++){ 
            //test this person from famiid0 agin fa mjid0 
            Vector famjid0 = (Vector)((Vector)famil ies.get(j)).get(0); 
            //initialise parents 
            String parents0 = famiid0.get(1).toStri ng(); 
            String parents1 = famjid0.get(1).toStri ng(); 
            //store the level of separation 
            int sep = 1; 
            //go up through all the generations unt il we find a common ansector 
            boolean comAn = false;//is there a com( mon)An(cestor) 
            while (!comAn){ 
              //if they have common parents, then s tore the no of gen separate 
              if( (parents0).equals(parents1)){ 
                comAn = true; 
              } 
              //else 
              else{ 
                //go back a further generation 
                sep++; 
                //and get the parents from the prev ious generation 
                //generationsHT contains info on al l the generations 
                int noGens = generationsHT.size(); 
                //we are starting from the last gen eration 
                //so we now want to get the partent s of those individuals named as 
                //parents 0 and 1 
                //so we look at generation (noGens- sep) 
                Hashtable generationN = (Hashtable) generationsHT.get((new Integer( 
               (noGens-sep-3))).toString()); 
                //and find the individuals that are  named as parents0 and 1 from 
                //need to split up the parents0 and  1 
                String[] parent00 = parents0.split( ","); 
                Vector ind0 = (Vector)generationN.g et(parent00[0]); 
                String[] parent10 = parents1.split( ","); 
                Vector ind1 = (Vector)generationN.g et(parent10[0]); 
                //now, get ind0 and 1s parents 
                parents0 = (String)ind0.get(0); 
                parents1 = (String)ind1.get(0); 
                //and loop round again with these n ew parents 
              } 
            } 
            //store the comparisons 
            ijDistances.add(new Integer(sep)); 
          } 
          famDistances.add(ijDistances); 
        } 
 
        /** 
         * FIND THE MOST DISTANT FAMILIES 
         * 
         * select the three most distant families 
         * get dist between 1st fam and all others 
         * for each of these, calc d(1i)+d(in) wher e n is last fam 
         * calc max of these sums 
         * take the three fams that form the max 
         */ 
        int max = 0; 
        //this is the indexs of the matrix that con tains the best thrid family 
        int optIndex = 1; 
        for(int i=0;i<famDistances.size()-1;i++){ 
          //if famDistances.get(0).get(i) + famDist ances.get(i)(n) > max 
          //then max = ... 
          //dist between 0 and i 
          int dist0i = ((Integer)((Vector)famDistan ces.get(0)).get(i)).intValue(); 
          //dist between i and n 
          int distin = ((Integer)((Vector)famDistan ces.get(i+1)). 
          lastElement()).intValue(); 
          if(  (dist0i + distin)  > max){ 
            max = dist0i + distin; 
            optIndex = i+1; 
          } 
        } 
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        if (((Integer)((Vector)famDistances.get(0)) .get(optIndex-1)).intValue() <40 || 
            ((Integer)((Vector)famDistances.get(0)) .lastElement()).intValue() <40 || 
            ((Integer)((Vector)famDistances.get(opt Index)).lastElement()).intValue()  
            <40  ) 
          setStatus(false); 
 
        /** 
         * Write results to file 
         */ 
        //write the matrix of distances to file 
        try { 
          BufferedWriter bwDistMat = new BufferedWr iter(new FileWriter(infolder + 
          "dist.matrix")); 
          bwDistMat.write("So, after " + generation sHT.size() + " generations, we have  
          " + families.size() + " families.\n" ); 
          bwDistMat.write("Of which the three most distant families are family 0, " +  
          optIndex + " and " + famDistances.size() + ".\n" ); 
          //write explicitly the distances between the three most distant families 
          bwDistMat.write("Distance between fam 0 a nd " + (optIndex) + " is: " +  
         ((Vector)famDistances.get(0)).get(optIndex -1)  + "\n"); 
          bwDistMat.write("Distance between fam 0 a nd n is: " +  
         ((Vector)famDistances.get(0)).lastElement( ) + "\n"); 
          bwDistMat.write("Distance between fam " +  (optIndex) + " and n is: " +  
         ((Vector)famDistances.get(optIndex)).lastE lement()); 
          bwDistMat.newLine(); 
          bwDistMat.newLine(); 
          //write header 
          bwDistMat.write("\t"); 
          for (int i=-1;i<((Vector)famDistances.get (0)).size();i++) 
            bwDistMat.write((i+1) + "\t"); 
          bwDistMat.newLine(); 
          bwDistMat.newLine(); 
          //write matrix 
          for(int i=0;i<famDistances.size();i++){ 
            bwDistMat.write("" + i + "\t"); 
            for(int j=-1;j<i;j++) 
              bwDistMat.write("-\t"); 
            for (int j=0;j<((Vector)famDistances.ge t(i)).size();j++){ 
              bwDistMat.write(((Vector)famDistances .get(i)).get(j) + "\t"); 
            } 
            bwDistMat.newLine(); 
          } 
          // 
          bwDistMat.write("" + famDistances.size() + "\t"); 
          for (int i=-1;i<famDistances.size();i++){  
            bwDistMat.write("-\t"); 
          } 
          bwDistMat.close(); 
        } catch (Exception e){ 
          System.out.println("Error writing distanc e matrix: " + e); 
        } 
        //write results - family 1 
        try { 
          BufferedWriter bwFam1 = new BufferedWrite r(new FileWriter(infolder +  
          "fam1.out")); 
          // 
          Vector fam1 = (Vector)families.get(0); 
          //for each member of the family 
          for (int i=0;i<fam1.size();i++){ 
            Vector inds = (Vector)fam1.get(i); 
            //for each characteristic in indi 
            bwFam1.write("" + inds.get(0)); 
            bwFam1.write("," + inds.get(1)); 
            bwFam1.write("," + inds.get(2)); 
            int[] hap0 = (int[])inds.get(3); 
            for (int j=0;j<hap0.length;j++) 
              bwFam1.write("," + hap0[j]); 
            bwFam1.newLine(); 
            bwFam1.write("" + inds.get(0)); 
            bwFam1.write("," + inds.get(1)); 
            bwFam1.write("," + inds.get(2)); 
            int[] hap1 = (int[])inds.get(4); 
            for (int j=0;j<hap1.length;j++) 
              bwFam1.write("," + hap1[j]); 
            bwFam1.newLine(); 
          } 
          bwFam1.close(); 
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        } catch (Exception e){ 
          System.out.println("Error writing fam1: "  + e); 
        } 
 
 
        //write - most distant third family 
        try { 
          BufferedWriter bwFamI = new BufferedWrite r(new FileWriter(infolder +  
          "fami.out")); 
          Vector fami = (Vector)families.get((optIn dex)); 
          //for each member of the family 
          for (int i=0;i<fami.size();i++){ 
            Vector inds = (Vector)fami.get(i); 
            //for each characteristic in indi 
            bwFamI.write("" + inds.get(0)); 
            bwFamI.write("," + inds.get(1)); 
            bwFamI.write("," + inds.get(2)); 
            int[] hap0 = (int[])inds.get(3); 
            for (int j=0;j<hap0.length;j++) 
              bwFamI.write("," + hap0[j]); 
            bwFamI.newLine(); 
            bwFamI.write("" + inds.get(0)); 
            bwFamI.write("," + inds.get(1)); 
            bwFamI.write("," + inds.get(2)); 
            int[] hap1 = (int[])inds.get(4); 
            for (int j=0;j<hap1.length;j++) 
              bwFamI.write("," + hap1[j]); 
            bwFamI.newLine(); 
          } 
          bwFamI.close(); 
        } catch (Exception e){ 
          System.out.println("Error writing fam1: "  + e); 
        } 
        //write - familyn (last fam) 
        try { 
          BufferedWriter bwFamN = new BufferedWrite r(new FileWriter(infolder +  
          "famn.out")); 
          Vector famn = (Vector)families.lastElemen t(); 
          //for each member of the family 
          for (int i=0;i<famn.size();i++){ 
            Vector inds = (Vector)famn.get(i); 
            //for each characteristic in indi 
            bwFamN.write("" + inds.get(0)); 
            bwFamN.write("," + inds.get(1)); 
            bwFamN.write("," + inds.get(2)); 
            int[] hap0 = (int[])inds.get(3); 
            for (int j=0;j<hap0.length;j++) 
              bwFamN.write("," + hap0[j]); 
            bwFamN.newLine(); 
            bwFamN.write("" + inds.get(0)); 
            bwFamN.write("," + inds.get(1)); 
            bwFamN.write("," + inds.get(2)); 
            int[] hap1 = (int[])inds.get(4); 
            for (int j=0;j<hap1.length;j++) 
              bwFamN.write("," + hap1[j]); 
            bwFamN.newLine(); 
          } 
          bwFamN.close(); 
        } catch (Exception e){ 
          System.out.println("Error writing famN: "  + e); 
        } 
 
        //*********************** 
        // contruct a ASIn file 
        // 
        Vector ASIn = new Vector(); 
        //add fam1hap0 
        int[] fam1hap0 = (int[])((Vector)((Vector)f amilies.get(0)).get(0)).get(3); 
        ASIn.add(fam1hap0); 
        //add famihap0 
        ASIn.add((int[])((Vector)((Vector)families. get(optIndex)).get(0)).get(3)); 
        //add famNhap0 
        ASIn.add((int[])((Vector)((Vector)families. lastElement()).get(0)).get(3)); 
        //add fam1hap1 
        ASIn.add((int[])((Vector)((Vector)families. get(0)).get(0)).get(4)); 
        //add fam1 married in haps 
        for (int i=1;i<((Vector)families.get(0)).si ze();i++){ 



Appendix A   Key programs written during this thesis 

  150

          if(((String)((Vector)((Vector)families.ge t(0)).get(i)).get(1)). 
          equals("N,N")){ 
            ASIn.add((int[])((Vector)((Vector)famil ies.get(0)).get(i)).get(3)); 
            ASIn.add((int[])((Vector)((Vector)famil ies.get(0)).get(i)).get(4)); 
          } 
        } 
        //add famihap1 
        ASIn.add((int[])((Vector)((Vector)families. get(optIndex)).get(0)).get(4)); 
        //add fami married in haps 
        for (int i=1;i<((Vector)families.get(optInd ex)).size();i++){ 
          if(  ((String)((Vector)((Vector)families. get(optIndex)).get(i)).get(1)). 
          equals("N,N")){ 
            ASIn.add((int[])((Vector)((Vector)famil ies.get(optIndex)).get(i)). 
            get(3)); 
            ASIn.add((int[])((Vector)((Vector)famil ies.get(optIndex)).get(i)). 
            get(4)); 
          } 
        } 
        //add famNhap1 
        ASIn.add((int[])((Vector)((Vector)families. lastElement()).get(0)).get(4)); 
        //add famN married in haps 
        for (int i=1;i<((Vector)families.lastElemen t()).size();i++){ 
          if(  ((String)((Vector)((Vector)families. lastElement()).get(i)).get(1)). 
          equals("N,N")   ){ 
            ASIn.add((int[])((Vector)((Vector)famil ies.lastElement()).get(i)). 
            get(3)); 
            ASIn.add((int[])((Vector)((Vector)famil ies.lastElement()).get(i)). 
            get(4)); 
          } 
        } 
        // 
        noASCtrls = ASIn.size() - 3; 
        //write it to file 
        try{ 
          BufferedWriter bwAS = new BufferedWriter( new FileWriter(infolder +  
          "ASIn.csv")); 
          for (int i=0;i<((int[])ASIn.get(0)).lengt h;i++){ 
            for (int j=0;j<ASIn.size();j++){ 
              bwAS.write(((int[])ASIn.get(j))[i] + ","); 
            } 
            bwAS.newLine(); 
          } 
          bwAS.close(); 
        } catch (Exception e){ 
          System.out.println("Error writing ASIn.cs v: " + e); 
        } 
      } 
      //clean up 
      families.removeAllElements(); 
    } 
    //clean up 
    affectedPerson.removeAllElements(); 
    minPerson.removeAllElements(); 
    prevGenHT.clear(); 
    peopleHT.clear(); 
    peopleHT_.clear(); 
    generationsHT.clear(); 
  } 
 
  /******* 
  * 
  */ 
  public Vector makeMarriedIn(int[] sHap1, int[] sH ap2){ 
    Vector minPerson = new Vector(); 
    minPerson.add("N,N");//parentID (N is no parent ) 
    minPerson.add("U");//disease status 
    minPerson.add(sHap1);//haplotpye1 
    minPerson.add(sHap2);//haplotype2 
    return minPerson; 
  } 
  public Vector sort(Enumeration e){ 
    Vector v = new Vector(); 
    String st = (String)e.nextElement(); 
    v.add(new Integer(st)); 
    while (e.hasMoreElements()){ 
      st = (String)e.nextElement(); 
      int x = (new Integer(st)).intValue(); 
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      //go through each no allready added 
      boolean added = false; 
      for (int i=0;i<v.size();i++){ 
        //if x is >, add in fron 
        if(x<((Integer)v.get(i)).intValue()){ 
           v.insertElementAt(new Integer(x),i); 
           added = true; 
           break; 
        } 
      } 
      if (!added) 
        v.add(new Integer(x)); 
    } 
    return v; 
  } 
 
  /** 
   * 
   */ 
  public Vector getChildChr(int[] chr0, int[] chr1,  String parentDS, String key){ 
    String ds = ""; 
    int[] childChr = new int[chr0.length]; 
    double rand = Math.random(); 
    int chr2Use = 0; 
    if(rand<=0.5){//start getting chr1 from parent1  
      //set chr2Use to 0 
      chr2Use = 0; 
    } else { 
      chr2Use = 1; 
    } 
    //go through each SNP 
    for (int k=0;k<chr0.length;k++){ 
      //add the markers, one by one 
      if(chr2Use==0){ 
        childChr[k] = chr0[k]; 
        if(k==mutMarker) 
          ds=parentDS; 
      }else if (chr2Use==1){ 
        childChr[k] = chr1[k]; 
        if(k==mutMarker) 
          ds="U"; 
      } 
      //test for recombination 
      //get rand no 
      rand = Math.random(); 
      //if rand<(1x10(8)*dbm) then we have a recomb ination event 
      if(rand < (recombRate*distBetweenMarkers)){ 
        //and we change parental chromosomes 
        if(chr2Use==0) 
          chr2Use=1; 
        else if(chr2Use==1) 
          chr2Use=0; 
      } 
    } 
    Vector v = new Vector(); 
    v.add(childChr); 
    v.add(ds); 
    return v; 
  } 
  //use these to tell the main method whether or no t the simulator has generated 
  //>=3 multi generational familes 
  public void setStatus(boolean s){ 
    if(s) 
      status = true; 
    else 
      status = false; 
  } 
  public boolean getStatus(){ 
    return status; 
  } 
 
  // 
  public int getASNoCtrls(){ 
    return noASCtrls; 
  } 
} 
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  class SummarStats{ 
    // 
    private String infolder = "//net//uisdein//expo rt//usr0//s9636861//code//sim2//"; 
    // 
    public SummarStats(){ 
    //get average stats for family size etc... 
    String stNoASPerms = ""; 
    String stNoSims = ""; 
    try{ 
      BufferedReader brStats = new BufferedReader(n ew FileReader(infolder +  
      "AllStatsSummary.txt")); 
      brStats.readLine();//ignore line 
      stNoSims = brStats.readLine();//line contains  noSims 
      //remove text from line 
      stNoSims = stNoSims.replaceFirst("Number of s imulations:",""); 
      brStats.readLine();//ignore line 
      stNoASPerms = brStats.readLine();//line conta ins noASPerms 
      //remove text from line 
      stNoASPerms = stNoASPerms.replaceFirst("Numbe r of AS permutations:",""); 
      brStats.close(); 
    } catch (Exception e){ 
      System.out.println("Exception reading from st ats file: " + e); 
    } 
    //read in general info regarding sim run... 
    double noPerms = (new Double(stNoASPerms)).doub leValue(); 
    double noSims = (new Double(stNoSims)).doubleVa lue(); 
    //for each sim folder 
    int i=0; 
    int truePos = 0; 
    int falsePos = 0; 
    Vector mutRegPValues = new Vector(); 
    Vector otherPValues = new Vector(); 
    Vector mutRegBlocks = new Vector(); 
    Vector otherBlocks = new Vector(); 
    Vector famDists = new Vector(); 
    String statsFile = infolder + "sim" + i + "//St atsSummary.txt"; 
    String distMatFile = infolder + "sim" + i + "// dist.matrix"; 
    String statsFolder = infolder + "sim" + i; 
    while ((new File(statsFile)).exists()){ 
      //get stats 
      try{ 
        BufferedReader br = new BufferedReader(new FileReader(statsFile)); 
        String line = br.readLine(); 
        line = br.readLine(); 
        while (line!=null){ 
          StringTokenizer tok = new StringTokenizer (line,","); 
          tok.nextToken(); 
          double p = (new Double(tok.nextToken())). doubleValue()/noPerms; 
          String isMutReg = tok.nextToken(); 
          String noBlocks = tok.nextToken(); 
          //if we are looking at the mut carrying r egion 
          if(isMutReg.equals("1")){ 
            if(p <= 0.05){ 
              truePos++; 
              mutRegPValues.add( (new Double(p)).to String() ); 
              mutRegBlocks.add(noBlocks); 
            } 
          //else we are looking at a false region 
          } else { 
            if(p <= 0.05){ 
              falsePos++; 
              otherPValues.add( (new Double(p)).toS tring() ); 
              otherBlocks.add(noBlocks); 
            } 
          } 
          line = br.readLine(); 
        } 
        br.close(); 
      } 
      catch (Exception e){ 
        System.out.println("exception reading from file " + i + ": " + e); 
      } 
      //also get info from each dist.matrix file 
      try{ 
        BufferedReader br = new BufferedReader(new FileReader(distMatFile)); 
        br.readLine(); 
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        br.readLine(); 
        String dist1 = br.readLine(); 
        dist1 = dist1.replaceFirst(".*: ",""); 
        famDists.add(dist1); 
        String dist2 = br.readLine(); 
        dist2 = dist2.replaceFirst(".*: ",""); 
        famDists.add(dist2); 
        String dist3 = br.readLine(); 
        dist3 = dist3.replaceFirst(".*: ",""); 
        famDists.add(dist3); 
        br.close(); 
      }  catch (Exception e){ 
        System.out.println("exception reading from file " + i + ": " + e); 
      } 
      //delete folders 
      File[] content = (new File(statsFolder)).list Files(new FileFilter(){ 
        public boolean accept(File f){ 
          return true; 
        } 
      } ); 
      for (int j=0;j<content.length;j++){ 
        boolean fot = content[j].delete(); 
        if(content[j].isDirectory()){ 
          File[] xxx = content[j].listFiles(new Fil eFilter(){ 
            public boolean accept(File f){ 
              return true; 
          }} ); 
            } 
          } 
          //get next folder 
          i++; 
          statsFile = infolder + "sim" + i + "//Sta tsSummary.txt"; 
          distMatFile = infolder + "sim" + i + "//d ist.matrix"; 
          statsFolder = infolder + "sim" + i; 
        }//END OF WHILE EACH STATSTFOLDER.EXISTS 
        //calculate the average of the fam distance s 
        double avFamDist = 0.0; 
        for (int j=0;j<famDists.size();j++){ 
          avFamDist += (new Double(  (String)famDis ts.get(j) )). 
          doubleValue(); 
        } 
        avFamDist = avFamDist/famDists.size(); 
        //calculate average true pos scores 
        double avTruePosP = 0.0; 
        if(mutRegPValues.size()==0) 
          avTruePosP = Double.NaN; 
        else { 
          for (int j=0;j<mutRegPValues.size();j++){  
            avTruePosP += (new Double(  (String)mut RegPValues.get(j) )). 
            doubleValue(); 
          } 
          avTruePosP = avTruePosP/mutRegPValues.siz e(); 
        } 
        //calculate average false pos scores 
        double avFalsePosP = 0.0; 
        if(otherPValues.size()==0) 
        avFalsePosP = Double.NaN; 
        else { 
      for (int j=0;j<otherPValues.size();j++){ 
        avFalsePosP += (new Double(  (String)otherP Values.get(j) )).doubleValue(); 
      } 
        avFalsePosP = avFalsePosP/otherPValues.size (); 
      } 
      //calculate average true pos blocks 
      double avTruePosBlocks = 0.0; 
      if(mutRegBlocks.size()==0) 
      avTruePosBlocks = Double.NaN; 
      else { 
    for (int j=0;j<mutRegBlocks.size();j++){ 
      avTruePosBlocks += (new Double(  (String)mutR egBlocks.get(j) )).doubleValue(); 
    } 
    avTruePosBlocks = avTruePosBlocks/mutRegBlocks. size(); 
  } 
  //calculate average false pos scores 
  double avFalsePosBlocks = 0.0; 
  if(otherBlocks.size()==0) 
  avFalsePosBlocks = Double.NaN; 
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  else { 
    for (int j=0;j<otherBlocks.size();j++){ 
      avFalsePosBlocks += (new Double(  (String)oth erBlocks.get(j) )).doubleValue(); 
    } 
    avFalsePosBlocks = avFalsePosBlocks/otherBlocks .size(); 
  } 
 
        //append the results to a AllStatsSummary 
        try { 
          BufferedWriter bw = new BufferedWriter(ne w FileWriter((infolder +  
          "AllStatsSummary.txt"),true)); 
          bw.newLine(); 
          //summary of families 
          bw.write("Average distance between famili es (generations):" + avFamDist); 
          bw.newLine(); 
          //summary of stats 
          bw.newLine(); 
          bw.write("True positives: " + truePos + "  (" + ((double)(truePos/noSims)* 
          100.0) + "%)"); 
          bw.newLine(); 
          bw.write("False positives: " + falsePos);  
          bw.newLine(); 
          bw.write("P values for true positives: ") ; 
          bw.write("" + avTruePosP + " ("); 
          if(mutRegPValues.size()>0){ 
            bw.write("" + mutRegPValues.get(0)); 
            for(int j=1;j<mutRegPValues.size();j++) { 
              bw.write("," + mutRegPValues.get(j));  
            } 
          } 
          bw.write(")"); 
          bw.newLine(); 
          bw.write("P values for false positives: " ); 
          bw.write("" + avFalsePosP + " ("); 
          if(otherPValues.size()>0){ 
            bw.write("" + otherPValues.get(0)); 
            for(int j=1;j<otherPValues.size();j++){  
              bw.write("," + otherPValues.get(j)); 
            } 
          } 
          bw.write(")"); 
          bw.newLine(); 
          bw.write("Size in blocks for true positiv es: "); 
          bw.write("" + avTruePosBlocks + " ("); 
          if(mutRegBlocks.size()>0){ 
            bw.write("" + mutRegBlocks.get(0)); 
            for(int j=1;j<mutRegBlocks.size();j++){  
          bw.write("," + mutRegBlocks.get(j)); 
        } 
      } 
      bw.write(")"); 
      bw.newLine(); 
      bw.write("Size in blocks for false positives:  "); 
      bw.write("" + avFalsePosBlocks + " ("); 
      if(otherBlocks.size()>0){ 
        bw.write("" + otherBlocks.get(0)); 
        for(int j=1;j<otherBlocks.size();j++){ 
          bw.write("," + otherBlocks.get(j)); 
        } 
      } 
      bw.write(")"); 
      //close file 
      bw.close(); 
    } catch (Exception e){ 
      System.out.println("Exception writing to AllS tatsSummary: " + e); 
    } 
  } 
} 
 
class FindSigRegions { 
 
  public FindSigRegions(String ASInPath, String ASO utPath, String ASStatsPath, 
  String blockDefPath, String datPath, int mutMarke rIndex) { 
    Vector col0 = new Vector(); 
    Vector col1 = new Vector(); 
    Vector col2 = new Vector(); 
    Vector ASScores = new Vector(); 
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    Vector ASPValues = new Vector(); 
    Vector blockNos = new Vector(); 
    //1 
    //read the ASIn file -> col 0,1,2 
    //store the first three columns 
    try { 
      BufferedReader br = new BufferedReader(new Fi leReader(ASInPath)); 
      String line = br.readLine(); 
      while (line != null){ 
        StringTokenizer tok = new StringTokenizer(l ine,","); 
        col0.add(tok.nextElement()); 
        col1.add(tok.nextElement()); 
        col2.add(tok.nextElement()); 
        line = br.readLine(); 
      } 
      br.close(); 
    } catch (Exception e){ 
      System.out.println("Exception in fsr import A SIn.csv: " + e); 
    } 
 
    //2 
    //now get the AS.in scores -> ASScores 
    try{ 
      BufferedReader br2 = new BufferedReader(new F ileReader(ASOutPath)); 
      String line = br2.readLine(); 
      while (line!=null){ 
        StringTokenizer tok = new StringTokenizer(l ine,","); 
        tok.nextElement();//ignore 1st element 
        tok.nextElement();//ignore 2nd 
        ASScores.add(tok.nextElement());//store the  3rd as the AS score 
        line = br2.readLine(); 
      } 
      br2.close(); 
    } catch (Exception e){ 
      System.out.println("Exception in fsr import A S.in: " + e); 
    } 
 
    //3 
    //now read in the p values from AS_permutations .stats -> ASPValues 
    try { 
      BufferedReader br3 = new BufferedReader(new F ileReader(ASStatsPath)); 
      String line = br3.readLine(); 
      int count = 0; 
      while (line!=null){ 
        if(count>11) 
          ASPValues.add(line); 
        count++; 
        line = br3.readLine(); 
      } 
      br3.close(); 
    } catch (Exception e){ 
      System.out.println("Exception in fsg import A S_permutations.stats: " + e); 
    } 
 
    //4 
    //read in file with block no for each marker ->  blockNos 
    try { 
      BufferedReader br4 = new BufferedReader(new F ileReader(blockDefPath)); 
      String line = br4.readLine(); 
      while (line!=null){ 
        StringTokenizer tok = new StringTokenizer(l ine,"\t"); 
        tok.nextElement();//ignore 1st element 
        tok.nextElement();//ignore 2nd 
        blockNos.add(tok.nextElement());//store the  3rd as the block number 
        line = br4.readLine(); 
      } 
      br4.close(); 
    } catch (Exception e){ 
      System.out.println("Exception in fsg import M yHapMap.out: " + e); 
    } 
 
    //2 + 3 + 4 
    //and now, go through all the ASIn cols and whe re there are sequences 
    //of sharing, calculate the average scores and p values 
    double rSum = 0.0;//sum of scores 
    double pSum = 0.0;//sum of p values 
    int count = 0; 
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    String lastBlockNo = ""; 
    int numBlocks = 0; 
    Vector blockScore = new Vector(); 
    Vector blockP = new Vector(); 
    Vector blockBlocks = new Vector(); 
    int mutBlock = 100; 
    boolean mutBlockActive = false; 
    //so, for each marker 
    for (int i=0;i<col0.size();i++){ 
      //if all markers are equal store the score an d p values 
      if ( ((String)col0.get(i)).equals((String)col 1.get(i)) && ((String)col0.get(i)). 
      equals((String)col2.get(i))){ 
        //sum the score and p vlaues 
        rSum += (new Double((String)ASScores.get(i) )).doubleValue(); 
        pSum += (new Double((String)ASPValues.get(i ))).doubleValue(); 
        count++; 
        //++ the no of blocks if it is a new block 
        if( ((String)blockNos.get(i)).equals("null" ) ) 
          numBlocks++; 
        else if (  !((String)blockNos.get(i)).equal s(lastBlockNo) ) 
          numBlocks++; 
        //if it crosses the mutation, then mark thi s block as true 
        if(i==mutMarkerIndex){ 
          mutBlockActive = true; 
        } 
        //if this is the last marker in the column,  and it is shared, then we need to 
        //add that as a shared block as well 
        if (i == col0.size() && count > 1  && ((pSu m/count) > 0.949)){ 
          blockScore.add(new Double(rSum/count)); 
          blockP.add(new Double(pSum/count)); 
          blockBlocks.add(new Integer(numBlocks)); 
          if(mutBlockActive){ 
            mutBlock = blockScore.size() - 1; 
            mutBlockActive = false; 
          } 
        } 
      } 
      //else if there is no sharing 
      else{ 
        //if previous sharing >1, we store the last  blocks results 
        if(count > 1  && ((pSum/count) > 0.949) ){ 
          blockScore.add(new Double(rSum/count)); 
          blockP.add(new Double(pSum/count)); 
          blockBlocks.add(new Integer(numBlocks)); 
          if(mutBlockActive){ 
            mutBlock = blockScore.size() - 1; 
            mutBlockActive = false; 
          } 
        } 
        rSum = 0.0; 
        pSum = 0.0; 
        numBlocks = 0; 
        count = 0; 
      } 
    } 
    //add the last block in it is still being share d... 
    if(count > 1  && ((pSum/count) > 0.949)  ){ 
      blockScore.add(new Double(rSum/count)); 
      blockP.add(new Double(pSum/count)); 
      blockBlocks.add(new Integer(numBlocks)); 
      if(mutBlockActive){ 
        mutBlock = blockScore.size() - 1; 
      } 
    } 
 
    //5 
    //now call NewASPermAnalysis to calculate the m odified p values for each 
    //region 
    //now generate a new data.dat file for each of these regions 
    //first read in the present file 
    Vector lines = new Vector(); 
    try { 
      BufferedReader br5 = new BufferedReader(new F ileReader(datPath)); 
      String line = br5.readLine(); 
      while (line!=null){ 
        lines.add(line); 
        line = br5.readLine(); 
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      } 
      br5.close(); 
    } catch (Exception e){ 
      System.out.println("Exception in fsg import A S_permutations.stats: " + e); 
    } 
    //and then re-write with the final two lines al tered 
    //for each of the regions... 
    for (int i=0;i<blockScore.size();i++){ 
      File dir = new File((new File(ASInPath)).getP arent() + "//sr" + i); 
      dir.mkdirs(); 
      String datPathTemp = (new File(ASInPath)).get Parent() + "//sr" + i +  
      "//data.dat"; 
      try { 
        BufferedWriter bw = new BufferedWriter(new FileWriter(datPathTemp)); 
        bw.write((String)lines.get(0)); 
        bw.newLine(); 
        bw.write((String)lines.get(1)); 
        bw.newLine(); 
        bw.write(((Integer)blockBlocks.get(i)).toSt ring()); 
        bw.newLine(); 
        bw.write(((Double)blockScore.get(i)).toStri ng()); 
        bw.close(); 
      } catch (Exception e){ 
        System.out.println("Exception in fsg writin g to data.dat: " + e); 
      } 
      //identify the block that contains the 'real'  mutation 
      if(i==mutBlock){ 
        File fl = new File(  (new File(ASInPath)).g etParent() + "//sr" + i +  
        "//MUTATION"); 
        try { 
          fl.createNewFile(); 
        } catch (Exception e){ 
          ; 
        } 
      } 
    } 
  } 
} 
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