

An Allele Sharing Method for Fine

Mapping Linkage Loci: Application to

Bipolar Affective Disorder

Andrew J. Lee

A thesis submitted for the degree of Ph.D.

University of Edinburgh

2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429728882?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 i

Main Contents

Declaration

Acknowledgements

Abbreviations

Abstract

Chapter 1: Introduction
 1.1 Finding disease genes
 1.1.1 Genetic linkage
 1.1.2 Genetic association
 1.1.3 Whole genome association
 1.1.4 Complex genetics
 1.1.5 Copy number variation
 1.2 Allele sharing
 1.2.1 Allele sharing background
 1.2.2 An alternative approach to allele sharing
 1.3 Bipolar affective disorder
 1.3.1 Genetic evidence for bipolar affective disorder
 1.3.2 Chromosome 4p linkage region
 1.4 Aims

Chapter 2: Material and Methods
 2.1 A method for measuring allele sharing
 2.1.1 Data preparation
 2.1.2 Scoring
 2.1.3 Permutation testing
 2.1.4 Correcting for multiple testing
 2.1.5 Implementation
 2.2 Cystic fibrosis study
 2.2.1 Cystic fibrosis data
 2.2.2 Cystic fibrosis analysis
 2.3 Simulation study
 2.3.1 Simulating a founder mutation
 2.3.2 Implementing the simulation
 2.3.3 Initial population and variables
 2.4 Chromosome 4p data
 2.4.1 Families studied
 2.4.2 Genotyping
 2.4.3 Haplotype analysis
 2.4.4 Allele sharing analysis
 2.4.5 Association analysis
 2.4.6 Gene identification and bioinformatics analysis

Chapter 3: Testing and understanding the allele sharing method
 3.1 Introduction

v

vi

vii

viii

1
3
3
5
9

10
11

12
12
16
20
21
23
26

27
28
28
29
30
31
32
40
40
40
41
41
41
48
50
50
51
52
52
52
53

54
55

 ii

 3.1.1 Cystic fibrosis dataset
 3.1.2 Simulated data
3.2 Allele sharing in cystic fibrosis families
3.3 Defining the operational limits of the allele sharing method

through simulation
 3.3.1 Defining the criteria for the use of the allele sharing

method
 3.3.1.1 Varying the marker density
 3.3.1.2 Varying the number of families
 3.3.1.3 Varying the number of generations between the

families and a common ancestor
 3.3.1.4 Performance of the false positive rate
 3.4 Discussion

Chapter 4: Allele sharing in families linked with bipolar affective
disorder

 4.1 Introduction
 4.2 Allele sharing in priority region B
 4.2.1 Phase I: Allele sharing at known genes
 4.2.2 Phase II: Allele sharing across the region using haplotype-

tagging markers
 4.3 Allele sharing in priority region D
 4.3.1 Phase I: Allele sharing at known genes
 4.3.2 Phase II: Allele sharing across the region using haplotype-

tagging markers
 4.4 TDT analysis of priority region B
 4.4 An investigation of a significant shared region
 4.5 Discussion

Chapter 5: Discussion and conclusions
 5.1 A method for studying allele sharing
 5.2 Testing and proving the method
 5.2.1 Cystic fibrosis study
 5.2.2. Simulated data study
 5.3 Implementation of the method
 5.4 Applying the method to the chromosome 4p linked families
 5.5 Final conclusions
 5.6 Summary
 5.7 Further work and recommendations

References

Appendix A: Key programs written during this thesis
 A.1 ASCalculate
 A.2 NewASPermAnalysis
 A.3 PedSimMain

Appendix B: Publications arising from this thesis

55
56
57
60

63

63
64
65

67
69

74

75
79
79
81

84
84
86

89
90
92

97
99
103
103
104
107
108
110
112
113

115

128
128
136
140

158

 iii

Contents of Figures

Figure 1.1: Principle of linkage analysis.

Figure 1.2: Genomic regions linked with affective disorders.

Figure 1.3: Chr. 4p regions of overlap.

Figure 2.1: Allele sharing scoring.

Figure 2.2: The JavaAS GUI.

Figure 2.3: The calcAS method.

Figure 2.4: The permStats method.

Figure 2.5: ASGraph and PermGraph.

Figure 2.6: The NewASPermAnalysis class.

Figure 2.7: Simulating a founder mutation in a population.

Figure 2.8: The simulator and getChildChr methods.

Figure 2.9: The simulator methods to generate families.

Figure 2.10: The FindSigRegions method.

Figure 3.1: Allele sharing in cystic fibrosis families.

Figure 3.2: Sample simulation results.

Figure 3.3: Detection limits graph.

Figure 4.1: Pedigree of Family F22.

Figure 4.2: Pedigrees of families F48, F50 and F59.

Figure 4.3: Chr. 4p regions of overlap.

Figure 4.4: Phase I: Allele sharing in region B.

Figure 4.5: Phase II: Allele sharing in region B.

Figure 4.6: Phase I: Allele sharing in region D.

Figure 4.7: Phase II: Allele sharing in region D.

Figure 4.8: Single marker association in priority region B

Figure 4.9: Shared region 1 on Ensembl ContigView.

4

23

25

30

32

34

35

37

38

42

43

45

47

58

61

65

75

76

77

80

82

85

87

89

90

 iv

Contents of Tables

Table 3.1: Detection limits table.

Table 3.2: Trends in the simulation study results.

Table 3.3: Performance of the false positive rate.

Table 4.1: Priority region B significant shared regions.

Table 4.2: Priority region D significant shared regions.

62

66

68

83

88

 v

Declaration

I hereby declare that all work in this thesis, unless otherwise stated, was carried out by

the candidate and has not been submitted for any other degree or professional

qualification. I further declare that the thesis was composed by the candidate.

Andrew Lee

 vi

Acknowledgements

This work was funded by the UK Medical Research Council and conducted at the

University of Edinburgh’s Medical Genetics Section. I would like to thank my

supervisors, Prof. David Porteous, Dr. Kathryn Evans and Dr. Richard Adams.

I would also like to thank Dr. Naomi Wray and Dr. Pippa Thompson for their

guidance and support; all the staff in the Medical Genetics Section who contributed to

this work; Prof. Douglas Blackwood, Dr. Walter Muir, Dr. Claude Férec, Dr. Sevilla

Detera-Wadleigh, Prof. Michael Owen and Dr. Philip Asherson for access to the

families studied in this work.

Finally, I would like to thank my family and friends who have supported me

throughout this work.

 vii

Abbreviations

BP
BPAD
Chr.
CEPH
CEU
CF
CFTR
cM
CNV
DNA
FBAT
GUI
HLA
HSS
htSNP
kb
LAMP
LOD
LD
MAF
Mb
MIM
mRNA
MILC
NCBI
OR
RefSeq
RNA
SAM
SNP
SCZ
STR
TDT
TDTae
WHAP

Bipolar
Bipolar affective disorder
Chromosome
Centre d’Etudes du Polymorphisme Humain
CEPH from Utah
Cystic fibrosis
Cystic fibrosis transmembrane conductance regulator
Centi-morgan
Copy number variant
Deoxyribonucleic Acid
Familyibased association test
Graphical user interface
Humanleukocyte antigen
Haplotype sharing statistic
Haplotype tagging SNP
Kilobases
Linkage and association modelling in pedigrees
Log of odds
Linkage disequilibrium
Minor-allele frequency
Megabases
Mendelian Inheritance in Man
Messenger RNA
Maximum identity length contrast
National Center for Biotechnology Information
Odds ratio
NCBI reference sequence
Ribonucleic acid
Schizoaffective disorder
Single nucleotide polymorphism
Schizophrenia
Short tandem repeat
Transmission disequilibrium test
Transmission disequilibrium test with allowance for errors
Weighted Haplotype Program

 viii

Abstract

An Allele Sharing Method for Fine Mapping Linkage Loci: Application to

Bipolar Affective Disorder

Large family studies of complex disorders can be used to detect a genomic region

linked with a particular illness. Where multiple families are found with common

regions of linkage, this could be due to an ancestral mutation common to these

families. In this thesis, I describe a method for studying allele sharing in families that

share a linkage region, to identify a common founder mutation, thus maximising the

results of replicated linkage studies.

The method tests the hypothesis that the evidence for shared linkage is derived from

the sharing of a common affected ancestor. By comparing the allelic similarity of

haplotypes across common linkage regions, it is possible to identify any regions that

are identical by descent between the families. A method of permutation analysis

followed by a nested permutation technique have been developed to assess the

statistical significance of allele sharing scores. Chapter 3 describes the proof of

principle of the method through its application to known cystic fibrosis mutations and

through simulated datasets. This provides both a real dataset and a much more

diverse range of simulated conditions on which to test the method. The range of

simulated data was also used to develop a set of criteria for the effective us of the

method.

In Chapter 4, the allele sharing method was applied to two replicated linkage regions

on chromosome 4p15-16 that segregate with bipolar affective disorder. This was

done over two phases, first taking in markers covering the genic regions of the shared

linkage region and then followed up with a complete coverage of the region. This

analysis identified a 200kb region with significant confidence within the 8Mb of the

two linkage regions. The study of this region presents a clear example of how

replicated linkage results that are caused by some founder effect, can be examined,

and refined using this allele sharing method to vastly reduce the region under

investigation.

Chapter 1 Introduction

 1

Chapter 1

Introduction

Chapter 1 Introduction

 2

Large families with multiple members affected with a specific disorder can be used to

detect genomic regions linked to that disorder, however the regions identified are

usually large. One of the challenges facing those tackling the genetic analysis of

complex disease is how best to capitalise on linkage results, without having to scan

the entire region for association. If multiple families with overlapping linkage regions

exist, then these regions may harbour a common ancestral mutation. It has been

shown that a region of the ancestral haplotype flanking such a mutation should be

expected to be found in linked families. A new method is required to take advantage

of advances in genotyping technology to allow the search for these ancestral regions

of shared haplotype. Such a method could provide an invaluable tool in bridging the

gap between genome wide linkage studies and the identification of a disease gene.

Bipolar affective disorder (BPAD) presents a complex genetic etiology and large

family studies have been used to generate a number of linkage signals across the

genome. Yet none of these have led to the identification of a causal variant. In

particular, a number of families have been shown to display linkage to the

chromosome 4p15-16 region. While there are many genes in the region that could be

implicated in BPAD, there is no stand-out functional candidate gene in the region on

which to focus further research. A new method to reduce the region under

investigation could prove invaluable in this study of BPAD, as well as in similar

studied of other complex disorders.

Chapter 1 Introduction

 3

1.1 Finding disease genes

Genetic and environmental factors have a role in the development of any disease.

Finding the genes that are responsible for causing susceptibility to illness is important

in a number of areas: (i) to help understand the pathophysiology of disease; (ii) to

help in understanding the biology of specific systems or organs; (iii) to improve the

diagnosis of disease and (iv) to aid the identification of drug targets. The

development of linkage studies using genetic markers has revolutionised gene

discovery and genetic linkage, or positional cloning, is now commonly used to try and

identify the genes that are responsible for, or that contribute to, the development of

disease. Positional cloning identifies a disease gene solely using information about its

chromosomal location. The basic principles of positional cloning are to first map the

disease as finely as possible in affected families, then identify candidate genes and,

finally, detect mutations of these genes in patients.

1.1.1 Genetic linkage

The purpose of a linkage study is to identify a chromosomal region that contains a

susceptibility gene by studying the pattern of inheritance within families. This is done

in three stages, (i) the clinical assessment of the subjects to determine a specific

phenotype; (ii) testing genetic material from the subjects at a series of genetic markers

and (iii) using statistical techniques to test whether a specific phenotype and genetic

markers segregate independently or together (cosegregate). If they cosegregate, it is

assumed that the genetic marker is located close to the gene that is causing

susceptibility to the phenotype. The principle underlying this is that the further away

a genetic marker is from the disease causing gene, the greater the chance of a

recombination event taking place between the two and therefore the chances of

cosegregation decreases (see Figure 1.1). This can typically identify a region

harbouring a disease gene to around 20cM if sufficient number of meioses are

available (e.g. Hu et al. 2000, Wiesner et al. 2003, Koskenmies et al. 2004, Duggal et

al. 2007). LOD (log of odds) scores are usually used to measure the probability of

linkage and calculate the likelihood of attaining the observed results based on an

assumption of linkage compared with the likelihood based on chance alone. See Ott

(1999) for a detailed discussion of genetic linkage. In this way, linkage has been used

Chapter 1 Introduction

 4

to help identify many genes that are linked to disease although there has been less

success in its application to complex disorders. This is discussed in section 1.1.4.

Throughout this thesis, the term ‘linkage region’ is used to refer to these genomic

locations that are found to be of interest through these linkage studies. Such regions

are defined by the chromosomal location that contains those markers (or marker) that

have been shown to cosegregate with a trait or disease and are flanked by those

makers that are shown to segregate independently. The generally accepted definition

of a significant region of genome-wide linkage, as provided by Lander & Kruglyak

(1995) was of a LOD score of 3.3 for primary evidence. Where primary evidence of

linkage exists, additional studies showing LOD score of 1.9 should be taken as

evidence of replication.

Figure 1.1: Principle of linkage analysis.

(i) shows two parental chromosomes aligned in a germ cell during meiosis. A, B and
C represent three different genetic locations. (ii) shows how recombination can
occur, involving the crossing over of DNA strands. (iii) shows the resulting
chromosomes. If, for example, A is a disease gene and B and C are genetic markers,
recombination is more likely to occur between A and C than A and B and marker B is
therefore more likely to cosegregate with the disease. Image reproduced from
Twyman (2003).

(i)

(ii)

(iii)

Chapter 1 Introduction

 5

1.1.2 Genetic association

Genetic association is defined as the non-random association of two or more traits,

where at least one of these is genetic. Genetic association studies aim to detect

association between one or more genetic polymorphisms and a disease or trait. An

association exists if an allele, genotype or haplotype is seen more often than expected

by chance in individuals presenting the trait. Therefore an individual carrying the

relevant allele, genotype or haplotype is at an increased risk of presenting the

associated trait. Genetic association is closely linked to the concept of genetic

linkage, differing in that association requires the same allele to be associated with the

disease in a similar way across a population, while linkage allows for different alleles

to be associated with the disease in different families. However, it has been argued

that, as genetic associations are due to common ancestry in a population, they are just

a special case of linkage in which the population can be considered as the extended

family. In linkage analysis, smaller regions are more likely to be detected by studying

distantly related individuals than closely related individuals, although a higher density

of markers is required as the linkage will extend over a shorter region, due to greater

genetic recombination in more distant relatives. It could be argued that association

between apparently unrelated individuals represents the ultimate extension of this

effect, leading association studies to have greater power than linkage studies, but

requiring many more markers to be studied. The association itself can be due to a

direct or indirect effect, or be due to confounding. Direct association refers to the

case of a putative causal variant while indirect association refers to the association of

locus that is a proxy for the causal locus. Indirect association allows association

studies that don’t need to have a candidate variant, allowing a candidate region to be

tested. Confounding can be caused by features of the test population such as

population stratification or admixture.

The mapping of susceptibility genes for complex disorders by indirect association

relies on the existence of association between causal variants and nearby markers at

the population level. Such an association is referred to as Linkage Disequilibrium

(LD). LD can also be used more generally to refer to any situation where some

combinations of alleles occur more or less frequently in a population than would be

expected if the loci were segregating independently even when not due to association.

Chapter 1 Introduction

 6

Non-random associations between alleles at different loci are measured by the degree

of linkage disequilibrium. Unless some countervailing process maintains it, LD is

expected to vary at a rate that is the inverse of the local recombination rate (Nachman

et al. 2002). The appearance of significant LD is generally found in natural

populations for genes that are tightly linked or for genes that are within or near an

inverted segment of chromosome. Significant LD can also result from admixture of

two or more sub-populations with differing allele frequencies. LD may also be

caused by inbreeding.

There are two main types of association study, population-based, or family-based.

These both have different strengths and weaknesses and should be viewed as

complimentary both to each other and to other methods such as genetic linkage

studies. Population based, or case-control, studies generally compare the frequency of

alleles or genotypes in subjects carrying a disease or trait (cases) with those who don’t

(controls; randomly selected from the same population). Where there is a difference

in allele or genotype frequency between the two groups, this would indicate that the

allele or genotype in question is associated with the disease or trait either directly or

indirectly. Family-based designs generally use the parents of affected individuals as

the controls. These types of tests tend to compare the alleles that were transmitted

from parents to affected offspring against those that were not transmitted. So if an

allele or genotype is transmitted more often than expected in equal transmission then

that allele or genotype is regarded as showing association with the disease in question.

The most common example of this is the transmission disequilibrium test (TDT;

Speilman et al. 1993). TDT was first proposed in the context of family trios where it

tests the transmission of alleles from heterozygous parents to affected offspring.

There have since been many similar methods published that provide some extension

to the original method, such as those based on analysis of large families (Martin et al.

2000), multi-allelic markers (Cucca & Todd 1996) and those that include covariate

information (Lunetta et al. 2000). The advantages and disadvantages of some of these

methods will be discussed in more detail below. Approaches related to the traditional

family based association study, but focussing on patterns of haplotype sharing, have

also been developed and these are discussed in section 1.2.

Chapter 1 Introduction

 7

The main use for genetic association studies is in testing candidate genes and

regulatory regions and in fine mapping linkage regions. This means that the short

range effect of genetic association can be tested with a dense array of markers.

Candidate genes and regulatory regions can be tested for their association by testing

whether a particular allele is found to be more common in (usually unrelated) people

with the disease than those without. Association mapping can also be used to try and

localise a disease causing locus where a linkage region does not contain any obvious

functional candidate gene(s) or where there are many plausible functional candidate

genes. An association between a phenotype and an allele at a locus indicates either

that the allele in question leads to susceptibility to the phenotype or that the allele is in

LD with the susceptibility allele. The most basic method of mapping simply involves

plotting estimates of association with disease for each marker. The location of the

disease gene is estimated to be near the marker with the strongest evidence of

association. For an example of association mapping applied, see Corder et al. (1993)

who used this approach to show an association of ApoE-4 with late-onset Alzheimer’s

disease or Davies et al. (1994) for a review of how this approach was used to show an

association of a variation in the major histocompatibility HLA region and the insulin

gene region with Type 1 diabetes.

The candidate gene approach is the most common strategy for going from a linked

region to a gene. There will often be loci of known function that have previously

been identified and cloned from the region to which the linkage signal maps. Any of

these loci that could potentially give rise to the phenotype linked to the region are

referred to as candidate loci. These candidates are then searched for associations with

the phenotype. Of course, the candidate gene approach can be used directly,

bypassing the need of a linkage study.

To return to the methods for testing association study, as described above, they

traditionally break down into two groups: population based, case-control studies or

family based studies of the form of the TDT. Population based studies have been

more popular with the main reason being the higher statistical power (Morton &

Collins, 1998). In addition to reduced power, resources to collect family data are

usually higher (in terms of both time and money) than individuals from a population.

To achieve the same power, one needs the same number of triads as cases in a case

control study, which means extra resources in gathering triads rather than individual

Chapter 1 Introduction

 8

cases and control and also additional extra genotyping (as where one case and one

control are genotyped in a case-control study, to gain the equivalent power, three

members of a parent child triad would have to be genotyped). However, family based

studies have the distinct advantage of being less likely to suffer the effects of

confounding.

One of the causes of confounding is population stratification. This refers to the

systematic difference in allele frequencies between subpopulations and is often due to

different ancestry of these subpopulations. Migration, where individuals from one

population migrate into another, is one of the most obvious causes of population

stratification. After some generations, population stratification will become less due to

admixture. Population stratification can lead to high rates of false positives in case

control association studies (Knowler et al. 1989; Lander & Schork 1994; Marchini et

al 2004). A number of methods have been developed to detect and correct for

population structure (Pritchard & Rosenberg 1999; Bacanu et al. 2000; Pritchard et al.

2000). Another cause of confounding is cryptic, or spurious, relatedness. This refers

to the case where non-random mating results in a certain subpopulation that are more

related to each other compared to the rest of the population. This is thought also to

potentially inflate the false positive rate in some case control association studies

(Devlin & Roeder 1999). Voight & Pritchard (2005) published a study into the impact

of cryptic relatedness on association studies and they showed that ‘for well-designed

studies in outbred populations, the degree of confounding due to cryptic relatedness

will usually be negligible’, however, ‘studies where there is a sampling bias toward

collecting relatives may indeed suffer from excessive rates of false positives’. They

also showed that the impact of cryptic relatedness can be a problem where founder

populations that had grown rapidly and recently from a small size. These issues

relating to population effects are clearly less of a problem for family studies where

controls are related to the individuals under study (Spielman et al., 1993). Family

based studies also have the ability to infer parent-of-origin effects (genomic

imprinting; Weinberg, 1999). Plus, family-based studies can also offer a solution to

model building and multiple testing. In summary, case-control studies have proven

popular mainly due to the statistical power/resource play off, but the family-based

approach is still often used as a complimentary strategy due to its robustness to

population stratification.

Chapter 1 Introduction

 9

1.1.3 Whole genome association

In recent years, since the completion of the Human Genome Project and as the costs

have decreased, it has become feasible to study association across the entire genome,

these are known as whole genome association (WGA) studies. Genome-wide

association studies have been proposed as an alternative to linkage studies. Initial

studies have proven to be successful in replicating previously identified loci (Pearson

& Manolio 2008) at least in some illnesses (not in the case of psychiatric illnesses).

However, due to the large number of markers involved there are issues with the

statistical rigour of such studies, in particular the risk of false positives due to the

large number of statistical tests that are preformed (Hunter and Kraft 2007, Pearson &

Manolio 2008). Other complicating issues include the requirement of large sample

sizes, possible confounding due to population substructure and genotyping errors,

genetic and phenotypic heterogeneity (Pearson & Manolio 2008). The NCI-NHGRI

Working Group on Replication in Association Studies (2007) have tried to create a

basic criteria for the reliable reporting of genome-wide association studies, however

many published studies have not presented enough detail to assess whether they are

taking these factors into account.

Chapter 1 Introduction

 10

1.1.4 Complex genetics

It is important to consider more closely the characteristics of complex genetic

disorders and how they affect the implementation of the techniques described above.

While the genetic contributions to risk are beyond dispute the genetic architecture of

liability to such complex disorders is less clear cut. The major prevailing view holds

that multiple common variants, each of small effect size, underlie the genetic liability.

This common disease, common variant (CDCV) hypothesis (Chakravarti 1999; Weiss

& Clark 2002) is compatible with the commonly observed non-linear decay in risk

from proband to first and lesser degree relatives, and with the paucity of evidence for

loci of major and widespread effect. A number of high density genome-wide

association studies have recently been reported (Wellcome Trust Case Control

Consortium (WTCCC) 2007, Diabetes Genetics Initiative of Broad Institute of

Harvard and MIT et al. 2007, Tomlinson et al. 2007) that provide evidence for

common variants that act as risk factors, but they explain only a modest fraction of the

estimated variance. The novel variants discovered in each of the studies were

characterised by common minor allele frequency (MAF), in both cases and controls

(MAF > 0.067), and modest effect sizes (Odds Ratios (ORs) mostly < 1.5). The

WTCCC study looked at associations in cases of seven major common diseases,

including BPAD. One independent association was found be significant (P value <

5x10-7) in BPAD and this variant had a MAF 0.282 in controls and 0.248 in cases and

the OR was estimates ~2.1. More recently genome wide association studies of BPAD

have been carried out, Baum et al. (2008) found no SNPs of large effect and the

strongest signal was found within diacylglycerol kinase (P=1.5 x 10-8), Sklar et al.

(2008) also reported no SNPs of large effect and reported two strongly significant

SNPs, one in myosin5B (P=1.66 x 10-7) and one in tetraspanin-8 (P=6.11 x 10-7). The

CDCV hypothesis does not exclude the possibility that there are also multiple rarer

variants of greater relative risk, as recently demonstrated by direct mutational analysis

in genes involved in the regulation of HDL cholesterol where rare variants were found

to contribute significantly to low plasma levels of HDL-C (Cohen et al. 2004).

There are several challenges specifically involved in identifying the genes related to

complex disease such as genetic heterogeneity, where one genetic variant may cause

the disease in one family, but a variant in another gene (or a different variant in the

same gene) may cause the disease in another family; incomplete penetrance, where an

Chapter 1 Introduction

 11

individual may carry a susceptibility gene, but not present the illness; phenocopies,

where an individual presents the illness but does not carry a susceptibility gene and

epistasis, where two or more genes interact to create a different effect than would be

expected if the genes were expressed independently. While there has been limited

success in using linkage and positional cloning in common disorders, some of these

problems can be overcome by looking at large families and studying rare subsets of a

common disorder that is due to an inherited mutation of large effect. This has led to

success in aspects of breast cancer (Hall et al. 1990, Miki et al. 1994), colon cancer

(Bodmer et al. 1987) and Alzheimer’s disease (Slooter and van Duijn 1997). These

successes in identifying variants and genes has not been limited to just the rare subsets

used to identify them but they have also proved useful in furthering the understanding

of the etiology of the general disease. One of the best examples with application to

the field of psychiatric genetics is the study of Stefansson et al. (2002), which found

NRG1 to be associated with schizophrenia through a combination of linkage and fine

mapping in the Icelandic population.

1.1.5 Copy number variation

Another area that has recently shown potential as a cause of disease is de novo copy

number variation (CNV). CNV refers to the variation in the number of copies of a

particular DNA sequence that an individual carries. Array-based technologies have

been developed to allow DNA copy number variation to be studied on a large scale

(Feuk et al. 2006). These methods have recently been used to show that CNV is

widespread in humans (Sebat et al. 2004, Iafrate et al. 2004) and have since also been

used to show evidence for the association between regions of CNV with autism

spectrum disorders (Sebat et al. 2007). Lachman et al. (2007) discuss a number of

schizophrenia and BPAD candidate genes that are affected by CNVs and show one

significant CNV in the GSK3beta locus (P=0.002). CNV analysis may emerge as a

significant alternative in the search for genetic risk factors for disease.

Chapter 1 Introduction

 12

1.2 Allele sharing

To reiterate from the previous section, genetic linkage has been used to help identify

genes that are linked to disease and although there has been less success in its

application to complex illness, it has still provided strong evidence, albeit of relatively

large genomic regions, for loci linked to disease. More recently, the focus has shifted

to association studies focusing on candidate regions (many identified through linkage

studies) or candidate genes (from functional studies). More recently still, has been the

possibility of whole genome association studies. Association studies have greater

power and resolution than linkage but although association studies have increasingly

reported positive results, replication has often not been so forthcoming. This is most

likely due to genetic heterogeneity, low statistical power, multiple testing, variability

in study design, phenotype definition, statistical modelling and population structure.

While these existing strategies have proven invaluable, allele sharing (or haplotype

sharing) provides another approach to investigate allelic association that can

compliment the existing methods already described and generate additional

information in the search for genetic cause of disease.

In the previous section I also discussed family based association studies, this section

will now focus on how an allele sharing methods provide different opportunities when

analysing family data. I will discuss how such methods can be used and modified to

identify regions of allelic association between large families showing linkage to the

same loci. The aim is to use date from families with replicated linkage results for a

particular genomic location to be ‘recycled’ in a between-family analysis. Such an

approach seeks to use large, well characterised, families that are linked to a common

region to test for the existence of a shared haplotype that would possibly hold a

common causal mutation.

1.2.1 Allele sharing background

Test of association in family based studies, such as TDT, are the most popular type of

family based test. These type of tests focus on comparing transmitted with non-

transmitted haplotypes and in the case of the traditional TDT test, this is carried out in

a set of parent-child trios where the child is affected. In the basic case, statistical

Chapter 1 Introduction

 13

significance is usually tested by some goodness-of-fit type test such as chi-squared

tests or logistic regression. While the traditional TDT is not able to analyse more than

one marker at a time, various extensions have been created to allow the use of

multiple markers (Clayton & Jones 1999; Dudbridge et al. 2000; Zhao et al. 2000).

Other methods have taken a different approach such as the Haplotype Pattern Mining

method which looks at haplotype patterns associated with disease and method such as

the Haplotype Sharing Statistic (Van der Meulen & te Meerman 1997) and the

Maximum Identity Length Contrast statistic (MILC; Bourgain et al. 2000) which

search for excess haplotype identity amongst affected individuals. These methods

tend to go beyond just looking at parental haplotypes as they are transmitted (or not)

to affected offspring, but to include information on the common inheritance of a

haplotype between families. The main benefit from these types of test is that they can

incorporate information held within a population while retaining robustness to

confounding.

Fan & Lange (1998) described how disproportionately large clusters of affected

individuals sharing common haplotypes in the region flanking some disease mutations

of recent origin would be expected and Jorde (2000) showed how investigation of the

different distributions of the transmitted and non-transmitted haplotypes provides

strong evidence for a disease mutation within the extended transmitted haplotype. So,

where a disease mutation exists, a region of haplotype sharing flanking that locus may

also exist. The corollary of this stands equally: where we find haplotypes that are

specifically inherited by affected individuals, we expect such a haplotype to contain a

disease causing mutation. The size of the flanking region inherited in common by

unrelated individuals depends on the age of the mutation and how distantly related the

families or individuals are (de la Chapelle & Wright, 1998). So allele sharing

methods are identifying excess allele sharing, or unusually high levels of sharing of

consecutive alleles or haplotypes above that which would be expected due to linkage

disequilibrium (i.e. that which is seen in the control population).

In the haplotype sharing statistic method of Van der Meulen and te Meerman (1997),

they studied markers in the transmitted haplotypes of parent offspring trios and then

counted the overlap in shared markers between all pairs of haplotypes. The

Haplotype Sharing Statistic (HSS) was calculated as the standard deviation of the

shared distance between haplotypes and this was compared to 100 random

Chapter 1 Introduction

 14

permutations of marker alleles over haplotypes using non-transmitted haplotypes.

The MILC method (Bourgain et al. 2000, 2001, 2002) also scores transmitted

haplotypes in parent offspring trios, but this time, they are compared directly with the

scores between non-transmitted haplotypes. Statistical significance is calculated by

comparing the maximum difference in scores between the transmitted and non-

transmitted groups of haplotypes to the distribution of the maximum difference in this

score for randomly permuted datasets of transmitted and non-transmitted haplotypes.

Other methods have been developed such as the haplotype-sharing TDT (HS-TDT) of

Zhang et al. (2003) and the sequential peeling TDT (SP-TDT) of Yu et al. (2005) that

builds on the sequential peeling method developed for case-control studies (Yu et al.

2004). The sequential peeling procedure goes through case haplotypes sequentially

deleting those found not likely to belong to larger clusters creating a clearer set of

clusters to test. Statistical significance is again tested through permutation

procedures. Most cases tend to rely on permutation testing (Van der Meulen & te

Meerman 1997; Bourgain et al. 2000), and Allen and Satten (2007) describe the

statistical analysis of these methods as having been developed in an ad-hoc manner

and that certainly appears to be the case. This is most likely symptomatic of the fact

that these methods were developed in order answer to a specific need rather than as a

goal in its own right. As the use of these methods is increasing, there seems to be

greater thought put into the development of a statistical basis for these methods.

Allen and Satten (2007) go on to describe how permutation testing may be invalidated

in the situation where haplotypes are reconstructed due to missing data and there are a

number of papers, including their own that try to present a statistical framework for

these models. Tzeng et al. (2003a, 2003b) tried to describe the statistical properties of

such haplotype sharing methods, describing them in quadratic form and including a

very complex description of variance in their model. Beckmann et al. (2005) suggest

the use of Mantel statistics similar to the HSC method of Qian and Thomas (2001).

Mantel statistics (Mantel 1967) are a method of spatial clustering that can be used to

test the distance between groups of haplotypes. These methods are favoured as they

may be more adept at detecting relationships between clusters where only a subset of

cases are correlated (Legendre 2000). This appears to be a novel application of a

technique used in other fields. Allen and Satten (2007) themselves try to create a

general framework that for haplotype sharing statistics for the analysis of parent

Chapter 1 Introduction

 15

offspring trios and it should be possible to extend such a framework to accommodate

large pedigrees.

Tzeng et al. (2003) and more recently Klei & Roeder (2007) have investigated the

power of various goodness of fit and haplotype similarity tests through simulation.

Tzeng et al. (2003) compared haplotype similarity tests designed for a sample of

unrelated cases and controls and found that frequency-based statistics show relatively

more power for low frequency alleles and matching-based statistics work well when

the disease allele frequencies are relatively common. In that study, the marker allele

was assumed to be the causal allele. Klei & Roeder’s (2007) simulations explore a

more complex set of scenarios. Similarly to Tzeng et al. (2003), they found that

frequency-based methods are more powerful when the disease allele is linked to a low

frequency allele (they used short tandem repeats (STRs) rather than SNPs) and

haplotype sharing statistic showed more power when the disease allele was linked to a

common allele. They also found that the matching and frequency-based approaches

had low correlation, suggesting that it is often worthwhile to analyze a given data set

with both approaches. Klei & Roeder (2007) also investigated the similarity between

the marker and causal allele frequencies. They found that the haplotype sharing

statistic achieved its peak power when the marker allele frequency was relatively

large, regardless of the disease allele frequency. For the goodness of fit based

methods, peak power was achieved when the allele frequencies of the disease and

marker alleles matched closely. These results were obtained for a fixed level of LD.

They also found that, for high frequency marker alleles, haplotype sharing statistics

were more powerful in detecting association. For low frequency marker alleles the

goodness of fit based statistics are more powerful. Additionally, the relative

performance of goodness of fit based statistics and haplotype similarity statistics

depended on how closely the disease allele frequency matches the frequency of the

linked marker allele. In conclusion, they reported that the haplotype similarity and

goodness of fit based statistics exhibited little correlation and as such both approaches

could be used together to optimize the chances of finding association between a

disease and a marker allele.

Chapter 1 Introduction

 16

1.2.2 An alternative approach to allele sharing

The intention of this thesis was to study a number of families who share a linkage

region on chromosome 4p for bipolar affective disorder (these families are described

in section 1.3). Linkage analysis had been carried out and a case control association

study was underway. What this thesis aimed to do was to investigate whether there

was any additional value to be gained from a comparative study of the four large

families that generated the linkage signals. This centred on the possibility that there is

some shared ancestry between (at least some of) the families, and that some analysis

of the haplotypes of these families might be able to reveal such a shared ancestry. In

addition, it was hoped that should such a common ancestry exist, that such an analysis

might be used to identify a sub-region defined by the shared ancestral haplotype.

Allen & Satten (2007) commented that the statistical basis of most existing methods

was designed in a something of an ad hoc manner, and this method is not different. It

is with this in mind that the following method was proposed.

Based on the studies of Tzeng et al. (2003) and supported by the later work of Allen

and Satten (2007) and others, it was decided that a haplotype similarity test would be

the best when studying haplotypes linked with complex disorders that are expected to

carry common alleles as such methods that incorporate the haplotype level

information should be more powerful. A method was therefore required that would

extend the development of some of the existing methods described above for the

analysis between multiple large families. The methods of Van der Meulen and te

Meerman (1997) and Bourgain et al. (2000) were used as the basis for a new method.

As described above, both applied their methods to families, though they focussed on

large numbers of trios rather than large families, as have most subsequent methods.

The case described in this thesis is that of large families where a consistent disease-

linked haplotype can be defined with a degree of certainty due to the ability to phase

haplotypes and determine the existence of the observable inheritance of a particular

haplotype among infected individuals. This provides a much more certain basis for a

test of allele sharing than the uncertain transmission and non-transmission of

haplotypes in trios. On the other hand, the scenario described in this thesis is that of a

small number of families, so there is a trade off between fewer families, but more

certainty in the haplotypes being tested. Another limitation of existing methods (such

as MILC, HSS, HS-TDT and SP-TDT) is that the statistical test developed to test

Chapter 1 Introduction

 17

entire haplotypes for a significant difference in sharing. This may be appropriate

when only a very small region is being genotyped, but when a much larger number of

genotyped covering a large region is available, the number of different haplotypes

becomes large and this sort of test is less appropriate. Tzeng et al. (2003a) showed

how complex the statistics become when trying to model the results of such a

contrast. Permutation analysis provides a simple mechanism for testing the

significance of a result and, unlike the haplotype dependent test of Bourgain et al.

(2000), it can do so on an individual marker basis. Nested permutation analysis can

be used to take multiple testing into account and also to test an expanded haplotype

identified by the initial permutation analysis. Allen and Satten (2007) suggested that

permutation analysis might not be a valid tool to use, as missing haplotypes require

that haplotypes must be permuted based on an invalid model, but this should not be an

important issue in the scenario in which this method is being developed where

haplotypes are well defined by segregation analysis in a relatively large and well

characterised family.

This work started with the assumption that there are multiple families that share a

locus linked with a disease and that these families share some common mutation in

the region linked with the disease, which is due to a common ancestor. Individuals

from each family are required to be genotyped across the relevant region and it is

expected that a haplotype that is carried by affected individuals will be identified

within each family. This haplotype is referred to as the ‘disease-linked’ haplotype

and there will be one for each family included in the study. The remaining haplotypes

will be form a set of control haplotypes for each family. Clearly, not every scenario

where one might wish to use such a method will meet these assumptions, however, it

was felt that it was more appropriate to have a tool that met the specific requirements

of this thesis rather than over generalising and not developing something practical.

Having Established a set of disease-linked and control haplotypes from a number of

families, the next step is to measure how similar the disease-linked haplotypes are and

to contrast this with the similarity found between control haplotypes. Measuring

similarity amongst a group of haplotypes was carried out using a scoring system

similar to that described by Bourgain et al. (2000). This was judged to be an efficient

and accurate means of scoring, marker by marker across the region, of how similar a

group of haplotypes are. Scores were allocated to each marker based on the extent to

Chapter 1 Introduction

 18

which the haplotype was shared in both directions around it (details of the scoring

system are presented in chapter 2). The same system of scoring was used to score

similarity amongst control haplotypes. The differential between sharing at each

marker between the disease-linked and control groups of haplotypes can be calculated

to give an indication of whether there is some sharing of alleles in one group that

doesn’t appear in the other. This calculation should also take some account of the LD

structure in the underlying population as this would be reflected equally in both

disease-linked and control groups of haplotypes.

The next step is to calculate whether any differential scoring is significant. This is the

main point of divergence from existing methods, e.g. the MILC method looks at the

maximum of the contrast between haplotypes groups (in their case transmitted and

non-transmitted). This is probably historical, because methods like MILC were

designed for studying a small number of markers as a way to provide further evidence

for a region. A new method should take the test a step further, to generate a

significance value for markers and for blocks of shared makers, thus identifying any

region of excess allele sharing within the wider region being tested. This is done

through two stages of permutation analysis. The first stage is testing whether the

contrast score between the two groups of haplotypes (disease-linked and control) are

significant, by permutation. Permutation testing tests the null hypothesis that there is

no difference between haplotypes in either group, so a large number of permutations

are carried out with random selection of disease-linked and control haplotypes from

the combined set of haplotypes. This produces a significance value for each marker

and provides some evidence whether some regions contain markers where there is a

significant difference in allele sharing scores in the disease-linked group compared

with the control haplotypes. Clearly, if there are many markers being tested, there

will be a high number of tests being carried out. A secondary permutation analysis

intends not only to correct for multiple testing, but also to take account of the size of

the region of sharing. This involves comparing the significance of the results

following the first permutation analysis with the results of each permuted dataset

following a comparison of a randomly permutated dataset with a large number of

others. These analyses are described in more detail in the next chapter in this thesis.

It was felt that these analyses of significance of allele sharing scores was the most

transparent and straight-forward approach. There are many assumptions and

Chapter 1 Introduction

 19

simplifications, such as the use of a permutation test rather than a more rigorous

statistical test, that made that may allow this method to be somewhat simpler than

many other published methods, but it was felt that these assumptions were not too

unreasonable, given the data under study in this thesis and that such a scenario is

likely to be found in the study of other disorders, where there are multiple linkages to

a particular region for a particular disease.

Ideally, this thesis would report the results of more than just the analysis based on the

new allele sharing method described above, both to validate any significant results,

but also to allow a more practical comparison between methods. While a case-control

study of the chromosome 4p BPAD linked region was carried out by others

(Christoforou et al. 2007) and discussed in this thesis, there has not been alternative

family based analysis. Just such analysis was attempted, however, it was found that

published methods were not necessarily easily available for use nor were they always

easy to use should they be available. Some comparison of the results of the new

method described above and an existing published method are described in chapter 4.

Chapter 1 Introduction

 20

1.3 Bipolar affective disorder

Bipolar affective disorder (BPAD) is amongst the leading causes of disability in the

world (Lopez & Murray, 1998). The lifetime prevalence for bipolar I is estimated to

be around 1% although rates vary widely between 0.1% and 2.5% (e.g. Faravelli C et

al. 1990, Weissman et al. 1996, Szádóczky et al. 1998, ten Have et al. 2002, Regeer et

al. 2004, Pini et al. 2005). The annual cost of BPAD to society is estimated to be

almost £2 billion per year in the UK alone (1999/2000 prices; Das Gupta & Guest,

2002).

BPAD is characterised by severe mood swings from periods of extreme depression to

an overly high and irritable mood (happy, excitable, self-confident, but also angry and

impatient), usually with normal moods interspersed. Some people can also

experience a combination of depression and mania at the same time (known as mixed

state). BPAD was formerly known as manic-depressive illness and was considered to

be a well-defined disorder and was seen as distinct from dementia praecox (now

known as schizophrenia). Later, the term bipolar affective disorder was used to

describe manic-depressive illness, as distinct from unipolar depression. To enable

consistent diagnosis, the American Psychiatric Association publishes the Diagnostic

and Statistical Manual of Mental Disorders, now on its fourth edition (DSM-IV;

American Psychiatric Association). DSM-IV lists many sub-types of BPAD; BPII

refers to slightly less extreme version of BPAD and BPIII-BPVI reflect other

variations of the disorder. Schizoaffective disorder (SAM) is now used to refer to

patients where the mood disorder is similar to BPAD sufferers, but whose mental and

cognitive functions are altered in such a way as to suggest the presence of

schizophrenia. It would appear that BPAD may share an underlying etiology with

unipolar major depression and schizophrenia and there is also genetic evidence for

this (Berrettini 2003). BPAD is also associated with mental disorders such as

alcoholism and substance abuse (Regier et al. 1990).

Despite the high social and economic impact of the illness, the research carried out to

date has been unable to reveal the cellular and molecular function of the disease. As a

result, diagnosis tends to rely solely on clinical observation, and treatment tends to

focus on alleviating the symptoms rather than the cause. Identifying a causative gene

could improve the diagnostic procedure by providing physical evidence for the

Chapter 1 Introduction

 21

disorder and may also allow pre-symptomatic diagnosis and the identification of

genetically susceptible individuals. Perhaps most importantly, the identification of a

causative gene could lead to the development of drug targets to treat the illness.

1.3.1 Genetic evidence for bipolar affective disorder

There has long been evidence for an inherited aetiology for BPAD. Since the 1920’s

family and twin studies have established a strong genetic contribution to the disorder.

Many studies have documented the increase in risk of BPAD in the relatives of

probands with BPAD and the lifetime risk to a first-degree relative of a proband with

BPAD is thought to be up to 10%, compared with 1% in the general population

(Craddock and Jones 1999). Most of these studies have also found higher than

expected levels of unipolar disorder in relatives of BPAD probands. There is also

evidence to suggest that relatives of probands with BPAD are also more likely to

suffer from other psychiatric disorders within the schizophrenia-affective disorder

spectrum (Valles et al. 2000, Berrettini 2003). It is likely that this in part reflects the

unreliability of diagnosis, but may also reflect the shared underlying etiology within

the range of mental disorders (Berrettini 2003).

Twin and adoption studies have been carried out to further investigate the genetic

cause of the disease. The largest of these used the Danish Twin Register, where they

found a proband-wise concordance in monozygotic twins of 0.62, compared to

dizygotic twins with concordance of 0.08 (Bertelsen et al. 1977) for BPAD.

Craddock et al. (1995) have carried out a survey based on many of the published

studies. In combining many published results, they reported a concordance of 0.6 in

monozygotic twins, and 0.07 in dizygotic twins and 0.01 in the general population. If

common environmental factors can be assumed to be the same for the mono- and

dizygotic twins, then under and additive genetic model of gene action, the

monozygotic concordance rate should equal twice the dizygotic concordance rate; the

large difference between them implies non-additive gene action. The concordance

between monozygotic twins is not 1, suggesting that the disorder is not completely

genetic in nature, and that environmental elements are also important, which may also

interact with genetic risk factors.

While no gene has been shown to directly confer susceptibility to BPAD by positional

cloning, a number of linkage and association loci and candidate genes have been

Chapter 1 Introduction

 22

proposed for BPAD and related affective disorders (BP-related). Figure 1.2 presents a

summary of significant affective disorder linkage regions published up to 2005. A

limited number of these have been widely replicated, but with very few exceptions the

evidence for causative mutations is lacking. There are two main exceptions, variants

at the D-amino acid oxidase activator (DAOA) locus on chromosome 13q, have been

shown to influence susceptibility to BPAD in five different datasets (Hattori et al.

2003, Chen et al. 2004, Schumacher et al. 2004, Williams et al. 2006) and the DAOA

gene product is thought to activate the D-amino acid oxidase (DAO) enzyme which is

itself found on a region linked to BPAD. Brain derived neurotrophic factor (BDNF)

is a functional candidate gene with one functional polymorphism that has been

reported in three family based association studies to show association with BPAD

(Sklar et al. 2002, Neves-Pereira et al. 2002, Geller et al. 2004), although some case

control studies have reported no association (Oswald et al. 2004, Skibinska et al.

2004, Hong et al. 2003, Nakata et al. 2003). Other genes such as GRK3 (Barrett et al.

2003), XBP1 (Kakiuchi et al. 2003), P2SX7 (Barden et al. 2006), MAOA (Preisig et

al. 2000), COMT (Jones and Craddock 2001) and 5HTT (Anguelova et al. 2003,

Lasky-Su et al. 2005) have been implicated but findings remain to be tested. See

Craddock and Forty (2006) for a recent review. More recently, Venken et al. (2008)

have published evidence of a region on chromosome 10q which displays significant

genome-wide linkage with bipolar disorder.

Most cases of family studies of BPAD have comprised sib pairs or multiple simplex

families (Levinson et al. 2003). Where large extended pedigrees have been studied,

the pattern of disease is usually compatible with a quasi-dominant mode of

inheritance, with reduced penetrance (e.g. Blackwood et al. 1996, Morissette et al.

1999, Macgregor et al. 2004 and Herzberg et al. 2006).

Chapter 1 Introduction

 23

Figure 1.2: Genomic regions linked with affective disorders.

Shows the genomic locations that have shown genome-wide significance in at least
one scan, for major affective disorder. The predominant phenotype presented in each
case is identified as UP: unipolar disorder, BP: bipolar disorder or SABP:
schizoaffective disorder (bipolar type). Image reproduced from Craddock & Forty
2006.

1.3.2 Chromosome 4p linkage region

The original evidence of linkage to a region on chromosome 4p came from a genome-

wide linkage study in a large pedigree (F22) from the South East of Scotland that

segregates for major affective disorder (Blackwood et al., 1996). Patients from the

South East region of Scotland has been under clinical investigation by collaborators

Prof Douglas Blackwood and Dr Walter Muir (University of Edinburgh, UK) for

many years. A whole-genome scan of F22 found significant linkage to chromosome

4p15-4p16, with a LOD score of 4.09 (Blackwood et al. 1996); implying that this

regions is likely to contain a susceptibility locus for BPAD. Additional support for

this result came from variance component analysis of the same data by Visscher et al.

(1999) who found a LOD score of 3.7. Variance component models are based on the

Chapter 1 Introduction

 24

correlation between the genetic similarity of relatives at a given locus and the

relatives’ similarity with respect to the phenotype. It is very encouraging that an

alternative model with differing statistical properties should identify significant

linkage at the same region. A re-evaluation of the family was carried out recently (Le

Hellard et al 2006) where the clinical status of several family members were updated

identifying a maximum LOD score of 4.41 on chromosome 4p16. Evidence from a

number of other studies, has since been published in support of this region. In

particular, three additional families presented linkage to approximately the same

region of chromosome 4p (Blackwood et al. 1996, Asherson et al. 1998, Detera-

Wadleigh et al. 1999). Figure 1.3 shows how the F22 linkage region, and of those

from three other families, overlap to form two priority regions (B and D). These

families are described in greater detail in chapter 4.

One candidate gene in the region (GPR78) has shown some evidence for association

in females with BPAD however sequence analysis of the coding region of the gene

has produced no evidence for segregation of the functional variants in F22 or the other

three linked families. A recent association study of the region (Christoforou et al.

2007) found three clusters of SNPs and haplotypes that were significant in region B

and eight clusters of significant haplotypes in region D. Five known genes were

found in these associated regions: GPR125, PPARGC1A, CCKAR, KIAA0746 and

DKFZp761B107 all of which would make plausible candidate genes. There are other

good candidate genes in the region, including DRD5. However, there is still a lack of

evidence to point to a particular gene or region.

The chromosome 4p15-16 region provides a good example of the trend in the study of

complex disorders. Many linkage signals have been reported, but the follow ups have

been mostly unproductive to date. While some propose that genome-wide association

studies can provide an alternative solution, it may be the case that where linkage

signals overlap, a new technique can be used to generate more information from the

families responsible for these linkage results. In doing so, it may be possible to order

to narrow down the region under study even further, thus increasing the likelihood of

being able to use the full range of tools available, such as building clone contigs and

sequencing the region, as they become cost effective on that scale.

Chapter 1 Introduction

 25

Figure 1.3: Chr. 4p regions of overlap.

The linked regions that segregate with illness in the four families are found to
overlap. Regions A to D indicate sub-regions of the F22 linkage region that show
linkage in at least one other family. The sizes (in Mb) of these regions refer to the
genomic distances between the points marked by the horizontal lines. The numbers
are from NCBI build 35 (http://www.ncbi.nml.nih.gov) and are the map co-ordinates
of each of the markers that define the boundaries of the linked haplotypes. The
illnesses observed in the families are indicated in the figure as follows: AFD – major
affective disorder, SCZAFF – schizoaffective disorder and schizophrenia, SCZAFD –
schizophrenia, major affective disorder and others. Reproduced from Le Hellard et al.
(2006).

4.09 1.15 1.97 3.24

Family

LOD score

Chapter 1 Introduction

 26

1.4 Aims of Study

The principal aim of the study was to test the two overlapping regions of linkage with

BPAD on chromosome 4p for significant allele sharing. However towards that end I

have also developed and tested the efficacy of the method, offering a significant new

approach in the analysis of complex genetic disorders.

1. In chapter 2 I describe a novel method for testing allele sharing between

groups of haplotypes.

2. In chapter 3 I have developed a simulation model to be used in testing the

efficacy of the allele sharing method.

3. Also in chapter 3, I have analysed the sets of families with known mutations

(presumed to be founder) using the allele sharing method.

4. In chapter 4 I have applied this method to the chromosome 4p linkage region

and used this method to greatly reduce the region under investigation and

significantly progress the study of this region.

5. The study undertaken in chapter 4 also provides a clear example of how the

method could be used for any complex disorder.

6. Also in chapter 4, I have analysed data from the chromosome 4p linkage

region with a family-based association test.

 27

Chapter 2

Materials and Methods

Chapter 2 Materials and Methods

 28

2.1 A method for measuring allele sharing

In section 1.2, I proposed a method for testing the level of allele sharing where

multiple families present a common linkage to a genomic region for a particular trait

or disease. In this section I describe the methods that were developed to do this, as

well as describing the preparation of data that was required, the means of generating a

statistical interpretation of the results and an overview of how these methods were

implemented. Although the methods described here attempts to describe the methods

in general terms, there were specific issues relating to the families studied that require

discussion also.

2.1.1 Data preparation

The starting point of the analysis described in this thesis is of a number of families

identified as sharing some genetic region that is linked in some way with a particular

disease or trait (e.g. through a linkage study). Furthermore, these families were

required to display a particular haplotype that segregates with the disease or trait in

question. It is this ‘disease-linked’ haplotype which can be compared across families

to and assess whether there is significant allele sharing. In addition to simulation

studies, a number of families were studied in this thesis and these families all required

a great deal of study prior to any allele sharing analysis being carried out. In the

cystic fibrosis example, members of the Férec lab identified a number of families that

carried one of three known mutations, these families were genotyped at a small

number of markers, haplotypes were phased by hand (see section 2.2). In the study of

the BPAD and BP-related families, four families had been identified through linkage

studies as showing a region on chromosome 4p linked with BPAD, members of each

family had been genotyped to a high density, by colleagues, and haplotypes had then

been constructed using the MERLIN (Abecasis et al. 2002) software package

followed by some refinement of haplotypes by hand (see section 2.4). In each of the

above cases, once each family had been phased to the greatest degree possible, the

haplotypes of the affected individuals were examined by hand and where it was clear

that there was one haplotype in common amongst the majority of cases, that haplotype

was identified as a disease-linked haplotype. The assumption was made that if there

was some common mutation causing the illness amongst these related individuals,

Chapter 2 Materials and Methods

 29

then it would lie on this haplotype. All other unique haplotypes that were carried by

the family were defined as control haplotypes. It is important to note that the allele

sharing method carried out in this thesis investigated the allele sharing among disease-

linked haplotypes between families and not within families. Similarly control

haplotypes were compared between families and not within. So this method is not

simply selecting a haplotype that is carried by most cases within a family and testing

to see whether this haplotype occurs more often than I would expect by chance, it is

testing whether this haplotype shares a sub-haplotype in common with haplotypes

found to segregate with the same illness in other families. It is assumed that each

family carries a distinct identifiable disease-linked haplotype across the region under

investigation, so there is no need to compare within haplotypes in such a way within

each family. A description of the general basis of this method is outlined in section

1.2.2 and the specific details of the method are described in the sections following this

one.

2.1.2 Scoring

The degree of allele sharing was calculated within the groups of disease-linked and

control haplotypes. A pairwise comparison of the alleles at each marker was carried

out between all pairs of haplotypes in each of the two groups. For each pair of

haplotypes, each marker was assigned a score based on the size (measured by the

number of markers) of the region of sharing in which it was found (based on the

methods of Van der Meulen and te Meerman 1997; Bourgain et al. 2000). If a marker

was shared between the two haplotypes then the number of markers that were shared

around it determined the score for that marker (e.g. if three markers were shared then

each marker received a score of three. Scores at markers with ambiguous genotypes

were weighted based on the ambiguity (e.g. if it is known that a chromosome could

carry one of two alleles at a particular marker then that marker would contribute a

score of 0.5 to the block of sharing and a score would be generated for that marker

accordingly). Missing data does not contribute to the score of a region, but neither

does it break up a shared region, so a marker carrying missing data is scored based on

the level of sharing in the markers around it.

Chapter 2 Materials and Methods

 30

Figure 2.1: Allele sharing scoring.

(A) is an example of the standard scoring system used to measure allele sharing
between a pair of haplotypes. (B) shows how missing and ambiguous data are dealt
with. The first instance of missing data (? on haplotype 2) is flanked by one marker on
either side that is shared by both haplotypes, so all three markers receive a score of 2.
The second instance (? on haplotype 1) is not flanked by any shared alleles, so it
receives a score of 0. The case of ambiguity (G/C on haplotype 1) has a 50% chance
of being a case of sharing with the allele of the other haplotype, so the score for that
marker is 2.5 (0.5 +2, as it is in a region of sharing containing two other markers).

See Figure 2.1 for an example of the different scoring issues described. The scores

from each of the pairwise tests were averaged to generate a length statistic for each

marker for both the disease-linked and control groups of haplotypes.

An alternative length statistic was developed based on the physical distance

encompassed by a shared region but after some investigation, was not used further

during this thesis.

2.1.3 Permutation Testing

Upon calculating a score for each marker, it is desirable to attach a degree of

significance to each score. To ask the question of whether the variation in scores are

expected or whether they are likely to happen by chance. The distributional

properties of the length statistic are complex (Tzeng et al. 2003a), so permutation

analysis was used to assess the statistical significance of the null hypothesis of no

difference in sharing between linked and control haplotypes.

This permutation process involved the randomisation of all the disease-linked and

control haplotypes. These were then reallocated to disease-linked and control groups,

Haplotype 1 A ----- A ----- C ----- G ----- C ----- G ----- A ----- G ----- G ----- A

Haplotype 2 T ----- A ----- C ----- G ----- G ----- C ----- A ----- G ----- C ----- T

Score 0 3 3 3 0 0 2 2 0 0

Haplotype 1 C ----- A ----- C ----- G ----- G --- G/C --- A ----- G ----- C ----- ?

Haplotype 2 C ----- A ----- ? ----- G ----- G ----- C ----- A ----- G ----- C ----- A

Score 0 2 2 2 0 2.5 2.5 2.5 0 0

A

B

Chapter 2 Materials and Methods

 31

while retaining the proportion of haplotypes allocated to each group. The allele

sharing analysis was then repeated with these redefined (permuted) haplotype groups.

This process was generally carried out 9,999 times. A ‘standard’ permutation test was

then carried out whereby the results of the permuted datasets were used to create an

exact distribution of possible differences under the null hypothesis. The P value for

the length statistic at each marker was calculated as p=s/10,000, where s was the

number of times the length statistic for the permutated replicates exceeded the length

statistic using the actual disease-linked haplotypes. Statistical significance was

implied when P ≤ 0.05.

2.1.4 Correcting for multiple testing

It is important to consider the number of tests being carried out. The permutation test

described above are not comparing one score calculated in a pairwise comparison

between haplotypes, but one score at each marker. So if there are n individual

markers being studied, there will be up to n individual test being carried out. One

possibility would be to use a Bonferroni correction, however this is considered to be a

fairly conservative approach and even more so considering that some of the markers

being tested are likely to be in linkage disequilibrium thus should not be considered as

independent tests (Becker & Knapp, 2004). Other tests may require some assumption

about the distribution of the data. So, as process of nested permutation analysis,

where the permutation replicates themselves were tested against another set of

permuted datasets, to account for multiple testing.

Another reason for not using a simple permutation test is that in creating a nested

permutation test, we could study much more than just the corrected significance of

individual markers. Nested permutations provided the opportunity to take into

account the LD properties of the region being studied. This makes the assumption

that we know the LD structure (see section 2.4.2 for a description of how the LD

structure of the chromosome 4p-linked region was defined). As well as generating the

permuted datasets, the initial permutation analysis was used as a filter to identify

those areas of interest based on the P values generated. For those regions where the

initial permutation analysis had identified at least two consecutive markers with a P

value of 0.05 or less, the average allele sharing score was calculated along with the

number of LD blocks that were contained within the defined region. The real dataset

Chapter 2 Materials and Methods

 32

and each permutated dataset, were then compared with another set of 9,999 permuted

datasets contained a region of as many LB blocks of the same or greater significance.

In a slight modification of a standard permutation test, a P value was then calculated

for each region found to be significant by the initial permutation analysis, by P =

r/10,000, where r was the number of times a permutation replicate upon its

permutation analysis was found to generate a region containing at least as many

haplotype blocks as the region found in the linked haplotypes and at a greater or equal

level of significance.

Due to computational limitations, rather than creating a further set of permutations to

test against each of the original permutations, the remain 9,998 permutated replicates

(plus the real dataset) were used in an approximation of nested permutations (Ge et al.

2003).

2.1.5 Implementation

The methods described above were implemented using programs written in Java (Java

Platform, Standard Edition, Version 1.4.1; Sun Microsystems). Allele sharing scores

and the initial permutation analysis were run through a program called JavaAS .

JavaAS required that the path was specified to a comma delimited text file containing

the alleles of the linked haplotypes followed by the alleles of the control haplotypes at

each of the markers included in that particular analysis.

Figure 2.2: The JavaAS GUI.

The GUI used to carry out allele sharing scoring and permutation analysis.

Chapter 2 Materials and Methods

 33

The program also required that the number of disease-linked and control haplotypes

be specified, the type of length statistic to be used (the length statistic could be based

on the number of alleles, or number of base pairs). Finally, the program requires the

user to select whether permutation testing is required, selecting the type of

permutation analysis and the number of permutations. The program was run through

a user interface (Figure 2.2).

Upon running this program, the principle class used to carry out the allele sharing

scoring and permutation analysis was called AsCalculate.java . In brief,

AsCalculate.java reads in the data from the comma delimited data file and calls

the calcAS method (Figure 2.3), which carries out the comparison and scoring of

each pair of haplotypes in the linked and the control groups. These are then averaged

and difference between the two groups calculated.

Chapter 2 Materials and Methods

 34

Figure 2.3: The calcAS method.

 private Vector calcAS(Vector inputData, int colSt art, int colEnd){

Vector pairCases = new Vector();//create a vector o f each pairwise comparison
//create a loop of number of cases factorial (!)
for (int i=colStart;i<colEnd;i++){
 //within this loop, carry out the pairwise compa rison, and enter into
 //the first row of pairComp vector
 for (int j=i+1;j<colEnd;j++){
 Vector pairTemp = new Vector();//new vector for each pairwise comparison
 pairTemp = asLength((Vector)inputData.get(i),(Ve ctor)inputData.get(j));
 pairCases.add(pairTemp); //add the result of eac h pairwise comparison to
 //the pairComp vector
}

 }//end of loop around the no of pairwise compa risons
 return pairCases;
 }//end of calcAS

 private Vector asLength(Vector col1,Vector col2){
 Vector pairTemp = new Vector();
 int n=0;//to count where strings of matches occ ur
 int m=0;//take into account the number of missi ng points
 int p=0;//counts the number of matches
 double pscore=0.0;//keep track of the mounting score allocated from
 //ambiguous matches
 for (int k=0;k<col1.size();k++){
 String st1 = (String)col1.get(k);
 String st2 = (String)col2.get(k);
 if (st1.equals("?") || st2.equals("?")){//dat a missing in hap1 or hap2
 pairTemp.add(new Double(n+pscore));
 if(n>0)//this means that if there is a ?, i t only gets a score if there is
 //a score immediately prior, even if there is one immediately after
 m++;
 } else if(!isInteger(st1) || !isInteger(st2)) {//if !integer, then must
 //be ambiguous genotypes
 double match = 0;
 if (!isInteger(st1)){//if the hap1 genotype also ambigous
 String st1s[] = st1.split("_");//get the two options
 if (!isInteger(st2)){//if the hap2 is als o ambiguous
 String st2s[] = st2.split("_");//get th e hap2 options
 for (int i=0;i<st1s.length;i++){
 for (int j=0;j<st2s.length;j++){
 if (isInteger(st1s[i]) && isInteger (st2s[j])){//check that that
 //part of the ambiguity for
 //either hap is not ‘?’
 if ((new Double(st1s[i])).equals (new Double(st2s[j])))
 match += 1.0;
 }
 }//end of for st2s.length
 }//end of for st1s.lenght
 match /= 4.0;
 } else {//only hap1 is ambiguous
 for (int i=0;i<st1s.length;i++){
 if (isInteger(st1s[i])){//check that this part of the ambiguity is
 //not '?'
 if ((new Double(st1s[i])).equals(n ew Double(st2)))
 match += 1.0;
 }
 }
 match /= 2.0;
 }
 } else {//it must be that only hap2 is ambi guous
 String st2s[] = st2.split("_");//get the hap2 options
 for (int i=0;i<st2s.length;i++){
 if (isInteger(st2s[i])){//check that th is part of the ambiguity is not
 //'?'
 if ((new Double(st1)).equals(new Dou ble(st2s[i])))

A

B

Chapter 2 Materials and Methods

 35

 match += 1.0;
 }
 }
 match /= 2.0;
 }
 if (match > 0.0){
 pscore += match;
 pairTemp.add(new Double(n+pscore));
 for(int l=0;l<(n+p+m);l++){
 pairTemp.set((k-l-1),new Double(n+pscor e));
 }
 p++;
 } else if (match == 0.0){//there is no matc h even from the ambiguous data
 pairTemp.add(new Double(0.0));
 n=0; m=0; p=0; pscore=0.0;
 }
 } else if ((new Double(st1)).equals(new Doub le(st2))){
 pairTemp.add(new Double(n+pscore+1));
 for(int l=0;l<(n+p+m);l++){
 pairTemp.set((k-l-1),new Double(n+pscore+ 1));
 }
 n++;
 } else {
 pairTemp.add(new Double(0.0));
 n=0; m=0; p=0; pscore=0.0;
 }
 }//end of loop around the length of the pair of columns
 return pairTemp;
 }

The first excerpt of code (A) shows the calcAS method which calculates the allele
sharing scores between each pair of haplotypes. The input is a vector matrix holding
all the allelic information and markers for the start and end of the group being
calculated (linked or control). pairCases is a vector used to hold each pairwise
comparison in the group and a loop is created to score each haplotype vector against
each other. asLength (B) runs through each allele in the haplotypes and calculates
the score, taking account of missing and ambiguous data before returning a vector
holding the score at each marker back into the calcAS method.

If permutation analysis is being carried out on the data, the program uses a random

number generator to select random haplotypes from the data and place them into the

linked and control groups, whilst keeping the number in each group the same as the

original data. The program then calls the calcAs method for the randomised data.

This is repeated for each of the number of permutations specified initially. A method

permStats (see Figure 2.4) is then called to calculate the statistical significance of

the original results by comparing those results with that of the permutations.

Figure 2.4: The permStats method.

 permOut = new Vector[noPerms];
 for(int i=0;i<noPerms;i++){
 //get random nos
 Vector permTempIn = new Vector();//temp vector to hold the randomised
 //input column s
 Random rand = new Random(System.currentTimeMill is());
 Thread.sleep(10);//to make sure there is a uniq ue seed for the random

A

Chapter 2 Materials and Methods

 36

 //number generator
 Vector randList = new Vector();
 for (int j=0;j<inputData.size();j++){//for each haplotype
 int randNo = getRnd(inputData.size(),rand);
 if (randList.contains(new Integer(randNo))){/ /if we have already taken that hap
 j--;//repeat loop
 } else {
 permTempIn.add(inputData.get(randNo));//add hap to permTempIn
 randList.add(new Integer(randNo));//add to vector randList so it doesn’t
 // get se lected again
 }//end of get random nos
 //use progCount to keep track of the number o f permutations that
 //have beencarried out
 progCount = i;
 //now use permuted dataset as the input for t he AS score calculations
 permOut[i] = difference(average(calcAS(permT empIn,0,nocases)),
 average(calcAS(permTempIn,nocases,(nocases+ nocontrols))));
 }
 }//end of permutations
 //now calc permutation statistics
 pStats = permStats(permOut, outputData);
 }

 private Vector permStats(Vector[] perm, Vector[] out){
 Vector vDiffs = new Vector();
 for (int i=0;i<perm[0].size();i++){
 int temp = 0;
 double nDiffs = 0.0;
 for(int j=0;j<perm.length;j++){
 If(((Double)(perm[j].get(i))).doubleValu e()<(

 (Double)(out[2].get(i))).doubleValue())
 nDiffs++;//
 temp = 0;//diff columnn
 }//end of for perm.length (columns)
 nDiffs /= noPerms;
 vDiffs.add(new Double(nDiffs));
 }//end of for perm[0].size (rows)
 return vDiffs;
 }

The code in part (A) is part of the main AsCalculate program. Here the program
uses a random number generator to select random haplotypes from the full dataset
and then call the calcAS method described in Figure 2.3. The program loops for n
permutations being carried out. The results of each permutation are stored and then
used in the call to permStats. The permStats method (B) is used to calculate the
statistical significance of allele sharing scores compared with randomly permutated
data. This is done be comparing the results of n permutation with the real results.

A tool to display the results of the allele scoring and permutation analysis was

developed. This tool was kept as straight-forward as possible and in the case of the

allele sharing scores, simply involved generating a graph that displayed the marker

position along an x-axis, allele sharing score along a y-axis. At the position of each

marker, a point was plotted for each group of disease-linked and control haplotypes.

The two groups were identified through colour and the shape of the point. The graph

developed to display the significance value attached to each marker was similar. One

point was plotted representing the P value for each marker along a scale on the y-axis.

The position of the marker was again along the x-axis. A line representing the 0.05

B

Chapter 2 Materials and Methods

 37

significance threshold was added and points the lay above the 0.05 value were

coloured red. Other features of both graphs were tool-tips that could be used to

identify the exact values at any point, a legend and the ability for the user to modify

the title of the graphs. Figure 2.5 shows an example of the graphs.

Figure 2.5: ASGraph and PermGraph.

An examples of the graphs used to display the results of the allele sharing scoring and
initial permutation analysis. In (A) each marker’s position is shown on the x-axis and
allele sharing score on the y-axis. At each marker involved in the analysis, two points
are plotted, o represents the score between the control haplotypes and x the score
between the disease-linked haplotypes. (B) shows the significance value at each of
these same markers. The 0.05 cut-off is shown by the dashed line.

Chapter 2 Materials and Methods

 38

A separate program was used to carry out the nested permutation analysis that

generated the corrected significance values. This was implemented in a program

called NewAsPermAnalysis.java (some key components of this program can be

found in Figure 2.6 below, the full program is listed in Appendix A). The input for

this program was the allele sharing score at each marker for the original allele sharing

analysis, as well as for each permuted dataset and data on how each marker fitted into

the LD structure of the region. Where the initial permutation analysis (described

above) compared the real allele sharing score to that found in the permuted datasets,

NewAsPermAnalysis.java compared the allele sharing scores across a specific

number of LD blocks in each of the permuted datasets in turn with the scores for

similar sized regions for all the other permuted datasets. This program also took the

haplotype structure of the region into account by comparing the average allele sharing

score for each haplotype block rather than the score for individual markers. The

proportion of permuted datasets that identify regions of greater significance than that

found in the original analysis were used to generate a corrected significance value.

The full AsCalculate and NewASPermAnalysis methods can be found in

Appendix A.1 and A.2 respectively. Other programs were created to provide the

JavaAS GUI and to generate the ASGraph and PermGraph graphs. These programs

are not listed in this thesis.

Figure 2.6: The NewASPermAnalysis class.

 Vector realBlockData = getBlockAvs(realData);//ge t the average score for
 //ea ch block, for the real data
 //now store the average scores or each block, for each permutation
 Vector permBlockData = new Vector();
 for (int i=0;i<permData.size();i++){
 permBlockData.add(getBlockAvs((Vector)permData. get(i)));
 }
 //calc the average of each seq of n blocks for ea ch permutation
 Vector permTestNBlocksData = new Vector();
 for (int i=0;i<permBlockData.size();i++){
 permTestNBlocksData.add(new Double(getBestNBloc kScore(
 (Vector)permBlockData.get(i))));
 }

 //compare the best score for n consecutive blocks in each of the
 //permutations against the real result
 int noMoreSigPerms = 0;
 for (int i=0;i<permTestNBlocksData.size();i++){
 if(((Double)permTestNBlocksData.get(i)).doubl eValue() >= realAvScore){
 noMoreSigPerms++;//store the total number of permutations that have a region
 //of n blocks that are at le ast as significant as in the real
 //data
 }
 }

A

Chapter 2 Materials and Methods

 39

 private double getBestNBlockScore(Vector blockDat a){
 //go through each of the list of block averages
 //for te first n-1 add to a vector
 //then for n go on and take the average again
 //then for each additional block remove the fir st and add the new and take
 //another average
 Vector consecBlocks = new Vector();
 Vector avBlockScores = new Vector();
 double bestNBlockScore = 0.0;
 for (int i=0;i<blockData.size();i++){
 //if we have been through less than the requi red number of blocks so far
 //add the latest block to the list
 if(consecBlocks.size() < (testNBlocks-1)){
 consecBlocks.add(blockData.get(i));
 }//else if we have just 1 less than required
 else if (consecBlocks.size() == (testNBlocks- 1)){
 //add the newest block
 consecBlocks.add(blockData.get(i));
 //and calc the average score
 double sum = 0.0;
 for (int k=0;k<testNBlocks;k++){
 sum += ((Double)consecBlocks.get(k)).doub leValue();
 }
 bestNBlockScore = sum/testNBlocks;
 }//else we then add new block to the end and remove the oldst block from
 //the start
 else {
 //remove the oldest blcock
 consecBlocks.remove(0);
 //add the newest block
 consecBlocks.add(blockData.get(i));
 //and calc the average score
 double sum = 0.0;
 for (int k=0;k<testNBlocks;k++){
 sum += ((Double)consecBlocks.get(k)).doub leValue();
 }
 if ((sum/testNBlocks) > bestNBlockScore)
 bestNBlockScore = sum/testNBlocks;
 }//end of final else
 }
 return bestNBlockScore;
 }

In (A), the average score for each block is calculated and stored for the real data and
for the permuted data, the average is also calculated for each sequence of n blocks
(where n is the number of blocks found in the region for which the corrected P value
is being generated). The getBestNBlockScore method (B) is then called to
calculate the most significant region that covers n blocks in that permuted dataset.
The program (A) then calculates the proportion of permutations that have a sequence
of n blocks with a score higher than the sequence of blocks identified in the real data.

B

Chapter 2 Materials and Methods

 40

2.2 Cystic fibrosis study

2.2.1 Cystic fibrosis data

The cystic fibrosis data was based on sixty families from Brittany where some

individuals, from each of the families, were known to carry one or other of three

cystic fibrosis mutations (W846X2, 9 families; 1078delT, 27 families and G551D, 24

families; De Braekeleer et al. 1996). These families had been genotyped at ten

microsatellite markers flanking the CFTR locus with an average spacing of ~900kb

and covering a total region of 8.34Mb. Genotyping had been carried out by members

of the Férec laboratory (Universite de Bretagne Occidentale) and data from was

kindly provided for use in this study.

2.2.2 Cystic fibrosis analysis

Members of the Férec laboratory (Universite de Bretagne Occidentale) had examined

the pattern of inheritance in each family studied and a disease-linked haplotype

common to in the affected individual in each family was defined. A number of

control haplotypes from each family were also identified. Three datasets were

defined consisting of the families that carried each of the three different mutations.

Allele sharing scores were calculated for each dataset and 10,000 permutations were

carried out on each of these results to test significance at the individual marker level.

It was not possible to use the secondary permutation analysis due to the lack of a

shared region between the disease-linked haplotypes of different families and so a

Bonferroni correction was used to modify the significance threshold to take account

of the multiple testing that occurred in the permutation analysis (see section 3.4 for a

discussion of this). The modified significance threshold was calculated as α’ = α/n

where n is the number of tests being conducted. In this case n = 10 as there are 10

markers being tested, so if α is taken to be 0.05, α' = 0.005.

Chapter 2 Materials and Methods

 41

2.3 Simulation study

2.3.1 A method for simulating a founder mutation

The simulation took a starting population for which the genotypes at a number of

markers across a particular region were predicted. A hypothetical mutation at a

random point on the genotyped region was recorded. The individuals carrying the

mutation were declared to have some phenotype caused by the mutation. The

individual who developed the mutation was defined as having had two children with a

random member of the population. At each base pair, the chance of a recombination

event was defined as 1x10-8 per generation. These children would each, along with a

random member of the population, produce two children themselves and so on. If the

mutation established itself in the population, this process would continue for a

predetermined number of generations (see Figure 2.7). After which, the most recent

generations could be broken up into apparently unrelated families. A pre-specified

number of these families would then be chosen on which to test the allele sharing

method. One disease-linked haplotype and a number of control haplotypes from the

three most recent generations were identified from each family that was selected. The

allele sharing method was then used to identify any regions of significant allele

sharing and the locations of any such regions could be compared with the known

mutation location to determine success. The simulation makes the assumption that no

recurrent, independent mutations occur amongst the control population and that the

mutation, and its associated haplotype, can be distinguished from other haplotypes.

2.3.2 Implementation of simulation

The simulation was developed in Java (Java Platform, Standard Edition, Version

1.4.1; Sun Microsystems. Data was simulated through a new program that was

developed called PedSimMain.java . The program firstly required that the path to a

starting population, the number of families that are to be generated and the range into

which the numbers of generations between the families and a common ancestor

should fall, were all defined on use. The starting population consists of a number of

haplotypes each of which contains genotype information at a number of markers on a

particular chromosome. The region covered by the genotypes was expected to model

Chapter 2 Materials and Methods

 42

the type of region that a replicated linkage study might identify. There were no set

requirements as to the number of haplotypes that make up the starting population and

the number of markers that were included in the model other than that each haplotype

had to contain genotype information on the same markers. The data was comma

delimited with each row representing a marker and each column representing a

haplotype.

Figure 2.7: Simulating a founder mutation in a population.

An example of how the first few generations of a simulation might progress. The
arrow represents the random position on the haplotype that the mutation occurs. The
haplotype of the original mutation carrier is shown as the red haplotype and all the
population haplotypes are shown as green haplotypes. A * indicates where a
recombination event has occurred. An X marks where a branch comes to an end as
the mutation is no longer carried and is discontinued from the simulation.

The simulation itself involves an iterative process (for each of n simulations) where

the starting population first had one haplotype randomly allocated as the mutation-

carrying haplotype with the mutation occurring at a user specified position. A method

…
Haplotype
population

*

x

x
* *

x x x

*

x

Chapter 2 Materials and Methods

 43

simulator was used to carry out the core simulation. Figure 2.8 shows the section

of the simulator method that created each generation of the population and also the

getChildChr method that models the genetic inheritance in each individual. In

order to minimise the computational requirements, only those lineages that carry the

mutation were stored and tracked for the entire simulation.

Figure 2.8: simulator and getChildChr methods

//for each generation
for (int i=1;i<noGenerations;i++){
 //store the data for each generation in a new has htable
 peopleHT = new Hashtable();
 //get the data from the previous generation
 prevGenHT = (Hashtable)generationsHT.get((new Int eger(i-1)).toString());

 //for each parent from previous generation
 Vector sortedKeys = new Vector();
 sortedKeys = sort(prevGenHT.keys());
 for (int j=0;j<sortedKeys.size();j++){
 //initialise child1
 Vector child0 = new Vector();
 Vector child1 = new Vector();
 //select 50/50 whether to start from parent0 ch r 0 or 1
 String key = ((Integer)sortedKeys.get(j)).toStr ing();
 Vector v = new Vector();
 v = (Vector)prevGenHT.get(key);
 //store affection status from 1st parent
 String parentDS = (String)v.get(1);
 //child0
 Vector c0c0temp = new Vector();
 c0c0temp = getChildChr((int[])v.get(2),(int[])v .get(3),(String)v.get(1),key);
 int[] child0Chr0 = (int[])c0c0temp.get(0);
 String child0DS = (String)c0c0temp.get(1);
 //child1
 Vector c1c0temp = new Vector();
 c1c0temp = getChildChr((int[])v.get(2),(int[])v .get(3),(String)v.get(1),key);
 int[] child1Chr0 = (int[])c1c0temp.get(0);
 String child1DS = (String)c1c0temp.get(1);

 //use to select which chromosome and model reco mbination
 j++;
 String key2 = ((Integer)sortedKeys.get(j)).toSt ring();
 Vector v2 = (Vector)prevGenHT.get(key2);
 //child0
 Vector c0c1temp = new Vector();
 int[] t = (int[])v2.get(2);
 int[] t2 = (int[])v2.get(3);
 String t3 = (String)v2.get(1);
 c0c1temp = getChildChr((int[])v2.get(2),(int[]) v2.get(3),(String)v2.get(1),key);
 int[] child0Chr1 = (int[])c0c1temp.get(0);
 //child1
 Vector c1c1temp = new Vector();
 c1c1temp = getChildChr((int[])v2.get(2),(int[]) v2.get(3),(String)v2.get(1),key);
 int[] child1Chr1 = (int[])c1c1temp.get(0);

 //add data
 child0.add(key.concat(",").concat(key2));//pare ntID
 child1.add(key.concat(",").concat(key2));//pare ntID
 child0.add(child0DS);//disease status
 child1.add(child1DS);//disease status
 child0.add(child0Chr0);//haplotpye1
 child1.add(child1Chr0);//haplotpye1
 child0.add(child0Chr1);//haplotype2

A

Chapter 2 Materials and Methods

 44

 child1.add(child1Chr1);//haplotype2

 //if the parent is affected
 if(parentDS.equals("D")){
 //put child1 into the generation
 peopleHT.put(new Integer(idCount++).toString(),child0);
 //if this is not the last generation, make a married in and add
 if(!(i==(noGenerations-1))){
 Vector min = new Vector();
 min = makeMarriedIn(controlHaps[(int)Math.f loor(Math.random()*

(controlHaps.length))],controlHaps[(int)Math.floor(Math.random()*
(controlHaps.length))]);

 peopleHT.put(new Integer(idCount++).toStrin g(),min);
 }
 //put child2 into the gen
 peopleHT.put(new Integer(idCount++).toString(),child1);
 if(!(i==(noGenerations-1))){
 Vector min = new Vector();
 min = makeMarriedIn(controlHaps[(int)Math.f loor(Math.random()*

(controlHaps.length))],controlHaps[(int)Math.floor(Math.random()*
(controlHaps.length))]);

 peopleHT.put(new Integer(idCount++).toStrin g(),min);
 }
 }
 }//end of for each person in prev generation

 //now, put this generations info into generations HT
 if (peopleHT.size()>0){
 generationsHT.put((new Integer(i)).toString(),p eopleHT);
 }
 else
 break;
}

public Vector getChildChr(int[] chr0, int[] chr1, S tring parentDS, String key){
 String ds = "";
 int[] childChr = new int[chr0.length];
 double rand = Math.random();
 int chr2Use = 0;

 //get 1st chr from parent1
 //50% chance of each
 if(rand<=0.5){
 //set chr2Use to 0
 chr2Use = 0;
 } else {
 chr2Use = 1;
 }

 //go through each marker
 for (int k=0;k<chr0.length;k++){
 //add the markers, one by one to the childs chr
 if(chr2Use==0){
 childChr[k] = chr0[k];
 if(k==mutMarker)
 ds=parentDS;
 }else if (chr2Use==1){
 childChr[k] = chr1[k];
 if(k==mutMarker)
 ds="U";
 }
 //test for recombination at each marker
 //get rand no
 rand = Math.random();
 //if rand<(1x10(8)*dbm) then we have a recombin ation event
 if(rand < (recombRate*distBetweenMarkers)){
 //therefore change parental chromosomes
 if(chr2Use==0)
 chr2Use=1;
 else if(chr2Use==1)
 chr2Use=0;
 }
 }

B

Chapter 2 Materials and Methods

 45

 Vector v = new Vector();
 v.add(childChr);
 v.add(ds);
 return v;
}

Following the initialisation of variables, (A) shows the simulator method which
looped through each generation and modelled the inheritance of the genetic markers.
(B) presents the getChildChr method that was called to model each individual case
of inheritance, showing how parental chromosomes were selected randomly and how
recombination was taken into account.

Having modelled the impact of the mutation in a population, the simulator method

then proceeded to identify a number of families from the final generations. A family

was defined a group of individuals that were directly related in the last four

generations of the simulated population. The method then calculates the number of

generations separating each of these families. The number of families and the

distance between them can then be selected to match the initial criteria determined by

the user. Figure 2.9 shows the two sections of the simulator method that select

complete families from the most recent generations of the simulation and then identify

the most distantly related.

Figure 2.9: simulator methods to generate families

Vector families = new Vector();//store a vector of each family
Enumeration gkeys = generationsHT.keys();//ennumera tion of the key(id) for each gen
Vector gkeysSorted = sort(gkeys);//sorted list of t hese keys
//for fourth last (n-4)th generation, get the hash table
Hashtable ht=(Hashtable)generationsHT.get(((Integer)gkeysSorted.get
 (gkeysSorted.size()-4)).toString());
Enumeration keys=ht.keys();//enumeration of the key s within (n-4)th generation
Vector keysSorted=sort(keys);
//for each individual in (n-4)th generation
for (int i=0;i<keysSorted.size();i++){
 if(((String)((Vector)ht.get(((Integer)keysSorted. get(i)).toString())).get(1)).
 equals("D")){//create a family only if this indi vidual is affected
 Vector family_temp=new Vector();
 Vector individual_temp=(Vector)((Vector)ht.get(((Integer)keysSorted.get(i)).
 toString())).clone();
 individual_temp.add(0,(Integer)keysSorted.get(i));//add key to start of the vector
 family_temp.add(individual_temp);//now add them to the family temp vector
 i++;//get that persons spouse
 individual_temp = (Vector)((Vector)ht.get(((Int eger)keysSorted.get(i)).
 toString())).clone();
 individual_temp.add(0,(Integer)keysSorted.get(i));//add key to start of the vector
 family_temp.add(individual_temp);
 families.add(family_temp);
 } else
 i++;
}
for (int i=(gkeysSorted.size()-3);i<gkeysSorted.siz e();i++){//for 3 subsequent gens
 ht = (Hashtable)generationsHT.get(((Integer)gkeys Sorted.get(i)).toString());

A

Chapter 2 Materials and Methods

 46

 keys = ht.keys();//enumeration of the keys within generation i
 keysSorted = sort(keys);//these keys sorted
 for (int j=0;j<keysSorted.size();j++){//for each individual j
 String parents=(String)((Vector)ht.get(((Intege r)keysSorted.get(j)).toString())).
 get(0);//get j's parents
 String[] parent = parents.split(",");
 for (int k=0;k<families.size();k++){//for each family k
 Vector family = (Vector)families.get(k);
 for (int l=0;l<family.size();l++){//for each member in that family
 //if j has parents in family k,
 if(parent[0].equals(((Integer)((Vector)fami ly.get(l)).get(0)).toString())){
 Integer in = (Integer)keysSorted.get(j);/ /get individual j's details
 Vector individualj=(Vector)((Vector)ht.ge t(((Integer)keysSorted.get(j)).
 toString())).clone();
 individualj.add(0,in);//add the key to th e start of the vector
 ((Vector)families.get(k)).add(individualj);//add j to that family
 Vector individualjplus1=(Vector)((Vector) ht.get(((Integer)keysSorted.get(
 ++j)).toString())).clone();//also add j+ + to that family
 individualjplus1.add(0,(Integer)keysSorte d.get(j));
 ((Vector)families.get(k)).add(individualj plus1);
 break;
 }
 }
 }
 }
}

Vector famDistances=new Vector();//vector to hold t he comparisons between families
//for the 1st member of each family (apart from the last)
for(int i=0;i<families.size()-1;i++){
 Vector famiid0=(Vector)((Vector)families.get(i)). get(0);
 Vector ijDistances=new Vector();//vector to hold the distances between fami and famj
 for(int j=i+1;j<families.size();j++){// for each other family
 //test this person from famiid0 against famjid0
 Vector famjid0 = (Vector)((Vector)families.get(j)).get(0);
 //initialise parents
 String parents0 = famiid0.get(1).toString();
 String parents1 = famjid0.get(1).toString();
 //store the level of separation
 int sep = 1;
 //go up through all the generations until we fi nd a common ancestor
 boolean comAn = false;//is there a com(mon)An(c estor)?
 while (!comAn){
 //if they have common parents, then store the no of gen separate
 if((parents0).equals(parents1)){
 comAn = true;
 } else {
 //go back a further generation
 sep++;
 //and get the parents from the previous gen eration
 //generationsHT contains info on all the ge nerations
 int noGens = generationsHT.size();
 //we are starting from the last generation
 //so we now want to get the partners of tho se individuals named as
 //parents 0 and 1
 //so we look at generation (noGens-sep)
 Hashtable generationN=(Hashtable)generation sHT.get((new Integer(
 (noGens-sep-3))).toString());
 //and find the individuals that are named a s parents0 and 1 from
 //need to split up the parents0 and 1
 String[] parent00 = parents0.split(",");
 Vector ind0 = (Vector)generationN.get(paren t00[0]);
 String[] parent10 = parents1.split(",");
 Vector ind1 = (Vector)generationN.get(paren t10[0]);
 //now, get ind0 and 1s parents
 parents0 = (String)ind0.get(0);
 parents1 = (String)ind1.get(0);
 }//and loop round again with these new parent s
 }
 ijDistances.add(new Integer(sep));//store the n umb of gens of separation
 }
 famDistances.add(ijDistances);//store the compari sons
}

B

Chapter 2 Materials and Methods

 47

(A) shows the section of the simulator method that created family units from the
last four generations of the simulation. First it identifies all affected individuals from
the fourth last generation of the simulation, it then goes through the subsequent
generations and stores together all those individuals that are related. (B) shows how
the program then takes these families and calculates the distance (in number of
generations) between them by tracing back to a common ancestor.

Following the identification of a group of families from a simulated population, the

program then assumes that the haplotypes from each family can be classified as

disease-linked or control. The two haplotype groups from each of the families were

then be brought together and used as the input for the calcAS (Figure 2.3) and

permStats (Figure 2.4) methods used to generate allele sharing scores and run the

permutation analysis. The haplotypes were then studied (see Figure 2.10 for the code)

and shared regions of the disease-linked haplotypes of the simulated families were

identified along with information from the allele sharing analysis (calcAS and

permStats). These data were then used as the input for the NewASPermAnalysis

method which ran the secondary permutation analysis to generate corrected

significance values for each shared region. These programs were run automatically

without requiring and user interaction. As the program knows where the mutation

lies, it took these results and determined whether the allele sharing analysis did indeed

identify a significant region that encompassed the simulated mutation. It also

determines the number of regions that were found to be significant elsewhere along

the haplotype under study (i.e. false positive regions).

Figure 2.10: FindSigRegions methods

//go through disease-linked haps and search for sha red regions
double rSum=0.0;//sum of scores
double pSum=0.0;//sum of p values
int count=0;
String lastBlockNo="";
int numBlocks=0;
Vector blockScore=new Vector();
Vector blockP=new Vector();
Vector blockBlocks = new Vector();
int mutBlock=100;
boolean mutBlockActive = false;
for (int i=0;i<col0.size();i++){//for each marker
 //if all markers are equal store the score and p values
 if(((String)col0.get(i)).equals((String)col1.get(i)) && ((String)col0.get(i)).
 equals((String)col2.get(i))){
 //sum the score and p vlaues
 rSum += (new Double((String)ASScores.get(i))).d oubleValue();
 pSum += (new Double((String)ASPValues.get(i))). doubleValue();
 count++;

Chapter 2 Materials and Methods

 48

 //++ the no of blocks if it is a new block
 if(((String)blockNos.get(i)).equals("null"))
 numBlocks++;
 else if (!((String)blockNos.get(i)).equals(la stBlockNo))
 numBlocks++;
 //if it crosses the mutation, then mark this bl ock as true
 if(i==mutMarkerIndex){
 mutBlockActive = true;
 }
 //if this is the last marker and it is shared, then add as a shared block
 if (i == col0.size() && count > 1 && ((pSum/co unt) > 0.949)){
 blockScore.add(new Double(rSum/count));
 blockP.add(new Double(pSum/count));
 blockBlocks.add(new Integer(numBlocks));
 if(mutBlockActive){
 mutBlock = blockScore.size() - 1;
 mutBlockActive = false;
 }
 }
 }
 //else if there is no sharing
 else{
 //if previous sharing >1, store the last blocks results
 if(count > 1 && ((pSum/count) > 0.949)){
 blockScore.add(new Double(rSum/count));
 blockP.add(new Double(pSum/count));
 blockBlocks.add(new Integer(numBlocks));
 if(mutBlockActive){
 mutBlock = blockScore.size() - 1;
 mutBlockActive = false;
 }
 }
 rSum = 0.0;
 pSum = 0.0;
 numBlocks = 0;
 count = 0;
 }
}
//add the last block in it is still being shared
if(count>1 && ((pSum/count)>0.949)){
 blockScore.add(new Double(rSum/count));
 blockP.add(new Double(pSum/count));
 blockBlocks.add(new Integer(numBlocks));
 if(mutBlockActive){
 mutBlock = blockScore.size() - 1;
 }
}

Shows how the program goes through the disease-linked haplotype of the simulated
families and store the average score and P value within each shared region as well as
the number of markers and haplotype blocks covered by that region.

An example of the full simulation program can be found in Appendix A.3. A

different version of the program was developed for the different number of families,

the example in Appendix A.3 is the program used to create three families.

2.3.3 Initial population and variables

For the purpose of testing the allele sharing method, 458 individuals from the Scottish

population were used as the founder population in the simulation. Genotype

Chapter 2 Materials and Methods

 49

information from these individuals at 149 markers over a ~5Mb region of

chromosome 4 was used. These individuals constituted the control population of a

case control study testing for association with BPAD and/or schizophrenia

(Christoforou et al. 2007). This provided a realistic dataset of unrelated, healthy

individuals from the same population. The markers genotyped had previously been

selected to describe the haplotype structure of the region. On average, there was one

marker every ~18kb. For the purposes of the simulation, the simulated mutation was

chosen to occur at the 74th marker on the haplotype. Simulations were run on

between three and six families and up to 400 generations between the end families

and a common ancestor. For computational reasons, it was not possible to run the

simulation for more than 400 generations and less than this as the number of families

were increased.

Chapter 2 Materials and Methods

 50

2.4 Chromosome 4p data

Four families (F22 F59, F50 and F48) had previously been shown to be linked with

BPAD or BP-related disorders at chromosome 4p15-16. These families were studied,

in the genomic regions where the linkage signals overlapped, to see if a region of

allele sharing could be identified that might signify a common founder mutation.

2.4.1 Families studied

In the original F22 family study, a clinical description was obtained for 120 individual

family members. This found 11 with a diagnosed with BPAD, 16 with recurrent

unipolar depression and 12 received minor psychiatric diagnoses (Blackwood et al.

1996). Partners were also interviewed to ascertain the bi-lineal descent of affective

disorders. This family was recently re-evaluated (Le Hellard et al. 2006), although

not all family members could be interviewed. As a result, five new cases were

identified and the offspring in one family were removed from the analysis after major

psychiatric illness was detected in the first degree relatives of the married in parent.

A follow up to the original study (Blackwood et al. 1996) found another family F59,

where 11 individuals were studied and six individuals were diagnosed with BPAD.

F50 (Asherson et al. 1999) was a family of 16 family members of which five were

diagnosed with schizoaffective disorder or schizophrenia. F48 had 39 members that

were investigated, six of which were affected under their affection status model I

(which encompasses in BPAD, major depression and schizoaffective disorder). See

figures 4.1 and 4.2 to see the pedigrees of the families and how the linkage signals

overlap.

DNA samples from the individuals of the four families were made available. A

number of these individuals were selected such that genotypes could be phased to

form haplotypes and identify the haplotype common to affected individuals in each

family. 31 members of F22, 5 members of F59, 7 members of F50 and 3 members of

F48 were genotyped. This data was then subjected to the allele sharing analysis.

Chapter 2 Materials and Methods

 51

2.4.2 Genotyping

Genotyping was conducted in two phases with the first phase based on SNPs found in

genic regions within the four families. SNPs were identified by amplifying and

sequencing exons, exon-intron boundaries and the region approximately 1kb up and

down-stream of known genes from regions B and D using DNA from family

members. Known genes were defined as those with predicted, provisional, reviewed

or validated RefSeq status codes as well as those that had a protein described in

Swissprot. Two genes thought to be unlikely candidates for psychiatric illness met

these criteria, yet were not analysed. 216 publicly available SNPs and 68 novel SNPs

were identified and used in the analysis (127 in region B and 157 in region D). This

work was carried out by colleagues.

The second phase of the analysis was based on a complete coverage of regions B and

D. 559 SNPs (175 in region B and 384 in region D) were selected to account for most

of the haplotype structure in these two regions. This work was also carried out by

colleagues (Christoforou et al. 2007). They downloaded SNP genotype data for the

30 CEPH trios (Utah residents with ancestry from northern and western Europe)

(CEU) in overlapping segments of approximately 1 Mb from HapMap Release 7

(May 2004) (http://www.hapmap.org). LD maps of the priority regions were

constructed from this data using Haploview v 2.5 (http://www.broad.mit.edu/mpg

/haploview/index.php; Barrett et al. 2005). Pair-wise comparisons of markers more

than 500 kb apart were ignored (Haploview default) and only markers with a minor

allele frequency (MAF) greater than or equal to 0.10, a Hardy-Weinberg (HW) P-

value greater than 0.001 (Haploview default) and a genotyping success rate of 0.75 or

better (Haploview default) were included in the LD analysis. Haplotype blocks were

defined using the solid spine of LD approach, which creates blocks only when the

first and last SNPs are in strong LD (|D'|>0.80) with all of the intermediate SNPs

(Barrett et al. 2005). For haplotypes with a frequency of at least 0.01, adjacent

haplotype blocks with a Hedrick's multiallelic D' (MAD'; Hedrick et al. 1987) greater

than or equal to 0.95 were merged manually and this process was repeated until the

MAD' between any two adjacent blocks was less than 0.95. The final step involved,

using Haploview's internal tagging program, which selected htSNPs on a block-by-

block basis to represent haplotypes of frequencies greater than or equal to 0.10.

Chapter 2 Materials and Methods

 52

Individual SNPs (singletons) that fell between blocks were also included in the set of

htSNPs. The LD between them and adjacent blocks was not determined.

2.4.3 Haplotype Analysis

The MERLIN (Multi-Point Engine for Rapid Likelihood Inference) software package

(Abecasis et al. 2002) was used to determine distinct haplotypes for the individuals

genotyped. The phasing of these genotypes was verified manually and in some cases,

where MERLIN had failed to place alleles onto a particular haplotype, this was done

by hand. However, in some cases it was not possible to be sure which allele lay on

which haplotype. In such cases, this ambiguity was retained in the following analysis.

For each family, the haplotypes of the affected individuals were studied by hand and a

‘disease-linked’ haplotype was identified as that haplotype which was found in

common among most affected individuals.

2.4.4 Allele sharing analysis

The allele sharing methods described in section 2.1.4 was used to identify any regions

of significant allele sharing between the disease-linked haplotypes.

2.4.5 Association analysis

It was also important that these data were also tested against existing methods,

including what could be considered more traditional methods such as TDT. I was

unable to get hold of a functioning implementation of any of the published haplotype

sharing methods (e.g. MILC or HSS). There are numerous implementations of TDT

available through freely available programs such as WHAP (Purcell et al. 2007),

FBAT (Laird et al. 2000), TDTae (Gordon et al. 2001, 2004), LAMP ((Li et al, 2005;

Li et al, 2006) and other. Each of these programs were investigated to identify what

association tests could be carried out. While association analysis at singe marker

level was straight forward, there were problems in trying to carry out any haplotype-

based analysis. This would appear to be due to computational limitations of the

computers I had access to. As a consequence, it was only possible to carry out the

most superficial analysis of the data using such methods. The analysis of association

Chapter 2 Materials and Methods

 53

using the TDT method reported in this thesis was carried out using the WHAP

program. WHAP is a software tool that performs a haplotype based association

analysis described as being designed for both candidate gene studies and studies of

small to moderately size chromosomal regions.

The software was used in this thesis to analyse 10 parent offspring trios that were

derived from those families (F22, F50 and F59) that showed linkage to region B of the

chromosome 4p linkage region for BPAD. The relevant input files were created

based on those markers genotyped in region B (see section 2.4.2). WHAP was used

to carry out single marker and two-marker haplotype sliding window association tests.

1000 permutations were carried out for each test. One individual haplotype test was

carried out on a region found to be significant through the allele sharing analysis.

2.4.6 Gene identification and bioinformatics analysis

Bioinformatics analysis was performed to assess the biological relevance of any

significant allele sharing regions. Significant regions were investigated in the UCSC

genome browser (Kent et al. 2002) and the Ensembl ContigView (Hubbard et al.

2007) for known genes, protein coding genes based on protein data from UniProt and

mRNA data from RefSeq and GenBank; RefSeq genes, known protein coding genes

from the NCBI mRNA reference sequence collection; and for main prediction class

AceView gene models (Thierry-Mieg & Thierry-Mieg 2006) that do not correspond

to Known or RefSeq genes. Evolutionary conservation in non-coding regions in 17

vertebrates was examined using the “Vertebrate Multiz Alignment & Conservation”

track on the UCSC Genome Browser. The conservation track is based on a

phylogenetic hidden Markov model, phastCons.

 54

Chapter 3

Testing and Understanding the Allele Sharing Method

Chapter 3 Testing and Understanding the Allele Sharing Method

 55

3.1 Introduction

In the previous chapter, I described a scoring system for calculating allele sharing

between a set of haplotypes. I further described how the allele sharing scores of two

groups of haplotypes can be compared and tested for significant differences. In this

chapter I describe how the efficacy and characteristics of this method were

investigated using simulated and real data.

3.1.1 Cystic fibrosis dataset

In order to test the allele sharing method, I required access to a dataset for a number

of families that showed linkage to a common region due to a shared founder mutation.

Genotype information around the mutation and knowledge of the mutation location

were also required. There is, however, a paucity of confirmed founder mutations

where a number of families have been densely genotyped. This is because such

mutations have usually been found through linkage studies followed by candidate

gene studies and it is only recently that it has become cost-effective to genotype a

large region to the level at which I expect the allele sharing method to be most

effective. However, one appropriate dataset was identified upon which the method

could be tested.

This dataset was based on three cystic fibrosis mutations (W846X2, 1078delT and

G551D) that had been identified in the Breton population. Cystic fibrosis is a

severely debilitating illness that affects the digestive system and lungs and is

relatively common in Caucasian populations. The population of Brittany is thought to

be a distinct and relatively isolated population where many people are the descendants

of the Celtic people displaced from England in the fifth and sixth centuries (Scotet et

al. 2002) and the three mutations were found to be much more common in the Breton

population than the wider French population (De Braekeleer et al. 1996), it is

therefore very possible that these mutations were exist due to some degree of founder

effect. The dataset consisted of ten microsatellites subtending the CFTR locus and

spanning ~8Mb. This marker density was less than ideal, but I expected that the

sparse coverage of the region would be compensated to some degree by the large

number of families with each of the mutations.

Chapter 3 Testing and Understanding the Allele Sharing Method

 56

3.1.2 Simulated dataset

While the cystic fibrosis data provided a reasonable exemplar dataset on which the

allele sharing method could be tested, it only provided three mutations with sparse

genotyping. Ideally, it would have been possible to go back and genotype a

chromosomal region at high density in a number of families known to carry the same

founder mutation. However, this was not feasible due to the costs involved. An

alternative to using real data was to build a simulation of a population carrying a

founder mutation. Simulated data provided a means to test the allele sharing method

and had the advantage of being able to generate data under a whole range of

conditions. The simulation study involved modelling the development of a mutation

in a hypothetical founder population and following its establishment in the population

from which, after some number of generations, multiple, seemingly unrelated,

families could be gathered to test for allele sharing. This provided a means to

generate families under various conditions and more fully test the effectiveness of the

method. This also allowed the development of a set of criteria under which the

method is expected to perform well.

Chapter 3 Testing and Understanding the Allele Sharing Method

 57

3.2 Allele Sharing in Cystic Fibrosis Families

A study of Cystic Fibrosis patients in Brittany identified three mutations (W846X2,

1078delT and G551D) that were thought to be prevalent due to a founder effect. 60

families that each carried one of these mutations had been genotyped at ten

microsatellite markers about the mutation. This data was used to test the allele

sharing method’s ability to identify the region that contained the mutation. The data

was split into three groups based on the three mutations. For each group of families, a

disease-linked haplotype and a number of control haplotypes were defined. These

data were then analysed using the allele sharing method.

For each dataset (based on the three mutations), allele sharing scores were calculated

for both the disease-linked haplotypes and the control haplotypes. Plots of these

results are shown in Figures 3.1 (A), (B) and (C). In all three cases, the peak allele

sharing among the disease-linked haplotypes occurs at one of the markers

immediately adjacent to the mutation. However, in the case of the 1078delT and

G551D families, the control haplotypes also show a slight peak in allele sharing at

one of the markers immediately adjacent to the mutation, although at much lower

levels than for the disease-linked haplotypes. In the W846X2 families, the allele

sharing between the control haplotypes is also much lower than the disease-linked

haplotypes and in this case, the peak allele sharing occurs three markers away from

the mutation location.

Permutation analysis was used to test whether there was a significant difference in the

allele sharing between disease-linked and control haplotypes in the three datasets,

generating a significance value for each marker. In all of these cases, a significant

difference was found between the allele sharing in the mutation carrying and control

chromosomes. For the W846X2 families, the markers on either side of the mutation

displayed the peak P values (P = 0.0001), while the analysis of the G551D carrying

families found the peak significance values at the marker immediately upstream of the

mutation and the three markers immediately downstream from the mutation (P =

0.0001). For the 1078delT families, the peak P value occurred in the two markers

adjacent to the marker immediately downstream from the mutation (P = 0.0002).

Figure 3.1 (D) shows that for the distribution in significance values across the region.

In each of the three datasets, there was no specific haplotype block that was shared by

all disease-linked haplotypes. It was therefore not possible to test the likelihood of

Chapter 3 Testing and Understanding the Allele Sharing Method

 58

these peaks in P values through the nested permutation analysis. The reasons that this

might be the case are discussed in section 3.4. As an alternative, a Bonferroni

correction can be used to define a modified significance threshold. Based on ten

individual tests (one for each of the ten markers) a significance threshold of 0.05

becomes 0.005. In Figure 3.1(D) the significance threshold is marker with a dashed

line. It is clear that the mutation carrying region shows significant sharing for each of

the three mutations. This is especially apparent for the families carrying the W846X2

and G551D mutations. It is worth noting that the analysis of the W846X2 families

also finds markers 1 and 2 to be just significant.

Figure 3.1: Allele sharing in cystic fibrosis families.

(A) Allele sharing in between disease-linked (♦) and control (■) haplotypes from a
number of families known to carry the W846X2 mutation. (B) Allele sharing between
families carrying the 1078delT mutation. (C) Allele sharing between families carrying
the G551D mutation. (D) The significance value determined for each marker based
on the permutation analysis of the allele sharing scores for the three mutations:
W846X2 (▲), 1078delT (■) and G551D (♦). The P value is presented as the negative
log of the P value. The Bonferroni derived significance threshold is identified as the
dashed line.
The * indicates the location of the mutation.

The analysis of each of each dataset is successful in identifying a significant region

that contains the founder mutation. In each case, the original region of study of over

8Mb is effectively reduced to 1.53Mb for the W846X2 families, 2.12Mb for the

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10

Marker number

A
ll

el
e

sh
ar

in
g

 S
co

re

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10

M a r k e r numbe r

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10

Marker number

A
ll

el
e

sh
ar

in
g

 s
co

re

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10

Marker number

A
ll

el
e

sh
ar

in
g

S
co

re

A B

D C

*

*

*

*

Chapter 3 Testing and Understanding the Allele Sharing Method

 59

1078delT families and 3.24Mb for the G551D families. The study of the G551D

families also identified a marginally significant region of 2.41Mb that doesn’t contain

the mutation.

Chapter 3 Testing and Understanding the Allele Sharing Method

 60

3.3 Defining the operational limits of the allele sharing

method through simulation

The simulation was developed to model the establishment of a founder mutation in a

population. This allowed us to identify distantly related families carrying the

theoretical mutation, providing a number of datasets upon which to test the allele

sharing method. There were three main variables in the simulation: the number of

families included in the analysis; the number of generations between the families and

a common ancestor; and genotyping density across the region. The analysis identified

(i) whether the mutation carrying region was detected; (ii) if so, what the size of the

shared haplotype region in which it was found was; (iii) what the significance of this

result was and (iv) what the size and P values of any false positive regions identified

were.

Figure 3.2 displays the results of a series of simulations where the genotype coverage

was varied for three families with between 30 to 50 generations (approximately 750-

1250 years) to a common ancestor. 500 simulations were run at each datapoint.

Figure 3.2 (A) shows that the detection rate remains close to 100% until the genotype

coverage drops to 1 marker every ~80kb where after it drops off sharply. Also shown

in Figure 3.2 (A) is the average relative size of mutation carrying region (true

positive) and the false positive regions. It was found that, as the marker coverage

decreases, the relative size of the mutation carrying region decreases and eventually

overlaps, and becomes indistinguishable from, the false positives. Figure 3.2 (B)

shows that the same pattern occurs for the significance levels (P values), where the

significance of the mutation carrying regions falls until it becomes indistinguishable

from that of the false positives. The key results were the drop off in the detection rate

and the convergence points of the region sizes and P values for the true-positive and

false-positive regions. The detection rate falls to the 95% level at marker density of 1

marker per 96kb. At this density, the size and P value associated with the true

positives are significantly different.

A similar pattern was observed when the number of families was increased and when

the number of generations between the families and a common ancestor was

increased, but the convergence points differed. These are discussed in the following

section.

Chapter 3 Testing and Understanding the Allele Sharing Method

 61

Figure 3.2: Sample simulation results.

(A) Shows the percentage of simulations from which the mutation carrying region is
correctly identified for different genotype densities where there are between 30 and
50 generations between three families. Close to 100% of the mutations are found in
all cases where the genotype density is greater than one marker per 100kb. Beyond
this point, the success rate decreases steadily to a plateau of around 8% success rate
when the marker density drops to one marker per 1000kb. The graph also shows that
the average size of the mutation carrying region (measured in number of markers)
and false positive regions. The size of the mutation carrying regions decrease sharply
at a genotype density of one marker per 200kb at which point the size of the region
tends towards that of false positive carrying regions. (B) shows that the average P
values of the mutation carrying region and false positives steadily increase, linearly
and in parallel, up until they flatten out somewhat at a genotype density of around one
marker per 240kb. After the marker density drops to about one marker per 390kb, the
P values of the two groups converge and then overlap.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

5 100 195 290 385 480 575 670 765 860 955 1050

Average distance between markers (kb)

P
-v

al
u

e

Average mutation
carrying P value

Average false positive P
value

0

20

40

60

80

100

120

140

5 100 195 290 385 480 575 670 765 860 955 1050

Average distance between markers (kb)

S
iz

e
o

f m
u

ta
tio

n
 r

eg
io

n

(n
u

m
b

er
 o

f m
ar

ke
rs

)

0

20

40

60

80

100

120

%

Average mutation
carrying block size
Average false positive
block size
% of mutation regions
detected

A

B

Chapter 3 Testing and Understanding the Allele Sharing Method

 62

The graphs in Figure 3.2 serve to highlight the minimum genotype coverage required

to be confident of finding the mutation carrying region and to be able to distinguish

that region from false positives for one particular case. Table 3.1, below, shows the

minimum marker density required to give a 95% detection rate for the scenario

described in Figure 3.2 as well as a range of mutation ages and number of families

being studied.

Table 3.1: Detection limits table.

Age of Mutation
Range Generations

Number of
Families

Expected size of
region (kb)

Min density of markers required to meet
95% accuracy (kb between markers)

30-50 39 3 1779 116
 40 4 1801 117
 39 5 2458 201
 40 6 2101 208

50-80 64 3 1298 71
 65 4 1424 92
 65 5 1274 109
 65 6 1503 152

80-110 94 3 906 44
 95 4 936 67
 96 5 1004 76
 95 6 1020 91

110-140 124 3 692 36
 126 4 774 48
 126 5 790 60
 125 6 795 68

140-170 156 3 580 30
 156 4 563 43
 - 5 - -
 - 6 - -

170-200 186 3 470 27
 187 4 511 36
 - 5 - -
 - 6 - -

200-230 215 3 405 23
 216 4 435 31
 - 5 - -
 - 6 - -

230-260 244 3 361 20
 246 4 389 26
 - 5 - -
 - 6 - -

260-290 275 3 311 18
 - 4 - -
 - 5 - -
 - 6 - -

290-320 303 3 274 15
 - 4 - -
 - 5 - -
 - 6 - -

Chapter 3 Testing and Understanding the Allele Sharing Method

 63

Table 3.1: Detection limits table (continued).

Age of Mutation
Range Generations

Number of
Families

Expected size of
region (kb)

Min density of markers required to meet
95% accuracy (kb between markers)

320-350 335 3 250 14
 - 4 - -
 - 5 - -
 - 6 - -

350-380 364 3 231 12
 - 4 - -
 - 5 - -
 - 6 - -

380-410 395 3 202 11
 - 4 - -
 - 5 - -
 - 6 - -

Shows, for varying age of a mutation, the minimum marker density genotyped across
the region in order to achieve a 95% success rate in the detection of a mutation
carrying region.

3.3.1 Defining the criteria for the use of the allele sharing method

In addition to understanding the situations where the method proves to be effective in

detecting these simulated mutations, it is important to investigate the details of how

the method performs in these different scenarios. In this section, the effect of the key

variables of the numbers of families, numbers of generations between a group of

families and their common ancestor on the relevant parameters is reported and marker

density are studied and the output of the allele sharing method compared. The data

that corresponds to that described in the following sections can be found in tables 3.2

and 3.3.

3.3.1.1 Varying the marker density

The effect of changing the marker density was investigated by holding the number of

families constant at three and the number of generations between the families and

their common ancestor within the range of 90 to 120 generations. It was found that as

the density of the markers increased, the detection rate of the mutation carrying

region, where the significance cut-off was placed at P=0.05, increased significantly

while the size of the mutation carrying region fell slightly. At the same time, the P

values associated with the mutation carrying region became more significant, as did

Chapter 3 Testing and Understanding the Allele Sharing Method

 64

the P values associated with the false positives. The number of false positives,

however, rose. These results are summarised and quantitated in Table 3.2 (A) and

Figure 3.3. Table 3.3 shows how the number of false positives seen relates to the

expected number of false positives. As the marker density is increasing, and the

number of false positives are increasing, the expected number of false positives is

actually decreasing. It is interesting to note that by modifying the significance

threshold so that the observed number of false positives matches the expected

number, also leads to a detection rate around the 95%.

3.3.1.2 Varying the number of families

The underlying effect of increasing the number of families was studied by keeping the

marker density constant (at an average of 1 marker per 80kb) and the number of

generations between the families and their common ancestor within the range of 90 to

120 generations. The average size of the mutation carrying region fell slightly as the

number of families was increased (from 995kb for three families to 919kb for six

families). The P values associated with the mutation carrying region became more

significant, however, a similar pattern was found to occur in the P values associated

with the false positives. The variation in the number of false positives detected did

not correlate with an increasing number of families. These results are also presented

in Table 3.2 (B) and Figure 3.3.

As expected, as the number of families included in the analysis was increased, so the

level marker coverage required to find the mutation carrying region with a good

degree of certainty (≥95%) declined. For example, where the families were separated

by between 80 and 110 generations, the required marker density was 1 per 44kb for

three families and 1 per 91kb for 6 families (Table 3.1). This had an effect on most of

the variables under observation and the combined effect of an increasing number of

families with the decreasing marker coverage required to achieve a 95% detection rate

was a slight increase in the size of the mutation carrying region detected (779kb for

three families to 983kb for six families, in the example where 105 generations

separate the families). An additional effect of the decreasing marker density and

increasing number of families was a fall in the number of false positives (an average

of 2.61 false positives for three families to 1.20 false positives for six families, in the

example where 105 generations separate the families). The number of markers

Chapter 3 Testing and Understanding the Allele Sharing Method

 65

contained in these false positive regions remained constant for different numbers of

families (three to four markers), although because the density of markers was falling,

the actual (physical) size of the false positive regions rose. Another effect of

decreasing the marker density to meet the 95% success-rate point was that the average

P value of the mutation carrying region became less significant as the number of

families rose (from P=0.0029 for three families to P=0.0042 for six families in our

example). A similar pattern was found to occur in the P values associated with the

false positives (these decreased from P=0.0095 for three families to P=0.0161 for six

families).

Figure 3.3: Detection limits graph.

0

20

40

60

80

100

120

140

160

1,6
25

2,3
75

3,1
25

3,8
75

4,6
25

5,3
75

6,1
25

6,8
75

7,6
25

8,3
75

9,1
25

9,8
75

Age of mutation

M
ar

ke
r

d
en

si
ty

 r
eq

u
ir

ed

3 families

4 families

5 families

6 families

Shows the drop-off in the genotype density required to detect a founder mutation
through the allele sharing method for the increasing age of the mutation for three to
six families. Computational limitations meant that the age of the mutation was
limited as the number of families rose.

3.3.1.3 Varying the number of generations between the families and a

common ancestor

The number of generations between a group of families and a common ancestor was

varied between a range of 90 to 120 generations and 340 to 370 generations while

keeping the genotype density constant (at an average of 1 marker every 80kb) and the

Chapter 3 Testing and Understanding the Allele Sharing Method

 66

Table 3.2: Trends in the simulation study results.

(A) Shows how increasing the average marker density while keeping the number of families and the average age of the mutation static, leads to
a fall in the average size of the mutation carrying region, but an increase in the average number of false positives, and a reduction in the
average significance of the mutation carrying region and the false positives. In section (B) increasing the number of families while keeping the
average genotype density and the average age of the mutation static, leads to an increase in the average size of the mutation carrying region, but
increase the average number of false positives, and increases in the average significance values for both the mutation carrying region and the
false positives. (C) Shows that if the number of families and the average genotype density are held constant, but the average age of the mutation
is increased, then the average size of the mutation carrying region falls, as does the average number of false positives, however the average
significance values associated with the mutation carrying region and the false positives also falls.

Number of
families

Marker
density (kb-1)

Age of mutation
(generations)

Detection
rate (%)

Size of mutation
carrying region (kb)

Size of false positive
regions (kb)

Significance of mutation
carrying region (P value)

Significance of false
positive regions (P value)

(A)
3 80 105 70.5 995 209 0.009 0.0197
3 60 105 83.3 824 181 0.0078 0.0165
3 40 105 93.8 854 144 0.0043 0.011
3 20 105 98.8 779 128 0.0029 0.0095

(B)
3 80 105 70.5 995 209 0.009 0.0197
4 80 105 76.1 940 244 0.007 0.0169
5 80 105 81.4 926 241 0.0051 0.016
6 80 105 89.1 919 232 0.0037 0.0149

(C)
3 20 105 98.8 779 129 0.0029 0.0095
3 20 174 99.3 526 136 0.0016 0.0085
3 20 234 96.9 391 131 0.0044 0.0145
3 20 303 94.1 286 141 0.0061 0.0165
3 20 364 92.6 281 128 0.0076 0.0161

Chapter 3 Testing and Understanding the Allele Sharing Method

 67

significance value were both found to fall as the number of generations was increased.

The average number of false positives was found to decrease as the number of

generations between the families and a common ancestor increased. The average size

of any false positive regions detected was found to remain constant and the average

level of significance associated with the false positive regions was found to fall.

Again, these results are represented in Table 3.2 (C) and Figure 3.3.

As was found when the number of families rose, as the number of generations

between the families and a common ancestor was increased, so the marker density

required (for a 95% detection rate) increased (from 1/116kb where three families are

separated by 39 generations to 1/11kb where three families are separated by 394

generations; see Table 3.1). Again, the effects of both the increasing number of

generations and the increasing marker density need to be taken into account when

studying the effect of increasing the number of generations on the 95% detection

point. Here it was found that the size of the shared region decreased (from 1779kb to

202kb as the number of generations separating the three families was varied between

39 and 394; Table 3.1). While the number of false positives remains constant (at

between two and four cases), the average size of the false positive regions was found

to fall (from 449kb when the three families are separated by 39 generations to 40kb

for 394 generations). The significance levels remained fairly constant at levels of the

95% detection rate (varying between P=0.0028 and P=0.0045 for the mutation

carrying region and between P=0.0097 and P=0.0141 for the false positive regions).

3.3.1.4 Performance of the false positive rate

In order to check on the veracity of these results I studied the false positive rate in the

same varying conditions as those described above. These are reported in table 3.3

below which links in to the same scenarios reported in table 3.2 above. It is clear

from these results that the observed false positive rate is not acting in the expected

manner. Note, that the average expected number of false positives is not 0.05 because

there is more than one test being carried out. The number of tests is based on the

number of regions of sharing that are identified and therefore this varies depending on

how many regions of sharing are found between haplotypes. The ratio of the

observed false positive rate to the expected false positive rate varies from the

expected ratio of 1 depending on the simulation conditions. This is clearly

Chapter 3 Testing and Understanding the Allele Sharing Method

 68

problematic as it indicates that the tests used to generate the P values are not accurate.

This issue seems to worse affect those cases where there is very dense or very spare

genotyping as well as more recent mutations.

Clearly this will have a large impact on any results based on this method and this is

something that will be discussed in the next section. However, it is also interesting to

view how the significance cut-off can be changed to give the expected level of false

positives and what impact this has on the detection rate of the mutation carrying

region. These data are also shown in table 3.3. Here we see that those cases where

the observed and expected false positive rates are most out of synch, we also see the

detection rate vary similarly. So, those cases where we see less false positives than

expected, we also see a low detection rate, and those cases where we have a very high

level of false positives compared to the expected rate, then we also see a very high

detection rate. It is interesting to note that as the significance cut-off is altered to

provide an observed false positive rate that matches the expected rate, then the

detection rate tends towards the 95%.

Table 3.3: Performance of the false positive rate.

Number
of

Families

Marker
Density
(kb-1)

Age of
Mutation

(gens)

Observed
false positives

(α=0.05)

Expected
False

positives

P(obs)/
P(exp)

α where
P(obs)/

P(exp)=1

Detection
rate

(α=0.05)

Detection
rate (α’)

(A)
3 80 105 0.52 3.64 0.14 0.272 70.5 96.3
3 60 105 1.32 3.49 0.34 0.146 83.3 96.1
3 40 105 2.26 3.26 0.69 0.073 93.3 96.3
3 20 105 4.43 2.59 1.71 0.010 98.8 95.0

(B)
3 80 105 0.52 3.64 0.14 0.272 70.5 96.3
4 80 105 0.96 2.36 0.41 0.190 76.1 96.5
5 80 105 1.20 1.45 0.83 0.151 81.4 96.8
6 80 105 1.94 2.98 0.65 0.124 89.1 95.2

(C)
3 20 105 4.43 2.59 1.71 0.010 98.8 95.0
3 20 174 4.01 3.21 1.25 0.059 99.3 95.3
3 20 234 3.11 2.20 1.41 0.061 96.9 96.1
3 20 303 1.84 3.30 0.56 0.072 94.1 94.8
3 20 364 1.52 3.22 0.47 0.078 92.6 95.2

Shows the difference between observed and expected false positive rate for (A)
varying marker density, (B) varying number of families and (C) varying number of
generations to a common ancestor. Also shows how the significance cut-off could be
modified to give the expected false positive rate and what effect this has on the
detection rate.

Chapter 3 Testing and Understanding the Allele Sharing Method

 69

3.4 Discussion

There is a general lack of published datasets from families genotyped at an

appropriate density and range about a known founder mutation on which the allele

sharing method could be tested. One dataset, however, was forthcoming. This data

consisted of three cystic fibrosis mutations that were found in 60 Breton families (De

Braekeleer et al. 1996). Individuals from these families had been genotyped at 10

microsatellite markers across an 8Mb region containing the mutations of the CFTR

gene. These mutations were found to be much more common in the Breton

population than the surrounding French population. Given the relatively isolated

nature of the Breton population, it is possible that these three mutations are found to

be so prevalent due to a founder effect. If that were the case, we would expect there

to be an ancestral haplotype about the mutation that is shared across the families and

that this would be detectable using the allele sharing method outlined in Chapter 2.

For each of the three mutations, the allele sharing method found the peak scores

between the disease-linked haplotypes to be at one of the markers flanking the

mutation, as would be expected if there was a shared ancestral haplotype in the region

containing the mutation. In each case, the allele sharing scores was much higher in

the disease-linked group of haplotypes than the control group. However, like the

disease-linked haplotypes, the 1078delT and G551D families also saw a small peak in

allele sharing within the control group of haplotypes at one of the markers flanking

the mutation.

Upon testing for significance on an individual marker basis through permutation

analysis, it was found that the P values for individual markers peaked at the markers

flanking the mutation in two of the datasets (W846X2 and G551D). For the other

dataset (1078delT), the peak is displaced by one marker from the nearest mutation

flanking marker. This demonstrated that even with the very limited genotyping

density around these mutations, the method was correctly able to identify the region

containing the mutation. Unfortunately it was not possible to carry out the secondary

permutation analysis on these regions as there was no consistently shared disease-

linked haplotype between all the affected individuals carrying a particular mutation.

This could be due to one or all of the following reasons: (i) the markers used were

microsatellites which are relatively mutable and therefore lead to possible differences

in alleles on what would otherwise be the same haplotype background; (ii) the

Chapter 3 Testing and Understanding the Allele Sharing Method

 70

markers are very sparsely spaced, so if the mutation is old enough, the shared

haplotype might not be large enough to cover more than one of the markers included

in the analysis and (iii) there are a large number of families involved in the analysis,

so it is possible that some of these are included due to allelic heterogeneity. However,

due to the low number of markers involved and their more sparse distribution, it was

feasible to use the Bonferroni correction instead of permutation testing. Using this

correction, the region flanking the mutation was found to remain significant for all

three mutations.

Based on these results, the analysis of each of these datasets accurately defines a

significantly reduced sub-region within which we would correctly expect to find the

causative mutation. The study was conducted over 8Mb and for each of the datasets,

this is substantially reduced to 1.53Mb, 2.12Mb and 3.24Mb for the W846X2,

1078delT and G551D carrying families respectively. Another region of 2.41Mb was

found to be marginally significant in the G551D families. This would appear to be a

false positive region, which, given the results of the simulation study, is not wholly

unexpected.

A much more extensive test of the allele sharing method was made possible by

generating simulated data. Families carrying a founder mutation in a simulated

population were generated and used to test the ability of the allele sharing method to

detect the mutation carrying region. These families can be though of as apparently

independent families that might be identified as showing linkage to a particular

region. The minimum genotype density required for there to be confidence in the

method successfully identifying the mutation carrying region was defined for a range

of numbers of families, and ages of mutations (see Table 3.1.). These results give an

indication of the difference in power obtained by varying the number of families

versus increasing the genotype density in such studies. For example, if a mutation has

been established in a population for 125 generations (~3125 years), three families

would have to be genotyped at an average of 1 marker per 36kb, but if a fourth family

were to become available, genotyping would only need to be carried out at an average

of 1 marker per 48kb. Thus these results can be used to inform study design. They

can also be used to estimate the age of a mutation when a mutation has been detected

via this method.

Chapter 3 Testing and Understanding the Allele Sharing Method

 71

The same set of markers were used to represent the haplotypes that formed the

population of each of the simulations, regardless of marker density. The difference

between the datasets being the distance between these markers. While the increased

distance between markers led to an increased breakdown of haplotypes as the

generations were simulated, this may have resulted in a higher than usual LD in the

starting population due to the markers in the original dataset having been in closer

proximity than the simulated data. LD will certainly affect the haplotype transmission

through the generations. This may have distorted results at very low densities

somewhat. Due to the distribution of the makers, some of the markers were tightly

linked together even at low densities. However, as described in section 2.1, this is

something that should be accommodated for by the method. At lower densities, even

what were the most tightly linked makers used in the study should act independently.

Figure 3.2 shows, for one series of simulations, how the changing marker density

affects some of the key characteristics. It appears to be the case that at the very

lowest marker densities, the method is just picking up random signals.

Due to computational limitations, it was not possible to run the simulation over large

numbers of families for very old mutations. Up to 410 generations could be studied

for three families, 260 generations for four families and 140 generations for five and

six families. However, the trends are made clear by the studies that were conducted.

For recent mutations, the method was found to be effective at a low density of

genotyping (an average of 1 marker every 40kb would detect a mutation 100

generation (2500 years) old with three families). As the age of the mutation increases

so does the density of genotyping required (an average of 1 marker every 11kb would

detect a mutation 400 generation (10000 years) old with three families. Every

additional family included in the analysis reduces the level of genotyping required.

The simulation was designed to allow any initial population to be used. Rather than

generating a completely artificial dataset, it was decided that genotype data from a

real control population would be more informative. Although the small starting

population is clearly a limiting factor, it was thought that it was more important to use

a realistic population within which we could then model the establishment of a

founder mutation. It will be useful in future to test the robustness of the simulation to

different starting populations. However, although most similar studies use a larger

founder population, the starting population of over 450 individuals used here is

similar to that used by published simulations (e.g. Bourgain et al. 2000). Another key

Chapter 3 Testing and Understanding the Allele Sharing Method

 72

approximation of the simulation study was to estimate that each couple would

produce two children in each generation. The number of generations was converted

into mutation age by estimating that a new generation occurred every 25 years.

The main purpose of the simulation was to test the method in similar circumstances to

those seen in the chromosome 4p linked families that are studies in chapter 4. These

families were identified as a result of linkage studies identifying linkage to a common

region of chromosome 4p. They have been well characterised both phenotypically

and genetically. So, although it was clear that the assumption of 100% penetrance

and no allelic heterogeneity in the simulation was unrealistic, this did not affect the

purpose of the simulation, which was to model how the haplotypes were broken up

over the period that was being simulated. Lower penetrance would mean that the

affected family members were less likely to display the disorder and allelic

heterogeneity would mean that some affected individuals might not carry the same

disease-linked haplotype. But we are only interested in those families that are likely

to identified through linkage or some other means and where we are able to identify a

consistent disease-linked haplotype for the family. Both these cases are unlikely in a

low penetrance, high allelic heterogeneity model. Even in a model with less than

100% penetrance or slight effects of allelic heterogeneity, it is only the ability to

identify suitable in the first place and not on the performance of the allele sharing

method that will be affected. It was therefore decided that it was an acceptable

assumption that no account would be made of these effects in the simulation. Effect

size is treated in a similar way to penetrance and allelic heterogeneity in that it is

viewed as a factor that will affect the identification of suitable families rather than the

analysis of allele sharing between families once identified. It is assumed that

although we expect a small effect size of the genetic contribution for psychiatric

disorders, the reason families have been identified is because in these cases, we

expect to see a mutation of large effect size. Perhaps due to the contributing factors

of some other effect. This is exactly the reason why we benefit from looking at

families in addition to the population studies. Of course, it would be desirable to

carry out a more complex simulation that did account for such factors as this would

allow some insight into the processes that produce sets of families such as those under

study in this thesis. This was not something that was found to possible within the

timescales that this work was carried out in. Although it may be harder to identify

suitable families for study where there are confounding factors such as small effect

Chapter 3 Testing and Understanding the Allele Sharing Method

 73

sizes, this should not effect the ability of this allele sharing method to identify a

region of allele sharing should it exist.

The most pressing concern in the results of these simulations studies is that of the

number of false positives. It is clear that the number observed in these simulations

does not correspond to the expected number. It is likely that there is some feature in

the test of significance that is leading to P values being miscalculated. For example,

in the case where the marker density of the simulated dataset was increased, the

average number of tests was found to decrease. This was expected as we are more

likely to find congruous blocks without recombination between markers where the

markers are closer together, therefore we would expect to see less tests carried out.

With fewer tests, we would expect to see less false positives, yet what we observe is

the opposite. When the marker density was as high as a marker every 20kb, the

number of false positives matches with the expected number. One explanation for

this effect may be that at lower marker densities, P values are being underestimated as

the regions of sharing become smaller. This needs to be traced back to the initial

method developed however, the results described here also allow us to be aware of

this feature and to take it into consideration when analysing any data using this

method. So, for lower marker density studies, we can lower our significance

threshold and this would increase the likelihood of detecting the mutation carrying

region while generating only the expected number of false positives.

Despite these issues, it is apparent from these simulation studies that for reasonable

estimates of founder mutation age and effect size, only a modest number of core

family datasets, genotyped at affordable marker densities are required to detect allele

sharing and thus map founder mutations with high resolution.

 74

Chapter 4

Allele Sharing in Families Linked with Bipolar Affective

Disorder

Chapter 4 Allele Sharing in Families Linked with Bipolar Affective Disorder

 75

4.1 Introduction

A significant body of evidence to suggests that chromosome 4p carries a locus of

importance for major psychiatric illness. This was first brought to light by

Blackwood et al (1996) who described a large Scottish family (F22, Figure 4.1) where

many family members presented the symptoms of BPAD or recurrent major

depressive disorder (unipolar depression [MIM 125480]). Clinical and genotype data

had been obtained from 120 individuals, including 11 with BPAD and 16 with

recurrent unipolar depression. A whole genome scan of F22 using 87 microsatellite

markers found significant linkage of major affective disorder to chromosome 4p (with

a maximum LOD score = 4.09). Variance component analysis of the same data

provided further evidence supporting this result (LOD = 3.7; Visscher et al. 1999).

Recently, a re-evaluation of the family was carried out (Le Hellard et al, 2006) where

the clinical status of several family members were updated. Some family members

were newly diagnosed cases and the offspring of one individual was removed from

the analysis because major psychiatric illness was detected in a first degree relative of

the married in parent. This study identified a maximum LOD score of 4.41 on

chromosome 4p16.

Figure 4.1: Pedigree of Family F22.

Family F22 was the first family that showed linkage to chromosome 4p15-16 for
major psychiatric illness.

11 Bipolar Affective Disorder

16 Recurrent Major Depression

Minor Psychiatric Diagnosis

Chapter 4 Allele Sharing in Families Linked with Bipolar Affective Disorder

 76

Blackwood et al. also studied another 56 families and found evidence for linkage in a

second Scottish BPAD family (F59; LOD = 1.15; Figure 4.2). This maximum LOD

score for this family is limited due to its size, but despite this it still comes very close

to meeting the replication criteria as defined by Lander and Kruglyak (1995).

Following the Blackwood study, a number of other groups have also reported

evidence for linkage to both BPAD and SCZ in this region. Asherson et al. (1998)

found linkage in a Welsh schizoaffective family (F50, LOD = 1.97; Figure 4.2.);

Ewald et al. (1998) reported linkage in two Danish BPAD families (LOD = 2.00);

Detera-Wadleigh et al. (1999) investigated families with major mental illness and

their largest family, an American family of Ashkenazi Jewish descent (F48; Figure

4.2), generated a LOD score of 3.24; Williams et al. (1999) found increased sharing in

SCZ sibpairs (LOD = 1.73); Lerer et al. (2003) found a non-parametric LOD score of

2.2 in families with SCZ and schizoaffective disorder and Als et al. (2004) found

excess haplotype sharing (best P value, P = 0.00007) in families with BPAD and SCZ

using an χ2 test (See Section 1.3 for a discussion of such approaches related to the

allele sharing method described in this thesis).

Figure 4.2: Pedigrees of families F48, F50 and F59.

Families (A) Part of F48, (B) F50 and (C) F59 also show linkage to chromosome
4p15-16. Only the branch of F48 that was studied for allele sharing is presented
here.

Recently Le Hellard et al. (2006) used a high resolution haplotype analysis of the

linked regions of families F22, F59, F50 and F48, to refine these regions of overlap

between linkage signals (Figure 4.3). Sub-regions of the F22 linkage signal can be

Major Psychiatric Diagnosis

Chapter 4 Allele Sharing in Families Linked with Bipolar Affective Disorder

 77

defined based on the evidence presented. Regions B and D both have three of the four

families showing linkage.

Figure 4.3: Regions of overlap.

The linked regions that segregate with illness in the four families are found to
overlap. Regions A to D indicate sub-regions of the F22 linkage region that show
linkage in at least one other family. The sizes (in Mb) of these regions refer to the
genomic distances between the points marked by the horizontal lines. The numbers
are from NCBI build 35 (http://www.ncbi.nml.nih.gov) and are the map co-ordinates
of each of the markers that define the boundaries of the linked haplotypes. The
illnesses observed in the families are indicated in the figure as follows: AFD – major
affective disorder, SCZAFF – schizoaffective disorder and schizophrenia, SCZAFD –
schizophrenia, major affective disorder and others. Reproduced from Le Hellard et al.
(2006).

These replicated linkage results could reflect independent mutations at the same locus

(allelic heterogeneity) or a common ancient origin (founder mutation). The fact that

Chapter 4 Allele Sharing in Families Linked with Bipolar Affective Disorder

 78

there are two priority sub-regions may even indicate the presence of two susceptibility

genes (or loci), one in region B and the other in region D. Region B would be the

more likely of the two to carry a founder mutation as all three families have Celtic

ancestry, while F48 is an American family of Ashkenazi Jewish origin. In this

chapter I present the work I have carried out using the allele sharing analysis method

to investigate the possibility that founder mutation exists in one of these regions.

Initially, most of the known genes in regions B and D were genotyped at SNPs found

within these four families. This was followed up by a study based on the haplotype

structure of the entirety of regions B and D. Markers were selected to describe the

haplotype structure of the region. In each of these cases the allele sharing method

described in chapter 2 was used to analyse allele sharing based on these data. Here I

report those results.

I also report on the basic TDT analysis of region B for the purposes of comparison

and validation.

Chapter 4 Allele Sharing in Families Linked with Bipolar Affective Disorder

 79

4.2 Allele Sharing in priority region B

Region B was the first of the two high priority regions investigated. Region B is

delineated by the overlap of the linkage regions of F22, F59 and F50.

4.2.1 Phase I: Allele sharing at known genes

Initially, markers covering the genes in region B were genotyped for reasons

explained above. These markers were used to test for excess allele sharing. The

results of this analysis are described in Le Hellard et al. (2006). Although individuals

from all four families were genotyped, only the three families that show linkage to

region B are likely to carry an ancestral founder mutation in this region. In this phase

of the analysis, three haplotypes (one from each linked family) were allocated as

disease-linked and 38 haplotypes were determined as controls and they were

genotyped at 127 markers in the region.

One haplotype consisting of 48 consecutive markers over five LD blocks (covering

~200kb) showed excess allele sharing between the three linked haplotypes when

compared to the control haplotypes (see Figure 4.4-A). Permutation analysis of the

data indicated that the excess sharing was significant (average P value for the region

=0.007, see Figure 4.4-B). The linked haplotype responsible for this result was found

in 7.9% of the control samples. This suggests that the disease-linked haplotype is

fairly common in the population and it could indicate that the disease-linked

haplotype carries a susceptibility loci rather than a causative mutation. In order to

correct for multiple testing, the secondary permutation analysis was carried out that

tested how often a region of equivalent or greater significance would occur by chance.

A region of sharing across this number of LD blocks and with this level of

significance was found in only a small percentage of permuted chromosome sets,

giving a corrected P value of P=0.009.

Chapter 4 Allele Sharing in Families Linked with Bipolar Affective Disorder

 80

Figure 4.4: Phase I: Allele sharing in priority region B.

Shows allele sharing for markers genotyped around genic regions of region B. (A)

Allele sharing scores and (B) significance values determined through permutation

analysis. Reproduced from Le Hellard et al. (2006).

There are three other groups of markers in region B that are significant on an

individual marker basis. The first of these consists of nine markers within one LD

block; these markers are separated from the significant region described above by just

one marker (and 10kb). Here permutation analysis to assess significance gives an

Chapter 4 Allele Sharing in Families Linked with Bipolar Affective Disorder

 81

average P value of 0.05. However, when the additional permutation analysis is carried

out to correct for multiple testing, this region is no longer significant (P=0.193).

Secondly, there is an individual marker with a P value of 0.048 that is corrected to

0.195. The final region is an individual marker that covers one LD block with a P

value of 0.049. After correction for multiple testing, this is no longer significant (P =

0.215). A caveat to this analysis of the above three regions is that, unlike the

significant region described above, the limits of these regions are not defined by a

lack of sharing between the linked haplotypes, but by the end of a gene. The further

genotyping that was carried out for phase II allowed a more accurate measure of the

significance of sharing in these regions.

4.2.2 Phase II: Allele sharing across the region using haplotype-

tagging markers

Following on from the study of the markers found in genic regions, a study of the

entire region was undertaken. 175 markers were genotyped across the region. As

before, three disease-linked and 38 control haplotypes were identified and tested for

excess allele sharing.

Figure 4.4(A) shows the allele sharing scores between disease-linked and control

haplotypes in region B when the haplotype-tagging markers are studied. There are

two areas where the sharing between disease-linked haplotypes is noticeably greater

than that seen in the controls. The distal region corresponds to a peak in sharing

between the control haplotypes. Permutation analysis of this data, Figure 4.4(B),

identifies a large significant region that corresponds to the region that displayed much

greater allele sharing scores in the disease-linked haplotypes compared with the

control haplotypes. There is also a second smaller significant group of markers that

appear to be significant, corresponding to a region of high sharing between disease-

linked haplotypes, but the significance level falls off where the sharing between

control haplotypes reaches a peak. We carried out a multiple testing correction on all

the regions where the disease-linked haplotypes are common by descent within these

significant regions and at least one marker was significant on an individual marker

basis. Table 4.1 shows 11 of these shared regions that were found to be significant

after this test was carried out. One of these regions, shared region 1, which spans

197kb or 17 LD blocks, is much more significant than the others (P = 0.008). The

Chapter 4 Allele Sharing in Families Linked with Bipolar Affective Disorder

 82

rest of the significant regions have an average P value of 0.035 and cover an average

of 64kb or 3.67 blocks. Shared region 1 is found at NCBI Build 36 March 2006

assembly coordinates: 10,814,974 - 11,012,802. The disease-linked haplotype that

forms shared region 1 is found to be common amongst controls, ~21% of whom carry

the haplotype. Again, this may indicate that the mutation is common and only

increases susceptibility to BPAD rather than actually causing the disorder.

Figure 4.5: Phase II: Allele sharing in priority region B

Allele sharing for markers tagging haplotypes across all of region B. (A) Allele

sharing scores and (B) significance values derived through permutation analysis.

Chapter 4 Allele Sharing in Families Linked with Bipolar Affective Disorder

 83

Table 4.1. Priority Region B shared regions.

Shared

region

No. shared

markers

No. LD blocks

shared

Length of shared

region (kb)

Individual P value Corrected P value Genomic location

1 18 17 197 0.007 0.008 10,814,974 – 11,012,802

2 1 1 n/a 0.017 0.046 11,023,135

3 1 1 n/a 0.009 0.048 11,034,055

4 1 1 n/a 0.012 0.05 11,071,052

5 7 6 38 0.005 0.026 11,088,565 – 11,126,790

6 1 1 n/a 0.013 0.046 11,144,685

7 1 1 n/a 0.006 0.048 11,200,245

8 3 3 191 0.014 0.041 11,243,225 – 11,435,085

9 2 1 62 0.014 0.046 11,468,817 – 11,531,810

10 3 1 41 0.012 0.036 11,647,264 – 11,688,697

11 2 2 3 0.01 0.039 11,821,735 – 11,824,876

The table lists the properties of the regions of excess sharing in region B of the F22 linkage region, the number of shared markers within

them, the number of LD blocks they cover, their length, the P-value after the test for significance and the P-value corrected for multiple

testing and their genomic location (chromosome 4 NCBI Build 36 March 2006 assembly coordinates).

Chapter 4 Allele Sharing in Families Linked with Bipolar Affective Disorder

 84

4.3 Allele Sharing in Priority Region D

Region D was the second of the high priority linkage regions and was the most

statistically significant (in terms of LOD scores). Three families (F22, F50 and F48)

showed linkage to the region. One of these families was Scottish, one was Welsh and

the other was an American family of Ashkenazi Jewish descent.

4.3.1 Phase I: Allele sharing at known genes

As with region B, the initial analysis of region D only included markers about some

of the genes in the region. Three disease-linked and 37 control haplotypes were tested

for excess allele sharing at these 157 markers. These results have been published in le

Hellard et al. (2006).

Allele sharing analysis identified two sub-haplotypes that showed a shared haplotype

between the three disease-linked haplotypes and also contained some markers that

were significant on an individual marker basis. The first haplotype, consisting of 10

markers over two LD blocks (over 55kb) showed higher sharing between disease and

control chromosomes (see Figure 4.4-A). Permutation analysis showed that two of

these markers had a P value < 0.05 while the others were not deemed significant. The

average P value for the shared region was P=0.054 (Figure 4.4-B). After the

secondary permutation analysis this region was clearly not significant (corrected P

value P=0.52). The second haplotype consists of three markers over one LD block

(over 9kb), all three markers are significant and the average P value was 0.031.

However, the corrected P value for this region is 0.416.

Chapter 4 Allele Sharing in Families Linked with Bipolar Affective Disorder

 85

Figure 4.6: Phase I: Allele sharing in priority region D.

Shows allele sharing for markers genotyped around genic regions of region B. (A)

Allele sharing scored and (B) significance values generated through permutation

analysis.

Chapter 4 Allele Sharing in Families Linked with Bipolar Affective Disorder

 86

4.3.2 Phase II: Allele sharing across the region using haplotype-

tagging markers

In phase II of the analysis of priority region D, 384 markers were genotyped across

the region. The disease-linked and control haplotypes were tested accordingly.

Figure 4.5-A shows the allele sharing scores in the region D where there appears to be

four peaks in the allele sharing across the region for both disease-linked and control

haplotypes. Although the peaks are higher in the disease-linked haplotypes, there are

only two clusters of markers that are significant on an individual marker basis.

There also appear to be a number of regions where the sharing is higher between the

disease-linked and control haplotypes. However, the differences are not as high as in

the priority region B and seem to match to regions where the sharing between control

haplotypes peaks. Upon carrying out the permutation analysis, two shared regions

were found to carry at least one significant marker (Figure 4.5(B); Table 4.2).

However, none of these regions remains significant after correcting for multiple

testing.

Chapter 4 Allele Sharing in Families Linked with Bipolar Affective Disorder

 87

Figure 4.7: Phase II: Allele sharing in priority region D.

Allele sharing for markers tagging haplotypes across all of region B. (A) Allele

sharing scores and (B) significance values determines through permutation analysis.

Chapter 4 Allele Sharing in Families Linked with Bipolar Affective Disorder

 88

Table 4.2. Priority Region D shared regions.

Shared

region

No. shared

markers

No. LD

blocks shared

Length of shared

region (kb)

P value Corrected P value Genomic location

12 10 9 117 0.062 0.520 20,556,005 – 20,672,923

13 11 10 101 0.031 0.416 23,898,753 – 23,999,911

The table lists the properties of the regions of excess sharing in priority region D of the F22 linkage region, the number of shared markers

within them, the number of LD blocks they cover, their length, the P value after the test for significance, the P value corrected for multiple

testing and their genomic location (chromosome 4 NCBI Build 36 March 2006 assembly coordinates).

Chapter 4 Allele Sharing in Families Linked with Bipolar Affective Disorder

 89

4.4 TDT analysis of priority region B

Region B was the location of a region of allele sharing that was found to be significant

based on the allele sharing method developed in this thesis. The WHAP program was

used to provide a more traditional test of association in region B. Ten parent

offspring trios were selected from the three families showing linkage to the region

(F22, F59 and F50). The first test was an individual test of each marker in the region

and was run with the default WHAP settings and significance tested through 1,000

permutations. The distribution of P values across the region is shown in figure 4.7

below. The two markers with highest level of significance (P=0.006, P=0.010) are

both found within shared region 1 which was found to be significant through the

allele sharing analysis. Four other markers showed marginal significance in regions

that also corresponded to peaks in allele sharing. Two-marker haplotype analysis was

carried out and showed similar results. The 17 marker haplotype was also tested and

was found to be very significant (P=1.85x10-33).

Figure 4.8: Single marker association in priority region B.

0.0

0.2

0.4

0.6

0.8

1.0
Marker

P
 v

al
u

e

Significance of each marker based on single maker association analysis

Chapter 4 Allele Sharing in Families Linked with Bipolar Affective Disorder

 90

4.5 An investigation of a significant shared region

Bioinformatics tools were used to assess the biological significance of the significant

shared regions. This focussed on shared region 1 found in priority region B (section

4.2.2), which was the most significant region found through the allele sharing analysis

based on the complete genotyping coverage. Figure 4.8 shows the Ensembl

ContigView of the region.

Figure 4.9: Shared region 1 on Ensembl ContigView

This shows the annotation of shared region 1 in priority region B, showing the OST1
gene (HS3ST1).

One known gene is found in this shared region, heparan sulfate (glucosamine) 3-O-

sulfotransferase 1 (HS3ST1; MIM 603244). The HS3ST gene is highly expressed in

the brain and kidney and weakly expressed in the heart, lung and placenta. It

possesses both heparan sulfate glucosaminyl 3-O-sulfotransferase activity and

anticoagulant heparan sulfate conversion activity, is a rate limiting enzyme for

Chapter 4 Allele Sharing in Families Linked with Bipolar Affective Disorder

 91

synthesis of anticoagulant heparin and is an intraluminal Golgi resident protein.

However, HS3ST1-deficient mice did not show the expected anticoagulant

phenotype. Instead, they developed unexpected non-thrombotic, perinatal phenotypes,

including eye degeneration and postnatal lethality. This suggests that the HS3ST1

enzyme might have additional or alternative biological roles. There is a also an

miRNA sequence, hs-mir-572, a non-human RefSeq gene and one main class gene

predicted by Aceview within the shared region, as well as number of spliced ESTs

and regions of multi-species conservation.

Chapter 4 Allele Sharing in Families Linked with Bipolar Affective Disorder

 92

4.6 Discussion

The evidence for a susceptibility or causative locus or loci in the chromosome 4p15-

16 region is strong. However, due to the complex genetic nature of the disorder, it

has proven difficult to pin point any such loci. In this chapter I have reported on a

study of allele sharing in the region, investigating the possibility that a common

founder mutation is shared between the families.

Figure 4.3 shows the genomic location at which four particular families display

linkage with BPAD and BP-related illness. Two priority regions were identified

where the linkage signals of three of the four families overlapped. The fact that two

sub-regions were identified may indicate the presence of two susceptibility loci, one

in priority region B and one in priority region D. In each of the two sub-regions, it is

possible that the three families that show linkage do so because they share the same

mutation and that mutation has been inherited from a common ancestor. However, it

may be the case that some of the families have inherited the same mutation, but from

a different source, meaning that they would not share the same genetic background

around the mutation and it is also possible that any of the families could carry more

than one mutation in the region. Priority region B is made up from three families

(two Scottish and one Welsh) thought to be of Celtic origin, so it is particularly

plausible that an ancestral mutation could be shared by these three families. The

second priority region (D) is made up of a Scottish, Welsh and US family of

Ashkenazi Jewish origin. A mutation of common ancestral origin would most likely

have to be very old to have occurred in a lineage shared by these three families.

The initial investigation into allele sharing in the region relied on genotype data only

from markers in the areas around known genes. This clearly limited the analysis by

leaving substantial areas in the regions untested; it may also have had a negative

impact on the scoring system due to some wide gaps between some markers. This

analysis did uncover one significant region, with a P value of 0.009, in priority region

B. It was clear that the results would be uncertain while there was incomplete

genotype coverage of the region. The allele sharing peaks at this shared region in the

disease-linked haplotyped, but it also peaks in the level of sharing between the control

haplotypes. The increased sharing in the disease-linked group may just be an artefact

Chapter 4 Allele Sharing in Families Linked with Bipolar Affective Disorder

 93

due to there being only three families in that group, compared with 38 in the control

group, giving a broader picture of haplotype diversity in the population.

In the second phase of the study, markers were selected to encompass the LD

structure across the two priority regions. This was intended to provide an almost

complete coverage of the region, where a marker was genotyped that would cover any

haplotype block that occurred with 10% or greater frequency in the CEPH trios. This

should have made the scoring system much more consistent as the spread of markers

was even across the LD variation map of the region. The most interesting results lay

in the large non-genic region that had not previously been genotyped. Here, a large

extended region of 71 markers was found in which all the makers were significant on

an individual marker basis. There was found to be consistently low allele sharing

between control haplotypes and high allele sharing between disease-linked haplotypes

across this region. The region that was previously found to be significant in region B

following the phase one analysis, still corresponded to peak in the allele sharing

scores, although it was no longer found to be significant after multiple testing was

taken into account. In region D, there was one individual marker and another cluster

of 11 markers that were significant.

After the correction for multiple testing, there were 11 regions that are found to be

significant. All of these were in region B, and in common with the phase I study,

there were no significant regions found in region D. These 11 regions ranged in size

from 1 marker to 18 markers; accounting for, between 1 LD block and 17 LD blocks;

spreading across up to 197kb; and with P values ranging from 0.01 to 0.005 on an

individual marker basis and between 0.05 and 0.008 after correcting for multiple

testing. One region in particular stood out, shared region 1 covers a much larger

region than the other significant regions (17 LD blocks compared with 1-6 LD blocks

in the other regions) and is much more significant than the others (P = 0.008

compared with P = 0.026-0.05).

It is also useful to compare the results of the BP-linked families with those of the

simulation study. We can look for the simulations that present similar results to those

of the chromosome 4p study. Here we find that if three families are generated with a

similar density of markers genotyped and with an average of around 400 generations

between the families, then we see a similar pattern of results in terms of the size of the

shared regions identified and their associated P values. The analysis of simulated data

Chapter 4 Allele Sharing in Families Linked with Bipolar Affective Disorder

 94

of this form tended to identify one relatively large region that was very significant

which would contain the mutation and a number of smaller regions that were of more

marginal significance that were false positives. It was also important to consider the

anomalies identified in the false positive rates from the simulation study. It was clear

from the results of the simulation study that the P values being reported were not

always accurately reflecting the genuine significance value. However, it was possible

to estimate what sort of adjustment to the P values being reported in shared region I

were necessary. Looking at the range of simulation results that the results reported

for shared region I fall into, then we might expect that P values are being over-

estimated. The closest category studied in the simulation corresponding to the results

described above suggest that correcting P values by a factor of about 5 would be more

accurate representation of probability values. This would still suggest that the 197kb

region was a true positive results within which we would expect to find a mutation.

Although clearly, this issue will cast doubt on this result, there was some evidence

that this result is genuine.

We can also use the comparison with the simulation study to estimate the age of the

mutation. The results, in terms of the significance values, number of false positives

etc, match most closely with those simulations where there were ~400 generations

between the families being tested and a common ancestor. A very simple

approximation could put this at something like ~8000 years separation. Of course this

would be further complicated by the fact that two of the families (Scottish families

F22 and F59) are likely to share a much more recent common ancestor than they do

with the third (Welsh family F50). It does give a broad outline of the region we are

looking at. The fact that it is region B within which we find a region of significant

sharing and not region D backs up our original assumption that it would be much

more likely that the three families of Celtic origin would share a common founder

mutation than two Celtic families with a family of Ashkenazi Jewish descent. This

hypothesis is supported by a closer study of the shared haplotype between the three

families in priority region B. All thee families share the haplotype that forms shared

region 1, the two Scottish families (F22 and F59) share a haplotype that extends far

beyond shared region 1.

There is one known gene in shared region 1, where the significant region overlaps

with 5kb of HS3ST1 (MIM 603244). Although HS3ST1 is not an obvious candidate

Chapter 4 Allele Sharing in Families Linked with Bipolar Affective Disorder

 95

for BPAD, it is highly expressed in the brain and recent studies on knock-out mice

have shown that it may have a much more diverse function than just as a rate limiting

enzyme for synthesis of anticoagulant heparin. Some further evidence to back up

HS3ST1 as a candidate disease gene has come from the PROSPECTR tool (Adie et

al. 2005) which found HS3ST1 to be the most likely candidate to be a disease gene

out of all the genes in the two priority regions. PROSPECTR works on the

assumption that certain sequence based features such as larger gene lengths and

broader conservation through evolution can indicate that a gene is more likely to be

implicated in disease. It found that HS3ST1 was ~2.1 times more likely to be

implicated with disease than a random gene. The majority of shared region 1 consists

of 193kb upstream of HS3ST1. In this region are a number of predicted genetic

features and are likely to be regulatory elements relating to HS3ST1. Further

evidence for this region has been reported recently. Christoforou et al. (2007; section

4.1) described an association study where they found a haplotype in shared region 1

that was significantly associated with Schizophrenia (uncorrected P value = 0.00046;

OR = 2.2; 95% CI: 1.3-3.6) in a Scottish cohort.

Further evidence for the shared region 1 comes form the association analysis of

region B where the two most significant results of the single marker analysis are

found. Unfortunately, this is the limit of the analysis that was carried out using

existing published methods. As discussed in the introduction, it is very important that

the new allele sharing method described in this thesis be tested against existing

published methods, unfortunately this proved difficult. Those haplotype based

methods similar to the one described in this thesis were not found to be readily

available and therefore I was not able to test the chromosome 4p data using them.

Equally, other haplotype sharing methods were found difficult to find available

programs that allowed them to be run with the data used in this thesis. TDT is

perhaps a more established method and there are many versions implemented in many

different software packages that are easily available. They were not always found to

be the most intuitive nor with the most helpful documentation. There was also a

problem when it came to running this analysis on a personal computer that failed to

carryout much more than the basic single marker analysis.

This situation leaves some important work that needs to take place before the above

method can be taken forward. Especially in light of the problems encountered with

Chapter 4 Allele Sharing in Families Linked with Bipolar Affective Disorder

 96

the false positive rate. It may also reflect the situation in the field whereby the

motivation of those developing new methods is not to develop a polished software

program, but rather to aid their own research. It is a similar situation that led to the

development of the allele sharing method described in this thesis as it was felt that

existing methods were difficult to apply to the scenario that I encountered.

In summary, this study has shown how genotype data from families presenting a

common linked region can be used to greater effect. Here an initial linkage result of

20Mb was reported in the family F22 (Blackwood et al. 1996), this was reduced to

8.1Mb (4.3Mb and 3.8Mb) through studying the overlap between F22 and three other

families (F59, F50 and F48) that also showed linkage to this region (Le Hellard et al.

2006). I have now shown how the allele sharing method presented in this thesis has

been used to reduce the region even further, to 197kb. Shared region 1 should now be

prioritised for further study.

 97

Chapter 5

Discussion and Conclusions

Chapter 5 Conclusions

 98

One of the key challenges in the field of medical genetics is to identify ‘disease

genes’ or loci that cause or confer susceptibility to disease. The traditional approach

of genetic linkage and positional cloning has not achieved the same success for

complex disorders as it has for simple single gene diseases. While new approaches

such as large scale and genome wide association studies and copy number variation

analysis may provide new avenues for mapping disease loci, genetic linkage can still

provide very good evidence that a relatively large genomic region contains a

susceptibility locus. While more traditional family based approached exist to test for

association, haplotype sharing statistics have been shown, in at least some

circumstances, to have greater power in identifying genetic associations with disease

(Tzeng et al. 2003; Allen and Satten 2007). In this thesis I have described and applied

a method for investigating allele (or haplotype) sharing in large families, with

common regions of linkage, to identify a common founder mutation.

Chapter 5 Conclusions

 99

5.1 A method for studying allele sharing

In the case of the extended chromosome 4p linked families studied in this thesis,

families were identified for study having shown to segregate with BPAD through

linkage analysis. Study of genotype data from these families then clearly showed one

haplotype that was carried by almost all affected individuals. It is to be expected that

a large family that shows significant linkage for a region, that those individuals

displaying the trait being studied should share a haplotype across that region. It was

the question of how to analyse such data that lead to this thesis.

Family based methods for investigating association exist with many modification of

the original transmission disequilibrium test (TDT) of Spielman et al. (1993), but

there is greater value to be found by incorporating the information of the haplotype

into such analysis. Extensions to traditional family based association studies to allow

haplotype information to be used have been developed, however a newer type of

analysis based on shared haplotypes has become popular. A number of methods for

measuring allele (or haplotype) sharing were discussed in the introduction to this

thesis. While it proved not to be possible to apply any of the existing methods

directly to the family data such as that generated from the BP-related families linked

with chromosome 4p15-16, the scoring system developed by Van der Meulen & te

Meerman (1997) and Bourgain et al. (2000, 2001, 2002) provided a good basis from

which to develop a new method. The initial concept of carrying out a pairwise

comparison of groups of case and control haplotypes and system for scoring the

similarity of a pair of haplotypes were sound. The aim of this thesis was to develop a

method, based on the principles developed for other haplotype sharing methods, that

was suitable for the study of multiple, large family and large scale genotyping data

such as that produced from the chromosome 4p linked BPAD families.

The basic scoring system involved counting the number of markers shared

consecutively between haplotypes (Bourgain et al. 2000). An alternative to using the

number of markers in a shared region would have been to score sharing based on the

actual size (in base pairs) of the region thus accounting for the distribution of the

markers. An initial investigation suggested that the simple counting scoring system

generated sounder results and was more robust. It was thought that the scores

obtained by the incorporating the actual distance between markers were too strongly

influenced by the uneven distribution of markers across the regions under

Chapter 5 Conclusions

 100

investigation. In the case of the BPAD-linked families, there were very large regions

between markers (as a consequence of the LD structure in the region) and this gave

some markers too much weight. There was also a choice of methods to manage

ambiguous and missing data. The method used for dealing with missing data is

logical, given that it is impossible to say whether that marker is shared or not shared

between haplotypes, it can be ignored, and it will be possible for a shared region to

extend around it while that marker will not contribute to the total number of markers

in that region that are used to form the score. Ambiguous data is dealt with in a

similar way, with a sharing region allowed to extend around an ambiguous marker so

long as one of the potential allele combinations does mean a match between the two

haplotypes. Unlike the missing data, ambiguous data will contribute to the score of

the region, this score it contributes is in proportion with the likelihood that the maker

is expected to be shared. A brief investigation indicated that this has limited effect the

results although it might be expected to have greater effect if the level of missing or

ambiguous data in much greater that in the samples reported in this thesis.

Bourgain et al. (2000) also developed a test to determine statistical significance based

on their allele sharing measure. Their test compared the maximum difference in

sharing between transmitted and non-transmitted haplotypes to that of a series of

simulated haplotypes with no difference. While a useful statistic for identifying a

region as significant, it has the limitation of being unable to investigate the variation

in sharing across a region and the possibility of identifying a sub-region. It is also

uncertain how appropriate their group of haplotypes that were constructed to be used

in this test are. Tzeng et al. (2003a) showed just how difficult a job it is to model the

statistical complexity of this type of method. I developed a method of permutation

analysis to test the statistical significance on an individual marker basis and then

nested permutation analysis to account for the multiple testing. By permuting

randomly reassigned disease-linked and control haplotypes, it is assured that

differences in haplotype structure will not confound the result. Nested permutations,

to generate a modified P value, which accounts for multiple testing, for any

significant region will similarly benefit from using a same genetic background. The

computational requirements of nested permutations are high and a method of

approximating nested permutations by reusing the permutations generated in the

initial permutation analysis was used. This method was proposed by Ge et al. (2003)

to generate corrected significance values for microarray analysis and was later used

Chapter 5 Conclusions

 101

by Becker & Knapp (2004) to generate corrected significance values for association

fine mapping. Both showed that the significant computational and time gains could

be made with little loss of power. While the initial permutation analysis was

concerned with comparing individual markers, the nested permutation analysis was

interested in generating a corrected significance value for a region that had been

identified initially as significant. For this process, it was important to take the size of

the region into account. Rather than physical size, the number of LD blocks that a

region encompassed was used. This reflected the lack of independent inheritance

between markers in strong LD with each other. So, the nested permutation analysis is

asking the question of whether any sub-region anywhere in the wider region under

study is as significant over the same size of region (in LD blocks) as the one which

the corrected significance value is being calculated. The LD structure for the BPAD

linked regions under study in this thesis was defined using data from HapMap Release

7 (May 2004; http://www.hapmap.org). This data is based on the 30 CEPH trios who

were Utah residents with ancestry from northern and western Europe (CEU) and so

should form a reasonable sample from which to make conclusions regarding the LD

structure of northern European and Ashkenazi Jewish families that have been studied

in this thesis.

Since the work of Bourgain et al was published (2000, 2001, 2002), the body of

literature in the area of haplotype sharing methods has grown substantially with

methods being published based on a variety of approaches. While many of these

methods produced tests for significance, often relying on permutation analysis, there

has been some attempt to produce a common statistical framework for these methods.

Unfortunately, the work reported in this thesis to apply statistical test based on

permutation analysis was undertaken some time ago and was also carried out in an

‘ad-hoc manner’ like many of the other methods and it fails to take advantage of the

work done to develop such a statistical framework. It is likely to be due to this ad-hoc

development that the false positive rate is found to be problematic.

It is also important to consider such an analysis as part of a range of tools available

for studying family data. While some have concluded that haplotype sharing methods

are more powerful than more traditional association type methods, Tzeng et al

(2003a) and Klei & Roeder (2007) both show that there is a lack of correlation in

power between the two main approaches to studying allele sharing. Even if this is not

the case, it appears to be sensible to pursue a multi-method strategy in analysing such

Chapter 5 Conclusions

 102

data. Only very superficial analysis was carried out using more established TDT

method, but even that appeared to support the results of the allele sharing analysis.

Further development of this method, however, could also allow it to be used in wider

circumstances. Of course, some of the general issues that arise in the use of haplotype

sharing and association study methods will still be of concern. Population

stratification and cryptic relatedness are generally not a problem in family based

studies, however, between-family studies like that proposed here could suffer from

unknown relationships between the families. In the specific study of the Chr. 4p

linked families they are well defined and very geographically disparate, so this is

unlikely to be an issue, but it should be kept in consideration. Power may also be an

issue, given that there are not necessarily large numbers of families that would be

available in the scenario outlined above, indeed the Chr. 4p linked region study

provides just three families in two regions of study and two of the families are smaller

families displaying only supportive LOD scores. This provides good reason to pursue

multiple strategies in investigating the linkage region with the allele sharing method

just one of these.

Chapter 5 Conclusions

 103

5.2 Testing and proving the method

Although I felt I had developed the method on a sound theoretical basis, before

applying it to experimental data, I felt that it was important to provide evidence for its

efficacy in identifying founder mutation carrying haplotypes between families. This

proved to be challenging, as there are few cases where there are a number of families

known to carry the same disease susceptibility or disease causing mutation and that

have been genotyped to a significant degree and it would have been a very expensive

undertaking to genotype families with a known mutation just for the purpose of this

study. Data was eventually sourced that proved adequate to test most aspects of the

method.

5.2.1 Cystic fibrosis study

This data was consisted genotype data from individuals of 60 Breton families known

to carry any one of three cystic fibrosis mutations. The Breton population is thought

to be fairly distinct and relatively isolated from the rest of France and it considered

very possible that a number of the families carrying the same mutation would do so

courtesy of a common ancestor and that this would be detectable through the study of

allele sharing around these mutations (De Braekeleer et al. 1996). Individuals from

these families had been genotyped at 10 markers across an 8Mb region encompassing

the CFTR locus that carried the cystic fibrosis mutations. While it would have been

preferable to have a much more dense genotyping of the region, it was felt that given

the large number of families, if enough of them shared a common ancestor that was

recent enough, the we should be able to detect a shared region that extends across

multiple of these markers. The analysis itself showed that almost all the markers were

significant on an individual marker basis. However, there was a clear peak, in each of

the three cases, at the markers around the CFTR locus, where the sharing was much

more significant than the rest of the region. It was not possible to use the nested

permutation analysis to generate a corrected significance value for any shared region

as there were no haplotypes that were consistently shared by all disease-linked

haplotypes. This was most likely due to there being a large number of families which

may have brought in some families from a different genetic background; the sparse

genotyping meant that it was unlikely that all the families would share a consistent

Chapter 5 Conclusions

 104

haplotype across such a large region; finally, the markers studied were microsatellites,

which are known to be much more mutable than SNPs. However, due to the small

number of markers being tested, it was felt that a Bonferroni correction would be a

feasible approach to take. Following the Bonferroni correction, in the case of each

mutation, the region formed by the markers flanking the mutations was found to

remain significant, while the rest of the markers fell either into insignificance or

marginal significance.

The analysis of these families is slightly unnatural due to the families being split into

groups based on which mutation if carried by the affected individuals. This analysis,

however, is still appropriate in that it was designed to prove the case whereby the

allele sharing method would identify the common mutation carrying region where it is

known to exist. However, in the more realistic scenario where these families would

have been mixed up together, the method does still find the those markers flanking the

mutations to be the most significant, albeit at a much reduced level than in the three

subgroups (data not shown). It is clear that this might not always be the case. To

avoid positive results being lost by the inclusion of families that do not share a

common haplotype around a founder mutation, it should be possible to study allele

sharing between different combinations of families in order to identify whether any

particular combination of families produce a particularly significant result. This

would, of course, increase the number of test being carried out and this would have to

be dealt with on assessing true significance. This would be a very useful area of

future research that might allow the method to be used more fully.

Although the data studied here was not ideal, the study of these three cystic fibrosis

datasets does provide a clear example of the method being successful in identifying a

region surrounding a known disease causing mutation. This backs up the assumption

that these mutation lie on some shared ancestral haplotype that was inherited by most

of the families used in this study.

5.2.2 Simulated data study

To test the method further, a simulation was developed to generate distantly related

families that carry a shared mutation. An initial mutation and its expansion (or

otherwise) into a population was simulated. After a number of generations, families

could be identified on which to test the allele sharing method. Although the

Chapter 5 Conclusions

 105

simulation method assumed that there was 100% penetrance and no allelic

heterogeneity, it was felt that these were fair assumptions as far as the purpose of this

study was concerned. The initial premise for the use of the allele sharing method was

that families had been identified (probably though a linkage study) showing a genetic

region that segregates with a disease or trait. This was not something that was

simulated, rather the assumption was made that for it to have been possible to identify

the simulated families prior to testing the allele sharing method, it is unlikely that

these cases would display such linkage should the not show high penetrance and low

levels of allelic heterogeneity. It was therefore deemed acceptable, within this basic

model, that the best case scenario be taken as even in cases of high, but less than

100%, penetrance and low levels, but non zero, allelic heterogeneity, it should still be

possible to identify a common haplotype found in most affected individuals in our

simulated families and therefore identify a disease linked haplotype.

The simulation study did allow for a number of more relevant scenarios to be

modelled. The method was tested using various numbers of families, genotyped at

various different densities, while varying the number of generations between the

families and a common ancestor. These test showed that for as few as three families,

where genotyping was carried out to a sufficient density (~one marker every 11kb),

all but the most ancient ancestral haplotypes would be expected to be detected. It was

unfortunate that the computational limitations of the simulation meant that the

simulation could not be extended for more than 410 generations (8250 years) between

the simulated families and their common ancestor, however, the trends were clear.

The data presented in Table 3.2 can be used as a rough guide to show the density of

genotyping required in a study. While the simulation study showed that the allele

sharing method proved to be highly successful at identifying the simulated mutation

carrying region under a variety of conditions, the difference between the expected and

observed false positive rates casts doubt on the accuracy of the significance values.

This would appear to be due to a fundamental error in the way the significance values

are generated and will need a thorough re-evaluation of these methods.

Another aspect that arose from the study of the simulated families was how the results

could be used to compare against the results from novel studies. Data was generated

in a wide range of condition, by comparing the results of a novel study with those of

the simulated data, it is possible to draw conclusions on aspects of the result, such as

the nature of true and false positives and of the age of any ancestral haplotype block

Chapter 5 Conclusions

 106

discovered. However, due to the simplistic nature of the simulation, this may not

stand up to scrutiny.

These two avenues were pursued to develop confidence in the ability of the allele

sharing method to accurately detect the ancestral haplotype expected to flank a

mutation inherited from some common ancestor. Although the CF study data is not

quite similar to the data that this method was created to study and the simulation study

is very simplistic, I feel that these studies have proven that the method is successful in

identifying mutations under a range of conditions. However, it has also thrown up

some worrying features, namely the unexpected false positive rate. While this is

something that creates doubt as to the veracity of the method and the significance

values it generates, and this is something that should be resolved, it should be negate

the value that the use of the method can provide. It does mean that the results

reported in chapter 4 of this thesis should be treated with some caution.

Chapter 5 Conclusions

 107

5.3 Implementation of the method

All the methods described here were developed as a suite of programs. These

programs included the allele sharing methods themselves, a program to present the

output of the allele sharing scoring and permutation analysis visually, a program to

generate the simulated data and test it and many other programs relating to the

necessary data manipulation and formatting. The programs were developed in Java

primarily as it was the language I was most familiar with and was perfectly suitable

for these tasks, but Java also had the advantage of meaning that the programs are

portable across platforms. This work, in particular the computationally intensive

simulations, was conducted on a number of different machines running Windows,

Linux and Solaris platforms, so it proved very useful to be able to transfer programs

without needing to significantly recode them.

While it would have been preferable to have designed the programs completely prior

to coding them, due to the nature of the way the work developed (i.e. development

continued even while the initial analysis had begun), the programs were developed in

a piecemeal manner. As a consequence, there are many features that should be easily

variable to the user that were hard coded, meaning that the code must be altered to

change some aspects of how the program runs. While this code is available publicly,

it would be preferable to create a more polished executable that does not require the

source code to be visible at all. There are other aspects of the programs that could

also be improved, such as merging the programs that calculate the allele sharing

scores and initial permutation analysis with the program that carries out the nested

permutation analysis that corrects for multiple testing. It would also be possible to

automate certain aspects that are required to be carried out by hand at present, such as

the identification of shared blocks and the incorporation of the haplotype structure of

a region. Both these features were incorporated into the simulation study, which was

almost fully automated, so much of this code could be reused to create a more

complete program for the study of allele sharing.

The most relevant classes and methods have been included in this thesis, either in

sections 2.1.5 and 2.3.2 or in Appendix A.

Chapter 5 Conclusions

 108

5.4 Testing the allele sharing method and applying it to BPAD

linked families

The four families that present genetic linkage with BPAD and BP-related illness at the

chromosome 4p15-16 locus (Blackwood et al. 1996, Detera-Wadleigh et al. 1999,

Asherson et al. 1998) provided the initial motivation for developing the allele sharing

method described in this thesis. These four families that showed strong evidence for

the same location being implicated in major mental illness, yet the pace of progress in

identifying the cause of those linkage signals was slow. Some candidate gene studies

in the region had shown little more than slight evidence for an association with BPAD

and there were no other obvious candidates amongst a number of genes in the region

that would be plausible to related to BPAD. Allele sharing analysis developed in this

thesis was intended to provide a new use for the families that generated the initial

linkage results and to use them to narrow down the region under investigation even

further.

The original linkage results in F22 highlighted a region of ~20Mb (Blackwood et al.

1996), this was reduced to two priority regions encompassing ~8Mb as additional

linkage results were taken into account (Le Hellard et al. 2006). The allele sharing

analysis aimed to reduce that further more. The families were genotyped and studied

in two phases, with the second phase providing a high level genotypic description of

two priority regions. Disease-linked and control haplotypes from the four families

were compared in the two regions and a number of significant results were found,

with one significant shared region in particular standing out, shared region 1. This

region covered 197kb, 17 LD blocks (as defined by the CEPH trios in haploview) and

was significant after correcting for multiple testing with a P value = 0.009. While this

appears to show strong evidence for a susceptibility or causative mutation to be found

in this region, it is worth considering how accurate the reported P value is. The

simulation study showed that there was a problem with the false positive rate, casting

doubt on the veracity of the significance values being generated. Further analysis of

the simulation study data suggested that accuracy of p values varied widely. It was

possible to show that those simulation that were most similar to the chromosome 4p

linked family study showed an overestimation of P values of about an order of 5. It is

unfortunate that such doubt has been cast on what appears to be a very positive result.

Chapter 5 Conclusions

 109

It has to be hoped that, through the redesign of the significance testing or through

further investigation of the simulated datasets, that this issue can be resolved and that

the reported P values can be believed with greater confidence.

It is hoped that the issue of uncertainty relating to the significance values does not

detract too much from the value of the results reported here. These results still

provide evidence for a substantially reduced sub region that should be prioritised for

further research. These results should also demonstrate how such a method should be

able to similarly allow shared haplotypes to be used to generate priority sub regions of

large candidate regions where the appropriate family data exists. However, it is

important that allele/haplotype sharing methods are used as part of a mixed set of tests

as they all have different strengths and weaknesses and it is not always easy to tell

which method will be most successful for a particular study.

Chapter 5 Conclusions

 110

5.5 Final conclusions

Genetic linkage can provide very good evidence for a susceptibility locus, but this is

usually over a relatively large genomic region. While the results of linkage studies

have proven useful where simple Mendelian disorders are concerned, for complex

disease, it has proven difficult to make progress from this point. Therefore one of the

main challenges facing those tackling the genetic analysis of complex disease is of

how best to capitalise on linkage results without having to scan the entire region for

association. In cases of large families showing replicated linkage thought to be due to

an ancestral mutation in common between the families, the method presented in this

thesis addresses this problem through the investigation of allele sharing throughout

the linked region(s). Although it might appear quite limiting for this method to be

restricted to quite a specific scenario, this situation is increasing common and there

appears to be a need for such a method in this area. Complicating issues such as

population stratification and cryptic relatedness, add to the reasons for continuing to

pursue a family based approach in narrowing down such linkage regions in the pursuit

of disease causing loci. Allele, or haplotype, sharing methods such as the one

described in this thesis attempt to use the value stored in the haplotypes of families

under study to identify a region linked with a disease mutation. There is also no

reason why this method cannot also be extended for use in other areas, although

perhaps existing methods are more appropriate. While there are a number of

published methods that have looked at how alleles of haplotypes can be compared,

none of them have been developed into a practical method that could carry out the

specific role required for this, and similar, studies.

In chapter 3 I have shown extensive evidence that the method developed here is

effective in identifying an ancestral region for most founder mutations. I have also

identified a set of criteria that shows how its efficacy varies under different

conditions. In many cases, it will prove to be the most cost-effective approach to

genotype and test for allele sharing where a founder mutation is expected, as this

could reduce substantially the region for fine-scale (sequence level) investigation. In

reality, allele sharing will probably be used alongside other tools. This work has also

identified some discrepancies in the false positive rate. While the method is shown to

be able to accurately identify the mutation carrying region through simulation, the

Chapter 5 Conclusions

 111

accuracy of P values is in doubt. Investigation into the variation in the false positive

rate allowed some estimation of the error involved, but this is a problem that needs to

be solved through the redesign of the statistical test itself.

Chapter 4 describes the application of the methods described here to a genomic region

that has shown evidence in a number of families of linkage to BPAD. This study

detected a number of significant regions, but on comparison with the results of

simulated data, on region of 197kb appears to stand out. It is hoped that this region

will undergo further study to uncover the likely mutation. It is expected that this

scenario where a number of families are linked to the same region will becoming

more common in studies of complex disease and the process described in chapter 4

describes how these allele sharing methods can be used to combine these linkage

studies in order to make progress in the search for a mutation or causative locus.

While future advances in technology (namely cheap rapid large scale sequencing)

may lead to linkage based methods being completely superseded. However at present

this method should be a valuable addition to the tools available in the study of the

genetics of complex disorders such as bipolar affective disorder.

Chapter 5 Conclusions

 112

5.6 Summary

The following is a summary of the main achievements of the work presented in this

thesis:

• Identified a gap in the positional cloning process for complex disorders;

• Developed a method for studying allele sharing that could help bridge this

gap, building upon the existing published body of work and extending it to

become allow application to a specific, but not uncommon, scenario;

• Presented evidence to show that this method was effective in taking genotype

data from families carrying three CFTR mutations responsible for cystic

fibrosis and used this data to identify the region that contains these mutations;

• Developed a basic simulation that models how a founder mutation developed

in a population through a variable number of generations;

• Presented evidence to show that the allele sharing method was effective in

identifying the mutations in this simulated data under most normal conditions

of the simulation (i.e. a study of at least three families, where there is less than

400 generations separating the families from a common ancestor);

• Presented the results from a wide range of simulated data that shows how the

allele sharing method would be expected to perform under a variety of

conditions and characterised the variation in the false positive rate;

• Showed how the allele sharing method has been applied to data from a number

of families showing linkage to chromosome 4p15-16 for bipolar affective

disorder to identify a sub-region within the existing linkage region;

• Described how these results can provide the basis for more focussed research

into the cause of this linkage signal;

• Developed an initial insight into the age of the BPAD mutation carried by the

4p-linked families;

• Described how the study of these chromosome 4p15-16 linked families can be

used as a basis for getting greater use out of large families that show replicated

linkage with complex genetic disease.

Chapter 5 Conclusions

 113

5.7 Further work and recommendations

In order to progress this work further, there is one major issue that needs to be

resolved, that of the false positives identified in the analysis of the simulated data.

There is clearly some feature of the test being carried out that is leading to an

unexpected false positive rate that needs to be identified and corrected. Until this is

carried out any results based on this method will have some doubt case upon them. If

the issue of false positives cannot be resolved, alternative methods based on more

recent work should be used. Provided the issue of false positives is resolved one way

or another, it would be useful to look at the following areas:

Allele sharing method and program

• A much more thorough comparison between the results of the method

described in this thesis and other existing methods is required;

• It may be worth testing the effect of different scoring systems;

• It would be very useful to have additional datasets upon which to test the

method;

• I would like to implement a more ‘user friendly’ version of the program so

that it could be more widely used;

• Investigate how the method could be extended for use in testing for allele

sharing between unrelated cases;

• Provide a mechanism and statistical basis for the method to be used in sub-

combinations of families.

Simulation study

• Increase the computational power available to allow the datasets that can be

simulated to be expanded;

• Improve the simulation to allow more variability in the manner of population

expansion;

• Generate and test simulated datasets based on alternative and more diverse

starting populations and genetic models.

Chapter 5 Conclusions

 114

Chromosome 4p15-16

• Use the results presented in this thesis to prioritise the future analysis. This

may include resequencing of significant region 1 and a study of gene

expression data;

• Investigate the possibility of gaining access to data from an additional family

to be included in the analysis.

References

 115

References

Abecasis GR, Cherny SS, Cookson WO, Cardon LR (2002) Merlin-rapid analysis of
dense genetic maps using sparse gene flow trees. Nat Genet 30:97-101

Allen AS, Satten GA (2007) Statistical models for haplotype sharing in case-parent
trio data. Hum Hered. 64(1):35-44. Epub 2007 Apr 27.

Als TD, Dahl HA, Flint TJ, Wang AG, Vang M, Mors O, Kruse TA, Ewald H (2004)
Possible evidence for a common risk locus for bipolar affective disorder and
schizophrenia on chromosome 4p16 in patients from the Faroe Islands. Mol
Psychiatry 9:93-98

American Psychiatric Association (1994) Diagnostic and Statistical Manual of Mental
Disorders (Fourth Edition).

Anguelova M, Benkelfat C, Turecki G (2003) A systematic review of association
studies investigating genes coding for serotonin receptors and the serotonin
transporter: I. Affective disorders. Mol Psychiatry.8:574-91

Asherson P, Mant R, Williams N, Cardno A, Jones L, Murphy K, Collier DA, Nanko
S, Craddock N, Morris S, Muir W, Blackwood B, McGuffin P, Owen MJ (1998) A
study of chromosome 4p markers and dopamine D5 receptor gene in schizophrenia
and bipolar disorder. Mol Psychiatry 3:310-320

Bacanu SA, Devlin B, Roeder K (2000) The power of genomic control. Am J Hum
Genet. 66(6):1933-44..

Barden N, Harvey M, Gagné B, Shink E, Tremblay M, Raymond C, Labbé M,
Villeneuve A, Rochette D, Bordeleau L, Stadler H, Holsboer F, Müller-Myhsok B
(2006) Analysis of single nucleotide polymorphisms in genes in the chromosome
12Q24.31 region points to P2RX7 as a susceptibility gene to bipolar affective
disorder. Am J Med Genet B Neuropsychiatr Genet 141(4):374-82

Barrett TB, Hauger RL, Kennedy JL, Sadovnick AD, Remick RA, Keck PE, McElroy
SL, Alexander M, Shaw SH, Kelsoe JR (2003) Mol Psychiatry 8:546-57

Barrett JC, Fry B, Maller J, Daly MJ. (2005) Haploview: analysis and visualization of
LD and haplotype maps. Bioinformatics 21(2):263-5

Becker T, Knapp M (2004) A powerful strategy to account for multiple testing in the
context of haplotype analysis. Am J Hum Genet 75:561-570

Beckmann L, Fischer C, Obreiter M, Rabes M, Chang-Claude J (2005) Haplotype-
sharing analysis using Mantel statistics for combined genetic effects. BMC Genet. 6
Suppl 1:S70.

References

 116

Berrettini WH (2000) Are schizophrenic and bipolar disorders related? A review of
family and molecular studies. Biol Psychiatry 48:531-538

Bertelsen A, Harvald B, Hauge M (1977) A Danish twin study of manic-depressive
disorders. Br J Psychiatry 130:330-51

Blackwood DH, He L, Morris SW, McLean A, Whitton C, Thomson M, Walker MT,
Woodburn K, Sharp CM, Wright AF, Shibasaki Y, St Clair DM, Porteous DJ, Muir
WJ (1996) A locus for bipolar affective disorder on chromosome 4p. Nat Genet
12:427-430

Bodmer WF, Bailey CJ, Bodmer J, Bussey HJ, Ellis A, Gorman P, Lucibello FC,
Murday VA, Rider SH, Scambler P, et al. (1987) Localization of the gene for familial
adenomatous polyposis on chromosome 5. Nature 328(6131):614-6

Botstein D, Risch N (2003) Discovering genotypes underlying human phenotypes:
past successes for mendelian disease, future approaches for complex disease. Nat
Genet 33 Suppl:228-37

Bourgain C, Genin E, Quesneville H, Clerget-Darpoux F (2000) Search for
multifactorial disease susceptibility genes in founder populations. Ann Hum Genet
64:255-265

Bourgain C, Genin E, Margaritte-Jeannin P, Clerget-Darpoux F (2001) Maximum
identity length contrast: a powerful method for susceptibility gene detection in
isolated populations. Genet Epidemiol 21 Suppl 1:S560-4

Bourgain C, Genin E, Ober C, Clerget-Darpoux F (2002) Missing data in haplotype
analysis: a study on the AS method. Ann Hum Genet 66(Pt 1):99-108

Chakravarti A (1999) Population genetics – making sense out of sequence. Nat Genet
Suppl 21:56:60

Chapman NH, Thompson EA (2001) Linkage disequilibrium mapping: the role of
population history, size, and structure. Adv Genet 42:413-37

Chen YS, Akula N, Detera-Wadleigh SD, Schulze TG, Thomas J, Potash JB, DePaulo
JR, McInnis MG, Cox NJ, McMahon FJ (2004) Findings in an independent sample
support an association between bipolar affective disorder and the G72/G30 locus on
chromosome 13q33. Mol Psychiatry 9(1):87-92

Christoforou A, Le Hellard S, Thomson P, Morris S, Tenesa A, Pickard B. S, Wray
NR, Muir W, Blackwood D, Porteous DJ et al. (2007) Association Analysis of the
Chromosome 4p15-p16 Candidate Region for Bipolar Disorder and Schizophrenia.
Mol Psychiatry [Epub ahead of print]

Clayton D (1999) A generalization of the transmission/disequilibrium test for
uncertain-haplotype transmission. Am J Hum Genet 65(4):1170-7

References

 117

Clayton D (2000) Linkage disequilibrium mapping of disease susceptibility genes in
human populations. International Statistical Review, 68:23-43

Cohen JC, Kiss RS, Pertsemlidis A, Marcel YL, McPherson R, Hobbs HH (2004)
Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science
6;305(5685):869-72

Collins FS (1995) Positional cloning moves from perditional to traditional. Nat Genet
9(4):347-50

Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW,
Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type
4 allele and the risk of Alzheimer's disease in late onset families. Science
261(5123):921-3

Craddock N, Forty L (2006) Genetics of affective (mood) disorders. Eur J Hum Genet
14(6):660-8

Craddock N, Khodel V, Van Eerdewegh P, Reich T (1995) Mathematical limits of
multilocus models: the genetic transmission of bipolar disorder. Am J Hum Genet 57:
690-702

Craddock N, Jones I (1999) Genetics of bipolar disorder. J Med Genet 36(8):585-94

Culverhouse R, Lin J, Liu KY, Suarez BK (2001) Exploiting linkage disequilibrium
in population isolates. Genet Epidemiol 21 Suppl 1:S429-34

Das Gupta R, Guest JF (2002) Annual cost of bipolar disorder to UK society. Br J
Psychiatry 180:227-33

Davies JL, Kawaguchi Y, Bennett ST, Copeman JB, Cordell HJ, Pritchard LE, Reed
PW, Gough SC, Jenkins SC, Palmer SM, et al. (1994) A genome-wide search for
human type 1 diabetes susceptibility genes. Nature 371(6493):130-6

De Braekeleer M, Chaventré A, Bertorelle G, Verlingue C, Raguénès O, Mercier B,
Férec C (1996) Linkage disequilibrium between the four most common cystic fibrosis
mutations and microsatellite haplotypes in the Celtic population of Brittany. Hum
Genet 98(2):223-7

de la Chapelle A, Wright FA (1998) Linkage disequilibrium mapping in isolated
populations: the example of Finland revisited. Proc Natl Acad Sci U S A
13;95(21):12416-23

Detera-Wadleigh SD, Badner JA, Berrettini WH, Yoshikawa T, Goldin LR, Turner G,
Rollins DY, Moses T, Sanders AR, Karkera JD, Esterling LE, Zeng J, Ferraro TN,
Guroff JJ, Kazuba D, Maxwell ME, Nurnberger JI, Jr., Gershon ES (1999) A high-
density genome scan detects evidence for a bipolar-disorder susceptibility locus on
13q32 and other potential loci on 1q32 and 18p11.2. Proc Natl Acad Sci U S A
96:5604-5609

References

 118

Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics.
55(4):997-1004.

Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University,
and Novartis Institutes of BioMedical Research, Saxena R, Voight BF, Lyssenko V,
Burtt NP, de Bakker PI, Chen H, Roix JJ, Kathiresan S, Hirschhorn JN et al. (2007)
Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride
levels. Science 316(5829):1331-6

Dreyer SD, Zhou G, Baldini A, Winterpacht A, Zabel B, Cole W, Johnson RL, Lee B
(1998) Mutations in LMX1B cause abnormal skeletal patterning and renal dysplasia
in nail patella syndrome. Nat Genet 19(1):47-50

Duggal P, Klein AP, Lee KE, Klein R, Klein BEK, Bailey-Wilson JE (2007)
Identification of Novel Genetic Loci for Intraocular Pressure: A Genomewide Scan of
the Beaver Dam Eye Study. Arch Ophthalmol 125(1):74-79

Enattah NS, Sahi T, Savilahti E, Terwilliger JD, Peltonen L, Järvelä I (2002)
Identification of a variant associated with adult-type hypolactasia. Nat Genet
30(2):233-7

Ewald H, Degn B, Mors O, Kruse TA (1998) Support for the possible locus on
chromosome 4p16 for bipolar affective disorder. Mol Psychiatry 3:442-448

Fallin D, Schork NJ (2000) Accuracy of haplotype frequency estimation for biallelic
loci, via the expectation-maximization algorithm for unphased diploid genotype data.
Am J Hum Genet 67(4):947-59. Epub

Fan R, Lange K (1998) Models for haplotype evolution in a nonstationary population.
Theor Popul Biol 53(3):184-98

Faravelli C, Guerrini Degl'Innocenti B, Aiazzi L, Incerpi G, Pallanti S (1990)
Epidemiology of mood disorders: a community survey in Florence. J Affect Disord
20(2):135-41

Feder JN, Gnirke A, Thomas W, Tsuchihashi Z, Ruddy DA, Basava A, Dormishian F,
Domingo R Jr, Ellis MC, Fullan A, Hinton LM, Jones NL, Kimmel BE, Kronmal GS,
Lauer P, Lee VK, Loeb DB, Mapa FA, McClelland E, Meyer NC, Mintier GA,
Moeller N, Moore T, Morikang E, Prass CE, Quintana L, Starnes SM, Schatzman RC,
Brunke KJ, Drayna DT, Risch NJ, Bacon BR, Wolff RK (1996) A novel MHC class
I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet
13(4):399-408

Feuk L, Marshall CR, Wintle RF, Scherer SW (2006) Structural variants: changing
the landscape of chromosomes and design of disease studies. Hum Mol Genet 15 Spec
No 1:R57-66

Ge Y, Dudoit S, Speed TP (2003) Resampling-based multiple testing for microarray
data analysis. Technical Report 633, Department of Statistics, University of
California, Berkeley

References

 119

Geller B, Badner JA, Tillman R, Christian SL, Bolhofner K, Cook EH Jr (2004)
Linkage disequilibrium of the brain-derived neurotrophic factor Val66Met
polymorphism in children with a prepubertal and early adolescent bipolar disorder
phenotype. Am J Psychiatry 161(9):1698-700

Goldney RD, Fisher LJ, Grande ED, Taylor AW, Hawthorne G (2005) Bipolar I and
II disorders in a random and representative Australian population. Aust N Z J
Psychiatry 39(8):726-9

Hall JM, Lee MK, Newman B, Morrow JE, Anderson LA, Huey B, King MC (1990)
Linkage of early-onset familial breast cancer to chromosome 17q21. Science
250(4988):1684-9

Hattori E, Liu C, Badner JA, Bonner TI, Christian SL, Maheshwari M, Detera-
Wadleigh SD, Gibbs RA, Gershon ES (2003) Polymorphisms at the G72/G30 gene
locus, on 13q33, are associated with bipolar disorder in two independent pedigree
series. Am J Hum Genet 72(5):1131-40. Epub 2003 Mar 19

Hedrick PW (1987) Gametic disequilibrium measures: proceed with caution. Genetics
117: 331-341

Herzberg I, Jasinska A, García J, Jawaheer D, Service S, Kremeyer B, Duque C, Parra
MV, Vega J, Ortiz D et al. (2006) Convergent linkage evidence from two Latin-
American population isolates supports the presence of a susceptibility locus for
bipolar disorder in 5q31-34. Hum Mol Genet 15(21):3146-53

Hong CJ, Huo SJ, Yen FC et al. (2003) Association study of a brainderived
neurotrophic-factor genetic polymorphism and mood disorders, age of onset and
suicidal behaviour. Neuropsychobiology 48: 186-189

Hu F, Post J, Johnson S, Ehrlich G, Preston R (2000) Refined localization of a gene
for pediatric gastroesophageal reflux makes HTR2A an unlikely candidate gene. Hum
Genet 107(5):519-525

Hubbard TJ, Aken BL, Beal K, Ballester B, Caccamo M, Chen Y, Clarke L, Coates
G, Cunningham F, Cutts T, Down T, Dyer SC, Fitzgerald S, Fernandez-Banet J, Graf
S, Haider S, Hammond M, Herrero J, Holland R, Howe K, Howe K, Johnson N,
Kahari A, Keefe D, Kokocinski F, Kulesha E, Lawson D, Longden I, Melsopp C,
Megy K, Meidl P, Ouverdin B, Parker A, Prlic A, Rice S, Rios D, Schuster M, Sealy
I, Severin J, Slater G, Smedley D, Spudich G, Trevanion S, Vilella A, Vogel J, White
S, Wood M, Cox T, Curwen V, Durbin R, Fernandez-Suarez XM, Flicek P, Kasprzyk
A, Proctor G, Searle S, Smith J, Ureta-Vidal A, Birney E (2007) Ensembl 2007.
Nucleic Acids Res 35(Database issue):D610-7

Hunter DJ, Kraft P (2007) Drinking from the fire hose--statistical issues in
genomewide association studies. N Engl J Med 357(5):443-53

Huntington's Disease Collaborative Research Group (1993) A novel gene containing a
trinucleotide repeat that is expanded and unstable on Huntington's disease

References

 120

chromosomes. The Huntington's Disease Collaborative Research Group. Cell
72(6):971-83

Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, Scherer SW, Lee
C (2004) Detection of large-scale variation in the human genome. Nat Genet
36(9):949-51

Jones I, Craddock N (2001) Candidate gene studies of bipolar disorder. Ann Med
33(4):248-56

Jorde LB (2000) Linkage disequilibrium and the search for complex disease genes.
Genome Res 10(10):1435-44

Kakiuchi C, Iwamoto K, Ishiwata M, Bundo M, Kasahara T, Kusumi I, Tsujita T,
Okazaki Y, Nanko S, Kunugi H, Sasaki T, Kato T (2003) Impaired feedback
regulation of XBP1 as a genetic risk factor for bipolar disorder. Nat Genet 35(2):171-
5

Ke X, Durrant C, Morris AP, Hunt S, Bentley DR, Deloukas P, Cardon LR (2004)
Efficiency and consistency of haplotype tagging of dense SNP maps in multiple
samples. Hum Mol Genet 13: 2557-2565

Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D
(2002) The human genome browser at UCSC. Genome Res 12(6):996-1006

Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A,
Buchwald M, Tsui LC (1989) Identification of the cystic fibrosis gene: genetic
analysis Science 245(4922):1073-80

Klei L, Roeder K (2007) Testing for association based on excess allele sharing in a
sample of related cases and controls. Hum Genet 121(5): 549-557

Koenig M, Hoffman EP, Bertelson CJ, Monaco AP, Feener C, Kunkel LM (1986)
Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and
preliminary genomic organization of the DMD gene in normal and affected
individuals. Cell 50(3):509-17

Koskenmies S, Widén E, Onkamo P, Sevón P, Julkunen H, Kere J. (2004) Haplotype
associations define target regions for susceptibility loci in systemic lupus
erythematosus. Eur Jour Hum Genet 12(6): 489-494

Lachman HM, Pedrosa E, Petruolo OA, Cockerham M, Papolos A, Novak T, Papolos
DF, Stopkova P (2007) Increase in GSK3beta gene copy number variation in bipolar
disorder. Am J Med Genet B Neuropsychiatr Genet. 144B(3):259-65.

Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for
interpreting and reporting linkage results. Nat Genet 11(3):241-7

Lander ES, Schork NJ (1994) Genetic dissection of complex traits. Science.
265(5181):2037-48.

References

 121

Lasky-Su JA, Faraone SV, Glatt SJ, Tsuang MT (2005) Meta-analysis of the
association between two polymorphisms in the serotonin transporter gene and
affective disorders. Am J Med Genet B Neuropsychiatr Genet 133(1):110-5

Le Hellard S, Lee AJ, Underwood S, Thomson PA, Morris SW, Torrance HS,
Anderson SM, Adams RR, Navarro P, Christoforou A et al. (2006) Haplotype
Analysis and a Novel Allele-sharing Method Refines a Chromosome 4p Locus Linked
to Bipolar Affective Disorder. Biol Psychiatry 61(6):797-805

Lerer B, Segman RH, Hamdan A, Kanyas K, Karni O, Kohn Y, Korner M, Lanktree
M, Kaadan M, Turetsky N, Yakir A, Kerem B, Macciardi F (2003) Genome scan of
Arab Israeli families maps a schizophrenia susceptibility gene to chromosome 6q23
and supports a locus at chromosome 10q24. Mol Psychiatry 8:488-498

Levinson DF, Levinson MD, Segurado R, Lewis CM. (2003) Genome scan meta-
analysis of schizophrenia and bipolar disorder, part I: Methods and power analysis.
Am J Hum Genet 73(1):17-33

Lopez AD, Murray CC (1998) The global burden of disease, 1990-2020. Nat Med
4(11):1241-3

Lunetta KL, Faraone SV, Biederman J, Laird NM. (2000) Family-based tests of
association and linkage that use unaffected sibs, covariates, and interactions. Am J
Hum Genet. 66(2):605-14.

Macgregor S, Visscher PM, Knott SA, Thomson P, Porteous DJ, Millar JK, Devon
RS, Blackwood D, Muir WJ (2004) A genome scan and follow-up study identify a
bipolar disorder susceptibility locus on chromosome 1q42. Mol Psychiatry
9(12):1083-90

Mantel, N. 1967. The detection of disease clustering and a generalized regression
approach. Cancer Res 27:209-220.

Marchini J, Cardon LR, Phillips MS, Donnelly P (2004) The effects of human
population structure on large genetic association studies. Nat Genet. 36(5):512-7.

Martin ER, Monks SA, Warren LL, Kaplan NL (2000) A test for linkage and
association in general pedigrees: the pedigree disequilibrium test. Am J Hum Genet.
67(1):146-54.

McKusick VA Mendelian Inheritance in Man. A Catalog of Human Genes and
Genetic Disorders (12th edition) 1998 John Hopkins University Press, Baltimore, Md.
USA

Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, Liu Q,
Cochran C, Bennett LM, Ding W, et al. (1994) A strong candidate for the breast and
ovarian cancer susceptibility gene BRCA1. Science 266(5182):66-71

References

 122

Miyazawa H, Kato M, Awata T, Kohda M, Iwasa H, Koyama N, Tanaka T, Huqun ,
Kyo S, Okazaki Y, Hagiwara K. (2007) Homozygosity haplotype allows a
genomewide search for the autosomal segments shared among patients. Am J Hum
Genet 80(6):1090-102

Molitor J, Marjoram P, Thomas D (2003) Application of Bayesian spatial statistical
methods to analysis of haplotypes effects and gene mapping. Genet Epidemiol 25(2):
95-105

Molitor J, Marjoram P, Thomas D (2003) Fine-scale mapping of disease genes with
multiple mutations via spatial clustering techniques. Am J Hum Genet 73(6): 1368-
1384

Morissette J, Villeneuve A, Bordeleau L, Rochette D, Laberge C, Gagné B, Laprise C,
Bouchard G, Plante M, Gobeil L et al. (1999) Genome-wide search for linkage of
bipolar affective disorders in a very large pedigree derived from a homogeneous
population in quebec points to a locus of major effect on chromosome 12q23-q24. Am
J Med Genet 88(5):567-87

Morris AP (2005) Direct analysis of unphased SNP genotype data in population-based
association studies via Bayesian partition modelling of haplotypes. Genet Epidemiol
29(2): 91-107

Morris AP (2006) A flexible Bayesian framework for modeling haplotype association
with disease, allowing for dominance effects of the underlying causative variants. Am
J Hum Genet (4): 679-94

Morton NE, Collins A (1998) Tests and estimates of allelic association in complex
inheritance. Proc Natl Acad Sci USA. 95(19):11389-93.

Nachman NW (2002) Variation in recombination rate across the genome: evidence
and implications. Curr Opin Genet Dev 12(6):657-63

Nakata K, Ujike H, Sakai A, Uchida N, Nomura A, Imamura T, Katsu T, Tanaka Y,
Hamamura T, Kuroda S (2003) Association study of the brain-derived neurotrophic
factor (BDNF) gene with bipolar disorder. Neurosci Lett 337(1):17-20

NCI-NHGRI Working Group on Replication in Association Studies, Chanock SJ,
Manolio T, Boehnke M, Boerwinkle E, Hunter DJ, Thomas G, Hirschhorn JN,
Abecasis G, Altshuler D, Bailey-Wilson JE, Brooks LD, Cardon LR, Daly M,
Donnelly P, Fraumeni JF Jr, Freimer NB, Gerhard DS, Gunter C, Guttmacher AE,
Guyer MS, Harris EL, Hoh J, Hoover R, Kong CA, Merikangas KR, Morton CC,
Palmer LJ, Phimister EG, Rice JP, Roberts J, Rotimi C, Tucker MA, Vogan KJ,
Wacholder S, Wijsman EM, Winn DM, Collins FS (2007) Replicating genotype-
phenotype associations. Nature 447(7145):655-660

Neves-Pereira M, Mundo E, Muglia P, King N, Macciardi F, Kennedy JL (2002) The
brain-derived neurotrophic factor gene confers susceptibility to bipolar disorder:
evidence from a family-based association study. Am J Hum Genet 71(3):651-5

References

 123

Nishisho I, Nakamura Y, Miyoshi Y, Miki Y, Ando H, Horii A, Koyama K,
Utsunomiya J, Baba S, Hedge P (1991) Mutations of chromosome 5q21 genes in FAP
and colorectal cancer patients. Science 253(5020):665-9

Oswald P, Del-Favero J, Massat I, Souery D, Claes S, Van Broeckhoven C,
Mendlewicz J (2004) Non-replication of the brain-derived neurotrophic factor
(BDNF) association in bipolar affective disorder: a Belgian patient-control study. Am
J Med Genet B Neuropsychiatr Genet 129(1):34-5

Ott J (1999) Methods of analysis and resources available for genetic trait mapping. J
Hered 90(1):68-70

Pearson TA, Manolio TA 2008 How to interpret a genome-wide association study.
JAMA 299(11):1335-44
Pini S, de Queiroz V, Pagnin D, Pezawas L, Angst J, Cassano GB, Wittchen HU
(2005) Prevalence and burden of bipolar disorders in European countries. Eur
Neuropsychopharmacol 15(4):425-34

Preisig M, Bellivier F, Fenton BT, Baud P, Berney A, Courtet P, Hardy P, Golaz J,
Leboyer M, Mallet J, Matthey ML, Mouthon D, Neidhart E, Nosten-Bertrand M,
Stadelmann-Dubuis E, Guimon J, Ferrero F, Buresi C, Malafosse A (2000)
Association between bipolar disorder and monoamine oxidase A gene
polymorphisms: results of a multicenter study. Am J Psychiatry 157(6):948-55

Pritchard JK, Rosenberg NA (1999) Use of unlinked genetic markers to detect
population stratification in association studies. Am J Hum Genet. 65(1):220-8.

Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000) Association mapping in
structured populations. Am J Hum Genet. 67(1):170-81.

Qian D, Thomas DC (2001) Genome scan of complex traits by haplotype sharing
correlation. Genet Epidemiol. 21 Suppl 1:S582-7.

Regeer EJ, ten Have M, Rosso ML, Hakkaart-van Roijen L, Vollebergh W, Nolen
WA (2004) Prevalence of bipolar disorder in the general population: a Reappraisal
Study of the Netherlands Mental Health Survey and Incidence Study. Acta Psychiatr
Scand 110(5):374-82

Regier DA, Farmer ME, Rae DS, Locke BZ, Keith SJ, Judd LL, Goodwin FK (1990)
Comorbidity of mental disorders with alcohol and other drug abuse. Results from the
Epidemiologic Catchment Area (ECA) Study. JAMA 264(19):2511-8

Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J,
Lok S, Plavsic N, Chou JL, Drumm ML, Iannuzzi MC, Collins FS, Tsui LC (1989)
Identification of the cystic fibrosis gene: cloning and characterization of
complementary DNA. Science 245(4922):1066-73

Royer-Pokora B, Kunkel LM, Monaco AP, Goff SC, Newburger PE, Baehner RL,
Cole FS, Curnutte JT, Orkin SH (1986) Cloning the gene for an inherited human
disorder--chronic granulomatous disease--on the basis of its chromosomal location.

References

 124

Nature 322(6074):32-8

Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, Tagle DA, Smith
S, Uziel T, Sfez S, Ashkenazi M, Pecker I, Frydman M, Harnik R, Patanjali SR,
Simmons A, Clines GA, Sartiel A, Gatti RA, Chessa L, Sanal O, Lavin MF, Jaspers
NG, Taylor AM, Arlett CF, Miki T, Weissman SM, Lovett M, Collins FS, Shiloh Y
(1995) A single ataxia telangiectasia gene with a product similar to PI-3 kinase.
Science 268(5218):1749-53

Schumacher J, Jamra RA, Freudenberg J, Becker T, Ohlraun S, Otte AC, Tullius M,
Kovalenko S, Bogaert AV, Maier W, Rietschel M, Propping P, Nöthen MM, Cichon
S (2004) Examination of G72 and D-amino-acid oxidase as genetic risk factors for
schizophrenia and bipolar affective disorder. Mol Psychiatry 9(2):203-7

Scotet V, Gillet D, Dugueperoux I, Audrezet MP, Bellis G, Garnier B, Roussey M,
Rault G, Parent P, De Braekeleer M et al. (2002) Spatial and temporal distribution of
cystic fibrosis and of its mutations in Brittany, France: a retrospective study from
1960. Hum Genet 111(3):247-54

Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, Månér S, Massa H,
Walker M, Chi M, Navin N, Lucito R, Healy J, Hicks J, Ye K, Reiner A, Gilliam TC,
Trask B, Patterson N, Zetterberg A, Wigler M (2004) Large-scale copy number
polymorphism in the human genome. Science 305(5683):525-8

Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, Yamrom B, Yoon
S, Krasnitz A, Kendall J, Leotta A, Pai D, Zhang R, Lee YH, Hicks J, Spence SJ, Lee
AT, Puura K, Lehtimäki T, Ledbetter D, Gregersen PK, Bregman J, Sutcliffe JS,
Jobanputra V, Chung W, Warburton D, King MC, Skuse D, Geschwind DH, Gilliam
TC, Ye K, Wigler M (2007) Strong association of de novo copy number mutations
with autism. Science 316(5823):445-9

Skibinska M, Hauser J, Czerski PM, Leszczynska-Rodziewicz A, Kosmowska M,
Kapelski P, Slopien A, Zakrzewska M, Rybakowski JK (2004) Association analysis
of brain-derived neurotrophic factor (BDNF) gene Val66Met polymorphism in
schizophrenia and bipolar affective disorder. World J Biol Psychiatry 5(4):215-20

Sklar P, Gabriel SB, McInnis MG, Bennett P, Lim YM, Tsan G, Schaffner S, Kirov
G, Jones I, Owen M, Craddock N, DePaulo JR, Lander ES (2002) Family-based
association study of 76 candidate genes in bipolar disorder: BDNF is a potential risk
locus. Brain-derived neutrophic factor. Mol Psychiatry 7(6):579-93

Sklar P, Smoller JW, Fan J, Ferreira MA, Perlis RH, Chambert K, Nimgaonkar VL,
McQueen MB, Faraone SV, Kirby A, de Bakker PI, Ogdie MN, Thase ME, Sachs GS,
Todd-Brown K, Gabriel SB, Sougnez C, Gates C, Blumenstiel B, Defelice M, Ardlie
KG, Franklin J, Muir WJ, McGhee KA, MacIntyre DJ, McLean A, VanBeck M,
McQuillin A, Bass NJ, Robinson M, Lawrence J, Anjorin A, Curtis D, Scolnick EM,
Daly MJ, Blackwood DH, Gurling HM, Purcell SM (2008) Whole-genome
association study of bipolar disorder. Mol Psychiatry. 13(6):558-69.

References

 125

Slooter AJ, van Duijn CM (1997) Genetic epidemiology of Alzheimer disease.
Epidemiol Rev 19(1):107-19

Spielman RS, McGinnis RE, Ewens WJ (1993) Transmission test for linkage
disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus
(IDDM). Am J Hum Genet. 52(3):506-16.

Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T,
Ghosh S, Brynjolfsson J, Gunnarsdottir S, Ivarsson O, Chou TT, Hjaltason O,
Birgisdottir B, Jonsson H, Gudnadottir VG, Gudmundsdottir E, Bjornsson A,
Ingvarsson B, Ingason A, Sigfusson S, Hardardottir H, Harvey RP, Lai D, Zhou M,
Brunner D, Mutel V, Gonzalo A, Lemke G, Sainz J, Johannesson G, Andresson T,
Gudbjartsson D, Manolescu A, Frigge ML, Gurney ME, Kong A, Gulcher JR,
Petursson H, Stefansson K (2002) Neuregulin 1 and susceptibility to schizophrenia.
Am J Hum Genet. 71(4):877-92.

Strathdee CA, Gavish H, Shannon WR, Buchwald M (1992) Cloning of cDNAs for
Fanconi's anaemia by functional complementation. Nature 356(6372):763-7

Szádóczky E, Papp Z, Vitrai J, Ríhmer Z, Füredi J (1998) The prevalence of major
depressive and bipolar disorders in Hungary. Results from a national epidemiologic
survey. J Affect Disord 50(2-3):153-62

te Meerman GJ, Van der Meulen MA (1997) Genomic sharing surrounding alleles
identical by descent: effects of genetic drift and population growth. Genet Epidemiol
14(6): 1125-1130

ten Have M, Vollebergh W, Bijl R, Nolen WA (2002) Bipolar disorder in the general
population in The Netherlands (prevalence, consequences and care utilisation): results
from The Netherlands Mental Health Survey and Incidence Study (NEMESIS). J
Affect Disord 68(2-3):203-13

The International HapMap Consortium (2003) The International HapMap Project.
Nature 426, 789-796

Thierry-Mieg D, Thierry-Mieg J (2006) AceView: a comprehensive cDNA-supported
gene and transcripts annotation. Genome Biol, 7 (Suppl 1):S12

Thomson PA, Wray NR, Millar JK, Evans KL, Hellard SL, Condie A, Muir WJ,
Blackwood DH, Porteous DJ (2005) Association between the TRAX/DISC locus and
both bipolar disorder and schizophrenia in the Scottish population. Mol Psychiatry 10:
657-668, 616

Tomlinson I, Webb E, Carvajal-Carmona L, Broderick P, Kemp Z, Spain S, Penegar
S, Chandler I, Gorman M, Wood W et al. (2007) A genome-wide association scan of
tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat Genet
39(8):984-988

Twyman R (2003) Finding the rough position of human disease genes relative to
known genetic markers. http://genome.wellcome.ac.uk/doc_wtd020778.html

References

 126

Tzeng JY, Devlin B, Wasserman L, Roeder K (2003) On the identification of disease
mutations by the analysis of haplotype similarity and goodness of fit. Am J Hum
Genet 72:891-902

Tzeng, J.Y., Byerley, W., Devlin, B., Roeder, K. and Wasserman, L. (2003). Outlier
detection and false discovery rates for whole-genome DNA matching. Journal of the
American Statistical Association, 98:236-246.

Tzeng JY, Wang CH, Kao JT, Hsiao CK (2006) Regression-based association
analysis with clustered haplotypes through use of genotypes. Am J Hum Genet 78(2):
231-242

Tzeng JY, Zhang D (2007) Haplotype-based association analysis via variance-
components score test. Am J Hum Genet 81(5): 927-938

Vallès V, Van Os J, Guillamat R, Gutiérrez B, Campillo M, Gento P, Fañanás L
(2000) Increased morbid risk for schizophrenia in families of in-patients with bipolar
illness. Schizophr Res 42(2):83-90

Van der Meulen MA, te Meerman GJ (1997) Haplotype sharing analysis in affected
individuals from nuclear families with at least one affected offspring. Genet
Epidemiol 14:915-920

Venken T, Alaerts M, Souery D, Goossens D, Sluijs S, Navon R, Van Broeckhoven
C, Mendlewicz J, Del-Favero J, Claes S (2008) Chromosome 10q harbors a
susceptibility locus for bipolar disorder in Ashkenazi Jewish families. Mol Psychiatry
13(4):442-50

Visscher PM, Haley CS, Heath SC, Muir WJ, Blackwood DH (1999) Detecting QTLs
for uni- and bipolar disorder using a variance component method. Psychiatr Genet
9:75-84

Voight BF, Pritchard JK (2005) Confounding from cryptic relatedness in case-control
association studies. PLoS Genet. 1(3):e32.

Wallace MR, Marchuk DA, Andersen LB, Letcher R, Odeh HM, Saulino AM,
Fountain JW, Brereton A, Nicholson J, Mitchell AL, Brownstein BH, Collins FS
(1990) Type 1 neurofibromatosis gene: identification of a large transcript disrupted in
three NF1 patients. Science 249(4965):181-6

Weinberg CR (1999) Methods for detection of parent-of-origin effects in genetic
studies of case-parents triads. Am J Hum Genet. 65(1):229-35.

Weiss KM, Clark AG (2002) Linkage disequilibrium and the mapping of complex
human traits. Trends Genet 18:19-24

Weissman MM, Bland RC, Canino GJ, Faravelli C, Greenwald S, Hwu HG, Joyce
PR, Karam EG, Lee CK, Lellouch J, Lépine JP, Newman SC, Rubio-Stipec M, Wells

References

 127

JE, Wickramaratne PJ, Wittchen H, Yeh EK (1996) Cross-national epidemiology of
major depression and bipolar disorder. JAMA 276(4):293-9

Wiesner GL, Daley D, Lewis S, Ticknor C, Platzer P, Lutterbaugh J, MacMillen M,
Baliner B, Willis J, Elston RC, Markowitz SD (2003) A subset of familial colorectal
neoplasia kindreds linked to chromosome 9q22.2-31.2. Proc Natl Acad Sci USA.
100(22):12961-5

Williams NM, Rees MI, Holmans P, Norton N, Cardno AG, Jones LA, Murphy KC,
Sanders RD, McCarthy G, Gray MY, Fenton I, McGuffin P, Owen MJ (1999) A two-
stage genome scan for schizophrenia susceptibility genes in 196 affected sibling pairs.
Hum Mol Genet 8:1729-1739

Williams NM, Green EK, Macgregor S, Dwyer S, Norton N, Williams H, Raybould
R, Grozeva D, Hamshere M, Zammit S, Jones L, Cardno A, Kirov G, Jones I,
O'Donovan MC, Owen MJ, Craddock N (2006) Variation at the DAOA/G30 locus
influences susceptibility to major mood episodes but not psychosis in schizophrenia
and bipolar disorder. Arch Gen Psychiatry 63(4):366-73

Wellcome Trust Case Control Consortium (2007) Genome-wide association study of
14,000 cases of seven common diseases and 3,000 shared controls. Nature
447(7145):661-78

Wooster R, Bignell G, Lancaster J, Swift S, Seal S, Mangion J, Collins N, Gregory S,
Gumbs C, Micklem G (1995) Identification of the breast cancer susceptibility gene
BRCA2. Nature 378(6559):789-92

Appendix A Key programs written during this thesis

 128

Appendix A: Key programs written during this thesis

A.1 ASCalculate

import java.io.*;
import java.util.Random;
import java.util.Vector;
import java.util.StringTokenizer;
import java.lang.Thread;

/**
 * Main class
 */
public class ASCalculate{

 private int progCount;
 private String inputPath;
 private int nocases;
 private int nocontrols;
 //ASType - use to determine whether /no of marker s/ or /marker dist/ is used as
 //measure of allele sharing
 private int ASType;//0 for no of markers dist, 1 for bp dist
 //0 for ingnore missing data, compare ambigous/1 for ignore all missing and
 //ambiguous
 private int missingType;
 //attributes relating to permutation analysis
 private boolean permAnalysis;
 private String permType;
 private int noPerms;

 Vector pStats_ = new Vector();

 /**
 * 1. The ASCalculate class initiates the variabl e only
 */
 public ASCalculate(String st, int nocases, int no controls, int ASType, int
 missingType, boolean permAnalysis, String permTyp e ,int noPerms) {
 inputPath = st;
 this.nocases = nocases;
 this.nocontrols = nocontrols;
 this.ASType = ASType;
 this.missingType = missingType;
 this.permAnalysis = permAnalysis;
 this.permType = permType;
 this.noPerms = noPerms;
 progCount = 0;
 }

 /**
 * 2. This method is called to actually begin th e procedure
 **/
 public void jbInit() throws Exception {

 //******
 //input the data from designated file
 File f = new File(inputPath);
 //create a vector of vectors, one for each case and control column of data
 Vector inputData = new Vector();
 for (int i=0;i<(nocontrols+nocases);i++){
 Vector vect_temp = new Vector();
 inputData.add(vect_temp);
 }
 //create bufered reader to read in the data fro m file
 BufferedReader br = new BufferedReader(new File Reader(inputPath));
 String line = br.readLine();
 StringTokenizer tok = new StringTokenizer(line, ",");
 int noTokens = tok.countTokens();
 Vector[] outputData;//hold results of basic ana lysis
 //hold results of permutation analysis should i t be applicable
 Vector[] permOut = new Vector[0];
 Vector pStats = new Vector();//hold stats resul ts of permutation analysis

Appendix A Key programs written during this thesis

 129

 if (noTokens != (nocontrols+nocases)){//there i s an error
 Vector v = new Vector();
 outputData = new Vector[1];
 outputData[0] = v;
 } else {
 while (line != null){//for each line at a tim e
 //tokenize each row, and put into the diffe rent vectors
 int i=0;
 tok = new StringTokenizer(line,",");
 while(tok.hasMoreTokens()){
 String st = tok.nextToken();
 if (missingType == 0)//take all data as a string for now
 ((Vector)inputData.get(i)).add(st);
 else {//convert data to doubles, where da ta is not a double, take as '-1'
 if(isInteger(st))
 ((Vector)inputData.get(i)).add(new Do uble(st));
 else
 //use -1 to recognise a missing or u ndefined genotype
 ((Vector)inputData.get(i)).add(new Do uble(-1.0));
 }
 i++;
 }
 //get new line and loop
 line = br.readLine();
 }
 br.close();

 //*******************************
 //3. implement the AS algorithm
 //return two vectors
 //now, use the method to take the average of both sets of pairwise comparisons
 outputData = new Vector[3];
 //get average of cases pairwise AS and
 outputData[0] = average(calcAS(inputData,0,no cases));
 //get average of ctrls pairwise AS
 outputData[1] = average(calcAS(inputData,noca ses,(nocases+nocontrols)));
 //get the difference between the two averages
 outputData[2] = difference(outputData[0],outp utData[1]);

 //**
 //4. implement PermAnalysis (if requested)
 //return Vector[3]
 if(permAnalysis == true){//if we choose to ca rry out permutation analysis...
 Vector permTempTemp = new Vector();
 for (int n=0;n<diseaseHap.length;n++)
 permTempTemp.add(new Double(diseaseHap[n]));
 String outputPath = f.getParent() + "\\perm utations.log";
 BufferedWriter bwPermLog = new BufferedWrit er(new FileWriter(outputPath));
 bwPermLog.newLine();
 bwPermLog.write("Permutations of input chro mosomes are as follows:");
 if(permType == "standard")
 permOut = new Vector[noPerms];
 else if (permType == "modified")
 permOut = new Vector[noPerms];
 for(int i=0;i<noPerms;i++){
 //get random nos
 bwPermLog.newLine();
 //temp vector to hold the randomised inpu t columns
 Vector permTempIn = new Vector();
 Random rand = new Random(System.currentTi meMillis());
 //to make sure there is a unique seed for the random number generator
 Thread.sleep(10);
 Vector randList = new Vector();
 if(permType == "standard"){
 for (int j=0;j<inputData.size();j++){
 int randNo = getRnd(inputData.size(), rand);
 //if we have already taken that chr
 if (randList.contains(new Integer(ran dNo))){
 j--;//repeat loop
 } else {
 //write the chr taken to log
 bwPermLog.write((new Integer(randN o)).toString());
 bwPermLog.write(",");//write the ch r taken to log
 permTempIn.add(inputData.get(randNo));//add chr to permTempIn
 //add to vector so it doesnt get ta ken again
 randList.add(new Integer(randNo));
 }

Appendix A Key programs written during this thesis

 130

 }//end of get random nos
 //use progCount to keep track of the nu mber of permutations that have
 //been carried out
 progCount = i;
 permOut[i]=difference(average(calcAS(pe rmTempIn,0,nocases)),
 average(calcAS(permTempIn,nocases,(noca ses+nocontrols))));
 }
 } else if (permType == "modified"){//MODI FIED PERMUTATION ANALYSIS
 //first add the known disease hap to pe rmTempIn
 permTempIn.add(permTempTemp);
 //now find (nocases-1) random haplotype s and add them to permTempIn
 for (int j=0;j<nocases-1;j++){
 int randNo = getRnd(inputData.size(), rand);
 //if we have already taken that chr
 if (randList.contains(new Integer(ran dNo))){
 j--;//repeat loop
 } else {
 //write the chr taken to log
 bwPermLog.write((new Integer(randN o)).toString());
 bwPermLog.write(",");//write the ch r taken to log
 permTempIn.add(inputData.get(randNo));//add chr to permTempIn
 //add to vector so it doesnt get ta ken again
 randList.add(new Integer(randNo));
 }
 }//end of get random nos
 //in the modified version, only want to get the average of cases
 permOut[i] = average(calcAS(permTempIn, 0,nocases));
 }//end of if modified
 }//end of for(noPerms)
 //close the log file
 bwPermLog.close();
 //calc permutation statistics
 if (permType == "standard"){
 pStats = permStats(permOut, outputData);
 }
 else if (permType == "modified")
 pStats_ = permStats_(permOut,outputData);
 }//end of if (permAnalysis==true)
 }//end of else no tokens

 /*************************
 * 5. print results to file
 ***/
 //************
 //Main Results
 String outputPath = f.getParent() + "\\AS.out";
 BufferedWriter bw = new BufferedWriter(new File Writer(outputPath));
 if(outputData[0].isEmpty()){
 bw.newLine();
 bw.write("There is a different number of colu mns of input data found compared to
 that identified by the user");
 } else {
 for(int i=0;i<outputData[0].size();i++){
 bw.write(((Double)outputData[0].get(i)).toS tring());
 bw.write(",");
 bw.write(((Double)outputData[1].get(i)).toS tring());
 bw.write(",");
 bw.write(((Double)outputData[2].get(i)).toS tring());
 bw.newLine();
 }//end of for
 }//end of else
 bw.close();

 //*******************
 //Permutation Results
 if(permAnalysis == true){
 String outputPathPermStats = f.getParent() + "\\AS_permutations.stats";
 BufferedWriter bwPermStats = new BufferedWrit er(new FileWriter
 (outputPathPermStats));
 bwPermStats.write("Permutation Analysis Resul ts");
 bwPermStats.newLine();
 bwPermStats.write("====================");
 bwPermStats.write("\n\nPermutation Type: " + permType);
 bwPermStats.write("\nNumber of Permutations: " + noPerms);
 bwPermStats.write("\nOriginal data from file: " + inputPath);
 bwPermStats.write("\nResults of the analysis of the real data can be found in
 file: AS.out");

Appendix A Key programs written during this thesis

 131

 bwPermStats.write("\nRecord of the randomisat ion of haplotypes can be found in
 file: permutations.log");
 bwPermStats.write("\nRecord of the actual res ults of each permutation can be
 found in file: Perm_diffs_all.txt");

 if (permType == "standard"){
 bwPermStats.write("\n---------------------- ----------------------------------
 ------------------");
 bwPermStats.write("\nColumn 1 shows (for ea ch marker) the proportion of
 permutations that were gave the difference in allele sharing greater than that
 seen in the real results\n");
 for(int i=0;i<pStats.size();i++){
 bwPermStats.newLine();
 bwPermStats.write(((Double)pStats.get(i)).toString());
 }
 } else if (permType == "modified"){
 bwPermStats.write("\n---------------------- ----------------------------------
 ------------------");
 bwPermStats.write("\n\nData shows (for each marker) the proportion of
 permutations that were gave allele sharing greater than that seen in the real
 results for cases");
 for(int i=0;i<pStats_.size();i++){
 bwPermStats.newLine();
 bwPermStats.write(((Double)pStats_.get(i)).toString());
 }
 }
 bwPermStats.close();

 //******
 //also want to print out the difference data for EVERY marker
 //- for sig analysis
 String outputPathPermDiffs = f.getParent() + "\\AS_permutations.all";
 BufferedWriter bwPermDiffsAll = new BufferedW riter(new
 FileWriter(outputPathPermDiffs));
 //if we are using standard perm analysis - pr int to file, the diffs of
 //each permutation
 if(permType == "standard"){
 for (int i=0;i<(permOut.length);i++){
 for (int j=0;j<((Vector)(permOut[i])).siz e();j++){
 bwPermDiffsAll.write(((Double)permOut [i].get(j)).toString());
 bwPermDiffsAll.write(",");
 }
 bwPermDiffsAll.newLine();
 }
 }
 //if we are using modified perm analysis - pr int to file the actual
 //sharing for each permutation (no diffs caus e we do not calc for ctrls)
 else if (permType == "modified"){
 for (int i=0;i<(permOut.length);i++){
 for (int j=0;j<((Vector)(permOut[i])).siz e();j++){
 bwPermDiffsAll.write(((Double)permOut [i].get(j)).toString());
 bwPermDiffsAll.write(",");
 }
 bwPermDiffsAll.newLine();
 }
 }
 bwPermDiffsAll.close();
 }//END OF PERM ANALSIS OUTPUT (if requested)
 }

 /***
 * _calcAS_ method to carry out AS calcul ation
 * takes the input data and the set of co lums that are relevant
 * carries out pairwise comparison for ea ch of them
 * returns a vector of the results.
 ***/
 private Vector calcAS(Vector inputData, int colSt art, int colEnd){
 Vector pairCases = new Vector();//create a vect or of each pairwise comparison
 //create a loop of nocases factorial(!)
 for (int i=colStart;i<colEnd;i++){
 for (int j=i+1;j<colEnd;j++){
 //whithin this loop, carry out the pairwise comparison, and enter into
 //the first row of pairComp vector
 Vector pairTemp = new Vector();//new vector for each parwise comparison
 if (ASType == 1)//meansuring length in bp d istance
 pairTemp = ASBp((Vector)inputData.get(i), (Vector)inputData.get(j));
 else if (ASType == 0)//measuring length as number of alleles

Appendix A Key programs written during this thesis

 132

 pairTemp = ASLength((Vector)inputData.get (i),(Vector)inputData.get(j));
 //add the result of each pairwise compariso n to the pairComp vector
 pairCases.add(pairTemp);
 }
 }//end of loop around the no of pairwise compar isons
 return pairCases;
 }//end of calcAS

 private Vector ASBp(Vector col1,Vector col2){
 Vector pairTemp = new Vector();
 int n=0;
 int m=0;
 for (int k=0;k<col1.size();k++){
 if (((Double)(col1.get(k))).doubleValue() == -1.0){
 pairTemp.add(new Double(-111111.0));
 m++;//if missing in col1 m++
 } else if (((Double)(col2.get(k))).doubleVal ue() == -1.0){
 pairTemp.add(new Double(-111111.0));
 m++;//if missing in col2 m++
 } else if ((col1.get(k)).equals(col2.get(k))) {
 pairTemp.add(new Double(-111111.0));
 n++;//if matching, n++
 } else {
 //when there is no match, or no missing dat a, go back and fill in the distace
 //for the previos string of matches, and al so add a zero entry for this
 //non-match
 double distTemp = 0.0;
 if(n>1)
 distTemp = MRI[k-1] - MRI[k-(n+m)];
 for(int l=0;l<(n+m);l++)
 pairTemp.set((k-l-1),new Double(distTem p));
 pairTemp.add(new Double(0.0));
 n=0;
 m=0;
 }
 }//end of for
 if(m>0 || n>0){//if the loop has not ended on a non-match, need to tidy up
 if(n>1){
 double distTemp = MRI[col1.size()-1] - MRI[col1.size()-n-m];
 for(int l=0;l<(n+m);l++)
 pairTemp.set((col1.size()-l-1),new Double (distTemp));
 } else{
 for(int l=0;l<(n+m);l++)
 pairTemp.set((col1.size()-l-1),new Double (0.0));
 }
 }
 return pairTemp;
 }

 //****
 //* calcAS sub-method - length measure
 //****
 private Vector ASLength(Vector col1,Vector col2){
 Vector pairTemp = new Vector();
 int n=0;//to count where strings of matches occ ur
 int m=0;//take into account the number of missi ng points
 int p=0;//counts the number of matches
 //keep track of the mounting score allocated fr om abiguous matches
 double pscore=0.0;
 for (int k=0;k<col1.size();k++){
 if (missingType == 0){//ignore missing, compa re abmbiguous method
 String st1 = (String)col1.get(k);
 String st2 = (String)col2.get(k);
 if (st1.equals("?") || st2.equals("?")){//d ata missing in hap1 or hap2
 pairTemp.add(new Double(n+pscore));
 if(n>0)//this is important - it means tha t if there is a ?, it only gets a
 //score if there is a score immedi ately prior, even if there is one
 //immediately after - this can be changed
 m++;
 } else if(!isInteger(st1) || !isInteger(st2)){//need to do pairwise if either
 //hap1 or hap2 are ambiguous
 //genotypes
 double match = 0;
 if (!isInteger(st1)){//if the hap1 genoty pe also ambigous
 String st1s[] = st1.split("_");//get th e two options
 if (!isInteger(st2)){//if the hap2 is a lso ambiguous
 String st2s[] = st2.split("_");//get the hap2 options

Appendix A Key programs written during this thesis

 133

 for (int i=0;i<st1s.length;i++){
 for (int j=0;j<st2s.length;j++){
 //check that thas part of the amb iguity for either hap is not '?'
 if (isInteger(st1s[i]) && isInteg er(st2s[j])){
 if ((new Double(st1s[i])).equa ls(new Double(st2s[j])))
 match += 1.0;
 }
 }//end of for st2s.length
 }//end of for st1s.lenght
 match /= 4.0;
 } else {//only hap1 is ambiguous
 for (int i=0;i<st1s.length;i++){
 //check that this part of the ambig uity is not '?'
 if (isInteger(st1s[i])){
 if ((new Double(st1s[i])).equals (new Double(st2)))
 match += 1.0;
 }
 }
 match /= 2.0;
 }
 } else {//it must be that only hap2 is am biguous
 String st2s[] = st2.split("_");//get th e hap2 options
 for (int i=0;i<st2s.length;i++){
 //check that this part of the ambigui ty is not '?'
 if (isInteger(st2s[i])){
 if ((new Double(st1)).equals(new D ouble(st2s[i])))
 match += 1.0;
 }
 }
 match /= 2.0;
 }
 if (match > 0.0){
 pscore += match;
 pairTemp.add(new Double(n+pscore));
 for(int l=0;l<(n+p+m);l++){
 pairTemp.set((k-l-1),new Double(n+psc ore));
 }
 p++;
 } else if (match == 0.0){//there is no ma tch even from the ambiguous data
 pairTemp.add(new Double(0.0));
 n=0; m=0; p=0; pscore=0.0;
 }
 } else if ((new Double(st1)).equals(new Do uble(st2))){
 pairTemp.add(new Double(n+pscore+1));
 for(int l=0;l<(n+p+m);l++){
 pairTemp.set((k-l-1),new Double(n+pscor e+1));
 }
 n++;
 } else {
 pairTemp.add(new Double(0.0));
 n=0; m=0; p=0; pscore=0.0;
 }
 }
 else if (missingType == 1){//ignore missing a nd ambiguous method
 if (((Double)(col1.get(k))).doubleValue() == -1.0){
 pairTemp.add(new Double(n));
 if(n>0)
 m++;
 } else if (((Double)(col2.get(k))).doubleV alue() == -1.0){
 pairTemp.add(new Double(n));
 if(n>0)
 m++;
 } else if ((col1.get(k)).equals(col2.get(k))){
 pairTemp.add(new Double(n+1.0));
 for(int l=0;l<(n+m);l++){
 pairTemp.set((k-l-1),new Double(n+1.0)) ;
 }
 n++;
 } else {
 pairTemp.add(new Double(0.0));
 n=0; m=0;
 }
 }
 }//end of loop around the lenght of the pair of columns
 return pairTemp;
 }

Appendix A Key programs written during this thesis

 134

 //****
 //* method to take the average of a group of vectors
 //****
 private Vector average(Vector pairCases){
 Vector av = new Vector();
 for (int i=0;i<((Vector)pairCases.get(0)).size();i++){
 double sum = 0;
 for(int j=0;j<(pairCases.size());j++){
 sum += ((Double)(((Vector)pairCases.get(j)) .get(i))).doubleValue();
 }
 double avg = sum/pairCases.size();
 av.add(new Double(avg));
 }
 return av;
 }

 /**
 * Calculate the difference between content of two vectors
 */
 private Vector difference(Vector cases, Vector ct rls){
 Vector diff = new Vector();
 for (int i=0;i<cases.size();i++){
 diff.add(new Double(((Double)cases.get(i)). doubleValue() -
((Double)ctrls.get(i)).doubleValue()));
 }
 return diff;
 }

 /**
 * Method to test if a string is an integer
 */
 private final boolean isInteger(String s){
 try{
 Integer d = new Integer(s);
 return true;
 }catch(NumberFormatException e){
 return false;
 }//end try/catch
 }//end isInteger()

 /**
 * Get a random no
 */
 private static int getRnd(int nCealing, Random r) {
 int nRet = r.nextInt();
 nRet = Math.abs(nRet);
 nRet = nRet % nCealing;
 return nRet;
 }

 /**
 *
 */
 private Vector permStats_(Vector[] perm, Vector[] out){
 Vector statsSum = new Vector();
 for (int i=0;i<perm[0].size();i++){
 int temp = 0;
 double nCase = 0.0;
 for (int j=0;j<perm.length;j++){
 if(((Double)perm[j].get(i)).doubleValue() < ((Double)out[0].get(i))
 .doubleValue())
 nCase++;
 }//end of for perm.length
 nCase /= noPerms;
 statsSum.add(new Double(nCase));
 }
 return statsSum;
 }

 private Vector permStats(Vector[] perm, Vector[] out){
 //store the no of permutations that are less th an what is seen in the real results
 Vector vDiffs = new Vector();
 for (int i=0;i<perm[0].size();i++){
 int temp = 0;
 double nDiffs = 0.0;
 for(int j=0;j<perm.length;j++){
 if(((Double)(perm[j].get(i))).doubleValue ()< ((Double)(out[2].get(i))).

Appendix A Key programs written during this thesis

 135

 doubleValue())
 nDiffs++;//CHANGE THIS
 temp = 0;//diff columnn
 }//end of for perm.length (columns)

 nDiffs /= noPerms;
 vDiffs.add(new Double(nDiffs));
 }//end of for perm[0].size (rows)
 return vDiffs;
 }

 //publicly accesible method that returns the prog ress made in carrying out the
 //permutation analysis
 public int getProg(){
 return progCount;
 }
}

Appendix A Key programs written during this thesis

 136

A.2 NewASPermAnalysis

import java.io.*;
import java.util.StringTokenizer;
import java.util.Vector;

public class NewASPermAnalysis {

 //store the marker position of the end of each bl ock
 Vector endofblock = new Vector();
 //and the size of each block
 Vector blocksize = new Vector();
 //the number of consecutive blocks that make up t he best region of sharing
 int testNBlocks;
 //and the average score for these blocks in the r eal data
 double realAvScore;

 public NewASPermAnalysis(String inputPath, String inputPath2, String inputPath3) {
 //****************
 //1. Get the data
 //inputPath1 is AS.out
 //get the data
 Vector realData = new Vector();
 try {
 BufferedReader br = new BufferedReader(new Fi leReader(inputPath));
 String line = br.readLine();
 while (line != null){
 StringTokenizer tok = new StringTokenizer(l ine,",");
 tok.nextToken();//ignore first token
 tok.nextToken();//ignore second token
 realData.add(tok.nextToken());//store the t hird token
 line = br.readLine();
 }
 } catch (Exception e){
 System.out.println("Error reading from AS.out file: " + e);
 }
 //inputPath2 is AS_permutations.all
 //get this data
 Vector permData = new Vector();
 try {
 BufferedReader br = new BufferedReader(new Fi leReader(inputPath2));
 String line = br.readLine();
 while (line != null){
 Vector permDataTemp = new Vector();
 StringTokenizer tok = new StringTokenizer(l ine,",");
 while (tok.hasMoreTokens())
 permDataTemp.add(tok.nextToken());//
 line = br.readLine();
 permData.add(permDataTemp);
 }
 } catch (Exception e){
 System.out.println("Error reading from AS_per mutations.all file: " + e);
 }
 //inputPath3 is data.dat
 //get this data
 try {
 BufferedReader br = new BufferedReader(new F ileReader(inputPath3));
 String line1 = br.readLine();
 StringTokenizer tok = new StringTokenizer(li ne1,",");
 while (tok.hasMoreTokens())
 endofblock.add(tok.nextToken());
 String line2 = br.readLine();
 StringTokenizer tok2 = new StringTokenizer(l ine2,",");
 while (tok2.hasMoreTokens())
 blocksize.add(tok2.nextToken());
 String line3 = br.readLine();
 testNBlocks = new Integer(line3).intValue();
 String line4 = br.readLine();
 realAvScore = new Double(line4).doubleValue();
 } catch (Exception e){
 System.out.println("Error reading from data.d at file: " + e);
 }
 //end of 1.

Appendix A Key programs written during this thesis

 137

 //***********
 //2. now we want to compare
 //first, get the average score for each block, for the real data
 Vector realBlockData = getBlockAvs(realData);
 //secondly, store the average scores or each bl ock, for each permutation
 Vector permBlockData = new Vector();
 //for each permutation
 for (int i=0;i<permData.size();i++){
 permBlockData.add(getBlockAvs((Vector)permDat a.get(i)));
 }
 //2.b. we also want to then go on and take the average of each seq of N
 //blocks for each permutation
 Vector permTestNBlocksData = new Vector();
 for (int i=0;i<permBlockData.size();i++){
 permTestNBlocksData.add(new Double(getBestNBl ockScore(
 (Vector)permBlockData.get(i))));
 }
 double bestScore = 0.0;
 for (int i=0;i<permTestNBlocksData.size();i++){
 if(((Double)permTestNBlocksData.get(i)).dou bleValue() >= bestScore){
 bestScore = ((Double)permTestNBlocksData.ge t(i)).doubleValue();
 }
 }

 //******************
 //3. compare the real data to each of the permu tations
 Vector realBlockPValues = new Vector();
 for (int k=0;k<((Vector)permBlockData.get(0)).s ize();k++){//for each block
 double score = 0.0;
 for (int i=0;i<permBlockData.size();i++){//fo r each permutaiton
 if (((Double)((Vector)permBlockData.get(i)).get(k)).doubleValue() > ((Double)
 (realBlockData).get(k)).doubleValue()){
 //add 1.0 to the score if the permuta tions score is > the realData score
 score += 1.0;
 }
 }//end of for each permutation
 //now calc the proportion of the permutations data > real data
 double propn = score/permBlockData.size();
 //add the propn (or P value) to the p-values vector
 realBlockPValues.add(new Double(propn));
 }//end of each marker
 //3.b. we also want to compare the best score f or N consecutive blocks in
 //each of the permutations against the real res ult
 int noMoreSigPerms = 0;
 //for each perm
 for (int i=0;i<permTestNBlocksData.size();i++){
 //now compare
 if(((Double)permTestNBlocksData.get(i)).dou bleValue() >= realAvScore){
 //and score as the number of significant pe rmutations
 noMoreSigPerms++;
 }
 }

 //4. compare the results for each permutation t o all the others
 Vector permBlockPValues = new Vector();
 for (int k=0;k<((Vector)permBlockData.get(0)).s ize();k++){//for each block
 Vector permBlockPValuesTemp = new Vector();
 for (int i=0;i<permBlockData.size();i++){//fo r each datai (permutaiton)
 double score = 0.0;
 //go though all the rest j (other permutati ons)
 for (int j=0;j<permBlockData.size();j++){
 if (i!=j){//apart from itself
 //if datai>dataj
 Vector v = (Vector)permBlockData.get(i) ;
 if (((Double)((Vector)permBlockData.ge t(j)).get(k)).doubleValue() >
 ((Double)((Vector)permBlockData.get(i)) .get(k)).doubleValue()){
 score += 1.0;//add 1.0 to the score
 }
 }
 }//end of all other perms
 //now calc the proportion of datai > dataj
 double propn = score/permBlockData.size();
 //add the propn (or P value) to pOut vector
 permBlockPValuesTemp.add(new Double(propn)) ;
 }//end of for each permutation
 permBlockPValues.add(permBlockPValuesTemp);

Appendix A Key programs written during this thesis

 138

 }//end of each marker

 //5. write these results to file
 //first the reaData vs permData
 String outputPath = (new File(inputPath3)).getP arent().
 concat("//newASRealPermutationsPValues.out");
 try{
 BufferedWriter bw = new BufferedWriter(new Fi leWriter(outputPath));
 bw.write("");
 for (int i=0;i<realBlockPValues.size();i++){
 bw.write("" + realBlockPValues.get(i));
 bw.write("\n");
 }
 bw.close();
 } catch (Exception e){
 System.out.println("Error writing to file: " + e);
 }
 //then the permData vs all other perms
 String outputPath2 = (new File(inputPath3)).get Parent().
 concat("//newASPermPermutationsPValues.out");
 try{
 BufferedWriter bw = new BufferedWriter(new Fi leWriter(outputPath2));
 bw.write("");
 for (int i=0;i<permBlockPValues.size();i++){
 bw.write("" + ((Vector)permBlockPValues.get (i)).get(0));
 for (int j=1;j<((Vector)permBlockPValues.ge t(i)).size();j++){
 bw.write("," + ((Vector)permBlockPValues. get(i)).get(j));
 }
 bw.write("\n");
 }
 bw.close();
 } catch (Exception e){
 System.out.println("Error writing to file: " + e);
 }
 //also add a new file that outputs the scores f or each permutation for each
 //block
 String outputPath3 = (new File(inputPath3)).get Parent().
 concat("//newASPermPermutationsScores.out");
 try{
 BufferedWriter bw = new BufferedWriter(new Fi leWriter(outputPath3));
 bw.write("");
 for (int i=0;i<permBlockData.size();i++){
 bw.write("" + ((Vector)permBlockData.get(i)).get(0));
 for (int j=1;j<((Vector)permBlockData.get(i)).size();j++){
 bw.write("," + ((Vector)permBlockData.get (i)).get(j));
 }
 bw.write("\n");
 }
 bw.close();
 } catch (Exception e){
 System.out.println("Error writing to file: " + e);
 }
 //finally, write the results where we compared the av scores for n consec
 //blocks
 String outputPath4 = (new File(inputPath3)).get Parent().
 concat("//new2ndPermAnalysis.out");
 try{
 BufferedWriter bw = new BufferedWriter(new Fi leWriter(outputPath4));
 bw.write("There were " + noMoreSigPerms);
 bw.write(" permutations where there was a seq uence of " + testNBlocks);
 bw.write(" blocks that showed an average alle le sharing score >= that found in
 the real data");
 bw.close();
 } catch (Exception e){
 System.out.println("Error writing to file: " + e);
 }
 }

 /**
 * Get block averages
 *
 * this is a method to go through a vector of dat a where each cell is a marker
 * and calculate a score for each block
 */
 private Vector getBlockAvs(Vector markerData){
 //keep track of the block we are at
 int blockCount = 0;

Appendix A Key programs written during this thesis

 139

 //sum of datapts in a block
 double dataptSum = 0.0;
 //store the av score for each LD block
 Vector blockScores = new Vector();
 //for each marker
 for (int i=0;i<markerData.size();i++){
 double datapt = (new Double((String)markerDat a.get(i))).doubleValue();
 //add up the scores for all blocks, and avera ge
 dataptSum += datapt;
 //if we are at the end of a block
 if(i == (new Integer((String)endofblock.get(b lockCount))).intValue()) {
 //get the average datapt for the block
 double dataptAv = dataptSum/((new
 Integer((String)blocksize.get(blockCount))) .intValue());
 blockScores.add(new Double(dataptAv));
 blockCount++;
 dataptSum = 0.0;
 }
 }
 return blockScores;
 }

 /**
 * Get best score for N consecutive blocks
 *
 * this is a method to go through a vector of dat a where each cell is a block
 * and calculate the best average score for a seq uence of N consequtive blocks
 */
 private double getBestNBlockScore(Vector blockDat a){
 //go through each of the list of block averages
 //for te first n-1 add to a vector
 //then for n go on and take the average again
 //then for each additional block remove the fir st and add the new and take
 //another average
 Vector consecBlocks = new Vector();
 Vector avBlockScores = new Vector();
 double bestNBlockScore = 0.0;
 for (int i=0;i<blockData.size();i++){
 //if we have been through less than the requi red number of blocks so far
 //add the latest block to the list
 if(consecBlocks.size() < (testNBlocks-1)){
 consecBlocks.add(blockData.get(i));
 }//else if we have just 1 less than required
 else if (consecBlocks.size() == (testNBlocks- 1)){
 //add the newest block
 consecBlocks.add(blockData.get(i));
 //and calc the average score
 double sum = 0.0;
 for (int k=0;k<testNBlocks;k++){
 sum += ((Double)consecBlocks.get(k)).doub leValue();
 }
 bestNBlockScore = sum/testNBlocks;
 }//else we then add new block to the end and remove the oldst block from
 //the start
 else {
 //remove the oldest blcock
 consecBlocks.remove(0);
 //add the newest block
 consecBlocks.add(blockData.get(i));
 //and calc the average score
 double sum = 0.0;
 for (int k=0;k<testNBlocks;k++){
 sum += ((Double)consecBlocks.get(k)).doub leValue();
 }
 if ((sum/testNBlocks) > bestNBlockScore)
 bestNBlockScore = sum/testNBlocks;
 }//end of final else
 }
 return bestNBlockScore;
 }

Appendix A Key programs written during this thesis

 140

A.8 PedSimMain

import java.io.*;
import java.lang.Math;
import java.lang.Thread;
import java.util.StringTokenizer;
import java.util.Random;
import java.util.Vector;
import java.util.StringTokenizer;
import java.util.Hashtable;
import java.util.Enumeration;

public class PedSimMain {

 /******
 * Variables
 */
 //number of simlations
 private int noSims = 200;
 //number of generations
 private int noGens = 50;
 //no of end families we want to generate
 private int noFams = 3;
 //store the recombination rate (chance per base t hat there is a recomb event)
 private double recombRate = 1.0E-8;
 //dist between markers (in bps)
 private double markerDist = (16778.0*150.0);
 //number of markers
 private int noMarkers = 149;

 //number of permutations to carry out the AS anal ysis over
 private int noASPerms = 1000;

 /*****
 *
 */
 //store the location of the mutation on the disea se chr
 private int mutMarker;
 //folder in which to work
 private String infolder = "//net//uisdein//export //usr0//s9636861//code//sim2//";
 //create a miclcalculate object to run the AS
 private ASCalculate mc;
 //create a newASpermanalysis object to run the ad ditional perm analysis
 private NewASPermAnalysis nmpa;

 public PedSimMain() {

 //1. getData - starting data
 int[][] population = importHaps();
 //and then generate a log file with the sim det ails
 try{
 BufferedWriter bwLog = new BufferedWriter(new FileWriter(infolder +
 "AllStatsSummary.txt"));
 bwLog.write("Simulation study");
 bwLog.newLine();
 bwLog.write("Number of simulations:" + noSims);
 bwLog.newLine();
 bwLog.write("Number of families generated:" + noFams);
 bwLog.newLine();
 bwLog.write("Number of AS permutations:" + no ASPerms);
 bwLog.newLine();
 bwLog.write("Recombination rate:" + recombRat e);
 bwLog.newLine();
 bwLog.write("Dist between markers (evenly spa ced):" + markerDist);
 bwLog.newLine();
 bwLog.write("Number of markers:" + (populatio n[0].length));
 bwLog.close();
 } catch (Exception e){
 }
 //carry out a number of sims of this population data
 //place each of these sims in a separate folder
 //in each of these folders, the resuts of the s im are analysed using AS
 //and then the additional perm analysis

Appendix A Key programs written during this thesis

 141

 //this means that for each sim, we generatate a p value for the region about the
 mutation
 //and we also look at any other significant reg ions that appear

 //2. for each sim
 for (int i=0;i<noSims;i++){
 String outfolder = "//net//uisdein//export//usr 0//s9636861//code//sim2//sim" + i +
 "//";
 File f = new File(outfolder);
 //if the folder doesn't already exist, make it
 if(!f.exists())
 f.mkdir();
 //list files in the folder
 File[] files = f.listFiles(new FileFilter(){
 public boolean accept(File f){
 return true;
 }
 });
 //go through and delete all these files
 for (int j=0;j<files.length;j++){
 if(files[j].isDirectory()){
 File [] files2 = files[j].listFiles();
 for (int k=0;k<files2.length;k++){
 files2[k].delete();
 }
 }
 files[j].delete();
 }

 //3. the sim
 //identify one of these to be the disease hap
 double x = population.length;
 double rand = Math.random();
 int diseaseHapIndex = (int)(rand*x);
 int[] diseaseHap = population[diseaseHapIndex];
 //specify the markers closest to the disease mu tation
 //at present assume that the central marker is the one ***********************
 mutMarker = diseaseHap.length/2;
 //send data to similate class
 //keep trying until a successful simulation is carried out
 //this sim creates (amongst others) a ASIn.csv file
 boolean status = false;
 int j=0;
 int noASCtrls = 0;
 while (!status){
 Simulator2 sim = new Simulator2(diseaseHap, p opulation, noGens, noFams,
 markerDist, mutMarker, recombRate, outfolder) ;
 status = sim.getStatus();
 noASCtrls = sim.getASNoCtrls();
 }

 //4. use inputs to calc AS
 String ASInPath = outfolder + "ASIn.csv";
 try{
 mc = new ASCalculate(ASInPath,noFams,noASCtrl s,0,1,true,"standard"
 ,noASPerms);
 mc.jbInit();
 } catch (Exception ioe){
 System.out.println("IOException e: " + ioe);
 }

 //5.the additional perm analysis
 //use the AS.out file
 String ASOutPath = outfolder + "AS.out";
 //and the AS_permutations.all file
 String ASPermsAllPath = outfolder + "AS_permuta tions.all";
 //and the AS_permutations.stats file
 String ASStatsPath = outfolder + "AS_permutatio ns.stats";
 //and the MyHapMap.out file
 String blockDefPath = infolder + "dat//MyHapMap .out";
 //and the data.dat file
 String datPath = infolder + "dat//data.dat";
 //need to go through the ASIn.csv file and find all the shared regions
 FindSigRegions fsr = new
FindSigRegions(ASInPath,ASOutPath,ASStatsPath,block DefPath,datPath,mutMarker);
 //the fsr method generates muliple data.dat fil es allowing the add perm analysis
 //to be carried out on each of them.

Appendix A Key programs written during this thesis

 142

 //run the add perm analysis
 int n=0;
 String datFile = outfolder + "sr" + n + "//dat a.dat";
 while((new File(datFile).exists())){
 nmpa = new NewASPermAnalysis(ASOutPath,ASPerm sAllPath,datFile);
 n++;
 datFile = outfolder + "sr" + n + "//data.dat ";
 }

 /** *
 ** 6.log the sig regions
 */
 Vector sigValues = new Vector();
 Vector sigRegBlocks = new Vector();
 int mutIndex_temp = 1000000;
 n=0;
 //count the non-sig regions
 int nonCount = 0;
 datFile = outfolder + "sr" + n + "//new2ndPerm Analysis.out";
 while((new File(datFile).exists())){
 try {
 BufferedReader br = new BufferedReader(new FileReader(datFile));
 String st = br.readLine();
 StringTokenizer tok = new StringTokenizer(s t,"\t");
 double sigValues_temp = (new Double((String)tok.nextToken())).doubleValue();
 if (sigValues_temp <= (0.05*noASPerms)){
 sigValues.add(new Double(sigValues_temp)) ;
 sigRegBlocks.add(tok.nextToken());
 } else {
 nonCount++;
 }
 br.close();
 } catch (Exception e){
 System.out.println("Error reading new2ndPer mAnalysis.out: " + e);
 }
 if ((new File(outfolder + "sr" + n + "//MUT ATION")).exists()){
 mutIndex_temp = (n-nonCount);
 }
 n++;
 datFile = outfolder + "sr" + n + "//new2ndPe rmAnalysis.out";
 }
 //delete content of sr folder
 n=0;
 File srFolder = new File(outfolder + "sr" + n);
 while (srFolder.exists()){
 File[] contentSRFolder = srFolder.listFiles(n ew FileFilter(){
 public boolean accept(File f){
 return true;
 }});
 for (int k=0;k<contentSRFolder.length;k++){
 contentSRFolder[k].delete();
 }
 n++;
 srFolder = new File(outfolder + "sr" + n);
 }
 try {
 BufferedWriter bw = new BufferedWriter(new Fi leWriter((outfolder +
 "StatsSummary.txt")));
 bw.write("SR,P,IsMutReg,NoBlocks");
 bw.newLine();
 for (int k=0;k<sigValues.size();k++){
 bw.write(k + "," + sigValues.get(k) + ",");
 if (mutIndex_temp == k){
 bw.write("1,");
 } else {
 bw.write("0,");
 }
 bw.write("" + sigRegBlocks.get(k));
 bw.newLine();
 }
 bw.close();
 } catch (Exception e){
 System.out.println("Error writing to StatsSum mary.txt: " + e);
 }
 sigValues.removeAllElements();
 sigRegBlocks.removeAllElements();
 }//END OF FOR EACH SIM

Appendix A Key programs written during this thesis

 143

 //call SummarStats
 SummarStats ss = new SummarStats();
 for (int i=0;i<noSims;i++){
 String simFolder = infolder + "sim" + i;
 (new File(simFolder)).delete();
 }
 }

 //import the haplotypes
 //
 //each line is a haplotype
 //
 private int[][] importHaps(){
 int[][] haps = new int[916][noMarkers];
 try {
 BufferedReader br = new BufferedReader(new Fi leReader(infolder +
 "hapsin//regb_haps.in"));
 String line = br.readLine();
 int i=0;
 while (line!=null){
 StringTokenizer tok = new StringTokenizer(l ine,",");
 int[] hapTemp = new int[noMarkers];
 int j=0;
 while (tok.hasMoreTokens()){
 hapTemp[j++] = (new Integer(tok.nextToken ())).intValue();
 }
 haps[i++] = hapTemp;
 line = br.readLine();
 }
 br.close();
 } catch (Exception e){
 System.out.println("Error importing haps: " + e);
 }
 return haps;
 }

 public static void main(String[] args) {
 PedSimMain psm = new PedSimMain();
 }
}

class Simulator2 {

 /**
 * global variables
 */
 private int noFams;//store the final no of fams w e want to generate
 private boolean status;//use to infom main if sim ulation successful
 private double distBetweenMarkers;//dist between each marker
 private int mutMarker;//store the location of the mutation on the disease chr
 private double recombRate;//store the rate of rec ombination
 private String infolder;//location of job
 private int noASCtrls;//store the number of contr ol haps in the ASIn file
 private Hashtable generationsHT;//
 private Hashtable peopleHT_;//
 private Hashtable prevGenHT;//
 private Hashtable peopleHT;//

 public Simulator2(int[] diseaseHap, int[][] contr olHaps, int noGenerations, int
noFams, double distBetweenMarkers, int mutMarker, d ouble recombRate, String infolder)
{
 this.noFams = noFams;
 this.distBetweenMarkers = distBetweenMarkers;
 this.mutMarker = mutMarker;
 this.recombRate = recombRate;
 this.infolder = infolder;

 /*****
 * Initialise
 */
 //set status = false
 setStatus(false);
 //select a disease chromosome
 int[] hapDisease = diseaseHap;
 //to start, call the original affected individu al the first offspring
 //they will carry the the disease haplotype and 1 control chromosome
 peopleHT_ = new Hashtable();

Appendix A Key programs written during this thesis

 144

 //for the first affected individual
 //store the two haplotypes (chromsomes) and the affection status.
 Vector affectedPerson = new Vector();
 affectedPerson.add("N,N");//parentID (N is no p arent)
 affectedPerson.add("D");//disease status
 affectedPerson.add(hapDisease);//haplotpye1
 affectedPerson.add(controlHaps[(int)Math.floor(Math.random()*
 (controlHaps.length))]);//random haplotype2
 peopleHT_.put("0",affectedPerson);
 //for the first married in
 Vector minPerson = makeMarriedIn(controlHaps[(i nt)Math.floor(Math.random()*
 (controlHaps.length))],controlHaps[(int)Math.fl oor(Math.random()*
 (controlHaps.length))]);
 peopleHT_.put("1",minPerson);
 //create hashtable to store results
 generationsHT = new Hashtable();
 //add the first generation
 generationsHT.put("0",peopleHT_);
 //keep count of all the individuals
 int idCount = 2;

 /**********************************
 *
 * Actual sim
 *
 **/
 //1. for each generation
 for (int i=1;i<noGenerations;i++){
 //store the data for each generation in a new hashtable
 peopleHT = new Hashtable();
 //get the info from the previous generation
 prevGenHT = (Hashtable)generationsHT.get((new Integer(i-1)).toString());

 //2. for each parent
 Vector sortedKeys = new Vector();
 sortedKeys = sort(prevGenHT.keys());
 for (int j=0;j<sortedKeys.size();j++){
 /**
 * Here we model the recombination
 */
 //initialise child1
 Vector child0 = new Vector();
 Vector child1 = new Vector();
 //select 50/50 whether to start from parent 0 chr 0 or 1
 String key = ((Integer)sortedKeys.get(j)).t oString();
 Vector v = new Vector();
 v = (Vector)prevGenHT.get(key);
 //store affection status from 1st parent
 String parentDS = (String)v.get(1);
 //child0
 Vector c0c0temp = new Vector();
 c0c0temp = getChildChr((int[])v.get(2),(int [])v.get(3),(String)v.get(1),key);
 int[] child0Chr0 = (int[])c0c0temp.get(0);
 String child0DS = (String)c0c0temp.get(1);
 //child1
 Vector c1c0temp = new Vector();
 c1c0temp = getChildChr((int[])v.get(2),(int [])v.get(3),(String)v.get(1),key);
 int[] child1Chr0 = (int[])c1c0temp.get(0);
 String child1DS = (String)c1c0temp.get(1);
 //
 j++;
 String key2 = ((Integer)sortedKeys.get(j)). toString();
 Vector v2 = (Vector)prevGenHT.get(key2);
 //child0
 Vector c0c1temp = new Vector();
 int[] t = (int[])v2.get(2);
 int[] t2 = (int[])v2.get(3);
 String t3 = (String)v2.get(1);
 c0c1temp = getChildChr((int[])v2.get(2),(in t[])v2.get(3),
 (String)v2.get(1),key);
 int[] child0Chr1 = (int[])c0c1temp.get(0);
 //child1
 Vector c1c1temp = new Vector();
 c1c1temp = getChildChr((int[])v2.get(2),(in t[])v2.get(3),
 (String)v2.get(1),key);
 int[] child1Chr1 = (int[])c1c1temp.get(0);

Appendix A Key programs written during this thesis

 145

 //4.
 child0.add(key.concat(",").concat(key2));// parentID
 child1.add(key.concat(",").concat(key2));// parentID
 child0.add(child0DS);//disease status
 child1.add(child1DS);//disease status
 child0.add(child0Chr0);//haplotpye1
 child1.add(child1Chr0);//haplotpye1
 child0.add(child0Chr1);//haplotype2
 child1.add(child1Chr1);//haplotype2

 //if the parent is affected
 if(parentDS.equals("D")){
 //put child1 into the gen
 peopleHT.put(new Integer(idCount++).toStr ing(),child0);

 //if this is not the last generation, mak e a married in and add
 if(!(i==(noGenerations-1))){
 Vector min = new Vector();
 min = makeMarriedIn(controlHaps[(int)Ma th.floor(Math.random()*
 (controlHaps.length))],controlHaps[(int)Math.floor(Math.random()*
 (controlHaps.length))]);
 peopleHT.put(new Integer(idCount++).toS tring(),min);
 }
 //put child2 into the gen
 peopleHT.put(new Integer(idCount++).toStr ing(),child1);
 if(!(i==(noGenerations-1))){
 Vector min = new Vector();
 min = makeMarriedIn(controlHaps[(int)Ma th.floor(Math.random()*
 (controlHaps.length))],controlHaps[(int)Math.floor(Math.random()*
 (controlHaps.length))]);
 peopleHT.put(new Integer(idCount++).toS tring(),min);
 }
 }
 }//end of for each person in prev generation (for sortedkeys)
 //now, put this generations info into gneerat ionsHT
 if (peopleHT.size()>0){
 generationsHT.put((new Integer(i)).toString (),peopleHT);
 }
 else
 break;
 }//end of for no generation

 /** *****************************
 * Build the families using last 4 generations
 */
 //we must have simulated at least 5 generations to be able to do this
 if(generationsHT.size()==noGenerations){

 /**
 * Split the last four generations into famil ies
 */
 //store a vector of each family
 Vector families = new Vector();
 //Initialise
 Enumeration gkeys = generationsHT.keys();//en numeration of the key for each
 generation
 Vector gkeysSorted = sort(gkeys);//sorted lis t of these keys
 //for oldest 0 generaion
 //get the hash table
 Hashtable ht = (Hashtable)generationsHT.get(((Integer)gkeysSorted.get
 (gkeysSorted.size()-4)).toString());
 Enumeration keys = ht.keys();//enumeration of the keys within generation 0
 Vector keysSorted = sort(keys);//these keys s orted
 //for each individual in generation 0
 for (int i=0;i<keysSorted.size();i++){
 //create a family if the person is affected
 if(((String)((Vector)ht.get(((Integer)key sSorted.get(i)).toString())).
 get(1)).equals("D")){
 Vector family_temp = new Vector();
 Vector individual_temp = (Vector)((Vector)ht.get(((Integer)keysSorted.
 get(i)).toString())).clone();
 //add the key (individual id) to the star t of the vector)
 individual_temp.add(0,(Integer)keysSorted .get(i));
 //now add them to the family temp
 family_temp.add(individual_temp);
 i++;//get that persons spouse
 individual_temp = (Vector)((Vector)ht.get (((Integer)keysSorted.

Appendix A Key programs written during this thesis

 146

 get(i)).toString())).clone();
 //add the key (individual id) to the star t of the vector)
 individual_temp.add(0,(Integer)keysSorted .get(i));
 family_temp.add(individual_temp);
 families.add(family_temp);
 } else
 i++;
 }
 //for each of the subesequent 3 generations
 for (int i=(gkeysSorted.size()-3);i<gkeysSort ed.size();i++){
 //for generation i
 ht = (Hashtable)generationsHT.get(((Integer)gkeysSorted.get(i)).toString());
 keys = ht.keys();//enumeration of the keys within generation i
 keysSorted = sort(keys);//these keys sorted
 //for each individual j
 for (int j=0;j<keysSorted.size();j++){
 //get j's parents
 String parents = (String)((Vector)ht.get(((Integer)keysSorted.
 get(j)).toString())).get(0);
 String[] parent = parents.split(",");
 //for each family k
 for (int k=0;k<families.size();k++){
 Vector family = (Vector)families.get(k) ;
 //for each member in that family
 for (int l=0;l<family.size();l++){
 //if j has parents in family k,
 if (parent[0].equals(((Integer)((Vector)family.get(l)).
 get(0)).toString())){
 //get individual j's details
 Integer in = (Integer)keysSorted.ge t(j);
 Vector individualj = (Vector)((Vect or)ht.get(((Integer)keysSorted.
 get(j)).toString())).clone();
 //add the key (individual id) to th e start of the vector)
 individualj.add(0,in);
 //add j to that family
 ((Vector)families.get(k)).add(indiv idualj);
 //also add j++ to that family
 Vector individualjplus1 = (Vector)((Vector)ht.get(((Integer)
 keysSorted.get(++j)).toString())).c lone();
 individualjplus1.add(0,(Integer)key sSorted.get(j));
 ((Vector)families.get(k)).add(indiv idualjplus1);
 //and break
 break;
 }
 }
 }
 }
 }

 /**
 * filter families
 * if a family has 6 or less memebers (i.e. o nly 2 generations large)
 * then is is deleted
 * NB, this is based on the model of two kids per fam
 */
 for (int i=0;i<families.size();i++){
 if(((Vector)families.get(i)).size() < 7){
 families.remove(i);
 i--;
 }
 }
 //only continue if there are at least 3 famil ies
 if(families.size()>=3){
 //set status = true
 //this means that we have cheived a result and have generated three
 //families on which to test the allele shar ing methods
 setStatus(true);

 /****
 * now, want to calculate the relatedness of the families
 *
 */
 //create a vector to hold all the compariso ns between families
 Vector famDistances = new Vector();
 //for the 1st member of all the family (apa rt from the last)
 for(int i=0;i<families.size()-1;i++){
 Vector famiid0 = (Vector)((Vector)familie s.get(i)).get(0);

Appendix A Key programs written during this thesis

 147

 //create a vector to hold the distances b etween fami and famj
 Vector ijDistances = new Vector();
 //for each other family (exluding compari sons already done)
 //compare parents to those from each of t he other families
 //keep going back a generation till you f ind a common ancestor and store the
 //number of generation difference
 for(int j=i+1;j<families.size();j++){
 //test this person from famiid0 agin fa mjid0
 Vector famjid0 = (Vector)((Vector)famil ies.get(j)).get(0);
 //initialise parents
 String parents0 = famiid0.get(1).toStri ng();
 String parents1 = famjid0.get(1).toStri ng();
 //store the level of separation
 int sep = 1;
 //go up through all the generations unt il we find a common ansector
 boolean comAn = false;//is there a com(mon)An(cestor)
 while (!comAn){
 //if they have common parents, then s tore the no of gen separate
 if((parents0).equals(parents1)){
 comAn = true;
 }
 //else
 else{
 //go back a further generation
 sep++;
 //and get the parents from the prev ious generation
 //generationsHT contains info on al l the generations
 int noGens = generationsHT.size();
 //we are starting from the last gen eration
 //so we now want to get the partent s of those individuals named as
 //parents 0 and 1
 //so we look at generation (noGens- sep)
 Hashtable generationN = (Hashtable) generationsHT.get((new Integer(
 (noGens-sep-3))).toString());
 //and find the individuals that are named as parents0 and 1 from
 //need to split up the parents0 and 1
 String[] parent00 = parents0.split(",");
 Vector ind0 = (Vector)generationN.g et(parent00[0]);
 String[] parent10 = parents1.split(",");
 Vector ind1 = (Vector)generationN.g et(parent10[0]);
 //now, get ind0 and 1s parents
 parents0 = (String)ind0.get(0);
 parents1 = (String)ind1.get(0);
 //and loop round again with these n ew parents
 }
 }
 //store the comparisons
 ijDistances.add(new Integer(sep));
 }
 famDistances.add(ijDistances);
 }

 /**
 * FIND THE MOST DISTANT FAMILIES
 *
 * select the three most distant families
 * get dist between 1st fam and all others
 * for each of these, calc d(1i)+d(in) wher e n is last fam
 * calc max of these sums
 * take the three fams that form the max
 */
 int max = 0;
 //this is the indexs of the matrix that con tains the best thrid family
 int optIndex = 1;
 for(int i=0;i<famDistances.size()-1;i++){
 //if famDistances.get(0).get(i) + famDist ances.get(i)(n) > max
 //then max = ...
 //dist between 0 and i
 int dist0i = ((Integer)((Vector)famDistan ces.get(0)).get(i)).intValue();
 //dist between i and n
 int distin = ((Integer)((Vector)famDistan ces.get(i+1)).
 lastElement()).intValue();
 if((dist0i + distin) > max){
 max = dist0i + distin;
 optIndex = i+1;
 }
 }

Appendix A Key programs written during this thesis

 148

 if (((Integer)((Vector)famDistances.get(0)) .get(optIndex-1)).intValue() <40 ||
 ((Integer)((Vector)famDistances.get(0)) .lastElement()).intValue() <40 ||
 ((Integer)((Vector)famDistances.get(opt Index)).lastElement()).intValue()
 <40)
 setStatus(false);

 /**
 * Write results to file
 */
 //write the matrix of distances to file
 try {
 BufferedWriter bwDistMat = new BufferedWr iter(new FileWriter(infolder +
 "dist.matrix"));
 bwDistMat.write("So, after " + generation sHT.size() + " generations, we have
 " + families.size() + " families.\n");
 bwDistMat.write("Of which the three most distant families are family 0, " +
 optIndex + " and " + famDistances.size() + ".\n");
 //write explicitly the distances between the three most distant families
 bwDistMat.write("Distance between fam 0 a nd " + (optIndex) + " is: " +
 ((Vector)famDistances.get(0)).get(optIndex -1) + "\n");
 bwDistMat.write("Distance between fam 0 a nd n is: " +
 ((Vector)famDistances.get(0)).lastElement() + "\n");
 bwDistMat.write("Distance between fam " + (optIndex) + " and n is: " +
 ((Vector)famDistances.get(optIndex)).lastE lement());
 bwDistMat.newLine();
 bwDistMat.newLine();
 //write header
 bwDistMat.write("\t");
 for (int i=-1;i<((Vector)famDistances.get (0)).size();i++)
 bwDistMat.write((i+1) + "\t");
 bwDistMat.newLine();
 bwDistMat.newLine();
 //write matrix
 for(int i=0;i<famDistances.size();i++){
 bwDistMat.write("" + i + "\t");
 for(int j=-1;j<i;j++)
 bwDistMat.write("-\t");
 for (int j=0;j<((Vector)famDistances.ge t(i)).size();j++){
 bwDistMat.write(((Vector)famDistances .get(i)).get(j) + "\t");
 }
 bwDistMat.newLine();
 }
 //
 bwDistMat.write("" + famDistances.size() + "\t");
 for (int i=-1;i<famDistances.size();i++){
 bwDistMat.write("-\t");
 }
 bwDistMat.close();
 } catch (Exception e){
 System.out.println("Error writing distanc e matrix: " + e);
 }
 //write results - family 1
 try {
 BufferedWriter bwFam1 = new BufferedWrite r(new FileWriter(infolder +
 "fam1.out"));
 //
 Vector fam1 = (Vector)families.get(0);
 //for each member of the family
 for (int i=0;i<fam1.size();i++){
 Vector inds = (Vector)fam1.get(i);
 //for each characteristic in indi
 bwFam1.write("" + inds.get(0));
 bwFam1.write("," + inds.get(1));
 bwFam1.write("," + inds.get(2));
 int[] hap0 = (int[])inds.get(3);
 for (int j=0;j<hap0.length;j++)
 bwFam1.write("," + hap0[j]);
 bwFam1.newLine();
 bwFam1.write("" + inds.get(0));
 bwFam1.write("," + inds.get(1));
 bwFam1.write("," + inds.get(2));
 int[] hap1 = (int[])inds.get(4);
 for (int j=0;j<hap1.length;j++)
 bwFam1.write("," + hap1[j]);
 bwFam1.newLine();
 }
 bwFam1.close();

Appendix A Key programs written during this thesis

 149

 } catch (Exception e){
 System.out.println("Error writing fam1: " + e);
 }

 //write - most distant third family
 try {
 BufferedWriter bwFamI = new BufferedWrite r(new FileWriter(infolder +
 "fami.out"));
 Vector fami = (Vector)families.get((optIn dex));
 //for each member of the family
 for (int i=0;i<fami.size();i++){
 Vector inds = (Vector)fami.get(i);
 //for each characteristic in indi
 bwFamI.write("" + inds.get(0));
 bwFamI.write("," + inds.get(1));
 bwFamI.write("," + inds.get(2));
 int[] hap0 = (int[])inds.get(3);
 for (int j=0;j<hap0.length;j++)
 bwFamI.write("," + hap0[j]);
 bwFamI.newLine();
 bwFamI.write("" + inds.get(0));
 bwFamI.write("," + inds.get(1));
 bwFamI.write("," + inds.get(2));
 int[] hap1 = (int[])inds.get(4);
 for (int j=0;j<hap1.length;j++)
 bwFamI.write("," + hap1[j]);
 bwFamI.newLine();
 }
 bwFamI.close();
 } catch (Exception e){
 System.out.println("Error writing fam1: " + e);
 }
 //write - familyn (last fam)
 try {
 BufferedWriter bwFamN = new BufferedWrite r(new FileWriter(infolder +
 "famn.out"));
 Vector famn = (Vector)families.lastElemen t();
 //for each member of the family
 for (int i=0;i<famn.size();i++){
 Vector inds = (Vector)famn.get(i);
 //for each characteristic in indi
 bwFamN.write("" + inds.get(0));
 bwFamN.write("," + inds.get(1));
 bwFamN.write("," + inds.get(2));
 int[] hap0 = (int[])inds.get(3);
 for (int j=0;j<hap0.length;j++)
 bwFamN.write("," + hap0[j]);
 bwFamN.newLine();
 bwFamN.write("" + inds.get(0));
 bwFamN.write("," + inds.get(1));
 bwFamN.write("," + inds.get(2));
 int[] hap1 = (int[])inds.get(4);
 for (int j=0;j<hap1.length;j++)
 bwFamN.write("," + hap1[j]);
 bwFamN.newLine();
 }
 bwFamN.close();
 } catch (Exception e){
 System.out.println("Error writing famN: " + e);
 }

 //***********************
 // contruct a ASIn file
 //
 Vector ASIn = new Vector();
 //add fam1hap0
 int[] fam1hap0 = (int[])((Vector)((Vector)f amilies.get(0)).get(0)).get(3);
 ASIn.add(fam1hap0);
 //add famihap0
 ASIn.add((int[])((Vector)((Vector)families. get(optIndex)).get(0)).get(3));
 //add famNhap0
 ASIn.add((int[])((Vector)((Vector)families. lastElement()).get(0)).get(3));
 //add fam1hap1
 ASIn.add((int[])((Vector)((Vector)families. get(0)).get(0)).get(4));
 //add fam1 married in haps
 for (int i=1;i<((Vector)families.get(0)).si ze();i++){

Appendix A Key programs written during this thesis

 150

 if(((String)((Vector)((Vector)families.ge t(0)).get(i)).get(1)).
 equals("N,N")){
 ASIn.add((int[])((Vector)((Vector)famil ies.get(0)).get(i)).get(3));
 ASIn.add((int[])((Vector)((Vector)famil ies.get(0)).get(i)).get(4));
 }
 }
 //add famihap1
 ASIn.add((int[])((Vector)((Vector)families. get(optIndex)).get(0)).get(4));
 //add fami married in haps
 for (int i=1;i<((Vector)families.get(optInd ex)).size();i++){
 if(((String)((Vector)((Vector)families. get(optIndex)).get(i)).get(1)).
 equals("N,N")){
 ASIn.add((int[])((Vector)((Vector)famil ies.get(optIndex)).get(i)).
 get(3));
 ASIn.add((int[])((Vector)((Vector)famil ies.get(optIndex)).get(i)).
 get(4));
 }
 }
 //add famNhap1
 ASIn.add((int[])((Vector)((Vector)families. lastElement()).get(0)).get(4));
 //add famN married in haps
 for (int i=1;i<((Vector)families.lastElemen t()).size();i++){
 if(((String)((Vector)((Vector)families. lastElement()).get(i)).get(1)).
 equals("N,N")){
 ASIn.add((int[])((Vector)((Vector)famil ies.lastElement()).get(i)).
 get(3));
 ASIn.add((int[])((Vector)((Vector)famil ies.lastElement()).get(i)).
 get(4));
 }
 }
 //
 noASCtrls = ASIn.size() - 3;
 //write it to file
 try{
 BufferedWriter bwAS = new BufferedWriter(new FileWriter(infolder +
 "ASIn.csv"));
 for (int i=0;i<((int[])ASIn.get(0)).lengt h;i++){
 for (int j=0;j<ASIn.size();j++){
 bwAS.write(((int[])ASIn.get(j))[i] + ",");
 }
 bwAS.newLine();
 }
 bwAS.close();
 } catch (Exception e){
 System.out.println("Error writing ASIn.cs v: " + e);
 }
 }
 //clean up
 families.removeAllElements();
 }
 //clean up
 affectedPerson.removeAllElements();
 minPerson.removeAllElements();
 prevGenHT.clear();
 peopleHT.clear();
 peopleHT_.clear();
 generationsHT.clear();
 }

 /*******
 *
 */
 public Vector makeMarriedIn(int[] sHap1, int[] sH ap2){
 Vector minPerson = new Vector();
 minPerson.add("N,N");//parentID (N is no parent)
 minPerson.add("U");//disease status
 minPerson.add(sHap1);//haplotpye1
 minPerson.add(sHap2);//haplotype2
 return minPerson;
 }
 public Vector sort(Enumeration e){
 Vector v = new Vector();
 String st = (String)e.nextElement();
 v.add(new Integer(st));
 while (e.hasMoreElements()){
 st = (String)e.nextElement();
 int x = (new Integer(st)).intValue();

Appendix A Key programs written during this thesis

 151

 //go through each no allready added
 boolean added = false;
 for (int i=0;i<v.size();i++){
 //if x is >, add in fron
 if(x<((Integer)v.get(i)).intValue()){
 v.insertElementAt(new Integer(x),i);
 added = true;
 break;
 }
 }
 if (!added)
 v.add(new Integer(x));
 }
 return v;
 }

 /**
 *
 */
 public Vector getChildChr(int[] chr0, int[] chr1, String parentDS, String key){
 String ds = "";
 int[] childChr = new int[chr0.length];
 double rand = Math.random();
 int chr2Use = 0;
 if(rand<=0.5){//start getting chr1 from parent1
 //set chr2Use to 0
 chr2Use = 0;
 } else {
 chr2Use = 1;
 }
 //go through each SNP
 for (int k=0;k<chr0.length;k++){
 //add the markers, one by one
 if(chr2Use==0){
 childChr[k] = chr0[k];
 if(k==mutMarker)
 ds=parentDS;
 }else if (chr2Use==1){
 childChr[k] = chr1[k];
 if(k==mutMarker)
 ds="U";
 }
 //test for recombination
 //get rand no
 rand = Math.random();
 //if rand<(1x10(8)*dbm) then we have a recomb ination event
 if(rand < (recombRate*distBetweenMarkers)){
 //and we change parental chromosomes
 if(chr2Use==0)
 chr2Use=1;
 else if(chr2Use==1)
 chr2Use=0;
 }
 }
 Vector v = new Vector();
 v.add(childChr);
 v.add(ds);
 return v;
 }
 //use these to tell the main method whether or no t the simulator has generated
 //>=3 multi generational familes
 public void setStatus(boolean s){
 if(s)
 status = true;
 else
 status = false;
 }
 public boolean getStatus(){
 return status;
 }

 //
 public int getASNoCtrls(){
 return noASCtrls;
 }
}

Appendix A Key programs written during this thesis

 152

 class SummarStats{
 //
 private String infolder = "//net//uisdein//expo rt//usr0//s9636861//code//sim2//";
 //
 public SummarStats(){
 //get average stats for family size etc...
 String stNoASPerms = "";
 String stNoSims = "";
 try{
 BufferedReader brStats = new BufferedReader(n ew FileReader(infolder +
 "AllStatsSummary.txt"));
 brStats.readLine();//ignore line
 stNoSims = brStats.readLine();//line contains noSims
 //remove text from line
 stNoSims = stNoSims.replaceFirst("Number of s imulations:","");
 brStats.readLine();//ignore line
 stNoASPerms = brStats.readLine();//line conta ins noASPerms
 //remove text from line
 stNoASPerms = stNoASPerms.replaceFirst("Numbe r of AS permutations:","");
 brStats.close();
 } catch (Exception e){
 System.out.println("Exception reading from st ats file: " + e);
 }
 //read in general info regarding sim run...
 double noPerms = (new Double(stNoASPerms)).doub leValue();
 double noSims = (new Double(stNoSims)).doubleVa lue();
 //for each sim folder
 int i=0;
 int truePos = 0;
 int falsePos = 0;
 Vector mutRegPValues = new Vector();
 Vector otherPValues = new Vector();
 Vector mutRegBlocks = new Vector();
 Vector otherBlocks = new Vector();
 Vector famDists = new Vector();
 String statsFile = infolder + "sim" + i + "//St atsSummary.txt";
 String distMatFile = infolder + "sim" + i + "// dist.matrix";
 String statsFolder = infolder + "sim" + i;
 while ((new File(statsFile)).exists()){
 //get stats
 try{
 BufferedReader br = new BufferedReader(new FileReader(statsFile));
 String line = br.readLine();
 line = br.readLine();
 while (line!=null){
 StringTokenizer tok = new StringTokenizer (line,",");
 tok.nextToken();
 double p = (new Double(tok.nextToken())). doubleValue()/noPerms;
 String isMutReg = tok.nextToken();
 String noBlocks = tok.nextToken();
 //if we are looking at the mut carrying r egion
 if(isMutReg.equals("1")){
 if(p <= 0.05){
 truePos++;
 mutRegPValues.add((new Double(p)).to String());
 mutRegBlocks.add(noBlocks);
 }
 //else we are looking at a false region
 } else {
 if(p <= 0.05){
 falsePos++;
 otherPValues.add((new Double(p)).toS tring());
 otherBlocks.add(noBlocks);
 }
 }
 line = br.readLine();
 }
 br.close();
 }
 catch (Exception e){
 System.out.println("exception reading from file " + i + ": " + e);
 }
 //also get info from each dist.matrix file
 try{
 BufferedReader br = new BufferedReader(new FileReader(distMatFile));
 br.readLine();

Appendix A Key programs written during this thesis

 153

 br.readLine();
 String dist1 = br.readLine();
 dist1 = dist1.replaceFirst(".*: ","");
 famDists.add(dist1);
 String dist2 = br.readLine();
 dist2 = dist2.replaceFirst(".*: ","");
 famDists.add(dist2);
 String dist3 = br.readLine();
 dist3 = dist3.replaceFirst(".*: ","");
 famDists.add(dist3);
 br.close();
 } catch (Exception e){
 System.out.println("exception reading from file " + i + ": " + e);
 }
 //delete folders
 File[] content = (new File(statsFolder)).list Files(new FileFilter(){
 public boolean accept(File f){
 return true;
 }
 });
 for (int j=0;j<content.length;j++){
 boolean fot = content[j].delete();
 if(content[j].isDirectory()){
 File[] xxx = content[j].listFiles(new Fil eFilter(){
 public boolean accept(File f){
 return true;
 }});
 }
 }
 //get next folder
 i++;
 statsFile = infolder + "sim" + i + "//Sta tsSummary.txt";
 distMatFile = infolder + "sim" + i + "//d ist.matrix";
 statsFolder = infolder + "sim" + i;
 }//END OF WHILE EACH STATSTFOLDER.EXISTS
 //calculate the average of the fam distance s
 double avFamDist = 0.0;
 for (int j=0;j<famDists.size();j++){
 avFamDist += (new Double((String)famDis ts.get(j))).
 doubleValue();
 }
 avFamDist = avFamDist/famDists.size();
 //calculate average true pos scores
 double avTruePosP = 0.0;
 if(mutRegPValues.size()==0)
 avTruePosP = Double.NaN;
 else {
 for (int j=0;j<mutRegPValues.size();j++){
 avTruePosP += (new Double((String)mut RegPValues.get(j))).
 doubleValue();
 }
 avTruePosP = avTruePosP/mutRegPValues.siz e();
 }
 //calculate average false pos scores
 double avFalsePosP = 0.0;
 if(otherPValues.size()==0)
 avFalsePosP = Double.NaN;
 else {
 for (int j=0;j<otherPValues.size();j++){
 avFalsePosP += (new Double((String)otherP Values.get(j))).doubleValue();
 }
 avFalsePosP = avFalsePosP/otherPValues.size ();
 }
 //calculate average true pos blocks
 double avTruePosBlocks = 0.0;
 if(mutRegBlocks.size()==0)
 avTruePosBlocks = Double.NaN;
 else {
 for (int j=0;j<mutRegBlocks.size();j++){
 avTruePosBlocks += (new Double((String)mutR egBlocks.get(j))).doubleValue();
 }
 avTruePosBlocks = avTruePosBlocks/mutRegBlocks. size();
 }
 //calculate average false pos scores
 double avFalsePosBlocks = 0.0;
 if(otherBlocks.size()==0)
 avFalsePosBlocks = Double.NaN;

Appendix A Key programs written during this thesis

 154

 else {
 for (int j=0;j<otherBlocks.size();j++){
 avFalsePosBlocks += (new Double((String)oth erBlocks.get(j))).doubleValue();
 }
 avFalsePosBlocks = avFalsePosBlocks/otherBlocks .size();
 }

 //append the results to a AllStatsSummary
 try {
 BufferedWriter bw = new BufferedWriter(ne w FileWriter((infolder +
 "AllStatsSummary.txt"),true));
 bw.newLine();
 //summary of families
 bw.write("Average distance between famili es (generations):" + avFamDist);
 bw.newLine();
 //summary of stats
 bw.newLine();
 bw.write("True positives: " + truePos + " (" + ((double)(truePos/noSims)*
 100.0) + "%)");
 bw.newLine();
 bw.write("False positives: " + falsePos);
 bw.newLine();
 bw.write("P values for true positives: ") ;
 bw.write("" + avTruePosP + " (");
 if(mutRegPValues.size()>0){
 bw.write("" + mutRegPValues.get(0));
 for(int j=1;j<mutRegPValues.size();j++) {
 bw.write("," + mutRegPValues.get(j));
 }
 }
 bw.write(")");
 bw.newLine();
 bw.write("P values for false positives: ");
 bw.write("" + avFalsePosP + " (");
 if(otherPValues.size()>0){
 bw.write("" + otherPValues.get(0));
 for(int j=1;j<otherPValues.size();j++){
 bw.write("," + otherPValues.get(j));
 }
 }
 bw.write(")");
 bw.newLine();
 bw.write("Size in blocks for true positiv es: ");
 bw.write("" + avTruePosBlocks + " (");
 if(mutRegBlocks.size()>0){
 bw.write("" + mutRegBlocks.get(0));
 for(int j=1;j<mutRegBlocks.size();j++){
 bw.write("," + mutRegBlocks.get(j));
 }
 }
 bw.write(")");
 bw.newLine();
 bw.write("Size in blocks for false positives: ");
 bw.write("" + avFalsePosBlocks + " (");
 if(otherBlocks.size()>0){
 bw.write("" + otherBlocks.get(0));
 for(int j=1;j<otherBlocks.size();j++){
 bw.write("," + otherBlocks.get(j));
 }
 }
 bw.write(")");
 //close file
 bw.close();
 } catch (Exception e){
 System.out.println("Exception writing to AllS tatsSummary: " + e);
 }
 }
}

class FindSigRegions {

 public FindSigRegions(String ASInPath, String ASO utPath, String ASStatsPath,
 String blockDefPath, String datPath, int mutMarke rIndex) {
 Vector col0 = new Vector();
 Vector col1 = new Vector();
 Vector col2 = new Vector();
 Vector ASScores = new Vector();

Appendix A Key programs written during this thesis

 155

 Vector ASPValues = new Vector();
 Vector blockNos = new Vector();
 //1
 //read the ASIn file -> col 0,1,2
 //store the first three columns
 try {
 BufferedReader br = new BufferedReader(new Fi leReader(ASInPath));
 String line = br.readLine();
 while (line != null){
 StringTokenizer tok = new StringTokenizer(l ine,",");
 col0.add(tok.nextElement());
 col1.add(tok.nextElement());
 col2.add(tok.nextElement());
 line = br.readLine();
 }
 br.close();
 } catch (Exception e){
 System.out.println("Exception in fsr import A SIn.csv: " + e);
 }

 //2
 //now get the AS.in scores -> ASScores
 try{
 BufferedReader br2 = new BufferedReader(new F ileReader(ASOutPath));
 String line = br2.readLine();
 while (line!=null){
 StringTokenizer tok = new StringTokenizer(l ine,",");
 tok.nextElement();//ignore 1st element
 tok.nextElement();//ignore 2nd
 ASScores.add(tok.nextElement());//store the 3rd as the AS score
 line = br2.readLine();
 }
 br2.close();
 } catch (Exception e){
 System.out.println("Exception in fsr import A S.in: " + e);
 }

 //3
 //now read in the p values from AS_permutations .stats -> ASPValues
 try {
 BufferedReader br3 = new BufferedReader(new F ileReader(ASStatsPath));
 String line = br3.readLine();
 int count = 0;
 while (line!=null){
 if(count>11)
 ASPValues.add(line);
 count++;
 line = br3.readLine();
 }
 br3.close();
 } catch (Exception e){
 System.out.println("Exception in fsg import A S_permutations.stats: " + e);
 }

 //4
 //read in file with block no for each marker -> blockNos
 try {
 BufferedReader br4 = new BufferedReader(new F ileReader(blockDefPath));
 String line = br4.readLine();
 while (line!=null){
 StringTokenizer tok = new StringTokenizer(l ine,"\t");
 tok.nextElement();//ignore 1st element
 tok.nextElement();//ignore 2nd
 blockNos.add(tok.nextElement());//store the 3rd as the block number
 line = br4.readLine();
 }
 br4.close();
 } catch (Exception e){
 System.out.println("Exception in fsg import M yHapMap.out: " + e);
 }

 //2 + 3 + 4
 //and now, go through all the ASIn cols and whe re there are sequences
 //of sharing, calculate the average scores and p values
 double rSum = 0.0;//sum of scores
 double pSum = 0.0;//sum of p values
 int count = 0;

Appendix A Key programs written during this thesis

 156

 String lastBlockNo = "";
 int numBlocks = 0;
 Vector blockScore = new Vector();
 Vector blockP = new Vector();
 Vector blockBlocks = new Vector();
 int mutBlock = 100;
 boolean mutBlockActive = false;
 //so, for each marker
 for (int i=0;i<col0.size();i++){
 //if all markers are equal store the score an d p values
 if (((String)col0.get(i)).equals((String)col 1.get(i)) && ((String)col0.get(i)).
 equals((String)col2.get(i))){
 //sum the score and p vlaues
 rSum += (new Double((String)ASScores.get(i))).doubleValue();
 pSum += (new Double((String)ASPValues.get(i))).doubleValue();
 count++;
 //++ the no of blocks if it is a new block
 if(((String)blockNos.get(i)).equals("null"))
 numBlocks++;
 else if (!((String)blockNos.get(i)).equal s(lastBlockNo))
 numBlocks++;
 //if it crosses the mutation, then mark thi s block as true
 if(i==mutMarkerIndex){
 mutBlockActive = true;
 }
 //if this is the last marker in the column, and it is shared, then we need to
 //add that as a shared block as well
 if (i == col0.size() && count > 1 && ((pSu m/count) > 0.949)){
 blockScore.add(new Double(rSum/count));
 blockP.add(new Double(pSum/count));
 blockBlocks.add(new Integer(numBlocks));
 if(mutBlockActive){
 mutBlock = blockScore.size() - 1;
 mutBlockActive = false;
 }
 }
 }
 //else if there is no sharing
 else{
 //if previous sharing >1, we store the last blocks results
 if(count > 1 && ((pSum/count) > 0.949)){
 blockScore.add(new Double(rSum/count));
 blockP.add(new Double(pSum/count));
 blockBlocks.add(new Integer(numBlocks));
 if(mutBlockActive){
 mutBlock = blockScore.size() - 1;
 mutBlockActive = false;
 }
 }
 rSum = 0.0;
 pSum = 0.0;
 numBlocks = 0;
 count = 0;
 }
 }
 //add the last block in it is still being share d...
 if(count > 1 && ((pSum/count) > 0.949)){
 blockScore.add(new Double(rSum/count));
 blockP.add(new Double(pSum/count));
 blockBlocks.add(new Integer(numBlocks));
 if(mutBlockActive){
 mutBlock = blockScore.size() - 1;
 }
 }

 //5
 //now call NewASPermAnalysis to calculate the m odified p values for each
 //region
 //now generate a new data.dat file for each of these regions
 //first read in the present file
 Vector lines = new Vector();
 try {
 BufferedReader br5 = new BufferedReader(new F ileReader(datPath));
 String line = br5.readLine();
 while (line!=null){
 lines.add(line);
 line = br5.readLine();

Appendix A Key programs written during this thesis

 157

 }
 br5.close();
 } catch (Exception e){
 System.out.println("Exception in fsg import A S_permutations.stats: " + e);
 }
 //and then re-write with the final two lines al tered
 //for each of the regions...
 for (int i=0;i<blockScore.size();i++){
 File dir = new File((new File(ASInPath)).getP arent() + "//sr" + i);
 dir.mkdirs();
 String datPathTemp = (new File(ASInPath)).get Parent() + "//sr" + i +
 "//data.dat";
 try {
 BufferedWriter bw = new BufferedWriter(new FileWriter(datPathTemp));
 bw.write((String)lines.get(0));
 bw.newLine();
 bw.write((String)lines.get(1));
 bw.newLine();
 bw.write(((Integer)blockBlocks.get(i)).toSt ring());
 bw.newLine();
 bw.write(((Double)blockScore.get(i)).toStri ng());
 bw.close();
 } catch (Exception e){
 System.out.println("Exception in fsg writin g to data.dat: " + e);
 }
 //identify the block that contains the 'real' mutation
 if(i==mutBlock){
 File fl = new File((new File(ASInPath)).g etParent() + "//sr" + i +
 "//MUTATION");
 try {
 fl.createNewFile();
 } catch (Exception e){
 ;
 }
 }
 }
 }
}

Appendix C

 158

Appendix B: Papers arising from this thesis

Le Hellard S, Lee AJ, Underwood S, Thomson PA, Morris SW, Torrance HS,

Anderson SM, Adams RR, Navarro P, Christoforou A et al. (2006) Haplotype

Analysis and a Novel Allele-sharing Method Refines a Chromosome 4p Locus Linked

to Bipolar Affective Disorder. Biol Psychiatry 61(6):797-805

Lee AJ, Thomson PA, Le Hellard S, Adams R, Muir WJ, Blackwood DHR, Wray NR,

Férec C, Porteous DJ, Evans KL (2008) An Allele Sharing Method for Fine Mapping

Linkage Loci: Proof of Principle and Application to Bipolar Disorder. Submitted for

publication

