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Abstract

Although no structure morphologically similar to the well-characterised Golgi complex of

mammalian cells can be seen in Saccharomyces cerevisiae (yeast), there is much genetic and

biochemical evidence to suggest the existence of a yeast organelle functionally equivalent to the

mammalian Golgi. The trans Golgi network (TGN) of mammalian cells is characterised, at

least in part, by the presence of serine proteases that process prohormone molecules by

catalysing cleavage of polypeptide chains at pairs of basic residues. Analogous proprotein

processing in yeast is achieved by the action of the Kex2 protease. Kex2p is the best-

characterised resident protein of the yeast Golgi to date, and is believed to reside in a

compartment of the organelle that is equivalent to the mammalian TGN.

In order to further characterise the yeast Golgi, the aim of this project was to prepare vesicles

derived specifically from the Kex2p-containing compartment of the yeast Golgi. This aim was

pursued in two ways. Firstly, a hybrid protein, consisting of IgG-binding domains of the

S. aureus coat protein (protein A) fused to the extreme, cytoplasmically-disposed, C-terminus of

Kex2p was constructed. It was intended that IgG-Sepharose would be used to isolate membrane

vesicles containing the hybrid protein from yeast cell lysates, and that these vesicles would

originate from the Kex2-containing compartment. Unfortunately, this approach was

unsuccessful since preliminary results suggest that the protein is mislocalised to the vacuole.

The second approach that was employed involved the generation of a polyclonal antibody

preparation that specifically recognises the cytoplasmically-disposed C-terminal region of

Kex2p. This was achieved using bacterially-produced hybrid proteins (containing the C-terminal

100 residues of Kex2p) to immunise rabbits, and to affinity-purify Kex2p specific antibodies

from immune serum. Affinity-purified antibodies were bound to fixed S. aureus cells by taking

advantage of the high affinity of protein A for the Fc portion of IgG molecules. The resulting

immunoadsorbent (ImAd) can be used to recover 80% of Kex2 protease activity from a yeast cell

lysate. Kex2p recovered using the procedure established during the course of this project is

contained within intact membrane vesicles as demonstrated by its resistance to externally added

protease and the ability of the ImAd to recover a soluble cargo protein. As well as containing

Kex2p the material bound by the ImAd is enriched for dipeptidyl aminopeptidase A and Kexlp,
both of which reside in the same compartment as Kex2p in the cell, but does not contain

activities of enzymes associated with the endoplasmic reticulum (NADPH cyt c reductase) or the

vacuole (dipeptidyl aminopeptidase B).

The material that has been immunoisolated using the Kex2p antibody will be of use to provide

insights into the structure of the yeast Golgi, as well as being central to the development of

protein transport assays to study the function(s) of this organelle.
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Abbreviations used in this thesis

A405 absorbance at 405nm
ADP adenosine 5'-diphosphate

AMC 7-amino-4-methylcoumarin
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endo H endoglycosidase H

ER endoplasmic reticulum

g relative centrifugal force

GDP guanosine 5'-diphosphate

GTP guanosine 5' -triphosphate
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Abbreviations (continued)

GTPyS guanosine 5'-0-(3-thiotriphosphate)

Hepes N-2-Hydroxyethylpiperazine-N'-2-ethanesulphonic acid

HMG-CoA 3-hydroxy-3-methylglutaryl coenzyme A

HRP horseradish peroxidase

Ig immunoglobulin

ImAd immunoadsorbent

IPTG isopropylthiogalactoside

K thousand

D dalton

kb kilobase

MDCK Madin Darby canine kidney

mg milligram

min minute

ml millilitre

MSS medium speed supernatant

MSP medium speed pellet

MWt molecular weight

Hg microgram

|ll microlitre

NEM N-ethylmaleimide

nm nanometers

NSF NEM sensitive factor

°C degrees centigrade

OD600 optical density at 600nm

PAGE polyacrylamide gel electrophoresis

PBS phosphate buffered saline

PCR polymerase chain reaction
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Abbreviations (continued)

PC phosphatidylcholine

PI phosphatidylinositol

PMSF phenylmethylsulphonyl fluoride

RNA ribonucleic acid

S. aureus Staphylococcus aureus

S. cerevisiae Saccharomyces cerevisiae

S. pombe Schizosaccharomyces pombe

SDS sodium dodecyl sulphate

Spa Staphylococcal protein A

SRP signal recognition particle

SV secretory vesicles

TBS Tris buffered saline

TCA trichloroacetic acid

TGN trans Golgi network

Tris 2-amino-2-(hydroxymethyl) propane-1,3,-dio(tris)

TST Tris-saline-Tween-20

Tween-20 Polyoxyethylene sorbitan monolaurate

VSV vesicular stomatitus virus

WCE whole cell extract
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Abbreviations for aminoacids
/

Amino Acid

Alanine

Arginine

Asparagine

Aspartate

Cysteine

Glutamine

Glutamate

Glycine

Histidine

Isoleucine

Leucine

Lysine

Methionine

Phenylalanine

Proline

Serine

Threonine

Tryptophan

Tyrosine

Valine

Abbreviations

Ala A

Arg R

Asn N

Asp D

Cys C

Gin Q

Glu E

Gly G

His H

lie I

Leu L

Lys K

Met M

Phe F

Pro P

Ser S

Thr T

Trp W

Tyr Y

Val V
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Section 1. The secretory pathway

1.1. Introduction and overview

Eukaryotic cells differ in many ways from their prokaryotic counterparts. One of their
most striking features in this respect is their intracellular compartmentalisation (Alberts

etal., 1989). The existence of organelles, which are created by enclosing various

groups of molecules within membranes of a defined lipid and protein compostion,

allows processes which would otherwise interfere with each other to occur within the

same cell. For example, proteolytic enzymes are contained within the lysosome of

mammalian cells (Alberts etal., 1989) or the vacuole of yeast cells (Wiemken etal.,

1979) away from other cellular components which they would otherwise degrade. In

order for cells to achieve and maintain this compartmentalisation it is vital that new

proteins reach their desired locations so that the function for which they have been

produced occurs in the correct place and not in any other. In other words the cell must

be able to target proteins accurately to their rightful cellular locations.

Proteins destined for many organellar locations, as well as those to be secreted irom the

cell travel through the secretory pathway (for review see Kelly, 1985). Entry into this

pathway is achieved by proteins being translocated across, or inserted into, the ER

membrane. From the ER, proteins travel to and subsequently enter the Golgi

apparatus. This transfer occurs by means of vesicular traffic (Palade, 1975):

membrane buds from the ER to form vesicles entrapping soluble proteins present in the

ER lumen, then delivery of cargo proteins is achieved as these vesicles fuse with the

cis cisternae of the Golgi apparatus, consequently becoming incorporated into its

membrane and delivering any contents inside. Transport through the different cisternae

of the Golgi complex is also mediated by vesicular traffic and proteins leave this

organelle when they are packaged into secretory vesicles which bud from the trans face

of the Golgi. These secretory vesicles can then fuse with the plasma membrane in

order to deliver proteins to the cell surface, or to secrete soluble proteins from the cell;
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alternatively they may fuse with the lysosomal (or vacuolar) membrane to achieve

delivery of proteins to this organelle. In mammalian cells the fusion of post-Golgi

secretory vesicles with the plasma membrane occurs both constitutively and in a

regulated manner (for review see Burgess and Kelly, 1987). Regulated secretory cells,

such as neurones and cells of the endo- and exocrine glands, are specialised to release,

over a short period of time, large amounts of protein at a much higher rate than they are

synthesised. Cells of the endocrine system concentrate secretory proteins by as much

as 200-fold during their passage from the trans Golgi to secretory vesicles (Salpeter and

Farquhar, 1981). Such proteins are stored in specialised vesicles close to the plasma

membrane until their exocytosis is required. Fusion of these vesicles with the plasma

membrane, and therefore the release of their contents, is triggered by a specific external

stimulus in response to a change in the physiological state of the organism and is

mediated through changes in the concentration of an intracellular messenger such as

calcium (Burgoyne, 1990). In contrast, the constitutive secretory pathway does not

concentrate newly synthesised molecules; there is no post-Golgi storage pool and

secretory vesicles move directly from the Golgi to the plasma membrane where fusion

occurs. The constitutive pathway is thought of as the general route in all cells for the

transport of molecules that are constantly required at the cell's exterior such as growth

factors, extracellular components and enzymes. There is direct evidence that both

regulated and constitutive secretion occur within the same cell. Proteins that are

secreted from a cell constitutively are found in transport vesicles distinct from those

containing protein that is secreted only in response to an external stimulus (Gumbiner

and Kelly, 1982).

Current views of protein traffic favour the theory that proteins entering the ER travel

through the secretory pathway as described above, with no specific sequence being

required for a protein to be moved from the ER to the Golgi, or for entry into post

Golgi secretory vesicles and that it is proteins required at other cellular locations such as

the lysosome or vacuole that carry sequences containing the information necessary to

direct them away from this default pathway (Kornfeld and Mellman, 1989; Pearse and
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Robinson, 1990). Similarly, it is believed that proteins resident to the constituent

compartments of the pathway carry information which prevents them from being

permanently removed from their rightful location by the bulk-flow of membrane traffic.

Our understanding of such information remains limited, soluble proteins resident to the

ER of mammalian cells contain the C-terminal tetrapeptide -KDEL and those resident to

the ER of yeast cells -HDEL (Pelham, 1989). It is believed that these proteins are not

retained, as such, in the ER, but rather are recycled from a post-ER compartment by

virtue of their C-terminal signal interacting with a receptor. The 'bulk-flow' view of

the secretory pathway described above gained support from experiments that followed

the movement of small peptides through the secretory pathway of mammalian cells to

show that fast and efficient export from the cell does not require a specific signal in the

molecule being secreted (Wieland et al., 1987). Small peptides in this system were

found to be secreted from the cell with the same kinetics as a number of secretory

proteins (Helms etal., 1990). However, the transport route of such small peptides

from the ER seems to be dependent on the biological system in which they are used,

since similar experiments in Xenopus oocytes and yeast show that the peptides fail to

be secreted and are transported into the cytoplasm of yeast and the lysosome of the

oocytes (Geetha-Habib etal., 1990: Romisch and Schekman, 1992). Recent work in

yeast questions the idea of the default pathway as described so far, suggesting that the

default pathway for integral membrane proteins in this organism may be delivery to the

vacuole. Evidence for this comes from experiments which show that none of the three

domains of a protein resident in the vacuole carry information to direct the protein there,

and also that the removal of information that directs and keeps a resident Golgi protein

in its compartment results in its localisation to the vacuole (Roberts et al., 1992). Such

recent findings demonstrate that our understanding in this area is far from complete.

As mentioned above, proteins are carried through the secretory pathway by vesicles

which bud off from one membrane bound compartment (the donor) and subsequently

fuse with another (the acceptor). Movement of proteins between the organelles of the

secretory pathway requires accuracy of fusion of these vesicles with their acceptor
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compartments and little is known about how this is achieved within the cell. Assays

that reconstitute certain events in vitro have proved to be useful as tools to aid the

analysis of complicated biological processes, and it is hoped that the reconstitution of

stages of the secretory pathway will aid the biochemical dissection of the pathway and
lead to the identification and subsequent characterisation of components involved in it.

1.2. Investigation of the yeast secretory pathway

Saccharomyces cerevisiae (yeast) is attractive as an experimental organism in which to

study protein transport, a process which has been shown to occur analogously in yeast

and higher eukaryotes (Wilson etal., 1989: Rothman and Orci, 1992). The ease with

which yeast can be manipulated genetically means that it can be used to examine the

pathway not only biochemically (by the development of assays which reconstitute

protein transport events in vitro), but also genetically, an approach that cannot be

considered when working with a mammalian system.

Various stages ofprotein transport in yeast have been identified and defined by the
characterisation of mutant cells which are defective in protein transport at 37°C.
Characterisation of such mutants by Novick and co-workers led to the identification of

twenty three genes whose functions are required for the secretion of proteins (Novick

etal., 1980). At the restrictive temperature of 37°C, cells carrying temperature

sensitive mutations in any one of these genes (sec mutants) accumulate intracellular

pools of secretory proteins not found in the same cells at 25°C. These SEC genes were

grouped, according to morphological studies, in relation to which organelle proliferated
in cells in which their function had been altered. The largest of these groups has ten

members, and a mutation in any of these genes causes cells to accumulate membrane
vesicles 80-100nm in diameter which were proposed to represent secretory vesicles that
would ordinarily fuse with the plasma membrane. A second set of sec mutants has nine
members all of which accumulate an extended ER network as compared to that found in

wild type cells at 37°C. A subset of this second group accumulates 40nm vesicles as
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well, and these are known as class II mutants, whereas class I mutants accumulate the

ER structure alone (Kaiser and Schekman, 1990). Two of the remaining four sec

mutants identified were found to accumulate a membraneous stack which has been

described as 'an exaggerated Golgi-like structure'. The last two sec mutants have not

been placed into the above groups since one (secl9) appears to accumulate all three

types of organelle, and another (sec11) did not appear to accumulate any.

The order of events in the yeast secretory pathway was elucidated by the

characterisation of strains carrying two different see mutations (Novick etal., 1981).

The morphology of the exaggerated organelles accumulated in such cells allowed the

order in which the SEC gene products are required to be assessed. Examination of

precursor forms of accumulated invertase (a protein that is ordinarily secreted from

yeast cells) in sec mutants allowed the order of processing events performed on the

protein to be determined. These studies led to the following model (summarised in

Figure 1-1): Secretory proteins enter the ER where they are modified by the addition of

sugar chains. Nine or more SEC gene products act to transfer secretory proteins to a

second membrane compartment where the glycans they received in the ER are

modified. The products of at least two genes are then required for proteins to move

from this compartment into secretory vesicles. Following this, a further nine or more

gene products are involved in the delivery of the secretory vesicles to their final

destination.

Since the identification of the initial twenty three SEC genes, other genes involved in

protein transport in yeast have been identified. These include genes whose products are

involved in the translocation of proteins across the ER membrane (e.g. SEC61:

Rothblatt et al„ 1989) as well as other genes, mutations in which block the secretory

pathway at the stage(s) in which their products are involved (e.g. BET1 : Newman

and Ferro-Novick, 1987) and genes, mutations in which cause the cell to mislocalise

certain proteins (e.g. vps mutants (Robinson etal., 1988: Rothman etal., 1989)

secrete vacuolar proteins). Genes encoding small GTP-binding proteins that are
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involved in the yeast secretory pathway, such as YPT1 (Segev etal., 1988) have also

been identified, as have suppressor genes that restore growth to cells bearing mutations

in such genes (e.g. SLY2 and SLY12, Dascher etal., 1991: Ossig etal., 1991).
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Figure 1-1
The yeast secretory pathway

Proteins that are secreted by yeast follow a pathway similar to that described in

mammalian systems. Proteins destined for secretion enter the pathway by translocation

across the membrane of the ER after which they are carried through various membrane

bound compartments; all transport is mediated by vesicular traffic. Temperature

sensitive mutations that block this pathway at precise locations have been isolated.

These blocks are reflected in an accumulation of an organelle of the secretory pathway

in cells carrying the mutations at 37°C. This figure indicates the position at which the

wild type gene products of the twenty three SEC genes identified by Novick and his co¬

workers are thought to function (Novick etal., 1980: Novick etal., 1981).
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Section 2. Protein transport assays

2.1. Introduction

Although the use of genetics has yielded much information about the secretory pathway

in yeast, it is important that this information is combined with biochemical methods of

studying protein transport, since many components involved may not be represented

among the products of the known SEC, BET or VPS genes. This is likely to be the

case since molecular analyses of yeast chromosome I has revealed that the majority of

essential genes are not identified in studies that rely on temperature sensitive mutations

(Diehl and Pringle, 1991: Harris and Pringle, 1991). The use of protein transport

assays which reconstitute various stages of the secretory pathway in vitro, combined

with the information gleaned from yeast genetics may aid in the identification of such

components as well as providing an insight into their function in vivo.

Central to the development of a transport assay is the ability to follow the transport step

being investigated. One way in which this can be done is by monitoring a biochemical

change known to occur in a protein as it is moved from one compartment to the next.

Such changes occur as proteins travel through the secretory pathway, being carried out

by specific enzymes that reside in different compartments of the pathway.

2.2. Proteins are modified as they travel through the secretory pathway

Proteins are acted upon by a number of different enzymes as they travel through the

secretory pathway and this results in covalent modification of the nascent polypeptide

chain. It is these modifications that lead to the differences that exist between the

primary translation product of a gene and a mature protein.

Translocation of proteins into or across the ER membrane (for review see Nunnari and

Walter, 1992) usually occurs cotranslationally although there are some examples of

9



proteins crossing the membrane posttranslationally (Schlenstedt etal., 1990), a process

more commonly observed in yeast than in mammalian cells (Hansen et al., 1986:
Rothblatt and Meyer, 1986). Genes encoding proteins destined to enter the secretory

pathway encode a signal sequence which usually resides at the extreme N-terminus of
the nascent polypeptide (Blobel and Dobberstein, 1975). This sequence generally

includes 1-3 positively charged amino acids followed by a run of 14-20 uncharged and

predominantly hydrophobic amino acids and is often ended with a glycine or alanine

residue (von Heijne, 1985). When such a signal sequence emerges from a ribosome in
mammalian cells it is bound by a cytoplasmic ribonucleoprotein complex, signal

recognition particle (SRP) (Walter and Blobel, 1981: Kriegetal., 1986), which arrests

any further elongation of the polypeptide chain. SRP, as part of the ribosome-SRP-
nascent polypeptide chain complex, interacts with its receptor in the ER membrane (of
which docking protein is the largest subunit) and thus directs the complex to the

membrane (Meyer etal., 1982: Gilmore etal., 1982). Following this, both SRP and

docking protein are released from the ribosome in a reaction requiring GTP, and the

elongation of the polypeptide chain continues with its translocation across the

membrane having been initiated (Gilmore and Blobel, 1983: Wiedmannera/., 1987).

Although yeast homologues of SRP and docking protein have been identified (Amaya
et al., 1990: Nunnari and Walter, 1992) the role of translational arrest in yeast is less

clearly understood than it is in mammalian cells. This is possibly due to the fact that
there may be more than one translocation route into the ER of yeast cells (Hann and

Walter, 1991). This would also provide an explanation for the observation that
mutations in the SEC65 gene (whose product shows homology to one of the smaller
subunits of SRP) are not lethal (Stirling et al., 1992: Stirling and Hewitt, 1992: Hann
et al., 1992), perhaps because proteins can still enter the ER, and therefore the

secretory pathway, by another route which usually runs in parallel to the SRP system.

In addition to a signal sequence, membrane proteins possess at least one further

hydrophobic region to anchor them in the membrane, but if no such region is present

(as in soluble proteins) the entire polypeptide chain will pass through the membrane and
into the lumen of the ER (Rapoport and Weidmann, 1985).
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The actual mechanism by which a polypeptide chain crosses the phospholipid bilayer of

the ER is poorly understood, but recent studies in both yeast and mammalian cells have

identified several proteins believed to participate in this process. A channel, whose

opening can be detected by the passage of glutamate ions has been identified in the ER
membrane of mammalian cells (Simon and Blobel, 1991). The opening of this channel

depends on ribosome binding to the ER membrane, and can be blocked by the presence

of nascent polypeptide chains. These findings support popular theories which suggest

the existence of a proteinaceous tunnel to provide a hydrophilic environment allowing

the passage of polypeptide chains through the lipid bilayer. The incorporation of

photoreactive probes into nascent polypeptide chains has facilitated the identification

and purification of proteins with which polypeptides come into contact as they traverse

the membrane (Gorlich et al., 1992: and reviewed in Nunnari and Walter, 1992).

Similar work in yeast has shown that nascent chains come into close proximity with the

products of two genes (SEC61 and SEC62) that were identified by virtue of mutations

that disrupt translocation of proteins into the ER (Musch et al., 1992: Sanders et al.,

1992). It is hoped that such approaches will eventually lead to the identification and

purification of all factors involved in the translocation of polypeptide chains across the

ER membrane so that this process can be fully understood.

As a protein enters the ER the signal sequence is usually removed by signal peptidase

(Baker etal., 1986; Evans et al., 1986), the yeast homologue of which is encoded by

SEC11 (Bohni etal 1988: YaDeauera/., 1991). Proteins undergo other modifications

in the lumen of the ER (Hurtley and Helenius, 1989) including the formation of

disulphide bonds between cysteine residues and the addition of oligosaccharide chains

to selected asparagine residues (for review see Kornfeld and Kornfeld, 1985 and also

Tanner and Lehle, 1987). The latter is the initiating step in the formation of the N-

linked glycosylation found in mature glycoproteins. A core oligosaccharide chain built

up from three glucose, nine mannose and two N-acetyl glucosamine molecules
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(MangGk^GlcNAc^ is transferred from the lipid donor dolichol to the amide nitrogen
of an asparagine residue present in a polypeptide chain within the sequence

Asn-X-Ser/Thr (where X can be any residue except proline). Once attached to the

polypeptide chain the Man9Glc3GlcNAc2 moiety is processed by other enzymes located
in the lumen of the ER.

In yeast cells the removal of the glucose residues and of a single a-1,2-Man residue (by

glucosidases and a mannosidase respectively) results in the formation of Man8GlcNAc2
which is subsequently extended by the addition of up to six mannose residues in a

series of reactions catalysed by a mannosyl transferase (for a review of protein

glycosylation in yeast see Kukuruzinska etal., 1987). Similar processing occurs in the

ER of mammalian cells with glucose and oc-l,2-Man residues being removed from the

core structure to form the high mannose type glycans found in mammalian

glycoproteins.

As well as Asn residues found in the consensus sequence mentioned above, certain Ser

and Thr residues found in proteins in the ER of yeast cells are targets for the attachment

of oligosaccharides (Haselbeck and Tanner, 1983). These receive a single mannosyl

residue from a dolichol carrier and this marks the initiation of the O-linked

glycosylation found in yeast glycoproteins. (N.B. This process does not occur in the

ER of mammalian cells, O-linked glycosylation is initiated in the Golgi apparatus of

such cells, Niemann etal., 1982: Johnson and Spear, 1983). No consensus target

sequence for this process has been identified for the attachment of O-linked sugars but

regions rich in Ser and Thr residues do seem to be particularly susceptible to this

modification.

Polypeptide chains fold into their native conformations and, if necessary assemble into

competent strucures by association with other polypeptide chains within the ER lumen.

Chains which fail to do so are prevented from leaving the organelle by resident ER

proteins (e.g. BiP) and in this way the ER acts as a filter at the begining of the secretory
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pathway, preventing invalid proteins from progressing further and reaching their

destinations in a form that may have a detrimental effect on cellular processes (Hurtley

and Helenius, 1989).

Correctly folded nascent glycoproteins leave the ER and travel through the various

distal compartments of the secretory pathway. In mammalian cells some of the high

mannose chains formed in the ER are processed to complex oligosaccharides which

may contain additional GlcNAc residues as well as a variable number of galactose,

sialic acid and fucose residues (Kornfeld and Kornfeld, 1985). This processing

involves further trimming of the original oligosaccharide added in the ER as well as the

addition of further sugars. The oligosaccharide chains linked to Asn residues in yeast

proteins are also modified after they have left the ER, being extended by the addition of

many more mannose residues to form an outer chain structure which may contain

upwards of fifty mannose residues. It is in the Golgi complex of mammalian cells that

proteins receive their O-linked oligosaccharide chains (Niemann et al., 1982: Johnson

and Spear, 1983), a modification carried out by a series of glycosyl transferases which

catalyse the addition of one sugar residue at a time to a protein (up to about ten).

The processes involved in the formation of N-linked oligosaccharide chains are

summarised in Figure l-2a, and Figure l-2b highlights the differences between the

N-linked glycans added to proteins by mammalian cells and by yeast cells.
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Figure 1-2

N-linked glycosylation

Figure l-2a is a diagrammatic representation of the events which occur in the secretory

pathway leading to the N-linked glycosylation of proteins as described in the text.

(1) During translocation of the polypeptide across the ER membrane an oligosaccharide

moiety is transferred from dolicholpyrophosphate (Dol-P-P) and then processed prior

to the protein leaving the ER: three glucose molecules and two mannose molecules are

removed by the sequential action of a-glucosidase I (2), a-glucosidase II (3) and 1,2-

mannosidase (4). The oligosaccharide chain undergoes further sequential modification

during transit through the Golgi apparatus. In the cis Golgi oligosaccharide side chains

are trimmed by the removal of four mannose residues by a-mannosidase I (5). A

molecule of N-acetyl glucosamine is added by N-acetyl glucosaminyltransferase I (6) in

the medial Golgi, an event which is followed by the removal of one more mannose

residue by a-mannosidase I (7). Finally in this compartment, a second molecule of N-

acetyl glucosamine and a molecule of fucose are added by N-acetyl

glucosaminyltransferase II (8) and fucosyltransferase (9) respectively. In the trans

cisternae of the Golgi complex two molecules of galactose are added by the action of

galactosyltransferase (10) and this is followed by the addition of two molecules of sialic

acid by sialyltransferase (11).

Figure l-2b highlights the differences between the N-linked oligosaccharide chains

attached to the glycoproteins of mammalian cells and yeast cells. Also shown is the site

of action of endoglycosidase H (endo H).
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Figure l-2a The biogenesis of N-linked glycans
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Figure l-2b
A comparison of N-linked glycosylation in yeast and mammalian cells
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* Endo H only cleaves

high mannose type
glycans in mammalian
cells and not those with
complex sugars attached
as shown here.
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The containment of degradative enzymes within the lysosome or vacuole was cited

earlier as an example of the importance of compartmentalisation in eukaryotic cells.

Proteins are often synthesised in an inactive form subject to activation as required in

order to prevent inappropriate functioning of the protein. One way in which a cell can

convert an inactive polypeptide to its active form is by the use of proteolytic processing

(Thomas etal., 1988). An example of this is evident in the synthesis of the yeast

mating pheromone a-factor. Yeast cells of mating type a secrete the peptide a-factor

which interacts with cells of mating type a, and is involved in the initiation of diploid

formation (for review see Herskowitz, 1986). The pheromone is synthesised as an

inactive precursor molecule, prepro-a-factor, and the removal of a signal peptide in the

ER generates pro-a-factor which is also inactive (Waters etal., 1988). Complete

maturation of pro-a-factor to the secreted thirteen residue peptide requires cleavage of

the precursor at the carboxyl side of lys-arg sites followed by the removal of N and C

terminal residues from the peptides yielded by these proteolytic cleavages. The primary

cleavages occur after the peptide has left the ER and is carried out by the product of the

KEX2 gene, a Ca2+-dependent, neutral serine protease (Julius et al„ 1984).

Subsequent removal of of the C-terminal basic residues is achieved by the action of the

KEX1 gene product (Dmochowska etal., 1987: Achstetter and Wolf, 1987), with the

product of STE13 being responsible for the removal of an N-terminal spacer through its

action as a dipeptidyl aminopeptidase (Julius etal., 1983). The various events involved

in the biosynthesis of a-factor were elucidated at least in part with the aid of sec

mutants (Julius etal., 1984) and are summarised in Figure 1-3 (Fuller et al., 1988).
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Figure 1-3

Processing of prepro-a-factor

Shown here are the post-translational processing events involved in the maturation of

the product of the MFal gene product, prepro-a-factor. The order of these events was

elucidated by using biochemical and immunocytochemical identification of various

precursor forms of the mature protein (a-factor) and by the analysis of individual

processing enzymes and their genes (see text for details, adapted from Fuller et al.,

1988).
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The various processing events to which a protein may be subjected as it travels through
the secretory pathway are carried out in a strictly defined order. This sequence of
events has been identified (Palade, 1975) using pulse-chase labelling, autoradiography
and membrane fractionation work and can be used to determine at which stage in the

pathway a particular protein is at any one time. Investigation of the glycosylation state

of a protein, for example, can be used to gain such information (Esmon et al., 1981).
Due to the variability in the size and number of outer chain units added to yeast

glycoproteins after they have left the ER there is marked heterogeneity in their final
molecular weight. It is because of this that gel electrophoresis of such proteins results
in broad smears. Gel electrophoresis of the same protein which had not, for some

reason, progressed from the ER would result in a more defined band representing the

protein whose glycosylation state at this stage in its existence is more homogeneous,

consisting of the core oligosaccharide chain. It is possible to convert the 'broad smear'
form of such proteins to a homogeneous form by treating them with the enzyme

endoglycosidase H (Trimble and Maley, 1984) which removes most of the

carbohydrate moiety (see Figure l-2b). Such approaches can be used to determine in
which organelle a protein is at any one time, and have been used to study the
mechanisms by which proteins are transported between different compartments of the

secretory pathway in transport assays.

2.3. Identification and characterisation of NSF/Secl8p

By monitoring the covalent modification of a protein known to occur as it is transported
from one compartment of the mammalian Golgi to the next (Fries and Rothman, 1980),
Rothman and co-workers identified a protein that is necessary for this transport step.

Cells infected with vesicular stomatitus vims (VSV) synthesise the virally encoded G-

protein (a viral coat glycoprotein) in large amounts. This membrane protein enters the
host's secretory pathway and is subjected to post translational modifications as it travels

through the various compartments of the pathway to the plasma membrane. VSV-G-

protein has been used in a number of transport assays and is useful in such studies
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especially when the donor and acceptor compartments are prepared from different cells

as it can be assured that only the former will contain the protein by preparing it from

cells infected with the virus while the acceptor fraction is prepared from uninfected

cells. Reconstitution of membrane transport between successive cisternae of the Golgi

complex in mammalian cells revealed that the process was energy dependent since the

delivery of VSV-G-protein from a Golgi-enriched donor fraction prepared from a VSV-

infected mutant Chinese hamster ovary (CHO) cell line lacking the glycosyltransferase

N-acetyl glucosaminyltransferase I to an acceptor Golgi fraction prepared from

uninfected wild-type CHO cells requires not only cytosol, but also a supply of energy

in the form of ATP. Membrane transport from the cis compartment of the donor

fraction to the N-acetyl glucosaminyltransferase-containing medial cisternae of the

acceptor was shown to have taken place when the two fractions were mixed together in

the presence of cytosol, an ATP regenerating system, and also UDP-(3H)-G1cNAc (a

substrate for the N-acetyl glucosaminyltransferase), by demonstrating that, after

incubation at 37°C, label was incorporated into VSV-G-protein (Balch etal., 1984:

Braell et al., 1984). The fact that this transport step could be inhibited by treating the

reaction mixture with the sulphydryl alkylating agent JV-ethyl maleimide (NEM) prior to

incubation led to the identification and subsequent purification of NEM-sensitive factor

(NSF), a homotetramer of 76K subunits (Block et al., 1988).

Since its discovery NSF has been shown to be required for a number of membrane

traffic events including the delivery of VSV-G-protein from the ER to the Golgi in

MDCK (Madin Darby canine kidney) cells, an event which can be followed by

monitoring the formation of the form of the protein carrying five mannose residues (a

product of one of the modification events associated with the Golgi complex), in semi

intact cells (Schwaninger etal., 1991). This delivery is sensitive to NEM, as well as to

an anti-NSF antibody (Beckers etal., 1989). Further evidence that the same protein is

involved in the two separate protein transport reactions comes from the fact that the

block introduced by NEM on ER to Golgi transport is reversible by the addition of

NSF purified using the intra-Golgi transport system.
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Studies involving NSF from mammalian cells have been elegantly complemented by

genetic studies using yeast cells and these have furthered our knowledge concerning the

role of this protein in protein transport. Yeast cells bearing a temperature sensitive

mutation in the SEC18 gene accumulate vesicles associated with the ER as well as

intracellular pools of secretory proteins bearing characteristic ER modifications at 37°C

(Novick etal., 1981). The protein product of SEC18 has 48% sequence similarity with

NSF (Wilson etal., 1989), a finding which was initially surprising since at that time

NSF had not yet been shown to be required for transport between the ER and the Golgi

in mammalian cells, and secl8 mutants were only known to be defective in the

transport of proteins from the ER. A cytosolic fraction prepared from yeast cells can

replace NSF in the CHO intra-Golgi transport system, but cytosol prepared from

secl8 cells lacks this ability (Wilson etal., 1989). The belief that the two proteins

carry out the same function gained further backing from the fact that cytosol prepared

from yeast cells overexpressing SEC18 exhibits enhanced NSF activity. It was this

homology, between a protein required for the intra-Golgi transport of proteins and one

required for transport from the ER, that led to the idea that the same factor might be

required at multiple stages in the secretory pathway.

Cells carrying a temperature sensitive seel8 allele fail to transport secretory proteins

past the ER at 37°C, but there is evidence that Secl8p is also required in subsequent

stages of the yeast secretory pathway. This was shown by taking advantage of the

rapid thermal inactivation of Secl8p. The secretory pathway of a temperature sensitive

seel8 strain was preloaded with radioactively labelled proteins prior to the introduction

of the sec block, following which the glycosylation states of the intracellular pool of

secretory proteins were investigated (Graham and Emr, 1991). The pool was found to

contain not only proteins bearing oligosaccharides characteristic of residency in the ER,

but also proteins which had been modified to various extents by processes known to

occur after proteins have left this organelle (including proteins in their mature forms).

Since these proteins had not been secreted, and could be located to more than one
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intracellular compartment by virtue of modifications they had received, it was deduced

that, as would have been expected from its homology with NSF, in addition to its role

in the transport of proteins from the ER, Secl8p is required in subsequent stages of the

yeast secretory pathway. A suprising finding from this work is that Secl8p is not

required for transport of proteins to the vacuole.

It is noteworthy that seel8 mutants exhibit defects in endocytosis (Riezman, 1985), and

also that NSF has been shown to participate in the fusion of mammalian endocytotic

vesicles with endosomes in vitro (Diaz etal., 1989). One assay used to demonstrate

this involves two different ligands which bind to the same receptor located in the

plasma membrane of macrophages (Diaz et al„ 1989). A DNP (di-nitro phenol)

derivative of (^-glucuronidase was incubated with, and subsequently bound to, the

mannose receptor of one population of macrophages, while an anti-DNP antibody was

similarly bound to the same receptor on a second population of the cells. The two cell

populations were homogenised separately, and post nuclear supernatants prepared from

these homogenates were mixed together. The formation of membrane bound antibody-

antigen complex was followed as a measure of endocytotic fusion. Such fusion was

shown to require cytosol and ATP, as well as NSF.

2.4. NSF/Secl8p functions in association with other proteins

In order to achieve maximum NEM inhibition of protein transport in the systems

described it was found to be necessary to treat both membrane and cytosol fractions

with the reagent (Malhotra etal., 1988). From this finding it was deduced that NSF

exists in both soluble and membrane associated forms, consistent with the fact that

Secl8p exists in both soluble and membrane associated forms within yeast cells (Eakle

etal., 1988). The C-terminal two thirds of the protein consists of two repeats

characteristic of ATP binding sites (Wilson etal., 1989). Mutations in either of these

two regions reduces the ATPase activity of the protein and destroys its fusion activity

demonstrating that ATP hydrolysis plays an important role in the protein's ability to
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stimulate membrane fusion (Rothman and Orci, 1992). The sequence of the 76K

polypeptide subunit of NSF suggests that it is a soluble cytosolic protein, lacking any

obvious hydrophobic regions as are found in viral proteins that induce membrane

fusion (Wilson etal., 1989). This may indicate that, rather than it itself being a

'fusogen', NSF promotes some other, as yet unknown, factor to stimulate membrane

fusion, and that its membrane association is facilitated by interaction with some other

component(s).

The active component involved in membrane fusion is believed to be a 20S particle

(Wilson et al., 1992), consisting not only of NSF, but also a, (3 and y SNAPs or NSF

attachment proteins (Clary et al., 1990). It is this complex that is believed to bind to

integral membrane receptors present in the acceptor compartment (Weidman et al.,

1989). The three SNAPs, water soluble proteins (35K, 36K and 39K) are unable to

bind NSF in solution but can do so when bound to a membrane receptor (Goda and
V

Pfeffer, 1989). An integral membrane protein has been identified as a SNAPs receptor

in mammalian Golgi membranes and since it has been demonstrated that a- and p-

SNAPs compete for binding to membranes it is likely that they share the same receptor

and have similar functions. y-SNAP appears to bind to its own separate receptor and is

thought to have a function distinct from that carried out by a- and P-SNAPs (Wilson

etal., 1992). Hydrolysis of ATP by NSF results in the disassembly of the 20S particle

(Wilson etal., 1992) which, since the ATPase activity of NSF is required for

membrane fusion, is likely to be related to membrane fusion.

seel 7 cells are defective in the transport of proteins from the ER and accumulate 50nm

vesicles (Kaiser and Schekman, 1990). The product of the SEC17 gene has been

shown to be functionally equivalent to a-SNAP (it can replace the mammalain protein

in a transport assay) and is found in a complex which also contains Secl8p (Griff et

al., 1992). It has been stated in a prominent review that Secl7p is required not only for

transport of proteins from the ER, but at multiple stages throughout the yeast pathway

(Rothman and Orci, 1992). Such a finding would indeed provide evidence that
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a-SNAP may serve to attach NSF to membranes at various stages in the secretory

pathway, but the reference cited in the review to back up this statement does not show

that Secl7p functions at multiple stages throughout the yeast secretory pathway

(Graham and Emr, 1991) and therefore some confusion exists in this area. It is from

results such as those discussed so far that many elaborate models explaining how the

various components identified as being involved in membrane fusion may interact have

been proposed. While such models can be useful it is important to remember that they

are only models and that they must be adapted as new results demand and that they

alone should not be used to cast doubt on any data which question their validity.

2.5. GTP-binding proteins are involved in membrane traffic events

The yeast genes SEC4 and YPT1 encode proteins that are required for the fusion of

secretory vesicles with the plasma membrane and the transport of proteins from the ER

respectively (Novick etal., 1981: Segev etal., 1988). The discovery that both Sec4p

and Yptlp are homologues of the GTP-binding, transforming protein ras (Gallwitzef

al., 1983: Salminen and Novick, 1987: Wagner etal., 1987: for a review of the ras

superfamily see Bourne etal, 1990, and also Valencia etal., 1991) led to an

investigation into the role of GTP-binding proteins in membrane trafficking events (for

a recent review on this field see Pfeffer, 1992 and also Gruenberg and Clague, 1992).

In vitro transport of VSV-G-protein in the two mammalian systems that were described

earlier (Section 2.3) is inhibited by the non hydrolysable analogue of GTP, GTPyS as

well as by NEM (Melangon et al., 1987). The inhibition exerted by GTPyS leads to the

accumulation of coated vesicles, and coated buds are evident on Golgi membranes

(Melan^on et al., 1987). NEM inhibition on the other hand leads to an accumulation of

uncoated vesicles (Malhotra et al., 1988). It is evident that the GTPyS block precedes

that imposed by NEM since the presence of both inhibitors results in an accumulation

of coated vesicles of the type associated with the GTPyS block (Orci et al., 1989).

These observations have led to a model of membrane traffic (Figure 1-4) in which
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coated membrane vesicles bud from the donor compartment and are uncoated in an

energy requiring process before docking on to, and finally fusing with the acceptor

membrane. It is in this final fusion event, a Ca2+-dependent process which causes the

vesicles to deliver their contents to the donor compartment, that NSF was initially

believed to be involved (Malhotra etal., 1988: Beckers etal., 1989: but see Section

2.6).

The isolation of coated vesicles from a GTPyS blocked in vitro protein transport system

(set up using mammalian components) led to the identification of cytoplasmically

disposed proteins believed to be responsible, at least in part, for the formation of coated

vesicles from donor membranes during secretion (Malhotra et al., 1989; Serafini et al.,

1991a). These coat proteins (COPs) which are present in coated vesicles in

stoichiometric proportions, include a, 3, y and 5-COP as well as the small GTP-

binding protein ARF (Serafini et al., 1991b). Immunocytochemistry has been used to

show that, as well as being associated with the coated vesicles defined by the GTPyS

block, p-COP and ARF both exist in cytoplasmic forms but are not associated with the

vesicles that accumulate upon inactivation of NSF (Duden et al., 1991b; Orci et al.,

1991b). Many models, in trying to explain the mechanics of membrane traffic events,

invoke the association and dissociation of various complexes such as the formation of

vesicle coats from their constituents (Waters et al., 1991). Models of this type are

attractive since they introduce a number of levels at which events can be controlled.

Such a consideration is likely to be important in a system where insufficient control

could result in incorrect fusion which could have drastic results. The apparent absence

of any of the COPs from Golgi membranes (except concominant with bud formation)

has led to the idea that the coats observed on the vesicles are assembled from cytosolic

subunits prior to budding and the presence of P-COP and ARF in the cytosol supports

this idea.

It was mentioned in Section 2.1 that the 'ER-blocking' sec mutants can be divided into

two classes (Kaiser and Schekman, 1990); those that accumulate 50nm vesicles, and
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those that do not (classes II and I respectively). Whereas mutations in the class II

genes {SEC18, 17 and 22) inhibit the fusion of the 50nm vesicles with their target

organelle, mutations in the class I genes, SEC12, 13, 16, 21 and 23, prevent the

budding of membrane from the donor organelle to form the vesicles. The gene

products of both SEC13 and SEC23 are involved in complexes found in the cytosol

(Hicke and Schekman, 1989: Pryer et al., 1990: Hicke et al., 1992) and it is thought

(Rothman and Orci, 1992) that they may be components of a coat similar to that

observed in mammalian systems (although no such coat has been observed in yeast due

to the limited use of electron microscopy with this organism). However, the

mammalain homologue of Sec23p is restricted to a cytoplasmic zone between the ER

and the Golgi complex in mammalian cells (Orci etal., 1991a) suggesting that its role is

confined to vesicle budding from the ER. The 50nm vesicles associated with the

secl8 block (and that imposed by mutations in SEC17 and SEC22) are predicted to be

uncoated since they are accumulated as a result of the equivalent of the NEM block in

mammalian cells (Rexach and Schekman, 1991).

Since NSF/Secl8p has been found to be required for a number of different membrane

transport steps it is unlikely to be involved in controlling the specificity of membrane

fusion. Such specificity is of central importance to the secretory pathway: to ensure

that proteins travelling along it are correctly processed; to ensure that proteins are

accurately targetted as required; and to prevent random membrane fusion events which,

if allowed to occur, could prove catastrophic to the cell. The identification of a number

of YPTl/SEC4-like genes in mammalian systems (Zahraoui et al., 1989: Chavrier et

al., 1990), many of whose products have been localised to distinct compartments, and

the fact that GTPyS inhibits multiple stages of the secretory pathway (Melangon et al.,

1987: Tooze etal., 1990: Rexach and Schekman 1991: D'enfert etal., 1991) support

the proposal that each step of membrane transport is controlled, at least in part, by a

protein belonging to the ras superfamily. It has been suggested that these GTP-binding

proteins (or rab proteins) ensure that transport vesicles fuse only with the appropriate

membrane compartment using a mechanism similar to that used by EF-Tu as it ensures
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codon-anticodon fidelity (Bourne et al., 1990). GTP-binding proteins operate in many

cellular systems as molecular switches. These proteins adopt different conformations

(and thus have different activities) depending on which nucleotide they have bound

(GTP or GDP). EF-Tu binds tightly to amino acyl-tRNAs in its GTP bound state, and

codon recognition by the tRNA triggers GTP hydrolysis. With GDP bound the factor

is no longer able to participate in the complex and is released leaving the tRNA bound

to the ribosome. This process prevents the misincorporation of amino acids into a

growing polypeptide chain since only a correct codon-anticodon match will bind the

EF-Tu-amino acyl tRNA complex to the ribosome for a sufficient period of time, until

the tRNA is released by EF-Tu.

Perhaps one of the most direct lines of evidence for the involvement of a member of the

ras superfamily in membrane fusion events comes from observations that the

dissociation of rab3A from synaptic vesicles correlates with exocytosis of glutamate

from synaptosomes in vitro (Fischer von Mollard et al., 1991). Conversely,

repolarisation of these membranes leads to the reassociation of rab3A with the vesicles,

an association mediated by a post-translational covalent modification of the protein.

This demonstration of the reversible dissociation of a GTP-binding protein from

membranes undergoing fusion supports models which suggest that the cycling of such

proteins between membrane bound and cytosolic states offers control over membrane

fusion (Pfeffer, 1992).

Subcellular fractionation has determined that 15% of Sec4p forms a cytosolic pool in

wild type cells, with most of the other 85% being associated with the plasma membrane

and some with secretory vesicles (Goud et al., 1988). The membrane association of

Sec4p is characteristic of it being an integral membrane protein and since SEC4 doesn't

encode a signal peptide, or any obvious hydrophobic domains which could serve to

anchor the protein in the lipid bilayer it is believed that Sec4p undergoes a post

translational modification in order to acheive its membrane association. Ras proteins

are subjected to the addition of a isoprenyl unit to a Cys residue found within the C-
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terminal sequence Cys-Cys, Cys-X-Cys, Cys-Cys-X-X or Cys-Cys-X-X-X; where X

represents any residue (Farnsworth etal., 1991: Khosravi-Far etal., 1991). Sec4p

has the C-terminal sequence of Ser-Asn-Cys-Cys which may serve the same function

as the Cys containing sequences found in rab proteins. Yptlp has the C-terminal

sequence Gly-Gly-Cys-Cys and it has been shown that the Cys residues within this

sequence are essential for its function (Molenaar et al., 1988). The gene BET2 was

initially identified as being required for transport of proteins from the ER of yeast cells

(Newman and Ferro-Novick, 1987). Its product is required for the membrane

attachment of Sec4p and Yptlp, a fact demonstrated by the observation that there is an

increase in the soluble pools of these proteins in cells bearing a mutation in BET2

(Rossi etal., 1991). Bet2p is homologous to Ramlp, a component of a protein

prenyltransferase that modifies ras allowing its membrane attachment (Kohl et al.,

1991). Although no isoprenylation of either Sec4p or Yptlp has been detected it is still
believed that such a modification is responsible for their membrane attachment. This

theory is supported by evidence which shows that mutant cells in which the synthesis
of the isoprenoid precursor mevalonic acid is blocked have an increased pool of soluble

Sec4p (Rossi etal., 1991). The failure to detect isoprenylation of either Sec4p or

Yptlp may be due to technical difficulties in that S. cerevisiae does not incorporate

externally added mevalonic acid into proteins. Recent studies have demonstrated that

the fission yeast Schizosaccharomyces pombe will incorporate label into several

proteins (20-26kD) following incubation with tritiated mevalonic acid (Giannakouros

etal., 1992) and such work may lead to the demonstration of isoprenylation of small

GTP-binding proteins in yeast.

Reconstitution of intra Golgi transport of VSV-G-protein in vitro requires fatty acyl

CoA (Pfanner et al., 1990). Palmityl CoA is required after coated vesicles have budded

from the donor membrane, moved to the acceptor membrane, uncoated and bound NSF

(as depicted in Figure 1-4). It is tempting to speculate that fatty acyl CoA is required in

order to acylate some component which could then promote membrane fusion by, for

example perturbing the lipid bilayers or anchoring other fusion components in the
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membrane. Palmitate binds to proteins via a thioester or oxyester linkage both of which

can be easily hydrolysed by specific esterases (Schultz et al., 1988). It can be

envisaged that the control of acylation and deacylation of a component would offer a

level of control of membrane fusion events. The budding of coated vesicles also

requires fatty acyl CoA (Pfanner et al., 1989) and thus it is thought that proteins with a

covalently bound hydrophobic moiety may play a crucial role in both the budding of

transport vesicles, and in their fusion with the relevant acceptor membrane. The small

GTP-binding protein ARF found in the 20S NSF-containing particle is N-terminally

myristylated (Kahn et al., 1987) and is required for the budding of vesicles from Golgi

membranes. Myristylated ARF with GTP bound is capable of inserting into lipid

bilayers but the absence of GTP strips the protein of this ability (Kahn et al., 1987).

One theory of ARF's involvement in budding suggests that, as it binds GTP, ARF

inserts into the membrane of the donor organelle allowing COPs to form the coat

complex around it and anchors them in the membrane once the coat is fully formed

(Rothman and Orci, 1992). GTP hydrolysis occuring on encounter with the target

membrane would destabilise the coat and dissociate it from the membrane, recycling its

constituents to the cytosol.

Whereas the myristylation of ARF and the prenylation of rab proteins may explain their

membrane association, they do not explain their organelle specific distributions. Rab

protein sequences are most divergent in their C-terminal sequences and it has been

shown that the location of rab5 can be changed to that of rab7 by transplanting the C-

terminal thirty four amino acids of the latter onto the former (Chavrier etal., 1991).

Overexpression of rab proteins does not lead to their mislocalisation but to their

cytoplasmic accumulation (Gorvel etal., 1991) an observation which is consistent with

the existance of saturable rab receptors suggesting that the specificity of rab localisation

may be achieved in this way.
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Early endosome fusion detected in an assay similar to that described above (Section

2.3) has been found to be sensitive to GTPyS and can be inhibited by the addition of

cytosol prepared from a mutant cell line which overexproduces a mutant form of rab5

(that is unable to bind GTP). The fusion is stimulated by cytosol prepared from cells

overexpressing wild type RAB5 and is specifically inhibited by the addition of anti-rab5

antibodies (Gorvel et al., 1991). The specificity of these small GTP-binding proteins is

demonstrated by the fact that antibodies against other members of the same family of

proteins do not impare the function of rab5 in endosome fusion. Similar work has been

carried out using rablb which has been localised to the ER and the Golgi. Antibodies

against this ras homologue inhibit transport between these two compartments in semi-

intact cells (Plutner etal., 1991). The time at which these antibodies inhibit this

transport is consistent with ras homologues being required for vesicle targetting

(similarly antibodies against Yptlp block transport between the ER and the Golgi after

vesicle formation) as is the accumulation of vesicles in yeast cells harbouring sec4

mutations (Rexach and Schekman, 1991: Segev, 1991).

In addition to vesicle targetting and fusion, GTP hydrolysis appears to be needed for

vesicle budding (Beckers and Balch, 1989: Toozeetal., 1990: Goda and Pfeffer

1991), but is not necessary for all vesicle formation processes since GTPyS causes the

accumulation of transport vesicles (see above: Melangon et al., 1987). Direct evidence

for the involvement of GTP-binding proteins in the formation of transport vesicles has

come from work involving a suppressor of seel2 mutations, SARI. Sarlp is a GTP-

binding protein required for transport between the ER and the Golgi (Nakano and

Muramatsu, 1989) and the SARI suppression of seel2 has been reconstituted in vitro

(Oka etal., 1991) as has a direct biochemical interaction between Sarlp and Secl2p

that is required for the formation of transport vesicles from the ER (D'enfert et al.,

1991).

There is also evidence for the involvement of heterotrimeric GTP-binding proteins (the

type involved in signal transduction at the plasma membrane) in membrane trafficking
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events (for review and proposed models of how such proteins may be involved see

Barr etal., 1992 and also Pfeffer, 1992). It has been known for some time that such

proteins are found, not only on the plasma membrane, but also on some intracellular

membranes, such as the ER (Audigier et al., 1988) and the Golgi complex (Ercolani et

al., 1990) suggesting that they may be involved in the regulation of some function(s)

of these organelles. The retardation of secretion of proteoglycan from cells treated with

pertussis toxin (Stow etal., 1991) and the inhibition of secretory vesicle formation

from the Golgi complex by A1P in vitro (Barr etal., 1991) both suggests that trimeric

GTP-binding proteins are involved in these membrane trafficking events (pertussis

toxin ADP-ribosylates the ajg-subunit of trimeric G-proteins and A1P is known to

activate trimeric G-proteins but has no effect on G-proteins of the ras superfamily:

Higashijimaetal., 1989: Kahn, 1991).

From the above discussion it can be seen that cell free systems in which various stages

of the secretory pathway have been examined in isolation have played a crucial role in

the identification of factors involved in the pathway. Models of how these components

might act in the cell are then proposed, often takL.g into consideration information

gleaned from work utilising yeast mutants, and later modified, hopefully becoming

closer to reality, as more and more information about the secretory pathway is gathered.
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Figure 1-4

A model of intra Golgi vesicular traffic

Summarised here is a working model for vesicular transport between Golgi

compartments proposed by Rothman and co-workers (Rothman and Orci, 1992). The

membrane on the left (blank) represents a portion of Golgi membrane from which COP

coated vesicles bud. These then fuse with the target membrane (shaded), of the

subsequent Golgi compartment Specific targetting of the coated vesicles is proposed

to be initiated by an unknown component present in/on the acceptor membrane. The

vesicle is then uncoated and the NSF-dependent fusion pathway is triggered.

Components of the coated vqsicle include a complex of COPs (black squares) and ARF

which can exist in both GTP- and GDP-bound forms.

] Donor membrane

3 Acceptor membrane
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2.6. Reconstitution of protein transport within the yeast system

Experiments involving the reconstitution of pro-ot-factor transport from the ER to the

next stage in the yeast secretory pathway (Baker et al„ 1988) demonstrate how the

genetic approach used to study secretion in yeast has been used in conjunction with a

biochemical/cell biology approach similar to that used to study the same system in

higher eukaryotic cells.

Messenger RNA can be translated in yeast lysates to generate a 19K form ofprepro-a-

factor, and it is possible to use such a system to produce 35S-met-labelled prepro-a-

factor which can be used to study protein transport. The labelled precursor can be

translocated post-translationally into either yeast microsomes or the ER of

permeabilised spheroplasts resulting in the protein being core glycosylated and yielding

a radioactive protein with an apparent molecular weight of 30K. The transport of core

glycosylated pro-a-factor to the next compartment of the yeast secretory pathway can

be followed by monitoring the formation of a form of the protein that migrates slowly

in gel electrophoresis and is recognised by a-1,6 mannose specific antibodies. The

formation of this more heavily glycosylated pro-oc-factor from the 30K form of the

protein requires the addition of ATP, cytosol and membranes to a system containing the

core glycosylated form sequestered in the ER. The addition of outer chain carbohydrate

was found to be accompanied by the movement of the radiolabelled protein from

rapidly sedimenting membranes to a population that sediment more slowly and which

are depleted of NADPH-cytochrome c oxidoreductase (an ER marker). This was one

criterion that was used to demonstrate that protein transport was being observed rather

than the fusion of two compartments, a phenomenon which may have given similar

results. The fact that GTPyS inhibits the appearance of the form of the protein

recognised by the a-1,6 mannose antibodies but not the formation of the 30K form also

provides evidence that two separate events are being followed here, and that transport

of the protein between the two compartments involves a GTP binding protein. The

transport system is also inhibited by NEM suggesting the involvement of Secl8p at this

stage in the pathway.
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This cell-free system was established using wild type yeast cells, but has also been

used to demonstrate that the transport could be detected between membranes prepared

from sec23 cells (which are deficient in the transport being measured) if they were

supplemented with cytosol prepared from SEC23 (wild type) cells (cytosol from sec18

cells also failed to support the reaction in agreement with the block imposed by NEM).

SEC23 encodes an 84K protein but the above system has been used to demonstrate that

it exerts its effects on the acceptor compartment of the reaction by associating with the

cytoplasmic face of the membrane as part of a 400K complex (Hicke and Schekman,

1989). This demonstrates the power of in vitro transport assays to aid the

understanding of the molecular mechanisms involved in protein transport.

Standard genetic techniques were used to identify and isolate BOS1 (Newman et al.,

1990), a gene which has been shown to suppress mutations in two genes which disrupt

the above transport system (SEC22 and BET1). Because of its ability to suppress these

mutations it was thought that the product of this gene must function in the transport of

proteins from the ER and the ability to follow the transport ofpro-a-factor as it travels

through the yeast secretory pathway has provided evidence to support this.

Transport ofpro-a-factor from the ER as described above has been divided into three

separate events that can be followed in the assay (Rexach and Schekman, 1991): (1)

vesicle budding from the ER; (2) targetting of these vesicles to the acceptor membrane;

and (3) fusion of the transport vesicles with the acceptor membrane. Vesicle budding

from the ER can be followed by monitoring the appearance of slowly sedimenting

membranes (which fractionates to a medium speed supernatant or MSS) containing core

glycosylated pro-a-factor (the ER, as 'characterised' by the marker enzyme NADPH-

cytochrome c oxidoreductase sediments rapidly). Vesicle targetting was followed by

monitoring the sedimentation of core glycosylated pro-a-factor in a sucrose density

gradient to the same fraction as membranes containing outer chain glycosylated pro-a-

factor (it had been shown that the transport vesicles containing core glycosylated pro-
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a-factor sedimented to a different fraction from the highly glycosylated form). Vesicle

fusion was followed by monitoring the conversion of core glycosylated pro-a-factor to

the highly glycosylated form of the protein in a MSS. The differential inhibition of
these three stages involved in the transport reaction by mutant SEC gene products and
chemical inhibitors has led to the model shown in Figure 1-5 to be proposed. The way

in which this system has been used demonstrates how genetics and cell biology can

work together to identify and characterise components involved in protein transport.

The results depicted in Figure 1-5 suggest that Secl8p is not involved in the actual

membrane fusion event, but rather serves as a docking protein to bring the two

membranes into close proximity since the ER to Golgi transport defect displayed by

yeast secl8 mutant lysates is apparently restricted to targetting. The Ca2+ dependent
vesicle fusion intermediate can be produced in a seel8 lysate at the permissive

temperature and can be used to show that fusion proceeds at both 25°C and 37°C upon

addition of Ca2+ and ATP (Rexach and Schekman, 1991). This has been taken to

indicate that Secl8p may not participate directly in membrane fusion (Schekman, 1992)
as discussed in Section 2.5. However, these findings do not rule out the possiblity that

Secl8p participates in the fusion reaction since it is possible that once assembled into a

fusion-competent form the fusion activity of the mutant form of Seel 8p may not be

thermosensitive, but its ability to assemble into such a form is. Such a scheme fits with

recently reported results which demonstrate that, although required for the formation of

functional vesicles (in an assay similar to that used by Balch etal., 1984), the NEM

sensitive function of NSF is not required for the attachment of these vesicles to the

acceptor compartment or their subsequent fusion with the acceptor membrane

(Wattenberg etal., 1992). If NSF does have a role in membrane fusion, as discussed

in Section 2-5, these results indicate that it is incorporated into vesicle membranes

during vesicle formation and carried to the site of membrane fusion in this way.
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Figure 1-5

A yeast cell free transport system

Depicted here is a breakdown of transport of pro-a-factor from the ER in yeast cells to

the next compartment in the secretory pathway. Inhibition of various stages of the

transport of pro-a-factor by mutant sec gene products and chemical inhibitors in

permeabilised spheroplasts has led to the formation of the following model explaining

how a number of components may function in protein transport (MSS/P; medium speed

supernatant/pellet, see text for details, adapted from Rexach and Schekman, 1991).
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Section 3. The Golgi complex

3.1. Introduction

The structure and distribution of the organelle first described by Camillo Golgi at the

end of the last century (Golgi, 1898) has been described in many eukaryotic cell types

(for review see Mellman and Simons, 1992). A text book description of the

morphology of the Golgi complex might talk of a system of distinct but interconnected,

flattened, membrane-bound compartments (sacs or cisternae), located close to the

nucleus of the cell. This organelle is apparent throughout the cell cycle, except in

premitotic cells where it appears to fragment prior to distribution between the two

daughter cells (Lucocq et al., 1987). Although stacked cisternae can be seen in the

fission yeast S. pombe (Chappell and Warren, 1989), no such structure is visible in

S. cerevisiae (Redding etal., 1991), but there is evidence, some of which is discussed

below, for a compartment of the yeast secretory pathway believed to be analogous to

the mammalian Golgi apparatus.

In mammalian cells the Golgi complex or apparatus is commonly thought of as being

made up of at least three sub-compartments each containing their own sets of unique

enzymes (Dunphy and Rothman, 1983: Duden et al., 1991b). Although

immunocytochemistry provides evidence for this (Roth and Berger, 1982: Slot and

Geuze, 1983: Roth et al., 1985) in that antibodies which recognise different enzymes

seem to recognise different compartments within cells, results obtained using such

procedures are often difficult to interpret and ultimate proof requires that double

labelling techniques are perfected. The compartment closest to the nucleus, which

receives transport vesicles from the ER is known as the cis compartment and it is here

that proteins are modified by mannosidase I (Kornfeld and Kornfeld, 1985: Pelham,

1989) before being moved by vesicular traffic to the medial Golgi where GlcNAc

transferase I catalyses the addition of N-acetyl glucosamine to sugar chains (Dunphy et

al., 1985). The final compartment(s) of the Golgi complex, together with associated
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tubules is(are) known as the trans Golgi network (TGN: Griffiths and Simons, 1986:

Geuze and Morre, 1991) which contains enzymes that complete the processing of many

oligosaccharide chains, for example galactosyltransferase and sialyltransferase (Roth

et al., 1986). The compartmentalisation and polarisation of the Golgi complex were

originally suggested as a result of conventional electron microscopy observations

(Farquhar and Palade, 1981) and additional evidence has since been provided by

biochemical studies (e.g. differential gradient centrifugation can be used to separate

enzymes associated with the organelle, suggesting that they reside in distinct membrane

bound compartments) and immunocytochemistry (Goldberg and Kornfield, 1983:

Dunphy and Rothman, 1983).

In addition to being the 'carbohydrate factory' of the cell, gathering substrates to be

used in the modifications of oligosaccharide chains from the cytosol the Golgi complex

is also the site where a number of other biosynthetic processes occur, including the

formation of glycolipids, and in plants it is in this organelle that extracellular

polysaccharides are produced (Mellman and Simons, 1992). It is from the TGN that

proteins are sorted to their various cellular destinations (Griffiths and Simons, 1986)

such as the lysosome, secretory vesicles or specific plasma membrane domains

(Huttner and Tooze, 1989).

3.2. Evidence for the existence of a Golgi apparatus in yeast cells

Various modifications of the N-linked glycans that are attached to proteins in the ER of

yeast cells that convert them to the form found in secreted proteins have been shown to

be carried out by a membrane fraction that is distinct from the ER (Esmon etal., 1981:

Kukuruzinska etal., 1987). The similarity of these modifications to those carried out

by enzymes located in the Golgi apparatus of mammalian cells suggests that they occur

in an organelle present in yeast cells that is equivalent to the Golgi complex found in

mammalian cells.
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Although no structure with morphology similar to the mammalian Golgi has been

observed in yeast cells, temperature-sensitive mutations in either SEC7 or SEC14 cause

cells to accumulate exaggerated structures that resemble stacked cisternae at the

restrictive temperature (Esmon et al., 1981: Novick et al„ 1981). At 37°C these cells

also accumulate intracellular pools of secretory proteins with characteristic post-ER

modifications of oligosaccharides.

The well characterised processing of the mating pheromone a-factor (see Section 2.2)

makes it a useful tool with which to study protein transport in yeast. It is possible to

detect two of the modifications that pro-oc-factor undergoes as it travels through the

yeast secretory pathway, namely, the addition of outer chain carbohydrate to core

glycans received in the ER and its maturation to a-factor following cleavage by the

Kex2 protease. Work with sec mutants has established that both of these events occur

after the protein has left the ER and before it enters secretory vesicles. In sec7 cells the

addition of outer chain carbohydrate to pro-a-factor can be detected at 37°C, but there

is a substantial reduction in the rate of maturation of the pheromone (Franzusoff and

Schekman, 1989). This indicates that these reactions occur in different, distinct,

cellular compartments, transport between which requires Sec7p. This conclusion is

supported by the fact that intracellular vesicles containing the Kex2 protease sediment in

density gradients to a position distinct from those containing mannosyltransferase I (an

enzyme responsible for the addition of outer chain carbohydrate to glycoproteins)

(Cunningham and Wickner, 1989). These observations have led to the belief that

proteins travelling through the yeast secretory pathway encounter more than one

compartment after leaving the ER and before being packaged into secretory vesicles as

is the case when proteins travel through the Golgi complex of mammalian cells.

Further evidence for compartmentalisation of a yeast organelle taken to be functionally

analagous to the mammalian Golgi comes from pulse-chase labelling experiments

carried out using sec7 cells. At 37°C these cells accumulate a spectrum of N-linked

oligosaccharide structures (ranging from core glycosylation to nearly mature
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carbohydrate) associated with the ordinarily secreted glycoprotein invertase. If the

modifications leading to the various forms of the protein all occurred in a single

compartment then only the mature form of invertase would be expected to accumulate

intracellularly (Franzusoff and Schekman, 1989). Not only do these results support the

existence of different compartments in the organelle, but they also indicate that Sec7p is

required for transport of proteins between the different compartments.

3.3. Visualisation of the yeast Golgi

The absence of a structure analagous to the mammalian Golgi complex in yeast has led

to the cellular distribution ofproteins associated with the yeast Golgi to be investigated

in order to gain some insight into the morphology of this organelle.

Immunofluorescence studies indicate that Kex2p is located at multiple, discrete sites

within wild type yeast cells (between 1-5 per cell) and is not concentrated at a

perinuclear location as may have been expected (by analogy of the organelle in which it

resides with the mammalian Golgi complex) (Redding et al., 1991).

The pattern of Kex2p distribution as determined by immunofluorescence in sec18 cells

at 37°C resembles that seen for a resident ER protein. This is very different from the

pattern observed in the same cells at 25°C, which is the same as that observed in wild

type cells. The distribution of Kex2p in seel cells (which accumulate secretory vesicles

at 37°C) is as that observed in wild type cells at both 37°C and 25°C.

Immunofluoresence has been used to show that secretory proteins accumulate in the

bud of seel cells at 37°C, and the lack of localisation of Kex2p to this area of these

cells demonstrates that the protein does not enter secretory vesicles. Taken together,

these obsevations (Redding etal., 1991) demonstrate that ordinarily the Kex2 protein

progresses from the ER but is not incorporated into secretory vesicles, a conclusion

consistent with its localisation to a stage in the secretory pathway between the ER and

secretory vesicles. Immunofluorescence studies reveal that Sec7p (a protein whose

malfunction leads to the accumulation of exagerated Golgi like structures and
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intracellular pools of secretory proteins bearing post ER modifications) has the same

cellular distribution as that observed for Kex2p (Franzusoff etal., 1991).

From all the above evidence it seems reasonable to refer collectively to the cellular

compartments encountered by proteins travelling through the yeast secretory pathway

after they leave the ER and before they are packaged into secretory vesicles as the yeast

Golgi. This recently described organelle is currently receiving much research interest,

including work involving the two genes, SEC7 and SEC14 which have Golgi-related

functions (Schekman, 1992). The Kex2 protein resides in a compartment of this

organelle that is encountered by proteins after they have received covalent modifications
carried out in other compartments of the organelle, before they are packaged into

secretory vesicles which are targetted to either the vacuole or the plasma membrane

(Franzusoff and Schekman, 1989: Graham and Emr, 1991).

3.4. Protein transport assays involving the yeast Golgi
Emr and his colleagues have demonstrated that Secl8p is required at multiple stages in
the yeast secretory pathway by showing that individual events in the maturation of ce¬

faclor require the protein, as indicated in Figure 1-6 (Graham and Emr, 1991). The
same rationale of preloading the secretory pathway of a cell with radiolabelled protein

prior to the introduction of a rapid sec block (described in Section 2.3) has been used to

show that Sec23p is required for the addition of a-1,6 mannose to the core

glycosylated form and the addition of a-1,3 linked mannose to the a-1,6 mannosylated

form but not for the Kex2p dependent proteolytic processing of the a-1,3

mannosylated form or the secretion of the mature peptide from the cell. These results,
taken in conjunction with the knowledge that Secl8p/NSF is required for vesicle
mediated transfer of proteins between individual compartments, provide evidence that
each of the events in the maturation of a-factor described above occurs in a separate

membrane bound compartment.
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The vacuolar protein carboxypeptidase Y (CPY) is synthesised as an inactive precursor

pro-CPY which carries information that results in its localisation to the yeast vacuole

where it is proteolytically processed to the mature form (mCPY). It is possible to

observe the transport of this protein to its final destination in permeabilised spheroplasts

prepared from cells that have been radioactively labelled under conditions that

kinetically trap precursor forms of CPY bearing post translational modifications

characteristic of residency in the Golgi apparatus (Vida et al„ 1990). Transport can be

followed by monitoring the appearance of mCPY, an event which requires the action of

vacuolar proteinase A (PEP4 gene product). Transport has been shown to require ATP,

cytosol and it has proved impossible to reconstitute the transport in spheroplasts

prepared from certain vps mutants confirming that the products of VPS15, 33 and 34

are required for the transport of proteins to the vacuole.

The gene encoding proCPY (PRC1) has been used to construct a hybrid gene which

encodes a CPY-oc-factor-invertase fusion protein (Graham and Emr, 1991). Cells

expressing the hybrid gene secrete the invertase portion of the protein while the CPY

portion remains inside the cell. From this, it is concluded that proteins are sorted to the

vacuole after they have encountered the Kex2 protease which is responsible here for

cleaving the fusion protein.

Taken together the above findings (Vida et al., 1990: Graham and Emr, 1991) have led

to a model for the compartmental organisation of post-translational modification and

vacuolar protein sorting events in the yeast Golgi complex to be proposed (outlined in

Figure 1-6).
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Figure 1-6

A proposed compartmental organisation of the yeast Golgi

This model for the compartmental organisation of various posttranslational modification

and vacuolar protein sorting events in the yeast Golgi complex has been described by

Emr and his co-workers. Shown travelling through the pathway are pro-a-factor (pro

a f) and the vacuolar protein CPY. The latter is depicted in the various precursor forms

in which it is found as it travels through the Golgi (pi and p2, p; precursor, m;

mature). Also shown are the positions at which the gene products of SEC18 and

SEC23 have been found to be required (adapted from Graham and Emr, 1991).
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3.5. The importance of the lipid composition of organelles

SEC14 is essential for the secretory function of a late Golgi compartment in yeast and

has been shown to encode a phosphatidylcholine/phosphatidylinositol (PC/PI) transfer

protein (Bankaitis et al., 1990). Phospholipid transfer proteins move specific

phospholipids from the outer leaflet of one membrane bilayer to that of another. This

finding has implicated phospholipid biosynthesis and exchange in the functioning of the

secretory pathway (Cleves et al., 1991a). Since secl4 cells can function normally if

they also contain mutations in genes encoding enzymes involved in PC synthesis

(Cleves et al., 1991b) it has been proposed that efficient transport through the Golgi

complex depends on a high PI:PC ratio in the cytosolic leaflet of Golgi membranes.

This proposal predicts that incubation in choline-deficient medium should rescue secl4

mutants but this does not appear to be the case and this area remains unclear (as

discussed by various authors in Trends in Cell Biology. Volume2, pages 69-72).

PI is a glycolipid with a large polar head group that gives the molecule an overall

conical shape. PC on the other hand is zwitterionic and has a more cylindrical shape.

A membrane with a high PI/PC ratio in its outer leaflet would have a very curved

structure. Such a structure may be necessary for the formation of secretory vesicles

from membranes. It can be seen that vesicles do bud from highly curved regions of the

mammalian Golgi (i.e. the rims of Golgi saccules) which consists of otherwise planar

membranes (Farquhar and Palade, 1981). Such a theory predicts that post-Golgi

secretory vesicles will have a higher PI/PC ratio than their donor membrane (such a

prediction will only be able to be tested following the isolation of such secretory

vesicles and their donor organelle). Rather than exerting its effect through structural

means, the correct phospholipid composition of membranes may be important in

secretion by providing the correct environment for the functioning of proteins involved

in facilitating the various stages involved in the secretory pathway. There are many

examples of proteins requiring specific lipid environments to function optimally: it may

be envisaged for example that the nucleation of COPs could require a high PI/PC ratio.
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The exciting discovery of the function of Secl4p will undoubtedly lead to a revival of

interest in the lipid composition of cellular organelles and in the lipid requirements of

components involved in membrane traffic. The latter may be investigated by the

incorporation of such components into liposomes containing a soluble cargo protein,

delivery of which to an acceptor compartment could then be followed. Such a scheme

would be able to demonstrate whether all the components involved in a protein

transport step had been identified.

Section 4. Immunoisolation of subcellular organelles

4.1. Introduction

From the work and ideas discussed so far in this chapter a number of places are evident

where the ability to separate one organelle from all other cellular components would be

advantageous, section 3.5 for example. This would allow interpretation of results from

transport assays to be made with less confusion as implied by the quote 'don't waste

clean thinking on dirty enzymes' (Efraim Racker, quoted in Romberg, 1990). The

technique of immunoisolation allows this to be achieved. An antibody that has been

covalently bound to a solid support (to form an immunoadsorbent or ImAd) can be

used to isolate its antigen and any associated structures from a cell lysate or other

biological preparation. Direct immunoisolation involves the addition of a preformed

ImAd to the preparation from which the desired cellular component is to be isolated.

During incubation in the preparation under appropriate conditions the ImAd will bind

the antigen against which its antibody was raised. The ImAd can then be recovered,

either by centrifugation, if for example agarose beads were chosen as the solid support,

or by magnetism if magnetic beads had been used. Such quick and easy recovery

procedures allow the TmAdrantigen and associated structures' complex to be washed

free of any material which may bind to the complex non-specifically. Indirect

immunoisolation involves the addition of free antibody to a system, after which a
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matrix that will bind the antibody (as part of an antigen:antibody complex) is added (see

Figure 1-7).

4.2. Immunoisolation of membranes

Equilibrium density gradient centrifugation is often used to separate membranes that are

derived from different organelles, with the various fractions being identified by

assaying for the activities of various marker enzymes. This technique has been used to

prepare fractions enriched in various organelles which have subsequently been used as

donor or acceptor fractions in protein transport assays (e.g. Balch et al., 1984). The

Golgi fraction used by Rothman and co-workers in their intra-Golgi transport assay is

reported to have been between 30 and 40% pure (Balch et al., 1984). The use of less
contaminated fractions in such a system would offer many advantages in analysing
results and although it is likely that a purer preparation could be obtained using standard

techniques this is likely to be more time consuming than the preparation of such a

fraction by immunoisolation. Immunoisolation takes advantage of an antigen's
localisation to a particular cellular structure in order to purify that structure by using the

antigen as a handle. Since it relies on the specific interaction between an antibody and
its antigen this technique offers advantages in the purification of membrane fractions
over more traditional methods of isolating such fractions which rely on physical
differences between membranes in that membranes of a higher purity may be obtained
in a shorter period of time.

When membranes are required to study protein transport, immunoisolation offers an

advantage over equilibrium density gradient centrifugation in that it facilitates recovery

of the membrane fraction after the transport assay has been carried out. This may be
useful as it allows the analysis of the fraction before and after the reaction and can be
used to study any changes which may have occured during the reaction.
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Figure 1-7

Immunoisolation of cellular structures

A diagramatic representation of the theory behind the technique of immunoisolation

shown here comparing direct and indirect forms of the technique.
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The technique also allows the 'sidedness' of membrane vesicles to be chosen. This can

be achieved using an antibody that specifically recognises its antigen through a domain

known to be located on a particular side of a membrane (Figure 1-8).

The plasma membrane of epithelial cells is divided into two distinct domains, with

different protein compositions. Transport vesicles that deliver proteins from the TGN

of such cells to the plasma membrane are targetted either to the apical domain or the

basolateral domain. VSV-G-protein is targetted to the basolateral plasma membrane of

MDCK cells, whereas a membrane protein of influenza virus, haemagglutin A is

targetted to the apical domain of the same cells. Antibodies raised against cytoplasmic

domains of the two virally-encoded proteins have been used to demonstrate that these

two proteins are packaged into distinct sets of transport vesicles in cells infected with

the two viruses (Wandingeret al., 1990). The two sets of vesicles, immunoisolated

using the antibodies immobilised on agarose beads from a gradient purified membrane

fraction prepared from virally infected cells, both contain a subset of proteins present in

the fraction from which they were isolated. Some of these proteins are present in both

types of vesicles and are believed to be involved in budding and/or fusion events,

whereas proteins that are unique to one type of vesicle may be involved in specific

recognition events such as protein sorting or vesicle targetting.

Antibodies that recognise the cytoplasmic domain of G-protein have also been used to

immunoisolate endocytotic intermediates from extracts prepared from cells whose

endocytotic pathways had been allowed to proceed for various lengths of time

(Gruenberg et al., 1989). Both of the examples outlined above allowed the

characterisation of the isolated intermediates.
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Figure 1-8

Immunoisolation of membrane vesicles

This figure demonstrates how an antibody which recognises a specific domain of a

membrane protein whose orientation is known may be used to isolate vesicles of

known sidedness derived from the membrane in which the antigen resides.

population of membrane vesicles
containing both inside-out (A) and

outside-out (B) vesicles derived from
the organelle of interest

immunoisolation using an antibody
that recognises a cytoplasmically
disposed domain of a protein will

purify right-side out vesicles
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Vesicles involved in protein transport are often present in cells in very small amounts,

and are short lived intermediates. Incubation of sec mutants at their restrictive

temperature can increase the cellular population of functional transport vesicles, and this

fact has been taken advantage of in the purification of post-Golgi secretory vesicles

from yeast from blocked sec6 cells (Walworth and Novick, 1987). This purification,

involving gel filtration chromatography as well as various forms of centrifugation,

allowed the characterisation of these vesicles and led to the identification of two

membrane proteins associated with them. It may be possible to use this information to

develop a procedure which would allow these same vesicles to be immunoisolated.

Such a procedure would offer an advantage over the purification procedure described,

in that it would allow the vesicles to be added to, and then later removed from cell free

systems with ease, allowing their function to be studied.

4.3. Immunoisolation in conjunction with protein transport assays

SEC7 encodes a phosphoprotein with a molecular weight of 230K (Achstetter et al.,

1988) that is required at a number of stages in the secretory pathway (Franzusoff and

Schekman, 1989). Sec7p is present in wild type yeast lysates in approximately equal

proportions of soluble and membrane associated forms. Antibodies raised against the

protein have the ability to block the formation of the highly glycosylated form of pro-ce¬

faclor in the transport assay described in Section 2.6 (Franzusoff et al., 1992). The

addition of the antibodies did not affect the budding of vesicles from the ER, since the

core glycosylated form of the protein still appeared in the medium speed supernatant

(MSS-that does not contain the ER) in their presence, but this did not receive outer

chain glycosylation indicating that delivery to the Golgi had been blocked. The

transport assay has been used to show that the Golgi present in a MSS treated with the

Sec7p antibodies is competent as an acceptor compartment, but the transport vesicles

containing core-glycosylated pro-a-factor are incompetent for fusion. Protein A-

Sepharose added to such a MSS results in the recovery of membrane vesicles devoid of

marker enzymes characteristic of the ER (Franzusoff etal., 1992). Examination of this
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immunoisolated fraction by electron microscopy reveals that it contains vesicles similar

in size to those accumulated by class II ER-accumulating sec mutants. This technique

has opened a way to the characterisation of these vesicles, although since Sec7p has

been shown to be required at multiple stages in the yeast secretory pathway the

preparation may contain other vesicles apart from those derived from the ER and this

must be taken into consideration. Initial characterisation studies (from elecron

microscopy) have been taken to suggest that Sec7p may be involved in the formation of

a coat around these transport vesicles a theory which fits with its involvement in

multiple stages of the secretory pathway.

Section 5. Ouline of the project
The aim of this project was to investigate the use of immunoisolation procedures for the

purification of specific membrane fractions from yeast. More specifically, a polyclonal

antiserum was to be raised against the cytoplasmically disposed C-terminal domain of

the Kex2 protease which could then be used to isolate membranes derived from the

compartment of the yeast Golgi containing this protein. The isolation of such

membranes would allow the characterisation of the Kex2p compartment with respect to

its structure, by examining the composition of immunoisolated material, and also its

function, by developing transport assays in which it may be used.

S/
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Chapter 2

Materials and methods



Materials

2.1. Chemicals, enzymes and antibodies.

All chemicals were obtained from Sigma Chemical Co. or BDH Chemicals. Trans-

label [3^S]-met (1136 Ci/mmol) was from ICN Radiochemicals. DNA modification

enzymes were from BRL. Taq polymerase was from Promega limited. Zymolyase

100T was from the Seikagaku Kogyo Co. Japan, lysozyme was from Sigma Chemical

Co. Antibodies not produced during the course of this project were obtained from the

Scottish Antibody Production Unit (unless otherwise stated), the anti-ampicillinase

antibodies were from 5 prime-3 prime Inc. Enhanced chemiluminescence (ECL) kit

and Hyperfilm-MP were from Amersham International. Pansorbin (Staphylococcus

aureus cells, standardised) was from Calbiochem. The synthetic substrate for the Kex2

assay (b-QRR MCA) was from the Peptide Institute Inc., Japan. Nitrocefin was from

BBL Microbiology Systems. IgG-Sepharose (Fast Flow) was from Pharmacia LKB.

Affi-gel 10 was from Bio-Rad Laboratories, as were the Poly Prep chromatography

columns. Media components were from Difco Laboratories.

2.2. Bacterial and yeast strains

The strains of E. coli and S. cerevisiae used in this study are listed in Table 1 (see

Appendix). Derivatives of these are not listed, but are described in appropriate text.

Transformants are denoted by listing the strain, followed by the plasmid with which it

has been transformed in parenthesis.

2.3. Media

Bacterial cultures were grown in complete medium (Luria broth; L-broth) containing

1% (w/v) Bacto tryptone, 0.5% (w/v) Bacto yeast extract and 0.5% (w/v) NaCl.

Antibiotics were added to this as required. Bacto agar was added to the above to 1.5%

(w/v) when solid medium was required.
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Yeast cultures were grown in either rich medium (YPD; containing 1% (w/v) Bacto

yeast extract, 2% (w/v) Bacto peptone and 2% glucose) or minimal (selective) medium

(SD; containing 0.67% (w/v) Bacto yeast nitrogen base without amino acids and 2%

(w/v) glucose) to which the following were added, to the following final

concentrations, as required; histidine (20(ig/ml), leucine (30|ig/ml), tryptophan

(20fig/ml), uracil (20|ig/ml). Where stated, the carbon source supplied in the medium

was galactose which was added to the above in place of glucose to make (YPG and

SG). 2% (w/v) Bacto agar was added, to 2% (w/v), to the above when solid medium

was required.

Sporulation media consisted of 0.1% (w/v) Bacto yeast extract, 1% potassium acetate

and 0.05% (w/v) glucose.

2.4. Plasmids

All plasmid DNA that was used in this study is described in Table 2 (see Appendix).
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Methods

2.5. DNA manipulations

All general DNA manipulation techniques, including restriction endonuclease cleavage,

extraction with phenol, precipitation in ethanol, ligation and PCR were performed as

described by Maniatis etal (1982) and Sambrook (1989).

Gel electrophoresis, for the separation and visualisation of DNA fragments, was

routinely carried out using agarose gels of between 0.6 and 1.2% (w/v) agarose; the

size of fragments of DNA was estimated by comparing their mobility through an

agarose gel with that of fragments of known size liberated by digestion of phage X.
DNA with either Pstl or 5.vtEII.

2.6. Transformation of bacterial and yeast cells

DNA was transformed into bacterial cells which had been treated with CaCl2 as

described by Maniatis etal (1982). Yeast cells were made competent for transformation

by using LiOAc as described by Ito etal. (1983).

2.7. Preparation of yeast genomic DNA

A 5ml of culture of yeast cells was grown overnight in YPD. Cells were harvested

from this and resuspended in 0.5ml 1M sorbitol, 0.1M EDTA (pH7.5). Zymolyase

was added to 20|ig/ml and the cells were incubated at 37°C for 1 hour. Spheroplasts

were harvested by centrifugation for 2 mins at 4000g and resuspended in 50mM

Tris.HCl (pH7.4), 20mM EDTA. 50|il 10% SDS was added prior to incubation at

65°C for 30 mins, after which 200(il 5M potassium acetate was added. The sample

was incubated on ice for 1 hour and then centrifuged at 10 OOOg for 5 mins. An equal

volume of isopropanol was added to the resulting supernatant, and after 5 mins
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incubation at room temperature the sample was centrifuged for 10 mins at 10 OOOg.

The pellet thus obtained was air-dried and then resuspended in 300(il TE buffer (lOmM

Tris.HCl (pH8.0), ImM EDTA). 30|il of 3M NaOAc (pH5.2) and 200|ll isopropanol

were added and the sample was centrifuged for 5 mins at 10 OOOg. The final pellet was

resuspended in 200|il TE buffer.

2.8. Determination of yeast mating type

To establish whether a yeast strain was MATa or MATa, cells were mixed separately

with the strains DC 14 and DC 17 under conditions that select for the formation of

prototrophic diploids. MATa strains formed such diploids with DC 14 and MATa

strains with DC 17.

2.9. Electrophoretic separation of proteins

Electrophoretic separation of proteins was performed using SDS polyacrylamide gels

following the basic procedures described by Laemmli (1970) using the v iious

solutions detailed below.

Separating gel buffer: 0.75M Tris.HCl (pH8.8), 0.2% (w/v) SDS

Stacking gel buffer: 0.25M Tris.HCl (pH6.8), 0.2% (w/v) SDS

Acrylamide solution: 44% (w/v) acrylamide, 0.8% (w/v) N;N'-methylene-

bisacrylamide

Electrophoresis buffer: 0.125M Tris. 0.2M glycine, 0.1% (w/v) SDS

(gives pH8.3 without adjustment)

SDS sample buffer: 0.0625M Tris.HCl(pH6.8), 20% (w/v) glycerol,

4% (w/v) SDS, 5% (w/v) p-mercaptoethanol

Routinely, either a 12% (w/v), 10% (w/v) or a 6% (w/v) separating gel, with a 5%

(w/v) stacking gel, was used to achieve separation of proteins.
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Following electrophoretic separation, protein bands were visualised by staining with

Coomassie blue: the gel was allowed to equilibrated with a solution of 0.25% (w/v)

Coomassie Brilliant Blue dissolved in 50% (v/v) methanol, 7% (v/v) acetic acid.

Destaining of the gel was achieved by gently agitating the gel, immersed in 10% (v/v)

methanol, 7% acetic acid.

2.10. Preparative SDS-PAGE and electroelution

The sample from which the desired protein was to be purified was subjected to

electrophoretic separation using an appropriate polyacrylamide gel with a single well

(capable of holding 1ml of sample) across its top. Following staining of the gel with

Coomassie blue a slice of the gel containing the protein of interest was excised. The

protein was extracted from this gel slice by dividing it into small fragments (approx

2mm x 2mm) and placing them into a length of dialysis tubing containg 5ml

electrophoresis buffer. Electroelution was achieved by placing the sealed dialysis

tubing containing the gel in an electrophoresis tank containing electrophoresis buffer

and applying a voltage of 125V for 5 hours. Following this, the buffer into which the

protein had been eluted was dialysed, at 4°C, against distilled water.

2.11. Fluorography

Following electrophoretic separation of radiolabelled proteins on an appropriate

polyacrylamide gel the gel was incubated on a shaking platform in 25% methanol, 7%

acetic acid for 1 hour. The gel was then washed (4x10 mins) in distilled water, before

being incubated in 1M sodium salicylate for 1 hour. The gel was washed as before,

prior to being vacuum dried onto blotting paper. X-ray film was exposed to the dried

gel at -70°C.
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2.12. Transfer of proteins onto nitrocellulose

2.12a. Semi-dry electroblotting

Where required, proteins that had been separated on polyacrylamide gels were

transferred onto nitrocellulose by a semi dry blotting procedure (using an LKB semi

dry blotting apparatus). Six pieces of 3MM paper and one piece of nitrocellulose were

cut to the same size as the gel to be blotted. Two of the pieces of 3MM paper were

soaked in anode buffer 1 (0.3M Tris.HCl (pH10.4), 20% (v/v) methanol, 0.1% SDS)

and placed, one on top of the other, on the anode plate. A piece of 3MM paper soaked

in anode buffer 2 (25mM Tris.HCl (pH10.4), 20% (v/v) methanol, 0.1% (w/v) SDS)

was placed on top of these, followed by the nitrocellulose which had been soaked in

water and then the gel which had been soaked in cathode buffer (25mM Tris.HCl

(pH9.4), 20% (v/v) methanol, 0.1% (w/v) SDS, 40mM 6-amino-rc-hexanoic acid).

The remaining 3 peices of 3MM paper were soaked in cathode buffer and layered on

top of the gel. The cathode plate was placed on top of the stack and transfer was

achieved by applying a current of 0.8mA per cm2 gel area.

2.12b. Wet electroblotting

For the detection of Ste2p on immunoblots it was necessary that the buffers used did

not contain methanol. When this protein was to be detected the proteins were

transferred using a wet blotting apparatus. The SDS-polyacrylamide gel containing the

separated proteins was placed next to a sheet of nitrocellulose that had been cut to the

same size as the gel and was then sandwiched between two sets of three sheets of 3MM

paper that had been soaked in blotting buffer (125mM Tris.HCl (pH7.4), 200mM

glycine). Transfer was achieved by placing this sandwich in a tank containing blotting

buffer and a current of 0.8 amps was applied for 2 hours (with the nitrocellulose closest

to the anode).
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2.12c. Dot blotting assay: screening culture supernatants

(for monoclonal antibody production)

Yeast lysate (diluted to 0.2mg/ml and solubilised with 0.05% Triton X-100) was

applied to a sheet of nitrocellulose (soaked in distilled water) using a Biorad Bio-Dot

microfiltration apparatus by passive filtration. Unfilled sites on the nitrocellulose were

blocked with 0.5% Tween-20 in TBS (1 hour). The nitrocellulose membrane was put

back in the dot-blotting apparatus with the positions of the dots corresponding to the

wells. The apparatus was sealed and various culture supernatants were added to the

wells. Following overnight incubation, the filter was processed as described for

immunoblot analysis (2.13.), using anti-mouse-IgG and anti-mouse-IgM antibodies.

2.12d. Ponceau S staining

The presence of proteins on nitrocellulose filters was detected using Ponceau-S. The

nitrocellulose was immersed in 0.2% (w/v) Ponceau-S in 3% (w/v) TCA. Destaining

was achieved by washing the nitrocellulose with distilled water and the staining was

reversible upon washing the filter with TBS (lOmM Tris.HCl (pH7.4) 1.5M NaCl).

2.13. Immunoblot analysis

Unfilled sites on a nitrocellulose filter onto which proteins had been transferred were

filled by gently agitating the filter in blocking buffer (5% (w/v) non-fat dried milk, 1%

Tween-20 in TBS; lOmM Tris.HCl (pH7.4) 150mM NaCl) for 1 hour. The filter was

then exposed to primary antibody for one hour with gentle agitation. Antibody

preparations were presented to the filter, diluted in blocking buffer as described in the

text.

Following exposure to primary antibody , the filter was washed, once for 15 mins and

then 3 times for 5 mins with washing buffer (1% (v/v) Tween-20 in TBS). Where

required, the filter was then exposed to secondary antibody (routinely, a donkey anti-

rabbit IgG-HRP conjugate used at a dilution of 1 in 5000 in blocking buffer for the
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detection of rabbit antibodies; and either an anti-mouse-IgG (whole molecule) or an

anti-mouse-IgM (|i chain specific) antibody for the detection of mouse antibodies) for

20 mins. For the detection of protein A fusion proteins only one antibody (a rabbit

anti-bovine IgG-HRP conjugate was used at a dilution of 1 in 10 000 in blocking

buffer) was required, and the filter was exposed to this for 20 mins. Prior to the

detection of the HRP-conjugated antibody, the filter was washed as before, and then

once briefly with TBS.

Two different methods of detecting HRP conjugated antibodies on immunoblots were

used in this study. Immunoblots presented in the first part of Chapter 3 (up to and

including Figure 3-7) were developed using 4-chloro-l-naphthol. This was achieved

by placing the filter in developing solution (containing 20ml of a solution of 4-chloro-l-

naphthol (3mg/ml in methanol) and 20ml of a 30% (w/v) H202 solution per 100ml) and

watching for the appearance of a dark brown precipitate indicating the presence of HRPV

on the filter. The reaction was stopped by washing the filter liberally with distilled

water and then storing in TBS in the absence of light. It was important that

immunoblots developed in this way were photographed as soon as possible as the

colour tended to fade fairly rapidly.

Immunoblots presented later in this study were developed using enhanced

chemiluminesence (ECL) with ECL reagent in accordance with the manufacturers

instructions.

N.B. In order to include molecular weight marker proteins on immunoblots, the

nitrocellulose filter was stained with Ponceau S prior to immunoblot anlysis. This

revealed the positions of marker proteins which had been separated on the gel, these

positions were then marked on the filter using indelible ink.
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2.14. Production of hybrid proteins from E. coli

2.14a. Induction of expression from the lacZ promoter

A culture of bacteria harbouring a plasmid containing a gene under the control of the
lacZ promoter (e.g. pKpra) was grown in selective medium to an OD60q of 0.8.

Expression was induced by the addition of IPTG to a final concentration of 0.25mM
and the culture was left growing at 37°C for a further 4 hours.

2.14b. Induction of expression from the PR promoter
A culture of bacteria harbouring a plasmid containing a gene under the control of the PR

promoter (e.g. a pEX vector) was grown at 30°C in selective medium to an OD60q of
0.4. Expression was induced by incubating the culture at 42°C for 4 hours.

2.14c. Fractionation of a bacterial culture by differential centrifugation

(Preparation of inclusion bodies)

Cells were harvested by centrifugation (5 mins at 5000rpm in a Beckman JA-20/JA-14

rotor), washed once with, and then resuspended in, one twentieth of the culture volume
lOOmM Tris.HCl (pH7.4). Lysozyme was added to a final concentration of lmg/ml
and the cells were left on ice for 20 min. Cell lysis was achieved using sonication (5
bursts of 30 seconds with 2 min cooling intervals on ice). The lysate was clarified by

centrifugation in a Beckman JA-20 rotor (3000rpm for 5 mins), to yield the pellet P3.
The resultant supernatant was subjected to further centrifugation in the same rotor (20
mins at 20 OOOrpm) to yield the soluble S20 and the insoluble P20 fractions. For

comparison of the protein composition of the various fractions, both the P3 and the P20
were resuspended in one twentieth of the original culture volume lOOmM Tris.HCl

(pH7.4) before subjection to electrophoretic separation.

2.14d. Use of IgG-Sepharose in the purification of Spa-fusion proteins
A soluble fraction (of volume V) was prepared from an appropriate bacterial culture

(Chapter 3) and was incubated overnight at 4°C on a rotating wheel to allow gentle
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mixing with IgG-Sepharose (V/10) which had been equilibrated, by washing, with

TST buffer (50mM Tris.HCl (pH7.4), 150mM NaCl, 0.05% Tween-20). The IgG-

Sepharose was washed eight times with TST buffer before being resuspended in

elution buffer (V/5) (0.5M acetic acid adjusted to pH3.4 with ammonium acetate).

Elution of material bound to the IgG-Sepharose was achieved by gentle mixing at 4°C

for 20 mins. A second elution was performed for a further 10 mins and the two eluates

were pooled and dialysed against distilled water.

2.15. Production of polyclonal antibodies from rabbits

2.15a. Immunisation of rabbits and collection of serum

For immunisation with spa fusion proteins, lOOpg of the protein (in a 250pl volume)

was emulsified with an equal volume of Freund's complete adjuvant. This material

was administered to young New Zealand white rabbits by subcutaneous injection. Six

weeks after the initial injection a subcutaneous booster of the same amount of the

protein was administered in Freund's incomplete adjuvant. A second boost was

administered in this way six weeks after the first, 10 days after which, 5ml of blood

was collected from the animal. Serum was prepared from this blood sample by

allowing it to stand at room temperature for 1 hour and then at 4°C for 24 hours. The

serum was separated from clotted material by centrifugation (10 mins at 10 OOOrpm in a

Beckman JA-20 rotor) and was passed through a 0.22pm Millipore filter. After it had

been ascertained that the serum contained the desired antibodies (e.g.by checking for

recognition of the appropriate (3gal fusion protein) the animal was sacrificed (provided

that it was less than 14 days after the last boost) and serum was prepared from the

blood obtained. Serum was stored in 1ml aliquots at -20°C.

2.15b. The use of Pgal fusion proteins to affinity purify antibodies

2ml (slurry volume) Affi-gel 10 was washed once with 10ml water and once with 10ml

0.1M Hepes (pH7.4), the Affi-gel was allowed to settle out by gravity, on ice, in
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between these washes. Routinely, 500)ig of the appropriate fusion protein,

resuspended in 10ml 0.1M Hepes (pH7.4) was bound to the matrix by allowing gentle

mixing at 4°C for 2 hours or overnight. The affinity matrix was washed using 0.1M

Hepes (pH7.4) until the A280 of the buffer after washing was zero. Any remaining

reactive groups on the Affi-gel were quenched by gentle mixing with 10ml 0.2M

glycine HC1 (pH8.0) for an hour at 4°C. Following two washes with 0.1M Hepes

(pH7.4), the affinity matrix was gently mixed with elution buffer (0.2M glycine HC1

(pH2.8) for 5 min at room temperature. After restoration to pH7.4 using the 0.1M

Hepes buffer, the affinity matrix was incubated at 4°C on a rotating wheel for 2 hours

or overnight with 5ml immune serum (raised against the appropriate protein) before

being packed into a 10ml Poly Prep chromatography column. The column was washed

with 0.1M Hepes (pH7.4) until the buffer coming through the column had an A280 = 0

(approx. 5 bed volumes). Elution of antibodies bound specifically to the column was

achieved using 0.2M glycine HC1 pH2.8. Fractions (1ml) were collected into tubes

containing 75)0.1 1M Tris.HCl (pH8.0) (to give a final pH 7.4) with A28q being
monitored. Using this procedure, generally it was the first 5 fractions eluted from the

column which were pooled giving a 5ml sample with an A280 = 0.05. This was

divided into aliquots (lOOpl) and stored at -20°C following the addition of sodium

azide to 0.1%.

2.16. Production of antibodies from mice

A six week old mouse was immunised subcutaneously with 100|ig Spa-Pmalp fusion

protein (Chapter 3). Three weeks later it was immunised with a similar dose of the

same antigen intraperitoneally, a procedure that was repeated once more three weeks

later again. Three days after the final immunisation the mouse was bled to death. 2ml

sera was prepared from the mouse in the same way as described for the preparation of

rabbit sera. The mouse's spleen was removed under sterile conditions and was used to

prepare hybridoma cell lines by Dr J. Haywood (as described in Tugal, 1991).
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The supernatants from these cell lines were tested for reaction with the Pmalp in yeast

cell lysates during the course of this study.

2.17. Preparation of yeast cell lysate/homogenate

Where a lysate was required for the preparation of membrane vesicles all cell breakages

were achieved in the presence of 0.8M sorbitol.

2.17a. Yeast cell glass bead lysate

Cells were harvested (by centrifugation for 5 mins at 5000rpm in a Beckman JA-20/JA-

14 rotor) from yeast cultures that had been grown to an OD600 of 0.7-1.0, washed once

in distilled water and resuspended to 100 OD units/ml in lysis buffer (200mM

Tris.HCl (pH7.4), 0.7M sorbitol, 2mM EDTA.) containing protease inhibitors (ImM

PMSF, 0.4mg/ml each of pepstatin, leupeptin, chymostatin and antipain, ImM EDTA,

ImM EGTA.). Glass beads were added to the level of the meniscus and the tubes were

vortexed 4 x 30 seconds (with two minute cooling intervals on ice). The cell lysate was

collected by centrifugation, through the glass beads, at 3000g for 10 mins. This step

resulted in a pellet of unlysed cells and cell debris and a supernatant of cell lysate.

2.17b. Yeast cell homogenate

Cells were harvested as above, washed and then resuspended in spheroplast buffer

(1.4M sorbitol, 50mM potassium phosphate (pH7.4), lOmM NaN3, 40mM (3-
mercaptoethanol) containing zymolyase (5mg/ml). Cell wall digestion was achieved at

25°C, and this incubation was carried out until at least 80% of the cells present had

been converted to spheroplasts (normally 30 mins; see 2.17c below). Spheroplasts

were harvested (2 mins at 4000g), washed once in spheroplast buffer before being

homogenised (7 strokes) on ice in 1 ml/100 OD units of the original culture

homogenisation buffer (0.8M sorbitol, lOmM triethanolamine, ImM EDTA, brought to

pH7.4 with acetic acid) containing protease inhibitors (as above). The homogenate was

cleared of cell debris by centrifugation (2 mins at 4000g) before use.
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2.17c. Spheroplast assay

To estimate the proportion of cells in a sample that had had their cell wall digested 10[il

of the sample was diluted to 1ml in distilled water and 10(il to 1ml in spheroplast

buffer. The OD600 of the two diluted samples was recorded and an index of the

proportion of cells in the sample that had been converted to spheroplasts was taken as;

OD600in spheroplast buffer - OD6qq in distilled water X 100

OD600 in spheroplast buffer

2.18. Fractionation of yeast cell extracts by differential centrifugation

Yeast cell lysates/homogenates were fractionated using differential centrifugation by

subjecting them to a one hour centrifugation at 10 OOOOg to yield a high speed

supernatant (S100) and a membrane pellet (P100). This was performed using a

Beckman TL100-3 rotor (55 OOOrpm for 1 hour).

2.19. Radiolabelling of yeast proteins

A 100ml culture of the yeast strain to be radiolabeled was grown in selective medium

to an ODgoo °f approximately 0.5. A 10ml aliquot of this was removed and had 10|iCi
of 35S-methionine added to it. Both the 10ml aliquot, and the remaining 90ml culture

were allowed to grow for a further 1 hour. After this time, the 10ml aliquot was

returned to the culture, which was harvested for subsequent analysis as desired.
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2.20. Immunoisolation techniques

2.20a. Preparation of Kex2-Immunoadsorbent (Kex2-ImAd)

All steps described here were carried out at 4°C. Following all washes and incubations
the cells were pelleted by centrifugation for 2 mins at 4000g. After an initial wash in

binding buffer (20mM Hepes pH7.2, 2mM MgCl2, 150mM KC1) standardised
Pansorbin cells were resuspended in blocking buffer (binding buffer containing

lOmg/ml bovine serum albumin) using lml/50p.l original 10% (w/v) cell suspension

volume used and placed on a rotating wheel for 1 hour. The blocked cells were washed
for 15 mins in binding buffer before the addition of affinity-purified anti-Kex2C

antibody. For the production of the standard ImAd which was used throughout this

study, lp.1 of affinity purified antibody (5|ig protein) was added for each jul of cell

suspension used and the sample volume was made up to 500|il with binding buffer.
After incubation on a rotating wheel for 3 hours or overnight the ImAd was washed

once (15 minutes) in binding buffer and once with lysis buffer or homoginisation

buffer, as appropriate, prior to use.

2.20b. Recovery of a Kex2-ImAd bound fraction from yeast

Kex2-ImAd was reususpended using, routinely 300|il (approximately 300|J,g protein)

freshly prepared yeast cell lysate (prepared using either glass bead lysis or

homogenisation) and was left to incubate on a rotating wheel at for 3 hours to allow

gentle mixing. The ImAd was retrieved from these samples by centrifugation (4000g

for 2 mins) and was washed 3 times (twice by simple resuspension and 1x15 mins on

the rotating wheel) with lysis buffer or homogenisation buffer as appropriate (all steps

described here were carried out at 4°C).

2.20c. Recovery of an IgG-Sepharose bound fraction from yeast

The procedure described for the preparation of a Kex2-ImAd bound fraction from yeast

was followed using 50p.l (slurry volume) IgG-Sepharose in place of Kex2-ImAd.
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2.21. Enzyme assays

2.21a. Kex2 activity assay

The sample being assayed for Kex2 protease activity was added to 50|il Kex2 assay

mix (200mM Hepes (pH7.0), ImM CaCl2, 0.5mM PMSF, O.lmM L-l-tosylamido-2-

phenyl-ethyl chloromethyl ketone, 1% (w/v) Triton-X-100, lOOmM r-butoxycarbonyl-

Gln-Arg-Arg-4-methylcoumarin-7-amide (bQRR-MCA)). Reaction mixtures were

incubated at 37°C for 30 mins after which time the reaction was terminated by the

addition of 0.9ml 125mM ZnS04 and 0.1ml of a saturated Ba(OH)2 solution. The

precipitate formed upon the addition of the Ba(OH)2 was removed by centrifugation in
a microcentrifuge for 1 min. The amount of Kex2 protease activity in the sample was

determined by detecting free 7-amino-4-methylcoumarin (AMC) released from bQRR-

MCA following cleavage by Kex2 (after the pair of arginine residues). The amount of

AMC in the sample at the end of the assay was determined fluorimetrically,

X(excitation) = 385nm, X(emission) = 465nm. Assay results are expressed in arbitary

units of fluorescence.

2.21b. (3-lactamase (ampicillinase) activity

5mg nitrocefxn was dissolved in 0.5ml DMSO before being diluted to 0.5mg/ml with

0.1M sodium phosphate (pH7.0). 50|il of this stock nitrocefin solution was added to

900|il 0.1M sodium phosphate (pH7.0) in a cuvette. The sample to be assayed was

added to this cuvette in a 50|il volume and the increase in A490 was followed.

2.21c. Carboxypeptidase Y assay

50|il of the sample to be assayed was added to 1ml of assay mix containing,

0.125mg/ml L-amino acid oxidase, 0.2mg/ml peroxidase, 0.5mM MnCl2, O.lmg/ml
dianisidine.HCl and 5mM peptide substrate (/V-carbobenzoxy-L-phe-L-leu) in 0.1 M

potassium phosphate buffer (pH7.0). The complete mixture was incubated at 37°C for

90 mins after which time the A405 of the mix was read against a blank of the reaction
mix that had been incubated with 50(il distilled water.
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2.21d. Dipeptidyl aminopeptidase assay

Total DPAP activity in a sample was assayed by adding the sample, in a 20Qil volume,

to 250|il 400mM Tris.Hepes (pH7.0) and 50jil of a 3mM solution in 25% methanol of
the substrate X-pro-pNA and incubated at 37°C for 30 mins. The reaction was stopped

by the addition of 500pl ZnS04 and 100(il 7.5% Ba(OH)2, this led to the formation of
a precipitate which was removed by centrifugation for 10 mins in a bench top

microfuge. The A405 of the supernatant was read against a blank to which 200|il
distilled water had been added in place of the sample. The activity of DPAP A (which

is heat stable) was assayed by heating the sample to 65°C for 15 mins prior to its

addition to the assay (being allowed to equilibrate to 37°C following this heat treatment)

and the activity of DPAP B was estimated by subtracting the amount of heat stable

DPAP activity in a sample from the total amount of DPAP activity in that same sample.

2.21e. NADPH:Cytochrome c oxidoreductase assay

Two identical aliquots of the sample to be assayed were each added, in 20pl volumes to

970jil of reaction mix containing 1.5mg/ml cytochrome c in 300mM potassium

phosphate buffer (pH7.4) in matched quartz cuvettes. 10(il NADPH (16mg/ml in the

phosphate buffer) was added to one of these samples and the change in A550 was

followed.

2.21f. Assays for a-factor

Two assays were used for the detection of the mating pheromone; both are based on the

inhibition of growth of a yeast strain that is sensitive to a-factor (RC631).

2.21fl. Halo assay for secreted a-factor

A growing culture of RC631 was diluted to a density of 106 cells/ml in YPD containing

0.8% (w/v) Bacto agar (no warmer than 50°C) and was poured immediately onto a

YPD plate to create a lawn of sensitive cells. After the plate had been dried the strains

to be tested for a-factor secretion were patched onto the seeded lawn (this was achieved

by harvesting 10ml of a growing culture of the strain, resuspending it in as small a
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volume as possible and dropping this onto the lawn, taking care that the plates had

dried before continuing with the procedure). The plate was incubated at 25°C for

approximately 36 hours, until the sensitive strain had grown and halos of growth

inhibition could be seen around patches of yeast cells known to secrete a-factor (e.g.

JRY188).

2.21fii. Bioassay for secreted a-factor

A growing culture of RC613 was diluted to a density of approximately 105 cells/ml

using YPD. IOOjj.1 of this was added to 100(ll of the supernatant to be assayed for the

presence of the pheromone (or a suitable dilution of the same) contained within a well

of a microtitre assay plate. The plate was incubated overnight (for approximately 18

hours) at 30°C after which the density of the sensitive cells was measured by removing

the contents of the well from the plate and diluting it with 800|il distilled water in a 1ml

cuvette and measuring the OD^ of this. A lower OD^ corresponds to a higher
concentration of a-factor in the supernatant.

2.21g. Determination of protein concentrations

Protein concentrations were estimated using the method of Bradford (Bradford, 1976)

using solutions containing known concentrations of BSA as standards.

2.22. Digestion of proteins using proteinase K

Proteinase K was added to samples to be treated (containing 2mM CaCl2) to 50|ig/ml.

Digestion was allowed to proceed for 60 mins (on ice), after which the reaction was

stopped by the addition of PMSF (to 3mM).
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Chapter 3

The use of bacterially-synthesised hybrid proteins
in the production of affinity-purified antibodies

that specifically recognise Kex2p



3.1. Introduction

Central to the development of an immunoisolation procedure is the availability of an

antibody that will bind to an antigen located in the structure of interest. For the

purposes of this project antibodies that specifically recognise the cytoplasmically-

disposed C-terminal domain of Kex2p were required.

In this project bacterially-produced fusion proteins were used to raise antibodies against

various yeast proteins including Kex2p. This strategy of raising antibodies was chosen

over the immunisation of rabbits with the proteins purified from yeast since it obviates

the need to purify the various antigens and offers the advantage that antibodies against

specific domains of the individual proteins may be obtained. In order to raise

antibodies against various yeast proteins as part of this study, a gene fusion was

constructed consisting of the part of the yeast gene encoding the region of the protein

against which antibodies were desired, fused to a portion of DNA encoding IgG-

binding domains of S. aureus protein A (Uhlen etal., 1984). The gene fusions were

then expressed in bacteria and the resulting protein products were purified and used as

immunogens. Such a stategy was chosen for a number of reasons. Firstly, the IgG

binding domains of protein A (included in the fusion protein) allow affinity purification

of the protein (Nilsson etal., 1985). This affinity of protein A for IgG (Langone,

1982) is also useful in screening for the synthesis of the fusion protein using

immunoblot analysis. Also, it is thought likely that the repetitive structure of the

protein A moeity enhances the immune response to the fusion protein (Lowenadler

etal., 1986).

This chapter describes, in detail, the production of affinity-purified antibodies that

specifically recognise the cytoplasmically disposed C-terminal domain of Kex2p for use

in immunoisolation of the yeast Golgi. Included here, as an appendix to this chapter, is

a description of the production of antibodies against other yeast proteins, that are also

used in this work.
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3.2. The Spa-Kex2C fusion protein and its use as an immunogen

The use of gene fusions made it possible to ensure that only antibodies against the C-

terminus of Kex2p were raised by ensuring that this was the only portion of the protein
that the immune system of the rabbit was exposed to.

The plasmid pKpra (Figure 3-1) carries a segment of DNA (derived from the spa gene)

encoding two of the IgG-binding domains of protein A and has a multiple cloning site
to allow the insertion of DNA fragments adjacent to this. The spa-KEX2C gene fusion

had been created by P. Whitley in the plasmid pKpraKex2C (Figure 3-1). This plasmid
was constructed by cloning the 1.25kb fragment liberated upon digestion of pGA714

(Figure 3-1) with EcoRI and BamHl into pKpra to create an in-frame gene fusion

predicted to encode a protein A fusion protein (Spa-Kex2C) with a molecular weight of
29K.

The spa DNA contained within pKpra is under control of the E.coli lac promoter,

expression from which can be induced by the presence of IPTG (Brown, 1991). The
two plasmids pKpra and pKpraKex2C were transformed separately into the E.coli
strain NM522 to create NM522(pKpra) and NM522(pKpraKex2C) respectively. The
effect of the addition of IPTG to growing cultures of these strains upon their pattern of

protein synthesis was investigated. Figure 3-2 shows that, as expected, pKpra encodes
a protein with an apparent molecular weight of 23K (220 residues) which reacts with
rabbit IgG, and that pKpraKex2C encodes a protein A fusion protein with an apparent

molecular weight of about 40K. The Spa-Kex2C fusion protein is predicted to have a

molecular weight of 29K (made up of 165 residues encoded by spa DNA and 100
residues encoded by the portion of KEX2 used to create the gene fusion), but the

protein detected in Figure 3-2 has an apparent molecular weight more than 10K higher
than this. This discrepancy can be explained by the high net negative charge carried by
the amino acid sequence of the C-terminal tail of Kex2p. When this portion of the

protein is deleted the resulting shift in mobility of Kex2p in SDS polyacrylamide gels is

greater than expected (Fuller et al., 1989). From this, it is reasonable to accept that the
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use of this portion of Kex2p in the construction of Spa-Kex2C has caused the fusion

protein to run aberrantly in SDS polyacrylamide gels.

When large amounts of recombinant proteins are expressed in E. coli, as from the lac

promoter, large insoluble aggregates of protein, known as inclusion bodies, often form

(Maniatis et al., 1982). In order to take advantage of protein A's affinity for IgG in the

purification of Spa-Kex2C it was important to determine whether any of the fusion

protein was present in a soluble form available for binding to IgG. This was

investigated using differential centrifugation to remove insoluble material from lysed

cells taken from a bacterial culture that had been induced to synthesise Spa-Kex2C and

screening the various fractions obtained by this procedure for the presence of the fusion

protein. As can be seen from Figure 3-3, a substantial amount of the fusion protein

encoded by pKpraKex2C is found in the soluble fraction of a cell lysate. On the basis

of this observation it was decided that IgG-Sepharose should be used in the purification

of Spa-Kex2C. Comparison of Figure 3-3a with Figure 3-4a (i.e. comparison of a

Coomassie-stained polyacrylamide gel of the soluble fraction prepared from a culture

of NM522(pKpraKex2C) producing the fusion protein with that of the material

recovered from this using IgG-Sepharose) shows that although the use of IgG-

Sepharose has been successful in recovering Spa-Kex2C the sample obtained also

contains other proteins.

It has been ascertained that, as indicated on Figure 3-4a, two of the contaminating high

molecular weight proteins are DnaK and GroEL (Ellis and van der Vies, 1991 - this

was shown to be the case by using affinity-purified antibodies, supplied by J. Zueco,

against both proteins in immunoblot analysis, data not shown) and that another

contaminating protein is the heavy chain of IgG (confirmed using the observation that

this protein reacts with anti-rabbit IgG antibody in immunoblot analysis, data not

shown) which has become detached from the Sepharose during elution of the bound

material. The lower molecular weight contaminants are degradation products of the

fusion protein, as suggested by the fact that they react with rabbit IgG in immunoblot
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analysis (data not shown). Due to the presence of these contaminating proteins it was

decided to include preparative SDS-PAGE as a final purification step in order to obtain

a homogeneous preparation of the fusion protein (Figure 3-4b) for the immunization of

rabbits.

The purified fusion protein was injected into rabbits from which immune sera putatively

containing antibodies directed against the C-terminal domain of Kex2p were collected.

Starting with a 500ml culture of NM522(pKpraKex2C) a typical yield of Spa-Kex2C

fusion protein obtained by following the procedure laid out here would be 800-1000|ig

(as determined by the method of Bradford).
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Figure 3-1
Creation of the spa-KEX2C gene fusion

both plasmids were digested
with BamHI and EcoRI and the

fragment thus liberated from
pGA714 was ligated into pKpra

I
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Figure 3-2

A protein A fusion protein produced by NM522(pKpra-KEX2C)

100ml cultures of both NM533(pKpra) and NM522(pKpraKEX2C) were grown in

selective medium (L-broth containing 50jlg/ml kanamycin) at 37°C to an OD600 of
0.8. Both cultures were then split in half. IPTG was added to one half of each

culture to a final concentration of 0.25mM and the cultures were all left growing at

37°C for a further four hours. The half of each culture to which IPTG had been

added was labelled as 'the induced culture'. 1.0ml samples were taken from each

of the now four cultures. Cells were harvested from these and boiled in lOOp.1 SDS

sample buffer for 5 mins. The cell extracts thus prepared were analysed by 12%

SDS-PAGE and immunoblot analysis using a rabbit IgG-HRP conjugate.
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Figure 3-3

Analysis of an induced culture of NM522(pKpraKEX2C)

Cells from a 50ml 'induced culture' - (see Figure 3-2 legend) - were harvested,

washed with 10ml Tris.HCl (pH7.4) and resuspended in 10ml of the same.

Lysozyme was added to a final concentration of lmg/ml and the cells were left on

ice for twenty minutes. Cell lysis was achieved using sonication (4 x 30 seconds

on ice with two minute intervals on ice to avoid excess heating). A 100fll sample

was taken and labelled as 'whole cell extract' (WCE) before unlysed cells and cell

debris were removed by centrifugation at 300g for 5 mins. The pellet from this was

labelled as 'P3' and the supernatant was centrifuged for 20 mins at 25 OOOg to clear

the cell lysate of any insoluble material yielding a soluble fraction, the 'S25', and

'the inclusion body preparation' or 'P25'. Both the P3 and the P25 were

resuspended in 10ml Tris.HCl (pH7.4). All of the fractions obtained using the

above procedure were run on two identical 12% polyacrylamide gels. One of these

was stained with Coomassie blue (Figure 3-3a) and the other was used to transfer

the samples to nitrocellulose to allow immunoblot analysis using a rabbit IgG-HRP

conjugate to be performed (Figure 3-3b).
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Figure 3-3a

MWt WCE S25 P25 P3

w-

Figure 3-3b

MWt WCE S25 P25 P3
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Figure 3-4

Purification of the Spa-Kex2C fusion protein

A 500ml culture of NM522(pKpraKex2C) was induced to express the Spa-Kex2C

fusion protein as described in the legend for Figure 3-2. A soluble fraction was

prepared from this culture (see the legend for Figure 3-3 for details). 1ml (slurry

volume) IgG-Sepharose was added to this and left on a rotating wheel at 4°C

overnight. The IgG-Sepharose was recovered and washed six times in TST to

remove non-specifically bound material. Elution of the bound material was

achieved by washing the IgG-Sepharose (once for 20 mins and once for 5 mins)

with 0.5M HAc(CH3COOH) adjusted to pH3.4 with NH4Ac. These washes were

pooled and dialysed against distilled water overnight at 4°C, before being freeze

dried and resuspended in 0.5ml distilled water. An aliquot (10|il) of this was

subjected to 12% SDS-PAGE and stained with Coomassie blue (Figure 3-4a). An

identical gel was used to transfer the samples to nitrocellulose and the band

indicated as Spa-Kex2C was shown to react with rabbit IgG by immunoblot

analysis (data not shown).

The fraction eluted from the IgG-Sepharose was run on a 12% preparative SDS-

poly acrylamide gel. The gel was lightly stained using Coomassie blue and a strip

of the gel containing the band corresponding to the Spa-Kex2C fusion protein was

cut out and placed in sealed dialysis tubing along with 5ml electrophoresis buffer.

The protein was electroeluted (lOOmV for 5 hours) into the buffer contained within

the dialysis tubing. This buffer was dialysed against distilled water before being

freeze-dried. The lyophilised material was resuspended in 0.5ml distilled water.

An aliquot of this (10|ll) was subjected to 12% SDS-PAGE and stained with

Coomassie blue (Figure 3-4b). The band indicated as the Spa-Kex2C fusion

protein on Figure 3-4b was shown to react with rabbit IgG by immunoblot analysis

(data not shown).
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Figure 3-4a

MWt IgG-eluate

Figure 3-4b
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3.3. Production of a (3gal-Kex2C fusion protein

When working with polyclonal antiserum it is advantageous to be able to separate

antibodies that specifically recognise the antigen of interest from other components of

the serum. This is because the serum will contain antibodies that may recognise and

bind to other proteins present in the preparation containing the antigen, and this would

obviously be undesirable in an antibody preparation to be used for immunoisolation.

Immunisation of a rabbit with Spa-Kex2C allowed immune serum containing

antibodies that recognise the C-terminal 100 amino acids of Kex2p to be collected. In

order to isolate these antibodies from the immune serum, a second Kex2p fusion

protein was prepared. This time, the same portion of Kex2p that had been used in the

construction of Spa-Kex2C was fused to Pgal creating a pgal-Kex2C fusion protein.

This was achieved by using the fragment of DNA from pGA714 (Figure 3-1) that had

been used in the construction pKpraKex2C to create an in-frame gene fusion with the

lacZ gene in the plasmid pEXl 1 (Figure 3-5). This gene fusion resulted in the

construction of the plasmid pNB21 and was predicted to encode a pgal-Kex2C fusion

protein (Pgal-Kex2C) with a molecular weight of 127K.

Transcription of the lacZ gene in the pEX vector family, of which pEXl 1 is a member,

is under control of the PR promoter of bacteriophage lambda (Kusters et al., 1989).

Regulated expression can be achieved in a host strain of E.coli (such as pop2136)

which harbours lysogenised lambda carrying the thermosensitive cI857 allele. At 30°C

the repressor is functional whereas at 42°C it is not; this means that a shift to 42°C of a

growing culture of pop2136 cells containing a pEX vector allows expression of the

gene under control of the PR promoter.

pop2136 cells were transformed separately with both pEXl 1 and pNB21 creating

pop2136(pEXl 1) and pop2136(pNB21) respectively. Growing cultures of both these

strains were shifted from 30°C to 42°C for four hours. Figure 3-6 examines the effect

of such a temperature change upon the pattern of proteins produced by these strains.
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There is a protein present in the extract prepared from pop2136(pEXl 1) cells that had

been shifted to 42°C, which is not present in that prepared from cells that had been left

at 30°C, corresponding to the pEXl 1 Pgal product (117K). Similarly, there is a

protein present in the lane containing pop2136(pNB21) extract prepared from cells that

had been shifted to 42°C which is not present when the same cells were left at 30°C

and this band is taken to be the |3gal-Kex2C fusion protein (127K).

Examination of cells producing the (3gal-Kex2C fusion protein by light microscopy

suggests that they contain inclusion bodies (they adopt a filamentous morphology with

a refractile body at one end: both of these characteristics are typical of cells containing

inclusion bodies). These inclusion bodies were partially purified using differential

centrifugation to separate them from soluble material present in the cells, and

immunoblot anlysis using affinity-purified anti-(3gal antibody (supplied by J. Zueco) as

primary antibody was carried out on the various fractions yielded by this procedure.

Figure 3-7 demonstrates that essentially none of the (3gal-Kex2C fusion protein is

present in a soluble form in the cell extract.

Pgal-Kex2C is easily identifiable on a Coomassie-stained gel in the lane containing

whole cell extract prepared from an induced culture of pop2136(pNB21)-(Figure 3-7a).

It was decided that preparative SDS-PAGE should be used to obtain a sample of the

fusion protein from such cell extracts since attempts at solubilizing the inclusion bodies

(Maniatis et al., 1982) with the eventual aim of purifying the fusion protein by affinity

chromatography proved unsuccessful.

Whole cell extract prepared from an induced culture of pop2136(pNB21) was subjected

to electrophoretic separation on a 10% polyacrylamide gel. After Coomassie-staining, a

gel slice containing the fusion protein was excised and the protein was recovered from

this by electroelution.
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3.4. Affinity purification of anti-Kex2C specific antibodies

Pgal-Kex2C purified as described was bound to Affi-gel 10 (Frost etal., 1981) and

used to purify antibodies that specifically recognise the C-terminal domain of Kex2p

from immune sera raised against the Spa-Kex2C fusion protein. Routinely, from 5ml

immune sera obtained from a rabbit that had been immunised using Spa-Kex2C

approximately 25mg (as estimated by the method of Bradford) of affinity purified

antibody (anti-Kex2C) was obtained. The specificity of anti-Kex2C is demonstrated in

Chapter 4.
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Figure 3-5
Construction of the (3 gal-KEX2C gene fusion

EcoRI and BamHI, and the 1.25kB fragment
liberated from pKpraKex2C was

ligatedintopEXll

▼

cro
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Figure 3-6

Proteins produced by pop2136(pNB21)

100ml cultures of pop2136(pEXl 1) and pop2136(pNB21) were grown at 30°C in

selective medium (L-broth containing 100|lg/ml ampicillin) to an OD^ of 0.5.
Both cultures were then spht in half with 50ml of each being left at 30°C and the

other 50ml of each being moved to 42°C for four hours. The half of each culture

that was moved to 42°C was labelled at the 'induced culture'. 1.0ml aliquouts were

taken from the now four cultures and the protein composition of cells from these

were analysed using 10% SDS-PAGE with the resultant gel being stained with

Coomassie blue.
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Figure 3-7

A [3gal-Kex2C fusion protein produced by pop2136(pNB21)

Cells from a 50ml culture of pop2136(pNB21) which had been induced to produce

the (3gal-Kex2C fusion protein as in the legend for Figure 3-6 were treated in the

same way as those from an induced culture of NM522(pKpraKex2C) were as

described in the legend for Figure 6-3 yielding whole cell extract (WCE), P3

(unlysed cells and cell debris), P25 (inclusion bodies), and S25 (soluble material).

These fractions were run on two 10% polyacrylamide gels one of which was

stained with Coomassie blue (Figure 3-7a) with the other being used to transfer the

samples to nitrocellulose for immunoblot analysis using affinity-purified anti-(3gal

antibody as primary antibody (Figure 3-7b).
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Figure 3-7a
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Appendix to Chapter 3

Other antibodies produced during the
course of this work



3A.1. Introduction

In addition to the anti-Kex2 antibody, it was desirable to obtain antibodies against other

yeast membrane proteins in order to evaluate the purity of material immunoisolated

using the anti-Kex2p antibody. To demonstrate the purity of a membrane fraction it is

necessary to show that it is free from contamination by membranes derived from

organelles other than the one of interest. This can be achieved by showing that the

fraction does not contain activities of enzymes associated with potential contaminating

organelles. However, such information can be misleading since few enzyme assays are

absolutely specific for the particular marker enzyme that is being monitored. For

example, the assay used throughout this study to follow Kex2 protease activity does

not detect the activity of just the Kex2 protease. Cell extracts prepared from yeast cells
in which the KEX2 gene has been disrupted (PWYS3) cleave the fluorogenic peptide
used in the assay albeit at a rate twenty times slower that an extract prepared from cells

in which theKEX2 gene is intact (JRY188). Th&KEX2 gene of PWYS3 has been

disrupted in such a way that the portion of DNA known to encode the catalytic domain

of Kex2p has been removed. Immunoblot analysis performed on the same extracts

using a polyclonal antibody raised against Kex2p detects a protein with an apparent

molecular weight of 135K present in the extract prepared from JRY188 but not in that

prepared from PWYS3. From these results (Whitley, 1990), it can be concluded that

the cleavage of the peptide by the PWYS 3 extract is due to an activity distinct from that

of Kex2p.

Antibodies that recognise a number of yeast proteins were raised as part of this work,

and their production is described in this appendix. In each case, methods similar to

those used for the production of the anti-Kex2C antibodies were used.
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3A.2. Antibodies that recognise Ste2p

3A.2a. Preparation of anti-Ste2p antibodies

Antibodies were prepared against the product of STE2 (the receptor for the mating

pheromone a-factor - Burkholder and Hartwell, 1985), for two reasons. Firstly, these

antibodies were to be used to demonstrate whether material immunoisolated using the

anti-Kex2C antibody contained any plasma membrane derived material (the receptor is

an integral membrane protein located in the plasma membrane). Secondly, the

antibodies were raised specifically against the cytoplasmically-disposed C-terminal

domain of the protein so that they could be of use in the future to immunoisolate inside-

out plasma membrane vesicles (such vesicles could be used to develop a protein

transport assay involving the fusion of post-Golgi secretory vesicles with the plasma

membrane). A spa-STE2 gene fusion was created by cloning a portion of DNA (about

400 base pairs) from the coding region of the STE2 gene (Nakayama etal., 1985)

contained within the plasmid pAB510 into pKpra (Figure 3-1). In order to create an in-

frame gene fusion as required the cloning strategy outlined in Figure 3A-1 was

undertaken. It was predicted that the spa-STE2 gene fusion contained within pNB4

should encode a protein A fusion protein with a molecular weight of 40K (comprised of

165 residues encoded by pKpra DNA and 135 residues encoded by STE2 DNA) and

this was shown to be the case (data not shown). It was ascertained that the Spa-Ste2p

fusion protein produced by NM522(pNB4) did not form inclusion bodies (data not

shown) and therefore it was possible to purify the fusion protein using IgG-Sepharose.

The purified fusion protein was injected into a rabbit from which immune serum was

subsequently collected.

In order to separate antibodies specific to the C-terminal 135 residues of Ste2p from

other antibodies present in immune serum raised against the Spa-Ste2p fusion protein,

a [3gal-Ste2p fusion protein was prepared whereby the same 135 residues of Ste2p that

were used in the construction of Spa-Ste2p were fused to pgal. This was achieved by

cloning the same portion of DNA from pAB510 that was used in the construction of
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pNB4 into pEXl 1 to create the plasmid pNB 13 containing an in-frame gene fusion.

pNB13 is predicted to, and was shown to, encode a (3gal fusion protein of molecular

weight 13 IK (data not shown). This fusion protein was purified from a culture of

pop2136(pNB 13) and was used to affinity purify antibodies specific to the C-terminal

135 amino acids of Ste2p (anti-Ste2p).

3A.2b. Demonstration of the specificity of anti-Ste2p

In order to demonstrate the specificity of anti-Ste2p for the pheromone receptor, a yeast

strain containing a unique, inducible copy of the STE2 gene was created. In order to

create such a strain the plasmid pIH2-4, which harbours a copy of STE2 under the

control of the GAL1 promoter, was transformed into the diploid yeast strain, NBY10

(in which haploid specific genes under mating type control are not expressed; i.e. it

does not produce Ste2p, or a-factor) to create NBY10(pIH2-4).

Two cultures of NBY10(pIH2-4) were grown: one using galactose as a carbon source,

(the cells in this culture will produce Ste2p); and the other using glucose as a carbon

source. The cells in the culture which had been grown on glucose will not express

STE2 because such growth conditions repress the GAL1 promoter.

Due to the hydrophobicity of Ste2p (it contains seven transmembrane spans) it was

found that the protein could not be detected using anti-Ste2p against yeast cell lysates

that had been boiled in SDS sample buffer prior to separation by SDS-PAGE and

transfer to nitrocellulose (a procedure often used for the preparation of samples to detect

proteins in this way). Instead, a crude preparation of membranes was obtained from

each culture and solubilised with detergent before being subjected to SDS-PAGE and

immunoblot analysis (Konopkaera/., 1988) (N.B. it was found that the protein could

only be detected by immunoblot analysis if buffers not containing methanol were used

throughout the transfer of proteins to the nitrocellulose filter). As can be seen from

Figure 3A-2 the affinity-purified antibodies react with the sample prepared from the
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cells supplied with galactose as their sole carbon source but not with that prepared from

cells that had been exposed to repressing concentraions of glucose.

From the published sequence of the STE2 gene the predicted molecular weight of the

protein is 47 794. Figure 3A-2 shows that the antibody recognises two bands in the

sample prepared from the culture that had been induced to produce Ste2p which are not

present in the sample prepared from cells which had not been induced to produce the

protein, this pattern is similar to that found in another study involving the detection of

Ste2p by immunoblot analysis (Konopka etal., 1988). The lower of the two bands has

an apparent molecular weight of between 50 and 55kD and is taken to be the

monomelic form of STE2p. One reason for the fact that this is of a higher apparent

molecular weight than might have been expected from the gene sequence is that the

protein is glycosylated. The higher molecular weight material migrates to an area of the

gel corresponding to about lOOkD and may be accounted for by the likelihood that

aggregates of the protein may not be completely broken down since the samples are not

boiled.
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Figure 3A-1

Construction of the spa-STE2 gene fusion

(1) The 1.6kb fragment, containing the STE2 gene, yielded upon the digestion of

pAB510 with //mdin was cloned into the Hindlll site of pK19 to create pNBl.

Clones containing the Hindlll fragment in the desired orientation were identified as

those which a) produced a 1.6kb fragment upon digestion with Hindlll and b) produce

a 1.6kb fragment upon digestion with Sail.

(2) The largest Hae EI fragment (0.8kb) from pNBl, which is also the only Haelll

fragment from pNB 1 that contains a Sail site, was cloned into the Smal site of pUC18

to create pNB2. Clones containing the correct fragment in the desired orientation were

taken as those which could be digested with Hindlll to give a 0.6kb fragment and with

Sail to give a 0.3kb fragment.

(3) pNB2 was digested with Kpnl and BamHl and the 0.8kb fragment thus liberated

was directionally cloned into pKpra to create pNB3 with positive clones being

identified as those which a) released the cloned BamHl, Kpnl fragment upon digestion

with the two enzymes, b) are linearised upon digestion with each of Sail, Pstl and

Hincll, and c) yield two fragments, of 2.8kb and l.Okb, upon digestion with Hindlll,

the smaller of which contains both a Pstl and a Hincll site.

(4) pNB3 was linearised by digestion with Sail and the cohesive ends thus created were

filled in using Klenow fragment. A blunt end ligation created pNB4 containing a

spa-STE2 gene fusion. Positive clones were screened for by checking for the

disappearance of the Sail site.
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Figure 3A-2

Recognition of Ste2p by affinity purified anti-Ste2p antibodies

Two 50ml cultures of NBY10(pIH2-4) were grown in selective medium, one was

supplied with galactose as its sole carbon source (Gal), and the other was supplied

with glucose (Glucose). The cultures were grown to early log phase after which
the cells from both were harvested, washed once with water, and resuspended in

0.5ml lOmM Tris.HCl (pH7.5), ImM EDTA. The cells were disrupted by

vortexing in the presence of glass beads and the resultant extracts were centrifuged

(10 OOOOg) for 30 mins. The pellet thus obtained was extracted with 1%

deoxycholate, lOmM Tris.HCl (pH7.5) on ice for 30 mins. Solubilised material
was mixed with an equal volume of SDS sample buffer containing 8M urea

(prewarmed to 65°C). The samples were incubated at 65°C for 10 mins before

being resolved by electrophoresis on a 12% polyacrylamide gel and then transferred
to nitrocellulose (it was important that no methanol was present in the buffers used

during the transfer of the samples to nitrocellulose). Immunoblot analysis was

performed on the filter using affinity-purified anti-Ste2p as primary antibody at a

dilution of 1 in 1000.
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3A.3. Antibodies that recognise the yeast plasma membrane H+-ATPase

Antibodies that specifically recognise a second yeast plasma membrane protein , Pmalp
were also raised during the course of this project. Pmalp, the product of the yeast

PMA1 gene, is a H+ -translocating ATPase (Serranoet al., 1986).

The oligonucleotides 5'-CTCTTGGTGGATCCATACATGG-3' and

5'-TGGCCCGGGCTAAGAAACAAGCCATTGTTC-3' were used as primers for PCR

to generate a fragment of DNA that encodes from Ala354 to Asp534 of Pmalp using

genomic DNA prepared from NBY10 as template DNA. The product of this reaction

(which had been shown to be the desired product, since it could be digested by FcoRI

to give two fragments, 288bp and 273bp) was digested with Srnal and BamHl and

cloned into similarly digested pAXl 1 to form a spa-PMAl gene fusion contained

within the plasmid pNB75, and also into pEXl lthat had also been digested with Smal

and BamHl to form pNB76. The fusion protein encoded by the spa-PMAl gene fusion

was purified from bacteria producing it (using IgG-Sepharose) and was used to

immunise mice. It was decided to raise antibodies in mice in this case for two main

reasons: Firstly, it has been reported that mouse antiserum tends to recognise fewer

proteins in yeast non-specifically (V. Bankaitis - personal communication); and

secondly mice are cheaper and easier to keep than rabbits.

The immune serum obtained from one of the mice was found to recognise the (3gal-

Pmalp fusion protein encoded by pNB76, but not the (3gal-Kex2C fusion protein

encoded by pNB 11 (this was ascertained by immunoblot analysis using the serum as

primary antibody against whole cell extracts prepared from induced cultures of

pop2136(pNB76) and pop2136(pNBl 1) that had been electrophoretically separated on

a 10% polyacrylamide gel - data not shown). This serum was then tested for reaction

with a yeast cell lysate and with membrane and cytosol fractions prepared from this by

differential centrifugation. Figure 3A-3 shows that the serum reacts with the crude

lysate prepared from the yeast strain NBY10 and also with the membrane (P100)

fraction, but not with the cytosolic (S100) fraction. Pmalp is predicted to have a
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molecular weight of approximately 100K. Figure 3A-3a demonstrates that the

antiserum reacts with an area of the immunoblot corresponding to proteins with

apparent molecular weights ranging from approximately 90K to approximately 200K

that are present in a cell lysate and enriched in the PI00.

At the same time as blood from the immunised mice was obtained, the spleen from one

was removed and used to produced hybridoma cell lines by J. Haywood. Culture

supernatants from these cell lines were tested for reaction with yeast cell lysates.

Primary screening was carried out by dot-blot analysis. Supernatants that reacted with

yeast extract were then tested for reaction with the pgal-Pmalp fusion protein (using

immunoblot analysis against bacterial whole cell extract prepared from an induced

culture of pop2136(pNB76) that had been electrophoretically separated on a 10%

polyacrylamide gel - data not shown). Those that recognised the Pgal-Pmalp fusion

protein, but showed no reaction with the Pgal-Kex2C fusion protein were finally tested

for recognition of a protein corresponding to Pmalp in a membrane fraction prepared

from yeast cells. Figure 3A-3b shows the reaction of supernatant from the cell line

B/lA1 with a protein present in the PI00 prepared from a yeast cell lysate, which has

an apparent molecular weight of approximately 150K. Such an apparent molecular

weight is consistent with the protein recognised here being Pmalp (by comparison of

the immunoblot shown in figure 3A-3b with one presented in Serrano et ai, 1986)
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3A-3.

Immunoblotting of the yeast plasma membrane H+-ATPase (Pmalp)

A cell lysate prepared from the yeast strain NBY10 was fractionated by differential

centrifugation to yield a P100 and a S100. These were electrophoretically separated

on a 10% polyacrylamide gel and were subsequently transferred to nitrocellulose.

Figure 3A-3a shows an immunoblot that was performed against these samples

using antiserum from a mouse that had been immunised with the Spa-Pmalp fusion

protein as primary antibody, and anti-mouse IgG-HRP and anti-mouse IgM-HRP

(both at a dilution of 1 in 3000) as secondary antibody.

Figure 3A-3b shows an immunoblot performed against a P100 and an S100 (as

above) using supernatant from the cell line B/1A1 at a dilution of 1 in 5 in blocking

buffer as primary antibody, and anti-mouse IgG-HRP (at a dilution of 1 in 3000) as

secondary antibody.
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3A.4. Antibodies that recognise HMG-Coenzyme A reductase

PCR using the oligonucleotides 5'-GAATGCTGCTAGAATTCATACCAG-3' and

5' -CGGGATCCAATGACGTATGACTAAGTTTAGG-3' and genomic DNA prepared

from NBY10 gave rise to a fragment of DNA that encodes part of the integral ER

membrane protein HMG-CoA reductase (from He524 to Ser1054 - Basson etal., 1988),
encoded by HMG1 (Hmglp). The DNA obtained as a result of this reaction was

shown to be the desired fragment by digesting it with HindUl, this yielded three

fragments, 867bp, 548bp, and 22bp. The PCR product was cloned, as an EcoRl,

BamHl fragment, into the plasmid pAX12 to form pNB72, and also into pEX12 to

create pNB73.

The Spa-Hmglp fusion protein encoded by pNB72 was purified from an induced

culture of NM522(pNB72) using IgG-Sepharose and was used to immunise a rabbit

from which immune serum was subsequently collected. This serum was found to

recognise the Pgal-Hmglp fusion protein encoded by pNB73, but not the Pgal-Kex2C
fusion protein (by using the serum as primary antibody in immunoblot analysis against

induced cultures of pop2136(pNB73) and pop2136(pNB21) separated on a 10%

polyacrylamide gel). HMG1 encodes a protein with an apparent molecular weight of

115K (Wright etal., 1988). It can be seen, from Figure 3A-4a that the immune serum

raised against the Spa-Hmglp fusion protein does not recognise a protein of this

molecular weight in either a yeast cell lysate, or a P100 prepared from this when used

in immunoblot analysis against these fractions.

Hmglp is predicted to have seven transmembrane spans (Basson etal., 1988), and

therefore it was thought that the lack of detection of the protein with the antiserum may

be due to problems similar to those encountered during initial attempts to detect Ste2p

by immunblot analysis. A sample prepared using conditions that allow the detection of

Ste2p was tested for reactivity with the antiserum. Figure 3A-4b shows that this has

allowed the detection of some high molecular weight material that was not detected in a

PI00 that had been placed in a boiling water bath for five minutes prior to
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electrophoretic separation. Attempts at affinity-puriying Hmg lp-specific antibodies

using the (3gal-Hmglp fusion protein encoded by pNB73 proved unsuccessful,

perhaps due to a low titre of such antibodies in the serum.
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Figure 3A-4.

Detection of HMG-CoA reductase by immunoblot analysis

A cell lysate prepared from the yeast strain NBY10 was fractionated to yield a PI00

and a S100. These were electrophoretically separated on a 10% polyacrylamide gel

and transferred to nitrocellulose. Figure 3A-4a shows an immunoblot that was

performed against these samples using antiserum from a rabbit that had been

immunised with the Spa-Hmglp fusion protein as primary antibody.

Figure 3A-4b shows an immunoblot that was performed using the same serum

against a sample that had been prepared as described in the figure legend for Figure

3A-2 (i.e. a crude preparation of membranes extracted with detergent prior to

electrophoretic separation).
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Chapter 4

The use of affinity-purified anti-Kex2p antibodies
in the immunoisolation of Kex2p

from yeast cells



4.1. Introduction

This chapter describes how antibodies directed against the cytoplasmically-disposed
C-terminal domain of Kex2p (anti-Kex2C; preparation described in Chapter 3) were

used to isolate membrane vesicles derived from the Kex2-containing compartment

of the yeast Golgi. This was achieved using the technique of immunoisolation the

theory of which is outlined briefly in Chapter 1.

The purity of material obtained through immunoisolation depends largely on the

specificity of the antibody used in the formation of the immunoadsorbent (ImAd).
It is therefore important to use an antibody which recognises only the antigen of
interest in the preparation from which material is to be isolated. For this reason it is

common for affinity purified antibodies to be used, since they tend to recognise less

non-specific material than do crude sera. Figure 4-1 demonstrates that anti-Kex2C

recognises only Kex2p in a yeast cell extract.

For an antibody to be of use in recovering material it is necessary for it to be
attached to a solid support to allow recovery of any bound material from biological

preparations. There are a number of matrix materials which may be used for this

purpose. The matrix must be inert, showing no reaction with the system in which it
is to be used, and obviously it must be capable of binding antibody molecules. For

indirect immunoisolation (Chapter 1), agarose or magnetic beads carrying chemical

groups (e.g. tosyl groups) that will covalently bind proteins under defined
conditions can be used to preform the ImAd. Alternatively, a matrix carrying an

antibody that will recognise and bind the antibody used for the immunoisolation

may be used; if this method is used it is desirable that the second antibody

recognises the Fc portion of the first, as this will ensure that the antigen binding

sites of the first antibody are free to bind antigen. Such orientation of the antibody
can also be ensured if binding to the matrix is achieved through the S. aureus coat

protein, protein A, which has high affinity for the Fc portion of rabbit IgG
molecules (Langone, 1982), but cannot be ensured if the antibody is attached to the
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matrix through, for example, tosyl groups which will bind to any available amino

group (Nilsson and Mosbach, 1984) in the antibody molecule and may lead to its

being attached to the matrix through an antigen binding site, thus rendering it unable

to bind antigen due to steric hinderance, and resulting in the formation of an

inefficient ImAd. Matrices which bind antibody as a result of specific recognition,

such as those carrying protein A, can be used in either direct or indirect

immunoisolation (Chapter 1), whereas those which bind antibody molecules

through amino groups are obviously restricted to use in direct immunoisolation. It

was such considerations that led to the choice of matrix used here namely, fixed

S. aureus cells (Pansorbin).

4.2. Preparation and use of a Kex2-Immunoadsorbent

Affinity purified anti-Kex2C was bound to Pansorbin to form a Kex2-

immunoadsorbent (Kex2-ImAd). Rabbit IgG binds to protein A through the Fc

portion of the immunoglobulin and therefore it is envisaged that the antigen binding

sites of the antibody remain free to bind to any available antigen. Figure 4-2

demonstrates that Kex2-ImAd can be used to recover functional Kex2p from a cell

lysate prepared from the yeast strain NBY10(pGA714), whereas none is recovered

using Pansorbin to which no antibody has been attached. Kex2p recovered in this

way is detectable by immunoblot analysis (Figure 4-2a), and the fact that the

recovery can be blocked (Figure 4-3) by preincubation of the ImAd with (3gal-

Kex2C fusion protein (which will occupy antigen binding sites of antibodies that

recognise the C-terminal domain of Kex2p) confirms that the observed recovery is

mediated by specific antibody-antigen interaction. No such block of recovery is

seen when the preincubation is carried out using an unrelated fusion protein, |3gal-

Ste2p. Since the two fusion proteins used carry the same (3gal derived portion, it

can be concluded that the inhibition of Kex2p recovery is due to the Kex2 derived

portion of the Pgal-Kex2C fusion protein occupying antigen binding sites present in

the ImAd and thus destroying its ability to bind Kex2 protein from the cell lysate.
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Figure 4-1.

Specificity of affinity-purified anti-Kex2C antibody

Glass bead extracts were prepared from growing cultures of NBY10,

NBY10(pGA714) and PWYS3. These were subjected to electrophoretic separation on

a 10% polyacrylamide gel and then transferred to nitrocellulose. Affinity-purified anti-

Kex2C was used as primary antibody in immunoblot analysis of the lysates on this

filter. This figure shows that anti-Kex2C recognises a single protein of apparent

molecular weight 135K in extracts from NBY10 and NBY10(pGA714), but does not

recognise any component of the PWYS3 extract (the KEX2 gene of PWYS3 cells has

been disrupted). The extract prepared from NBY10(pGA714) contains a higher

amount of the 135K protein than that prepared from NBY10 (an equivalent amount of

protein from the two extracts was loaded on the gel that was used for this immunoblot),

this is due to the presence of pGA714 which causes the cells to overexpress Kex2p.

This, taken with the absence of this protein from PWYS3 cells identifies the 135K

protein recognised by anti-Kex2C as Kex2p.
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Figure 4-2.

Binding of Kex2 protein by a Kex2-Immunoadsorbent

Kex2-ImAd was prepared using 10|J.l anti-Kex2C (50|lg protein) and 10(0.1 Pansorbin

(10% w/v S. aureus cell suspension). This was resuspended in 300jol of cell lysate

(equivalent to 30 OD units of NBY10(pGA714) cells) and incubated on a rotating

wheel, to allow gentle mixing, for 3 hours. The ImAd was then recovered by

centrifugation (2 mins at 4000g) and washed 3 times (twice briefly by simple

resuspension and once for 15mins on a rotating wheel) in lysis buffer. All steps were

carried out at 4°C. The material thus recovered (ImAd bound) was resuspended either

in 50|il Kex2 assay mix in order to assay the amount of Kex2 activity present (Figure

4-2a), or in SDS sample buffer to allow immunoblot analysis using anti-Kex2C as

primary antibody following electrophoretic separation on a 10% polyacrylamide gel

(Figure 4-2b). In both cases an aliquot of the yeast cell lysate (30(il, equivalent to 10%

of that presented to the ImAd) was treated in the same way as the bound fraction

(lysate). A control experiment was carried out in which lOfll Pansorbin to which no

antibody had been bound was used in place of the ImAd (control bound).

N.B. Prior to the analysis of bound material by electrophoretic separation the samples

were boiled for 5mins before the S. aureus cells were removed by centrifugation. The

smear of immuno reactivity on the immunoblot in lanes containing samples of bound

material is due to the release of protein A from the bacterial cells during this boiling.
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Figure 4-3.

Inhibition of Kex2p recovery by (3gaI-Kex2p

The procedure described in Figure 4-2 was used to recover Kex2p from an

NBY10(pGA714) cell lysate using Kex2-ImAd that had been treated in one of three

ways; prior to addition of the cell lysate the ImAd was incubated for 30 mins with a

solution of one of two bacterially-produced (3gal fusion proteins ({3gal-Kex2C or (3gal-

Ste2p; in both cases 500|il of a lmg/ml solution was used), or with PBS (control).

The amount of Kex2 activity bound by the different preparations was assayed and

expressed as a percentage of the total activity present in the lysate.
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4.3. Optimisation of the recovery of Kex2p by immunoisolation

Under the conditions used for the preliminary experiments described above

approximately 10% of the total Kex2 activity present in the lysate was bound by the

ImAd (Figure 4-2). In an attempt to increase the recovery of Kex2p increasing

amounts of anti-Kex2C were bound to Pansorbin in the formation of ImAd. From

Figure 4-4 it can be seen that increasing the number of antigen binding sites in the

ImAd above that achieved using lOjil (50|ig) anti-Kex2C antibody appears to have

no effect on the yield of Kex2p. In order to rule out the most obvious explanation

for this result (that is, that not all of the antibody had bound to the Pansorbin, even

though the amount added was within its binding capacity of 2mg/ml), it was

confirmed that in each case all of the antibody added to the Pansorbin had indeed

been incorporated into ImAd by showing that the supernatant remaining after the

formation of the ImAd contained no anti-Kex2C (using immunoblot analysis; data

not shown). Two other possible explanations for the observed result were

considered. Firstly, it may be that only 10% of the Kex2 activity detectable in the

lysate is capable of binding to the antibody, with the remaining 90% being in an

inaccessible form. Alternatively, since it is expected that the antibody-antigen

interaction in these experiments is resulting in the recovery of membrane vesicles

containing the transmembrane Kex2 protein, it may be that these vesicles are of

such a size that once a certain number (containing approximately 10% of total Kex2

activity) have bound to the ImAd, the S. aureus cells become completely coated

with vesicles leaving no room for any more to bind even though there may be

unfilled antigen binding sites.

It was shown that if Kex2-ImAd was used to recover Kex2 protease activity

equivalent to 10% of the total from a cell lysate, and then that same, now depleted,

lysate was exposed to an identical ImAd, then the second aliquot of ImAd also

bound Kex2 activity (again equivalent to approximately 10% of the original total

activity of the lysate), leaving a supernatant with a Kex2 activity equivalent to 80%

of that assayed in the original crude lysate (Figure 4-5). This procedure could be
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repeated until about 80% of the original Kex2 activity had been removed from the

lysate demonstrating that about 80% of the Kex2 activity in a crude lysate is able to

bind to ImAd, and thus ruling out the first explanation for the limitation upon Kex2

yield.

In order to test the second explanation given above, that the surface area of the

ImAd is the factor limiting the amount of Kex2 protein recovered, the amount of

Pansorbin used in the formation of the ImAd was increased. Figure 4-6a shows

that by increasing the amount of Pansorbin used in ImAd formation in order to

increase the total surface area of the ImAd (as well as increasing the amount of anti-

Kex2C used, rather than binding a fixed amount of antibody to increasing amounts

of Pansorbin, in case the amount of antibody also became a limiting factor in the

amount of Kex2p recovered), it is possible to recover more than 10% of the activity

present in a lysate in one round of binding, with an apparent maximum of 14%

being recovered here. Suprisingly, increasing the surface area of the ImAd further

(along with a concominant increase in the number of antigen binding sites) did not

seem to lead to a further increase the amount of Kex2 activity recovered, but

seemed to have the opposite effect (Figure 4-6a-bound). This observation did not

agree with the results obtained from immunoblot analysis of the same material

(Figure 4-6b) which indicate that the use of an increasing amount of ImAd leads to

an increasing amount of Kex2p to be recovered from a lysate. The amount of

activity left in the lysate following treatment with ImAd was assayed and when this

data was analysed a discrepancy was found in that when these results were added to

the amount of Kex2 activity assayed attached to the ImAd a total of less than 100%

was obtained (i.e. activity recovered from, and activity left in, the lysate did not

add up to 100%). The assays carried out on the supernatants remaining after

treatment of lysates with ImAd show that up to 80% of Kex2 activity is removable

from these lysates in a single round of binding (Figure 4-6a-unbound). Thus it

appears that the presence of Pansorbin interferes with the Kex2 protease activity

assay that was used in this study (Figure 4-7).
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Figure 4-4.

An apparent maximum amount of Kex2p in a cell lysate can bind to

Kex2-ImAd

A number of different Kex2-ImAd preparations made using 10(ll Pansorbin and

various amounts of anti-Kex2C (from 0-100|il; 0-500|ig protein). These preparations
were individually mixed with, and subsequently recovered from, NBY10(pGA714) cell

lysates as described in Figure 4-2. The amount of Kex2 protease activity bound was

assayed, expressed as a percentage of the total Kex2 activity present in the lysate, and

plotted against the amount of anti-Kex2C used to prepare the ImAd.
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Figure 4-5.

Most of the Kex2 activity in a cell lysate can be bound by Kex2-ImAd

ImAd prepared using 10|il Pansorbin and lOpl anti-Kex2C (50|ig protein) was used to

recover 30 units of Kex2 activity from an NBY10(pGA714) cell lysate, leaving 270

units of activity in the supernatant. This depleted lysate was then exposed to an

identical second aliquot of ImAd. The amount of Kex2 activity recovered by this was

assayed, as was that remaining in the lysate. The lysate was exposed to further rounds

of binding using fresh ImAd until the addition of such an ImAd led to no recovery of

Kex2 activity and no further depletion of Kex2 activity from the lysate.
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Figure 4-6.

Optimisation of Kex2p recovery

ImAd prepared using 500p.l Pansorbin and 500|il anti-Kex2C (2.5mg protein) was

divided into 7 portions (150, 100, 50, 25, 10, 5 and 2(il), each of which was used to

bind Kex2 protein from an NBY10(pGA714) lysate as described in Figure 4-2. Kex2

activity bound by each portion of the ImAd was assayed (Figure 4-6a, ImAd bound),

as was that remaining in the lysate following the removal of the ImAd (Figure 4-6a,

ImAd unbound). The same procedure was carried out using an equivalent amount of

Pansorbin to which no antibody had been bound in place of ImAd. This set of control

experiments demonstrated that up to 150p,l of Pansorbin alone, in place of ImAd, led to

no recovery of Kex2 activity and no depletion of activity from the supernatant (data not

shown).

Identical samples were prepared in parallel and processed for immunoblot analysis

using anti-Kex2C as primary antibody as described in Figure 4-2 (Figures 4-6bi and

4-6bii). Two exposures of the immunoblot are shown in order to highlight the different

amounts of Kex2 recovered from identical lysates by different amounts of ImAd. No

detectable Kex2p was present in the material bound using Pansorbin alone in place of

ImAd (data not shown).
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Figure 4-7.

Pansorbin inhibits the Kex2 assay

The amount of Kex2 activity in 30(ll of an NBY10(pGA714) cell lysate (equivalent to 3

OD units) was assayed in the absence of, and in the presence of increasing amounts of

Pansorbin. 2, 5, 10, 25, 50 and 100(ll of Pansorbin were washed with lysis buffer

before being resuspended in 30|il NBY10(pGA714) lysate. The amount of Kex2

protease activity present in these samples was assayed, as was that present in 30(il of

lysate that had not been exposed to Pansorbin (control value).

Equivalent amounts of Pansorbin were resuspended in 30)0.1 lysis buffer. No Kex2

activity was detected in these samples.
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If the assumption is made that the activity removed from the lysates has been bound

by the ImAd then it can be seen from Figure 4-6a that 80% of assayable Kex2

activity in an NBY10(pGA714) cell lysate can be removed using Kex2-ImAd. This

result agrees with data presented in Figure 4-5 and therefore it can be concluded that

80% of the Kex2 activity detected by the assay used here in a NBY10(pGA714) cell

lysate is in a form that can be recovered using Kex2C-ImAd.

From Figure 4-6 it can be seen that at least lOOjil of a now standard Kex2-ImAd

(prepared using 1ml (5mg) anti-Kex2C per ml Pansorbin (10% w/v S.aureus cell

suspension)) is required to recover 80% of the Kex2 protease activity detectable in

an NBY10(pGA714) cell lysate which seems to be the maximum amount of activity

that can be removed from such a sample by the procedure used here (Figure 4-5).

For all binding experiments reported so far, ImAd and cell lysates were incubated

together for three hours prior to recovery of the ImAd for examination of material

bound to it. Since it is hoped that material bound by Kex2-ImAd will be used to

reconstitute protein transport, it was thought to be desirable to determine the

shortest period of time with which the ImAd can be incubated with a cell lysate and

recover Kex2p. Figure 4-8 demonstrates that it is necessary to incubate the ImAd

with the cell lysate for at least 150 minutes in order to bind 80% of the Kex2 protein

present in the lysate.

On the basis of the results presented in this chapter it was decided that in

subsequent experiments where a fraction bound from a yeast cell lysate by Kex2-

ImAd was required, the material which would be used would be that bound by

lOOfll ImAd (prepared using l(ll anti-Kex2C antibody (l|ig protein) per p.1 (10%
w/v S.aureus cell suspension) Pansorbin) from 300jil yeast cell lysate (equivalent

to 30 OD units of yeast cells taken from a growing culture of 00^=0.5-1.0).
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Having optimised the conditions for binding Kex2p from an NBY10(pGA714)

lysate, it was decided to investigate the possibility of recovering Kex2p from

lysates prepared from cells expressing the protein at wild type levels. It was found

to be necessary to use 100|il Kex2C-ImAd (prepared as described above) to remove

all the Kex2p (detectable by immunoblot analysis) from 300(1,1 of an NBY10 lysate.

Figure 4-9 demonstrates that using half of this amount of ImAd results in

incomplete removal of Kex2p from the lysate.
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Figure 4-8.

Time course of Kex2p binding

ImAd prepared using 1ml Pansorbin and 1ml anti-Kex2C (5mg protein) was divided

into 10 identical aliquots, each of which was resuspended in 300|il NBY10(pGA714)

lysate (equivalent to 30 OD units). These samples were incubated on a rotating wheel

at 4°C for various times after which the ImAd was recovered by centrifugation and the

amount of Kex2 protease activity remaining in the lysate was assayed.
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Figure 4-9.

Binding of Kex2p from a lysate containing normal levels of the protein

lOOpl Kex2-ImAd (prepared using 5(ll anti-Kex2C antibody (5|ig protein) per pi (10%

w/v S.aureus cell suspension) Pansorbin) was reuspended in 300pl of an NBY10 glass

bead lysate (prepared from 30 OD units of yeast cells taken from a growing culture of

00^=0.5-1.0). The ImAd was removed after 3 hours incubation at 4°C on a rotating
wheel and the remaining lysate was subjected to electrophoretic separation on a 10%

polyacrylamide gel prior ro immunoblot analysis using anti-Kex2C as primary

antibody. A similar experiment was performed using 50pl of the same ImAd.

*
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Chapter 5

Characterisation of material immunoisoiated from

yeast cells using an affinity-purified
anti-Kex2p antibody



5.1. Introduction

This chapter describes the characterisation of material recovered from yeast cells by

immunoisolation based on the affinity of anti-Kex2C for the C-terminal domain of

Kex2p. It is demonstrated here that the material contains the Kex2 protease in intact

membrane vesicles, and that the material is enriched for marker enzymes of the yeast

Golgi but does not contain markers associated with the ER or the vacuole.

5.2. Enzyme activities present in ImAd-bound material

Based on experimental evidence (discussed in Chapter 1) that defines Kex2p as a

resident membrane protein of a late compartment of the yeast Golgi the assumption was

made that material recovered from yeast using Kex2-ImAd would be enriched in

membranes derived from this organelle but not in those derived from other organelles

such as the ER or the vacuole. It is envisaged that the most likely contaminating

membranes in a preparation of Golgi membranes obtained using immunoisolation

would be those derived from the ER since it will contain resident Golgi proteins, such

as Kex2p, en route to their destination. To investigate the composition of the material

bound by Kex2-ImAd from yeast cells, the activities of biochemical marker enzymes

were assayed to screen for the presence of ER and vacuolar membranes (NADPH

cytochrome c oxidoreductase activity was used as a marker for the presence of ER

membranes (Schekman in Strathern etal., 1982), and CPY activity (Schwencke etal.,

1983) and DPAP B activity (Bordalloetal., 1984) were used as markers for the

presence of vacuolar membranes). Figure 5- la shows that material bound by Kex2-

ImAd from a lysate prepared from the yeast strain NBY10 using glass bead breakage

(containing 80% of the cellular Kex2 activity) contains negligible amounts of these

enzymes (less than 0.5% of that present in the lysate presented to the ImAd).

The heat stable dipeptidyl aminopeptidase (DPAP A), encoded bySTE13 is responsible

for the N-terminal maturation of a-factor following its cleavage by Kex2p and C-

terminal maturation by Kexlp (Fuller et al., 1988), and is commonly used as a marker
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for the presence of yeast Golgi membranes. The ImAd bound material was found to

contain little heat stable (Julius etal., 1984) DPAP A activity (less than 2% of that

present in the lysate presented to the ImAd), little more than was bound from the same

cell lysate using Pansorbin alone. Although it has been suggested that DPAP A resides

in a different cellular compartment from Kex2p (due to the presence of several Lys-Arg

sites in the sequence predicted to form its catalytic domain; Fuller et al., 1988), it has

recently been reported that immunofluorescence studies produce a staining pattern

similar to that observed for Kex2p (T. Stevens - quoted in Seeger and Payne, 1992).

This, taken with the fact that the two enzymes act in the maturation of a-factor,

suggests that Kex2p and DPAP A might reside in the same cellular compartment.

Taking such evidence into account, it was perhaps suprising that the material bound by

Kex2-ImAd, known to contain the vast majority of cellular Kex2p from a lysate, was

not enriched in DPAP A activity. The lysate from which the ImAd-bound fraction had

been recovered was prepared by vortexing yeast cells in the presence of glass beads.

This method of lysis can be considered harsh, and is likely to cause considerable

disruption to internal cellular structures. It was suspected that during glass bead lysate

preparation, the Kex2p-compartment had become fragmented to such an extent that

even if DPAP A and Kex2p do both reside in the same compartment, the occurrence of

the two in the same vesicle (derived from the Kex2p-compartment) was rare.

In order to investigate this hypothesis a more gentle method of lysis was used to

generate the cell extract from which a Kex2-ImAd bound fraction could be obtained, in

the hope that less disruption to internal membranes would lead to the isolation of a

fraction more representative of the Kex2p-compartment using Kex2-ImAd. Figure 5-2

demonstrates that a yeast cell lysate prepared by homogenisation of spheroplasts

contains a higher proportion of a secretory protein in a cryptic form (i.e. requiring the

addition of detergent for its detection) than a lysate prepared from the same cells using

glass bead breakage. In a glass bead lysate prepared from the yeast strain

JRY188(pYJS50) which secretes the bacterial enzyme (3-lactamase only 30% of the

detectable activity is present in a cryptic form. An extract prepared from the same cells
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by homogenisation of spheroplasts in a hypertonic buffer contains over 90% of the

enzyme in such a form (Figure 5-2) suggesting that the method of homogenisation

described is less disruptive to internal membranes than glass bead lysis.

A Kex2-ImAd bound fraction was therefore recovered from yeast cells that had been

lysed by homogenisation in hypertonic media following removal of their cell wall and

was found to contain 25% of the DPAP A activity that had been in the homogenate

(Figure 5- lb). The activity of both the vacuolar and the ER marker enzymes in this

fraction was negligible. As well as providing evidence that Kex2p and DPAP A do

reside in the same cellular compartment, these findings suggest the possibility that

Kex2p and DPAP A reside in separate domains of that compartment. It is envisaged

that these domains are physically separated by the harsh method of glass bead lysis

whereas the more gentle lysis technique of homogenisation allows them to remain in the

same membrane structure more often.

On the basis of these results, it was decided that all future Kex2-ImAd bound fractions

should be prepared from cell extracts prepared by homogenisation, since it is

considered that they are more likely to be representative of the organelle in which

Kex2p resides in the cell.

134



Figure 5-1.

Enzyme activities associated with ImAd-bound material

The activities of various enzymes were measured in cell extracts, material recovered

from these extracts using Kex2-ImAd, and the material remaining following treatment

with ImAd. This figure compares the amount of activiy of each of these enzymes

recovered from an NBY10 glass bead lysate using Kex2-ImAd (Figure 5-la) with

those recovered in the same way from a homogenate of the same cells (Figure 5-lb).

The activities recovered by the ImAd are expressed as a percentage of the total activity

found in the extract from which the bound fraction was obtained.

The same assays were performed on material recovered using Pansorbin alone,

revealing that Pansorbin alone recovers negligible amounts of activities of any of the

enzymes assayed here (data not shown).

135



ActivityrecoveredbyKex2ImAd (%oftotalinextract)
S3-fc-Q\00OOOOOo

JL.

TQ

C

CD

Ol

ActivityrecoveredbyKex2ImAd (%oftotalinextract)
to

o

-p*

o

On
O

00

O



Figure 5-2

Glass bead lysis is more disruptive than homogenisation

Two extracts were prepared from the yeast strain JRY188(pYJS50) which actively

secretes the bacterial enzyme (3-lactamase. One extract was prepared using glass bead

lysis and the other by homogenisation of spheroplasts. The activity of ^-lactamase in

5(0.1 of each extract (equivalent to 0.5 OD units of original culture) was assayed in

0.8M sorbitol both in the presence and absence of 0.1% Triton X-100 in order to

determine what proportion of the enzyme was contained within membrane structures.

The activity measured in the presence of detergent was taken as the total amount of

activity present in the extract (the total amount of activity in the two extracts was

found to be the same) and the activity measured in the absence of detergent was

expressed as a percentage of this.
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5.3. ImAd recovers Kex2p in sealed membrane vesicles

It is hoped that the material recovered by Kex2-ImAd from a yeast cell homogenate will

be used to reproduce functions that are carried out in the cell, such as the fusion of

transport vesicles with, and budding of transport vesicles from the Kex2p-containing

compartment, and therefore it is important to establish whether it contains intact

membrane vesicles derived from that organelle.

The ability of Kex2-ImAd to recover intact membrane vesicles from a yeast cell

homogenate was initially demonstrated by the fact that it could be used to recover a

soluble cargo protein from a homogenate prepared from cells that are actively secreting

the protein. (3-lactamase, a soluble protein secreted by JRY188 cells harbouring the

plasmid pYJS50 can be recovered using Kex2-ImAd in such a form that its presence

can only be detected under conditions associated with membrane disruption (Figure

5-3).

To demonstrate that the Kex2 protein recovered by Kex2-ImAd is itself contained

within membrane vesicles, the susceptibility of the protein to externally added protease

was examined. An affinity-purified antibody that recognises the N-terminal 120 amino

acids of Kex2p (anti-Kex2N; produced by P. Whitley: Whitley, 1990) was used to this

end. Intact vesicles bound to ImAd through the C-terminal domain of Kex2p will carry

the region of the transmembrane protein recognised by anti-Kex2N inside them. Figure

5-4 shows that when material bound from a yeast cell homogenate by Kex2-ImAd is

treated with protease prior to immunoblot analysis using anti-Kex2N as primary

antibody, the protein detected is of an apparent molecular weight consistent with the

cytoplasmic domain of Kex2p having been removed from the protein (approximately

100K; Fuller etal., 1989a), whereas the same antibody recognises the full size protein

in the same material prior to protease treatment. Protease treatment of ImAd-bound

material carried out in the presence of detergent completely removes the protein

recognised by anti-Kex2N from the sample.
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Figure 5-3.

Recovery of intravesicular cargo protein using ImAd

An ImAd-bound fraction was prepared from a homogenate of JRY188 cells

harbouring the plasmid pYJS50, as was a control bound fraction using Pansorbin

alone. These cells secrete the bacterial enzyme (3-lactamase. The two bound fractions

were each split into two aliquots, one of which was resuspended in 50pl

homogenisation buffer and the other in 50|ll PBS containing 0.1% Triton X-100.

ImAd was removed from each of these samples by centrifugation and the resultant

supernatants were assayed for the presence of p-lactamase activity. The results are

expressed as a percentage of the activity released from the ImAd-bound material by

0.1% Triton X-100.
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Figure 5-4.

The luminal domain of immunoisolated Kex2p is inaccessible to

proteinase K

Five aliquots of material bound by Kex2-ImAd from an NBY10 homogenate were

resuspended in 50p.l homogenisation buffer containing 2mM CaCl2. Proteinase K
was added to a final concentration of 50|ig/ml as indicated (Triton X-100 was added
to a final concentration of 0.1% prior to this where appropriate). The samples were

placed on ice for 60 mins after which PMSF was added to a final concentration of

3mM. ImAd was removed from the samples after they had been boiled in SDS

sample buffer for 5 mins. The samples were then subjected to 10% SDS-PAGE prior

to transfer to nitrocellulose to allow immunoblot analysis using an affinity purified

antibody which recognises the luminal, N-terminal domain of Kex2p. Included on

the gel was a sample of the NBY10 homogenate, to ascertain the mobility of the full

length Kex2 protein.
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5.4. Composition of ImAd bound material

5.4a. Immunoblot analyses of the Kex2-ImAd bound fraction

The composition of the material bound by Kex2-ImAd was investigated in order to

further characterise this fraction. This was done in two ways. Firstly, the material was

tested for reaction with antibodies that had been raised against proteins known to reside

in specific yeast organelles; and secondly, proteins recovered using ImAd that are not

bound by Pansorbin were identified.

Immunoblot analyses of a Kex2-ImAd-bound fraction prepared from an NBY10

homogenate with antibodies prepared as described in the appendix to Chapter 3 were

used to assess the composition of the fraction. The ImAd-bound material shows no

reaction with the antiserum that was raised against Hmglp even when extracted with

detergent as described in the appendix to Chapter 3 (data not shown). This result is as

expected, from the NADPH cytochrome c oxidoreductase assay results (see 5.2.) and

provides additional evidence to suggest that the ImAd-bound fraction contains little, or

no, contamination with membranes derived from the ER. Similarly, ImAd-bound

material (prepared from an NBY10(pIH2-4) homogenate) does not demonstrate any

reaction with the affinity-purified anti-Ste2p antibody (data not shown) which may be

taken to suggest that the fraction does not contain any material derived from the plasma

membrane. However, Figure 5-5a shows that a supernatant taken from the cell line

B/lA1 (which recognises the Pgal-Pmalp fusion protein (but not the pgal-Kex2p
fusion protein), as well as a protein taken to be Pmalp in a P100 prepared from

NBY10 - see the appendix to Chapter 3) reacts slightly with material bound by Kex2-

ImAd from an NBY10 homogenate, but not with material bound from the same

preparation by Pansorbin alone. This apparent contradiction over whether plasma

membrane proteins can be detected in the material bound by the ImAd may be explained

by the different abilities of the two antibodies used to detect their antigens in

immunoblot analysis. To detect a signal relating to the recognition of Ste2p by the

affinity-purified anti-Ste2p antibodies, it is necessary to expose x-ray film to a filter that
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had been treated with ECL reagent (following immunoblot analysis) for 10 minutes,

whereas, under the same conditions, a signal relating to the detection of Pmalp in a

similar fraction by the B/1A1 supernatant can be detected after an exposure of

approximately 10 seconds. An exposure of 2 hours was required to detect the reaction

of B/l A1 supernatant with the ImAd bound material, demonstrating that the level of

Pmalp contained within the fraction is very low. Although this may be taken to

suggest that the ImAd bound fraction contains some membrane derived from the plasma

membrane, the presence of Pmalp in the ImAd bound material can be explained as

protein traffic travelling through the Kex2p-containing compartment en route to the

plasma membrane.

The Kexlp carboxypeptidase acts in the processing of a-factor after Kex2p, but before

DPAP A (Fuller et al., 1988). Since the two enzymes which act immediately before

and after Kexlp have been shown to reside in the same cellular compartment (see 5.2.),

it seems highly likely that Kexlp will also reside in this compartment. To investigate

this, an antibody that recognises Kexlp (supplied by Dr. H. Bussey, University of

Montreal) was used in an immunoblot analysis of Kex2-ImAd bound material prepared

from an NBY10 homogenate. Figure 5-5b shows that, as expected (H. Bussey -

personal communication: Dmochowska et al., 1987) the Kexlp antibody recognises a

protein with an apparent molecular weight of approximately 60K in an NBY10

homogenate which is present in an ImAd-bound fraction prepared from such a

homogenate, but not in material bound from the same preparation by Pansorbin alone.

This result provides direct evidence that the compartment in which Kex2p resides inside

the cell, contains Kexlp, as well as DPAP A, and that the material bound from a yeast

cell homogenate resembles the compartment in which Kex2p resides inside the cell.
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Figure 5-5.

Immunoblot analyses of the Kex2-ImAd bound material

Material was recovered from an NBY10 homogenate using both Kex2-ImAd and

Pansorbin alone. Both of these fractions (Kex2-ImAd bound and Pansorbin bound)

were tested for reaction with supernatant from the cell line B/lA1 (Figure 5-5a),

which recognises Pmalp, by immunoblot analysis, following electrophoretic

separation on a 10% polyacrylamide gel. A similar analysis was performed on the

same material using an anti-Kexlp antibody (supplied by Dr. H. Bussey) - Figure

5-5b. A PI00 prepared from the same volume of NBY10 homogenate from which

the ImAd bound fraction had been prepared was also included in this analysis (P100).
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5.4b. Polypeptide composition of Kex2-ImAd bound material

Kex2-ImAd was used to recover a bound fraction from a homogenate of NBY10 cells

containing proteins that had been radiolabelled using 35S-methionine. This material

was compared to that bound by Pansorbin alone. It can be seen from Figure 5-6 that

the Kex2-ImAd recovers a number of radiolabelled proteins from an NBY10

homogenate that are not recovered from the same sample by Pansorbin alone. In an

attempt to accentuate the differences between the fraction bound by ImAd and that

bound by Pansorbin alone, the two bound fractions were prepared from a radiolabelled

NBY10 homogenate that had previously been cleared using Pansorbin. It was hoped

that this would lead to no, or little, material binding to Pansorbin in the second round of

binding, but as can be seen from Figure 5-6, this does not appear to be the case. This

may be due to the fact that the binding experiments are carried out over a long period of

time (3 hours), during which proteins in the homogenate may denature, such proteins

may tend to form aggregates, which would sediment during recovery of the bound

fraction. Although this attempt to clean-up the control bound fraction has been only

partly successful, it can be seen that some proteins that are unique to the ImAd bound

fraction prepared from the uncleared homogenate are also found in the ImAd bound

fraction prepared from the cleared homogenate (but not in the fraction bound by

Pansorbin alone from either sample). Five proteins that are present in both of the ImAd

bound fractions, but in neither of the control bound fractions are indicated on Figure

5-6. It is likely that these proteins are resident to the same compartment as Kex2p, and

their characterisation would provide further insight into the function(s) of this

organelle.

It is worth noting that no band on the autoradiogram relating to Kex2p has been

identified specifically to material bound by Kex2-ImAd, even though this material is

known to contain the protein. This may demonstrate some technical limitation of using

such an approach to identify proteins recovered using Kex2-ImAd.
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Figure 5-6.

Identification of proteins specific to the Kex2-ImAd bound fraction

An ImAd bound fraction was prepared from an NBY10 homogenate containing

proteins that had been radiolabeled using 35S-methionine. This (Kex2-ImAd bound-

LYSATE) was electrophoretically separated on a 10% polyacrylamide gel. Material

recovered from the same homogenate using Pansorbin alone was processed on the

same gel (Pansorbin bound - LYSATE). The gel was processed by fluorography, and

the resultant autoradiogram is shown here.

An ImAd bound fraction was prepared from the same homogenate that had been

exposed to 100(ll Pansorbin for three hours at 4°C on a rotating wheel. This material

was analysed as described above (Kex2-ImAd bound - CLEARED LYSATE), as was

that recovered from the same sample using Pansorbin alone (Pansorbin bound -

CLEARED LYSATE).

Included on the gel was 3(0.1 of the homogenate (equivalent to 1% of that from which

the bound fractions were prepared -1% lysate).

Indicated on the figure are the positions of the five proteins discussed in the text.
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5.5. Kex2-ImAd bound fraction can function as an acceptor

compartment in a protein transport assay

A yeast cell that is actively secreting a protein will contain that protein, in some form, in

each compartment of its secretory pathway, and therefore theoretically, a lysate of such

a strain can act as the donor fraction in a protein transport assay to follow delivery of

the protein to any acceptor compartment (providing that the delivery can be assayed). A

protein transport assay was devised using a Kex2-ImAd bound fraction prepared from

NBY10 as the acceptor fraction and a cell homogenate prepared from yeast cells

secreting the bacterial enzyme P-lactamase (JRY188(pYJS50)) as donor. After

incubation of acceptor with donor under various conditions the ImAd-bound fraction

was re-isolated and assayed for the presence of transported P-lactamase. It was found

to be possible to detect the delivery of P-lactamase to Kex2-ImAd bound material, and

the following conditions were found to be required for this delivery:

Figure 5-7 shows that delivery of P-lactamase from a donor fraction prepared from

JRY188(pYJS50) cells that are secreting the enzyme, to an acceptor fraction, consisting

of material recovered from an NBY10 homogenate (which contains no P-lactamase

activity) requires energy in the form of an ATP-regenerating system. The delivery does

not occur if the reaction mixture is incubated at 0°C instead of 25°C. It was also found

necessary that the homogenate used as the donor fraction was more concentrated than

the homogenate routinely used throughout this study (equivalent to 500 OD units/ml as

oppose to 100 OD units/ml was required - data not shown)
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Figure 5-7.

A protein transport assay following the delivery of a soluble cargo

protein to Kex2-ImAd bound material

Material bound to either Kex2-ImAd, or Pansorbin alone, from an NBY10

homogenate, was reusupended in 90|il of a homogenate prepared from

JRY188(pYJS50) on ice (the homogenate contained the equivalent of 500 OD

units/ml). Either 10|il homogenisation buffer (-ATP), or 10(il of a 10 x ATP

regenerating system (final concentration ImM ATP, 8mM creatine phosphate,

30units/ml creatine phosphokinase: +ATP) was added, as indicated. These reaction

mixtures were either left on ice (0°C), or incubated at 25°C for 15 mins, as indicated.

After this time, the ImAd (or Pansorbin) was recovered by centrifugation, washed

twice with homogenisation buffer, and then resuspended in PBS containing 0.05%
Triton X-100. Material released from the ImAd (Pansorbin) by the detergent was

assayed for [3-lactamase activity. This is shown opposite, with the results expressed
as a percentage of the highest value recorded.
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To dissect the transport being followed in the transport assay described above an

experiment in which membranes prepared from NBY10 were added to the assay

mixture was performed. It was found that the addition of these membranes caused a

decrease in the amount of (3-lactamase delivered to the ImAd bound fraction. If

membranes prepared from an NBY10 homogenate that have been depleted of Kex2p-

compartment by incubation with Kex2-ImAd are added to the assay mix, this

competition effect was reduced. This supports the hypothesis that the assay measures

the transport of cargo protein to the Kex2p-compartment, since an inhibition by the

presence of membranes containing Kex2p-compartment is partially reduced by identical

membranes which lack the Kex2p-compartment (Figure 5-8). One criticism of this

experiment may be that the effect observed is merely due to the 'depleted membrane'

fraction containing less material than the membranes which compete with the acceptor

fraction in this assay. Such an explanation can be discounted, since it can be seen from

Figure 5-6 that the ImAd bound material is made up of less than one percent of the total

amount of protein found in a homogenate. The most generous of estimates might say

that membrane proteins account for, say 10% of this, so at the very least the 'depleted

membrane' fraction contains 90% of the amount of membrane material found in the

membrane preparation which inhibits the assay (and probably more than this).
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Figure 5-8.

Kex2-ImAd partially depletes yeast membranes of the ability to

compete with Kex2-ImAd bound material as an acceptor compartment

in a protein transport assay

Material bound to Kex2-ImAd, from an NBY10 homogenate, was resuspended in

90|il of either a JRY188(pYJS50) homogenate (no competition), or an identical

homogenate that had previously (immediately prior to resuspension of the ImAd-

bound fraction) been used to resuspend either;

a P100 prepared from an NBY10 homogenate (membranes);

or a P100 prepared from an NBY10 homgenate that had been exposed to Kex2-ImAd

for three hours, and now contained only 20% of its original Kex2p activity (depleted

membranes).

10|il of an 10 x ATP regenerating system (described in Figure 5-7) was added to each

of these reaction mixtures prior to incubation at 25°C for 15 mins. After this time the

ImAd-bound fraction was recovered and treated as described in Figure 5-7. The

results of the ^-lactamase assays that were carried out in this experiment are

expressed as a percentage of the activity delivered to an ImAd bound fraction by the

JRY188(pYJS50) homogenate that had not had any membranes added to it.
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Delivery of proteins from a donor fraction to an acceptor fraction can be divided into

two stages: Docking, whereby transport vesicles which have budded from the donor

membrane attatch to, but do not fuse with, the acceptor compartment; and fusion,

whereby the contents of the transport vesicles are delivered to the acceptor

compartment, following a membrane fusion event. When a transport vesicle docks

onto its acceptor membrane its contents remain physically separated from those of the

acceptor compartment, whereas a membrane fusion event causes the contents of the two

compartments to become mixed. To ascertain whether the assay described above

follows the fusion of transport vesicles with the Kex2p-compartment bound to the

ImAd, the form of the protein delivered to the bound fraction was examined. For this

experiment, the donor fraction was prepared from PWYS3(pYJS50) cells (which lack

Kex2p, and therefore cannot cleave the gene product of pYJS50). Delivery of the

P-lactamase encoded by pYJS50 to a compartment containing Kex2p will result in a

change in its electrophoretic mobility following cleavage by the peptidase. As can be

seen from Figure 5-9 the area of the immunoblot where the expected Kex2p-cleaved

product would be expected to be found (bacterially expressed (3-lactamse was included

on the immunoblot as a marker) demonstrates high reactivity with the anti-P-lactamase

antibody used and the expected change in the electrophoretic mobility of the

P-lactamase has not been detected. However, it can be seen that the material recovered

from an assay carried out in the presence of an ATP regenerating system contains high

molecular weight forms of P-lactamase that are not present in material recovered from

an assay carried out in the absence of such an energy supply. Preliminary analysis of

the different forms of P-lactamase detected in Figure 5-9 identify this material as being

characteristic of that found in the Golgi (by comparison with an immunoblot shown in

Graham and Emr, 1991) and the observation that the delivery of this material to the

Kex2-ImAd bound fraction requires energy suggests that protein transport to the

Kex2p-compartment is indeed being followed. Obviously, further work is required to

determine the meaning of this result, but the preliminary work presented here provides

strong evidence that material recovered from yeast cells by Kex2-ImAd, will be of use

in the study of function(s) of the Kex2p-compartment.
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Figure 5-9

Examination of p-lactamase delivered to ImAd bound material

ImAd bound material, prepared from an NBY10 homogenate, was resuspended in

90|ll of a PWYS3(pYJS50) homogenate. 10|il of either homgenisation buffer, or a

10 x ATP regenerating system (described in Figure 5-7) was added prior to incubation
at 25°C for 15 mins (+ATP/-ATP). The ImAd-bound material was recovered, washed

three times in homogenisation buffer, and then boiled for 5 mins in SDS sample

buffer. These samples (pellets; P on figure), as well as the supernatant (S on figure)

remaining following the removal of the ImAd-bound material, were subjected to

electrophoretic separation on a 10% polyacrylamide gel before being transferred to

nitrocellulose to allow immunoblot analysis using an anti-p-lactamase antibody.
Indicated on the figure is the position at which bacterially produced p-lactamase

migrated to (29K), this is where Kex2p processed form of the protein expressed from

pYJS50 would be expected to migrate to.
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Chapter 6

Immunoisolation of material from

yeast using a Kex2-protein A
hybrid protein



6.1. Introduction

Following the successful use of Kex2p in the immunoisolation of the compartment in

which it resides (discussed in Chapters 4 and 5), it was decided that the protein should

be used to investigate the use of the affinity of protein A for IgG to isolate specific

membrane fractions from yeast using protein A fusion proteins. This was to be

undertaken by constructing a gene fusion to encode a protein consisting of protein A

IgG-binding domains fused onto the extreme C-terminus of Kex2p. It was envisaged

that, if this fusion protein had the same subcellular localisation as Kex2p, it should be

possible to use it to isolate the same membrane fraction that was isolated using Kex2-

ImAd, by using the Fc portion of IgG molecules attached to a matrix. This possibility

was investigated since, if such an approach was found to be successful, it could be

adapted to isolate other membrane fractions (by choosing appropriate proteins with

which to construct protein A fusion proteins). Such an approach may be advantageous

over obtaining antibodies for the chosen proteins since the affinity of protein A for IgG

is known to be high, whereas there is an element of chance involved in obtaining

antibodies with a high affinity for a specific antigen.

6.2. SpaK; the Kex2p-protein A fusion protein

The oligonucleotides described in Figure 6-1 were used to generate a 3.6kb fragment of

DNA, containing the entire coding region of the KEX2 gene, by PCR using genomic

DNA prepared from NBY10 as a template. The product from this reaction, which

consists of DNA from 1200bp upstream of the KEX2 gene (and is thought to contain

the promoter region of the gene) was used to construct a KEX2-spa gene fusion,

contained within the plasmid pNB66, as described in Figure 6-1. The gene fusion is

predicted to encode a protein with a molecular weight of 107K (968 residues)

consisting of 813 residues encoded by the KEX2-derived portion of the gene followed

by 7 encoded by polylinker DNA and 148 residues encoded by DNA from the spa gene

(as contained within pKpraSH; Figure 6-1). pNB66 was transformed into the yeast

strain JRY188 to create JRY188(pNB66). Lysates from this strain were screened for
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the presence of a protein A fusion protein by immunoblot analysis using a rabbit IgG-

HRP conjugate. Figure 6-2 demonstrates that JRY188(pNB66) produces a protein

recognised by rabbit IgG that has an apparent molecular weight of approximately 150K

(no such protein is produced by JRY188). The predicted molecular weight of Kex2p is

90K but it has an apparent molecular weight of 135K due to the high net negative

charge that it carries in its C-terminal domain (Fuller etal., 1989). The portion of

protein A fused to Kex2p in the construction of SpaK is predicted to add approximately

16K onto the molecular weight of Kex2p and therefore it is concluded that the protein

detected in Figure 6-2 is the expected SpaK fusion protein encoded by the gene fusion

harboured by pNB66. Figure 6-2 also shows that the fusion protein expressed by

NBY10(pNB66) fractionates to the P100 prepared from a cell lysate, with none being

found in the soluble SI00. This result is consistent with the protein being associated

with membranes.

To demonstrate that SpaK exhibits Kex2 protease activity pNB66 was transformed into

a kex2 mutant strain (PWYS3). Extract prepared from the transformant

PWYS3(pNB66) vvas found to contain levels of Kex2 protease activity comparable to

those found in a similar extract prepared from JRY188 cells whereas extract prepared

from PWYS3 cells contains little of this activity (Figure 6-3).

The results presented so far in this chapter, that SpaK is produced by JRY188(pNB66)

cells at a level comparable to that at which JRY 188 cells produce Kex2p, and that the

protein is associated with membranes, were as predicted, and therefore the investigation

of the use of SpaK to recover the Kex2p-containing compartment was continued.
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Figure 6-1.

Creation of the KEX2-spa gene fusion

The oligonucleotides 5' -GCGGATCCGTCGATCGTCCGGAAGATGG-3' and

5'-CGGGATCCGGTACCTCCAGTGCAACCAAACG-3' were used as primers for

the PCR using genomic DNA prepared fron NBY10. This gave rise to a 3.6kb product

which, following digestion with BamHl and Kpnl, was cloned into similarly digested

pK19 to create pNB64. The gene fusion was created by cloning a 0.5kb piece of DNA

encoding IgG-binding domains of protein A from pKpraSH into pNB64 using Sail and

Hindlll to create pNB65.

pKpraSH was created from pKpra using a two step strategy. A self-complementary

linker oligonucleotide (5'-AGCTGGTCGACC-3') was cloned into the Hindlll site of

pKpra, destroying the Hindll site and introducing a Sail site, to create pKpraSB. The

BamHl site in pKpraSB was destroyed and a Hindll site was introduced in its place by

digesting the plasmid with EcoRl and BamHl and inserting the oligonucleotides

5' -AATTGTAAGCTTG-3' and 5'-GATCCAAGCTTAC-3' into the digested plasmid to

create pKpraSH.

pNB65 carries the KEX2-spa gene fusion flanked by BamHl sites. The gene fusion

was inserted into the BamHl site of YCplac22 (in the orientation which gives rise to its

expression from the lacZ promoter) to create pNB66.
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Figure 6-2.

SpaK; the Kex2p-protein A fusion protein

Glass bead extracts were prepared from 100ml cultures of JRY188 and

JRY188(pNB66) that had been grown in minimal media to an ODgQQ of 0.5. The
extract prepared from JRY188(pNB66) was fractionated by centrifugation at

100 OOOg for 1 hour giving rise to a crude preparation of membranes (PI00) and a

soluble fraction (S100). The samples were separated on a 10% SDS-polyacrylamide

gel and transferred to nitrocellulose prior to immunoblot analysis using a rabbit-HRP

conjugate.
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Figure 6-3.

SpaK has Kex2 protease activity

pNB66 was transformed into the kex2 mutant strain PWYS3. Glass bead extract was

prepared from these cells, PWYS3(pNB66), as well as from untransformed PWYS3

and JRY188. The level of Kex2 protease activity was assayed in each of these

extracts and was expressed as a percentage of the level found in JRY188.
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6.3. Recovery of SpaK-containing membranes

Using the protocol established for the recovery of Kex2p-containing membranes

(Chapters 4 and 5) IgG-Sepharose was used in place of Kex2C-ImAd in an attempt to

recover SpaK-containing membranes from an JRY188(pNB66) homogenate.

Suprisingly, it was found that no SpaK was recovered from such a preparation using

IgG-Sepharose (data not shown). Subsequent analysis of the homogenate revealed that

the fusion protein was found in the pellet resulting from the low speed centrifugation

that is performed following homogenisation of the cells (Figure 6-4). Kex2p is found

in the supernatant that results following this centrifugation (Figure 6-4). This result

suggests that SpaK does not reside in the same cellular compartment as Kex2p.

The possibility that SpaK is localised to the vacuole was considered following two

recent reports which suggest that the C-terminal tail of Kex2p is important for its

retention in its compartment and that the vacuole may be the default compartment for

membrane proteins in yeast (Roberts et al., 1992: Seeger and Payne, 1992). In order

to investigate this, IgG-Sepharose was used to recover SpaK-containing membranes

from a glass bead lysate prepared from JRY188(pNB66). The fusion protein did not

appear in the pellet obtained following low-speed centrifugation of such a preparation

(Figure 6-4), presumably because this method of lysis is harsher than homogenisation

so that organellar membranes become more fragmented (see Chapter 5) and remain in

the supernatant of a low-speed centrifugation.

Figure 6-5 shows that it is possible to recover all the fusion protein produced by

JRY188(pNB66) from a glass bead lysate of such cells using IgG-Sepharose. If SpaK

resided in the Kex2 compartment such a result would led to the prediction that all of the

Kex2p of the cell would also be recovered. This was found not to be the case (Figure

6-5). Analysis of the bound fraction obtained from JRY188(pNB66) using IgG-

Sepharose revealed that it contained over a third of the total amount of DPAP B (a

vacuolar membrane protein: Bordallo etal., 1984; Roberts etal., 1989) found within
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the lysate and also a significant amount of a luminal vacuolar enzyme, CPY (Figure

6-5). The fact that CPY is a soluble enzyme (Wiemken et al., 1979) may explain why a

smaller proportion of the total amount of CPY is found in the fraction recovered using

SpaK (smaller than the proportion of the membrane protein DPAP B found in the same

fraction); it is likely that CPY escapes from the vacuole during lysis of the cells (the

organelle will become broken up into vesicles and not all of the vacuolar contents will

be incorporated into these).

The results presented above are consistent with the idea that the fusion protein is located

to the vacuole. One finding that appears initially to be inconsistent with this conclusion

is that PWYS3(pNB66) cells process pro-a-factor (as determined by a halo assay; data

not shown) suggesting that the fusion protein is located in a compartment encountered

by pro-a-factor as it travels through the secretory pathway. However, an assay which

allows a more reasonable analysis of the levels of a-factor production was carried out

on these cells (Figure 6-6) and it was found that although PWYS3(pNB66) cells do

process the pheromone they do not do so to the same extent as cells that contain an

intact KEX2 gene. It may be that SpaK processes pro-a-factor as it travels through the

Golgi on its way to the vacuole. This would explain why PWYS3(pNB66) cells

secrete less processed pheromone than JRY188 cells since the levels of SpaK in the

Golgi at any one time will be considerably lower than the levels of Kex2p in the same

compartment of cells producing Kex2p.

Although it was not possible to use SpaK to immunoisolate the same material that was

recovered using Kex2-ImAd, it has been demonstrated here that the attachment of

protein A domains onto an integral membrane protein to construct a fusion protein

allows the use of IgG-Sepharose to recover the membrane in which the fusion protein

resides. The experiments described here demonstrate the importance of thorough

characterisation of hybrid proteins. It was assumed here that SpaK would adopt the
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same cellular localisation as Kex2p, but this does not appear to be the case. Further

characterisation of SpaK, and the material isolated using its affinity for IgG, may

provide a basis for the development of a procedure to allow immunoisolation of the

yeast vacuole.
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Figure 6-4.

Fractionation of SpaK

A 100ml culture of JRY188(pNB66) was divided in half. Cells from one half of this

culture were lysed using glass beads and the remainder were lysed using

homogenisation following removal of their cell wall by zymolyase. The preparations

yielded by both of these procedures were subjected to centrifugation at 4000g for

2 mins giving rise to a pellet (P4) and a supernatant (S4).

Two aliquots of each of the various samples thus obtained (total extract, P4 and S4)

were subjected to electrophoretic separation on a 6% SDS-polyacrylamide gel, and

then were transferred to nitrocellulose. One portion of this filter was tested for

reactivity with a rabbit IgG-HRP conjugate (which will recognise SpaK), shown as

the top immunoblot. Another portion of the filter was tested for reactivity with anti-

Kex2C which will recognise both SpaK and Kex2p (bottom).
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Figure 6-5.

Recovery of SpaK-containing membranes

50|J.l (slurry volume) aliquots of IgG-Sepharose were used to recover material from

300|J.l (equivalent to 30OD units) of an S4 prepared from a glass bead lysate of a

culture of JRY188(pNB66) in the following way: The IgG-Sepharose was washed 6
times with lysis buffer before being resuspended in the S4. Following incubation on

a rotating wheel at 4°C for 3 hours the IgG-Sepharose was recovered by

centrifugation at 2000g for 2 mins. The IgG-Sepharose was washed 3 times with

lysis buffer (this washed sample was taken as the bound material) and was then either

boiled in SDS sample buffer prior to immunoblot analysis using either a rabbit IgG-
HRP conjugate (Figure 6-5a) or anti-Kex2C (Figure 6-5b) following electrophoretic

separation on a 10% SDS-polyacrylamide gel and transfer to nitrocellulose, or was

assayed for the activities of various enzymes (Figure 6-5c).

The same procedure was carried out using extract prepared from JRY188 as a control

and the material remaining in the extract following removal of the IgG-Sepharose was

also analysed (unbound material). All of the analyses described here were also

carried out on a sample of each of the glass bead extracts (lysate), and the enzyme

activity assays are expressed as a percentage of that found in the lysate from which

the bound fraction was obtained.
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Figure 6-6.

Pro-cx-factor processing by SpaK

The ability of the yeast strain RC631 (whose growth is sensitive to the presence of ce¬

faclor) to grow in the presence of supernatants from various yeast cultures (taken at

00500=0.5) was tested in order to ascertain whether these cells were processing pro¬

a-factor. The growth of RC631 in the presence of sterile YPD was also measured.
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Discussion

The product of the Saccharomyces cerevisiae KEX2 gene is a Ca2+ dependent, neutral

serine protease that cleaves peptide substrates at the carboxyl side of Lys-Arg and

Arg-Arg sites. Kex2p is required for maturation of pro-a-factor, a process that occurs

before fusion of secretory vesicles with the plasma membrane, in the Golgi apparatus.

Kex2p can accurately process the mammalian precursors proinsulin and pro¬

opiomelanocortin in vivo, and its similarity to proteases that carry out these processing
events in mammalian cells is one piece of evidence that has led to the conclusion that

Kex2p resides in a compartment in yeast cells that is functionally equivalent to the
trans Golgi network of mammalian cells (Wilcox and Fuller, 1991: others are discussed

in Chapter 1).

During the course of this project I set out to develop a procedure to use Kex2p to isolate
the cellular compartment in which it resides so that this organelle may be characterised.
To this end, bacterially-produced hybrid proteins consisting of the, normally

cytoplasmically-disposed, C-terminal 100 amino acids of Kex2p fused to either protein
A or Pgal, were used to raise, and affinity purify polyclonal antibodies that specifically

recognise this region of the protein (anti-Kex2C: Chapter 3). These antibodies were

attached to S. aureus cells, to form a Kex2-ImAd, which was subsequently used to

recover material, based on the affinity of anti-Kex2C for Kex2p, from yeast cells

(Chapter 4). Conditions were found that led to the recovery of Kex2p contained within
intact membrane vesicles. As well as being highly enriched for the Kex2 protease, the
immunoisolated material also contains the two pheromone processing enzymes which
act after Kex2p in the maturation of pro-a-factor (Kexlp and DPAP A: Fulleret ah,

1988). From this work, it seems that all three of the enzymes involved in the

maturation of pro-a-factor to a-factor reside in the same cellular compartment. This

provides further evidence that the yeast Kex2p-containing compartment is analogous to

the TGN of mammalian cells, since if Kexlp and DPAP A did not reside in the same

compartment as Kex2p, then the mating pheromone would have to encounter at least
one other cellular compartment after leaving the Kex2p-containing compartment prior to
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secretion in order to be fully processed, but the finding that Kex2p, DPAP A and

Kexlp all reside in the same compartment means that it is possible (and likely) that the

pheromone does not encounter any other Golgi compartment after the Kex2p-

compartmenL The immunoisolated material does not contain any activity associated

with enzymes that are associated with the ER (NADPH-cytochrome c oxidoreductase)

or the vacuole (DPAP B or CPY). This apparent lack of contamination of the

membrane fraction has been confirmed by immunoblot analysis using an antiserum

which recognises a second ER membrane protein (HMG-CoA reductase), and it is

envisaged that immunoblot analysis of the same fraction with an antibody that

recognises the vacuolar enzyme CPY would detect the protein in its inactive precursor

form en route to the vacuole. The ImAd recovered material has been shown to contain

a plasma membrane protein (Pmalp), believed to be recovered in association with the

Kex2p-compartment as traffic en route to its cellular location. From the results

presented in Chapters 4 and 5, it seems reasonable to conclude that the material

recovered by immunoisolation, based on the affinity of a polyclonal antibody for the

cytoplasmically-disposed C-terminal domain of Kex2p, is representative of the yeast

Kex2p-compartment, the yeast counterpart of the mammalian TGN.

An interesting finding from the experiments designed to optimise the recovery of

Kex2p-containing membranes from yeast cells, was that the co-recovery of DPAP A

with Kex2p was dependent on the method used to lyse the yeast cells, with such co-

recovery only being achieved following gentle lysis of the cells. A model to explain

this finding is suggested here; if the membrane of the Kex2-compartment is divided into

domains, with Kex2 being found in one domain, and DPAP A in another. In such a

model, when harsh lysis conditions disrupt the compartment, the resultant vesicles are

unlikely to contain both of the enzymes (since they are spatially separated), whereas

gentle cell lysis will cause less fragmentation of the compartment so that the liklihood of

recovering the intact organelle is higher.
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A second approach that was taken to isolate the Kex2p-compartment involved the

construction of a gene fusion which, when transformed into yeast cells, caused them to

produce a hybrid protein, consisting of IgG-binding domains of the protein A, fused to

the extreme C-terminus of Kex2p (SpaK: Chapter 6). Material recovered from yeast

cells using this protein's affinity for IgG does not contain normal Kex2p (also present

in these cells JRY188(pNB66)), and is therefore believed not to be the Kex2p-

containing compartment. Analysis of this material suggests that it is vacuolar in origin.

This suggests that the fusion protein does not take up residence in the Kex2p-

compartment as was expected, but is located in the vacuole. While this work was being

carried out, it was reported that mutations in the C-terminal domain of Kex2p cause the

protein to be transported to the vacuole (Roberts et al., 1992: Seeger and Payne,

1992). This could be explained by speculating that these mutations cause changes to a

protein's structure and it is these changes that cause the cell to transport the abnormal

protein to the vacuole to be degraded (by an unknown mechanism). However, it has

been suggested that transport to the vacuole is the default pathway for yeast membrane

proteins, and changes in the C-terminus of Kex2p (and indeed in the cytoplasmic

domain of other yeast Golgi membrane proteins) destroy a signal (as yet unidentified)

that serves to retain the protein in the Golgi (Fuller et al., 1989^. Further evidence for

this hypothesis came from experiments designed to identify target signals that cause

proteins to be transported to the vacuole. These involved the construction of various

gene fusions and partial deletions using the genes that encode the two yeast integral

membrane DPAPs; A (which resides in the Golgi) and B (which resides in the vacuole)

(Roberts et al., 1992). Removal or replacement of either the cytoplasmic,

transmembrane, or lumenal domain of DPAP B does not affect its localisation to the

vacuole, whereas the C-terminal domain of DPAP A is both necessary and sufficient to

retain the protein in the Golgi. Overproduction of DPAP A results in some of the

protein becoming localised to the vacuole, suggesting the saturation of a retention

mechanism. One observation which seems to be inconsistent with the idea that the

vacuole is the default pathway for yeast membrane proteins, is that chcl cells (which

lack the heavy chain of clathrin) mislocalise Kex2p to the cell surface (Payne and
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Schekman, 1989). This appears to suggest that the default pathway for the protease

leads to its localisation here, but it may be that it is not a direct interaction of Kex2p

with the clathrin heavy chain that prevents its transport to the vacuole. Kex2p could

interact with another protein which, in turn, could interact with the clathrin heavy chain,

and thus retain Kex2p in its rightful location. If this were the case, then in chcl

mutants, the protein that interacts with the C-terminal domain of Kex2p would still

serve to direct it away from the vacuole, but could not keep it in the Golgi due to the

lack of clathrin heavy chain.

If the hypothesis described above is correct, and SpaK is localised in the vacuole, it is

perhaps suprising that the protein is not degraded (a protein A fusion protein of the

expected apparent molecular weight is produced by cells harbouring the gene fusion).

It has been proposed that there is an organelle which is an intermediate between the

Golgi complex and the vacuole (Seeger and Payne, 1992) which, if it exists, SpaK

would encounter en route to the vacuole. This would be consistent with observations

that have been made following the treatment of mammalian cells with the drug brefeldin

A which suggest that some proteins encounter an endosomal compartment en route to

the lysosome (Lippincott-Schwartz et al., 1991). It may be that the material recovered

throught SpaK's affinity for IgG is derived, not only from the vacuole, but also from

this putative intermediate compartment. It is possible that the SpaK which reaches the

vacuole its lumenal domain is degraded, leaving its trans-membrane and cytoplasmic

domains remaining intact. The full length fusion protein detected in material recovered

from cells expressing the gene fusion would, using this hypothesis, be resident to the

intermediate compartment, and the vacuolar markers (e.g. the active, and therefore

mature CPY) will have been recovered through the truncated SpaK in the vacuolar

membrane (the polyacrylamide gels used in this work were of such a composition that

would not allow the detection of such a small polypeptide; this may explain why no

protein A fusion protein of a molecular weight consistent with this theory was detected

here).
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Such a scheme can also be used explain the observation that SpaK-producing kex2

mutant cells process pro-a-factor to some extent, which seemed contradictory to the

fusion protein's apparent localisation to the vacuole, but was explained in Chapter 6 as

being due to SpaK in the Golgi en route to the vacuole processing the pheromone. If

there is an organelle encountered by proteins after the Kex2p-compartment, before they

reach the vacuole, which is also encountered by proteins en route to the plasma

membrane, then pro-a-factor will encounter SpaK (which has Kex2 protease activity)

in this organelle and thus become processed.

This work has led to the immunoisolation of a membrane fraction consisting of vesicles

derived from the Kex2p-containing compartment of the yeast Golgi, and it is hoped that

this material will be used to develop protein transport assays which reconstitute some of

the in vivo functions of this organelle. Obviously, for such assays to be established, it

is necessary that the immunoisolated Kex2p-containing compartment is 'functional', or

'competent' with regards to reconstituting protein trafficking events as they occur in

vivo and preliminary experiments that reconstitute the delivery of a soluble cargo

protein to the immunoisolated Kex2p-compartment (Chapter 5) go some way to

demonstrating that this is the case. The detection of Pmalp in the isolated material may

enable the process of budding from the Kex2p-compartment to be studied. This could

be assayed for by following the appearance of this cargo protein in a supernatant that

would result following the removal of immunoisolated Kex2p-containing compartment

from the assay (by centrifugation). It would be important to distinguish between

budding of membranes and fragmentation of the immunoisolated material, and this

could be achieved by demonstrating that the appearance of Pmalp in the supernatant

had an energy requirement. Such an assay could be used to identify proteins that are

important in the budding of membrane vesicles from the Kex2p-containing

compartment. For example, a number of sec mutants are thought to be defective in the

budding of vesicles from the yeast ER (Kaiser and Schekman, 1990) and the proposed

assay may be of use in determining whether the proteins involved in this process are

also required for the budding of vesicles from the Kex2p-compartment.
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This work demonstrates the power of the technique of immunoisolation, and has

created a number of possible openings which may now be taken to study the

function(s) of the hitherto poorly understood Kex2p-continaing compartment.
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A-l. Table 1. Bacterial and yeast strains used in this study

Genotype Source

Bacterial

E. coli NM522

E. coli pop2316

A (lac-proAB) hisA5 (rk-, mk+)
thi supE F/ (proAB laclq) ZAM15

F- supE E44 hsdR17 mcrA+mcrB+
rk- mk+ endAl thi-1 aroB mal-X-

Gough and Murray
(1983)

Kustersefa/. (1989)

Yeast (Saccharomyces cerevisiae)

JRY188

PWYS3

RC631

MATa leu 2-3,112 ura3-52
trpl his4 sir3-8 rme GAL

MATa leu 2-3,112 ura.3-52 trpl
his4 sir3-8 rme GAL (kex2::URA3)

MATa sst2 rme ade2 ural

his6 metl canl cyh2 GAL

Brake etal. (1984)

P. Whitley
(JRY188 derivative)

Chan and Otte

(1982)

NBY10

DC 17

DC14

JRY188(a/a diploid)

MATa hisl

MATa his 1

This study

J. Hicks

J. Hicks
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A-2. Table 2. Plasmids used in this study

Table 2a. Plasmids obtained from others

pGA714 G. Ammerer 5kb yeast genomic KEX2

fragment cloned in YEpl3

pK19 R.D. Pridmore Derivative of pUC 19: KmR

replaces Ap1* (Pridmore, 1987)

YCplac22 D. Geitz CEN4/TRP1 plasmid

(Geitz and Sigino, 1988)

pKpra A. Boyd spa fusion vector

(Zueco and Boyd, in press)

pEXll, 12 & 13 J.G. Kusters lac Z fusion vectors

(Kusters et al., 1989)

pAXll, 12 & 13 J. Zueco spa fusion vectors

(Zueco and Boyd, in press)

pAB510 M. Egerton pBR322 carrying a 4.3kb BamHl

fragment containing STE2 gene

pIH2-4 M. Egerton URA3, YEp plasmid with STE2

gene under control of the GAL1

promoter
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Table 2a. (continued)

pYJS50 A. Boyd LEU2, YEp plasmid carrying an

MFal -bla gene fusion

pUC18

pGAL-HO

A. Boyd

I. Herskowitz

(Messing, 1983)

CEN4-URA3 plasmid carrying

HO gene

pKpraKex2C P. Whitley 1.25kb EcoRI/BamHI ffagment

from pGA714 cloned into

similarly digested pKpra

Table 2b. Plasmids constructed in this study

pKpraSB self-annealed oligonucleotide AGCTGGTCGACC cloned into the

HindlU site of pKpra

pKpraSH a linker formed from the two oligonucleotides AATTGTAAGCTTG &

GATCCAAGCTTAC cloned into EcoRJ/BamHl digested pKpraSB

pNBl 1.6kb HindUI fragment, containing STE2, cloned into the Hindlll site

of pK19, orientated to give a 1.6kb fragment upon digestion with

Hindm

pNB2 0.8kb HaeIII ffagment from pNBl cloned into the Smal site of pUC18,

in such orientation that yields a 0.6kb HindlTl fragment
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pNB3 0.8kb KpnlJBamHl fragment from pNB2 cloned into similarly digested

pKpra

pNB4 Cohesive ends created following Sail digestion of pNB3 were made

blunt using Klenow fragment, prior to re-ligation

pNB13 0.8kb Haein fragment ffompNBl cloned into Smal site of pEXll, in

orientation that gives 500bp Sail fragment

pNB21 1.25kb EcoRl/BamHl fragment from pKpraKex2C cloned into

similarly-digested pEXl 1

pNB64 3.6kb PCR product obtained using the two oligonucleotides

GCGGATCCGTCGATCGTCCGGAAGATGG &

CGGGATCCGGTACCTCCAGTGCAACCAAACG as primers and

genomic DNA prepared from NBY10 as template cloned into

BamHl/Kpnl digested pK19

pNB65 0.5kb Sall/HindUl fragment encoding protein A IgG binding domains

cloned into SallJHin&lll digested pNB64, placing this fragment

downstream of KEX2

pNB66 3kb BamHl fragment containing KEX2 -spa gene fusion cloned into the

BamYK site of YCplac22
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pNB72 1,6kb PCR product (encodes from Ile524 to Ser1054 of HMG-CoA
reductase) obtained using the oligonucleotides

GAATGCTGCTAGAATTCATACCAG &

CGGGATCCAATGACGTATGACTAAGTTTAGG as primers and

genomic DNA prepared from NBY10 as template DNA cloned into

EcoRI/BamHl digested pAX12

pNB73 1.6kb EcoRl/BamHl fragment from pNB72 cloned into similarly

digested pEX12

pNB75 0.54kb fragment (encoding from Ala354 to Asp534 of the yeast plasma
membrane H+ ATPase, Pmalp) obtained by PCR using the

oligonucleotides CTCTTGGTGGATCCATACATGG &

TGGCCCGGGCTAAGAAAACAAGCCATTGTTC as primers and

genomic DNA prepared from NBY10 as template DNA cloned into

Smal/BamHl digested pAXl 1

pNB76 0.54kb Smal/BamHI fragment from pNB75 cloned into similarly

digested pEXl 1
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A-3. Creation of the yeast strain NBY10

To create the strain NBY10, JRY188 was transformed with the pGAL-HO (a plasmid

harbouring a copy of the HO gene under GAL1 control carrying the URA3 marker). The

resultant transformants were grown on YPG plates to induce expression of the HO gene.

Expression of this gene causes cells to change mating type from a to a and vice versa

nearly every cell division (Herskowitz and Jensen, 1991). Any single colony on a YPG

plate is therefore likely to, at any given time, contain haploid cells of both mating types

and siblings of opposite mating types will be able to mate with each other to form a/a

diploids.

A single colony, putatively containing a, a and a/a diploids, was streaked from YPG

onto YPD in order to seperate the three possible cell types and switch off expression of

the HO gene. Ten single colonies were then replica patched from this plate onto YPD

and sporulation media plates. After a weeks incubation at 30°C, cells from the

sporulation media plates were scored for asci. Although no asci could be seen the cells

appeared larger and rounder than cells which had not been subjected to sporulation

conditions and therefore further steps were taken to analyse the cells.

Figure A-l shows that cells from all of the ten colonies picked do not secrete a-factor,

this would be the expected result had an a/a diploid been picked. However this result

would also be obtained if a haploid cell of the 'a' mating type had been picked, such a

stable 'a' type cell could arise had a cell lost the plasmid harbouring the HO gene while

on rich media.

It was important that the strain obtained had lost the plasmid harbouring the HO gene

after a/a diploid formation, during its time on rich media. This is partly because the

plasmid carries the URA3 marker, as does pIH2-4 so in order for positive transformants

from the transformation of NBY10 with pIH2-4 to be selected it was necessary for the

strain to be Ura-. The ten patches from the YPD plate were patched onto minimal media

that had been supplemented with /-
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1. His, Ura, Tip and Leu.

2. His, Ura and Trp.

3. His, Ura and Leu.

4. His, Trp and Leu.

5. Ura, Trp and Leu.

All of the patches grew on all five plates with one exception, 'patch number 8' did not

grow on the plate that had not been supplemented with uracil (i.e. plate number 4).

These cells have lost the HO containing plasmid.

Cells from 'patch number 8', taken from YPD, were mixed seperately with DC 14

(MATa) and DC 17 (MA Ta) cells on minimal media plates. Both of these strains were

also mixed with JRY188 (MATa) and S1502B (MATa) as positive controls (with DC14

mating with JRY188 and DC 17 mating with S1502B). Neither DC 14 nor DC 17 mated

with 'patch number 8' and this was taken as a final conformation that the a/a diploid

had been formed, and the new strain was labelled as NBY10.
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Figure A-l.

Screening for a/a diploid formation by loss of a-factor production.

Ten JRY188(pGAL-HO) colonies that had been grown on galactose containing

media (SD+his, trp and leu) to ionduced expression of the HO gene, and then

moved to glucose containing media (YPD - as described in the text) were assayed

for the production of a-factor using the strain RC631, whose growth is sensitive to

the presence of the mating pheromone. Also assayed for secretion of the

pheromone here are the strains JRY188 (a) and S1502-B (a), as well as the

transformant JRY188(pGALHO) which has never expressed the HO gene

harboured by pGAL-HO. The growth of RC631 in the presence of sterile YPD

was also measured.
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