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Abstract

In this dissertation a theory of semantics for graphics for Human-Computer Interaction and
CAD systems is presented. This theory allows the integration of interactive computer graphics
and natural language processing facilities. Through this theory, the ‘knowledge’ of both
natural language and graphical expressions is represented in an integrated fashion. The
semantics of the representational language is explained as an algebraic system that has a dual
algorithmic interpretation. In the algebraic domain, the meaning of drawings is explained in
terms of a modal multi-sorted algebraic system. The algorithmic interpretation, on the other
hand, is used for integrating the declarative semantics of the representational language with
the algorithmic knowledge that is required for producing synthetic pictures in computer
graphics.

This theory was developed in conjunction with a computer program called GRAFLOG. The
program is an interactive drafting system that has been augmented with a natural language
processing facility. The interactive concepts that emerge in this kind of interface as well as
the architecture of the program are illustrated and discussed. The grammatical formalism for
handling the natural language facility, and the computational linguistic tools needed for its
implementation are also shown.

The theory and the program are applied to a simple design task: geometric reasoning for
geometric modelling in the wire-frame drawing domain. For this purpose a representational
language for expressing design knowledge in this domain is developed. The language is
useful for defining the notions of design concept, design intention, and design intention
satisfaction. The language is used not only for following up the consequences of the
information that is expressed through graphics and natural language, but also for interpreting
design intentions that are expressed by human-users, solving in this way design problems that
occur in the course of an interactive design session. The representational system is used as
well for producing a graphics and natural language explanation of the methods by which the

system comes to the solution of design problems.

In the last chapter, a reflection on the relation of computer graphics and Al is presented.
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Chapter 1

Natural Language
and Interactive Computer Graphics

This dissertation is about human-computer interaction. However, this work is not about
programming methodologies, nor about geometrical and topological techniques for producing
fancy pictures. This dissertation is developed on a notion that is familiar to many computer
disciplines, as Artificial Intelligence (AI), but which is not usually made explicit in graphics
systems. The idea is that an explicit notion of linguistic interpretation is useful for computer
graphics. The linguistic interpretation, for the purposes of this work, is the meaning given to
graphical representations by human-users. Architectural drawings, for instance, are made out of
lines and polygons, but these geometrical entities are interpreted as walls and rooms. Lines and
polygons are elements of drawings, but the things that they refer to are objects in the world.
Drawings are representations of states of affairs in the world, and as such have a meaning. The
purpose of this work is to advance a theory in which those meanings are characterised and used
in the context of interactive computer graphics. I like to emphasise that graphical systems have
or use an implicit notion of interpretation; however, this interpretation is kept in the mind of the
human-user or embedded in the program’s code. The only claim that I would like to make here
is that to take this notion to the surface, in an explicit way, by means of an interactive natural
language processing facility, is a productive idea.

There are at least three important reasons, I believe, for considering an explicit notion on
linguistic interpretation in interactive computer graphics. The first is related to the
communication process. We hear very often that graphics is a language. It is often said as well
that graphics provides a better language than other communication systems. Graphics are easy
to define, easy to learn and easy to use. Everybody ‘knows’ that ‘a picture is better than a
thousand words’. However, it is extremely difficult to tell what is the source of these intuitions
about graphics, and even more, whether they are in fact ‘true’. The fact of the matter is that
graphical representations are understood through their interpretation. We see the geometry,
shape and colour, as standing for some or another thing according to the current subject of
discourse. A line can mean many things depending on the context in which it is drawn: a wall
in an architectural drawing, the border between two countries in a political map, the number

one, the letter / etc.



The meaning that we give to graphical symbols and relations in a drawing determines the
‘graphical language’ of which that drawing is an expression. Given a basic underlying
geometrical substratum we can define different graphical languages simply by changing the
linguistic interpretation of the current drawing. Then, different graphical languages can be
defined in the same computer graphics environment, and can be used by human-users working
in different application domains.

The second reason for making explicit the linguistic interpretation of graphics is that it provides
an additional source of information that can be used for solving problems in a more efficient
and flexible way than traditional drafting and CAD systems do. This is so because the notion of
interpretation makes it feasible to enrich graphics systems with ideas and techniques developed
in other computer disciplines. For instance, we can augment their functionality with
representational schemes, planning systems, decision making systems, etc. that have been
developed in Al In this dissertation, the case of so-called design systems is considered. In
traditional drafting systems, design questions are related to the external or substantial aspects of
graphical representations. Graphic systems are used as tools through which design objects are
expressed but their design functionality is restricted to performing analytical tasks. Design
systems in which not only geometrical aspects of design objects but also their semantic
interpretation are represented allow us to ask design questions related to the function and
purpose of these objects, and computer tools can be used to perform not only analytic but also
synthetic tasks.

The third reason is that when the notion of semantic interpretation of graphics is made explicit,
a number of tacit assumptions and presuppositions that are usually taken for granted by
programmers and users of graphics programs come to the surface and become subject of critical

discussion.

Among those presuppositions is that drawings produced in the course of interactive sessions
will receive the proper interpretation by human-users. Programmers define data structures
which are visualised as drawings by means of the graphics hardware. Programmers think of
those data structures and the algorithms acting upon them as representations. However, the
question of whether the drawings themselves are isomorphic representations of the underlying
data-structures is not always answered. Programmers take for granted that human users,
interacting with the drawings themselves, will interpret and use them in the proper way, even
though the ‘proper’ interpretation might have never been stated in an explicit way. If we
believe that drawings are representations, we would like to know what kind of representation
they are, and as such what sort of properties they exhibit. If the interpretation of a drawing is
made explicit through natural language at the time graphical representations are defined in the
interactive session, we can say on more solid grounds that the human and machine

interpretations are alike.



The second assumption that I would like to mention here is that in computer graphics there is a
traditional sharp demarcation line between what is considered the programmer’s domain and the
user’s domain. Specialised programmers research the application domain and translate their
findings into the application’s code. This approach has several weaknesses; it forces human-
users to use a predefined and restricted conception of their own problems. However, human-
users have intuitions that have evolved through many years of experience. They face design
problems in an integrated, holistic, fashion. They are not necessarily aware of the rules that they
use in the design process. They are familiar with their working tools through which their works
are given shape. Furthermore, their experience cannot be thought of as a set of fixed beliefs.
Experience is not captured by a rigid representational scheme. Experience evolves through
practice. The dynamic process of design produces new working environments and old programs

become obsolete.

This process of researching an application domain can be thought of in terms of a process of
differentiation and integration. Human-users perceive the environment as a whole but for
answering the questions that they are asked during the so-called ‘analysis phase of the design
cycle’ they are forced to atomise, to make explicit distinctions. Through this process, an
explicit account of the knowledge of the domain to be modelled is produced and communicated
from human-users to programmers. But once again, the information is conveyed through the
continuum of natural language and graphical aids that the programmer uses for identifying the
descriptive patterns in terms of which traditional programs are produced. We develop programs
hoping that in this reduction-expansion process no knowledge is lost. I believe that the
introduction of an explicit notion of interpretation can smooth the relationship between
programmers and human users, because the interpretation can be thought of as the specification

of the program, and in some cases, as the program itself,

There are some additional reflections that are prompted by this academic exercise. The
definition of an explicit notion of linguistic interpretation of computer graphics poses some
rather difficult questions related to the relationship between human knowledge, on the one hand,
and computer representations, on the other. Human knowledge is always expressed and used in
relation to a context, but computer structures are discrete representations of the world, and yet

human-users interact with computers in a natural ‘human-like’ fashion.

The relation between holistic contexts and discrete distinctions is a very elusive notion. We
might assume for analytic purposes that the ability to realise similarities, and then to establish
categories and define rules, depends on a faculty by which we can extract and classify
distinctions from the context in which they occur. Contexts are grasped in a holistic way; they
come as a continuum. A graphical symbol, on the other hand, is a discrete entity represented
within the memory of the computer, and the symbol’s internal unit is defined beforehand. The

human-user sees drawings in a holistic fashion, and he or she builds up the whole context from
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the discrete parts in the interpretation process. However, not everything arising in a graphical
context can be considered context free. Consider, for instance, the architectural plane

representing a house in Figure 1.1.

FIGURE 1.1

We can say that the drawing is made out of lines which are interpreted as walls. But what is
relevant in this drawing is that the lines are there not only with the purpose of depicting the
walls; they are also limiting the space that depicts, for instance, the rooms of the house. We can
say that there are three rooms, or two rooms and a corridor, but there are no symbols denoting
them. A region of the plane has the denotative function, and this spatial region is limited by the
lines denoting the walls, but it is not fully determined by them. However, these rooms are
graphical entities that have precise properties and stand in some relations to other graphical
objects. For instance, rooms have areas, and the bedroom and the living-room are adjacent to
each other, etc. We cannot afford to lose this information for modelling architectural design. A
human interpreter is able to make these interpretations without any problem. We might just
decide that a region of the space is a room, another a bedroom and another the living-room. The
distinction has to have an internal unit, a differentiable pattern, in order to be considered as a
discrete thing. But we cannot say that wholes are composed of the sum of the discrete parts. The
union of the spatial regions depicting the rooms depicts the house. If I have a pair of scissors I
can cut out the house, but I can also cut out the rooms, or the individual walls, etc. But for
extracting all these different parts of the house I need many copies of the drawing: one for the
whole house, one for the rooms, one for the walls, etc. However, for interpreting the picture, I
can make all these extractions simultaneously. I can fix my attention on the distinction that I
want to see without destroying the whole.

We might say that the human interpreter has some expectations about architectural drawings,
and it is the coupling of these expectations with the current overt patterns of light that
determines the final interpretation. The question is, how can we know, by means of which kind
of rule, that certain arrays of lines are walls limiting the space which is interpreted as a room?
We can advance many rules for concrete situations, but how can we guarantee that they will be
of any use when the context changes? We do not know the answers to these questions in relation

to the human visual perceptual process. However, an explicit notion of linguistic interpretation
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of computer graphics allows us to establish useful conventions for the definition and use of
graphical symbols that emerge from a graphical context. Furthermore, without an explicit
notion of interpretation these relations cannot be made explicit, because the same set of lines in
a different context might mean different things, or nothing.

There is also a set of interesting questions related to the process of identification of graphical
objects. Consider that graphical symbols can be defined and selected on the screen by means of
a pick or a locator device without an apparent or problematic ambiguity. Symbols are selected
from graphical menus and drawings are made out of those symbols. They can be updated by
changing their position, their parametric description, or they can be translated, rotated or scaled
in relation to some spatial definition. However, consider the identification of emerging
graphical objects on the screen of a computer graphics device. Is it possible to point to the
house without pointing to some room or some wall? How can we tell what object is being
pointed out by an individual pointing action? Is the purpose of a pointing action to identify a
geometrical object, or rather the thing which such a symbol stands for? If there is no notion of
interpretation, there is no conceptual ambiguity in the pointing act. Objects are found by
searching the geometrical information stored in the memory of the computer. There might be
geometrical ambiguity, as when we point to the intersection of two lines, but it might be solved
by implementational consideration as, for instance, by given a larger value of priority to the
graphical segment in which the selected line is stored, but we are rather concerned with
conceptual ambiguity. If there is an explicit notion of interpretation the ambiguity arises, and
the pointing act has to be made in the context of the meaning of the drawing, and that context
determines the entity that is being referred to. We can live with the old drafting and CAD
systems, but we have to be aware that when they are used, the human-users are the ones making
the meaningful work. I believe that the price of introducing an explicit notion of linguistic
interpretation in traditional computer graphics systems is worth paying, because this knowledge
can be used in the solution of problems far beyond the scope of traditional systems, and also
because we will become more aware of the things we do when we are engaged in an interactive

conversation with a computer system.

1.1. Computer Graphics and Natural Language Processing.

In this dissertation an interactive graphics and natural language program called GRAFLOG is
presented (Pineda 1988a, 1988b, 1988c, 1988d, 1988e, 1989). The program has two major
components: an ‘intelligent’ interface and a design modelling system.

The interface is a traditional graphical interactive environment that has been augmented with a

natural language processing facility. These two functionalities are integrated, and the graphical
and linguistic interactive dialogue proceeds with common discourse referents and context. The
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linguistic component of GRAFLOG can be regarded as an application of the theoretical studies
and computational linguistic tools that were developed for a SPRIT project called ACORD
(Klein 1987). In the graphics component, however, we depart from previous work and we
emphasise not only the notion of graphical communication but also the representational aspect

of drawings.

The design system is a geometric modelling system for the representation and transformation of
2-dimensional wire-frame diagrams. This kind of drawing is common in architecture and many
other design domains. We first study the interfacing problem of how to define an arbitrary set of
conceptual, geometrical and topological constraints that a drawing must satisfy in the course of
a design task. For this, the rich expressive power of natural language is added to traditional
graphical interaction facilities. Natural language is used for imposing a semantic interpretation,
a conventional meaning, on the graphical symbols and relations making up a drawing. Then,
we address the problem of modifying such a drawing when one or more properties of its
constituent symbols are altered by a human designer in the course of a graphics interactive
session. Geometric models and graphical design systems can be traced back to the origins of
interactive computer graphics with Sutherland’s Sketchpad program (Sutherland 1963). The
novelty in this thesis is, perhaps, that these issues are addressed on a semantic basis. In addition
to the geometrical and topological information that is needed for the production of a drawing,

we modify a drawing in relation to its meaning.

The interrelationship between computer graphics and natural language has been subject of a
relatively small number of studies. There are, however, a number of systems that have
introduced key ideas for the subject. Here, we concentrate in the discussion of a small but
representative sample of these programs. The first program that we consider is Winograd’s
SHRDLU program (Winograd 1972). It was one of the earliest natural language systems and its
purpose was to show that the process of understanding natural language can be modelled
through an integrated system of procedures that represent syntactic, semantic and pragmatic
knowledge about a very constrained domain, in this case, the blocks world. Graphics in this
system were brought about in a very indirect way, and there was little discussion of their
relevance for the natural language understanding process itself. However, SHRDLU is relevant
for our purpose because the objects that are represented in the system, as well as their attributes
and relations, have a graphical realisation, and this context was displayed in a computer
graphics device. This program showed the feasibility of integration of linguistic and graphical

knowledge.

The first attempt to integrate natural language facilities in a graphics interactive environment
was, to my knowledge, Brown and Chandrasekran’s Picture Production system (Brown et al

1981, p. 176). These authors define a natural language and graphics system as follows:

A Natural Language and Graphics system is a computer programming system with both natural
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language input and output, and graphics input and output. It is intended that a complete NLG
system should assist the user by behaving in an ‘intelligent’ fashion whenever possible, by
‘understanding” natural language input, by having extensive knowledge about the objects to be
displayed, by providing defaults and reasonable values if they are not provided by the user, by
assisting the user with problem-solving capabilities when appropriate, by having the ability to
answer questions, and by responding in both natural language and pictures.
In this system, some examples of the kind of natural language dialogue that might be relevant in
computer graphics are presented, in particular questions and commands, and the role of
knowledge representation and inference schemes in a graphical oriented dialogue is studied. In
this work, of particular interest is the discussion of the kind of ambiguities that can occur if
semantic distinctions are not properly accounted for. Consider that a natural language dialogue
might be about the objects represented through the graphics or about the graphical symbols
themselves. Consider as well that these entities occur in a conceptual world, but also within the
screen of a computer device in which a number of abstract and physical spaces and
transformations can be active, and the natural language dialogue can have interwined referents

in these different contexts.

Brown’s system has deictic capabilities by which the referents of natural language terms are
pointed out in the graphical representation. However, the role of deixis as one of the
predominant features of a graphics interactive environment was introduced in Bolt’s Put That
There program (Bolt 1980). In this system demonstrative words like this and there were
coupled directly with conceptual objects represented through graphical symbols, and with a
conceptual space in which the spatial referents can be identified through natural language
deictic expressions. This feature was developed, however, to support the integration of
graphical interaction and voice recognition facilities, and the semantic implications of the
meaning of graphics whose interpretation is introduced through ostension and deixis were not

fully followed up.

The development of integrated graphical and linguistic interfaces could not be expected
independently of the progress made in the fields of theoretical and computational linguistics.
None of the three systems mentioned above had a strong syntactic and semantic foundation for
the natural language component. Even Winograd’s system, impressive as it is, was developed
on a poor syntactic and semantic basis. It success was due, in my view, to Winograd’s
conception of language. He thought of human language as a process in which the overt
linguistic capability proceeds along with behaviour. Language takes place in a context and it is
about the interaction of the individual who uses this capability and his environment. Ten years
of research was necessary for to develope theoretical and computation environments in which
the syntax and semantics for natural language processing could be understood on more solid
grounds. Of particular relevance for this work are the development of unification based theories
of grammar (Klein 1988a). in theoretical linguistics and the production of logic programming

T 1



based computational tools for implementing and testing natural language grammars, such as the
PATR formalism (Shieber et al 1983) It is in the context of these theories and techniques that

the ACORD system (Klein 1987) was developed.

ACORD is a large natural language and graphics system for the creation, query and update of
knowledge-bases. It has five major conceptual components: the Dialogue Manager, the
Graphics System, the Parsers, the Knowledge Base, and the Text Generators. The theoretical
emphasis of this system is, however, on the syntax and semantics of natural language, and the
other components of the system have a subordinated role. Graphics, in particular, is used
mainly for visualisation purposes and it does not play a significant role in the representational
environment. Nevertheless, the system makes an explicit use of deictic expressions linking the
graphical symbols with their corresponding linguistic identifiers, and there is a direct
relationship between the graphics and the knowledge-base by which graphical events have an
overt semantic interpretation. The ACORD system sets the context in which GRAFLOG was

developed.

The starting point of GRAFLOG was that ostensive definitions and deictic expressions impose
an interpretation, a conventional meaning, on the graphical symbols that are realised on the
screen in a computer graphics environment. This notion is developed in Chapter 2 and it leads
naturally to the notion of graphical language. The key ideas of this kind of interaction are
introduced with the help of a simple example. In the second part of Chapter 2, the conceptual
architecture of GRAFLOG is presented. Chapter 3 and 4 are devoted to explaining the linguistic
component of the system. In Chapter 3, a brief introduction to modem theoretical and
computational linguistic theories and techniques is presented. This chapter is included solely for
the purpose of making this dissertation a self contained work. In Chapter 4, a theoretical and
computational analysis of the kind of natural language dialogue that is supported in GRAFLOG

is presented.

One of the main aims of this research was to understand the role of graphics as a
representational environment. Graphics are commonly used for ‘visualising’ knowledge.
However, the value of graphics depends not only on the amount of information that it conveys,
but also on the nature of the inference processes that are used in its interpretation. In Chapter 5,
an attempt to shed some light on the structure of graphics and graphical inferences is presented.
Graphics are defined as an algebraic system in which the graphical symbols are the elements of
the carrier, and geometrical and topological relations are the operations of this algebra. This
structure is then embedded into a modal first order language in which not only the semantics of
graphics, but also of natural language expressions can be represented in an integrated fashion.
Finally, in this chapter, a notion of graphical inference is introduced.

In Chapters 6, 7 and 8 the theory presented in Chapter 5 is applied to modelling design
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problems in the 2-dimensional wire-frame design domain. In Chapter 6, a graphical and logical
language for this design domain is introduced. We show its syntactic definition and semantic
interpretation. In Chapter 7, we introduce a notion of design concept and design intention. We
show how design concepts can be represented in a declarative fashion. Then the notion of
design intention is introduced. In GRAFLOG, design intentions are manifested by standard
graphical interaction. A graphical input event presupposes the intention of a human designer to
produce a graphical representation of the design object, that is like the current drawing but in
which one or more graphical properties are different. The job of the system is to infer such an
intention, to deduce a plan for its satisfaction, and to apply such a plan to the current drawing to
produce the new drawing that is intended by the human designer. In Chapter 8, we present such
a planning function for our simple design domain. We also show that this is not a deterministic
process, and that in general, design problems can have a large number of solutions. For that
reason, the solution that is produced by the system must not only be constrained by the
interpretation of a drawing: it must also be intuitive for the human designer. This additional
requirement implies that the rule that produces a design object is constrained by an
interpretation, but is not fully determined by it. Such a rule must also be a model of a design
skill: the design behaviour itself, which is embedded in the interpretation process. These issues
are very complex, and we leave the discussion on the presuppositions and consequences of our
approach to computer graphics interaction and design, to the concluding chapter of this
dissertation. For the moment, we come to the ‘hard’ material, and we start the presentation of

GRAFLOG.



Chapter 2

GRAFLOG: A Graphical Language
for Human-Computer Interaction

In this chapter, a notion of graphical language for human-computer interface is introduced. This
notion is illustrated by means of a computer program called GRAFLOG (Pineda 1988a, 1988b,
1988c, 1988d, 1988e, 1989). The program was developed for the purpose of this dissertation,
and it is a graphical and linguistic interpreter written in PROLOG (Clocksin 1981). Among the
characteristics of the system is a facility for stating a linguistic interpretation for graphical
symbols and relations. Such an interpretation is useful for expressing knowledge through
graphical representations. The set of conventions by which drawings are interpreted defines, in
an implicit way, a graphical system of communication: a graphical language. In GRAFLOG,
the interpretation of drawings can be queried in both the linguistic and graphical domains.

In the current prototype implementation, the linguistic fragment covers a limited set of
ostensive definitions and questions, and most of the linguistic interpretations of drawings are
introduced through Prolog expressions. However, in the text of this dissertation, a theoretical
analysis for implementing a rather strong linguistic component has been developed. In Section
2.1 a graphical and linguistic dialogue for stating the interpretation of drawings is shown, and a
notion of graphical language is introduced. In Section 2.2, a general description of the system is
presented.

2.1. A Graphical and Linguistic Dialogue.

In GRAFLOG we can type the ostensive definition
This is Luis
at the time a graphical symbol (i.e. a smiling face) is chosen from the graphical menu and

placed somewhere in the screen. The drawing in Figure 2.1. is created by editing the graphical
symbols at the time their corresponding linguistic interpretations are stated by ostension.
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linguistics &

programming

FIGURE 2.1

The ‘serious’ face stands for John, the ‘sad’ one stands for Pete and their interpretations are
introduced by the expressions This is John and This is Pete. The rectangles refer to linguistics
and programming --the subjects of study-- and their interpretations are introduced in similar
fashion. The labels in the rectangles are shown for identification purposes, but these names are
not required given that their interpretations are fixed by ostension at the time their referents are
pointed out, and we --the users of the system-- can remember these interpretations. From the
point of view of the program the rectangles are two independent symbols.

The graphical symbol depicting a book refers to a book --any as yet unspecified book-- the
olympics games logo refers to a game --any game-- and their interpretations are stated by the
expressions This is a book and This is a game. The chess board refers to chess --the game of
chess-- and it can be introduced by typing the sentences This is chess, it is a game.

In Figure 2.2 the relationship between graphical and linguistic symbols is illustrated. The name
Luis is a linguistic symbol, and the face is its corresponding graphical representation. The
horizontal arrow represents a dimension of correlation or translation between the linguistic and
graphical symbols, and both of them refer to the same individual who is the person in the world
whose name is Luis.

"Luis" < >

Pyl

LUIS

FIGURE 2.2

Other symbols denote some non-specified entity, as for instance the drawing of a book; such a
symbol denotes an individual in the set of all books. The drawing of a book refers to that
individual book, but not to all the members of the set of books, nor to the set itself,
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When the graphical symbols are introduced their corresponding geometrical descriptions are
asserted in the system. Each graphical symbol is specified in a geometrical data-base (g_db) in
which the symbol’s name, i.e. luis, is an index to the relevant geometrical information which is
required for drawing the symbol on the screen. The type of the symbol is also recorded in g_db.
The type of the symbol standing for Luis is face. Up to this point, the graphic interaction is a
standard direct manipulation procedure. When the message has been stated, the representation
has to be produced. The following relation is the entry for Luis in g_db

g_db(luis, face, PARAMETERS).
where the variable PARAMETERS contains the description of the particular symbol instance.

The linguistic knowledge conveyed by the ostensive definitions is asserted in the system’s
natural language knowledge base NLKB. These expressions are of the form this is np. The
word this is a demonstrative pronoun whose function is to support the physical pointing gesture;
the verb is has the function, in these expressions, of establishing a relation between whatever is
being demonstrated by the word this and the individual of whom a name or a description is
given. The variable np stands for a noun phrase through which a description of an individual is
given. The np’s in expressions of the form This is np can be proper nouns as in This is Luis, or
descriptions that refer to individuals by common nouns as in this is a book.

Specific individuals that are introduced by a proper noun are known by the system by that name.
On the other hand, if an individual is only referred to by a common noun, or by a description
given in terms of common nouns, GRAFLOG produces a name to refer specifically to this
individual in the linguistic domain. This name is an internal identifier used by the system and it
is never visible by the human user. This identifier is also used as an index to g_db where the
graphical representation of the individual referred to by that name is stored. Here, a notational
convention for this Section is introduced. Linguistic knowledge is represented by means of
expressions of the first order logical language (FOL). Graphical information, on the other hand,
is expressed as PROLOG relations. For instance, when the expression this is a book is typed in
at the time the corresponding symbol is selected from the graphical menu, the system produces
the internal name book_1I and asserts the fact

book(book_1).
in NLKB and makes the entry
g_db(book_1, book, PARAMETERS).

in g_db. That is, there is an individual which is known to the system by the name book_I and
which happens to have the property of being a book.

Now, we have to consider the question of what is the linguistic knowledge that has been
communicated by means of these expressions. Of the individuals referred to by means of
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proper nouns nothing has being said. They have been demonstrated, but no property of any of
them has been mentioned. On the other hand, descriptions assert a property that some specific
or some non-specific individual has. Then, the current linguistic knowledge asserted in NLKB

is,

book(book_1).
game(game_1).
game(chess).

Now, we can select the graphical symbol standing for Luis at the time the expression this is
happy is typed in. This ostensive expression asserts a property that the individual referred to by
this symbol has: the property of being happy. The word happy is an adjective that has the
function of predicating a property of the individual whose name is Luis, and NLKB is updated
with the fact,

happy(luis).
Note that this is the only instance in NLKB in which a reference to Luis is made, and before this
expression was typed in, the system knew only about his name and his ‘image’. Before the
proposition that Luis is happy was asserted, the individual Luis could only be referred to from
language for identification purposes, in virtue of grammatical knowledge. For example, we
could ask the system is this Luis? at the time the graphical symbol was pointed out on the
screen, and the system would produce the answer yes; and if another symbol --like one of the
other faces-- were pointed out at the time the same question were asked the system would have

answered no.

At this point we can assert some additional information about the individuals that are
graphically depicted. We can, for instance, point to the chess board at the same time as we enter
the sentence Pete plays this game. Through this expression, a relation between the individual
depicted by the sad face --Pete-- and the abstract individual depicted by the chess-board --the
game of chess-- is asserted in the representational system.

plays(pete, chess).
Now we can type the expression,
These are students

while the three faces are pointed out on the screen. In the same way, we can type the expression
These are subjects at the time the symbols standing for programming and linguistics are
selected on the screen. This expression is of the form These are np. The word these is a plural
demonstrative pronoun, and students is a plural common noun. Note that these pointing actions
are performed under the context set by a plural ostensive expression, and as a consequence,
several similar pointing actions can be performed until that linguistic context is closed. Here no
new graphical symbol is introduced, and the graphical representation remains the same. The

purpose of these new declarative statements is to assert that the individuals graphically referred
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to by the faces are students, and the ones referred to by rectangles are subjects. The following
facts are added in NLKB,

student(luis).
student(john).
student(pete).
subject(linguistics).
subject(programming).

Here, plural expressions are modelled as sets of singular statements. This is a conventional

decision for implementational purposes.

At the current interactive state, a graphical representation with its corresponding linguistic
interpretation has been introduced. This interpretation can be questioned for identification
purposes. We can ask, for instance, what is this? in conjunction with a pointing act, and the
system produces a linguistic description of the individual referred to in the graphical domain. If
the smiling face in Figure 2.1 is pointed out at the time what is this? is typed in, the system will
produce the answer That is Luis. Here, the answer is an expression of the form That is np, in
which np is the name of the individual identified in the graphical domain. The word that is a
demonstrative pronoun, like this, but implies a different relative spatial relation between the
individual making the demonstration, on the one hand, and the object being demonstrated, on
the other. The word this implies ‘proximate’, and the word that implies ‘remote’. We take the
convention that while the human-user stands in a ‘proximate’ spatial relation to the screen, the
system stands in a ‘remote’ relation. This convention allows us to model a natural human-like
dialogue with the egocentric reference centered in the human-user.

Now suppose that we point to the graphical symbol standing for John in Figure 2.1 (the serious
face) at the time same question --What is this?-- is asked. Here, there is a referential ambiguity.
In terms of the geometrical information --from the point of view of the graphical interpreter--
the referent could be either John or linguistics. The interpreter could just produce the names of
all the individuals that are geometrically satisfied and the answer would be John or
programming. However, the form of the expression is singular --what is this?-- and certainly
this is an indication that we are looking for an individual and not for a collection of entities. In
this example, there might be a very strong feeling for selecting john, but the problem for us is
how can we know that. We can define some heuristics as, for instance, return the more specific
entity in terms of the geometrical information, or we could tell to the human-user --as in many
graphical editors-- point to a line unambiguously defining the symbol that you mean, but for the
moment we reject these sorts of heuristics. The reason is that the referent is not determined by
the drawing, by the physical substance of the representation, but in virtue of the meaning. We
would like to know which one is the individual intended by the human-user asking the question.

Furthermore, heuristics based in geometrical information would presuppose that the internal
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geometrical unit of the symbol is defined in advance, out of the graphical context. This is the
case in the present example, but this assumption does not always hold. The assumption would
not hold for drawings in which graphical entities emerge from the context established by some
other overt symbols; as for instance, the rooms of a house in an architectural drawing ‘emerge’
from the lines representing walls. In such a context, a heuristic for selecting the more specific
graphical symbols, the rooms, would prevent us from referring to the less specific --the house--
at all.

Some of these ambiguities can be handled by asking more informative questions. Users of
- GRAFLOG might type, for instance, who is this? or which subject is this? Given the same
graphical reference --the symbol standing for John-- the former question is answered as This is
John and the latter as This is linguistics. Here, the wh-words have the function of identifying the
kind of entity demonstrated by the word this. The word who imposes a restriction on the
description: it has to designate an animate entity, and for that reason the reference linguistics is
ruled out. The fact that John is a human animate entity --the sort of entity that John is-- is
stored in the lexicon. The fact that John is a student is a very contingent property of the
individual John, and it is irrelevant for answering this question. In the second expression the
constituent which subject introduces, in an explicit way, a property that the individual that is
referred to has to have, and it is translated into the representational system as

?3x.subject(x)
For satisfying this formula --for answering the question-- the fact
subject(linguistics).

has to be in NLKB as well.

Here, we open a small parenthesis. Although questions such as who is this? or which subject is
this? provide grammatical clues for selecting the individuals that are pointed out on the screen,
there might still remain more than one possible referent. Furthermore, even if there is no
referential ambiguity there might be several alternative descriptions of the individual whose
identification is required. If the referent has a proper name, then he or she can be referred to by
that name, but another possibility is to produce a pronoun in the answer in order to make a more
natural reference. On the other hand, if the individual referred to has no proper name, a
description of such an entity has to be produced. But there might be as many descriptions of that
individual as the number of properties or relations that it has or it stands in with other
individuals in the representation. Besides, descriptions can be definite or indefinite according to
what is considered relevant in the context of the conversation. Answering a question is, as can
be seen, a rather complex process. The answers are produced not only by taking the
conversational context and the discourse focus into account, but also by considering the
intention or purpose for providing such an answer in relation to a problem to be solved. Here,
there is no intention to provide a theory for such a process, and a very simple model for dealing
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with questions is shown.

Here, we come back to the interactive conversation with GRAFLOG. At this point we can
introduce a more complex interpretation. For instance, we can type the following set of

expressions,

If a game is to the right of Luis then he wins it.
If a book is above John then he reads it.
If a student is in a subject then he studies that subject.

These expressions are parsed and their semantic representation are

Vx.game(x) A right_of(x, luis) — wins(luis, x).
Vx.book(x) A above(x, john) — reads(john, x).
Vx,y.student(x) A subject(y) A in(x, y) — studies(x, y).

and these expressions are asserted in NLKB.

The spatial prepositions in, above, below, right of have a very special status within the
representational system. In the linguistic domain, they are represented as normal entries in the
lexicon, and they are interpreted according to the rules of the grammar. In the graphical
domain, on the other hand, they have a conventional geometrical interpretation. The linguistic
knowledge is tied to the graphics through a set of basic geometrical predicates that have been
given in advance to the system. The graphical interpreter takes these terms as primitive
functions that are computed by standard computational geometry algorithms.

The conventions for interpreting geometrical relations are shown in Figure 2.3. For our purpose
the geometrical conditions for the prepositions right of, above and below are satisfied if there is
a line intersecting both graphical symbols oriented according to the corresponding relation. The
preposition in denotes a relation of total inclusion between two graphical symbols.

____.|___._._._..__

Can:2n

FIGURE 2.3
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Once this more complex interpretation have been defined it can queried. For instance, looking
at Figure 2.3 the user can ask,

Who studies linguistics?

The question is translated into its corresponding representation as
?3x.studies(x, linguistics).

and it can be satisfied in NLKB in terms of the rule,
Vx,y.student(x) A subject(y) A in(x, y) — studies(x, y).

The variable y is assigned to linguistics and x is assigned to John. The clause in(x, y) is satisfied
by the geometrical processor in terms of the geometrical information stored in g_kb. Other
interpretations can be queried in similar fashion.

Now we could edit the drawing by direct manipulation to change, for instance, the position of
the olympics-logo, producing the graphical representation shown in Figure 2.4

S

FIGURE 2.4

In this state we could repeat the question Who wins a game? and the system would answer no
one. Note that the olympics-logo is to the right of the symbol standing for Pete, but under the
current interpretation Luis wins a game is a meaningful graphical expression if the olympics-
logo is to the right of the smiling face. This interpretive rule is specific to Luis. However, there
might be the strong feeling that we could make an induction in terms of which a general rule, as
the one for studies, is defined. Of course, making an induction from the knowledge of one
particular case is a very weak inference; however, to my surprise, this example has been
presented in a number of informal talks, and people have very often interpreted the drawings in
Figure 2.4 as saying, in addition to the facts that have been explicitly asserted, that Pete wins a
game. After all, we would like to use graphics as a language in which each drawing is an
expression referring to some state of affairs, and which we can understand if we know the
interpretation. That is, if we know the language. Although the study of conditions under which
inductive rules are produced from graphical representations is a very interesting task, the aim in

GRAFLOG is to make explicit the interpretation that human-users impose upon drawings, and
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we restrict ourselves to this more modest enterprise. We can type, for instance, the more
general rule

If a game is to the right of a student then he wins it.
This rule would override the previous specific interpretation, and is represented as,
Vx,y.game(x) A student(y) A right_of(x, y) — wins(y, x).

At the current state we can ask the same question --who wins a game?-- and the system would
produce the answer Pete.

We can generalise not just one, but other interpretive rules that were originally defined in
particular terms, and their interpretation would be,

Vx.y.student(x) A book(y) A above(y, x) — reads(x, y).
Vx.student(x) A below(chess, x) — plays(x, chess).

Note that the second rule refers to students in a general way, but it is specific to the game of
chess.

Now, we can say that a graphical language has been defined. We can produce a set of
expressions that can not only be understood by human-users but also interpreted by the system.
We can produce, for instance, the drawing in Figure 2.5

<2

linguistics

&

programming

FIGURE 2.5

And it would be interpreted as saying,

John studies Linguistics.

John reads a book.

Pete plays chess

Pete wins a game.

Pete studies programming.

Pete studies linguistics.

Nothing prevent us to impose more complex interpretation upon the drawing. We can type, for

instance,
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If a student studies linguistics and programming then he is clever.
This expression can be expressed in the representational system as

Vx.student(x) A studies(x, linguistics) A studies(x, programming)
— clever(x).

Then we can ask,
Who is clever?
The question is translated as,
?3x.clever(x).

and the answer would have to be Pete.

The expressive power of the graphics can be best appreciated if we modify the graphical
representation for producing the drawing in Figure 2.6. Note that the symbol standing for a
game is to the right of the symbols standing for both Luis and John. This graphical expression
is telling, among other things Luis wins a game and also John wins a game. And we have to
pay no price for expressing this additional knowledge. This point can be emphasised by noticing
that it also expresses that Luis plays chess.

>

linguistics

%

programming

FIGURE 2.6

Under this interpretation, and with the current graphical symbols, an infinite number of
drawings can be produced and understood, but many of them would express similar things.
However, what is relevant for our purposes is that there is a set of drawings expressing nothing,
a set of drawings expressing atomic propositions, and sets of drawings expressing the
conjunction of two or more atomic propositions. Through the systematic interpretation of
drawings, a number of different things can be said, and then we can convey factual knowledge
by means of graphical communication. Furthermore, we can define new graphical symbols
standing for specific individuals and this augments the knowledge expressible in the language.
We can also generate duplicated instances of graphical symbols referring to the same
individuals to avoid geometrical restrictions, and also change or augment the interpretation for

defining, throughout the graphics interactive session, new graphical languages.
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Before concluding this section, a comment on the interpretation of negation is worthwhile. If
looking at Figure 2.6 --with the current interpretation-- the question Does Luis read a book? is
asked, the answer produced by the system would be no. However, consider that the
interpretative rule that has been used for answering this question is

(@€))] If a book is above a student, then he reads it.

Or has it? This rule does not assert or deny anything in relation to books which are not above
students; nevertheless, the system assumes that Luis is not reading a book, and this is so
because it is defined under the so-called closed-world assumption (Reiter 1985). This
assumption can be paraphrased as "if you do not know something, assume that it is false". In
our system, the assumption follows from the Prolog implementation, but it can be supported
independently. A different way to present this feature is by saying that the system takes a
default value for answering questions involving incomplete knowledge. The interesting thing
about graphical representations is that there is a very strong intuition in regarding such defaults
as correct, although there is no apparent reason for this. The closed-world assumption will be
used throughout this dissertation, unless it is explicitly mentioned. This is an economic
consideration, because this assumption is a very good heuristic, and as we have said, very

intuitive in relation to graphics.

An interesting question is at what extend this assumption is needed here. If we change the
interpretation and make explicit exclusion conditions, the graphical representations would
express complete knowledge. For instance, instead of the current interpretation rule we could

state,

2) If a book is above a student, then he reads it else he does not

and the answer to questions relating books with students would follow as a consequence of the
interpretation, although the graphics would not be changed. However, in such a scheme we
could not express incomplete knowledge; we would have to know whether the propositions
asserted through graphics are true or false, and this might turn out to be quite rigid. We could
also express incomplete knowledge by stating (1), and complete knowledge by stating (2);
however, in such an scheme, the inferences performed by the system would be the same as the
ones produced by relying only in the closed-world assumption, but with some additional
computational effort. Furthermore, we would not be able to know if the system answers no
because it knows, or just because it does not know. Another possibility is to set the system to
answer no if a rule like (2) is used in an inference process, and to answer / don’t know if the
answer comes from the closed world assumption. However, in such a scheme the system might
keep answering I don’t know most of the time, and that should not be a feature of an user-
friendly system. Negation is a complex issue; it is not clear what do we mean when we say no.
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2.2. The Conceptual Model of GRAFLOG.

The conceptual model of the system is thought of in terms of a conversation between two main
processes, the human-user HU and the system itself, in which the former has the conversational
initiative. In Figure 2.7 this model is illustrated. Here, the human-user is considered an active
part of the system, but of course is not part of the program.

INTENTIONS INTENTIONS
AV AV
NATURAL LANGUAGE
EXPRESSIONS I PRANEIGE

....................

FIGURE 2.7

The system is organised in terms of four independent processes: the dialogue manager DM, the
natural language parser NLP, the graphics interpretation process G/P and the automatic design
process ADP. In Figure 2.7, processes are illustrated by circles, and the control discipline is
represented by continuous directed lines. The direction of the arrows stands for control
hierarchy; for instance, the human-user HU ‘controls’ the dialogue manager, which in turns
controls the other three processes. The controlling process initiates tasks by sending a message
to one of its subordinated processes, and when the task is accomplished the control is returned
to the original process. In order to achieve the interactive dialogue, there is a fixed protocol for
the main control cycle, as shown in Figure 2.8

)
@ o
)

FIGURE 2.8
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The blocks in Figure 2.7 stand for representational structures, and the dotted lines for
information flow. Human users express linguistic intentions by typing in natural language
expressions or by making drawings on the screen. Linguistic and graphical intentions are
expressed as messages from the human-user to the dialogue manager, which in turns sends a
message to NLP or GIP respectively. The linguistic expressions are analysed by the parser NLP
and a semantic representation for every natural language expression is produced. The natural
language semantic representation is a very rich structure which contains not only the logical
form of the linguistic expressions, but also discourse information for maintaining the current
conversational focus, and for solving anaphoric references. The natural language knowledge-
base NLKB, on the other hand, contains only a representation of the logical facts and relations
asserted through the linguistic dialogue, and for our purpose a simple Prolog data-base is used.
The process that is responsible for making the decision of which facts and relations are stored in
NLKB is the dialogue manager DM, as will be explained below in this Chapter. DM is also
responsible for answering questions, and there is a simple theorem-prover defined within this

process.

The graphical interpretation process GIP is responsible for interpreting the graphical input.
When it receives a message from DM it has to prompt the human user for the definition of one
of more graphical symbols. This process is also responsible for updating the geometrical data-
base g db. The automatic design process ADP is the user’s application, and it also runs under
the supervision of DM. The need of such a process is not shown in the dialogue of Section 2.1.
However, it is the system’s component responsible for solving problems. The application that is
developed in this dissertation is a design interpreter for geometric modelling. The system’s task
is to understand and satisfy design intentions in the 2-dimensional wire-frame geometric
modelling domain. Although the task chosen is very specific, it can be useful for architectural
design and some related application domains, and the solution presented is very general, as will
be shown in Chapters 6, 7 and 8.

The grammatical formalism in which the linguistic component of the system is defined is
Unification Categorial Grammar (Klein 1988b, Zeevat 1986a) and the parsing strategy and
procedures are taken from the UCG interpreter developed for the ESPRIT ACORD project
(Calder et al 1986). The output of the parsing process is an expression of a language called
Indexed Language (/nL) (Zeevat 1986b). However, two features within /nL for handling the
particular requirements of the graphical interaction in GRAFLOG have been defined. The first is
the inclusion of a special predicate, namely deictic for dealing with the deictic --or pointing--
use of the demonstrative pronouns zhis and these. The deictic predicate is part of the semantics
of these words. The second is the addition of a special entry for the verb to be within the
lexicon. The verb o be is traditionally analysed in terms of two functions, namely, to establish a
relation of identity between two entities, as in Pete is the student who plays chess or to make an
attribution as in Luis is happy. This ‘third’ is works in conjunction with the demonstrative
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pronouns --when they are used in the deictic mode-- and means translates the graphical
representation of an individual into a linguistic symbol. For instance, when an ostensive
definition is stated as in This is Luis, the individual referred to by the word this is identified in
the graphical domain --by means of the deixis. The word Luis is a symbol of the linguistic
system which denotes the same individual. Then, the word is stands for a ‘translation relation’
between two symbols which are realised in different mediums: graphical and linguistic. In the
lexicon, the semantics of the ostensive is is defined in terms of the relation transiate. Here,
there is no philosophical or linguistic claim that such a kind of is ‘exists’ in human language;
this is just the way the relation between graphical and linguistic symbols is established in
GRAFLOG.

In order to show how the dialogue manager works we come back to our original example. At
the begining of the conversation the system is set to a ‘wait for input’ state. It waits for an
intention expressed by the human-user. When the user types the sentence This is Luis the string
is taken by DM and it is packed in a message to NLP. The string is parsed and an expression of
InL is sent back to DM. The InL expression is,

[s][deictic(x), pres(s), translate(s, x, luis)].

The form of this expression is [index][body] where the index stands for the topic of the
sentence, or in other words the sort of thing that the sentence is about. The ‘body’ contains a
list of atomic expressions, and at this stage we can think of it as the conjunction of formulas
contained within the list. The brackets denote the scope of the index. Every atomic expression
of InL has as index its first parameter; for instance, the index of translate is s. However, we
take the notational convention that these indices are omitted unless they are explicitly required.
The sentence This is Luis is about an the present state s in which an individual is pointed out on
the screen, and whose name is Luis. The predicate pre comes from the meaning of the verb o
be and it is a semantic marker indicating that the state s occurs at the present tense. The
predicate deictic comes from the meaning of the demonstrative this. The argument of the
deictic predicate, the variable x, stands for such an individual and its value comes from the
graphical domain. The predicate translate, on the other hand, comes from the meaning of the

verb is when it is used in an ostensive mode.

At this stage, the dialogue manager interprets the /nL message in order to find whether there is
any deictic reference, as it is the case for the current expression. Now, a message has to be sent
to GIP. In the body of the message the deictic and the translation information is included.
When the message is received, the graphical interpreter assembles and executes a graphics
procedure with the information contained in the body of the message. In this case the procedure

is of the following form,
deictic(x).

When this procedure is executed, GI/P prompts the user for the definition of a graphical symbol.
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The user has to select a symbol type from the graphical menu and then he or she has to provide
its parametric description by standard graphics interaction. In our example, the user selects a
symbol of type face. The variable x becomes the reference to the data-structure in which the
geometrical representation of the graphical symbol is stored. Then, GIP takes the linguistic
name of the symbol form the translation relation, translate(s, x, luis), and assembles the
corresponding entry in g_db, in which the linguistic name of the symbol is also the index to the
data-base. This entry is of the form,

g_db(luis, face, PARAMETERS).

When the graphical interactive task has been completed, the control is returned to DM. Before
finishing its current task, DM has to decide whether there is any linguistic information that has
to be stored in NLKB. In the current message, there is none. The definition by ostension of John
and Pete is processed along similar lines.

The next expression stated in the dialogue in Section 2.1 is This is a book. The InL

interpretation of this sentence is
[sl[deictic(x), book(y), pres(s), translate(s, x, y)].

These InL expression contains graphical and linguistic information. The graphical information
is processed as before, with one exception: the name of the individual referred to in the
graphical domain is not known. What has been given is a indefinite description of such an
individual. Once the geometrical description of the graphical symbol is provided, G/P consults
the translation relation in order to find the name of the individual for making the corresponding
entry in g_db. However, in the current translate relation, there is no such name. Its place in the
relation is filled with a variable. Then GIP produces an arbitrary identifier, as for instance
book_1, with the purpose to refer to such an individual, updates this value in the translation
relation, and updates g_db with the following entry,

g_db(book_1, book, PARAMETERS).
Now, a non-null message has to be sent back to DM. The body of such a message contains the
original translation relation, but with the new value. The body of the message is of the form,
translate(s, x, book_1).

where the variable y has been instantiated with the value book I. Now, DM has two
expressions at hand, and the variable name provided from the graphical domain can be passed to
the anonymous individual in the linguistic domain. The variable y in book(y) in the current /nL
expression is instantiated to yield the linguistic fact book(book 1). This fact represents useful
linguistic knowledge and it is updated in NLKB. This is the first fact asserted in NLKB in the

current dialogue.

The system is able to handle some discourse information. For solving anaphoric references, /nL

expressions have an associated input and output list. The input list contains a set of reference
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markers that can be used as possible antecedents for anaphoric pronouns in the current sentence.
The output list contains the markers that the current linguistic context provides for the following
sentence in the dialogue. This technique is called threading (Johnson et al 1988) and it is taken
from the UCG interpreter of the ACORD system (Calder et al 1986). The DM is responsible for
solving anaphora by taking information from the input list.

The next expression that was typed in the the dialogue of Section 2.1 is This is chess it is a
game. These two sentences constitute a simple discourse in which one anaphoric reference has
been made. Note that the words is of the first and second clauses are different. The first is has
the function of establishing the trans-substantial relation between the graphical and linguistic
symbols standing for chess; the second is, on the other hand, has the function of establishing an
identity relation within the linguistic system. The first clause introduces the individual whose
name is chess by ostension, and is processed as was shown above. The second clause, on the
other hand, contains the pronoun it whose antecedent was introduced in the previous clause.

The InL translation of it is a game is,
[sl[pro(neuter(x)), game(y), pres(s), identify(s, x, y)].

where the term pro(neuter(x)) indicates that the individual x was introduced by the neuter
pronoun iz, and the relation identify is part of the meaning of the verb ro be in this context. The
reference for the pronoun it is, in the present example, chess, and it is found by DM. There is
no graphical command involved in this expression, and the only thing that has to be done by
DM at this stage, is to unify the symbol chess with the variable y, to produce the fact
game(chess). This is possible because the things referred to by these two symbols stand in an
identity relation as is denoted by the relation identify. This fact is asserted in NLKB.

The next expression is This is happy. It was typed in at the time the symbol standing for Luis
was pointed out and the following /nL expression is produced,
[s][deictic(x), happy(y), pres(s), identify(s, x, y)1.

Next, a message with the identification and deictic information is sent to G/P. The graphics
interpretation process allows the selection of a symbol which is already represented on the
screen, and it is identified according to geometrical information. The task of GIP is to identify
such a symbol, and to pass this information back to DM. The message that is sent from GIP to
DM is,

identify(s, x, luis).

where y has been instantiated with the constant /uis. With this information, DM is able to
produce the fact happy(luis), which is also asserted in NLKB.

In the expression Pete plays this game the word this might function as a determiner but also as a
demonstrative. If the referent of this game has an antecedent that can be found in terms of the

-25-



discourse, the word this is only a determiner. This would be the case if the current discourse

were,
Chess is a game. Pete plays this game

Here the referent of the expression this game would be chess. However, if there is no such
discourse information, the word this plays both roles, and a pointing gesture supporting the
expression is required. In any case, the task for the dialogue manager is specified by the /nL
expression. In the lexicon, there are four entries for the word this. In the ‘pure’ demonstrative
mode this is a noun-phrase which has the deictic predicate specified in its semantics, as in This
is John. In the determiner-demonstrative mode, this is a quantifier which has in its semantics
the deictic predicate, as in the present example. The other two this have no deictic component.
The np form is anaphoric, and the determiner form is just an alternative lexical realisation of the
word the. The InL deictic translation of Pete plays this game is

[sl[[yl[deictic(y), game(y)], [sl[pres(s), play(s, Pete, y)1l.

Here, the graphical command is processed in the manner shown above. The message returned
from the GIP is deictic(chess). Note that in this example, neither the translate nor the identify
predicates are involved. When DM receives the message, the fact game(chess) and the relation
play(pete, chess) are produced and asserted in NLKB.

The next expression in the dialogue was These are students. Suppose that this expression is
typed in before the rectangles standing for subjects had been introduced in Figure 2.1 and there
is no graphical ambiguity. This is a plural ostensive definition. A expression such as this can be
used either to define a set of graphical symbols referring to a set of anonymous individuals --in
the same sense that a book was introduced above-- or it can be used to express a property that a
set of individuals whose graphical representation is already there have. Simple plural nouns
such as students and complex or modified plural nouns, such as clever students, refer to sets of
individuals sharing some common properties. The /nL representation of the current sentence is

[s][deictic(X), student(Y), pres(s), identify(s, X, Y)].

This expression is very similar to the singular analogous one; however, note the capital letters in
the index and argument variable names. These variables stand here not for an individual, but
rather for a set of individuals, and they will be instantiated in the graphical processor with a list
containing the names of all individuals referred to by such an expression. This expression is
processed by DM and a message is sent to G/P. The graphical processor executes a procedure of
the form deictic(plural(X)) --where the term plural indicates the variable type-- and the user is
prompted for a sequence of graphical inputs. In our example, the three faces on the screen are
selected and, according to our expectations, the variable X should take the value
X = [luis, john, pete]. When the graphical interaction is completed, G/P sends a message back
to DM of the following form,

deictic([luis, john, pete]).
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This message is interpreted by DM as saying that each of the individuals referred to in the set
have the property asserted in the current /nL expression. The facts student(luis), student(john)
and student(pete) are produced and asserted in NLKB, as was shown for the corresponding
singular expressions. If the plural ostensive definition were instead These are clever students,

the corresponding /nL expression would have been,
[sl[deictic(X), clever(Y), student(Y), pres(s), identify(s, X, Y)].

This expression is processed similarly, but the adjective implies that an additional property of
each individual referred to by the expression, as clever(pete), would have to be asserted in the

natural language knowledge-base as well.

Now, suppose that the plural expression These are students is typed in after the rectangles
standing for the subjects were introduced as shown in Figure 2.1. Here, there is a geometrical
ambiguity. When John and Pete are selected, the rectangles representing the subjects are
possible referents as well. According to the convention that graphical symbols are selected in
terms of their meaning, there is no way that GIP can deal with the ambiguity. The message that
the graphical processor would send to DM in this ambiguous case is,

deictic([luis, [john, linguistics], [pete, programming]]).

Here, DM has to make a descision on what symbols are the intended referents of the pointing
acts. This ambiguities are represented by sub-lists within the plural list. The problem here is that
there seems to be no general way of making an apriori decision for solving this sort of
ambiguity. The decision cannot be made on the basis of other properties that the individuals
referred to might have, because there might be none known to the system when the current
ostension is made. In fact, the purpose of the ostension is to attribute a property to some of these
individuals. Here, the human-user is to prompt for confirmation when the ambiguous referents
are processed. For instance, when the sub-list [pete, programming] is analysed, DM takes one
by one the symbols in the list and sends a special message to G/P with that referent, and the
user is prompted by a linguistic expression such as this one? supported by a graphical feedback
highlighting the corresponding graphical symbol. Once the ambiguity is solved, the system
proceeds as was shown for the unambiguous case. Another possibility for dealing with this sort
of ambiguity is to give priority to the symbols according to the type; for instance, we could say
that symbols of type face have a larger priority value than symbols of type rectangle. An
interesting question for human perception is how we can make this sort of discrimination when
an object is identified in the visual field.

Interpretative rules like If a student is in a subject, then he studies that subject are assertions
that have to be added in NLKB. When the /nL representation of a sentence like this is received
by DM, the grammatical information is removed and its simplified form, as a Prolog clause, is
stored in NLKB. The InL representation of the current sentence is,

[s”’1([s][student(x), subject(y), in(x, y), pres(s)]
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=> [s’][pro(male(x)), subject(y), pres(s’), study(s’, X, y)1l.

This formula is of the form [index][A => B], where A and B are in turn /nL formulas. The
symbol => stands for implication. Note that within this formula, no deictic predicate is
included and no reference to the graphics has to be made. The predicate in has a geometrical
interpretation, which is considered by DM when a question has to be answered. The
grammatical information that can be removed here includes the facts that s and s’ are present
states, and that x is referred to by a personal pronoun he. Redundant information, such as the
clause subject(y) in the consequent clause, can be filtered out as well. This expression can be

represented in Prolog by the clause,
study(X, Y) :- student(X), subject(Y), in(X, Y).

In order to make such a simplification, the interpreter of DM has knowledge about the grammar
of InL and also about the Prolog syntax. It is also provided with some simple heuristics.

The natural language component of this system can be replaced by a simpler language. The
interpretation of graphical symbols and relations can be stated directly by means of Prolog
expressions --or by expressions of some suitable representational language. Such a strategy was
pursued in developing the first prototype of GRAFLOG, in which with the exception of a small
set of natural language deictic expressions which are understood by means of a regular-
expression analyser, the linguistic dialogue was performed in Prolog. However, using natural
language is interesting at least in two very important respects. The first is related to computer
technology: it is a matter of human-computer interface. If we want to take computers to people,
we have to make programs that understand how human beings do things in the most natural
way. Even Prolog, simple as it might be, requires to be leamed, and has its idiosyncrasy.
Furthermore, a complex application is likely to require a level of representation that Prolog is
unable to provide by itself; in particular when it is required to reason about time and causality.
This sort of reasoning will be needed when the system is applied to design tasks, as will be
shown in Chapters 7 and 8. The second point is a matter of scientific interest. Modern linguistic
theories require to be tested by computational devices, and the larger the linguistic fragment
that they are able to cover, the better the understanding of human language that is accounted for

by these theories,

Now, we come to the handling of questions. There are two kind of question defined in the
system: yes-no questions, and wh-questions. The most basic question that can be asked is one of
the form /s this x? where x stands for the name or description of an individual. This question has
to be supported by an explicit ostension, and has the purpose of identifying the individual that is
pointed out. The answer to such question is either yes or no. When the user types Is this Luis at
the time the smiling face is pointed out in Figure 2.1, the answer produced by the system is yes.
The way this question is processed is as follows. First DM takes the input string and it is sent to
NLP. The sentence is parsed and its corresponding /nL representation is sent back to DM. The
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message taken by DM has a tag identifying the expression as a question. The /nL representation

of Is this Luis? is,
[sl[deictic(x), pres(s), identify(s, x, luis)].

A graphical reference is required and GIP sends a message to DM of the following form
deictic(luis).

because the only symbol that is identified by the graphical pointing device is the smiling face.
For answering this question, DM only has to check whether the identification relation holds,
after the graphical reference has been provided.

An example of a wh-question is Who is this?. If the smiling face is selected at the time this
question is asked, the answer provided by the system would have to be Luis. The InL

representation of this sentence is,
[sl[deictic(x), who(y), pres(s), identify(s, x, y)].

This question is answered by looking for the value of the variable y such that its translation x
comes from the graphical domain. When the graphical processor is queried, it returns the
answer deictic(luis), which is also passed to the variable y by means of the identification
relation. The answer to the question is produced with the help of the predefined pattem that is x,
Before the answer is produced, the index sort of the variable y is checked in order to verify
whether uis is a human being or an animate entity. Every index variable of /nL has an
ontological type, and the relations between index variables are codified in a lattice structure, as
will be explained in Chapter 3 and 4. It is in this structure where the type of Luis, as a human

male individual is stored.

Now, suppose that the same question --Who is this?-- is asked when the sad face is pointed out
in Figure 2.1. The form of the InL expressions is as was shown above, but there is an ambiguity
in the graphical domain. In fact, there are two symbols which are a plausible graphical referent.
GIP cannot decide which is the graphical symbol that has been pointed out, and in the message
answering the deictic request, it has to return the list of all possible candidates. The message
that GIP sends back to DM contains such a list, and it is of the following form,

deictic([pete, programming]).
The task for solving the ambiguity resides in DM. Here, the answer comes from looking into the

ontological types of the candidate referents; Pete is a human being and programming is not.
Then, the ambiguity is solved in terms of grammatical knowledge --who-- and the answer would

have to be That is Pete.
Note that for finding the answers to the questions /s this Luis? and Who is this? the dialogue

manager only has to check whether the identification relation in the corresponding /nL
expression holds, and that the ontological types of the individuals referred to by the question
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agree with the grammatical form of the questions. Note that there is no need to know any of the
properties or relations of these individuals stored in NLKB. These questions are answered by

considering only grammatical knowledge.

Now suppose that at the time the question What is this? is typed in, we point to the serious face
in Figure 2.1. Here, there is graphical and linguistic ambiguity, and it cannot be solved by the
general knowledge contained in NLKB. There are two altemative referents, namely linguistics
and John. This question is interesting in the sense that the use of the word what would suggest
that the human-user asking the questions knows that the referent is a non-human entity, but in
the graphical domain, on the other hand, there is maybe a strong feeling that the referent should
be the face. It is very likely that this sort of questions are never asked. Anyway, the ambiguity
can be solved by asking, for instance, Which subject is this?. The InL representation of this

sentence is,
[s][deictic(x), which(y), subject(y), pres(s), identify(s, x, y)].

The graphical interpretation of this question is as was shown before. The message that GIP
sends to DM is
deictic([john, linguistics]).

and the referent coming from the graphical domain has to have the property of being a subject,
as specified in the /nL expression. To answer this question there is the need to prove the formula
subject(x) in NLKB. The theorem is proved by DM itself. Here, the fact subject(linguistics) is
found, and linguistics is the only possible assignment for the variable x at the current state of
NLKB which satisfies the formula.

The last kind of question that has to be considered in this Section involves not only the
identification of graphical referents but also the interpretation of graphical relations. If the
question Who studies linguistics is asked --when the graphical representation is as shown in
Figure 2.1-- the answer would have to be John. The InL representation of this question is,

[s][who(x), pres(s), study(s, x, linguistics)].

Here, the problem is to find a suitable satisfaction of the study relation in NLKB. This can be
done in terms of the formula,

study(x, y) :- student(x), subject(y), in(x, y).

The only special consideration for performing this proof is that there is a predicate, namely in,
that has an interpretation in the graphical domain. In the process of this proof the assignments
x := john and y := linguistics are found, and the relation in(john, linguistics) has to be satisfied.
The theorem prover knows that in is one of the system’s relations that have a geometrical
interpretation, and a message is sent to GIP. This message is interpreted as an imperative
command, and the graphical processor executes a geometrical algorithm for testing the
inclusion condition between the graphical symbols referred to in the message. When the
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computation is performed, GIP sends a message back to the theorem prover in which the result
of the computation is acknowledged. The message for this case is of the form,

in(john, linguistics) := true.

In this way, the proof is partially performed by means of the graphical processor. The
expressions right_of, above, below and in are geometrical predicates, and they are considered to
be true if they satisfy some specified geometrical condition, as was shown in Section 2.1. Note
that the process of geometrical interpretation is always directed by the theorem prover, and in
the last resort by the natural language. This is in accordance with the principle that the
interpretation of graphics takes place always in the context of a meaningful intention.

Here, we conclude the description of GRAFLOG. The main components of the system have
been shown, and the way they are interrelated has been explained. However, before closing this
Section it is worth noticing that answering a question is not just a matter of satisfying a formula.
This is so because questions are always made with the intention of achieving some goal. The
questions that have been shown in this dialogue have the purpose of identifying something, but
they are, in a sense, very passive. The system has no knowledge of the reason why such
questions are made in the first place, and it behaves as a simple data-base system. However, we
can do better. As Winograd has pointed out, a computer program cannot deal reasonably with
language unless it can also understand the subject that it is discussing (Winograd 1972). In our
present dialogue, such a subject matter has not yet been introduced. There is a system
component that has not been explained, namely, the automatic design interpreter. The purpose
of this process is to make design inferences and to solve design problems. In order to do so, it
has to be able to infer design intentions expressed by human-users engaged in design tasks, to
understand the interpretation of the current drawing, and also the internal structure of graphical
representations. However, before this system component is introduced we have to prepare the
ground. In Chapter 3 and 4 the linguistic component of the system is explained. In Chapter 3 a
brief introduction to modern trends in theoretical and computational linguistics is presented. In
Chapter 4, the particular grammatical formalism used in this dissertation is introduced, and a
grammar for covering the dialogue developed in this Chapter is presented in detail. In Chapter 5
and 6 an analysis of the internal structure of graphical representations is developed, and a
graphical language for dealing with our design task is presented. In Chapters 7 and 8 to the
application process is developed. In Chapter 7 the notions of design concept and design
intention are presented, and the way these notions are represented and used in the present
scheme is described. In Chapter 8 a function for the satisfaction of design intentions in the
domain of 2-dimensional wire-frame diagrams is presented. The relation between the problem
solving task, the representational system, and the graphical and linguistic dialogue is also
explained. Finally, some concluding remarks are presented in Chapter 9.
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Chapter 3

A brief introduction to
Computational Linguistics

In this Chapter a brief introduction to modem trends in theoretical and computational linguistics
is presented. In Section 3.1, the notion of syntactic structure is introduced. In this Section
Categorial Grammar and the so-called unification based grammar frameworks are highly
emphasised. The notion of semantic structure is introduced in Section 3.2. The relation between
syntax and semantics is discussed, and the so-called rule-to-rule hypothesis is presented. In
Section 3.3, an introduction to the computational linguistic tools useful for computer
implementations of unification based grammar formalisms is presented. A simple example for
introducing the main theoretical and implementational concepts of Unification Categorial
Grammar is also developed. In Section 3.4, the role of discourse information and anaphoric
resolution is presented. Finally, in Section 3.5 a discussion of other linguistic phenomena, such
as subject-verb inversion in question, wh-terms movement and lexical operations are discussed,

and their treatment within unification based grammatical formalism is sketched.

3.1. Modern Linguistic Theory and Categorial Grammar.

Theoretical linguistics is not a recent field of research. Linguistic studies can be traced back to
the beginnings of civilisation. An excellent introduction to the subject is given by Lyons (Lyons
1968). Current linguistic research has been characterised by a formal --mathematical--
approach to account for linguistic phenomena. Modern theories of grammar are systematic --
ruled based-- descriptions of natural languages. These theories provide also a computational
framework through which human language can be modelled. An overview of current
theoretical developments is provided by Klein (Klein 1988a). Probably, the best known modem
theory of linguistic structure is Chomsky’s Transformational Grammar. According 1o
Chomsky’s theory there is in language a basic level of syntactic description, the so-called deep-
structures, that are produced by context-free rules. However, there is a second layer of rules for
producing the overt linguistic patterns --the surface structure-- and the transformations from
deep-to-surface structure are accomplished by means of context-sensitive rules (tree-to-tree

transformations). Although this theory provides a formal account of many linguistic
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phenomena, it does not appeal to the computational linguistic community, mainly because to

compute tree-to-tree transformations is computationally very expensive.

Chomsky’s claims have been challenged and grammatical formalisms in which the structure of
natural language is modelled in terms of context-free rules have been advanced. An important
antecedent for these formalisms is Categorial Grammar. Among these theories we can mention
functional unification grammar, generalised phrase structure grammar (GPSG), head-driven
phrase structure grammar, lexical-functional grammar, the so-called PATR-II framework and
unification categorial grammar (UCG). These theories are commonly known as unification
based formalisms (Klein 1988a).

In Categorial Grammar, there are syntactic categories and simple patterns of combination.
Given two expressions o and 3, if we can analyse o as a functor from B type expressions to A
type expressions, and if we can analyse [ as a B type expression, then o and 3 can combine to
make an A type expression. The category of o is often denoted as A/B. Such a combination rule

is denoted as
A/BB-> A

According to this rule the argument term is to the right of the functor term. This is indicated by
the direction of the ‘slash’ sign in the definition of the functor term. The opposite situation in
which the argument term is to the left is represented as,

BA\B->A

We can characterise some of the sentences in the dialogue of Chapter 2. The words Luis, Pete,
progamming, etc. would be basic terms of category np, and the transitive verbs studies, reads,
etc. would be of category (S\np)/np; the type of this category indicates that transitive verbs are
functors that take first a np to its right to produce an expression of type S\np which in turns
takes a np by its left to produce a sentence. The syntactic analysis of the expression Luis studies
linguistics would be performed according to the following manipulation: the word studies of
category (S\np)/np takes --to its right-- the word linguistics of category np to produce the
expression studies linguistics of category S\np. This new expression takes in turn an np on the
left --Luis-- to produce the expression Luis studies linguistics of category S. The result of this

procedure is a well formed sentence.

The analysis of simple sentences, as the one in the example, pose no problems for any
grammatical formalism; however, there are many linguistic constructions that are very difficult
to capture, and some others that resist all attempted analysis. The important matter for us is that
there are many highly developed systems that are able to cover the most common patterns of
language, and those patterns can be modelled with current computational technology. The
question of to what extent some or another grammatical theory captures the structure of human

language needs not to bother us. It is an important question, but it does not have to be raised
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here.

3.2. The Notion of Semantic Structure.

The set of expressions of a language is sometimes referred to as the plane of expression and
their meanings belong to the plane of content (Lyons 1968). The units of the plane of
expression are symbols and complex structures, as sentences or drawings. The things or state of
affairs denoted by symbols, and the truth value of sentences belong to the plane of content.

The plane of expression of language is specified by stating the combination rules --rules of
composition-- from which acceptable and meaningful expressions are produced. The same
principle is used for studying relationships at the level of the plane of content. According to
Klein (Klein 1988a) the modemn formal --mathematically rigorous-- theory for representing the
meaning of natural language expressions is due to Montague, who established a firm bridge
between the concerns of linguists and logicians. An introduction to Montague’s system is
provided by Dowty (Dowty et al 1981).

Modern semantic studies are based on Frege’s principle of compositionality (Frege 1952) which
says that the meaning of a complex expression is a function of the meaning of its parts and the
mode of grammatical combination. Sentences have as a reference their truth value. The
mathematical formalisation of this principle and the definition of truth in relation to a model
was presented by Tarski (Tarski 1938). According to this notion, expressions of a formal
language refer to a mathematical world composed by an explicitly defined set of objects, which
have some properties and stand in certain relations to each other. Such a world is called a
model. A model is defined by stating not only the set of objects referred to by the language, but
also an interpretation function which relates every name of the language to some object in the
set, and every predicate of the language to a set of objects in the set. For this reason, semantic
theories defined on these lines are known as model-theoretic semantics. The notion of truth of a
formula is a notion of satisfaction. Truth is defined as the satisfaction of an expression by a
model. If every object in the set satisfies the expression, such a formula is said to be true,

otherwise it is said to be false. For instance, sentence (1)
(1) every student is happy

in the state of affairs introduced through GRAFLOG in Section 2.1 would be false in that
model. The set of students is {Luis, John, Pete}, and the set of individuals who happens to be
happy is {Luis}. Sentence (1) means that if there is an individual that is in the set of students he
is also in the set of happy individuals; however, there are two individuals, namely John and Pete
who are in one set but not in the other, and sentence (1) is false in relation to such a model.
However, we could increase the knowledge by saying that John and Pete are happy and this
new statement would change the model: the set of happy individuals would be
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{Luis, John, Pete} and the new model would satisfy the expression. A model is a representation
of the world referred to by language: a semantic representation.

The important matter for us is that this notion implies that truth is defined as a notion of
correlation between the world and the language. The assumption here is that the individuals of
the world can be abstracted as set-theoretical objects: that we can talk about the set of
individuals constituting the world. This notion implies that the world and the language have to
be known in an independent way, and for this reason this notion of truth is not circular.
According to this theory, understanding a sentence means being able to establish an association
between the linguistic expression --the message-- and the world. The job of a theory of
semantics is to establish the correlation between world and language in an explicit manner. This

view is also known as the correspondence theory of truth.

3.2.1. Montague Semantics and the rule-to-rule hypothesis.

Formal languages have a simple syntactic definition, and their expressions refer to well
specified mathematical objects. For that reason the definition of truth in relation to a model is a
satisfactory notion. However, natural language has neither the former nor the latter
characteristic. So, is it possible to claim that the semantics of natural languages can be given in
the lines of semantic theories for formal languages? According to Montague and his followers
that is in fact the case: "I reject the contention that an important theoretical difference exists
between formal and natural languages" (Dowty 1981, p.1). Fortunately, we do not have to take
a position on this issue. The enterprise of making graphical and linguistic interfaces for
human-computer interaction is a modelling task that can be supported, as was mentioned, by

considering that current results in linguistic theory are encouraging.

Here, we come to the link between formal semantics and linguistics provided by Montague. He
made the claim that the semantic analysis of natural language expressions can be produced in
parallel to its syntactic analysis. According to this, the syntactic rules that determine the
syntactic structure of a sentence should correspond one-to-one with the semantic rules
determining the meaning of a sentence as a function of its parts. This systematic pairing of
syntactic and semantic rules has been called the rule-to-rule hypothesis, and is adopted in a
variety of grammatical frameworks and most versions of categorial grammar (Klein 1988a).

One of the reasons for the popularity of categorial grammar among modemn computational
linguists is the way that the so-called rule-to-rule hypothesis is developed and computed. In
categorial grammar, an expression of type A/B denotes a function f whose domain is a set of
expressions of type B and has as range a set of expressions of type A. If an expression of type
A/B denotes f and an expression of type B denotes b then an expression of type A denotes f{b).
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The denotation, or meaning, of the symbols Luis, Pete, John and programming are the
individuals in the world that happen to have these names. In categorial grammar, the meaning of
verbs, such as studies, plays, etc, is modelled as a function. The verb studies, for instance,
denotes the function x studies y, or in relational terms, studies(x,y). The category of the verb
determines not only the function but also the order in which it is computed. According to the
grammatical rules, the word studies of category (S\np)/np denotes the function studies(x, y) and
combines with the word linguistics of category np to produce the expression studies linguistics
of category S\np. This expression denotes the function studies(x, linguistics), and it can be
combined in turn with the word Luis of category np to produce the sentence Luis studies
linguistics and whose meaning is the relation studies(luis, linguistics).

3.3. Computational Linguistics and the PATR-II Formalism.

Modemn developments in linguistic theory have been strongly influenced by current
computational technology. Computers are useful to linguists for performing complex
grammatical analysis, for verifying the correctness of a grammar, for consistency checking and
for preventing clerical errors. For that reason, computational tools for writing and testing
grammatical formalisms have been developed. A particular tool in which several grammars can
be tested is the PATR-II formalism (Shieber et al 1983). A Prolog implementation of the PATR
tool called PIMPLE has also been developed (Calder et al 1986). In this Section an introduction
to the PATR formalism is presented.

3.3.1. Directed Acyclic Graphs.

The declarative part of the syntactic rules and lexical entries of many grammar theories can be
specified as sets of attribute-value pairs. Such a specification can be easily described in terms of
directed acyclic graphs (dag’s). Some examples of these graphs are presented in Figure 3.1.

luis S
cat np vp
np luis
v np
person
sing third studies linguistics studies linguistics
a) b) <)

FIGURE 3.1
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In Figure 3.1.a the lexical structure of the term Luis is shown. The node standing for Luis has
two attributes: its grammatical category, a noun-phrase, and its agreement which in turn is a
complex structure with two attributes: number and person, and these have as atomic values sing
and third. The simple way to refer to an element in these structures is by describing the
sequence of attributes --the path-- that must be followed in order to find that element. For
instance, the value sing can be referred to as luis:agr:numb =sing. In Figure 3.1.b, the
categorial derivation of the sentence Luis studies linguistics is shown. The same analysis for
this sentence is produced by a simple context-free grammar with two rules, namely S — np vp
and vp — v np, as shown in Figure 3.1.c. In fact, the close relationship between context-free
and categorial grammars was noticed in 1958 by Bar-Hillel, and soon after they were proved to
be equivalent in weak generative capacity by Gaifman, as reported by Pollard (Pollard 1985).

Note that in the three graphs, the label of an edge which ends in a node can be thought of as an
abstraction of the whole structure leaving that node, in the same sense that pointers are
abstractions of complex data-structures in traditional programming languages. Note as well that
the incoming edge of a node is the ‘attribute’ which has as a value the structure which hangs on
that node. The top-level of a syntactic structure is the sentence, and the top-level of a lexical
entry is the word itself. The interesting thing here is that both levels of grammatical description

can be captured within the same representational structure.

Within this formalism, the basic objects in the system are the lexical entries, and expressions of
non-lexical grammatical categories are objects that are built along the syntactic analysis. In this
sense, every term or expression in the grammar --either basic or complex-- is an ‘object’ of the
system. For context-free grammars, the construction of the objects is guided by the rules when
a sentence is parsed. In the case of categorial grammar, the objects are built in conjunction with
the categorial combination. One of the advantages of using categorial grammars is that the
categorial combinations that can be permitted in the construction of complex objects can stated
by combinatorial schemes which are stored in the lexicon. The construction of complex objects
is illustrated in Figure 3.2. The lexical items are represented in the bottom level of the Figure.
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luis studies linguistics

cat agr
COMPOSITION. b ittt oa

I\ S

studies linguistics '

chr 5
____________________________ N

S/np :
luis studies linguistics
mgr Cﬂ\m C{im gr
L, SERAE .
7 P Y S S S v
numb person
sing third
FIGURE 3.2

The agreement attribute in Figure 3.2 is common to the tree lexical terms and only one instance
of such structure --which is referred to by all the others-- has to be represented. In PATR-II,
modular structures that are part of several terms and are factorised out are called templates.
Templates are referred to by means of a name. In the dag’s presented below in the chapter the
name for the third person singular agreement attribute is 3rdsing or 3rds.

As was mentioned, when two terms are combined in categorial grammar, one has to be taken as
a functor and the other as its argument; in this example, the functor is the verb studies and its
category is specified in terms of the combinations that are allowed for such a word within the
system. Here, the verb takes an np by its right to produce a term of category S/np which in turns
takes another np by its left side to produce a sentence. The direction of the ‘slash’ in the last
term has been inverted. As can be noticed, the order in which the dag’s have been drawn in
Figure 3.2 does not necessarily reflect the order in which the lexical items have to combined.
The order information has to be explicitly asserted. This point will be clarified latter.

The combinatorial process is illustrated by the two upper levels in Figure 3.2. In the second
level, the expression studies linguistics is composed. This is a new object in the system, but it
has its ‘roots’ in the lexicon. The complex object is a ‘copy’ of the functor term which is
modified in two ways; first, the name of this structure is composed by taking together the names
of the basic terms, and secondly, its category is made by taking the category of the functor term,
and ‘stripping’ from it the category of the argument term. The representation of the final object
is shown in the upper level. It is constructed as was shown for the second level object: its
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phonology is made by combining the names of its component parts, and its category is made by
taking the category of the functor term --which in this case is studies linguistics-- and stripping
from it the category of the argument term. The category of this last object is S and it cannot be
further combined.

The category of agreement was propagated from the bottom to the upper levels. This can be
thought of as the specification of a constraint on the combinatorial combination. From the
bottom to middle level, the attribute of agreement is ‘percolated up’ or inherited upwards from
the agreement of the verb --which is directly specified in the lexicon-- to the verb-phrase object.
From the middle to the top objects, the attribute of agreement is a constraint on the possible
combinations: the agreement of both objects involved most be the same in order that the
categorial combination is permitted. This constraint reflects the grammatical fact that the
subject of the sentence must agree with the verb.

In traditional grammatical analysis, the fact that the subject of a particular verb --such as
studies-- must be a human entity is recorded as a selectional restriction related to the so-called
sub-categorisation frame of that verb. This is a semantic fact, and it imposes a restriction on the
kind of things that can perform the action denoted by the verb. For instance, the sentence
Linguistics studies Luis must be ruled out by the grammar --at least in the actual world-- despite
the fact that both Luis and linguistics are proper nouns. In categorial based formalims, such a
restriction is made explicit in the lexicon, and the lexical entry for studies can be modified as
shown in Figure 3.3. For the moment, let us take for granted that the sub-categorisation
information is related to the right np --the second to be combined-- that is specified in the main

category of the verb.

studies

S/np/np 3rdsing

np human X

FIGURE 3.3

The notion of selectional restriction makes very thin the boundary between syntactic and
semantic domains in a grammar. Furthermore, for our enterprise an explicit representation of
the semantics of the lexical items is required, and for such a purpose another feature structure
can be used. As has been mentioned, the semantics of a verb is a function with two arguments,
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and the lexical entry for studies can be augmented for capturing this information. In Figure 3.4

the new entry for studies is shown.

studies

semaontics

sub—cot arg—1 predicate

S/np/np  3rdsing X Y study$

ng human X

FIGURE 3.4

As can be seen, the semantics can be represented as an additional attribute in the feature
structure. The label semantics has as a value the dag consisting of the predicate study$ and two
variables X and Y which have as labels arg_I and arg_2 respectively. The semantics of the verb
is then the relational function study$(X,Y). Now, note that the agent term in the sub-
categorisation information is the same as the first argument of the semantics: these two
variables denote the same individual. We can capture this fact by modifying slightly the current

dag, as shown in Figure 3.5.

studies

l

semantics

predicate

Jrdsing study$

s/np/np

np human X

FIGURE 3.5

The variable X can be referred to by two alternative paths in the dag. These are
studies:syntax:sub-cat:agent = X and studies:semantics:arg 1 = X. Note that the structures
represented from Figures 3.1 to 3.4 could be thought of as simple hierarchies. However, the
need for sharing information between the syntax and semantics makes a complex feature
structure --dag’s-- a more suitable representational structure. Within the PATR-II framework, a
structural element that can be reached by more than one path is referred to as reentrant. In the
definition of a dag completely cyclic graphs are not accepted. In general, a complex feature

structure is recursively defined as,
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(1) avariable, in which case the dag will be called ‘uninstantiated’ or ‘unspecified’.

(2) aconstant, such as sing or third.

(3) aset of attribute-value pairs, each of whose values is itself a complex feature structure.

3.3.2. Unification.

The construction of complex objects is performed by combining basic structures. For this
process a basic operation is defined. Such an operation is unification and it can be thought of as
the union set-operation between graphs. Two dag’s which are identical unify in the same dag.
Two dag’s which are mutually exclusive (in the sense that every attribute-value pair appearing
in one dag does not appear in the other) unify in a dag which has all the attribute-value pairs of
each of the unified graphs. Dag’s which partially overlap unify in a dag which contains the
attribute-value pairs that appear in one or the other unified dag’s. If the value of the same
attribute of two different structures is a different constant, these structures cannot be unified,

and unification between them fails.

Unification can be thought of in more abstract terms. In general, two descriptions x and y can be
unified if there is an object z that fits both descriptions. Unification is widely used in many
computer disciplines and a general overview of the subject is given by Knight (Knight 1989).
As an example, consider the terms f{x, y) and f{g(y, a), h(a)). They are said to be unifiable since
replacing x by g(h(a), a) and y by h(a) will yield both terms as f{g(h(a), a), h(a)). In general two
terms s and ¢ are unifiable if there is a substitution ¢ such that o(s) = o(¢). In such cases © is
called a unifier of s and ¢. A substitution can be thought of as a list of variable bindings; the
unifier for the example is ¢ = {x ;= g(h(a), a), y := h(a)}. The most general unifer (MGU) is

defined as the simplest such substitution.

3.3.3. Definition of a Simple Grammar.

In the PATR-II formalism, the definition of a grammar consists, on the one hand, of the
specification of the set of rules from which well formed expressions are produced, and on the
other, of the specification of the constraints that have to be satisfied in for the application of the
rules. The construction of complex objects by this dual specification has been partially
illustrated in Figure 3.2. The expression studies linguistics, for instance, was produced by the
application of a combination rule, and the constraint that the category of agreement of the verb
should be percolated up to the verb phrase was also specified. However, such an example is too
specific, and it is not clear when some or another rule has to be applied, and what are the
constraints that have to be satisfied in order that the application of such a rule is permitted. One
way to generalise this process is by making explicit the rules guiding the interpreter making the
composition, and by specifying in the dag’s themselves not only the particular combinatorial
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schemes permitted for a term, but also the constraints that must be satisfied by such operations.
Next, an example for illustrating such a procedure is developed. The following scheme is
presented only for didactical purposes, and no particular grammatical formalism or notation is
implied. However, the example has been designed with the aim of introducing some of the more
relevant theoretical and computational notions that are defined in UCG.

First, the representations of the lexical entries for the words luis, studies and linguistics have
been augmented. These words, as well as all the words known by the system, are stored in the
lexicon. This is indicated by the attribute lexical item id. The lexical entry for studies has,
besides the syntax and semantics attributes, three new main paths: phonology, order and

operation, as shown in Figure 3.6.

ﬁow

studies syniax

lexical item id

|

orderl

ost, pre
P P

semantics \fpemtion

[first, second]

[np, np, S] 3rds s—value

np human X Y  study$ pres s

FIGURE 3.6

The phonology attribute has as value the string with which this word is realised. The other two
attributes have a list as a value. The value of ‘order list’ is [post, pre] and the value of the
‘operation list’ is [first, second]. Note that the value of the path syntax:cat is also a list:
[np, np, S]. Let us say that the header of each of these three lists is known as the active part of
the object. The intuition behind this definition is that the ‘active part’ of the object provides the
information required by the functor term for the current combinatorial process. It should be
clear that the active part of the path syntax:cat has to match the same path of an argument term
in order for the combination to be permitted. The order information specifies the position of the
corresponding argument term in relation to its functor. In the operation list the set of additional
constraints that have to be satisfied to allow the current combination are stored. The terms first
and second identify the lists of unifications that have to succeed in order that the corresponding
combinations of the term studies are permitted. The term first is the list

first = [functor:semantics:body:arg_2 = argument:semantics:pred].

and second is the list

second = [functor:semantics:body:arg_1 = argument:semantics:pred,
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functor:syntax:sub_cat:sort = argument:semantics:sort,

functor:syntax:agr = argument:syntax:agr].

Note that every element of these lists has the form o = 3, where o is a dag in the functor term,
and B is a dag in the argument term. Note as well that these specifications might have similar
form for many linguistic terms, and they can be defined as templates within the system.
However, such an economical factor is not considered in the present example. The ‘semantics’
attribute of studies has also been augmented. A new attribute indicating the kind of thing
denoted by this verb has been asserted: semantics:sort. In the same way that names --like
Luis-- denote a human individual, the verb has as a sort a temporal state s which is also a
present --pres-- state. The semantics for studies is then that there is a present state pres(s) which

is the state of X studying Y.
The dag’s for Luis and linguistics have been augmented with the phonology and semantics
arguments as shown in Figure 3.7.

lexical item id

|

syntax J/phonology semantics
luis
cat agr pred
np 3rdsing human luis$
lexical item id
syntax J/phono!ogy semantics
linguistics
cat agr pred
np 3rdsing abstract object ling$
FIGURE 3.7

Now, we can define a very simple interpreter for combining these terms for building up a
complex objects. The first step in the production of an object is its instantiation. For this
process, a functor term has to be found in the lexicon, and a ‘copy’ of this object labelled with
the attribute functor is made. This object would be, for instance, a copy of the dag in Figure 3.6,
but with the term lexical item id replaced by functor. When the functor term has been selected,
the interpreter has to find an argument term --originally in the lexicon-- and replace its

identifier, lexical item id, by the term argument.

Now, let us define the function head by which the interpreter is able to know the active part of a
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list in the functor object. This function has as an argument a path specification. The value of
such a path must be a list, and the function head returns the first element of such a list. Let us
define the procedure pop as well. This procedure is like kead, but it removes the first element of
the list that is referred to. We also define the procedure unify which takes a list of unification
specifications, and applies a unification procedure to each element in such a list. We define the

function combination operation of the interpreter as,

combine(functor, argument):
% Category check rule
head(functor:syntax:cat) = argument:syntax:cat.

% Phonology order rule
IF head(functor:order) = post THEN

functor:phonology := functor:phonology + argument:phonology.
IF head(functor:order) = pre THEN

functor:phonology := argument:phonology + functor:phonology.

% Combinatorial restriction rule
unify(head(functor:operation)).

% stripping rule:

pop(functor:syntax:cat).

pop(functor:phonology).

pop(functor:operation).
where the symbol ‘=" denotes that the value of the paths o and B is the same. The symbol ‘:=’
denotes a value assignment on a dag path, and the symbol ‘+’ denotes the concatenation of two

strings.

Through this procedure, the phrase studies linguistics is composed by the application of the
procedure combine to the dag standing for the current functor object, and taking the dag
standing for linguistics as the argument object. The resulting object is shown in Figure 3.8. Note
that the active information has been ‘stripped’ from the functor object. Now, this new object is
looking for an np whose phonology will preceed the current phonology, and which has to be in

agreement with the current object.

_44 -



functor

i

orderj/

[pre]

opem

[second]

\ﬂnology

studies linguistics
syntax

semantics

cat sub—cat

[np, S] 3rds
cat

s—value

sort | agent

np  human X ling$ study$ pres s

FIGURE 3.8

This new object is combined in turn with the dag standing for Luis. The output of the second
combination is the dag shown in Figure 3.9

ﬂmgy

luis studies linguistics
syntax

functor

operﬁ

(]

semantics

s—value

np human luis§ ling$  study$ pres s

FIGURE 3.9

Now, the composition is successful. The syntactic category of the new object is S, a sentence,
which has as phonology Luis studies linguistics, and whose semantics is the relation
study$(luis$, ling$) which is also a present state. Note that the ‘operational” information for the
object creation has been exhausted by the compositional process, and the order and operation

paths have an empty list as a value.

Here, it is worth emphasising some of the main points of this scheme. Firstly, it is lexically
oriented. The descriptions of the lexical entries specify not only the grammatical information
related to an entry, but also the information that is used in its own interpretation process. This
operational information contains the specification of the permitted combinations, the lexical
order in realisation and the constraints and value assignments that have to be made in each
combinatorial step. A direct consequence of this approach is that the interpreter itself is very
simple and general, and it can also be specified and implemented in a highly declarative
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fashion. A second important consideration is that the information acquisition process is
monotonic. This means that the grammatical information gained along the interpretation
process is never lost. This contrasts with the fact that the operational information is lost along

the same process.

The fact that every object within the system --lexical, at an intermediate level of composition or
a complete sentence-- is represented by a well defined dag has at least two important
repercussions that have not yet been mentioned. The first is that sentences can be linked
together to pass discourse information among them. This information can be used to compute
the references of anaphoric pronouns. The second, is that ‘unary’ operations can be applied to a
dag to change its characteristics in the compositional process. An introduction to these two

problems is given in the rest of the Chapter.

3.4. Representation of Discourse information,

Consider the following piece of discourse,
Luis studies linguistics. He likes it.

The grammatical analysis of the first sentence can be performed in compositional terms as was
shown above. We would like to do the same for the second, but there is a problem. In order to
determine its semantic representation, the referents for the pronouns he and it must be found. In
this simple discourse, it is clear that these referents should be Luis, and linguistics. However, a
theory for making such an identification must be made explicit. In such a context, the words he
and it are anaphoric pronouns,' and they act as a kind of ‘variable’ in the natural language
expressions. On the lines of the grammatical theory and the computational techniques that have
been sketched, the semantics of He likes it would be something like the function likes(x, y)
where x and y are variables denoting the individuals referred to by the corresponding pronouns.
However, in order to collect this information in the knowledge base we would like to make the
substitutions x := luis and y := linguistics and then to assert the relation likes(luis, linguistics) in
it. Within theoretical and computational linguistics the study of these problems is the matter of

discourse theory.

Current theories of discourse representation are highly influenced by Kamp’s theory of truth and
semantic representation (Kamp 1981). The aims of this theory are threefold: to give a general
account of conditionals, of the meaning of indefinite descriptions, and of pronominal anaphora.
Kamp’s theory has been further developed in conjunction with unification based grammar

' If the pronouns are supported by physical pointing gestures, these pronouns would be deictic, but for the moment we ex-
clude this complication. The deictic use of pronouns will be analysed in Chapter 4.
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formalisms (Zeevat 1986b). Following Johnson and Klein and others (Johnson et al 1988) the
meaning of a linguistic expression ¢ is a relation between the context that precedes and follows

o. The meaning of o has --on this view-- the general form,
Preceding-context |o| following-context.

In a simple model, the discourse context is considered just a set of individual names or
reference markers. In Figure 3.10 an illustration of such a context is shown.

0 I ][] (] o]
it |

‘Luis‘ Studies‘ Iingufstfcs.{ He ’Iikes

FIGURE 3.10

The bars in Figure 3.10 represent moments of time. The context preceeding the term Luis is the
empty set, and the context following it is the set with the marker m, which stands for a
masculine object, and it is also a reference to the term Luis. The context preceding linguistics is
the set {m}. This term adds the discourse marker »n, and its right-context is the set {m, n} where
n stands for a neuter object. In this model, the discourse context is determined in terms of a set
of equations relating the context which preceeds a lexical item with the context that follows it;
for instance, the context for linguistics would be,

{} | linguistics | {n}
and the relation between lexical and discourse context can be established in terms of the union
set operation between contexts as

C | linguistics | C L {n}
The solution of an anaphoric reference can be found by solving an equation relating the pronoun
sort with its left-context. For instance, the pronoun e refers to a masculine-human subject and
it can be matched with the antecedent Luis by means of the discourse marker, but not with
linguistics. In the same way, linguistics can only be matched with the pronoun it in this
example. The meaning of the anaphoric he is the relation,

ClhelCiffme C

Of course, for more complex pieces of discourse, there might be several solutions for these

equations, and the discourse is ambiguous.

This simple model of discourse can be integrated with the syntactic and semantic information
by means of a dag representation. A mechanism for passing information between constituents
in unification grammar under the name of gap threading was introduced by Pereira, and further
developed by Karttunen (Karttunen 1986). This mechanism is illustrated in Figure 3.11
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Luis studies linguistics He likes it

in out in out

(1 [m.n] [m.n]

FIGURE 3.11

Here, an additional sub-dag has to be defined in every object. In this example, the reference for
the sentence Luis studies linguistics is s, and the reference for He likes it is s,. The new dag’s
for these objects are:

sl:thread:in =1l

s,:thread:out = [m, n].

s,:thread:in = [m, n].

s,:thread:out = [m, n].

Intuitively, this technique requires that a sequence of objects can be threaded if for any two

adjacent objects s; and 5;_,,
s;:thread:out = s, ,:thread:in.

In this simple model of discourse context, the procedure for solving anaphoric references has to

look for the possible antecedents of a pronoun in the thread:in list for that object. The

definition of such a procedure is then fairly straightforward. This model, however, is not fully

satisfactory.

The naive model of discourse is not able to account for the anaphoric properties of universally
quantified np’s. The data which shows this problem is fairly well known (Johnson et al 1988).
In general, a universal term can normally enter into an anaphoric relation with pronouns that are
in its scope. Consider expressions (2) to (5) in which the scope of universal terms is in bold.

(2) A student studies linguistics. He is happy.

(3) Every student studies linguistics. He is happy.
(4) If a student is in a subject, he studies it.

(5) Every student who is in a subject studies it.

In (2) there is no universally quantified term and the pronoun he has a student as its antecedent.
In expression (3), the anaphoric binding is not allowed because the pronoun he is outside the
scope of the quantified term every student. Expression (4) illustrates a relation between a
universal term --if a student-- an indefinite term --a subject-- and the pronouns ke and it. Here,
the universal has wider scope than the indefinite, and then the anaphoric link between a subject
and it is permitted. But this link would not be permitted if the scope of the indefinite were larger
than the scope of the universal., Expression (5) is similar to (4) and is included in order to
emphasise the the universal force of an indefinite term preceded by the conditional if.
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Sentences like (4) and (5) are known as ‘donkey sentences’ and they have been widely studied.
Kamp’s discourse theory gives a natural account of the complex relations that they exhibit.

Here, there is no intention to discuss the complex issues involved in the analysis of sentences
such as (4) and (5); however, this example can be used to motivate some of the mechanisms
involved in a more satisfactory model of discourse. In the naive model, the context is a simple
set, and in the resolution process, the antecedent of a pronoun can be any marker in the set;
however, we can partition such a set in terms of a notion of subordination. Intuitively, the
definition of a subordinated discourse context is triggered somehow by the expressions that
introduce --or restrict-- quantification. These expressions are, in general, noun-phrases, and
they act as ‘pivots’ that open the scope of the corresponding quantifier. With this new device, a
reference marker can be the antecedent of a pronoun if it is ‘accessible’ by such a pronoun.
Although the mechanisms that govern these relations are fairly complex, a fairly general
account of them has been given (Johnson et al 1988). For our purpose, however, an intuitive
understanding of such relations will be enough. Consider the contrast between Figure 12.a and

Figure 12.b.

0 S, [m, n] > S, > [m, n]
o student is in a subject. he studies it.

Si—3

[I2s—=>[m.n then he studies it

a student is in o subject

b)

FIGURE 3.12

In the sentence of Figure 12.a there is no universal term involved, and the discourse context has
no subordinated structures. The sentence He studies it will pass to whatever comes to its right
the current discourse context {m, n}. However, if the first sentence a student is in a subject
occurs in the context set by the conditional if, the term a student has universal force and nothing
within its scope will be inherited to the piece of discourse which will follow the whole
conditional expression. The main discourse context is passed from its input to its output list as
soon as the universal is detected, and a subordinated discourse context will be open as shown in
Figure 12.b. The references for the pronouns in the consequent clause will have access only to
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the discourse markers introduced by the np’s of the antecedent clause.

Before closing this Section, a word in relation to the computational considerations is
worthwhile. In this model, and according to Johnson and Klein, the bottom-up compositional
process given for the grammatical analysis of these sentences is naturally integrated with the
top-down information flow that is associated with anaphoric information.

3.5. Unary Rules, Gaps and Word Order Inversion.

In this Section some other very common linguistic phenomena such as plural terms, word order
inversion and constituent movement are presented, and the way they are handled in unification
based formalisms is illustrated.

3.5.1. Unary Rules.

In general, if d; is a grammatical object --represented by a dag-- it can be transformed by a
unary operator 0 into a new object d} if d, satisfies a set of conditions required by 6 --this is if d,
is of certain specific form.

This facility is useful in many circumstances. For instance, for the definition of the different
forms of verbs in terms of a single base entry. Suppose that the base item --stored in the
lexicon-- for the verb studies is study. We can produce the forms studies, studying, studied, to
study and is studied by by the application of rules 6;, Gj. 0, 0,, 0, respectively. In each case, the
output dag would contain not only phonological information, but also the syntactic and
semantic attributes needed for combining the new objects in the set of contexts in which they
can occur. Furthermore, these rules would apply not only to this particular verb, but also to all

verbs of similar form.

Here, the use of unary rules will be illustrated with an example taken for the linguistic fragment
presented in Chapter 2. Next, how a plural common noun can be produced from the
corresponding singular form is shown. Consider sentences (6) to (9).

(6) This is a student.

(7) These are students.

(8) These are clever students.

(9) Clever students study linguistics.

Sentence (6) is in singular form and its structure can be produced according to the scheme
presented above in Section 3.3. The term a student is a constituent of category np and the form
of this sentence is np (S\np/np) np. Expression (7) is the plural form of (6). This sentence could
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be produced by a derivation similar to the one for (6) but with a plural agreement between the
subject and the verb-phrase. The plural object students could be stored directly in the lexicon
with all its phonological, syntactic and semantic characteristics. However, under such a scheme
the modification of students by an adjective like clever would not be produced by the
grammatical system. The problem is that clever students is a plural np, as well as nice clever
students or very nice clever students are. The fact that terms of category noun can be modified
in the process to be converted to an np suggests that the whole constituent must be combined
first and then it can be transformed into a plural term by a single transformation. The purpose
of this Section is to illustrate such a unary rule.

The definitions for lexical entries for the words clever and student are shown in Figure 3.13.

clever
|
phonologﬂwtcx order \l/ semantics operation
I first
clever Eat [post] 2o [first]
[noun, noun) a [A, clever$(o)]
student
ale
phonolcg)\// syntax semantics
L cat agr sort body
noun X student$(x)
number
plural
FIGURE 3.13

The adjective clever is a term of category noun/noun, and it can combine with a term of
category noun by its right side --the order list has post as a value-- to yield a modified noun. The
semantics of this term has been represented by a dag in which the sort attribute has as a value
the variable a which is yet uninstantiated. The body attribute of the semantics has as a value the
complex structure [A, clever$(a)]. We can think of this structure as the conjunction of terms
within the list, in which A is a variable standing for a formula. The value of A will be acquired
in the combination process. The index a is an unsorted variable. The term first in the operation
list contains the list of unifications that have to be applied to the dag when it is combined with
some argument. The value of first is the list:
[functor:semantics:sort = argument:semantics:sort,
head(functor:semantics:body) := argument:semantics:body].
Note that we assign a value to the head of the list representing the semantics of the functor term.
a@%“
st fF 8
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This is a new operation that can be easily defined with the interpreter presented in Section 3.3.

The definition of common noun student is straightforward. Note, however, that the attribute
student:syntax:agr:number = plural has been defined. In this system, an independent entry
for the singular form of each noun has to be defined. An alternative strategy would be to
produce both forms from a base lexical entry by means of a unuary rule.

Now, we can combine the terms clever and student by means of the function combine as shown
in Section 3.3. The result of combine(clever, student) is the dag shown in Figure 3.14. The
category of this object is noun, with phonology clever student and semantics
[x][student$(x), clever$(x)]. The variables of the functor term have been instantiated by values
taken from the argument term. In particular, note that the sort value a has been replaced by the
value x. Here, both are variables, but as will be shown in Chapter 4, they denote entities with
different ontological properties. While a stands for an individual of whom we know nothing, x
stands for an individual that, although its specific identity has not been defined, it is known to

opem/

[]

be a human being.

phonolog)/ syntax

clever student

functor
J

order | semantics

e——

body

cat agr

[noun] x [student$(x), clever$(x)]
number

plural

FIGURE 3.14

The object represented by the dag in Figure 3.14 cannot be taken as a functor for an additional
combination. Its operational information has been exhausted. But, it could be taken as the
argument of another adjective, like nice whose lexical definition is like clever, and the noun
nice clever student could be produced. However, when the whole constituent is produced, it has
to be combined with a verb to produce a term of category S\np and for that the term of category
noun --simple or modified-- has to be converted into a plural np. This is achieved by the unary

rule that we are concerned with in this Section.

The rule for forming plural np from terms of category noun is defined as,

IF
head(term:syntax:cat) = noun AND term:syntax:agr:number = plural

THEN
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term:phonology := term:phonology + s.
term:syntax:cat := np
term:semantics:sort := plural(X)

where term is the object to be modified. The result of applying this operation to our current dag

would yield the dag shown in Figure 3.15.
phor/ syntax operotm
body

composite object
N

order | semantics

(]

clever students

cat

np plural(X) [student(X), clever(X)]
number

plural

FIGURE 3.15

Note that the attribute agr of this object would not be needed for the production of the sentence
These are clever students because the object term does not have to agree with the verb;
however, if the term clever students is taken as the subject of a sentence, as in Clever students
study linguistics, the agreement information would be required. Similarly, the expression Clever
students studies linguistics is ruled out by this grammar.

3.5.2. Subject-verb Inversion in Questions and Unbounded Dependencies.

Now, consider the sentences,
(10) This is Luis.
(11) Is this Luis?
(12) Who is this?

Sentences (10), (11) and (12) are somehow related. In fact, if an individual is introduced by
means of sentence (10), sentence (11) is a yes/no question by which the identity of such an
individual is confirmed, and sentence (12) is a wh-question by which such an identity is
required. A very general fact of English is that a declarative sentence is related to its
corresponding question by inverting the positions of the subject and verb, as shown by the
contrast between (10) and (11). Note that in both expressions the subject position is occupied by
this and the object position by Luis. Now, compare expressions (11) and (12); these are similar
questions, but realised in slightly different manner. However, in (12) the word this seems to be
taking the object position, and the word who seems to be taking the subject position. In the
corresponding declarative expression, the subject is the agent of the action denoted by the verb,
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and the object is the patient of such an action, and these roles should remain the same in both
declarative and interrogative forms. Expression (12) can be better understood as the ‘surface
realisation’ of the expression is this who? --contrasting with is this Luis?-- in which the particle
who is an np that has been shifted to the beginning of the sentence. In general, for dealing with
questions we have to consider the order inversion between the subject and the verb.
Additionally, for wh-questions, the shift of the wh-term has to be taken into account. The
inversion between subject and verb in questions can be modelled by means of one unary rule,
such as the one presented for modelling plural terms. However, the second phenomena has an
additional degree of complexity because the Wh-term can occur in many different positions.

The following procedure is a simplified version of Pereira’s treatment of unbounded
dependencies, as reported by Calder (Calder et al 1986). For dealing with this problem the
notion of threading presented in the previous Section is useful. The dag’s structures of every
lexical item can be used. In Section 3.4, the value of the paths thread:in and thread:out was
defined as the discourse context. We can modify slightly such a definition, and declare that the
value of these paths is a list of two pointers: the first has as a value the discourse context as
shown before, and the second points to a list, called gap list, in which constituents that are not
found in their usual position --unbounded-- are provisionally placed. When they are required by
the interpreter, they are taken back from the gap list and combined according to the

grammatical rules of the system.

When the word who in Who is this? is processed, it is placed in its own thread:out list --which
has the same value as the thread:in of the next term in the string. The verb is has to be
modified by applying the unary rule for subject verb inversion in questions. Then, the term who
is taken back from the input list, and it is combined with is yielding an expression with
underlying form is who. This last expression is in tum combined with the word this to produce
an object with the underlying form this is who which has the desired semantics.

Here, this introduction to theoretical and computational linguistics is concluded. It is worth
emphasising that this very simple grammatical system has been presented with the aim to
introduce some linguistic notions that are greatly generalised in UCG. It should not be taken as
a formal specification but rather as an intuitive motivation of the subject, as many details have
not been worked out. However, we can summarise the main points of the scheme. The most
important feature of the system is that the main source of information is specified in the lexicon.
Once the lexical schemes, the combinatorial rules and the unary rules have been defined, the
definition of the grammar is completed by specifying the lexical items. The next most
important feature is that every grammatical constituent is an object, and it can be represented by
means of a feature structure in the system; then lexical and composite objects can be combined
in building up the sentences and the discourse representation. It is also important to mention

that the compositional process takes place in a bottom-up process, and it is naturally integrated
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with the top-down left-to-right discourse information flow. Also, the construction of the
semantic representation is a monotonic process, given that the information gained in the
compositional process is never lost. Now, we are ready for the formal description of UCG.
Such a description and the derivation process for the linguistic fragment of Chapter 2, including
a discussion of the deictic use of demonstratives and some suggestions for dealing with deictic
pronouns, is the subject of Chapter 4.
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Chapter 4

Deixis in
Unification Categorial Grammar

In this Chapter the grammatical analysis of the linguistic fragment introduced in Chapter 2 is
presented. Section 4.1 is a standard presentation of Unification Categorial Grammar. In
Section 4.2 the lexical entries for our linguistic fragment are shown, and the derivation for some
of the most relevant expressions of the dialogue of Chapter 2 are illustrated. Finally, in Section
4.3 the model for the deictic use of pronouns and demonstratives within the framework
provided by UCG is presented. This model has been developed for the particular aims of this

research.

4.1. Unification Categorial Grammar.

Unification Categorial Grammar (UCG) was originally introduced in 1986 by Zeecvat, Klein
and Calder (Zeevat et al 1986a). UCG is a version of categorial grammar that on the theoretical
side enforces principle of composition, and relates phonology, syntax and semantics as tightly
as possible. In addition, UCG is defined to handle intra and inter-sentential anaphora. For that
purpose, several insights of Kamp’s theory of truth and semantic representation (DRT) are
incorporated (Kamp 1981).

On the practical side, it has been motivated by the desire to develop a theory which could be
parsed efficiently with current computational technology. For the implementation of UCG
several ideas of the PATR-II unification-based formalism (Shieber et al 1983) have been used.

The basic object in UCG is called a sign, and it has the following four major attributes,

(1) i. The phonology of the object (its orthography in this context).
ii. The syntactic category of the object
iii. The semantics of the object.
iv. The order information for the object combination.
In UCG there are three basic or primitive categories: nouns (rnoun), noun phrases (np) and

sentences (Sent). Categories are defined as follows:
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(2) i. Any primitive category is a category.
ii. If A is a category, and B is a sign, then A/B is a category.

The sign B in a category of the form A/B is called the active part of the sign in which A/B

occurs.

Here, a notational convention is introduced: if W, C, S, O are variables standing for the
phonology, grammatical category, semantics and order of the sign E respectively, then E can be
specified either in a sequence notation as:

W:C:S:0
or in a column notation as

w
C
S
()

For instance, the sign for studies is

3) studies

(Sent/w,:np:x:pre)/w,:np:y:post

[sI[PRES(s), [SISTUDY(s, x, y)]

(0]
The category of the sign in (3) is of the form A/B, where A is (Sent/w,:np:x:pre) and B is
w,.np.y:post. The category of B is a primitive object, a sign specified in a sequence notation,
and its attributes are phonology w.,, category np, semantics y and order post. It is also the active
part of the sign for studies. The parenthesis indicate that the association for the combinatorial
functor "/” is to the left. The category A, on the other hand, is a complex term of the form
(Sent/w:np:x.pre). This category is in tumn of the form AilBj, where A, is a sentence --of

category Sent-- and B ; is a basic object of category np.

The semantics of the sign is an expression of a representational language called /nL (Zeevat
1986b). which will be introduced below in this Chapter. Intuitively, the semantics of studies is
a state s, which is occurring at the present time --PRES(s)-- and it is the state of x studying y.
The specification of a sign can be stated in terms not only of constants, but also of variables,
like the order O. This allows that incomplete information which will be specified in the
combinatorial process is stated in the sign’s description. In general, if some or all attributes of a
sign E are left unspecified but other attributes are specified or cross-identified, then such a sign

can be represented as

E(W:C:S:0)
Signs are combined by a rule of functional application, and the combination of two signs yields
a sign which has all specified information of the combining constituents. Functional application

e U



in UCG splits into two separate operations: instantiation and stripping. These operations are

defined in (4) and (5) as follows:

4 §; is the instantiation of S, with respect to S, if it results from S, by unifying its active
part with S.,.

(5) Given asign S ; With category A/B, the result of stripping S, is the sign S, just like S,
except that its phonology is the concatenation of §,’s and B’s phonology, and its category
is stripped down to A.

The rule of functional application is as in (6),

(6) LetS; and S, be well-formed signs. Then stripping the instantiation of §, with respect to
§, results in a well-formed sign.

In UCG only adjacent constituents can combine grammatically and the order information is
specified by the constants pre and post. The interpretation of the order information is used in the
stripping part of the functional application process. The constants post and pre are the values
that the order variable of the argument term takes after the instantiation process. The constant
post says "if I am an argument in functional application, my functor’s phonology follows my
own phonology". The constant pre says "if I am an argument in a functional application, my

functor’s phonology precedes my own phonology".

According to this, functional application is realised as two different rules.

@) RULE 1: (W, + W ):C:S > WiC/E:S E(W :pre)

RULE 2: (W, + W):C:S — E(W,:pre) Wf:C/E:S

A simple way to understand these rules is by considering that in both of them the argument sign
has been partially specified, and just the attributes of phonology W, and order are stated.
Whenever the active part of the functor sign --whose phonology is Wf -- is unified with the
argument sign, the order position of the argument sign is filled with a value, which is either pre
or post. In the stripping process, the rule to be applied is selected according to such a value; if it
is pre then RULE 1 is selected, otherwise RULE 2 is selected. The stripping rule concatenates
the phonologies of the functor and argument terms by means of the string combinator symbol
"+", Finally, the active part of the functor sign --E-- is taken off, and the new object is
produced. Note that the resulting signs are underspecified for the order attribute.

4.1.1. Indexed Language and the Semantics of UCG.

The semantic representation language used in UCG is called /nL (for Indexed language). There
are only two connectives for building complex formulas: an implication that at the same time

introduces universal quantification, and a conjunction. An implication of the form

8) [A(xlsm’xn) == B(y 19msy l‘l)]
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is interpreted as
9) VX ppeensX [AGK peresX ) => T 5eess¥ B(Y50005¥ )]

where x;,....x, are all the variables in A outside the scope of any implication occurring in A, and
¥ p»--Y,, are the analogous variables in B.

A formula as a whole has an existential interpretation; the formula
(10) A(xl,...,x“)
is interpreted as

(11 Exl,...,xn A(xl,...,xn)

Every formula of /nL has a designated variable called its index. This variable has a special
status, and it designates the ontological type denoted by the formula. By convention, the index
variable is always the first argument in the argument list of a formula. Indices report the kind of
entity which the formula is about: individuals, states, events, etc. The following expressions are
about the kind of thing under the type heading:

(12) Expression Type
i Luis studied linguistics event
ii. yesterday an unspecified eventuality
iii. is in a subject state
. coffee quantity of mass
V. to the game some entity with a direction
vi. studied event
Vii. does not absence

The translations of these expressions in /nL are as follows:

(13) & [e] [PAST(e), [e]STUDY (e, LUIS, LINGUISTICS)]

ii. [a] [YESTERDAY(a), [a]A]

iii. [s] [SUBJECT(y), [IN(x, y), [SJPRES(s)]

iv. [m] COFFEE(m)

V. [a] [GAME(x), [a][TO(a, x), [a]A]]

vi. [e] [PAST(e), STUDY(e)]

vii. [s][A => FALSE]
In expressions 13ii, 13v and 13vii the variable A indicates that such formulas denote functions
that have to be combined with some argument in order to yield either the semantics of a
sentence, or in general, an expression that can be taken as an argument in a further combination.
Variables in the semantics of a functor term are instantiated by the semantics of an argument
term in a functional application process. For instance, the semantics of the expression
Yesterday Luis studied linguistics can be produced by replacing the variable A in formula 13ii
by formula 13i, yielding the formula,
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(14) [e] [YESTERDAY(e), [e] [PAST(e), [e]STUDY (e, LUIS, LINGUISTICS)]

in which the eventuality reported by the word yesterday has been made explicit. Note that the
variable A in 13ii has been unified with expression 13i, and the unsorted variable a has been
further specified as an event e. Another related consideration is that in the process of functional
application, quantifiers over variables of the functor term have always a larger scope than
quantifiers over variables in the argument term. This is particularly important for determining
the relations of subordination between discourse contexts when the reference of an anaphoric

pronoun has to be found.

Formulas 131, 13ii, 13iv and 13vi are either the semantics of a sentence or the semantics of an
expression that has to take the role of the argument in a process of combination. The semantics
of 13vii is more complex. It reports that the object which will be combined with the expression
does not is false. The sentence Luis did not study linguistics reports the absence of an event,
and within /nL it would be treated as a special kind of eventuality. However, there is no need to
discuss such deep complexities here, and a more detailed account of these issues is given in the
original source (Zeevat et al 1986a).

Indices of formulas are semantic variables that are divided into sorts. A sort is a bundle of
features associated with a particular variable of referential constant and, as has been illustrated,
unification can be performed on sorts. Sort variables are related in a semi-lattice structure, as

shown in Figure 4.1.

undefined (o)
/\
object (b) temporal (t)
by o ARL
mass (m) countable(c) stote (s) pracess (e)
e g S
singular (x) plural (X) event (e) nonculminating (e)

human (x) nonhuman (x)

fernale (x) neuter (x)

John luis

FIGURE 4.1

The index of a lexical entry is specified by a variable whose sort is as far down as possible in
the structure in Figure 4.1. For instance, the index for a proper noun is its corresponding
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constant in the sortal hierarchy: its ontological type cannot be further specified. On the other
hand, when the index of a lexical item can take any sortal value, as in the case of yesterday, the
index is an unsorted variable on the top of the structure. In the process of functional
application, the semantics of the composed expression will acquire an index of the greatest
possible degree of specificity in the sortal structure. A detailed specification of the sortal
structure for UCG is presented by Calder et al (Calder et al 1988). Conventionally, variable
names are associated with particular sorts. For instance,

object variables Xy Y5 Zy X5 Xp5 Xgpeee
mass variables m;, m,,...

event variables €, €, €,, €5,...
state variables Sy by 45 855 S350
unsorted variables a, b, c,a;,a,,a,,..

Alternatively, the sort type can be made explicit in the notation. For instance, the variable x
might refer to a male or to a female object. For clarity, we can write male(x) or female(x) in the

index position of a formula.

4.1.2. Type Raising and Quantification.

In categorial grammar and related grammatical formalisms there is certain degree of freedom in
choosing which elements are functors and which are arguments in the combinatorial process. In
the analysis sketched in Chapter 3, np’s were considered arguments and verbs were considered
the functors. In such a scheme, the meaning of a predicate term is a function that maps the
individual denoted by the subject to the truth value of the sentence. For instance, the meaning of
the sentence Luis studies linguistics is produced by applying the function studies linguistics to
the argument luis. However, in many modem theories, a reversed scheme is used. This new
approach was introduced by Montague in 1973 in the PTQ system Proper Treatment of
Quantification (Dowty et al 1981). and it is adopted and generalised in UCG. Under this
alternative scheme, it is the meaning of the subject term the one which is modelled as a function

mapping a predicate into a sentence.

One important reason for taking np as functions is that the scope of quantifiers introduced by the
subject of the sentence will be larger than the scope of the quantifiers introduced by the object
term. In UCG, as was mentioned, functors have a larger quantification scope than their

arguments. Consider sentence (15)
(15)  every student likes a subject

Under the previous scheme sentence (15) would be analysed with the term a subject having a
larger scope than the term every student. Such an analysis would imply that there is one subject
--as linguistics-- which is liked by every student. However, a more intuitive reading for sentence
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(15) is that for every student there is a subject that he likes; for instance, Luis might like
linguistics, but John might like philosophy, and Pete might like programming. The second
analysis can be produced if the subject every student is analysed as a function which takes the
predicate likes a subject as its argument. Here, there is no space to get involved in the very
deep issues posed by the analysis of quantified expressions, but it is worth mentioning that the
matter gives the title for the best known Montague’s paper: Proper Treatment of Quantification.
In this system, the analysis of the subject as a function from predicates to sentences plays a
fundamental role. Furthermore, the syntax and semantics of a natural language expression bear
a closer resemblance to each other, according to the desiderata of the rule-to-rule hypothesis.

In the combinatorial scheme presented in Chapter 3, the category A/B has as its meaning the
function f which combines with an expression of category B --whose meaning is the object b--
to produce an expression of category A and whose meaning is f{b). According to this, in the new
scheme the category for proper nouns and quantified terms would have to be of the following

form,
Sent/category-of-predicate.

The category of a predicate --a vp-- is Sent/np: an expression that wants an np to become a
sentence. Then, the category for proper nouns is type raised from np to Sent/(Sent/np).

Now, we have to consider the impact for the semantics of such a change. In the old scheme,
predicates were considered functions mapping individuals to truth values (Sent/np), and the
meaning of a proper noun --or of a referring expression-- was the individual denoted by such a
term. In the new scheme, the meaning of a type raised np is the set of properties that the
individual denoted by that name has. This is equivalent to a function that for every property
asserted of a particular individual returns the value true if such an individual has in fact that
property, and false otherwise. Formally, this is a function from individuals to functions from
properties to truth values, and it can be represented as the following Lambda calculus
expression (Dowty et al 1981),

(16) AxAP[P(x)]
where P is a high-order variable standing for the set of properties that some individual x has.
The meaning of the proper noun Luis would be the function,

(17)  AxAP[P(x)](luis)
or by lambda conversion

(18)  AP[P(luis)]
and it denotes the set of properties of Luis. We can apply this function to the predicate walks as
its argument, as in

(19)  APP(luis)(walks)

yielding the predication
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(20)  walks(luis)
which would be true if the individual Luis is in the set of individuals who happen to be walking

in the model.

Now, we can come to the first approximation for the definition of the lexical entries for proper
nouns in UCG. Provisionally, the lexical entry for luis is defined as follows:
(21)  luis
Sent/W:(Sent/luis:np:LUIS:0):S:0
S
This is a sign whose phonology is the name Luis. The category of this sign is of the form A/B
where the A is a sentence, and B --the active part-- is the sign W:(Sent/luis:np:LUIS:0):S:0

which itself contains a complex category of the form
(Sent/luis:np:LUIS:0)
Note that the semantics of the active part is the variable S, which is also the semantics of the

sign in (21) as a whole. The easiest way to understand how such a sign works within the system
is by showing a combination process. Consider the sign for the intransitive verb walks,

(22) walks
Sent/W:np:x:pre
[e][PRES(e), WALK(e, x)]
Now, consider the production of sentence (23)
(23)  Luis walks

in which Luis is the functor term, and walks the argument term. In the instantiation process the
active part of the functor is unified with the argument sign

(24)  Active part of Luis sign for walks
w walks
Sent/luis:np:LUIS:0 Sent/W,:np:x:pre
S [e][PRES(e), WALK(e, x)]
0 (0]

The most general unifier for these two signs is:
(25) o ={W := walks, luis := W,, LUIS :=x, O :=pre, S := [e][PRES(e), WALK(e, x)]}

In addition, the constants Sent and np in both functor and argument have to match to allow the
unification of these two signs. After the instantiation process, functor and argument take the

following values,
(26)  Active part of Luis sign for walks
w walks
Sent/luis:np:LUIS:pre Sent/luis:np:LUIS:pre
[e][PRES(e), WALK(e, LUIS)] [e][PRES(e), WALK(e, LUIS)]
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pre pre
and the whole sign for Luis is instantiated as,

27)  luis
Sent/walks:(Sent/luis:np:LUIS:pre):[e][PRES(e), WALK(e, LUIS)]:pre
[e][PRES(e), WALK(e, LUIS)]

pre

Now, for the stripping process we can look at the value of the order attribute of the argument
sign in (26) which is pre. This value was originally stated in the active part of the sign walks in
(22) and it was passed to the order of the whole sign for walks, via the order variable in the
functor sign. According to this value, the functional application rule RULE 1 in (7) has to be
applied. The value pre says "If I am the argument in a functional application my functor’s
phonology precedes my own phonology"”. Then we know that the phonology of the final sign
will be luis + walks. In the stripping process, the active sign of the functor term is taken off, and
the object produced by this functional application process is,

(28)  luis walks
Sent
[e][PRES(e), WALK(e, LUIS)]

The final object is underspecified for the order attribute, as stated in the functional application
rule. Note that in the unification process, the values in the argument term instantiate the
variables of the functor term, with the exception of the value of the constant LUIS which flows
in the opposite direction. Contrast this with the evaluation of the corresponding lambda

expression,
Meaning of [uis: AP[P(luis)]
Function and argument: AP[P(luis)](walks)
Lambda conversion: walks(luis)

The meaning of the lexical entry for Luis is a function from Luis to the properties that he has,
and this function maps predicates --as walks-- into sentences as Luis walks.

There is still one consideration that has to be made for the definition of lexical entries for proper
nouns. The definition of the entry for Luis in (21) is not fully satisfactory because it is only
useful for the proper noun occurring in subject position. However, these terms can also occur in
object position and a more flexible scheme is required. In UCG this flexibility is achieved by
generalising the notion of type raising. The category of raised terms is not Sent/(Sent/np) but
rather C/(C/np), where C is a variable over complex categories and for that reason is referred to
as a polymorphic category. It is easy to see that when a proper noun is in subject position, the
variable C takes the value of Sent, and the derivation shown in the previous Section is produced.
However, when that noun is in object position, such a variable receives a more complex value.
In general, polymorphic variables act as a bridge that passes category values among complex

-64 -



expressions. The use of this variables can be illustrated by the derivation of the expression (29)
(29)  Luis studies linguistics

in which the lexical entries for the proper nouns are specified in terms of type raised categories.

The categories for these three words are as follows!

(30) luis
C/W:(C/np:LUIS:0):S:0
S

(31)  linguistics
C/W:(C/np:LINGUISTICS:0):S:0
S

(32) studies
Sent/np:x:pre/np:y:post
[sIIPRES(s), STUDY(s, x, y)]

The derivation is illustrated by the tree in Figure 4.2

Sent
Sent/(Sent/np) Sent/np
Sent/np/np (Sent/np)/Sent/np/np
Luis studies linguistics

FIGURE 4.2

The first step in the derivation process is to compose the predicate term, by combining the signs
(31) and (32). Note that the functor is the sign standing for the noun in (31). The active part of
the functor and the argument sign are unified. These signs are,

(33)  Active of linguistics sign for studies
w studies
C/np:LINGUISTICS:O Sent/np:x:pre/np:y:post

! The redundant phonology attributes are omitted in this description. As was shown, they do not take any significant role in

the derivation process.
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S [SI[PRES(s), STUDY(s, x, y)]
(0] 0

The most general unifier for these two signs is,

(34) ©:={W :=studies, C := Sent/np:x:pre, LINGUISTICS :=y,
O := post, S := [s][PRES(s), STUDY(s, x, LINGUISTICS)]}

The sign resulting from functional application is of the form,

(35)  studies linguistics
£
S

where the values for the variables C and S are instantiated as shown in the substitution ¢ in (34).
In the stripping part of the functional application process these values are substituted in the
functor sign as a whole, and the following sign is produced.
(36)  studies linguistics

Sent/np:x:pre

[sI[PRES(s), STUDY(s, x, LINGUISTICS)]
The combination between subject and predicate is produced in an analogous manner. The
subject is the functor, and the predicate the argument. The active part of Luis and the sign for

the predicate studies linguistics are,

(37)  Active of Luis sign for studies linguistics
w studies linguistics
C/mp:LUIS:O Sent/np:x:pre
S [SIIPRES(s), STUDY(s, x, LINGUISTICS)]
0} 0]

The most general unifier for these two signs is,

(38)  © := {W :=studies linguistics, C := Sent, LUIS :=x,
O :=pre, S := [s][PRES(s), STUDY(s, LUIS, LINGUISTIC)]}

Now, these values are substituted in the sign for Luis and after the stripping process, the object

(39)  Luis studies linguistics
Sent
[sI[PRES(s), STUDY (s, LUIS, LINGUISTICS)]

is produced.

With this example, the introduction to UCG is concluded. The intention in this section is to
present a general view of the theory. It is worth recalling that the definition of a grammar
segment consists mainly in the specification of the lexical entries. The expressions produced by
the grammar will be those permitted by the functional application process as defined above. In a
similar way, the grammatical system will rule out expressions which are blocked by failures in
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the unification process: when the active part of a sign cannot be unified with the argument sign.
In the Section 4.2 the lexical entries for our linguistic fragment are shown, and the derivation
for some of the most relevant signs of the dialogue of Chapter 2 are illustrated. Finally, in
Section 4.3 the deictic use of pronouns and demonstratives within this framework is presented.

4.2. The Linguistic Fragment.

In this Section, the linguistic fragment from which the dialogue of Chapter 2 is produced is
presented. As was mentioned, this is mainly a matter of describing the lexicon. The following

rules recapitulate the syntactic and semantic description of a sign:

(40) sign — {phonology:category:semantics:order, E}
phonology — {string, W}
category — {Sent, np, noun, category/sign, C}
order — {pre, post}
semantics — {atom, [variable][semantics, semantics],
[variable][semantics => semantics], S, [a]S}
atom — predicate(arg')
argument — {variable, constant, semantics}
variable — sort integer

Now we come to the presentation of the linguistic fragment.

4.2.1. The Linguistic Dialogue in GRAFLOG.

In the previous Section, the definition of proper nouns received a great deal of attention.
However, proper nouns are not the only terms whose category is a type raised np or C/(C/np).
Terms of similar grammatical category are pronouns such as ke, she and it. Besides, expressions
composed by an article and a common noun have a similar category. Examples of these
expressions are The student, a student, every student, the clever student, a clever student, etc.
Other words that have the same grammatical category are wh-terms as who, what, which, etc.
All of these expressions have a thing in common: their function is to denote an entity or a set of
entities. Furthermore, words like the, a and every introduce quantification over the terms that lie
within their scope, and for that reason play a very important role in the representational system.

We start the exposition of the linguistic fragment by emphasising the analysis of referring

expressions. Consider expressions (41) and (42).

(41)  He studies it.
(42)  He studies that subject.

Here, we assume that the pronouns are anaphoric and their antecedent must be found in the
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previous discourse representation. The alternative deictic use of these terms in which they are
supported by an ostensive gesture is presented below in Section 4.3. The lexical entries for the

pronouns he and it are as follows,

(43) he
C/W:(C/np:x:0):[a]S:0
[a]l[[x]PRO(male(x)), [a]S]

44) it

C/W:(C/np:x:0):[a]S:0

[a][[xJPRO(neuter(x)), [a]S]
The syntactic category of these words is similar to the category of proper nouns. Compare,
however, the variable x in (43) and (44) with the constant LUIS in the semantics of the proper
noun in (30). The semantics of a pronoun is a function from an unspecified individual --denoted
by a variable-- to the properties that it has. Such variables are not unrestricted. They belong to
certain specific sort. The terms male(x) and neuter(x) in (43) and (44) indicate the sort of the
corresponding individual in terms of the semi-lattice structure of Figure 4.1. The word PRO is
just a semantic constant useful for the interpretation process; in particular, it is used by the
procedure for finding out the antecedent of an anaphoric pronoun. It indicates that its argument
is a PRONOMINAL variable. The index for the semantics is an unsorted variable, and it will be

specified in the combinatorial process.

The word that in sentence (42) is a determiner. In this analysis, that is considered an alternative
lexical realisation of the word the. This is a simplification of the facts, because the word that
connotes a ‘remote’ relation between the speaker and the thing referred to by the constituent in
which the determiner is included. However, we ignore this fact. The grammatical category of a
determiner is specified as something that combines with a term of category noun to yield an np.
In UCG such an np is replaced by the corresponding type raised category. The definition of its
lexical entry is as follows,
(45) that
C/W:(C/np:b:0):[a]S:O/noun:[b]R:pre
[a][[b]R, S]

The word that is a functor term that will be combined with a noun of semantics R and index b.

The category for the word subject is noun and its definition is as follows.

(46) subject
noun
[x]SUBJECT(x)

Now, we can combine the determiner that in (45) with the noun subject in (46) to produce the
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sign in (47)
(47) that subject
C/W:(C/np:y:0):[a]S:0
[al[[y]ISUBJECT(y), S]
The application of the functor that subject in (47) to the argument studies in (32) yields the
following predicate sign (48)
(48)  studies that subject
Sent/np:x:pre
[s][SUBJECT(y), [s][PRES(s), STUDY(s, x, y)]]
Finally, the application of the functor ke in (43) to the argument studies that subject in (48)
yields the sign (49)
(49)  he studies that subject
Sent
[s][PRO(male(x)), [sIISUBJECT(y), [sI[PRES(s), STUDY(s, x, y)11]
The derivation tree for the expression sentence (41) is similar that the one shown in Figure 4.2,
but the words Luis and linguistics are replaced by he and it respectively. The sign for sentence
41) is,
(50)  he studies it
Sent
[s][[x]PRO(male(x)), [s][[y]PRO(neuter(y)), [s][PRES(s), STUDY(s, x, y)11]
Now, we come to the analysis of the sentence
(51) A student is in a subject.
is important in two respects: it shows the use of an indefinite expression in both subject and
object positions, and it shows the verb fo be in conjunction with a prepositional phrase in which
the word in denotes a spatial relation between the object and the subject terms. In Figure 4.3,

the derivation tree for this expression is shown.
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FIGURE 4.3

The definition of the article a is as follows,

52) a
C/W:(C/np:b:0):[a]S:O/noun:[b]R:pre
[a][[b]R, S]
The sign for a subject is,

(53) asubject
C/W:(C/np:y:0):[a]S:0
[a][[y]SUBJECT(y), S]

and the sign for a student has a similar form.

The lexical entry for the preposition in is the most complex basic sign in this grammar. It is a
functor that wants an np on its right to become another functor that wants a verb --in some
unspecified location-- to become a predicate. Its lexical entry is,
(54) in
C/(C/np:x:0):[a]S/np:y:post
[a][IN(x,y), S]
This term combines with the sign in (53) to yield the sign in (55)
(55) in asubject
C/(C/np:x:0):[a]S
[a][SUBJECT(y), [IN(x,y), S1]
The definition of the lexical entry for the verb is is as follows,
(56) is
Sent/np:x:pre/np:y:post
[SIPRES(s)
Note that the semantics of the sign in (56) introduces a present state, but it does not introduce a
relation between the individuals referred to by subject and predicate. The function of this is is
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mainly syntactic. Without this word, the expression would be a modified noun --a student in a

subject-- and not a sentence.

The combination of (55) and (56) two signs yields the predicate (57)

(57) isina subject
Sent/np:x:pre
[sIISUBJECT(y), [IN(x, y), PRES(s)]]
Finally, the sign for a student which is similar to (53) is applied to the predicate is in a subject,
and the sign in (58) is produced,
(58) astudent is in a subject
Sent
[sIISTUDENT(x), [sI[SUBJECT(y), [IN(x, y), PRES(s)]1]]

Now, we come to the analysis of a rule through which the interpretation of a spatial relation --
like in-- is introduced. Consider sentences (59), (60) and (61),

(59)  If a student is in a subject then he studies it.
(60)  If astudent is in a subject then he studies that subject.

(61)  every student who is in a subject studies it.
The words if and then are sentence modifiers. Their corresponding lexical entries are,
62) if
Sent/Sent:S:pre/Sent/T:pre
[s][T => S]

(63) then
Sent/Sent:S:pre
S

The derivation tree for sentences (59) and (60), as well as their relation to the discourse context
was shown in Figure 3.12. The sign for sentence (59) is as shown in (64)

(64) Ifa student is in a subject then he studies it
Sent
[s,]1[[s{][STUDENT(x,), SUBJECT(y,), IN(x,, y,), PRES(s;)]
=> [sy][PRO(male(x)), PRO(neuter(y,)), PRES(s;), STUDY (s, X, ¥,)1]

Note that the variables in the antecedent and consequent clauses of the rule are not yet bound.
Strictly speaking they are different variables. However, the clauses indexed by the state s; and
s, are properly embedded (Kamp 1981) in the whole structure indexed by s,, and the anaphoric
link between the variables in antecedent and consequent clauses is permitted. The referents for

the anaphoric variables are found by the resolver procedure yielding the semantic expression,
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(65)  [s,ll[s;][STUDENT(x), SUBJECT(y), IN(x, y), PRES(s,)]

=> [syl[PRES(sy), STUDY(sy, X, Y)1]
where the variables are properly bound. In this representation the indices for atomic
expressions have been omitted, and some associative parentheses have been dropped. However,
the order of the atomic formulas is preserved because according to the /nL semantics, it reflects
the scope of the quantified terms. The pronominal predicates PRO in the consequent clause can
be dropped because their only purpose is to establish the sort of the individuals denoted in the
STUDY predicate.

The representation for sentence (60) is produced on similar basis. However, the task of the
resolver is slightly different because the anaphoric link is establish considering not only sortal
information, but also a property of an individual denoted in both antecedent and consequent
clauses: the fact that the individual denoted by the variable y is a subject.

The meaning of sentence (61) is very close to the meaning of sentences (59) and (60). The word
every introduces an implication in which variables in the antecedent clause a student who is in a
subject are universally quantified. The link between the pronoun it and the indefinite term a
subject is permitted because both are properly embedded within the discourse context set by the
word every according to Kamp’s discourse model (Kamp 1981). The lexical entry for the word
every is
(66) every

C/W:(C/np:b:0):[a]S:0/noun:[b]R:pre

[a][[b]IR => S]
and it takes a noun --i.e. student-- to become the type raised np --i.e. every student-- which maps
the predicate who is in a subject studies it into a sentence.

4.2.2. The semantic roles of the verb 1o be.

In the dialogue of Chapter 2, the word is was used in several expressions. However, the function
of this word varies significantly according not only to the different syntactic constructions in
which it appears, but also to the context in which the same expression is used. Here, a small
section on the meaning of this word is worthwhile. Consider first the word is above in (51); its
only semantic contribution is to introduce the reference to a present state s. Now, contrast the
words is in (51) and (67).
(67)  Luis is happy.

Expression (67) expresses that the individual denoted by the term in subject position has the
property asserted in the predicate. The purpose of this second is is to make such an attribution.
In (67), happy denotes the set happy(y) of happy individuals. The semantics of the is term
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includes the predicate identify(s, x,y) which is read as asserting that x is some y in the set
happy. The sign for this ‘identifying’ is is,
(68) is
Sent/np:x:pre/np:y:post
[SIIPRES(s), IDENTIFY(s, x, y)]

The sign for the predicative adjective happy is,
(69)  happy

C/(C/np:y:0):[alS
[a][HAPPY(y), S]

and the sign for the predicate is happy is
(70)  is happy

Sent/np:x:pre
[s][HAPPY(y), PRES(s), IDENTIFY(s, X, y)]

The combination of this predicate with the proper noun Luis in (30) yields the sign,
(71)  Luis is happy

Sent
[SIIHAPPY (y), PRES(s), IDENTIFY(s, LUIS, y)]

The semantics of this last sign indicates that Luis is identified as one y, or that he is in the set of
individuals who happens to be happy. The word in in (51), on the other hand, asserts an spatial

relation, and not a set theoretical inclusion relation.

There are still other roles of the word is. One is to assert that the individual denoted by subject
and predicate are the same. Consider (72),

(72)  Luis is luis
Although this expression is tautological, it can be considered grammatical, and the semantics of
the lexical entry for this is is defined as,

(73) s
Sent/np:x:pre/np:y:post
[sI[PRES(s), EQUALITY(s, x, y)]

There is still another meaning for the word is: its use in ostensive definitions. Such a role is
crucial for our enterprise. However, the analysis for the ostensive is will be delayed until the
model for dealing with deixis and demonstration is introduced below in Section 4.3.

4.2.3. Modifiers.

Before concluding the exposition of the linguistic fragment, a word on noun modifiers is
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worthwhile. In UCG, modifiers --like the attributive adjective happy-- are easily represented. In
the expression (74)
(74)  Luis is a happy student

the adjective happy marks the individual Luis as an individual who happens to be not only
within the set of students, but also within the set of happy individuals. The lexical entry for the
word is in (74) is the attributive form in (70). Expression (74) marks Luis within the
intersection of the sets of all the students and all the happy individuals. The definition for happy

18

(75)  happy
noun/noun:[a]A:pre

[a][HAPPY(a), A]
and it is similar for other attributive adjectives as well. The sign for the modified noun is, for

instance,

(76)  happy student
noun
[x][HAPPY(x), STUDENT(x)]

The combination of (76) and the functor a in (52) for producing the sign for the np a happy
student is straightforward. With this example, the exposition of the linguistic component of
GRAFLOG is concluded. The detailed explanation of other linguistic phenomena as for
instance, word order inversion in questions, unbounded dependencies and plural terms are
developed in the lines presented here and in Chapter 3. A formal account of those issues has
been developed for the ACORD project (Calder et al 1988). Finally, it is worth mentioning that
the full power of UCG has not been shown. In UCG, the categories Sent and np carry syntactic
feature specifications. For instance, finite and non-finite are features of sentences, and
grammatical case is distinguished for np’s (Zeevat et al 1986a). The explicit use of this
information imposes a further constraint on the set of expressions that are produced by the
grammar. However, it is worth pointing out that this feature of UCG can easily be augmented
in the linguistic fragment presented in this chapter. Now, we come to the relation between the
language and the graphical representations.

4.3. Deixis, Demonstration and Ostension.

In this Section, the mechanism by which the relation between linguistic and graphical
representations is established is presented. This mechanism is essentially a model for dealing
with the phenomena of deixis. The intuitive ideas behind this notion were introduced in Chapter
2. In particular, some examples of the deictic use of demonstrative pronouns were discussed.
Here, the same notion is extended to model the deictic use of pronouns. Consider the following
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piece of discourse,’

(77)  Luis studies linguistics. He likes that.
This piece of discourse can be analysed without meta-linguistic consideration along the lines
shown in Section 4.2. However, if at the time the pronouns /e and that are uttered their referents
are ostensively pointed out, the meaning of such terms can vary. Suppose that at the time he is
uttered, the speaker points to John instead of Luis, and at the time that is uttered, the speaker
points to John’s car. Then the expression he likes that in (77) would mean John likes his car and
not Luis likes to study linguistics. A model for dealing with indexical terms would allow us to

capture such differences in meaning.

It is very intuitive that ostensive gestures supporting speech acts provide information that come
from out side the linguistic system. According to Kamp (Kamp 1981, p. 283)
and anaphoric pronouns select their referents from certain sets of antecedently available enti-
ties. The two pronoun uses differ with regard to the nature of these sets. In the case of a deictic
pronoun the set contains entities that belong to the real world, whereas the selection set for an
anaphoric pronoun is made up of constituents of the representation that has been constructed in
response to antecedent discourse.
The model that has been developed here for dealing with these indexical expressions is based on
providing an interface between the linguistic system and the world. Of course, ‘the world’ is
related to the linguistic system by an intermediate representational structure: an analogical

representation, or rather, a system of symbols realised in a non-linguistic medium.

The model for dealing with indexicals has the following three conceptual constituents:

(a) an indexical one-place predicate that is incorporated in the meaning of indexical words,
namely deictic(x), where x is a variable whose interpretation is given out side the
linguistic system.

(b) A trans-substantial relation between graphical symbols and their linguistic names. This
relation is established by the verb is when it is used in ostensive definitions.

(¢) A procedure by which the reference of a graphical symbol is assigned as the interpretation
of the indexical variable in some specific context.

In this Section points (a) and (b) of the model are formally presented. The procedure (c) has
been presented in Section 2.2 and it is not further discussed.

The definition of the deictic pronouns he and that is as follows,

(78) he
C/W:(C/np:x:0):[a]S:0

2 Here, the definition of likes is similar to the definition for studies.
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[al[[x][PRO(male(x)), deictic(x)], [a]S]

(79)  that
C/W:(C/np:x:0):[a]S:0
[a]l[[x]PRO(neuter(x)), deictic(x)], [a]S]
The derivation of the sentence
(80)  he likes that
in which one or both pronouns are deictic would be produced in the lines shown above. In the
case that both of the pronouns are deictic the sign for (80) is,
(81)  he likes that
Sent
[s][[x][PRO(male(x)), deictic(x)],
[sI[[y][PRO(neuter(y)), deictic(y)], [sSIIPRES(s), LIKE(s, x, y)]]
Now consider sentence (82),
(82)  If a student is in a subject then he likes it
If the pronoun ke in (82) is supported by physical gesture, or by pointing act in computer
graphic interaction, the sign for (82) is,
(83) Ifa student is in a subject then he likes it
Sent
[s,1([s,JISTUDENT(x,), SUBJECT(y,), IN(x;, y,), PRES(s,)]
=> [sol[PRO(male(xo)), deictic(xo)],
[PRO(neuter(yo)), PRES(so), LIKE(so, Xgo yo)]]
and the reference for the variable x, would have to be taken from the graphical domain before
the anaphoric resolver could be evoked. The variable y, stands for the pronoun if, and it is

anaphoric.

4.3.1. Demonstrative Pronouns and Ostension.

Demonstrative pronouns, such as this, relate language and space in a very direct fashion. The
deictic use of pronouns in expressions like (82) might not seem very natural in normal
discourse; however, that is a contextual rather than a grammatical factor. Sentence (82) is the
kind of expression that was used for introducing the interpretation of spatial relations in Chapter
2. Furthermore, if a graphical context is fully considered, the interpretation of the relation in
introduced by (82) can be expressed in a fairly direct way by using demonstrative pronouns.

Consider the discourse in (84)
(84)  If thisy is in this then he likes it,

where the subscripts indicate the symbol that is pointed out on the screen at the time the
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demonstration is made. The two instances of the word this act as proper nouns with a deictic
component, and the lexical entry for the demonstrative can be defined as the sign,

(85) this
C/W:(C/np:x:0):[a]S:0
[a][deictic(x), [a]S]

Now, contrast (84) and (86),
(86)  If this, student is in this subject then he, likes it,
In (86) the word this is a determiner with a deictic component, and its definition is the sign,

(87)  this
C/W:(C/np:b:0):[a]S:O/noun:[b]R:pre
[a][[b][deictic(b),R], [a]S]

The production of the signs for (84) and (86) is developed in the general framework provided by
UCG. Here, it is worth recalling the values of deictic variables are taken from the graphical
domain, in conjunction with explicit ostensions. The instantiation for such deictic variables is a
task for the Dialogue Manager, on the lines shown in Chapter 2. It is also worth noticing that
many linguistic expressions will accept both deictic and anaphoric interpretations, and the
grammatical system would produce a sign for all such analyses. In fact, there are two additional
interpretations for the word this that have no deictic interpretation: the anaphoric this and the
determiner this. These words are respectively defined in (89) and (90),

(89) this
C/W:(C/np:a:0):S:0
S

(90) this
C/W:(C/np:b:0):[a]S:O/noun:[b]R:pre
[a][[b]R], [a]S]

In the resolution process, the distinction between a deictic and an anaphoric form will be
determined by the constraints on the pronominal resolution, the general knowledge about the
entities that are referred to by the linguistic expression, and most importantly, by the presence

or absence of an overt ostensive act.

Now, we come to the analysis of the most basic use of a deictic word: definition by ostension. In
the analysis presented above, the deictic words were always used to refer to an entity that is
graphically represented; however, in such an analysis we took for granted that the association
between the linguistic and graphical signs had already been established. As was shown in
Chapter 2, the most basic operation in our system is to establish such an association. Consider

the ostensive definition in (91)
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(91)  This is Luis

When this expression is uttered with the purpose of introducing Luis by the very first time --as
in the example of Chapter 2 in Figure 2.1-- a graphical symbol is baptised with the linguistic
name. Then, both graphical and linguistic symbols stand in a trans-substantial relation as was
explained in Section 2.2. Here, the word is has the purpose of establishing such a relation. In
GRAFLOG this relation is represented as translate(s, x, y) and it is part of the semantics of the
ostensive is which is defined as,

92) is
Sent/np:x:pre/np:y:post
[sIIPRES(s), TRANSLATECSs, x, y)]
For the production of the ostensive definition This is Luis the ‘proper noun version’ of the

demonstrative this in (86) is used, and the sign for the definition is

(93)  This is Luis
Sent
[sl[deictic(x), [SIIPRES(s), TRANSLATE(s, x, LUIS)]

The variable x in (93) must be interpreted by taking a referent from the graphical
representation. The purpose of the definition This is Luis is to establish an association between
the analogical representation of the individual Luis and the linguistic symbol Luis. The
linguistic symbol is the index of the analogical one. With this last analysis, this chapter on the
linguistic fragment of GRAFLOG is concluded.

Here, a concluding remark on the the linguistic section of this dissertation is worthwhile. The
linguistic fragment that has been presented is representative of the kind of dialogue that might
be natural in computer graphics interaction; however, it comprehends a fairly small fragment of
English, and for a practical system it has to be enhanced significantly. What is needed for
developing graphical and linguistic human-computer interfaces is not a complete theoretical
account of human language --maybe this is not a fully coherent or even meaningful ambition--
but rather to achieve a good compromise between linguistic generality and computational
feasibility. One of the purposes of this work is to show that UCG --and the related grammatical
formalisms-- provides a framework for this sort of enterprise. If this compromise is found,
graphical and linguistic interfaces might turn out to be a good thing. Now, we can come to the
second part of this dissertation: the structure of graphical representations.
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Chapter 5
An Algebraic Structure for Graphics

Early this century, the linguist Ferdinand de Saussure advanced some fundamental assumptions

about the nature of human language (Saussure 1974).

Saussure defined language as a system of signs. A sign is a unit consisting of a signifiant and a
signifié. The signifiant is the external aspect of the sign, and it is realised in a physical medium
such as light, sound, etc. A signifiant is a distinction that can be noticed by the physical senses:
a pattern of colours, of sounds, of tastes, a tactile stimulus, etc. Combinations of these patterns
build up messages or linguistic expressions. Messages refer to states of affairs in the world and
they can be understood by a human interpreter if he or she has knowledge of the language,
knowledge of the world, and is able to establish a correlation between these two. The signifié,

the internal aspect of the sign, is its meaning.

Although the notion of system of signs was originally thought of in relation to natural language,

Saussure advanced its generalisation to other communication systems (Saussure 1974, p. 16).
Language is a system of signs that express ideas, and is therefore comparable to a system of
writing, the alphabet of deaf-mutes, symbolic rites, polite formulas, military signals, etc. But it

is the most important of all these systems.

A science that studies the life of signs within society is conceivable... I shall call it semiology.

Along the lines of this semiological spirit, we define a graphical structure, a graphical language,
as a system of graphical signs. A graphical sign would have an external aspect and a meaning
as well. The graphical signifiant is realised in light and is a distinction extracted from the visual
whole. Its meaning, the graphical signifié is the object in the world that the graphical sign stands

for.

For Saussure, a crucial property of the linguistic sign is its arbitrary nature. That is, the pairing
between the external and internal aspects of a sign is a matter of convention. The system of
signs making up a natural language exists as a set of social conventions. It is supported by the
linguistic acts of individual speakers, but cannot be reduced to them. In the definition of

artificial graphical languages the relation between the external aspect of a graphical sign and its
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referent can be established by convention too. In GRAFLOG, the association between a
graphical sign and its meaning is set by means of an ostensive definition, as was shown in
Chapters 2 and 4. However, these conventional interpretations differ from natural language in as
much as they can be changed in the course of a graphics interactive session. These conventions
lack the social dimension, and we can profit from this flexibility. Now, we come to the

definition of a simple graphical language.

5.1. A Graphical Language for the Blocks-World Lg.

Suppose that at some particular time and place there is a table which supports some boxes and
pyramids. Suppose, in addition, that this table and the blocks on it constitute a ‘world’ which
can be described by a graphical language. Following tradition, we call it Blocks World (BW).
For instance, the arrangement of lines shown in Figure 5.1.a. represents a situation in which the
table (shown as a horizontal line) supports two boxes. The left-hand box in turn supports a
pyramid. We regard the drawing as an expression which either denotes, or fails to denote, a
configuration of objects in BW. In either case, it is a meaningful graphical expression, in the
sense that it does represent a possible configuration of objects in the intended model. By
contrast, the drawing in Figure 5.1.b is illegitimate --there is no possible configuration of
objects in BW whereby a block is suspended some inches above the table top. Thus, relative to

the intended interpretation, we regard certain graphical expressions as being ill-formed.

£

a) b)

FIGURE 5.1

In fact, there are two sets of constraints on meaningful expressions in graphical languages of the
kind we have in mind. These correspond to the notions of lexicon and syntax in linguistic
theory. At the lexical level, we have to ensure that expressions belong to the right sort of
‘vocabulary’. For example, the basic expressions of our graphical language --which we shall
call Lg-- consist of horizontal lines, rectangles and triangles. Other kind of graphical elements,
such as circles, fail to belong to this lexicon, in the same way that hogar fails to be a member of
the lexicon of English. At the syntactic level, the basic expressions have to be arranged in

particular ways. For example, blocks have to abut either the horizontal line or other blocks.

A possible objection to our view of drawings as expressions of a language is the following: a
language like English succeeds as a medium of communication because the knowledge of the

conventions governing its use and interpretation is shared amongst a community of speakers.
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On the other hand, there are no generally shared conventions governing the interpretation of

drawings.

Although there are particular classes of drawings that are understood in terms of a set of agreed
conventions, like architectural and engineering drawings, we can concede most of this point of
view without necessarily abandoning our claim that it is useful to treat drawings as expressions
of a graphical language. People do succeed in associating interpretative conventions with
drawings in particular contexts of use, apparently by extrapolating general principles of
interpretation from a small number of cases. For instance, suppose we are presented with the
‘corpus’ of drawings in Figure 5.2. It is possible to suppose that we would regard 5.1.a as
belonging to the same family of representations. Moreover, whatever interpretation was

assigned to 5.2 would presumably generalise to 5.1.a.

e B A

FIGURE 5.2

Now we proceed to induce from such a sample the rules from which a specific family of
drawings is produced. Our aim here is not to model the induction itself, though such a model
would be a part of a comprehensive theory of visual perception and inference, but just to specify
the set of rules from which such drawings might be produced. There is also the requirement that
such a set of rules would prevent the production of ill-formed drawings. We assume, for
analytical purposes, that we look at the pictures in the sample by the same projection method:
the same perspective and illumination conditions. This is of course an idealisation, but it can be

considered for our particular purposes.

In relation to the semantics of this language, we can consider that if we were looking at a
drawing of BW and were asked whether or not it is a ‘name’ for the the current state of affairs
on the table --the world that is referred to-- we would have to compare drawing and world. If
the message --the graphical representation-- corresponds to the world, the table and the blocks
themselves, then the message denotes. If message and world are not alike, the drawing fails to
denote that state of affairs. Ungrammatical or ill-formed drawings, on the other hand, do not
refer to possible situations in the blocks world and they are ruled out on a syntactic basis.
However, we do not want to say that ill-formed drawings, like Figure 5.1.b, are completely
meaningless. If some of the contingent properties of the symbols constituting an ill-formed
drawing had been different, like their spatial positions, the same of set of symbols would

constitute a well-formed drawing. Furthermore, there is some sense in saying that we can
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measure how much an irregular drawing diverges from another drawing that is well-formed.
Consider a linguistic analogue of this phenomena: the sentence Being and Time has a cover
blue is not grammatical, but the sentence Being and Time has a blue cover is. In both of these
sentences, each individual word belongs to the English lexicon, but one particular constituent of

the ungrammatical sentence is ill-formed.

Now, let us define a graphical grammar from which the graphical expressions in Figure 5.2 can
be produced. We have seen that there are three kinds of symbols: triangles, rectangles and
lines. These symbols are placed in a 2-dimensional coordinate space. Every position in such a
space is an ordered pair <x, y> of point positions. We define a normalised coordinate system as
one in which both x and y have a value in the real interval [0, /]. There is just one line in each
drawing and it represents the table. We consider its position horizontal at y =0 in all well-
formed drawings. In fact, the extreme points of this line are in positions <0, 0> and <1, 0>. We
describe rectangles in terms of a parametric position --the bottom left comer-- and the
parameters of width and height as shown in Figure 5.3.a. Triangles are defined in terms of their

parametric position and their base, as shown in Figure 5.3.b

We can also observe that there are two kinds of complex figures: those with a rectangle on the
top, and those with a triangle on the top. A configuration with a rectangle on top will be
classified as a rectangle as well. A configuration with a triangle on top will be classified as a
term of category ‘pyramid’. The parametric positions of complex rectangles and pyramids are
shown in Figures 5.3.c and 5.3.d respectively. These configurations play the role of the
traditional syntactic categories of natural language such as noun-phrases (NP) or verb-phrases
(VP). The basic graphical symbols will belong to their corresponding grammatical categories in
the same way that nouns and verbs in natural language grammars are classified as NPs and VPs
respectively. Finally, we have to make sure that the grammar does not produce floating

triangles or rectangles, or rectangles on top of triangles.

height

height

' width | | base | Lwidth | | base |

a) b) c) d)

FIGURE 5.3

We also consider other spatial properties that relate a pair of graphical symbols. For instance,
the distance between a block and the table is a real number that measures the height of a block

in relation to the table. We also consider the distance between two blocks if the one below is a
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rectangle. We show this relation in Figure 5.4.

. distance . distance

FIGURE 5.4

For the formalisation of the structure of graphics and its integration in the logical
representation, the following strategy is adopted: first, an algebraic structure G for graphics in
BW is developed. This structure is crucial for our enterprise because it has both a declarative
and an algorithmic interpretation. This duality is at the heart of this theory, and the two
interpretations of G are fully illustrated. Then, the structure G is embedded within the modal
first order logical language Lg in which both linguistic and graphical expressions can be
represented. Some examples of expressions that refer to graphical and abstract individuals,
properties and relations are illustrated. The algebraic structure allows us to represent the
meaning of well-formed graphical representations of discrete states of the graphics interactive
session; however, the algebraic system must be extended for capturing the meaning of drawings
when they undergo a process of change. For this purpose, modality is introduced in the
representational system. Finally, a notion of graphical inference in relation to the blocks world
domain is introduced. This notion embodies the strategy that is used for the solution of

problems in the representational environment supported in GRAFLOG.

5.1.1. The structure G.

In the formulation of G we follow Goguen (Goguen et al 1978). We start with some general
definitions. Let S be a set of sorts. An S-sorted signature X is a family Ew‘ s of sets, for each s €
S and w e §* (where §* is the set of all finite strings over S, including the empty string ¢). An
operation symbol F € Ew. s is said to have rank w, s, arity w and sort s. If ¢ is a symbol of
rank e, s (i.e. where ¢ is the empty string), then ¢ is called a constant of sort s.

For example, we might take our set S= {integer}, and £ to be empty except for

)
8, iy = {0} and Eim.eger, Tdger {succ}. That is, succ is to be interpreted as a unary
operation (i.e. successor) which takes an argument n of sort integer, and yields a value succ(n)
which is also of sort integer. This system produces the set of natural numbers, that is, the

carrier S.

Algebraic systems can be pictorically illustrated using the conventions in Figure 5.5. Circles

represent carriers of sorts, and arcs represent the operations with their arguments and values.
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For instance, the circle labelled natural numbers ‘contains’ all the objects of that sort. There
are two inputs to this carrier: the constant 0 and the objects that are produced by the operation
succ. This operation takes an element in the carrier as its argument and produces another
element of the carrier as its output. The tail of the arrow stands for the operation’s argument
and it starts in the circle representing the carrier of the argument’s sort. The head of the arrow
stands for the operation’s value and points to the carrier of the value sort. Operations with n
arguments, where n > I, are depicted by an arrow with n tails, with ‘roots’ in the circles

standing for the carriers of the corresponding sorts.

succ

Natural

Numbers

FIGURE 5.5

We now turn to the algebra G of graphical terms in BW. These terms stand for the graphics
themselves, and we think of the terms of G as pictures drawn on the screen. In the language, we
refer not only to graphical objects, but also to real numbers and ordered pairs of real numbers in
order to represent the space itself. We include as well terms for naming the spatial properties
and relations of graphical symbols, and for this purpose the sort of truth values bool is

introduced.

Now, we define the structure G as follows,

(1) The set S, of sorts = {bool, real, real_pair, line, pyramid, rectangle, drawing}.
Next, we introduce the individual constants:

@ X, poor=(0.1}.

() Z, .. 1s a (non-countable) infinite set of numerals.

@ Z is a (non-countable) infinite set of pairs of numerals.

e, real_pair
() Z, j,. = {table} is the only line of the blocks-world.
(6) X, . amiqis a (countable) set {triangle-1, triangle-2,...} of triangles.
Mz, rectangle 1S @ (countable) set {block-1, block-2,...} of rectangles.
The operator symbols of graphical sorts are shown from (8) to (11) as follows and they
constitute the core of the structure. Operators (12) to (19) are defined in order to make explicit

the relation between graphical symbols and their spatial properties and relations.

&) Z = {wedge].

rectangle pyramid, pyramid ~
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™

©) = (stack}.
(10)
(11)
(12)
(13)
(14)
(15)

rectangle rectangle, rectangle

4

line pyramid, drawing & Ziine rectangle, drawing = {cons}.

1

drawing drawing, drawing ~ {union}.

Uz

rectangle, real_pair

4

pyramid, real_pair = {position}.

= {base}.

‘pyramid, real ~

b4 4

width, height}.

rectangle, real =

Ela'ne pyramid, real v E!fne rectangle, real U Erec:angle rectangle, real g Erec:angle pyramid, real 5
{distance}.

(16) =

drawing drawing, bool = {overlap}.

(7 Z = (x_coord, y_coord}.

real_pair, real

18 z

real real, real = {+ }

(19) Equality: Forevery sortsin S, X, = (=}

58,
In Figure 5.6, operations (8) to (11) of G are pictorically illustrated for clarity. These

operations play a fundamental role in graphical composition.

basic basic
triangles rectangles

pyramid rectangle stack

drawing

union

FIGURE 5.6

The diagrams corresponding to operations in (1) to (7) and in (12) to (19) can be drawn along

the same lines.

Formation rules are expressed as follows:
(20) Every constant of sort s is a term of sort s.

(21) If t;,...,t, are terms of sorts s,..., s, respectively, and f is an operation symbol of rank

w, s, where w = S preoeer Sy thcnﬁ(rl,..., tn) is a term of sort s.
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Suppose, for example, that o and [3 are terms of sorts rectangle and pyramid respectively. Since
wedge has been declared to be a constant of arity rectangle pyramid, pyramid, we know that

wedge(o, B) is a term of sort pyramid. Some further expressions of this language are,

(22) stack(block-1, block-2).
(23) cons(table, stack(block-1, block-2)).

The intended interpretation of (22) is a stack made out of two basic rectangles; (23) denotes a
configuration in which the object denoted by (22) is supported by the table.

5.1.2. Ill-formed Drawings and the Closure of G.

Operations in standard multi-sorted algebraic systems denote total functions. That means that if
the arguments of an operation term are of the appropriate sorts, the value of such an operation is
an element of some appropriate sort as well. An operation of G that takes as arguments
graphical symbols that have appropriate spatial properties, like their position and dimensions,
has as a value a graphical object of the operation’s sort. However, if the properties of the
symbols that are the arguments of an operation have inappropriate values, the operation would
not produce an object of its corresponding sort, despite the fact that the arguments themselves
are of the right sort. This would be the case, for instance, if the operation

cons(table, n‘ght_block)' is evaluated in the drawing in Figure 5.1.b.

One way out to this problem could be to say that operations in G are partial functions, and to
develop our theory along those lines. However, in this thesis we follow and extend the approach
of Goguen (Goguen et al 1978). for the specification of abstract data-types. We define an
infinite number of ill-formed elements of every sort in every carrier in S That is, besides the
‘normal’ elements that belong to the carrier of a sort s, there are an infinite number of objects,
ot Ey, Jo5o Cod ot which act as the value of operations that otherwise would be

undefined. These elements correspond to the ‘error element’ introduced for the specification of
abstract  data-types (Goguen et al 1978). In Figure 5.1.b, the operation

namely e e

cons(table, right_block) = e where ¢ is the i error element in the carrier

<drawing, i>’ <drawing, i>
of sort drawing. When an error occurs it is propagated to all operations that are related in a

complex expression.

We now proceed to modify the specification of the operation terms of X so that the error
elements of every sort are accounted for in the algebraic system. The modification consists in
defining the value of every operation in £ as follows: if the propertics of the arguments of the

operation terms have appropriate values, the operation value is a normal element of the

! Suppose that the name of the ‘flying’ block in Figure 5.1.b is right_block.
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appropriate sort; otherwise, the operation’s value is an error element of the operation’s sort.

We consider the case for the operation stack in detail. Other operations of G have to be
redefined along the same lines. We define the rank of the operation term stack as
bool rectangle rectangle, rectangle. Note the addition of the first sort in the arity: the first
argument of stack is a term of sort bool. At the syntactic level the operation has the following
form
(24) 4 mc}‘((pboof’ xrecfangle' y recrang!e)'
The value of the boolean argument is true if the spatial properties of the rectangles to be
combined by stack are such that the operation is permitted. According to Figures 5.3.a and
5.3.c, the condition by which ¢ is true is defined in terms of other operator terms of G as
follows,
25 IF y_coord(position(x)) + height(x) = y_coord(position(y)) AND
x_coord(position(x)) = x_coord(position(y)) AND
width(x) = width(y)
THEN
® = TRUE.

The value of stack itself is given by the following table:?

(26) CASE ) X y VALUE
1 true r r %
2 false r r e,
3 e, any any e,

The terms 7 in (26) stand for normal members of sort rectangle. The terms ¢, and e, stand for
the error element in the boolean sort and for any error element in the rectangle sort respectively.
The terms any stand for a normal or an error element, since if the boolean error is an argument
of the operation term, the error propagates whatever the other arguments are. The rows in the
table illustrate the cases that have to be accounted for. Case 1 indicates the situation in which
the combination of two rectangles is permitted. Case 2 illustrates the introduction of an error
clement e, in the rectangle sort. In this case, the arguments of the operation are of the proper
sort, but their geometrical properties block the combination. Case 3 illustrates the situation in
which an error has been propagated. This case might occur in the evaluation of complex

expressions of G. Consider, for instance, that the value of expression (27) relation to Figure

5.1.b% is e This is so because the value of the second argument of union is

<drawing, j>'

21f there is no ambiguity in the expression, we use the terms frue and false instead of 7 and 0 for clarity.

? Suppose that the triangle and rectangles in the left structure of Figure 5.1.b are named triangle-1 and rectangle-1 respective-
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(27)  union(cons(table, wedge(rectangle-1, triangle-1)), cons(table, right_block)).
Note that the conditions in terms of which the value of the boolean argument of stack is known
are defined in terms of other operations of G. In fact, we have to define the value of these
operations when one or more of their arguments are the error elements of their correspondings
sorts. The arity of all operators of G has to be redefined to include a boolean argument. With

these considerations, the conditions for applying the stack operation are as follows &

(28) IF y_coord(true, position(x)) + height(true, x) = y_coord(true, position(true, y)) AND
x_coord(true, position(true, X)) = x_coord(true, position(true, y)) AND
width(true, x) = width(true, y)
THEN

¢ = true

Note that the first argument of every operation term in (28) is itself the boolean constant true.

The arity of every operator symbol in X of G has to be redefined on the same lines, and the
conditions under which the boolean flag indicating that the operation is permitted have to be
made explicit. However, these definitions are straightforward and they are assumed in the
following sections. Furthermore, we adopt the convention that the first symbol in the arity of
every operation is bool, and we omit this argument in the formulas below, unless it is explicitly

required in the context.

5.1.3. Algorithmic interpretation of G.

As has been mentioned, expressions of G have a dual interpretation. The graphical terms of sort
line, pyramid and rectangle have a dual substantial realisation in the graphical domain. In
GRAFLOG, basic graphical symbols are introduced directly by ostension, and composite

structures are produced by a geometrical construction procedure related to each operator in G.

Suppose that in the graphical menu of GRAFLOG three kinds of symbols are defined, namely '
line, pyramid and rectangle. Each individual symbol of any of these types is represented as a
basic constant of the corresponding sort in G, and can be described on the screen in terms of a
set of parameters that correspond to some of the operator terms in G. Of course, basic constants
of sort pyramid are triangles. Suppose as well that the constant names for the graphical symbols
are introduced by ostensive definitions in a graphics interactive session as was shown in Chapter
2. For instance, the expression This is block-1 is typed at the same time that the shaded
rectangle is defined in the graphical context of symbols in dotted lines on the screen, as shown

* The boolean conditions for the operators "+" and "=" are omitted for clarity.

-88 -



in Figure 5.7. The name block-1 indexes the graphical symbol. This indexing relation is

illustrated in Figure 5.7 as well.

Ej '.:':..f:, Indexed by: ''block—1"
denote& Anotes
BLOCK-1
FIGURE 5.7

The intended interpretation of this picture is that the name block-1 is the index of the shaded
rectangle and both the name and the image denote the object BLOCK-1 in the block world

itself.

Now we introduce an algorithmic interpretation for operator symbols in G. Every operator
symbol Ew, ¢ in G has an algorithmic interpretation. This is a typed geometric constructive
procedure that given a set of graphical symbols of some appropriate sorts constructs an object of
an appropriate sort. In the process of interpreting a BW drawing, every algorithm that is related
to an operation symbol of G builds up the representation of a geometrical object of the
operation’s sort. This object is then asserted in the geometrical data-base of GRAFLOG.

For the moment we assume that these procedures exist, and they construct a graphical object if
the set of graphical symbols to be combined are of the appropriate types and satisfy the

predefined geometrical conditions that condition their corresponding operation in G.>

We can illustrate by means of an example how the operations of G work in the geometrical
interpretation process. In Figure 5.8, a drawing made of five graphical symbols, with their

corresponding indices in G, is illustrated.

¥ Computational geometry procedures for producing this kind of drawing are available (Weiler 1980, Pineda 1986).
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blocks table block—-1

block—-2 block—-3 triangle—1

FIGURE 5.8

Note that the name blocks is the index of the whole structure, and it stands for the corresponding
composite term. The way this identifier is defined is explained below.

Figures 5.9.a to 5.9.¢ illustrate how operators are applied to terms of appropriate sorts. The
symbols drawn with solid lines in the left and middle pictures of each figure are the terms
combined by the operation symbol. The graphical term produced by the operator is shown to the
right. It is worth emphasising the nature of this construction process: once the basic symbols are
created on the screen, the system has no notion of the relationships holding between them; but
once the symbols are combined, a new symbol is produced in the representational system, and
its geometrical description is asserted in the geometrical data-base. This new symbol is the
geometrical union of its constituent parts. The expressions above the Figures 5.9.a to 5.9.¢ are

terms of G and they are also ‘indices’ of the corresponding composite pictures.

(29)  stack(block-1, block-2).

_____________________________________________________

FIGURE 5.9.a
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(30)  cons(table, stack(block-1, block-2).

FIGURE 5.9.b

(31)  wedge(block-3, triangle-1).

FIGURE 5.9.c

(32) cons(table, wedge(block-3, triangle-1).

..........

FIGURE 5.9.d

(33)  union(cons(table, stack(block-1, block-2), cons(table, wedge(block-3, triangle-1).

FIGURE 5.9.¢

5.1.4. Relation between Algebraic and Algorithmic Interpretation of G.

An interesting question is how we can know which expression of G corresponds to a drawing

that has been created by a standard graphics and linguistic interaction in GRAFLOG, and that is
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currently displayed on the screen. The interpretation of a basic symbol is stated directly by
ostension and it is asserted in the representational structures of GRAFLOG, as was discussed in
Chapter 2. However, the interpretation of complex graphical structures must be established by
an inference process that acts upon the graphical input. This process corresponds with the
parsing of natural language expressions in computational linguistics --or with the production of
the object code of some source program by a compilation process-- and it could be regarded as
‘a graphical parser’. The function of a graphical parser is to take a collection of graphical
symbols on the screen and to produce a structured representation of the whole drawing. That is,
an expression in G that corresponds to the drawing on the screen taken as a geometrical and
topological unit. For instance, the graphical parser takes the set of basic graphical symbols in
the graphical context in Figure 5.8 and produces the complex geometrical structure labelled
blocks in the same figure. Each one of the basic graphical symbols has an entry in the
geometrical data-base, that is indexed by the symbol’s name, and whose sort is line, triangle or
rectangle. The object blocks, on the other hand, indexed a complex graphical object which is
geometrically and topologically defined in terms of the basic symbol in the geometrical data-
base. The representation of such a structured graphical object on the screen and its
corresponding expression in G in Figure 5.9.¢ are two isomorphic representations of the same

object.

On the basis of the structure G there is a simple method for producing the interpretation of a
graphic of sort drawing --a graphical sentence-- in the blocks-world. For the definition of such
a method consider that the number of basic graphical symbols introduced by ostension in any
drawing, at least in the drawing that we are interested in, is finite. For instance, the drawing in
Figure 5.8 is built up from five symbols. Consider as well that there is a countably infinite set
EXPr = {exp,, exp,,....exp,} of expressions of sort drawing in G, where I is a finite set of
graphical symbols --in the example I" = {table, block-1, block-2, block-3, triangle-1}-- such that
every symbol in I is referred to by every expression exp; in EXPr.

The interpretation of a complex drawing composed by the set I" of basic graphical symbols is
the simplest expression in the inductive closure of I" and the operation symbols of G that can be
constructed by the algorithms named by the operations of G. This is a ‘syntactic’ method, and
it could be proved correct for a family of drawings. Note that this procedure terminates only for

well-formed BW drawings.

We can also define a decision procedure by which graphical structures of sort drawing can be
distinguished from arbitrary compositions made out of lines, triangles and rectangles that are
not well-formed drawings. It can be noticed that in every term of sort drawing in G, all blocks

are above the line representing the table, and all blocks are also supported in an appropriate
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manner.® The decision procedure for G consists in an algorithm that tests that all blocks satisfy
such conditions. Furthermore, if a set of symbols define an object of sort drawing, the
expression of G that denotes such a graphical object can be found by a search process that takes
the geometrical description of the basic symbols as its input. The expression of G reflects the
geometrical method by which it itself is found. This method is a constructive procedure: the
proof that an arbitrary set of symbols constitute a term of sort drawing in BW is given by its
geometrical construction method. Its interpretation in G is a term of sort drawing that

corresponds with the construction method itself.

In the PROLOG implementation of GRAFLOG, if the graphical parsing procedure for G takes
the basic symbols in Figure 5.8 as its input, it produces expression (34) as its output. In
GRAFLOG, the functors union, cons, wedge and stack implement the corresponding operations
of G, and blocks is an arbitrary identifier provided by the system.
(34)  blocks := union(cons(table, stack(block 1, block 2),
cons(table, wedge(block 3, triangle_1).

In the graphical domain, the object that is named by (34) is constructed and its representation is
asserted in the geometrical data-base of GRAFLOG. For the moment we assume that the
graphical parser methods exist. However, BW has no practical interest and neither the syntactic
parsing nor the decision procedure are spelled out in detail. But the corresponding procedures

for the language for design presented in Chapter 6 are fully discussed.

5.2. The Graphical and Logical Language Lg.

For many purposes, it is useful to have a more expressive way of presenting graphical
information than that provided by the algebra G, and consequently we will extend the signature
S so that it allows us to define a (many-sorted) modal first order language Lg. In other words,
we embed the structure G within a modal logical language. This will allow us to represent

graphical and logical knowledge in an integrated fashion.

The set of sorts Sg of Lg is obtained by adding in a new sort: Sg =S U {individuals}. The sort
of individuals is a very general set and all objects in other sorts are also members of the sort of
individuals of the world. Intuitively, there are individuals referred to by means of the language
Lg which are not graphical structures. These individuals are referred to by natural language

expressions, and they might be physical or abstract entities.

The modal first order language Lg is defined as follows:

$ See Figure 5.3.
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(35) All operator symbols of G are also in Lg.

(36) Zyy01 bool, boot = 173 Vs ==}

(37 Ebom'. bool ~ (-0 }

(38) Quantifiers: For every sort s € Sg. Vv (for all), 3, (there exists), each of rank T B

(39) Variables: For every sort s € Sg, there is a countably infinite set V = {x , x ..} of

variables such that x i € Ee' #

(40) Constants: For every sort s € S ¢ there is a countable set C = {c < 0 Cs 1,...} of constant
symbols such that C i € Ee‘ -

(41) Predicates: For every sort s € Sg, there is a countable set P = {ps’o,ps'f,‘..} of predicate

The string u, u,; ... w; is called the arity of p_ ..

symbols such that pg ;€ E“o 4y tt boOL

(42) Auxiliary symbols: "(" and ")".

Formation rules are expressed as follows:

(43) Every constant of sort s is a term of sort s.

(44) If ¢,...,t, are terms of sorts s§,,...,s,, respectively, and fis an operation symbol of rank
w, 5, where w = S proves S Lhcnj(tl,..., rn) is a term of sort s.

(45) If t},...,z, are terms of sorts s,...,s,, respectively, and f is a predicate symbol of rank
w, bool, where w = S preves Sy then f(z,,..., ¢,) is a term of sort bool.

46) If Vs is a quantifier of sort s, u is variable of sort s and ¢ is a term of sort ool then Vsucb is
a term of sort bool.

@47 If 3S is a quantifier of sort s, u is variable of sort s and ¢ is a term of sort bool then Elsutj) is

a term of sort bool.

5.2.1. Interpretation of G and Lg.

For the definition of the semantic interpretation of G and Lg we follow Dowty (Dowty et al
1981). A model M for Lg is an ordered tuple <G, I, F>, where G =<G>__ ¢ is an S-indexed
family of non-empty sets, / is a set {r,“,, 1'2,.”} of states and F is an interpretation function whose
domain is the set of all non-logical constants of Lg and whose range is described below. If o is
constant of sort s, then F(o)(i) € GS. In other words, the denotation of o at every state i is a

member of G .

We define as well an assignment function g that has as its domain the set of all variables and has

as a value a member of GS for each variable of sort s.

Notational convention: the semantic value of any expression o with respect to a model M, an
state i € [ and a value assignment g is represented as:

(48) [[og)* -8
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Now we define the semantic interpretation of expression of Lg: 8

(49) If ouis a constant of sort s, then [[od]"" 8 = [F(0)](0).

(50) If o is a variable then [0 8 = (o).

(51) If fis an operation symbol of rank w, s in G, forw = 8w S, then [[f]]M' ig is a function
with domain in Gsl X xGS and range in GS. For every operator symbol in D, this
n
function is defined as shown in Sections 5.2.2 and 5.2.3.

(52) If p is a predicate symbol of rank w, 5, for w=s,....,s , then [[pP}I*" *8 = [F(p)]() such
that

[FQI) =G, x..x G,

n

(53) If ¢,,...,t, arc terms of sorts §,...,s,, respectively, and f is an operation symbol of rank
W, 5, where w = §,.....,,, then [[F11 > 81, 117 “,..., (1 1™ 8 is the result of applying
the function [[F11™" £ to its arguments {[t‘,]]M‘ he [[tn]]M' L

(54) If oo and P are terms of sort s then [[ot= B]]M‘ h8is 1 if and only if [[oc]]M‘ “8 is the same
T

(55) If ¢ and y are terms of sort bool then [{—-rdl]]M' “8 s 1 if and only if [{cp]]M' L8 is 0, and

[[—o1™" "€ is 0 otherwise.
(56) If ¢ is a term of sort bool then ([0 A 11" 2 is 1 if and only if (611" ¢ is 7 and
[[‘}']]M' “& is 1. (The definition for other truth-functional connectives is given in the

standard way along the lines shown for the connective A).

(57) 1f ¢ is a term of sort bool and u is a variable of sort s then [V ¢ “# is 7 if and only if
[[q)]]M' 8 is ] forall g’ exaclly like g except possibly for the value assigned to u.

(58) If ¢ is a term of sort bool and u is a variable of sort s then [[3 u¢]1"" *# is 7 if and only if
([611 "€ is 1 for some value assignment g’ exactly like g except possibly for the value
assigned to u.

(59) The interpretation of the modal operator [J is such that if ¢ is an expression of sort bool,
then [[O6)1™" & is 1 if and only if [[¢])"" “#is 7 for all #* in 1.

Definition of truth:

(60) If ¢ is a term of sort bool, then & is true with respect to M and to I if and only if [[¢]]7" 8

is / for all value assignments g.

" In the semantic definition of equality and the logical connectives, we use the standard notation instead of the cumbersome

prefix form that is formally required in LE.
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5.2.2. Representation of Graphical and Linguistic Knowledge.

With Lg we can represent knowledge about the blocks world. The following examples are wff of
.8
Lg.
(61)  Xgrawing IWiinel X = cons(y, stack(block-1, block-2))].

62) 3 Iz = wedge(y, z)]

xpyramid’ Hyrectangley’ pyramid[x

Formula (61) will be true with respect to M, I and g iff [[g(y)]]M- L8 — TABLE, and [[g(x)]IM‘ ig

is is the well-formed blocks-world drawing shown in Figure 5.9.b

Formula (62) will be true with respect to M, I and g if [[g]™ "8 =BLOCK-3,
[[g(z)]]M’ Y& = TRIANGLE-1 and [[g(x)]]M' "€ is the drawing in Figure 5.9.c.

The language Lg is useful for integrating graphical and linguistic knowledge. We define

supports as:’

(63) [OVx,y, z[x = stack(y, z) v x = wedge(y, z) v x = cons(y, z)
— X = supports(y, z)].
Note that formula (63) holds true at every state. Suppose that John is a constant term, beautiful
a /-place predicate, and sees is a 2-place predicate of Lg. Then, we can express, for instance,

(64)  3Jx[sees(john, x) A x = supports(table, block-1)]

(65)  3x, y[ beautiful(x) A y = supports(x, block-1)]
Expression (64) asserts that John sees something and the thing that John is seeing is the
structure of the table supporting block-1. In GRAFLOG, linguistic knowledge is asserted in the
natural language knowledge-base NLKB and the graphical knowledge is asserted in the
geometrical data-base g_db as explained in Chapter 2, in Figure 2.7. Formula (65) will be true
with respect to M, I and g if [[g()]I™" "€ = TABLE, the fact beautiful(table) is asserted in
NLKB, and supports(table, block-1) can be produced from the geometrical interpretation

process and rule (63).

Another interesting formula might be
(66) OVxclear(x)=-3y,z[y = supports(z, x)].

In some representations of the blocks-world, the predicate clear is taken as basic, but as is

shown, this word has an underlying layer of geometrical interpretation.

* We take the conventional decision of using the standard notation for logical formulas instead of the prefix form of the syn-
tactic definition of L.
? In the formulas presented below, we assume that all quantifiers are of the appropriate sorts. However, for some complex for-

mulas the formal notation is given for clarity.
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5.2.3. Modality in Lg.

Now, we come to the issue of the set of states introduced in the algebraic interpretation of Lg
and the interpretation of the modal operator [J. Modality is required for dealing with changes
in graphical representations. If the properties of the graphical symbols were given once and for
all at some state, a standard multi-sorted logical system would be enough for referring to images
of this blocks-world; however, we would like to be able to model the change of one or more

properties of an image that is referred to by a term of Lg.

Now, suppose that block-2 is selected as shown in Figure 5.10.a and its position is changed as

shown in Figure 5.10.b by a direct manipulation process in standard graphics interaction.

FIGURE 5.10

We assume that the relation between an individual constant of Lg and the image that it indexes
remains the same in this kind of change. For instance, the constant block-2 indexes, or is the
name of, the block selected in Figure 5.10.a and also of the ‘flying’ block of Figure 5.10.b. We
take basic graphical symbols to be rigid designators (Kripke 1980). That is, they denote the
same individual in every possible world. As a consequence, the image that is indexed by a

constant term will be a rigid designator as well.

The philosophical view that names in natural language are rigid designators is relatively recent,
and is the subject of considerable philosophical debate (Kripke 1980). One rival view holds that
individuals arc identified by some set of ‘essential’ properties that they have, and once such
properties are realised by some knowing individual, he is able to identify the thing exhibiting
such a set of properties. According to this second view and in the version supported by Russell,
an ordinary name, like Luis, is just an abbreviation of the description of the properties by which

the individual Luis can be identified in the world (Russell 1905).

According to the view advocated by Kripke, however, things are named independently of all the
properties that the named thing might have in any possible situation, and the reference of a
name is known in terms of the knowledge that is shared by the linguistic community, and not by
the knowledge of the properties that the thing referred to by a name might have. For our
purpose, Kripke’s view is more appropriate. At the conceptual level, it just means that once a

basic graphical symbol has been created on the screen, it preserves its identity regardless the
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transformations that it might undergo in the course of an interactive session. I believe that this
intuition can hardly be disputed in relation to computer graphics. At the implementational level,
the view that graphical symbols are rigid designators means that a linguistic name indexes the
same graphical symbol along the graphics interaction. The relation between the linguistic and

graphical symbols is established by a permanent link in the computer’s memory.

Suppose that Figures 5.10.a and 5.10.b are two ‘possible worlds’ in which the same individuals
arc present. Suppose as well that the modal index of the state in Figure 5.10.a is i,, and the
index of the state in Figure 5.10.b is i 1,.10 The interpretation function F of the model M for Lg
assigns the same denotation to individual constants in every state as a consequence of taking

names of Lg as rigid designators. For instance,
(67) [[block-211" "o 8 = BLOCK-2.
([block-211™"'r 8 = BLOCK-2.

The term block-2 is a name of L o and it can be thought of as the graphical symbol itself; on the

other hand, BLOCK-2 stands for a set-theoretical object in the model, a member of Gmmﬂgle.“

Now, consider the question: what is the position of block-27 Clearly this property of block 2 is
different in the two figures despite the fact that we are asking for the same property of the same
object. Assume that the position of block-2 is p,, in Figure 5.10.a, and p, in Figure 5.10.b. The

interpretation function F makes the following assignments:

(68) [[position(block-2 )}]M‘ o8 = Py

[[position(block-2)]1M" ‘1 & = p;-
Index transitions can be achieved by an interactive manipulation as shown in Figure 5.10.
Adding, deleting or changing a graphical symbol on the screen changes the state. However, such
a change is meta-theoretical in the sense that it is produced by the user, and the transition itself
does not have to be modelled within the formal system. The language Lg might produce the
complex graphical object in the state before and after the transition, but the transition itself is
not known to the system. The rules for producing such a transition are kept in the mind of the
human-user or elsewhere. However, graphical transformations can be modelled if a
transformation function for mapping graphical states to graphical states is defined. Here, we

define the transformation function change that ‘implements’ such a kind of transition.

The purpose of change is to alter one proposition concerning an individual that undergoes a
process of change. Let ¢ be a proposition about an individual o that is true in a state i € 7, and
let y be a proposition about the same individual that is possibly true in some other state i’, but

is false in the current state i. The purpose of the function change is to produce a transformation

' Note that the composition in Figure 5.9 is defined at i,

! See Figure 5.7.
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by which a new state i” is reached in which y becomes true of o and ¢ becomes only possibly
true of o. In fact, ¢ becomes false of o in i’. The semantics of change is defined in (69) as

follows:
(69)  [[change(o, &, W)™ "8 = 1 iff
() [61M " = 1 and [y "4 = 0 and
(2) i— i and
@3 (o™ ¢ =0and [[y)™ "4 =1 and
@ (o8 = a8,

Clause (69.4) is required because we do not want to constrain change to the modification of
basic graphical symbols, so oo must denote the same individual before and after a change has

taken place. Through this function we can model the change from Figure 5.10.a to 5.10.b, and
(70)  [[change(block-2, position(block-2) = p,, position(block-2) = p )" 08 = 1.

Rule (70) defines a change of one property of a basic graphical symbol. However, if the symbol
that is changed is a part of a complex graphical configuration there might be global
consequences of this kind of local transformations. For instance, Figure 5.10.a is a normal
element of sort drawing, but Figure 5.10.b denotes an error element of such a sort. This implies
that the modification of a property of a graphical object might lead to certain instability in our
representational system. We address this issue in the description of GRAFLOG’s method for the

solution of problems.

5.3. A Graphical Inference Process.

In this section we show how the representational system that has been developed in this chapter

is used for modelling the process of change when the system is engaged in the solution of

problems.

First, we follow the consequences of the modification of the drawing from Figure 5.10.a to
5.10.b by means of the transformation function change in (70). Consider that the whole
graphical configuration in Figure 5.10.a, blocks, is a term of sort drawing. Given that block-2 is
a basic constituent of blocks then changing a property of block-2 has the a fortiori consequence
of changing a property of blocks t0o. The question that is interesting for us is whether the
complex graphical object of sort drawing is the same before and after a change of one of its
constituent symbols has taken place. We adopt the convention that it is in fact the same, and if it
looks different this is just because one of its contingent properties has been changed. However,
there is one limitation that has to be considered in adopting this identity convention: if in state
iy, blocks is a normal element of sort drawing, but the graphical configuration in state i, is an
error element of the same sort, namely e_, .. 2,75 then these two objects are necessarily
different. We consider slate f}, one in which an instability occurs, and we have to take an action
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in order to find another configuration in which blocks is in fact a normal element of sort
drawing, and can be considered the same object as the one in the original state i, for the

purpose of indentifying graphical objects that undergo a process of change.

We can state the same in more simple terms: after a change has occurred, we require that no
error element of any graphical sort is introduced in the representation. When this is in fact the

case, the representational system reaches a state of equilibrium.

Let B be a complex graphical object that is made out of a set I" of basic graphical objects, and
let oo e I. We say that 3 of sort s ‘depends’ on o, and we express this dependency relation as

B <s o> Now, we formulate the following change condition:

(71)  IF [[change(o, 6, W' *& THEN [[change( s or 0 W' "8

If the object B“ o> 10 the state @’ is not an error element of sort s, then the change is
meaningful and equilibrium is achieved. This is specified as follows:
3 Mi
(72)  IF[[B, B OL»]]M" THEN [[change(Bﬂ’ o> O W1 he .

However, if an error occurs, then a new change must be brought about. This change is defined

8
" e<s, j>

as follows:

(@3)"  IE[IB. . 501 _
THEN [[change(B o - WM "8 = [[change(o, v, p)]]

Expression (73) defines a recursive process of change. In case the complex object 3 <s o> iSan
error of sort s, then the value of the original transition i — i’ is the same as the value of a new

M,i'g

transition from i’ to another state i’’. The new change is defined, however, not in relation to the
complex drawing but in relation to the basic symbol that was originally changed. This object is
o Presumably, the property v that became true of ¢ in the transition { — i’ has the undesirable
consequence of leaving the complex object B, of which o is a part, in error; so we take this
property as the one that has to be changed from i’ to i’’ in a state of equilibrium. We define a
new change by which a new property, namely p in (73), will become true of ¢, and hopefully,
of B as well. If it is determined that there is no acceptable p, then the whole process of

<5 0>
change ends in a non-equilibrated state. This condition is expressed as follows:

(73)  [lchange(o, w, p)1I™" "8 = 0
When the system reaches this condition, it would have to ask for help; for instance, by notifying

the user of the current instability and asking for further directions.

In relation to our example, the change is defined as follows:

(74)  IF [[change(block-2, position(block-2) = pg» position(block-2) = p I]JM' i 8

THEN [[change(blocks, position(block-2) = p,, position(block-2) = p j]]M’ o 8

After the transition, blocks is an error of sort drawing in i,, then:
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(75)  [[blocks) 8=

<drawing, j>
and a recursive process of change is defined as:

(76)  [[change(blocks, position(block-2) = p,, position(block-2) = p 1]]”. o8
= [[change(block-2, position(block-2) = p,, p]]M‘ i

Now, we come the issue of what is an acceptable p. As far as the representation in the example
stands at the moment, there is no way to tell which property p should be brought about to reach
equilibrium. For the definition of p in the state in Figure 5.10.b, any stable object could be
considered; for instance, the structure in Figure 5.10.a, some structure with a different set of
basic graphical symbols, or even an empty structure might be acceptable. As this point, there is
no restriction on the sort of change that we would like the system to produce in order to achieve

a state of equilibrium.

We take the view that that there is no way to think of an inference about the process of change
without an explicit notion of ‘intention’. By intention we mean ‘the sense of direction’ in which
the representation must be updated in order to reach an equilibrium. The intention is the pulling
force that causes the transformation. For this purpose, we could define any arbitrary goal, and
according to its definition, a set of arbitrary equilibrium states would be determined. However,
for the definition of such a goal we have to account for the kind of relation holding between the
representational system and the rest if the world, because the system is part of the world as well.
If block-2 is selected by a human-user and it is moved from Figure 5.10.a to 5.10.b, it would not
make much sense to achieve equilibrium by reversing that change. If that block is selected it is
because there is the intention of changing its position, in a certain direction. For the definition of
the goal of this particular process of change we have to take into account the partial
specification of the end-goal that is implicitly defined in the graphical input event: the stimulus.
However, this information does not determine a unique goal to be reached. For completing this
information, we have to turn to the current ‘beliefs’ of the system. The system’s expectation of
how things in the world ‘tend’ to change. And that knowledge must be either in the
representational system itself or embedded in the interpretation process; otherwise it would not
be known. We do not have to make any commitment on the generality of these principles, or
whether they are linguistically known or produced by some procedure; the only commitment
here is that such a driving force must exist. It is also required that some reference for the
transformation is considered. The most ‘permanent’ beliefs in the representational system are
‘invariant’ in some contexts and they cannot be changed. These beliefs set the ‘polarity’ that
directs the process of change. Objects with contingent properties, on the other hand, are most
likely to be modified. Of course, there is no absolute reference for all transformations, but the
change of the most solid beliefs has to be prompted by a pulling force, by an intention, of great

magnitude.

Let us continue with our example. Suppose that the most basic reference for a change, the most
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permanent belief about the blocks-world, is that the table is horizontal in its current position: it
can never be modified. Suppose as well that we have very strong expectations that every entity
in the blocks-world must be supported. And we believe in some sort of ‘gravitational force’
making unsupported blocks fall down. Suppose as well that the rule if a block is unsupported it
must fall down is known by the system. In the blocks world, it is true that in every state of
equilibrium, every block and pyramid are supported. This can be asserted in Lg as a blocks-
world axiom BWA in (77),

) derawing’ Vzpyramid v rectangle’ 5!3”lima v rectangle [x = supports(y, )]
Now, consider that in a process of change, the interpreter knows that there was an original
equilibrium state. It also knows that a property of an individual was changed; for instance, when
the drawing was modified from Figure 5.10.a to 5.10.b. The interpreter knows as well which is
the object that was modified, and whose new position is the cause of the current instability. Let
us say that such an individual is free in the current process of change. Finally, the interpreter
knows that the table is an ‘invariant’ in the blocks world. With all of this information, a rule that
guides the interpreter in the process of change can be defined. For this rule we take into account
the individual who is free and an individual who is invariant in the same process. The change

itself is defined in relation to some goal; for instance, axiom BWA. The form of this rule is
(78)  IFnot BWA and p, = distance(table, o)
THEN p = [position(or) = P,
Once the property p is identified, the process of change in (76) can be continued:

(79 [[change(blocks, position(block-2) = p 0 POSI tion(block-2) = p 1]}M‘ o8
= [[change(block-2, position(block-2) = p,, position(block-2) = p, 1M1
According to definitions (69) and (72),
(80)  [[change(block-2, position(block-2) = p,, position(block-2) = pn”M, ip8 —
As a consequence, the transition from Figure 5.11.a to 5.11.b is achieved, and the system

reaches a new state of equilibrium.

FIGURE 5.11

The interpreter must follow the consequences of applying a change rule until equilibrium is
restored in the system. When every unsupported symbol has fallen down, and equilibrium is
achieved, the interpretation in D of blocks in the new state must be found. This completes the
inference cycle, and it involves change in both graphical and linguistic representations. The

important notion is that such a change must be pulled by a coherent force that works within the
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system and is independent of the world.

We can summarise the process of change along the following lines. Consider the set of states

involved in a process of change. Every state i in / is represented by a circle in Figure 5.12.

o gr@f}
@

oO 6. [y 0
O

g D
FIGURE 5.12

The outermost rectangle represents the universe of states /, and the inner rectangle contains the
states in which there is a well-formed blocks drawing --terms of sort drawing. These states
correspond to the graphical interactive states in which a well-formed drawing is displayed on
the screen. If a term of sort drawing is defined through a graphics interactive session it will
have an interpretation in some state in the inner rectangle, such as i, When there is a stimulus
and a change of the representation occurs, a new state i, is reached as shown by the arrow. At
the global level, the inference process depends on the general axioms that must hold for all
compositions of pictures of sort drawing, and of the individuals that are invariant for such a
process of change, such as the table. At the local level, transitions from state to state are
achieved by modifying individuals that are free in the current transformation, for instance,
unsupported blocks. Finally, when any state within the inner rectangle is reached again, the
interpretation in G of the new drawing is computed by the graphical parsing procedure. Note
that in both original and end states the interpretation of a drawing is local to the current state,

and depends exclusively on the geometrical construction procedure.

We call this process of change a graphical inference because the ‘bridge’ proposition p in (78)
can be known in virtue of the permanence of the geometrical and topological knowledge. If the
algorithms that are named by the operations of G were not known, rule (78) could not be

defined. Geometrical and topological knowledge hold apriori in every possible world.

Here, we conclude this chapter on the representational system and its associated inferencing
mechanisms in GRAFLOG. The theory that has been presented is summarised as follows: a
family of drawings composed by a set of basic graphical symbols can be described as a multi-
sorted algebraic system. Basic graphical symbols are indexed by individual constants of the
representational language, and complex graphical objects are referred to by means of terms in

the inductive closure of the set of basic symbols of a drawing and the set of graphical operations
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of the language. Every complex graphical term of the language refers to a complex graphical
structure that is build up by means of geometrical and topological constructive procedures. The
algebra can be embedded in a modal first order logical language, in which graphical and
linguistic knowledge can be represented in an integrated fashion. The logical component of the
representational system requires a deductive process for making inferences; however, the
graphical component requires a geometric constructive procedure, from which the objects in the
representation are produced. This second form of inference can be traced back in history to
ancient times, and it is characteristic of Euclidian geometry. Its relation to modem
computational geometry and computer graphics has been highlighted by Preparata and Shamos

(Preparata et al 1985).

The notion of constructive procedure is also held as fundamental in intuitionistic logic and
mathematics. In this view, to grasp the meaning of a mathematical statement is to know what
mental construction would constitute a proof of it, and the statement is true iff there is such a

proof (Flew 1979).

The relevance of the constructive procedures can be appreciated in relation to the process of
change. Logical inferences are meaningful in states of equilibrium, but the instabilities of the
intermediate states of a process of change become meaningful because geometrical and

topological knowledge is available at every state, regardless of the equilibrium condition.

In our view, to understand an image is to build up its representation by means of some
appropriate constructive procedure. The view that an important role of ‘imagery’ is to provide a
non-proof-procedural method for inference, and that such an analysis offers an approach for
solving the so-called frame problem of Al and Cognitive Science, has recently been advanced

(Lindsay 1988). In our representational system both forms of proof procedures are required.

In Chapter 6, a very simple language designed for representing design concepts and intentions,
and also for expressing a function for design intention satisfaction in the two-dimensional wire-
frame diagrams design domain is presented. The notion of graphical inference introduced in
this chapter is further developed in the model of design inference presented in Chapters 7 and 8.
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Chapter 6

A Graphical and Logical Language
for a simple Design Domain

In this chapter a logical and graphical language for representing CAD knowledge in a simple
design domain is presented. The language is useful for designing 2-dimensional wire-frame
diagrams that are common in architectural and other kinds of drawings. The language allows
the definition and interpretation of graphical symbols that are explicitly drawn on the screen, as
well as the representation of other context-dependent space partitions that receive an
interpretation in terms of the graphical context in which they emerge. For instance, the walls of
an architectural drawing are explicitly drawn, but the rooms that those walls determine emerge
from the graphical context. Nevertheless, both kinds of symbols receive an interpretation and
are usually named by a similar linguistic device, namely, common nouns. For the identification
of these complex graphical objects we introduce the notion of intension of a graphical symbol.
Additionally, the language supports the definition and representation of construction lines. This
facility is particularly useful for modelling causal relations between possible design states in the

definition and production of design inferences.

The algebraic specification of this language corresponds with a formal specification of graphical
objects as abstract data types. The algebraic specification of geometrical data types for CAD
systems has been explored with promising results; for instance, in the so-called definitive
programming framework (Beynon et al 1988, 1989). In this chapter we show how the definition
of a language for geometric reasoning for CAD with a sound theoretical foundation can be
implemented in a graphics interactive environment. The resulting system allows the
representation and interpretation of complex object and functions, as well as providing a clear

semantic interpretation.

In Section 6.1, a description of the language along the lines of the framework developed in
Chapter 5 is presented. In Section 6.2 we discuss the notions of extension and intension of
graphical representations, and we define a criterion by which drawings are identified as
representing the same object in the course of a process of change. In Section 6.3, an interaction
with the system in a simple design domain is illustrated. Here, some details of the
implementation of GRAFLOG in PROLOG are shown. The way basic and emergent graphical
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symbols are represented and referred to by the language is highlighted in this section too. In
Section 6.4, a procedure for inferring the interpretation of drawings in our simple design domain
--the graphical parsing procedure-- is presented. For this purpose, a set of identification rules
acting upon the graphical and linguistic input is defined. Finally, in Section 6.5, the definition
of some design constraints and modelling rules in the course of graphics and linguistic dialogue
is illustrated, and the way that such constraints are satisfied by the application of design rules is

shown.

6.1. The Language L, for Design.

In this section the definition of the language Lg in Chapter 5 is followed closely. First, the
graphical structure D for drawings made out of dots, lines and polygons is defined, and its
procedural interpretation in terms of a set of geometrical algorithms is illustrated in detail.
Then, the structure D is embedded within the modal first order language L. Finally, the
algebraic interpretation for L is presented.

We now tumn to the algebra D.

(1) The set S, of sorts = {bool, real, real_pair, dot, line, polygon}.

Along the lines shown in Chapter 5, we include an infinite number of error elements in the

carrier i
of every graphical sort s, namely € s 051 €<, 15+ E<q >

The individual constants:

@) X, 4o is the set {0, 1}.

() X, ,,.is a (non-countably) infinite set of numerals.

) X, ., is a (non-countably) infinite set { d;, d,, ...} of dots.

&) Ze‘ line 1S @ (non-countably) infinite set {/,, Ly, ...} of lines (construed as vectors).
(6)

The operator symbols are as follows:

Ee. polygon is a (non-countably) infinite set {p;, p,, ...} of polygons.
(D “Bpaan dot, real_pair = {position_of}.

) length_of}.

&)
(10)
(11)

Eboof line, real = {

(v

bool polygon, real — {area_of}.

{3l

bool line line, real = 1aN8le_between}.

e T, ot {end_of, origin_of}.

™M

12) T = {int oo, int om, int oe, int mo, int mm, int me, int eo, int em, int ee,
bool line line, dot = = 25 = = = i i e

int_ ww, cross_at, t_joins_at, e_join_at, joint_at, intersect_at}.
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(13) ):boolpofygon polygon; polygon = {union_of, intersection_of, difference_between}.

Note that according to clause (11), there are operation symbols that associate with every line /
values of sort dot which indicate the origin and end point of /. That is, / is oriented, and is in fact
encoded as an ordered pair of dots. Other terms of sort dot are produced from the intersection
of two terms of sort line. Clause (12) defines a set of operator intersections. This class covers
the vector relations traditionally considered in computer graphics, and also a set of intersection
modes used for the definition of construction lines. For instance, a term of the form
int_ mm(¢, o, B) denotes the dot in which the vectors o and [ intersect each other. The

interpretation of these operator terms is fully explained below.

There are some operation symbols taking boolean values for testing geometrical conditions, i.e.

geometrical predicates:

(14) 2y, 01 line, boor = {horizontal, vertical}.
(5) Zy, .1 ine line, boot = (Perpendicular, parallel, collineal}.
(16) Ebool dot polygon, bool i Ebool polygon polygon, bool ~ {in}.

an Eboo.’ dot line, bool — {on}.

6.1.1. Algorithmic Interpretation of D.

For every operation symbol of D there is a geometrical algorithm that is named by that symbol.
In general, the geometrical information represented in D is computed by standard geometrical
analysis. The sorts of D have been selected precisely because they are relevant for computing
the geometrical algorithms involved in the operations. It can also be observed that the
geometric predicates, i.e. the operation symbols of sort bool, assert relations between graphical
entities and some primitive geometric property that can be derived from geometrical
procedures. In order to illustrate more fully the procedural aspect of non-boolean valued
operations, we shall now consider those with rank bool line line, dot. Consider first the diagram

in Figure 6.1.
Vo A u,
P
u, B v,
FIGURE 6.1

The vector A is defined by the position vectors u, and u;, and the vectorial equation A = u, - u,
holds. We have a similar equation for vector B. The position vector p of the intersection point
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between two arbitrarily defined vectors u, - u, and v, - v, in the space is defined in terms of
the following equations, where ¢, and t, are scalar parameters:
(18) p=u0+t1*(u1-u0).
P=Vyti, » (vl- vo).

Following Leon Lastra (Leon et al 1986). we classify the scalar parameter values ¢, and 7, into
five cases: t;<0,¢,=0,0<t;<1,t;=1 and £,> 1. Within this classification there are 25
cases of parameter pairs, as shown on Figure 6.2. Every intersection case is computed by an
operation of the form int_xy(¢, o, B), where o and P are two arbitrary vectors in the space, and ¢
is a boolean condition. The name of the operator for every ‘overt’ intersection case is of the
form int_xy where x and y are symbols in the set {0, m, ¢}. These symbols stand for origin,
middle and end respectively. The interpretation of these operators names is as follows: if x is o,
the intersection point p between ¢ and [ occurs in the origin of o if x is m, the intersection
point p occurs in the middle of o; and if this symbol is e then p occurs at the end of c.. The code
symbol y relates the intersection point p with the vector B in a similar manner. The
interpretation of operator int_ww covers the 16 cases in the outer-ring in Figure 6.2. This set of
cases is considered in the language for the definition of construction lines. In Figure 6.2, the o
vector is horizontally oriented, and the B vector is vertically oriented.
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Now we consider the relation between the algebraic and algorithmic interpretations of D for
operator symbols of rank bool line line, dot. The operation int_mm, for instance, is a function
whose value is the intersection point of a ‘cross intersection’ between two vectors. The value of
the boolean argument ¢ in int_mm(¢, o, B) is true if the pair (0 < t; < I and 0 < t, < 1) in
Figure 6.2 is selected when o and B are compared. Then, int_mm(true, o, B) = p, where p is a
‘normal element’ in the carrier of terms of sort dot. However, if the value of the parameters pair
is one among the other 24 possible cases, then int_mm(false, o, B) = e edot,i> As was discussed

in Chapter 5, errors are propagated and int_mm(e_j,,,; ;> % B)=¢€_ dot, j> &S Well.

The boolean argument in inz_em(¢, o, B) is true if there is a ‘joint in t’ intersection between o
and B. The corresponding case in Figure 6.2 is (t; =1, 0 <t,<1). When both parameter
values are either 0 or I a joint of two vectors in their extreme points is determined. The
operation symbols in this class are int_oo, int_oe, int_eo, int_ee. When one or both of the
parameters take a value in either ¢ < 0 or ¢ > [ there is no actual intersection, but if one or both
vectors were projected, an intersection would occur. These cases are subsumed under the

operator symbol int ww. We also refer to this class of intersections as ‘conditional

intersections’.

Operators of rank bool polygon polygon, polygon, namely union_of, intersection_of and
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difference_berween, are interpreted as a topological operation between polygons. The inclusion
of polygon comparison operations allows the definition of complex regions of the space by
composition of simple polygons. These operators can be defined in D if polygons are defined as
regular sets of dots, given that set comparisons between two arbitrary polygons result in normal
clements of sort polygon (Tilove 1980). Algorithms for comparing two arbitrary polygons can
be efficiently implemented (Weiler 1980, Pineda 1986). The output of these operations is
illustrated in Figure 6.3.

A B

............

A union B A int B A — B B — A

FIGURE 6.3

The algorithmic interpretation of the other operators in D is computed by standard geometric
algorithms and will not be discussed further here; see, for example (Preparata et al 1985,
Shamos 1978).

6.1.2. The Language L.

Now, we embed the structure D within a modal first order logical language. This will allow us

to represent graphical and logical knowledge in an integrated fashion.

The set of sorts S of L, is obtained by adding a new sort: S, = S, U {individuals} as shown in
Chapter 5, these individuals are referred to by natural language expressions, and might be

physical or abstract entities.
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The modal first order language L is defined as follows:!

(19)
(20)
21
(22)
(23)
24
25)

(26)

@7

(28)

All operator symbols of D are also in L.

By ool Tool ™

{A, v, >, =}

Zpool, boor = (=11}

Quantifiers: For every sort s € S, YV (for all), 3 (there exists), each of rank £_,
Functional Abstractor: For every sort s in S g, X 5. Bool = {A}.

Equality: For every sortsin S, Z. ., = (=]

Variables: For every sort s € Sy, there is a countably infinite set V = {xsl 0% -} OF
variables such thatx, .e X, .

Constants: For every sort s € S, there is a countable set C, = {cs 0 s 1,...} of constant
symbols such thatc, € X, ..

Predicates: For every sort s € S, there is a countable set P = {p o,p, ;....} of predicate
symbols such that p_; € Z The string u,u, ... u; is called the arity of p_ ..

Ugly e Uy bool’

Auxiliary symbols: "(" and ")".

Formation rules are expressed as follows:

(29)
(30)

(31

(32)

(33)

(34)

Every constant of sort s is a term of sort s.

If t,,...,t, are terms of sorts s,...,s,, respectively, and f is an operation symbol of rank
w, s, where w = s5;,..., 5, then f{z,,..., 2, ) is a term of sort s.

If t;,...,t, are terms of sorts §;,...,5,, respectively, and f is a predicate symbol of rank
w, bool, where w = 5,,..., 5, then f(,,..., t,)) is a term of sort bool.

If V is a quantifier of sort s, u is variable of sort s and ¢ is a term of sort bool then V u¢ is
a term of sort bool.

If 3_ is a quantifier of sort s, u is variable of sort s and ¢ is a term of sort bool then 3 u¢ is
a term of sort bool.

If ?LS is a functional abstractor of sort s, u is variable of sort s and ¢ is a term of sort bool

then A ud is a term of sort bool.

6.1.3. Algebraic Interpretation of L.

A model M for Lg is an ordered tuple <D, I, F>, where D =<D >  _ ¢ is an S-indexed family of

non-empty sets, / is a set {i;, i,,...} of states and F is an interpretation function whose domain is

'In the specification of the ranks of these operation symbols we make no explicit provision for the error condition for clarity.

But we consider that the rank of each operation symbol and its corresponding semantic interpretation are modified along the lines

shown in Chapter 5.
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the set of all non-logical and non—graphical2 constants of L, and whose range is described

below. If o is is constant of sort s, then F(a)(i) € D_.

We define as well an assignment function g that has as its domain the set of all variables and has

as a value a member of GS for each variable of sort s.

Now we define the semantic interpretation of expressions of L

(35)

(36)
(37

(38)

(39)

(40)

(41

(42)

(43)

(44)

(45)

If o is a constant of sort s, then [[a]]M’ he_ [F(o)](). The extension of a constant

symbol at every index i € / is the same objectin D,

If o s a variable then [[o]]™" & = g(c0).
If o is a term of sort bool and u is a variable of sort s, then [[kua]]M’ he is a function &
with domain in D, such that for any object x in that domain A(x) = [{a}]M’ Lg where g~ is

that value assignment exactly like g with the possible difference that g’(x) is the object x.

If f is an operation symbol in D of rank w, s, for w = 5,,..., 5, then [[f]]M’ b2 is a function

with domain in D_ x...xD_ and range in D_. This function, for every operator symbol of
n

D, is defined in terms of geometrical analysis, and is computed by its associated

algorithm.

If p is a predicate symbol of rank w, s, for w=s,,...,s,, then [[p]1* € = [F(p)](i) such

that
[FPI@H D, x..xDy
1

5
Ifz;,...,t, are terms of sorts s 12 8, TESPectively, and f'is an operation symbol of rank w, s,
where w=s,,...,s,, then [[F11Y" 81, 1" *E,.... (12 1™ > 8). The result of applying the
function [[F1™ & to its arguments [[z,11*" > &,..., ([, 11" &,

If o and B are terms of sort s then [[o = B]]M’ b€ is 7 if and only if [[oc]]M’ L8 is the same
as [[B1™" V.

If ¢ and  are terms of sort bool then [[—0]1™" > 8 is 7 if and only if [[6]]™" " is 0, and
[=o1™ b 2 is 0 otherwise.

Mg is 1 and

If ¢ is a term of sort bool then [[6 A w]I™" " # is 7 if and only if [[¢]]
[[\p]]M’ he i g, (The definition for other truth-functional connectives is given in the

standard way along the lines shown for the connective A).

If ¢ is a term of sort bool and u is a variable of sort s then [[Vsuq)]]M’ b8 s 7 if and only if
[[¢]]M' b8 s 7 for all g’ exactly like g except possibly for the value assigned to u.

If ¢ is a term of sort boo! and u is a variable of sort s then [[Elsuqa]]M' b8 is 7 if and only if
[[¢]]M’ L& is 1 for some value assignment g’ exactly like g except possibly for the value

assigned to u.

2 The graphical constants are the operation symbols of D.
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(46) The interpretation of the modal operator [ is such that if ¢ is an expression of sort bool,
then [[EI¢]IM’ L5 7if and only if[[¢]]M’ L85 7 forall # in .

Definition of truth:

(47) If ¢ is a term of sort bool, then ¢ is true with respect to M and to I if and only if [[(p]]M b8

is 1 for all value assignments g.

At this point, it is worth highlighting one important difference between the way of specifying
logical truth functions and functions that are named by the operation symbols of D. The
semantics of truth functors, like A and —, is usually defined in terms of a truth table, or as
shown in clauses (42) and (43). Given that there are just three distinctive elements in the carrier
of sort bool, namely 1, 0 and €hoor WE Can give these definitions in a discrete fashion. However,
the domains of the functions that are named by operation symbols of D have an infinite number
of distinctive elements. For these definitions, we rely in a background theory that is provided
by geometrical analysis. For instance, the function named by operation symbols of rank
bool line line, dot in clause (12) is implicitly stated in the system of vectorial equations in (18).
Furthermore, for each of these operation symbols there is an algorithm that for every collection
of arguments of the proper sort, computes the function’s value. If the arguments are not proper,
an error message is produced. Such a message ‘implements’ an error element of the operation’s
sort. Each of these algorithms with its associated error messages can be thought of as
computing a total function. For every operation symbol in D, the definition and application of

such a function are respectively specified in clauses (38) and (40).

Functional application in (37) is defined in the standard way: if x is a variable of sort s, ¢(x) is
an expression of sort bool and a is a constant of sort s, the application of Axd(x) to a, Axd(x)(a),
is ¢(a). The introduction of A-terms will be useful for the definition of design concepts as will

be shown in Chapter 7.

6.2. Intensionality in L.

The language L, is intended to express design knowledge in a very simple design domain.
Design can be thought of as an activity in which a design object and its properties are identified.
Design statements express propositions about objects that do not yet exist in the actual world.
However, we can say that a design object is a part of some possible world. For instance, I can
say that I am going to design my house even if there is no concrete thing in the world that is ‘my
house’. But there might be a future time in this world in which such a house has been built, or
there might be a world that I can imagine in which such a house is already there. This name can
be, of course, a graphical representation: the drawing of such a house.

In the design process we discover a set of properties and relations that the design object must
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have and preserve. However, all of these properties are contingent and varying some, or even all
of them, does not destroy the identity of the object as long as there is the intention of designing
such an object. We can even consider varying its name; for instance, I might use the term my
house to refer to the design object at the beginning of the design process, but most likely, I will
have to use the term my wife’s house at the end of it. But this small naming accident is unlikely
to change the identity of the object itself. The same can be said of drawings: there might be
many graphical expressions that refer to my house and if I am designing this object I must be
able to tell whether or not the drawing --or more generally, the representation-- that is produced
at some particular design state refers to my house. Of course, there might be several possible
representations, but in many situations finding just one is enough. However, in order to make
such an identification we need a criterion of identity. This poses a rather puzzling question: how
can we identify something that does not yet exist in the actual world? Or rather how can we

identify something that is undergoing a process of change?

At the beginning of interactive computer graphics, Sutherland advanced a criterion for the
identification of design objects that are represented through drawings in the seminal Sketchpad
program (Sutherland 1963, p. 332).
Construction of a drawing with Sketchpad is itself a model of the design process. The locations
of the points and lines of the drawing model the variables of a design, and the geometrical con-
straints applied to the points and lines of the drawing model the design constraints which limit
the values of design variables. The ability of Sketchpad to satisfy the geometric constraints ap-
plied to the parts of a drawing models the ability of a good designer to satisfy all the design
conditions imposed by the limitations of his materials, cost, etc. In fact, since designers in many
fields produce nothing themselves but a drawing of a part, design conditions might well be
thought of as applying to the drawing of a part rather to the part itself. When such design condi-
tions are added to Sketchpad’s vocabulary of constraints, the computer will be able to assist a

user not only in arriving at a nice looking drawing, but also in arriving at a sound design.

In GRAFLOG, we explore the same issues from a semantic approach. For this, we introduce

the notion of intension of a graphical representation.

6.2.1. Extension and Intension of Graphical Objects.

The relation of equality poses many interesting questions about the identity of an object. To
understand a statement of the form o=, we have to know what object is designated by the
expressions ¢ and . To understand the relation of equality, we have to consider as well ‘the
manner’ or ‘mode of presentation’ in which an expression designates an object. A statement of
the form o = 3 suggests that there are two different modes for designating the same thing. For
instance, expressions 3 and 2 + / designate the same number. Geometrical objects can be

designated in different manners too. Frege gives the following example (Frege 1952, p. 57):
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Let a, b, ¢ be the lines connecting the vertices of a triangle with the midpoints of the opposite
sides. The point of intersection of @ and b is then the same as the point of intersection of b and
c. So we have different designations for the same point, and these names ("point of intersection
of a and b", "point of intersection of b and ¢") likewise indicate the mode of presentation; and

hence the statement contains actual knowledge.

Frege’s triangle is illustrated in Figure 6.4.a.

5

FIGURE 6.4

In relation to the triangle in Figure 6.4.a, the statements "point of intersection of a and »" and
"point of intersection of b and ¢" present the same object in two different manners. These two
expressions refer to the same object, but they express different concepts and have a different

informative content. According to Frege, they express a different sense.

Now, consider the interpretation of a statement whose form is o = o. It holds a priori given that
the only thing we need for understanding the truth that it expresses is knowledge of the
language. The statement "point of intersection of @ and b = point of intersection of a and b"
expresses an analytic truth. The truth of this statement is granted just by the form of the
expression, and we do not have to think of the contingent properties of the lines a and b, such as
their length and position, because there is no drawing in which this statement becomes false.

Through L 4 we can generalise this definition for two arbitrary lines in L ; as follows:
48) OVX, ¥, [int_mm(x,y) = int_mm(x,y)].

Note that inz_mm(x, y) can denote a normal element of sort dot or the error element e_ ot i DUt

in any case (48) holds for every state i in / in any model for L.

Consider now a statement of the form o = B. For instance, "point of intersection of a@ and b =
point of intersection of b and ¢". We can imagine some situations in which this statement is
true, as is the case in Frege’s triangle, but there are other graphical contexts in which it is false,
for instance, the state of affairs illustrated in Figure 6.4.b. Here, the position p, of one of the
extreme points of the line a has been changed to p, and some of the contingent properties of this
line --like length and orientation-- have been altered. Then, the statement "point of intersection
of a and b = point of intersection of b and ¢" becomes false because the intersections of a and b

and a and c are different objects of sort dot.
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So-called extensional logical systems with equality obey Leibnitz's Law. This states that if a
statement of the form o = [ is true, and if a statement ¢ containing o is true, then the result of
replacing any occurrence of o in ¢ by P is also true. Consider, for instance, the following
expression:

(49) on(int_mm(a, b), a)
where a and b are the lines in Frege’s triangle in Figure 6.4.a. This expression asserts that the
point of intersection between the lines a and b is on the line @. The expression int_mm(a, b) is a
term of sort dot that refers to the intersection of @ and b and (49) is true in relation to the
drawing in Figure 6.4.a because this point is also on line a. If we substitute int_mm(a, b) by
another term that has the same referent, say int_mm(b, c), the referent of the composite
expression --its truth value-- should not be altered. In fact, (50) is true in relation to the drawing
in Figure 6.4.a as well.

(50) on(int_mm(b, c), a)
An interesting point that was originally noted by Frege is that such a kind of substitution is not

allowed in the context of modal expressions such as necessarily. This corresponds with the
necessity operator L] of L ;. Note that the truth value of expression (51) is true,

(51) Oon(int_mm(a, b), a)
but the truth value of (52) is false.
(52) Oon(int_mm(b, ¢), a)
Expression (52) is false because there are situations such as the case in Figure 6.4.b where the

intersection of b and ¢ is not on the line 4.

Failure of this kind of substitution implies that the extension of a complex expression at some
given state of affairs is not necessarily a function of the extension of its constituent parts in such
a state. Frege noticed this problem in relation to the meaning of natural language expressions,
and advanced a hypothesis that has become fundamental for modem semantic studies.
According to Frege, the semantic value, or denotation of an expression that appears within the
context of an ‘opaque operator’ like modal expressions, is not the normal denotation of such a
term, but rather its sense. In the semantic interpretation of L, we have adopted Frege’s
approach in an explicit way. But before explaining how this assumption has been implemented

we have to be more specific on the notion of sense or intension of expressions of L.

Following Montague and others (Dowty 1981) we define the intension of an expression as a
function from states to extensions. In L, the intension of an expression of sort s is a function

whose domain is the set / of states and whose range is contained in the set D.. The underlying

3 These kinds of context are known as referentially opaque constructions. See, for instance, Dowty et al. pp.143.
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idea is this: if the intension of an expression is known, its referent --or extension-- can be
identified at every state of affairs in /. Next, we illustrate this notion with the help of some

simple examples.

Assume that Figures 6.4.a and 6.4.b are respectively associated with the indices i, and i, in the

set of states / of some design process.

The intension of an individual o is a constant function that assigns the same object to o for
every interpretation state. For instance, the intension of line a is the function {<i,, A>, <i;, A>}.
Note that we use the same symbol @ as a name in L, and A as member of the carriers of sort
line. However, these two objects should not be confused. A name is a linguistic object, and the
range of the function is a set theoretical object. Alternatively, we can think of the linguistic

name a as the graphical symbol itself.*

The intension of an expression ¢ which express geometrical properties of graphical objects is a
function that maps every design state i to the value of ¢ in i. For instance, the position of the
end-extreme of a in Figure 6.4.a is po.s but the same value of the same expression in Figure

6.4.b. is p,;. Accordingly, the intension of the expression position_of{end_of(a)) is the function:
{<igpp> <if P>}

The intension of a term of sort bool --a formula-- is a proposition: a function mapping every
design state to the truth value of such a formula in that state. For instance, the proposition that

on(int_mm(b, c), a) expresses is the function {<£’0, 1>, <i,, 0>}.

A question that is relevant for our enterprise is how the intension of an expression can be
known. In modem formal semantic studies, the interpretation function relating the expressions
of a language with their corresponding referents in every state is given by definition, and the
epistemological question of how such a function can be known is not usually faced directly. In
GRAFLOG, the knowledge of the intension of a graphical expression is embedded in the
geometrical algorithms that compute its referent. For instance, the position of the point that is
referred to by the term int_mm(a, c¢) in Figures 6.4.a --an object of sort real pair-- can be
discovered by computing the value of the expression position_of(int_mm(a, c)) at that state.
The value of this expression is either a normal element of sort real_pair or the error element of
this sort. The referent of such an expression can be determined in other interpretation states in
the same manner. If we know the geometrical algorithms that compute the functions named by

the operator symbols of D then we can come to know the intension of every graphical

* See Figure 5.7.

% Such a coordinate pair can be referred to by means of operator symbols (7) and (11) of the structure D.
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expression of D and, as has been shown, this is in fact the case.

We can now explain how the principle of compositionality is implemented in the interpretation
of L ;. The meaning of constant and predicates names is defined by the interpretation function F.
The extensions of individual constants and predicates depend on the current state of the
knowledge-base. However, the extensions of graphical terms of D are computed through
geometry. The extension of a complex but non-modal expression is determined by applying the
function denoted by the operator term to the extensions of its arguments, as defined by the
semantic rules in the interpretation of L. In this case, the extension of a complex expression is
a function of the extensions of its constituent parts at the current interpretation state. However,
the semantic value of expressions of the form ¢ is a function of the intension of ¢. In the
context of the modal operator, ¢ has not its customary denotation, but rather denotes the
proposition that it expresses. We require for ¢ to be true that the semantic value of ¢ is true at

every index i in /.

Now, we give some formulas of L, that hold for every interpretation state.®

(53) OVx,yint_ mm(x,y) =cross_at(x,y).

(54 0OVx,y,z[x=int_om(y,z) v x =int_em(y, z) v X = int_mo(y, z) v x = int_me(y, z)]
=x=t_joins_at(y, z).

(55) 0OVx,y,z[x=int_oo(y,z) v x =int_oe(y, z) v x = int_eo(y, z) v x = int_ee(y, z)]
=x=e_join_at(y, z).

(56) DOVx,y,z[x=e_join_at(y,z) v x=t_joins_at(y, z)] =x = join_at(y, z).

(57) 0OVx,y,z[x=cross_at(y, z) v x = join_at(y, z) v x = int_ww(y, z)]
=x = intersect_at(y, z).

These formulas define a hierarchical categorisation on the 25 intersection cases in Figure 6.2.
For instance, the term e_join_at denotes any of the four modes in which an ‘extreme joint’
between two vectors can occur. The term ¢_join_at stands for the four cases of ‘joins in t’. The
term joint_at stands for any kind of join, and the term intersects_at denotes any ‘actual’ or
‘possible’ intersection between two lines. The term cross_at is just a more intuitive term to refer

to the intersection int_mm.

Terms such as cross_at, joint_at etc., can be given a natural language translation, and can be
used to talk about graphical relations. In the context of a graphical and linguistic conversation,
it might be more natural to say, for instance, This is the join of these walls rather than This is
where the end of this wall joins the origin of this wall. Although the latter expression is more

informative, the former is general and abstracts over low-level geometrical and topological

§ Assume that quantifiers and variables in these formulas are of the appropriate sorts. We also omit the boolean argument for

the error condition of each operator symbol for clarity.
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considerations. We can imagine different contexts in which it is better to utter one rather than
the other. In a conversation between an architect and his customer, the former expression might
be natural; but for a designer involved in the definition of the relations that must hold when a
drawing is modified, say in a CAD system, the latter expression might be most appropriate. We
include both kind of terms for referring to drawings at different levels of abstraction as a means

of adding expressivity to our representational environment.

So far, we have explained in detail the notions of extension and intension of a drawing
represented through the language L ;. Next, we show the utility of these distinctions for defining
a criterion of identity for graphical objects that undergo a process of change.

6.2.2. The Identity of Graphical Objects in L.

One fundamental question that is not often raised in the definition of so-called design systems is
how the identity of a graphical object is determined. In many traditional approaches design is
considered an exploratory task in which a sequence of states of a design process are visited, and
eventually, a design object is ‘recognised’ by the human designer. However, if something is
identified at all it is because there is a criterion of identity. This criterion might be implicit;
nevertheless, it has to be there. Here, we define a convention for identifying drawings when the
geometrical properties of their constituent symbols are altered. Of course, this criterion is
conventional and the design task on which we are about to embark is extremely simple.
However, the criterion is useful for the solution of some problems that traditional design

systems have often suffered from.

In GRAFLOG, the linguistic interpretation of a graphical expression is stated by means of an
ostensive definition. Now consider the following question: does a linguistic symbol that is
introduced by ostension name the extension of the graphical symbol or rather its intension? For
instance, if the expression This is a wall is uttered at the time a line in an architectural drawing
is pointed out, is the term @ wall naming the intension or rather the extension of such a line?” In
this case we might say that a wall is naming an extension, that is, the object that the line stands
for; this graphical symbol has its ‘customary denotation’. However, given that basic graphical
symbols are considered rigid designators every basic symbol expresses an intension, although it
is a constant function. On the other hand, consider the situation in which a region of the space
that is determined by a set of walls is selected at the time This is a house is typed in. Here, we
could also say that a house and the graphical symbol denote an extension: the house itself.
However, if such a drawing is altered in the course of a design process --for instance, by

modifying the length of the walls-- how can we tell which space partition corresponds to the

7 Or wall_1 in the intemal representation of the system, as explained in Chapter 2 and 3, and also below in this chapter.

- 119 -



object named by the term a house in a new graphical configuration? In other words, how can
we tell whether after some modification the drawing still denotes the house or whether it is just
a meaningless set of graphical patterns? We assume that in this situation the term a house
names the intension of the graphical symbol. We can be more specific: the denotation of a
graphical symbol that emerges in the context of a graphical context is not ‘its customary

denotation’ but rather its intension.

In the implementation of GRAFLOG we distinguish two kinds of ostensive definitions. The first
kind is used for giving names to context-independent symbols whose internal geometrical
‘unity’ is given beforehand. For instance, the walls of an architectural drawing. The second is
used for giving names to complex graphical structures that emerge from the composition of
more basic units. For instance, for naming a region of the space standing for a house in terms of

a set of basic lines.

The first class of ostensive definitions was illustrated in Chapter 2 when the notion of graphical
language was introduced. The symbols that are named through definitions of this kind are taken
from a graphical menu and act as the basic building blocks in the graphical compositions. In the
representational system, the linguistic names are the indices of their corresponding entries in the
geometrical data-base g db in Figure 2.7, where the geometrical information for the
construction of the symbols is stored. The second class of definition for naming complex
graphical structures will be further illustrated later in this chapter. This kind of ostensive
definition establishes a link between a linguistic name and the expression from which a complex
space partition is produced. The extension of these expressions is computed in every particular

state by the geometrical algorithms that are named by the operator symbols of D.

Consider as well that an expression of L, might denote normal objects of its corresponding
sort, or the error element of that sort. We adopt the following convention: if the denotation of a
graphical expression is a normal element of its corresponding sort, its extension corresponds
with the object named by the expression; however, if its denotation is the error element of its
sort we consider that there is not a state of equilibrium --in the sense defined in Chapter 5-- at
that state and the identity of the referred object is not fully determined. We adopt the additional
convention that a name in the linguistic domain that is an index to a graphical symbol denotes if
and only if the current graphical term denotes a normal element of its sort. In other words, if
the graphical expression denotes the error element of its sort, its linguistic name does not
denote. This condition is very important for modelling the processes of change in our

representational system, and will be discussed further.

Next, we show how the representational environment provided by L is implemented and used
in GRAFLOG.

- 120 -



6.3. Interactive Definition of Design Objects.

In this section we present the definition of graphical structures whose basic symbols are
expressed in the course of standard graphical interaction, and whose interpretation is captured in
the language L,. For the implementation, the representational structures NLKB and g_db of

GRAFLOG are used.?

In this version of GRAFLOG we consider a graphical menu with only one kind of symbol: the
line. Symbols of sorts dot and polygon will be identified in terms of the geometrical and
topological relations that are established between the basic lines.

Suppose that the drawing in Figure 6.5 is created by editing five lines, at the time the ostensive
definition in (58) is typed in by the user.’
(58) These are walls.

FIGURE 6.5

The symbols introduced by this definition are independent of the graphical context, and they
constitute the basic building blocks of the graphical composition. The graphical and linguistic
knowledge that is expressed by this definition will update NLKB and the geometrical data-base
g _db in an appropriate manner, along the lines shown in Chapter 2. In the linguistic domain,
the following facts will be added to NLKB, where the individual names of the lines, like wall 1,

are arbitrary identifiers provided by the system:

39 @ wall(wall_1).
2) wall(wall_2).
3) wall(wall_3).
(€)) wall(wall_4).
(5) wall(wall_5).

The geometrical data base is constituted by a set of clauses such that for each graphical object in

# See Figure 2.7.
? For clarity, we show the order and orientation in which the lines are edited on the screen, but the labels and arrows are not

part of the drawing.
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the representation there is a clause of the form
(60) g_db(name, type, description).

Here, name is a constant identifying the graphical object, zype is the name of some sort in L,
and description is a list of terms denoting the points of the space, the parameters, by which the
graphical object is defined. In this version of GRAFLOG, we consider three kinds of
descriptions: of basic lines, of polygons, and of construction lines.

The description of basic lines is stated as a list of two constant terms of sort real_pair which
stand for the positions of the origin and end of the corresponding line.!® These terms are of
course computed by the system at the time the symbols are defined on the screen. The notation
is as follows: pij is interpreted as point i of line j, where i is o for the origin and e for the end of
the corresponding line. For instance, p_, is interpreted as the position of the origin of the fourth
line. Definition (58) is reflected in the graphical domain as follows:

(61) (1) g _db(wall_1, line, P, Pog)-

2) g_db(wall_2, line, [p_,, p,,)).

3) g _db(wall_3, line, [p o3P ‘ﬂ]).

) g_db(wall_4, line, [p 4, p,]).

(&) g_db(wall_5, line, [p s, p ).
The identifier of a given object in g_db is also used as the name of the same individual in the
domain knowledge-base NLKB. For instance, the object that has the property of being a wall in
(59.1) is depicted on the screen in terms of the graphical information in (61.1). This naming

convention implements the translation relation introduced in Chapter 2.

Now, we come to the definition of the second kind of graphical symbol and its associated
description list: objects of sort polygon. Polygons are used for representing entities that emerge
in the context of overt lines. The interpretation of a polygon is stated through an ostensive
definition. However, this kind of ostension differs from the previous one in that polygons are
identified in terms of the basic symbols that are already drawn on the screen. This ostension
does not introduce overt graphical patterns on the screen but rather establishes a relation
between symbols, like the walls, that were introduced before. The linguistic name introduced
by this kind of definition names not only a polygon in the actual definition state, but rather the
function by which the polygon can be known in different graphical states. The expressions

included in the description list of polygons are intensions rather than extensions.

Suppose that when the expression

(62) This is a house

19 Objects of sort dot are not implemented directly, and dots are represented through their corresponding positions.
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is typed in, a polygon whose vertices are the dots identified in Figure 6.6 is defined on the
screen by the user. This identification consists in pointing out the dots in the order indicated by

the subscripted values.

V’4 Vs V0
W%
V3 N
Vz vl
FIGURE 6.6

The definition can be started by pointing at any of those vertices, but the order in which these
are identified will be reflected in the polygon’s representation in g db; otherwise, a different
object would be defined. In the definition of this polygon we have used a graphical cursor of
sort dot. This is of course an implementational convention and other strategies could be
considered; for instance, we could have pointed to the screen with a graphical cursor of sort
polygon. In Figure 6.6, the edges of the polygon are not explicitly drawn, but this is also a

convention.

The linguistic and graphical expressions representing this object are asserted in the

representational structures of GRAFLOG. The fact
(63) house(house_1).
is added in NLKB. In the graphical domain, the graphical object is represented by a clause in

g_db. The form of this clause is as follows:

(64) g_db(house_1, polygon,
[origin_of(wall 1, ),
e_join_at(wall_2, wall_1, ),
e_join_at(wall_3, wall_2, ),
t_join_at(wall_3, wall_4, ),
e_join_at(wall_5, wall_3, ),
end_of(wall_5, )]).

Note that the polygon’s description takes the form of a list, where each term is the translation
into PROLOG of a term of sort dot of L ; that denotes one of the polygon’s vertex. These terms

denote the origin or the end of a line, or the intersection of two lines.!! Obviously, the

' The expressions representing the polygon's vertices are inferred to by GRAFLOG’s interpreter in the course of the graphi-

cal interaction, as will be shown when the graphical parser for D is explained.
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translation from L in PROLOG has to accommodate the fact that PROLOG does not allow
functions to be expressed directly. Thus, in place of the L‘:l operator or:‘gin#of‘,me' dor WE USC @
PROLOG relation origin_off3 where the last argument-place stores a term denoting the dot
which will be the value of the function. We implement other operator symbols of D in a similar

way.

According to our criterion of identity for graphical objects, the linguistic designator house_1I
names the intension of the graphical symbol that it indexes. Additionally, house_ 1 will denote

at every state in which its associated polygon is a normal element sort polygon.

The identification of graphical objects in different states is constrained by the geometrical

relations between the terms included in the description list of these objects. The condition of

equilibrium for this representational system requires that graphical symbols satisfy the

following conditions:

(65) If the sort of the symbol is line, the positions of the dots defining such a line must be
distinct.

(66) If the sort of the symbol is polygon, the terms of sort dot in the description list define a
simple closed path in which no edges intersect each other.

With these considerations, we can update the lines defining the house, as shown in Figure 6.7.

-t

a) b) c)

FIGURE 6.7

Under the current house’s definition, Figures 6.7.a and 6.7.b are permissible variations of
house_I. However, the drawing in Figure 6.7.c cannot be identified as the same entity, because
one topological specification in the original definition is not satisfied by such a drawing. The
error condition can be expressed in L as follows: ¢_join_at(wall 3, wall 4) = e_,, ... Asa
consequence, house_I = e_ soligoni>"
Here we can also appreciate why the name of a graphical symbol does not denote if the symbol
is in an error state. If we are engaged in the task of designing house I, it makes sense to say
that the drawings in Figures 6.7.a and 6.7.b are, according to definition (62), graphical
representations of the house that we are designing, but it makes no sense to say the same of the
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drawing in Figure 6.7.c.

Now, we come to the definition of the third kind of graphical object: construction lines.
Construction lines are required for identifying space partitions that are not fully determined by
the origin, the end or the intersection of overt lines. Consider the definition of a room of the
house. This room is defined be typing in the following expression:

67) This is a room.

Assume that expression (67) is supported by pointing to the marks in Figure 6.8.a, as was shown

above for the house.

K X
a) b) c)
FIGURE 6.8

The room is represented along the lines of other graphical objects named by common nouns,
and the fact

(68) room(room_1).
is asserted in NLKB. For the definition of the graphical object we require, however, a
construction line. Three dots are identified as the origin or the end of a line standing for a wall;
but one vertex (i.e. the one in the lower right-hand corner) cannot be fully determined just by

virtue of the extremes and junctions of the walls.

Construction lines can be defined by selecting two points on the screen as shown in Figure

6.8.b. This line is represented in the graphical domain as follows,
(69) g_db(c_line_1, line, [end_of(wall_5, ), end_of(wall_4, )]).

The identifier ¢_line_1 is provided by the system, and the description list is constituted by the
two terms of sort dot that refer to the points identified in Figure 6.8.b Note that this line
‘emerges’ from the graphical context in which it is defined. For that reason, terms that refer to
its defining dots are expressions of sort dot rather than their actual values in the definition state.
This is an important consideration because if the lines in terms of of which the construction line
is defined, namely wall 5 and wall 4, are altered, the construction line will be modified
accordingly. But the relations in the description list of the construction line will remain constant
across changes. What varies is the extension of ¢_line_1I, but its intension remains the same. In
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the same way that the a description list of a polygon contains the intension of such a polygon,

the description list of a construction line i$ an intensional description.

We consider a construction line to be the infinite projection of the vector that the terms in its
description list define. For that reason, points identified by a construction line are referred to by
the operation symbol intersect_at in (57), where one or both of the arguments of sort /ine of this
operation symbol are construction lines themselves. The function that is named by intersect_at
has as its value a normal element of the carrier of sort dot, unless the two lines that it takes as

arguments are parallel or collineal.

Now we show how the construction line is used for the definition of the bottom-right vertex of
the room. It corresponds with the intersection of ¢_line 1 and wall_2, as shown in Figure 6.8.c.
Such a dot is denoted by the term intersect_at(c_line_1I,wall 2, ). The other three vertices are
identified in terms of the basic lines, and the entry for the room in the geometrical
representation is the following clause:
(70) g_db(room_l1, polygon,

[end_of(wall_4, ),

intersect_at(c_line_1, wall_2, ),

e_join_at(wall_3, wall_2, ),

t_join_at(wall_3, wall_4, )]).

Now we can appreciate that the bottom-right vertex of the room will be properly defined in
different states of the graphical representation unless the two points defining the construction
line become the same, or the construction line and wall_2 become parallel or collineal. In the
case that either of these conditions occurs, not only the bottom-right vertex of the room
becomes an error of sort dot, but the room itself becomes an error of sort polygon.

Before concluding this section it is worth summarising the relation between the abstract
representational language L ; and the representational structures of GRAFLOG that are given in
terms of PROLOG clauses.

First, every graphical symbol represented by a clause g db in the implementation corresponds
to a basic constant in the abstract specification in L ;. For instance, the individual denoted by the
name wall_1 in (58.1) and (61.1) happens to have the property of being a wall, and happens to
have a graphical realisation as a line as well. The points p_, and p,, in its description list in
(61.1) are individuals of sort dot, and they are basic constants in the abstract representation
language L, as well. Note that the relation between formal structures in L, and the
implementation in GRAFLOG is captured by constructing the description list of complex
graphical objects, like lines and polygons, out of terms of a more simple geometrical type, like
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dots.? The thread between the formal language and the PROLOG implementation is knitted by
making the terms of L that denote the most simple graphical objects into a single object with
more structure which is a basic constant of other sort in the formal language.

The translation of expressions of L ; into PROLOG is as follows:
(71) Every clause of NLKB is the translation into PROLOG of an expression of sort bool in L &

(72) Every clause g_db in the geometrical data-base corresponds to a basic constant in L that
names an object that has both abstract and graphical properties.

(73) Every term in the description list of graphical objects of types line and polygon in g_db is
the translation into PROLOG of a term of sort dot.

An important distinction that might require further clarification is which properties of the
representational system L, and its PROLOG implementation remain invariant across different
interpretation states. That is to say, what properties of L, hold for every possible model, on the
one hand, and which kind of information is contingent and depends on the current information

state of the system, on the other.

In the definition of formal languages, there are normally distinguished two kind of constants:
logical and non-logical constants. The semantic interpretation of logical constants is defined by
an explicit function that holds for every model of the language. For instance, the semantics of
and, or, etc. are given by their corresponding truth-tables. On the other hand, the interpretation
of non-logical constants --individual constants, predicates and relation names-- is stated by the
function F of the model for the language. This function changes from model to model.

In our theory, the interpretation of logical constants of L was defined in Section 6.1.3. The
interpretation of truth-functors, as "A", "v", "—", etc. was stated in a standard way.
Additionally, the interpretation of operation of symbols of D was stated once and for all in
clause (38). The function F, on the other hand, is dynamically defined in every interactive

session and depends on the current state of the information of the system.

In the interpreter of GRAFLOG, each logical constant of Ld is represented by a primitive
functor of PROLOG. For instance, the implication "—" is translated as ":=", and the negation
symbol "—" is translated as PROLOG's functor not. Of course, the meanings of these operator
symbols are not completely equivalent, and for the implementation some concessions have to be
made. There is in particular an important asymmetry between the logical and PROLOG
negation (Reiter 1985) but for the purpose of the implementation we adopt the convention that

2 However, there is no an explicit counter part in L, of the geometrical and topological relations between basic graphical ob-
jects and the more complex object that they construct. For instance, the relation part_of(p,,, wall_I) is neither implied nor required

in the representational system. The linguistic description of a drawing does not necessarily corresponds with the structure of such a

drawing.
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these meanings are equivalent. Additionally, there is in GRAFLOG’s interpreter a primitive
functor that corresponds to each operation symbol of D. For instance, end_of, intersect_at and
union are primitive GRAFLOG’s functors. When the interpretation of an expression that is
formed by these operation symbols is required, its associated geometrical algorithm computes
the corresponding function’s value. These algorithms are given beforehand to the system, and

the function that they compute is the same in every model for the language.

Now, we come to the kind of information that is contingent and depends of the state of the
interactive session. In fact, every state of the data bases NLKB and g_db implicitly defines a
particular model. For instance, the constant wall_I is graphically realised as a line, and both of
these symbols refer to an abstract object WALL 1 that is only in our minds. However, this
association is model dependent. If the line is deleted in the course of the graphical interaction,
the association vanishes, and the definition of F changes accordingly. WALL 1 is just an
abstraction that we know when we interpret the expressions of the language. In a similar way,
the predicate wall, for instance, is interpreted as the set {WALL_I, WALL 2, WALL 3,
WALL 4, WALL 5}. The interpretation function maps such a predicate name to the set of
objects that happen to have the property that wall names. It is worth emphasising that the
objects in this set, the set itself, and the map between predicate name and set are also

abstractions in our mind.

Here, we conclude the illustration of the graphical and linguistic definition of 2-dimensional
wire-frame diagrams in this version of GRAFLOG. Next, we show how this kind of drawings

can be queried in the course of graphical interaction.

6.3.1. Deictic Questions in Graphics Interaction.

The user can address queries about the meaning of the drawing. Suppose, to continue our
example, the user picks out one of the locations indicated by a cross in Figures 6.9.a, 6.9.b or

6.9.c, and then types,
(73) What is this?
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a) b) c)

FIGURE 6.9

The answers produced by the system depend on the drawing and the position of the pointing
device. Thus, for each of the locations selected above, the responses for the corresponding

questions will be

(74) (a) awall.
(b) the origin of this wall.
(c) the join of these walls.

The linguistic answers are supported by graphical feedback as shown in Figure 6.10. That is, the
deixis required by the terms zhis wall and these walls is supplied graphically by highlighting the
relevant components of the drawing on the screen. This ‘highlighting’ is indicated by the dotted

lines below.

FIGURE 6.10

The expressions origin of and end of in the natural language answers in (74.a) and (74.b)
correspond to the operators origin_of and end_of in L ;. The words a, the, this and these are
‘function’ words that determine quantification and deixis in these referring expressions.

It is worth pointing out that the facility for producing these natural language answers has not
been fully developed in GRAFLOG. Although the system is able to identify the referents for
the linguistic answers, and also provides a graphical and linguistic context in which they are
expressed, the production of an appropriate natural language referring expressions is not a
trivial matter, and further research is required. However, within the grammatical and
computational framework that we have adopted in the linguistic section of this dissertation,

various approaches to the production of referring expressions have been advanced (Dale 1989).

- 129 -



We can ask as well for the identity of objects represented by symbols of sort polygon. If the
location in Figure 6.11.a is pointed out, and the question

(75) What is this?

is asked, the answer is a house.

FIGURE 6.11

However, if the same question is asked when the location in Figure 6.11.b is selected, there is a
referential ambiguity. The object that is pointed out might be either the house or the room.
Nevertheless, there are contexts where such an ambiguity can be resolved, namely when this is
used anaphorically rather than deictically. Consider the context of a conversation between two
individuals, namely A and B, who are looking at an architectural drawing: a plan of a house with
several rooms. Suppose that A points to one particular room at the time he says This room is too
small and then B points to the same room and asks This? The antecedent for the pronoun this in
B’s question would have to be a room although the word this in the question is deictic.
Furthermore, the room cannot be pointed out without pointing out the house at the same time.
This referential ambiguity could not be solved exclusively on the basis of deictic information.
The house cannot be the referent of this in B’s question, but it could be the referent of the same
expression in another context in the same conversation. This issue is not further explored in this
thesis; however, it is worth pointing out that the relation between deixis and focus in a spatially

oriented dialogue is a very interesting and puzzling issue.

6.4. The Parsing of Wire-frame Drawings in L ;.

The goal of the graphical parsing procedure is to find out the interpretation in the structure D of
the graphical entities that are pointed out on the screen in each individual pointing action. In
GRAFLOG, this task is performed by the process GIP'* for the interpretation of the graphical

input in the course of the graphics interaction.

Graphical objects are identified by a graphical cursor. Given that there are three sorts of objects

that have a graphical representation, we can use three kinds of cursors for identifying objects of

1 See Figure 2.7
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their corresponding sorts. We consider in detail the use of a graphical cursor of sort dot, and

sketch the utility of cursors of sorts line and polygon.

In general, there are several terms that denote the same point at some state of the graphics
interaction. For instance, the dot v, in Figure 6.6 was identified by the term
e_joint_at(wall_3,wall 2) in the corresponding entry in the description list of house 1.
However, other terms, like int_eo(wall 3, wall_2) or int_oe(wall_2, wall 3), could also be
considered. Although all of these terms denote the same object at the time in which the house is
identified, they have a different informative value and express a different proposition. Here, we
have to choose which term is the one that expresses better the knowledge intended by the user.
We partition the term selection task in two stages: first, we have to find out the set of all terms
that denote the mark of the pointing device in an individual pointing action. Secondly, we
define a criterion for selecting the term that has to be included in the description list of the

identified object. Next, we discuss the first of these two tasks.

An expression of the graphical language L, can be thought of as a partial description of a
drawing. That is, an expression of the form p = position_of(origin_of(c)), where p names a
coordinate point and o is the description of a line, is construed as a statement which is true or
false of a given two-dimensional wire-frame drawing I'. In this case, the drawing plays the role
of being a model for a set of expressions of L, and we would need to develop a recursive

account of expressions being true in such a model.

Alternatively, we can think of a drawing I" as being a collection of well-formed terms of L g,
closed under some rules of inference (e.g. modus ponens). In this case, I' is construed as a
theory in L. Here, we need to develop an account of which logical and non-logical axioms
would be required for finding out the set of equations that hold for a drawing in terms of the
basic graphical facts. We require as well some proof procedures for this theory.

In the current approach we explore the second alternative.

Thus, we think of a drawing as being a set T of terms and expressions of the language L. We
also need to encode information about the pointing device, the graphical cursor mark, at any
given time. We use the contextual information provided by the set / states of an interactive
session, as a way to encode the deictic aspect of mark. In standard ‘indexical semantics’, an
expression like here is evaluated in a particular context of use i, which then supplies an
appropriate referent, say here. By analogy, we treat mark as a distinguished individual
constant of sort dot in L 4, such that for any graphical state i, F(mark)(i) = m;, where m; is the

dot selected by the graphical cursor in that state i.
We also parameterise I" in two respects. First, since objects might disappear or be created as we
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pass from state to state, we need to treat a drawing as a set I'() of graphical objects at a given
state i. Second, we distinguish the subsets I (i) which belong to a particular sort 5. Thus, for

example, I';. (i) is the set of terms in T at state { which have the sort line. In our example,

line
(76) Ty = wall_1, wall_2, wall_3, wall_4, wall_5, c_line_I}.
Given the following set of inference rules, we will be able to derive various theorems from I'().

We write
an r@+¢
to specify that the expression ¢ is derivable, or can be deduced, from the theory I'(i).

If 2, t, and z; are terms of L, (78.1), (78.2) and (78.3) are valid inference rules:
(78)  (1)IF ¢, =1, THEN 6(z)) = ¢(¢,)
2)IFt;=t,THEN t,=¢,
(3)IFt;=t, AND¢t,=1, THEN ¢, =1,
For example, suppose that the drawing represented by the set I'(i) includes {wall_1, wall 2,
end_of(wall_1)=e_join_at(wall 1, wall 2), mark = position_of(end_ofiwall_1))}. Then we
have
(79)  T'() & mark = position_of(e_join_at(wall_1, wall_2))
Let MARK, (i) be the set {o in 'y () | T'() -mark = position_of(e)}. This is, every
expression o that denotes the same position that mark in the state i, belongs to MARK ; (D).
Next, we give an inductive definition of how to determine the set of terms in MARK do:(f)'

(80) For every o and [ in I} (D which are not parallel or collineal, if
['(i) - mark = position_of(int(c, B)) then int(o, B) is in MARK 40D, where int is an
intersection operator in clause (12) of the definition of D.

(81) For every o in I'; we(8) if T(@) = mark = position_of(B(e)) then P(o) is in MARK ;,, (i),
where B is an operator in clause (11) of the definition of D (end _of, origin_of).

(82) Nothing is in MARK Jo:(0) except as stipulated by clauses (80) and (81).

Now we come to the identification of lines and polygons by a cursor of sort dot. We define the
sets Selectedy;,, (i) and Selectedpolygm(f) of lines and polygons respectively that are identified

by a cursor of sort dot at state i. The terms included in these sets are specified in the following

inductive definitions:
(83) Selected;, (i) = {oe L}, | On(mark, 0)}.

(84) Setecredp {ae Ljine | in(mark, o)}.

Ofygan(f) =
In this section, the mark of the pointing device has been defined as a constant of sort dot. As
was mentioned, a more flexible scheme can be defined by considering graphical pointing
devices, graphical cursors, of sorts line and polygon. Such a functionality would allow not only

the identification of basic lines and polygons but also of lines and polygons which emerge in
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drawings in terms of the overt symbols and the composition rules of D. The particular interest in
our design domain context is the identification of polygons that are produced by the polygon
comparison operations; that is to say, by terms produced by operators of rank
bool polygon polygon, polygon in D. Such a device would allow us to impose linguistic
interpretations by ostension on complex structures that emerge in drawings in a very direct
manner. Suppose, for instance, that polygons A and B in Figure 6.3 are interpreted as linguistics
and programming respectively. Then we could point to the intersection between these two
polygons with a pointing device of sort polygon --a graphical cursor for polygon definition--
when the ostensive definition This is science is typed in. Now, suppose that one of the basic
polygons is modified. The interpretation of the intersection, science, would vary accordingly.

The geometrical clause for science is as follows:
(85)  g_db(science, polygon, [intersection_of(linguistics, programming, )])

where linguistics and programming are symbols of sort polygon.

The implementation of graphical cursors of sort /ine and polygon would allow the definition of
the sets MARK;, (i) and MARKP g on(0) along the lines of the set MARK ; (i) above. These
facilities are useful because not only dots, but also lines and polygons can be referred to by a

number of terms of L, at any interaction state i.

Now, we come to the selection of the particular term in MARK 4o that is chosen by the
GRAFLOG interpreter in the graphical parsing procedure. Note that the terms included in the
description list of a polygon are not the basic operator terms of D which compute the actual
intersection point, but they are rather terms produced by one of the intersection naming axioms
which subsumes a family of intersection cases. The operators e_join_at, t_joint_at or
intersect_at reflect better the knowledge about a graphical relation that a user might have at the
definition state. Terms build up with these operators are less informative than the operator
symbols that name the topological relations that actually hold between the vectors involved, but
that information is hidden in normal human communication as well. When a human user point
to an overt dot on a drawing, he might not be aware of the underlying geometrical information
that is available through the representational system. Selecting these terms underspecifies the
definition of the graphical object, but leaves a greater space for modification of drawings. If the
more informative terms were included in the description list of a graphical object, the possible

alterations for a drawing might be artificially restricted.

For the definition of the selection procedure, the terms that are considered for identifying a dot
are ranked according their discriminatory value in relation to the other expressions that could
refer to the same dot. For instance, both of the terms e_joint_at and t_joint_at cover four basic
modes of intersection; however, the e_joint_at case marks not only the mode but also the
location of the dot at which the intersection takes place. Accordingly, e joint_at has a higher
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priority value than the term ¢_joins_at. We also take the conventional decision that origin and
end points of vectors have a larger priority of selection than the 16 intersection cases in Figure
6.3 that are covered under the term int_ww. The operator term int_ww is not directly used, and it
is subsumed in the intersection term intersect_at for the definition of construction lines. Terms
that are included in the description list of a graphical object in g_db are selected according to
the following priorities: cross_at =5, e_joint_at =4, t_join_at = 3, origin of = 2, end_of = 2,

intersect_at = 1, and int_xx = 0.

Now, the term of MARK ;, (i) that is included in the description list of a graphical object is

selected as follows:

(83) Among the terms cross_at, e_join_at, t_join_at, origin_of, end_of, intersect_at or int_xx
select the term with a highest priority value. If there are several terms with the same

priority, such that there are no terms with a higher priority, select any one of them.
(84) If MARK , (i) is an empty set, no intersection is identified.
For instance, for selecting the term that refers to the point v, in Figure 6.6 and is included in the
description list of house, the set MARK ; (i) is

(85)  {origin_of(wall_1), int_ww(wall_5, wall_1), int_ww(wall_1, wall_5)}
According to the selection procedure, the term included in the description list of house 1 is

origin_of(wall_1).

6.5. Causal Relations and the Interpretation of State Transitions.

Intersections of construction lines are useful for modelling causal relations in the process of
modifying a drawing. In fact, these points provide a reference that is common to the drawings
before and after a modification takes place. More generally, an intersection point --between
overt and construction lines-- is a kind of ‘pivot’ over which transformation functions can be

defined.

Let us define a geometrical constraint that a drawing must satisfy in the course of a design task.
We define as well a transformation function that reinforces such a constraint on a drawing
whenever is required. Suppose that in the main example of this chapter, we have defined an
additional construction line, namely c_line_2,'* and it extends from the origin of wall_5 to the

origin wall_1, the right wall. Now, suppose that we impose the following two constraints upon

" ¢_line_I was introduced in the definition of the room.
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the drawing that hold for every design state:

(86) collineal(wall_5, c¢_line_2).
87 Ix.x = join_at(wall_5, ¢_line_1).

The interpretation of these formulas is as follows: for every design state, (86) requires that the
front wall, wall_5, has the same direction than the construction line ¢_line_2 and (87) stipulates
that an extreme of wall 5 joins the other construction line ¢_line_1. The references for such
design constraints can be graphically expressed in the drawing as shown in Figure 6.12.a. Now
suppose, for the sake of the example, that we are interested in modifying the house, and the
origin of the right wall is selected and extended in the course of the interactive session, as
shown in Figure 6.12.b. In order to satisfy constraints (86) and (87) above, the position of the
end extreme of wall_5 has to be translated to the intersection point of the two construction lines,

as shown in Figure 6.12.c.

B .

a) b) c)

FIGURE 6.12

Now, we come to the definition of a transformation function that enforces constraints (86) and
(87) in the course of an interactive session. Such a function can be defined as a PROLOG
clause that is proved by the interpreter at the end of every interactive cycle, before the
interactive control is returned to the human-user. For the current example, the clause is as
follows,
(88)  change_rule :- not collineal(wall_5, ¢_line_2),

intersect_at(wall_5, c¢_line_1, POINT),

move_end(wall_5, POINT).
where collineal and intersect at are the translations in PROLOG of the corresponding
geometrical predicate of D; move_end is a transformation function that changes the parametric
position of the end-extreme of a line. The arguments of move_end are of types line and

real_pair. This rule could be paraphrased as follows:

IF not collineal(wall_5, line_2) AND intersect_at(wall_5, line_1, POINT)
THEN move_end(wall_5, POINT).

In the implementation of the design interpreter there are two clauses, namely move_end and
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move_origin, which modify the end and origin extremes of a line of the graphical
representation. These two clause have no ftranslation in Lgj, but they stand, at the
implementational level, for the change transformation function. The semantics of these
transformation functions is defined along the lines of the change rule in Section 5.3, and we

follow the consequences of this kind of transformations in Chapters 7 and 8.

This example is an illustration of the kind of interactive manipulation that can be supported by
an underlying graphical and logical representational structure L. It is worth pointing out that
different strategies for defining such a kind of constraints and transformation functions through
the natural language and graphics dialogue can be envisaged. This facility of the design
interpreter can be thought of as a very straightforward Al production system, but with a strong
interface component. In the current prototype, human-users can define complex PROLOG
applications. Furthermore, the rich semantics provided by the language L, is used for the
definition of an additional layer of functionality. In our simple design domain, transformation
functions are not only applied to drawings by the design interpreter: change rules can also be
deduced by the system in the context of some design tasks, as will be shown in Chapters 7 and
8.

Here, we conclude this chapter on the definition of the graphical and logical language for design
L4 The language is useful for representing the semantics of drawings made out of dots, lines
and polygons. The notions of extension and intension for drawings represented in L q were
discussed. We show how the representational system is integrated to the interactive interface
and how the semantic interpretation of drawings is introduced by means of direct manipulation
on drawings in the context of natural language expressions. The conditions that a name and its
associated graphical representation must fulfill in order to refer were also given. The semantic
representation of drawings is automatically deduced by the interpreter by means of a set of
identification rules that act upon the graphical and linguistic input. We have also illustrated how
the language can be used for the definition of causal relations between states in simple design
tasks. In Chapter 7, we show how this language is used for the definition of objects that have
not only graphical but also linguistic properties, and the notions of design concept and intention
in our simple design domain are introduced. In Chapter 8, a function for design intention

satisfaction in the domain of 2-dimensional wire-frame diagrams is presented.
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Chapter 7

The Notions of
Design Concept and Intention

In this chapter the notions of design concept and intention in a very simple design are presented.
In Section 7.1, we define the notion of design concept and then how design concepts are
expressed and represented in the graphical and logical language L is illustrated. In Section
7.2, an example of a design concept in our simple design domain is presented. In Section 7.3,
the notion of design intention is introduced. This notion is related to the process in which a
design object undergoes a process of change. Human designers express design intentions about
the objects that are being designed. The role of the system is to infer such intentions and to
produce the change that is intended by the human designer. The design process is modelled as a
logical and graphical inference, in the lines presented in Chapter 5.

7.1. The Notion of Design Concept in GRAFLOG.

We define a design concept as the conjunction of properties and relations, geometrical and
linguistic, that a design object must have at some state in the design cycle. In this view, design
concepts are definitions: the list of characteristics, the specification of the function and
requirements that a design object must satisfy at some state of knowledge of the designer. Here,
we have to consider two kind of definitions: the first is an original ‘baptism’ by which the
referent of a design task is fixed; the second is the assertion of the properties that such an object
must have. The baptism occurs once when the design process is started; however, the definition
of the properties of the design object can vary according to the evolution of the design task in
the design cycle. Design concepts can be expressed through an appropriate representational

language as, for instance, L.

In the course of a design task, design objects are baptised by some arbitrary name. In
GRAFLOG, the name of a design object is given by an overt ostensive definition. We consider
the names of design objects as rigid designators; accordingly, they denote the same design
individual through the whole of a design cycle. Given that this baptism is always explicit, and
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the cluster of properties of a design object is equated its name, we take the Russellian view that
the definition of a design concept holds as an apriori and necessary true in the idiolect of the
designer and the CAD system at some given design state. Of course, such definitions can vary
along the evolution of the design task, but at every state of equilibrium, they are considered

analytic truths.

In the kind of design task that we are interested in, design knowledge is expressed through
drawings and also through language. Geometrical form or shape is usually expressed by means
of graphical representations, but its interpretation --function, specifications, standards, costs,
materials, tolerances, etc. -- is expressed through natural language, or through an appropriate
logical or mathematical language. We have to consider as well that a design specification might
be satisfied by more than one object; for instance, several geometries or different materials
might satisfy all the requirements expressed in some given design concept. Accordingly, we
define a design concept as a function from individuals to truth values. That is to say, if an
individual satisfies all specified requirements and constraints at some design state then it is
within the extension of the current design concept. Let @ be a cluster of properties that are
known by the human-designer at some design state, and let x be a variable standing for some
object to be designed. A design concept is represented in L as
(1) Ax.D(x)

In a more intuitive way, we say a design object is the particular individual within the extension
of a design concept whose graphical description is provided in the current design state of a
design process. Note that a graphical representation of a design object is satisfied by only one
individual within the extension of its design concept. This is so because all the functions named
by the operators of the graphical structure are instantiated by every graphical representation of
the design object. The values provided by this instantiation will be different for different
drawings. Then, each individual in the set of design objects has, in addition to the overtly
defined properties, a set of properties provided by the representational system and the overt

drawing.

In our theory, the relation between a human-designer and the representation of design objects

and design concepts is illustrated in Figure 7.1.
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FIGURE 7.1

In the lines of the graphical and linguistic dialogue of Section 6.3, objects are expressed in the
representational system by drawing their graphical representations and by specifying their
linguistic properties. In the design cycle, one such object is selected as the subject of a design
task, fixing in this way the referent for a design concept. Then, the definition of the properties
that a design object must have --the design concept-- is specified in the same kind of dialogue.
Note, however, that the definition of the design concept is not asserted in the natural language
knowledge-base, but rather in the Dialogue manager DM. This is so because the design concept
is the knowledge that actively guides the design task, and it is used by the dialogue manager to
test the equilibrium between the graphical and linguistic representation of the design object.
We consider that in every definition state, there is equilibrium between these two sorts of
representations. Here, it is worth recalling that equilibrium in this context is not a notion of
‘consistency’ but rather a notion of reference: equilibrium holds whenever both linguistic and
graphical representations of the design object refer. According to our definition, a graphical
representation refers if and only if the current description of a graphical object satisfy the
geometrical properties of its graphical type, as defined in sections 6.2. and 6.3.

In GRAFLOG, the representation of a design concept and of the current design object is
accessible to the design interpreter ADP. This relation is illustrated in Figure 7.2. Design
conditions asserted in NLKB are terms of sort bool in L q The drawing, on the other hand, is
interpreted by constructive geometrical and topological procedures.
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FIGURE 7.2

Note that the design interpreter ADP ‘sees’ the equilibrium between graphical and linguistic
systems of representation through DM. In fact, in every main control cycle of the system, there
is an equilibrium testing phase, and ADP becomes active only when this condition is not

satisfied.

Next, we come to the analysis of the dynamic behaviour of the system. Assume that there is a
design concept expressed in the representational structures of GRAFLOG. Assume as well that
there is a state of equilibrium between NLKB and g db. Now, suppose that the human-user
manifests a design intention, and some graphical symbol is altered on the drawing by standard
graphics interaction. The immediate consequence of the human manipulation is
unconditionally executed by the interpreter, along the lines of graphics interactive editors.
When such an action takes place, the human designer is aware of the current interpretation of
the design object, as illustrated by the dotted arrow labelled design object interpretation in
Figure 7.3. He must know the meaning of the current graphical and linguistic representation in
order to express a design intention. In relation to the graphical input event itself, we make the
conceptual distinction between ‘the information’ and ‘the intention’ that such an action
expresses. The intended interpretation for the dotted arrow with the label graphics
manipulation in Figure 7.3 is that it conveys the geometrical information required to update the
geometrical data-base g_db. The interpretation of the arrow labelled human design intention,
on the other hand, expresses the ‘intention’ underlying such an action. The design intention
itself has to be inferred by the system on the basis of the control information that passes from
the human designer HU to the dialogue manager process DM, and from the graphical and
linguistic context in which such an action is expressed. The system’s inference process starts
when DM enters into an equilibrium testing phase in relation to the current drawing and design
concept. In other words, DM verifies that the graphical representation of the subject of the
current design task can be constructed in the representational system. If this is so, the design
concept has a referent. If the graphical representation still satisfies the current design concept,
then the equilibrium is preserved and the control of the interaction is returned to the human-
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user, as indicated by the arrow with the label + equilibrium. However, if the equilibrium test
fails, the design interpreter starts a design inference process, and the control is passed to the
design interpreter ADP, as indicated by the arrow labelled - equilibrium in Figure 7.3.

design object design
interpretation NLKB conditions
------------------------ >
model .
human :
design intention o g — equilibrium %
7, 7
DM ADP
design aystem’s GRAFLOG
+ equilibrium oRpaeh p design intention
e N |
graphics i transformation '
manipulation g—db function ;
drawing
FIGURE 7.3

Now, GRAFLOG has to make a design inference by which the representation of the design
object that is intended by the human designer is found. In this process, several factors have to be
considered. In the first place, the goal for the overall process of change has to be determined by
the beliefs that the system holds as necessarily true in the design state in which the design
intention was manifested. These beliefs are accessible to ADP in NLKB, as shown by the dotted
arrow design conditions. In general, equilibrium will be achieved when a constructive procedure
for the graphical representation of the design object in some new state is found. Finally, a state
of equilibrium is achieved when ADP modifies the drawing in some appropriate manner.

In the lines of modifications of drawings produced by human designers, we make a conceptual
distinction between the information and the intention of modifications produced by the system.
The dotted arrow with the label transformation function expresses the geometrical information
by which g db is modified, and the arrow labelled system’s design intention expresses the
intention behind such a modification. System design intentions are deduced in relation to the
overall design task, and they are of course conditioned by the main design intention expressed
by the human designer. There is an equilibrium test in every transformation cycle, and the
process goes on until this test succeeds. In this scheme, we have to consider whether the process
converges to the satisfaction of the design intention, or whether there is not such satisfaction at
all. When the inference cycle is concluded, the interactive control is returned to the human-

designer, as shown by the the arrow + equilibrium.
The definition of a design concept can be extended in every state of equilibrium by modifying
the list of properties and relations of the design object. Design concepts undergo processes of

change when the human-designer realises new requirements and constraints of the design
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object. This is a natural step in the traditional design cycle. However, changes in the linguistic
definition of design concepts do not usually set the system to disequilibrium states because the
design object exists as long as there is a well formed drawing. However, updating the linguistic
representation can lead to internal inconsistency in the linguistic representation. For dealing
with this sort of inconsistency a Truth-Maintaining System (Doyle 1979) would be required.
Logical inferences in such a situation would be nonmonotonic, and our representational system
is unable to cope with such a problem at the moment. However, the study of nonmonotonic
logics has been subject of a very large number of studies and it is not further considered here
(Moens 1989). Here, is worth pointing out that there are some theories of design (Tomiyama
1987, Millington et al 1988, Veerkamp 1988) in which the role of Truth-Maintenance Systems
is thought of as paramount, and failure in keeping track of nonmonotonic inferences is
considered one of the larger obstacles for modelling design processes. However, I believe that
the most important issue in a design process is the construction of the design object itself, and it
is not clear how nonmonotonic reasoning is related to this more fundamental issue. But it might

be the case that these two issues are altogether unrelated.

7.2. Incremental Definition of a simple Design Concept.

In this section, we develop further the graphical and linguistic dialogue of Section 6.3. We
introduced the definition of a set of walls, a house, etc. Now, consider that although these
objects have been described, nothing has been said so far of them being the subjects of a design
process. In fact, any such individual or any arbitrary subset of them could be the subjects of a
design task. We might be engaged in designing the house, or one room within the house or even
one wall in such a context. It is clear that the shape of the house, for instance, will determine the
properties of the other individuals that are contextually related. However, we have to express,
in an explicit manner, which entity is being designed, and that statement will have repercussions
in the overall design process. A design object has a cluster of properties and one such property
asserts the fact that it is the subject of the current design task. According to the general
definition in (1), a design concept is of the form,
2) Ax.(design_object(x) A Cyn C{ A ...A C)).

where x designates the design object, and CyA C; A...A C, is an arbitrary and possibly null
conjunction of properties, or constraints. This set of properties can be null given the fact that the
design object can be represented by a basic term in the graphical domain, when the design

object is just a basic geometrical construction that has been given a name.

When the interpretation of the basic graphical objects --like the house and the room-- has been
introduced, we can define one among these objects as the subject of a design task. We can

express the following ostensive definition,
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3) The design object is this house.

at the time the house that was defined in Figure 6.6 is pointed out. We repeat this figure here for

clarity.
Ve 5 Vo
/ﬁ( X
V:3 K
Va vy
FIGURE 6.6

Definition (3) fixes the referent for the current design task, and the fact design_object(house_1)
is asserted in NLKB.

Now, the current design concept is changed to

4 Ax.(design_object(x) A house(x)).
The individual denoted by house 1 is within the extension of such a concept because the
application

&) Ax.(design_object(x) A house(x))(house_1)

is equivalent to
(6) design_object(house_1) A house(house_1).

This is turn is satisfied in the graphical and linguistic domain in the current state of the system.

In GRAFLOG, there is a current design concept and a current design individual in every design
task. The design concept is represented as a PROLOG clause supported by the Dialogue
Manager DM. The form of this clause is

@) design_concept(X) :- design_object(X), ®(X).

where @ stands for the conjunction of all the properties of the design object in the current
design state. In our example, the current design concept is represented in DM as,

8) design_concept(X) :- design_object(X), house(X).

Now, we can illustrate the equilibrium testing phase of every interactive cycle in detail. There is

a state of equilibrium if conditions (9) and (10) hold:

(9) The graphical representation of the design object x is not an error element of its

corresponding graphical sort in g_db in the current state.
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(10) The goal design_concept(x) is satisfied by a unique object in the current state of NLKB,
where x denotes the current design object.

The satisfaction of clause (9) depends on the geometrical procedures associated with the

graphical structure D in Section 6.1. The satisfaction of (10) depends of the knowledge

represented in the current state of NLKB. In the example, the clause design_concept(house_1)

can be satisfied in NLKB in terms of the basic facts design_object(house_1) and

house(house_1).

In the graphical domain, however, the design concept given above certainly identifies a number

of houses. To appreciate this point, we repeat Figure 6.5 and clause (6.64) for clarity.

—
4

FIGURE 6.5

(6.64) g_db(house_1, polygon,
[origin_of(wall_1, ),
e_join_at(wall_2, wall_1, ),
e_join_at(wall_3, wall 2, ),
t_join_at(wall_3, wall 4, ),
e_join_at(wall_5, wall 3, ),
end_of(wall_5, )]).

For instance, the three drawings in Figure 7.4 are valid houses.

sk

FIGURE 7.4

The design process can be concluded by choosing one of the objects in in Figure 7.4. Or we can
specify further the definition of the design object, and type expressions (a) to (c) in (11) at the
time their corresponding graphical referents are pointed out in the screen, as shown in Figure
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7.5.

(11 (a) These are parallel.
(b) This is horizontal.
(c) This is in the house.
— R ——X
X
a) b) c)
FIGURE 7.5

These properties increment the definition of the current current design concept, as shown in
(12),
(12) Ax.[  design_object(x) A
house(x) A
parallel(wall_1, wall_3) A
horizontal(wall_4) A
in(end_of(wall_4), x)

1.
In the implementation, the current design concept in DM is the clause
(13) design_concept(X) :-
design_object(X),
house(X),

parallel(wall_1, wall_3),
horizontal(wall_4),
end_of(wall_4,Y),
in(Y, X).
Examples of individuals within the extension of this more refined design concept are shown in

Figure 7.6.
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a) b) c)

FIGURE 7.6

Now, suppose that the rooms and the corridor are defined by typing the expressions (a) to (¢) in
(14) at the time their referents are graphically pointed out in the corresponding drawings in
Figure 7.7.

(14) (a) This is the bedroom.
(b) This is the living-room.

(c) This is a corridor.

,,,,,,
,,,,,,,,
fffffff

......

a) b) c)

FIGURE 7.7

The corresponding representation of these expressions in NLKB is

(15) (a) room(bedroom).
(b) room(living_room).
(c) corridor(corridor_1).

Now, suppose that we want to say as part of the design concept that the living-room is always
larger than the bedroom. The concept of the house is then extended to’
(16) Ax.[  design_object(x) A
house(x) A
parallel(wall_1, wall_3) A
horizontal(wall_4) A
in(end_of(wall_4), x) A

y = area_of(bedroom) A

! Assume that we have extend the signature of L 4 to allow arithmetic operations and relations.
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z = area_of(living_room) A
Z>y
1.
This new definition of the design concept is still related to the space in a very direct manner.
Now, we consider the definition in L ; of properties that have a more abstract character. Suppose
that we want to say that the floor of the bedroom is made of parquet, the floor of the living-room
is made of marble, and that the price of the bedroom floor must be lower than the price of the
living-room floor. If the prices per unit of both materials are known, then this concept can be
expressed as
(17) Ax.[  design_object(x) A

house(x) A

parallel(wall_1, wall_3) A

horizontal(wall_4) A

in(end_of(wall_4), x) A

y = area_of(bedroom) A

z = area_of(living_room) A

floor_of(bedroom, parquet) A

floor_of(living-room, marble) A

$_per_unit(parquet, p1) A

$ per_unit(marble, p2) A

$ bedroom =y times p1 A

$ _living_room =z times p2 A

$_living_room > $_bedroom

1.

In this more complex concept, spatial properties and other abstract requirements that are
expressed through language are represented in an integrated fashion. This feature is highly
desirable for the definition of intelligent CAD systems when they are thought of within the
context of integrated manufacturing environments (Gandhi 1989,  Pratt 1988,
Cunningham 1988, Dixon 1986, Requicha 1988, Opas 1988). This facility is also useful in
architectural design systems (Tweed 1989).

This process of specifying the design object can go on for ever. For any set of conditions that
we specify in drawings there are many moves to make in pursuing the final design. We can add,
delete, update the properties and relations of the individuals, and we can redefine the design
concepts limiting the space of possible designs; however, at some point in the process, we will

have to make subjective choice among the possibilities given for us at that state.

Design concepts guide the designer through the whole design process; they are not known in
advance by designers, and they are discovered throughout the process in the same way that the
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design object is. Of course, in many design domains, a detailed definition of the concept can be
given on the basis of previous design experiences, and the design cycle does not have to be
started from scratch. The important point is that when a design concept has been clarified it
actively guides the designer along the design process.

7.3. The Notion of Design Intention.

The design concepts presented so far are ‘passive’ because they are used for verifying whether
some particular drawing satisfies some explicit set of conditions, and the designer is responsible
for taking every initiative for updating the representation in the design process. Now, we
consider the definition of ‘active’ design concepts in which the system takes the initiative and

starts a cycle of design.

For our first approximation of the notion of design intention, consider that the dynamic
behaviour of the system can be specified by expressing simple programs in the course of the
graphics and linguistic interaction like, for instance, the change rule presented in Chapter 6, in
Figure 6.12. Although the interactive graphical and linguistic definition of these programs
seems natural and powerful, such a scheme is in fact, very similar to traditional AI rule-
production systems. Such a kind of rules produce local transformations in drawings, but they
might have undesirable consequences at the global level. Here, we explore an additional layer
of functionality in which such programs are inferred and applied to by the system in the course
of the design session. The purpose of this layer is to trace the global consequences of local
transformations in the process of modifying a drawing. Next, we discussed some preliminary
considerations for the automatic definition of such processes. The notions introduced below in

this chapter are formalised in Chapter 8.

The design task that we consider here is the geometric modeling of 2-dimensional wire-frame
drawings that are common in architecture and other kinds of design domains. The problem in
this design task is how to specify and produce a change of the graphical representation of a
design object, given a set of overt geometrical and topological constraints. This design domain
has been subject of much research (Arbab 1989, Borning 1981, Kimura 1986, Suzuki 1988,
Light 1982, Rossignac 1989, Santana 1987). In these approaches, human designers are
supposed to understand some predefined mathematical model --the geometric model-- and in
such a context, express the parameters for the required modification. Not surprisingly,
traditional geometric modellers betray in some situations the expectations of human designers.
Much work and effort is spent in defining geometric modellers that behave better in relation to
human expectations. However, none of the traditional methods face directly the fact that
geometric modellers are rather models of a kind of human design inference that happen to be

based on geometry. But of course, these models are not complete and they only explain a
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human design inference when the object that they produce is according to the expectations of
the human designer. Here, we can raise an interesting question: how can we know which is in
fact the object intended by the human designer in this sort of design task?

In fact, if a geometric modeller behaves as every human being would have expected in some
design task, the process by which the system would come to the solution of a specific design
problem would be similar to the process by which such a problem is solved by the human
designer. If such a geometric modeller is ever built, its definition would give an explanation for
the corresponding human behaviour. We have to consider, however, that the product of a design
task depends not only on ‘the design skills’, but also on the state of knowledge of the human
designer at the time such a task is performed. Differents states of knowledge would determine
different models for the solution of a specific design problem, in the same way that different
human designers can produce different solutions for the same design problem. Then, what has
to be explained is an underlying design faculty: the design process itself and its relation to the
contingent beliefs of human designers. When this faculty is exercised, a human design inference
is performed and a design object is produced. Although a solution of this problem is far from
being found, facing head-on the fact that geometric modellers are models of a kind of human

inference might shed some light on the deep nature of this very hard problem.

The method that is presented below is semantically motivated. Here, we take an explicit
account of the current design concept and intention, and these definitions determine the model
upon which the solution is found. There is of course a basic layer of geometry that the human
user is supposed to be aware of. However, the geometry is used in a non-deterministic process,
and several solutions for a particular design task can be produced. It is worth pointing out that
there is no intention to make any psychological claim in relation of how human designers come
to find design objects in this task. However, I shall show that the process introduced below in
this chapter and in Chapter 8 produces objects within the extension of the current design
concept, and also provides a causal link between the original object, the intention manifested by
the human designer, and the new design object. The method is also able to determine that some
problems have no solution. Furthermore, it is possible to produce a natural language and
graphical interactive explanation of the process by which the solution of some particular

problem is found, along the lines of the other conversations in GRAFLOG.

In Figure 7.8.a our well known house is shown again. Suppose that the current design concept
for the house is as shown in (12) and (13) above. We might like to try a different object and to
produce a new graphical representation. For instance, by pointing out one of vertices of the

polygon standing for the house, and dragging it to a new location, as shown in Figure 7.8.b.
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FIGURE 7.8

We will refer to this kind of desire as a design intention. It is worth noticing that both houses in
Figure 7.8.a and 7.8.b are within the extension of the design concept that was introduced above.
They satisfy both the graphical and logical conditions stated when the concept was made

explicit through the graphical and logical interactive dialogue.

7.3.1. Intended and Free individuals in Design Intentions.

The design intention has as a purpose to select an alternative description of the design object,
but within the current design concept: the model that is determined by the current state of the
data-bases of the system. To achieve the new representation, we could erase the whole drawing
and start all over again, but that would be a very uneconomic behaviour, and to modify the
current representation would be a much better strategy. In fact, that is what a human designer
would do in the circumstances: he or she would erase the changing constituents of the graphical

representation and then draw them again in the new spatial positions.

The question is now, which objects have to be modified? Here, the human designer has to make
a decision and some individuals would have to remain as they were before the modification, and
some others will be changed. In fact, from comparing Figures 7.8.a and 7.8.b we can see that
the only individual whose graphical properties remained the same before and after the process
of change is wall 1 2 If the human designer modifies the house in this way, we can see that
besides selecting an alternative instance in the extension of the design concept, he or she wants
to see some new instance of the designing object in which the individual that remains fixed --
like, for instance, wall I-- is the reference for the whole transformation. This is a very
important consideration because it imposes a very strong restriction among the set of possible
objects that satisfy the design intention and are within the extension of the design conlcept.3 Let
us name this individual --the reference of the transformation-- the intended individual because
the transformation is performed with the intention of finding the new drawing with respect to
this --intended-- individual. In fact, there might be a set of intended individuals and

2 The identifiers for the walls of the house are shown in Figure 6.5, This figure was repeated above in this chapter for clarity.

? In the implementation, several strategies for defining ‘invariant’ individuals can be considered. For instance, to point out the

individuals that are invariant in some context before the design intention is expressed.
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modifications would be further restricted.

Individuals that are modified in pursuing the design object will be referred to as free
individuals, because they can be updated in the modification process. It is clear that modifying
one or another free individual in transformations would produce different new designing objects
and they will be generated through different sequences of actions. Here, we have to decide
which free individuals have to be modified, and also what is the order in which the
modifications will be made. In Figure 7.9 two possible modifications for the house are shown.

The intended individual is wall_1 as before.

b)

FIGURE 7.9

In Figure 7.9.a, the end of wall_2 was moved to the bottom-left, and in Figure 7.9.b the origin
of wall 4 was moved to the left. The point to see is that for some intended individual, the
choice of the individual that is considered free for the initial modification, and the particular
way it is updated, will eventually produce a highly restricted set of possible configurations, and
in some situations a single particular one. Furthermore, the individual that the human designer
chooses to modify determines somehow the whole design intention and it is considered an
invariant for the transformations applied by the system. A very important consequence of this
last consideration is that the initial design object cannot be reached by a cyclic sequence of

transformations.

Conceptually, the human design intention and the system design intention are different, though
the later is subordinated to the former. When the human designer expresses a design intention
he or she selects two sets of individuals: the references for the whole transformation, that are
not subject to modification, and the set of individuals that he or she modifies for expressing the
intention. From the point of view of the system, however, the individuals in these two sets are
invariant they cannot be modified. The individuals that the system is allowed to modify for
solving a problem are included in the difference set between the set of all individuals and the

invariants in its view.
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7.3.2. Degrees of Freedom.

In this version of GRAFLOG there is just one kind of basic symbol: the line. As was shown,
dots and polygons are determined by the graphical structure D. It is clear that a dot cannot be
altered without changing the properties of the line that it defines, and lines and polygons can be
modified through updating their constituent dots. Now, we define the degree of freedom as the
number of terms of sort dot that can be altered in a single transformation. This definition is
introduced with the purpose to impose a constraint in the complexity of transformations for
satisfying design intentions. The lower the degree of freedom, the lower the transformation
complexity. In our theory, all transformation functions that are deduced by the design
interpreter have degree of freedom one. For the definition of this kind of transformations, the
functions move_origin and move_end will be used. Transformation functions have the form of
the change rule defined in Section 6.5, and they are applied by the design interpreter ADP.

Through a sequence of modifications, the graphical representation that satisfies the design
concept can be found. In Figure 7.10 a sequence of transformation for achieving the design
object of Figure 7.9.a is shown.

e)

FIGURE 7.10

As we can see, for any two sequential states of the design process just a single dot of a line is

allowed to change.

A possible sequence for producing the object of Figure 7.9.b is shown in Figure 7.11.
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a) b) c)

FIGURE 7.11

However, from Figure 7.11.a to 7.11.b, two extreme points of a line are updated, and from
Figure 7.11.b to 7.11.c two points, each one of a different line, are updated as well. These

transformations have a degree of freedom of two.

7.3.3. Propagation of Design Intentions.

In the process of modifying some design object, the sequence of transformations for achieving
the new instance of the design object is determined by the intended and free individuals
expressed in the main design intention. Consider again the design intention illustrated in Figure
7.10. In this process, the human designer choses wall_I as the intended individual, and wall_2
as the free individual for starting the transformation sequence, and the drawing in Figure 7.10.b
is produced. This second drawing cannot be the new design object according to the intention
expressed because it is not within the extension of the current design concept. The drawing

does not satisfy the design concept because the condition

(15) Jv,.v, = e_joint_at(wall_3, wall_2).
is not satisfied in Figure 7.10.b. The transformation from Figure 7.10.b to 7.10.c seems to be
fully determined because the only condition that is not satisfied by the drawing is that wall_3
does not join wall_2 at v,. However the next transformation from Figure 7.10.c to Figure 7.10.d
is not fully determined since there are two independent conditions that the design object must
satisfy to be within the extension of the current design concept. These conditions are

(18) (a) Jv,.v, = e_join_at(wall_4, wall_3).

(b) parallel(wall_1, wall_3).

The sequence shown in Figure 7.10 is produced with the intention of satisfying the parallel
condition in 18.b but if condition in 18.a is satisfied first by the interpreter, an alternative

sequence of transformations is produced, as shown in Figure 7.12.
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FIGURE 7.12

As can be seen, the two different sequences imply a different number of state transitions. This
process in in general non-deterministic: different sequences can produced different instances of
the design object, sequences can have different lengths, and some sequences might even be
cyclic. Finding out which sequence is intended by the human designer for an arbitrary design
concept and an arbitrary design object is a very hard problem. In fact, the human designer might
neither be consciously aware of the shape of the desired object nor of the sequence of changes
by which it is reached. The intention can be manifested in order to satisfy a local desire, and yet

it has consequences at the level of the whole drawing.

Next, the notion of subordinated system design intention, as opposite to the main design
intention that is specified by the human-designer, is introduced. A subordinated design intention
is defined as the intention to modify a drawing from any disequilibrium state to the next state in
a transformation sequence. In other words, once the main design intention has been expressed
by the human designer, a sequence of subordinate intentions have to be defined for mapping the
current state to the next until equilibrium is restored in the system. In the same lines, we define
a subordinate design concept as the condition --or set of conditions-- that are specified in the
current design concept but that are not satisfied by the graphical representation in some
disequilibrium state. In the definition of subordinated design intentions, there is always an
intended individual and one free individual. We define the intended individual for a
subordinated design concept as the individual that was modified in the transformation

function that produced the current disequilibrium state.
Consider again the process shown in Figure 7.10. When the main design intention is expressed,
as shown in the transition from Figure 7.10.a to Figure 7.10.b, the free individual in the human

design intention is wall_2. The next transformation --from Figure 7.10.b to 7.11.c-- is produced
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by a subordinated design intention in which the intended individual is wall_2, and the free
individual is wall 3. This last individual is the one updated for satisfying the condition --the
subordinated design concept-- that was not satisfied by the drawing in the disequilibrium state
in Figure 7.10.b. Once this subordinated design concept is satisfied and the next state in the

sequence is produced --Figure 7.10.c-- a new local design intention has to be expressed.

Subordinate design concepts depend on local conditions of every disequilibrium state in the
design process. In their satisfaction process there must be an individual that is considered the
reference for the local change --the subordinated intended individual; there is also some degree
of choice that depends on the possible free individuals that can be updated, and a sense of
direction which is determined by the beliefs that the system holds as necessarily true when the
design intention was manifested by the human designer. These beliefs are represented in the

main design concept and in NLKB.

Now, we define the basic heuristics for guiding the search for new design objects in this theory
of design. We refer to this rule as intention propagation, and it is defined as follows: if an
individual that was free in a disequilibrium state was updated by a subordinated design intention
then it becomes the intended individual in the next subordinate design intention. This notion

will be formalised below when the function €2 is introduced.

The definition of the intention propagation process is, however, not yet completed and some
additional considerations are given below. In fact, the intention propagation process --as it
stands at the moment-- is unable to produce the sequences in Figures 7.10 and 7.12. In the
transition from Figure 7.10.c to 7.10.d the intended individual was wall_3, but it itself was the
one updated in the transformation in order to satisfy the subordinated design concept
parallel(wall_1, wall_3). However, the reference for such a transformation has to be wall_I,
and there is no way, according to the current definition of the intention propagation, for wall_I

to be the intended individual for such a subordinate design intention.

Consider now the transition from Figure 7.12.d to 7.12.e in which wall_3 is modified. This
transformation is applied for satisfying the subordinate design concept parallel(wall_1, wall_3)
as well. However, the individual that was modified in the previous transformation in the same
sequence --from Figure 7.12.c to 7.12.d-- was wall 4, and according to the definition of
intention propagation, it should be the reference for the next transformation. In this case, wall_4

is not even referred to by the current subordinate design concept.

Notice that wall_1 is the reference in both of the problematic examples. Notice as well that it is
the intended individual of the main design intention. Now, we extend the definition of intention
propagation by considering the satisfaction of subordinate design concepts in relation to the
main intended individual; more generally, in relation to the individuals that are invariant in the
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human specified main design intention. In the two cases discussed above, the intended
individual of a subordinate design concept is one of the invariants in the main design intention.
We define that the intended individual of a subordinate design intention can be one individual in

the set of invariants in the main design intention as well.

It is worth noticing that the intended individual in the main design intention might be left
unspecified. In such a situation, the only invariant individual in a sequence of transformations
would be the one modified by the human designer when the main design intention is expressed.
Of course, the number of possible configuration produced by the process can be very large, but
in some problems this might be a plausible situation. In Figure 7.13 this situation is illustrated.
The same sequence of transformations is shown, but as can be appreciated in the transformation
from Figure 7.13.d to 7.13.e, the intended individual is wall 3 and the free individual for
satisfying the parallelism condition is wall 1. If wall 1 is not the intended individual of the
main design intention, and if neither wall_I or wall_3 is constrained to be vertical, then the new

intended design object could be the one shown in Figure 7.13.e.

FIGURE 7.13

An additional important consideration is that intention propagation blocks the production of
some sequences that would arrive otherwise at objects within the extension of the main design
concept. For instance, the sequence is Figure 7.14 is not produced. This is so because the
object in Figure 7.14.e would not be house intended by the human-designer in that context.
That design object would be produced from the house in Figure 7.14.a, but by a different main

design intention.
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FIGURE 7.14

Another related consideration is that if both intended and free individuals that are referred to by
a subordinated design concept are in the list of invariants of the main design intention, then
such a subordinated design intention cannot be satisfied.

7.3.4. Parallel Satisfaction of Design Intentions.

Subordinate design intentions can be satisfied by simultaneous transformations. Consider the
transitions from Figure 7.10.d to 7.10.e and from 7.10.e to 7.10.f. Both of these transitions have
the same intended individual, and the conditions triggering both transitions are independent.
Intuitively, they might be performed in parallel. Furthermore, in that sequence it is important to
consider whether the intended individual for the last transformation can be determined. In fact,
in Figure 7.10.e wall_3 is neither one of the invariants for the main design intention, nor the
individual that was free in the previous transformation, and the whole sequence in Figure 7.10
cannot be produced by intention propagation. Now, consider that wall_3 is the current intended
individual in Figure 7.10.d and both of the conditions
17) (a) Jv;.v; = joint_at(wall_4, wall_3).
(b) Jv,.v, = joint_at(wall_5, wall_3).
can be satisfied by a parallel pair of transformations that have wall_3 as the intended individual,
but involve the modification of different free individuals: wall 4 and wall_5. If the condition of
parallel satisfaction of design intentions is not considered, there is the risk that the referent for
the main design intention is lost, as it happens in the sequence shown in Figure 7.10. However,
when the intended individual for several independent transformations is the same, and the free
individuals of these changes are different, a number of conditions can be satisfied

simultaneously, as shown in the transition from Figure 7.15.d to 7.15.e.
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FIGURE 7.15

In the same way that the application of parallel transformations reduces the sequence in Figure
7.10 to the sequence in 7.15, the sequence in Figure 7.12 is reduced to 7.16.

a)

FIGURE 7.16

7.3.5. The Satisfaction Rules and the Models of Design.

The satisfaction of local conditions is a non-determined process. Given a design condition that
has to be satisfied in relation to some given pair of intended and free individuals, there might be
more than way, and in many cases an infinite number of ways, to satisfy such a condition in
terms of such a pair of individuals. For every problem specified by a set of constraints where
the references for the transformations are known there might be an infinite number of
‘mathematically sound’ solutions, but just a very few of them might be considered ‘intuitive
solutions’. Although specific design conditions are defined in terms of local parameters, the
rule defining the actual mode of satisfaction might be contextually determined. Furthermore,

different design contexts might demand different rules for satisfying the same design condition.
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Consider for instance the satisfaction of the parallel(wall_I wall_3) condition from figure
7.15.c to 7.15.d, or the satisfaction of the same condition in Figure 7.13. Now, how can we tell
what rule such transformations obey? Why was the length of the wall that was rotated altered in
these transformations? In fact, the number of modes for satisfying the condition in these
examples is infinite, and yet the transformation mode that was chosen might or might not seem
to some readers ‘natural and intuitive enough’. I myself find quite difficult to explain
convincingly why this example was chosen in the first place, and what rule I followed when I
satisfied the parallel condition in that way in this particular example. To know which rule we
follow is not a trivial matter. According to Wittgenstein (Wittgenstein 1963, p. 38),

[82] What do I call ’the rule by which he proceeds’?--the hypothesis that satisfactorily

describes his use of words, which we observe; or the rule which he looks up when he uses

signs; or the one which he gives us in reply if we ask him what his rule is?-- But what if obser-

vation does not enable us to see any clear rule, and the question brings none to light? --For he

did indeed give a definition when I asked him what he understood by "N", but he was prepared

to withdraw and alter it.-- So how am I to determine the rule according to which he is playing?

He does not know himself. --Or, to ask a better question: What meaning is the expression "the

rule by which he proceeds" supposed to have left here?

If we look back to a particular behaviour, we can describe how it actually happen. If the same
things happen often enough, we can say that there is a rule, but if the behaviour is to be

anticipated, we can only say that what follows is embedded in a process.

Here, rather than following all possible consequences of the different satisfaction modes for a
design intention, we define a specialised procedure --a heuristic method-- for satisfying basic
subordinated design concepts that are considered in the intention satisfaction process. The
heuristic rules are presented in detail in Chapter 8, and they produce the sequences illustrated in
Figures 7.15 and 7.16. The way these procedures are defined determines the ‘abilities’ of the
system for the solution of problems in some design domain. For the definition of these
methods, we can consider local and global properties of the structure in some particular design
state. We can also consider the design states that would be reached if a condition is satisfied in
some or another way. These rules might be contextually determined in relation to specific
design tasks. Furthermore, the fact that these transformations are defined in some or another
way in geometric modellers determines an implicit model of the human design intuitions in the
design domain that is targeted by the system’s designer. And as was mentioned, these models
are usually incomplete in as much as they behave according to expectations in some situations,
but betrayed our design intuitions in others. It is rather paradoxical that when we are engaged in
the definition and implementation of a geometric modeller, we cannot avoid the fact that we are
also developing an implicit model of human design intuitions, which is as incomplete as our

grasp of the human design activity itself is.

The set of heuristics procedures presented in Chapter 8 has been defined having architectural

- 159 -



drawings in mind --or rather the drawing of a house with two rooms and a corridor in mind. The
definition of such collection of procedures for some application domain is itself a topic for a
complete research project. For architectural drawings Szalapaj (Szalapaj 1988) has developed a
powerful and simple set of rules based upon local properties of drawings. In that approach
architectural structures are tied to construction lines, and the relations between construction
lines dictates the sort of change produced by a transformation. Another interesting example of
the use of this kind of heuristics is developed by Santana-Sepilveda in a program called
SIGRASITT for the interactive definition of pylons (Santana 1987).

Here, we conclude this chapter in the notions of design concept and intention in GRAFLOG.
The definitions of design concept and design object, and their relation to the design cycle were
presented. An example of the definition of these two notions was developed in detail. Then, the
notion of design intention was introduced, and the considerations for the interpretation and
satisfaction of design intention expressed by human designers in the 2-dimensional wire-frame
design domain were discussed. In the next chapter, we introduce a function by which these
intention are satisfied in the course of a graphics and linguistic interactive design session, and a
set of heuristic methods that are used for the solution of design problems in our very specific

design domain.
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Chapter 8

A Function for
the Satisfaction of Design Intentions

In this chapter a function for the satisfaction of design intentions is presented. This function
corresponds, in the wire-frame drawings domain, to the function change that was presented in
Section 5.3 for following up the global consequences of local transformations in the blocks-
world domain. This function determines the consequences of modifying wire-frame drawings in

normal graphical interaction, and also the consequences of applying domain specific design

rules by GRAFLOG's interpreter itself.

In Section 8.1 the intention satisfaction function Q is formally defined. In Section 8.2, a
procedure for its evaluation is presented. In Section 8.3, the transformation functions that are
applied by the system in the satisfaction of design intentions are illustrated, and the assumptions
taken into account for their definition are discussed. In Section 8.4 some pragmatic
considerations for evaluating € are illustrated. In Section 8.5, a history mechanism for
explaining the methods by which GRAFLOG's interpreter comes to the solution of problems is
presented. Finally, the characteristics of the system’s integrated design environment are

highlighted and discussed in Section 8.6.

8.1. Definition of the Function Q.

We define the intention satisfaction function  as a function from design intentions to truth
values. If an intention can be satisfied in the current graphical context, and with the current state
of knowledge of the design interpreter = 7; otherwise, Q=0. An instance of a design

intention is represented by the ordered tuple <P, x, ®, Y>.

In the intention satisfaction process, design intentions are expressed and satisfied at design
states that are indexed by an ordered tuple, namely <i, j>. The pair <i, j> indexes a modal state
in the interpretation of the language L. A design intention that is manifested at some state <i,
Jj> is represented in our notation as i The state in which an intention is manifested will
be sometimes referred to as the state Q <i,j> 8 well. This notation indicates that states visited
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by the intention satisfaction process are organised in a tree structure in which i stand for ‘the
level’ or depth of computation and j ‘the delta’ or the j-son of its corresponding father state.
When a design state is referred in relation to its sons, the index of the father state is, by

convention, <i, >.

Now, we come to the description of the argument list of €2: P stands for a set of terms of sort
dot that were modified in state <i-I, > --the father of the current state in the intention
satisfaction process-- x stands for the design object in the current state <i, j>, ® stands for a
design concept, and Y stands for the set of terms of sort line that are invariant in the satisfaction
of the current intention. In our notation, a design intention that is expressed at some state <i, >
with an overt set of parameters is expressed as
) 0, JPx®YI
The function Q is defined as follows,
(1) IF ®(x) =1 at state <i, _> then Q_, _[P,x,D,Y]=1 as well. This means that the
design intention is satisfied in the current state <i, _>.
(2) If ®(x)= 0 or undefined in the state <i,j>, and the chain of causal relations between
design states that is established in the intention propagation process is broken, then

Q; j>[P, x, ®, Y] =0. This condition means that some given design intention cannot be
satisfied from the information that is available at the current state <i, j>.
(3) If neither of the previous conditions hold, then there is some state Q_; ;. that is
produced by the intention propagation process and the value of the function €2 is the same
for the states that are related in the process. In general, Q_; f= Q i s
We take the convention that the index of the state in which the intention is expressed by the
human designer is <0, 0>. The human action causes a state transition to the state </, 0>. For
instance, consider that once the object in Figure 7.15.a is modified by the human designer for
producing the object in Figure 7.15.b, the design intention that has to be satisfied by ADP is
represented as follows,
2) Q 1, o-[{end_of(wall_2)}, house_1, @, {wall_1, wall_2}].
where the graphical representation of the design object --house_I-- is defined in g_db as shown
in Section 6.2, and the design concept @ is as in (12) in Chapter 7. The set of invariants are

given by definition: wall_I has to be explicitly pointed out before the intention is manifested,’
and wall_2 is the individual that was modified by the human designer. It should be clear that

the value of Q_; ,. cannot yet be known, because house_I does not refer in such a state. In

particular,

! An special interactive mode is defined for such a specification.

2 Consider the conditions of reference in Section 6.3.
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3) 3v,.v, = e_joint_at(wall_3, wall 2).

denotes the error element of sort bool in the state Q_; 0>

Now, we introduce the indexed set A, of conditions specified either in the definition of the
current concept @ or in the description list of the graphical object x in its corresponding entry in
g_db which are not satisfied by NLKB or g_db at some state <level, >.

) Al“ﬂ = {64.0, o>’ 8<1, [ acn, “p}

Each term &_; . in Ay, is the j indexed set of subordinated design concepts that can be

simultaneously satisfied in relation to some particular individual o.. In our example,

®) Ay =13y, wall 2>}
where

(6) ) <0, wall 2> = te_joint_at(wall_3, wall_2)}.
For the satisfaction of the only conditioning_, . 1l 25 N Ay in Figure 7.15.b wall_3 has to be
modified in relation to the invariant wall 2. Such a transformation produces the drawing in
Figure 7.15.c. The design object in this new state has no denotation, and in fact, there is a new
design intention that is manifested in that state; such an intention is expressed as,

@) Q 2, 02.[{origin_of(wall_.‘i)}, house_1, @, {wall_1, wall_2}].

Note that Q_, ,. comes from satisfying Q_,  in relation to the only subordinated design
conceptinA, --8_, . 5. We can express this relation as

®) Q'-:2, 0> n-:l, >
In general, design intentions of father and son states of the design process are related by
satisfying the design intention manifested in the father in relation not to the main design
intention, but rather to some condition that is not satisfied in the father state. The reference for
this local transition comes from the intention propagation process. This relation can be
expressed as,

® Q
Now, consider that both Qq.' . and Qci+f.j>
but also in relation to the main intention. Next, we define the total design intention o S as

an ordered pair of the local and global design intentions that have to be satisfied at every state
<i, j> in the intention satisfaction process. The total design intention is represented as follows,

= Qci, _?[Ps X, 64’ os? {o}]

<i+1, j>
have to be satisfied not only at the local level,

(10) o XS (o VT o

Where local and global stand for the index pair <i, j> and <0, 0> respectively. The total design

local® globall'

intention of two states that are directly related --father and son-- is recursively defined as

follows,
(11) IF @(x) =1 THEN
e
Q q[,j:-(ancal’ leobal) =1,
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ELSE IF it is known that Qjocal cannot be satisfied THEN
+ =
Q <i,j>(Q’local’ ngba]) =0

ELSE FOR ALL 8(13 o I A

+
Q" 41,y 1, Pgtonad =2 o, Oy, P %D o, (03], Dy

The sentence it is known that Q cannot be satisfied in (11) means that although there might be
some conditions in the set A, at the state <i, >, the system might detect that their satisfaction
involves the change of an invariant individual, or simply, there might not be a transformation
function that is known to the system by which the required change can be produced. It should
be clear that the design intention will be satisfied at some state in which the design object
denotes and satisfies all the conditions expressed in the design concept. In fact, the main design
intention is satisfied at some state <n, m> in which A is an empty set, and [[P(x)]] = 1.

8.2. A Procedure for the satisfaction of the function Q.

In this section, we define the procedure €2 for the satisfaction of a design intention as

12 aqy [Pxo,Yl

<i, >
where the local and global parameters are defined as before. The computational procedure is
given from (i) to (iv) as follows,
13) (@) IF ®©(x) =1 THEN
Q+<i, . = 1 and x is the new design object
(i)  IF ®(x) = 0 OR undefined THEN
compute A, = {8 o 5 <1, B> 7 Sm’ T>}
delete all unsatisfiable & o i from A,
(iii) IFA,=9 THEN
Q+<l, > =0
(iv) FOR ALL satisfiable 84’ o N4,

+ +
v Q VeV Q

+ +
Q -:i,_:-:Q <i+1, 0> <i+1,1> <i+1,j>
Now, we define the procedure § that computes the set of basic lines that are referred to by some
expression in L. For instance,
(14) E(D) = {wall_1, wall_2, wall_3, wall_4, wall_5}.
E(e_joint_at(wall_3, wall_2)) = {wall_3, wall_2}.
For the computation of (ii) in (13) we consider the sets T, I, and F defined from (15) to (17) as
follows,
(15) T is set of individuals of sort line that are referred to in the design concept @ such that
I" = £(P), as shown in (14).
(16) I is the set of individuals that are invariant for the satisfaction of the design intention at the
current state. These are either the individuals that come from the intention propagation
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process or the invariants for the whole transformation. For computing the set / consider
that every expression of sort dot in the set P refers to a dot that was modified in the
transformation that produced the current state. We define the set L of lines modified in
such a transformation such that for all p € P, {(p) € L. The set of invariants in the current

design stateis/ =Y U L.

For instance, consider Figure 7.15b in which P = {end offwall 2)}, then,
E(end_of(wall_2)) = {wall 2} and L = {wall_2}. Consider as well the set of invariants for
the whole design intention Y = {wall_1,wall 2}, and I = {wall 1, wall_2} in the state
<I, 0>.

(17) F is the set of free individuals for the current design intention. This set includes all the
lines that can be modified for achieving the next state. F is the set of lines referred to by
the concept @ without the invariants in the state: F =T — I. Note that I N F =, and
F = {wall_3, wall 4, wall_5} in Figure 7.15.b.

The next step in the computation of (i) in (13) is to find the sets in
A= (0 s S, 1, B> e b Y>}' In general, a subordinated design concept in & <, o> €20
be satisfied if it refers to one intended individual o in /7 and to some free individual P in F.

However, if the satisfaction of a condition in some &_. __ is blocked by additional constraints

</, 0>
in the objects that are referred to in the design concept,jsuch a condition is deleted from this set.
This would happen, for instance, if the length or the angle of some line that is considered the
free individual in the satisfaction of some subordinated design concepts has been assigned a
constant value in NLKB.
Now, consider that the cardinality of the set A; determines the number of next states in
level = i + 1 that the satisfaction of the current subordinated design intention produces.

Consider as well that if the cardinality of a set & < o> in A; is n then the state Q_; i is
reached by applying n simultaneous transformation functions of one degree of freedom upon the

graphical configuration in the state Q_,

We illustrate the more representative cases of a father and son states relation in the intention

propagation process:

(1) One son-state one-transformation transition: in Figures 7.15.b and 7.16.b there is only one
member in the set A, namely ) <0, wall 2> = {e_joint_at(wall_3, wall_2)} whose
cardinality is also one. Then, the graphical configurations in Figures 7.15.c and 7.16.c are
all the same, and are reached by a single transformation of one degree of freedom.

(2) Several son-states reached by single transformations: consider state level = 2 in Figures
7.15.c and 7.16.c. The set

A2 = {6 ) ).

<0, wall_1>* “<1, wall_3>
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“@

where,

) 0, wall 35~ {t_joins_at(wall_4, wall_3)}.

0 w15 = {parallel(wall_1, wall_3)}.
These two transformations determine two different sequences for the intention
propagation process. The referents wall_1 and wall_3 come from the set of invariants I"
and from the intention propagation process respectively.
One son-state reached by n parallel transformations: consider the state /evel = 3 in Figure
7.15.d. The set

Ay= {8

<0, wall_3>} 5
where,

3, wall 3> = {t_joins_at(wall_4, wall_3), e join_at(wall_3, wall_5)}.
Here, wall_3 is the referent for the satisfaction of both of the conditions, and the two free
individuals in these transformations wall 4 and wall_5 are different.
The case of several son-states reached by a number of parallel transformations is analysed

along the same lines.

From these conditions and the examples in Figures 7.15 and 7.16 we can see that the design
object produced by both of the transformation sequences is the same. In fact, the sequences of
local design intention are partially ordered in a natural lattice structure, as shown in Figure 8.1.

Q

<0, 0>

[}

<1, 0>

0

/ <2, 0>

<3, 0> <3, 1>
<4, 0>

9]

<5, 0> = <4, 0>

FIGURE 8.1

The design object denoted in both of the states Q_s o in the left branch and € _ 4.0> in the
right branch is in fact the same instance of house_I. For more complex problems, there might
be several solutions, and also several sequences of transformations from which these objects are
reached. An issue that has not yet been explored is how this lattice can be used for optimising

the search space of the intention propagation process.
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8.3. The Transformation functions.

The intention propagation process states --in a non-deterministic way-- the conditions that
have to be satisfied in the interpretation of a design intention and the production of a design
object. However, the process does not define the mode of satisfaction of such conditions. In fact,
from a geometrical and topological point of view, there might be a very large number --in many
cases infinite-- of ways to satisfy a design constraint. The definition of the design intention Q
and its corresponding computational procedure tell us what has to be computed for satisfying a
design intention; however, neither the function definition nor its associated procedure tell us
how such computations are performed. We could consider the definition of € as a specification
of what has to be computed to satisfy a design intention, in order to abstract over the
implementational details. The ‘implementational knowledge’ of how to satisfy a design
condition could be encoded as some or other algorithm. However, this would be the case just if
the satisfaction of a design condition were a fully determined process; but the ‘know-how’
knowledge in this case is not a simple implementational detail: it is rather a model of what we
--the people who design this kind of systems-- believe that a human designer would do in order

to satisfy certain conditions in some given context.

Now, we come to the definition of our set of heuristic procedures. It is worth emphasising that
there is no intention to claim that the methods are related to some human psychological process,
nor that these heuristic rules are ‘good’ for satisfying design intentions in architectural
drawings. The purpose of this section is rather to illustrate the way these methods are defined
and used in the intention propagation process. The transformation functions presented in this
section are defined in a similar manner to the change rule in Section 6.5. For the definition of
these transformation rules, we assume that whenever there is an incompletely determined
transformation, the system draws a pair of construction lines in the direction of the overt lines
involved in the transformation. Then, the free individual is modified in relation to the intended

individual and according to the intersections determined by such a pair of construction lines.

In the definition of these relations we consider two default assumptions.

(1) Projective assumption: if the satisfaction of a subordinated design concept determines that
a line has to be modified to achieve certain mode of intersection, the angle of such a line
remains the same in the transformation, if possible.

(2) Rotational reference assumption: if the satisfaction of a subordinated design concept
requires that a line should be rotated, the pivot for such a rotation is either the current
origin or end extreme of the line to be rotated, if possible.

Although these default rules reduce the space of possible solutions, there are many situations in

which these criteria cannot be followed, and the human-designer must have learned the

idiosyncratic procedures that the system has been endowed with.
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In this version of GRAFLOG we only consider the satisfaction of conditions expressed as terms
of rank line line, dot, with the exception of int_mm whose satisfaction, if required, would have
to be defined by the user in relation to specific design tasks. Constrains defined in terms of
expressions of sort bool are verified in order the design concept is permitted. However, the
satisfaction of such a kind of constraints has to be determined by a direct manipulation on the
graphical objects, or by a task specific transformation rule defined by the user. For instance, by
change rules that are interactively defined along the lines of Section 6.5.

The satisfaction of some basic terms of rank line line, dot in L, like int_oo, int_oe, int_eo and
int_ee is fully determined because not only the intended and free individuals for this process are
known, but also the mode in which they have to be combined is unique. For the satisfaction of
terms int_om, int_mo, int_em and int_me there are an infinite number of ways in which the free
individual can join the intended individual and vice-versa. According to the projective default
assumption, for the satisfaction of these conditions the free individual is projected in its own
direction, and its end or origin is moved to the intersection point with the intended individual. If
the projection of the free individual does not joint in ‘t’ the intended individual, the
transformation fails, and the condition is marked unsatisfiable in the current state. The
satisfaction of these terms is illustrated in Figure 8.2 where o and P stand respectively for the

intended and free individual in the transformation.

FIGURE 8.2

Now, we come to the conditions that are directly relevant for the satisfaction of design concepts
in our example. In the current definition of GRAFLOG, every vertex in the description list of a
symbol of type polygon is denoted by one of the following terms: ¢_joins_at, e_joins_at, end_of
and origin_of. Consider that the last two terms impose no restriction in the line that they define,
but just define an unconstrained reference for a polygon vertex. We require, however, a
transformation for the satisfaction of the conditions expressed by the terms ¢ _joins_at and
e_joins_at. We also define a procedure for the satisfaction of the parallelism condition.
Additionally, we define a general heuristic rule that improves the performance of the overall
process and works in conjunction with the other basic transformation rules. The

transformations are defined from (1) to (4) as follows:

(1) t_joins_atterms are satisfied along the lines of basic join terms as shown in Figure 8.2,
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(2) For the satisfaction of e_joins_at we consider that these terms denote vertices of polygons

3

in the description of spatial regions in architectural drawings. The edges of a polygon are
oriented and the end of every edge is linked to the origin of its next edge in the original
definition direction. Suppose that we assign a polarity value ‘+’ to the end-extreme of a
line, and a polarity value ‘-’ to its origin extreme. Now, we assume that there is an
‘attraction force’ between edge extremes of opposite ‘polarities’, and a ‘repulsion force’
between edge extremes of the same ‘polarity’. For instance, the end of wall_2 is attracted
to the origin of wall_3 in the transition from Figure 7.15.b to 7.15.c, and there is also a
repulsion force between the end of wall 3 and the end of wall_2 in the same state.
Consider that without these pragmatic considerations, there are four possible ways to

satisfy the e_join_at condition.

The criterion of ‘extremes polarity’ discriminates between just two of the four modes in
which the e_joint at condition can be satisfied. For discriminating between the two
remaining cases we consider the magnitude of such an attraction force. Consider Figure
8.3.a in which e_join_at(o, ) has to be satisfied. Suppose that o is the intended
individual, d; is the distance between the end of o and the origin of B, and d, is the
distance between the origin of B and the end of .. We consider that the magnitude of the
attraction force between two vertices is inversely proportional to the distance between the
‘attraction poles’. Then, if d; < d, the transformation produces the relation in Figure 8.3.b
and if d, <d, the transformation produces the relation in Figure 8.3.c. We consider the
case in which both of these forces have an equal magnitude a very unfortunate one in

which we make a random choice.

a) b) c)

FIGURE 8.3

The satisfaction of the parallel condition between two given lines, one of which is taken
as the reference for the transformation and the other as the free individual is a very
undetermined process. The free line can be rotated in relation to any point lying not only
along the line itself but also in the infinite projection of such a line. Besides, the length of
the rotated line might be left constant, but it can also be altered in the transformation.
Furthermore, the parallelism can be achieved by rotating the free line in either clock-wise

or counter clock-wise direction.
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In the definition of the heuristic transformation for satisfying the parallel condition, the
center of rotation is defined to be either the origin or the end extreme of the line to be
rotated. The decision on which extreme of the free line is the one to be modified and
which extreme is the center of rotation is made by considering the sense of these two dots,
as defined in Chapter 6. If there is a term of the form origin_of(o) or end_of{cr) included
in the sense set of a dot, and o € I --is an invariant for the whole transformation-- such a
dot is considered the center of rotation; if such a dot were modified, an invariant for the
whole transformation would require a future modification in the intention propagation
process. Consider, for instance, that the terms of the form origin_of and end_of in sense
of v, in Figure 7.15.c are {origin_of(wall_3), end_of(wall_2)}, and the sense of v
includes {end_offwall_3), origin_offwall_5)} in the same figure. We have chosen v, as
the center of rotation, preventing a future modification of the dot end_of{wall_2), because
wall 2 is an invariant for the whole transformation. The sense of the dot Vs, On the other
hand, is referred to by the origin or end of lines that are free individuals for the whole
intention satisfaction process, and this last dot can be set to vary without future negative
repercussions. If an individual that is in the set I" is referred to by terms of both of the
dots of the line to be rotated, then the satisfaction of the parallel condition is prevented. If
there are no contextual restrictions on either of the dots involved in the transformation, the

center of rotation is selected by a random choice.

Despite these considerations, there is still a great deal of non-determinism in the
satisfaction of the parallel condition: we have to consider which is the direction of
rotation, and how the length of the rotated line is computed. These are also contextual
factors. Consider Figure 8.4.a in which o and B are the intended and free individuals
respectively. For the definition of the transformation, three construction lines are
considered. One of these construction lines is parallel to o and intersects the center of
rotation of B. The other two construction lines are perpendicular to o and each one of

them intersects one of the extreme points of o

FIGURE 8.4

The construction line that crosses the center of rotation of the free individual determines
two intersection points with the other two construction lines, as shown by the marks in
Figure 8.4.a. We consider these two points as candidate references for the new position of
the point that is altered by the transformation. Here, we make an additional heuristic
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decision: the new position for the dot to be modified is such that the new length of 3 is as
large as possible as the length of o.. When the transformation is applied, the position of the
selected dot of B is changed, as shown in Figure 8.4.b

(4) Now, we define an additional heuristic that can be applied in conjunction with all other
methods presented above. Consider that the dot that is modified by some transformation
function can have other dots attached to it. These attachment relations can be found by
examing the sense of the dot to be modified. We are interested, in particular, in the terms
of the form origin_of(o) and end_of(or) as before. If there is some o that is contained in
the set of invariants I" then the transformation is prevented all together, and the
corresponding condition is marked as unsatisfiable. On the other hand, if there is not
asuch that o € T', and there are other terms of the form origin_of(o) and end_of(c),
where o is not the free individual for the current transformation, then the positions of
these terms can be altered in conjunction with the modified dot. That is to say, the dot that
is modified by some transformation function of degree of freedom of one ‘drags’ all its
attached dots that belong to free lines in the state. The effect of this rule is equivalent to
the unconditional and simultaneous application of several transformation functions. This
heuristic has been used in the program SIGRASITT (Santana 1987) in which the
satisfaction of design intentions that are manifested upon very complex structures
converges very fast --most of the time-- to the solution intended by the human designer.
Given these considerations, the satisfaction of the design intention manifested in Figure
7.15 is produced with a significantly lower computational effort, as shown in Figure 8.5.

FIGURE 8.5

8.4. Evaluation of the Function Q™.

An important consideration that follows from the way the intentional function is expressed is
that it can be evaluated in a highly distributed process in a natural way. This feature is
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important for intelligent CAD systems because the task of finding solutions for interesting real-
life problems is likely to demand very large computational power. Furthermore, ICAD systems
must support highly interactive environments and they must be able to provide answers fast

enough; otherwise, human users might simply abandon them.

8.4.1. Distributed Computation of Q.

Now, consider that an intention to be satisfied in some state in the process is expressed by the
pair of local and global intentions. Consider as well that the intention propagation process is

defined as,

Q ,[P,x®,Y].

<i
We can think of this expression as a message that contains all the information that is relevant
for the function computation at every local state in the process. For computing the solution of
complex problems, we can consider a highly distributed processing scheme in which the
computation is started by sending a message to any available processor. This processor
computes the set of local design intentions Q_; 1> and produces a set of J son states. Then,
the parent processor can assemble and send a message for each j son state to some available
processor. When this task is accomplished, the father processor is itself available for receiving a
message from any other branch or level of the process. Although this issue has not yet been
fully explored, a parallel-or distributed processing system for the computation of the intention

propagation process could be used.

8.4.2. History of the Problem Solving Task Process.

In solving problem tasks it is usually helpful to be able to give an explanation of the particular
solution that is found by the system. In fact, given that the solution of problems is found with
the help of heuristic rules in which even random choices are used, an explanation for the
problem solution is demanded. A comprehensive explanation mechanism is considered one key

feature that an intelligent CAD system should have (Schmitt 1988).

Another very important consideration is that there must be a way to prevent loops over
intermediate states in the function computation. Although there have been imposed several
constraints for preventing loops in the problem solving process, and although the original
design object cannot be reached by a transformation sequence, there might be cyclic processes
over non-initial configurations. A way out of this problem could be to determine that the
solution space for problems in some specific domain is a partial order. In such a case, an
inductive proof for the process of satisfaction of design intentions might be given. However, in
the general configurations that are considered here, there are no criteria to establish that such an
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order exists. In particular, the definition of heuristic rules for producing the transformations
make things quite unclear. However, if loops cannot be prevented, they must be detected.
Here, if the form of a design object at some state in the intention satisfaction process is as it was
in some previous state in the same branch, then there is a cycle, and the corresponding branch of

the process has no satisfaction,

For these two reasons we define a history mechanism and extend the definition of a total design
intention by including a history record in the argument list of the intention satisfaction
procedure. In the same way that the global intention is inherited by all son states in the
computation of the function, the history record is incremented with the specification of the
intention that was manifested in each state. Here, we add an additional parameter @ to the

intention satisfaction procedure, as follows,
(18) Q <, j}[P, x, D, Y, O].

where © contains the specification of the global intention, on the one hand, and the list H of
index pairs from which the current state is produced. In general, ® is of the following form

(19) 0=<Q H>

<global>’ 2
For the sequence in Figure 7.15, H is:
20) H = (<0, 0>, <1, 0>, <2, 0>, <3, 1>, <4, 0>).
Note that the first element of these ordered pairs is the computation level, and the second
represents the j-index branch of its corresponding father state. With this information it is
possible to reconstruct the whole of the solving problem task.

8.5. Explanation of the Problem Solving Task.

The main design intention expressed in Figure 7.15, produces a sequence of transformations
until the state <4, 0> in which a new configuration of the design object is reached. This
intention is expressed as follows:
21 Q <4 0>[({o:)rigir1__of(wall_4), origin_of(wall_5)}, house_1, @, I, ©)].
Now, we define a procedure explain(®) which produces the detailed history of the solving
problem task: the list of triples constituted by the design object at the corresponding state, the
intended individual that was taken as a reference for a transformation in that state, and the
condition that was satisfied. In the example,
(22)  explain(®) =
[
[house_1_y ., wall_2, {e_joins_at(wall_3, wall_2)}],
[house 1 &, 05 wall_1, {parallel(wall_1, wall_3)}],

[house_1_3 1, wall_3,
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{e_joins_at(wall_4, wall_3), e_joins_at(wall_5, wall_3)}],
[house_1_4 ., none, @]

The explanation of the problem solving task can be enriched by combining a textual and
graphical presentation. Although this issue is fairly complex and it has not been explored yet,
the representational environment of GRAFLOG can be used for producing a natural and
friendly graphical and natural language explanation of the system behaviour. In general, the
history of the computation provides an underlying representation that could be used for
producing a natural language explanation of the solving problem task. Furthermore, there is a
graphical representation in each state, and the natural language dialogue can make a deictic
reference to these pictures. Next, a plausible scenario for this textual and graphical explanation

is presented.

In the initial problem solving state, the system produces the expressions in (23) at the time their
graphical referents are drawing on the screen, as shown by the corresponding pictures in Figure
8.6. Expressions (a) and (b) introduce the conditions that were satisfied by the transformation
that produced the drawings in Figure (c).

(23) (a) In the initial state these did not join.
(b) This was updated.
(c) To produce this.

a) b)

FIGURE 8.6

At the time the word these in (23.a) is uttered, wall_2 and wall_3 are set to blink as shown by
the dotted lines in Figure 8.6.a. For the construction of this linguistic expression, the translation
in English of the term e_join_at(wall_3, wall 2) is used. Here, some additional pragmatic
considerations have to be considered along the lines discussed for the production of linguistic
and graphical answers in Section 6.2. The word this in (23.b) is supported by setting wall 2 to
blink as shown in Figure 8.6.b. Finally, the graphical support for the word this in (23.c) is the
change on the drawing itself. The intuition here is that a change rule is better explained by
showing the change that it produces, rather than presenting a cumbersome and unnatural

explanation of the way such a change is produced.
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We can go on developing the explanation along the same lines. For the next transition, the
expressions in (24) are supported by their corresponding drawing states and transitions, as

shown in Figure 8.7.

24) (a) These were not parallel.
(b) This was updated.
(©) To produce this.

FIGURE 8.7
The last transition is explained by the expressions in (25) and their corresponding graphical
support that is shown in Figure 8.8.

(25) (a-b)  These, did not join this,.
(©) They were moved to produce this.

FIGURE 8.8

Here, expression (25.a-b) is supported by two drawings states. The demonstrative these refers to
the parallel lines that are not joining the left wall, and the demonstrative this refers to the
wall_3. As before, the transition from (b) to (c) is supported by the graphical transformation
itself.

An interesting theoretical question that arises from this kind of explanation is to what extent the
overt graphical symbols and relations support a simple and natural production of referring
expressions in the natural language component. My intuition is that the definition of a pragmatic
procedure for producing this kind of discourse could be simple and easy to implement.

However, this question requires further research that has not yet been developed.
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8.6. The Integrated Design Environment.

Now, we come to a discussion of the integrated design environment that is supported in
GRAFLOG.

In this design environment we restrict the system to produce modifications in design objects.
The system is not able to produce an original graphical description of the design object, nor to
define design concepts.® Here, there is no intention to model the kind of inference from which
such kind of knowledge is produced. It is not at all clear to what extent such a sort of creativity
can be modelled with current computational theory or technology. The original conception of a
design object presents itself to the human mind in an immediate manner. The processes that
produce such a kind of object cannot be broken into more basic processes or states. The analysis
of these holistic acts, that present themselves as finished products of human imagination, in an
immediate manner, is very elusive. According to Jones (Jones 1984, p. 19),

What’s striking is that each method begins with a first stage that is

extremely difficult to do

Which has no description of how to do it
Which is intuitive

WHAT EMERGED

IN WRITING THE BOOK
WAS THAT TO USE DESIGN METHODS ONE NEEDS TO BE ABLE

TO IDENTIFY THE RIGHT VARIABLES

THE IMPORTANT ONES

AND TO ACCEPT INSTABILITY IN THE DESIGN PROBLEM ITSELF
ONE HAS TO TRANSFORM THE PROBLEM AND THE SOLUTION
ALL IN ONE MENTAL ACT OR PROCESS

In GRAFLOG, the task of specifying original design objects and concepts is one that the human
designer must perform. In the definition of the design environment, we concentrate rather on
showing how the computer system is able to support the human designer in the process of
refining the graphical description and conceptual interpretation of the design object.

Next, we discuss the definition and application of design rules. From Chapters 6 to 8 two kinds
of design rules have been discussed. The first kind corresponds to user defined rules that are
expressed in the course of the graphical and linguistic interaction, and are related to specific
design tasks. An instance of this kind of rule is the change rule presented in Section 6.5. The
second kind is the set of design heuristics that are used in the intention propagation process.

3 In a productive environment, however, a rich collection of prototype instances that are recalled from previous design task

might be available.
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The definition of the first kind of rule is important in several respects. They capture design
knowledge of individual human designers which is probably intuitive and acquired through
experience; which is meaningful only in particular design tasks. Through the interactive design
session, the human designer might realise the need for some particular rule and the design
environment must support its definition. However, if the human designer is asked why such a
rule is relevant he might not be able to give a consistent and clear explanation. Rules of this
kind are relevant in as much as they are used by the interpreter in the solution of design
problems. They contain no propositional knowledge. They are rather imperative commands that
must be obeyed by the interpreter. And when the human designer realises some common
pattern of change in the production of a design object, or maybe in the set of practices of
specific design domain, he also realises that a design rule has been learned. However, if these
rules are arbitrarily defined then there is no way to predict what kind of object will be produced
by their application. In fact, they might turn well-defined objects of some graphical sort into
ill-defined structures, and the whole system might be set to a non-equilibrated state.

For this last reason, we need the additional layer of functionality that is provided by the
intention propagation process. It is essentially a background process that complements the
explicit knowledge expressed by the human designer. Explicit change rules are likely to be
focused on particular aspects of drawings, and the user should not be responsible for preventing
the global consequences of local transformations. The intention propagation process
complements rather than substitutes for the human user. It follows the global consequences of
local changes, and produces design objects that are well formed, refer, and are consistent with
the explicit knowledge of the design task that is manifested in the original definition of the
objects, and in the conditions asserted in the design concept.

In this scheme, we could also consider the definition of an interactive dialogue in which the
human designer intervenes in the intention propagation process. For instance, by dictating a
change in a drawing by a direct manipulation process, replacing with this action the heuristic
rule that otherwise would be applied by the system. Consider again that the intention
propagation process determines what has to the computed, and the actual heuristic procedures
comprise the knowledge of how such a condition is satisfied. And such ‘how’ knowledge might
be better expressed by the user by himself modifying the drawing, satisfying in this way the
condition whose satisfaction is the current task of the intention propagation process. It might be
the case that the user is able to express the change directly. Here, the design knowledge might
be the change action itself, that can be easily experienced, but that can hardly be explained. We
can even consider a set of heuristic rules associated with a specific condition, and define the
interaction mode in a way the user selects the rule that he wishes to use in the particular design

context.
In summary, in the design cycle human designers express the original graphical description of a
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design object and its associated design concept. Then, an interactive conversation in which
design rules are defined through the graphical and linguistic dialogue is started. In the same
dialogue, design intentions that have the purpose of modifying the graphical representation can
be expressed. For inferring these intentions, the system can use the rules that are explicitly
defined by the user, and the instabilities that they produce can be compensated by means of the
intention propagation process. We can envisage different control strategies in which the
application of explicit design rules and the intention propagation process are intertwined and
co-operate towards the solution of complex problems. In this interdependent control flux, the
intended individual for the intention propagation process can come from a change that is
directly produced by the human designer, or from a change that is produced by the application
of some human defined design rule. However, this issue, like many others in this work,
deserves further research. Finally, when the design task has been completed the explanation of
the design task must be produced by the system, as was discussed in the previous section.

Here, we conclude this chapter on the solution of design problems. First, the function €2 for the
satisfaction of design intentions was defined, and a procedure for its computation was presented.
Then, some considerations for the evaluation of the function were discussed. A scenario for the
graphical and natural language explanation of the solution of design problems produced by the
system was also illustrated. Finally, some considerations for the definition and solution of

design problems in the integrated environment defined in GRAFLOG were discussed.

With this chapter, we conclude the second part of this dissertation. In Chapter 5, the role of
analogical representations was discussed. In that chapter, a notion of a graphical and logical
language was presented, and the notion of graphical and linguistic inference was introduced too.
In Chapter 6, a graphical and logical language for our particular design domain was presented.
The way this language is used for the definition of design objects was illustrated. We also
defined the conditions for a drawing to refer in this restricted domain. On the basis of such a
notion, we define the notion of equilibrium between the logical and graphical representational
systems in GRAFLOG. Then, a notion of graphical parsing was discussed in detail, and a
procedure for producing the interpretation in Ly of 2-dimensional wire-frame drawings was
presented. Finally, an example of the kind of rules that can be defined by the human designer in
the course of the graphical and linguistic interaction was presented. In Chapter 7 we introduce
the notion of design concept. We showed how these concepts can be expressed in the language
L, and how they are implemented in the representational structures of GRAFLOG. Then, the
notion of design intention was presented, and the intention propagation process was introduced

and discussed in detail.

Here, I would like to acknowledge that every individual conceptual constituent of this theory is
extremely simple, and that there are many issues that deserve a further and considerable

amount of research. The intention here is not to present the solution of specific design problems,
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but rather to use our very simple example to discuss some of the issues that, in my view, have to
be considered in the definition of so-called Intelligent CAD systems. The aim is to present an
integrated view of all these issues, and to show that they interact in a complex but systematic
way. I would like to highlight as well the interdisciplinary considerations that have to be taken
into account for the production of this kind of system. We have considered issues ranging from
the highly technical and theoretical disciplines, like formal semantics and linguistics, to the
rather pragmatic and intuitive practices and programming techniques that are employed in the
definition of CAD systems. It is worth pointing out as well that although many workers and
practitioners of the emerging field of intelligent CAD denied the relation between ICAD and
psychology, the very fact that we are modelling a human task that is related with the processes
of the human imagination make our enterprise, in some sense, a psychological one. Although
we are producing ‘bad psychology’, it is better to be aware of it, rather than believing that we
are doing geometry or topology. Finally, there is a philosophical issue that has been involved
all along all the second section of this work: this is the question of to what extent, design
knowledge can be considered representational. We will face this question directly in Chapter 9,

in the conclusions of this dissertation.
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Chapter 9

Computer Graphics
and Artificial Intelligence

In this concluding chapter I present a brief summary of the most important issues of this thesis.
I also shall make some general remarks related to the representation and use of design
knowledge in computer systems. I believe that the experiences gained in the integration of
computer graphics and natural language processing facilities invite an interesting reflections on
the relation between symbolic thought and perceptual processes in the so-called computational

metaphor of mind.

GRAFLOG was started with the idea of imposing an overt interpretation upon graphical
symbols and relations in interactive computer graphics by means of natural language. For this
purpose, we used the most basic mechanism for associating words and pictures: ostension. This
exercise led us directly to realise that not only graphical symbols but also graphical relations
can be given a linguistic interpretation, as was shown in the interactive dialogue of Chapter 2. A
notion of graphical language then emerged in a natural way. This notion is interesting, in my
view, because although graphical symbols and relations in a drawing have a geometrical
interpretation, this interpretation is neutral in relation to the meaning of the drawing itself. The
set of conventions for interpreting a drawing that are expressed in GRAFLOG through the
natural language facility, implicitly determines a graphical language (Pineda 1988a, 1988b,
1988c).

The direct utility of this notion of graphical language is that the same graphical interactive
environment can be used in different application domains. What has to be given in advance to
the program is the geometrical knowledge and a facility for changing the interpretation
conventions of drawings in a dynamic way. Then, end-users can customise their own
interpretative contexts, developing in this way interactive environments in which the drawings
themselves convey meaning, and in which abstract notions can be visualised by means of an
appropriate set of conventions. Although the linguistic and graphical knowledge of the current
prototype of GRAFLOG is quite limited, simple applications have been developed (Pineda
1988d).
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Another important facility that can be developed by integrating computer graphics and natural
language is an explanation mechanism through which the system is able to illustrate the
methods by which it comes to solve problems. In our design domain, this facility is required
given the complexity and magnitude of a representational system for design, in which it might
be very difficult to trace the consequences of design decisions in an intuitive way. Additionally,
some of the knowledge involved in the solution of problems might not be representational, and
it always helps to explain an algorithm in terms of its behaviour, rather than in terms of its
structure, as was suggested in Chapter 8. Furthermore, design decisions that are made directly
by human designers in the course of the interaction might not be subject to analysis, and the
system should reproduce the corresponding human action when an explanation of the problem-
solving process is required. In GRAFLOG, the explanation mechanism has been theoretically

develop in Chapter 8.

The natural language processing facility of GRAFLOG could not be provided independently of
a linguistic theory, and a computational linguistics framework. For this purpose the body of
research in so-called unification based theories of grammar (Shieber et al 1983), in particular
Unification Categorial Grammar (Zeevat et al 1986a) and its associated semantics, was used.
The kind of natural language dialogue that was used in Chapter 2 for the dynamic creation of a
graphical language, despite its simplicity, is rich enough to appreciate how complex the
structure of natural language can be. However, as was shown in Chapters 3 and 4, and as is
shown by other related programs like ACORD (Klein 1987), the grammatical framework that
we have adopted is strong enough to handle the spatial oriented dialogues required for our
particular goals, and offers a rich environment for further developments in the integration of

computer graphics and natural language,

Deixis and ostension have always played an important role in computer graphics interaction.
However, the intention that a point action presupposes has always been coded beforehand by
programmers. In computer graphics interaction, every meaningful graphical input event, every
pointing action, is associated with a particular algorithm whose interpretation is presented to
end-users as a compact operation. Users think of these algorithms and their interpretation
processes as ‘tools’ which range from the simple selection of a symbol in a graphical menu to
very complex operations that analyse and transform the underlying representation of
geometrical objects displayed on the screen. These tools have proved to be very productive in
different kinds of academic and professional environments, but they have to be learned, in a

passive way, by end-users.

Computer graphics algorithms and their associated data-structures can be thought of as
‘representations’ of knowledge. Or rather as capsules or packages of knowledge. These
algorithms are standing by most of the time, until the input events that prompt their selection
are detected at the interface. The result of each of these algorithms can be thought of as a
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response of the system as a whole to a particular input event. Through these algorithms, the
geometry, the programmer’s knowledge about computer interfaces, and also some conceptual
aspects of the objects that are produced in the course of a graphics interactive session, are
modelled. This knowledge, however, is there to be used as a finished product. It cannot be
enriched by the end-user. These procedures obey rich but inflexible protocols. Such a kind of
knowledge bears no relation to the environment in which it helps to solve problems: it is just

like any other tool.

The implicit notion of knowledge representation in computer graphics contrasts with the overt
study of knowledge in Artificial Intelligence and Cognitive Science. One important assumption
in Al research is that thought can be explained as a process in which symbols are manipulated.
The information that is received through perception materialises as symbols that are
systematically related. A system of symbols which stand for objects and individuals in the
world is a representational system, and knowledge that can be expressed through a system of
symbols is representational. In representational structures, the meaning of a complex

expression is a function of the meaning of its constituent parts.

One pragmatic goal in Al is to develop flexible schemes for representing knowledge, and to
provide a bridge between the general and abstract knowledge of an expert, and the domain-
specific knowledge of the people that are engaged in the day-to-day problem solving tasks. This
goal has been achieved, to a certain extent, with the evolution and the better understanding of
so-called expert systems and of knowledge representation schemes, like logical and frame-based

representational systems.

Algorithmic representations have also been used in Al, but they are regarded, more or less, as
analogical representations. Consider, for instance, the WHISPER program for problem-solving
with ‘diagrammatic representations’ (Funt 1985). This program uses geometrical algorithms for
simulating causal relations in a blocks-world subject to gravitational forces. There are also
important precedents of co-operation between computer graphics and Al For instance, the
winged-edge structure for the representation of solid objects in computer vision (Baumgart
1975) is an important antecedent for so-called boundary representations of computer graphics
(Requicha 1980) as illustrated by Weiler’s polygon comparison algorithm (Weiler 1980).

The important notion that I would like to highlight here is that although there are similarities in
the notion of representation in computer graphics and Al, the problems that people deal with in
these two computer specialities are certainly not the same. Al research has been focused on the
structure of representational environments with their associated ‘inference mechanisms’ and the
development of heuristic methods that resemble ‘human intelligent faculties’. The work on
computer graphics, on the other hand, has concentrated on developing algorithms and their
associated data-structures for the production of synthetic pictures. The development of these

- 182 -



algorithms is the bread and butter of computer graphics.

One likely point of agreement between practitioners of Al and Computer Graphics is the notion
of symbol itself: a symbol is something that stands for something else. However, a single
symbol, a picture, is the final result of the work of a computer graphics programmer. Externally,
a symbol is a picture on the screen; at the internal level, a symbol is the memory location, the
pointer, that addresses the data structure where the geometrical description of the picture is
‘represented’. From the point of view of Al, on the other hand, a symbol is the basic conceptual
unit in inferential process. Symbols are manipulated in terms of the ‘syntactic’ structure of the
representational system. Whether a symbol happens to have a large or a very small information

content does not really matter as long it plays its proper role in the syntactic machinery.

The relationship between high-level AI knowledge representation structures, and the low-level
algorithmic knowledge that is used in computer graphics is one of the major topics of this
thesis. A particular question that was faced directly is how to explain the representational role
of graphics. For this purpose an algebraic structure for capturing the semantics of graphics was
developed. As a result of this exercise we showed that a graphical symbol or expression can be
treated as expressing a concept, in the same way that a linguistic name does, and that graphical

compositions can express propositions.

However, this is not to say that graphics play no important role in reasoning, and can be
arbitrarily replaced by some other representational language. In fact, algorithmic knowledge
plays an important conceptual and implementational role in the kind of inferences that
GRAFLOG's interpreter is able to make. This point is reflected in the dual algorithmic
interpretation of the graphical structures G in Chapter 5 and D in Chapter 6. At a logical or
symbolic representational layer, GRAFLOG supports facts and relations, and ‘symbolic
inferences’ are operations on this representational structure. The algorithmic layer, on the other
hand, consists of the geometrical information that is required for producing the symbols on the
screen, for making graphical compositions, and for computing the set of graphical properties
and relations that hold between graphical objects.

If a symbol stored in the symbolic representational structure NLKB of GRAFLOG has a
graphical realisation, then it is a pointer, or an index, to the geometrical data-base where the
information for displaying its image is stored. Consider again the form of an entry in g_db:

g db(name, type, description).

In the g db clause, name is the symbol’s identifier and is also the object that plays a part in
deductive inference processes. The symbol fype corresponds to a sort in the multi-sorted
algebraic system of Chapters 5 and 6. However, it is worth emphasising that type is also the
name of the algorithm that constructs the corresponding picture and description corresponds to

- 183 -



the algorithm’s parameters. This second role of type is abstracted away from in the algebraic
analysis. However, the interpretation of the algorithm that is named by type is a process that

produces the picture on the screen.

The additional information that the graphics provides to the representational system can be
appreciated in a different light. According to our theory of semantics for graphics, it makes
sense to talk about parsing a drawing in relation to a predefined set of geometrical algorithms
that compute properties and relations of well-specified kinds of graphical objects. In computer
graphics, the interpretation of a graphical representation depends on the geometrical knowledge
of the graphics program. In the same way that a graphical program can only display graphical
symbols for which construction algorithms are available, a drawing can only be parsed in terms
of the geometrical knowledge or algorithms that the program has been endowed with.

The two levels of representation --representational and algorithmic-- are reflected in the
evaluation procedure of GRAFLOG, which traces the deductive consequences of information
asserted through both graphics and language. The ‘symbolic’ knowledge-base stores symbols
and relations in a direct way as PROLOG facts and relations. However, the information that is
stored in the geometrical data-base is not used directly by the interpreter, but always in
conjunction with one or more geometrical algorithms. The conceptual relevance of the two
layers of representation can be appreciated by contrasting the relationship between the
graphical input events and the algorithmic layer, on the one hand, and the relationship between
GRAFLOG'’s symbolic evaluation procedure and the algorithms, on the other. The control

cycle for handling graphical input events is as follows:

loop_for_ever
wait_for_event(EVENT, INFORMATION);
case EVENT:
event_1: algorithm_ 1(INFORMATION);
event_2: algorithm_2(INFORMATION);
event_n: algorithm_n(INFORMATION);
end_case;

end_loop;

This process is a permanent loop which takes an input event in every interactive cycle. Each
event that is meaningful to the system has an identifier and some associated information. A kind
of event might indicate, for instance, that the information was collected by means of a pick
device in a certain region of the screen, and its associated information might be, for instance,
the memory segment in which the selected symbol is stored. These input operations are
supported, of course, by algorithms that run at the level of the graphical software. Events in
GRAFLOG are, for instance, typing an ostensive definition and selecting a graphical symbol,

- 184«



pointing to a symbol to be translated or rotated, typing a declarative natural language
expression, asking a deictic question about a graphical symbol at the time it is pointed out, etc.
All these basic operations are interpreted as different events and there is a basic algorithm for

interpreting each one of them.

Now consider the relation between the symbolic process and the algorithmic information. For
this we show the evaluation of the question of whether a student is clever in the interpretative
context of chapter 2. Assume that the state of the NLKB is as follows:

student(john).

student(pete).

subject(programming).

subject(linguistics).

studies(X, Y) :- student(X), subject(Y), in(X, Y).

clever(X) :- studies(X, linguistics), studies(X, programming).

This is a normal PROLOG data-base. When the question
? clever(pete)

is asked, the answer is found by means of a process that is in part symbolic and in part
algorithmic too. The evaluation of this clause proceeds in terms of PROLOG unification which
implements the resolution inference rule. The clause for clever is evaluated in terms of the
clause for studies, and this high-level declarative interpretation can be thought of as symbolic.
However, this symbolic manipulation process has a floor below which it cannot be further
decomposed in any interesting way. Note that the geometrical operator in does not have basic
facts in the PROLOG data-base to unify with. When such a goal has to be proved, a geometric
algorithm is interpreted instead. Every geometrical constant of our graphical languages has an
associated computational geometry algorithm. In GRAFLOG’s interpreter, there is a basic
clause that relates the geometrical constants with their corresponding algorithms. For the
constant in, for instance, such a clause is of the following form:
in(X, Y) :- in_geometrical_algorithm(X, Y).

Do we know the answer to the question of whether Pete is clever? Given that we have no
picture in front of us, can you tell what would be a good answer for such a question? PROLOG
would always respond in this situation: no! However, if we know and can compute the
algorithm for in, and we have a picture in front of us, do we have access to the answer? Some

people would say, perhaps, no. I am rather inclined to think that we do.

In the same way that input events select algorithms whose interpretation is embedded in the
event-driven control cycle, the interpretation of the algorithm for in, and of other geometrical
functors, is embedded within the symbolic manipulation process: the algorithm is selected by
some appropriate rule. In the analysis for the question clever(Pete)? the arguments for in are
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symbols --pete, programming and linguistics-- but the algorithm whose name is also in
performs the computation in terms of the information that these symbols index in the
geometrical data-base. In general, the parameters for these algorithms can be provided either by
external events or by the symbolic structure, and the result of these algorithms can be either an
external behaviour or a change in the symbolic structure as well.

Here, some declarativist minded critic could say that there is nothing interesting in codifying
the in operator as an algorithm, and that the facts that it entails can be coded directly in the
PROLOG data-base, for instance, by typing in(pete, programming) and in(pete, linguistics)
along with other linguistic facts like subject(programming) and student(john). In a trivial
implementational sense this is in fact the case. However, given the theory of Chapters 5 and 6,
there is an important conceptual difference in expressing the same fact as a PROLOG relation
or in terms of an algorithm. The algorithm embodies the knowledge that is needed to compute
whether two individuals stand in an in relation for every possible state of affairs on the screen,
The algorithm computes the value of the interpretation function of in for every intended model
of the representational language. According to the discussion of intensionality of graphical
symbols in Chapter 6, the algorithm codifies the knowledge of the intension of a geometrical
constant, like in. Inthe same way that logical constants, like and and if have a semantic value
that is independent of the current interpretation conventions, geometrical constants, like in or
int_oo, always denote the same value. If the set of in clauses were given independently of the
algorithm, in would be a non-logical constant of the representational language, and the
meaning of in would have to be given by the interpretation function of the model. And this
function is contingent and varies from model to model and depends on the current set of clauses
asserted in the PROLOG data-base. The functions that the constant in denotes, in one or the

other case, are certainly different.

We can put this in more simple terms: if the algorithm is included, the system can compute all
the in relations that are required for an inference process in any situation. If the in clauses are
asserted by overt definitions in the PROLOG data-base, then the algorithm runs in the user’s
head, because how could he know which in clauses hold in a new graphical state? When we are
looking to a drawing we can identify the discrete symbols by a basic perceptual ability, and the
same can be said of geometrical relations, like in. The objects produced by the perceptual
process are symbols and relations, but I do not think that it makes any sense to say that the
perceptual knowledge itself is representational. And if we believe in the computational
metaphor of human mind, then it is plausible to think of this knowledge as algorithmic.

Here, a proceduralist minded person could say that this is nothing new, and given the close
relationship between Frame systems and first order logic (Hayes 1985) our structure
corresponds to the notion of a frame system with procedural attachment. I think that at an
implementational level that is in fact the case. The only comment that I would like to make in
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relation to this point is that geometrical algorithms attached to the symbolic structure cannot be
thought of as representational, and that the function that they compute should be well
understood. In the case of GRAFLOG, the functions that are computed by geometrical
algorithms can be understood in terms of a background theory, namely geometrical analysis.
The inclusion of error elements in the carrier of every sort, as shown in Chapter 5, allows us to
think of these functions as total. But the fact that the system makes use of these algorithms
does not conflict with the declarative semantics for the symbolic level of representation.
Furthermore, these algorithms make a productive contribution to the representational
environment, because if they were absent, it would be very difficult to trace which geometrical
facts and relations remain true when there is a transition in the state of the knowledge-base.
Another way to think of these algorithms in frame-like representational structures is as very
well informed default values for geometrical frame-slots (Reiter 1985). An interesting question
is, I think, to what extent these algorithms help to solve the so-called frame problem for

knowledge-bases representing spatial information.

Should the inference by which we come to know whether Pete is clever in the example above
count as a formal proof? If the facts in(pete, linguistics) and in(pete, programming) were
asserted directly in the PROLOG representation, the argument counts as a formal proof. In such
a case there would be an explicit and valid inference from premises to conclusion showing that
Pete is clever is in fact the case. The claim that might be controversial is that if we are able to
see that Pete and programming, and Pete and linguistics, stand in an in spatial relation, that
should be enough for regarding as valid the rest of the linguistic argument that concludes that
Pete is clever. The difference in this second form of proof is that we rely not only the ‘logical’
symbolic manipulation process but also on a perceptual ability. When we have to face the
question of whether two objects stand in an in relation, we are allowed to verify, visually, that
such a relation holds. This resembles the process of GRAFLOG’s interpreter: the high-level
part of the proof consists in proving the goals by the resolution inference rule in which
PROLOG unification is based, but for proving the geometrical premisses of the argument, the
resolution process is replaced by the interpretation of a geometrical algorithm. A similar form of
inference has been recently advocated by Barwise and Etchemendy (Barwise et al 1988) in
relation to a program called Hyperproof. However, they do not emphasise the role of
algorithmic knowledge in their notion of proof.

The distinction between these two notions of formal proof is important, in my view, if we
regard so-called formal proofs as models for human inferences. I have a strong intuition that
the information that is gathered by the visual and other perceptual processes is very important
for arriving at conclusions, and for discovering relevant information for the solution of
problems. I believe that drawings are indispensable for expressing design knowledge. This
position has strong consequences in the definition of a design language, as was shown in
Chapter 6, 7 and 8. Conceptual or symbolic design knowledge can be expressed in an
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expressive enough representational language, but I believe that the epistemological richness and
the efficiency factor that perceptual inferences convey plays an important role for modelling
design tasks, and that such a kind of information must be processed in an algorithmic way.

However, I do not want to suggest that algorithmic knowledge is the only thing required for
modelling design tasks. Symbolic thought is also fundamental and we need a logic of design as
well. When we are engaged in a design task we start, very often, with a graphical
representation. Next, we can think of the properties and relations that have to be expressed
through natural language, or through some sort of design specification language. The analytical
part of a design task can be thought of as ‘proving’ that a certain object has in fact a set of
properties and relations that are listed in a design specification. For this proof, the only thing
that is required is to take each one of the specified properties and verify, by some mechanical
method --normally, an algorithm-- that the design object has in fact such a property. However,
in what sense can we say that the synthesis of a design object is a proof of something? In what
sense might this kind of process be logical? For answering this question we have to consider
logic in its wider conception: logic is the study of the valid arguments in a language. To think of
design as an argument may not be a very intuitive notion, but given that design knowledge can
be expressed through a design language, a design inference would correspond to a valid
argument in such a language.

Of course the definition of a logic of design is quite a demanding task in which we have to take
into account relations like causality and change that are very difficult to understand, even in
standard uses of logic. There is in addition the complexity that design inferences are
‘unconscious’, and we only have access to the result of design processes. Although I believe
that there is no fundamental difference between inferences of this kind and more familiar
linguistic inferences, linguistic arguments can be broken down into their atomic constituents,
and their structure can be then examined. For that reason, we can classify a set of structural
syntactic patterns that are regarded as valid argument forms. The difference in design, I believe,
is not so much in the kind of process involved, but rather in that we lack the magnifying lens
through which the atomic constituents of the structure of the argument can be discerned.
However, this is a limitation of our analytical tools, rather than of human designers. In the
same way that good logic looked first into human language, into the arguments that people take
as valid, the logic of design should look into the things that people design.

There is of course the question of the extent to which a given design logic resembles a human
design ability. Here, I believe that there is room for setting psychological design experiments in
which the design predictions of a theory can be compared with the objects produced by human
designers. That would allow us to classify some design theories as ‘better’ than others.

On the other hand, I believe that psychological problems should not prevent the creation of

- 188 -



automatic design systems for productive environments. The objects produced by such a kind of
systems would correspond to the abilities of those systems, and they need to bear no
resemblance to what human designers would produce in similar circumstances. We would have
to learn the design abilities of those systems. Furthermore, we have no way of predicting the

result of a human design activity.

A simple theory for producing design arguments in the wire-frame domain was presented in
Chapter 8. However, we can think of the notion of design argument in more general terms.
Here, I will extend the discussion of a formal proof that was introduced in relation to the
geometrical constant in. Consider that the purpose of a formal proof is to make evident the
structural link between premisses and conclusion of a valid argument. For this reason, it is
required that all the information that is relevant for an argument is stated in the same
representational language: validity is a notion that depends on the structure of language. Many
logicians are used to think in the following way: given an argument, show whether it is valid or
not. For this reason, they can play down the role of perception in inference, because whatever
symbols are known through vision or touch, for instance, can be translated to an expressive

enough representational language.

However, what can we say about the relation of a formal proof of a valid argument and the
process by which such an argument is learned? Take, for instance, the Theorem of Pythagoras.
Suppose that you know that the sum of the squares of the legs of a right triangle is equal to the
square of the hypotenuse. There might be a purely symbolic proof of this theorem, and some
skillful logician might know about it. However, I am more concemed here with the kind of
process of the mind that would have to be performed for inducing this theorem, and
furthermore, for realising its non-trivial theoremhood. We are rather interested in the kind of
process that Pythagoras himself used for making such a fundamental discovery. This is, of
course, very speculative, but we are very close to the end of this thesis and some speculation
should not make much difference.

The best place to start this discussion is the proof that is attributed by tradition to Pythagoras
himself (Bronowski 1981). This proof is graphically illustrated in Figure 9.1.
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FIGURE 9.1

The proof starts by taking an arbitrary right triangle. The four pictures in the top-row show the
sequential addition of one right triangle, each in one step, in the figure. The four triangles have
the same dimensions. In the top-right figure, a square on the hypotenuse emerges from the
graphical composition. This square is rotated, but it can be appreciated by a basic perceptual
ability. There is also in the top-right figure a small square, a hole, in the center of the rotated -
square. The small square emerges from the graphical composition of the four triangles as well,
but in an internal manner. In the bottom-left figure the internal square is marked to highlight its
area. Then, we can rotate over one of their vertices two of the basic ‘tiles’ out of which the
square on the hypotenuse was made, one by one, as shown in the last two transformations in the
bottom-row. In the last figure, two squares emerge again out of the original triangles and the
small marked square. The right triangles above and below in the bottom-right figure have been
drawn just to illustrate the fact that each of these two new squares correspond to the smaller and
larger legs of the original right triangle. Given that the ‘tiles’ that conform the square on the
hypotenuse are the same as the ‘tiles’ that conform the squares on the other two legs, the

Pythagorean theorem holds.

Here, I would like to highlight the operations that seem to me fundamental not only for realising
that the theorem holds, but also for realising its relevance. The first thing to notice is that the
proof is made out of a set of two well defined graphical sorts: triangle and square. These
objects are identified by an immediate perceptual process. The second point is that the proof is
performed as a process of graphical composition. The operations considered are the addition
and rotation of overt basic symbols. For instance, in the first four steps of the graphical
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composition only one triangle was added in the structure, and only one triangle was rotated in
the last two transformations. The third important fact, I believe, is the ability to realise that
symbols of one sort emerge in the graphical composition in terms of symbols of other sort. For
instance, a square emerges in an appropriate composition of two triangles. These emerging
objects can include other emerging objects as well, as the small square in the middle of the
hypotenuse square. These emerging patterns are also realised by a basic perceptual ability.
Finally, the theorem itself asserts a relation between a property of emerging patterns --the area
of the hypotenuse square is the same that the sum of the areas of the squares on the legs of the
basic right triangles-- and not between the basic overt context-independent building blocks.

Suppose that we define a graphical structure for capturing the Pythagorean operations along the
lines of the graphical languages in Chapter 5 and 6. Each step of the construction process in the
Pythagorean proof would correspond to a well-formed expression of such a language. Of
course the emergent patterns in the language of Chapter 6 are identified by an explicit ostensive
definition, as the polygon standing for the house, and a language for this more ambitious
enterprise would have to be given a more powerful perceptual ability for realising the emergent
patterns by itself. For instance, we would require a set of algorithms that can recognise right
angles and make use of construction lines, as defined in Chapter 6, for determining that one or
more objects of sort square emerge from a graphical context. In this way, the squares of the
top-right and bottom-right figures could be identified. Additionally, in order to learn the
theorem we would require an inductive rule in terms of which the emerging objects in the two

crucial stages of the proof could be related.

Although this is an issue for further research, I believe that an example of such an inductive rule
is suggested by the Pythagorean proof itself. The crucial thing, it seems to me, is that the
theorem is a relation between objects of the same sort that emerge out of the same construction
blocks in two different graphical compositions in the same sequence of transformations.
Furthermore, one of the tiles that is required for the construction of the configuration of two
squares in the bottom-right figure, the inner square, emerged itself from the basic triangles in
the same construction stage in which the square on the hypotenuse was produced. Then, it was
carried on in the construction process --although this square does not undergo a transformation
itself. When these basic perceptual facts have been realised the proof is granted by the causal
link in the graphical composition, through which the fact that the area of the two crucial
configurations is preserved in the chain of transformations is known in an immediate manner.

Notice that there is no claim that this proof is performed in a purely perceptual manner, nor that
one part of the proof is perceptual and the other is symbolic. The two aspects of the proof run
together. The proof can be produced in a representational language, but each step of the proof
goes in hand with the use of a perceptual ability.
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The sort of reasoning by which the Pythagorean proof is developed reflects, it seems to me, the
kind of reasoning that goes on in design. In design we have to discover objects, and this
discovery process in architectural, mechanical, and many other design fields, depends on the

identification of ‘interesting’ shapes.

A currently popular approach to the definition of design languages for architecture and other
design domains is based on so-called Shape Grammars (Krishnamurti et al 1979, Weissman
Knight 1981, Stiny 1975, Woodbury 1988). Shape grammars are conventional graphical
visualisations of an underlying context-free generative grammar. Each drawing produced by a
Shape Grammar corresponds to a sentence that can be generated by the recursive application of
the generative rules of the language. Shape grammars are able to produce a rich and useful
range of patterns that are productive in the definition and implementation of design systems.
However, I believe that the Shape Grammar formalism misses the relevance of emerging
objects in graphical context as well. Emerging objects can be realised by human perception in
drawings produced by these grammars, but the knowledge of these objects is not captured in the
underlying representational language. For instance, Weissman’s Shape Grammar defines the
Pythagorean operations and has right triangles and squares as primitives. This grammar not only
produces some of the Pythagorean patterns, but also some of their interesting variations. But
the crucial configuration for the proof of the Pythagorean theorem is never produced by his
system. Although the squares that emerge in terms of overt triangles can be perceived, the
small square within the square on the hypotenuse cannot be carried on to other compositions --
these squares are not known to the representational language-- and the second pair of squares of

the proof does not emerge.

Here I would like to raise the question of whether this proof of the Theorem of Pythagoras
should count as formal. I think it should. Furthermore, if we restricted the proof to its symbolic
aspect, we would miss, perhaps, the fundamental intuition. One property of this proof that I find
very difficult to reflect in a natural way in a standard formal logical proof is the presence of
symbols that emerge in the context of others. In a first order logical language, both basic and
emergent objects would have to be represented as individual constants. But the relation
between these two kinds of entities might have no proper logical analysis. The relation between
basic and emergent objects runs at the geometrical level. When these emerging objects are
realised, as well as their properties, some interesting processes that can be subject to analysis
might be transparent to the facts that can be known by immediate inspection. Because a picture

is more than the sum of its parts.
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