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Abstract

The objective of this thesis is to develop new methods to reconstruct haplotypes from phase-
unknown genotypes. The need for new methodologies is motivated by the increasing avail¬

ability of high-resolution marker data for many species. Such markers typically exhibit
correlations, a phenomenon known as Linkage Disequilibrium (LD). It is believed that re¬
constructed haplotypes for markers in high LD can be valuable for a variety of application
areas in population genetics, including reconstructing population history and identifying
genetic disease variants.

Traditionally, haplotype reconstruction methods can be categorized according to whether

they operate on a single pedigree or a collection of unrelated individuals. The thesis begins
with a critical assessment of the limitations of existing methods, and then presents a uni¬
fied statistical framework that can accommodate pedigree data, unrelated individuals and

tightly linked markers. The framework makes use of graphical models, where inference
entails representing the relevant joint probability distribution as a graph and then using
associated algorithms to facilitate computation. The graphical model formalism provides
invaluable tools to facilitate model specification, visualization, and inference.

Once the unified framework is developed, a broad range of simulation studies are conducted

using previously published haplotype data. Important contributions include demonstrating
the different ways in which the haplotype frequency distribution can impact the accuracy of
both the phase assignments and haplotype frequency estimates; evaluating the effectiveness
of using family data to improve accuracy for different frequency profiles; and, assessing the

dangers of treating related individuals as unrelated in an association study.
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Chapter 1

Introduction

The objective of this thesis is to develop new statistical methods for haplotype reconstruc¬
tion. The first part of this introduction provides the necessary genetics background and
theory to make the thesis self-contained. This includes defining what haplotypes are and
why they need to be reconstructed in silico. The next section describes their importance
in genetic analysis and speculates on why there might be the need for new reconstruction
algorithms. The final section provides an outline for the remainder of the thesis.

1.1 Genetics Background

This section provides the necessary genetics background and terminology to make the the¬
sis self contained. It begins by characterizing the genome in way that will be meaningful
to information scientists, and then providing the relevant terminology. All statistics pertain
to the human genome.

An appealing feature of genetic marker analysis is that many relevant biological concepts
can be readily understood by the information theorist. This is because the genome, which
is the collection of all heritable information, is naturally characterized as a pair of strings

(one inherited from each parent). Each string is 3.6 billion characters long over the alphabet
A,C,T and G. The information encoded on the two strings contain both the necessary and
sufficient information to predict all completely heritable characteristics for an individual.

1



Chapter 1. Introduction 2

Each character at given location (or locus) is called an allele. A pair of alleles at a given
locus is a genotype. If the genotype is comprised of the same alleles, it is homozygous. If
it contains different alleles, it is heterozygous.

Any observed, physiological characteristic that has a genetic basis is called the phenotype.
Hence, phenotypic variation across individuals that cannot be attributed to the environment
can be attributed to genotype variation in the genome.

It is now established that 99.9% of the genome is monomorphic, i.e. all individuals in
the population will be homozygous for the same alleles. Hence, genetic variation between
two individuals can be attributed to differences in less than 1% of the genome. Loci that
are not monomorphic are polymorphic, also referred to as (genetic) markers. The markers
that will be considered in this thesis are Single Nucleotide Polymorphisms (SNPs). SNP
markers typically feature exactly two alleles that are segregating in a population, and for
the remainder of this thesis SNPs will be assumed biallelic. Hence, it is common to label

alleles as 0 or 1.

The genome has been characterized as a pair of very long strings of alleles. The informa¬
tion is actually divided across 23 substrings, or chromosomes. Any sequence of alleles on

a given chromosome (string) is called a haplotype. Just as a pair of alleles is referred to as

a genotype, a pair of haplotypes is referred to as the phase. Much has been made of the se¬

quencing technology that allowed the human genome to be mapped. When sequencing an

individual for a set ofmarkers, it is natural to envision that the phase is returned, as depicted
in the top of Figure 1.1. This type of technology is very expensive and is only available in
very limited contexts. Instead, the standard genetic information that is provided for marker
data are the genotypes for each locus.
The resulting problem, as shown in Figure 1.2, is that while phase information is com¬

pletely informative for genotypes, the converse is not true. Specifically, the number of
phase configurations that can resolve a set of phase unknown genotypes increases expo¬

nentially with the number of heterozygous loci. The objective of haplotype reconstruction
is to use all available information to determine which is the correct one.
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Marker Sequencing

□
TCGACGGCA

TCGGCGTCA

+
□

Figure 1.1: Simple characterization of marker sequencing technology. Individual's DNA
is extracted and submitted to a black-box sequencing machine. (Top) Phase is returned.

(Bottom) Genotypes are returned, where single characters denote homozygotes.

1.2 The Importance of Haplotypes in Genetic Analysis

Haplotypes play a central role in many types of genetic analysis. Traditionally, recon¬

structed haplotypes were essential in linkage mapping, which was basis of the Human
Genome Project. Currently, the interest in haplotypes stems from the availability of mark¬
ers in high linkage disequilibrium. The relevance of haplotypes in each of these contexts is
now discussed.

1.2.1 Traditional Importance in Linkage Analysis

The basis of linkage analysis lies in how parents transmit genetic information to their

progeny. Each individual has two sets of chromosomes, one inherited from each parent.
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Inferring Phase
from Genotype

CG j G C o

c ambiguous
loci

2(c_l) possible haplotype pairs that
can resolve genotype

Figure 1.2: The relationship between phase and genotype data.

Equivalently, the progeny inherits one chromosome from a given parent. The chromosome
that is passed from parent to progeny is called a gamete, and features a blend of alleles from
each of the parent's two chromosomes (i.e. the gamete will feature a blend of the progeny's

grandparents' alleles).
The process of gamete formation is called meiosis. One of Mendel's seminal contributions
was his attempt to explain the process in terms of two simple laws. The first law, the law
of independent segregation, stipulates that each allele has an equal chance of being trans¬

mitted from parent to progeny (i.e. that the progeny has equal chance of inheriting either

grandparent's allele). The second law, the law of independent assortment, states that alle¬
les at different loci are transmitted independently. While Mendel's first law is correct, the
second is only true if the two alleles reside on different chromosomes. Alleles on the same

chromosome are transmitted more frequently than chance would allow, and are therefore
defined as linked.
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The reason why Mendel's second law does not hold is that during gamete formation, pairs
of homologous chromosomes line up and several zones of contact (crossover points) are es¬

tablished. The number of crossovers is very small (in the human there is only an average of
three per chromosome). The alleles, or haplotype, between two crossover points are trans¬
mitted as a unit, while haplotypes in successive intervals are transmitted independently. It
is clear, therefore, that the closer two markers are on the same chromosome, i.e. the more

tightly linked two alleles are, the more likely that constituent alleles will be transmitted as

a unit.

Haplotypes that exhibit a mixture of grandmaternal and grandpaternal alleles are defined
as recombinant. Equivalently, recombination has occurred if a progeny's haplotype consist
of alleles that are not identical by descent (IBD) with the same grandparent.
The identification of recombinant and nonrecombinant haplotypes is the cornerstone of ge¬
netic mapping. When a marker is first discovered, its position in the genome is unknown.
Linkage analysis refers to a group of statistical methods to evaluate whether the number of
nonrecombinant haplotypes featuring this newly discovered marker is significantly larger
than the number of recombinant haplotypes. If the difference is significant, linkage be¬
tween this marker and other markers on the haplotype is indicated.

Creating a linkage map of genetic markers (i.e. polymorphic loci) is an essential step for
meiotic mapping of genes. Meiotic mapping methods attempt to map the location of a gene
by inferring how a genetic marker segregates with a phenotype. Creating a linkage map

was thus one of the primary objectives of the human genome project. However, a linkage
map will only provide the relative distance between two polymorphic markers. In a link¬
age map, the distances between two markers centimorgans (cM), where 1 cM equals a 1%
chance that a marker at one genetic locus will be separated from a marker at another locus
due to crossing over in a single generation. Physical maps, by contrast, show the exact

location of genetic markers, and the distance between them measured in base pairs. Each

map is important in validating the other, and mapping the genome for a species will entail

creating both kinds of maps.
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1.2.2 Current Importance in Linkage-Disequilibrium Analysis

Alleles that are in linkage disequilibrium are not independent within a population. Specif¬
ically, consider two biallelic markers, the first with allele frequencies p\ and P2, and the
second with allele frequencies q\ and q2- Let P\ \ be the frequency of the haplotype formed
by the first allele of each marker. LD occurs when

Pn-piqi ± 0.

On average, markers in close physical proximity are expected to exhibit higher LD than
those spaced farther apart1. The reason is that any given variant must have been intro¬
duced into the population by some individual (a founder). That variant was introduced on

a founder haplotype, and each successive generation, the size of that haplotype diminished
as the number meiotic events increased. This is why older populations exhibit greater hap¬
lotype diversity. Haplotype analysis has therefore provided invaluable support to establish¬
ing that Africa is the oldest population (the "Out of Africa" hypothesis) by demonstrating
that African populations exhibit greater haplotype diversity than other major world popu-

lations(Tishkoff et al., 1996).
LD-based analysis is becoming increasingly popular given the advent of fine-scale geno-

typing technology. Haplotypes of tightly linked markers have already proven valuable in
reconstructing evolutionary history of several species. There is widespread hope that hap¬
lotypes may be equally valuable in other contexts, notably complex disease mapping.

1.3 Motivation for Thesis

As noted above, there is currently a strong interest in how best to use LD information for
fine-scale mapping and association analysis of complex traits. A growing number of stud¬
ies demonstrate that haplotype-based approaches may provide more power and accuracy in

locating causative disease variants than single-locus methods (see, e.g. Zhao et al., 2003;

'This has been supported by empirical evidence, despite the fact that LD can be induced by a myriad of
other factors that can obscure this relationship.
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Morris et al., 2002; Fallin et al., 2001). These haplotype-based studies commonly fol¬
low a two-step procedure: first, haplotypes are inferred from a sample of phase-unknown
genotypes using a computational algorithm, and second, inferred haplotypes are fed into a

multi-locus LD model, where they are treated as having been directly observed.
There are two approaches to inferring haplotypes from population data, both with potential
drawbacks. One approach is to use family data, which may be able to deterministically
resolve phase for genotypes featuring multiple heterozygous loci. However, ascertaining
this information can be costly. Furthermore, many popular pedigree-based methods assume
Linkage Equilibrium, which is cause for concern.
A second approach is to infer haplotypes directly from population data. A variety of sta¬
tistical algorithms exist for random-mating populations, and good comparative surveys are

available (see, e.g. Stephens and Donnelly, 2003; Zhao et al., 2003). A problem with re¬

constructing haplotypes using these models is that there may be considerable uncertainty
associated with the inferred haplotypes.
The objective of the thesis is to develop a robust statistical model that can accommodate
two kinds of dependencies: dependencies across markers (LD) and dependencies across

individuals (family data) and to assess the importance of each in the quality of haplotype
reconstruction.

1.4 A Note on Human vs. Animal Genetics

This thesis was developed in the context of animal breeding. This is why the half-sibship
is the pedigree structure that is the basis for the model in Chapter 4. It is also why males
and females are referred to as sires and dams respectively. However, most of the literature
that this thesis utilizes was published in the context of human genetics, which is where the
vast amount of theoretical and empirical research in the areas of haplotype reconstruction
and LD based analysis has been conducted.
It is not inappropriate to apply results from human genetics to outbred animal stock. The
thesis demonstrates the importance of accounting for LD in haplotype reconstruction. LD
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profiles for livestock populations are only now emerging (see, e.g. Heifetz et al., 2005).
While LD is likely to vary widely across the genome in livestock populations (as it does
with humans), it appears that, on average, LD will be more extensive in livestock popula¬
tions than in humans.

1.5 Outline of the Thesis

• Chapter 2 examines haplotype reconstruction algorithms for unrelated individuals.
In particular, this chapter evaluates three of the most popular algorithms and con¬

cludes that the EM-based approach is a sound method in terms of accuracy, accessi¬
bility and extensibility.

• Chapter 3 reviews haplotype reconstruction algorithms for pedigrees and concludes
that these are not relevant for analyses featuring tightly linked markers.

• Chapter 4 introduces a model to reconstruct haplotypes for unrelated individuals,
family-child trios and arbitrarily large half-sib pedigrees. This model is efficient
over non-recombinant regions and, crucially, accommodates LD between loci.

• Chapter 5 is devoted to simulating and analyzing results. Simulations are conducted
for a diverse set of haplotype frequency distributions, all of which have been previ¬

ously published in empirical studies. A wide variety of important results regarding
the effectiveness of using pedigree data in a population study are presented in a co¬

herent, unified framework. Insight is provided into the different properties of the

haplotype frequency distribution that can influence experimental design. It is shown
that a preliminary estimate of the haplotype frequency distribution can be valuable in
large population studies with fixed resources.

• Chapter 6 provides a critical evaluation of the role of haplotypes for fine-mapping
studies, including simulation studies to illustrate potential problems using haplotypes
for ANOVA (model-free) mapping studies.
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• Chapter 7 features concluding remarks and proposes some directions for future
search.



Chapter 2

Haplotype Reconstruction for Unrelated
Individuals

'

Haplotype reconstruction algorithms for unrelated individuals are primarily likelihood
based, where the likelihood reflects Hardy-Weinberg assumptions. This chapter evaluates
three of the most popular algorithms and concludes that a popular EM-based approach is
a sound method in terms of accuracy, accessibility and extensibility. These conclusions

inspired the model in Chapter 4, which can be regarded as a generalization of this approach
to pedigree data.

2.1 Overview

This chapter provides a comparative analysis of three of the most popular likelihood-based
approaches to haplotype reconstruction for unrelated individuals. The first is an EM-based
approach that has been developed and evaluated in many different contexts (see, e.g. Hill,
1974; Terwilliger and Ott, 1994; Excoffier and Slatkin, 1995; Hawley and Kidd, 1995;
Fallin and Shorck, 2000; Kirk and Cardon, 2002; Qin et al., 2002). The second is a

Bayesian model introduced by Niu et al. (2002). The method specifies aDirichlet prior over
the haplotype frequency distribution, and this is then combined with the same complete-
data likelihood evaluated by the EM algorithm. Although this method is commonly referred

10
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to as HAPLOTYPER, it has also been referred to as the "Naive" Gibbs Sampler since the
Dirichlet prior results in sampling behavior that is inconsistent with basic population ge¬

netics theory (Stephens and Donnelly, 2003). This description is preferable since it helps
underscore the key differences between these methods. The final method, which is also
Bayesian, was introduced by Stephens et al. (2001) and employs an approximate coales¬
cence prior which suggests an improvement over the method by Niu (2004), provided that
the coalescent is a reasonable model for the data.

Despite the ubiquity of these models, there remains a considerable amount of confusion
over relative benefits/drawbacks for using each one. As suggested by Stephens and Don¬

nelly (2003), a critical first step to understanding the these (or any other) statistical mod¬
els is to distinguish between the modelling assumptions and the computational complexity.
Section 2.2 provides a mathematical and qualitative description of these modelling assump¬

tions, beginning with the derivation of the likelihood of the observed data that is common
to all three. Briefly, the key assumption for both the EM-based approach and the Gibbs
Sampler proposed by Niu et al. (2002) is that the population is in HWE. Throughout the
chapter, we therefore refer to these models as HW-EM and HW-GS, which allows us to dis¬
tinguish between the probability model and the model of inference. Similarly, we refer to
the method of Stephens et al. (2001) as C-GS to distinguish between the probability model
(coalescence-based evolution in addition to HWE) and the method of inference (Gibbs

Sampling).
Section 2.3 discusses several important computational problems facing all three methods.
Among the more important conclusions is that the complexity of all three algorithms is
the same, and a popular heuristic that deals with the resulting limitations on the num¬

ber of markers can be adapted to each of the methods. Section 2.4 discusses the relative

performance of each the three algorithms. This provides evidence that, for many marker
configurations that are used in fine-scale genetic analysis, the HW-EM algorithm performs
as well as the two MCMC methods in small samples.
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2.2 Comparison of Modelling Assumptions

As noted above, all three methods, are based on the same likelihood function, which re¬

flects the assumption that the population is in Hardy-Weinberg Equilibrium (HWE). While
describing this likelihood, we also introduce some key notation that will be used through¬
out the thesis.

We are considering a candidate region in the genome characterized by L tightly linked bial-
lelic loci. Let h = h\... Jim denote theM — 2L possible haplotypes, and let © = (0i,..., 0m)
denote corresponding haplotype frequencies in the target population1.
For a large, panmictic population, we can specify the probability of observing a given phase
configuration, z = (hi,hj) as

p(z = hi,hj\&) = CijQfij (2.1)

where

cij ~
2> i 7^ J
1, otherwise.

Similarly, the probability of observing a given phase unknown genotype, y, in a panmictic
population is:

P(y|®)= E p(z\®), (2.2)
z€z(y)

where z(y) is the set of all possible phase configurations that can resolve y.
Let y = yi ■. -yN denote a sample of N phase unknown genotypes. For a given haplotype

frequency profile, 0, the log-likelihood of the observed data is thus:

N

logp(y|0) = £log
i=l

E p(z\®)
IzezUh

+ Constant. (2.3)

In general, the summation in between the brackets of equation (2.3) will prevent an analytic
solution for the maximum likelihood estimate of 0. However, the problem is amenable to

estimation using any data augmentation approach.

1More precisely, 0, represents the proportion of /t, haplotypes that segregate in the population.
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2.2.1 The EM algorithm for Unrelated Individuals (HW-EM)

The EM algorithm is the most straightforward data augmentation method. The general
approach entails augmenting each y,-, i.e. the observed phase-unknown genotype for each
member in the sample, by the corresponding phase configurations. We denote these latent
phase configurations by z = zi ■ ■ -Zn- Note that since z is completely informative for y,
the augmented likelihood, p(y,z|0) is equivalent to p(z|0), which follows a multinomial
distribution. The expected log-likelihood of the augmented data which can therefore be
expressed as:

n m

£/>(z|y0)logLP(y,z|©)] = EI Ep(zi\yi,e)nij lo8 07 + Constant, (2.4)
i=l 7=1

where 0 denotes the current estimate of 0 and ntJ refers to the number of times haplotype
j appears in the phase configuration of individual i. Once (2.4) has been calculated, the
result is maximized with respect to 0 and the process is repeated until 0 converges at a

maximum, 0. To illustrate the computations involved in this process, a simple example has
been provided in Appendix 3.
It is important to note that while the statistical objective of the EM-based approach to

haplotype reconstruction is to calculate the maximum likelihood estimate of the haplotype

frequencies (©) given genotype data (y), these frequency estimates can then be used to
reconstruct phase probabilities using p(z|y,0). Hence the HW-EM algorithm is considered
appropriate for experiments requiring both haplotype frequency estimates and phase calls.

2.2.2 The Naive Gibbs Sampler (HW-GS)

As stated above, the likelihood for the augmented data, /?(y,z|0), follows a multinomial
distribution. The method of Niu et al. (2002) begins by introducing a Dirichlet (conjugate)

prior, which is conjugate to the multinominal distribution, for 0, i.e. 0 ~ Dirichlet(p)
where p = (Pi,...,pm)- Unlike the HW-EM algorithm, HW-GS does not estimate 0 di¬
rectly. Instead, p{y,z) is then derived by integrating out 0 from the full joint distribution,
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from which phase call estimates (z) are obtained by Gibbs Sampling. Haplotype frequency
estimates can be obtained by averaging the MAP estimates of z.
Niu et al. (2002) show that the relevant conditional distributions can be expressed as:

p(zi = hj,hk\z-i,y) oc (nj + $j)(nk + p*), (2.5)

where zrepresents the haplotype pairs for all subjects excluding the /'th individual, and rij
and rik denote the counts of haplotypes j and k that are in z

Niu et al. (2002) suggest an prior-annealing strategy that involves choosing large values
of P at the beginning of each iteration and then gradually decreasing them as the iteration

progress. Their motivation is to allow the Gibbs sampler to freely manoeuvre in haplotype

space without getting stuck on a local maximum.
It must be stressed that the values for P are chosen solely on the basis of computational con¬
siderations. They do not incorporate any population-specific (prior) knowledge regarding
the the haplotype distribution. As a result, this sampling procedure often exhibits behavior
that is inconsistent with basic population genetics theory. This "naive" behavior is best
understood when considering a uniform prior on the haplotype frequency distribution is
used (i.e. P = 1). For small sample size, none of the haplotypes in the candidate phase

configurations may appear in the rest of the sample (z_;), i.e rij = 0 and n* = 0 for all
relevant haplotypes. The HW-GS would then assign equal weight to all candidate phase

configurations. The standard neutral (or coalescent) theory of evolution stipulates that hap¬
lotypes are more likely to be clustered, i.e. we would want to place more weight to those

haplotypes which look similar to ones that have already been assigned inzIt is unclear
how to achieve this in a principled way with a Dirichlet prior.

2.2.3 The Coalescence-Based Gibbs Sampler (C-GS)

As discussed in the previous section, an informed prior would place greater weight on those

haplotype configurations that look similar to those that we are conditioning on. Stephens
and Donnelly (2000) derive just such a sampling distribution, where similarity is based
on the coalescent theory. The model predicts the configuration of a single haplotype (h)
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conditioned on a set of previously sampled haplotypes,(//), according to the following
distribution:

where ra is the number of haplotypes of type a in H, N is the total number of sampled

haplotypes, p is a mutation rate and is the probability that a haplotype of type a

could result in h after mutational events described by s. Stephens et al. (2001) state that

"informally, this corresponds to the next sampled haplotype, h, being obtained by applying
a random number ofmutations s to a randomly chosen existing haplotype, a."
This distribution can easily be applied to haplotype reconstruction since equation (2.5) can
be rewritten as

These conditional distributions are inconsistent since they were not derived from a proper

joint distribution, and this model has been referred to as a "pseudo" Gibbs Sampler (per¬

haps in retaliation for labeling the previous model as "naive"). As discussed in Stephens
and Donnelly (2003), inconsistent distributions can be problematic because Gibbs sam¬

pling is not guaranteed to converge to the joint distribution. However, Gibbs Sampling
on these distributions is guaranteed to converge since the Markov Chain is irreducible and

aperiodic. Stephens and Donnelly (2000) also show that as N —> °°, the sampling distribu¬
tion converges to one that is consistent with Hardy-Weinberg assumptions. Equivalently,
for large samples, the HW-GS and C-GS exhibit the same performance. The problem of

quantifying what constitutes a large sample is addressed in section 2.4.

It is well known that the number of loci (rather than the sample size) can impede computa¬
tional tractability. This section demonstrates that computational complexity with respect to
the number of loci of the MCMC methods is equivalent to the EM algorithm. One problem
that is specific to MCMC methods is the difficulty in determining convergence criterion.

(2.6)

p(zi = hj,hk\z-i,y) « p(hj\z-i,y)p(hk\z-i,hj,y) (2.7)

2.3 Computational Challenges
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This section also discusses the practical implications of this problem in the context of hap¬

lotype reconstruction.

2.3.1 Accommodating Large Numbers of Markers

It is well known that the HW-EM algorithm can only accommodate a limited number of
loci (< 20). This can attributed to the requirement of enumerating all phase configurations
that are consistent with a given genotype (i.e. calculating p(z,|y/,0) during the E-Step).
Both models that use MCMC methods (specifically, Gibbs Sampling) were introduced as

being able to accommodate arbitrarily large numbers of loci, and a resulting misconception
is that the MCMC methodology itself improves on limitations of the HW-EM algorithm.
The computational complexity of all models are, however, equivalent since both methods
that utilize Gibbs Sampling also require the enumeration of all possible phase configura¬
tions that are consistent with a given phase-unknown genotype (see equations 2.5 and 2.7
for the HW-GS and C-GS respectively).
The complexity of computing p(zi\yi,@) increases linearly with the number of possible
phase configurations that can resolve an ambiguous genotype. However, the number of

possible phase configurations increases exponentially with the number of heterozygous

genotypes, which limits the number of SNPs that can reasonably be evaluated. This con¬

straint will apply to any Gibbs Sampling approach that requires estimating the distribution
of phase given marker data.
Niu et al. (2002) describe a heuristic to accommodate large numbers of loci, which they
call partition-ligation (PL). PL is completely generic in that in can be applied to any al¬

gorithm that infers haplotype frequencies. It has since been incorporated into the C-GS

(Stephens and Donnelly, 2003) and the HW-EM algorithm (Qin et al., 2002). It has also
been proposed for related pedigree-based haplotype reconstruction methods (Abecasis and

Wigginton, 2005; Schouten et al., 2005).
The heuristic employs a divide-and-conquer strategy. First, the L loci are partitioned into
smaller tractable "atomistic units" (i.e. subsets where all constituent haplotypes can be

exhaustively enumerated). The haplotype reconstruction algorithm is then applied to each
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unit, but only the B most probable haplotypes are recorded. Pairs of atomistic units are

merged (ligated), by concatenating all B2 possible haplotype combinations.
It is clear that a sufficiently high value of B should be chosen so that correct haplotypes
are not discarded. Setting B to 40 is regarded as sufficiently large for atomistic units less
then 7, however no formal analysis has been conducted to substantiate this. Until further
research is conducted, PL should be treated in the same way as multimodality, i.e. the same

data should be analyzed under different parameter settings to ensure a global optimum is
reached.

It should be noted that PL-EM is not the only method that has been introduced to cope with
a large number of loci. Thomas (2003) also proposes a recursive algorithm, where, at each

stage, the list ofmarkers is split in half so that the base case consists of analyzing two locus

haplotypes. The novel insight is to run the HW-EM algorithm for one iteration on each set
of markers and eliminate those haplotypes that have an estimated frequency of zero. The

assumption is that it is not necessary to wait until the HW-EM algorithm converges before

many of the haplotypes with zero frequency will have been estimated. A key distinction
between this approach and PL-EM is that this method will not discard any haplotypes with

positive frequency (recall that PL-EM will only choose the B most likely haplotypes at any

stage of the recursion). Hence, when many haplotypes are segregating in the population (or
when the level ofmissing data is high), the algorithm may be prohibitive.

Clayton (2002) introduced an even simpler approach to culling haplotypes with zero fre¬

quency. The software, SNPHAP, starts by fitting two-locus haplotypes and extends the
solution one locus at a time. Clayton (2002) concedes that the order in which loci are intro¬
duced can result in different solutions and recommends running SNPHAP using different
marker orders, as well as culling haplotypes after every k loci (k is not specified) rather
than after every single locus.
In conclusion, more work needs to be done to identify the relative merits of these ap¬

proaches. PL-EM is becoming increasingly popular as it has been applied to other hap¬

lotype reconstruction algorithms, such as Stephens and Donnelly (2003) and Zhang et al.

(2005).
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2.3.2 Convergence Rates of the Gibbs Samplers

An important problem in Gibbs sampling is determining the appropriate burn-in period,
i.e. the number of initial iterations that must be discarded before the Markov Chain has

converged to the desired stationary distribution. The convergence time for the coalescence-
based model is much longer than for the naive approach. Specifically, while 5,000 up¬

dates are considered acceptable for the HW-GS to converge to the posterior distribution,
2,000,000 updates are needed to provide a reasonable approximation to the posterior de¬
fined by the C-GS (Stephens and Donnelly, 2003). The practical implications of this may

be profound: A recent study by Niu (2004) alleges that it would take months to complete
a standard simulation study for 500 subjects using C-GS, while the HW-GS could easily
accommodate this level of data.

2.4 Model Performance

In this section, we examine the results of several comparative studies that evaluate the ac¬

curacy of the three methods described above. These studies are primarily concerned with

comparing phase reconstruction accuracy. However, as we examine in Chapter 5, phase
is determined as function of the haplotype frequency distribution. Hence, a model can be
evaluated in terms of the haplotype frequency distribution.
When considering relative performance of these three models, it is important to remember
that the likelihood of all three models is equivalent. Hence for a "large" (or sufficiently
informative) sample sizes the performance should be equivalent. A reasonable, question,
therefore, is: when is a sample sufficiently informative to render the prior distribution ir¬
relevant? The information content of a sample if influenced by both the heterozygosity2
and sample size. While it is impossible to test all combinations of these parameters, some

meaningful results are available. Fallin and Shorck (2000) demonstrate that for a five lo¬
cus system, samples sizes that are > 50 are sufficient to guarantee a near-zero MSE for all

2The hererozygosity is defined as 1 — £, 82 and is the expected number of heterozygotes in the sample.
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Gene (Loci,Haplotypes,Sample Size) EM/HW-GS C-GS

CFTR (23,56,28) .40 .47

ACE (52,n/a, 11) .19 .18

P2AR (23,10,15) .09 .05

(32AR (23,10,121) 0 0

Table 2.1: Summary of phase reconstruction error rate from comparative studies evaluating
HW-EM, HW-GS and C-GS. EM and HW-GS are grouped together since their performance
is consistently similar. Error rates for |32AR (23,10,121) from Niu et al. (2002). All other data
from Stephens and Donnelly (2003).

haplotype frequency vectors3. Zhang et al. (2001) show that the performance of PHASE
and HW-EM is equivalent for a wide variety of two locus systems featuring sample sizes
of ~ 30, which indicates that this sample size/marker combination is sufficient to achieve
good estimates of 0. These studies are quite useful since haplotype-based mapping analy¬
sis use haplotypes based on two or five SNPs (see, e.g. Grapes et al., 2004; Zaykin et al.,
2001).
The comparative studies that examine all three algorithms typically feature extremely small

sample sizes (Stephens et al., 2001; Niu et al., 2002; Qin et al., 2002; Stephens and Don¬

nelly, 2003). The heterozygosity is not reported, but can be crudely approximated by the
number of loci and the number of haplotypes that are segregating in the system. A sum¬

mary of the phase reconstruction error rate for the data analyzed by the four studies cited
above are given in Table 2.1. Based on the evidence published thus far, we conclude that the
MCMC approaches do not offer any clear advantages over the HW-EM algorithm, and that
we can feel confident using it for the kinds of data that are typically used in fine-mapping

3It is evident that parameter estimation improves with sample size. Equivalently, the MSE will decrease
with sample size. At some point, the sample size will be sufficiently large that the MSE will approach zero
for every parameter value. This is what the study of Fallin and Shorck (2000) demonstrated with a five locus
system and sample sizes that are > 50. An equivalent way to see whether a particular sample size is sufficient
to reconstruct all haplotype frequencies with low MSE is to average the MSE over multiple simulated runs
where the simulated data is based on the haplotype frequency vector with the highest entropy. This would be
a vector of markers in linkage equilibrium, where the frequency of each marker allele is .5.
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studies (i.e. large sample size with small numbers of loci).

2.5 Looking ahead: Extensibility of the EM Algorithm

The chapter has demonstrated that the EM-based approach remains one of the most reliable
haplotype reconstruction algorithms for tightly linked markers. One additional attractive
feature of the EM-based approach is that the algorithm can be extended to accommodate
pooled data, where experimental design entails randomly partitioning sample of sizeN into
K groups. EM-based models that estimate haplotype frequencies from pools are described
in Yang et al. (2003) and Ito et al. (2003).
The appeal of DNA Pooling is that the procedure can be very cost efficient. It is conceptu¬
ally evident that the standard EM-based haplotype reconstruction is equivalent to the case

when K = 1. Cost decreases with the size of the pool, but larger pools provide less infor¬
mation regarding the latent haplotype data. Hence, the HW-EM algorithm is extensible to
less informative genotype data than that provided by unrelated individuals.
This thesis will demonstrate that the EM algorithm can be also be extended to accommo¬

date genotype data that is more informative than a sample of unrelated individuals, where
the information is supplied by pedigree data. It will also examine the trade-off between
cost and information. First, however, it is necessary to establish that such an algorithm
is warranted, i.e. that existing haplotype reconstruction algorithms for pedigrees are not
relevant. This is the focus of the next chapter.



Chapter 3

Haplotype Reconstruction for Pedigrees

3.1 Overview

Chapter 2 discussed haplotype reconstruction algorithms for unrelated individuals. These

algorithms are stochastic since, in the absence of additional information (e.g. pedigree
data), the chance of deterministically resolving phase is small, even when only a few loci
are examined'. This chapter reviews existing approaches for haplotype reconstruction on

pedigrees. Unlike haplotype reconstruction for unrelated individuals, there are two distinct
classes of algorithms for pedigree data: stochastic and deterministic. These are reviewed
in Sections 3.2 and 3.3 respectively.
Each of the two groups of algorithms rely on assumptions that are not appropriate for many

experimental designs. Specifically, most stochastic methods assume markers are in Linkage

Equilibrium (LE), while deterministic methods assume that pedigrees are sufficiently infor¬
mative (large). Both assumptions were valid until recently, but because of high-resolution

mapping methods, experimental design now favor smaller pedigrees and markers in high

Linkage Disequilibrium (LD). Section 3.4 presents the results of a simulation study that
demonstrates that neither paradigm is effective for small pedigrees and marker data that are

tightly linked. The simulation study provides further justification for the model developed
1 Recall that the only way a phase unknown genotype can be resolved deterministically is when the indi¬

vidual is heterozygous for at most one locus.

21
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in the next chapter, which can accommodate LD and sparse pedigree data.

3.2 Stochastic Methods for Haplotype Reconstruction on

Pedigrees

This section will discuss the Lander-Green algorithm, which serves as the core probabil¬

ity model for the most popular software packages for haplotype reconstruction on pedi¬

grees: MERLIN(Abecasis et al., 2002), SIMWALK(Sobel and Lange, 1996) and GENE-

HUNTER(Kruglyak et al., 1996). The Lander-Green algorithm explicitly requires that
markers are in LE. While stochastic haplotype reconstruction algorithms that accommo¬
date LD have been proposed, these are inefficient, and will be discussed in Chapter 4.

3.2.1 The Lander-Green Algorithm

The Lander-Green algorithm was originally developed as a maximum likelihood method
for estimating the recombination fraction (genetic distance) between markers. As with
haplotype reconstruction, the observed data was multilocus genotype. For each marker
genotype, the Lander-Green algorithm also defines an inheritance vector (equivalently an

"IBD2 vector"), which is regarded as the latent data.
The IBD vector species the meiotic outcome for each of the n non-founders in a pedi¬

gree. For a given pedigree member, the outcome is indexed as a bit, where 0 denotes a

paternally derived allele and 1 denotes a maternally derived allele. A pedigree featuring n

non-founders will require an inheritance vector of size 22n for each locus. This is why the
Lander-Green algorithm is constrained by the number of members in the pedigree.
Once the inheritance vector is specified, information can be combined across the genome

by using a Hidden Markov Model (HMM). Let G, denotes the genotype for each pedigree
member at locus i and /, is the latent IBD vector at locus i. The three components of the
likelihood that characterize an HMM are:

identical By Descent.
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1. The transition probability, f (/,■ j/,_ i). Note that if the states of /, and /,_ i are the same,

then no recombination has occurred, while if they differ than at least one recombinant
event has occurred. Hence, this probability will be function of the recombination rate,
r„ between the two successive loci.

2. The prior probability, P(Io), which is assumed uniform over all possible IBD vector

configurations, i.e. each state is assigned a probability of •

3. The emission probability, P(Gi|/i), which is defined as a product of the marginal
allele frequencies for the founders. This reflects both the Hardy-Weinburg and the
LE assumptions.

A graphical depiction of the likelihood for a parent-child trio appears in Figure 3.1. The
IBD vectors are represented as a genetic descent graph, where each genotype as a pair of al¬
lele nodes, with the paternally derived allele listed first. Arcs connect the relevant parental
allele node to a descendant child node.

3.2.2 Applications and Robustness of the Lander-Green Algorithm

As noted above, the Lander-Green algorithm was originally developed to infer recombina¬
tion rates between loci. However, if genetic distances between loci are known, the Lander-
Green formalism has many useful applications. For example, one of the most widely used
applications of the Lander-Green algorithm is for Nonparametric Linkage Analysis (NPL).

Specifically it can be used to test for an excess of IBD sharing among affected sib-pairs.
Since it is straightforward to calculate P{I\G), it is also possible to calculate an allele shar¬
ing statistic:

s(G) = £S(/)/>(/|G),
/

where 5(7) is the number of IBD alleles shared by two affected sibs. This statistic can be
compared to the expected number under no linkage.

Haplotype reconstruction is an obvious application. This can be achieved by inferring the
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Gl J
P(G0lIo)=P(a)p(b)p(c)p(d) P(G1|I,)=p(e)p(f)p(g)p(h)

Figure 3.1: Lander-Green Representation of the Likelihood for a Parent-Child Trio at two
loci. The observed data are the marker genotypes, G;, for each of the i loci. The latent data
are the corresponding IBD vectors, which are (0,1) and (1,1) for Iq and I\ respectively, are

represented as a genetic descent graph, a-h refer to founder alleles, and p(a) - p(h) are their

corresponding frequencies.

most likely sequence of latent data, e.g. using Viterbi sequence alignment. (The IBD vector
at each locus is completely informative for the haplotype configuration of those loci).
With the advent of marker data in high LD, it is necessary to establish whether these
Lander-Green applications are robust to violations of the LE assumption. Many stud¬
ies have established that using markers in tight LD can severely bias results when using
Lander-Green for NPL example discussed above(see, e.g. Abecasis and Wigginton, 2005).
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Haplotype ©True ©LE

00 .5 .25

11 .5 .25

10 0 .25

01 0 .25

Table 3.1: Simple example illustrating dangers of assuming LE for markers in tight LD when

reconstructing haplotypes

Evidence also exists that haplotype reconstruction accuracy can also be affected. The most

widely cited study is by Schaid et al. (2002), which investigates a region for linkage using
a case-control study. The objective of a case-control study is to compare haplotype fre¬

quencies between cases and controls. A significant difference is considered evidence for

linkage. The region targeted by the study was spanned by three loci, all of which exhib¬
ited high pairwise LD. Cases were related, while controls were not. Haplotype frequencies
were estimated for controls using the standard EM algorithm described in the previous

chapter. Haplotype frequency estimates for cases were estimated using GENEHUNTER,
which, as noted above, is a method that employs the Lander-Green framework. Haplotype

frequencies were significantly different. However, when only unrelated cases were used
and haplotype frequencies were estimated using the standard EM algorithm, no significant
difference was detected. The LE assumption had resulted in false positive.
Section 3.4 presents the results of a simulation study that further establishes that Lander-
Green based algorithms are inappropriate for tightly linked markers. However, Table 3.1

provides a simple example to motivate intuition. The Table describes the haplotype fre¬

quency profile, ©True? f°r two biallelic loci. Only two of the four haplotypes are segregating
in the population, and each allele at each locus segregates with frequency 50%. If LE was

assumed, the haplotype frequency of each haplotype would estimated as the product of its
allelic frequencies. This would result in a radically different frequency profile, where each
of the four haplotypes would be considered equally likely.
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3.3 Deterministic Methods for Hapiotype Reconstruction
on Pedigrees

Many deterministic algorithms have been developed for haplotype reconstruction, and good
review articles are available (see, e.g. Niu, 2004). All algorithms are characterized by the
sequential and repeated application of a series of rules, and all algorithms suffer from two
limitations. The first limitation is that these algorithms are only reliable when the pedigree
is sufficiently informative. For example, rule-based approaches typically require that at
least one parent is genotyped; the algorithm will simply not start in the event that even one

progeny has untyped parents. More generally, if there are multiple haplotype configura¬
tions consistent with pedigree marker data, rule-based methods will either halt or return a

single consistent configuration without assigning an appropriate degree of uncertainty.
The second limitation of deterministic methods is that no population information is used.
To appreciate the importance of population data, consider the example where a parent-child
trio has been genotyped at two loci and all three individuals are double heterozygotes. If
the haplotype frequency profile is given by Table 3.2 then the haplotypes for each member
in the pedigree could be reconstructed trivially.
It is clear that pedigrees need to be sufficiently informative for these algorithms to be ef¬
fective. A threshold size has not been established, but full sibships of size 10 where both

parents are genotyped was the sparsest pedigree considered by Nejati-Javaremi and Smith
(1996). The method of Qian and Beckmann (2002), which is considered state-of-the-art,

only examines pedigrees featuring at least 15 members. The review by Niu (2004) states
the need to establish the limitations of rule-based methods for smaller, sparser, pedigrees.
Section 3.4 provides further insight into the limitation of rule-based methods on sparse

pedigree data.

3.4 Simulation Study: The Need for a New Paradigm

As stated previously, existing methods for haplotype reconstruction on pedigree data are not

developed to accommodate tightly linked markers for small families. Instead, determinis-
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tic methods can only accommodate larger pedigrees, while Lander-Green based methods
can accommodate small pedigrees with markers in LE. As will be discussed in the fol¬

lowing chapter, methods that can account for LD across loci are highly inefficient and, in
practice, their utility is restricted by family size. In Chapter 4, a new model is developed
that accommodate larger pedigrees a broader range of sparse pedigree structures. This sec¬

tion demonstrates the limitations of existing methods and the benefits of using this new

paradigm.

Specifically, this section presents the results of a simulation study that is based on small
independent half-sib pedigrees using empirically derived haplotype data. The half-sibships
are paternal, where each dam gives birth to exactly one offspring. Scenarios where one or

both parents are untyped are examined. The objective will be haplotype reconstruction for
the sire. The simulation strategy is similar to those described in Chapter 5. Briefly, the sim¬
ulation study entails: (1) specification of a haplotype frequency distribution for the parental

population; (2) simulation of genotypes for independent half-sib pedigrees of various sizes;
and (3) estimation of phase configurations for the sire.
The haplotype frequencies used are based on the African population featured in the study

study by Hull et al. (2001). The study is typical of those being employed in fine-scale
mapping analyses. The study examines six loci spanning a small (7.6 kb) region within a

locus that is believed to contain a disease variant. As reported by the study, only 12 of the

possible 64 haplotypes are segregating at these loci, which is indicative of high LD.
Three different algorithms are employed. The first is the "correct" one in that it utilizes
population data and accommodates LD across loci. The second method is based on the
Lander-Green paradigm in that it utilizes population data, but assume LE across loci. For
both methods, the most likely haplotype configuration is selected.
A rule-based approach is also needed. Because standard rule-based methods require that at
least one parent is genotyped, a genotype-elimination approach was implemented. The sire
was successfully haplotyped if it could be assigned a unique haplotype configuration.
Results are presented Table 3.2. All three algorithms are comparable when both parents

are typed and sibships are size 10. For sparser pedigrees, both stochastic methods outper¬

form the rule-based approach. This is not surprising, since there is no need for stochastic
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SIRE PHASE CALL ACCURACY

Untyped Sires Typed Sires
Sib Size LD LE Rule LD LE Rule

1 0.07 0.00 0.00 0.91 0.66 0.42
2 0.14 0.02 0.00 0.98 0.78 0.58
3 0.30 0.09 0.02 1.00 0.85 0.70
4 0.52 0.20 0.04 1.00 0.88 0.80
5 0.65 0.25 0.10 1.00 0.95 0.90
10 0.92 0.50 0.30 1.00 1.00 1.00

Table 3.2: Percentage of Sire haplotypes that were accurately reconstructed using three
different methods. Sires belong to half-sib pedigrees, and dams were untyped.

assessment if a pedigree can be resolved deterministically. What is most striking is how
the model that correctly accounts for LD outperforms the model that incorrectly assumes

markers are in LE. This distinction is most pronounced when both parents are untyped.
Similar trends were observed when other haplotype frequencies were used. This simula¬
tion study provides further evidence that Lander-Green based algorithms are not robust to

departures of the LE assumption.



Chapter 4

A Unified Model for Haplotype
Reconstruction

This chapter presents a novel approach for reconstructing haplotypes for pedigree data
featuring tightly linked markers. The approach is motivated by the key insight that a sample
of unrelated individuals can be regarded as a collection of pedigrees, each of size one.

Using graphical models, it is possible to extend the EM algorithm for unrelated individuals
to accommodate more complex pedigree structures, such as paternal half-sibships. Section
4.1 provides an overview to the Chapter and introduces the key notation and assumptions
that will be used throughout the chapter. Section 4.2 provides a qualitative description
of graphical models and their application to haplotype reconstruction for paternal half-
sibships. Section 4.3 provides a more mathematically detailed discussion of the inference
algorithms used for haplotype reconstruction in paternal half-sibships.

4.1 Overview

Chapter 2 reviewed haplotype reconstruction algorithms for unrelated individuals. These

algorithms were stochastic since, in the absence of additional information (e.g. pedigree
data), the chance of deterministically resolving phase is small, even when only a few loci

29
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are examined1. It was argued that that the popular EM-based method should be the default

approach to haplotype reconstruction in population studies. One assumption made when

discussing population studies in the abstract is that only samples of unrelated individu¬
als will be ascertained (since these provide the most information about a population). In

practice, however, pedigree data may be available for a population study, particularly in a

fine-mapping analysis where pedigree data is used for the initial (coarse-mapping) linkage

analysis. Two obvious problems arise if reconstruction algorithms for unrelated individuals
are applied to pedigree data: first, the model is semantically wrong since members of the

sample are no longer conditionally independent given the haplotype frequency profile; and
second, valuable information that can help resolve phase ambiguity is ignored.
The objective of this chapter is to extend the EM-based approach to accommodate pater¬

nal half-sib pedigrees, which is a commonly encountered structure for many species of
livestock. Specifically, a model is presented to conduct exact inference on arbitrary large

half-sibships that explicitly account for LD across loci. Loci are assumed tightly linked, as
would be expected in a high resolution mapping study. This assumption has two important

consequences: haplotypes are likely to nonrecombinant between two successive genera¬

tions and existing stochastic haplotype reconstruction algorithms (which, as discussed in

Chapter 3.1, are not robust to the violations of the LE assumption) are inappropriate.
As noted above, breeding schemes featuring paternal half-sibs are common for many species
of livestock. This chapter considers breeding schemes where each pregnancy will result in
the birth of a single offspring (e.g. dairy cattle). The consequence of this assumption is that

pedigree structures are too sparse for the deterministic algorithms discussed in Chapter 3.1.
The most widely cited stochastic model for LD-based haplotype reconstruction on sparse

pedigrees is the method of Rohde and Fuerst (2001). Their inference algorithm, which is

developed for full sibs, is extremely inefficient (it cannot accommodate more than a few
sibs); adapting their methodology to the half-sib pedigree structure is not appropriate. The
reason why their algorithm is so inefficient is because it requires exhaustive enumeration of
all haplotype configurations consistent with genotype in the pedigree. Zhang et al. (2005)

'Recall that the only way a phase unknown genotype can be resolved deterministically is when the indi¬
vidual is heterozygous for at most one locus.
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improve on the method of Rohde and Fuerst (2001) by introducing a set of rules that ef¬
ficiently eliminate inconsistent haplotype configurations in the pedigree. However, when
there is missing data, the number of haplotype configurations will not be substantially re¬

duced and the method will suffer from the same problems as the method of Rohde and
Fuerst (2001). As an alternative, O'Connell (2000) alludes to the possibility ofmodifying
algorithms developed in the context of human linkage analysis to create efficient LD-based
haplotype reconstruction algorithms, but this idea was not fully developed.
This chapter proposes an alternative framework that is powerful, elegant and (most impor¬

tantly) robust to achieve this objective: probabilistic graphical models. This framework
entails specifying the relevant joint probability distribution as a graph, and then manipulat¬

ing the graphical structure to facilitate inference. Graphical models should be regarded a

tool to help facilitate principled probabilistic inference for difficult problems2.
At the time this thesis was being undertaken, graphical models were gaining recognition
as being useful for formulating and solving problems in genetics. Lauritzen and Sheehan
(2003) provide an generic overview of the graphical model paradigm, with some applica¬
tions to simple linkage analysis and QTL detection. As noted by Lauritzen and Sheehan
(2003) graphical models are a natural way to derive the "peeling" algorithms (Elston and
Stewart, 1971; Cannings et al., 1978) that had been developed to conduct efficient inference
in pedigrees in the context of linkage analysis.
The popular statistical package SUPERLINK (Fishelson and Geiger, 2002) conducts effi¬
cient linkage analysis and was developed using graphical models. The software was mod¬
ified to accommodate haplotype reconstruction (Fishelson et al., 2005) at the same time
that Schouten et al. (2005) was published. The two approaches (including the likelihood
function, graphical representation and inference algorithms) are different. A fundamental
difference is that Fishelson et al. (2005) assumes that markers are in LE while Schouten
et al. (2005) assume markers are in tight LD. As noted in the previous chapter, LE should
not be assumed when reconstructing haplotypes with markers in tight LD.
After introducing some additional notation, the chapter provides a qualitative description

2A suitable analogy are roadmaps, which help us visualize various route options (and their consequences)
as well as offer associated algorithms (e.g. greedy search) to solve challenging optimization problems (e.g.
the travelling salesman problem).
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of graphical models and their application to haplotype reconstruction for paternal half-
sibships. Important insights into the haplotype reconstruction problem that were gained
through by using graphical models are also presented. The chapter concludes by providing
a more mathematically detailed discussion of the inference algorithms used for haplotype
reconstruction in paternal half-sibships.

4.1.1 Notation and Assumptions

It is useful to briefly review the EM algorithm for unrelated individuals that was dis¬
cussed in Chapter 2. Recall that each iteration of the EM algorithm requires calculating
the expected log-likelihood of the "complete" data, which consists of the observed phase-
unknown genotypes (y) and the analogous latent phase configurations (z):

N M

£P(z|y,0)logb(y>zl0)] = II Ep(zi b„©)n'j loSQj + Constant, (4.1)
i=lj=\

where 0 denotes the current estimate of 0 and nLj refers to the number of times haplotype
j appears in the phase configuration of individual i.
We now consider a sample of half-sib pedigrees. We assume that the parental generation is
in HWE. Below are five additional assumptions3:

1. Sires can be mated to multiple dams.

2. Dams can be mated with exactly one sire.

3. Each dam can have exactly one progeny.

4. Relationships in the sample are known with certainty.

5. Genotypes are available for all progeny, but are unavailable for sires and dams.

Formally, we consider the case where members of y may be related through one of P < N
sires. If P < N, then the likelihood in (4.1) is no longer valid since the summation over

3Assumptions 1-4 would be valid for dairy cattle. (Assumption 5 can be valid for any species). Section
4.3.4 demonstrates how this model can be extended to accommodate typed parents and full sibs.
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N only follows from assuming each animal is unrelated. Clearly, the likelihood must be
revised to accommodate pedigree structure (as well as any parental genotype information).
It is first necessary to introduce notation describing parental marker data. Let s = s\. ..sp

denote the unobserved phase configurations for the P sires, will be used to signify that
sire i is the parent of animal k, while yj denotes the set of sampled genotypes that are
related through sire i. Thus, r|,- = |y.,j specifies the size of this sibship.
Given the assumption that each dam will have exactly one progeny, rp refers to the number
of progeny and the number of dams affiliated with sire i. Similarly, let denote the
unobserved phase configuration for the dam of animal k while d , is the set of phases for all
dams that were mating with sire i. Without loss of generality, we will assume the parents
are untyped. We also make the assumption that each dam can have exactly one offspring.
The complete data can be then specified as a collection of P half-sibships:

p

(s,d,y) = (J^d^y./). (4-2)
i= 1

4.2 The Graphical Model Paradigm

This section provides a brief description of the graph-theoretic algorithms that will facil¬
itate inference in the haplotype reconstruction model for paternal half-sibships. Several

key insights into the problem domain were gained using the graphical model paradigm,
and these are highlighted. As noted above, inference using graphical models entails rep¬

resenting the relevant joint probability distribution as a graph and then using associated

algorithms to conduct inference. Broadly, the graphical model formalism provides power¬

ful tools to facilitate model specification, visualization, and inference.
The two most common forms of graphical models are based on directed acyclic graphs
(DAGs)4 and undirected graphs. In both forms, random variables are represented as nodes
and the the joint distribution is expressed as the product of local functions that are defined
over connected subset of nodes. However, the algorithms associated with model specifica-

4A1so known as Bayesian Networks.
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tion and inference are different5. When the objective of inference is to obtain the marginal
distributions for all of the latent variables in the joint distribution (as is the case with haplo¬

type reconstruction), it is preferable to work with a Junction Tree, which is a data structure
that is based on undirected graphs6. However, when specifying distributions describing

pedigrees, it is natural to using algorithms associated with DAGs. Fortunately, it is not

necessary to choose which form to use since there is a process for creating and conducting
inference on a Junction Tree that respects the conditional independence statements of a pre¬

viously stated DAG. This is the procedure that was used to generate the results presented
in the previous section, and which is described below.

4.2.1 Model Specification and Visualization

The process of model specification using DAGs follows a process that mirrors model speci¬
fication using the chain rule of probability: An ordering (topology) of the variables (nodes)
is proposed; each random variable is introduced onto the graph (as a node); and a directed
arc is drawn from the existing nodes that have a direct influence on that variable. For each
node, the conditional probability distribution of that node given its parents is specified. As
with the chain rule, the joint distribution is then specified as the product of these "pruned"
conditional probability distributions.
In the context of the half-sib pedigree, the topology is based on a descending ordering of
variables according to generation, i.e. {s,d,z,y}. The DAG is depicted on the right panel
of Figure 4.1. Shaded nodes denote observed variables7. The nested blocks (plates) provide
a compact way to represent the replication that occurs in the experiments (i.e. they have
the same semantics as the product symbols in a conventional mathematical description of
the likelihood).

5It should be noted that each graph makes different assertions about conditional independencies, and there
there are certain probability distributions that can only be expressed by one of the graphical forms.

6This is a key reason why "undirected graphs play a crucial role in solving inference and learning problems
efficiently, even for models whose definition is based on a directed graph"(Jordan, 2003).

7Since we are using a frequentist approach to inference, the haplotype frequency profile © cannot be
regarded as a node since it is not a random quantity. It is used to underscore that joint distribution is a
function of unknown parameter.
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The joint probability distribution specified by a DAG is the product of local functions de¬
fined on each node. As noted above, the location function of each node is the conditional

probability distribution of that node given its parents. The complete data log-likelihood
specified by the DAG in Figure 4.1 is therefore:

logLc(0) = log{p(s,d,y|0)}

= ElogpO;|0)+L L l°gp(dki\®)+L £ lo§ p(yki\si,dki),
i= 1 i=\k= 1 i=l k=\

(4.3)

where p(5,j0) and p(dicj\&) follow the same distribution given by equation (2.1), and

P(yki\si,dki)= £ p(z\si,dki)p(yki\z). (4.4)
zez(yki)

There are two important benefits to visualizing the likelihood using graphical models that
directly impacted the course of this research. First, note that if a dam has exactly one off¬

spring per mating (as would be the case for dairy cattle) and both parents are untyped, then
this model will yield the same results as one designed for unrelated individuals. Hence this
model can be regarded as a unified approach to haplotype reconstruction. This observation
has important benefits which will be seen in the next chapter. The graphical representa¬
tion also reveals that this model has uses beyond haplotype reconstruction. One example,
which is explored in the next chapter, is that it is well-suited for assessing optimal resource
allocation with fixed resources.

4.2.2 Inference

As will be discussed in more detail in the next section, maximum likelihood estimation

of 0 will involve efficient calculation of /?(s,j0) and p(dki\&). This section provides the
derivation of p(s,j0) and p{dki\&) using the graphical model framework. Equivalently, we
describe an efficient process for estimating the marginal distributions for all latent variables
(i.e. phase) in the pedigree.
The inference algorithm that is associated with DAGs is Variable Elimination. Specifically,
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Figure 4.1: DAG for the joint distributions relevant to haplotype reconstruction for unrelated
individuals (left) and half-sib pedigrees (right).

obtaining the marginal distributions for the a set of variables entails summing over all re¬
maining latent variables. The key idea is to push the sums into the factorized distribution as

far as possible (using the distributive law) and then perform the sums recursively. This, of
course, is precisely the idea behind the Elston and Stewart (1971) peeling algorithm (vari¬
able elimination). Peeling is appropriate in the context of classical linkage analysis since
the objective is to marginalize all of the latent variables (which allows the recombination
rate to estimated). The marginal distributions of the latent variables were not required.
Here, the situation is reversed: the recombination rate is assigned a value of zero and the

marginal distributions are needed.
To obtain the marginal distribution for each of the latent variables within the DAG frame¬

work, it would be necessary to apply the peeling algorithm repeatedly. An efficient alterna-
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Figure 4.2: Deriving the Junction Tree for a Half-Sib Pedigree, where t), = 2 From

top left: (1) the original DAG; (2) the moralized (undirected) graph and (3) the Junc¬
tion Tree. The cliques, which are read off the moralized graph, are defined as follows:

C\ = {si,du,zii},C2 = {si,d2i,Z2i},Ei = {zii,Tii} and E2 = {z2i,yu}-

tive is to employ the Junction Tree Algorithm, which is a systematic method for efficiently
computing all marginal probabilities. This is an algorithm that is based on undirected
graphs. To use this algorithm, one must first convert the DAG into an appropriate Junction
Tree. The first step is to replace the directed arcs with undirected arcs and add links to
connect nodes with common descendants. This process is called moralization and results
in an undirected graph that respects the conditional independence statements in the DAG.
In addition to moralization, it is also necessary to add arcs to eliminate chordless cycles.
This process is referred to as triangulation, and will not be needed for half-sib pedigrees,
convert the triangulated graph into a Junction Tree. This involves first identifying all the
maximal cliques in the moralized graph (i.e. all fully connected subsets of nodes that cannot
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be extended without losing the property of being fully connected); and finally constructing
a maximal-spanning tree (e.g. by using Kruskal's algorithm) out of the cliques. Additional
nodes (separators) are introduced between each pair of cliques and contain variables that
are common to the two cliques.
The process of deriving the Junction tree for a pedigree with two half sibs, i.e. rp = 2 is
sketched in Figure 4.2 (to minimize notational clutter explicit references to 0 are dropped).
Figure 4.3 depicts the Junction Tree for the general case, i.e. for a sibship of size rp.
Once the Junction tree has been created, one defines a potential function over each clique

by assigning each factor in the DAG to any one clique that features all relevant variables.
The potential function for that clique is the product over each of these factors.
For the sibship in Figure 4.3, it is clear that the potential for £)., must be:

^Ek = piyiklzik) k=l...r\i

One option for the clique potentials forQ are:

The separators are also assigned potential functions, and these are initialized to unity. Once
the Junction Tree has been constructed, a straightforward, generic process for inference is

employed that, after a single run, guarantees that the expression for all nodes will contain

marginals of the relevant variables. The algorithm is applied in the next section, but is
outlined here:

First, designate a root of the Junction Tree and update the separators and clique potentials
from the leaf of the tree to the root as follows:

p{si)p{dik)p(zik\si,dik) k= 1
■k

p(dik)p(zik\si,dik) k — 1.. .r\i

(4.5)
v\s

(4.6)
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Figure 4.3: The Junction Tree for a half-sib pedigree of size r|,. The cliques are defined as:

Ck — {.V/. dki, Zki} i Ek = {_Zki i yki} ■

Next, update the clique potentials from the root of the tree to the leaf as follows:

= <4.7)
v\s
A**

Vw = TTVw- (4-8)

Once the algorithm has been completed, then for each variable x of interest, identify a

clique, C containing x. p(x) is computed as follows:

P(x) = L¥c •

C\x

4.3 An EM Algorithm for Outbred Half-Sib Pedigrees

The section provides a straightforward mathematical description of an EM algorithm for
outbred half-sib pedigrees. The graph-theoretic algorithms that facilitated the derivation of
this algorithm are presented in Section 4.2. The section is organized as follows: first, the
appropriate likelihood is specified; second, an efficient inference algorithm is described;
and, finally, an the complexity of this algorithm is evaluated.
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4.3.1 Specifying the Complete-Data Log-Likelihood

Each iteration of the EM algorithm entails calculating the expectation of (4.3) with respect
to p(s, d|y, 0). Note that the third term in (4.3) does not depend on 0, and can be regarded
as a constant term in the context of this analysis. The expectation of the complete data

(omitting this constant term) can be expressed as:

p m p t|; m

+ EEEW*) [nkij\ logGy, (4.9)
i'=l j= 1 i=\k=\7=1

where n^j refers to the number of times haplotype j appears in the k?h dam of sire i.
This expression should be contrasted with (4.1). The key distinction involves calculating
the distribution of the latent phase configurations. For unrelated individuals, calculating

p(z|y,0) is straightforward (and provides a clear bound on the tractability of inference).
The analogous challenge for this model is to calculate p(si\&) and p(dki\®) efficiently,
which is less straightforward.

4.3.2 Calculating the Marginal Distributions of the Latent Data

To minimize notational clutter explicit references to 0 are dropped; and it should be un¬

derstood that this information is given. Furthermore, since the relevant distribution is for a

specific sire or dam, we drop any index that refers to the sire, the sire's dams or offspring.

Finally, we will assume the sibship is size K (i.e. r|,- = K).

Calculating the Distribution of the Sire Phase: The objective can therefore be written as

Lp(s,d,y)
p(s\e,y) = p(s\y) = d ^—. (4.10)

The joint distribution is expressed as a telescopic sum, which was the key insight of Elston
and Stewart (1971):

P{y,s) = P0) PI I T^P^\s,dk)p(dk) 1, (4.11)
k= l I dk J
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where

P(yk\s,dt)= £ p(z\s,dk)p(yk\z). (4.12)
zez(yk)

Peeling the f family first entails calculating

p(s,yj) = Y,p(s^j-i)p(yj\^dj)p(dj) (4-13)
dj

where y7_i = yo,Ji • • -yj-1 and yo = 0- The likelihood is then updated to

p(y)=p(s,yj) n j )■ (4-14)
k=j+1 {dk J

Each family is iteratively peeled and, after the final family has been peeled, the resulting

expression, p(y,s), can be used to calculate /?(s|y). p(y) can then be obtained by summing
out s.

Calculating the Posteriorfor the Dam: First, the objective can be rewritten as

p{di\y) =

1

Y,p(s,dj, y)

■Y*p(s>*-j)p(yj\dj>s)p(dj)> (4-15)

p(y) s

i

p{y)

where efficient calculation of p{y) is given above and the definition of p(s,y-j) is given
by:

P(s,y-j)=p(s,yo,yi...yj-i,yj+i,...yK).
To calculate p(s,y-j), it is necessary to store each of the K expressions given by equation
(4.13), i.e.

p(s,yj) j = O...K. (4.16)
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These are sufficient to calculate p(s,y~j) since:
K

pQ,y)
p(s,yj)

n p(yk\s)
p(s,yj-i) = kjj p(s,yj-i)

EI p(yk\s)
it=i

K

= n p(yk\s)p(s>yj-i)
k=j+1

= p(yj+i---yK\s)p(s,Yj-i)
= p(s,y-j). (4.17)

4.3.3 Evaluating the Complexity of the Algorithm

The crucial property of this method is that complexity scales linearly with the size of the
sibship8. From equations (4.12) and (4.17), it can be seen that the complexity of the phase
distribution for both sire and dam is dominated by the expression p(yic\s,d/c), which is cubic
in the number of phase configurations. Hence the complexity is 0(KM3)
This is still two orders of magnitude worse than the complexity for unrelated individuals.
Fortunately, there are ways to reduce the complexity further for both sire and dam. In
the context of haplotype reconstruction, the corresponding reduction in computational re¬
sources can be substantial.

Quadratic complexity can be achieved by evaluating p(yfc|.s) and p{yk\dk) directly. Con¬
sider first evaluating the relevant expression for the sire where the genotype of the dam is
unknown. Rather than summing over all the dam configurations, as suggested by (4.11),
consider directly evaluating

K

jfc=i

A given set of phase configurations, z £ r*(yk), can be expressed as

8By contrast, the complexity that would result from adopting the method described by Rohde and Fuerst
(2001) would be exponential with respect to the size of the sibship.

p(z = hi,hj\s ~ hk,hi). (4.19)
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Let t\ (s) denote the event that the sire transmitted and let t2(s) denote the event that the
sire transmitted hi. Then (4.19) can be written as:

where p(t\(s)) = p(t2(s)) = 1/2. Importantly, /7(z|f](s)) and p(z\t2(s)) can be calculated
directly from 0, for example:

0 otherwise.

When the genotype of the dam is known, the probabilities in (4.22) can be calculated from
the distribution p(d|0).

4.3.4 Extensions to the Graphical Model

This section discuss two straightforward extension to the half-sib model that was derived
in this chapter. The first extension accommodates parental genotypes. The second exten¬
sion accommodates full-sibs. It is important to realize that the probability model used in
these two extensions is exactly the same as that used in outbred half-sib pedigrees, i.e. the

probability model reflects a random mating population in HWE.

4.3.4.1 Introducing Additional Evidence

In the previous sections, we have assumed that parental genotype data is unavailable. We
can augment the graph in Figure 4.1 to include parental genotypes as shown in Figure 4.4.
The likelihood is therefore

logLc(0) = log |p(s,d,y,ys,yd|0)|
= E ki) + E E l°gp(dki\®)p(yti\dki) + E E ]°EP(yki\si,dki).

i= 1 i=lfc=l i=l k=\

(4.23)

p(z = huhj\s = hk,hi) = p(z,ti{s)) + p(z,t2(s))
= p(z\t1 (s))p(t 1 (s)) + p(z, t2(s))p(t2(s))

(4.20)

(4.21)

(4.22)
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Figure 4.4: DAG for the joint distributions relevant to haplotype reconstruction for unrelated
individuals (left) and half-sib pedigrees (right) when parental genotypes are included.

The introduction of parental genotypes simply eliminates some of the phase options that
had been exhaustively enumerated in the parents when parental genotype data was unavail¬
able.

4.3.4.2 Introducing Full Sibs

Full sibs can easily be accommodated, and the basic data structure is shown in Figure 4.5.
Note that the junction tree algorithm, specified by equations 4.5 through 4.8, is exactly
the same. The only difference is the dimension of the separator potential, which is now

quadratic in the number of phase configurations.
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V={s,d W={s,d,z2}

¥v =p(s)p(d)p(z1|s,d)p(y,|z1) = p(z2|s,d)p(y2|z2)

Figure 4.5: Deriving the Junction Tree for a Full-Sib Pedigree. From top left: The original
DAG; the moralized (undirected) graph; and, the Junction Tree.



Chapter 5

Simulation Studies

This chapter uses the model developed in Chapter 4 to conduct two important simulation
studies. The first study examines the effectiveness of using family data to improve accuracy
for both haplotype frequency estimates and phase assignments. The second study investi¬
gates the consequences failing to account for relatedness from samples drawn from small
hierarchical populations. The results from the two studies demonstrate the crucial role that
the haplotype frequency profile (which is defined by patterns of LD) can have in deter¬
mining the reliability of inference. Treating related individuals as unrelated in this context
is common practice (see, e.g. the "LD only" analyses in Lee and van der Werf, 2004;
Meuwissen et al., 2002) and we show that this can adversely impact haplotype frequency

accuracy. The chapter concludes with a discussion of the practical implications of these
results for experimental designs in population studies.

5.1 Overview

As stated previously, there are two conventional approaches to inferring haplotypes from
population data, both with potential drawbacks. One approach is to use family data, which

may be able to deterministically resolve phase for genotypes featuring multiple heterozy¬
gous loci. A serious drawback is that ascertaining this information can be costly1. A second

'Also, as we showed in Chapter 3, there is no guarantee that family data will resolve phase ambiguity.

46
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approach, which was discussed in Chapter 2, is to infer haplotypes directly from population
data. A problem with this approach is that there may be considerable uncertainty associated
with the inferred haplotypes.

Many research groups want to know how much family data (if any) should be used to fa¬
cilitate haplotype reconstruction in a population study. Section 5.2 presents a simulation
study that evaluates how changes in family information can affect the accuracy of haplotype
frequency estimates and phase reconstruction. Results from this simulation study suggest
that treating related individuals as unrelated can significantly impact the quality of infer¬
ence. In Section 5.3, these results are explored in a more realistic simulation environment.

Specifically, the second study investigates the consequences failing to accommodate relat-
edness in samples drawn from small hierarchical populations. The two simulation studies
are complementary and their relation to each other can be summarized as follows: in the
first simulation study, the sibsize for each sample is fixed at x, while in the second study
the expected sibsize for each sample is x. Both studies reveal the central role of the true

haplotype frequency distribution in the overall quality of inference. 5.4.

5.2 Simulation Study: The Effectiveness of Pedigree Data

in Haplotype Reconstruction

A simulation study based on independent half-sib pedigrees using empirically derived hap¬
lotype data is used to examine the effectiveness of family data in haplotype reconstruction.
The simulation strategy is divided into the following three steps: (1) specification of a
haplotype frequency distribution for the parental population; (2) simulation of genotypes
for independent half-sib pedigrees; and (3) estimation of haplotype frequencies and phase

configurations using different categories of missing data and different assumptions about
relatedness.
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5.2.1 Specifying the Haplotype Frequency Distributions

The most important parameter in the simulation study is the parental haplotype frequency
distribution. The simulation study uses three empirically-derived haplotype frequency dis¬
tributions. The first two frequency profiles, APOE\ and APOE2, were provided by Fallin
et al. (2001) and correspond to two sets of marker data for a control group used in an as¬

sociation study for Alzheimer's Disease. The third data set, ILSe was presented by Hull
et al. (2001) and corresponds to haplotype frequency estimates of a European sample for
six biallelic loci spanning a 7.6 kb region within the 7L8 locus.
One of the central results from the simulation study is that the expected accuracy for any
estimate will be different for each of the population frequency distributions. It will be use¬

ful to identify relevant summary statistics that capture the relative performance that can be

expected for random samples from each of the populations.
Qin et al. (2002) demonstrate that the variance for each EM-based estimate of 0/ can be

expressed as the sum of two components: the first component reflects the variance of 0/ if
phase configurations are observed, while the second component reflects the loss of infor¬
mation because of unknown phase configurations.
When phase is known, the uncertainty associated with the distribution, 0, is best described

by the entropy, i.e. — L0,log0,. A more biologically relevant metric that measures the
i

M

uniformity of the frequency distribution is the gene diversity, 1 — £ Qf.
1=1

To describe the additional uncertainty from the unknown phase configurations, an appro¬

priate metric is the expected error rate using most likely phase configuration. Consider a
given phase-unknown genotype, y. The probability that the most likely phase configuration
is the correct one is given by max p(z\y, 0). A measure of the uncertainty from not knowing
phase for this genotype is 1 — max p(z\y, 0). The expectation of incorrectly assigning phase
for a random sample is therefore:

E(e|0) = £p(y|0) [1 -maxp(z|y,0)]. (5.1)
y

Appreciating the relevance of equation (5.1) in the context of accurate EM-based phase re¬

construction cannot be overstated. The expression describes the number of incorrect phase
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APOE! apoe2 IL8e
Number of Loci 4 4 6
Number of Hapiotypes 13 10 9

Ambiguous Genotypes1 0.52 0.41 0.53

Gene Diversity 0.86 0.8 0.56

Frequency-Known Error Rate2 0.18 0.12 0.0003

1
The expected proportion of a population sample that is heterozygous for at least two loci.

2
The expected proportion of phase configurations that will be incorrectly resolved in a population
sample when the most likely phase criterion is used and haplotype frequencies are known.

Table 5.1: Summary statistics for haplotype frequency estimates used in data analysis.

assignments that is expected in a population sample when the most likely phase configura¬
tion is used and haplotype frequencies are known. It can therefore be considered a lower
bound on the number of errors that are calculated from haplotype frequencies inferred by
the EM algorithm.
These two statistics are presented in Table 5.1. If the population haplotype frequency for
APOE\ were known with certainty, one would expect to get no greater than 82% of the sam¬

ple correct if the most likely phase criterion is used. By contrast, phase assignment using
the most likely phase criterion would be virtually error free for population samples gener¬

ated from the /L8# distribution, even though the expected number of ambiguous genotypes
(i.e. genotypes with two or more heterozygous loci) is similar to the APOE\. Although
there are multiple phase configurations that can, in theory, resolve an ambiguous genotype
sampled from IL8e, the vast majority of these will feature at least one haplotype that does
not actually segregate in the population. This demonstrates that family data may be un¬

necessary for accurate phase reconstruction, even when a sample features many ambiguous

genotypes.

5.2.2 Simulating the Data

The number of sampled individuals is fixed at 100 and sib-sizes are fixed at 1,2,5,10 and
25. The categories of family information that are used with each sample when reconstruct¬

ing haplotypes are given in Table 5.2. Since family sizes are exact, results for samples
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Category Description
UN
P

PS
PSD

No Information - All Animals Assumed Unrelated

Pedigree Structure Only (Parents Untyped)
Pedigree Structure + Sire Genotype
Pedigree Structure + Sire and Dam Genotypes

Table 5.2: Categories of family data that can be included with a sample of phase unknown

genotypes in simulation study.

featuring a family of size 1 correspond to unrelated individuals, or, if parental genotypes
are provided, to parent-child trios2. One consequence of using this simulation strategy is
that increasing the size of a sibship will reduce the number of independent haplotypes in
a given sample. This allows for an evaluation of whether the resolving power from addi¬
tional pedigree data compensates for the loss in independent haplotypes (i.e. whether the
improved quality of the data compensates for the reduced quantity).

5.2.3 Summarizing the Results

Results from the simulation study are described using two standard summary statistics
based on haplotype frequency estimates and phase accuracy. The Discrepancy metric (Ex-
coffier and Slatkin, 1995; Kirk and Cardon, 2002) is used to assess haplotype frequency
estimates. This is defined as:

For the phase configurations, the most likely phase configuration for each individual is cal¬
culated using the estimated haplotype frequencies. The percentage of individuals that are

incorrectly assigned is then calculated. This metric is appropriate since it is the typical
criterion on which haplotypes are assigned for use in a fine-scale mapping analysis. Re¬
sults for these two measures of accuracy are presented in Table 5.3. The table is structured

2This is an attractive feature of the simulation strategy since studies based on parent-child trios are the
most frequently encountered for all species.

D(©;0) = l£|e(. —9;
i= 1

(5.2)
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to highlight a wide variety of trends, some of which are indexed by letters that will be
referenced in the text. When referring to an entry in the table indexed by X, the notation
(X) is used. Only the indices for the APOE\ results are shown since annotating each table
would have obscured trends. It will be contextually clear which distribution(s) are relevant
to supporting a given statement. Similarly, standard errors are not included. Comparative
statements were verified at the 95% significance level using a paired t-test.
The table also features results from a standard analysis using the EM algorithm for unre¬
lated individuals (shaded column). These will be useful when discussing the results from

treating related individuals as unrelated. As stated in Chapter 4, the model gives the same

results as the EM algorithm for unrelated individuals when no family data is provided (A).
Hence either entry can be used to describe accuracy for 100 unrelated individuals, which is
often useful as a base comparison to other scenarios that use family data.

Broadly, this study is concerned with how changes in family data, sample size and fre¬
quency distribution impact each of the two measures of accuracy. Since the number of
progeny is fixed at 100, sample size is measured by the number of independent haplotypes
segregating in the sample.
Section 5.2.4 focuses on the accuracy of haplotype frequency estimation. Section 5.2.5 pro¬

vides similar analysis for phase reconstruction accuracy, while also highlighting how the
two metrics differ in sensitivity to family data. These two sections collectively illustrate
the importance of the true haplotype frequency distribution in determining the magnitude
of reconstruction error as well as the effectiveness of reallocating resources for family data.

5.2.4 Impact of Family Data on Haplotype Frequency Estimation

First, note that for a given family size, increasing family information typically results in an

improvement in accuracy (i.e. discrepancy decreases along a given row). However, adding
family information does not always contribute to accuracy, as can been seen in the case of

adding the genotype from a single parent (C). This is because the number of progeny is
sufficient to explain the parental phase and therefore the sire genotype provides redundant
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HAPLOTYPE FREQUENCY DISCREPANCIES

Family
Size UN P PS PSD

1 0.116 A 0.116 A,B,F 0.078 B 0.063 B

Li! 2 0.123 0.117 0.095 0.070
o 5

G
0.143 0.119 0.109 F 0.077

< 10 0.162 0.119 E 0.116 E 0.081
25 0.212 0.122 C 0.122 C,D 0.082 D

1 0.082 0.082 0.061 0.049

U? 2 0.091 0.088 0.077 0.060
O 5 0.110 0.097 0.090 0.065

< 10 0.132 0.103 0.099 0.066
25 0.180 0.104 0.104 0.070

1 0.047 0.047 0.037 0.032
2 0.054 0.054 0.051 0.040

CO 5 0.065 0.060 0.058 0.043
10 0.085 0.065 0.063 0.046
25 0.110 0.068 0.068 0.047

PHASE RECONSTRUCTION ERROR RATE

Family
Size UN p PS PSD

1 0 21 A' 0.21 B',F* 0.12 B\H 0.06 B',l
ul 2 0.20 0.17 0.10 0.03
O 5

G'
0.19 0.12 H 0.06 F',l 0.02

< 10 0.18 J 0.07 J 0.05 0.02

25 0.15 J 0.06 J 0.06 0.02

1 0.13 0.13 0.08 0.04
2 0.13 0.11 0.07 0.03

O 5 0.13 0.09 0.05 0.02

< 10 0.11 0.06 0.05 0.02

25 0.11 0.05 0.04 0.02

1 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00

CO 5 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00
25 0.00 0.00 0.00 0.00

Table 5.3: Impact of family size, family information and parental haplotype distribution on

estimated haplotype frequencies, as measured by the discrepancy statistic (Top) and on

phase reconstruction error (Bottom). Each entry in the table corresponds to the average

value for 100 replicates. Shaded areas denote estimates that were obtained using the
standard EM algorithm for unrelated individuals, boxed areas denote estimates obtained by

treating related individuals as unrelated. Letters are referenced in the text.
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information. By contrast, there is always an improvement in discrepancy if both parental
genotypes are included (D). This is because the second parental genotype will always pro¬

vide information regarding an additional independent haplotype (which follows from our

assumption of one progeny per dam).
This example demonstrates how increasing the number of independent haplotypes or the
amount of family information improves accuracy. The question of whether resources in¬
tended for population data should be reallocated for family data is concerned with whether
one should be increased at the expense of the other. This question was addressed for the
case of nuclear families versus unrelated individuals in several studies, which showed that

the optimal allocation decision will be frequency-dependent (Becker and Knapp, 2002;
Schaid, 2002). These results illustrate that these frequency-dependent trade-offs between
the quality and quantity of population data can be found for many pedigree configurations.
Specifically, it is instructive to compare the accuracy of 200 independent haplotypes from
a sample of unrelated individuals to 140 independent haplotypes segregating in 20 half-sib
pedigrees of size 5 with a typed sire (F). For the APOE\ distribution, better accuracy is
achieved from using more family data and fewer independent haplotypes, while for the
APOE2 and IL8e distributions more independent data is preferable to family data. As dis¬
cussed in the previous section, a random sample generated from the APOE\ distribution
will have the most uncertainty associated with phase assignments and therefore will benefit
most from family data.
Another important observation is that when family data is ignored (i.e. related individuals
are treated as unrelated) discrepancy increases with family size (G). This follows since in¬
creasing family size (i.e. increasing the number of conditional dependencies in the data)

implies further deviation from the assumption of unrelated (independent) individuals. (This
trend will be explored further in Section 5.3).

5.2.5 Impact of Family Data on Phase Reconstruction Accuracy

The most striking result is the uniformly perfect phase reconstruction given by IL&e, which

provides an example of a distribution where family data is redundant despite over 50% of a
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sample containing ambiguous genotypes. These results are consistent with the frequency-
known error rate given in Table 5.1. Indeed, for all three distributions, the observed error

rate (A') is fairly close to the frequency-known error rate, which is the best-case average

error rate that can be achieved when using the EM algorithm. In this context, it is reason¬

able to claim that EM-based phase assignments are accurate.
For the APOE\ and APOE2 distributions, increasing sib size and adding parental marker
data always improves phase reconstruction accuracy. Specifically, as one move down a

given column or across a row for either distribution, one observes a gradual decrease in

phase reconstruction error rate. It should be noted that when resources are fixed, increasing

family size decreases the number of independent haplotypes used in the subsequent study,
and therefore this gain in phase reconstruction accuracy may not be justified.
While phase reconstruction error decreases with family information, it is not eliminated.
Even for very large sib sizes, there is a small, but significant error when both parental geno¬

types are provided. Note also that for both distributions, there is also a discernible increase
in the error rate when only the genotype for the common parent is provided. However,
results for the APOE\ distribution are consistently worse than for the APOE2 distribution.
These observations highlight the importance that both the frequency distribution and the

pedigree structure have in determining whether resources should be allocated to ascertain

family data.

Although increasing sib-size and parental marker information will both improve phase re¬

construction accuracy, obtaining parental marker data is more efficient than adding more

half-sibs. For both distributions, introducing genotype data for an untyped parent is more

efficient than introducing as many as five additional half-sibs (H,I). This complements the
results of Schaid (2002), which demonstrated that two full-sibs with untyped parents can

be very inefficient in the context of optimal frequency estimation.
It is important to recognize that reconstruction accuracy for progeny does not extend to

parents. This means that parental phase may still be incorrectly reconstructed even when
reconstruction is accurate for progeny. Adding half-sibs will help reconstruct phase for an

untyped common parent, yet our results show that the total number of half-sibs needed to

make this parental genotype redundant can be quite large. For each of the three distribu-
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tions, it can be seen that a typed sire still provides a small, but significant, improvement
in discrepancy when as many as 10 progeny are available (E). Introducing sibs without
genotyping parents can actually be worse than reconstruction from population data if this
information is to be used in a subsequent LD model that relies on haplotype accuracy of
both parents and progeny (Meuwissen et al., 2002; Lee and van der Werf, 2004).
Note that the frequency-dependent trade-off between independent haplotypes and family
size that was observed for optimal haplotype frequency estimation (F) is not applicable to

optimal phase reconstruction accuracy (F'). Although increasing family information tends
to improve both haplotype reconstruction accuracy and phase reconstruction accuracy the
impact of family data differs. For example, the marginal gain in haplotype frequency ac¬

curacy from introducing the genotype of each parent decreases (B), yet each parent makes

roughly equal contribution to accuracy in the context of phase reconstruction accuracy (B').
There is an actual contradiction in trends between frequency estimation and phase assign¬
ment when related individuals are treated as unrelated. Specifically, it can be seen that

phase accuracy improves as the number of related individuals that are treated as unrelated
increases (G'). This paradox can be explained by noting that for more closely related indi¬
viduals, there is a higher probability that two haplotypes are IBD (i.e. more homozygosity)
in the genotype data. Fallin and Shorck (2000) made a similar observation when investi¬

gating the robustness of the EM algorithm to departures from Hardy-Weinberg Equilibrium
by imposing homozygosity on the haplotype data. When individuals are related, however,
the appropriate comparison is not the "benefit" in phase reconstruction accuracy relative
to unrelated individuals, but the loss by not properly accounting for the conditional depen¬
dencies in the data. This loss can be quite large as seen in the case of APOE\ where over

10 haplotypes are incorrectly assigned by not accounting for underlying pedigree structure

(J).
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5.3 Simulation Study: Sampling from Small Hierarchical

Populations

The previous section examined scenarios where a sample contained a specified number of
sibships, each having equal size. This sample configuration is unrealistic if the sample
is drawn from an outbred population. However, as is explained below, samples featuring
an expected number of sibships are known may be encountered. This section examines the

consequences of treating related individuals as unrelated on haplotype frequency estimation
when the number ofsibships in a given sample is variable. Before explaining the simulation

strategy, the practical relevance of this scenario is discussed.

5.3.1 Overview

Most statistical models that reconstruct haplotypes from population data are based on as¬

sumptions that are applicable only for large, panmictic populations. These assumptions
include the same haplotypic structure for both sexes, and that a random population sam¬

ple will feature only unrelated individuals. When the target population is derived from a

smaller, hierarchical population, a random population sample may feature individuals who
are related through a common parent. In practice members of the sample are treated as un¬

related, even when there is a high probability that the kinship coefficient between any two

individuals is high. It is therefore important to investigate whether ignoring relatedness in
this context adversely impacts the accuracy of haplotype frequency estimates.
To conduct this simulation study, it is necessary to simulate data that conforms to an ap¬

propriate population structure. Section 5.1 describes a hierarchical population that is often
encountered in livestock genetics and develops the appropriate model to accommodate the
structure. The simulation strategy is discussed in Section 5.3.3 and results are presented in
Section 5.3.4.
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Figure 5.1: Conceptual Framework for Evaluating Population Structure and Relevant Popu¬
lation Parameters.

5.3.2 The Sampled Population

Figure 5.1 depicts a standard breeding scheme that is commonly employed for many species
of livestock. Formally, the target population (which is denoted F2) is derived from the the
random union of gametes from Ns sires and No dams, which collectively comprise the
parental population, denoted F\. Members of F\ are selected from a base population, de¬
noted Fq, that is assumed to be in Hardy-Weinberg Equilibrium (FIWE). An additional
assumption is that the markers under consideration are unlinked with any genes that may
influence selection criteria. This last assumption allows us to describe the difference be¬
tween Fq and F2 exclusively in terms of Ns and No- Specifically, when both Ns and Np are

large, F2 approximates the Hardy-Weinberg model that defines Fq.
Np is assumed sufficiently large so that Ns can be regarded as the single measure by which

F2 violates HWE. Under this additional constraint, members of a random population sam-

POPULATION
HAPLOTYPE

FREQUENCIES

F2 (Sampled Population)

Fj (Parental Population)

F0 (Base Population)
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pie are either paternal half-sibs or unrelated.

Figure 5.1 also illustrates that there are now four parameters that will be relevant for in¬
ference. Recall that in a model which assumes HWE, the sole parameter of interest is
0 = (0i,...,0m). The additional parameters that are relevant to small hierarchal popu¬
lations derived from this breeding design are 0s, 0D and 0°, which denote haplotype

frequency vectors in the Ns sires, Np dams and base population respectively3.
Under the assumption of a randomly mating parental generation, all relevant haplotypic
information for F2 can be summarized in terms of &s and ©D. If the primary interest is in
actual phase reconstruction, the posterior probabilities, p(z\y, follow from:

n ? f0?0£ +W j^k,p(z=(h,,hk)|0D,0S) = 1 ' (5.3)\efef j = k
while if the interest is in the haplotype frequencies segregating in F2, one would use:

0s+ 0°
0- ^ • (5.4)

Hence, the objective of inference is to estimate 0s and &D.
The critical assumption made in this breeding design is that the parental haplotypes are

conditionally independent given 0°. The complete-data log likelihood is analogous to the
likelihood for the model presented in Chapter 4:

logLc(0°) = log |/?(s,d,y|00)}
= £l°gF(s'l©°)+ £ log/?(</,•. |0°) + Y,lo8P(ykiW,dki),

i= 1 7=1 k= 1

(5.5)

Inference for 0° can therefore be conducted efficiently as described in Chapter 4.
Once 0° is obtained, it can be used to estimate &D under the assumption that No is large.

Deriving ©5 requires an additional step. Let a = ^ be the proportion of sires observed.
05 can be calculated as a weighted average of the observed sires and the unobserved sires,

3The reason why these additional parameters are not required under HWE, is that the haplotype frequency
profile is constant in successive generations, i.e. 0° = 0s = ©" = 0.
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^ = <5-6>
i= 1

for j = 1 ...M. Once 0 s and 0D are obtained, they can be used to estimate 0 according to

equation (5.4).

5.3.3 Simulation Strategy

All haplotype frequencies used in this simulation study are based on the study by Hull et al.

(2001). This includes the haplotype frequency estimates for the European sample that was
used in the previous study (ILSe). Haplotype frequency estimates for an African popula¬
tion are also employed. As reported by the study, only 12 of the possible 64 haplotypes are

segregating at these loci. Additionally, a hypothetical population is considered where the
12 observed haplotypes occur with equal frequency. This gene diversity statistics for the
three respective frequencies are .5619 (European), .7823 (African) and .9167 (Hypotheti¬
cal).
In this simulation study, the number of sires is held fixed and the sibsize is allowed to vary.

Specifically, to simulate each member of the sample, a sire is selected at random from a

fixed set of sires and then mated to a dam (which is generated from two draws of the haplo¬

type distribution). Haplotype reconstruction is then conducted when the pedigree structure
is known and when the pedigree structure is unknown, and members of the sample are as¬

sumed unrelated. In all scenarios, parents are assumed untyped.
As stated above, there are four different frequency parameters that are relevant in this sim¬
ulation study. The results for 0° (the base population) and 0 (the target population) are

presented4.
A wide variety of sire/sample size configurations were explored. For each configuration, a
test was conducted to determine whether the difference between the discrepancy obtained

4Recall that © is a function of the sire and dam frequencies, and therefore estimates for these two param¬
eters are omitted.

estimated by 0°:

0? = ©°
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by UN-EM and the discrepancy obtained from incorporating the sparse pedigree informa¬
tion is significantly greater than zero. It is meaningful to report the percentage decrease
in discrepancy attained from using the correct model specification over the standard EM-
based approach where all individuals are assumed unrelated (UN-EM). The results, which
are presented in Table 5.4, can therefore be interpreted as the "gain" from using the more

accurate model for a given configuration. Equivalently, these results capture the robustness
of a statistical model that assumes independence to the dependencies in a random sample.

5.3.4 Results

Table 5.4 highlights three important trends. First, for a given diversity and sample size,
the gain from using the correct specification decreases with the number of sires. This
follows since the probability of selecting two related individuals at random decreases as

the number of parents increase. As stated above, if there is no relatedness in the sample,
the model generates the same results as UN-EM. Qualitatively, the number of sires is a

measure of how the underlying population structure deviates from HWE, i.e. the more sires

contributing in the parental generation, the closer the population structure approximates
HWE. This is illustrated by the converging lines in Figure 5.2 which provides a graphical

perspective for this trend.
The second trend that is captured by Table 5.4 is that, for a given number of sires and

diversity, the percentage decrease in discrepancy becomes more pronounced as the sample
size increases. This can also be seen in Figure 5.2, where the discrepancy gap between the
two different model specifications is wider for the larger sample size.
The third trend is that discrepancy becomes more pronounced as gene diversity increases.
This can be attributed to (a) higher sampling variance that arises from the more uniform

haplotype frequency distribution suggested by the high diversity statistic and similarly (b)
more ambiguous genotypes, which are likely to benefit from any pedigree information.
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High Gene Diversity
Sires Sires

25 50 75 100 150 25 50 75 100 150

20 0 1 -2 -1 0 0J

■S3
CO
at

20 0 1 -2 0 0

50 '7*** 3 0 0 1 50 7*** 3 0 1 1

100 14*** d*** 5** 5** 1 D,
£

100 12*** d*** 4** 5** 1

150 17*** {£*** 3* 4* ca
CO 150 lg*** D*** ^*** 5** 3

Moderate Gene Diversity
Sires Sires

25 50 75 100 150 25 50 75 100 150

20 0 3 2 0 -1 at

.a 20 -1 3 3 -1 -1

50 6** 4 1 3 3
CO

50 5 5* 2 3 3

100 12*** 6** 5* 4 1 "5.
E 100 13*** 6** 5* 3 0

150 m*** g*** y** 6** 1 a
<« 150 15*** 7** 5* 5** 2

Low Gene Diversity
Sires Sires

25 50 75 100 150 25 50 75 100 150

20 2 3 -1 1 0 at
N 20 2 3 -1 1 0

50 0 0 0 1 0
lr.
o 50 3 0 1 1 0

100 5 -2 -1 2 0 a.
E 100 6* 1 1 2 1

150 12*** 6 7* 3 1 08
CO 150 23*** 5 7* 3 2

Table 5.4: Percent reduction in discrepancy for 0° (left) and 0 (right) attributable to mod¬

elling dependencies in random population sample. * denotes significance at the 10% level,
** denotes significance at the 5% level and *** denotes significance at the 1% level.

5.4 Discussion

The results of this study have significant implications for an experimental design using
two-stage haplotype analysis5. The effectiveness of a two-stage haplotype analysis will be
contingent on two factors: 1) the magnitude of the estimation error and 2) the sensitivity of
the subsequent haplotype-based analysis to this estimation error, which can be determined
from simulation studies. This study has shown the magnitude of the estimation error de¬

pends on the the haplotype frequency distribution6.
5Two-stage haplotype analysis first entails inferring haplotypes from a sample of phase-unknown geno¬

types using a computational algorithm. The second stage entails using these haplotypes in a multi-locus LD
model, where they are treated as having been directly observed.

6The second factor is addressed in Chapter 6.
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Figure 5.2: Impact of Sample Size, Number of Sires and Model Specification on Discrep¬

ancy of 0. Results generated from simulations on haplotypes exhibiting moderate diversity

(results will be more/less pronounced for higher/lower gene diversities). Squares denote
mean discrepancy from 250 simulations using UN-EM while diamonds indicate similar
results using our model specification. Dashed lines correspond to a sample size of 50 and
solid lines correspond to a sample size of 150.

It was also shown that while reconstruction errors may be unavoidable (i.e. independent
of sample size), this error rate can be calculated directly from the frequency distribution.
An example is provided where the most likely phase criterion will yield perfectly accurate

results, even for a sample containing a large proportion of ambiguous genotypes. Practi¬

cally, it is possible to calculate the error rate from an estimated frequency distribution that
is based on a preliminary sampling of the population. This estimated error rate can then
be compared against a predetermined threshold denoting the minimum level of phase accu¬

racy. If the predicted phase reconstruction error exceeds this threshold, then either pedigree
data is required or an alternative to the two-stage approach must be used. The effectiveness
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of pedigree data will depend on the haplotype frequency distribution, as well as the type
of pedigree information provided. Two kinds of information are considered: increasing the
family size and introducing parental marker data. For half-sibs, introducing parental geno¬
types is more efficient than increasing family size and leaving parents untyped. In general,
assessing the effectiveness of pedigree structure and frequency distribution on haplotype
inference can be done through a simulation study based on the inferred frequencies.
EM-based haplotype frequency estimates are often considered accurate for sample sizes

consisting of approximately 100 individuals (Fallin and Shorck, 2000; Qin et al., 2002).
For smaller samples sizes, or for samples featuring large amounts of missing genotype

data, a Bayesian approach with an informed prior, such as the coalescent prior introduced
by Stephens et al. (2001), may be appropriate. However, as shown in Chapter 2, the EM

algorithm appears to be reliable even for very small sample sizes. The EM algorithm is also
considered to provide accurate results under departures from the random-mating assump¬

tion (Fallin and Shorck, 2000). However, our results demonstrate that failing to account for
related individuals in a sample (by treating each member in the sample as independent) can
lead to an appreciable loss of efficiency. Our results demonstrate that accounting for small

sibships from untyped parents in a random sample can result in a significant improvement
in accuracy of population parameters, including haplotype frequency estimates for the tar¬

get population. Importantly, it is shown that even samples that feature sparse relatedness
(i.e. small sibships with untyped parents) can yield significantly better haplotype frequency
estimates using the model proposed in the previous chapter than UN-EM, which assumes

no relatedness in the sample. Hence, it is important to ascertain pedigree information, e.g.
by sibship reconstruction methods described by Thomas and Hill (2002) in the context of
haplotype analysis.



Chapter 6

Haplotype Analysis in Association
Studies

This chapter provides an overview of the utility of haplotypes in fine-scale mapping. As
noted earlier, a primary reason for the interest in haplotypes is because they may provide
critical information for identifying complex disease variants or quantitative trait loci (QTL)
in an LD mapping procedure. Haplotypes play two important roles in LD mapping. First,
they can help establish whether there is a sufficient relationship between physical distance
and LD in the target population. This is a necessary criterion for any LD mapping approach
to be effective. Second, it is believed that haplotypes can optimize the power and accuracy

in the actual identification of complex trait variants (assuming necessary criteria are met so
that the variants can, in principle, be found).
This chapter is divided into two parts. The first part provides an empirical assessment of
association studies. It lists possible reasons for the failure of so many association studies
to detect disease variants. It also provides a simulation study that may help explain a

reason for the high level of false positives in published studies. The second part of the
chapter provides a brief evaluation of how haplotypes may improve the effectiveness of an
association analysis.

64
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6.1 An Empirical Assessment of Association Studies

Association studies are the standard approach for fine-scale LD-mapping. To identify a

causative variant for complex disease, an association study simply tests whether certain
alleles occur more frequently in a sample of unrelated affected individuals than in a sample
of controls. Statistically significant differences are interpreted to indicate the presence of a
nearby disease variant.
Association studies were initially regarded as an enormously appealing paradigm for map¬

ping complex disease variants. This is because they are simple to implement, cost effec¬
tive and, most importantly, they are generic (i.e. they do not require any knowledge of
the biology of disease). In practice, however, the performance of association studies has
been disappointing. First and foremost, the vast majority of association tests have failed
to identify any disease variants. Indeed, while thousands of association studies have been
conducted for many complex diseases, only 50 genes and their allelic variants can be con¬

sidered true positives1 (Wang et al., 2005). Another disappointment is that the majority of
variants that were identified and published turned out to be wrong, i.e. false positives. It is
estimated that 75% of published associations failed to be replicated in subsequent studies
(Lohmueller et al., 2003)2.
The next two sections discuss some of the reasons that may contribute to these alarming
statistics.

6.1.1 Failure to Detect Disease Variants

In order for an association study to be successful, three criteria must be met: The dis¬
ease must have a genetic basis; Common mutations underlie common diseases; and, there
must be appropriate patterns of LD. This section begins by discussing each of the criterion.

'This should be contrasted with the 1200 confirmed variants that cause simple, monogenic disease (Bot-
stein and Risch, 2003).

2Note that associations here refer to associations of a genomic region with a complex trait and not neces¬
sarily associations of a particular variant within that region. Even if an association with a particular region has
been established, there is still several more stages in fine-mapping before a particular variant is ascertained.
This would explain the fact that only 50 true variants have been validated, while quite a few more genomic
regions have been implicated through replicated studies.
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There is considerable debate over whether the second and third criteria hold. It concludes

with an assessment of what can be/what is being done to resolve debate.

6.1.1.1 Three Fundamental Criteria for LD Mapping

1. The disease must have a genetic basis
The first criterion is that there is, indeed, a genetic basis for the target disease (and that it is
not, e.g., caused by an infectious agent). Specifically, there must be at least one polymor¬

phic locus where an allele confers a higher relative risk for the disease. Family studies are

typically used to establish whether a disease has a genetic basis. This is because relatives
share a greater proportion of their genes than unrelated individuals, and therefore genetic
diseases tend to cluster in families.

There are many well established tests to establish that a disease has a genetic basis. The
failure of association studies cannot be attributed to incorrectly assigning a genetic basis to
a disease when there is, in fact, none.

2. Common mutations with sufficiently large effect are behind common diseases
As noted above, association studies detect whether there is an excess of allele sharing

among cases. Because the disease is complex, not all cases will exhibit the disease pheno-

type for the same reasons. It is clear that for an association study to work, at least some
of the cases must share the same disease variant. Furthermore, the disease variant must

have sufficiently strong effect so that it can be detected through the "statistical fog" created
by the other risk factors that, by definition, contribute to complex disease. The standard
measure of allelic effect is the odds ratio (OR), which is defined as the odds of exposure to
the genetic variant in cases compared with that of controls.

Ideally, then, variants will confer high OR and be common in the population. The rarer

the variant and/or the lower the OR, the weaker the linkage signal and the larger the sam¬

ple size3 needed to indicate significance4. Most case-control studies ascertain fewer than
3An OR of less than 1.2 are considered difficult to reliably detect with realistic sample sizes(Zondervan

and Cardon, 2003).
4Therefore, these tests do have the power to detect rarer variants, provided the OR is sufficiently large.

From a medical standpoint, it is preferable for the variants to be common (i.e. the results would impact a
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1000 cases and controls, reflecting the assumption that allelic effects of variants underlying

complex disease have an OR larger than 2 (Zondervan and Cardon, 2003) and a population

frequency larger than 30% (Weiss and Clark, 2002).
The critical assumption that common mutations are behind common diseases is known as

the Common Disease Common Variant (CDCV) hypothesis. Implicitly, these mutations
must also confer sufficiently large effect. There is a growing debate over whether this
hypothesis is valid. Critics argue that the average OR of the mere 50 confirmed disease
variants that have been mapped is less than 2. In fact, until recently the only variant that
conforms to the CDCV hypothesis is the APOE variant implicated in Alzheimer's Disease,
with a population frequency of 15% and an allelic OR of 3.3.
There was much excitement when a variant for Age Related Macular Degeneration (AMD)
was recently mapped using a standard case control design (Klein et al., 2005). The variant
had an OR of around 3 and a population frequency of 40%. Paradoxically, the success of

mapping the AMD variant may weaken the CDCV hypothesis. This is because the statisti¬
cal methods used to detect the AMD variant are similar to those employed in the thousands
of studies that failed to detect variants for other complex disease. Equivalently, if most
common diseases had similar profiles, there should have been more confirmed associations
than the 50 cited above.

3. Case chromosomes must exhibit LD in the region surrounding the disease vari¬
ants)
A key assumption for association studies to work is that a sample of case chromosomes
should exhibit an excess of allele sharing for markers surrounding the disease variant. This

implies that markers will exhibit LD in this region. This assumption is necessary for an
effective association study since the actual disease variant is not directly tested. Specifi¬

cally, only a small subset of alleles within the target region are actually used5. These are

chosen on the basis of logistical considerations rather than on any prior belief of function,
and hence are not assumed to contain the disease variant.

larger proportion of the population). It should also be noted that rare variants with very large effects can
be considered Mendelian traits, and have been mapped using with conventional (pedigree-based) linkage
analysis. These variants are considered "low hanging fruit".

5It would not be economically feasible to test all alleles.



Chapter 6. Haplotype Analysis in Association Studies 68

The reason that this assumption may be valid is because, provided the CDCV hypothe¬
sis holds, most affected individuals will have inherited the causative allele from the same

founder. Because crossover points are sparsely distributed during each meiotic event, the
alleles surrounding the variant are also likely to be IBD with the founder alleles. In the case

of LD-based mapping, the number of meiotic events between the founder (a distant ances¬
tor) and cases will be considerably larger than in linkage mapping (where the founder, a
parent, is only one generation removed from the affected cases). Hence, the IBD haplotype
will span a much shorter distance than in linkage, allowing for fine-scale mapping.

Skeptics argue that the relationship between LD and physical distance is likely to be con¬

founded by a myriad of other factors as the population evolves. However, recent empirical
evidence has established the presence of well defined haplotype blocks. Specifically, a va¬

riety of studies have indicated that 70-80% of the genome has regions of high LD (Wang
et al., 2005), and that these regions can be divided into blocks spanning an average 200kb
that exhibit limited haplotype diversity. Since the LD within each block high, it should
be necessary to select only a subset of "tag" SNPs from each block, which could act as a

surrogate for other SNPs.

6.1.1.2 Resolving the Debate

Genome wide associations test are based on uniformly distributed markers are not efficient
since the patterns of LD vary widely throughout the genome. To establish the existence of
the CDCV hypothesis and appropriate LD, there are three alternative strategies that could
be useful: first, candidate genes, or regions, could be targeted and sequenced in their en¬
tirety; second, association studies could utilize the entire set of SNPs in the genome; and
third, patterns of LD for major populations could be established empirically, and then a

subset of tag SNPs could be ascertained. The first two approaches would be a concerned
with determining whether the CDCV hypothesis is valid (the nature of LD is irrelevant
since the causative variant itself would be tested). However, neither strategy is likely to be
realistic in the near future: The candidate gene approach requires prior knowledge of the
biochemical basis for the trait, and such knowledge is notoriously elusive. A comprehen-
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sive genome-wide scan of the more than 3 million SNPs is simply not economically viable,
even with rapid advances expected in genotyping technology.
This leaves the final option, which is currently being undertaken by the HAPMAP con¬

sortium. Identifying all haplotype blocks and tag SNPs is the central objective of the
HAPMAP project (Weiss and Clark, 2002). Proponents of the HAPMAP project argue
that failure of association studies is not necessarily because the CDCV hypothesis doesn't
hold, but because SNP selection was currently inefficient. Completion of the HAPMAP

project in 2007 will ideally provide a set of tag SNPs that will cover (i.e. be in high LD
with) all other SNPs in the genome. If the project is successful, then the CDCV hypothesis
can be subsequently resolved.

6.1.2 The High False-Positive Rate

Most association studies fail to detect any variant for reasons stated in the previous section.
However, of the variants that have been reported, 75% turned out to be false-positives, i.e.
results of these studies were unable to be replicated in other studies. Two of the most pop¬
ular reasons given for the high false-positive rate are failing to account for multiple testing
and failing to account for population stratification.
The above statistics refer to human populations. In animal populations, samples that are
treated as unrelated may actually contain related individuals. This section examines the
impact of treating related individuals as unrelated on the false-positive rate, or type I error,
of a standard association test. Specifically, it examines the scenario where a case-control

study is carried out and the members in the sample are not all unrelated, as required by the
test. (Recall that a standard case-control association test determines whether differences
between either marker or haplotype frequencies of randomly selected cases and controls
are significant). It should be noted that this scenario is relevant for many natural and do¬
mestic populations, where, in the absence of pedigree information, a sample may be treated
as unrelated even through the sampled members can be closely related.

Treating related individuals as unrelated might be expected to increase the probability of
committing a Type I error, since variability that naturally arises between two groups sam-



Chapter 6. Haplotype Analysis in Association Studies 70

Family Single Locus Analysis Association Test using
Size for Hardy-Weinberg Disequilibrium1 Haplotype Frequency Estimates
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12.51
21.41 *
27.66 ***
47.68 ***

4.66
7.47

12.24
19.77

1
For each replicate, the test statistic for the locus exhibiting the highest
disequilbirum was used.

Table 6.1: Impact of treating half-sibs as unrelated on two nonparametric tests: single-locus
tests for Hardy-Weinberg Disequilibrium (left) and non-homogeneity of haplotype frequency

profiles for case control data in a neutral genomic region (right).

pled from the same neutral region will be accentuated when the data are dependent. To

investigate this, we simulate neutral marker data for hypothetical cases and controls ac¬

cording to the procedure outlined in Sections 5.2.1 and 5.2.2. Briefly, we are considering
a sample featuring a collection of paternal half sibships. The total number of sampled
individuals is fixed at 100 and sib-sizes are fixed at 1,2,5,10 and 25. Parental phase config¬
urations are determined by independent draws from the haplotype frequency distributions

given in Table 5.1. The frequency distributions should be distinguished according to their
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gene diversity, with apoe\ having the largest diversity and ilse having the smallest di¬

versity.
In the simulation study, frequencies are estimated under the assumption that individuals are

unrelated using the EM algorithm. The chi-square statistic is then calculated based on the
reconstructed frequencies. The results are presented in the right column of Table 6.1. They
reveal that an inflated Type I error is likely to be realized for a family size of 5 or larger for
each of the distributions. Even though the actual discrepancy statistic is uniformly greatest
for the apoe\ and least for /L8#, the rate at which significance increases with family size
is fairly consistent for each of the three distributions: the principal difference lies in the
standard deviation. We also ran a standard single locus Hardy-Weinberg test for each of
the loci and present the results on the left of Table 6.1. This reveals that data sets that are

sufficiently related to exhibit a Type I error in case-control association analysis will not be
detected using the standard single locus Hardy-Weinberg test.

These results demonstrate that failing to account for related individuals in a sample (by

treating each member in the sample as independent) can lead to an appreciable increase in

Type I error in a study where two populations are contrasted using EM-based haplotype fre¬

quencies. The problem would have been avoided if dependencies in data were accounting
for using the model that was developed in Chapter 4.

6.2 Using Haplotype Data in a Mapping Analysis

If the criteria listed in Section 6.1.1. are valid, then there are a number of valuable sim¬

ulation studies that could be conducted to assess the optimal way to use haplotypes in a

mapping analysis. These studies would help provide answers to the following questions:

1. Do haplotype-based tests provide more power than analogous single-locus proce¬

dures?

2. Do model-based approaches, which attempt to explicitly model the evolutionary his¬

tory of the variant, provide more power than model-free approaches?
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The following provides a brief review of the relevant research that has been conducted in
these areas:

1. Single Markers or Haplotypes?
When considering whether haplotypes will provide more power over analogous single
marker procedures, it is critical to distinguish whether a parametric or nonparametric ap¬

proach will be employed. It is tempting to argue since haplotypes are more informative than
genotypes, then using them must can only be beneficial, irrespective of the modeling ap¬

proach. This would be incorrect if standard nonparametric procedures (e.g, the chi-squared
test in Chapter 6) are employed. To understand this, consider an association test where,
instead of individual markers, the haplotype spanning the entire chromosome is used. The

haplotypes for all cases (and controls) are likely to be unique and the test will fail as there
is no sharing between any affected individuals. This should be considered when attempting
to reconcile the conclusion of Long and Langely (1999), which categorically stated that

single marker tests are more powerful than haplotype-based tests, and a similar study by

Grapes et al. (2004), that concluded that haplotypes were more powerful. The haplotypes
used in the Long-Langely analysis spanned 20 markers, while the Grapes analysis used two
locus haplotypes.

Many studies have been conducted to investigate the optimal haplotype size in nonparamet¬

ric tests. In the standard chi-square test for association, the degrees of freedom increases
with the number of haplotypes. It has been shown that large degrees of freedom can both in¬
flate type I error (Fan and Knapp, 2003) and reduce power (Chapman et al., 2003). While,
the optimal haplotype size will be contingent upon the pattern of LD in the relevant re¬

gion, it has been shown that in regions of high LD, tests using haplotypes of 2-5 markers
are more powerful than tests using single markers (see, e.g. Nielsen et al., 2004; Fan and

Knapp, 2003; Zaykin et al., 2001).
In summary, the optimal haplotype length will be contingent on the age of the variant (and
the extent of LD) which is impossible to estimate. Simulation studies should explore this
further.

2. Model-Based or Model-Free Methods?

Recently a variety of model-based methods have been introduced as an alternative to non-
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parametric tests. These attempt to effectively model of the mechanisms generating allele
sharing around the variant.
In principle, model-based approaches can be expected to provide more powerprovided that
the model is a sufficient approximation of reality. The majority of haplotype-based models
(see, e.g. Lu et al., 2003; Morris et al., 2002; Perez-Enciso, 2003) use an HMM structure
similar to the Lander-Green algorithm: each node corresponds to a marker, the observed
node is the genotype and the latent node is an IBD state. However, with Lander-Green, the
IBD state indicates inheritance from parents, and the transition probabilities are a function
of the (known) recombination rate. With the LD-based models, the transition probabilities
are a function of the time since the mutation was introduced as well as other parameters that
are not known. This can adversely affect power. Comparisons with standard model-free
alternatives are needed.



Chapter 7

Conclusions and Future Work

This chapter features a summary of the key contributions of this thesis, and provides some

suggestions for future related work.

7.1 Summary

Contributions of the thesis include:

A New and Necessary Model for Haplotype Reconstruction
The thesis has provided a model for haplotype reconstruction that accounts for dependen¬
cies that may arise in a sample of genetic-marker data in current population studies. Such
a sample can be characterized by two types of dependencies: dependencies that exist be¬
tween markers (i.e. LD) and those that exist between individuals in the sample (i.e. family
information). The thesis thus bridges the gap between the two standard classes of haplotype
reconstruction models: those that account for LD but assume individuals are unrelated, and

those that account for related individuals but assume markers are in Linkage Equilibrium.
We expect the model will be useful beyond this thesis. This is because simulation studies
based on empirical data have clearly underscored the importance of accounting for both

types of dependencies when they are present. Equivalently, we have shown that exist¬

ing haplotype reconstruction algorithms are not robust to violations of either assumption.
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These analyses were principally concerned with the accuracy of haplotype frequencies and
phase. However, we have also confirmed that the biased haplotype frequency estimates that
result from treating related individuals as unrelated can impact association analysis, and in

particular can inflate the false-positive rate.

A Powerful Computational and Conceptual Framework for Haplotype Analysis
The thesis demonstrated that real synergies exist between Machine Learning (and in partic¬
ular the Graphical Model formalism) and Population Genetics. By employing the Junction
Tree Algorithm, it was possible to efficiently conduct inference over important pedigree

configurations that could not be accommodated by existing methods. Equally important
was the insight gained by representing the likelihood in compact graphical form. By using

graphical models as a visual, as well as computational, tool we were able to develop a truly
unified model that bridged the ten-year gap between algorithms developed for unrelated
individuals and algorithms developed for single pedigrees. This motivated a broad range

of simulation studies that dispelled common misconceptions regarding the utility of fam¬

ily data in haplotype reconstruction (e.g. that a fixed number of sibs could always resolve

phase).

Valuable Insight into the Role of Family Data in Haplotype Reconstruction
A commonly encountered question for many experimental designs is: How much family
data (if any) should be used to facilitate haplotype reconstruction in a population study?
We find that the impact of pedigree data depends upon the actual haplotype structure in
the population. Since this structure will vary throughout the genome, there is unlikely to
be a single optimal strategy for accurate haplotype reconstruction from markers used in

genome-wide scans. Rather, the impact of various pedigree data on particular subsets of
markers can be assessed through a simulation study based upon initial frequency estimates.
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7.2 Future Work

Extensions to other pedigrees
The thesis focused on unrelated individuals, parent-child trios and arbitrarily large half-
sibships. An obvious next step is to use the graphical model formalism to accommodate
other pedigree structures. One of the key benefits of using graphical models is that they
employ general purpose algorithms that apply to any graph. As was shown in Figure 4.5,
the process of conducting inference on full-sibships is trivial once the half-sib model is un¬

derstood. Furthermore, bounds on the computational complexity can be read straight from
separator potentials.
An excellent opportunity for synergy between the two disciplines would be to generalize
the model to accommodate inbred pedigrees. Inference over 'loopy" graphs is an active
area of research in Machine Learning, and analogous pedigree structures are very impor¬
tant in many application areas in population genetics. Integrating this theory with the the¬

ory already developed for efficient calculation on complex pedigrees in statistical genetics

(see,e.g. Lange and Elston, 1975; Cannings et al., 1978; Lange and Boehnke, 1983) could
be very useful.

Genotyping Error and Recombination

Although the quality of marker data is improving, genotyping error is an unpleasant reality.
When recombination occurs in a pedigree, this can be considered tantamount to a genotyp¬

ing error if the model explicitly assumes no recombination.
Few studies have been devoted to investigating the impact of genotyping error on haplotype
reconstruction, yet several empirical studies that were conducted during this thesis demon¬
strated how severe this impact may be. One one occasion, haplotypes for five biallelic loci
were reconstructed using the standard EM algorithm. It was later discovered that one of
the markers was mistyped. When the correct genotypes were used for this marker, the hap¬

lotype frequency profile for the other four markers changed dramatically.

Partition Ligation
The partition-ligation algorithm proposed by Niu et al. (2002) is becoming quite popular
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for coping with large numbers of markers (see,e.g. Zhang et al., 2005; Qin et al., 2002). As
noted in Chapter 2, more work needs to be done to establish the reliability if this procedure
and the reliability of similar procedures mentioned in Chapter 2 that have been developed
to accommodate large number of markers.



Appendix A

Optimal Experimental Design Revisited

In Chapter 5, it was shown that the tradeoff between family data and independent haplo-

types was nontrivial when estimating haplotype frequencies. This appendix demonstrates
that tradeoff can be trivial for similar graphical structures when the underlying distributions
are different.

Consider the joint distribution given in Figure (A. 1), with local conditional probability
distributions:

The objective is to choose ns and np that will provide the best estimate for x, subject to the
constraint that nsnp = N. ns is analogous to the number of sibships and np is analogous to
the number of sibs per pedigree.
How should 'best' be defined? In Chapter 5, it was the combination of ns and np that
minimized the Discrepancy metric. Here, it will be the combination of ns and np that
minimize a^L, where

Hence, the objective is to specify p(x|z) as a function of np and ns and then evaluate the
solutions, n* and n*s that minimize the expression.

p(x)~N(0,a2x)
p{yi|x) ~N(x,oj) i=\...ns

P(zij\yi) ~ N{yu6%) j=\...np

(A.l)

(A.2)

(A.3)

p{x\z) ~N(px\z,o2x\z)- (A.4)
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Figure A.1: Gaussian model to investigate trade-off between reduction in uncertainty (np)
and sample size (ns). x is the parameter of interest, y is the latent data, z is the observed
data.

p(x|z) can be derived by first specifying the joint distribution depicted in Figure (A.l):
ns

P(X, y,z) = p{x)Y[p(yi\x)Y[p(zu\yi)
1=1 7=1

exp <

nS

2 L{yi-x)
X i= 1

O I O

ns

+ E
i=l

/ np \ '
L (zij-yt)2
7=1

V /

(A.5)

From (A.5) it is possible to derive p(x,z), which is Gaussian. Hence, the term in the
exponent as a quadratic form in x and the mean and variance of (A.4) can be obtained by
completing the square.

Obtaining p(x, z) from (A.5) requires integrating over y. This can be done efficiently by
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using a peeling algorithm. For each "family", i — 1 ...ns, remove (peel) those terms in
(A.5) that characterize the following distribution:

p(yi\x,z,yi+l),

where y(+i = y,-+\...yns and ynv+1 = 0- The remaining terms will be proportional to

p(x, z,yi+i)

which will be p(x, z) after the last family has been peeled.
To peel a family, say y\, begin by specifying (A.5) as the following quadratic form in yi:

N/"

a

(A.6)

b

where

c

\ /

(A.6) can be rearranged in the form

(A.8)

It follows, therefore, that:

{xo2z + npZjOy)2
(A.9)
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Rearranging (A.9) as a quadratic form in x:

aj(ol + npaj)
and therefore

/K*|z)«f^ +g- "S°l ^V +- (A-10)

o2'XIZ o| a2 02(02 + n/?02)y >

\ _1

-l

(A.11)

Equation (A.l 1) demonstrates that c2|z can be expressed a monotonically increasing func¬
tion of np, and therefore the best case scenario is always to choose ns = N and np = 1.
Qualitatively, the solution dictates that independent haplotypes are also preferable to addi¬
tional family data.



Appendix B

Multimodality

One problem with data augmentation algorithms is that they can converge at a local, rather
than global, optima. When the EM algorithm is employed, it is standard practice to run the
algorithm many times from different initial parameter values. Estimates corresponding to
the highest likelihood and are then selected. There is no guarantee that this strategy will
work; the effectiveness is contingent upon the likelihood surface, which is determined by
both the likelihood function and the data.

Studies using the EM algorithm for haplotype reconstruction typically restart the algorithm
at least 100 times from different randomly generated haplotype frequency distributions.
However, there have no studies to investigate whether this criterion is appropriate. One

simple, yet useful, statistic that could be reported is the number of different modes were

encountered when analyzing each data set.

Visualizing the likelihood surface for a given data set would clearly solve the problem. This
appears impossible even for the simplest case involving two biallelic loci. (Recall that for
L biallelic loci, there are 2L haplotypes and therefore 2L — 1 free parameters.). However, it
is possible to characterize the likelihood as a function of a single parameter when dealing
with two biallelic loci. This can be done by recognizing that the only ambiguous genotype
in this scenario will be double heterozygote, which can be resolved by two different phase
configurations. The likelihood can then be be characterized in terms of a single parameter,

a, which is defined as the proportion of double heterozygotes that are allocated to one of
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Locus 1 Locus 2 Log-Likelihood

Ti 0/0 0/0 "ilog(eoo)
T2 0/0 0/1 ri2 log (20oo0oi)
T3 0/0 1/1 "3 log (Ogj)
T4 0/1 0/0 «4 log (2000010)
J5 0/1 0/1 "5 log (20oo0i i + 20oi 0io)
T6 0/1 1/1 "6 log (20oi 0i i)
yi 1/1 0/0 ni log (©io)
T8 1/1 0/1 «8 log (2010011)
T9 1/1 1/1 n9 log (0jj)

Table B. 1: Components of the log-likelihood for a sample of phase-unknown genotypes. The
data is expressed in terms of the counts (n\... n9) for each of the 9 possible phase-unknown

genotypes. The total log-likelihood is the sum over the final column.

the two possible phase configurations. For a given data set, it is straightforward to plot the
log-likelihood against a.

B.1 Deriving the Likelihood

Consider two biallelic loci, where the alleles at each locus are denoted by 0 or 1. Each lo¬
cus can therefore feature one of three possible genotypes, which are denoted 0/0, 0/1, 1/1.
Similarly, there are four haplotypes, h = (00,01,10,00), with corresponding frequencies
® = (000,001,0io, ® 11)-
The likelihood for a given sample of size N is given by equation (2.3). The summation
in (2.3) is over the number of individuals in the sample. It is straightforward to show
that the counts for each of the 9 distinct phase-unknown genotypes are sufficient statistics.
Table B.l specifies each component of the likelihood function with data featuring geno¬

type counts. The table illustrates that the only phase-unknown genotype where there is
not a one-to-one correspondence between genotype and phase is ys (the double heterozy-
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gote). Recall that when phase is observed, the maximum likelihood estimates are obtained
through "gene counting", i.e. 0, is proportional to the number of times hi appears in the
sample. The problem here is how to optimally allocate the «5 double heterozygotes between
(hoo,h\\) haplotypes that comprise the first phase possibility and the (/zio,/?oi) haplotypes
that comprise the second phase possibility.
Let a denote the proportion of double heterozygotes that are allocated to (hoo,h\i). Maxi¬
mum likelihood estimates for 0 are given by fixed a:

0°° = ^{2"i +"2 + "4 + an5} 0u = ^ {2ng + ns + n6 + an5}
001 = 2^ (2n3 + «2 + "6 + (1 -a)«5} 0io = {2n9 + n4 + n% + (I ~a)n5}

The likelihood can then be optimized by maximizing it with respect to a.

B.2 Results

For both empirical and simulated data sets based on HWE, such as the one in Figure B.l,
multimodality was not indicated. It was, however, possible to induce multiple modes when

using simulated data that deviated from HWE. In the scenario depicted in Figure B.2, all
genotype counts other than double heterozygotes are held constant at 10. The number of
double heterozygotes («s) is allowed to vary between 10 and 250 . It is interesting to note
how the likelihood surface changes from unimodal, where all haplotypes are equally likely
(i.e. a = .5) to bimodal, where both modes are equally likely and each mode strongly
favors one haplotype group to the other.
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n=(19,5,0,8,8,0,0,0,0)

0 a a*=.89 1

Figure B.1: Plot of log-likelihood against a for two-locus genotype counts (n) for Idh1 and
Mdh loci in mosquito data presented in Weir (1990).

Figure B.2: Plot of log-likelihood against a for different counts of double heterozygotes (ns).
All other genotype counts are held constant at 10.



Appendix C

Estimating Haplotype Frequencies

Using the EM Algorithm

This appendix provides three simple, yet instructive, examples to illustrate properties of the
EM algorithm discussed in Section 2.2.1.

Throughout the appendix, we use notation introduced in Chapter 2. Additionally, in each
of the three examples, we consider a two biallelic loci, where each allele on a given locus
is denoted 1 and 2. The three possible genotypes that could be observed at given locus are

denoted 1 /l, 1/2, and 2/2. The four haplotypes that can segregate at two loci are listed in
Table C.l.

hi 11

h2 12

h3 21

h/{ 22

Table C.1: Haplotypes for two biallelic loci.

Phase configurations will be denoted as hj\hj. For example, 11111 denotes the homozygote
for the 11 haplotype.
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Example 1: Phase Is Observed

In the first example, we consider the sample of size three, given in Table C.2, where phase
has been observed. Under the assumption ofHWE, the likelihood for 0 follows a multino-

Phase

Zl 11111
Z2 12 21

Z3 22|22

Table C.2: A Sample of Three Phase-Known Genotypes Used In Example 1.

mial distribution, where each haplotype in each phase configuration can be regarded as a

random sample from a probability vector, 0. Hence, the complete data log-likelihood can

be expressed as:

N M

log[p(z|0)] = ££ riij logQj + Constant. (C. 1)
i=l 7=1

Maximum likelihood estimates for 0 are obtained through "gene counting". Specifically,
calculating rig, which was defined in Chapter 2 as the number of times haplotype j appears
in the phase configuration of individual i, can be trivially "counted":

nn —2 "21 — 0 "31=0

"12 = 0 "22 = 1 "32 = 0

"13 = 0 "23 = 1 "33 = 0

«14 = 0 «24 = 0 "34 = 2

As shown in Table C.3, the maximum likelihood estimates of 0; is the proportion of times
hi appears in the sample.

Example 2: Genotypes are Completely Informative for Phase

In this example, we consider the sample of three phase unknown genotypes given in Table
C.4. When using the EM algorithm to calculate the maximum likelihood estimates for
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Table C.3: Maximum Likelihood Estimates of 0 for Data Set Given in Example 1.

0, the latent (unobserved) data are the phase configurations. Note that when considering
two biallelic loci, the only genotype that is not completely informative for phase is the
one in which both loci are heterozygous. This phase configuration does not appear in
the sample, and hence phase can be determined with certainty for each member in the
sample. In principle, the appropriate phase configuration for each member of the sample
can be deduced and maximum likelihood estimates for 0 can be obtained by calculating
the complete data log-likelihood, as was done in the previous example. It is nonetheless
instructive to consider the phase configurations latent and calculate one iteration of the EM
algorithm. At the start of the EM algorithm, haplotype frequencies are assigned a random

Table C.4: A Sample of Three Genotypes which are Completely Informative For Phase.

value and normalized or, as shown in Table C.5, are assigned equal frequencies. From

equation 2.1, p(z|y,0°) can be calculated:

genotype

yi 1/1 1/1
T2 1/2 2/2
T3 2/2 2/2

(C.2)

(C.3)
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0°

hi .25

h2 .25

hi .25

h4 .25

Table C.5: Initial Haplotype Frequency Estimates (0°)

Pfeb3,0°) = ( 21=22,22 (C.4)[ 0, otherwise.
To compute the expected complete data log-likelihood, it is necessary to calculate the ex¬

pected number of times each haplotype appears in a given individual:

Ep(zM,@°)nn = 2 Ep{z2\y2,0°)n2i = 0 ^(Z3b3,©°)n31 = 0
Ep{ZX bi,0°)"12 = 0 EP(Z2|y2,0°)"22 = 1 Ep{z3\y3,®°)n32 = 0
Ep(zi bi,0O)"13 = 0 Ep(z2\y2t@0)n23 = 0 ^p(z3|y3,0O)n33 = 0
Ep(zi bi,0°)n14 = 0 Ep(z2\yi,&°)n24 = 1 EP(Z3|V3,0°)n34 = 2

0'' is updated to 0- by calculating the expected proportion of times hi appears in the sample.
This is shown in Table C.6. Because phase configurations were determined directly from

0i 2
6

02 1
6

03 0
6

04 3
6

Table C.6: Updated Haplotype Frequency Vector after One Iteration of the EM Algorithm

(01).

genotype data, 01 is independent of 0°, and that the next iteration will result in the same

haplotype frequency vector, i.e. 01 = 02. Hence when genotypes are completely infor¬
mative for phase, the EM algorithm will converge after one iteration, and the haplotype

frequency estimates will be equivalent to those obtained by "gene counting".
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Example 3: Sample Consisting Of Uninformative Genotypes

In this example, we consider the sample of three phase unknown genotypes given in Table
C.7. Unlike the previous example, this sample contains a double heterozygote, and it is

genotype

71 1/1 1/1
72 1/2 1/2
73 1/1 1/2

Table C.7: The Sample of Three Genotypes Used in Example 3.

impossible to calculate maximum likelihood estimates by "gene counting". The EM algo¬
rithm is therefore employed.
As with the previous example, initial haplotype frequencies are assumed equally likely
(Table C.5). The posterior distribution of the latent (phase) is then calculated:

p(zi|yi,®°) = ( 21 = 11,11 (C.5)I 0, otherwise.

•5, Z2 — 12|21
p(z2|T2,®0) = { .5, Z2 — 11|22 (C.6)

0, otherwise.

Kz3|y3,©°) = j h 21 = 11,12 (c.7)[ 0, otherwise.
The expected complete data log-likelihood is derived by calculating the expected number
of times each haplotype appears in a given individual:

^kzibi,©0)"11 ~ ^ ^p(Z2\y2,@°)n2i — -5 Ep^y3@o^ri2\ — 1
Ep{z\\y\,0°)nn ~ 0 Ep(Z2\y2,e°)n22 ~ -5 Ep(z3\y3,&°)n32 — 1

~ 0 Ep(Z2\y2je°)n23 = £p(z3|;y3,©0)n33 — 0
^(zibl.®0)"14 = 0 Ep(Z2\y2)Q0)n24 =-5 (Z31^3,©0) ^34 = 0
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0-' is updated to 0- by calculating the expected proportion of times hi appears in the sample.
This is shown in Table C.8.

For the next iteration of the EM algorithm, the posterior distribution of the latent (phase)

e, ¥ = -58
02 ¥ = •25
03 1 = .083
04 1 - -083

Table C.8: Updated Haplotype Frequency Vector after One Iteration of the EM Algorithm

(01).

is again calculated:

Pfcibi,©1) =

P(Z2\y2,®{) =

1, zi = 11111
0, otherwise.

.3, Z2 = 12|21

.7, z2 = 11122
0, otherwise.

(C.8)

(C.9)

P(Z3\y3,©') = (C.10)
1, z\ = 11112
0, otherwise.

As before, the expected complete data log-likelihood id derived by calculating the expected
number of times each haplotype appears in a given individual:

ep(z i|yi,0I)ni1 = 2 ep(z2 b-2,©1)"21 = "7 ep(z3\y3,@l)n31 = 1
Ep{zi\yi,e1)nn = 0 ^telw,©1)"22 = "3 Ep&Iw,®1)^ = 1
£p(zi|yi,01)n13 = 0 ep(z2l^,©1)"23 = -3 ep(z3 l^,©1)"33 = 0
Ep(zi\yi,@l)ni4=0 ^fefe,©1)"24 =-7 Epfeb3,©1)n34 = °

0- is updated to 02 by calculating the expected proportion of times /?., appears in the sample.
This is shown in Table C.9. The process is repeated until ®k m 0^'11. We can clearly
see after the first iteration that h\ will have the highest frequency estimate. This is to be

expected because it is the most prevalent in the completely informative genotypes.
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0i ¥ = -62
02 ¥ = -22
03 f = .05
04

Table C.9: Updated Haplotype Frequency Vector after the Second Iteration of the EM Algo¬
rithm (02).



Glossary

Allele One of the alternative versions of a polymorphism.

Association Analysis Any statistical method that tests whether a certain allele or haplo-
type is found significantly more frequently in a group of affected individuals than in
a group of unrelated controls.

Genotype The pair of alleles at a given locus in an individual.

Haplotype Any sequence of alleles that are linked on a chromosome.

Identical By Descent (IBD) When two alleles are inherited from a shared ancestor.

Linkage The association of alleles on the same chromosome. During meiosis, alleles that
are linked are transmitted more frequently than chance would allow.

Linkage Analysis A statistical method that tests for the coinheritence of genetic markers
with biological traits or other markers within families.

Linkage Disequilibrium (LD) The correlation between polymorphisms that arises because
variants share a joint population ancestry.

Linkage Equilibrium (LE) Refers to the phenomenon when allele frequencies are inde¬
pendent.

Phase Pair of haplotypes in an individual.
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