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ABSTRACT 

Hypertensive patients exhibit impaired exercise capacity, a strong independent risk 

factor for cardiovascular disease, and the mechanisms responsible for this are not 

fully determined. Potential candidates may include endothelial vasomotor 

dysfunction and arterial stiffness, both of which are associated with hypertension. 

Impairment of the nitric oxide-cyclic guanosine monophosphate (NO-cGMP) 

pathway plays a major role in the development of these abnormalities, suggesting 

that enhancement of NO-cGMP signalling through phosphodiesterase type 5 (PDE5) 

inhibition may offer therapeutic potential in arterial hypertension. This thesis 

investigated the effects of the PDE5 inhibitor sildenafil citrate on exercise-induced 

vasodilatation, maximal exercise capacity and arterial stiffness in hypertensive 

patients, using different studies involving local limb and whole body exercise. 

 

Preliminary dose-ranging studies were initially performed to investigate the intra-

arterial (brachial) effects of sildenafil on forearm blood flow (FBF), and to select an 

appropriate, cGMP-independent, vasodilator to use as a control. On the basis on 

these studies, it was established that sildenafil, infused at 50µg/min, and verapamil, 

infused at 5µg/min, had similar vasodilator effect on FBF. Ten untreated 

hypertensive patients and ten matched normotensive subjects were then studied in a 

three-way, randomised, single-blind and placebo-controlled FBF study. The aim was 

to investigate the effects of sildenafil on handgrip exercise-induced vasodilatation, 

and to compare this response with verapamil and saline (placebo). Preinfusion 

exercise-induced vasodilatation was significantly reduced in hypertensive compared 

with normotensive subjects (P<0.001). However, after the infusions, while verapamil 

did not affect the vasodilator response to exercise in either group, sildenafil 

substantially enhanced this response in hypertensive patients, but not in 

normotensive subjects (P<0.05). These results suggested that sildenafil, through an 

increase in cGMP levels in the vasculature, substantially and selectively improves 

the vasodilator response to handgrip exercise in hypertensive patients.  

 



 xiv 

The effects of oral sildenafil on maximal exercise capacity and arterial stiffness were 

then investigated in a three-way, randomised, double-blind and placebo-controlled 

study. Fifteen untreated hypertensive and fifteen matched normotensive subjects 

received 50mg sildenafil, 25mg hydralazine (a control vasodilator) or placebo, 3 

times daily for 1 week, and the effects on maximal exercise capacity, measured as 

peak oxygen consumption (peak VO2), were evaluated. The effects of sildenafil on 

pulse wave velocity (PWV), a measure of arterial stiffness, were also investigated 

before and after maximal exercise. Peak VO2 was significantly lower and PWV 

significantly higher in hypertensive than normotensive subjects (P<0.0001). 

Treatment with sildenafil did not affect peak VO2 in either group. However, while 

PWV increased after exercise in hypertensive patients following placebo, sildenafil 

reversed these changes, significantly reducing PWV compared with placebo and 

hydralazine (P=0.0001). 

 

In conclusion, although PDE5 inhibition did not affect maximal exercise capacity, 

sildenafil, by improving arterial distensibility in the recovery period after exercise, 

may, as well as blood pressure lowering, offer an additional beneficial effect in 

active hypertensive individuals. 
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1.1  THE ENDOTHELIUM AND THE NITRIC OXIDE SYSTEM 
 
1.1.1 The endothelium  

The endothelium, the inner layer of blood vessels, is a complex and dynamic organ 

that responds to environmental stimuli and generates vasoactive substances. With a 

surface area of around 4000-7000m2, and a mass of more than 1 kg, it acts as the 

major communicating interface between the circulating blood and the vessel wall 

(Aird, 2007).  A healthy endothelium plays a major role in modulating vascular tone 

through synthesis and release of vasoactive mediators, which determine both 

vascular structure and function and also provide protection from thrombosis and the 

development of atherosclerosis. Vasoactive mediators produced by the endothelium 

include relaxing (prostacyclin, nitric oxide, endothelium-derived hyperpolarising 

factor) and contracting (endothelin-1 and metabolites of arachidonic acid) factors 

(Vanhoutte, 1988).  The discovery of the role of the endothelium in the modulation 

of vascular tone followed the major breakthrough by Furchgott and Zawadzki in 

1980, who demonstrated that acetylcholine requires the presence of the endothelial 

cells to relax the underlying vascular smooth muscle cells (Furchgott & Zawadzki, 

1980). The substance released by endothelial cells responsible for this effect was 

initially termed “endothelium-derived relaxing factor” (EDRF) and later identified as 

nitric oxide (NO) (Palmer et al., 1987). Since then, research in the field has been 

extensive, and NO is now widely recognised as a major determinant of vascular 

structure and function. Additional, NO-independent, pathways also cause 

vasodilatation, mainly involving activation of potassium channels and 

hyperpolarisation of vascular smooth muscle cells leading to vasorelaxation (Busse 

et al., 2002). 

 

1.1.2 The NO-cGMP pathway  

NO is synthesized by the enzyme nitric oxide synthase (NOS) from L-arginine and 

oxygen, consuming nicotinamide adenine dinucleotide phosphate (NADPH) in the 

process. NOS exists in 3 isoforms: endothelial (eNOS) and neuronal (nNOS) 

isoforms are constitutively expressed in the endothelium, platelets and some part of 

the nervous system, whereas the inducible (iNOS) isoform is controlled at the 
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transcriptional level (Stuehr, 1999; Toda & Okamura, 2003; Gorren & Mayer, 2007). 

The critical role played by the NOS system was demonstrated in a study showing, for 

the first time, that mice lacking all 3 NOS develop spontaneous myocardial 

infarction and exhibit markedly reduced survival (Nakata et al., 2008). NO synthesis 

is tightly controlled and linked to changes in ionized calcium concentration. Both 

eNOS and nNOS are activated via calcium/calmodulin and their activity is 

modulated by phosphorylation of serine, threonine and tyrosine residues (Fleming & 

Busse, 2003; Stuehr et al., 2004). Several agonists, including acetylcholine, 

bradykinin and substance P, act on specific membrane receptors that induce cytosolic 

calcium release and eNOS activation. Increased shear stress, the frictional force 

exerted by flowing blood, also serves as an important stimulus for NO production 

from eNOS.  By contrast, iNOS is calcium independent and inducible by 

immunological mechanisms (Moncada et al., 1991). 

 

NO plays a major role in the regulation of vascular tone and exerts many of its 

biological effects through the formation of cyclic guanosine monophosphate (cGMP) 

(McDonald & Murad, 1996; Schlossmann et al., 2003), although there are some 

effects that appear to occur independently of cGMP signalling (Cui et al., 2005). 

Once released by endothelial cells, NO diffuses to the vascular smooth muscle cells 

and stimulates the soluble guanylyl cyclase (sGC) enzyme. This results in cGMP 

formation and activation of cGMP-dependent protein kinase (PKG), which initiates a 

protein phosphorylation cascade with reduction in intracellular calcium 

concentration, ultimately leading to vasodilatation (Rybalkin et al., 2003).  

 

The central role played by NO in the regulation of vascular tone has been evidenced 

by a number of studies. It was initially shown in animal studies (Rees et al., 1989), 

and Vallance and coworkers were the first to show it in humans. They demonstrated 

that the intra-arterial (brachial) infusion of the NOS inhibitor NG-monomethyl-L-

arginine (L-NMMA) reduces resting forearm blood flow and increases vascular 

resistance, clearly indicating that tonic generation of NO regulates basal vasomotor 

tone (Vallance et al., 1989). Subsequent studies, prompted by these findings, aimed 

at clarifying the role of NO in the regulation of blood pressure (BP), and showed that 
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systemic (intravenous) infusion of L-NMMA increases BP in healthy individuals 

(Haynes et al., 1993a, b).  

 
1.1.3 Cyclic GMP and Phosphodiesterase type 5 

Cyclic GMP (cGMP) has emerged recently as a principal focus in signal transduction 

and a possible pharmacological target, and much of the attention has derived from 

the fact that it mediates most of the effects of NO (Schlossmann et al., 2003; Bian et 

al., 2006; Murad, 2006). Following the discovery of cGMP and its importance to NO 

signalling, researchers focused on the regulation of this pathway, in particular the 

enzymes responsible for cGMP degradation, the cyclic nucleotide 

phosphodiesterases (PDEs) (Hardman et al., 1971). Currently, 11 different families 

of PDEs have been identified, and PDE type 5 (PDE5) is responsible for the 

hydrolysis of cGMP in smooth muscle cells (Bender & Beavo, 2006; Omori & 

Kotera, 2007). PDE5 was originally identified more than 25 years ago (Coquil et al., 

1980; Francis et al., 1980) but it was only when this enzyme became a target for the 

PDE5 inhibitor sildenafil citrate that its important role in the regulation of vascular 

smooth muscle contraction emerged fully (Boolell et al., 1996). 

 

PDE5 is present in smooth muscle cells and platelets and plays a major role under 

basal conditions, characterized by low intracellular calcium. However, under 

condition of increased calcium levels (associated with vasoconstriction), PDE1 may 

also be involved in cGMP breakdown (Rybalkin et al., 2003). The structure of PDE5 

consists of 2 subunits, each containing a single catalytic domain and regulatory 

domain. The catalytic domain is highly specific for cGMP, whereas the regulatory 

domain contains two allosteric cGMP-binding sites (GAF domain, an acronym 

derived from the first three domains identified: mammalian cGMP binding PDEs, 

Anabaena adenylyl cyclases, and plant FhlA transcription factors) (Conti & Beavo, 

2007). The regulatory domain is phosphorylated by cGMP-dependent protein kinase 

PKG: occupation of a GAF domain by cGMP is required for this phosphorylation, 

which, in turn, causes stimulation of both catalytic activity and cGMP binding to the 

GAF domain. Therefore, elevation of cGMP causes increased PDE5 activity, 
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representing a negative feedback mechanism in the cGMP pathway (Corbin et al., 

2000; Francis et al., 2002; Bender & Beavo, 2006).  

 

1.1.4 PDE5 inhibition and erectile dysfunction 

On sexual arousal, NO is generated in the penile vasculature, diffuses in smooth 

muscle cells and binds with sGC, leading to cGMP formation. This results in 

relaxation of vascular and sinusoidal smooth muscle in the corpora cavernosa and 

increased penile blood flow, leading to expansion of erectile tissues and penile 

erection. Sildenafil, by preventing cGMP breakdown, prolongs vascular relaxation 

and promotes penile erection. This compound was initially developed for the 

treatment of angina pectoris, and it was only during early trials that its serendipitous 

effect on erectile function emerged, leading to the approval for the treatment of 

erectile dysfunction in 1998. Since then sildenafil has been very successfully used 

for the treatment of male erectile dysfunction (Carson & Lue, 2005).  

 

1.1.5 The PDE5 inhibitors 

The class of PDE5 inhibitors currently comprises 3 selective and orally active 

compounds, sildenafil (Viagra™), vardenafil (Levitra™) and tadalafil (Cialis™). 

Sildenafil was the first PDE5 inhibitor to become available for clinical use to treat 

penile erectile dysfunction and, to date, is the most extensively studied compound. 

The catalytic domain on PDE5, but not the GAF domain, binds sildenafil and blocks 

cGMP hydrolysis, resulting in increased cGMP levels (Boolell et al., 1996). Of note, 

the increased cGMP levels not only determine a greater degree of activation of PKG 

and PKG-dependent phosphorylation, but also potentiate sildenafil binding affinity to 

PDE5, which further contributes to elevating cGMP (Blount et al., 2004). This 

unique capacity for sildenafil to elevate cGMP levels and, at the same time, to further 

increase its own inhibitory capacity, represents a novel mechanism for the sustained 

generation of cGMP and explains the potent biological effects of this drug. 

 

Sildenafil is a potent and reversible inhibitor of PDE5 (IC50 of 3.9nM). It is highly 

selective (>1000-fold) for PDE5 when compared with PDE2, PDE3 and PDE4, and 

moderately selective over PDE1 (>80 fold). It is however only approximately 10-fold 
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as potent for PDE5 as for PDE6, found in the photoreceptors of the retina. Sildenafil 

is rapidly absorbed after oral administration and maximum plasma concentrations are 

reached within 30 to 120 minutes (median 60 minutes) of dosing in the fasted state, 

with a mean oral absolute bioavailability ranging from 38 to 41% and a plasma half-

life of ∼4 hours (Walker et al., 1999; Muirhead et al., 2002). For doses up to 200mg, 

systemic exposure of sildenafil is dose proportional, with an approximately linear 

exposure-response relationship. 

 

The major metabolic pathway of sildenafil is hepatic, by the cytochrome P450, 

isoenzyme CYP3A4, and the principal metabolite is N-desmethyl sildenafil, which 

accounts for ≈20% of the overall pharmacological activity. Owing to its extensive 

metabolism, sildenafil is not detected unchanged in urine or faeces. Its metabolites 

are mainly excreted in faeces and, to a lesser extent, in urine. Inhibitors of the 

CYP3A4, such as erythromycin and the protease inhibitors ritonavir and saquinavir 

can interfere with the metabolism of sildenafil, increasing the area under the 

concentration-time curve (AUC) and maximum plasma concentration (Cmax) 

(Muirhead et al., 2000; Muirhead et al., 2002). Grapefruit juice, an inhibitor of 

intestinal CYP3A4, also increases sildenafil bioavailability, although the effect 

seems to be variable (Jetter et al., 2002). Sildenafil clearance is reduced in healthy 

elderly patients (≥65 years) and in those with severe renal insufficiency (creatinine 

clearance <30mL/min) or hepatic cirrhosis (Muirhead et al., 2002).  

 

The other PDE5 inhibitors available, vardenafil and tadalafil, differ in their 

selectivity for PDE5 (vardenafil>tadalafil>sildenafil), with IC50 of 0.1-0.7 nM and 

0.94 nM, respectively. They also differ with respect to other PDEs: selectivity of 

vardenafil for PDE5 is >1000-fold relative to PDE2-4 and 7-10; >300-fold relative to 

PDE11; >130-fold relative to PDE1; >15-fold relative to PDE6. Selectivity of 

tadalafil is >10 000-fold relative to PDE1-4 and 7-10; >700-fold relative to PDE6; 

>5-fold relative to PDE11 (Conti & Beavo, 2007). 
 

The clinical efficacy of the PDE5 inhibitors is similar, the main difference being 

onset and duration of activity, especially for tadalafil, which has the longest duration 
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(Table 1.1). Most of the adverse events associated with PDE5 inhibitors are related 

to vasodilatation (headache, flushing, and nasal congestion) and gastrointestinal 

events (dyspepsia).  Back pain and myalgia are more often reported with tadalafil 

(Setter et al., 2005). Visual disturbances (abnormal colour vision) seem to be more 

common with sildenafil, reflecting its limited selectivity against PDE6, localized in 

photoreceptors of the retina (Boolell et al., 1996).  

 
 
When sildenafil was marketed in 1998, it was an immediate success and nowadays it 

can be found almost anywhere. Even in the Gaza Strip, during one of the recent 

humanitarian crisis, blackmarket sildenafil was available in large quantities (McGirk, 

2008). The successful use of sildenafil in the treatment of male erectile dysfunction 

(Goldstein et al., 1998) has also created increasing interest in the therapeutic 

potential of PDE5 inhibition in cardiovascular diseases associated with dysfunction 

of the NO-cGMP signalling pathway.  
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 Sildenafil Vardenafil Tadalafil 

IC50 for PDE5  
(nM)  

 3.9 0.1-0.7  0.94 

Dose 50mg increased to 
100mg 

10mg increased to 
20mg 

10mg increased to 
20mg 

Tmax Median, 60 min Median, 60 min Median, 2 hours 

Mean T1/2 4 hours; high-fat 
meal ↓ Cmax by 29%  

4-5 hours; high-fat 
meal ↓ Cmax by 18% 

17.5 hours; not 
affected by food 

Active 
metabolite 

N-desmethyl 
sildenafil 
20% contribution to 
activity 

N-desmethyl 
vardenafil 
27% contribution to 
activity 

None 

Renal 
excretion 

<1% 1% <0.3% 

Side effects  Headache, 
dyspepsia, nasal 
congestion, flushing, 
abnormal vision 

Headache, 
dyspepsia, flushing, 
rhinitis, dizziness, 
nausea, sinusitis 

Headache, 
dyspepsia, myalgia, 
back pain, flushing, 
nasal congestion 

 
Table 1.1. Comparisons of the commercially available PDE5 inhibitors: sildenafil, 
vardenafil and tadalafil. 
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1.2 FITNESS AND CARDIOVASCULAR HEALTH 
 
1.2.1 Physical fitness 

Physical fitness can be defined as ‘the ability to perform moderate-to-vigorous levels 

of physical activity without undue fatigue and the capability of maintaining this 

capacity throughout life’ (Pollock et al., 1998). Two major elements contribute to 

physical fitness: performance-related physical fitness, linked to athletic skills and 

ability, and health-related physical fitness. The latter refers to the components of 

physical fitness related to health status (Caspersen et al., 1985; Vanhees et al., 2005). 

 

 
Component 

 
Factor 

 

Morphological 
 
 
 

Muscular 
 
 
 

Motor 
 
 

Cardiovascular 

 

Body mass for height 
Body composition 
Flexibility 
 

Muscle strength 
Muscle endurance 
Power 
 

Balance 
Speed 
 

Submaximal exercise capacity 
Maximal aerobic capacity 

 
Table 1.2. Major components and factors of health-related fitness 
 

The studies presented on this thesis will focus on the cardiovascular component of 

health-related fitness (cardiovascular fitness) (Table 1.2) and its value in relation to 

cardiovascular health. 

 

1.2.2 Cardiovascular fitness and exercise capacity  

Cardiovascular fitness refers to the combined efficiency of the heart, lungs and 

vascular system to deliver oxygen to the working muscles, which translates into the 

ability to perform dynamic exercise for a prolonged period of time. This determines 

an individual’s maximal exercise capacity (a trait that describes how well an 

individual can perform dynamic exercise), and requires the interaction of the 
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cardiovascular, respiratory and skeletal muscle systems, whose responses are linked 

to each other and to cell respiration (Wasserman et al., 1999).  

 

Exercise capacity is usually assessed by means of symptom-limited exercise testing 

(maximal incremental exercise testing), which allows the study of the integrated 

response of the cardiovascular, respiratory and muscle components under controlled 

exercise conditions. To assess an individual’s maximal exercise capacity, an exercise 

test should: 

 

• Employ at least 50% of the total muscle mass. Activities that meet this 

requirement include running and cycling 

• Be independent of strength, speed, body size, and skills 

• Be of sufficient duration for cardiovascular responses to be maximized 

(ideally between 8 and 12 minutes) (Wasserman et al., 1999). 

 

Cardiopulmonary exercise testing (CPET) with appropriate gas exchange 

measurements is a valuable tool for objective exercise performance assessment. 

Measures of gas exchange primarily include oxygen consumption or uptake (VO2), 

which represents the amount of oxygen transported and used by the working muscles 

during exercise. When we measure oxygen consumption, we are indirectly 

measuring an individual's maximal capacity to perform work aerobically (maximal 

aerobic capacity) (Wasserman et al., 1999) and, indeed, higher VO2 values are 

associated with greater physical exercise capacity (Fletcher et al., 2001). In this 

context, CPET associated with gas exchange measurements allows evaluation of 

maximal exercise capacity, and can detect the presence and the degree of functional 

impairment, as well as objectively evaluate the response to interventions that may 

affect exercise capacity (McConnell et al., 1995; Wasserman et al., 1999).  

  

An exercise test may be performed using a treadmill or a cycle ergometer. Both have 

advantages and disadvantages, and which one is the best choice for exercise testing is 

a matter of debate. Most subjects have higher peak VO2 on the treadmill than the 

cycle ergometer, but movement artefacts and noise might be a problem, and it is 
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difficult to accurately quantify the work rate. On the contrary, the cycle ergometer 

offers less movement artefact and an accurate quantification of the work rate, and is 

also considered safer for patients (Gibbons et al., 2002; Myers et al., 2009). 

 

1.2.3 Oxygen consumption and the Fick equation 

Oxygen consumption is defined by the Fick equation as the product of cardiac output 

and arterial venous oxygen difference (Acierno, 2000): 

VO2 = (SV × HR) × (CaO2 – CVO2) 

where SV is the stroke volume, HR is the heart rate, and CaO2 and CVO2 are the 

oxygen concentration of arterial and mixed venous gas, respectively. At maximal 

exercise, the components of the equation change as follows:  

VO2max = (SVmax × HRmax) × (CaO2max – CVO2max) 

This defines the maximal aerobic capacity, i.e. how well an individual can 

metabolize oxygen and generate energy. 

 

1.2.4 Maximal oxygen consumption and maximum oxygen consumption  

The measurement of gas exchange variables has been simplified with the 

development of rapid gas analysers for oxygen and carbon dioxide and computerized 

on-line analysis systems (Beaver et al., 1973).  Directly measured VO2 is expressed 

as a rate, either in absolute values (litres per minute, L/min), or relative to body 

weight (millilitres per kg bodyweight per minute, ml/kg/min), making inter-subject 

comparisons easier. The human body has an upper limit for O2 utilization at a 

particular state of fitness, and VO2max represents the maximal volume of oxygen 

that the body can consume during intense exercise, from a resting value of 3.5 

ml/kg/min. More precisely, VO2max is defined as the point at which no further 

increase in measured VO2 occurs despite an increase in work rate (a plateau is 

reached) during graded exercise testing. Instead, maximum oxygen consumption or 

peak VO2 is the highest VO2 attained during graded exercise testing, but the term 

does not imply that a plateau in measured VO2 is reached (Wasserman et al., 1999) 

(Figure 1.1A). This distinction is relevant when considering exercise studies in 

normal (untrained) subjects or patients because, after reaching their peak VO2 at 

maximal effort, most of them cannot tolerate the discomfort long enough to achieve a 
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plateau in VO2. However, peak VO2 is usually close to the predicted VO2max, and is 

often the first parameter measured in exercise studies involving patients, because it 

evaluates whether the patient’s response to exercise allows normal maximal aerobic 

function (Pardaens et al., 1996; Wasserman et al., 1999). 

 

1.2.5 Aerobic exercise, anaerobic exercise, and the anaerobic threshold 

Muscle contraction is associated with the breakdown of adenosine triphosphate 

(ATP) to adenosine diphosphate (ADP). Because the reserve of ATP in the muscle is 

very limited, it has to be continuously replenished through the mitochondrial 

oxidation of substrates in order to continue exercise. In exercise activity of short 

duration requiring a high power output, oxygen demands cannot be met quickly 

enough and ATP is generated mostly through anaerobic metabolism, in which CO2 is 

produced with very little O2 being consumed. In exercise activity of longer duration 

(endurance exercise), oxygen demands can be met and ATP is generated aerobically 

during the initial phase of exercise. During this phase CO2 output (VCO2) increases 

linearly with VO2 and reflects the aerobic production of CO2. However, at a certain 

exercise level, the oxygen supply is no longer enough to meet the oxygen demands 

of the working muscle, and the anaerobic metabolism increases to increase energy 

generation. Lactic acid is the by-product of anaerobic metabolism and is buffered in 

the cell by bicarbonate, leading to CO2 formation. This is the point at which VCO2 

increases exponentially relative to VO2 to eliminate the excess CO2 produced, and it 

is called anaerobic threshold (AT, Figure 1.1B) (Wasserman et al., 1999). The AT 

usually occurs at 47 to 64% of VO2max in untrained subjects, and is widely used as a 

submaximal index of aerobic capacity and as an index of the metabolic and 

circulatory changes that occur during incremental exercise (Davis et al., 1976).



 13 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 1.1. Schematic representation of VO2max and peak VO2 (A) and anaerobic 
threshold (B). 
During incremental exercise testing, VO2max is defined as the point at which no further 
increase in measured VO2 occurs despite an increase in work rate (WR), represented as a 
plateau in the VO2 curve. When the plateau is not reached, but the subject has reached the 
maximum tolerable WR, this is defined as peak VO2 (A). The anaerobic threshold (AT) can 
be defined as the VO2 just below the point at which a nonlinear increase in VCO2 is 
observed, indicating the onset of anaerobic metabolism during incremental exercise (B). 
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1.2.6 The value of exercise capacity 

Extensive evidence shows that aerobic exercise capacity is a strong independent 

predictor of cardiovascular risk and death in individuals with and without 

cardiovascular disease (CVD) (Paffenbarger et al., 1986; Ekelund et al., 1988; Blair 

et al., 1989; Sandvik et al., 1993; Blair et al., 1995; Myers et al., 2002; Evenson et 

al., 2004; Lee et al., 2005; Kokkinos et al., 2008; Peterson et al., 2008; Kodama et 

al., 2009). Greater exercise capacity has been shown to be protective against all-

cause and cardiovascular mortality, regardless of whether clinic BP is controlled 

(Church et al., 2001), and its improvement is associated not only with reduced 

cardiovascular risk (Blair et al., 1996; Erikssen et al., 1998) but, also, with improved 

survival (Blair et al., 1995) and better quality of life (Brown et al., 2003; Martin et 

al., 2009). Furthermore, it seems to represent a more powerful predictor of mortality 

than traditional risk factors such as hypercholesterolaemia or diabetes (Mora et al., 

2003; Balady et al., 2004). With age and with chronic cardiovascular conditions such 

as hypertension (Fleg et al., 2005), exercise capacity declines, and a concomitant 

decline in physical activity is observed, because it takes more effort to exercise, a 

person becomes more easily exhausted and breathless and, consequently, activities 

identified as requiring substantial effort tend to be avoided. This determines a vicious 

cycle leading to a further decrease of exercise capacity, with major implications not 

only for the risk of CVD, which has been recently demonstrated at the population 

level (Carnethon et al., 2005), but also on functional independence and long-term 

quality of life. For these reasons, the value of exercise capacity and its assessment is 

increasingly recognised, based on the understanding that resting pulmonary and 

cardiac function testing may not accurately predict exercise performance and 

functional capacity, and that overall health status correlates more closely with 

exercise capacity than with resting measurements.  
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1.3 HYPERTENSION AND EXERCISE CAPACITY  
 
1.3.1 Hypertension 

Cardiovascular diseases, which include coronary heart disease (CHD) and stroke, are 

a leading cause of morbidity and mortality in developed countries and are becoming 

increasingly common in less developed regions of the world (Murray & Lopez, 1997; 

Lopez et al., 2006). The final common pathway for the development of CVD is 

atherosclerosis of the vessel wall, and a number of traditional risk factors for 

atherosclerosis have been identified. Amongst them, arterial hypertension is one of 

the most important: recently published data show that worldwide about 54% of stroke 

and 47% of ischaemic heart disease can be attributed to hypertension (Lawes et al., 

2008), and the risk further increases when hypertension is associated with other risk 

factors such as hypercholesterolaemia, obesity and smoking (Ezzati et al., 2003). 

Classifications of hypertension vary but British, European and American guidelines 

use a threshold of >140mmHg systolic or 90mmHg diastolic BP to diagnose 

hypertension (Chobanian et al., 2003; Williams et al., 2004; Mancia et al., 2007). 

However, it is acknowledged that this threshold is somewhat arbitrary and the risks of 

CHD and stroke begin to increase at a level of 115 mmHg.  

 

Lowering of BP by non-pharmacological means should always come first in the 

management of hypertension. Weight loss, exercise, alcohol restriction, reduced salt 

intake should be encouraged, before and after commencing drug therapy, and they 

have a significant effect on BP reduction (Cutler et al., 1997; Xin et al., 2001; 

Whelton et al., 2002). More recently, the Dietary Approaches to Stop Hypertension 

(DASH) diet, already known to reduce BP (Appel et al., 1997), has also been shown 

to reduce the risk of CHD and stroke (Fung et al., 2008). However, for many 

individuals, pharmacological treatment will be required to control BP. Since the first 

evidence of the benefits of antihypertensive drug treatment (Mohler & Freis, 1960; 

Hamilton et al., 1964), a number of antihypertensive agents have been developed to 

control BP.  Currently, they can be divided in 4 major classes: angiotensin-converting 

enzyme inhibitors/angiotensin receptor blockers (ACEIs/ARBs), beta-blockers, 

calcium channel blockers (CCBs), and thiazide diuretics. For all of them, the BP-
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lowering effect seems to be the main determinant of cardiovascular risk reduction, but 

there has been much debate whether or not some of these agents offer additional 

benefits beyond BP control. Findings from the BP Lowering Treatment Trialists’ 

Collaboration (Turnbull, 2003) showed that differences in outcomes between 

regimens were related to differences in BP reductions. Subsequent trials have 

compared active drugs regimens, such as the VALUE study (Julius et al., 2004) and 

ASCOT-BPLA (Dahlof et al., 2005). Again, because of unequal reductions in BP 

between treatment groups in these studies, the relative contribution of direct and BP 

mediated benefit is difficult to unravel. Meta-analyses, although useful, need to adjust 

for differences in BP and this makes their interpretation somewhat difficult. However, 

there is evidence suggesting that ACEIs and CCBs offer the best protection in the 

prevention of CHD (Verdecchia et al., 2005), and ACEIs, ARBs and diuretics seem 

to be the best choice in congestive heart failure (Wang et al., 2006). In addition, 

recent results from the ACCOMPLISH trial suggest that the combination of an ACE 

inhibitor and a CCB is superior to ACE inhibitor plus diuretic (hydrochlorothiazide) 

in reducing cardiovascular event in high-risk hypertensive patients (Jamerson et al., 

2008). Data from meta-analyses also suggest that beta-blockers are not indicated as 

first-line treatment in patients with uncomplicated hypertension (Wiysonge et al., 

2007), although the evidence reviewed was mainly based on the effect of atenolol, 

and it is always difficult to establish whether these findings can be extrapolated to the 

entire class of drug. The debate about the use of beta-blockers as first-line agents in 

hypertension is currently on going, and it is matter of controversy amongst different 

authors (Cutler & Davis, 2008; Messerli et al., 2008). 

 

Despite clinically effective treatment, poor BP control in the UK is responsible for 

thousands of unnecessary deaths per year. It was calculated that if all hypertensive 

patients in the UK reduced their BP to target (<140/90mmHg) (Chobanian et al., 

2003), approximately 41,400 ischaemic heart disease deaths and 21,400 stroke deaths 

could be prevented each year (He & MacGregor, 2003). Great benefit could be 

derived from adequate BP control and, because the adverse impact of hypertension on 

health usually occurs over a long period of time, it is important to consider BP control 

well in advance, before individuals exhibit any evidence of functional impairment or, 
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worse, disability. In fact, hypertension has been shown to be associated not only with 

an important reduction in the number of years lived without CVD (7.2 years for both 

sexes) and an increase in the time spent with CVD (Franco et al., 2005), but also with 

disability (Hajjar et al., 2007). Improving patient compliance and physician 

adherence with hypertension guidelines play a significant role in hypertension control 

(Wetzels et al., 2004; Okonofua et al., 2006). Nevertheless, treatment of hypertension 

to recommended targets can be a challenge in many patients. In an aging society and 

in a context of limited economic resources, this contributes to the overwhelming costs 

of care of advanced and chronic disease and highlights the public health burden of 

hypertension. 

 

1.3.2 Exercise haemodynamics in hypertension 

Established hypertension is characterized by increased peripheral vascular resistance, 

and is associated with reduced exercise capacity and exaggerated systolic BP 

response to exercise (Lim et al., 1996). Although in most epidemiological studies 

resting BP has been measured, and taken as an indicator of cardiac risk and the target 

for treatment, an increased cardiovascular mortality still persists in apparently well-

controlled hypertensive patients treated accordingly to resting (office) BP values 

(Andersson et al., 1998; Almgren et al., 2005). One explanation is that resting BP 

may not accurately reflect the underlying cardiovascular changes occurring in 

patients with hypertension, particularly at an early stage. These changes are usually 

accentuated and better detected under stress conditions, such as during exercise. 

Physical exercise markedly increases blood flow to skeletal muscle to meet the 

metabolic demand of active muscle tissue, and a fundamental mechanism responsible 

for the increase in blood flow is vasodilatation. In normotensive subjects, this is 

evidenced by a progressive reduction of systemic vascular resistance (SVR) during 

exercise as a result of peripheral vasodilatation, which also limits the rise of systolic 

BP. By contrast, in hypertensive patients, exercise haemodynamics show an 

abnormal pattern characterized by lower stroke volume and, often, an exaggerated 

systolic BP response compared to normotensive subjects (Montain et al., 1988; 

Palatini, 1994). This reflects an impaired peripheral vasodilator capacity and 

consequent failure of SVR to fall (Lund-Johansen, 1991; Modesti et al., 1999), and 
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may contribute to the overall reduced exercise capacity and associated worse 

prognosis reported in hypertensive individuals (Amery et al., 1967; Fagard et al., 

1988; Blair et al., 1991; Goodman et al., 1992; Missault et al., 1992; Lim et al., 

1996). The clinical significance of these observations is supported by data showing 

that exercise systolic BP provides predictive information on cardiovascular death 

(Kjeldsen et al., 2001) and is also associated with coronary risk factors (Mundal et 

al., 1998). These findings support the value of exercise systolic BP and that of 

reduced exercise capacity as strong independent predictors of cardiovascular risk and 

death (Ren et al., 1985; Ekelund et al., 1988; Blair et al., 1989; Filipovsky et al., 

1992; Miyai et al., 2000; Myers et al., 2002; Peterson et al., 2008). More recently, 

exercise capacity has been shown to be the strongest predictor of all-cause mortality 

in hypertensive men with and without additional cardiovascular risk factors. 

Furthermore, even small increases in exercise capacity seem to contribute 

substantially to mortality risk reduction (Kokkinos et al., 2009). 

 

1.3.3 Vascular alterations in hypertension 

The exact mechanisms underlying the impaired peripheral vasomotor response and 

reduced exercise capacity found in hypertension are not fully understood, but an 

important role may be played by the structural and functional alterations that develop 

in the hypertensive vessel wall. As previously mentioned, exercise capacity depends 

on an adequate oxygen supply to the heart and to the skeletal muscle, and may 

therefore be affected by the progressive functional and structural vascular changes 

occurring in hypertension. These changes occur at the level of small (resistance) 

arteries and large (conduit) arteries, leading to alteration of smooth muscle tone, 

reduced arterial distensibility (arterial stiffness) and vascular remodelling (Folkow et 

al., 1973; McVeigh et al., 1991; Heagerty et al., 1993; Park & Schiffrin, 2001). The 

final result is increased SVR, the hallmark of established hypertension (Lund-

Johansen, 1980). Indeed, according to Poiseuille’s law (Figure 1.2), vascular 

resistance varies inversely with the fourth power of the blood vessel radius, so that 

even a small decrease in the lumen markedly increases resistance (Folkow, 1982; 

Nichols, 1997). Conversely, reductions in the vasoconstrictor state of the peripheral 
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vasculature by greater local vasodilator influence would result in a significant change 

in blood flow. 

 
 

 
Figure 1.2. Poiseuille’s law 
The laminar flow rate of an incompressible fluid along a tube is directly proportional to the pressure 
difference between its ends and the fourth power of its internal radius, and inversely proportional to its 
length and the viscosity of the fluid. F, flow rate; P, pressure; R, resistance to flow; η, viscosity; L, 
length of the tube; r, radius.  
 

In hypertension, cardiac adaptations also develop to confront the elevated systolic 

loads due to increased vascular resistance: these are represented by ventricular 

systolic stiffening and, later, hypertrophy (Kass, 2005; Zieman et al., 2005). The 

combination of ventricular-arterial stiffening affects the way in which elements of 

the cardiovascular system interact at rest and, particularly, under stress conditions, 

such as during exercise. This is further supported by evidence suggesting a 

relationship between increased vascular stiffness and reduced exercise capacity 

(Feske et al., 1988; Vaitkevicius et al., 1993; Cameron et al., 1999; Tanaka et al., 

2000; Hundley et al., 2001; Ferreira et al., 2002; Boreham et al., 2004; Willens et 

al., 2005). 
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1.4 PDE5 INHIBITION AND EXERCISE 
 
1.4.1 The NO-cGMP pathway and exercise 

The main physiological stimulus to endothelial NO production is increased blood 

flow through the vessel lumen (Pohl et al., 1986; Rubanyi et al., 1986; Davies, 1995; 

Corson et al., 1996), resulting in increased vascular wall shear-stress that is sensed 

by the endothelium and translated into a vasodilator response (Hutcheson & Griffith, 

1991; Koller & Kaley, 1991; Niebauer & Cooke, 1996). NO has been demonstrated 

to be essential for this flow-mediated vasodilator response in human peripheral 

conduit and resistance vessels (Joannides et al., 1995; Paniagua et al., 2001) raising 

the possibility that it may also contribute to exercise-induced vasodilatation. In fact, 

during exercise, the increase in cardiac output and tissue perfusion result in shear 

stress-induced enhancement of eNOS activity. This suggests that, with increasing 

blood flow and oxygen demand, the role of NO-mediated vasodilatation may become 

increasingly important (Dyke et al., 1995; Meredith et al., 1996; Maxwell et al., 

1998). Furthermore, inhibition of NO synthesis has been shown to reduce exercise-

induced vasodilatation in healthy subjects (Gilligan et al., 1994).  

 

1.4.2 Systemic vascular effects of sildenafil 

Given that PDE5 enzymes are widely represented throughout the vascular system, 

PDE5 inhibition might be expected to have effects on the general cardiovascular 

system. In particular, the enhancement of NO-cGMP-mediated relaxation on 

vascular smooth muscle may result in systemic BP reduction. In healthy subjects, 

sildenafil has been shown to reduce systolic and diastolic BP in most but not all 

studies. In a study by Jackson and coworkers, the mean maximum reduction in 

supine systolic/diastolic BP was 10/7 mmHg, and no changes in heart rate were 

observed (Jackson et al., 1999). A similar effect was observed in another study 

performed in healthy subjects (Zusman et al., 1999). However, a study by Schalcher 

and coworkers did not evidence any effect of sildenafil on BP in healthy subjects 

(Schalcher et al., 2002). In the same way, in individuals with coronary disease some 

investigators have reported BP reductions following sildenafil administration 

(Herrmann et al., 2000), but others have not (Manfroi et al., 2003). In hypertension, 
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most studies have been performed in individuals already on antihypertensive 

treatment (Webb et al., 1999; Mahmud et al., 2001; Vardi et al., 2002), and have 

shown a consistent BP lowering effect of sildenafil. In the only study investigating 

the effects of regular sildenafil treatment (for 16 days) in untreated hypertensive 

patients, both systolic and diastolic clinic BP were significantly reduced compared 

with placebo (Oliver et al., 2006). In summary, the effects of sildenafil in these 

studies are compatible with mild/moderate systemic vasodilatation, and no clear 

evidence of a positive chronotropic effect. 

 

1.4.3 Effects of other PDE5 inhibitors on BP 

Although less evidence is available on the effects of vardenafil and tadalafil, a study 

comparing sildenafil and vardenafil showed a greater BP decrease with the latter (8 

mmHg systolic and 6 mmHg diastolic) than with sildenafil (5 mmHg systolic and 4 

mmHg diastolic) (Pomara et al., 2004). With regard to tadalafil, a single oral dose of 

10 or 20 mg did not seem to significantly change systolic BP, but diastolic BP was 

reduced by 5 mmHg compared with placebo (Kloner et al., 2003b). Most recently, 

Wolk and coworkers investigated the effect of different doses of a new, long-acting, 

PDE5 inhibitor, administered once daily for 28 days, on daytime systolic BP in 

patients with mild to moderate hypertension. The novel PDE5 inhibitor significantly 

decreased mean daytime systolic BP by approximately 7 mmHg compared with 

placebo, and the response, although greater at the beginning, was sustained until the 

end of the study period (Wolk et al., 2009). 

 

1.4.4 PDE5 inhibitors and interactions with cardiovascular drugs 

1.4.4.1 Interaction between PDE5 inhibitors and organic nitrates 

The PDE5 inhibitor-nitrate interaction is well known and has been extensively 

studied. NO donors, such as nitroglycerine, isosorbide mononitrate (ISMN) and 

dinitrate (ISDN), work by stimulating the enzyme sGC and increasing the formation 

of cGMP, leading to vasodilatation and reduction of BP. These drugs are widely used 

to treat angina and heart failure and, when given in concomitance with PDE5 

inhibitors, the increased cGMP levels together with the reduced breakdown can lead 

to marked vasodilatation and hypotension. This interaction has been shown in 
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healthy subjects with the concomitant administration of sildenafil and nitroglycerine 

(Webb et al., 1999), and has also been shown for tadalafil (Kloner et al., 2003a) and 

vardenafil (Reffelmann & Kloner, 2007). In patients with angina, this interaction has 

been demonstrated with nitroglycerine and ISMN (Webb et al., 1999; Webb et al., 

2000). As a result, the combined use of organic nitrates and PDE5 inhibitors is an 

absolute contraindication because of the potential for harm from hypotension. 

 

1.4.4.2 Interaction between PDE5 inhibitors and alpha-adrenoceptor antagonists 

Alpha-adrenoceptor antagonists such as doxazosin and terazosin, used in both 

hypertension and benign prostatic hypertrophy, can interact with PDE5 inhibitors, 

but the synergistic hypotensive effect appears to be much less important than with 

NO donors. Therefore, the concomitant administration of these drugs is not an 

absolute contraindication, but some restrictions and close medical monitoring are 

advised (Reffelmann & Kloner, 2006). 

 

1.4.5 Effects of PDE5 inhibition on exercise capacity  

1.4.5.1 Studies in primary pulmonary hypertension 

PDE5 is highly expressed in the pulmonary vasculature, and early studies 

investigating the haemodynamic effects of PDE5 inhibition in pulmonary arterial 

hypertension (PAH) showed a decrease in pulmonary arterial pressure (PAP) and 

vascular resistance (PVR), with little change in systemic BP, therefore suggesting 

pulmonary vascular selectivity (Wilkens et al., 2001; Zhao et al., 2001). Michelakis 

and coworkers investigated the effects of a 3-month treatment with sildenafil in 5 

patients with PAH. This was a small, uncontrolled, study, but showed a significant 

increase in the 6-minute walking distance, which increased from 376±3 to 540±27 

meters. These findings were also accompanied by a significant decrease in PAP and 

PVR (Michelakis et al., 2003). These results were confirmed in subsequent studies, 

such as the one by Galie and coworkers, who assessed safety and efficacy of 

sildenafil in 278 patients with PAH. This was a 12-week, placebo-controlled study, 

and showed a dose-dependent increase of the 6-minute walking distance (of 45, 46 

and 80 meters) with sildenafil treatment (Galie et al., 2005). Most recently, the same 
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group demonstrated that tadalafil, at the dose of 40 mg, improves exercise capacity 

and quality of life measures in patients with PAH (Galie et al., 2009). 

 

1.4.5.2 Studies in chronic heart failure 

The effects of PDE5 inhibition in patients with heart failure have been investigated 

by several groups. One of the first studies was performed by Bocchi and coworkers, 

who reported the effects of sildenafil on haemodynamics and exercise capacity in 24 

patients with chronic heart failure (CHF). In this study sildenafil 50mg did not 

change peak exercise systolic or diastolic BP but increased oxygen uptake at peak 

VO2 compared with placebo (17.7±3.4 vs 16.6±3.4 ml/kg/min, p=0.02) (Bocchi et 

al., 2002). Guazzi and coworkers investigated the acute effects of sildenafil on 

exercise performance in 16 patients with CHF, and showed that sildenafil increased 

peak exercise VO2 from 16.2 to 19.4 ml/kg/min, whereas no difference was observed 

after placebo. No change in exercise capacity was reported in the control group after 

sildenafil. The same group also investigated the effects of chronic (6 months) 

treatment with sildenafil in 21 heart failure patients, showing a substantial, sustained 

effect of sildenafil on exercise capacity  (peak VO2 increment from 14.8 to 18.7 

ml/kg/min) at 6 months, with no changes in heart rate (Guazzi et al., 2007). These 

findings are consistent with results obtained by Lewis and coworkers, who assessed 

the effects of sildenafil treatment in 34 patients with systolic heart failure and 

secondary pulmonary hypertension. After 12 weeks of treatment, peak VO2, the 

primary endpoint, increased significantly from 12.2 to 13.9 ml/kg/min (Lewis et al., 

2007a). The same group also reported improved exercise haemodynamics and 

oxygen uptake after the acute administration of sildenafil 50mg in 13 patients with 

heart failure (Lewis et al., 2007a).  

 

1.4.5.3 Studies in healthy subjects 

Few studies have investigated the effects of PDE5 inhibition on exercise 

haemodynamics and oxygen uptake in healthy subjects. Ghofrani and coworkers 

investigated the effects of sildenafil on exercise capacity in healthy trained subjects 

under hypoxia, which determines a pulmonary hypertensive response. Sildenafil 50 

mg reduced PAP at rest and during exercise, and increased maximum workload and 
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cardiac output (Ghofrani et al., 2004). Ghofrani and coworkers did not evaluate the 

effects of sildenafil under normoxia, which were investigated in a study by Hsu and 

coworkers. This study confirmed the findings by Ghofrani and also showed that 

sildenafil does not affect exercise performance under normoxic conditions (Hsu et 

al., 2006). With regard to other PDE5 inhibitors, there is only one published study in 

which the effects of tadalafil on exercise performance were investigated in young 

athletes. In this study, tadalafil did not influence exercise capacity and 

cardiopulmonary responses to maximal exercise under normoxia (Di Luigi et al., 

2008).  

 

1.4.6 Summary of data on the effects of PDE5 inhibition on exercise capacity 

Current available evidence suggests that, in healthy subjects, PDE5 inhibition may 

increase exercise capacity under hypoxic but not normoxic conditions. In patients 

with PAH, data from published studies clearly show the beneficial effects of 

sildenafil on exercise capacity. In 2005, on the basis of this data, sildenafil was 

licensed for the treatment of patients with PAH classified as WHO functional class 

III to improve exercise capacity. Results from studies conducted in patients with 

CHF suggest that sildenafil could also improve exercise capacity in these patients, 

although these findings will need to be confirmed in larger studies. To date, the 

effects of PDE5 inhibition on exercise BP and exercise capacity in systemic arterial 

hypertension have never been investigated. 
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1.5 ENDOTHELIAL DYSFUNCTION 
 
1.5.1 Assessment of endothelial function in humans 

A balance between vasoconstrictor factors, such as endothelin-1 (ET-1) responsible 

for cell growth and pro-inflammatory effects, and vasodilator factors such as NO, 

which generally inhibit cell growth and inflammation, is a key point in the 

maintenance of normal vascular function and structure. When this balance is 

disrupted, the result is endothelial dysfunction, cell growth and inflammation, 

ultimately leading to vascular dysregulation and remodelling. An impaired activity of 

the NO system has been recognised as a major contributory factor underlying 

endothelial dysfunction, an early event in the atherogenic process and an important 

contributor to the clinical expression of atherosclerosis (Bonetti et al., 2003). 

 

An accurate assessment of endothelial function is important in linking 

pathophysiology with clinical conditions. In humans, endothelial function can be 

assessed biochemically by dosing different markers (adhesion molecules, cytokines 

and prostanoids) or functionally (Deanfield et al., 2007). The most common method 

to evaluate the endothelial functional capacity is the use of flow studies to test 

vasomotor reactivity. It is performed by measuring the degree of endothelium-

dependent dilatation with respect to the basal value, using stimuli that increase 

production of endothelium-derived NO. This can be evaluated in vitro (isolated 

arteries) and in vivo, either in response to receptor-dependent agonists or to changes 

in flow in the forearm, coronary or peripheral circulation. In vivo methods can be 

either non-invasive or invasive, and allow the study of blood vessels in their 

physiological environment.  
 
1.5.2 In vivo non-invasive assessment  

As already mentioned, the endothelium responds to shear stress by releasing NO, 

with consequent vasodilatation. One of the most commonly used tests to assess 

endothelial function non-invasively is based on this principle. It involves 

measurement of post-ischaemic endothelium-dependent vasodilatation modulated by 

flow (flow-mediated vasodilatation, FMD), and it is usually performed on 
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conductance arteries, such as the brachial artery. Post-ischaemic dilatation is caused 

by a 5-minute distal ischaemia obtained by cuff occlusion of the radial or brachial 

artery (reactive hyperaemia). The vasodilatation obtained with this technique is 

quantified by measuring the change in the arterial diameter in the post-ischaemic 

period with high-resolution ultrasonography. This endothelium-dependent 

vasodilatation is then compared with the vasodilatation produced by drugs that are 

NO donors, such as sublingual nitroglycerine, and for this reason termed 

‘endothelium-independent’ vasodilatation (Corretti et al., 2002; Deanfield et al., 

2007). This technique, although non-invasive, is technically demanding and requires 

appropriate training. 

 

1.5.3 In vivo invasive assessment  

These methods evaluate the endothelial function of arteries by measuring changes in 

their diameter (ultrasonography) or volume (plethysmography) after infusion in the 

coronary or peripheral circulation of endothelium receptor-dependent agonists 

(acetylcholine, substance P) or increased blood flow. One of the most commonly 

used receptor agonist is acetylcholine (ACh), which relaxes human vessels by 

stimulating the release of NO. Several studies of endothelial vasomotor function 

have used intra-arterial infusion of ACh into a local vascular bed to evoke NO-

dependent vasodilatation, and an impaired blood flow response, compared with the 

response caused by an endothelium-independent NO donor such as sodium 

nitroprusside (SNP), has been taken as evidence of endothelial dysfunction. Studies 

performed by catheterization of coronary arteries and infusion of ACh measured the 

percentage of vasodilatation obtained (either by quantitative angiography or Doppler 

ultrasound), and found that ACh produced paradoxical vasoconstriction when 

infused in coronary arteries with atherosclerotic lesions (Ludmer et al., 1986; Vita et 

al., 1990). This response has been attributed to the direct vasoconstrictor action of 

ACh on smooth muscle cells, a response not present in a functional endothelium, and 

denotes endothelial dysfunction. 
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1.5.3.1 Venous occlusion plethysmography technique 

In the peripheral circulation, the forearm vascular bed has been extensively used to 

evaluate endothelial vasomotor function, because it is the only readily accessible 

vascular bed that allows the study of resistance vessels. These studies involve 

infusion into the brachial artery of different compounds, and the response obtained is 

then measured using the venous occlusion plethysmography technique. This 

approach is considered minimally invasive because is performed in a more accessible 

vascular bed, and the technique can be used to assess the effect of various 

endogenous ligands and drugs on blood vessels in vivo, to examine dose-response 

relationships and, when coupled with administration of endothelium receptor-

dependent agonists, to assess endothelial function. This technique involves 

cannulation of the brachial artery, followed by the infusion of specific agonists or 

antagonists at doses that are systemically ineffective but result in changes in the local 

forearm circulation. The principle is simple: venous outflow, but not arterial inflow, 

is obstructed from the arm, resulting in a proportional change in the volume of the 

forearm, which is detected by strain gauges and translated into changes in forearm 

blood flow (Benjamin et al., 1995; Wilkinson & Webb, 2001).  

 

The main advantage of the venous plethysmography technique is that drugs are 

infused locally, via the brachial artery, and are effective only within the circulation 

of the upper limb. This is because forearm blood flow is approximately 50ml/min, 

compared with a cardiac output of approximately 5000ml/min and, therefore, doses 

100-1000 fold lower than those active systemically can be used. For the same reason, 

the amount of drug reaching the systemic circulation is insignificant and does not 

influence systemic haemodynamics, which allows the study of the direct vascular 

actions of the drugs infused without confounding factors. This technique has been 

extensively used and is considered one of the ‘gold-standards’ in the assessment of 

vascular function in resistance arteries (Joyner et al., 2001; Wilkinson & Webb, 

2001).  



 28 

1.5.4 Venous occlusion plethysmography and exercise 

Exercise is the most common factor to determine a substantial increase in shear 

stress in conduit arteries in vivo, which results in increased arterial blood flow. 

Venous occlusion plethysmography has been widely used to elucidate the 

mechanisms responsible for the blood flow response to exercise in humans (Joyner et 

al., 2001). Several studies using this technique have shown that blood flow to 

exercising muscles can increase 10- to 20-fold and have investigated the role of 

substances such as adenosine, NO and prostaglandins on exercise-induced 

vasodilatation (Kilbom & Wennmalm, 1976; Dyke et al., 1995; Hellsten et al., 

1998).  

 

1.5.5 Endothelial dysfunction and hypertension 

Endothelial dysfunction has been demonstrated in patients with several risk factors 

for CVD, such as hypercholesterolaemia (Chowienczyk et al., 1992), diabetes 

(Calver et al., 1992), and smoking (Celermajer et al., 1993). Current evidence 

suggests that an impaired endothelium-dependent vasomotor function is predictive of 

cardiovascular events, and its value is independent of other, well-established, risk 

factors. Although the forearm vascular bed is not a target for atherosclerosis, a 

number of studies have shown that impaired endothelial function in the forearm 

circulation is an independent predictor for cardiovascular events (Heitzer et al., 

2001; Perticone et al., 2001; Fichtlscherer et al., 2004). In hypertension, a large 

number of studies (Panza et al., 1990; Endemann & Schiffrin, 2004; Brunner et al., 

2005) with few exceptions (Cockcroft et al., 1994), have demonstrated  the presence 

of endothelial dysfunction, as evidenced by reduced NO-mediated vasodilatation at 

the level of both conduit  and resistance arteries (Panza et al., 1990; Park et al., 2001; 

Lind, 2006) and in the coronary circulation (Hasdai & Lerman, 1999). The reduced 

NO-mediated vasodilatation observed in hypertension not only affects the response 

to pharmacological agonists (such as ACh) but may also limit vascular 

responsiveness to shear stress, particularly during exercise. This contributes to the 

increase/maintenance of SVR and underperfusion of exercising muscles and may 

ultimately affect exercise capacity.  In support of this hypothesis there is evidence 
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showing that hypertensive patients have a reduced vasodilator response to handgrip 

exercise (McEniery et al., 2002). 

 

The concept of endothelial dysfunction as part of the causal pathway in the 

pathogenesis of atherosclerosis is increasingly accepted, and strategies to reverse 

impaired endothelial function are currently being investigated, targeting the early, 

preclinical phase of the disease. Table 1.3 presents a summary of the most important 

studies evaluating the predictive value of endothelial dysfunction. 
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Table 1.3. Summary of studies evaluating the predictive value of endothelial 
dysfunction. 
y, years; m, months; d, days. 

Author, Year 
 

Vascular 
Bed 

 No. of 
subjects 

Follow-up Events, N 

     
Suwaidi et al, 2000 Coronary 157 2.4 y 6 

Schachinger et al, 2000 Coronary 147 7.7 y 28 

Halcox et al, 2002 Coronary 308 4 y 35 

Targoski et al, 2003 Coronary 503 1.4 y 25 

Perticone et al, 2001 FBF 225 2.5 y 29 

Heitzer et al, 2001 FBF 281 4.5 y 91 

Fichtlscherer et al, 2004 FBF 198 4 y 31 

Neunteufl et al, 2000 FMD 73 5 y 27 

Gokce et al, 2002 FMD 187 30 d 45 

Modena et al, 2002 FMD 400 5.7 y 47 

Gokce et al, 2003 FMD 199 1.2 y 35 

Katz et al, 2005 FMD 149 2.4 y 17 

Patti et al, 2005 FMD 136 6 m 20 

Jeboah et al, 2007 FMD 2792 5 y 674 



 31 

 
1.5.6 Effects of PDE5 inhibition on endothelial function 

Given the important role played by PDEs in the modulation of vascular smooth 

muscle cells relaxation through the NO-cGMP pathway, PDE5 inhibition may be 

expected to influence this response. In particular, when testing endothelium-

dependent vasomotor function, prolongation of cGMP signalling through PDE5 

inhibition might improve endothelium-dependent vasodilatation.  This hypothesis 

has been tested in a number of studies, both in healthy subjects and patients with 

impaired endothelial function. In healthy subjects, PDE5 inhibition with sildenafil 

does not appear to influence endothelium-dependent vasodilatation (Dishy et al., 

2001; Halcox et al., 2002; Guazzi et al., 2004b). In patients with heart failure, 

sildenafil has been shown to improve endothelial vasomotor function (Katz et al., 

2000; Guazzi et al., 2004b; Hryniewicz et al., 2005), although this response was not 

observed in a study by Robinson and coworkers, performed in patients with coronary 

artery disease (Robinson et al., 2006). Previously, Halcox and coworkers had 

reported an improved coronary response to ACh with sildenafil, which was more 

pronounced in patients with coronary heart disease, while the response to verapamil 

was unaffected. They also studied the effect of sildenafil on brachial FMD and found 

that, while peak response was unchanged, sildenafil prolonged post-reactive 

hyperaemia vasodilatation (Halcox et al., 2002). The evidence is also conflicting in 

healthy smokers, in which two studies have reported an improved endothelial 

vasomotor function (Kimura et al., 2003; Vlachopoulos et al., 2004), but no 

improvement was reported in another study (Dishy et al., 2004). With regard to the 

other two PDE5 inhibitors, tadalafil and vardenafil, less evidence is available. 

Tadalafil has been shown to improve endothelial vasomotor function in patients with 

increased cardiovascular risk (Rosano et al., 2005). Acute administration of 

vardenafil seems also to improve brachial FMD in men with erectile dysfunction 

(Mazo et al., 2006). 
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1.6 ARTERIAL STIFFNESS AND PDE5 INHIBITION 
 
1.6.1 Pulse pressure, arterial distensibility and wave reflection 

In the past decade, a number of epidemiological studies have focused on the 

importance of systolic BP, and pulse pressure in particular, as more adequate 

markers of cardiovascular risk, whereas, in the past, the focus was on diastolic BP 

(Black, 1999). In fact, it was not until 1980 that data from the Framingham Heart 

Study evidenced the association between increased systolic pressure and high 

cardiovascular risk (Kannel et al., 1980). Both diastolic and systolic BP increase 

with age but, while this increase is continuous for systolic BP, diastolic BP tends to 

plateau or even decrease after the middle age (Vokonas et al., 1988). For this reason, 

isolated systolic hypertension (ISH) is the most common subtype of hypertension 

found in middle-age and in the elderly (Chobanian, 2007).  ISH is associated with 

increased pulse pressure and both are associated with a marked increase in 

cardiovascular and total mortality (Alli et al., 1999). Furthermore, in the elderly in 

particular, pulse pressure has been found to be the best predictor of coronary heart 

disease (Franklin et al., 1999).  

 

In hypertension, in addition to increased peripheral resistance, abnormalities of the 

large arteries also play an important role. Pulsatile BP consists of two components, 

mean arterial pressure (MAP), the steady component, and pulse pressure (PP), the 

pulsatile component. MAP is the product of cardiac output multiplied by vascular 

resistance, while PP is the difference between systolic and diastolic pressure and is 

determined by cardiac and vascular factors. The main vascular determinants of PP 

are arterial distensibility and timing and intensity of arterial wave reflection. In the 

vasculature, large arteries act not only as conduits for the blood but also play an 

important role as cushions, buffering the pressure wave generated with each 

ventricular contraction and smoothing the pulsatile blood flow as it travels towards 

the peripheral tissues (Nichols & O'Rourke, 1998). This is possible because of one 

important property of the arterial wall, vascular elasticity, whose study began as 

early as the 19th century (Roy, 1881), but was properly introduced to the scientific 

community in 1905, when Otto Frank published a model of the arterial tree based on 
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the concept of the windkessel (air chamber). This theory considers the vascular 

system as an elastic reservoir: during systole, the elastic components of the large 

arteries store part of the energy and volume which are then released during diastole 

(Frank, 1905).  Despite its simplicity, this model is still very useful to understand the 

mechanical properties of the walls of the large arteries. 

 

The elasticity of the arterial wall is the result of two different components: the elastin 

and collagen fibres, the latter much less distensible than the former. The wall of large 

proximal arteries has a high elastin to collagen ratio, which makes them distensible, 

but the situation changes in the peripheral vasculature, where the content of collagen 

progressively increases, making the arteries stiffer (or less distensible). The elastic 

properties of the arteries are also linked to the distending pressure within the vessel: 

at low pressure only the elastic fibres are stretched and therefore the arterial wall is 

more distensible, whereas at higher pressure the collagen fibres are also recruited and 

the wall is stiffer (Roach & Burton, 1957). With increasing age, the composition of 

the arterial wall of large arteries changes due to the progressive decrease in elastin 

content, and the arteries become stiffer (Learoyd & Taylor, 1966). The other 

important vascular determinant of PP is arterial wave reflection. The contraction of 

the left ventricle generates a pressure wave that travels along the arterial tree at a 

given velocity (pulse wave velocity, PWV). This wave is reflected at points of 

discontinuity, mainly represented by the primary and secondary branches of the aorta 

and by high-resistance arterioles, and travels back towards the aorta, generating a 

secondary wave that adds up to the incident wave (Figure 1.3). The timing of 

reflection is determined by the distance to the reflection site and is influenced by 

PWV and aortic length. Stiffness of the arteries and reflection sites are also major 

determinants of the final shape of this wave, which shows a characteristic pattern of 

amplification as it travels from the heart to the periphery, leading to increased 

systolic pressure and pulse pressure in the peripheral arteries (Nichols & O'Rourke, 

1998). However, this amplification decreases with age, a phenomenon mainly related 

to stiffening of the large arteries. In fact, in adults younger than 50 years, in whom 

arteries are distensible and the PWV is low, the reflected wave is observed in 

diastole and results in increased diastolic pressure and coronary perfusion, whereas 
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systolic and pulse pressure are not affected (Kroeker & Wood, 1955). In individuals 

older than 50 years of age, stiffer arteries and increased PWV result in early return of 

the reflected wave, which is observed in systole, determining a rapid increase in 

systolic aortic pressure and loss of pulse pressure amplification. This affects central 

haemodynamics, leading to increased left ventricular load and reduced coronary 

perfusion pressure during diastole (O'Rourke, 1995).  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 
 
 
Figure 1.3. Pressure waveforms at the aorta and brachial artery in young and old 
subjects. 
The pressure waveforms are composed of a forward travelling wave (incident wave, red 
dotted line) generated with each heartbeat, and a reflected wave (green dotted line), both of 
which determine the shape of the final measured wave (thick black line) in the aorta and in 
peripheral arteries such as the brachial artery. The incident wave is responsible for the initial 
systolic pressure wave P1, whereas the reflected wave generates the reflected pressure wave 
P2. In young subjects (top panel) with compliant arteries and low PWV, the reflection of the 
systolic wave takes place in diastole. In old subjects (lower panel) or subjects with 
hypertension, with stiff arteries and higher PWV, reflection occurs earlier and adds to the 
incident wave in systole, thereby increasing central systolic pressure and reducing diastolic 
pressure. 
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1.6.2 Arterial stiffness: methods of measurement 

Vascular stiffening can affect cardiovascular function and, therefore, have clinical 

implications. For these reasons, a number of different methodologies have been 

introduced in an attempt to measure arterial stiffness and to assess its impact on 

cardiovascular prognosis. Evaluation of large artery stiffness can be done invasively 

with ultrasound or catheter tip manometers (Stefanadis et al., 1995), but non-invasive 

methods have been developed, and are more suitable for human studies. Of the three 

major non-invasive methodologies currently available, i.e. estimation of distending 

pressure and artery diameter change, measurement of PWV and analysis of the 

arterial pulse pressure waveform, the last two are now widely used in clinical 

research (Oliver & Webb, 2003). 

 

1.6.2.1 Measurement of pulse wave velocity 

It is well established that PWV is related to the elastic properties of the arterial wall 

and increases with stiffness of the arteries. It can be defined by the Moens-Korteweg 

equation: 

PWV2 = E⋅h/2ρ⋅R 

 

where h is the arterial wall thickness, R is the internal radius, ρ is the blood viscosity 

and E is the Young elastic modulus of the wall, which reflects the arterial wall 

properties (Nichols & O'Rourke, 1998). PWV can also be expressed by the 

Bramwell-Hill equation: 

 

PWV2 = ΔP⋅V/ΔV⋅ρ  

 

where ΔP and ΔV represent changes in pressure and volume, V is the volume at 

baseline and ρ is the blood viscosity (Bramwell & Hill, 1922). In practice, PWV is 

measured as the distance travelled by the pulse between two recording sites divided 

by the time needed by the wave to travel from one site to the other (length/time), and 

determined by the delay between corresponding points, such as the foot of the 2 

waves.  The waves recorded between the two sites can be collected simultaneously or 

sequentially, using high-fidelity manometers. Commonly, estimation of the distance 
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covered by the incident wave is performed by superficial measurements between the 

carotid and the femoral artery, and measurement of PWV obtained between these 

two sites (CF-PWV) is now considered the “gold-standard” (Laurent et al., 2006). 

Validations studies have shown that automatic measurement of PWV are accurate 

and reproducible (Asmar et al., 1995).  

 

Major determinants of large artery stiffness are age, systolic BP (Kelly et al., 1989a; 

Mitchell et al., 2004) and sex (London et al., 1995), and values of PWV in healthy 

adults generally range from 5m/s to 7m/s (Blacher & Safar, 2005; Kullo & Malik, 

2007). Increased PWV is found in association with a number of cardiovascular risk 

factors (Lehmann et al., 1998), including hypercholesterolaemia (Lehmann et al., 

1992b) and diabetes (Lehmann et al., 1992a), and PWV is now widely recognised as 

an important predictor of cardiovascular outcome. One of the landmark studies 

showing the predictive value of PWV was performed by Blacher and coworkers. In a 

cohort of patients with end-stage renal failure (ESRF), they showed that individuals 

with PWV values less than 9.4m/s were still alive at the end of the follow-up, but not 

those with PWV values greater than 12m/s (Blacher et al., 1999). These findings 

were then confirmed in three population-based studies, the Baltimore study (Sutton-

Tyrrell et al., 2005), the Rotterdam study (Mattace-Raso et al., 2006) and the 

Copenhagen study (Willum-Hansen et al., 2006), demonstrating that PWV is an 

independent predictor of cardiovascular outcome in normal populations. 

Furthermore, the Copenhagen study showed that PWV, after adjusting for other 

factors, is a better predictor of outcome than 24-hour ambulatory BP monitoring. 

 

In hypertension, PWV has been shown to be an independent predictor of all-cause 

and cardiovascular mortality (Laurent et al., 2001), and to predict primary coronary 

events (Boutouyrie et al., 2002) and stroke (Laurent et al., 2003). Increased PWV 

has also been found associated with manifestations of cerebral small-vessel disease 

in hypertensive patients (Henskens et al., 2008). Measurement of PWV has been 

proposed as part of the cardiovascular risk assessment and is present in the 2007 

European Society of Hypertension guidelines (Mancia et al., 2007).  
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1.6.2.2 Measurement of pulse wave reflection 

As previously mentioned, when arteries stiffen, the return of the reflected wave is 

observed in systole, not in diastole, reaching the heart when the aortic valve is still 

open and thus resulting in a secondary rise in central BP. This increase is expressed 

as the augmentation index (AIx, %) or the augmentation pressure (AP, mmHg). The 

AIx is commonly used as a measure of wave reflection in arterial stiffness, and is 

calculated as the ratio between AP and PP (Figure 1.4). It is influenced by both the 

amplitude and the timing of wave reflection, increases linearly with mean arterial 

pressure (Wilkinson et al., 2001), and is inversely related to heart rate (Wilkinson et 

al., 2000; Gatzka et al., 2001). Central BP and AIx are important because they 

determine cardiac workload (Murgo et al., 1980; Nichols et al., 1985), and AIx 

determined invasively has been shown to be predictive of coronary disease (Hayashi 

et al., 2002). Invasive measurements are not applicable in routine practice, therefore 

methods to measure central haemodynamics non-invasively have been developed. 

Estimation of the AIx can be obtained at the carotid artery, as a surrogate of the 

aortic AIx (Chen et al., 1996), or at the radial artery, using applanation tonometry to 

obtain a radial waveform and radial AIx (RAIx) (Kelly et al., 1989b). From this, a 

generalised transfer function generates a central aortic waveform, central BP and 

central AIx (CAIx) (Chen et al., 1997). This technique is known as pulse wave 

analysis (PWA) and the principle of the transfer function is very simple. The 

waveform recorded at the radial artery is broken down into harmonics and then, 

using Fourier analysis, it is reconstituted to provide the central waveform (O'Rourke 

& Gallagher, 1996; Pauca et al., 2001). Pauca and coworkers validated the use of the 

transfer function in a prospective study, showing the close agreement between 

measured and estimated central pressure.  
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Figure 1.4. Schematic representation of pulse pressure amplification 
The initial systolic pressure wave (P1) generated by the incident wave is responsible for peak 
systolic BP. In stiff arteries, the reflected pressure waves (P2), occurring in systole, augments 
systolic BP, (augmentation pressure, AP), and the magnitude of this increase can be 
quantified by the augmentation index (AIx), which represents the ratio between the AP and 
the pulse pressure (PP). 
 
 

The validity and utility of the transfer function have been questioned, and studies 

have reported that its use underestimates aortic systolic pressure (Davies et al., 2003) 

and that the CAIx derived with this approach can differ substantially from the one 

obtained directly with invasive measurements (Hope et al., 2003). Others have also 

suggested that information about the central pressure can be obtained directly from 

the radial pressure, with no need for a transfer function (Millasseau et al., 2003). 

Studies investigating the relationship between AIx and cardiovascular risk have 

collected data with and without the transfer function. In a cohort of patients with 

ESRF, London and coworkers showed that increased AIx at the carotid artery, 

obtained without the transfer function, was an independent predictor of all-cause and 

cardiovascular mortality (London et al., 2001). In a subsequent, cross-sectional, 

study, Nurnberger and coworkers measured AIx, using the transfer function, in a 

cohort of 219 subjects with and without cardiovascular disease, and showed that 

increased AIx is a marker of cardiovascular risk (Nurnberger et al., 2002). In another 

cross-sectional study, Weber and coworkers found the AIx to be a strong, 

independent predictor of premature coronary disease (Weber et al., 2004). These 
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 Incident wave 
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findings suggest that CAIx determined non-invasively, with or without the use of a 

transfer function, offers additional, prognostic information on cardiovascular risk.  

 
The SphygmoCor® system (AtCor Medical Pty Ltd, Sydney, Australia) is a 

commercially available device for PWA and incorporates a generalised transfer 

function. Studies presented in this thesis used the SphygmoCor to derive central 

haemodynamics and CAIx. 

 

1.6.3 Arterial stiffness and cardiovascular drugs 

The independent predictive value of arterial stiffness for cardiovascular morbidity as 

well as cardiovascular and all-cause mortality has prompted investigation on the 

effects of different drug regimens on this parameter, but it still has to be 

demonstrated that reduction of arterial stiffness translates into reduction of 

cardiovascular risk. Several studies have evaluated the effect of antihypertensive 

treatment on PWV, but it is important to consider that any BP decrease is likely to 

result in decreased PWV, and that the length of the treatment is also likely to affect 

PWV in different ways. Available evidence suggests that ACEIs reduce PWV 

(Asmar et al., 1988; Lacourciere et al., 2004) and AIx (Jiang et al., 2007), and seem 

to be more effective than CCBs or ARBs, despite equal BP reduction (Rajzer et al., 

2003). In turn, CCBs seem to be more effective than thiazide diuretics.  In a cross-

over study comparing the CCB felodipine with hydrochlorothiazide, the former 

significantly reduced PWV, while the latter did not have any detectable effect 

(Asmar et al., 1993). The effect of beta-blockers appears to be variable, depending 

on the agent used. Overall, they seem to reduce PWV but the effects are less 

consistent with regard to arterial wave reflection (Asmar et al., 2001; Dhakam et al., 

2008). In this respect, results from two outcome trials have been recently published, 

the CAFE study (a substudy of ASCOT) and a substudy of the ANBP2. The ASCOT 

study compared two very different BP lowering regimens: one based on atenolol ± 

thiazide, the other based on amlodipine ± perindopril. The latter regimen was more 

effective at reducing stroke and all-cause mortality than the atenolol-based regimen, 

despite equal reduction of brachial BP (Dahlof et al., 2005). The CAFE study 

analysed the effects of the two different drug regimens on central BP, and showed 
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that the amlodipine-based regimen was more effective than the atenolol-based 

regimen at lowering central BP (Williams et al., 2006). However, these results 

conflict with those reported in a substudy of the ANBP2. This trial showed a better 

prognosis in hypertensive individuals treated with an ACEI than with a diuretic, 

despite same BP reduction at the brachial artery (Wing et al., 2003), but no 

difference was found in central BP between the two regimens (Dart et al., 2007). The 

techniques used to evaluate central haemodynamics in the two studies were different; 

in addition, patients in the ANBP2 were older (mean age 72 yrs vs 62 yrs in the 

CAFE study), and vascular aging is a major determinant of wave reflection. 

Furthermore, heart rate response to treatment was different in the CAFE study, 

mainly because of atenolol, which slows heart rate and results in earlier wave 

reflection. Clearly, more long-term studies are needed to evaluate the impact of 

arterial stiffness reduction on cardiovascular outcomes.  

 

1.6.4 Arterial stiffness and PDE5 inhibition 

The effects of PDE5 inhibition on arterial stiffness have been examined following 

acute and chronic administration. In patients with coronary heart disease sildenafil 

acutely reduced PWV (Vlachopoulos et al., 2003), and the same effect was observed 

in patients with heart failure (Hirata et al., 2005). In the former study, sildenafil 

reduced PWV by 0.65 m/s, CAIx by 4.4% and central BP by 6.7 mmHg. In the study 

by Hirata and coworkers, PWV was reduced by 0.8 m/s and AIx by 3.6%. In both 

studies these effects appeared to be independent of BP reductions. In a small study 

performed in subjects with erectile dysfunction, acute administration of sildenafil 

reduced PWV, but this effect was likely to be related to concomitant BP reduction 

(Shigemura et al., 2006). Acute and chronic effects of sildenafil on arterial stiffness 

were also investigated in a study by Oliver and coworkers. Sildenafil administration 

acutely reduced arterial wave reflection and central BP, an effect that might be 

related to the reduction in peripheral vascular resistance. A similar, smaller effect, 

was observed after chronic administration (16 days), but this was not different from 

placebo. Neither acute nor chronic effects of sildenafil on PWV and FMD were 

reported in the study, although there was a trend toward a progressive reduction 

(Oliver et al., 2006). 
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1.7 ENDOTHELIUM AND ARTERIAL STIFFNESS  
Many studies have established a role for endothelial dysfunction in the development 

of the structural and functional alterations of the hypertensive vascular wall. In 

particular, available evidence suggests that the endothelium, in part through the 

release of NO, is an important regulator of arterial stiffness (Kinlay et al., 2001; 

Wilkinson et al., 2002a; Wilkinson et al., 2002c; Schmitt et al., 2005). More 

recently, endothelial function has been shown to be inversely related to PWV and 

AIx (McEniery et al., 2006). In addition, conditions associated with endothelial 

dysfunction are also associated with increased arterial stiffness (Cruickshank et al., 

2002; Wilkinson et al., 2002b; Mahmud & Feely, 2003), including hypertension 

(Ceravolo et al., 2003), suggesting that impairment of the NO-cGMP system may be 

a common denominator. In particular, in hypertension, impaired endothelial 

vasomotor function may be a key element linking high exercise systolic BP and low 

exercise capacity with the high risk of future cardiovascular events exhibited by 

hypertensive patients.   
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1.8 RESEARCH HYPOTHESES AND AIMS 
The favourable effects shown by PDE5 inhibition in the cardiovascular field justify a 

further and more complete exploration of the therapeutic potential related to 

enhanced cGMP signalling. In particular, in hypertension, a therapeutic strategy 

directly aimed at improving exercise capacity might offer additional benefits in terms 

of cardiovascular outcomes and contribute to preventing physical decline, resulting 

in improved quality of life. If impaired vascular function limits exercise capacity, 

then PDE5 inhibition, in view of its effects on the NO-cGMP pathway in the 

vasculature, might influence vascular responsiveness to exercise. Indeed, the 

potential improvement in vasodilator response to shear stress through enhanced 

cGMP signalling may set the stage for improved exercise capacity in hypertensive 

patients.  

 

In this thesis, the following hypotheses will be addressed: 

 

1. The reduced forearm blood flow response to exercise observed in 

hypertensive patients will be reversed by PDE5 inhibition with sildenafil but 

not by a control vasodilator.  

2. The reduced exercise capacity and exaggerated exercise systolic BP response 

observed in hypertensive patients will be reversed by PDE5 inhibition with 

sildenafil but not by a control vasodilator. 

3. Parameters of arterial stiffness in hypertensive patients will be improved by 

PDE5 inhibition with sildenafil but not by a control vasodilator. 

 

These hypotheses will be investigated in two clinical studies performed in 

hypertensive patients with local limb and whole body exercise, aiming at the 

evaluation of the effects of PDE5 inhibition on vascular function and exercise 

capacity in arterial hypertension. 
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2.1 GENERAL REQUIREMENTS 
 
2.1.1 Subjects and study environment 

Participants were asked to abstain from alcohol for at least 24 hours and from tea, 

coffee or caffeine-containing beverages and food for 12 hours before study visits. 

Studies were conducted in rooms kept at temperature between 22ºC and 24ºC. 

 

2.1.1.1 Identification 

Suitable hypertensive patients were identified from the Western General Hospital 

(WGH) Cardiovascular Risk Clinic database, and healthy volunteers were identified 

from the existing Clinical Research Centre (CRC) community database.   

  

2.1.1.1.1 Inclusion criteria  

- Hypertensive subjects 

• Male 

• Aged between 20 and 70 years 

• At least 3 separate office measurements of systolic BP ≥160mmHg 

(maximum 180mmHg) and/or diastolic BP ≥90mmHg 

• Not on treatment 

 

- Normotensive subjects 

• Male 

• Healthy 

• Aged between 20 and 70 years  

• Systolic BP ≤140mmHg and diastolic BP ≤80mmHg 

 

2.1.1.1.2 Exclusion criteria (all subjects) 

• Female 

• History of coronary artery, cerebrovascular or peripheral vascular disease 

• Total cholesterol >6.5 mmol/L 

• Body mass index (BMI) ≥30 kg/m2 

• Current alcohol abuse 
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• Diabetes mellitus 

• Asthma 

• Smoking 

• Taking any vasoactive or endothelial function modifying drugs which cannot 

be withdrawn for the purpose of the study 

• Previous serious drug allergy 

• ECG evidence of clinically significant arrhythmia, cardiac ischaemia or left 

ventricular hypertrophy (LVH) 

• Evidence of secondary hypertension 

• Clinically significant abnormality on screening blood test 

• Contraindication to strenuous exercise 

• Presence of other clinically relevant conditions. 

 

Hypertensive subjects and healthy normotensive controls were matched for age and 

cholesterol values. 

 

2.1.2 Research governance and ethics 

All studies were approved by the Lothian Research Ethics Committee and performed 

in accordance with the Declaration of Helsinki of the World Medical Association. 

Each participant provided signed evidence of informed consent before entry to the 

study. 

 

2.2 METHODOLOGIES 
 
2.2.1 Blood pressure and heart rate 

Resting systolic and diastolic BP and heart rate (HR) were recorded, with an 

appropriate sized cuff, using a validated oscillometric sphygmomanometer, the 

Omron HEM-705CP (Omron Healthcare Ltd, Milton Keynes, UK) (O'Brien et al., 

1996).  

 

Exercise BP was measured using the Tango+ exercise BP monitor (SunTech Medical 

Instruments, NC, USA), which has been previously validated and provides reliable 
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automatic BP measurements during exercise (Cameron et al., 2004; Myers et al., 

2009). This device is synchronized with an ECG and integrates the signals from the 

blood pressure cuff, which contains a microphone able to distinguish the Korotkoff 

sounds from artefact noise, with the subject’s ECG R-wave. Mean arterial pressure 

values were obtained during PWA analysis recordings using the SphygmoCor 

apparatus (AtCor Medical Pty Ltd, West Ride, Australia). 

 

2.2.2 PWA and CF-PWV 

2.2.2.1 PWA 

Peripheral pressure waveforms were obtained at the radial artery of the dominant arm 

using a pencil-shaped probe connected with the SphygmoCor apparatus (Figure 2.1). 

The probe incorporates a high fidelity micromanometer (SPC-301; Millar 

Instruments, Houston, Texas, US), based on the principle of applanation tonometry, 

and interfaced with a laptop computer running the SpygmoCor software version 7.1. 

The SphygmoCor apparatus allows continuous on-line recordings of the radial artery 

waveform, and the last 10 seconds of each recording were averaged and used to 

calculate the radial AIx (RAIx) and to generate the corresponding central (ascending 

aorta) waveforms. The RAIx is calculated as: 

€ 

RAIx =100 ×
second systolic peak − diastolic BP( )

first systolic peak − diastolic BP( )
 

Once the central waveform is generated, central parameters such as central systolic 

and diastolic BP, central PP, CAIx and CAIx@75 (CAIx adjusted to a standard HR 

of 75bpm) are also calculated. 

 

 

 

 

 

 
Figure 2.1. PWA measurement at the radial artery. 
The radial artery waveform is recorded at the wrist (left panel) and, with the use of a 
validated transfer function, the corresponding central aortic waveform is generated (right 
panel). 
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2.2.2.2 CF-PWV 

The SpygmoCor was also used to measure CF-PWV using the foot-to-foot method 

(the foot of the wave is identified by the software as the beginning of the sharp 

systolic upstroke). Path length was estimated from the distance between the sternal 

notch and the carotid and femoral artery, measured over the skin surface with a tape. 

During continuous ECG monitoring, pressure waveforms were recorded sequentially 

at the carotid and femoral artery, and the time delay between the feet of the pulse 

waves recorded at the two different sites is measured by subtraction of the two time 

intervals ΔT= T2 - T1. T1 is the time interval measured between the ECG signal (R 

wave) and the foot of the proximal (carotid) wave, and T2 is the time interval 

measured between the ECG signal and the foot of the distal (femoral) wave. The 

distance travelled by the pulse wave is the CF-PWV and is calculated as: 

€ 

CF - PWV =
Distance

Transit time
 

 and expressed as meters per second (m/s). 

 

2.2.3 Forearm blood flow studies 

These studies were performed combining the technique of venous occlusion 

plethysmography with intra-arterial (brachial) administration of vasoactive drugs 

(sildenafil and verapamil). Handgrip exercise was used to evoke forearm active 

hyperaemia and arterial vasodilatation in the forearm was measured as change in 

forearm blood flow (FBF).  

 

2.2.3.1 Venous occlusion plethysmography 

Upon arrival, subjects rested supine in a quiet, temperature-controlled room (22-

24ºC), with both arms elevated above the heart level by resting the elbows on foam 

pads and supporting the hands with pillows. Blood pressure cuffs were placed around 

the upper arms and the wrists. The upper cuffs were intermittently inflated to 

40mmHg for 10 seconds in every 15 seconds to temporarily prevent forearm venous 

outflow and obtain plethysmographic recordings. The hand was excluded from the 

blood flow determination through inflation of the wrist cuff above arterial pressure 

(220mmHg). This is because hand blood flow is predominantly through skin blood 
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vessels rather than skeletal muscle and has different control mechanisms than FBF. 

Rapid cuff inflation was obtained using an air source coupled with two cuff inflators 

(Hokanson E20 Inc., Bellevue, USA). An additional blood pressure cuff was placed 

over the noninfused arm to obtain BP recordings at the end of each set of 

measurements. After selecting the appropriate size, strain gauges (Hokanson Inc., 

Bellevue, USA) were securely placed around the widest part of the forearm and 

calibrated to the chart recorder software program (PowerLab Chart 5, version 5.1, 

ADInstruments Ltd, Chalgrove, UK). Blood flow was measured simultaneously in 

both arms by use of a dual-channel strain gauge plethysmograph (EC4 

plethysmograph, Hokanson Inc., Bellevue, USA). Briefly, rapid proximal cuff 

inflation above venous pressure, but below arterial diastolic pressure, stops venous 

outflow abruptly, causing an increase in limb volume due to arterial inflow. As the 

volume of the limb changes, and thus arm circumference, the strain-gauge is 

“stretched” and the electrical resistance increases: this information is recorded by the 

plethysmograph and then processed and displayed as a waveform (Figure 2.2).  FBF 

recordings were made every 10 minutes over a 3-minute period, and the mean of the 

final 5 measurements was used for analysis. Plethysmographic data were first 

extracted from Chart data files and then FBF values were calculated using a template 

spreadsheet (Excel 5.0; Microsoft). Blood flow responses to exercise and 

vasodilators were expressed as changes in absolute blood flow per unit volume of 

forearm  (ml/min/100ml of forearm volume) in the infused arm. FBF measurements 

obtained immediately before handgrip exercise and drug infusion were used as 

baseline. 
 

 
Figure 2.2. Schematic representation of changes in limb circumference following 
venous occlusion. 
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2.2.3.2 Intra-arterial drug administration 

The brachial artery of the non-dominant arm was cannulated under local anaesthesia 

(1% lidocaine, Hameln pharmaceuticals gmbh, Hameln, Germany) with a 27-SWG 

needle (Coopers Needle Works, Birmingham, UK) connected to a 16G epidural 

catheter for drug infusion (Portex Ltd, Hythe, Kent, UK) (Figure 2.3). Patency was 

maintained by normal saline (Baxter Healthcare Ltd. Thetford, UK), and the infusion 

rate kept constant at 1ml/min by means of constant rate infusion pumps (Asena, 

Alaris Medical UK Ltd, Basingstoke, UK). The intra-arterial needle was well 

tolerated and none of the subjects reported bleeding or haematoma formation 

following the cannulation. The noninfused arm was used as a control during the 

studies, to exclude a systemic drug effect and to take into account minor changes in 

blood flow occurring as result of stress or changes in temperature that affect both 

arms.  

 

 
 

Figure 2.3. Arterial needle and cannula for drug infusion 
 

2.2.3.3 Drugs 

All intra-arterial drugs were dissolved in 0.9% physiological saline on the day of the 

study, and different concentrations were prepared by serial dilution and infused at a 

constant rate of 1 ml/min. Drug infusion was always preceded by a 30-minute saline 

infusion, to allow stabilisation of FBF after the insertion of the intra-arterial needle 

and baseline FBF recordings. Sildenafil citrate (Pfizer Ltd. Sandwich, Kent, UK) was 

infused at 50 µg/min; the cGMP-independent control vasodilator verapamil (Abbott 
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Laboratories Ltd, Queenborough, Kent, UK) was infused at 5 µg/min; normal saline 

was infused during control, non-vasodilating studies. Drugs were infused for 6 

minutes at 1ml/min; the doses of sildenafil and verapamil used in the study were 

selected on the basis of previously published literature (Robinson et al., 1982; 

Millgard & Lind, 1998; Jackson et al., 1999) and confirmed in preliminary dose-

ranging studies performed in healthy subjects (Chapter 3). 

 

2.3 EXERCISE TESTS 
 
2.3.1 Handgrip exercise 

The handgrip task was performed with a calibrated handgrip dynamometer (MLT 

003 Hand Dynamometer ADInstruments Pty Ltd), following a previously validated 

method to evoke active forearm hyperaemia (Longhurst et al., 1974). Subjects 

rhythmically squeezed the device using the non-dominant arm in 15-second cycles, 

consisting of 5 seconds of steady handgrip pressure alternating with 10 seconds of 

rest, during which FBF measurements were taken. 

 
2.3.2 Dundee Step test 

The Dundee step test is a single stage, light, exercise test, consisting of each subject 

stepping up and down (step height 17.5 cm) for 3 minutes, at a stepping rate of 92 

per minute, set using a metronome. Exercise BP was measured with the Tango+ 

immediately before and after 3 minutes of step testing. This test is simple and 

reproducible, and its low exercise intensity is similar to the activities of daily living 

(Lim et al., 1998).  

 

2.3.3 Cardiopulmonary exercise testing  

These studies were performed at the Wellcome Trust Clinical Research Facility 

(WTCRF) at the WGH. During the preliminary screening visit all subjects had the 

opportunity to familarise themselves with the exercise equipment and performed a 

practice run. Incremental cardiopulmonary exercise testing (CPET) with assessment 

of respiratory gas exchange was performed using an upright bicycle ergometer 

(Lode, Rehcor, Groningen, The Netherlands). Continuous 12-lead ECG monitoring 
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(CardioDirect 12, Reynolds Medical Ltd, Hertford, UK) was performed during each 

test for assessment of heart rate, arrhythmias and myocardial ischaemia. BP was 

measured with the Tango+ immediately before exercise and during the last 30 

seconds of each exercise stage. After 2 minutes of unloaded pedalling, workload was 

increased by 20 watts per minute (added at the start of each minute) to maximal 

exercise tolerance. Subjects were asked to look at the rpm meter and to maintain a 

constant pedalling rate of 60rpm throughout the exercise test. In the absence of chest 

pain, ECG abnormalities, arrhythmias or critical BP changes, all tests were continued 

until exhaustion. 
 

Indication for exercise termination 

• Ischaemic ECG changes 

• Chest pain 

• Arrhythmias 

• Fall in systolic BP > 20mmHg 

• Systolic BP > 250mmHg and/or diastolic BP > 120mmHg 

• Dizziness or faintness 

• Unable to maintain a cycling rate above 40rpm 

 

2.3.3.1 Gas exchange variables 

Respiratory gas exchange variables were measured continuously during the unloaded 

cycling period and the exercise test using the Pulmolab EX670 mass spectrometer 

gas analyser (Morgan Medical Ltd, Kent, UK). This breath-by-breath system 

measures airflow continuously and calculates oxygen uptake (VO2) and carbon 

dioxide output (VCO2) during each breath. Subjects wore a nose clip and breathed 

through a low resistance mouthpiece assembly that monitors the composition and 

flow rate of the breath (Figure 2.4 and Figure 2.5). 



 52 

  
Figure 2.4. Gas analyser and mouthpiece assembly. 
The respiratory flow rate is measured with a turbine device connected to the end of the 
mouthpiece (left), and a capillary tube transports the sample from the mouthpiece to the 
analyser (right). 
 

The sample is drawn from the mouth into the analyser and subjected to ionisation by 

an electron beam. The ions formed, representing the gases, are projected into the 

influence of a magnetic field and form currents with different directions, which are 

then collected by detectors and measured. The system was calibrated prior to each 

test for barometric pressure, temperature and gas concentration using gases of known 

concentration (O2 14.99%, CO2 5%, Linde Gas UK Ltd, Aberdeen, Scotland). A 3L 

calibration syringe was used for calibration of flow rate. Calibration stability was 

monitored over the duration of the studies. VO2 and VCO2 acquired on a breath-by-

breath basis were interpolated second-by-second and then averaged over 30-second 

intervals to reduce the variability of breath-by-breath measurements (Sue et al., 

1980). Peak VO2 was defined as the highest 30-second average of oxygen uptake in 

the last minute of exercise. The anaerobic threshold (AT) during incremental 

exercise was determined by the V-slope method. When the slopes of VCO2 and VO2 

are plotted together this method allows the determination of the break-point, i.e. the 

point at which VCO2 increases faster than VO2 and departs from a line with a slope 

equal to 1.00 (Beaver et al., 1986). 
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Figure 2.5. Cardiopulmonary exercise testing 

 

Repeatability of exercise data was confirmed in 6 healthy subjects in whom the study 

protocol was repeated 14 days apart. These data are presented under “Methodology 

development” (Chapter 3). 

 

2.4 SCREENING BLOOD SAMPLES 
Blood samples were taken from subjects for full blood count, serum urea, creatinine, 

sodium, potassium, lipid profile and plasma glucose. Samples were analysed by the 

WGH Haematology and Biochemistry laboratories.  

 

2.5 ASSESSMENT OF LEFT VENTRICULAR HYPERTROPHY 
To evaluate the presence of left ventricular hypertrophy (LVH) during the 

preliminary visit, the Cornell voltage criteria were used (LVH present if the sum of 

the R-wave in lead aVL and the S wave in lead V3 was greater than 25mm) (Casale 

et al., 1987).  

 

2.6 DRUGS 
Sildenafil citrate 50 mg and matched placebo tablets were obtained from Pfizer Ltd. 

Sandwich, Kent, UK, and administered three times daily. Hydralazine 25 mg 

(Alpharma, Barnstaple, Devon, UK) was administered as a control, cGMP-

independent vasodilator (Mulvihill-Wilson et al., 1985) and obtained through the 
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WGH pharmacy. Hydralazine has been previously used in studies involving healthy 

subjects and hypertensive patients (Mulvihill-Wilson et al., 1985; Tomlinson et al., 

1988) and, after oral administration, peak plasma concentration is reached within 30 

to 90 minutes (median 60 minutes) (Shepherd et al., 1980), showing a time to peak 

effect similar to sildenafil (Muirhead et al., 2002). On the basis of previously 

published literature, the doses of hydralazine and sildenafil selected for these studies 

were expected to result in similar BP reductions (Fagan et al., 1984; Oliver et al., 

2006).  

 

2.7 DATA ANALYSIS 
Methods used to analyse data differed between studies and are described in the 

relevant chapters. Microsoft Excel 2004 for Macintosh and GraphPad Prism 4 for 

Macintosh were used for statistical analyses. A P value of <0.05 was considered 

significant.  

 

Test-retest repeatability of two measurements was assessed according to the method 

described by Bland and Altman (Bland & Altman, 1986). Agreement between 

variables obtained during the two tests was examined by plotting the differences 

between the individual measurements against their mean value (Bland-Altman plots); 

bias was calculated as the mean difference between measurements during the two 

tests. The limits of agreement for variables between the first and second test were 

calculated as bias ± 1.96 SDs, and approximately 95% of the differences are 

expected to fall within this range. Standard errors of the limits were calculated as 

€ 

3SD2 /n , and 95% confidence intervals (CIs) for the limits of agreement were 

calculated as ±1.96 standard errors. 
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3.1 CHAPTER STRUCTURE 
Two methodology development studies were performed and are presented in this 

chapter. The first consists of a series of venous occlusion plethysmography studies 

aimed at the investigation of the time course effect of intrabrachial sildenafil and 

selection of an appropriate control vasodilator; the repeatability of the forearm 

vasodilator response to local exercise was also investigated. The second study was 

designed to investigate the repeatability of peak VO2 at maximal exercise and of 

arterial stiffness parameters before and after maximal exercise testing. 
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3.2 TIME COURSE EFFECTS OF INTRA-ARTERIAL SILDENAFIL ON 

FOREARM BLOOD FLOW AND COMPARISON WITH A CONTROL 

VASODILATOR 
 
3.2.1 Background 

There is a paucity of published data on the effects of intra-arterial sildenafil on 

forearm blood flow (FBF). In the only available study, Jackson and coworkers 

investigated the effects of increasing doses of intrabrachial sildenafil on FBF (from 

3µg/min up to 300µg/min), and reported a dose-dependent vasodilator effect on 

resistance vessels. The highest dose used in this study (300µg/min) resulted in local 

FBF concentrations of approximately 10µg/ml, which is >10 times the plasma 

concentration present after the highest recommended oral dose (100mg) (Jackson et 

al., 1999). Because PDE1 and PDE5 are both present in vascular smooth muscle, and 

sildenafil is only moderately selective for PDE5 over PDE1 (>80 fold) (Wallis et al., 

1999), it is possible that concentrations this high might result in loss of selectivity for 

PDE5. For this reason, it was decided to investigate the vasodilator effects of a lower 

dose of sildenafil (50 µg/min), to avoid loss of selectivity for PDE5, and to evaluate 

the duration of such effect on FBF. It was also important to identify an appropriate 

vasodilator that could be used as control for sildenafil in subsequent 

plethysmography studies.  As discussed in the introduction, the vasodilator actions of 

sildenafil are mediated by the NO-cGMP pathway (see section 1.1.3), and it was 

therefore essential to choose a control dilator whose effect was cGMP-independent. 

Verapamil hydrochloride is a calcium ion influx inhibitor (slow-channel blocker) that 

exerts its pharmacologic effects by modulating the influx of ionic calcium across the 

cell membrane of arterial smooth muscle and myocardial contractile cells. In 

particular, verapamil targets the L-type calcium channel, which is the dominant type 

in cardiac and smooth muscle and is known to contain several drug receptors. 

Verapamil acts from the inner side of the membrane and binding of the drug reduces 

the frequency of opening in response to depolarization. The result is a marked 

decrease in transmembrane calcium current, resulting in long-lasting relaxation of 

smooth muscle cells (Antman et al., 1980). Previously published data indicate that 

the vasodilator effect of verapamil is cGMP-independent (Millgard & Lind, 1998) 
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and it was decided to use it as control vasodilator for sildenafil in the studies 

presented. 

 

3.2.2 Aims 

The aims of this study were to: 

1. Characterize, in healthy subjects, the time course of the intrabrachial effects 

of sildenafil on FBF 

2. Compare the forearm effects of sildenafil with different doses of verapamil, 

and select a dose of verapamil that produced a comparable vasodilator effect 

to that of sildenafil on FBF 

3. Evaluate within day and between days test-retest repeatability of FBF data 

during handgrip exercise.  

 

3.2.3 Methods 

3.2.3.1 Subjects 

3.2.3.1.1 Identification 

Suitable subjects were identified from a database of healthy subjects at the Clinical 

Research Centre (CRC).  

 

3.2.3.1.2 Inclusion criteria 

• Healthy 

• Male  

• Aged 20 to 70 years 

 

3.2.3.1.3 Exclusion criteria 

• Female 

• History of coronary artery, cerebrovascular or peripheral vascular disease  

• Total cholesterol >6.5 mmol/L 

• Current alcohol abuse 

• Diabetes mellitus 

• Asthma 

• Smoking 
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• Body mass index (BMI) ≥30 kg/m2 

• Taking any vasoactive or endothelial function modifying drugs which cannot 

be withdrawn for the purpose of the study 

• Previous serious drug allergy 

• Clinically significant abnormality on screening blood test 

• Presence of other clinically relevant conditions. 

 

3.2.3.2 Arterial cannulation and drug infusions 

The brachial artery of the non-dominant arm of each subject was cannulated under 

local anaesthesia (1% lidocaine, Hameln pharmaceuticals gmbh, Hameln, Germany) 

with a 27-SWG needle (Coopers Needle Works, Birmingham UK) attached to a 16G 

epidural catheter (Portex Ltd, Hythe, Kent, UK) for drug infusions. Sildenafil citrate 

(Pfizer Ltd. Sandwich, Kent, UK) was infused at 50 µg/min; the cGMP-independent 

control vasodilator verapamil (Abbott Laboratories Ltd. Queenborough, Kent, UK) 

was infused at different doses (1.25, 2.5, 5 and 10 µg/min); normal saline (Baxter 

Healthcare Ltd. Thetford, UK) was used a placebo. Each dose was infused for 6 

minutes at 1ml/min.  

 

3.2.3.3 Measurements 

3.2.3.3.1 Forearm venous plethysmography 

Details of the methodology are described in the method section (see 2.2.3.1). Briefly, 

arterial vasodilatation in the forearm was measured as change in FBF using venous 

occlusion plethysmography, with mercury-in-silastic strain gauges securely applied 

around the widest part of the forearm. The hand was excluded from the blood flow 

determination through inflation of a wrist cuff to 220mmHg. An upper arm cuff was 

intermittently inflated to 40mmHg for 10 seconds in every 15 seconds to temporarily 

prevent forearm venous outflow and obtain plethysmographic recordings. Forearm 

blood flow recordings were made over a 3-minute period. The mean of the final 5 

measurements was used for analysis. Blood flow was measured simultaneously in 

both arms by use of a dual-channel strain gauge plethysmograph. 
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3.2.3.3.2 Blood pressure 

Blood pressure was monitored, with an appropriate sized cuff, in the noninfused arm 

by use of a validated oscillometric sphygmomanometer (HEM-705CP, Omron 

Corporation) (O'Brien et al., 1996). Blood pressure measurements were taken after 

FBF recordings, to avoid any effect due to the venous congestion caused by inflation 

of the BP cuff. 

 

3.2.4 Data analysis 

Plethysmographic data were extracted from Chart data files and FBF calculated for 

each subject using a template spreadsheet (Excel 5.0; Microsoft). Recordings made 

in the first minute after wrist cuff inflation were excluded from the analysis because 

this results in transient vasoconstriction (Kerslake, 1949). Forearm blood flow data 

are presented as changes in absolute blood flow (ml/min/100ml of forearm volume) 

in the infused arm, as the intra-subject variability of the response to vasodilators is 

significantly reduced when presented as absolute values of FBF than when analysed 

as percentage change in the FBF ratio (Wilkinson & Webb, 2001). In part I, given 

the number of subjects (3 subjects receiving sildenafil and 3 subjects receiving 

verapamil), formal statistical analysis was not considered appropriate. In part II data 

were analysed with repeated measures ANOVA and 2-tailed Student’s t-test as 

appropriate. Statistical analysis was performed with Graph-Pad Prism (GraphPad 

Software, Inc, San Diego, CA). Significance was accepted at the 5% level in all 

cases.  

 

Test-retest repeatability of baseline and exercise FBF data were assessed according 

to the method described by Bland and Altman (Bland & Altman, 1986) (see section 

2.7).  

 

3.2.5 Protocol 

All subjects attended a preliminary screening visit, when a fasting blood sample was 

taken for routine biochemistry. They then attended the CRC at 9am on 6 different 

occasions at least one week apart, and after an overnight fast (>12 hours). They were 

required to abstain from alcohol and caffeine-containing food and beverages from 24 
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hours before the study. All visits were performed in a quiet, draught-free, 

temperature-controlled room (22-24 ºC). On each study day, subjects rested quietly 

for 30 minutes and during this time FBF measurements were recorded. The 

measurement period immediately before the infusion of drugs or the handgrip 

exercise was always used as baseline.  

 

3.2.6 Part I 

This was a one-way, single-blind, randomised study, undertaken to investigate the 

FBF effect of a single dose of sildenafil and the FBF responses to incremental doses 

of verapamil. Six healthy subjects were recruited for this study and randomised to 

sildenafil (3 subjects) or verapamil (3 subjects). On the study day, after cannulation 

of the brachial artery and baseline FBF measurement, subjects randomised to 

sildenafil received an intrabrachial infusion of the drug (50µg/min) for 6 minutes, 

with FBF recordings during the last 3 minutes of infusion. The infusion was then 

stopped and FBF recorded every 10 minutes for the following 60 minutes.  Subjects 

randomised to verapamil received an intrabrachial infusion of the drug at 4 

consecutive and incremental doses (1.25, 2.5, 5 and 10 µg/min), each for 6 minutes. 

The infusion was then stopped and FBF recorded every 10 minutes for the following 

60 minutes. 

 

3.2.6.1 Results 

The clinical characteristics of the study subjects are shown in Table 3.1. Blood flow 

responses to sildenafil 50µg/min for each of the 3 subjects are shown in Figure 3.1A. 

Sildenafil infusion for 6 minutes resulted in a significant increase in FBF, still 

evident at 10 minutes after the end of the infusion. Blood flow then gradually 

returned to baseline levels by 60 minutes after the end of the infusion.  Blood flow 

responses to incremental doses of verapamil for each of the 3 subjects are shown in 

Figure 3.1B. Verapamil infused at 5 and 10µg/min resulted in a significant increase 

in FBF, which was still present at 10 minutes after the end of the infusions, and then 

blood flow gradually returned to baseline values by the end of the study. Sildenafil 

50µg/min and verapamil 5µg/min showed a similar vasodilator effect on FBF, and it 

was decided to use this dose of verapamil in part II.  
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Parameters 

 

 

 

 

 

 

Subjects (n=6) 

 

 
Age (years)  35±5 (range 25-52) 

BMI (kg/m2) 24.4±0.7 

Total cholesterol (mmol/l) 4.3±0.3 

Systolic BP (mmHg) 122±2.7 

Diastolic BP (mmHg) 73±3.9 

 
Table 3.1. Clinical characteristics of the study subjects.  
BMI, body mass index; BP, blood pressure. 
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Figure 3.1. Vasodilator responses to sildenafil and verapamil. 
Changes in absolute blood flow (ml/min/100 ml of forearm volume) in the infused arm of 3 
subjects in response to the intrabrachial infusion of sildenafil 50µg/min (A) and in response 
to incremental doses of verapamil (1.25, 2.5, 5 and 10µg/min) (B). BL, baseline. 
 

B 

A 
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3.2.7 Part II 

On the basis of the results obtained in part I, a three-way, randomised, single-blind 

and placebo-controlled study was undertaken to compare the vasodilator effects of 

sildenafil and verapamil. Normal saline was infused during a control, non-

vasodilating study.  The six subjects recruited for part I attended 3 further study 

visits, at least one week apart. On each occasion, after cannulation of the brachial 

artery and baseline FBF measurement, they received, in random order, a 6-minute 

infusion of sildenafil (50µg/min), verapamil (5µg/min) or placebo (saline), with FBF 

recordings made during the last 3 minutes of infusion. 
 
3.2.7.1 Results 

The effects of the 3 intra-arterial infusions on FBF are shown in Figure 3.2 and Table 

3.2. Baseline FBF was not significantly different on each of the study visits, and the 

infusion of saline did not affect FBF. Both sildenafil and verapamil significantly 

increased FBF in the infused arm (P<0.001), and the extent of vasodilatation was 

similar between the two drugs. This effect was still significant at 10 minutes after the 

end of the infusion (P<0.05), and then gradually disappeared. None of the subjects 

reported adverse effects related to the local infusion of the study drugs. Blood 

pressure and heart rate did not change after any of the infusions (Table 3.3). 
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Figure 3.2. Vasodilator responses to saline, sildenafil and verapamil. 
Changes in absolute blood flow (ml/min/100 ml of forearm volume) in the infused arm in 
response to the intrabrachial infusion of  saline, sildenafil 50µg/min and verapamil 5µg/min.  
Data are mean ± SEM. BL, baseline. 
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Subjects (N=6) Infused arm Noninfused arm Ratio 

Before infusion 
 

   

Saline  
 

3.27±0.63 3.73±0.67 0.89±0.07 

Sildenafil  
 

3.37±0.77 
 

3.63±0.56 
 

0.90±0.04 
 

Verapamil 
 

3.45±0.47 4.05±0.77 0.85±0.10 

During infusion 
 

   

Saline 
 

3.47±0.61 3.75±0.60 0.90±0.07 

Sildenafil 
 

5.64±0.68* 
 

3.33±0.57 
 

1.79±0.21 
 

Verapamil 6.18±0.78* 4.17±0.66 1.52±0.13 
 
Table 3.2. Forearm blood flow values before and during infusions. 
Data are mean±SEM absolute FBF (ml/min/100ml of forearm volume) in the infused and 
noninfused arm, and FBF ratio (infused/noninfused) before and during the infusion of saline, 
sildenafil and verapamil. *P<0.001 infused vs noninfused arm. 
 
 

Subjects (n=6) SBP DBP MAP HR 
Before infusion 
 

    

 Saline 124±3 
 

65±2 84±3 63±4 

 Sildenafil 125±5 
 

66±2 86±4 65±2 

 Verapamil 123±5 
 

69±3 87±3 66±3 

   
After infusion 
     

Saline 126±5 
 

68±3 87±4 67±3 

Sildenafil 128±3 
 

62±5 86±2 62±2 

Verapamil 125±5 
 

71±2 91±3 65±3 

 
Table 3.3. Blood pressure and heart rate before and after the infusion of saline, 
sildenafil and verapamil.  
SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure; 
HR, heart rate. 
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3.2.8  Part III 

The purpose of this part of the study was to evaluate, for each subject, within-day 

repeatability of baseline FBF data and repeatability of the forearm vasodilator 

response to handgrip exercise within and between days. Subjects (n=6) attended the 

CRC on 2 different occasions: during the first visit they performed the handgrip 

exercise twice on the same day (with a 30-minute rest in between), and then returned 

after 1 week to repeat the task (between days repeatability). The handgrip exercise 

was performed with a calibrated handgrip dynamometer (MLT 003 Hand 

Dynamometer ADInstruments Pty Ltd).  Subjects rhythmically squeezed the device 

using the nondominant arm in 15-second cycles, consisting of 5 seconds of steady 

handgrip pressure alternating with 10 seconds of rest, and they were instructed to 

avoid Valsalva-like manoeuvres during the task. The exercise was performed for 5 

minutes at 45% of maximum voluntary contraction (MVC), which was determined 

for each subject during the initial screening visit. Forearm blood flow was recorded 

in the last 3 minutes of exercise, during the 10-second period of relaxation between 

contractions, immediately before the next handgrip contraction.  

 

3.2.8.1 Results 

There was good repeatability for baseline and handgrip exercise FBF data measured 

at two different time points during the same study day. In the same way, no 

significant difference was observed between the mean FBF responses to handgrip 

exercise performed on two different study days (Figure 3.3). 
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Figure 3.3. Bland-Altman plots of baseline and exercise FBF data.  
Solid lines are mean differences and dotted lines are upper and lower 95% limits of 
agreement (for which 95% CIs are given in brackets). 



 67 

3.2.9 Discussion 

3.2.9.1 Part I and II 

The present studies showed that a 6-minute intra-arterial infusion of sildenafil at 

50µg/min results in a significant vasodilator effect on FBF. A comparable 

vasodilator effect was evoked by the calcium channel blocker verapamil infused at 

5µg/min. On the basis of these results, this dose of verapamil was selected and used 

as a control for sildenafil in the subsequent plethysmography studies presented in this 

thesis. 

 

The vasodilator effects of sildenafil have been investigated in vitro and in vivo. In 

vitro, sildenafil has been shown to potentiate NO-cGMP signalling leading to smooth 

muscle relaxation in human corpus cavernosum tissue (Ballard et al., 1998; 

Moreland et al., 1998), and to enhance the vasorelaxant effect of a NO donor, 

glyceryl trinitrate, in isolated aortic rings (Wallis et al., 1999). In the only available 

study in which the intrabrachial effects of sildenafil were investigated, Jackson and 

coworkers reported a dose-dependent vasodilator effect of the drug on FBF in 

healthy subjects (Jackson et al., 1999), in agreement with findings presented here. 

The present studies also showed that the effect of sildenafil is still significant 10 

minutes after the end of the infusion, after which time FBF gradually returns to 

baseline values.  

 

With respect to verapamil, available evidence indicates that its vasodilator effects are 

cGMP-independent (Millgard & Lind, 1998; Xu et al., 2002), and it has been 

extensively used in studies involving the use of a control, endothelium-independent 

vasodilator (Dawes et al., 1997; Mills et al., 2005; Mills et al., 2007). For these 

reasons, verapamil was chosen as a control vasodilator for sildenafil in these 

preliminary studies. It was also necessary to select a dose of verapamil that produced 

a similar effect to that of sildenafil on FBF. This is because the response to any 

intervention that follows drug infusions is affected by the pre-existing values of FBF 

(Wilkinson & Webb, 2001) and, if the two vasodilators have different effects on 

FBF, comparisons would not be valid. Results obtained in part I showed that 

verapamil, infused at 5µg/min, had a vasodilator effect on FBF similar to that of 
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sildenafil. It was therefore decided to directly compare verapamil 5µg/min to 

sildenafil 50µg/min in part II of the study, whose results confirmed that the two 

drugs, at the doses selected, produced a similar vasodilator effect on FBF. 

Furthermore, the results presented show that, at the doses selected, sildenafil and 

verapamil produced significant changes in FBF without affecting systemic blood 

pressure. 

 

3.2.9.2 Part III  

As shown by the Bland-Altman plots presented, there was good repeatability of FBF 

baseline measurements, with no tendency for repeatability to vary with mean values. 

The Bland-Altman plots also show good within day and between days repeatability 

of the FBF response to handgrip exercise. The repeatability of baseline and exercise 

FBF data compare well with previously published data (Roberts et al., 1986). 

 

3.2.10 Summary 

The preliminary forearm plethysmography studies presented in this section show that 

sildenafil, at a dose of 50µg/min, produces a significant increase in FBF that is still 

significant at 10 minutes after the end of the infusion. Verapamil, infused at 

5µg/min, produced a comparable vasodilator effect to that of sildenafil 50 µg/min on 

FBF.  
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3.3 REPEATABILITY OF PEAK OXYGEN UPTAKE DURING MAXIMAL 

EXERCISE AND OF PARAMETERS OF ARTERIAL STIFFNESS BEFORE 

AND AFTER EXERCISE 
 

3.3.1 Background 

Repeatability values of exercise variables are necessary for a valid interpretation of 

the results of exercise testing and to evaluate the effect of a treatment on these 

parameters. Biological and technological variation can be responsible for changes in 

these variables when the same subject performs a test on two or more occasions. 

Factors such as physiological circadian variations and environmental conditions, 

both examples of biological variation, can influence exercise performance (Kung et 

al., 1980; Atkinson & Reilly, 1996). In addition, variation can be the result of 

differences in equipments and laboratories (technological variation) (Jones & Kane, 

1979; Bloch et al., 1995). With respect to arterial stiffness, the repeatability of 

measures obtained using pulse wave velocity and analysis techniques has been 

shown to be high (Wilkinson et al., 1998), but it was important to assess the 

repeatability of such measures before and after maximal exercise testing.  

 

3.3.2 Aims 

The aims of this study were to: 

1. Investigate test-retest repeatability of peak oxygen uptake (peak VO2) during 

maximal exercise testing 

2. Investigate test-retest repeatability of arterial stiffness parameters before and 

after maximal exercise testing. 

 

3.3.3 Methods 

3.3.3.1 Subjects  

3.3.3.1.1 Identification  

Suitable subjects were identified from a database of healthy subjects who had 

previously taken part in research at the CRC. 
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3.3.3.1.2 Inclusion criteria 

• Healthy 

• Male 

• Aged 20 to 70 years 

 

3.3.3.1.3 Exclusion criteria 

• Female 

• History of coronary artery, cerebrovascular or peripheral vascular disease  

• Total cholesterol >6.5 mmol/L 

• Current alcohol abuse 

• Diabetes mellitus 

• Asthma 

• Smoking 

• Body mass index (BMI) ≥30 kg/m2 

• Regular exercise training 

• Taking any vasoactive or endothelial function modifying drugs which cannot 

be withdrawn for the purpose of the study 

• Previous serious drug allergy 

• Clinically significant abnormality on screening blood test 

• Presence of other clinically relevant conditions. 

 

3.3.3.2 Measurements 

Details of the methodology are described in the methods section (see 2.2.2 and 

2.3.3). Briefly, exercise capacity was assessed through maximal incremental exercise 

testing on an electromagnetically braked cycle ergometer (Lode, Rehcor, Groningen, 

The Netherlands), and measured as peak VO2. Breath-by-breath gas analysis was 

performed using the Pulmolab EX670 mass spectrometer gas analyser (Morgan 

Medical Ltd, Kent, UK), connected to a personal computer running analysis 

software. From this peak VO2, defined as the highest 30-second average of oxygen 

uptake in the last minute of exercise, was derived. Exercise BP was measured 

immediately before exercise and every 2 minutes during exercise using an ECG-

gated auscultatory device (Tango+ exercise BP monitor, SunTech Medical 
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Instruments, NC, USA). Continuous 12-lead ECG monitoring (CardioDirect 12, 

Reynolds Medical Ltd, Hertford, UK) was performed during each test for assessment 

of heart rate (HR), arrhythmias and myocardial ischemia.  

 

The SphygmoCor apparatus (AtCor Medical Pty Ltd, West Ride, Australia) was used 

to measure CF-PWV and for PWA. During arterial stiffness measurements, clinic BP 

and HR were monitored, with an appropriate sized cuff, using a validated 

oscillometric sphygmomanometer (HEM-705CP, Omron Corporation) (O'Brien et 

al., 1996). 

 

3.3.4 Protocol 

Subjects attended the unit at 9am on 3 different occasions (1 preliminary visit and 2 

study visits 14 days apart) and after an overnight fast (>12 hours). They were 

required to abstain from alcohol and caffeine-containing food and beverages from 24 

hours before each study. All studies were performed in a quiet, draught-free, 

temperature-controlled room (22-24 ºC). During the initial preliminary visit all 

subjects had the opportunity to familiarise themselves with the exercise equipment 

and to perform a practice run. A blood sample was also taken during this visit. On 

each study day, after 30 minutes resting in the supine position, baseline measurement 

of BP, HR, PWV and PWA were recorded. Subjects were then asked to perform an 

upright bicycle exercise to their maximum tolerance, with the use of a work rate 

progressively increasing at 20 watts/minute, after the first 2 minutes of unloaded 

pedalling (Wasserman et al., 1999). Respiratory gas exchange variables were 

measured continuously during the unloaded cycling period and the exercise test and, 

in the absence of chest pain, ECG abnormalities, arrhythmias or critical blood 

pressure changes (systolic BP > 250mmHg and/or diastolic BP > 120mmHg) all tests 

were continued until exhaustion. The criteria used to establish maximal effort 

included a respiratory exchange ratio (RER, the ratio of VCO2 and VO2) ≥1.10, a 

failure to maintain a pedalling rate above 40rpm, and no change in HR with change 

in workload. At the end of the test, subjects rested supine for 1 hour and 

measurements of BP, HR, PWA and PWV were taken at 10, 40 and 60 minutes after 

exercise. 
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3.3.5 Statistical analysis 

Test-retest repeatability of the parameters investigated were assessed according to 

the method described by Bland and Altman (Bland & Altman, 1986) (see section 

2.7).  

 

3.3.6 Results 

Six healthy volunteers were recruited for this study, and their characteristics are 

shown in   Table 3.4. 

 

Parameters 

 

Subjects (n=6) 
Age (years) 47± 5 (range 28-66) 

BMI (kg/m2) 25.6±1.1 

Total cholesterol (mmol/l) 4.5±0.4 

Systolic BP (mmHg) 121±2.3 

Diastolic BP (mmHg) 72±3.3 

 
  Table 3.4. Clinical characteristics of the study subjects.  
  BMI, body mass index; BP, blood pressure. 
 
All subjects completed both exercise tests until exhaustion, and none of the tests had 

to be discontinued because of chest pain, ECG abnormalities, arrhythmias or critical 

blood pressure changes. There was good repeatability between the two measures for 

the various clinical parameters recorded during the first and second exercise test. 

Figure 3.4 shows Bland-Altman plots for peripheral BP, central BP and peak 

exercise systolic BP; Figure 3.5 shows Bland-Altman plots for PWA parameters, CF-

PWV and peak VO2.  
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Figure 3.4. Bland-Altman plots of peripheral BP, central BP and peak exercise systolic 
BP.  
Solid lines are mean differences and dotted lines are upper and lower 95% limits of 
agreement (for which 95% CIs are given in brackets). 
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Figure 3.5. Bland-Altman plots of CAIx, CAIx@75, RAIx, CF-PWV and peak VO2. 
Solid lines are mean differences and dotted lines are upper and lower 95% limits of 
agreement (for which 95% CIs are given in brackets). CAIx, central augmentation index; 
CAIx@75, CAIx adjusted to a standard HR of 75bpm; RAIx, radial augmentation index; CF-
PWV, carotid-femoral pulse wave velocity. 
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3.3.7 Discussion  

The repeatability of variables studied during maximal exercise testing is essential to 

evaluate whether changes of such variables, measured in successive exercise tests, 

are the result of changes in physical condition of the subject or the result of 

variability of measurements. In particular, in order to assess changes in clinical status 

or the effects of therapeutic interventions on exercise capacity, repeatability studies 

are necessary to evaluate normal test-retest variation, which can be attributed to a 

number of factors such as normal circadian rhythm, subject motivation and prior pre-

test activity. Repeatability data are also specific to the test equipment and the 

exercise protocol used, and it is recommended that laboratories develop repeatability 

coefficients for their own specific test conditions (Bingisser et al., 1997). In this 

study extra care was taken to ensure each test was performed under the same 

standard conditions, in agreement with current guidelines (Myers et al., 2009), and 

the data obtained show a good repeatability and no significant differences in the 

variables measured during the first and second exercise test. 

 

3.3.8 Summary 

The results presented attest the repeatability of peak VO2 and arterial stiffness 

parameters obtained using a specific equipment and exercise protocol. This is 

important for the valid interpretation of repeated exercise tests performed to 

investigate the effects of PDE5 inhibition on exercise capacity and arterial stiffness. 
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CHAPTER 4 
 
 

PHOSPHODIESTERASE TYPE 5 INHIBITION AND FOREARM 

EXERCISE-INDUCED VASODILATATION IN HYPERTENSIVE 

PATIENTS
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4.1 INTRODUCTION 
 
4.1.1 Background 

The successful use of sildenafil in the treatment of male erectile dysfunction 

(Goldstein et al., 1998) has created increasing interest in the therapeutic potential of 

PDE5 inhibition in cardiovascular diseases associated with dysfunction of the NO-

cGMP signalling pathway. Elevation of cGMP by PDE5 inhibition seems a logical 

approach for treating conditions ranging from hypertension to vasospasm, as 

demonstrated by the growing literature on the potential clinical uses for PDE5 

inhibitors. Sildenafil has been shown to improve the vasomotor response of blood 

vessels in patients with heart failure (Katz et al., 2000), type 2 diabetes (Desouza et 

al., 2002) and Raynaud’s phenomenon (Fries et al., 2005), and to significantly 

improve exercise capacity in chronic heart failure and in pulmonary arterial 

hypertension (Guazzi et al., 2004a; Galie et al., 2005; Lewis et al., 2007a). In 

hypertensive patients, in whom endothelial dysfunction and reduced exercise-

induced vasodilatation are important features, the impaired vasomotor response to 

exercise might be improved by PDE5 inhibition with sildenafil. In turn, improvement 

in vasodilator responses to physiological stimuli (shear stress) through enhanced 

cGMP signalling may set the stage for improved exercise capacity in hypertensive 

patients. The effects of PDE5 inhibition on forearm exercise-induced vasodilatation 

in arterial hypertension have not been investigated previously.  

 

4.1.2 Aims 

The aims of this study were to: 

1. Assess the forearm blood flow (FBF) response to a previously validated 

handgrip exercise task in hypertensive and normotensive subjects before and 

after the local (intrabrachial) administration of sildenafil  

2. Compare this response with the one obtained after the infusion of the calcium 

channel blocker verapamil, a cGMP-independent vasodilator (control) and 

placebo (saline).  
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4.2 METHODS 
 
4.2.1 Subjects 

4.2.1.1 Identification  

Suitable hypertensive patients were identified from the WGH Cardiovascular Risk 

Clinic database, and healthy volunteers were identified from the existing CRC 

community database. 

 

4.2.1.1.1 Inclusion criteria 

- Hypertensive subjects 

• Male 

• Aged between 20 and 70 years 

• At least 3 separate office measurements of systolic BP ≥160mmHg 

(maximum 180mmHg) and/or diastolic BP ≥90mmHg 

• Not on treatment 

 

- Normotensive subjects 

• Male 

• Healthy 

• Aged between 20 and 70 years  

• Systolic BP ≤140mmHg and diastolic BP ≤80mmHg 

 

4.2.1.1.2 Exclusion criteria (all subjects) 

• Female 

• History of coronary artery, cerebrovascular or peripheral vascular disease  

• Total cholesterol >6.5 mmol/L 

• Current alcohol abuse 

• Diabetes mellitus 

• Asthma 

• Smoking 

• Body mass index (BMI) ≥30 kg/m2 
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• Taking any vasoactive or endothelial function modifying drugs which cannot 

be withdrawn for the purpose of the study 

• Previous serious drug allergy 

• Regular exercise training 

• Clinically significant abnormality on screening blood test 

• Presence of other clinically relevant conditions. 

 
4.2.2 Screening visit 

Potentially suitable subjects who agreed to be considered for the study attended a 

screening visit at the CRC. At the time of this visit the study was explained fully and 

written consent was obtained. A medical history was taken and a physical 

examination and 12-lead ECG were performed. A fasting blood sample was also 

taken. During this visit subjects performed the handgrip exercise with the non-

dominant arm to determine maximum voluntary contraction (MVC) and, from this, 

45% of MVC was established for each subject and used for the subsequent visits. 

 

4.2.3 Study design 

Randomised, placebo-controlled, single-blind, 3-way crossover. 
 
4.2.4 Study protocol 

The study protocol is outlined in Figure 4.1. Subjects attended the CRC at 9am on 3 

different occasions, at least one week apart, and after an overnight fast (>12 hours). 

They were required to abstain from alcohol and caffeine-containing food and 

beverages from 24 hours before each study. On each study day, subjects rested 

quietly for 30 minutes and during this time FBF measurements were recorded. 

Preinfusion handgrip exercise (at 45% of MVC) was then performed for 5 minutes, 

with FBF assessed in the final 3 minutes of the exercise, during each of the 10-

second relaxation period between contractions. After a recovery period of 30 

minutes, the brachial artery of the exercised arm was cannulated and, following a 30-

minute saline infusion, subjects received a 6-minute infusion of sildenafil 50µg/min, 

verapamil 5µg/min or placebo (saline), in random order, with FBF recordings during 

the last 3 minutes of infusion. The cannula was then removed and handgrip exercise 

and FBF measurements repeated. 
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   45% 
MVC 

 30min 
 saline inf 

Drug 
inf 

 45% 
MVC 

 Rest/Baseline                   Handgrip          Rest/recovery                                                                       Handgrip                                                                                                                                                                                                               

  

 FBF ↑  ↑            ↑           ↑          ↑  ↑   ↑          ↑      ↑  

               Time (min)                                                                                                                                                                                                                      

0        30        35                  65             95        101       106     111 
 
Figure 4.1. Schematic representation of the experimental protocol.  
Drug infusion (inf) refers to 6-minute intrabrachial infusion of sildenafil (50 µg/min), 
verapamil (5 µg/min) or  saline. MVC, maximum voluntary contraction. 
 
 
4.2.5 Statistical analysis 

Venous occlusion plethysmography is a very powerful technique, and it allows the 

detection of significant changes in forearm blood flow without the need for a large 

sample of subjects (Wilkinson & Webb, 2001). This is supported by previously 

published data in which a sample size of 8 (McEniery et al., 2002) or 12 subjects 

(Jackson et al., 1999) was enough to detect a statistically significant change in blood 

flow. On the basis of these studies, and also supported by the findings observed in 

the preliminary dose-ranging studies presented in Chapter 3, a sample size of 10 

subjects was considered adequate for this study. Plethysmographic data were 

extracted from Chart data files and analysed by an independent observer blinded to 

the treatment. All values are expressed as mean±SEM. Forearm blood flow data are 

presented as changes in absolute blood flow (ml/min/100ml of forearm volume) in 

the infused (exercised) arm.  Preinfusion and postinfusion FBF responses to handgrip 

exercise for the 3 treatments were then compared within each group. Data were 

analysed with repeated measures ANOVA with post-hoc Bonferroni corrections and 

2-tailed Student’s t-test as appropriate. Statistical analysis was performed with 

Graph-Pad Prism (GraphPad Software, Inc, San Diego, Calif). Significance was 

accepted at the 5% level in all cases.  

 

Arterial cannulation ↓ Needle removed  ↓ 
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4.3 RESULTS 
 
4.3.1 Subjects 

Ten normotensive and ten hypertensive subjects, none of whom taking regular 

antihypertensive treatment, were recruited, and all of them completed the study. The 

baseline clinical characteristics of the two groups are shown in Table 4.1, and they 

differed only by BP. 

 

4.3.2 Resting FBF and preinfusion handgrip exercise 

As shown in Table 4.2, resting FBF was similar in hypertensive and normotensive 

subjects on each study day. Preinfusion handgrip exercise produced an increase in 

FBF in both groups; however, the increase observed in hypertensive patients was 

significantly less than that in the control group (P<0.001) (Figure 4.2). Blood 

pressure tended to increase in hypertensive patients, but not in normotensive 

controls, on each of the 3 study visits during handgrip exercise, but this did not reach 

statistical significance (Table 4.3). Heart rate did not change significantly in either 

group (Table 4.3). 
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Parameter 

Hypertensive 
patients 
(n=10) 

Normotensive 
subjects 
(n=10) 

 
p* 

 
Age, y (range) 
Body mass index, kg/m2 
Total cholesterol, mmol/L 
Creatinine, umol/L                                            
Urea, mmol/L 
Sodium, mmol/L 
Potassium, mmol/L 
Fasting glucose, mmol/L 
SBP, mmHg 
DBP, mmHg 

 
46±4 (31-67) 

27.4±0.9 
4.8±0.2 

91.7±4.2 
5.1±0.3 
142±0.7 
4.2±0.09 
5.4±0.1 
170±2 
97±3 

 
43±3 (28-59) 

25.7±0.8 
4.7±0.2 
86.8±2 
5.2±0.4 
141±0.6 
4.4±0.08 
5.1±0.1 
123±4 
68±2 

 
NS 
NS 
NS 
NS 
NS 
NS 
NS 
NS 

 
Table 4.1. Clinical characteristics of the hypertensive patients and normotensive 
subjects.   
Data are mean±SEM. SBP, systolic blood pressure; DBP, diastolic blood pressure. 
*Differences between groups were evaluated by unpaired Student’s t-test (normotensive 
subjects vs hypertensive patients). 
 
 

Normotensives Hypertensives
0

5

10

15

20

25

30

35 saline
sildenafil
verapamil

* *
*

 
Figure 4.2. Preinfusion exercise vasodilator responses.  
Changes in absolute blood flow (ml/min/100ml of forearm volume) in the infused 
(exercised) arm in response to handgrip exercise before saline, sildenafil and verapamil 
infusion. Data are mean± SEM. *P<0.001 in normotensive subjects vs hypertensive patients. 
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                 Hypertensive patients 
 

 Normotensive subjects 

 Infused Noninfused Ratio 
 

 Infused Noninfused Ratio 

Before 
infusion 

       

Saline 
 

4.05±0.39 3.80±0.36 1.10±0.08  3.22±0.37 3.45±0.43 0.98±0.08 

Sildenafil 
 

3.34±0.25 3.10±0.30 1.14±0.09  3.35±0.26 4.04±0.62 0.91±0.07 

Verapamil 
 

3.93±0.59 3.71±0.35 1.05±0.07  3.96±0.54 4.06±0.59 0.99±0.06 

   
During 
infusion† 
 

       

Saline 
 

4.07±0.33 3.71±0.32 1.14±0.08  3.35±0.36 3.53±0.38 0.98±0.08 

Sildenafil 
 

5.58±0.53* 3.30±0.32 1.79±0.12  5.92±0.55* 3.86±0.42 1.62±0.15 

Verapamil 
 

6.44±0.68* 3.68±0.40 1.78±0.11  6.20±0.50* 3.59±0.40 1.82±0.13 

 
Table 4.2. Forearm blood flow before and during the infusions.  
Data are mean ± SEM absolute FBF (ml/min/100ml of forearm volume) in the infused and 
noninfused arm, and FBF ratio (infused/noninfused) before and during the infusion of saline, 
sildenafil and verapamil. †FBF measurements during the last 3 minutes of drug infusion; 
*P<0.001 infused vs noninfused arm.  
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                    Normotensive subjects 

 
Hypertensive patients  

 SBP 
 

DBP 
 

MAP HR  SBP DBP MAP HR 

Pre- 
handgrip 
 

         

 Saline 
 

125±5 67±3 85±3 66±2  154±3 75±3 99±3 62±3 

 Sildenafil 
 

123±4 65±2 84±2 65±2  153±4 78±4 105±4 59±2 

 Verapamil 
 

127±5 70±3 90±3 63±3  154±2 79±4 106±2 60±2 

    
Post-
handgrip 
 

         

Saline 
 

128±5 70±3 89±3 68±3  159±5 77±4 102±4 64±2 

Sildenafil 
 

125±4 66±2 87±2 66±3  157±4 82±4 109±3 60±3 

Verapamil 
 

131±5 71±3 92±3 65±2  160±3 81±3 110±4 62±2 

  
Table 4.3. Blood pressure and heart rate before and after exercise. 
Data are mean ± SEM. SBP, systolic blood pressure; DBP, diastolic blood pressure; 
MAP, mean arterial pressure; HR, heart rate. 
 
 
4.3.3 Effects of sildenafil and verapamil on resting FBF and handgrip exercise 

The effects of the 3 intra-arterial infusions on resting FBF are presented in Table 4.2. 

Forearm blood flow did not change significantly in either group after the infusion of 

saline. The infusion of sildenafil and verapamil produced significant vasodilatation 

compared to saline, resulting in increased FBF in both groups (P<0.001). The extent 

of vasodilatation was similar between the two treatments and with no significant 

difference between hypertensive and normotensive subjects. Blood pressure and 

heart rate did not change after any of the infusions and none of the subjects reported 

adverse effects related to the local infusion of the study drugs. In the normotensive 

subjects, vasodilator response to handgrip exercise did not change significantly after 

the infusions when compared to preinfusion values, and no significant difference was 

detected amongst the 3 treatments (P=0.35) (Figure 4.3A). In the hypertensive group, 



 86 

a significant difference in the response to handgrip exercise was observed amongst 

the 3 treatments (ANOVA, P=0.0167); indeed, while no significant changes were 

detected in the vasodilator response to exercise following the infusion of saline or 

verapamil, a significant improvement was observed after sildenafil, which 

significantly increased exercise-induced vasodilatation compared to both verapamil 

and saline (P<0.05) (Figure 4.3B).  

preinfusion postinfusion
0

5

10

15

20

25

30

35
saline
sildenafil
verapamil

Normotensive subjects

Exercise response

preinfusion postinfusion
0

5

10

15

20

25

30

35
saline
sildenafil
verapamil

Hypertensive subjects

*

Exercise response

 
Figure 4.3. Preinfusion and postinfusion exercise vasodilator responses.  
Changes in absolute blood flow (ml/min/100ml of forearm volume) in the infused 
(exercised) arm in response to exercise after 6-minute intra-arterial infusion of saline, 
sildenafil 50 μg/min and verapamil 5 μg/min in normotensive subjects (A) and hypertensive 
patients (B). Data are mean ± SEM. *P<0.05 vs saline and verapamil in the hypertensive 
patients. 

A 

B 
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4.4 DISCUSSION 
The present study provides evidence in support of a beneficial effect of the PDE5 

inhibitor sildenafil citrate on the vascular response to handgrip exercise in 

hypertensive patients. The results obtained confirmed previous work showing that 

the forearm vasodilator response to handgrip exercise is reduced in hypertensive 

patients compared with normotensive subjects (McEniery et al., 2002). Also, and the 

major novel observation from the current study, sildenafil substantially enhanced 

exercise-induced vasodilatation in hypertensive patients but not in normotensive 

subjects, an effect that is not seen with the control dilator verapamil. These findings 

suggest that cGMP signalling is critical in regulating this flow limitation, given that 

it can be selectively improved by PDE5 inhibition. 

  

4.4.1 Vascular responses to intra-arterial infusions 

The effects of local sildenafil infusion in this study are consistent with previous data, 

which demonstrate an increase in FBF after intra-arterial administration of sildenafil 

in healthy subjects (Jackson et al., 1999). The control vasodilator used in this study, 

verapamil, was chosen on the basis of the effects shown in preliminary 

plethysmography investigations (see Chapter 3), but it is important to acknowledge 

that, in studies comparing hypertensive and normotensive subjects, whose starting 

conditions differ, no perfect control exists. However, if anything, studies show an 

increased response to verapamil in hypertensive subjects (Robinson et al., 1982). As 

resting FBF was similar in both groups before the second bout of exercise, as it was 

for preinfusion exercise, potential influences of different resting FBF, and inherent 

vascular tone, on the subsequent vasodilator response to exercise in each group are 

eliminated. 

 

4.4.2 Vasodilator response to handgrip exercise 

On each study day, maximum preinfusion vasodilator response to handgrip exercise 

was significantly less in patients with hypertension than in healthy controls. 

Endothelial function was not directly addressed in the study subjects, but these 

findings are consistent with results obtained in a previous study (McEniery et al., 

2002), and suggest that reduced endothelium-mediated vasodilatation may limit 
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vascular responsiveness to shear stress, contributing to increased vascular resistance 

during exercise. In healthy controls, when the effects of infusions on the vasodilator 

response to handgrip exercise were compared, no significant difference was observed 

amongst the 3 treatments. By contrast, in the hypertensive patients, a significant and 

substantial difference was detected amongst the 3 treatments in favour of sildenafil, 

which selectively improved the response, whereas this was not observed with the 

control, cGMP-independent, vasodilator verapamil. This is the most important 

finding of the study, supporting the involvement of the NO-cGMP pathway in the 

vasodilator response to exercise. It has previously been shown that inhibition of NO 

synthase abolishes the vasodilatation mediated by PDE5 antagonism (Wallace & 

Tom, 2000; Teixeira et al., 2006), thus findings derived from this study are likely to 

be explained by the increased activity of cGMP, which acts as a second messenger 

for NO and is ultimately responsible for smooth muscle cell relaxation. Further 

support to this explanation is provided by another study in which sildenafil, through 

an increased level of cGMP in the vasculature, reversed vascular alterations in an 

experimental model of chronic NO deprivation (Rossoni et al., 2007). Therefore, in 

situations associated with alterations of the NO-cGMP pathway, PDE5 inhibition 

could exert beneficial effects by increasing the intracellular level of cGMP and 

potentially contribute to restoring physiological responses.  

 

Previous studies have shown conflicting results on the effects of sildenafil on 

brachial artery flow-mediated vasodilatation (FMD) (Halcox et al., 2002; Dishy et 

al., 2004; Vlachopoulos et al., 2004). In particular, in a previous study by Oliver and 

coworkers (Oliver et al., 2006), sildenafil had no effect on FMD in hypertensive 

patients. However, it should be noted that the stimulus for FMD is (passive) reactive 

hyperaemia, which occurs in response to a temporary occlusion of the vessel, 

whereas the present study investigated the effects of sildenafil on (active) exercise 

hyperaemia. This is a more complex phenomenon, in which the pattern of blood flow 

changes observed is the result of an integrated response also involving the skeletal 

muscle and the resistance arterioles. Furthermore, as blood flow progressively 

increases during sustained exercise, the contribution of the NO-cGMP pathway may 

become more prominent, and this might contribute to explaining the effect of 
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sildenafil on exercise-induced vasodilatation in the hypertensive subjects recruited 

for this study. 

 

Local cGMP levels were not measured in this study, as venous cannulation would 

have interfered with handgrip exercise. However, measurement of cGMP levels after 

PDE5 inhibition has a high intersubject variability (Jackson et al., 1999) and seems 

not to correlate well with vasodilatation (Gardiner et al., 2004). 

 

4.4.3 Summary 

Results from this study suggest that sildenafil, through an increase in cGMP levels in 

the vasculature, substantially and selectively improves the vasodilator response to 

handgrip exercise in hypertensive patients. It was concluded that the impaired 

vasodilator response to exercise in hypertensive patients is, at least in part, related to 

reduced endothelium-dependent vasodilatation and can be substantially improved by 

PDE5 inhibition. 
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CHAPTER 5 
 
 

EFFECTS OF PHOSPHODIESTERASE TYPE 5 INHIBITION ON 

EXERCISE CAPACITY AND ARTERIAL STIFFNESS IN HYPERTENSIVE 

PATIENTS 
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5.1 INTRODUCTION 
 
5.1.1 Background  

From the early phases of hypertension, a reduced peripheral vasodilator response 

during exercise is observed, which adversely affects exercise-induced vasodilatation 

and exercise capacity. Available evidence suggests that NO is a major contributing 

factor to exercise hyperaemia, and inhibition of NO synthesis has been shown to 

reduce exercise-induced vasodilatation in healthy subjects (see section 1.4.1). Other 

classes of drugs, such as ACEIs, can improve exercise capacity (Sumukadas et al., 

2007) and may have indirect effects on NO (Henriksen & Jacob, 2003), but PDE5 

inhibitors effects are specifically related to a direct action on the NO-cGMP 

pathway. In particular, there could be a unique therapeutic role for PDE5 inhibition 

in the improvement of vasomotor response to exercise and exercise capacity in 

hypertension. This is reinforced by the particular characteristic for PDE5 inhibitors 

to elevate cGMP levels and, at the same time, to further increase their inhibitory 

capacity, which represents a novel mechanism for the sustained generation of cGMP 

and explains the potent biological effects of these drugs (see section 1.1.5). To date, 

no studies have focused on the therapeutic potential of this class of drugs in the 

vascular responsiveness to exercise in arterial hypertension. This study will try to 

elucidate whether this therapeutic potential, already realised in pulmonary 

hypertension (Galie et al., 2005) and under investigation in heart failure (Lewis et 

al., 2007a),  is also present in arterial hypertension. 

 

5.1.2 Aims 

The main aims of this study were to: 

1. Investigate the effects of a 1-week treatment with oral sildenafil, hydralazine 

(a control, cGMP-independent vasodilator) and placebo on maximal exercise 

capacity in untreated hypertensive patients and matched normotensive 

subjects 

2. Investigate the effects of these interventions on exercise systolic BP during a 

single-stage test of light exercise (Dundee step test) and during maximal 

exercise testing 
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3. Investigate the effects of these interventions on parameters of arterial 

stiffness before and after maximal exercise testing. 

 

5.2 METHODS 
 
5.2.1 Subjects 

5.2.1.1 Identification 

Suitable hypertensive patients were identified from the WGH Cardiovascular Risk 

Clinic database, and healthy volunteers were identified from the existing CRC 

community database. 

 

5.2.1.2 Inclusion criteria 

- Hypertensive subjects 

• Male 

• Aged between 20 and 70 years 

• At least 3 separate office measurements of systolic BP ≥160mmHg 

(maximum 180mmHg) and/or diastolic BP ≥90mmHg 

• Not on treatment 

 

- Normotensive subjects 

• Male 

• Healthy 

• Aged between 20 and 70 years  

• Systolic BP ≤140mmHg and diastolic BP ≤80mmHg 

 

5.2.1.3 Exclusion criteria (all subjects) 

• Female 

• History of coronary artery, cerebrovascular or peripheral vascular disease  

• Total cholesterol >6.5 mmol/L 

• Current alcohol abuse 

• Diabetes mellitus 

• Asthma 
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• Smoking 

• ECG evidence of clinically significant arrhythmia, cardiac ischaemia or left 

ventricular hypertrophy (LVH) 

• Body mass index (BMI) ≥30 kg/m2 

• Regular exercise training 

• Taking any vasoactive or endothelial function modifying drugs which cannot 

be withdrawn for the purpose of the study 

• Previous serious drug allergy 

• Clinically significant abnormality on screening blood test 

• Contraindication to strenuous exercise 

• Presence of other clinically relevant conditions. 

 

Hypertensive subjects and healthy normotensive controls were matched for age and 

cholesterol values. 

 
5.2.2 Screening visit 

Potentially suitable participants received an information sheet with details about the 

study and, those who expressed an interest, were invited to attend a preliminary 

screening visit at the CRC. During this visit the study procedure was fully explained 

and each participant signed a written consent. Medical history, physical examination 

and a 12-lead ECG were performed, and a fasting blood sample was taken. Subjects 

also underwent a practice run on the cycle ergometer to familiarise themselves with 

the study equipment and to detect any contraindication to exercise. 

 

5.2.3 Study design 

Double-blind, randomised, placebo-controlled, 3-way crossover. 

 
5.2.4 Study protocol 

After the preliminary visit, subjects were randomly assigned to oral sildenafil 50 mg, 

hydralazine 25mg or placebo for 1 week, and attended the research centre on day 7 

and 8 of each treatment arm. On day 7, after a 30-minute rest in the sitting position, 

baseline measurements of BP and HR were made. Subjects were then asked to take 

their tablet and after 1 hour, time of the expected peak plasma concentrations and 
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biological effects (Shepherd et al., 1980; Muirhead et al., 2002), the same 

measurements were repeated, immediately followed by 3 minutes of step test, at the 

end of which BP was measured. On day 8 subjects underwent the protocol shown in 

Figure 5.1. 
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Figure 5.1. Schematic representation of the study protocol 

Period 1, day 8 of 
treatment 1 

- Arrive at the WTCRF at 9am; rest supine for 30 minutes 
- BP, HR, PWA, CF-PWV 
- Sildenafil 50 mg or hydralazine 25 mg or placebo 
 
 60 minutes 
 
- BP, HR, PWA, CF-PWV 
- Cardiopulmonary exercise testing 
- 60 minutes rest supine 
 

 +10min  BP, HR, PWA, CF-PWV  
 +40min  BP, HR, PWA, CF-PWV  
 +60min  BP, HR, PWA, CF-PWV  

- Discharge 
 

Washout, at least 
1 week 

Period 2, day 8 of 
treatment 2 

- Arrive at the WTCRF at 9am; rest supine for 30 minutes 
- BP, HR, PWA, CF-PWV 
- Sildenafil 50 mg or hydralazine 25 mg or placebo 
 
   60 minutes 
 
 
- BP, HR, PWA, CF-PWV 
- Cardiopulmonary exercise testing 
- 60 minutes rest supine 
 

 +10min  BP, HR, PWA, CF-PWV  
 +40min  BP, HR, PWA, CF-PWV  
 +60min  BP, HR, PWA, CF-PWV  

- Discharge 

Washout, at least 
1 week 

- Arrive at the WTCRF at 9am; rest supine for 30 minutes 
- BP, HR, PWA, CF-PWV 
- Sildenafil 50 mg or hydralazine 25 mg or placebo 
 
 60 minutes 
 
 
- BP, HR, PWA, CF-PWV 
- Cardiopulmonary exercise testing 
- 60 minutes rest supine 
 

 +10min  BP, HR, PWA, CF-PWV  
 +40min  BP, HR, PWA, CF-PWV  
 +60min  BP, HR, PWA, CF-PWV  

- Discharge 
 

Period 3, day 8 of 
treatment 3 
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5.2.5 Drugs 

Subjects were instructed to take 1 tablet 3 times per day, at around 9am, 3pm and 

10pm. They were given 25 tablets for each treatment arm (4 more than required), and 

asked to return all tablets left at the end of the treatment. Returned tablets were used 

to determine adherence to the treatment, which was calculated as 

€ 

100 × 25 − number returned( )
21

 and expressed as a percentage. 

 

Hydralazine tablets were not matched, therefore this treatment arm was unblinded to 

the subjects but not to the investigator. 

 
5.2.6 Adverse effects 

During the screening visit, subjects received 3 cards, one for each arm of the study, 

and asked to report any symptoms experienced during the period of treatment. These 

cards were collected at the end of the study and details of symptoms experienced 

were clarified when subjects attended the research centre. 

 

5.2.7 Statistical analysis 

The primary end-point of the study was peak VO2, and a standard deviation of ±4.8 

ml/kg/min in hypertensive subjects was used for the power calculations (Goodman et 

al., 1992; Guazzi et al., 2004a). It was anticipated that a total of 30 subjects (i.e. 15 

per group) would have 80% power to detect a 25% difference in peak VO2 between 

treatment arms at the 5% level. Results are presented as mean±SEM. Repeated 

measures ANOVA with post-hoc Bonferroni corrections was used to assess the 

effect of time and intervention within each group. Differences between groups were 

analysed by 2-tailed unpaired Student’s t-test. 

 

5.3 RESULTS 
 
5.3.1 Study subjects 

The clinical characteristics of the study subjects are shown in Table 5.1. Subjects 

enrolled in the study were recreationally active but none of them was resistance- or 

endurance-trained. Thirty-two subjects were recruited, and a total of 30 (15 per 



 98 

group) completed the study. During cardiopulmonary exercise testing, none of the 

subjects had to stop because of chest pain, ECG abnormalities, arrhythmias or critical 

blood pressure changes (systolic BP > 250mmHg and/or diastolic BP > 120mmHg), 

and the only reason for stopping exercise was leg fatigue in both groups. Mean 

maximum adherence was 97% during the placebo arm, 96% during the sildenafil 

arm, and 97% during the hydralazine arm. 

 

 

Parameter 

Hypertensive 

patients 

(n=15) 

Normotensive 

subjects 

(n=15) 

 

 

p* 

 

Age, y (range) 

Body mass index, kg/m2 

Total cholesterol, mmol/L 

Creatinine, umol/L                                            

Urea, mmol/L 

Sodium, mmol/L 

Potassium, mmol/L 

Fasting glucose, mmol/L 

Systolic BP, mmHg 

Diastolic BP, mmHg 

 

48±4 (30-68) 

27.2±0.8 

4.7±0.2 

90.3±4.0 

5.0±0.3 

140±0.3 

4.3±0.07 

5.1±0.1 

168±3 

95±2 

 

45±3 (27-66) 

25.5±0.7 

4.5±0.2 

90.8±3.1 

4.9±0.2 

141±0.4 

4.4±0.08 

4.9±0.1 

125±2 

74±2 

 

NS 

NS 

NS 

NS 

NS 

NS 

NS 

NS 

 

 
Table 5.1. Clinical characteristics of the hypertensive patients and normotensive 
subjects.  
Data are mean ± SEM. *Differences between groups were evaluated by unpaired Student’s t- 
test. BP, blood pressure. 
 

5.3.2 Blood pressure, arterial stiffness and exercise parameters after placebo  

Following placebo, central and peripheral BP, parameters of arterial wave reflection 

and arterial stiffness were significantly higher in hypertensive patients than 

normotensive subjects at all time points (ANOVA P<0.0001) (Table 5.2). In 

addition, after maximal exercise, CF-PWV significantly increased compared with 

baseline values in hypertensive patients, whereas this increase was not observed in 

the normotensive group (Table 5.3). With respect to exercise systolic BP during the 
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step test (day 7) and at peak exercise (day 8), despite higher resting systolic BP in the 

hypertensive group, changes from baseline were not significantly different between 

groups (Table 5.4 and Table 5.5). Hypertensive patients also exhibited lower peak 

VO2 (ANOVA P<0.0001), VO2 at anaerobic threshold (ANOVA P=0.001), peak 

workload (ANOVA P=0.002), exercise time (ANOVA P=0.002) and lower 

VO2/work rate relationship (ANOVA P<0.0001) than normotensive subjects (Table 

5.5).  

 

5.3.3 Effects of drug treatment before exercise 

The effects of sildenafil and hydralazine on BP, PWA and CF-PWV are shown in 

Table 5.2 and Table 5.3. For a graphical representation of the data presented in the 

tables please see Figure 5.2, Figure 5.3 and Figure 5.4 (data shown as changes from 

baseline). 

  

5.3.3.1 Blood pressure and heart rate 

In the hypertensive group, brachial systolic BP was lower after 1 week of drug 

treatment than after placebo (ANOVA P=0.01), but this difference was significant 

only for hydralazine (P<0.05). Brachial diastolic BP was also lower after drug 

treatment than after placebo (ANOVA P=0.005), both for sildenafil (P<0.01) and 

hydralazine (P<0.05). Neither hydralazine nor sildenafil affected peripheral PP in 

hypertensive individuals. With regard to MAP, this was lower after drug treatment 

than after placebo (ANOVA P=0.01), both for sildenafil (P<0.05) and hydralazine 

(P<0.05). None of these parameters changed significantly 1 hour after drug 

administration compared with baseline. After 1 week of drug treatment with 

sildenafil and hydralazine, HR was not significantly different compared with 

placebo. On the study day, HR was significantly lower 1 hour after placebo and 

sildenafil compared with baseline, but this was not observed after hydralazine. 

However, differences in changes from baseline were not statistically significant 

when compared amongst the three interventions. 

 

In the normotensive group, brachial systolic and diastolic BP, peripheral PP and 

MAP were not different from placebo at baseline after 1 week of drug treatment. On 
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the study day, brachial diastolic BP and MAP were significantly lower 1 hour after 

hydralazine compared with placebo; sildenafil did not affect these parameters. Heart 

rate was not significantly different at baseline after 1 week of drug treatment. On the 

study day, 1 hour after drug administration, no significant changes in HR were 

observed compared with baseline. 

 

5.3.3.2 Pulse wave analysis  

In the hypertensive group, CAIx and RAIx were lower after 1 week of drug 

treatment compared with placebo, and this almost reached statistical significance 

(P=0.07 and P=0.06, respectively); the magnitude of this effect was similar for 

sildenafil and hydralazine. On the study day, drug administration did not 

significantly affect these parameters compared with baseline. Central systolic and 

diastolic BP and central PP did not change significantly after 1 week of drug 

treatment compared with placebo, nor they changed 1 hour after drug administration 

on the study day. 

 

In the normotensive group, after 1 week of drug treatment, CAIx and central PP were 

not significantly different compared with placebo, and they did not change on the 

study day 1 hour after drug administration. RAIx was not significantly different at 

baseline after 1 week of treatment, but was significantly lower one hour after 

hydralazine compared with baseline values and with placebo (P<0.05 for both).  

 

5.3.3.3 Pulse wave velocity 

In both groups, no significant differences were observed at baseline, after 1 week of 

drug treatment, compared with placebo. On the study day, drug administration did 

not affect PWV in either group. 

 

5.3.4 Effects of sildenafil and hydralazine on exercise systolic BP and maximal 

exercise capacity 

The effects of drug treatment on exercise systolic BP and parameters of exercise 

capacity are shown in Table 5.4 and Table 5.5. 
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5.3.4.1 Exercise systolic BP 

During the step test (day 7) and at peak exercise during cardiopulmonary exercise 

testing (day 8), hypertensive subjects had a higher resting systolic BP than 

normotensive subjects, but changes from baseline were not significantly different 

between groups, and were not affected by drug treatment.  

 

5.3.4.2 Peak VO2 and related parameters 

A mean peak RER ≥1.10 was achieved in both groups during each study day, 

consistent with maximum effort during exercise. Treatment with sildenafil and 

hydralazine did not affect peak VO2, VO2 at anaerobic threshold or any of the other 

related exercise parameters compared with placebo in either group.  

 

5.3.5 Effects of drug treatment after exercise 

The effects of sildenafil and hydralazine on BP, PWA and CF-PWV after exercise 

are shown in Table 5.2 and Table 5.3. For a graphical representation of the data 

presented in the tables please see Figure 5.2, Figure 5.3 and Figure 5.4 (data shown 

as changes from baseline). 

 
5.3.5.1 Blood pressure and heart rate 

In the hypertensive group, following hydralazine, brachial systolic BP was 

significantly reduced compared with baseline at 40 and 60 min after exercise 

(P<0.01), and brachial diastolic BP was also lower at all time points after exercise 

(P<0.01 and P<0.05), but these changes were not significantly different from 

placebo and sildenafil. MAP was also significantly decreased compared with 

baseline at 40 and 60 min after exercise following hydralazine (P<0.01); no 

significant changes in MAP were observed following placebo and sildenafil. After 

hydralazine, peripheral PP was significantly increased compared with baseline at 10 

min after exercise and significantly increased 40 min after exercise (P<0.05), 

something that was not observed with sildenafil. Heart rate remained elevated 

compared with baseline at all time points after exercise following hydralazine 

treatment (P<0.01 and P<0.05); however, these changes were not significantly 

different when compared with placebo and sildenafil. In the normotensive group, at 
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10 min after exercise, brachial systolic BP was significantly increased compared 

with baseline following placebo and hydralazine but not sildenafil; however these 

changes from baseline were not significantly different amongst the 3 treatments. 

Brachial diastolic BP was significantly decreased compared with baseline at all time 

points after exercise, and these changes were also significant when compared with 

placebo. MAP was significantly decreased compared with baseline at 40 and 60 min 

after exercise following hydralazine. No significant changes were observed with 

either placebo or sildenafil. Peripheral PP was significantly increased at 10 min after 

exercise compared with baseline values, but these changes from baseline were not 

significantly different amongst the three interventions. HR remained significantly 

elevated compared with baseline at all time points after exercise. 

 

5.3.5.2 Pulse wave analysis 

In the hypertensive group, CAIx was significantly decreased compared with baseline 

at all time points after exercise following hydralazine (P<0.01 and P<0.05), and at 

10 and 40 min after exercise following sildenafil (P<0.01 and P<0.05). CAIx@75 

was reduced at 40 min after exercise compared with baseline following sildenafil 

(P<0.05) but not hydralazine. For both, CAIx and CAIx@75, changes were not 

significantly different between the two drug treatments. Central PP was significantly 

decreased compared with baseline at 10 min after exercise following sildenafil 

(P<0.05) and at 40 min after exercise for all treatments (P<0.05), but these changes 

were not significantly different amongst the three interventions. RAIx was 

significantly decreased compared with baseline at 10 and 40 min after exercise 

following sildenafil (P<0.05), and at all time points following hydralazine (P<0.01 

and P<0.05). Central systolic BP was significantly lower than baseline at 40 and 60 

min after exercise following placebo (P<0.01 and P<0.05) and hydralazine (P<0.01), 

and a similar trend, although not statistically significant, was observed with 

sildenafil; however, changes from baseline were not significantly different amongst 

the three interventions. Central diastolic BP was significantly decreased compared 

with baseline at 60 min after exercise following hydralazine (P<0.01), a change that 

was also significant when compared with placebo (P<0.05). 
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In the normotensive group, CAIx did not change significantly from baseline at all 

time points after exercise, except for a reduction at 60 min after exercise following 

treatment with hydralazine; CAIx@75 was significantly increased 10 min after 

exercise compared with baseline, with no differences detected amongst treatments. 

RAIx decreased at all time points after exercise compared with baseline following 

placebo or sildenafil, whereas, following hydralazine, the reduction became apparent 

only at 40 and 60 min after exercise. No difference was observed amongst the three 

interventions. At 40 and 60 min after exercise, central systolic BP was significantly 

lower than baseline following hydralazine, and this was also true for central diastolic 

BP. No significant changes were observed in central diastolic BP after exercise with 

placebo or sildenafil. Central PP was significantly increased compared with baseline 

at 10 min after exercise following hydralazine, but this change was not significant 

compared with placebo and sildenafil.  

 

5.3.5.3 Pulse wave velocity 

In the normotensive group, CF-PWV was not affected by either sildenafil or 

hydralazine treatment at any time point after exercise. By contrast, in hypertensive 

patients, CF-PWV was significantly lower after exercise following sildenafil 

treatment but not after placebo or hydralazine (ANOVA P=0.0001). 
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Normotensives 

 
Hypertensives 

placebo 
 

sildenafil 
 

hydralazine 
 

placebo 
 

sildenafil 
 

hydralazine 
 

 

Mean 
(SEM) 

Δ from 
baseline 

Mean 
(SEM) 

Δ from 
baseline 

Mean 
(SEM) 

Δ from 
baseline 

Mean 
(SEM) 

Δ from 
baseline 

Mean 
(SEM) 

Δ from 
baseline 

Mean 
(SEM) 

Δ from 
baseline 

             
Brachial SBP 
(mmHg) 

Baseline 122(3.2)  122(3.0)  124(3.3)  152(3.4)  145(4.2)  143(3.1)  

 1 hour 
 

123(3.0) 1(1.1) 121(3.2) -2(1.1) 123(3.3) -2(1.4) 150(4.2) -2(2.1) 142(4.6) -2(2.5) 144(3.0) 0(1.7) 

+10min 
 

129(3.4)† 7(1.3) 126(3.5) 4(2) 131(4.1)† 6(1.4) 152(3.1) 0(2.2) 141(3.8) -3(2.9) 144(2.9) 1(2.7) 

+40min 
 

121(2.3) -1(1.5) 121(4.0) -1(2.2) 121(3.8) -3(1.8) 147(3.0) -4(2) 141(3.2) -4(2.5) 136(2.7)† -7(2.1) 

+60min  

 
 
Post exercise 

 
121(3.5) -1(1.1) 120(3.1) -2(2.3) 120(3.0)* -3(1.9) 148(4.4) -4(2.2) 141(2.9) -4(2.6) 137(3.2)* -6(2.7) 

   
Brachial DBP 
(mmHg) 

Baseline 71(3.4)  72(3.2)  73(3.5)  88(2.1)  81(3.2)  83(2.5)  

 1 hour 
 

73(3.8)* 2(1) 70(2.8) -2(1.6) 67(3.2)* -5(2.4)* 
vs P 

88(2.0) 0(1.5) 81(2.9) 0(1.4) 80(2.9) -2(1.3) 

+10min 
  

72(2.7) 1(1.2) 69(2.6) -2(1.7) 68(3.6)* -6(2.4)* 
vs P  

88(2.7) 0(1.4) 79(1.7) -3(1.4) 78(2.3)* -4(1.6) 

+40min 
  

70(3.0) 0(1.1) 69(3.1) -3(1.5) 66(3.2)† -7(2.4)* 
vs P  

87(1.9) 0(1.2) 80(1.9) -1(1.6) 80(2.8) -3(1.1) 

+60min  

 
 
Post exercise 

 

 

71(3.2) 0(1.2) 70(3.0) -2(2.7) 66(3.2)† -8(2.3)‡ 
vs P 

 

87(2.3) -1(1.3) 79(2.6) -2(1.6) 77(2.5)† -5(1.2) 

 
Table 5.2. Peripheral and central parameters at baseline, 1 hour after drug administration and after exercise. 
For absolute values comparisons are against baseline; for Δ (change) from baseline comparisons are among placebo, sildenafil and hydralazine; 
*P<0.05, †P< 0.01, ‡P<0.001. P, placebo. 
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Normotensives 

 
Hypertensives 

placebo 
 

sildenafil 
 

hydralazine 
 

placebo 
 

sildenafil 
 

hydralazine 
 

 

Mean 
(SEM) 

Δ from 
baseline 

Mean 
(SEM) 

Δ from 
baseline 

Mean 
(SEM) 

Δ from 
baseline 

Mean 
(SEM) 

Δ from 
baseline 

Mean 
(SEM) 

Δ from 
baseline 

Mean 
(SEM) 

Δ from 
baseline 

             
MAP  
(mmHg) 

Baseline 87(3.2)  88(3.0)  88(2.9)  109(3.1)  103(4.1)  103(3.4)  

 1 hour 
 

89(3.1) 2(1.2) 86(3.5) -2(1.4) 84(3.0)† -4(0.8)† 
vs P 

110(3.4) 0(1.6) 102(3.7) -1(1.8) 101(3.5) -2(1.8) 

+10min 
 

90(2.9) 3(1.3) 88(3.2) 0(1.7) 87(2.6) -1(1.4)* 
vs P 

110(2.7) 0(1.3) 100(2.9) -3(2.4) 99(2.6) -4(2) 

+40min 
 

86(3.4) -1(1.1) 85(3.1) -3(1.8) 83(3.3)† -5(1.5) 107(2.2) -2(1.3) 99(3.3) -4(1.9) 98(2.8)† -5(1.5) 

+60min  

 
 
Post exercise 

 
86(3.7) -1(1.1) 86(3.1) -2(2.5) 82(3.2)† -6(1) 107(3.4) -3(1.7) 100(2.5) -3(2.1) 96(2.3)† -7(1.3) 

   
Heart rate 
(bpm) 

Baseline 61(2)  60(3)  65(3)  64(2)  68(2)  69(2)  

 1 hour 
 

56(2)† -5(1.0) 59(3) -1(1.1) 
 

63(2) -2(1.5) 
 

59(2)† -5(1.3) 63(2)† -5(1.0) 66(2) -3(1.1) 

+10min 
  

82(3)† 22(2.8) 83(3)† 22(3.5) 87(2)† 22(3.3) 78(3)† 11(3.4) 83(3)† 15(2.0) 86(3)† 17(2.4) 

+40min 
  

70(3)† 9(1.8) 72(3)† 12(2.6) 77(2)† 12(2.6) 68(2) 4(2.0) 73(2)* 4(1.7) 76(3)† 8(1.9) 

+60min  

 
 
Post exercise 

 

 

69(3)† 8(1.2) 70(3)† 10(1.3) 73(2)† 8(1.5) 

 

66(2) 2(2.1) 71(2) 2(1.8) 73(3)* 5(1.9) 

 
Table 5.2  
Continued from previous page 
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Normotensives 

 
Hypertensives 

placebo 
 

sildenafil 
 

hydralazine 
 

placebo 
 

sildenafil 
 

hydralazine 
 

 

Mean 
(SEM) 

Δ from 
baseline 

Mean 
(SEM) 

Δ from 
baseline 

Mean 
(SEM) 

Δ from 
baseline 

Mean 
(SEM) 

Δ from 
baseline 

Mean 
(SEM) 

Δ from 
baseline 

Mean 
(SEM) 

Δ from 
baseline 

             
Central SBP 
(mmHg) 

Baseline 106(3.2) 
 

 107(3.3)  107(3.6)  132(4.1)  129(5.2)  128(4.1)  

 1 hour 
 

108(3.1) 1(1.4) 105(3.4) -2(1.2) 104(3.2)* -3(1.1) 132(4.0) 0(2.4) 128(5.3) -1(2.4) 128(4.4) 0(1.8) 

+10min 
 

110(2.6)† 4(1.3) 107(3.1) 0(1.8) 110(3.2) 3(1.3) 129(3.6) -3(2.3) 122(3.1) -6(3.1) 123(3.8) -4(2.3) 

+40min 
 

104(3.3) -2(1.2) 103(3.8) -3(2.0) 102(3.6)* -5(1.7) 127(3.2)† -6(1.9) 123(3.0) -6(2.9) 119(3.1)† -8(2.1) 

+60min  

 
 
Post 
exercise 

 
104(3.0) -2(1.1) 104(3.6) -3(2.1) 101(3.1)† -6(1.4) 127(4.2)* -5(2.1) 124(3.5) -4(3) 119(4.3)† -5(2.6) 

   
Central DBP 
(mmHg) 

Baseline 72(3.4)  73(3.1)  72(3.7)  84(2.2)  82(3.1)  84(2.3)  

 1 hour 
 

74(3.2) 2(1.0) 71(2.3) -2(1.6)* 
vs P 

69(3.3)† -4(1.0)† 
vs P 

84(2.5) 0(1.5) 83(2.0) 0(1.6) 81(2.7) -3(1.6) 

+10min 
  

74(2.7) 3(1.3) 72(2.0) -1(1.8) 71(2.1) -2(1.5)* 
vs P 

85(2.1) 0(1.5) 81(1.0) -1(2.2) 81(2.2) -3(1.7) 

+40min 
  

72(3.0) 0(1.1) 70(2.7) -2(1.6) 69(3.4)* -4(1.2)* 
vs P 

84(2.3) 0(1.2) 82(2.4) 0(1.7) 81(2.0) -2(1.1) 

 
 
Post 
exercise 

+60min  

 

72(3.2) 0(1.0) 71(3.2) -2(2.8) 67(3.2)† -5(0.9) 

 

83(2.3) -1(1.4) 81(2.3) -1(1.6) 78(2.1)† -6(1.2)* 
vs P 

 
Table 5.2 
Continued from previous page 
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Normotensives 

 
Hypertensives 

placebo 
 

sildenafil 
 

hydralazine 
 

placebo 
 

sildenafil 
 

hydralazine 
 

 

Mean 
(SEM) 

Δ from 
baseline 

Mean 
(SEM) 

Δ from 
baseline 

Mean 
(SEM) 

Δ from 
baseline 

Mean 
(SEM) 

Δ from 
baseline 

Mean 
(SEM) 

Δ from 
baseline 

Mean 
(SEM) 

Δ from 
baseline 

             
Peripheral PP  
(mmHg) 

Baseline 51(2.1)  50(2.6)  53(2.5)  64(3.4)  63(2.1)  61(2.1)  

 1 hour 
 

51(2.7) 0(1.4) 51(2.0) 1(1.5) 55(2.4) 2(1.4) 62(3.0) -2(1.5) 61(3.2) -2(2.3) 63(3.1) 3(2.0) 

+10min 
 

57(3.0)† 6(1.5) 56(3.2)* 6(2.5) 63(3.2)† 9(1.4) 64(3.2) 0(2.4) 62(2.0) -1(2.2) 66(2.5)* 5(2.3) 

+40min 
 

50(2.3) -1(1.5) 53(2.2) 2(2.1) 54(2.1) 1(1.3) 60(2.7) -4(1.9) 60(2.9) -3(2.1) 56(2.2)* -4(2.1) 

+60min  

 
 
Post exercise 

 
50(1.9) -1(1.1) 50(2.7) 0(2.4) 55(2.9) 1(1.5) 61(3.1) -3(1.8) 62(2.8) -1(1.8) 60(2.6) -1(1.9) 

   
Central PP 
(mmHg) 

Baseline 35(1.1)  34(1.3)  34(1.1)  48(3.2)  46(2.0)  44(3.3)  

 1 hour 
 

34(1.6) 0(1.2) 34(1.2) 0(1.2) 35(1.2) 1(1.1) 48(3.5) -1(1.2) 45(3.3) -1(1.9) 46(3.4) 2(1.6) 

+10min 
  

36(1.9) 1(1.1) 35(1.7) 1(1.7) 39(2.3)* 4(1.9) 45(2.9) -4(2.2) 41(2.8)* -4(1.7) 43(2.5) -1(1.9) 

+40min 
  

32(1.0)* -2(1.0) 33(1.9) -1(1.7) 33(1.2) -1(1.0) 43(2.1)* -5(1.8) 41(2.5)* -4(2.0) 38(2.7)† -5(1.7) 

+60min  

 
 
Post exercise 

 

 

32(1.1)† -3(0.5) 32(1.7) -1(1.5) 34(1.7) 0(1.2) 

 

44(2.4)* -4(1.6) 44(2.2) -2(1.8) 41(2.1) -3(1.7) 

 
Table 5.2 
Continued from previous page 
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Normotensives 
 

Hypertensives 

placebo 
 

sildenafil 
 

hydralazine 
 

placebo 
 

sildenafil 
 

hydralazine 
 

 

Mean 
(SEM) 

Δ from 
baseline 

Mean 
(SEM) 

Δ from 
baseline 

Mean 
(SEM) 

Δ from 
baseline 

Mean 
(SEM) 

Δ from 
baseline 

Mean 
(SEM) 

Δ from 
baseline 

Mean 
(SEM) 

Δ from 
baseline 

             
CAIx (%) 
 

Baseline 6(4.6)  6(4.8)  3(4.1)  20(4.1)  16(4.6)  15(4)  

 1 hour 
 

8(3.8) 2(1.7) 6(4.2) 0(2.7) -1(4.1) -4(2.3) 22(3.9) 2(1.0) 16(4.7) 0(2.1) 15(5) 0(1.3) 

+10min 
 

8(4.0) 2(2.9) 9(3.5) 3(2.5) 4(4.0) 0(3.6) 18(3.1) -2(2.3) 10(3.7)† -6(2.0) 9(4)† -6(1.4) 

+40min 
 

4(4.0) -2(3.3) 4(3.8) -2(3.5) -1(3.8) -4(2.6) 15(4.2) -5(2.6) 10(4.3)* -7(1.4) 10(4)* -5(1.9) 

+60min  

 
 
Post exercise 

 
4(4.1) -2(2.3) 1(4.3) -5(2.2) -2(3.6)* -5(2.2) 16(4.0) -4(2.1) 12(4.6) -4(2.3) 10(4)* -5(1.7) 

   
CAIx@75 (%) 
 

Baseline 2(7.4)  -1(5.6)  -2(4.5)  15(4.3)  14(4.6)  11(4.4)  

 1 hour 
 

2(7.2) 0(1.4) -1(5.0) 0(2.5) -6(4.6) -4(1.3) 14(4.2) -1(1.3) 11(4.6) -2(2.1) 10(4.4) -1(2.2) 

+10min 
  

13(5.2)* 11(4.1) 12(3.4)† 13(3.2) 9(3.7)* 11(4.3) 17(3.6) 3(1.9) 14(3.7) 0(1.9) 12(3.8) 1(1.6) 

+40min 
  

5(6.4) 3(3.3) 2(3.9) 3(2.5) -1(3.6) 1(2.7) 12(4.1) -3(2.2) 9(4.4)* -5(1.9) 10(4.1) -1(1.4) 

+60min  

 
 
Post exercise 

 

 

4(6.3) 1(2.3) -1(4.5) 0(2.1) -3(3.7) -1(2.1) 

 

12(4.1) -3(2.2) 10(4.5) -4(1.4) 9(3.6) -2(1.6) 

 
Table 5.2 
Continued from previous page 
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Normotensives 
 

Hypertensives 

placebo 
 

sildenafil 
 

hydralazine 
 

placebo 
 

sildenafil 
 

hydralazine 
 

 

Mean 
(SEM) 

Δ from 
baseline 

Mean 
(SEM) 

Δ from 
baseline 

Mean 
(SEM) 

Δ from 
baseline 

Mean 
(SEM) 

Δ from 
baseline 

Mean 
(SEM) 

Δ from 
baseline 

Mean 
(SEM) 

Δ from 
baseline 

             
RAIx (%) 
 

Baseline 55(5.7)  55(6.0)  50(5.6)  70(5.9)  66(6.6)  65(6.2)  

 1 hour 
 

58(5.8) 2(1.7) 55(5.5) 0(2.3) 46(5.7)* -4(1.6)* 
vs P 

73(5.4) 2(1.6) 67(6.4) 2(2.7) 66(6.1) 0(1.7) 

+10min 
 

48(4.7)† -6(2.5) 47(5.2)† -8(2.4) 48(6.1) -2(4.2) 67(5.0) -3(4.1) 58(4.6)* -8(2.7) 56(5.2)† -9(2.2) 

+40min 
 

49(5.6)* -6(2.4) 46(5.1)† -9(2.7) 42(5.4)† -8(2.7) 67(5.2) -3(1.6) 59(5.4)* -7(2.6) 60(5.8)* -5(2.2) 

+60min  

 
 
Post 
exercise 

 

 

48(5.7)† -7(1.8) 48(5.2)† -6(2.0) 42(5.3)† -8(2.3) 

 

69(5.5) -1(1.6) 62(5.8) -4(2.4) 60(6.0)* -5(1.9) 

 
Table 5.2 
Continued from previous page 
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Normotensives 

 
Hypertensives 

placebo 
 

sildenafil 
 

hydralazine 
 

placebo 
 

sildenafil 
 

hydralazine 
 

 

Mean 
(SEM) 

Δ from 
baseline 

Mean 
(SEM) 

Δ from 
baseline 

Mean 
(SEM) 

Δ from 
baseline 

Mean 
(SEM) 

Δ from 
baseline 

Mean 
(SEM) 

Δ from 
baseline 

Mean 
(SEM) 

Δ from 
baseline 

             
PWV 
 (m/s) 

Baseline 6.4(0.32)  6.3(0.28)  6.3(0.26)  8.7(0.55)  8.7(0.55)  8.4(0.40)  

 1 hour 
 

6.5(0.31) 0.1(0.11) 6.4(0.38) 0.1(0.18) 6.3(0.26) 0(0.12) 8.8(0.56) 0(0.14) 8.6(0.57) -0.1(0.15) 8.5(0.47) 0.1(0.19) 

+10min 
 

6.5(0.22) 0(0.15) 6.5(0.27) 0.2(0.13) 6.8(0.29)‡ 0.5(0.11)* 
vs P 

9.1(0.61) 0.4(0.14) 8.6(0.50) -0.1(0.14) 8.7(0.53) 0.3(0.20) 

+40min 
 

6.6(0.32) 0.1(0.10) 6.2(0.25) 0(0.20) 6.4(0.26) 0.1(0.11) 9.3(0.65)* 0.6(0.30) 8.4(0.51) -0.3(0.17)† 
vs P and H 

8.7(0.55) 0.3(0.22) 

+60min  

 
 
Post 
exercise 

 

 

6.5(0.29) 0(0.14) 6.2(0.31) 0(0.14) 6.3(0.25) 0(0.09) 

 

9.4(0.65)* 0.6(0.24) 8.5(0.58) -0.2(0.13)† 
vs P 

8.4(0.52) 0(0.17) 

 
Table 5.3. CF-PWV at baseline, 1 hour after drug administration and after exercise. 
For absolute values comparisons are against baseline; for Δ (change) from baseline comparisons are among placebo, sildenafil and hydralazine. 
*P<0.05, †P< 0.01, ‡P<0.001. P, placebo; H, hydralazine. 
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STEP TEST - SYSTOLIC BP 

placebo 
 

sildenafil 
 

hydralazine 
 

Mean (SEM) 
 

Mean (SEM) 
 

Mean (SEM) 
 

 

Absolute 
value 

∆ from 
baseline 

%∆ from 
baseline 

Absolute 
value 

∆ from 
baseline 

%∆ from 
baseline 

Absolute 
value 

∆ from 
baseline 

%∆ from 
baseline 

 Normotensives  

Baseline 
 

122(2.1)   122(2.2)   121(2.1)   

1 hour 
 

123(2.6) 2(1.6) 1.2(1.3) 119(2.0) -2(1.5) -1.5(1.3) 121(2.0) 1(1.3) 0.8(1.1) 

Systolic 
BP 
(mmHg) 
 
 BP@3min 

 
150(4.6)* 28(3.1) 22.7(2.3) 144(2.7)* 23(2.2) 18.9(2.1) 149(3.4)* 28(2.2) 23.5(1.8) 

Hypertensives 
 

 

Baseline 
 

151(2.1)   146(3.9)   144(2.9)   

1 hour 
 

150(3.3) -1(1.3) -0.6(1.1) 141(2.0) -5(2.7) -2.9(1.6) 141(2.0) -3(2.8) -1.4(1.9) 

Systolic 
BP 
(mmHg) 
 
 BP@3min 

 

 

181(3.6)*† 30(3.4) 20.1(2.3) 170(4.2)*† 24(4.4) 17.2(3.0) 175(4.0)*† 31(4.1) 22.2(3.1) 

 
 Table 5.4. Systolic BP response after 3 minutes of step test.   
 For absolute values comparisons are against baseline; Δ, change. For Δ and %∆ from baseline comparisons are among placebo, sildenafil 
 and hydralazine. *P<0.001 vs baseline; †P<0.001 vs normotensives. 
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Normotensives 

 
Hypertensives 

placebo 
 

sildenafil 
 

hydralazine 
 

placebo 
 

sildenafil 
 

hydralazine 
 

 

Mean (SEM) Mean (SEM) 
 

Mean (SEM) 
 

Mean (SEM) 
 

Mean (SEM) 
 

Mean (SEM) 
 

        
Peak VO2 (ml/kg/min) 
 

34.6(1.8) 35.2(2.0) 34.1(1.7) 26.7 (1.6)† 26.9 (1.5)† 26.1 (1.5)† 

% of predicted peak  VO2  
 

99(5.0) 100(5.0) 98(5.0) 80(2.0)* 81(3.0)† 79(3.0)* 

VO2 at AT (ml/kg/min) 
 

16.8(1.0) 16.5(0.9) 17.5(1.2) 13.7(0.7)* 13.6(0.8)* 14.1(0.8)* 

Peak workload (W) 
 

241.3(12.7) 242.7(11.6) 241.3(11.2) 201.3(11.4)* 204.0(11.5)* 198.7(11.4)* 

Peak RER 
 

1.16 (0.01) 1.14(0.01) 1.15(0.01) 1.15(0.02) 1.13(0.01) 1.14(0.02) 

Peak HR (bpm) 
 

162.3(5.4) 165.2(4.9) 166.1(4.8) 150.2(4.8) 155.9(3.7) 157.4(5.0) 

Peak O2 pulse (ml/beat) 
 

17.2(0.6) 17.0(0.7) 16.6(0.6) 15.4(0.9) 15.1(1.0) 14.4(0.8)‡ 

∆VO2/∆WR (ml/min/W) 
 

9.5(0.1) 9.6(0.2) 9.4(0.1) 8.3(0.3)† 8.4(0.3)† 8.2(0.2)† 

Exercise time (min) 
 

 

13.1(0.6) 13.2(0.5) 13.2(0.5) 

 

11.3(0.5)* 11.4(0.5)* 11.2(0.5)* 

 
Table 5.5. Cardiopulmonary exercise testing data after placebo, sildenafil and hydralazine.  
AT, anaerobic threshold; W, watts; RER, respiratory exchange ratio; HR, heart rate; WR, work rate; Δ, change. *P<0.05 vs normotensives; 
†P<0.01 vs normotensives; ‡P< 0.05 vs placebo. 
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Normotensives 

 
Hypertensives 

placebo 
 

sildenafil 
 

hydralazine 
 

placebo 
 

sildenafil 
 

hydralazine 
 

 

Mean (SEM) Mean (SEM) 
 

Mean (SEM) 
 

Mean (SEM) 
 

Mean (SEM) 
 

Mean (SEM) 
 

        
Peak exercise systolic BP, 
absolute values (mmHg) 197(3.6) 190(4.1) 197(3.1) 220(2.4)† 214(3.6)† 216(3.2)† 

  Peak exercise systolic BP,  
  ∆ from before exercise (mmHg) 72 (4.2) 70(3.6) 75(4.5) 71(3.5) 71(5.2) 72(4.0) 

Peak exercise systolic BP, 
∆% from before exercise (%) 

 

58.8(4.7) 59.0(3.3) 63.8(4.7) 

 

47.7(2.9) 51.1(4.4) 50.3(3.4) 

 
Table 5.5. 
Continued from previous page 
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Figure 5.2. Changes from baseline in peripheral and central systolic and diastolic BP in 
normotensive and hypertensive subjects.  
SBP, systolic blood pressure; DBP, diastolic blood pressure.
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Figure 5.3. Changes from baseline in mean arterial pressure, peripheral and central PP 
and CAIx in normotensive and hypertensive subjects.  
MAP, mean arterial pressure; CAIx, central augmentation index; PP, pulse pressure. 
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Figure 5.4. Changes from baseline in RAIx, HR, CAIx@75 and PWV in normotensive 
and hypertensive subjects.  
RAIx, radial augmentation index; HR, heart rate; CAIx@75, CAIx adjusted to standard HR 
of 75bpm; PWV, pulse wave velocity.  
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5.3.6 Subjects withdrawals and adverse effects 

Two subjects were withdrawn from the study because of severe headache, one while 

taking sildenafil and the other while on placebo. A list of the adverse effects 

experienced by hypertensive and normotensive subjects is given in Table 5.6 and 

Table 5.7, respectively. Dyspepsia was the most common symptom reported in the 

hypertensive group while on sildenafil, followed by headache and low back pain. 

Nasal congestion, headache and dry throat were reported while on hydralazine. In the 

normotensive group, headache was the most common symptom reported while 

taking sildenafil, followed by dyspepsia and low back pain. Headache was also the 

most common symptom reported while on hydralazine.  

 

Among the subjects who experienced dyspepsia, 9 took over-the-counter acid 

suppression medications, with resolution of the symptoms in few days. The next 

most common symptom was mild to moderate headache, for which 11 subjects took 

paracetamol; however, in 2 subjects, one from the hypertensive and the other from 

the normotensive group, headache was severe and led to discontinuation of the 

treatment and withdrawn from the study. A number of subjects also experienced low 

back/buttock/leg pain of mild to moderate intensity at the beginning of treatment 

with sildenafil. These symptoms usually lasted for the first 2 to 3 days and were 

responsive to paracetamol. 
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Hypertensives (n=16) Sildenafil  Hydralazine Placebo 
 Total Mild Mod Severe  Total Mild Mod Severe  Total Mild Mod Severe 
               
Indigestion/heartburn 8 (50) 5 (31) 3 (19)    2 (12) 1 (6) 1 (6)   1 (6) 1 (6)   
Headache 6 (37) 3 (19) 2 (12) 1 (6)  2 (12)  2 (12)   1 (6) 1 (6)   
Back/buttock/leg ache 4 (25) 2 (12) 2 (12)   1 (6) 1 (6)    0    
Fatigue 0     1 (6) 1 (6)    1 (6)    
Facial flushing 2 (12) 2 (12)    0     0    
Cramp 1 (6) 1 (6)    0     1 (6)  1 (6)  
Dry throat 0     2 (12) 1 (6) 1 (6)   0    
Nasal congestion 0     3 (19) 1 (6) 2 (12)   0    
Insomnia 1 (6)  1 (6)   0     2 (12) 1 (6) 1 (6)  
Joint pain 1 (6)  1 (6)   0     0    
Loin pain 2 (12)  2 (12)   0     0    
Nausea 1 (6)  1 (6)   0     1 (6) 1 (6)   
Neck pain 1 (6) 1 (6)    0     0    
Urinary frequency 0     1 (6)  1 (6)   0    
Anxiety 0     1 (6)  1 (6)   0    
Diarrhoea 0     0     1 (6)   1 (6) 

  
Table 5.6. Symptoms experienced with sildenafil, hydralazine and placebo in all hypertensive subjects recruited. 

         Values are numbers (percentages) of subjects. Mod, moderate.
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Normotensives (n=16) Sildenafil  Hydralazine Placebo 
 Total Mild Mod Severe  Total Mild Mod Severe  Total Mild Mod Severe 
               Indigestion/heartburn 3 (19) 1 (6) 2 (12)    1 (6) 1 (6)    0    
Headache 4 (25) 2 (12) 2 (12)   4 (25) 3 (19) 1 (6)   1 (6)   1 (6) 
Back/buttock/leg ache 2 (12) 2 (12)    1 (6) 1 (6)    0    
Fatigue 1 (6)  1 (6)   1 (6) 1 (6)    1 (6)    
Facial flushing 0     0     0    
Cramp 1 (6) 1 (6)    0     1 (6) 1 (6)   
Dry throat 0     1 (6) 1 (6)    0    
Nasal congestion 0     1 (6) 1 (6)    0    
Insomnia 1 (6)  1 (6)   0     1 (6) 1 (6)   
Joint pain 0     0     0    
Loin pain 1 (6)  1 (6)   0     0    
Nausea 0     1 (6) 1 (6)    0    
Neck pain 0     0     0    
Urinary frequency 0     0     0    
Anxiety 0     1 (6)  1 (6)   0    
Diarrhoea 0     0     0    

 
Table 5.7. Symptoms experienced with sildenafil, hydralazine and placebo in all normotensive subjects recruited. 

         Values are numbers (percentages) of subjects. Mod, moderate.
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5.4 DISCUSSION 
This study confirmed, as anticipated, that hypertensive patients have reduced exercise 

capacity compared with normotensive subjects. However, PDE5 inhibition did not 

affect peak VO2 or the systolic BP response to exercise. Nevertheless, the results shown 

that PDE5 inhibition reduces the post-exercise increase in PWV found in hypertensive 

but not in normotensive subjects, an effect that was not observed with placebo or 

hydralazine treatment.  

 

5.4.1 Blood pressure, pulse wave analysis and pulse wave velocity in normotensive 

and hypertensive subjects 

After placebo, central and peripheral BP, parameters of arterial wave reflection and 

arterial stiffness were significantly higher in hypertensive patients than normotensive 

subjects at all time points. Furthermore, in the recovery period after exercise, PWV 

significantly increased compared with baseline values in hypertensive patients, whereas 

this increase was not observed in the normotensive group. Studies performed in healthy 

subjects report either a reduction (Naka et al., 2003) or no change (Munir et al., 2008) 

in PWV after exercise, but no data are available for hypertensive individuals. Findings 

from this study indicate that, unlike healthy subjects, in hypertensive patients arterial 

distensibility is reduced in the recovery period after exercise, consistent with an 

impaired vascular response to exercise.  

 

5.4.2  Maximal exercise capacity in normotensive and hypertensive subjects 

Hypertensive subjects exhibited a lower exercise capacity, measured as peak VO2, than 

normotensive individuals, which is in agreement with previous evidence (Fagard et al., 

1988; Lim et al., 1996). Not only peak VO2 but also VO2 at anaerobic threshold was 

significantly lower in hypertensive individuals, as well as the changes in the VO2/work 

rate relationship, which reflects a smaller increase in VO2 with work rate compared with 

normotensive individuals. Overall, this suggests an earlier occurrence of anaerobic 

metabolism during exercise, leading to early fatigue and reduced exercise time. This 

response may be the result of impaired oxygen delivery to the working muscles and 
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central and peripheral factors may play an important role. Indeed, there is evidence of 

an impaired left ventricular relaxation and suboptimal ventricular filling with reduced 

stroke volume during exercise from the earliest stages of hypertension (Lund-Johansen, 

1980; Lim et al., 1996). Stroke volume may also be reduced due to the higher afterload 

present in hypertension (Goodman et al., 1992; Modesti et al., 1999).  

 

5.4.3 Effects of sildenafil on blood pressure, pulse wave analysis and pulse wave 

velocity before exercise 

In hypertensive patients, at baseline, BP was lower after drug treatment compared with 

the placebo arm, indicating a BP lowering effect of both drugs after 1 week of 

treatment. However, on the study day, 1 hour after drug administration, BP was not 

significantly different from baseline, in agreement with findings reported in the study by 

Oliver and coworkers (Oliver et al., 2006), thus suggesting an attenuation of the acute 

BP lowering effect of sildenafil after chronic administration. This may be possibly 

related to the activation of counterregulatory mechanisms, such as the renin-angiotensin 

system, stimulated by the initial vasodilatation-mediated reduction in BP. 

 

In the current study sildenafil did not significantly reduce parameters of arterial wave 

reflection, measured as CAIx, CAIx@75 or RAIx, either after 1 week of drug treatment 

or 1 hour after drug administration; the same was observed for PWV. However, 

although not significant, there was a trend to a progressive reduction of CAIx and RAIx 

in the hypertensive group, with P values of 0.07 and 0.06, respectively. Therefore, the 

possibility of a significant effect on arterial wave reflection should not be dismissed, 

and it is possible that, with a larger sample size, or a longer duration of treatment, a 

significant effect could have been observed. Other studies have reported an effect of 

sildenafil on arterial wave reflection (see section 1.6.4), mainly single-dose studies in 

which interactions with other drugs could have affected, at least in part, the observed 

effect. In the study by Oliver and coworkers (Oliver et al., 2006), acute administration 

of sildenafil reduced arterial wave reflection and a similar, smaller effect was observed 

after chronic administration (16 days), although this was not different from placebo, in 
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agreement with findings reported in the current study. In addition, hypertensive 

individuals in the study by Oliver and coworkers were significantly older than the 

hypertensive subjects recruited in the study presented here (mean age 60 vs 48 years, 

respectively) and, as such, most likely to have stiffer arteries. Indeed, they had 

substantially higher baseline values of all indexes of arterial wave reflection, thus 

making the detection of a small effect of sildenafil on wave reflection more likely. 

 

5.4.4 Effects of sildenafil on exercise systolic BP 

The effects of sildenafil on systolic BP response to exercise were investigated, on 

separate days, during a low-intensity exercise test (step test) and during maximal 

exercise effort, and compared with placebo and hydralazine. On each occasion, 

hypertensive subjects had a higher resting and exercise systolic BP, but the magnitude 

of the exercise-induced increase in systolic BP was not significantly different from 

normotensive subjects, and the type of treatment made no difference overall. The 

evidence for an exaggerated systolic BP response to exercise is not uniform in the 

literature, and there are data showing that hypertensive patients, despite a higher resting 

BP, may present an absolute increase in exercise BP similar to normotensive individuals 

(Palatini, 1994), in agreement with findings reported in the current study. Alternatively, 

with regard to the step test, it is possible that its low intensity and short duration (3 

minutes) were not sufficient to detect a different BP response to exercise between 

normotensive and hypertensive subjects. With respect to systolic BP at peak exercise, it 

is worth noting that, unlike the step test, in which BP was measured after 3 minutes of 

exercise in both groups, during cardiopulmonary exercise testing normotensive subjects 

were able to exercise for longer and reached a higher peak workload than hypertensive 

subjects, and this may contribute to explaining the lack of difference in peak exercise 

systolic BP observed between the two groups. 

 

5.4.5 Effects of sildenafil on parameters of exercise capacity 

In the study presented, PDE5 inhibition did not affect peak VO2 or any of the other 

parameters measured at peak exercise in hypertensive patients. This suggests that, 
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unlike conditions such as pulmonary hypertension and heart failure, an impaired NO-

cGMP pathway does not significantly contribute to the reduced systemic exercise 

capacity in arterial hypertension. One potential explanation for this difference may 

derive from studies conducted in patients with pulmonary hypertension and heart failure 

(Galie et al., 2005; Lewis et al., 2007a). In these studies, the favourable effects 

observed with PDE5 inhibition seem to be consistently related to a reduction of 

pulmonary vascular resistance. Indeed, the improved exercise capacity reported with 

sildenafil in patients with heart failure is mainly observed in those with secondary 

pulmonary hypertension (Lewis et al., 2007b). In support of this, and in agreement with 

the findings observed in the control group in the present study, there is current evidence 

showing that, in healthy subjects, sildenafil improves exercise capacity under hypoxia, 

which elicits a pulmonary hypertensive response, but not under normoxia (Hsu et al., 

2006). Other factors may also have influenced the ability to detect an effect of sildenafil 

on peak VO2 in the hypertensive patients recruited for the current study. As a 

consequence of the inclusion criteria, they represented a carefully selected group with a 

single risk factor, and it cannot be excluded that in hypertensive individuals with 

additional risk factors such as hypercholesterolaemia, diabetes or cigarette smoking, 

PDE5 inhibition might improve exercise capacity. However, the main aim of the study 

was to investigate the effects of PDE5 inhibition in hypertension, without such 

confounding risk factors.  

 

The study presented in Chapter 4 showed that sildenafil improves the vasodilator 

response to handgrip exercise in hypertensive patients, suggesting that the NO-cGMP 

system contributes to exercise hyperaemia in arterial hypertension, and its impairment 

affects the vasodilator response to exercise. However, in the current study, the 

hypothesized effect of sildenafil on exercise capacity was not observed. How can these 

apparently contrasting findings be explained? First, it is important to note the different 

exercise modalities employed in the studies, i.e. small muscle mass exercise vs whole 

body exercise. Exercise involving large muscle groups produces changes in systemic 

haemodynamics that are not observed with local exercise involving the upper limb, 
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which evokes only small haemodynamic changes. Second, most of the evidence 

supporting an important role for the NO-cGMP system in exercise hyperaemia derives 

from studies performed using local exercise (Gilligan et al., 1994; Schrage et al., 2004), 

including the forearm study presented in Chapter 4, while evidence derived from studies 

involving large muscle groups seems conflicting (Radegran, 1997; Bradley et al., 1999). 

Alternatively, it may be possible that forearm blood flow is not a reliable tool to 

investigate exercise-induced changes in blood flow, and may not reflect exercise 

responses at the systemic level. Furthermore, the different methodologies used to 

measure blood flow in those studies (femoral thermodilution and Doppler/ultrasound vs 

plethysmography) may account for the differences observed. In fact, when using venous 

occlusion plethysmography, flow is measured during the rest periods between 

contractions, representing ‘post-exercise’ rather than ‘exercise’ hyperaemia. When all 

these elements are considered, a more consistent agreement emerges on the contribution 

of the NO-cGMP system in the post-exercise period rather than during exercise 

(Radegran & Saltin, 1999; Green et al., 2004; Joyner & Wilkins, 2007).  

 

5.4.6 Effects of sildenafil on pulse wave velocity and pulse wave analysis after 

exercise 

After exercise, sildenafil reduced CAIx and RAIx in hypertensive patients, an effect that 

was not observed in healthy subjects. However, a similar reduction was observed after 

hydralazine, with no difference between the two treatments. With respect to PWV, 

when the effects of the 3 interventions after exercise were compared, no significant 

difference was observed in healthy controls. By contrast, in the hypertensive patients, a 

significant difference was detected amongst the 3 treatments in favour of sildenafil, 

which reduced PWV after exercise, an effect that was not observed with the control 

vasodilator hydralazine. Between 10 and 60 min after exercise sildenafil did not cause 

any significant change in BP, therefore changes in distending pressure cannot explain 

the observed increase in arterial distensibility, suggesting that this may be due to a 

direct effect of the drug on the arterial wall. Heart rate has also been reported to 

influence PWV (Lantelme et al., 2002), but this has been considered by others as an 
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artefact of the methodology used to measure PWV (Hayward et al., 2002). In any case, 

in this study, changes in HR were not significantly different amongst treatment arms in 

the recovery period after exercise. Because pharmacologic inhibition of NOS abolishes 

the vasodilator effect of PDE5 inhibitors (Kass et al., 2007),  findings observed in the 

recovery period after exercise are likely to be explained by the increased activity of 

cGMP, acting as a second messenger for NO. In this context, PDE5 inhibition could 

exert a beneficial effect by improving arterial distensibility and reducing cardiac 

workload after exercise. This is particularly relevant when considering that, unlike 

healthy individuals, in whom exercise training has been shown to improve dynamic 

arterial compliance (Tanaka et al., 2000), exercise does not seem to improve arterial 

stiffness in hypertension (Stewart, 2002). Combining PDE5 inhibition with exercise 

may therefore provide additional benefits in active hypertensive individuals.  

 

5.4.7 Tolerability 

A number of side effects related to sildenafil treatment were experienced by the study 

participants, headache and dyspepsia in particular. Headache was the most common side 

effects reported by normotensive individuals when on sildenafil (25%), followed by 

dyspepsia (19%) and low back pain (12%). In the hypertensive group, dyspepsia was 

reported by 50% of subjects, a frequency substantially higher than the frequency 

reported by Goldstein and coworkers (16% of individuals taking sildenafil 100mg) 

(Goldstein et al., 1998). However, in that study, sildenafil was used intermittently and at 

a lower dose, whereas the frequency of dyspepsia reported by Oliver and coworkers, in 

which the dose of sildenafil used was the same as the current study, was 40% (Oliver et 

al., 2006). A possible mechanism for the dyspeptic symptoms may be attributed to the 

inhibitory effect of sildenafil on the contractile activity of the oesophageal smooth 

muscle cells, resulting in decreased lower oesophageal sphincter tone and residual 

pressure as well as contraction amplitude, so that gastric contents reflux into the 

oesophagus (Eherer et al., 2002). This might increase the risk of chronic reflux 

oesophagitis and Barrett's oesophagus, warranting further investigation of the effects of 

chronic PDE5 inhibition on the lower oesophagus. 
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Headache was reported by 37% of hypertensive subjects, a frequency higher than 

reported by Goldstein and coworkers (30% of subjects taking sildenafil 100mg) and by 

Oliver and coworkers (32%). In another study by Galie and coworkers, in which 

sildenafil was given regularly for 12 weeks to patients with pulmonary hypertension, 

headache occurred in 42% of subjects taking 40 mg three times daily and in 49% of 

subjects taking 80 mg three times daily (Galie et al., 2005). Low back pain and 

buttock/leg muscle ache was reported by 4 subjects (25%) in the current study. These 

symptoms were not reported as side effects of sildenafil in the study by Goldstein and 

coworkers (only symptoms that occurred in 5% or more subjects were reported). 

However, other studies have reported myalgia as a side effect of sildenafil (Olsson et al., 

2000; Osegbe et al., 2003; Eardley et al., 2005). In the pulmonary hypertension study, 

myalgia was reported by 14% of subjects taking 80 mg three times daily (Galie et al., 

2005), and in the study by Oliver and coworkers, low back/buttock/leg muscle ache was 

reported by 28% of subjects (Oliver et al., 2006). In the latter study, plasma creatine 

kinase levels were measured in 4 subjects and were within the normal laboratory range, 

suggesting that the muscle aches experienced by some subjects were not due to an 

underlying myositis.  

 

It is clear that side effects from sildenafil were relatively frequent in the current study, 

and one subject was withdrawn because of severe headache. This could represent a limit 

for the potential use of sildenafil in arterial hypertension. However, in most cases, side 

effects were transient and self-limiting and, if patients were adequately informed of their 

possible occurrence, the likelihood of long-term compliance might increase. 

 

5.4.8 Summary 

In this study, PDE5 inhibition with sildenafil produced no changes in exercise capacity 

in hypertensive subjects. However, by reducing arterial stiffness in the recovery period 

after exercise, PDE5 inhibition may offer a therapeutic benefit in active, hypertensive 

individuals.  
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6.1 THE EFFECTS OF PDE5 INHIBITION ON FOREARM EXERCISE-INDUCED 

VASODILATATION 
A number of studies have attempted to determine the role of the NO system during 

exercise hyperaemia in the human forearm, with different results, either in favour 

(Gilligan et al., 1994; Dyke et al., 1995; Maxwell et al., 1998; Duffy et al., 1999) or 

against (Wilson & Kapoor, 1993; Endo et al., 1994) its major involvement. However, 

none of these studies have specifically addressed the role of the NO-cGMP pathway in 

exercise hyperaemia. In the study presented in Chapter 4, sildenafil was used as a 

pharmacological probe to test the hypothesis behind the studies presented in this thesis, 

supported by data showing that sildenafil improves vasomotor response in smokers 

(Kimura et al., 2003), in patients with heart failure (Katz et al., 2000) and Raynaud’s 

phenomenon (Fries et al., 2005), and  also improves exercise capacity in patients with 

pulmonary hypertension (Michelakis et al., 2003; Galie et al., 2005) and heart failure 

(Lewis et al., 2007a). Findings from the study suggest that an important role is played by 

the NO system during exercise in hypertensive patients, and that an intact endothelium is 

necessary for a normal response to the haemodynamic changes induced by exercise. 

Importantly, the present data indicate that, in hypertensive patients, the reduced 

vasodilator response to handgrip exercise is susceptible to improvement with PDE5 

inhibition, while this benefit is not observed in healthy subjects, where the functional 

integrity of the endothelium is able to fully respond to the increased blood flow and 

shear stress that occur during exercise. 

 

The reduced activity of the NO-cGMP pathway per se is probably not the only 

explanation for the findings observed in the study, as vascular function is also influenced 

by the powerful vasoconstrictor endothelin-1 (ET-1). In a healthy endothelium, the NO 

system counterbalances the potent and long-lasting vasoconstrictor effects of ET-1 

(Haynes & Webb, 1994) and seems also to regulate ET-1 production via a cyclic GMP-

dependent pathway (Boulanger & Luscher, 1990; Kelly et al., 2004). In endothelial 

dysfunction, a large body of evidence suggests that an augmented ET-1 activity is 
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involved, reflecting a shift in the balance between vasodilators and vasoconstrictors 

(Kedzierski & Yanagisawa, 2001). In agreement with this, and with particular regard to 

vascular responsiveness during exercise, are previous findings showing that an enhanced 

vasoconstrictor response to ET-1 limits exercise-induced vasodilatation in hypertensive 

subjects (McEniery et al., 2002). Together with the results shown here, this suggests that 

the vasodilator response to exercise is likely to be the result of a crosstalk between 

increased vasodilator influences and decreased vasoconstrictor influences. In support of 

this are physiological studies in animals showing that ET-1 mediated vasoconstriction at 

rest decreases during exercise (Merkus et al., 2003), therefore contributing to 

vasodilatation, and that pre-treatment with a NO synthase inhibitor enhances the 

vasodilator response to ET receptor blockade during exercise (Houweling et al., 2005). 

Thus, under conditions of endothelial dysfunction, vasoconstrictor influences might 

prevail, leading to a reduced vasodilator response during exercise. In summary, it is 

likely that more than one substance is involved in the vasodilatation observed in skeletal 

muscles during exercise, each contributing to a variable extent, depending on 

physiological factors, such as muscle fibre type, exercise intensity, time after initiation 

of exercise, and the presence of pathophysiological conditions such as endothelial 

vasomotor dysfunction. In this context, future studies investigating the combined effects 

of PDE5 inhibition and ET-1 antagonism in hypertensive individuals could be 

particularly useful, and contribute to our understanding of the complex mechanisms 

involved in the vascular response to exercise and overall exercise capacity in health and 

disease status. 

 

6.1.1 Forearm plethysmography and exercise hyperaemia 

Strain gauge plethysmography, while representing a reliable method to assess changes in 

blood flow in resting muscle beds, does not allow measurements of blood flow during 

contractions, but only during brief rest periods between contractions. For this reason, it 

might be argued that this flow represents ‘postexercise’ and not ‘exercise’ hyperaemia. 

However, the majority of data available on exercise hyperaemia are the results of studies 

performed with this technique (Joyner et al., 2001) and, although postexercise 
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hyperaemia may not exactly mimic exercise hyperaemia, the effect observed with the 

PDE5 inhibitor sildenafil was not observed with verapamil, providing justification for 

further investigation of this approach. For this reason, a similar study in which exercise-

induced vasodilatation was measured by other methodologies such as dilution 

techniques and Doppler/ultrasound (Saltin et al., 1998) would allow for a comparison of 

the effects of PDE5 inhibition on exercise hyperaemia. Furthermore, the importance of 

differences related to the type of fibre within and among skeletal muscles should be 

considered, as this may also contribute to explaining the conflicting reports in the 

literature about the role of NO in exercise-induced vasodilatation. Indeed, there is 

evidence suggesting that the relative importance of vascular control mechanisms during 

exercise varies as a function of skeletal muscle fibre type (Delp & Laughlin, 1998). 

Thus, future studies need to be designed to enhance our understanding of the various 

vascular control mechanisms in muscles composed of different fibre types, in which case 

the effect of PDE5 inhibition may vary depending on the type of muscle fibre 

investigated. 
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6.2 THE EFFECTS OF PDE5 INHIBITION ON SYSTEMIC EXERCISE 

CAPACITY AND ARTERIAL STIFFNESS 
 
6.2.1 PDE5 inhibition and systemic exercise capacity 

Perhaps surprisingly, given the literature for other cardiovascular conditions such as 

pulmonary hypertension and heart failure, PDE5 inhibition did not improve exercise 

capacity in the study presented in Chapter 5. However, hypertensive patients recruited 

for the study represented a highly selected group where hypertension was the only risk 

factor, and it is possible that, in presence of additional risk factors such as diabetes or 

hypercholesterolaemia, PDE5 inhibition might improve exercise capacity, something 

that would need to be investigated in future studies. Nevertheless, findings from the 

study show that sildenafil does not have a negative impact on exercise performance in 

hypertensive individuals. This is particularly relevant given current evidence showing 

that PDE5 inhibitors may be useful in the treatment of hypertension (Oliver et al., 2006; 

Wolk et al., 2009), and that hypertension is one of the most common comorbidities in 

patients with erectile dysfunction (Kloner et al., 2003b; Solomon et al., 2003), many of 

whom use sildenafil or other PDE5 inhibitors for an extended period of time.  

 

6.2.2 PDE5 inhibition and arterial stiffness 

To date, most of the available evidence on the effects of an acute bout of exercise on 

arterial stiffness derives from studies performed in healthy subjects (Kingwell et al., 

1997; Naka et al., 2003; Heffernan et al., 2007), with very little evidence of studies of 

this kind being performed in hypertensive individuals and few investigating the pattern 

of changes in the recovery period following exercise. Unlike normotensive subjects, in 

the untrained hypertensive patients recruited for this study, exercise resulted in a 

significant increase in PWV during the recovery period, contributing to increasing left 

ventricular afterload in the context of an already stiff arterial system. PDE5 inhibition, 

by reversing these changes, may offer an additional beneficial effect in active, 

hypertensive individuals. Indeed, given the strong relationship between PWV and 

cardiovascular events, reduction in PWV may be an important mechanism through 
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which treatment improves clinical outcome. The dissociation between the effect of 

sildenafil on BP and its potential effect on PWV in this study may also suggest a 

progressive reduction in the intrinsic stiffness of large arteries.  

 

6.2.3 Duration of action and tolerability 

The use of sildenafil in clinical practice may be limited by its short duration of action, 

because drugs with a duration of action long enough to allow once-daily administration 

are preferred in the management of hypertension, to maximise patient compliance with 

the treatment. Therefore, long-acting PDE5 inhibitors such as tadalafil, which can be 

administered once daily, might be more suitable. Alternatively, if modified release 

preparations of sildenafil or vardenafil were developed, these might also represent a 

valid option.  Furthermore, research to identify new and more selective PDE5 inhibitors 

continues at a significant level, as shown by recent data (Wolk et al., 2009), and studies 

comparing both efficacy and tolerability of PDE5 inhibitors with established 

antihypertensive medications would help to determine their place in clinical practice. 

 

Side effects from oral sildenafil were relatively frequent, and this could represent a limit 

for the potential use of this drug in arterial hypertension. Dyspepsia in particular was one 

of the most common symptoms reported with regular treatment. As such, a thorough 

investigation of the chronic effects of PDE5 inhibitors on the lower oesophagus would 

be warranted, because of the possibility of an increased risk in oesophageal neoplasia 

subsequent to chronic oesophagitis.  
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Phosphodiesterase type 5 inh
ibition reverses impaired
forearm exercise-induced vasodilatation in
hypertensive patients
Teresa M. Attinàa, Lorenzo S. Malatinob, Simon R. Maxwella,
Paul L. Padfieldc and David J. Webba
Objective Established hypertension is characterized by

increased peripheral vascular resistance and endothelial

dysfunction, features that may underlie the reduced

exercise-induced vasodilatation seen in hypertensive

patients. Sildenafil citrate is a phosphodiesterase type 5

(PDE5) inhibitor used clinically for the treatment of male

erectile dysfunction. Its vasodilating properties are due to

the inhibition of cyclic guanosine monophosphate (cGMP)

breakdown and prolongation of the signalling actions of the

nitric oxide (NO)–cGMP pathway in vascular smooth

muscle cells. Sildenafil has beneficial effects on endothelial

function and exercise tolerance in congestive heart failure

and pulmonary hypertension, and we hypothesized that it

would improve exercise-induced vasodilatation in

hypertensive patients.

Methods and results Ten hypertensive patients and ten

matched normotensive subjects were studied in a three-

way, randomized, single-blind and placebo-controlled

study. On each study day, forearm blood flow (FBF)

responses to handgrip exercise were assessed before and

after intra-arterial (brachial) infusion of sildenafil, verapamil

(a control, cGMP-independent vasodilator), and saline

(placebo). Preinfusion exercise-induced vasodilatation was

significantly reduced in hypertensive patients compared to

normotensive controls. Sildenafil and verapamil infusions

both caused a similar increase in baseline FBF. However,

while verapamil did not affect the vasodilator response to

handgrip exercise in either group, sildenafil substantially

enhanced this response in hypertensive patients, but not in

normotensive subjects.
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Introduction
Nitric oxide (NO) is a powerful vasodilating substance,

released by the endothelium, which plays a major role in

the maintenance of normal vascular function and tone

[1,2]. The main physiological stimulus to endothelial NO

production is increased blood flow through the vessel

lumen [3,4], resulting in increased vascular wall shear-

stress that is sensed by the endothelium and translated

into a vasodilator response [5,6]. NO has been demon-

strated to be essential for this flow-mediated dilatation in

human peripheral conduit and resistance vessels [7,8],

raising the possibility that it may also contribute to
exercise-induced vasodilatation. This is supported by

evidence from animal [9,10] and human studies [11,12]

showing that NO release in response to increased vascular

wall shear stress contributes to exercise hyperaemia, and

inhibition of NO synthesis reduces exercise-induced

vasodilatation in healthy subjects. Endothelial dysfunc-

tion is characterized by alterations of the NO system and

reduced NO-dependent vasodilatation, and is found in

association with many cardiovascular conditions [13],

including arterial hypertension, in which it has been

demonstrated at the level of both resistance and conduit

arteries [14,15]. Hence, endothelial dysfunction could

contribute to the impaired exercise-induced vasodilata-

tion [16] and reduced exercise capacity observed in

hypertensive patients [17].
orized reproduction of this article is prohibited.
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NO exerts its vasodilator effect on blood vessels through

the activation of intracellular soluble guanylate cyclase

(sGC) and consequent formation of cyclic guanosine

monophosphate (cGMP), the main second messenger

for NO, which ultimately leads to relaxation of smooth

muscle [18]; this NO-cGMP pathway is regulated by the

activity of synthesizing enzymes (sGC) and catabolizing

enzymes (phosphodiesterase, PDE). Sildenafil citrate is a

selective inhibitor of PDE type 5 (PDE5), the predomi-

nant isozyme responsible for the degradation of cGMP in

smooth muscle cells. It acts by decreasing the rate of

cGMP breakdown, thus enhancing its effects on vascular

smooth muscle cell tone [19]. We, therefore, hypothesized

that, in hypertensive patients, in whom endothelial dys-

function is a feature, the impaired vasomotor response to

exercise might be improved by sildenafil and, if confirmed,

this would be a key, first step in support of further studies

exploring the effects of PDE5 inhibition on exercise

capacity in arterial hypertension. To test our hypothesis,

we assessed the forearm blood flow (FBF) response to a

previously validated handgrip exercise task [16,20] in

hypertensive and normotensive subjects before and

after the local (brachial artery) administration of sildenafil,

and compared this response with the one obtained after

the infusion of the calcium-channel blocker verapamil,

a cGMP-independent vasodilator (control), and placebo

(saline). All drugs were infused at locally active doses.

Methods
Subjects
Ten hypertensive men were recruited from the Cardio-

vascular Risk Clinic, Western General Hospital, Edin-

burgh. Participants were enrolled if they had sustained

systolic blood pressure (BP) >160 mmHg and/or diastolic

BP >90 mmHg measured in a sitting position on at least

three different occasions. All were newly diagnosed hyper-

tensives who had not previously received antihypertensive

treatment. Those with evidence of a secondary form of

hypertension or with other risk factors were excluded, thus

representing a highly selected group. At the same time,

10 healthy subjects were recruited from the community as

a control group, on the basis of a systolic BP < 140 mmHg

and diastolic BP < 80 mmHg; they were age and chol-

esterol matched with the hypertensive patients. All parti-

cipants underwent physical examination and screening

laboratory tests. Subjects with hypercholesterolaemia

(total cholesterol > 6.5 mmol/l) and diabetes mellitus

were excluded. All subjects were non-smokers and non-

obese (body mass index; BMI< 30 kg/m2). The study was

undertaken with the approval of the local research ethics

committee and in accordance with the Declaration of

Helsinki. Written informed consent was obtained from

each subject before entry into the study.

Handgrip exercise
The handgrip task was performed with a calibrated

handgrip dynamometer (MLT 003 Hand Dynamometer;
opyright © Lippincott Williams & Wilkins. Unautho
ADInstruments Pty Ltd, Chalgrove, Oxfordshire, UK), as

described previously [16,20]. In brief, subjects rhythmi-

cally squeezed the device using the non-dominant arm in

15-s cycles, consisting of 5 s of steady handgrip pressure

alternating with 10 s of rest, and they were instructed to

avoid Valsalva-like manoeuvres during the task. The

exercise was performed for 5 min at 45% of maximum

voluntary contraction (MVC), which was determined for

each subject during the screening visit. FBF was deter-

mined in the last 3 min of exercise, during the 10-s period

of relaxation between contractions, immediately before

the next handgrip contraction.

Drugs
The brachial artery of the non-dominant arm of each

subject was cannulated with a 27-SWG needle, under

local anaesthesia (1% lidocaine; Hameln Pharmaceuticals

Gmbh, Hameln, Germany) for drug infusions. Sildenafil

citrate, a kind gift from Pfizer (Pfizer Ltd, Sandwich,

Kent, UK), was infused at 50 mg/min; the cGMP-inde-

pendent control vasodilator verapamil (Abbott Labora-

tories Ltd, Queenborough, Kent, UK) was infused at

5 mg/min; normal saline (Baxter Healthcare Ltd, Thet-

ford, UK) was infused during a control, non-vasodilating

study. Drugs were infused for 6 min at 1 ml/min; the

doses of sildenafil and verapamil used in the study

were selected on the basis of previously published lit-

erature [21–23]. In preliminary dose-ranging studies we

conducted in healthy subjects, the selected doses pro-

duced a similar increase in FBF, and the effects reached a

plateau around the period in which handgrip exercise was

performed. These preliminary studies also confirmed the

local (forearm) effect of the doses used, and no changes in

either BP or heart rate following the infusions were

reported (data not shown).

Measurements
Forearm venous plethysmography

Arterial vasodilatation in the forearm was measured as

change in FBF using venous occlusion plethysmography,

with mercury-in-silastic strain gauges securely applied

around the widest part of the forearm. The hand was

excluded from the blood flow determination through

inflation of a wrist cuff to 220 mmHg. An upper arm cuff

was intermittently inflated to 40 mmHg for 10 s in every

15 s to temporarily prevent forearm venous outflow and

obtain plethysmographic recordings. FBF recordings

were made over a 3-min period. The mean of the final

five measurements was used for analysis. Blood flow was

measured simultaneously in both arms by use of a dual-

channel strain gauge plethysmograph (D.E. Hokanson,

Bellevue, Washington, USA), as described previously

[24].

Blood pressure

Blood pressure was monitored, with an appropriate-

sized cuff, in the non-infused arm by use of a validated
rized reproduction of this article is prohibited.
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oscillometric sphygmomanometer (HEM-705CP; Omron

Healthcare UK Ltd, Milton Keynes, UK) [25].

Forearm vascular resistance

Forearm vascular resistance was calculated as mean arter-

ial pressure (MAP) divided by forearm blood flow [26].

General study design
The study was conducted with a three-way, randomized,

single-blind and placebo-controlled design (Fig. 1). Sub-

jects attended our research centre at 0900 h on three

different occasions, at least one week apart, and after

an overnight fast (>12 h). They were required to abstain

from alcohol and caffeine-containing food and beverages

from 24 h before the study. All visits were performed in a

quiet, draught-free, temperature-controlled room (22–

248C). On each study day, subjects rested quietly for

30 min and during this time FBF measurements were

recorded. Preinfusion handgrip exercise was then per-

formed, with FBF assessed in the final 3 min of the

exercise, during each of the 10-s relaxation periods

between contractions. After a recovery period of

30 min, the brachial artery of the exercised arm was

cannulated and, following a 30-min saline infusion, sub-

jects received a 6-min infusion of sildenafil, verapamil or

placebo (saline), in random order, with FBF recordings

during the last 3 min of infusion. The cannula was then

removed and handgrip exercise and FBF measurements

repeated.

Statistical analyses
Plethysmographic data were extracted from Chart data

files and analysed by an independent observer blinded to

the treatment. All values are expressed as mean�SEM.

FBF data are presented as changes in absolute blood flow

(ml/min per 100 ml of forearm volume) in the infused

(exercised) arm. Preinfusion and postinfusion FBF

responses to handgrip exercise for the three treatments

were then compared within each group. Data were ana-

lysed with repeated-measures analysis of variance

(ANOVA) with post-hoc Bonferroni corrections and

two-tailed Student’s t-test as appropriate. Statistical

analysis was performed with Graph-Pad Prism (GraphPad
opyright © Lippincott Williams & Wilkins. Unauth

Fig. 1

Schematic representation of the experimental protocol. Drug infusion (inf) r
(5 mg/min) or saline. FBF, forearm blood flow; MVC, maximum voluntary co
Software, Inc., San Diego, California, USA). Significance

was accepted at the 5% level in all cases.

Results
The clinical characteristics of the two groups are shown in

Table 1, and they differ only by BP. As shown in Table 2,

resting FBF was similar in hypertensives and normoten-

sives on each study day. Preinfusion handgrip exercise

produced an increase in FBF in both groups; however,

the increase observed in hypertensive patients was sig-

nificantly less than that in the control group (P< 0.001)

(Fig. 2). BP tended to increase in hypertensive patients,

but not in normotensive controls, on each of the three

study visits during handgrip exercise, but this did not

reach statistical significance (Table 3). In the hyperten-

sive group, changes in forearm vascular resistance after

handgrip exercise did not differ significantly between

sildenafil and verapamil, whereas a significant difference,

in favour of sildenafil, was detected between sildenafil

and saline (P< 0.01) (data not shown). Heart rate did not

change in either group.

The effects of the three intra-arterial infusions on resting

FBF are presented in Table 2. FBF did not change

significantly in either group after the infusion of saline.

The infusion of sildenafil and verapamil produced sig-

nificant vasodilatation compared to saline, resulting in

increased FBF in both groups (P< 0.001). The extent of

vasodilatation was similar between the two treatments

and with no significant difference between hypertensive

and normotensive subjects. BP and heart rate did not

change after any of the infusions. None of the subjects

reported adverse effects related to the local infusion of

the study drugs. In the normotensive subjects, vasodilator

response to handgrip exercise did not change significantly

after the infusions when compared to preinfusion values,

and no significant difference was detected amongst

the three treatments (P¼ 0.35) (Fig. 3a). In the hyper-

tensive group, a significant difference in the response to

handgrip exercise was observed amongst the three treat-

ments (P¼ 0.0167); indeed, while no significant changes

were detected in the vasodilator response to exercise

following the infusion of saline or verapamil, a significant
orized reproduction of this article is prohibited.

efers to 6-min intrabrachial infusion of sildenafil (50 mg/min), verapamil
ntraction.
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Table 1 Clinical characteristics of the hypertensive patients and normotensive subjects

Parameter Hypertensive patients (n¼10) Normotensive subjects (n¼10) P a

Age (years) (range) 46�4 (31–67) 43�3 (28–59) NS
Body mass index (kg/m2) 27.4�0.9 25.7�0.8 NS
Total cholesterol (mmol/l) 4.8�0.2 4.7�0.2 NS
Systolic blood pressure (mmHg) 170�2 123�4 <0.05
Diastolic blood pressure (mmHg) 97�3 68�2 <0.05
Creatinine (mmol/l) 91.7�4.2 86.8�2 NS
Urea (mmol/l) 5.1�0.3 5.2�0.4 NS
Sodium (mmol/l) 142�0.7 141�0.6 NS
Potassium (mmol/l) 4.2�0.09 4.4�0.08 NS
Fasting glucose (mmol/l) 5.4�0.1 5.1�0.1 NS

Data are mean�SEM; NS, not significant. a Differences between groups were evaluated by unpaired Student’s t- test (patients versus controls).
improvement was observed after sildenafil, which signifi-

cantly increased exercise-induced vasodilatation com-

pared to both verapamil and saline (P< 0.05) (Fig. 3b).

Discussion
The present study provides evidence in support of a

beneficial effect of the PDE5 inhibitor sildenafil citrate

on the vascular response to handgrip exercise in hyper-

tensive patients. We have confirmed previous work show-

ing that the forearm vasodilator response to handgrip

exercise is reduced in hypertensive patients compared

with normotensive subjects [16]. Also, and the major

novel observation from this work, we have shown that

sildenafil substantially enhances exercise-induced vaso-

dilatation in hypertensive patients but not in normoten-

sive subjects, an effect that is not seen with the control

dilator verapamil. These findings suggest that cGMP

signalling is critical in regulating this flow limitation,

given that it can be selectively improved by PDE5

inhibition.

Vascular responses to intra-arterial infusions
The effects of local sildenafil infusion in our study are

consistent with previous data, which demonstrate an

increase in FBF after intra-arterial administration of

sildenafil in healthy subjects [23]. With regard to the

control vasodilator used in this study, verapamil, we

recognize that no perfect control exists, especially in

studies comparing hypertensive and normotensive
opyright © Lippincott Williams & Wilkins. Unautho

Table 2 Forearm blood flow (FBF) values before and during infusions

Hypertensive subjects

Infused Non-infused Ratio

Before infusion
Saline 4.05�0.39 3.80�0.36 1.10�0
Sildenafil 3.34�0.25 3.10�0.30 1.14�0
Verapamil 3.93�0.59 3.71�0.35 1.05�0

During infusiona

Saline 4.07�0.33 3.71�0.32 1.14�0
Sildenafil 5.58�0.53M 3.30�0.32 1.79�0
Verapamil 6.44�0.68M 3.68�0.40 1.78�0

Data are mean�SEM absolute FBF (ml/min per 100 ml of forearm volume) in the infuse
infusion of saline, sildenafil and verapamil. a FBF measurements during the last 3 min
subjects, whose starting conditions differ. However, if

anything, studies show an increased response to verapa-

mil in hypertensive subjects [21]. We chose verapamil

because of its cGMP-independent effect [22], and

selected a dose that produced a comparable vasodilator

effect to that of sildenafil on FBF (Table 2). As resting

FBF was similar in both groups before the second bout of

exercise, as it was for preinfusion exercise, potential

influences of different resting FBF, and inherent vascular

tone, on the subsequent vasodilator response to exercise

in each group were eliminated.

Vasodilator response to handgrip exercise
On each study day, maximum preinfusion vasodilator

response to handgrip exercise was significantly less in

patients with hypertension than in healthy controls. We

did not directly address endothelial function in our

subjects, but these findings are consistent with results

obtained in a previous study from our group [16], and

suggest that reduced endothelium-mediated vasodilata-

tion may limit vascular responsiveness to shear stress,

contributing to increased vascular resistance during exer-

cise. In healthy controls, when we compared the effects

of infusions on the vasodilator response to handgrip

exercise, no significant difference was observed amongst

the three treatments. By contrast, in the hypertensive

patients, we detected a significant and substantial differ-

ence amongst the three treatments in favour of sildenafil,

which selectively improved the response, whereas this
rized reproduction of this article is prohibited.

Normotensive subjects

Infused Non-infused Ratio

.08 3.22�0.37 3.45�0.43 0.98�0.08

.09 3.35�0.26 4.04�0.62 0.91�0.07

.07 3.96�0.54 4.06�0.59 0.99�0.06

.08 3.35�0.36 3.53�0.38 0.98�0.08

.12 5.92�0.55M 3.86�0.42 1.62�0.15

.11 6.20�0.50M 3.59�0.40 1.82�0.13

d and non-infused arm, and FBF ratio (infused/non-infused) before and during the
of drug infusion. MP<0.001 infused versus non-infused arm.
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Fig. 2

Preinfusion exercise vasodilator responses. Changes in absolute blood
flow (ml/min per 100 ml of forearm volume) in the infused (exercised)
arm in response to handgrip exercise before saline, sildenafil and
verapamil infusion. Data are mean�SEM. �P<0.001 in normotensive
subjects versus hypertensive patients.

Fig. 3

Normotensive subjects

0

10

20

30

40

 Postinfusion responsePreinfusion response

F
o

re
ar

m
 b

lo
o

d
 fl

o
w

(m
l/

m
in

 p
er

 1
00

m
l o

f f
o

re
ar

m
 v

o
lu

m
e)

Saline

Sildenafil

Verapamil

Hypertensive patients

0

10

20

30

40

 Postinfusion responsePreinfusion response

F
o

re
ar

m
 b

lo
o

d
 fl

o
w

(m
l/

m
in

 p
er

 1
00

m
l o

f f
o

re
ar

m
 v

o
lu

m
e)

Saline

Sildenafil

Verapamil ∗

(a)

(b)

Preinfusion and postinfusion exercise vasodilator responses. Changes
in absolute blood flow (ml/min per 100 ml of forearm volume) in the
infused (exercised) arm in response to exercise after 6-min intra-arterial
infusion of saline, sildenafil (50 mg/min) or verapamil (5 mg/min) in (a)
normotensive subjects and (b) hypertensive patients. Data are
mean�SEM. �P<0.05 versus saline and verapamil in the hypertensive
patients.
was not observed with the control, cGMP-independent,

vasodilator verapamil. We consider this the most import-

ant finding of our study, supporting the involvement of

the NO-cGMP pathway in the vasodilator response to

exercise. A number of studies have attempted to deter-

mine the role of the NO system during exercise hyper-

aemia in the human forearm, with different results, either

in favour of [11,12,27,28] or against [29,30] its major

involvement; however, none of these studies have

addressed specifically the role of the NO-cGMP pathway

in exercise hyperaemia. It has been shown previously that

inhibition of NO synthase abolishes the vasodilatation

mediated by PDE5 antagonism [31,32], so our obser-

vations are likely to be explained by the increased activity

of cGMP, which acts as a second messenger for NO and is

ultimately responsible for smooth muscle cell relaxation.

Further support for this explanation is provided by a

recently published study in which sildenafil, through

an increased level of cGMP in the vasculature, reversed

vascular alterations in an experimental model of chronic

NO deprivation [33]. Therefore, in situations associated
opyright © Lippincott Williams & Wilkins. Unauth

Table 3 Blood pressure values before and after handgrip exercise

Hypertensive subjects Normotensive subjects

SBP DBP MAP SBP DBP MAP

Before handgrip
Saline 154�3 75�3 99�3 125�5 67�3 85�3
Sildenafil 153�4 78�4 105�4 123�4 65�2 84�2
Verapamil 154�2 79�4 106�2 127�5 70�3 90�3

After handgrip
Saline 159�5 77�4 102�4 128�5 70�3 89�3
Sildenafil 157�4 82�4 109�3 125�4 66�2 87�2
Verapamil 160�3 81�3 110�4 131�5 71�3 92�3

DBP, diastolic blood pressure; MAP, mean arterial pressure; SBP, systolic blood
pressure. Data are mean�SEM, mmHg.
with alterations of the NO-cGMP pathway, PDE5 inhi-

bition could exert beneficial effects by increasing the

intracellular level of cGMP and potentially contribute to

restoring physiological responses.

Previous studies have shown conflicting results of the

effects of sildenafil on brachial artery flow-mediated

vasodilatation (FMD) [34–36]. In particular, in a previous

study from our group [37], sildenafil had no effect on

FMD in hypertensive patients. However, it should be

noted that the stimulus for FMD is (passive) reactive

hyperaemia, which occurs in response to a temporary

occlusion of the vessel, whereas the present study inves-

tigated the effects of sildenafil on (active) exercise hyper-

aemia. This is a more complex phenomenon, in which the

pattern of blood flow changes observed is the result of an
orized reproduction of this article is prohibited.
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integrated response also involving the skeletal muscle

and the resistance arterioles. Furthermore, as blood flow

progressively increases during sustained exercise, the

involvement of the NO-cGMP pathway may become

more prominent, and this might contribute to the expla-

nation of the effect of sildenafil on exercise-induced

vasodilatation in our hypertensive subjects.

The reduced activity of the NO-cGMP pathway per se is

probably not the only explanation for our observations, as

other factors might contribute to the reduced exercise-

induced vasodilatation in hypertensive patients, such

as the powerful vasoconstrictor endothelin-1 (ET-1).

Indeed, in endothelial dysfunction, a large body of evi-

dence suggests that ET-1 activity is augmented, reflect-

ing a shift in the balance between vasodilators and

vasoconstrictors [38]. Consistent with this, and with

particular regard to vascular responsiveness during exer-

cise, are previous findings from our group demonstrating

that an enhanced vasoconstrictor response to ET-1 limits

exercise-induced vasodilatation in hypertensive subjects

[16].

In this study, we used sildenafil as a pharmacological

probe to test our hypothesis, supported by data showing

that sildenafil improves vasomotor response in smokers

[39], in patients with heart failure [40] and Raynaud’s

phenomenon [41], and also improves exercise capacity in

patients with pulmonary hypertension [42,43] and heart

failure [44]. Furthermore, PDE5 inhibition is a promising

therapeutic approach in arterial hypertension, as evi-

denced by a recently published study in which regular

sildenafil treatment effectively lowered BP compared to

placebo [37]. Although the use of sildenafil in clinical

practice may be limited by its short duration of action,

longer-acting PDE5 inhibitors are already available and

others are currently in development. Results from this

study represent a preliminary and essential step in sup-

port of a more complete exploration of the role of PDE5

inhibition on exercise capacity in hypertension, which

will more fully elucidate the mechanisms underlying our

observations and determine their clinical impact.

Study limitations
Strain gauge plethysmography, while representing a

reliable method to assess changes in blood flow in resting

muscle beds, does not allow measurements of blood flow

during contractions, but only during brief rest periods

between contractions. For this reason, it might be argued

that this flow represents ‘postexercise’ and not ‘exercise’

hyperaemia; however, the majority of data we have on

exercise hyperaemia are the results of studies performed

with this technique [45] and, although postexercise

hyperaemia may not exactly mimic exercise hyperaemia,

the effect we observed with the PDE5 inhibitor sildenafil

was not observed with verapamil, providing justification

for further investigation of this approach.
opyright © Lippincott Williams & Wilkins. Unautho
Hypertensive patients recruited for the study represen-

ted a highly selected group where hypertension was the

only risk factor. We did not address endothelial dysfunc-

tion in these patients (as in previously published studies)

[16], but the BP cut-off point (160/90 mmHg) was chosen

in order to enhance the differences between the hyper-

tensive and normotensive subjects, presumably including

endothelial function.

In our study we did not measure local cGMP levels, as

venous cannulation would have interfered with handgrip

exercise. However, measurement of cGMP levels after

PDE5 inhibition has a high intersubject variability [23]

and seems not to correlate well with vasodilatation [46].
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