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ABSTRACT 

The flash vacuum pyrolysis of 3, 5-dioxo-4-oxa-9-thiatricyclo-

[5. 3.0. 
Q2 6 ]decane 9,9-dioxide and its derivatives has been extensively 

investigated. Under these conditions, it is found that cheletropic 

elimination of SO  occurs leading to the formation of novel 1, 2-

divinylcyclopentane compounds. In all cases the reaction is stereo-

specific and yielded only cis-isomers which are not prone to Cope 

rearrangement. 

On oxidative bis - decarboxylation 3, 5- dioxo-4-oxa- 9- thiatr icyclo - 

[5. 3. 0. 0 ' ]decane 9, 9-dioxide is converted into the novel synthon 

3-thiabicyc]Lo[3. 2. O]hept-6-ene 3, 3-dioxide. It is shown that although 

the reaction is sluggish epoxidation of this alkene and subsequent 

pyrolysis provides a worthwhile synthesis to 4, 5-dihydrooxepin in good 

yield. Attempts to obtain suitable precursors to the carbon and 

nitrogen analogues of 4, 5-dihydrooxepin by addition olcarbenes and 

nitrenes to 3-thiabicyclo[3. 2. 0]hept-6-ene 3, 3-dioxide failed as the 

alkene did not react with these species. 

3-Thiabicyclo{3. 2. 01hept-6-ene 3, 3-dioxide is also observed 

to undergo cycloaddition reactions with a variety 1, 3-dipoles including 

nitrile oxides, nitrones and diazo compounds, to give precursors of 

other new cis-1, 2-diviriyl heterocycles, difficult to prepare by other 

methods. In the case of the less reactive diphenylnitrilimine no 

addition product could be detected. An attempt to prepare the precursor 

of 1,4-cycloheptadiene indirectly by addition of diazomethane to the 



alkene was also unsuccessful; extrusion of nitrogen by photolysis 

from the derived adduct gave unidentified products. 

1 	 13 
H n. m. r. and C n. m. r. spectroscopy were used extensively 

to determine the structure of the products and in two cases X-ray 

analysis was used to confirm assigned structures. 
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INTRODUCTION 

Preamble 

Elemental sulphur has been known since ancient times, yet 

research on the dement and its compounds continues apace. The 

first organosulphur compound to be prepared was ethanethiol in 1834.1 

Sulphones, the major topic of this thesis, were first prepared in 

1867.2 3, 5-Dioxo-4-oxa-9-thiatricyclo[5. 3.0. 0
2,6 

 ]decane  9, 9- 

dioxide (1) was first reported in the literature in 1972. The molecule 

was recognised to have potential for divinyl synthesis and considered 

to merit further investigation 
	This thesis describes the results of 

the study. 

02 

(1) 

Sections A. 1, A. 2 and A. 3 focus attention on the properties, 

preparation and reactions of suiphones in general. Cheletropic reactions 

involving sulphur dioxide formed a major part of the study and will 

be considered separately in section B. Cope, and to a lesser extent 

the Claisen, rearrangements, featured in the study and so will be 

introduced in section C. Finally section D will focus on the programme 

of research. 
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A. 	Sulphones 

A. 1 General properties of sulphones. 

The sulphone group has been known for more than a century but 

it is only in the last few decades that a more diverse range of chemistry 

has been discovered. The past fifteen years in particular have witnessed 

many publications both of a theoretical nature and involving synthetic 

applications of sulphones. Both these aspects of sulphone chemistry 

have been reviewed. 

The sulphone group is represented by the general formula (2) in 

which the substituents R and R' can be any combination of alkyl, vinyl, 

alicynyl or aryl. RI 
R-S-R 

11 
(2) 

The sulphur-oxygen bonds are polar giving rise to a large dipole 

moment relative to the analogous ketones (CH 3 SO 2CH3 , 3. 2W; 

CH 3COCH3  2. 88D). & This polarity manifests itself in the physical 

properties of sulphones. They occur as either solids or high boiling 

point liquids. 

The presence of a suiphone function in a molecule is most easily 

ascertained by infrared spectroscopy. All sulphones show strong bands 

in the 13001320 and 1140-1160 cm- 1 regions due to the asymmetric 

stretching modes of the SO  group. 7 8 On the other hand proton n. m. r. 

spectroscopy is of lesser diagnostic value. Aliphatic hydrogens a to a 

suiphone function are generally found in the range 2. 5-3. 15: typical 

examples being CH 3 SO 2CH 3  3.Q3 Sand CH2  CHSO 2CH 3  2.626? 

Typically sulphones exhibit high chemical and thermal stability, 
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and this would tend to suggest a lack of ready manipulation. That this 

is not the case is testified by recent reviews on suiphone 

chemistry. 4, 5 10-12 The sulphone group is fully oxidised and is 

reduced to the sulphide only with great difficulty. 
13 

 A sulphone group 

can be removed and replaced by hydrogen using Raney Nickel, 14 Li

15 
in diethylamine, 	or 6% Na/Hg in methanol using Na 2HPO4  as buffer. 16 

The chemistry of sulphones can be broadly classified into two areas: 

- (1) those reactions in which the sulphone functional group is a 

particularly stable unit surviving a large number of transformations, 

and (ii) those reactions which rely on the disruption and elimination 

of the sulphone group. 

This discussion will focus attention on the latter as these reactions 

are central to the theme of the thesis 

A. 2 Preparation of st.dphones. 

a) Oxidation of sulphides and sulphoxides. 

The most common method of sulphone preparation is the direct 

oxidation of sulphides and sulphoxides. A variety of oxidising agents 

have been utilized to effect these transformations. An extensive 

17 
tabulation of the experimental results for these processes is available. 

The most commonly used oxidant is hydrogen peroxide (30%) in 

18 
acetic acid (Scheme 1) 

	
This method gives excellent yields. 

C 6 H 5CH 2S C 
2  H 

 5 
H 2 O 2  

HOA c 
C 6 H 5CH 250 2  C 

2  H 
 5 

87% 

Scheme 1 

ni-Chloroperbenzoic acid in various organic solvents has also been 
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used and in general is a very effective reagent giving clean products 

in high yield. 
9 

Aromatic sulphonylation. 

The reaction between an arene and a suiphonyl halide in the 

presence of a suitable Lewis acid constitutes an excellent route to 

diaryl or alkyl-aryl sulphones (Scheme 2). 
19 

 Sulphonyl chlorides are 

commonly employed although sulphonyl bromides and fluorides have also 

RSO 2C1+C6 H6 	 0-  RSO 2 C 6 H 5  

R=CH3 	80% 

R = C 
6  H 

 5 90% 

Scheme 2 

been used. Generally, the reaction gives better yields in the case of 

arenesulphonyl chlorides 

Allcylation of sutjMiinic acids. 

This method of preparing sulphones has been known for about 

eighty years. 
20 

 but has gained importance only relatively recently 

mainly in connection with the alkylation of the more accessible and 

stable aromatic sulphinic acids with reactive halides. 

Gycloaddition reactions of sulphur dioxide with polyenes. 

The addition of sulphur dioxide to polyenes as a route to sulphones 

21  is only of moderate importance. However, since their classification 

as ir4 +ir 2 cheletropic transformations, there has been a tremendous 
5 	5 

upsurge of interest in these reactions. For this reason and since 

these cycloadditions are central to the theme of this discussion they 

will be discussed at length in section B. 
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A. 3 Reactions of suiphones. 

a) The Ramberg-Bcklu11d reaction 

When a a-halosulphone (3) bearing an a'-hydrogen is treated with 

base the resultaKt carbanleit (4) is capable of intramolecular 1, 3-

elimination to give an alkene(6) in which the position of the double bond 

is unambiguous (Scheme 3). This extrusion process is known as the 

it 
	 18 

Ramberg-BacklUfld reaction after its discoverers. 	A recent review 

10 
is available. 

H—C ftX +6 	BH + •C so CTX  

(3) 	 1 St Ow 

>__ 	

Fast 	
>c-7< + x- - 

so2 
(6) 	 (5) 

Scheme 3 

To date the postulated episulphone intermediates (5) have not 

23-25 
been isolated although they have been prepared by other routes.  

When episulphones of the type (5) are treated with base the expected 

alkene is obtained. The sulphur dioxide loss is markedly stereo- 

specific. Consequently the stereochemistry of the alkene is determined at 

the ring-closure stage. 

The formation of the anion (4) in the proposed reaction mechanism, 

has been intensively investigated by Paquette 
26 

 and Bordwell 27  and their 

co-workers. Anion formation occurs at both the a and a' positions in a 



reversible manner and does so more rapidly than episu.lphone formation. 

This has been demonstrated by the incorporation of deuterium in un-

reacted starting material if the reaction is carried out in DO and by 

the isolation of deuterated ailcenes under similar conditions. 28 This 

gives the Ramberg -Bckl1.2nd reaction an advantage in ailcene synthesis 

where one wishes to prepare alkenes in which the alkene hydrogens are 

replaced by deuterium. 29, 30 One simply has to conduct the reaction 

31 
in deuterated solvents 

	A typical example is shown in Scheme 4. 

NuOD 
D2 0-Dioxane 	' 

Scheme 4 

As other methods of alkene synthesis are now available the 

importance of the reaction has declined, but it still retains usefulness 

as a route to stained carbocycles such as (7) (Scheme 5). 32 

so 2  

K I KOH. 
H 2 0 CID 75% 

(7) 

Scheme 5 
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Meyers et al 3  have shown that the need to prepare a-halosulphones 

in a separate step can be circumvented by treating a suiphone (containing 

both a and a' hydrogens) with tetrachloromethane in -butyl alcohol. 

This gives rise to in situ Ramberg-Bck1und reactions. A typical 

example is shown (Scheme 6). A drawback to this reaction is that 

(PhCH2)2 502 
KOH, Cd 4  

'p 

C H9 OH 
trans - PhCHGHPh 

100% 

Scheme 6 

dichlorocarbene is sometimes generated concomitantly and may react 

subsequently with the desired alkene to form a dichlorocyclopropane. 

b) Reduction of suiphones. 

Sulphones are resistant to most reducing agents. In attempts to 

reduce suiphones using LiA1H4  Bordwell and McKellin '3  found that 

four or five membered ring species gave the corresponding sulphides 

whereas six-membered rings and acyclic suiphones were either inert or 

reduced to only a small extent. More recently Gardner and his co-

workers 34 have shown that di-isobutylaluminium hydride (Dibal-H) in 

ether or THF is an effective reagent for the reduction of suiphones to 

sulphides. The general reaction is shown in Scheme 7. 

Phd H 3  

R R'50 2  + Z(C 4 H9 ) 2  A1H 	S R R'S + 2(C4 H9 ) 2  A10H 

n-propyl 	yield = 77% 

n-butyl 	yield = 68% 

phenyl 	yield = 57% 

RMe, R'= phenyl 	yield = 61% 

Scheme 7 



Paquette and Fhotis 35  have reported an interesting reductive 

elimination of cyclic sulphones (8) and (10) leading to the formation 

of substituted cyclobutenes (9) and (11) (Scheme 8). This conversion 

is formally similar to the Ramberg -Bcklund reaction discussed in 

the previous section. 

Me 
i,BuLi 

Me 	S 	Me i i,LlAIH4sdI0XGflQMe__fr_1 

02 	
A 

20% 

(8) 
	

(9) 

e 

p 

Scheme 8 

Me 

me 22% 

c) Thermal and photochemical extrusion of sulphur dioxide. 

Cyclic suiphones containing structural elements such as aromatic 

rings, functional groups, heteroatoms and further 50 2 -groups as ring 

members decompose on heating with loss of SO   and formation of new 

C-C bonds. The importance of this reaction as synthetic method has 

recently been reviewed. 12 Cheletropic extrustion of SO   from sulpholenes 

are discussed in more detail in section B. 

Smith and co-workers have reported 
36

that photolysis of the 

suiphones (12) give 1-substituted phenylcyclopropanes (13) in high yield 

(Scheme 9). 



R 

FhH__O2 
-so2 	Ph Z 

(12) 	 (13) 

R=H, CH 3' C 2H5 , PuGH2, or CHfCH-GH 2  

Scheme 9 



• Cci 
mXC 

(1/4 

Cc.1 A 

(16) 
(15) 

CL 

m-2 
-y xsz  

(17) 

'U 

(nc 
M 

(18) 

10 

B. 	Cheletropic Reactions 

B. 1 Introduction 

In 1969 Woodward and Hoffmann 
21 

 defined a cheletropic reaction 

as a process in which two bonds which terminate at a single atom 

are made or broken in concert. Cheletropic reactions are really 

a sub-class of cycloadditions, the only difference being that on one 

of the components both new bonds are being made to the same atom. 

The dissociation of (14) to give a molecule Xyz (16) and a polyene 

containing an m- electron IT system (15) is an example of a cheletropic 

reaction (Scheme 10). Xyz is usually a small inorganic molecule of 

high thermodynamic stability, e. g. CO, N 2, SO  or N 20. 

Scheme 10 

In order to gain insight into the stereochemical features of the 

cheletropic reaction one must consider the general reaction in which 

the substrate (17) carries substituents a at the atoms C and C - 	 1 	m 

(Scheme 11). The major stereochemical features of this process 

Scheme 11 
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which require consideration are: 

The nature of the concerted rotations that must occur about C 1  

and C in order to bring the substituents ,a into the 'plane' of the 
m   

polyene molecule (18) as it is formed. 

The relative dispositions of the polyene (18) and Xyz when the 

bond breaking process is complete (forward reaction) or bond formation 

commences (reverse reaction). 

The nature of the orbitals utilized by Xyz. 

In case (i) there are only two distinguisMble rotation modes 

viz. conrotation and disrotation. Each mode has two formal possibilities 

and hence there are four possible polyenic products when the substituents 

a are all different. However usually the steric constraints imposed 

by the substituents a dictate that one mode of disrotation or conrotation 

is preferred over the other and so only one mode operates. 

In case (ii) analysis of the pertinent molecular orbital interactions 

show that two distinct reaction pathways are possible. The pathways 

have been categorized 21  as either linear (the least motion path) or 

non-linear (non-least motion path). In this respect Woodward and 

Hoffmann recognised that there is mechanistic ambiguity for cheletropic 

reactions, in that the scission (or formation) of a pair of bonds at one 

atom means that the stereochemical imprint of the transition state for 

that moiety will be absent in the product. Thus there is no experimental 

procedure which allows distinction between linear and non-linear 

cheletropic reactions and so interpretations of this nature are purely 

theoretical. 

In case (iii) the molecule Xzy eg SO 2, N 2 , or CO can be 
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considered to utilize a filled sp '  orbital and an empty 2-orbital for 

bonding purposes. 

Finally since cheletropic reactions are pericyclic changes they are 

governed by the general orbital symmetry control rule for such processes 

which is: 

A ground state pericyclic change is symmetry-allowed when the 

total number of (4q+2) 
s 	a 

and (4r) components is odd. 

B. 2 Theory of cheletropic extrusion of SO  from sulpholenes. 

The term suipholene has been used  generically to describe 

sulphones which may be consideredas cheletropic adducts of SO   and 

a (poly)alkene, e. g. butadiene and hexatriene. Loss of SO from 

sulpholenes has been analysed from a theoretical viewpoint by workers 

using a number of different approaches. 21, 37, 38 The frontier orbital 

approach of Gilchrist and Storr 37  will be used in the present discussion. 

According to frontier orbital theory, the overriding factor in 

determining the selection rules for polyene cycloaddition is the symmetry 

of the HOMO (highest occupied molecular orbital) and the LJUMO 

(lowest unoccupied molecular orbital) of the reactants. This is in turn 

related to the number of electrons involved in each of the reactants. 

Any component other than a neutral polyene which can supply the same 

number of electrons in an orbital of the same symmetry is potentially 

able to participate in a cycloaddition in place of a polyene. Sulphur 

dioxide is just such a component. 
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9110  
HOMO- 

7,0 
LUMO- L__) 

(19) 
Sulphur dioxide (19) has a lone pair of electrons in the plane of 

the molecule and a vacant p orbital orthogonal to it. Thus when 

considering cheletropic extrusion reactions of suipholenes one considers 

the interaction of the HOMO (lone pair orbital) of sulphur dioxide with 

the LUMO of the alkene as well as the LUMO (vacant 2  orbital) of 

sulphur dioxide with the HOMO of the alkene. 

Mock 
 39 

 has extensively investigated the family of cheletropic 

extrusions which are now to be considered (Scheme 12). 

s02 	II 	+. 502 

 

CISo2 	
+ 502 

 

C--~ S02 "-Z- + 502 

  

Scheme 12 
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First consider fragmentation of the episuiphone (20), the 

orbital representations of which are shown in figure 1 and figure 2, 

for the linear and non-linear reaction pathways respectively. 

• 	'p 
0 e.. -o 

LUMO 	SHOMO 

anti bonding 

'p 

 

HOMO 
c~ o  

anti bonding 

.UMO 

Fig. 1. The linear approach of SO  to an alkene 

LUMO 	 ."--o 	HOMO 	
• 	 scJ LUMO 

ee.. 7S0HOM.O op 

Fig. 2. The non-linear approach of SO 2 to an alkene 

Thus as shown in Figure 1 a concerted suprafacial, suprafacial 

Tr2w2 interaction is a disallowed process. For the reaction to be 

concerted the sulphur dioxide must depart (or approach) in an antara-

facial manner as illustrated in Figure 2, an interaction described as 

a2
5 a 

2 process. 

The best known of this family of reactions is undoubtedly the 

reversible formation of butadiene sulphone (21) from butadiene and 

sulphur dioxide. The relevant orbital representation of the reaction 

is shown in Figure 3. 
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LUMO 	 QHOMO 

#4 
1•• 

S 
HOMO LUM 0 

Fig. 3. The linear approach of SO to butadiene. 

The reaction proceeds via an allowed linear pathway described 

as a 7T4 +u2 
S 	 S 

process (or a r 2 +a 
5  

2 +c72
8.  

Z cycloreversion). A point 
5  

to note is that good overlap of the interacting orbitals requires the 

terminal carbons on butadiene to rotate in a disrotatory sense. 

The concerted framentation of 2, 7-dihydrothiepin 1, 1-dioxide 

(22) could formally be either a linear or a non-linear cheletropic 

reaction. 	Symmetry considerations require that the thermal 7r6 +w 2 

process be suprafacial, antarafacial. If the sulphur dioxide is the 

supralacial component, it is a 	¶ 61e3 2 linear cheletropic 

reaction and the triene must rotate in a conrotatory sense as illustrated 

in Figure 4a; if the sulphur dioxide is the antarafacial component, it 

Is a 16Z non-linear cheletropic process and the triene must rotate 
s a   

in a disrotatory sense as illustrated in Figure 4b. 



a 

7 
H OM 0 

I 

dONO 
e 

/ HOMO  
0 

16 

(a.) 
	

(b) 

Fig.4 	a) Linear and antarafacial. on the triene 

b) Non-linear and supraIacial on the triene. 

Gilchrist and Storr have summarized the selection rules for
37  

cheletropic reactions as follows: 

Linear cheletropic reactions in which the polyene is a supra-

facial component (i.e. involving distrotatory motion of the terminal 

carbons) are allowed for a total of (4n+2) electrons. 

Linear cheletropic reactions in which the polyene is an antara-

facial component (i.e. conrotatory motion of the termini) are allowed 

for a total of 4n electrons. The rules for the non-linear cheletropic 

reaction are the reverse of these. 

The rules for photochemical extrusion are the reverse of those 

for thermal extrusion. 
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B. 3 Stereo chemistry, kinetics and mechanism of suipholene and 

sulpholane extrusion reactions. 

This section details the experimental observations which fit the 

theory discussed in section B. 2. 

The decomposition of the substituted episulphone (23) is 

stereospecific and cleanly suprafacial with respect to the alkene (24) 

40 
(Scheme 13). 

39, However a rr2 5 '+W?-'+W?-
5 
 process is disallowed (see 

S 02 3 
__ 	-s 02 	 ___ 

__ 

(23) 
	

(24) 

1 =H, R 2, R 3 , R4  R 	 r Ar, alkyl or H in various combinations. 

Scheme 13 

fig.. 1) and so if the reaction is to be concerted the. sulphur dioxide 

must depart in an antarafacial manner (see fig. 2) to give alT 2*i2 

process. However this is only a rationalization of the observed 

stereospecificity, not a proven mechanism. 

Mock 
39 

 has suggested that the non-linear reaction path for 

episuiphone fragmentation (Scheme 14a), can be readily accommodated 

by sequential bond cleavage (Scheme 14b). In the two-step mechanism 

in order to explain the observed stereos pecificity it is necessary and 

sufficient that dissociation of the dipolar intermediate be more rapid 

than the internal rotation of a bond. It is pertinant to point out that, 



M 

0 

s,o  
0 

O sPc a,i,,4rnon_ti near" 

I 'S 

0 

~ .• 	

-_+ S 0 

(b 
)\wo_step  0 
	

$02 
/ 
 

- 	- - 
I 'S 

Scheme 14 

on more than one occasion, doubts have been expressed4 ' 41  about 

the applicability of the selection rules to episulphone fragmentations. 

An alternative mechanism involving ring expansion to a four membered 

ring isomer has also been suggested. 

Kinetic studies involving episuiphoné fragmentations are not very 

informative since ring strain plays an important part in the rate of the 

4 
reaction and thus clouds the effect of orbital symmetry constraints. 

The mechanism of episulphone fragmentation is thus still open to question. 

The thermal extrusion of sulphur dioxide from substituted 2, 5-

dihydrothiophene 1, 1-dioxides (25) has been extensively investigated 39,42
-44 

 

and shown to be cleanly suprafacial with respect to the incipient diene 

(26) (Scheme 15). The reaction has been suggested 
 39 

 to proceed via 

the transition state (27), a linear concerted process, described as a 
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E 
Fj:i **'0 R 2 

(25) 

-so 2 	- 

Ri 

7- 

tR3  
(26) 

1 	2 
R • R =CH 3 ; 	=H > 99.9% stereospecilic 
13 

R , R = CR3 ; R2=H 	
Scheme 15 

retro-[r14t2] process in keeping with the orbital symmetry predictions 

previously discussed in section B. 2. However Mock 
39 

 has alluded to 

the fact that this is a "nonrisky orbital symmetry prediction" as other 

possible transition states which have been suggested suffer from un-

favourable ring strain considerations. Thus once again the conclusion 

that one is getting s ter eoelectronic control is somewhat tentative. 

From kinetic studies 
45-48 

 it has been concluded that substituents 

in the parent sulphone do not affect the rate as much as might be 

expected for ionic or radical mechanisms. .Aiperger et al. 6  have 

34 
examined secondary deuterium isotope effect and the primary 

isotope effect on the kinetics of thermal decomposition of substituted 

butadiene sulphones. The results obtained give support to a concerted 

mechanism. 
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Recently Hogeveen and co-workers 49,  have reported that 

addition of sulphur dioxide to the diene (28) at or below room temperature 

led to the formation of the sulphinic ester (29) which immediately 

rearranged preferentially to an aromatic ester (30) (90%)  and to the 

suiphone (31) (10%)  (Scheme 16). The thermal rearrangement to the 

sulphone was shown to proceed via  retro-Diels-Alder reaction. Thus 

five-membered ring sulphones and six-membered ring sulphinate esters 

from the cycloaddition of sulphur dioxide to 1,3-dienes may represent 

the thermodynamically and kinetically controlled products respectively. 

Mock et al. 	50-52 have also investigated the reversible 

formation of 2, 7-dihydrothiepiñ 1, 1-dioxide from 502 and cis-1, 3, 5-

hexatriene. In contrast to the five-membered ring analogue, decom-

position of (32) preferentially proceeded antaralaciafly with respect 

to the triene fragment (33) (Scheme 17), the stereochemistry of which 

is in accord with the reaction pathway being a linear concerted process; 

this signifies a retro_[116a+u?sI process, involving a transition state 

4)•39 



21 

I  DC,  
I 

 90% 

(3 0) 1 200c 

s02 + 

	 (20 °C 	

ul:: 
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DL)2 

-so 2  

(32) (33) 

1 	2 
R • R =GH3

; R3=H > 97% stereospecific 
1 	3 

2  R , R =CH 3 ; R  

Scheme 17 

Notwithstanding these conclusions it is of interest to note that an 

analysis of steric considerations 39, 51 shows that bond-angle deformations 

and non-bonded interactions are sufficient to explain the observed 

stereospecificities without the need to invoke orbital symmetry constraints. 

Interestingly the stilpholenes (32) could not be prepared by addition 

of sulphur dioxide to the appropriately substituted triene. 
51 

 A thorough 

investigation 
52  of this reaction further established that in some cases 

1,4-addition of sulphur dioxide could compete effectively with 1,6-

addition, depending on the nature of the triene. A typical example is 

provided by the reaction of SO  with the hydrocarbon (35) to give the 
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sulphone (36) (Scheme 18). 52 

I;-' S02 H 

HHcD  
(35) 
	

(36) 

Scheme 18 

Kinetic data for the extrusion of sulphur dioxide from the parent 

compound viz. 2, 7-dihydrothiepin 1, 1-dioxide (32, R.1R2, R
3 
 H)

45

showed that the rate of decomposition was almost identical to that for 

butadiene suiphone. This observation may offer an explanation as to 

why the two modes of cycloaddition can effectively compete with each 

other. 

Another classic example of 1,4-addition of sulphur dioxide is the 

addition of SO  to 1, 3, 5-cyclooctatriene (37) to give the sulphone (38) 

(Scheme 19). 	52, 53 In this case antarafacial addition to the triene 

is geometrically impossible and the alternative 116g*)2a non-linear 

addition to the triene does not compete with concerted 7r4 5  t 5 
2 linear 

cheletropic addition to the diene component. Mock 
53 

 has converted 

(38) into (40) the formal 1, 6-adduct of 1, 3, 5-cyclooctatriene and 

sulphur dioxide by the indirect route shosn in Scheme 19. 

The geometry of (40) is such that the usual retro_[1T6a4w2g] 

fragmentation process is impossible. This means that the elimination 

if concerted would have to be a non-linear cheletropic process i.e. 

retro-[ir6w2 ]. The extreme unfavourability of the retro - [ir 6  ftn2 
5 a 	 s 	a 
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(37) 

8 
/<'2NBS (39) 

/ 2.Zn 
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(38) 
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9
(40) 

Scheme 19 

process is illustrated by the fact that at 180 ° C (40) undergoes fragmentation 

some 60, 000 times more slowly than does (38) for which an allowed 

retro-[T4-1w2] process is possible. However it has been suggested 

that other paths could operate 45 and the mechanism of fragmentation 

of (40) remains unclear. 

Upon thermolysis (41a) yields sulphur dioxide and 1,4-pentadiene 

(42a) in a rapid and clean reaction, similarly (41b) gave only sulphur 

dioxide and trans, trans-2, 5-heptadiene (Scheme 20). 	Thus the 

reaction is entirely stereospecific and can be classifiedas a aZ 1c2 kyZ 

	

5 	5 	5 

process. The rate of dissociation of (41a) at 125 0C is identical to the 

rate of dissociation of butadiene suiphone under the same conditions 

implying a coupling of the C-S bond scission with opening of the cyclo-

propane ring. 
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<C S02 

	

<2 
(41) 
	

(42) 

R 1 ,R 2 H 

R 1 , R 2  =CH 3  

R 1 R2= -CH2CH2CH2- 

Scheme 20 

This conclusion is supported by the stability of the tricyclic 

suiphone (41c). under similar conditions. This inertness can be 

readily understood when one considers that fragmentation of (41c) in 

a manner directly analogous to (41a) or (41b) would produce the 

impossibly strained trans, trans -1,4- cycloheptadiene. 

Finally it is of interest to note that fragmentation of suipholanes 

(tetrahydrothiophene 1, 1-dioxides) 55  give rise to stereoisomeric 

mixtures of alkenes indicating that multistep mechanisms are operating 

in these cases. 

B. 4 Synthetic utility of the suipholene reaction. 

The reaction of 1, 3-dienes with sulphur dioxide was first 

reported in 1914 by de Bruin, 	who reacted isoprene (43) with liquid 

sulphur dioxide at room temperature and obtained a pure crystalline 

monoadduct to which he assigned the structure (44) (Scheme 21). 

Today a.wide variety of synthetic processes employ the reaction and 
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+s02  -  bs 
02 

(3) 	 (1+4) 

Scheme 21 

its reverse. 

B utadiene sulphone (21) rapidly decomposes on heating above. 

125°C and can serve as an excellent small scale laboratory source of 

buta-1, 3-diene. 	For example it reacts with benzyne (45) to form 

1, 4-dihydronaphthalene (46) (Scheme 22). 58 

[US02 
S02 -. 	

+ 

(21) 	 (1+5) 

cc 
(4 6) 

Scheme 22 

-C 02 020 %ç1 
-N2 

+N2  

Since the "sulpholene reaction" is almost always reversible 

sulpholenes are useful intermediates for the modification, purification 

and storage of dienes. 	in general addition of sulphur dioxide to 

1, 3-dienes substituted in the 1-position is inhibited. By comparison 

the addition to 2-substituted dienes is enhanced and it is this difference 

in reactivity which is exploited in using the reaction as a method of 

separating diene mixtures. 



27 

The main limitation of using sulpholenes as a general synthesis 

of dienes is that sulpholenes are usually prepared by the reverse of this 

reaction. This limitation has been largely overcome by the alternative 

synthesis of 2, 5-dihydrothiephenes (50) by Mc Intosh et al. 
60 

 from the 

reaction of cz-mercapto ketones (47) with vinyl phosphonium salts (48) 

the reaction proceeding via the intermediate (49) (Scheme 23). Com-

pounds of the type (50) can be readily oxidized to sulphones (51) which 

can readily be therrnolysed to give dienes (52). 

An elegant example of the synthetic utility of the sulpholene 

reaction has been provided by Nesbitt et al. 
, 

61 who separated cis and 

trans isomers of. the red bullworm moth sex pheromone by selective 

reaction with sulphur dioxide below 0 0C (Scheme 24). Since only the 

trans-isomer reacted, the adduct (53) could be readily separated from 

the cis-isomer. Subsequent thermolysis of (53) then gave pure trans- 

diene (54). 

RS 02
.  ~7 so2.. 

R 	
_S02 

R=(CH 2 ) 8 OAc 	 - 	
. 	 (SL,) 

Scheme 24 



MV 

2 
	 .1 

I 
	

(Ph 3 ) 

4 P(Ph) 3  R 

(48) 
	

(49) 

-Ph 3 PO 

1 	R2  

II 	SO2 -' 
-SO2  

(52) 	(51) 

R =Me 
23 

R , R , H or Me 

(50) 

Scheme 23 
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A synthesis which takes advantage of the ability of suiphones to 

readily exchange their a-hydrogens for deuterium atoms is the 

preparation of deuteriobutadienes (55) (Scheme 25). 62  

02 

CI SO2

D20  CIS o2  a-
NuOD 

(21) 	 02 

Scheme 25 

- CD=CHCH=CD 
-so2 	2 	2 

(55) 

A synthesis which takes advantage of the unreactivity of the 

a-position of suiphones. in free radical halogenations is the preparation 

of 2-bromom ethyl- l, 3-butadiene (57) as shown in Scheme 26. Bromina-

tion of the methyl group of the sulpholene derivative (44) by N-bromo-

succinimide gave (56) thermolysis of which gave the.rnodified diene 

(57) in good yield (Scheme 26). 
63  The complex mixture of bromo 

derivatives expected from direct bromination of isoprene (43) was 

thus avoided. 

Br 	Br 

so2 	S 	 NBS -SO2 

(43) 	(44) 	 (56) 	(57) 

Scheme 26 

Meyers et al. 64 have reported that the method used for the 

synthesis of hornoconjugated dienes (42) is capable of extension to the 

preparation of divinyl ethers (59) and divinyl carbamates (61) via the 
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heterocyclic intermediates (58) and (60) (Scheme 27). 

O102 p  

	

(58) 	 (59) 

CS02  
N 3CO 2Et 

(21)  
/- 

Et02C-N102 	2 
115-11 	S 0 2 

iEtO C-N 

	

(60) 	 (61) 
Srhn,e 27 

The suipholene reaction is usually carried out in the 80-150 ° C 

temperature range. However in the case of mono or bicyclic suiphones 

the temperature required may be higher and this can lead to a rearrange-

ment of the products. 34,65 This problem has been circumvented by Gaoni 

who has reported, 
66  that suiphones undergo elimination of sulphur 

dioxide when treated with lithium aluminium hydride in ether to give 

dienes in good yields 
	The mechanism of this reaction has not yet 

been fully investigated. 

B. 5 Photochemistry. 

The photochemical extrusion of sulphur dioxide from sulpholenes 

is much less well studied than is the thermal reaction. Bordwell has
67  

reported that ultraviolet light induces decomposition of phenyl-substituted 

episulphones, however the experiments were not rigorous. 
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Saltiel and Metts 68  have studied the photolysis of cis and trans 

dimethylsuipholene (25a and b) and whilst the reaction was not totally 

stereospecific, a preference for the antaraIacial mode with respect 

to the diene was observed. 
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C. 	The Cope and Claisen Rearrangements. 

C. 1 Introduction. 

The Cope and Claisen rearrangements both named after their 

discoverers 69, 70 have been extensively studied and exploited for their 

synthetic value. The former, although less valuable than the latter 

in general is more relevant to the present discussion. Excellent 

reviews of both reactions are available ' 
	

and thus attention will 

focus on example of direct relevance to the present discussion. 

The Cope rearrangement is typified by the thermal rearrangement 

of biallyl compounds (62) to isomeric biallyl compounds (64) via the 

transition state (63) (Scheme 28). 
73

Similarly an example of a typical 

LH 
(62) 	 (63) 	 (64) 

X=C 6 H 5  CN; CO 2CH 3  

Scheme 28 

Claisen rearrangement is the thermal rearrangement of a vinyl allyl 

ether (65) to the corresponding homoallylic carbonyl compound (66) 

(Scheme 29). 

o-_-  	O 

0000, 

 

(65) 	 (66) 
Scheme 29 
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These transformations have been classified as [3, 3] sigmatropic 

rearrangements by Woodward and Hoffmann. 21 

C. 2 Mechanism and stereochemistry of the Cope reaction. 

Various geometries are possible for the transition state (63), 

which can be classified according to whether each of the allyl systems 

interacts with the lobes of the other system on the same side (supra-

facially) or on opposite sides (antarafacially). There are two possible 

geometries for the suprafacial, suprafacial transition states viz. thft 

four-centre TI cMir _lilce!.t overlap (67) or the six centre "boat-like" 

overlap (68) typified by the 'degenerate' Cope rearrangement of hexa-

1, 5-diene as shown (Scheme 30). 74 

(67) 

T1W 

(!68) 

Schene 30• 

The chair-like arrangement (67) has been deduced to be more 

favourable than the "boat-like" arrangement (68) by about 25 kJ mol 1  

This deduction came from the work of Doering and Roth 75 in which 

they observed that meso-3,4-dimethyl-1, 5-hexadiene (69) rearranged 



Rh M 

Me Ph +  

Me Me 

(72) (73) 

Ph Me 
* 

Me 

(71) 
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almost exclusively (99. 7 %) to cis, trans-2,4-octadiene (70) (Scheme 31). 

This stereochemistry if 	only with a chair conformation for 

the transition state: as a boat conformation would give either £as!.. 

or trans, trans- octadiene. 	
Me 	H 

H- - C,~~ 
	225 GC 

Me (69) 	 (70) 
Scheme 31 

The high stereospecif icity and the stereopreference for the 

"chair-like" transition state has been further confirmed by the work 

of Hill and Gilman. 76 They reported that the optically active hepta-

1, 5-diene (71) Cope rearranged to give a mixture of two other hepta-

1, 5-dienes (72) and (73) (Scheme 32) 
	

In this case the products 

Scheme 32 

possess opposite configurations not only at the double bonds but also 

at the centres of asymmetry. 

Various theoretical interpretations of the rearrangements based 

on a variety of molecular orbital approaches have been advanced. 21,77-79 

These approaches vary in elegance and complexity but they do predict 
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that there should be a stereopreference for the "chair-like" transition 

state. 

One of the simpler ways of arriving at this conclusion is to 

consider the transition states (67) and (68) as arising from the hypothetical 

processes in which two allyl radicals approach each other from infinity, 

in parallel planes, orientated with respect to each other in a "chair-like" 

or in a "boat-like" fashion. 

The relevant orbital interactions for the allowed "chair-like" 

and "boat" transition states are illustrated in Fig. 5a and Fig. Sb 

respectively. As will be noted the non-bonding SOMO (singly occupied 

• 	gOMD 	 b 	
OSOMO 

	

SOMO 	
tQSOMO 

Fig. 5 a) Chair transition state (suprafacial, suprafacial) 

b) Boat transition state (suprafacial, suprafacial) 

molecular orbital)-SOMO interaction has nothing to do with this 

selectivity since these MO's have a node at the central carbon atom. 

In order to explain the preference for the "chair-form" transition 

state one has to consider the NHO (next highest occupied) and NLU 

(next lowest unoccupied) orbitals, which have interactions between 

the central 2-lobes of the two allyl systems in the "boat-form" (see 

fig. 6b) but not in the "chair-form" (see fig 6a). 	It should be
77  

emphasised that the interaction is not all that great and as examples will 

show the "boat" transition state is often encountered in practice. 



36 

ô 

NHO 

a 

na ws 
NHO S 

6 

Fig. 6 	a) N HO-NLU interactions in chair transition state 

b) NHO-NLU interaction in boat transition state 

It is pertinent to point out that the full details of the mechanism 

of the Cope rearrangement have not yet been fully resolved as is 

testified by fairly recent publications. 80-82 

Finally it should be mentioned that there is a third possible 

allowed transition state viz, an antarafacial-antarafacial interaction 

of the diallyl species. Although this is not usually competitive with 

the other transition states one example does exist viz, the conversion 

of (74) to (75) (Scheme 33). 83 However attempts to observe the same 

OMe 2  
0 	\ 	II 	

190?C 

H 	
TM e 

OH OH 3 )2 

(Th) 

5 Lwj C  
[) 	

II 

(75) 
Scheme 33 

mechanism operating for the rearrangement of the hydrocarbon (76) 

failed (Scheme 34). 84 
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D--C[3--D --d ~- 

(76) 
Scheme 34 

[I 

C. 3 Cope rearrangement of cis-l. 2-divinylcycloalkenes and their 

analogues. 

- The general Cope rearrangement for ci s - 1, 2-divinylcycloalkanes 

can be represented by the conversion of (77) to (79) via the transition 

state (78) (Scheme 35). It should be noted that in this case the chair 

	

(H2CC
_____ 	 I I 

- 	 (H 2 C),, 

	

- 	 ___ 

(7 7) 	 (78) 	H 	 (79) 
n=l,Z, 3 Scheme 35 

transition state is sterically impossible and so the reaction must go 

via a boat transition state. 

The first member of this series cis-1, 2-divinylcyclopropane (80) 

(nl) is interesting in that it undergoes the Cope rearrangement to give 

cyclohepta-1,4-diene (81) so readily that for many years this precluded 

its preparation (Scheme 36). 85, 86 Success was finally achieved by 

Brown et al.  87  and more recently Schneider and Rau 88 have reported 



H>~~ 

H'>  

(80) 

.cooc 
- 

(81) 
Scheme 36 

a general and convenient synthesis for cis-1, 2-dialkenylcyclopropanes. 

The ease with which (80) undergoes the Cope reaction has been 

attributed to release of ring strain in the cyclopropane ring. However 

Schneider and Rau 88 have reported that methyl substituents on terminal 

carbons of the vinyl groups have a dramatic effect on the rate of the 

isomerization. Indeed in the case of the hydrocarbon (82) there was 

no Cope rearrangement only cis-trans isomerization. 

(82) 

The thermal rearrangements of the heteroanalogues of divinyl-

cyclopropane (83) to give 4, 5-dihydroheteroepins (84) have also been 

studied (Scheme 37). The Cope rearrangements of cis-2, 3-divinyl- 

(83) 

A xl l
'c,/ 

(84) 
X: 0, NH, 5, 502 	

Scheme 37 

oxirane (X=0), 89 cis-2, 3-divinylaziridine (XrNH) 90  and cis-2, 3-divinyl-

thiirane (X =S) 
 91  have been investigated in detail. The intermediacy of 

cis-2, 3-divinylthiirane 1, 1-dioxides (X50 2) 92  in the synthesis of 4, 5-

dihydrothiepin 1, 1-dioxides has also been reported but they have not 

been isolated or characterized. 
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The temperature necessary to induce the ring expansion of 

(83) to (84) increases in the order carbon, nitrogen, oxygen and sulphur. 

In the case of cis-2, 3-divinylthiirane 91  sulphur extrusion, to give hexa-

trienes, competes with the Cope rearrangement. 

Rearrangement of the corresponding trans-divinyl derivatives 

has also been studied 89c, 90b, 
91

and they require more vigorous 

conditions to rearrange apparently via diradical processes or by 

isomerization to the more labile cis-isomers. 

Additional interest in the rearrangement of divinylcyclopropanes 

has arisen from the suggestion that they are possible precursors in 

the biosynthesis of natural products from brown algae. 93 

The second member of the series viz. cis-1, 2-divinylcyclobutane 

(85) rearranges similarly to give cis, cis-cyclooctal, 5-diene (86) 

(Scheme 38), first reported by Vogel 94 and later more fully investigated 

EQ 
(85) 

A 0(86)  
Scheme 38 

by others. ' 	The fact that the rearrangement (85) to (86) requires  96 

more vigorous conditions than for cis-1, 2-divinylcyclopropane has been 

suggested to be due to the lesser ring strain in the cyclobutane ring. 97 

Also it has been found by Berson and nervan 6  that substituents on the 

terminal carbons of the vinyl groups retard the rearrangement. 

In contrast to the small strained ring (n1, 2) cis-1, 2-divinyl-

cycloalkanes the position of the equilibrium for the medium ring systems 

(n3, 4, 5) is determined more by the strain energy of the Cope 



40 

rearranged product viz, the cyclic 1, 5-hexadiene systems (79) 

(Scheme 35), than by the strain energy of the smaller rings. 

Vogel and co-workers 98 have reported that cis,-1, 5-cyclo-

nonadiene (87) and cis-1, 2-divinyl cyclopentane (88) equilibrate at 220 0 C 

to form a mixture in which (88) is strongly favoured (Scheme 39). 

220*C - ZIirI 95% 

(87) 	
Scheme 39 

	'(88) 

Similarly, cis, trans 1, 5-cyciononadiene (89), which is more strained 

than (87), isomerizes to (88) when heated in the gas phase at 130 0C 

(Scheme 40). 	The first of these reactions, i.e. (87) to (88), proceeds 

via the "boat" transition state while the latter goes via the "chair" 

• 	
130°C 	:cc) 

(89) 	 • 	(88) 
Scheme 40 

transition stat e. It is known 
97 

 that at temperatures above 300 ° C (8 8) 

undergoes reversible cis -trans - isomerization. 

The situation for the next higher homolog (n.4) viz. 1, 5-cyclo-

decadienes is similar to that just described for the 1, 5-cyclononadienes. 

Thus cis, trans 1, 5-cyclodecadiene (90) isomerizes quantitatively at 

150°C to cis-1, 2-divinylcyclohexane (91) (Scheme 41) via  "chair" 

transition state. 	Similarly trans, trans- 1, 5-cyclodecadiene (9 2) 
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cc 150 °C ]Cc 
(90) 
	

(91) 
Scheme 41 

isomerizes completely, via  "chair" transition state to give trans-1, 2- 

- 

thvtnylcyclohexafle (93) (Scheme 42). 100  

00 70 C 

(92) 
Scheme 42 

in the field of natural products. 
71 

This reaction has importance 

:cc 
(93) 

An example of the rearrangement of a yet higher homolog (n5) 

101 
is provided by Subba Rao et al. 	Thus (94) is readily converted into 

(95) (Scheme 43) which as will be noted contains the trans-divinyl system. 

0 
	

0 

160°C - 

(94) 
	 M'eg) 

Scheme 43 

The thermal rearrangement of trans and cis-5, 6-divinyl--

cyclooctenes (96) and (98) has also been studied. 102 It has been found 

that the trans-isomer (96) gives rise to trans-1, trans-5, sfl..-9- cycth -

dodecatriene (97) whereas the cis-isomer (98) yields trans-1, cis-5, - 

cis _9_cyclododecatriene (99) (Scheme 44). Both these processes have 

been attributed to Cope rearrangements involving "chair" transition states. 



42 

(:)z >2000C  

	

(96) 	 (97) 

CDC S.- 00 -S. 

>200°C 

	

(98) 	 (99) 
Scheme 44 

Thus it would appear that a cross-over point has been reached (nr6) 

where the strain energy incurred by incorporation of the 1, 5-hexadiene 

system in a cyclic product does not preclude the reaction taking place. 

Finally it should be mentioned that there are several systems 

which undergo Cope rearrangement very readily and in which the 

products have the same structure as the starting material. The best 

example of multiple degeneracy is the molecule tricyclo[3. 3. Z. 0 6_ 

deca-2, 7, 9-triene (100) better known as bullvalene. Doering and Roth 103 

predicted that this system to be capable of a 1 209 600-fold degenerate 

rearrangement, the cyclopropane unit being at any three adjacent carbons 

(Scheme 45). 

n 
U 	S. 

(100)  
Scheme 45 

- 	- 	etc. 
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This system was first synthesized by Schrgde4 04  and it was 

found that its 1 H n. m. r. spectrum collapses to a sharp singlet above 

100° C, indicating that under these conditions the degenerate rearrange-

ment is sufficiently rapid for all of the C-H units in the (CH) 
10

system 

to be essentially equivalent, and they may be considered to move 

independently on the surface of a sphere. 

C. 4 Tandem Cope-Claisen rearrangement. 

The only example of a Claisen rearrangement relevant to the 

present discussion is the recently reported 
105 

 first example of a tandem 

Cope-Claisen rearrangement As shown in Scheme 46 (101) rearranges 

to (log). Here the Cope rearrangement triggers the Claisen and as 

the Claisen rearrangement is irreversible this serves to shift the 

unfavourable Cope equilibrium. 

IIiJiIIIIJ 	290C - 

HO 

(101) 
	

(102) 
Scheme 46 
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D. 	Programme of Research. 

The preparation of 3, 5-dioxo-4-oxa-9-thiatricyclo[5. 3. 	
6 

decane9, 9-dioxide (1) was first reported by Shaikrazie.va et al. 

It should be noted that Scharf and Korte 6  had briefly reported the 

preparation of a very similar type of compound much earlier. 

0 
11 

02 SCE: 0   
11 

(1) 

The initial publication gave details of a few chemical transformations 

of (1) but a notable failure was their attempt to desuiphurize it. 

It was against this background that the present work began. It 

was recognised that if the sulphur dioxide was extruded from (1) and 

its derivatives then this would provide a vehicle for the synthesis of 

various divinyl compounds. Flash vacuum pyrolysis was the technique 

chosen for the extrusion and as will be described this proved to be 

very effective and also general. 

A further object of the research was to transform the anhydride 

moiety into a variety of heterocyclic rings and study the pyrolysis of 

the products. It was also recognised that conversion of (1) to its 

dicarboxylic acid derivative, followed by oxidative bis-decarboxylation 

of this diacid would give the highly interesting molecule 3-thiabicyclo-

[3. 2 O]hept-6-ene 3, 3-dioxide. A programme designed to investigate 

the reactions of this alkene with various reactive intermediate species 

was considered worthwhile as this was a potential route to further hetero- 

cycles. 
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A. 	Symbols and Abbreviations. 

b. p. boiling point 

M. P. melting point 

I. R. infra-red 

n. m. r. nuclear magnetic resonance 

s; ci; 	t; singlet; 	doublet; 	triplet; 

a; rn; c quartet; 	multiplet; 	complex 

br. broad 

3 spin-spin coupling constant 

5 chemical shift 

M. S. tetramethylsilane 

M mass of molecular ion 

m/e mass to charge ratio 

t. 1. C. thin layer chromatography 

w/v weight per unit volume 

wfw weight per unit weight 

p.s.i. pounds per square inch 

V. ultra violet 

T. H. F. tetrahydrofuran 

F. V. P. Flash vacuum pyrolysis 

h; mm; s; hours; 	minutes; 	seconds 

mmol millimoles 

If: 
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B. 	Instrumentation and General Techniques. 

Nuclear Magnetic Resonance Spectroscopy (n. m. r. ). 

1 
Proton H n. m. r. spectra of routine samples were obtained on 

a Varian EM-360 (6 0MHZ) n.m. r. spectrometer at a probe temperature 

of 33°C. Spectra of new compounds and decoupling studies were 

obtained using a Varian HA 100 (100 MHz) n. m. r. spectrometer at a 

probe temperature of 28 °C. The HA 100 instrument was operated by 

Mr. J.R.A. Millar. High resolution spectra were obtained on a Varian 

XL-100 (100 MHz) spectrometer equipped with pulse and Fourier 

transform accessory and was operated by Dr. A. S. F. Boyd. 360 MHz 

spectra were obtained on a Bruker WH-360 n. m. r. spectrometer which 

was operated by Mr. L. H. Bell. Chemical shifts were recorded as 

delta (6 ) values in parts per million from tetramethylsilane (6 = 0. 00) 

which was used as internal reference. In a few cases where deuterated 

dimethyl sulphoxide was used as the n. m. r. solvent an external 

capillary lock of tetramethylsilane was used. 

Carbon thirteen 13 C  n. m. r. spectra were obtained on a Varian 

CFT 20 n. m. r. spectrometer which was operated by Mr. J.R.A. 

Millar. The operating frequency was 25. 2 MHz. The deuterium 

signal from the solvent was used for frequency lock, and chemical 

shift values were recorded in parts per million from tetramethylsilane. 

For all types of n. m. r. spectroscopy used, positive 6 values 

are to low field relative to the reference. 
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Mass Spectrornetry 

Mass spectra and accurate mass measurements were obtained 

using an Associated Electrical Industries MS902 double focussing 

instrument (70eV) using a direct insertion probe. This instrument 

was operated by Mr. D. J. A. Thomas. 

Infrared spectroscopy (i. r.) 

Liquid samples were examined as thin films and solid samples 

as nujol mulls, both on polished sodium chloride plates, using a Perkin-

Elmer 157G grating spectrometer. 

Elemental Analyses 

Microanalyses were carried out on a Perkin Elmer 240 Elemental 

Analyser by Mr. S. Grunbaurn, University of Edinburgh. 

Melting Points 

The melting points of all new compounds were determined using 

a Kofler hot stage instrument and are uncorrected. 

Medium Pressure Liquid Absorption Chromatography 

This is a relatively new technique and a full description has been 

107 
given. 

The pump used was a series II micrornetering pump with a 

mechanically activated diaphragm head, supplied by Metering Pumps 

Ltd., Ealing. The diaphragm was constructed of nitrile rubber faced 

with Teflon. The pressure was monitored using a Budenburg guage 

equipped with a Nupro pressure relief valve set to open at about 80 
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pounds per square inch. Glass high performance liquid chromatography 

columns and Teflon tubing and connections were supplied by Jobling. 

For small separations(l g) 1000 x 15 nifn columns and 250 x 15 mm 

pre-columns were used and for longer separations (ca 10 g) 1000 x 25 mm 

columns and 250 x 25 mm pre-columns were used. Teflon to metal 

connections at the pump, pressure gauge and detector were made using 

Swagelok fittings. Columns were packed with Merck aluminium oxide 

( 1190 active, neutral for column chromatography") or silica gel ( 1 60, 

40-60rrrn for column chromatography"). 

In most cases detection of the products was by t. 1. c. but in a 

few cases use of a u.v. detector was possible. 

A model 1521 LUV monitor, Model II detector and chart recorder, 

manufactured by Laboratory Data Control, Florida U.S.A., was used, 

the u. v. absorbance of the effluent being observed at 280 nm. The 

effluent was collected using a central automatic fraction collector 

equippped with 25 or 50 ml syphons. 

Flow rates were generally adjusted to about 5 ml min- 1. When 

the alumina columns were used the solvents were 50% water saturated. 

This was achieved by saturating a given amount of solvent with water 

and then mixing this with an equivalent amount of dry solvent. 

Column Chromatography 

The alumina used was Laporte industries, Grade H, 100/200 mesh. 

B. D. H. silica gel for chromatography, 80-200 mesh was also used. 

Thin-layer Chromatography (t. 1. C. 

Thin layer chromatograms were obtained on 0. 3 mm layers 

of alumina (Merck, aluminium oxide C, type 60/E) or silica gel 
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(Merck, silica gel G, type 60) containing fluorescent indicator. 

Components in the developed chromatograms were detected by observing 

the plate under u. v. light, or by reaction with iodine. 

Gas Liquid Chromatography 

A Pye 104 chromatograph with flame ionisation detector was 

used; all columns were 2m x 2. 2mm in diameter. The carrier gas 

was nitrogen and the flow rates were those recommended by the 

manufacturer. The following stationary phases, supported on 80-100 

mesh celite were employed: silicone elastomer (SE 30) and polyethylene-

glycoladipate. 1 80- 100 Chromosorb W' was used to support 30% jS,jS'-

oxydipropionitrile. 

Flash Vacuum Pyrolysis (F. V.P.) 

The type of apparatus used was the conventional horizontal flow 

reactor a diagram of which is shown in Figure 7. 

The inlet consisted of a pyrex tube (30 cm long x 25 mm) closed 

at one end and a B-24 ground glass joint at the other. The inlet tube 

was attached via the ground glass joint to a silica tube (30 cm x 25 mm) 

which was surrounded by a furnace. The products were trapped in 

a 'U'-tube which was surrounded by liquid nitrogen and was connected 

to the silica tube at the exit point of the furnace. The pressure was 

measured by either a McLeod or a Pirani gauge situated between the 

trap and the pump. 

The heat required for the inlet was supplied by either a metal 

or glass Buchi Kugelrohr. The furnace and control box were supplied 



Thermolysis tube containing silica rods 

Product trap 
Release tap 

I I —
H 

 Release tap 
To guage 

;, 	 II 	II 	i 	 I 	liii 	I 	 %-1 

H 

- 	Liquid 	 Pump 

- - - N2 	- - - - - 

('-I 
0' 

Furnace 

Inlet tube 
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by Stanton Redcroft London. The high vacuum pump and vacuum 

gauge were supplied by Edwards of Crawley. 

Photolysis 

Photolysis were carried out using either 100 or 400W medium 

pressure mercury lamps supplied by Applied Pliotophysics Ltd. London. 

The filters used were either quartz or pyrex insertion wells also 

supplied by Applied Photophysics. Similarly power was supplied by 

an Applied Photophysics power pack of the appropriate rating depending 

on the lamp being used. 

The reactions were carried out under dry nitrogen and the reaction 

mixture was stirred continuously. 

Solvents 

Anhydrous acetone was prepared by standing analar acetone 

(2. 5 litres) over anhydrous magnesium sulphate (30 g) for a minimum 

of three hours. The acetone was filtered through a glass sinter and 

used directly. Benzene was distilled, dried and stored over sodium 

wire. Toluene was washed with sulphuric acid, sodium carbonate 

solution and water, dried over magnesium sulphate, then: distilled 

and dried and stored over sodium wire. Pyridine was healed under 

reflux over potassium hydroxide pellets for 5 h and then distilled onto 

molecular sieve. 

Tetrahydrofuran was dried over sodium wire, then boiled under 

reflux for 5 h over calcium hydride and distilled onto molecular sieve. 

The whole process was carried out under dry nitrogen. 
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X-Ray Crystallography 

X-Ray studies were carried out by G. W. Smith, X-ray 

analytical laboratory B. P. Research Centre, Sunbury. 



C. 	Nomenclature 

All compounds are named in accordance with the principles laid 

down in the "I. U. P. A. C. 1957 and 1965 Rules. " All compounds of the 

type (103) are named as derivatives of tricyclo[5. 3. o. 0' 6 ]decane. 

The lecant 1 is assigned to the bridge-head which allows the hetero 

ocII:EI:) 
W=O, N, C 	

2 
 

X=O, 5, N 	 (1 03) 

atom of highest priority to be assigned the lowest number, while adhering 

to the principal that numbering must begin at the point which gives the 

longest path between bridge-heads the lowest numbers. The order of 

priority of the heteroatoms is O>S>N. 

According to the same rules (104) and (105) are named as 

derivatives of bicyclo[3, 2. 0]heptanes and divinylcyclopentanes respectively. 

	

02 Sal 

	

00 

	

(10/.) 
	

(105) 
Y =COOH, CO 2Me,CH 2OH etc. 	Z = 0, S, N 



D. 	Preparation of 3, 5_Dioxo-4-oxa-9-thiatricvclo[5. 3. 0. 02. 6_ 

decane 9, 9 - dioxide. !  

This was prepared by the method of Shaikrazieva et al. 

Irradiation of butadiene suiphone (19. 0 g. 160 rnmol) and maleic 

anhydride (20. 0 g, 200 mrnol) in anhydrous acetone (360 ml), at 20-

25°C for 24 h, with a 400 W medium pressure mercury lamp, in a 

cylindrical water cooled quartz reactor gave a colourless crystalline 

precipitate. The precipitate was filtered off, washed with anhydrous 

acetone and dried invacuo to yield 3, 5-dioxo-4-oxa-9-thiatricyclo -

[5. 3.0. 02,6 ]decane  9,9-dioxide (17.7 g, 51%) m. p. 292-293°C 

(lit. , 
	

292-2930C). 

1 H n.m.r, cS [CD 3 ) 2SO] 3.49-3.26 (8H, cm, 1-H, 2-H, 6-H, 

7-H, 8 and 8'-H, 10 and 10'-H); 

13 C n.m. r. [(CD3 ) 2SO] 172.98 (C0), 52.67 (C 8  and C 10 ), 

43. 35 (C 2  and C 6 ), 35.03 (C 1  and C 7 ); 

Mass spectrum m/e 216 (0. 6%), 198 (2), 172 (6), 108 (50), 

80 (100). 
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E 
	Preparation of Precursors of 3,4- Divinylcyclopentane Analogues. 

E.1 4-Oxa-9-thiatricyclo[5. 3.0. O2,6 Idecane 9, 9-dioxide. 

Dimethyl- 3-thiabicyclo[3, 2. 01heptane- 6, 7- dicarboxylate 

3, 3-dioxide. 

3, 5_Dioxo-4-o-9-thiatriCyclO[5. 3. 0. o2 6]decane 9, 9-dioxide 

(15.0 g, 69 rnxnol) in analar methanol (150 ml) to which a few drops of 

concentrated sulphuric acid had been added, was boiled for 3 h. When 

cooled this solution gave a colourless crystalline product. The 

precipitate was filtered off and dried in vacuo to yield dimethyl-3-thia-

bicyclo[3. 2. 0]heptane-6, 7-dicarboxylate 3, 3-dioxide (16.4 g, 90%) 

M.P. 126-127°C (lit. 	126-127 °C). 

1 H n. m. r. 6  (CDC1 3 ) 3. 7 (6H, s, -Me), 3.6 (4H, rn, 1-H, 5-H, 

6-H, 7-H), 3. 2-3.1 (4H, m, 2 and V-H, 4 and 4-H); 

13 C n. m. r. 6  [(CD) 2S0] 171.92 (C0), 53. 17 (C 2  and C 4 ), 

51.88 (-OMe), 43.00 (C 6  and C 7 ), 33. 29 (C1 and C 5); 

Mass spectrum m/e 262 ( 1 . 4 %), 231 (62), 138 (66), 99 (100). 

6, 7_Dihydroxym ethyl- 3-thiabicyclo[3. 2. Olheptane 3, 3-dioxide. 

To a suspension of lithium aluminium hydride (5.8 g, 150 mmol) 

inanhydrous T. H. F. (120 ml) was added dim ethyl -3-thiabicyclo[3. 2.0]-

heptane-6, 7-dicarboxylate 3, 3-dioxide (10 g, 38 mmol) over a period 

of j h with stirring (mechanical). The mixture was stirred for a further 

1 h at room temperature, then heated under reflux for 1 h and cooled to 

room temperature. The excess lithium aluminium hydride was destroyed 

by dropwise addition of water (7 ml), is% sodium hydroxide solution 

(7 ml) and then water (21 ml). The mixture was stirred for I h and was 

then filtered to remove the inorganic salts. Removal of solvent from 



62 

the filtrate gave a yellow oil (4 g) which crystallised. The solid 

inorganic residue was extracted using T. H. F. (500 ml) in a Soxiet 

apparatus over a period of 48 h. Removal of solvent in vacuo gave a 

further amount of yellow oil (3. 3 g) which crystallised. The two solid 

fractions were combined and recrystallised from T. H. F. to give a 

colourless crystalline solid (5.4 g, 69%) m. p. 98-100 °C (lit. ,  75- 

8 2
0C). In view of the discrepancy with the literature value the compound 

was characterized and shown to be the title compound. 

I. r. v 
max 	 2 (nujol) 3500-3100 (associated-OH), 1310 (SO ), 1255, 

1150, 1050 (-OH) cm -1 ; 

' H n. m. r. 6 (TFA) 4.75-4.65 (2H, rn, -OH), 4.14-4.04 (4H, in, 

-CH 2O-), 3. 5-2.9 (8H, in, 1-H, 2 and 2'-H, 4 and 4'-H, 5-H, 6-H, 7-H); 

13 C n.m. r. 6 [(CD 3) 25O] 60.50 (-CH 20-), 54.66 (C 2  and C 4 ), 

41. 56 (C 6  and C 7 ), 33. 29 (C 1  and C 5 ); 

Mass spectrum m/e 170 (6. 8%),  79 (79), 70 (100); (Found: 

C, 46.6; H, 6.8; calc. for C 8 H14 04 S: •C, 46 6; H, 6 . 8 %). 

c) 4-Oxa-9-thiatricyclo[5. 3. 0. 0 6 ldecane 9, 9-dioxide. 

Method (i) 

This was prepared by the method of Culbers.on et al. 108 2-

Toluenesulphonylthloride (1. 5 g, 8 mmol) and 6, 7-dthydroxymethyl-3-

thiabicyclo[3. 2. 0]heptane 3, 3-dioxide (1. 5 g, 7 mmol) were dissolved 

in anhydrous pyridine (12 ml) and the mixture was stirred for 19 h. 

The mixture was then heated on a steam bath for 1 h and then poured onto 

crushed ice (50 g). The resultant mixture was neutralized with io% 

hydrochloric acid. This mixture was extracted with dichloromethane 

(3 x 100 ml) and the extract was dried over magnesium sulphate. The 
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solvent was removed under reduced preâsure to leave an oily liquid (5 

g) which smelt strongly of pyridine. The pyridine was removed under 

high vacuum to leave the crude product (Q. 79 g). The product was 

purified by use of medium pressure chromatography with alumina as the 

packing material and dichloromethane as the eluent . A colourless 

crystalline compound (0. 39 g) was eluted and recrystallized from 

dichlo rom ethane/ hexane to yield 4-oxa-9-thiatricyclol5. 3. o. °' 61decane 

9,9-dioxide (0.34 g, 26%) ni. p.  129-130°C. 

LR.V 
max 	 2 

(nujol) 1302, 1287, 1179, 1134 (SO ), 11V7, 1073 

(C-a-C), 690 cm ' ; 

' H n. m. r. 6 (CDC 1 3) 3.9 (ZR, d  9.5 Hz, 3-H, 5-H), 3.45 (2H, 

diffuse of d 19.5 Hz, 4.5 Hz, 3'-H, 5T-H), 3.1 (4H, rn, 1-H, 2-H, 6-H, 

7-H), 2.9 (2H, rn, 8-H, 10-H), 2.8 (2H, rn, 8'-H, 10'-H); 

13 C n.m. r. 5 (CDC1 3) 73.24 (C 3  and C 5 ), 54. 59 (C 8  and C 10 ) 

43.05 (C 2  and C 6), 36.20 (C 1  and C 7 ); 

Mass spectrum m/e 188 (8%),  94 (60), 79 (100), 54 (78); 

(Found: C, 56-80; H, 6.2; C8H1 2035 requires C, 51.05; H, 6. 4 %). 

Method (ii) 

This alternative method 
log 

gave a high yield on one occasion but 

subsequent attempts to repeat the preparation failed. 

6, 7_Dihy droxymethyl-3-thiabicyclo[3. 2. 0]heptane 3, 3-dioxide 

(1g. 4.9 mmol) was dissolved in dimethyl sulphoxide (10 g) and the 

mixture was heated at 156-166 °C for 16 h. The mixture was allowed to 

cool, water (30 ml) was added to it, and then was extracted with dichioro-

methane (2 x 70 ml). The extract was washed with water (2 x 70 ml) 



to remove any remaining dimethyl sulphoxide and then dried over 

magnesium sulphate. The solvent was removed underreduced pressure 

to give a colourless solid. Purification by chromatography on alumina 

with dichloromethane as eluent gave 4-oxa-9-thiatricyclo[5. 3. ü. o2' 6_ 

decane 9, 9-dioxide (0.62 g, 71 %) m. p. 1300C (benzene). 

Method (iii) 

6, 7-Dthydroxymethyl-3-thiabicyClo[3. 2. O]heptane 3, 3-dioxide (1 g, 

4.9 mmol) was dissolved in acetone and a few drops of concentrated 

sulphuric acid added. The mixture was boiled under reflux for 48 h 

during which time it became reddish brown in colour, solvent was 

removed in vacua to leave a dark brown oil which was swirled with ether 

to remove soluble material. The dark brown oil was then chromatographed 

on silica, with dichloromethane:acetone 5:1 as eluent gave 4-oxa-9-thia-

tricyclo[5. 3. o 	6 ]decane 9, 9-dioxide (0. 5 g. 55%) m. p. 129-130°C. 

E. 2 4, 9-Dithiatricyclol5. 3. 0. 0 6 ldecane 4,4-dioxide. 

a) 6, 7-Dimesylmethyl-3-thiabicyclo[3. 2. 01heptane 3, 3-dioxide. 

This was made by the method described in Organic Synthesis °  

A solution of 6, 7-dthydroxym ethyl- 3-thiabicyclo[3. 2. 0]heptane 3, 3-

dioxide (6. 54 g, 31. 7 mmol) in pyridine (25 ml) was introduced to 

solution of methanesulphonyl chloride (11.1 g, 97 mmol) in dry pyridine 

(120 ml) at such a rate that the temperature did not exceed 0 °C. The 

mixture was stirred (mechanical) throughout the addition and then for 

a further 2 h during which time the temperature was kept at -5 -0 °C. 

Then, cold, 10% hydrochloric acid (200 'ml), was introduced at such a 

rate that the temperature of the mixture remained below 20 °C. The 
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solid which separated was recovered by filtration and washed sequentially 

with dilute hydrochloric acid (100 ml), water (200 ml) and was then 

dried invacuo to give a colourless crystalline solid (11.09 g). This 

solid was recrystallized from water:ethanol 1:10 to yield 6, 7-dimesyl-

m ethyl- 3- thiabicyclo[ 3. 2. 0]heptane 3, 3-dioxide (8. 65 g, 7 5%) m. p.  190-

191. 5°C. 

I. R. V 	(nujol) 1333, 1295, 1175, 1141, 1105, 980, 858, 833 
max 

750 cm 1 ; 

n. m. r. 6 [(CD) 2S0] 4.4-4.3 (4H, rn -CH 2O-) 3.2-2.8 (14H, 

rn, 1-H, 2 and V-H, 4 and 4'-H, 5-H, 6-H, 7-H, -Me); 

13 C ii. m. r. [(CD) 2S0] 69. 14 (-CH 2O-), 53.68 (C 2  and C 4 ), 

37.82 (C 6  and C 7 ), 36. 75 (C 1  and C 5), 32.99 (-Me); 

Mass spectrum m/e M+ not observed; 

(Found: C, 33.24; H, 5.07; C 10 H 18 08 5 3  requires C, 33.14; H, 5.01%). 

b) 4, 9-Dithiatricyclo[5. 3.0.02,6 Idecane  4,4-dioxide. 

This was prepared by a modification of the method of Auret et al. 111 

6, 7_Dimesylm ethyl- 3-thiabicyClo[3. 2. 0]heptane 3, 3 -dioxide (5 g, 13.8 

mmol) and sodium sulphide nonahydrate (9.92 g, 41.4 mmol) were 

dissolved in 1:1 aqueous ethanol (150 ml) and heated under reflux for 

4 h. The ethanol was removed under reduced pressure and the aqueous 

residue was extracted with dichloromethane (2 x 100 ml) and the extract 

was dried over anhydrous magnesium sulphate. The solvent was removed 

under vacuum to give a colourless crystalline solid (2. 25 g). This was 

recrystallized from tr ichlo rom ethane (precipitated with petrol) to yield 

4, 9-dithiatricyclol5. 3. o 02. 6 ldecane 4,4-dioxide (1.73g, 62%)  m. p. 

195- 1960C. 



T. 

I.R . 	(nujol) 1290 (SO ), 1235, 1190, 1130 (SO ), 	1090, 905, 

687 cm 	1 H n. m. r. S (CDC 1 3) 3. 2-2.9 (6H, m, 	2-H, 2 and 3'-H, 

5 and 5 1 -H, 6-H), 2.9-2.54 (6H, rn, 1-H, 7-H, 8 and 8'-H, 10 and 10 1 H); 

13 C  n.m. r. S (CDC1 3) 54.64 (C 3  and. C 5), 45.96 (C 1  and C 7 ), 38.29 

(C 8  and C 10 ), 35.97 (C 2  and C 6 ); 

Mass spectrum m/e 204 ( 47 %), 86 (100), 85 (94); 

(Found: C, 47. 29; H, 6.02; C8H1 20252 requires C, 47-03; H, 5.9 2 %). 

E. 3 9-Benzyl-4-thia9 azatricyclo[5. 3. 0. o2. 6 1decane 4,4-dioxide. 

a) 6, 7_Djtosylmethyl-3-thiabicvclO[3. 2.  011ieptane 3,3-dioxide
,
. 

This was prepared by the method of Mundy 
etal. 

 112 6, 7-Dihydro-

xymethyl-3-thiabicyclO[3. 2. 0]heptane 3, 3-dioxide (5 g, 24.3 mmol) was 

dissolved in pyridine (38 ml) and the solution added dropwise to a 

suspension of 2- toluenes ulphonyl chloride (29. 7 g, 156 mmol) in pyridine 

(38 ml) stirred at 0 0C. The mixture was stirred for a further 3 h at 

0 °C and then it was poured into water (300 ml) and the product crystallised 

as a colourless solid. This was filtered off (11.61 g), washed with water 

and dried invacuo. The solid was recrystallised from ethanol to yield 

colourless needles of 6, 7 -ditosylmethyl- 3- thiabicyclol 3. 2. Olheptane 

3, 3-dioxide (6. 39 g, 51%) m. p. 127-128°C. 

I. R. v 	(nujol) 1600, 1315, 1175, 1097, 956, 899, 858, 812, 696, 
max 

668 cm; 

n. m. r. S (CDC 1 3) 7.8-7. 3 (8H, AB system, aromatic H), 4. 15-

4.05 (4H, in -CH 2O-), 3.1-2.8 (8H, rn, 1-H, 2 and 2'-H, 4 and 4LH, 

5-H, 6-H, 7-H), 2.46 (6H. s, -Me); 
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13C ri. m. r. 6 (CDC1 3) 145. 27. (Ar), 132. 24 (Ar), 130.02 (Ar), 127.71 

(Ar), 68. 74 (-CH 2O-), 54. 14 (C 2  and C 4 ), 38. 00 (C 6  and C 7), 33.35 

(C 1  and C 5), 21. 54 (-Me); 

Mass spectrum rn/e 514 (0. 2%), 343 (14. 2), 172 (35. 7), 155 (loU), 

124 (3. 6), 91 (100); 

(Found: C 9  51.13; H, 5.0 

H, 5.09%). 

C 22H 26 08 S 3  requires C, 51. 34; 

b) 9Benzyl_4_thia-9-aZatriCYClO[5. 3. ü. 0
2,6 

 Idecane 4,4-dioxide. 

A solution of 6, 7_ditosylm ethyl- 3-thiabicyClO[3. 2. 0]heptane 3, 3-

dioxide (5 g, 3.88 mmol) and benzylamine (3. 1 g, 29 mmol) in ethanol 

(50 ml) was heated ud er reflux for 48 h. The solvent was removed 

invacuo to leave a colourless solid which was leached with dichioro-

methane (100 ml). The mixture was filtered and solvent removed under 

reduced pressure to give a clear oil (3. 0 g) which crystallised to give 

a colourless solid. This was purified by recrystallisation from ethanol 

to give 9_benzyl-4_thia-9-aZatricYc1015. 3. 0. 02,6 Idecane  4,4-dioxide 

(1.5 g, 55. 7%) m.  p. 132-1350C. 

L R. V 	(nujol) 2780, 1603, 1300 (SO 2), 1247, 1140 (SO) 
max 
-1 

740, 700 cm 

1 Hn. m. r. 6 (CDC1 3) 7.4-7. 2 (511, rn, PhH), 3.65 (211, s, -CH 2Ph), 

3.1-2.6 (10H, in, 2-H, 3 and 3'-H, 5 and 5'-H, 6-H, 8 and 8-H, 10 and 

10'll), 2. 2-2.0 (211, rn, 1-H, 7-H); 

13C n. m. r. 6 (CDC1 3) 139. 11 (Ph), 128. 34 (Ph), 128.04 (Ph), 

125.76 (Ph), 59.09 (C 8 , C 1  and -CH 2Ph) 54.98 (C 3  and C 5), 41.80 (C 1  

and C 7), 36. 71 (C 2  and C6); 



Mass spectrum m/e 277 (47.4%),  200 (26. 3), 186 (47. 4), 91 (100); 

(Found: C, 64.84; H, 6.63; N, 4.97; C 15H 19N025 requires C, 64.95; 

H, 6.90; N, 5.05%). 

E.4 9_Phenyl-4-thia-9-azatricyc1015. 3. 0. o2 6 ldecane 4,4-dioxide. 

This preparation of the title compound proved to be largely 

unsuccessful. 

7-Phenylcarbamoyl- 3-thiabicyclol 3. 2. Olheptane -  6-carboxylic 

acid 3,3-dioxide. 

This was prepared by the method of Shailcrazieva et al. 3 

3, 5_Dioxo-4-oxa-9-thiatricyclo[5. 3. 0. 0
2,6 

 ]decane  9, 9-dioxide (20 g, 

93 mmol) was stirred (mechanical) with absolute methanol (250 ml). 

Aniline (8 ml) was added and the mixture stirred for a further 3 h. 

The colourless solid which formed was filtered off and dried to yield 

7 -phenylcarbamoyl- 3- thiabicyclo[ 3. 2. O]heptane-6-carboxylic acid 3, 3-

dioxide (20. 2 g, ss%) m. p. 217-220°C (lit. 220°C). 

9-Phenyl-8, 10_dioxo_4_thia-9-aZatricYclo[5, 3. o. 02, _
6 Idecane 

4,4-dioxide. 

This was prepared by the method of Shaikrazieva et al. 	A mixture 

of 7-phenylcarbamoyl- 3- thiabicyclo[ 3. 2. 0]heptane-6 - carboxylic acid 

3, 3-dioxide (6. 3 g, 20. 3 mmol), acetic anhydride (28 ml) and sodium 

acetate (0. 6 g) was heated and stirred vigorously for 4 h. The precipitate 

was filtered off, washed with methanol and dried in vacua to give 9-

phenyl-8, 10_dioxo-4-thia-9-aZatricyclO[5. 3.0. o2 6 ]decane 4,4-dioxide 

(5.0 g 84 %) m. p. 308-314 0C (lit. 	310-3150C) as a colourless crystal- 

line solid. 



a.m. r. (T. F.A.) 7.6-7.5 (3H, m, m and a-PhH), 7•- 

7. 15 (2H, in, o-PhH), 3.9-3. 5 (8H, rn, 1-H, a-H, 3 and 3!_H,  5 arid 

5'-H, 6-H, 7-H). 

13 C n. m. r. 6 [(CD 3 ) 2SO] 176.93 (C0), 132.64 (Ph), 128.76 (Ph), 

128.36 (Ph), 127. 28 (Ph), 53.01 (C 3  and C 5), 42.62 (C 1  and C 7 ), 

35. 22 (C 2  and C 6 ); 

Mass spectrum m/e 291 (69.4%), 119 (11. 1), 80 (100). 

c) 9Phenyl-4_thia-9-aZatriCYC1O15. 3. o 2,6 
 Idecane 4,4-dioxide. 

The method used for this reduction is that of Otzenberger et al. 113 

To a suspension of lithium aluminium hydride (1.4 g 36. 2 mmol) in 

dry tetrahydrofuran (100 ml) was added 9-phenyl-8, 10-dioxo-4-thia-

9-azatricyclo[5. 3.0. 0 2 ' 6 ]decane 4,4-dioxide (4.5 g, 15.5 mmol) over a 

period of fifteen minutes. The mixture was boiled under reflux for 5 h 

and then left to stir for a further hour. The excess lithium aluminium 

hydride was destroyed by the dropwise addition of water (2 ml) in 

tetrahydrofuran (20 ml), followed by 4M sodium hydroxide (2 ml) and 

then water (6 ml). The mixture was stirred for fifteen minutes and 

then was filtered to remove inorganic salts to give a yellow filtrate. 

The solvent was removed under reduced pressure to give a brown oil 

which was taken up in dichloromethane (100 ml) and dried over anhydrous 

magnesiuth sulphate. The solvent was removed under reduced pressure 

to give a brown gum which was chromatographed on silica with dichioro-

methane as eluent. The eluent polarity was gradually increased by 

using first ether then ethanol and finally methanol as the eluent. Four 

fractions were obtained but all proved to be intractable gums except 
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the second which on trituration with ether gave brown crystals (0. 587 

g). Recrystallisation from ethanol gave 9- phenyl-4 -thia-9- azatricyclo-

fS. 3. 0. 0
2,6 

 1decane  4,4-dioxide (0. 129 g. 3. 2%)  in. p. 200- 204 0C as 

reddish crystals. 

I, R. V max (nujol) 1602, 1302, 1141, 760, 795 cm ' ; 

- 

n. m. r. 6 (CDC1 3) 7. 5-7. 25 (2H, in, o-PhH), 6.94-6.7 (3H, 

in, in and p-PhIl), 3.8-3.5 (4H, rn, 8 and 8'-H, 10 and 10'-H), 3. 25-2.9 

(8H, rn, 1-H, 2-H, 3 and 3LH, S and 5'-H, 6-H, 7-H); 

Mass spectrum m/e 263 (100%), 144 (14), 119 (33), 91 (57), 

(Found: C, 63.64; H, 6.65; N, 5.15. . C 14 H17 NO 2S requires C, 

63.88; H, 6.51; N, 5.32%). 

E. 5 Attempted preparation of 9_methyl-4-thia-9-azatricyclO[5. 3. 0. 	
6 

decane 4,4-dioxide. 

The following route to 9-methyl-4-thia-9-azatricyclO[5. 3. o. o2' 6 

decane 4,4-dioxide proved unsuccessful owing to the failure of the final 

step. 

a) 7-MethylcarbamoYl- 3- thiabicyclo[ 3. 2. Olheptane -  6- carboxylic 

acid 3, 3-dioxide. 

This was prepared by the method of Shaikrazieva et al. 3 

3, 5-Dioxo-4-o-9-atricyclo[5. 3.0.02,6 ]decane  9, 9-dioxide (50 g, 

230 mmol) was suspended in methanol (300 ml) and a 25% w/v solution 

of methylamine [135 ml 31. 38 g of CH 3 NH 2  (338 mmol)] in water was 

added to this suspension. The mixture became warm and a pale yellow 

solution formed. This solution was stirred for 3 h and then the solvent 

was removed 	in vacuo to give a gummy yellow solid (68. 31 g). This 
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was recrystallised from 10:1 ethanol:water to yield 7-rnethylcarbamoyl-

3-thiabicyclo[3. 2. Olheptane-6-carboxylic acid 3, 3-dioxide (44.09 g, 

77%) m. p. 121-123 0C as a colourless crystalline solid. 

L R. v 
max 

 (nujol) 1640, 1570, 1140 cm 1 ; 

' H n. rn. r. 8. 1-7.9 (1H, in, -0O 2th, 3.4-2.9 (SH, rn, 1-1-1, 2 and 

2 1 -H, 4 and 4'-H, 5-H, 6-H, 7-H), 3. 15 (3H, s, -Me); 

13 C n. m. r. 175.68 (CON), 172.70 (C0), 54.63 (C 2), 54. 10 (C 4 ), 

46.38 (C 7), 45.26 (C 6 ), 34.41 (C 1 ), 32.40 (C 5), 24.44 (-Me) 

(Found: M+, 247. C 9 H 13N0 5 5 requires 247). 

b) 9-Methyl-8. 10-dioxo-4-thia-9-azatricyclo[5. 3. 0. o 2 ' 6 ldecane 

4,4-dioxide. 

The method used is that of Shaikrazieva et al. 	A mixture of 

7-methylcarbamoyl- 3- thiabicyclo[3. 2. 0]heptane- 6-carboxylic acid 3, 3-

dioxide (30 g, 120 mmol), acetic anhydride (107 ml) and anhydrous sodium 

acetate was heated and stirred on a water bath for 4 h. The solution 

was left to stand overnight and a white solid precipitated. This was recovered 

by filtration and washed with methanol (5.0 ml) and ether (50 ml) and dried 

in vacuo to yield 9-methyl-8, 10-dioxo-4-thia-9-azatricyclo[5. 3. a. 	6i- 

decane 4,4-dioxide (26.8 g, 96%) m. p. 235-237 0 C as a colourless crystal-

line solid. 

I. R. V 
max 	 2 

(nujol), 1694, 1433, 1390 (SO ), 1283, 1160, 1137, 1100, 

-1 
959, 753, 745 cm 

n.m. r. 5 (CDC1 3) 3.4 (2H, !, 1-H, 7-H), 3. 26 (6H, !, 2-H 

3 and 3'-H, S and 5'-H, 6-H), 3.04 (3H, s, -Me); 

13 C  n.m. r. S  [(CD 3 ) 2SO] 177. 79 (Cc), 53. 05 (C 3  and C 5), 42.35 
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(C 1  and C 7 ), 3 5. 04 (C 2  and C 6 ), 24.90 (-Me); 

Mass spectrum m/e 229 ( 3 5%), 165 (57. 5), 98 (20), 80 (100), 79 (100); 

(Found: C, 47.38; H, 4.81; N, 6.08; C 9 H 11 N04S requires C, 47.15; 

H, 4.84; N, 6.11%). 

c) Attempted lithium aluminium hydride reduction of 9-methyl- 

8, 10di0xo-4-thia-9-aZatriCyclO{5. 3. 0. o2,6 Idecane 4,4-dioxide. 

The method that was used was that of Otzenberger et al. 
113 

 To a 

suspension of lithium aluminiuth hydride (2 g 5. 24 mmol) in dry tetra-

hydrofuran (500 ml) was added 9-methyl-8, 10-dioxo-4-thia-9-aza-

tricyclo[5. 3. o. o 2 ' 6 ]decane 4,4-dioxide (6 g, 26. 2 mmol) over a period 

of five minutes. The mixture was stirred and boiled under reflux for 

3 h and left to stir for a further hour. The excess lithium aluminium 

hydride was destroyed by the dropwise addition of water (2 ml) in 

tetrahydrofuran (20 ml), followed by 4M sodium hydroxide (2 ml) and 

then water (6 ml). The mixture was stirred for fifteen minutes and 

then was filtered to remove inorganic salts and gave a pale yellow 

filtrate. The solvent was removed under reduced pressure to give a 

yellow oil which was kept under high vacuum for 5 h. A sample of 

the oil (1.63 g) was distilled in a glass Kugelrohr at 100 0C/U. OlmmHg 

and gave a semi- crystalline pale yellow oil (0A5 g) which was un-

identified. 
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F. 	Preparation and Reactions of 3-Thiabicyclo[3. 2. 01hept-6- 

ene 3, 3-dioxide. 

F. 1 3-Thiabicyclo[3. 2. 0 1hept -6- ene 3, 3-dioxide. 

a) 3-Thiabicyclo[3. 2. 01heptane-6, 7-dicarboxylic acid 3, 3-dioxide. 

3, 5Dioxo-4-oxa-9-thiatricyclo5. 3. 0. 0
2,6 

 ]decane  9, 9-dioxide 

(50 g, 230 mmol) was suspended in water (450 ml) and the mixture was 

heated under reflux for 1. h and gave a clear solution. The water was 

removed under reduced pressure to give a colourless solid residue (57. 68 g). 

This was dissolved in the minimum amount of wet acetone (acetone:water 

50:1) and the product was precipitated using ether. The precipitate was 

recovered by filtration and dried in vacuo to yield 3-thiabicyclo[3. 2. 0]-

heptane-6, 7-dicarboxylic acid 3,3 -dioxide (42. 3 g, 78%) in. p. 188-1910C 

• 

(lit. , 3 194-1950C) as a colourless crystalline solid. 

I. R. V 	1700 (CO H), 1125 (SO ) cm.1;
max 

n.m.:. 6 [(CD 3 ) 2CO] 9-7 (211, V. br., -CO 2H), 3.6-3.4 (414, 

in, 1-H, 5-H, 6-H, 7-H), 3. 3-3.2 (411, in, 2 and V-H, 4 and 4'-H); 

13 C n. m. r. 5 [(CD) 2S0] 173.66 (-CO 2H), 54.00 (C 2  and C 4 ), 

4 3. 87 (C 6  and C 7  ), 33.79 (C 1  and C 5 ); 

Mass spectrum m/e 234 (-), 216 (2. 3 %), 198 (2. 5), 172 (8), 

108 (65), 108 (65), 80 (100), 79 (100). 

b) 3-Thiabicyclo[3. 2. 0 1hept -6- ene 3, 3-dioxide. 

This was prepared by the method of Jefford et al. 114 

3-Thiabicyclo[3. Z. 0]heptane-6, 7-dicarboxylic acid 3, 3-dioxide (9. 9 g, 

42 mmol) and lead tetraacetate (37. 3 g, 84 mmol) were intimately mixed 

and dissolved in dry dioxane (130 ml). 	The mixture was purged with 

dry nitrogen for fifteen minutes and then placed in a water bath at 	- 
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12-15°C. The mixture was vigorously stirred (mechanical)while 

nitrogen continued to be passed through it and dry pyridine (250 ml) 

was next admixed. The mixture was placed in a water bath at 60 ° C 

for twenty minutes during which time there was rapid evolution of 

carbon dioxide. The mixture was rapidly cooled and poured into ZN 

nitric acid (800 ml). This mixture was extracted using dichloromethane 

(8 x 100 ml) and the extract was washed in turn with water (1 x 100 ml), 

saturated sodium hydrogen carbonate solution (Zx 100 ml) and 

saturated sodium chloride solution (1 x 100 ml). The extract was dried 

over anhydrous magnesium sulphate and the solvent removed invacuo 

to leave the crude product (3.9,Zg). This was purified by medium 

pressure chromatography on silica with ether as the eluent. 3-Thia-

bicyclof 3. 2. Olhept-6-ene 3, 3-dioxide was eluted as a colourless 

crystalline solid (1.14 g, 18.8%) m. p. 71-75 ° C. 

I. R. v max (nujol) 1410, 1287, 1229, 1167, 1110, 942; 852, 728 cm 1 ; 

n. m. r. 6 (CDC1 3) 6.18 (ZH, s, alkenyl) 3.7-3.6 (2H, rn, 

1-H, 4-H), 3. 2-2.9 (4H, rn, 2 and 2 1 -H, 4 and 4'-H), 

13 C n. m. r. 6 (CDC1) 139.00 (olefinic), 51.96 (C 2  and C 4 ), 

41.04 (C 1  and C 5 ); 	 - 

Mass spectrum mle 144 (3%), 81 (5), 80 (55), 79 (100), 77 (30); 

(Found: C, 50.10; H, 5.35; C 6  H  8  0 
 2 S requires C, 50.0; H, 5.5%). 

F.2 8-Oxa-4-thiatricyclo[5. a. o. 	6 loctane 4,4-dioxide 

Method (i) 

The method that was used is that of Bianchi et al. 
115

To a stirred 

mixture of hydrogen peroxide 30% (10 ml) and formic acid 90% (40 ml) 
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Was added 3-thiabicyclo[3. 2. 0]hept-6-ene 3 .,3-dioxide (0.6 g, 4. 2 mmol) 

in small portions over a period of twenty minutes at room temperature. 

The mixture was stirred for 48 h at 50 ° C and for a further 48 h at room 

temperature. The solvent was removed in vacuo and the oil which 

remained was taken up in a small amount of ethanol and 8-oxa-4-thia-

tricyclo[5. 1. 0. 0 6loctane 4,4-dioxide was precipitated as a courless 

crystalline solid (0. 26 g, 39%) m.  p. 118-119°C. 

1. R. ' 	(nujol) 3.080, 1325, 1290, 1240, 1130, 855, 835, 

715 cm
-1

; 

' H n. m. r. 6 (CDC1 3) 4.0-3.9 (2H, ci J 1.5Hz, 1-H, 7-H), 3.3- 

3.1 (4H, rn, 3 and 3'-H, 5 and 5'-H), 3.05-2.9 (2H, in, 2-H, 6-H). 

13 C n. m. r. 6 (CDCl 3) 56.51 (C 1  and C 7 ), 49.69 (C 3  and C 5 ), 

40:85 (C 2  and C 6 ); 

Mass spectrum m/e 160 (0. 13%), 131 (0. 35), 104 (2. 9), 95 (44), 94 (100); 

(Found: C, 45. 15, H, 5.00; C 6 H8 035 requires C, 45.0; H, 5. 00%). 

Method (jflvia 6- chloro- 7 -hydroxy- 3- Thiabicyclof 3. 2. Olheptane 

3, 3-dioxide. 

a) 6_Chloro_7_hydroxy-3-thiabicYclol3. 2.  Olheptane  3, 3-dioxide. 

This was prepared by the method of Sorenson. 
116 

 To a stirred 

ice-cooled solution of 3-thiabicyclo[3. 2. O]hept-6-ene 3, 3-dioxide (360 mg, 

2. 5 mrnol) in water (2. 5 ml) was added a solution of HOC1, as prepared 

- 	 117 
in Organic Synthesis, 	until no more HOC1 was taken up (KI-HC1 test). 

Water (100 ml) was added to the reaction mixture to increase its 

volume and this mixture was then extracted with dichlorometh.ane 

(4 x 50 ml). The extract was dried over magnesium sulphate and 

solvent was removed under vacuum to leave a solid (223 mg). 
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Recrystallisation of the solid from ethanol gave 6-chloro-7-hydroxy-

3-thiabicyclo[3. 2. Olheptane 3, 3-dioxide (141 mg. 29%) m. p. 146-148°C 

as colourless crystals. 

LR.V 	(nujol) 3440 (-OH), 1275, 1118, 857, 802cm 1 ; 
max 

Mass spectrum m/e M+ not observed; 

(Found: C, 36. 19; H, 4.53; C 6 H9  CIO 3S requires C, 36.65; H, 4.6 1 %). 

b) Attempted dehydrohalogenation of 6 -chloro- 7-hydroxy- 3-thia-

bicyclo[3. 2. 0heptane 3, 3-dioxide. 

The method used was that of McC1ure 11 	6-Chloro-7-hydroxy- 

3-thiabicyclo[3. 2. 0]heptane 3, 3-dioxide (165 mg, 0. 84 rnmol) was 

dissolved in dimethoxyethane (25 ml) with silver (1) oxide (195 mg, 

1.68 mmol) and the mixture was boiled under reflux for 24 h. The 

solids were removed by filtration and extensively washed with hot 

acetone. The filtrate was dried over magnesium sulphate and solvent 

removed under reduced pressure to give an oil (260 mg). This was 

triturated with ether and cooled in an acetone carbon dioxide (-70 ° C) 

bath and the product crystallised and was recovered by filtration. 

However I. R. showed that this solid was unchanged starting material. 

F. 3 Attemvted addition of carbenes to 3-thiabicyclo[3. 2. Olhept- 6- ene 

3, 3-dioxide. 

a) Ethoxycarbonyl carbene. 

Method (i) 

3-Thiabicyclo[3. 2. 0]hept-6-ene 3, 3 -dioxide (105 m, 0. 73 mmol) 

was stirred in dry benzene (10 ml) with 3-diazo-2-oxopropionate (105 mg, 

0.73 mmol) 119  in the presence of a pinch (1 mg) of rhodium (IV) acetate 
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as catalyst. Alter a short induction period (5 minutes) nitrogen gas 

was evolved. The mixture was stirred for 21 h and the benzene was 

removed under vacuum and gave a clear oil. On examination by n. m. r. 

it was apparent that this oil was a mixture of unchanged alkene., diethyl-

maleate, diethyl fumarate and 1- ethoxycarbonyic ycloheptatrienyladiene. 

The mixture was analysed by gas chromatography using a 2% SE30 column 

three peaks were observed and the presence of diethyl furnarate and 

diethyl maleate confirmed by peak enhancement experiments using authentic 

samples. Thus the experiment was a failure as the carbenes preferred 

to dimeriz'e or add to benzene rather than add to the alkene. 

Method (ii) 

The experiment was repeated as before with the modification that 

this time the 3-diazo-2-oxo-propionate (105 mg, 0.73 mmol) in benzene 

(5 ml) was added slowly to 3-thiabicyclo[3. 2. 0]hept-6-ene 3, 3-dioxide 

(105 mg, 0. 73 mmol) dissolved in benzene (5 ml) to which rhodium (IV) 

acetate (1 mg) had been added. The addition took place over a period of 

h and nitrogen was slowly evolved. However work up as before revealed 

that the products were exactly the same and none of the desired carbene 

addition compound to the alkene had been formed. 

Control experiment 

A control experiment was carried out in which the experiment 

was carried out exactly as in method (ii) except that this time no 3-

thiabicyclo[3. 2. 0]hep-6-ene 3, 3-dioxide was added. On removal of the 

benzene in vacuo the residue was distilled in a glass Kugelrohr 

(1000C/16 mmHg) and gave a clear liquid. Spectral analysis showed 



that this liquid was a mixture of diethylmaleate, diethyl fuma rate 

and 1- ethoxycarbonylcycloheptatrienyladiene as before. 

Method (iii) 

3-Thiabicyclo[3. 2. 0]hept-6-ene 3,3-dioxide (140 mg, 6.97 mmol) 

was intimately mixed with copper bronze, and placed in a Dreschel 

tube and a flow of nitrogen passed over it. 	The tube was placed in 

an oil bath at 110°C and 3-diazo-2-oxo-propionate (100 mg, 0. 70 mrnol) 

added to it. There followed a vigorous reaction and after 10 minutes 

the Dreschel tube was removed from the oil bath and trichiorornethane 

(ZOOml) was added to the reaction mixture. The copper bronze was 

removed by filtration and removal of solvent 	in vacuo gave a clear 

oil. Spectroscopic analysis (n. m. r.) show that this consisted of 

diethyl maleate, diethyl im4Tte and unchanged alkene. 	Thus 3- 

thiabicyclo[3. 2. 0]hept-6-ene 3, 3 -dioxide is very unreactive toward 

carbenes. 

1.4 Attempted addition of nitrenes to 3-thiabicyclo[3. 2. Olhept -6- ene 

3, 3-dioxide. 

a) Ethoxycarbonylnitrene. 

The method used to generate ethoxycarbonyl nitrene was that of 

Cadogan et al. 
120 

 3-Thiabicyclo[3. 2. 0]hept-6-ene 3, 3-dioxide (240 mg, 

1.6 mmol) and -nitropheny1su1phony1oxyurethane (500 mg, 1.7 mmol) 

were dissolved in anhydrous dichloromethane (25 ml) and a solution 

of triethylamine (200 mg, 1. 98 mmol) in dichloromethane (15 ml) was 

added dropwise to the reaction mixture over a period of ten minutes. 

The mixture was stirred for 3 h, the reaction being monitored by the 
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disappearance of nitrene precursor by t. 1. c. (alumina, ether). 

Dichioromethane (75 ml) was added to the reaction mixture and this 

mixture was washed with water (3 x 25 ml) to remove excess amine. 

The solution was dried over anhydrous magnesium sulphate and solvent 

removed in vacuo to leave an 0i1 (310 mg). It was shown spectroscopi-

cally (n. m. r.) that the allcaie was unchanged and that the only other 

species present was the ethoxycarbonyl nitrene dimer. The mixture 

was chromatographed on alumina. Elution with dichloromethane and 

the dichloromethane:ether 9:1 gave recovered alkene (0. 2 g). 

b) N-Phthalimidonitrene. 

The method used was that of Anderson et al. 
21 

 To a stirred 

mixture of N-aminophthalimide 122  (263 mg, 1.62 mmol) and 3-thia-

bicyclo[3. 2. 0]hept-6-ene 3, 3-dioxide (900 mg, 6. 25 mmol) in dichioro-

methane (20 ml), was added lead tetraacetate (690 mg, 1. 56 mmol) in 

small portions, over a period of ten minutes. The mixture was stirred 

for an additional thirty minutes and then the precipitated inorganic 

salts were removed by filtration. The solvent was removed under 

reduced pressure to leave a yellow oil (1.21 g) which crystallised. 

This was purified by medium pressure chromatography on silica. 

Elution with petroleum ether (40-60): acetone 3:1 gave a colourless 

crystalline compound (29. 9 mg ) m.  p. 180-181 0C which was probably 

the nitrene addition product but this was not confirmed. 

I. R. V max (nujol) 1775, 1719, 1310, 1247, 1179, 1107, 708, 

658 cm ' ; 

Mass spectrum m/e 304 (16. 7%),  240 (13. 9), 225 (100), 160 (9.  3), 

132 (16. 7). 
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F. 5 Addition of 1, 3-dipole 	to 3-thiabicyclo[3. 2. Olhept -6- ene 

3, 3-dioxide. 

a) Preparation of 1, 3-dipole, 	%precursors. 

i) C, N-Diphenylnitrone. 

This was prepared by the method of Wheeler et al. 123 Equimolar 

amounts of phenylhydroxylamine and benzaldehyde were condensed in 

ethanol and the product crystallized as a colourless solid. Recrystalli-

zation from ethanol gave C_, N-diphenylnitrone (88%) as a colourless 

solid m. p. 109- 1 1 1°C (lit 114°C). 

ii) Anisohydroxamic chloride 

Stage (i) Anisaldehyde bisulphate. 

This was prepared by the method outlined in Vogel's handbook. 124 

Equimolar amounts of sodium metabisulphite and anisaldehyde were 

condensed in aqueous ethanol and the product was precipitated immediately, 

and was recovered by filtrationt (99% yield). It was dried in vacuo 

and used in the next stage without purification. 

Stage (ii) Anisaldoxime 

This was prepared by a modification of the method given in Vogel's 

handbook. 125 Anisaldehyde bisuiphite (160 g, 0.67 md) was dissolved 

in water (900 ml) and to this was added a solution of sodium hydroxide 

(100 g of NaOH in 300 ml of water). Hydroxylamine hydrochloride 

(48 g, 0.7 mol) was added in small portions, the mixture being stirred 

continuously. Solid carbon dioxide was added to the resulting pale 

yellow solution and a colourless solid precipitated. The solid was re-

covered by filtration and dissolved in dichioromethane (600 ml). This 

solution was washed with water (2 x 200 ml) and then dried over magnesium 



sulphate. Removal of solvent under reduced pressure gave an oil 

(84. 8 g) which crystallised. This solid was recrystallised from 

toluene/pentane to give anisaldoxime (75 g, 73 %). 

Stage (iii) Anisohydroxamic Chloride. 

This was prepared by the method of Rheinboldt et al. 126 

Anisaldehyde oxime (18.6 g, 0. 12 mol) was dissolved in dry ether (160 

ml) and the solution was cooled to between -10 -0
0
C. An ether solution 

of nitrosyl chloride (20% w/v 81 ml, 16.2 g. 0. 25 mol) 127  was added 

carefully with constant stirring. The solution was stirred for a further 

hour at room temperature. The solvent was removed in vacuo to leave 

a brown oil which was taken up in trichloromethane. Addition of petroleum 

ether (40-60) gave a colourless precipitate. This was recovered by 

filtration and dried in vacuo to yield anisohydroxamic chloride (14. 06 g, 

6 1 %) m. p. 74-750C (lit. ,126 88-890C). 

iii) Benzhydroxamic chloride. 

Stage (i) and (ii) 

The preparation of benzaldoxime was achieved in two stages by 

procedures analogous to those used for anisaldoxithe. The bisuiphite addition 

compound was obtained in 97% yield and the oxime in 94% yield. 

Stage (iii) Benzhydroxamic Chloride 

This was prepared by the method of Peroldet al. 
128 

 Benzald-

oxime (20 ml) was added to 8. 3N hydrochloric acid (120 ml) and the 

reaction vessel was placed in an ice salt bath and when the temperature 

of the mixture had dropped to 0 ° C chlorine was passed through it for 20 

minutes. The mixture was extracted with dichloromethane (5 x 200 ml) 

to give a green solution which was washed with water (8 x 100 ml) to 
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remove any residual chlorine. The solution was dried over magnesium 

sulphate and solvent was removed in vacua to give an oily residue. 

This was taken up in trich].oromethane (20 ml) and the product was 

precipitated by addition of petroleum ether (40-60). The colourless 

solid was recovered by filtration and dried in vacuo to yield benzhydrox-

antic chloride (6. 12 g) m. p. 44-48 °C (Lit. ?8  42-48°C). 

iv) aChlorobenzoylpheny1hydraZQfle. 

Stage (i) f3BenzoylphenylhYdraZine. 

This was prepared by the method of ,Tinley. 1 29Phenylhydrazine 

(10 g, 93 mrriol) in pyridine (50 ml) was stirred in an ice-water bath 

during the addition of benzoyl ch bride (108 ml 13 g; 93 mmol). This 

mixture was shaken for fifteen minutes before being poured into water 

(350 ml). An orange coloured solid was washed with water and re-

crystallized from ethanol to yield f3_benzoylphenylhydrazine as colourless 

crystals (11.82 g, 60 %) m  p. 165-167°C (lit.1 130  168°C). 

Stage (ii) a_Chlo rob enzoylphenylhydrazOfle. 

This was prepared by the method of Huisgen etail 31  Finely 

divided jB-benzoylphenylhydraZine (5 g. 21. 7 mmol) and phosphorous 

pentachloride (6 g) were suspended in dry ethn (15 ml) and boiled 

under reflux in dry conditions for 16 h. The solution was cooled and 

filtered. Then phenol (10 g) dissolved in ether (8 ml) and methanol (10 

ml) was added with cooling. The ether was removed in vacuo and the 

resultant suspension was cooled in fridge. The solid was filtered off, 

washed .with ice-cold methanol and dried invacuo to give a-chlorobenzoyl-

phenylhydrazone (1. 37 g, zs%) m. p. 127-1290C (lit. 1,31 129. 5-130. 5 °C) 

as pale green crystals. 
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b) 4, 5_Diphenyl3oxa9_thia_4aZatriCYc10[5. 3.0. o2 6}decane 

9, 9-dioxide. 

A solution of 3-thiabicyclo[3. 2. 0]hept-6-ene 3, 3-dioxide (150 mg, 

1.04 mmol) and C, N-diphenylnitrone (205 mg, 1.04 mmol) in dry toluene 

was heated under reflu.x for 72 h. The reaction progress was monitored 

by t. 1. c. (alumina, petroleum ether (40-60) : trichioromethane 1:1). 

The solvent was removed under reduced pressure and gave a brown 

solid (0. 5 g). Recrystallization of this solid from ethanol gave 4, 5-

diphenyl_3_oxa_9_thia_4_azatricyclol5. 3. 0.0
2,6 

 Idecarle-9, 9-dioxide 

(0. 1 g 28 %) in.  p. 185-186 0C as a light brown crystalline solid. 

I. R. 	(nujol) 1598, 1490, 1309, 1132, 768, 742, 709, 701 cm 1 ; 
max 

n. m. r. 6 (CDC1 3) 7.5-7.0 (10H, rn, Ph), 4.8 (lH, d of d, J 7Hz, 

2Hz, 2-H), 4.5 (1H, d  7Hz, 5-H), 3.5-2.6 (7H, cm, 1-H, 6-H, 7-H, 

8 and 8'-H, 10 and 10'-H); 

Mass spectrum m/e 341 (50%), 180 (17), 91 (100), 77 (36); 

(Found: C, 66.60; H, 5.65; N, 3.95; C 19 H19 NO3 S requires C, 66.85; 

H, 5.60; N, 4. 10 %). 

c) 	(pMethoxyphenyl)_3oxa9thia4azatr Yclo5. 3. o. 	6 

dec-4-ene 9, 9-dioxide. 

A solution of 3-thiabicyclo[3. 2. 0]hept-6-ene 3, 3-dioxide (260 mg, 

1.8 mmol) and anisohydroxamic chloride (310 mg, 1.8 mmcd) in dry 

toluene (20 ml) was boiled under reflux for 48 h. The reaction progress 

was monitored by evolution of hydrogen chloride gas. When the mixture 

was cooled to room temperature a brown solid precipitated which was 

recovered by filtration (0. 39 g). This solid was recrystallized from 

ethanol to give colourless crystals of 5_(p-methoxypheny])-3-oxa-9 
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thia-4-azatricvclO[5. 3.0. 02,6 1dec-4-ene  9, 9-dioxide (0. 24 g, 45%) 

M.P. 182-184°C 

L R. v 	(nujol) 1302, 1246, 1125, 872, 835 cm1.
max 

n. m.r.d (CDC1 3 ) 7. 2 (4H, AB pattern, aromatic), 5. 2 (1H, d of d, 

J 8Hz, 4Hz, 2-H), 4.3 (1H, d, J8Hz, 6-H), 3.8 (3H, s, -OMe), 

3.6-3.1 (6H, c in, 1-H, 7-H, 8 and 8 1 -H, 10 and 10'-H). 

13 C n.m.r. 6 (CDC1 3 ) 161.34 (aromatic carbon adjacent to -OMe), 

157.61 (C), 128.36 (Ar), 119.76 (Ar), 114.44 (Ar), 81.91 (C 2), 

55. 28 (-OMe), 53.46 (C 10), 53. 10 (C 8 ), 41. 54 (C 6), 37. 30 (C 1  and C 7 ); 

Mass spectrum m/e 293 (30%), 175 (100); 

(Found: C, 57.10; H, 5.15; N, 4.70; C 14 H15N0 3 5 requires C, 57. 30; 

H, 5. 15; N, 4.80%). 

d) 5Phenyl_3_oxa9-thia-4-aZatricYc1015. 3. 0. 0 
2,6

ldec-4- ene 

9, 9-dioxide. 

A solution of 3-thiabicyclo[3. 2. 0]hept-6-ene 3,3-dioxide (1. 1 g. 

7.6 mmol) and benzhydroxamic chloride (1.19  g,  7.6 mrnol) in dry 

toluene (100 ml) was boiled under reflux for 64 h. The reaction progress 

was monitored by the evolution of hydrogen chloride gas. The solvent 

was removed in vacuo to leave a brown oil (0. 93 g). This was purified 

by medium pressure chromatography on an alumina column. Elution 

with at first petroleum ether (40-60) and later with dichloromethane 

gave a colourless crystalline solid (0. 74 g). Recrystallization from 

ethanol gave 5_phenyl_3_oxa_9_thia_4_aZatricYclo[5. 3. 0. 0 
2,6

1dec-4-

ene 9, 9-dioxide (0. 37 g, 18.  5%) in. p. 175-176 0C as colourless crystals. 

I. R. v 	(nujol) 1308, 1128, 878, 768, 691, 666 cm - 
max max 
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n. m. r. 8 (CDC1 3)' 7.6-7.4 (SH, m, Ph), 5. 3-5.1 (1H, d of d 

J 7.5Hz 2.5Hz, 2-H), 4.4-4. 2 (1H, in, 6-H), 3. 5-3. 2 (6H, £ EL" 

1-H, 7-H, 8 and 8'-H, 10 and 10'-H); 

13 C n. m. r. & [(CD 3)2SO] 158.43 (C 5), 130.36 (Ph), 129.06 (Ph) 

127.66 (Ph), 127.01 (ph), 82.11(C 2), 52.49 (C 10), 52. 28 (C 8 ), 

41. 54 (C 6 ), 37.40 (C 1  and C 7 ); 

Mass spectrum m/e 263 (8. 7%),  145 (100), 144 (57), 117 (13), 77 (22); 

(Found: C, 59.15; H, 5.00; N, 5.10; C 13H13N0 33 requires C, 59-30; 

H, 5.00; N, 5.30%). 

e) 4-Thia-9, 10-diazatricyclo[5. 3. 0.0 2 6ldec-9-ene 4,4-dioxide. 

The diazomethane was prepared by the method outlined in Vogel's 

handbook. 132 Diazald [CH 3 C 6 H4 SO 2N(CH3)NO] (4. 3 g, 20 mmèl) 

was dissolved in dry ether (60 ml) and an alcoholic solution of potassium 

hydroxide (0. 8 g in 20 ml of 96% aqueous ethanol). This solution was 

stood in an ice bath for fifteen minutes and then the resultantethanol 

solution of diazomethane was distilled off into cold dry ether (50 ml). 

3-Thiabicyclo[3. 2. 0]hept-6-ene 3, 3 -dioxide (500 mg, 3. 5 mmol) was 

added to this solution and stood in a cold room for 42 days during which 

time there precipitated a pale yellow solid. The excess diazomethane 

was destroyed by addition of glacial acetic acid and the solid was 

recovered by filtration and dried invacuo to yield 4-thia-9, 10-diaza-

tricyclo[5. 3.0.02,6  Idec-9-ene-4,  4-dioxide (500 mg, 82%)  m. p.  157-

158°C as pale yellow needles. 

I. R. v - max (nujol) 1535, 1295, 1137, 888, 686 cm 1 ; 

it m. r. 3(CDC1 3) 5. 36-5.2 (1H, in, 1-H), 4.64-4.56 (2H, d of d 

J 2.5Hz 1Hz, 8 and 8'-H), 3.46-2.97 (SH, c rn, 2-H, 3 and 3'-H, 



Sand 5'-H) 2.82-2.5 (2H, cm, 6-H, 7-H); 

13 C n. m. r. 6(CDC1 3) 90.05 (C 1 ), 84.03 (C 5 ), 54.10 (C 3), 53.18 (C 5), 

38.09 (C 7), 37.95 (C 2), 32.72 (C 6 ); 

Mass spectrum m/e 187 (0. 8%), 186 (0. 04), 93 (16. 6), 91 (21), 

79 (100), 77 (50); 

(Found: C, 45. 26; H, 5. 38; N, 14.87; C 7 H 10 N 202S requires 

C, 45.15; H, 5.4; N, 15.04%). 

f) Attempts to add diphenylnitrilinaine to 3-thiabicyclo[3. Z. 01-

hept-6-ene 3, 3-dioxide. 

3-Thiabicyclo[3. 2. 0]hept-6-ene 3, 3-dioxide (250 nag, 1.7 mrnol) 

and a-oh].orobenzoylphenylhydrazone (400 trig, 1. 7 mmol) in dry toluene 

(30 ml.) was boiled under reflux for 90 h the reaction progress was 

monitored by the evolution of hydrogen chloride gas. The solvent was 

removed under reduced pressure and gave a brown crystalline solid. 

This was shown by n. m. r. to consist of unreacted 3-thiabicyclo[3. 2. 0]hept-6-

ene 3, 3-dioxide and nitrilimine decomposition products. The unreacted 

3-tliiabicyclo[3. 2. 0]hept-6-ene 3, 3-dioxide was recovered by chromato-

graphy of the brown solid on silica with ether as the eluent. The 

recovery was virtually quantitative showing that the nitriimine had 

not reacted with the alkene. 

Method (ii) 

This method is that of Huisgen. 
131 

 To a solution of 3-thiabicyclo-

[3, 2, 0]hept-6-ene 3, 3-dioxide (120 mg, 0.83 mmol) and a-chlorobenzoyl-

phenyihydrazone (200 mg, 0.83 rnmol) in dry benzene (15 ml) was added 

a solution of triethylamine (200 mg, 2 mmol) in benzene (S ml) over a 



period of 1 h. during which time the solution became fluorescent. 

The benzene was removed under reduced pressure and gave an almost 

colourless crystalline -solid. This was shown by n. rn. r. to be almost 

identical to the product obtained by method (i) and once again the 

nitrilimine had failed to react with the a]kene. 
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G. 	Preparation of Divinylcyclopentane Analogues by Flash Vacuum 

Pyrolysis (F.V.P.). 

G. 1 General procedure. 

The pyrolyses were carried out using the apparatus described 

in section B. The following procedure is typical. 

A sample of the substrate was placed in the inlet of the F. V. P. 

apparatus and the inlet was then attached to the pyrolysis tube. The 

'U 1  shaped trap was attached to the pyrolysis tube exit and the system 

was sealed by connecting the other end of the trap to the pump. The 

joints which were subject to high temperatures were sealed with high 

vacuum silicone grease and the others with L Apiezon grease. When 

the furnace temperature had reached the required temperature and 

the system pressure had fallen to approximately 10 3mmHg the trap 

was surrounded by a liquid nitrogen trap and the inlet was surrounded 

by a Kugelrohr already heated to the required temperature. The 

substrate was then sublimed into the furnace over a period of between 

I h and 5 h, and the products we're trapped in the cold trap. When all 

of the substrate had sublimed the heat sources were switched off and 

the system allowed to cool. When the apparatus had cooled it was 

flooded with dry nitrogen taken apart and the product recovered from 

the cold trap and purified by standard procedures. 

In general each new pyrolysis required a series of small scale 

(50 mg) experiments in order to find optimum conditions. The two 

parameters which were of particular importance were (i) the inlet 

temperature, and (ii) the furnace temperature. The correct inlet 

temperature was determined by carrying out a pyrolysis in which the 



inlet temperature was gradually increased in 10 ° C intervals from 

room temperature until a reasonable rate of sublimation was attained. 

It was desirable to avoid melting the substrate in the inlet and also 

either very low or very high rates of sublimation. Sometimes however 

it was impossible to. avoid melting the substrate as in these cases inlet 

temperatures below the melting point of the substrate gave negligible 

rates of sublimation. The correct furnace temperature had to be 

found such that the substrate was completely pyrolysed to give the 

desired products without the products themselves being decomposed. 

In general furnace temperature was in the range 500-625 ° C. 

Another feature worthy of note is that on some occasions a 

residue remained in the inlet at the end of the pyrolysis. On these 

occasions the amount of residue was determined by weighing and taken 

into account when the yields of the pyrolysis was calculated. One 

feature which was also of interest was that if one changed the scale of 

an experiment from small (50 mg) to medium (1 g) scale then one had 

to increase the furnace temperature by 20-50 °C to get the same results 

as in the lower scale experiment. 

In small scale experiments the crude pyrolysate was dissolved 

in CDC1 3  (0. 3 ml) and this solution was analysed directly by n. m. r. 

[after addition of cyclohexane (Sisl) as an integral calibrant]. Absolute 

yields in these small scale experiments were obtained from the 

n. m. r. spectra by relating the integral of the various protons to that 

of cyclohexane. This procedure is estimated to be accurate to +5%. 

In all the pyrolyses optimum conditions are quoted. 



G. 2 Pyrolysis of 3, 5-dioxo-4-oxa-9-thiatricyclo[5. 3. o. 0
2,6 

 Idecane  

9, 9-dioxide. 

A sample of 3, 5-dioxo-4-oxa-9-thiatricyclo{5. 3. 0. 0 6 ]decane 

9, 9-dioxide (15 g, 69 mmol) was pyrolysed at 630 °C. The inlet temperature 

was 180°C, the pressure 6 x 	mmHg and time taken was 5 Ii. At the 

end of the pyrolysis the pyrolysate was transferred to a Kugelrohr bulb 

and distilled bulb-to-bulb (65°C 10. 0 mmHg) and gave 2, 5-dioxo-cis-3,4-

divinyltetrahydrofuran as a clear liquid (8.43 g, 80%) n 	1.4835. 

I. R. ., max (liquid film) 1900-1700, 1642, 1417, 1206, 1072, 945, 783 

-1 
cm 

1 H n.m. r. 5(CDC1 3) 5. 9-5. 5 (2H, rn, 6-H, 8-H), 5.4-5. 3 (4K c d of d, 

7 and V-H, 9 and 9'-H), 3.9-3.4 (211, dofdJ4.5 Hz 2Hz, 3-H, 4-H) 

13 C  n.m. r. S (CDC1 3) 170.44 (C =0), 127.34 (C 6  and C 8 ), 122. 11 (C 7  

and C 
9 
 ) 48.88 (C 3  and C 4 ); 

Mass spectrum m/e 152 (11. 3%),  108 (6. 8), 80 (100), 79 (100); 

(Found: C, 62.90; H, 5.45; C 8  H  8  0 
 3 requires C, 63. 15; H, 5.30%). 

G. 3 Pyrolysis of 4-oxa-9-thiatricyclo[5. 3.0. 0 
2,6

ldecane 9, 9-dioxide 

and an alternative synthesis of product. 

a) 	Pyrolysis 

A sample of 4-oxa-9-thiatricyclo[5. 3:0. 0 6 ]decane 9, 9-dioxide 

(486 mg, 2. 59 mrnol) was pyrolysed at 6 25 °C. The inlet temperature 

-3 
was 110 

0 
 C, the pressure 10 mmHg and the time taken was 5 h. The 

pyrolysate was recovered with a dropping pipette and distilled in a 

micro distillation apparatus to give cis- 3, 4 -divinyltetrahedrofuran (197 

mg, 61.5%) b.p. 41 °C/41 mmHg, n 	 1.465 as a clear liquid. 

I. R. V 	 (liquid film) 3325, 1638, 1423, 1047, 991, 910 cm- 1
max 
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n. m. r. S (CDC1) 5.9-5.6 (2H, rn, 6-H, 8-H), 5. 1-5. 0 (4H, c dof 

d jS3Hz 13Hz, 7 and 7'- H, 9 and 9'-H), 4.0-3.9 (ZH, d of d 18. 5Hz, 

7 Hz, 2-H, 5-H), 3.7-3.6 (2H, d of d J8. 5Hz, 6Hz, 2'-H, 5'-H), 

3.1-2.8 (2H, rn, 3-H, 4-H); 

13c n. m. r. 6 (CDC1 3) 135.78 (06 and 	116.15 (C 7  and C), 7.192 

(C 2  and C 3 ), 47.54 (C 3  and C 4 ). 

Mass spectrum m/e 124 (1. 3%), 94 (45), 79 (100), 77 (38), 54 (43); 

(Found: C, 41.00; 	H, 4.3. 	C 8 H120 requires C, 	41. 1; H, 4.6%). 

b) Alternative synthesis of ais -3, 4- divinyltetrahydrofuran. 

i) meso- Dimethyl- 1, 5-hexadiene- 3,4 -dica-rboxylate. 

2, 5_Dioxo_cis-3,4-divinyltetrahydrOfuranj8.43 g, 55 mmcl) and 

a few drops of concentrated sulphuric acid were added to methanol (130 

ml) and the mixture was boiled under reflux for 24 h. The reaction 

mixture was filtered and the solvent was removed invacuo to leave a 

clear oil (10.76 g) which crystallized and gave a colourless translucent 

solid. Recrystallization of this solid from petroleum ether (40-60) gave no-

dirnethyl-1, 5-hexadiene-3,4-dicarboxylate (5.6 g, 51%) m.p. 36-37 0C 

as colourless crystals 

I. R. J 	(nujol) 1743, 1640, 1315, 1235, 1088, 1000, 892, 787, 
max 

695 cm ' ; 

' H n. m. r. 5 (CDC1 3), 5.9-5.6 (2H, d of d of ci of d  17Hz, 10Hz, 6Hz, 

2. 5Hz, 2-H, 5-H), 5. 3-5.1 (4H, overlapping d of d  17Hz, 1.5Hz, 

10Hz, 1.5Hz, 1 and 1'-H, 6 and 61_H) 3.62 (6H, s, -Me) 3.5-3.4 (2H, 

d of d 36Hz, 2. 5Hz, 	3-H, 4-H); 

13c n. m. r. s (CDC 1 3 ) 171.38 (0=0), 132.61 (C2  and 0 5 ). 119.04 (C 1  

and C 6 ), 52.49 (-OMe), 51. 51 (0 3  and 04); 
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Mass spectrum m/e 198 (1%), 167 (18), 139 (23), 138 (27), 99 (100); 

(Found: C, 60.45; H, 6.90. C 10 H14 04  requires C, 60. 60; H, 7. 1 0%). 

ii) 	meso- 3, 4- Dihydroxym ethyl- 1, 5-hexadiene. 

To a stirred (mechanical) suspension of lithium aluminium hydride 

(8. 26 g, 220 mmol) in dry tetrahydrofuran (170 ml) was added dropwise a 

solution of mèso-dimethyl-1, 5-hexadiene-3,4-dicarboxylate (10.76 g, 54 mmcl) 

in dry tetrahydrofuran (50 ml) over a period of I h. The mixture was stirred 

for 1 h at room temperature and then boiled under reflux for a further 

1 h. On cooling the excess lithium aluminium hydride was destroyed 

by dropwise addition of water (8 ml), 4M sodium hydroxide solution 

(8 ml) and water (24 ml). The inorganic salts were removed by 

filtration and the solvent removed from the filtrate invacuo and gave 

a clear oil (9.45 g). 	This oil was dissolved in trichiorornethane (60 

ml) and this solution was washed with water (10 ml) to remove any 

residual tetrahydrofuran. The trichioromethane solution was dried 

over magnesium sulphate and solvent was removed in vacuo to give a 

clear oil (7. 16 g). This oil was distilled in a Kugelrohr (100°C/0. S 

mmHg) to give meso-3, 4-dihydroxym ethyl- 1, 5-hexadiene (6. 7 g, 87%) 

as a clear oil n 	1.4865. 

I. R. v 	(liquid film) 3700-3100 (-OH), 1640 (CC), 1425, 1055, 995, 
max 

917 cm 1 ; 

n.m. r. (CDC1 3) 5.9-5.5 (2H, d of d of dJ 16Hz, 11Hz, 8.3Hz, 

2-H, 5-H), 5. 2-5. 0 (4H, overlapping d of d J 16Hz, 2. 5Hz, 11Hz, 2. 5Hz, 

1 and l'-H, 6 and6-H), 3.8-3.4 (4H, two sets of d of d J 10. 5Hz, 4.5Hz, 

10. 5Hz, 6.5Hz, 7 and 7'-H, S and 81_H),  2. 5-2. 1 [4H; --(2H, when sample 
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shaken with D 20) hr. in, 3-H, 4-H, -OH]. 

13 C n. m. r. 6 (CDC1 3 ) 137.46 (C 2  and C 5), 117.69 (C 1  and C 
4 
 ) 63.51 

(C7  and C 8 ), 47.84 (C 3  and C 4 ); 

Mass spectrum nile 142 (0. 3%.), 124 (1), 94 (45), 79 (75), 54 (100); 

(Found: C, 67.45; H, 10.10. C 8 H14 O 2  requires C, 67. 55; H, 9.90%). 

iii) cis-3, 4-Divinyltetrahydrofuran. 

This was prepared by the method of Corfield et al. 
133 

 A solution of me-

53,4-dthydroxymethyl-1, 5-hexadiene (3.8 g, 27 mmol) and toluene-2-

sulphonic acid monohydrate (300 mg, 1. 58 mmol) in dry benzene (60 ml) 

was boiled under reflux for 40 h in a flask equipped with a Dean and 

Stark apparatus. At the end of this period about ml of water had 

collected below the benzene in the Dean and Stark trap. The benzene 

was removed from the reaction mixture under reduced pressure at 

room temperature. The residue was distilled and gave cis-3, 4-divinyl-

tetrahydrofuran (2.03 g, 62%) b. p. 41 °C/41 mmHg as a clear liquid. 

Analytical and spectroscopic data showed that it was identical in every 

way to the compound prepared by the pyrolysis of 4-oxa-9-thiatricyclo- 

[ 5. 3. 0. 0
2,6 

 ]decane  9,9-dioxide. 

C. 4 Pyrolysis of *, 9-dithiatricyclo[5. 3. 0. 0 
z,6

1decane 4,4-dioxide. 

A sample of 4, 9-dithiatricyclo[5. 3. 0. 0 2 6 ]decane 4,4-dioxide 

(320 mg, 1. 55 mmol) was pyrolysed at 620 0C. The inlet temperature 

was 106 0C, the pressure was 3 x 10 3mmHg and the time taken for the 

pyrolysis was 2 h. The pyrolysate a pale yellow liquid was transferred 

to a microdistillation apparatus and distillation yielded cis-3,4-divinyl-

tetrahydrothiophene (27 mg, 24.6%) b. p. 140 °C/16 mmHg as a clear 



liquid. As in this case a solid residue (162 mg) remained in the 

inlet this was taken into account when estimating the yield of the 

reaction. 

max (liquid film) 1640 (CC): 1450, 1425, 980, 917 cm 1 ; 

1 H n. m. r. 6 (CDC1 3) 6. 0-5. 0 (6H, divinyl system, 6-H, 7 and 7'-H, 

8-H, 9 and 9'-H), 3. 1-2.6 (6H, br. rn, 2 and 2'-H, 3-H, 4-H, 5 and 

5 '-  H) ;  

13 C n. m. r. 6  (CDC 1 3) 136.32 (C 6  and C 8 ), 116. 29 (C 7  and C 9 ), 

51.09 (C 3  and C 4 ), 34.77 (C 2  and C 5 ); 

Mass spectrum m/e 140 (30. 3%), 86 (100), 85 (75. 8); 

(Found: C, 68.67; H, 8. 59; C 8 H12S requires C, 68. 52; H, 8.62%). 

G. 5 Pyrolysis of 9-benzyl-4-thia-9-azatricyclo[5. 3. 0. 0 
z,6

ldecane 

4,4-dioxide. 

A sample of 9-benzyl-4-thia-9-azatricyclo[5. 3.0. 02.i 6]decane 

4,4-dioxide (90 mg, 0.32 mmol) was pyrolysed at 525 0C. The inlet 

temperature was 160 °C, the pressure was 1 x 10 3mmHg and the time 

taken was 1 h. The pyrolysate which was a brown oil was dissolved 

in trichioromethane (2 ml) and this solution was transferred to a 

micro distillation apparatus. The trichlorom ethane was blown off 

in a stream of dry -nitrogen and then distillation of the pyrolysate gave 

1-benzyl-cis-3, 4divinylpyrrolidine (40 mg, 58%)  b. p. l00°C/l0 3 mmHg 

as a light brown oil. 

I. R. V 	(liquid film) 1642, 1454, 912, 802, 742, 700 cm- 1 
max

1 H n. m. r. 6 (CDC 1 3) 7.4-7. 2 (SH, rn, Ph), 6. 1-5.8 (6H, divinyl system, 

6-H, 7 and V-H, 8-H,. 9 and 9'-H), 3.6 (2H, s, -CH 2Ph) 3.1-2.9 (4H, 
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M, 2 and 2'-H, 5 and 5'-H), 2.4-2.1 (2H, in, 3-H, 4-H). 

Mass spectrum m/e 213 (33%),  133 (28. 6), 91 (86), 42 (100); 

(Found: C, 84.61; H, 9.08; N, 6.66 
	

C 15H 19 N requires C, 84.46; 

H, 8.98; N, 6.57%; Mt 213.1516 
	

C 15 H 19N requires 213. 1517). 

G. 6 Pyrolysis of 9-phenyl-8, 10-dioxo-4-thia-9-azatricyclo-

[5.3.0.0 ' 1 decane4,4-dioxide. 

A sample of 9-phenyl-8, 10-dioxo-4-thia-9-azatricyclo[5. 3. 0. 0 2,6 

decane 4,4-dioxide (283 mg, 6.97 mmol) was pyrolysed at 625 0C. The 

inlet temperature was 186
0
C, the pressure 2 x 	mmHg and the 

time taken was 53 minutes. The pyrolysate collected as a colourless 

solid at the entrance to the cold trap. The pyrolysate was dissolved 

in trichloromethane (20 ml) and the solution was filtered. The 

solvent was removed to leave a colourless crystalline solid (210 mg). 

Recrystallisation of this solid from ethanol gave 1-phenyl-cis-3,4-divinyl-

succinimide (120 mg, 52%)  m. p.  134-136 0C as colourless needles. 

max (nujol) 1767, 1598, 1496, 1459, 1382, 1264, 1188, 933, 753, 

692 cm 1 ; 

n.m. r. 6 (CDC1 3 ) 7. 5-7. 2 (5H, in, Ph) 5.95-5. 28 (6H, c divinyl 

system, 6-H, 7 and 7'-H, .8-H, 9 and 9'-H), 3.8-3. 7 (211, d of d 

J 7Hz, 2Hz, 3-H, 4-H); 

13 C n. m. r. 5 (CDC1 3) 175.37 (C0), 131.72 (P11), 129.58 (Ph), 128.92 

(Ph), 128.41 (Ph), 126. 17 (C 6  and C 8 ), 121.31 (C 7  and C 9 ), 48.88 

(C 3  and C 4 ); 

Mass spectrum m/e 227 (62. 5%),  157 (5), 119 (7. 5), 108 (7. 5), 91 

(7. 5), 80 (100), 79 (60): 



(Found: C, 73.70; H, 5.82; N, 6. 11 
	

C 14 H 13 NO 2  requires C, 

73. 99; H, 5.77; N, 6. 1 6%). 

C. 7 Pyrolysis of 9-Phenyl-4-thia-9-azatricyclo[5. 3. o. o2' 6 

decane 4,4-dioxide. 

A sample of 9-phenyl-4-thia-3-azatricyclo[5. 3. 0. 0 6 ]decane 

4,4-dioxide (60 mg, 0.23 minol) was pyrolysed at 625°C. The inlet 

temp was 148 °C, the pressure was 4 x 10 mmHg and the time taken 

was 1. 25 h. The pyrolysate was examined by n. m. r. and this was 

consistent with the product being I-phenyl-cis-3,4-divinylpyrrolidine. 

However attempts to pyrolyse larger amounts led to failure on account 

of the fact that substrate decomposed badly in the inlet. Also since 

the substrate itself was prepared somewhat fortuitously on only one 

occasion it was not possible to confirm the pyrolysis result. 

1 Hn.m.r. (60MHz) 3(CDC1 3) 7.45-7.24 (2H, rn, o-PhH) 

6.82-6. 5 (3H, rn, in and 2-PhH), 6. 2-4. 9 (6H, c divinyl system, 

6-H, 7-H, 8 and 8'-H, 9 and 9'-H), 3.5-2.9 (6H, c in, 2 and V-H, 

3-H, 4-H, S and 5'-H). 

G. 8 Pyrolysis of 9-methyl-8, 10- dioxo-4- thia- 9-azatricyclo-

15.3.0. o 2,6 
 1decane 4,4-dioxide. 

A sample of 9-methyl-8, 10-dioxo-4-thia-9-azatricyclo[5. 3. 0. 

decane 4,4-dioxide (1 g, 4.4 mmol) was pyrolysed at 625 0C. The inlet 

temperature was 180 ° C, the pressure was 3 x 10 3rnmHg and the time 

taken was 7 h. There was a solid residue (0. 24 g) left in the inlet at 

the end of the pyrolysis. The pyrolysate was a light brown oil and 
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this was distilled in a micro distillation apparatus to yield 1-methyl- cis-

3,4-divinylsu..ckaimid (0.32 g, 58%) b. p. 100°/:10 3mmHg. 

19 
D 1.486 as a pale yellow oil. 

I. R. V 	(liquid film) 1690, 1435, 1380, 1290, 980, 930 cm- I 
max 

n.m. r. 6(CDC1 3) 6. 1-5. 22 (6H, £ divinyl system, 6-H, 7 and 7'-H, 

8-H, 9 and 9LH), 3.8-3.6(2H, rn, 3-H, 4-H), 3.05(3H, s, -Me); 

13 n.m. r. 176. 59 (C0), 129.64 (C 6  and C 8 ), 121.15 (C 7  and C 9 ), 

49.75 (C 3  and C 4 ), 25.00 (-Me); 

Mass spectrum m/e 165 (78%),  80 (100), 79 (100), 64 (88), 60 (55). 

(Found: Mt 165.0778. C 9 H 11 NO 2  requires 165.0790; C, 65.26; 

H, 6.83, N, 8.65; C 9 H11 NO 2  requires C, 65.44; H, 6.71; N, 

8.48%). 
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H. 	Pyrolysis of 3-Thiabicyclol3. 2. Olhept-6-ene  3, 3-dioxide and its 

Adducts. 

H. 1 Pyrolysis of 3-Thiabicyclo[3. a. Olhept-6-ene  3, 3-dioxide. 

A sample of 3-thiabicyclo[3. a. 0]hept.-6-ene 3, 3-dioxide (50 mg, 

0. 35 mmol) was pyrolysed at 500 0C. The inlet temperature was 70 °C, 

the pressure 5 x 10 3mmHg and the time taken was 1. 5 h. Analysis 

of the pyrolysate by n. m. r. showed that the product was entirely 1, 3-

cyclohexadiene. This indicates that the first formed product was 

hexa-1, 3, 5-triene but the conditions of the pyrolysis were such that 

it had undergone an electiocyclic reaction to give 1, 3-cyclohexadiene. 

In an attempt to prevent the hexa-1, 3, 5-triene isomerizing to 

1, 3-cyclohexadiene milder conditions for the pyrolysis were employed. 

It was found that, if the furnace temperature was below 400 °C, then 

unchanged starting material was the "product P At a temperature 

of 400°C the product consisted of 1, 3-cyclohexadiene, cis-hexa-1, 3, 5-

triene and unchanged 3-thiabicyclo[3. 2. O]hept-6-ene 3, 3-dioxide. 

The presence of cis-hexa-1, 3, 5-triene was confirmed by comparing 

the 
1}j 

 n. m. r. of the pyrolysate to that of the published 
134 

 spectra 

for cis-hexa-1, 3, 5-triene. Thus it was found impossible to get 

cis-hexa-1, 3, 5-triene as the sole product of the pyrolysis. 

H. 2 Lithium aluminium hydride extrusion of sulphur dioxide from 

3-thiabicyclo[3. a. Olhept-6-ene  3, 3-dioxide. 

This method used is that of Gaoni. 
66 

 3- Thiabicyclo[ 3, 2. 0]hept-

6-ene 3, 3-dioxide (200 mg, 1.4 rnmol) was added portionwise to a 

suspension of lithium aluminium hydride (200 mg, 5. 2 mmol) in boiling 



ether (50 ml). The mixture was boiled under reflux for 1 h and 

then samples of the ether solution were withdrawn and analysed by 

gas chromatography. The column used was 30% 3, 3'-oxydipropio- 

nitrile on '80-100 Chromsorb W' at an oven temperature of 50 °C. Two 

product peaks were observed and these were shown to be due to sit 

and trans -hexa-1, 3, 5-triene by peak enhancement experiments using 

an etheral solution containing authentic samples of cis and trans- 

hexa-L 3, 5-triene prepared as described by Hwa et al. 
135 

 Thus the import-

ance of this result is that in this case the extrusion is non-stereospecific. 

Control experiment 

In order to check that the reaction conditions could not cause 

isomerization of cis totrans-hexa-1, 3, 5-triene a sample of the authentic 

mix?ture of cis and trans hexa-1, 3, 5-triene was dissolved in ether (25 

ml). This solution was analysed by gas chromatography and then lithium 

aluminium hydride (200 mg, 56 2mmol) was added and the mixture was 

boiled under reflux for 1 h. The mixture was then analysed again by 

gas chromatography wider the same conditions as before and the traces 

obtained were identical to those obtained before the reflux period. 

Thus this confirms that the extrusion of sulphur dioxide by lithium 

aluminium hydride in this case is non-s tereospecific. 

17L3 Pyrolysis of 8-oxa-4-thiatricyclol5. 1.0. 0 
2,6

loctane 4,4-dioxide. 

A sample of 8-oxa-4-thiatricyclo[5. 1. 0. 6 ]octane 4,4-dioxide 

(50 mg, 0. 31 mrnol) was pyrolysed at 580 °C. The inlet temperature 

was 106 °C, the pressure 3 x 10 3mmHg and the time taken was fifteen 

minutes. The pyrolysate was dissolved in CDC1 3  (0. 3 ml) and analysed 
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by 1 H and 13C n. m. r. spectroscopy and comparison of the data with 

136 
known literature values 89d, 

	
showed that the product was 4, 5- 

dihydrooxepin (30 mg, 55%). 

1 H n. m. r. S (CDC1 3) 6. 1 (2H, d J 7. 5Hz, 2-H, 7-H), 5. 2 (ZH, 

in, 3-H, 6-H), 2.3 (4H, rn, 4 and 4 1 -H, S and 5-H); 

13 C n. m. r. 5 (CDC 1 3 ) 14 2. 76 (C 2  and C 7 ), 108. 5 (C 3  and C 6 ), 

26.91 (C 4  and C 5 ), 

H. 4 Pyrolysis of 5-(p-Methoxyphenyl')- 3-oxa- 9- thia-4-azatricyclo-

[5. 3. 0. 02 6 1dec-4- ene 9, 9-dioxide. 

A sample 5-(p-methoxyphenyl)- 3-oxa-9- thia-4-azatricyclo- 

[s. 3. 0. O' 6 ]dec-4-ene 9, 9-dioxide (50 mg, 0. 17 mmol) was pyrolysed 

at 500°C. The inlet temperature was 148 °C, the pressure was 7 x 10 

mmHg and the time taken was 3 h. The pyrolysate was dissolved in 

tr ichlo rom ethane (2 ml) and transferred to a sublimation apparatus. 

The solvent was blown off in a stream of dry nitrogen and the residue 

sublimed (100
0
C/5 x 10 mmHg) to yield colourless translucent crystals 

of 4, 5-dihydro-3-(p-methoxyphenYl)- cis -4, 5-divinylisoxazole (13 mg, 33 %) 

m.p. 58-60°C. 

1. R. v 
max 

 (nujol) 1607, 1512, 1245 1177, 1043, 837, 810 cm ' ; 

n. m. r. 6 (CDC1 3) 7.8-6.8 (4H, AB pattern, aromatic H) 6,1-4.9 

(6H, c, divinyl system, 6-H, 7 and 7'-H, 8-H, 9 and 9'-H), 4.1 (1H, 

J 	Hz, 5-H), 3.66 (3H, s, -OMe), 3. 2 (1H, br.s, 4-H); 

13 C n. m. r. 5(CDC1 3) 160.86 (aromatic carbon ajacent to -OMe), 

158.52 (C 3 ), 132.05 (C 6 ), 131.83 (C 8 ). 128-53 (Ar), 121. 52 (C 7 ), 

120. 21 (C 9), 119.94 (Ar), 113.91 (Ar), 86.09 (C 5), 55. 30 (-OMe), 
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55. 16 (C 4 ). 

Mass spectrum m/e 229 ( 1 00%), 173 (92); 

(Found: C, 73. 20; H, 6.50; N, 6.00; C 14 H15 02N requires 

C, 73. 35; H, 6.60; N, 6.10%). 

H. 5 High temperature Pyrolysis of 5-(p-methoxyphenyl)-3-oxa-9-

thia-4-azatricyclo[5. 3.0. 0
2,6 

 Idec-4-ene-9,  9-dioxide. 

A sample of 5- (2-methoxyphenyl)- 3-oxa- 9- thia-4-azatricyclo-

[s. 3.0. 0
2,6 

 ]dec-4-ene  9,9-dioxide (79 mg, 0. 26 mmol) was pyrolysed 

at a furnace temperature of 625 °C. The inlet temperature was 144 °C, 

the pressure was 8 x 10 3mmHg and the time taken for the pyrolysis 

was 3 h. The pyrolysate was dissolved in CDC1 3  (0. 3 ml) and analysed 

by 1 Hn.m.r. and then by gas chromatography (2½% SE30 on 80-100 

chromsorb) at an oven temperature of 180 0C for four minutes and then 

an increase of 6 °C per minute to 240 °C over a period of ten minutes. 

The gas chromatograph showed 9 product peaks. Thus due to prolifer-

ation of products this investigation was discontinued. 

' H n. m. r. 6 (CDC1 3) 8-6.7 (aromatic peaks), 3.8 (various types 

of -OMe). 

H. 6 Pyrolysis of 5-Phenyl-3-oxa-9-thia-4-azatricyclo{5. 	
6ih 

dec-4-ene-9, 9-dioxide. 

A sample of 5-phenyl-3-oxa-8-thia-4-aatricyc1o[5. 3. 0. 0 6 

dec-4-ene 9, 9-dioxide (50 mg, 0. 19 mmol) was pyrolysd at 500 0 C. 

The inlet temperature was 142 °C, the pressure was. 12 x 10 3 mmHg 

and the time taken for the pyrolysis was 2 h. Pyrolysate was dissolved 
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in CDC1 3  (0. 3 ml) and transferred to a microdistillation apparatus. 

The solvent was blown off in a stream of dry nitrogen and the residue 

was distilled and gave 4, 5-dthydro-3-phenyl- cis-4, 5-divinylisoxazole 

(7 mg, 1 9%) b. p. 100 0C /0. 1 mmHg as a clear liquid. 

L R. V 	(liquid film) 1447, 1346, 987, 1926, 767, 693 cm 
max 

1 H  n.m. r. 6(CDC1 3) 7.74-7.64 (2H, rn, o-ArH), 7.4-7. 2 (311, rn, 

rn and 2-ArH), 6. 1-4.95 (711, c rn, 5-H, 6-H, 7 and 7'-H, 8-H, 9 and 

9'..H), 4.14 (1H, tJlOHz, 4-H); 

Mass spectrum m/e 199 (15%),  143 (100), 117 (70), 115 (25); 

(Found: C, 78.07; H, 6.42; N, 7.33; C 13 H13N0 requires C, 78. 36; 

H, 6. 58; N, 7.03%). 

H. 7 4-Thia-9, 10-diazatricyclol5. 3.0.02 6ldec-9-ene-4,4-dioxide. 

Pyrolysis 

A sample of 4-thia-9, 10-diazatricyclo[5. 3. 0. 0 6]dec-9-ene-

4,4-dioxide (75 mg, 0 .47 mmol) was pyrolysed at 450 0C. The inlet 

temperature was 118 °C, the pressure was 5 x 10 3mmHg and the 

time taken for the pyrolysis was 2 h. The pyrolysate was dissolved 

in CDC1 3  (0. 3 ml) and examined by ' H n. m. r. and by gas chromatography 

(30% f3, '-oicydipropionitrile on 80-100Ghromsorb W) at a column 

temperature of 90 °C. Five product peaks were observed. The 

products were not positively identified. 

Photolysis 

4-Thia-9, 10-diazatricyclo[5. 3.0.02 6 ]dec-9-ene 4,4-dioxide 

(50 mg, 0. 3 mmol) was dissolved in deuterated acetonitrile and placed 

in an n.m.r. tube. The tube was then irradiated with a 100W medium 
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pressure mercury lamp through a pyrex filter for 58 h. The reaction 

was monitored by ' H n. m. r. The resonances in the region 4-6 6 almost 

disappeared while new resonances appeared in the region 0-2 6 . Other 

more subtle changes took place in the main body of the spectrum. The 

solvent was removed invacuo to leave a yellow oil which on trituration 

with ether gave a brown solid (8 mg). However attempts to identify 

this solid were unsuccessful. 
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I. 	Miscellaneous Preparations and Pyrolyses 

1.1 	meso-1, 5-Hexadiene-3,4-dicarboxylic acid. 

5-Dioxo-cis-3, 4-divinyltetrahydrofuran (11.6 g, 76 mmol) was 

suspended in water (50 ml) and boiled for a few minutes. The mixture 

became homogeneous and when cooled gave a colourless crystalline 

precipitate. The precipitate was recovered by filtration and dried 

in vacuo to yield rneso-1, 5-hexadiene-3,4-dicarboxylic acid (9.06 g, 

70%) m. p. 183-185 0 C. 

I. R. v max (nujol) 1697 (C0), 987, 927, 767, 667 cm ' ; 

' H n.m. r. 6[(CD 3 ) 2GO] 6. 1-5.7 (4H, d of d of d of d and broad signal 

overlapping 1 16. 5Hz, 10Hz, 6Hz, 2. 5Hz, 2-H, 5-H), 5. 3-5.1 (4H, 

overlapping d of d316. 5Hz, 2Hz, 10Hz, 2Hz, 1 and 1'-H, 6 and 6'-H), 

3.4-3. 3 (2H, d of d J 6Hz, 2. 5Hz, 3-H, 4-H); 

13 n. m. r.. 6 [(CD 3 ) 2COI 172.16 (C0), 134.06 (C 2  and C 5), 118.59 

(C 1  and C 6 ), .52.82 (C 3  and C 4 ); 

Mass spectrum m/e 157 (28%), 134 (40), 124 (100); 

(Found: C, 56. 25; H, 5.9. C 8 H 10 04  requires C, 56. 5; H, 5. 9%). 

I. 2 	7-Ethoxycarbonyl-3-thiabicyclol3. 2. 0 1heptane -6- carboxylic acid 

3-dioxide. 

3-Thiabicyc1o3. 2. 0]heptane-6, 7-dicarboxylic acid 3,3-dioxide 

(34 g, 145 mmol) was taken up in boiling ethanol. When the solution 

cooled a white crystalline solid was obtained. Recovery of the solid 

by filtration gave 7-ethoxycarbonyl-3-thiabicyclol3. 2. 01heptane-6- 

carboxylic acid 3, 3-dioxide (33.85 g. 8 9%) m. p. 152-154 °C as colourless 

crystals. 
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I. R. 1735 (C=O), 1300 (SO 2), 1188, 1142 cm ' ; 

n. m. r. d [(CD) 2C0] 6.5-5. 3 (1H, br. s, -COCH), 3.7-3.3 (2H, 

a -CH 2-), 3.0-2. 5 (8H, rn, 1-H, 2 and V-H, 4 and 4-H, 5-H, 6-H, 

7-H), 0. 75-0. 55 (3H, t, -Me); 

Mass spectrum m/e M+  not observed; 

(Found: C, 46. 14; H, 5.46; C 10 H 14 O6 S requires C, 46. 17; H, 5. 38%). 

1.3 Attempted Vinylation of 6, 7-dihydroxymethyl-3-thiabicyclo-

[3. 2. Olheptane  3, 3-dioxide. 137 

The general method used in the attempts was that of Watanabe 

et al. 138 

Method (i) 

6, 7-Dihydroxymethyl-3-thiabicyclo[3. 2. 0]heptane 3, 3-dioxide 

(1 g.  4. 9 mmol) mercuric acetate (0. 2 g, 0. 6 mmol) and one drop of 

concentrated sulphuric acid was added to ethyl vinyl ether (3. 0 g) and 

the resultant mixture was boiled under reflux for 2 h and then a further 

portion of ether (1.5 g) was added. The mixture was boiled under 

reflux for a further seven days and the solid residue was removed by 

filtration. The solvent was removed from the filtrate under reduced 

pressure-to give a colourless solid (193 mg). The solid residue was 

shown to be a mixture of mercuric acetate and starting material by 

examination of its I. R. spectrum. Although the colourless solid was 

not positively identified ' H n. m. r. showed that it did not contain any 

vinyl groups and thus was not the desired product. 



106 

Method (ii) 

Since the main difficulty in the vinylation experiment is the 

insolubility of the substrate the experiment was carried out using a 

Soxlet apparatus. This time the diol was placed in the Soxlet and the 

ether (100 ml) used to extract it. However this also proved unsuccessful. 

1.4 	Attempted preparation of 5, 6-divinyl-3, 8-dioxadeca-1, 9-diene. 137 

meso-3,4-Dthydroxymethyl-1, 5-hexadiene (1.02 g, 7. 2 mmol), mercuric 

acetate (0. 5 g, 1.6 mmol) and one drop of concentrated sulphuric acid 

were added to ethyl vinyl ether (25 ml). This mixture was boiled 

under reulux for 48 h and then mercuric acetate (0. 5 g) was added 

again and this was repeated 24 h later. After 96 h the mixture was 

filtered and the solvent removed 	in vacuo to leave an oil. This 

was distilled bulb-to-bulb in a Kugelrohr and the clear oil (210 mg) 

distils b. to b. 110 °C 10 mmHg was obtained. Althogh the spectral 

properties of this oil were consistent with it being the desired compound 

this was not confirmed by analysis. 

1 Hn.m.r. 6.6-6.2(2H, dofdj 14.6Hz 7.3Hz, 2-H, 9-H), 

5.9-5.5 (2H, m, 11-H, 13-H), (4H, rn, 12 and 12'-H, 13 and 13'-H), 

4.2-3.9 (4H, rn, land l'-H, 10 and 10'-H), 3.7 (4H, dJ4Hz, 4 and 

4'-H, 7 and 7'-H), 2.6-2. 3 (2H, rn, 5-H, 6-H); 

13 C n. m. r. 151.70 (C 2  and C 9 ), 137.27 (C 11  and C 13 ), 117.37 (C 12 

and C) 80.30 (C 1  and C 10 ), 69.12 (C 4  and C 7), 44.41 (C 5  and C6) 
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I. 5 Pyrolysis of the product from the attempted preparation of 

5, 6-divinyl-3, 8-dioxadecan-1, 9-diene. 137 

Method (i) 

A sample of the clear oil (56. 5 mg, 0. 29 mmol), obtained as 

described in 1.4, was pyrolysed at a furnace temperature of 500 0C. 

The inlet was at room temperature, the pressure was 6 x lO 3mmHg, 

and the pyrolysis was five minutes. The pyrolysate was examined by 

ii. m. r. but the product was not positively identified. 

' H n. m. r. d (CDC1 3) 9.6 (b r. )' 6. 5-6. 3 (d of d 1 14 Hz 7Hz)0  

5.9-5.4 (cm), 5.3-4.9 (c m), 4.22 (dJ 2.5Hz), 4.15-3.9 (c rn)1 

3.72 Ld J 5Hz), 2.6-2. 3 (cm), 2. 14 (s), 1.4 (c_ rn). 

Method (ii) 

A sample of the oil was dissolved in 12H8J  toluene and sealed 

in an n. m. r. tube. The tube was then placed in a bath of boiling 

xylene (150 °C) for 5 days but during this time no change in the n. m. r. 

spectrum of the substrate was observed. 

1.6 	Pyrolysis of Dim ethyl- 3-thiabicyclo[3, 2. 0heptane-6, 7-dicarbocy1ate 

3, 3-dioxide. 

A sample of dim ethyl- 3- thiabicyclo[ 3. 2. O]heptane-6, 7-dicar-

boxylate 3, 3-dioxide (1 g, 3.8 mmol) was pyrolysed at 625 0C. The 

inlet temperature was 180 °C, the pressure was 1 x 10 3 mmHg, and 

the time taken for the pyrolysis was 1. 5 h. The pyrolysate, a very 

volatile pale yellow liquid, was distilled in a micro distillation apparatus 

at atmospheric pressure and gave cis, trans-octa-2, 6-diene-1, 8- 
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dicarboxylic acid dimethyl ester (0. 574 g, 76 %) as a clear liquid. 

Owing to the very volatile nature of the compound elemental analysis 

failed but exact mass measurement- of the parent peak in the mass 

spectrum was consistent with the assigned structure. Also the ' H 

n. m. r. and I. R. data were in agreement with published values. 139 

I. R. vmax (liquid film) 1725 (C0), 1660 (C=C) 1440, 1200 cm 1 ; 

n. m. r. (360 MHz) 8(CDC1 3 ) 7.010-6.928 (iN, d of t  16Hz 7Hz, 

3-H), 6. 233-6. 160 (IN, d of t  12Hz 7. 5Hz, 6-H), 5.895-5.809 (2H 

M, 2-H, 7-H), 3.727 (3H, s -OMe), 3.715 (3H, s, -OMe), 2.874-2.808 

(2H, rn, 4 and 4'-H) 2.403-2.339 (2H, in, Sand 5'-H); 

13 C n. m. r. 6 (CDC1 3 ) 166.58 (C =0), 166.28 (C =0), 14 7. 91 (C 2  or C 7 ) 

147.54 (C 2  or C 7 ), 121.53 (C 3  or C 6 ), 120.29 (C 3  or C 6 ), 51.15 (C 4 ), 

50.81 (C 5), 31.13 (-OMe), 26.98 (-OMe). 

Mass spectrum m/e 198 (1%),  167 (43), 166 (33), 138 (100). 

(Found: Mt 198. 090244 C 10 H 14 04  requires 198. 089202 error 

less than 6 ppm). 

1.7 	Pyrolysis of meso-dimethyl-1, 5-hexad.iene-3, 4-dicarboxylate. 

Method (i) 

A sample of meo -dim ethyl- 1, 5-hexadiene-3,4-dicarboxylate (100 mg, 

0. S mmol) was pyrolysed at a furnace temperature of 625 °C. The inlet 

temperature was 50 °C, the pressure 1 x 10 3mmHg and the time taken 

was ih. The pyrolysate was dissolved in CDC1 3  (0. 3.ml) and examined 

n. m. r. This showed the presence of cis, trans-octa- 2, 6-diene-

1, 8-dicarboxylic acid dimethyl ester which had been prepared in the 

previous pyrolysis. 
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Method (ii) 

A sample of meso- diniethyl- 1, 5-hexadiene- 3,4- dicarboxylate was 

dissolved in [2H8]toluene  and placed in an n. m. r. tube. The tube was 

placed in a bath of boiling toluene and the reaction progress was 

monitored over a period of 5 days by 1 H n. m. r. At the end of this 

period all the substrate signals had disappeared to be replaced by 

those of cis, trans-octa-Z, 6-diene-1, 8-dicarboxylic acid dimethyl ester. 
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J. 	X-Ray Structures and other. Structural Evidence. 

J. 1 	Structure of 1,5-hexadiene-3,4-dicarboxylic acid. 

The assigned stereochemistry of 1, 5-hexadiene-3,4-dicar-

boxylic acid (106) was validated, 140 by its essentially quantitative 

chemical transformation to meso-2, 3-diethylsuccinic acid (107) 

p. 190-191 °C (dec.) (lit. 141 192 °c; cf. racemic acid, m. p. 

129 0C), by hydrogenation over 10% palladium-charcoal at room 

temperature (Scheme 47). 

1 '-rCO2H 
10% Pd/C 

A 
(106) 

Scheme 47 

HI  

::::I~CO2H 
H 

(107) 

J. 2 	X-Ray structure of 9-phenyl-8, 10-dioxo-4-thia-9-azatri- 

2,6 
cyclo[5. 3. 0. 0 	idecane 4,4-dioxide. 

9-Phenyl-8, 1 0-dioxo-4-thia- 9-azatricyclo{5. 3. 0. 0 
2 ,6

}dec ane 

4,4-dioxide (108) was recrystallized from glacial acetic acid. The 

solution was left to stand overnight in a thermos containing hot water, 

allowing slow crystallization and giving large colourless crystals 

m. p. 310 -315 °C. 

Crystal data C 14H 13 N045,' M = 291, orthorhombic, 

a = 9.664+0.001, b = 10. 510±0.001. c = 25.407±0. 003X, 

V = 2581 R3 , z = 8, D = 1.498 g cm - 3. Space group Pbca. 

Structure was refined to an R factor of 0. 072. 
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The molecular geometry of (108) is shown in Figure 8. The 

bond lengths (X) given in Figure 8 have standard de viations ±0.  003- 

0. oosX. Bond angles (?) and standard deviations are given in Table 

1. The numbering used for (108) is arbitrary. 

Mean plane displacements 

Cyclobutane ring is nearly planar but slightly saddle shaped:-

Perpendicular displacements from least squares plane in 

(+0.0093) C 3 	 C 2  (-0. 0093) 

(-0. 0085) C 6 	 C 5  (+0.0084) 

sulphone ring:- 

(+0. 3166) 

(-0. 0201) 

-0.1242) 

-0.1070) 

(+0. 3091) 



0 

02S'JflN _j 	
C(13) 

I- 

t) 

Fig. 8. A computer generated perspective drawing of 9-phenyl-8, 10-dioxo-4-thia-9-aza-tricyclo-

[5.3. 0. 0
2,6

]decane 4,4-dioxide (108) with bond lengths in I Hydrogens have been omitted 

for clarity. 
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TABLE 1 

Bond angles () in (108). The e. s. d. 's are given in parenthesis 

0(1)-S-0(2) 118.0(2) C(3)-C(6)-C(5) 90.7(3) 

0(1)-S-C(I) 108.7(2) C(3)-C(6)-C(7) 114.0(3) 

0(1)-S-C(4) 108.9(2) C(3)-C(6).-H(6) 114.6(24) 

0(2)-S-C(I) 111.6(2) C(5)-C(6)-C(7) 105.5(3) 

0(2)-S-C(4) 111.7(2) C(5)-C(6)-H(6) 116.0(24) 

C(1)-S-C(4) 95.7(2) C(7)-C(6)-H(6) 113.8(24) 

C(7)-N-C(8) 113.4(3) 0(3)-C(7)-N 124.5(3) 

C(7)-N-C(9) 123.0(3) 0(3)-C(7)-C(6) 128.1(3) 

C(8)-H-C(9) .123.6(3) N 	- C(7)-C(6) 107.4(3) 

5-C(1)-C(2) 105.5(3) 0(4)-C(8)-N 124.3(3) 

S-c(1)-H(101) 107.0(29) 0(4)-C(8)-C(5) 127.5(3) 

S-C(1)-H(201) 101.9(37) N - C(S)- C(S) 108.2(3) 

C(2)-C(1)-H(101) 110.0(29) 

C(2)-C(1)-H(201) 117.4(37) N - C(9)- C(10) 119.4(3) 

H(101)-C(1)-H(201) 113.8(47) N 	- C(9)- C(14) 118.6(3) 

C(10)-C(9)-C(14) 122.0(4) 

C(1)-C(2)-C(3) 110.0(3) 

C(1)-C(2)-C(5) 116.5(3) C(9)-C(10)-C(11) 118.1(4) 

C(1)-C(2)-H(102) 109.5(23) C(9)-C(10)-U(10) 118.5(26) 

C(3)-C(2)-C(5) 89.1(3) C(11)-C(10)-H(10) 123.4(26) 

C(3)-C(2)-H(102) 116.6(23) 

C(5)-C(2)-H(102) 114.1(23) C(10)-C(11)-C(12) 121.5(4) 

C(10)-C(11)-H(11) 116.8(30) 

C(2)-C(3)-C(4) 110.5(3) C(12)-C(11)-H(11) 121 .6(30) 

C(2)-C(3)-C(6) 89.4(3) 

C(2)-C(3)-H(103) 114.8(2) C(11)-C(12)-C(13) 118.9(4) 

C(4)-C(3)-C(6) 116.1(3) C(11)-C(12)-K(12) 122.7(29) 

C(4)-C(3)-H(103) 112.1 (21) C(13)-C(12)-H(12) 118.3(29) 

C(6)-C(3)-H(103) 112.2(21) 

C(12)-C(13)-C(14) 121 .0(4) 

S-C(4)-C(3) 105.5(3) 0(12)-C(13)-H(13) 123.6(29) 

S-C(4)-H(104) 107.1(22) C(14)-C(13)-H(13) 115.4(29) 

5-C(4)-K(204) 112.3(31) 

C(3)-C(4)-H(104) 105.9(22) C(9)-C(14)-C(13) 118.5(4) 

C(3)-c(4)-H(204) 113.2(31) C(9)-C(14)-H(14) 121 .3(32) 

H(104)-c(4)-H(204) 112.4(38) C(13)-C(14)-H(14) 120.3(33) 

C(2)-C(5)-C(6) 90.9(3) 

C(2)-C(5)-C(8) 111 .8(3) 

C(2)-C(5)-H(5) 117.7(26) 

C(6)-C(5)-C(8) 105.5(3) 

C(6)-C(5)-H(5) 119.7(26) 

C(8)-C(5)-11(5) 109.7(26) 
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nitrogen ring:- 	 c4 (+0. 0316) 

(-0. 0097) 

(+0. 0059) 

(-0. 0490) 

Y3 (-1-0.0275) 

Angle between sulplione ring and cyclobutane ring = 100. 40 

Angle between cyclobutane ring and nitrogen ring = 113. 50 

Angle between nitrogen ring and benzene ring = 64. 00 . 

J. 3 	X-Ray structure of 1-phenyl-3, 4-divinylsuccinimide. 

l-Phenyl-3, 4-divinylsuccinimide (109) was recrystallized 

from ethyl acetate. The solution was left to stand overnight in a 

thermos containing hot water, allowing slow crystallization and giving 

large colourless crystals m. p. 134-136 °C. 

The structure was refined to an R factor of 0. 081. 

The molecular geometry of (109) is shown in Figure 9. The bond 

lengths (X) given in Figure 9 have standard deviations ±0.  oisX. The 

numbering used for (109) is arbitrary. 



I 'N-Ph 
0(2) 
	 c(2) 

C(14 
	

C(1) 

(31 

C(1 

Fig. 9 Aperspective drawing of 1-Phenyl- cis -3,4-divinylsuccinimide (109) with bond 

lengths in R. 
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A. 	3, 5-Dioxo-4-oxa-9-thiatricyclo[5. 3. 0. 0 2 6 decane 9, 9-dioxide. 

A. 1 Preparation and stereochemistry of 3, 5-dioxo-4-oxa-9-

thiatricyclo[5. 3. o. o2,6 Idecane 9, 9-dioxide. 

As mentioned in the introduction, the title compound (1), which 

possesses some activity as a plant growth inhibitor, 
142 

 has been 

prepared in 51% yield by photolysis of butadiene suiphone (21) and 

maleic anhydride for 24 h in anhydrous acetone  (Scheme 48). 

0 
II 

0 02 SO,+  co hv_ 
qtz,acetone 

(21) 
0 

Scheme 48 

cia, _)I /0 

No details of the absolute stereochemistry of compound (1) 

were reported at the time, but this is not surprising, since as shown 

in Figure 10 the 100 MHz proton n. m. r. spectrum is of little use in 

this respect because the various resonances overlap and preclude 

unambiguous assignment. Little information can also be obtained 

from 13C n. m. r. spectroscopy (see figure 11) other than that the 

spectrum is consistent with either a syn or an anti-structure for which 

a four line spectrum is expected. 

The only absolute way to determine the configuration of (1) is 

by X-ray analysis but the lack of suitable crystals prevented this 

approach. However, as shown in scheme 49 the anhydride (1) could 
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'0 	 10 	 $4 p,woqMlk 54 	 34 	 24 	 19 	 S 	ii 

Fig. 10 100MHz ' H n. m. r. spectrum of 3, 5-dioxo-4-oxa-9-thiatricyclO 

[3. 5.0. 	6 ]decane 9, 9-dioxide (1). 	Inset is an expansion of 

the complex multiplet in the 3. 0-3.5 sregiony 

Fig. 11. 25. ?MHz 13 C n. m. r. spectrum of 3, 5-dioxo-4-oxa-9-thiatricYclo-

[5. 3.0. 0 
2,6

]decane 9, 9-dioxide (1). 



Li] Ph 

Acetic anhydride 
NuOAc 

0 
I, 

84% 

121 

be converted into its imide derivative (108) which on careful recrystal-

lization from glacial acetic acid gave colourless crystals ideal for 

X-ray analysis. This showed that the compound possessed an anti- 

o 2S O 

(1) 

002H 
'- -- 0 

PhNH, 2 

	 5 8%(JJ11 MeOH 
CONHPh 

Scheme 49 

structure, details of which are shown in Figure 8 (p.  112) 
	

As can 

be seen, the cyclobutane ring is essentially square planar, whereas 

the suiphone ring is puckered and the imide ring is essentially planar 

presumably because of the sp 2  hybridised carbons at C? and C8. 

The sulphone and the imide rings form dihedral angles of 100.4 and 

113. 
50, 

 respectively with the mean cyclobutane plane. The bond 

lengths and bond angles are within expected limits. 

Since it is likely that no change occurs in the stereochemistry 

about the C2-C6 bond in the conversion of (1) into (108), it seems 

reasonable to assume that the anti-configuration can also be assigned 

to (1) and to the variety of compounds subsequently derived from it. 
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A. 2 Pyrolysis of 3, 5-dioxo-4-oxa-9-thiatricyclo[5. 3. 0. 02,6 Idecane  

9, 9-dioxide. 

Evidence presented in the introduction shows that pyrolysis of 

suipholenes provides .a useful synthesis of dienes. The present 

investigation sought to use pyrolysis of compounds of the general type 

(110) as a preparative route to cis-1, 2-divinyl compounds, e.g. (110)-> 

(111)(Scheme 50). It was decided to use the flash vacuum pyrolysis 

(F. V.P.) technique to achieve this objective. 

0 2 SCEO S02 

(110) 	 (111) 

Scheme 50 

Whilst pyrolysis has long been of great preparative utility in 

organic chemistry it is only recently that flash vacuum pyrolysis has 

found widespread application. 
143 

 The principle of this technique is 

that the substrate is sublimed under high vacuum into a hot zone where 

it resides for only a short time (10-1), whereupon the products 

are swept into a trap cooled to very low temperatures (-1 96 ° C). 

Its main advantage over conventional pyrolyses is that the dilute 

conditions and rapid separation of the primary products from the 

reaction zone help prevent secondary reactions taking place. As a 

result it is usually clean, convenient and efficient, and frequently has 

advantages over other synthetic methods for the preparation of 
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sensitive or strained compounds 

In this connection it is noteworthy that flash vacuum pyrolysis 

has been used to great advantage in the field of cyclophane chemistry, 144 

cumulating in the recent synthesis of superphane (112) which was once 

145 
described by Vogtle 	as the ultimate achievement of work in this 

area. 

a 
(112) 

Recently Seybold 143  has reviewed the technique in general, 

while Vgtle and Rossa 12  have focused on its application to sulphones 

in particular. A very ecent monograph by Brown 146 has emphasized 

that preparative -pyrolysis of organic compounds are best run in flow 

systems. 

Upon pyrolysis at 630°C under f. v. p. conditions, the anhydride 

(1) gave a pale yellow oil which hydrolysed readily on exposure to the 

atmosphere. Nevertheless, the product could be purified by bulb-to-

bulb distillation at 65 ° C/U. lmmHg to give a clear liquid which on 

the basis of analytical, spectral and chemical evidence was characterized 

as 2, 5- dioxo-cis- 3, 4- divinyltetrahydrofuran (113) (Scheme 51). 

Elemental analysis gave percentage composition for carbon and 
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II 
A 

,S"/ 	(0 	-so2 

(1.) 	o (113) 

[ci,)'.! 

Scheme 51 

hydrogen consistent with an empirical formula C 8 1-18 03 . This was 

confirmed by observation in the mass spectrum of a peak at mle 152. 

The 100 MHz ' H n. m. r. spectrum of the product is shown in 

figure 12 and corroborates the structure as 2, 5-dioxo-cis-3, 4-divinyl-

tetrahydrofuran (113). Thus, the complex multiplet at 5. 9-5. 3 6 is 

ascribed to the cis-divinyl system in (113) and an examination of the 

fine detail shows that this resonance is very similar to that reported 

by Brown 
87 

 for cis -divinylcyclopropane. 	The doublet of doublets 

(J 4. 5Hz., 2Hz) can be assigned to the protons 3-H and 4-H. The 13C 

n. m. r. spectrum reproduced in Figure 13 is also consistent with the 

assigned structure. The anhydride moiety in (113) gives rise to a 

very broad band at 1900-1700 cm- 
I 
 in the 1.R. spectrum, while the 

band at 1642 cm- 
1 
 is due to an olefinic stretch. 

The cis-stereochemistry of (113) was validated by its essentially 

quantitative transformation to meso-2, 3-diethylsuccinic acid (107) 

M.P. 190-191 °C (decomp.) (lit. 
141 

 192° C) (Scheme 52).. 	Thus the 

possibility of trans -s ter eochemistry could be ruled out as the trans- 

isomer would have given a racemic mixture of (+)-2, 3-diethylsuccinic 

acid (m.p. 129°C141). 
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'0 	 *0 	 *0 	 0 	 0.0 4l400MlI, SO 	 4" 	 JO 	 2:0 	 0 	 a. 	$1 

	

I 	1 	0 

Fig. 12. 100MHz 1 H n. m. r. spectrum of 2, 5-dioxocis-3,4"diviny1 

tetrahydrofuran (113). Insets are expansions of the olefinic 

and 3. 8-4. 06 regions respectively. 

Fig. 13. iS. 2MHz 13 C n. m. r. spectrum of 2, 5-dioxo-cis-3,4-divinyl-

tetrahydrofuran (113). 
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H20 	 ...aCQ2H H 2  

Pd/c 
CO2H 

A 
(106) 

02H 

C 02H 
H 

(107) (113) 
Scheme 52 

A plausible mechanism for formation of the cis-divinyl 

compound (113) from the anhydride (1) is a 02s + 2s + a 2s cheletropic 

process similar to that postulated for the extrusion of sulphur dioxide 

from 3-thiabicyclo[3. 1. Ojhexanes 3, 3-dioxides (41a and 41b) (see 

scheme 20, p. 25). However, one cannot discount the possibility 

that the fragmentation goes via  radical process or polar mechanism. 

Distinction between these posèibilities would require a stereochemical 

investigation involving pyrolysis of an appropriately substituted 3, 5-

dioxo-4-oxa-9-thiatricyclo[5. 3. 0. 0 ' ]decane 9, 9-dioxide similar 

to the studies carried out by Mock 
54 

 with 3- thiabicyclo[ 3. 1. 0]hexaies 

(see p. 24). Such a study has not been carried out to date. 

In view of the successful preparation of the cis-divinyl compound 

(113) it was decided to prepare a variety of derivatives of (1) and 

investigate their pyrolysis as a general route to cis-1, 2-di vinyl 

systems. To date, synthetic access to these systems has been 

difficult and existing methods usually give mixtures of cis and trans 

isomers which can only be separated by preparative gas chromatography. 

A typical approach which illustrates some of the problems involved is 

the preparation of cis -divinylcyclopropane (80) reported by Brown 87 
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in which addition of ethoxycarbonyl carbene to butadiene yielded a 

mixture of cis and trans -vinylcyclopropanecarboxylic esters (Scheme 53). 

N2CNCO2Et 

<<~CO2Et C2Et \ isomers separated 
by preparative gic 

<CCOCt 
S02 c1 	 - KOH 

CO2HMeH 	CO2Et 

Li At H 4  

< CH2PPh3 <C CHO 	(80) 

Scheme 53 

This mixture was separated by preparative gas chromatography and 

the cis-isomer then used in the remaining steps of the sequence. 

It is of interest to note that the final product was still contaminated 

with 10% of trans-divinylcyclopropane, perhaps due to some epi-

merisation in the Wittig step. 

Other attempts at the preparation of cis-1, 2-divinyl compounds 

have also led to isomeric mixtures. For example, Stogryns9a  prepared 
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2, 3-divinyloxiranes by the route shown in Scheme 54. Once again 

isolation of the pure cis and trans isomers required preparative 

gas chromatography. 
C"14 ci400 

AcCI 

	

Ch= 	2  CH.CH =CH 	 CA =CH.CH —CH.CH =CH 

	

2= 	2 	I 	2 
2 	 CI Ok 

NuOH/KOH 
<Sot 

2 0 
 

+9 
Scheme 54 

A further example is the recently reported preparation of 

cis-2, 3-divinylthiir4ne in which treatment of a mixture of cis and 

trans -divinyloxiranes with a saturated aqueous solution of KSCN 

gave a mixture of cis and trans -divinylthflrane (Scheme 55) 
91b 

 The 

pure isomers were obtained by preparative gas chromatography. 

oz:l 
	 scj 

+ KSCN 

r.t.48h 

sJ 

Scheme 55 

Finally it is of interest to note that Hammond 
147 

 has reported 
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that photosensitized dimerizatioIl of butadiene leads to a mixture 

of cis and trans-1, 2-divinyicyclobutane and 4-vinylcyciohexene with 

the cis-isomer being the minor product (Scheme 56). 

II 52% 
-7 

by 	
7% 

Sensitizer 

'~~O . 41% 

Scheme 56 

One example of a stereo specific synthesis in this area has 

been reported by Heimbach 
99 who utilized a reverse Cope-reaction 

to prepare cis-1, 2-divinylcyclohexane from cis, trans-1, 5-cyclo- 

decadiene (90) (see Scheme 41, p.4l). The latter was easily prepared 

from butadiene and ethylene using nickel-based r-complex catalysts. 148 

To date the only method which gives entirely cis-divinyl corn-

pounds is that due to Vogel 94 but this lengthy route suffers from the 

fact that it requires different starting materials for each preparation. 

Scheme 57 shows the typical preparation of cis-1, 2-divinylcyclobutane 

(85) from cis - 1, 2, 3, -tetrahydrophthalic anhydride (114) by the 

methods indicated. 
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0 

5 Steps 	EI:3 
0 (1U) 	 j03 

5% LIJ 	O2Me CH3N2 jj0002H 
50% 

C 
LIAdH4 

02Me 	 02 H 

OTs 
Is CI 

a- 87% 	

OH 	

66%66% 

OTs 
NIaJ 

N(CH 3 ) 31 

3 C: fl  100% ET" 	N(CH 
CH 3 ) 31 

j 
A g 2 0 

N(CH 3 ) 30H 
a- 

CN(CH3 ) 30H 1]:: 	(85) 81% 

Scheme 57 
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B. 	Preparation of Precursors of 3, 4-Divinylcyclopentane Analogues. 

B.1 4-Oxa-9-thiatricyclo[5. 3• o o2,6 
 1decane  9, 9-dioxide. 

The preparation of the title compound (117) was carried out in 

three steps starting from (1) as outlined in Scheme 58. When boiled 

with a few drops of concentrated sulphuric acid in methanol the 

anhydride (1) gave a 90% yield of the diester (115) as a white crystalline 

solid m.p. 126-127°C (lit. 126-127 °C). 

02 
11+ 

	

CO2 Me 

MeOH 02Sc:ICO2Me 
90% 

LIALH4! 	
(115) 

THF1 

	

02SJIJ 	

CH20H 

9O 
2° 

O2SODICHOH 
62% 

26-71% 

	

(117) 	 (116) 
Scheme 58 

In the case of the diol (116) reduction of the diester (115) 

with lithium aluminium hydride in THF gave a colourless crystalline 

compound which had a m. p. 98-100 °C compared to the literature 

value of 75-82 
0 3 

C. 	Nevertheless on the basis of analytical, spectral 

and chemical evidence the structure of the colourless compound was 

established as 6, 7-dihydroxymethyl-3-thiabicyclo[3. 2. 0]heptane 3, 3-

dioxide (116). Elemental analysis gave percentage composition for 

carbon and hydrogen consistent with an empirical formula C8H1404S. 
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Despite its insolubility in most solvents, the diol (116) could 

be recovered from the inorganic salts after reduction by continuous 

extraction with THF in a Soxhlet apparatus over a period of 48 h. 

Some difficulty was encountered in the third step, viz, the 

conversion of the diol (116) into 4-oxa-9-thiatricyclo[5. 3.0. 02. 6 

decane 9,9-dioxide (117). Initial attempts to dehydrate the diol (116) 

using dirnethyl sulphoxide as the dehydrating agent 
109

gave, in one 

instance, a 71% yield of a colourless crystalline solid m. p. 129- 1 30° C 

which on the basis of its analytical and spectral data was identified 

as the desired tetrahydrofuran (117). However when the method was 

repeated, the extraction step using dichloromethane did not give any 

product, presumably because the diol (116) had not reacted. Whilst 

there is no obvious explanation for this failure it is clear that the 

dimethyl suiphoxide needs to be super dry and the reaction temperature 

carefully controlled for this procedure to be successful. 

To circumvent this problem an alternative procedure 108  was 

adopted involving conversion of the dial (.116) into its tosylate and 

cyclisation in pyridine. This procedure proved successful but the 

work-up required chromatography and gave the cyclic ether (117) in 

only 26% yield. 	 - 

In another procedure concentrated sulphuric acid was employed 

as the dehydrating agent and whilst this method was successful, giving 

yields of 55%, it suffered from the drawback that the acid tended to 

char the reaction mixture. 

The n. m. r. data for the ether (117) will be fully discussed in 

Section B. 6. 
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B. 2 4, 9- Dithiatricyclo[ 5. 3.0.02 61decane 4,4-dioxide. 

Conversion of the diol (116) into the title compound (119) was 

achieved in two steps as shown in Scheme 59. 

H2OH 

	

_ 	 OS02Me 
 0 2 MeSO2CI 

	

pyridine 	So~::COS02Me 
(118) 

H2OH 	

Na2S 

02sCEI: S 

(119) 	
62% 

Scheme 59 

In the first step, reaction of the diol (116) with methane sulphonyl 

chloride in pyridine gave the dirnesyl ester (118) in 75% yield. When 

boiled under reflux with sodium sulphide nonahydrate in aqueous ethanol 

the latter gave a colourless crystalline solid. in 62% yield. This was 

identified as 4, 9-dithiatricyclo[5. 3.0.02 6 ]decane 4,4-dioxide (119) 

on the basis of analytical and spectral evidence. Elemental analysis 

gave percentage composition for carbon and hydrogen consistent with 

an empirical formula C 8 H 12 O2S 2 . This was verified by observation 

in the mass spectrum of a parent ion peak at rn/c 204. 
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B. 3 Attempted preparation of 9-phenyl and 9-methyl-4-thia-9-

azatricyclo[5. 3. 0. 02i 6 ldecane 4,4-dioxides by lithium aluminium 

hydride reduction of the cyclic imides. 

Attempts to prepare the 9-phenyl amine (120) by reduction of 

the cyclic imide (108), as shown in Scheme 60 were largely unsuccessful. 

Lii 

02Sfl1N-Ph 	02$fl11N-Fh 

(108) 	 (120) 	3% 

Scheme 60 

On one occasion a 3% yield of (120) was obtained but it could not be 

obtained in a pure state due to decomposition on standing. All 

attempts to work-up the products from the reduction of (108) by 

chromatography inevitably led to the formation of intractable tarry 

residues. This is not surprising since (120) is a tertiary aromatic 

an-tine which are very susceptible to aerial oxidation. 149 

As tertiary alkyl amines are less susceptible to aerial oxidation 

than are their aromatic counterparts, it was decided to try to prepare 

the methyl analogue of (120). The 9-methyl analogue of (108) was 

prepared by a route similar to that used for the preparation of (108) 

(see Scheme 49, p.121), using methylamine instead of aniline. 

Reduction of this imide with lithium aluminium hydride in THF gave 

a pale yellow oil whose 13C n. m. r. spectrum identified it as the 

desired amine but showed the presence of large amounts of unidentified 
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impurities. Attempts to purify this oil, by bulb-to-bulb distillation 

and by chromatography failed and so a pure sample for elemental 

analysis could not be obtained. However the mass spectrum of the 

yellow oil did have a peak at 201 consistent with an empirical formula 

C 9 H1 5NO 2S. 

B. 4 9-Benzyl-4-thia-9-azatricyclo[5. 3.0. o2. 6 1 decane 4,4-dioxide. 

In view of the failure to prepare amines by the reduction of 

imides it was decided to adopt a procedure similar to that used for the 

preparation of the cyclic sulphide (119). Thus treatment of the diol 

(116) with tosyl chloride in pyridine gave a 51% yield of the ditosylate 

(121), which on boiling with benzylarnine under reflux in ethanol for 

48 h gave a 56% yield of a colourless solid (Scheme 61). 

CH2OH 
TsC 1 0 2sJII( py rid in e 

(116) CH20H 

02SGDIN-C H 2F h 

Scheme 61 

Analytical and spectral evidence established the structure of 

the colourless solid as 9-benzyl-4-thia-9-azatricyclo[5. 3 . o. 0' 6_ 

decane 4,4-dioxide (122). Elemental analysis gave percentage 

o2SEIC

OTs  

OT 
(121) 51% 

PhCH 2 NH2 

IEt0H 

(122) 	56% 
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composition for carbon, hydrogen and nitrogen consistent with an 

empirical formula C 15 H19NO2S. This was verified by observation 

in the mass spectrum of a parent ion peak at m/e 277. 

B. 5 Mechanism of formation of l-heterocyclopentane rings. 

The mechanism for the formation of the 1-heterocyclopentane 

rings in compounds (116), (119) and (122) is presumably similar in 

each case. Scheme 62 illustrates the typical conversion of the 

ditosylate (121) into the cyclic amine (122). Thus nucleophilic attack 

on one of the -CH 2QTs groups by the amine followed by loss of a 

proton gives an amine which is ideally suited to repeat the process 

intramolecularly and thus give the observed cyclic amine (122). 

OTs H1't0T5 )CEI;+   NHR 
(121) 

RNN 2  

02S(JJIEN_R -W 
1QR 

(122) 

R = -CH 2Ph 

Scheme 62 

The mechanism for the dehydration of the diol (116) using 

thmethyl sulphoxide is more difficult to rationalize but it is thought 109 

that a cyclic transition state ensues as depicted in Figure 14. 



5 çCH 3  

H 

Fig. 14 Transition state for dehydration of 1,4-diols by DMSO. 

B. 6 Spectroscopic properties of precursors of 3,4-divinylcyclo-

pentane analogues. 

The main evidence for the structural assignments given to (116), 

(119) and (122) comes from their ' H and 13 C n. m. r. spectra which 

show strong similarities for each compound. 

These compounds could possibly exist in either .syn or anti-

configurations but were assigned the anti-structure on the grounds 

that they are all derived from (1), presumably with retention of 

configuration. 

As can be seen from figure 15 the most striking feature of the 

' H n. m. r. spectrum of 4-oxa-9-thiatricyclo[5. 3. O.O
2,6 

 ]decane 9, 9-

dioxide (117) is the pair of doublets centred at 3. 9 and3..56. -  These 

signals are due to the methylenes adjacent to the ether linkage and 

since they are pro-chiral centres, the protons are non-equivalent. 

This is confirmed by the differences in chemical shift and by the fact 

that they show geminal coupling ( 9. 5Hz). The 13 C n. m. r. spectrum 

of (117) shown in figure 16 further confirms this assignment as it 

shows only four resonances. 

137 
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'0 	 70 	 ' 	 to 	 + 	
dl 

I 	.1. 	 4. 1. 

H 02 	 A 
(117) 

1L 
I 	• I 

Fig. 15. 100MHZ 1 H n. m. r. spectrum of 4 -oxa-9 - thiatricyclo[ 5 . 3.0. O' 6 J 
decane 9. 9-dioxide (117). Inset is an expansion of the signals 

in 2. 5-4. 06 region. 

Fig. 16. 25. 2MHz 13 C n. m. r. spectrum of 4-oxa-9-thiatricyclo[5. 3. 0. 0 2,6 

decane 9, 9-dioxide (117). Inset is an expansion of the signals in 

30-606 region. 
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The I H and 13 C n. m. r. spectra of compounds ( 1 19) and 

(122) are similarly consistent with the assigned structures. However 

in these cases there is more overlap of resonances in the H n. m. r. 

spectra and the individual peaks are less easy to assign unambiguously. 
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C 	Preparation and Reactions of 3-Thiabicyclo[3. 2. Olhept -6- ene 

3, 3-dioxide. 

C .1 Preparation of 3-thiabicyclo[3. 2. 01hept-6-ene  3, 3-dioxide. 

The bicyclic compound, 3-thiabicyclo[3. 2. 0]hept-6-ene 3, 3-

dioxide (123) offers considerable scope as a synthon for the preparation 

of other .cis-divinyl derivatives, which might be difficult to obtain by 

existing methods. A methodology can be envisioned, as illustrated 

in scheme 63, involving annelation of the strained cyclobutene ring to 

give (110) which under flash vacuum pyrolytic conditions, might be 

expected to lose SO  and form cis-1, 2-divinyl compounds (ill). It 

is pertinent to point out that when the ring in (ill) is of suitable size, 

02 	o2c:Iii1:D -SO2  

(123) 	 (110) 	 (111) 

Large rings 

Scheme 63 

suchcompounds can readily undergo a Cope rearrangement to give 

larger rings (see Section C in Introduction). 

Several well-documented procedured exist for functionalising 

the alkene moiety in compounds of type (123). For example Meyers 64  

has used a variety of epoxidation and nitrene addition reactions to 

prepare precursors to di vinyl ethers (59) and divinyl carbamates (61) 

(see Scheme 27, p.  30). 
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In an extension of these procedures, Meyers and his co-workers 150 

have reported an efficient synthesis of 1,4-dihydropyridines (124) as 

outlined in Scheme 64. k 	R-N, 
NCO2Et h v \N002Et 

NCO2Et RN 3 	NCO2Et 

I H' or  OH- 

R-N 
J 

R-N 
Hg 2 + 	 NH 

NH 

RPhSO 2, 2-MeOPh, 

EtO 2C etc, 

yields = 80-90% 
RN3-  (124) 

Scheme 64 

Other workers have reported. the application of similar ring- 

forming reactions involving cyclobutene and its derivatives. For example, 

Anderson et 
al.121,151 

 found that reaction of N-phthalimidonitrene, 

generated by treatment of N- amino phthalirnide with lead tetraacetate, 

with cyclobutene (125) or cis- 3, 4-dichlorocyclobutene (127) gave adducts 

(126) or (128) in 18-22% and 9-12% yields, respectively (Scheme 65). 
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19 
H 2  N-N(JJfl 

Pb(OAc¼ in CH2 Cl 2  

(125) RH 

n 
Li 

R 

R: IN 
" (126) 18-22% 

(127) R=Ci 	Scheme 65 	
(128) 9-12% 

The facile addition of 1, 3-dipoles to alicenes including cyclobutenes 

has also found extensive application in the synthesis of five-membered 

heterocycles. In these circumstances the 1, 3-dipole (129), which can 

only be represented by zwitterionic octet resonance structures, combines 

in a concerted fashion with a multiple bond system (130) (the dipolaro-

phile) to form an unchanged five-membered ring (131) (Scheme 66). 

(129)ar 	c 
+ 

a<'
b  
t 

'I d—e 
(131) 

Scheme 66 

Thus, benzonitrile oxide affords an 82% yield of the adduct (132) 

when added to cis-3,4-dichlorocyclobutene (127) (Scheme 67). 152 

C ,::D  Ct 
(127) 

Ph-C_= NO 
- C 

82% 

Scheme 67 

Diazoalkanes and cyclic nitrones have also been reported to react 

readily with cis- 3, 4-dichlorocyclobutene (127) to give the corresponding 
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adducts in 90% and 70% yields, respectively. 153. 154 More recently 

nitriimines have been successfully reacted with cyclobutenes. 155 

The synthetic strategy adopted for the preparation of the bicyclic 

alkene (123) was to convert the readily available anhydride (1) into its 

diacid (133) then bis-decarboxylate the latter with either lead tetra- 

114 	 156 
acetate 	or by electrolysis 	(Kolbe reaction) (Scheme 68). The 

0 

02 SCI: 00  
(1) 

H20 - 02slT2H 

(13.3) 	
02 

Pb(OAc )4 + 
pyridine +dioxane 
or electrolysis 

02S9j 20%. 

(123) 
Scheme 68 

oxidative bis-decarboxylation step (133) -> (123) has adequate precedent 

in that similar decarboxylations have been used with considerable 

success to prepare cyclobutene derivatives. 

For example, treatment of the dibasic acid (134) with lead tetra-

acetate gave bicyclo[Z. 2. 0]hex-2-ene (135) in 30-38% yield as shown 

in Scheme 69. 
157 

 Under similar conditions the anhydride (136) afforded 

002H 

I 	Ii 	30-36% LIIIIIIIIIII" 
CO2H 

Pb(OAc)4 	 I 

(134) 	 (135) 

Scheme 69 
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bicyclo[2. 2. 0]hex-2, 5-diene (Dewar benzene) 	in 20% yield, 158 

which could be raised 35-40% by carrying out the decarboxylation 

159 using electrolysis 156, 
	

(Scheme 70) However, in general the 

0 

LEJO 
Pb ( OA C)4. 	

20% 

(136) 	'6 
Scheme 70 

electrolytic technique is limited to small scales and is not very 

convenient. 

Hydrolysis of the anhydride (1) was first carried out by treatment 

with 3M sodium hydroxide solution. 
160 

 This method gave the diacid 

(133) as a colourless crystalline solid, m. p.  188-191 °C (lit, 194-195 °C) 

in 70% yield but subsequent experiments showed that the diacid could 

be obtained quantitatively simply by boiling the anhydride with water 

for ½h. 

Traditionally oxidative bis- decarboxylation reactions give low 

yields 156 and the conversion of (133) into (123) was no exception. Thus 

treatment of the diacid (133) with lead tetraacetate according to the 

procedure of Jefford et al. 
114 

 produced a brown oil, purification of 

which by medium pressure chromatography gave only 19% yield of a 

colourless crystalline solid, m. p.71-75 ° C. This was identified as 

the alkene (123) on the basis of its spectral and analytical properties. 

Thus elemental analysis of (123) gave a percentage composition 

for carbon and hydrogen consistent with the empirical formula C 6 F18 02S. 

This was corroborated by observation in the mass spectrum of a parent 
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ion peak at m/e 144. 

The i. r. spectrum of the aJ.kene (123) shows very weak absorptions 

at 3120 cm- 
1 
 and 1553 cm- I characteristic of the cyclobutene ring. 161 

The 1 H n. m. r. spectrum of (123) is reproduced in Figure 17 and 

shows that the two olefinic protons in the cyclobutene ring resonate as 

a singlet at 6. 18 & Presumably the lack of coupling between the olefinic 

and bridgehead protons is due to the fact that the dihedral angle between 

these protons is approximately 900  and thus give zero coupling constants. 

The multiplet at 3.7-3. 66 is due to the bridgehead protons (1-Hand 5-H), 

while the remaining methylene groupth give rise to a multiplet at 3. 2-

2.96. In keeping with the assigned structure, the 13 C n. m. r. spectrum 

of the alkene (123) exhibited only three resonances as shown in figure 18. 

Attempts to improve the yield of alkene (123) by adopting other 

methods for the decarboxylation of the diacid (133) gave only mediocre 

results. Thus use of the alternative procedure of Cimarusti and 

Wolinsky162  whereby oxygen instead of nitrogen is bubbled through the 

reaction mixture gave only a 16% yield of the alkene (123). Likewise 

electrolysis (60-10y dcM.5-0.8 amp) of the diacid (133) in a mixture 

of io% pyridine and triethylamine at room temperature gave only a 20% 

yield of the alkene (123). 

In another approach, use was made of bis-triphenylphosphinenickel 

dicarbonyl as a decarboxylating agent. 
163 

 This reagent is relatively 

new but its synthetic utility has been clearly demonstrated by Dauben 164  

who used it with spectacular success in the preparation of barralene (138) 

as shown in Scheme 71. Its main drawback appears to be the high 
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Fig. 17. 100MHz ' H n. m. r. spectrum of 3Lthiabicyclo[3. 2. O]hept-6-

ene 3,3-dioxide (123). 

Fig. 18. 25. 2MHz 13 C n. m. r. spectrum of 3-thiabicyclo[3. 2. O]hept-6-

ene 3, 3-dioxide (123). 
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i(CO)2(PPh3)2  

digtyme 

1'(137) ,, 0 
0 

73% 

(138) 

 

Scheme 71 

temperature required for decarboxylation making it unsuitable for 

products that are thermally labile. Since the alkene (123) decomposes 

at temperatures above 140 °C [vide thin] it was decided to modify the 

procedure by using dimethoxyethane (b. p. 81 0C) instead of diglyme 

(b. p.  16 50C) as the solvent. However, even after several days under 

reflux, the reaction mixture showed no apparent change in colour and 

examination by t. 1. c. showed the absence of any a].kene. When the 

reaction was repeated with diglyme as solvent decomposition ensued 

within three hours. 

In order to corroborate the structure of the alkene (123) it was 

also synthesised by the alternative route outlined in Scheme 72. Thus 

o 	 0 
II 	 I, 

(II + 	

by 

 Co 
LiALN4 	

82% a- 
MeOH 	 THF ECOH 

\ +acetophenone 	. 	
. 	 (140) o 	(139)0 240/6 	 IMsC1 

1 + 
pyridine 

 
ftJSO2-R 	 OMs 

	

[0] 

 LQs 
Nci,S 	 OMS 
HMPA 

(123) 	 (142) 90% 	 70% 

Scheme 72 
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cyclobutene anhydride (139) was obtained as a colourless crystalline 

solid in 24% yield by photochemical cycloaddition of acetylene to maleic 

anhydride in methanol. 
165 

 Reduction of this anhydride with lithium 

aluminium hydride in tetrahydrofuran gave an 82% yield of the diol (140) 

as a pale yellow oil which was converted into its dimesylate (141) in 

70% yield by treatment with methanesulphonyl chloride in pyridine. 

Treatment of this diester with sodium sulphide in hexamethylphosphor-

amide (HMPA) at 50 0C according to the procedure of Paquette 166 gave 

the cyclic sulphide (142) as a yellow oil in 90% yield. Oxidation of this 

oil with rfl_chloroperbenzoic acid in dichloromethane gave the ailcene 

(123) together with another compound which was subsequently shown to 

be the epoxide of (123) (see section C. 2). 

C.2 8-Oxa-4-thiatricyclo[5. 1.0. 0 
2,6

]octane 4,4-dioxide. 

The title compound (143) was recognised as a. potential precursor 

to cis-2, 3-divinyloxirane (83, XO) which is known to undergo a facile 

Cope rearrangement to give 4, 5-dihydrooxepin (84, X0) 89  as outlined 

in Scheme 73. A potential drawback to this strategy is the possible 

02 Sal 
101 

-02  SO::> 
(123) 	 (14 3) 

SO2 

co 	 0 

(84 XO) 	 (83, X=0) 
Scheme 73 
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isomerization of the highly strained (143) to (144) prior to cheletropic 

extrusion of 	This would lead eventually to the formation of 

cyclohex-1-ene-3.-one (145) as depicted in Scheme 74. 

O2 SO ----- 	SCEj  
(143) 	 (144) 

\ 

-S 02 

OH 	 OH 

(145) 
Scheme 74 

Initial attempts to convert the alkene (123) into the epoxide (143) 

were carried out using rn-chloroperbenzoic acid as the oxidant. How-

ever the reaction proved to be very slow, an observation consistent 

with the observation byCope et al. 
167 

 that epoxidation of the cyclobutene 

ring in compound (146) with rn-chloroperbenzoic acid required a reaction 

time of 400 h. Work-up of the reaction after several days gave 12% 

yield of a colourless crystalline solid which on the basis of analytical 

data was established as the desired epoxide (143). 



150 

In view of the poor yield of epoxide (143) obtained by direct 

oxidation of the alicene (123) it was decided to seek a different synthetic 

approach. One possibility involved the dehydrohalogenation of the 

appropriate chlorohydrin using silver oxide. This method had been 

reported 
118 

 to give an efficient synthesis of the epoxide (148) from 

(147) in 90% yield-(Scheme 75). 

CH 	
0 

	 C,-,2O
90% 

Ag 

	

502 	

85C 

	

(147) 	 (148) 
Scheme 75 

The preparation of the desired chJ.orohydrin (149) was carried 

out as shown in Scheme 76 by addition of hypochiorous acid to the ailcene 

(123) according to the procedure of Sorenson. 	However, subsequent
116  

attempts to dehydrohalogenate compound (149) with silver (1) oxide in 

dimethoxyethane 8  led to the recovery of starting material. Apparently, 

HOG 

%1 4:71 

H 
X .r 02ScJIIIto 

30% 	
(143) 

04flJ 
(123) 

Scheme 76 

in this case, the strain energy incurred in the formation of the epoxide 

(143) is too high ahd cyclization is disfavoured. 

In a final attempt to obtain (143) by direct oxidation of the alkene 

(123) performic acid was employed as the oxidising agent. 
115 

 As a rule 

performic acid is not considered to be a good epoxidation reagent 

because the high acidity of formic acid (employed either as solvent or 
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formed in the oxidation) usually leads to epoxide ring opening. 168 

Nonetheless its use was prompted by a report by Bianchi et al. 115 

describing the successful epoxidation of the ailcene (150). 

E111111/ 

Treatment of (123) with performic acid did give a 40% yield of the 

epoxide (143) but the reaction was still slow and required a 96 h 

reaction period. 

As shown below the epoxide (143) can exist in two geometric 

forms, viz, in either a , 	or an anti-configuration. Only one isomer 

H 

O2('>4 	021> 
[1 

( 1
14 3) 	1 	 (143) 	1 	2fl anti 

H 	 H 
was detected by t. 1. c. and by 

13 
 C  n.m. r. spectroscopy and this was 

tentatively assigned the anti-configuration as it has been reported 115 

that epoxidation of formally similar cyclobutenes such as (150) give 

an anti-epoxide as the predominant product 	 20:1) upon treat- 

ment with performic acid. The latter assignments were made from 

evidence that treatment of the major product with HC1 gave a chioro-

hydrin whose stereochemistry was confirmed by 1 H n. m. r. spectro- 

169 
scopy 	and shown to arise from an anti-epoxide. 
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The stereochemistry of (143) could not be determined by 

n. m. r. spectroscopy since assignment of cis and trans orientations 

of protons on four-membered rings from vicinal coupling constants 

gives results that are ambiguous. 170 

The only type of ' H n. m. r. analysis which might resolve this 

stereochemical problem is to utilize the approach adopted by Gamba and 

169 
Mondelli 	who reported that the sign of four bond couplings in cyclo- 

butanes is highly stereospecific and much more sensitive to La-trans 

orientation of the two interacting protons than to the effects of sub-

stituents or to distortions of the ring. However the authors did not 

elaborate on the details of the experimental methods employed. 

C.3 Attempted addition of carbenes and nitrenes to 3-thiabicyclo-

[3. 2. O]hept-6-ene 3, 3-dioxide. 

a) Attempted addition of carbenes. 

The addition of carbenes to the alkene (123) was investigated as 

a possible route to the carbon analogue of the epoxide (143). It was 

recognised that pyrolysis of this compound (151) should lead to cis-1, 2-

divinylcyclopropanes (152) which are known 85' 
86 

 to undergo Cope 

rearrangement and thus give cyclohepta- 1, 4-dienes (153) (Scheme 77). 

O2S -_RAS 	fN-R 	I 

(151) 	 (152) 	 153) 
R=CO 2Et 

Srhpn,p 77 
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All attempts to prepare compound (151) by addition of ethoxy-

carbonyl carbene to the alkene (123) failed completely. It was found 

that reaction occurred preferentially with benzene which was used as 

solvent or the carbenes dimerized rather than add to the ailcene (123). 

b) Attempted addition of nitrenes 

The addition of nitrenes to the ailcene (123) was investigated as 

a possible route to the nitrogen analogue of the epoxide (143) viz, the 

aziridine (154) (Scheme 78). 

02srjiiji 
R-: 	

02SL1N-R 
(123) 	 (154) 

Scheme 78 

The first attempt at nitrene addition involved.the use of ethoxy-

carbonylnitr ene generated by treatment of -nitrophenylsulph.onyloxy-

urethanelZO with triethylamine and gave only nitrene dimers and 

unchanged ailcene (123) as the product. This failure is hardly surprising 

in that it has been reported' 
21 

 that addition of the same nitrene to 

cyclobutene (125) gave only a 1.5% yield of the aziridine product (155) 

I U 	p 	1'S% 

(125) 
	

(155) 
R=C O 2Et 	

Scheme 79 

(Scheme 79). However it has been reported 
171 

 that photolysis of a 

dichlo romethane solution of ethylaz idofo rmate and 1, 2- dimethylcyclo-. 



butane gave a 65% yield of the desired aziridine product which proved 

* 
stable. 

In view of the failure of ethoxycarbonylnitrene to add to the 

alkene (123) it was decided to try the same reaction using the more 

nucleophiic nitrene N-phthalimidonitrene, generated by treatment of 

N -amino phthalimide with lead tetraacetate. 
121 

 Work-up of the reaction 

mixture gave a 6% yield of a colourless crystalline compound which 

exhibited a parent ion peak at m/e 304 indicative of the expected structure 

0 

H2N_NOJIO 	
o 

o 	O2SJiIIiJN—N'fJ O2S 	
Pb(OAc)4 

(123) 	in CH CI 	 (156) 	6% 

Scheme 80 

(156) (Scheme 80). Unfortunately, correct analytical data could not 

be obtained due to the unstability of the compound. In this connection 

it is worth noting that the corresponding adducts obtained by addition of 

N-phthalimidonitrene to cyclobutene tend to decompose fairly readily. 

In these instances also the yields of adducts were low (ca. 10-20%). 121, 151 

The lack of reactivity of the strained .alkene (123) toward reactive 

species is only one of several examples in a much wider study presently 

* 
Photolysis of the ailcene (123) with neat ethyl azidoformate, gave the 

desired aziridine in 31% yield. The mode of formation is assumed 

to proceed by way of electronically excited azide with the intermediacy 

of ethoxycarbonylnitrene. 
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being carried out by other workers at Edinburgh. 
172 

 They have found 

that alkenes of the same general type as (123) show a pronounced lack 

of reactivity toward addition of reactive species such as carbenes and 

nitrenes. 

In an attempt to explain this phenomenon, Simpson 
173 

 has carried 

out both theoretical and photoelectron spectroscopic studies on (123) 

and several related compounds. The results showed that the energetic 

availability of the alkene Tr electrons was determined by a combination 

of through space delocalization, inductive and hyperconjugative effects 

which lead to the stabilization of the Tr level; this is evidenced by a 

relatively high ionization potential of the olefinic 7r. electrons as shown 

in Table 2. 

C.4 The addition of 1, 3-dipoles to 3-thiabicyclo[3. 2. O]hept-6-ene 

3, 3-dioxide. 

The addition of 1,3-dipoles of general formula (129) was studied 

as a possible general route to precursors of cis -divinyl-5-membered 

heterocycles (158) as depicted in Scheme 81. 

o2sEi 
(123) 4- 

(129) 

o 	b A 
C'  

(157) 	 (158) 

Scheme 81 
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TABLE 2 

Magnitude of 1st ionization potential (eV) of unsaturated level. 

0 
Ii 

10.49 

(13 9) 	'ib  

LJs0 2 16.25 

(123) 

0 

10.00 

(114) 	0  

CO2Me 

EtICO2Me  9.76  

02 9.69 

E 9.43 

(125) 	- 

aCO2Me 9. 25 

CO 2 Me 

8.94 

* 
Data reproduced from ref. 173. 
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a) Addition of C, N-diphenylnitrone 

The reaction of C, N-diphenylnitrone (159) with the alkene (123) 

in boiling toluene gave a 28% yield of a light brown solid which on the 

basis of analytical and spectral evidence was assigned the structure (160) 

(Scheme 82). 

RI  h 
o2s 	 A 	

S 'N-Ph + PhCH 2 N 0 toluene 2 

(123) 	(159) 	 (160) 	H 
28% 

Ph 
Scheme 82 

Elemental analysis of the solid gave percentage composition for 

carbon, hydrogen, and'nitrogen consistent with an empirical formula 

C 19 H 19 N03 5H. This was corroborated by observation in the mass 

spectrum of a parent ion peak at m/e 341. 

As indicated in Scheme 83 the structure of (160) is of interest 

9 4 
O 

h ANTI 

Phi-i 

PhN O  

02s' Ph

~ 	 H 
2 4 

LLL/ 
SYN 	\i \ (c) 

H 
Scheme 83 
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not only from the point of view of a syn or anti-configuration, but also 

with regard to the stereochemistry about the C 5  atom. Only one 

isomer could be detected by t. 1. c. and this was tentatively assigned 

the anti-structure (a) or (b) from consideration of the steric interactions 

involved. Further evidence in support of the assigned stereochemistry 

of (160) was obtained by 1 H n. m. r. spectroscopy using the technique 

of double irradiation. An examination of the 1 H n. m. r. spectrum of 

(160) (Fig. 19) shows that two of the protons viz. 2-H and 5-H, can 

easily be assigned to the resonances at 4.85 and 4.56, respectively 

due to the deshielding effects of the oxygen and nitrogen atoms. Upon 

irradiation of the large multiplet at 3. 66 both these signals collapsed 

to broad singlets (figure 20) presumably as a result of decoupling of the 

6-H proton leading to the disappearance of both 7Hz couplings. This 

suggests that there is a cis. relationship between the 5-H and 6-H protons 

because of the large £f 6 = 7Hz, compared to the value of <0. 5Hz for 

the coupling between trans orientated protons in the adduct formed by 

addition of 3,4-dihydroisoquinoline-N-oxide to the alkene (139). The 

smaller coupling constant of 2Hz found in the resonance at 4. 86 is most 

likely to be J l 2' This supports the assignment of (160) as an anti-

structure since as already reported 154  for cyclobutane rings, values of 

coupling constants lower than 5Hz cannot arise from cis-interactions 

of adjacent protons. 

b) Addition of anisonitrile oxide and benzonitrile oxide. 

The nitrile oxides used in these experiments were generated in 

situ by thermal dehydrohalogenation of the appropriate hydroxamic 
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JO 	 10 	 04 	 10 	 10 pmS1000I, 59 	 44 	 30 	 20 	 10 	 A. 	'i 

01 

.1. 	•1'.i. 	 .i. 	 .1.• 

'I 

Fig. 19. 100MHz ' H n.m.r. spectrum of 4, 5-diphenyl-3-oxa-9-thia-4-

azatricyclo[5. 3. 0. o 2,6 
 ]decane 9, 9-dioxide (160). 

Fig. 20. 100MHz ' H n. m. r. spectrum of 4, 5-diphenyl-3-oxa-9-thia-4-

azatricyclo[5. 3. 0. 0 
2,6

]decane 9, 9-dioxide (160) with inset 

showing effect of irradiating multiplet at 3.66. 
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chloride. Thus when the alkene (123) was boiled in toluene with 

anisohydroxamic chloride (161) for 48 h the reaction gave a 45% .yield 

of a colourless solid which on the basis of analytical and spectral 

evidence was characterized as compound (162) (Scheme 84). Similarly 

reaction of the aflcene (123) with benzonitrile oxide (163) gave a 19% 

yield of an adduct whose structure was established as compound (164). 

02KE11+ X-05H4CCNOH -HG 2 
	

II 

(123) 	(161)x=OMe 	(162) 45% 

(163)xH 	(164) 19% 

Scheme 84 

The structural assignments of compound (162) and (164) were 

mainly based on their 1 H n. m. r. spectra which showed strong 

similarities to the 1 H n. m. r. spectrum of the nitrone adduct (160). 

As shown in Figure 21 the 1 H n. m. r. spectrum of compound (162) 

displays resonances at 5. 3d and 4. 36 which are assigned to the Z-H 

and 6-H protons, respectively. These chemical shift values compare 

favourably with those reported for the corresponding protons in the 

adducts obtained from the cycloaddition of nitrile oxides to cis-3, 4-

dichlorocyclobutene. 152 The large coupling constant (8Hz) observed 

for these two signals is probably 	since these protons are cis- 

orientated. 

The small coupling constant (2Hz) in the resonance at 5. 25 is 

presumably 
11, 
 2 in keeping with the assignment of the stereochemistry 
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ID 	 9-0 	 54 	 7 	 54 pn.VAIU. 9-0 	 1-0 	 3-0 	 24 	 1-0 	 A 	(S) 

(1 Y652)1 

OMe 

Fig. 21. 100MHz ' H n. m. r. spectrum of 5-(2-methoxyphenyl)-3-oxa-9- 

thia-4-azatricyclo[5. 3.0. 0 2 6]dec-4-ene 9, 9-dioxide (162). 

140 130 120 110 100 90 80 	70 60 50 40 30 	20 10 	0 

Fig. 22. 25. 2MHz 13 C n. m. r. spectrum of 5-(2-methoxyphenyl)-3-oxa-
2,6 

.9:thia_ 4 _azatricyc 1o[ 5 . 	 dec-4-ene-9, 9-dioxide (162). 
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as an anti-structure. This is further supported by the secondary 

splitting of the doublet at 4. 35 which is just visible and is presumably 

7 

F igure 22 shows the 13C n. m. r. spectrum of (16 2) and contains 

eleven lines which is consistent with the assigned structure. 

The 1 H n. m. r. and 13 C n. m. r. spectra of adduct (164) shows 

strong similarities to the spectra of adduct (162) and a similar analysis 

to that described above confirms the assigned structure. 

c) Addition of diazomethane 

The reaction was carried out by standing an etheral solution of 

the alkene (123) and diazomethane in a cold room (0-5 °C) for several 

weeks during which time a colourless crystalline solid gradually 

precipitated out of solution in 80% yield. Analytical and spectral 

evidence established the structure of the compound as the pyrazoline 

(165) shown in Scheme 85. The slow rate of formation of the adduct 

H 

CH,N2 02S 	
1 

2 H 1  10  
o2srj--- 

80% 
(123) 

ii 	(165 i 	
) 

Scheme 85 

(165) accords with a report by Mock 
54 

 who observed that diazomethane 

only adds to butadiene sulphone in 35% yield over a period of several 

weeks. 

Elemental analysis for (165) gave percentage composition for 
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carbon, hydrogen and nitrogen consistent with an empirical formula 

C 7 H 10 N 20 2S. This was verified by observation in the mass spectrum 

of a peak at m/e 186. 

The i. r. spectrum of (165) showed a band at 1535 cm- 
1 
 which 

is characteristic of  
1 
 -pyrazolines. 174  

The assigned stereochemistry of (165) is based on its 1 H n. m. r. 

and 13 C n. m. r. spectra and on the results of selective 1 H n. m. r. 

decoupling experiments. The 360MHz 1 H n. m. r. spectrum of (165) 

is shown in Figures 23 and 23a and contains five multiplets. Due to 

the strong deshielding effect of the diazo group on adjacent protons 

the multiplet at 5. 3-5. 26 is considered to be due to the bridgehead 

rnethine proton 1-H. Similarly the multiplet centred at 4. 65 is due 

to the methylene protons 8-H and 8'-H. The a-sui.phone methylenes 

are considered to give rise to the multiplet from 3.4-3. 15 whilst the 

bridgehead methine protons 2-I-I, 1-H, :6-H are assigned to the 

multiplets at 3. 056, 2. 7  and 2. 6 6 respectively. 

Double resonance experiments helped to confirm these assign-

ments as well as the anti-structure. Thus irradiation of the multiplet 

at 5. 26 leads to a simplification in the resonance at 4.66 (Fig. 23b). 

This shows that there is coupling between 1-H and the methylene at 

C-8, an effect which has been noted for similar compounds. 
174 

 Of 

the three cyclobutane protons the resonance due to 7-H simplifies to 

a much greater extent than the other two suggesting the removal of a 

fairly large coupling constant in this case. This is in keeping with 

the anti-orientation of the sulphone and pyrazoline rings. 
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02k ,1_1__,N 
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Fig. 23. 360MHzm. r. spectrum of 4-thia-9, lO-diazatricyclo- 
fl fl ' leiar..Q..nnn & 4..clinvide  —. . 
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Fig. 24. 25. 2MHz 13 C n.m.r. spectrum of 4-thia-9, 10-diazatricyclo-

[5. 3.0.02,6 ]dec-9-ene  4,4-dioxide (165). 
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5.3 	5.2 	4.6 	3.4 	3.3 	3.2 	3.1 	3.0 	 2.7 	2.6 	2.5 
H 

Fig. 23a. Expansion of 360MHz H a. m. r. spectrum of 4-thia-9, 10-diaza-

tricyclo[5. 3.0.02 6 ]dec-9-ene 4,4-dioxide (165). 

0 2 

4.6 	 3.4 	3.3 	3.2 	3.1 	 3.0 	 2.7 	2.5 	2.5 6 
H2 

Fig. 23b. 360MHz ' H n. m. r. spectrum of 4-thia-9, 10-diazatricyclo[5. 3. 0. o' 6 

dec-9-ene 4,4-dioxide (165) with decoupling of the 1-H proton by 

irradiation at 5. 26 

JL 
oz  6 H 

H(61 
(155) 

5.3 	5.2 	 4.6 	3.4 	3.3 	3.2 	3.1 	3.0 	2.7 	2.6 1 	2 

Fig. 23c. 360MHz ' H n. m. r. spectrum of 4-thia-9, lO-diazatricyclo- 

[s. 3.0. o2. 6 ]dec-9-ene 4,4-dioxide (165) with decoupling of the 

6-H proton by irradiation at 2.66. 
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Fig. 23a. Expansion of 360MHz 
1
H n.m. r. spectrum of 4-thia-9, 10-

diazatricyclo[5. 3.0. 0 
2,6

]dec-9-ene 4,4-dioxide (165). 
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Fig. 23d. 360MHz ' H n. m. r. spectrum of 4-thia-9, lO-diazatricyclo- 

[s. 3.0.02t 6]dec-9-ene 4,4-dioxide (.165) with decoupling of the 

ii 

7-H proton by irradiation at 2. 76. 

02 	H 

H 	IN 

l i t 

5.3 5.2 4.6

L H±ffh. ' 
Fig. 23e. 360MHz ' H n. m. r. spectrum of 4-thia-9, 10-diazatricyclo[5. 3. o. o2' 6 

dec-9-ene 4,4-dioxide (165) with decoupling of the C-3 methylene by 
irradiation at 3.4 6. 
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Similarly, irradiation at 2. 6 s, 2.  76  and 3. 46, respectively 

gave results which corroborated these assignments (see figures 23c-e). 

Notably irradiation at 2. 76 (7-H) produces major simplification in the 

resonances at 5. 256 (i-H) and at 4.66 (8 and 8'-H) (Figure 23d). 

Little simplification is observed in the resonances due to 2-H and 6-H 

as would be expected for the removal of a four-bond and a trans-coupling 

constant, respectively. 

The 13 C n. m. r. spectrum of (165) shown in figure 24 has only 

seven lines (2, overlap) and confirms that there is only one isomer present. 

d) Attempted addition of diphenylnitrilimine. 

Attempts to add diphenylnitrilimine to the alkene (123) led to 

failure. The diphenylnitrilimine was generated by two different routes, 

one involving thermal elimination of HC1 from a-chlorophenylhydrazone 

in boiling toluene, and the other by addition of triethylamine to the 

substrate in benzene. In both cases work-up of the reaction mixtures 

by chromatography gave an almost quantitative recovery of unreacted 

ailcene. Thiâ lack of reactivity is presumably due to the lower reactivity 

of nitrilimines compared to the nitrile oxides which were investigated 

earlier. In this connection it is noteworthy that Tinley 
129 

 has observed 

that the same dipole also failed to react with the structurally similar 

cyclobutene anhydride (139). 
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(109)X=Ph 52% 

(167)x=0H 3  58% 

D. 	Synthesis of cis-Divinyl Compounds by Flash Vacuum Pyrolysis 

of Tricyclic Sulphones. 

D. 1 Preparation of 1-phenyl and 1 -methyl-cis -3, 4-divinylsuccinimides. 

As mentioned in section A. 2 of the discussion pyrolysis of the 

anhydride (1) provides a clean and efficient synthesis of the hitherto 

unknown 2, 5- dioxo-.t2.r ' t:1v yltet hy ofuran (113). This initial 

success prompted a more detailed investigation aimed at evaluating 

the usefulness of this approach as a general route tocis-divinyl 

compounds. Since X-ray structure determination of 9-phenyl-8, 10-

dioxo-4-thia-9-azatricyclo[5. 3.0. 02i 6 ]decane 4,4-dioxide (108) 

provided key evidence as to the stereochemistry of the anhydride (1) 

it was decided to pyrolyse compound (108) in an attempt to prepare 

the previously unknown 1 -phenyl-cis- 3, 4- divinylsuccinimide (109) 

as shown in Scheme 86. 

0 

0 2SN_R 	p 
-so 2.  

0 
(108) X= Ph 

(1 66)X= Ct-I 3  

Scheme 86 

Pyrolysis of the imide (108) at 625 0C in a flow system gave a 

52% yield of a colourless crystalline solid whose analytical and 

spectroscopic data established its structure as the desired succinimide 

(109). Thus elemental analysis gave percentage composition for 
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carbon, hydrogen and nitrogen consistent with an empirical formula 

C 14 H 13 NO 2. This was verified by observation in the mass spectrum 

of a parent ion peak at m/e 227. 

The 1 H n. m. r. spectrum of (109) is reproduced in figure 25 and 

is consistent with the assigned structure. Thus the multiplet centred 

at 7. 356 is attributed to the phenyl protons whilst the complex multiplet 

at 5. 9-5. 35 is typical of a cis-divinyl system. The doublet of 

doublets centred at 3. 755 is assigned to the 3-H and 4-H protons. 

The 13C n. m. r. spectrum of (109) is shown in figure 26 and as 

expected consists of eight resonances. The carbonyl carbons give rise 

to the signal at 1755 whilst the signals due to the aromatic carbons 

occur in the 132-1285 region. The signals at 1265 and 1216 are due 

to the secondary (C 6  and C 8 ) and terminal vinyl carbons, respectively. 

Finally the C 3  and C 4  carbons are represented by the signal at 496. 

Since compound (109) is a crystalline solid it was decided to carry 

out an X-ray study to further confirm the assigned stereochemistry. 

Careful recrystallization of (109) from ethyl acetate gave colourless 

crystals ideal for X-ray studies. This showed that the compound 

possessed cis-orientated vinyl groups at the 3 and 4 positions (see 

figure 9, p.115). However the quality of the X-ray data was not very 

high presumably because there is some disorder in the crystal lattice. 

As a consequence the bond geometry obtained from the analysis was 

unsatisfactory and no comment can be made on the bond lengths or bond 

angles obtained. 

Similar pyrolysis of the methyl analogue of (108) viz. compound 
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Fig. 25 100MHz ' H n. m. r. spectrum of 1 -pheny1-- 3,4- divinyl-

succinimide (109). 

Fig. 26. 	25.2MHz 13C n.m.r spectrum of 1-phenyl-cis-3, 4-divinyl- 

succinimide (109). 
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(166) gave a 58% yield of a light brown oil which was characterized 

as 1-methyl-cis-3,4-divinylsuccinimide (167) on the basis of its 

elemental composition and spectral properties which showed strong 

similarities to those described above for compound (109). 

D. 2 Preparation of cis- 3, 4- divinyl- 1 -heterocyclopentanes. 

Prior to the present study, the heterocyclic analogues of cis- 

1, 2-.divinylcyclopentane (88) were unknown although the latter had been 

the subject of several studies concerned with its Cope rearrangement to 

cis, cis-1, 5-cyclononadiene (87) (see Scheme 39, p.40). Consequently 

it was of considerable interest to examine the utility of compounds of 

type (168) previously obtained by chemical modification of the anhydride 

(1) as precursors to cis- 3, 4-divinyl- 1-heterocyclopentanes (169) under 

flash vacuum pyrolysis conditions (Scheme 87). 

- 02scIJIIIII1X 
(168) 

-so 2  

:: CX  
(169) 

Scheme 87 
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a) cis-3, 4-Divinyltetrahydrofuran. 

Pyrolysis of the tetrahydrofuran (117) under f. v. p. conditions 

at 625°C gave a 62% yield of a clear volatile liquid with a sickly odour 

and spectroscopic properties typical of the desired cis-3,4- divinyl-

tetrahydrofuran (170) (Scheme 88). 

o2sjo 	 62% 

(117) 
	

(170) 

Scheme 88 

Elemental analysis of the liquid gave percentage composition 

for carbon and hydrogen consistent with an empirical formula C 8 H 120 

which was corroborated by observation in the mass spectrum of a 

parent ion peak at m/e 124. 

The 1 H n. m. r. spectrum of (170) was recorded in [ 2H6]-acetone 

at a frequency of 360MHz and this spectrum is reproduced in figure 27. 

The high frequency used allows a full analysis of this spectrum. 

The multiplet centred at 5.756 is assigned to the 6-H and 8-H 

protons and can be considered as a doublet of doublet of doublets 

7-trans = 17. 5Hz, 16, 7- cis  = 10• Hz, 23 6 = 9.5Hz). The protons 

7,71,9 and 9'-H give rise to the multiplet centred at ca. 5.056 which may 

be interpreted as overlapping sets of doublets of doublets with fine 

splitting due to the allylic couplings to the 3-H proton. The coupling 

constants for the proton trans to 6-H are (3
6, 7-trans = 17. 5Hz, -  

27 7' = 2. 5Hz, 1 3  77 = 1Hz) and those due to the proton cis to 6-H are 
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Fig. 27. 360MHZ ' H n. m. r. spectrum of cis- 3, 4 -divinyltetrahydrofuran 

(170). 

f  
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Fig. 28. 25.2MHz 13 C n.m.r spectrum of cis- 3, 4- divinyltetrahydrofuran 

(170). 
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10. 5Hz, J 7 	= 2.5Hz, J 3 	= 0.5Hz). 

The 2 and S-H and 2! and 5'-H give rise to the doublet of doublets 

centred at 3. 375  and 3. 5(5, respectively with coupling constants 

= 9. 5Hz, T 	 = 7. 5Hz) and 2, 2' =9. 5 Hz, J 	 = 6Hz). 	The2,3 

multiplet centred at 2.935 is due to the 3-H and 4-H protons. The 

shifts and coupling constants for the divinyl system compare very 

well with those reported for cis-divinylcyclopropane. 87 

The 
13

C n. m. r. spectrum of (170) is shown in figure 28 and as 

expected consists of four lines. 

The structure of (170) was unambiguously confirmed by its 

alternative synthesis via the route shown in Scheme 89. Thus pyrolysis 

of the anhydride (1) gave the cis-3, 4-divinyl derivative (113) (see 

Scheme 51, p. 124), which could be converted into the dimethyl ester 

(171) in 50% yield by boiling in methanol with a few drops of concentrated 

-fiaCO 2 Me 
50% 

MeGH 	 NCO2Me 

(171) H LiH4 

THF 

Ts OH 	 ±aCH2OH 

in benzene 

(172) H 
Scheme 89 

CO  XX 

(113) 0 

CD 
62% 

(170) 

87% 

sulphuric acid. Reduction of this diester with lithium aluminium 

hydride in tetrahydrofuran followed by dehydration 
133 

 of the resulting 
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diol (172) yielded the desired product in 62% yield. 

In passing it is of interest to note that the diester (171) has been 

reported 
175 

 but only as a mixture of the rneso form and its diastereomers. 

The proton n. m. r. of (171) compared well with that reported by these 

workers, whilst the 13C n. m r. supported the assigned structure and 

confirmed the presence of only one isomer. 

The fact that cis-3,4-divinyltetrahydrofuran (170) is stable under 

the pyrolysis conditions. indicates that it has little tendency to undergo 

a Cope rearrangement to the unknown heterocycle 1 -oxa cis-3, 7-

cyclononadiene (173) as depicted in Scheme 90. This contrasts strongly 

COO  
(170) 	 . 	(173) 

Scheme 90 

with cis-1, 2-divinylaxirane (83, X0) which is known to undergo a 

facile Cope rearrangement 
89 

 but is in keeping with the report by Vogel 98 

that the Cope equilibrium of cis-1, 2-divinylcyclopentane with its 

hydrocarbon counterpart strongly favours the former. 

b) cis-3, 4-Divinyltetrahydrothiophene 

The appropriate precursor (119) for the synthesis of the title 

compound was successfully prepared as discussed in Section B. 2. 

Pyrolysis of (119) under f. v. p. conditions at 6 20 °C gave a 25% yield 

of a pale yellow liquid which was identified as cis-3,4-divinyltetra-

hydrothiophene (174) on the basis of analytical and spectral data after 
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purification by bulb-to-bulb distillation (Scheme 91). 

02 SQJDS 
(119) 

A 
- S0 2  CS 

25% 

(174) 
Scheme 91 

A gummy residue remained in the inlet system after pyrolysis 

indicating that some decomposition of (119) had occurred during 

sublimation into the furnace. The spectra of the crude product also 

contained peaks due to unidentified impurities probably formed by 

extrusion of sulphur. This decomposition might also explain the low 

yield of (174) obtained. 

Elemental analysis of the clear liquid obtained by microdistillation 

gave percentage composition for carbon and hydrogen consistent with 

an empirical formula C 8 H 125. This was confirmed by observation 

in the mass spectrum of a parent ion peak at m/e 140. A very strong 

peak at m/e 86 corresponds to the loss of the two vinyl groups (140-2x27 

=86). 

The I H n. m. r. and 13C n. m. r. spectra of (175) were entirely 

consistent with the assigned structure and showed strong similarities 

to those described in detail for cis-3, 4-divinyltetrahydrofuran (170). 

It would seem that compound (174) like compound (170) has little 

tendency to undergo a Cope rearrangement as no Cope rearranged 

products were detected. 
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c) 1-Benzyl-cis-3, 4-divinylpyrollidine 

In an attempt to prepare a nitrogen analogue of (170) and (174), 

the precursor (122) was prepared as described in Section B. 2. 

Pyrolysis of (122) at 525 0C under f.v.p. conditions gave a 58% yield 

of light brown oil which was purified by microdistillation and charac-

terized as the title compound (175) (Scheme 92). 

O2S' TIIII1N_cH2rh 	CN_CH2 P h 
(122) 	 (175) 	58/s 

Scheme 92 

Elemental analysis of the oil obtained by microdistillation gave 

percentage composition for carbon, hydrogen and nitrogen consistent 

with an empirical formula C 15 H 19 N. This was confirmed by observation 

in the mass spectrum of a parent ion peak at m/e 213. 

The ' H n. m. r. spectrum of (175) was entirely consistent with 

the assigned structure and showed strong similarities to that just 

described for cis- 3,4- divinyltetrahydrofuran (170). 

Also as with the oxygen and sulphur analogues there was no 

evidence to indicate any Cope rearrangement. However when the 

pyrolysis was carried out above 550 °C total breakdown of the product 

occurred to give unidentified aromatic compounds as indicated by 

1 
H n.m. r. spectroscopy. 
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E. 	Pyrolysis of 3-Thiabicyclo[3. 2. Olhept-6-.ene 3, 3-dioxide 

and its Adducts 

E. 1 Pyrolysis of 3-thiabicyclo[3. 2. 0}hept-6-ene 3, 3-dioxide 

The preparation of the title compound (123) has already been 

described in Section C as well as its reactions with carbenes, nitrenes 

and 1, 3-dipoles in an effort to prepare a wider range of potential cis-

divinyl precursors. The pyrolysis of the aikene (123) itself provided 

a convenient starting point for the investigation. 

Thus when the alkene (123) was pyrolysed in a flow system at 

500°C the product obtained was identified by I Hn.m.r. spectroscopy 

3 5 1, 3-cyclohexadiene (176). The formation of the latter can be 

explained in terms of a cheletropic extrusion of sulphur dioxide to 

give £jL-i  3 5-hexatriene which under the pyrolytic conditions under-

goes an electrocyclic ring closure reaction as indicated in Scheme 93. 

Support for this pathway was obtained by lowering the temperature of 

O2S 	 j(123) 	 (176) 
Scheme 93 

the pyrolysis to 400 °C whereupon cis-1, 3, 5-hexatriene, 1, 3-cyclo-

hexadiene (176) together with unchanged alkene were detected in the 

pyrolysate in approximately equal amounts. At temperatures belpw 

400 °C, the starting alkene sublimed through the furnace unchanged. 



17 9 

The formation of cis-1, 3, 5-hexatriene can be envisaged to 

occur by two different routes. Firstly compound (123) could extrude 

so  in the normal linear disrotatory manner and give cis-1, 3, 5- 

hexatriene directly. Alternatively (123) could undergo an initial 

ring opening reaction, in a manner analogous to that reported for 

bicyclo[3, 2. 0}hept-6-ene, 176 to afford 2, 7-dthydrotiiiepin 1, 1-dioxide 

(22) which is known to lose SO under the pyrolytic conditions 50, 51 to 

give cis-1, 3, 5-hexatriene (Scheme 94). No evidence is available to 

02S 	 . [02so 
(123) 	 (22) 

Scheme 94 

-so 2  DI 

differentiate between these two pathways but the former is preferred 

on the grounds that it is an allowed process whereas the isomerization 

of (123) into (22) is disfavoured by orbital symmetry considerations. 

66 
Following the report by Gaoni that sulphones such as (177) 

are smoothly converted to the corresponding diene (178) by reaction 

with lithium aluminium hydride as outlined in Scheme 95, the alkene 

(123) was treated in a similar manner and the resultant mixture 

CI. 	CL 

LIA[H4 	
70% •1 

ether 

"(17 7) 	 C  	ci. 	(17 8) 
Scheme 95 
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analysed by gas chromatography. This showed the presence of 

only two products which were identified as cis and trans-hexa-1, 3, 5-

trienes by peak enhancement experiments using authentic samples 

prepared by the method of Hwa et al. 
135 

 The lack of stereospecificity 

indicates that loss of SO  presumably occurs via  radical or polar 

mechanism rather than a cheletropic elimination. 

In order to rule out the possibility that the reaction conditions 

had caused isomerization of the resultant trienes a control experiment 

was carried out using an authentic mixture of cis and trans-hexa- 

1,3, 5-trienes. However after boiling the mixture for 1 h, gas 	
) )

A1*41 

chromatographic analysis showed no change in the ratio of cis to 

trans isomers. 

EL 2 Pyrolysis of 8-oxa-4-thiatricyclof5. 1. o. 0 2 ' 6loctane 4,4-

dioxide. 

The title compound (143) was prepared by the method outlined 

in Section C. 2 as a potential precursor of cis-.2, 3-divinyloxirane (83, 

X0) which upon Cope rearrangement is known 
89 

 to give 4, 5-dihydro-

oxepine (84, X0). When the 'epoxide (143) was pyrolysed under 

f. v. p. conditions at 580 °C a clear liquid was obtained in 55% yield. 

This was identified as 4, 5-dihydrooxepin (84, XO) by comparison of 

' 	 13  the H n.m. r. and C n. m. r. spectroscopy data with known literature 

values. 89d, 136 

The formation of (84, X0) is easily explained in terms of a 

cheletropic extrusion of sulphur dioxide from (143) in the normal manner 
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leading to cis-2, 3-divinyloxirane (83, XO) which subsequently under-

goes a Cope rearrangement to form 4, 5-dihydrooxepin (84, X=O) as 

shown in Scheme 96. 

/\ 
o2so 	to 	I '0 

(143) 	
2 
 L(831XO) I 	(84,X=0) 

LN:J 

Scheme 96 

E. 3 Pyrolysis of adducts obtained by nitrile oxide addition to 3-

thiabicyclo[3. 2. Olhept-6-ene 3, 3-dioxide. 

The adduct (162) from the addition of anisonitrile oxide to 3-

thiabicyclo[3. 2. 0]hept-6-ene 3, 3-dioxide (123) was pyrolysed in the 

usual way at 500°C in a flow system and the pyrolysate obtained 

sublimed to give a 33% yield of a colourless translucent solid, rn. p. 

58-60 0C. Analytical and spectral data established the structure of 

this solid to be 4, 5-dthydro-3-(-methoxyphenyl)- cis -4, 5-divinyliso-

xazole (179) (Scheme 97). Thus elemental analysis gave percentage 

101 
	0\  ______ 

-so 2  

(162) XOMe 	
-. 	

(179) XOMe 33% 
(164) X=H 
	

(180)x=H 	19% 
Scheme 97 
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composition for carbon, hydrogen and nitrogen consistent with an 

empirical formula C 14 H 15 02N. This was confirmed by observation 

in the mass spectrum of a parent ion peak at m/e 229. 

The ' H a. m. r. spectrum (179) was exceptionally complicated in 

the olefthic region due to overlapping signals of the non-equivalent vinyl 

groups. The 13C n. m. r. spectrum contained twelve lines in keeping 

with the assigned structure. 

Similar pyrolysis of compound (164) at 500 0C yielded a brown-

coloured pyrolysate which after distillation at 100 0C/0. lmrnHg provided 

a 19% yield of a colourless oil. This compound was identified as 4, 5-

diliydro-3-phenyl-cis-4, 5-divinylisoxazole (180) on the basis of 

analytical and spectral data (Scheme 97). As expected the spectral 

data for compound (180) showed strong similarities to the data for 

compound (179). 

E.4 Pyrolysis and photolysis of 4-thia-9, 10-diazatricyclo[5. 3.0.021 6 

dec-9-ene 4,4-dioxide. 

The title compound (165) was of some interest as it provided the 

first example in the present study of a molecule which could extrude 

either sulphur dioxide or nitrogen or both under pyrolytic conditions. 

In particular the loss of nitrogen might be expected to lead to the 

formation of the potential cis- divinylcyclopropane precursor (181) 

(Scheme 98). 

Slow sublimation of compound (165) through a furnace at 450 0 C 

under f. v. p. conditions gave a pyrolysate which according to g. c. 
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02SOIIj 
-N2  osfljj 

(165) 
	

(181) 
-S 02 

0 (0°C ",*-> 

(81) 	 (80) 
Scheme 98 

analysis contained five components, none of which could be positively 

identified. The proton n. m. r. spectrum of the pyrolysate suggested 

the presence of cyclohepta-1,4-diene (81) but this was not confirmed. 

Apparently under these conditions loss of both nitrogen and sulphur 

dioxide occurred simultaneously giving rise to the plethora of products 

observed. 

In certain circumstances nitrogen can be selectively removed in 

the presence of a sulphone moiety by photolysis in acetonitrile. For 

example Mock 
54 

 has shown that irradiation of the pyrazolines (182a-d), 

prepared by addition of diazomethane to the appropriate sulpholene, 

gave the cyclopropanes (183a-d) in 25-55% yield (Scheme 99). 

Similar photolysis of compound (165) on an n. in. r. scale using 

a 100w medium pressure lamp resulted in a gradual evolution of gas 

which ceased after 3 days. Examination of the resulting solution 

by 1 H n. m. r. spectroscopy revealed a spectrum profile which suggested 

that the sulphone moiety had been retained intact. However removal 
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(182) 2  

R 1 1 R 2 H 

R 1 , =CH3; R
2 

=H  

R 1 , R 2 CH3  

R 1 , R 2 = -CH 2CJ 2CH2 - 

hi' 
CD 3CN 

Ri 

<s0
2 

(183) 	? 2  

Scheme 99 

of the solvent gave a small amount of a brown solid which on the basis 

of specteoscopic evidence, appeared to be polymeric in nature. No 

evidence could be obtained to indicate the formation of the desired 

cyclopropane derivative (181). 
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F. 	Miscellaneous Preparations and Pyrolyses. 

F. 1 Attempted preparation of 5, 6-divinyl-3, 8-dioxadeca-1, 9-diene. 

As discussed in the introduction Ziegler 105 has recently reported 

the first example of a tandem Cope-Claisen rearrangement (see Scheme 

46, p.43) and this prompted an effort to seek further examples using 

the 1. v. p. technique. The conversion of the dol (116) to the vinyl 

ether (184) followed by SO  extrusion offered the possibility of another 

example of a tandem Cope-Claisen rearrangement leading to the aldehyde 

(187) as outlined in Scheme 100. 

The usual method for preparing vinyl ethers from an alcohol is 

to boil the latter in ethyl vinyl ether in the presence of mercuric acetate 

and one drop of sulphuric acid 138 . However in the case of the diol 

(116) this procedure failed due to its extreme insolubility in ethyl vinyl 

ether. Attempts to overcome this problem by using Soxhlet extraction 

also failed. 

In order to circumvent this problem it was decided to try to 

prepare compound (185) by vinylation of meso-3,4-dihydroxymethyl- 

1, 5-hexadiene (172), prepared as described previously (see Scheme 89, 

p. 174 ), as shown in Scheme 101. On heating the diol (172) in boiling 

ethyl vinyl ether with mercuric acetate and one drop of sulphuric acid 

followed by careful removal of solvent at low temperature, a colourless 

oil was obtained which was purified by bulb-to-bulb distillation. 



	

02sEI 	
'70Et OH 

	

(116) 	 Hg 2  

0 2 S 
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(186) 
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Scheme 100 
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I;1 

OH CIX 

A (172) 

I7OEt 
10 

Hg 2  

H, 

A (185) 

Scheme 101 

The H n. m. r. spectrum of this oil was consistent with the 

assigned structure (185). Likewise the 13 C n. m. r. spectrum contained 

six lines and so supported the assigned structure. However correct 

analytical data could not be obtained due to the extreme volatility of 

the oil. 

A sample of the oil was pyrolysed in a flow system at 500 °C and 

the pyrolysate was analysed by ' H n. m. r. spectroscopy. The most 

characteristic feature of the spectrum obtained was a peak at 9. 66 

indicative of an aldehyde function. The presence of an aldehyde can 

be rationalized in terms of a tandem Cope-Claisen rearrangement of 

compound (185) as indicated in Scheme 100. Thus this provides further 

evidence that the oil was indeed compound (185). 

An attempt to achieve the rearrangement by heating the same oil 

in [ 2H8]toluene in a sealed n. m. r. tube at 150 °C resulting in no change 

even after five days. 

F. 2 Pyrolysis of Dim ethyl- 3-thiabicyclo[3. 2. Olheptane-6,  7-dicarb-

oxylate 3, 3-dioxide. 

On pyrolysis at 625 
0 
C  under f. v. p. conditions dimethyl-3- 

thiabicyclo[3. 2. 0]heptane-6, 7-dicarboxylate 3, 3-dioxide (115) gave a 
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76% yield of cis, trans-octa-2, 6-diene-1, 8-dicarboxylic acid dimethyl 

ester (188) the structure of which was assigned on the basis of 1 Hn.m.r. 

and 
13

C n. m. r. spectroscopic evidence comparison with known 

literature values. 139 

The proton n. m. r. spectrum of (188) was recorded at a frequency of 

360MHz and this spectrum is reproduced in figure 29. The signal at 

6.96 is a doublet of triplets due to the proton (3-H) cis to the carbo-

methoxy group (i f16Hz 134  =7Hz). Similarly the proton (6-H) 

which is trans to a carbomethoxy group gives rise to the doublet of 

triplets at 6. 25 LJ6,7l2Hz, 25, 68Hz). 

The multiplet at 5.855 can be interpreted as an overlapping pair 

of doublets due to the remaining olefinic protons (2-H, 7-H) (1 2, 3= 16Hz, 

7 12Hz). The signals due to the carbomethoxy groups occur as 

singlets at 3.73 and 3.72(5 The allylic CH  cis to the carbomethoxy 

group give rise to the multiplet at 2. 86, while the multiplet due to the 

remaining CH  group occurs at 2.4 6 All these assignments agree 

well with data 139, 177 for compounds similar to (188). 

The 13 C n. m. r. spectrum of (188), shown in figure 30, exhibits 

five pairs of resonances. The pair of signals at 1666 are due to the 

carbonyl carbons. The signals due to C 2  and C 7  occur at 1486 and 

those due to C 3  and C 6  at ca. 1215 . The signal due to the methylene 

groups occur at ca. 516 

The formation of (188) can be rationalized in terms of an initial 

extrusion of 	to give meso-dimethyl-1, 5-hexadiene-3,4-dicarboxylate 

(171) which under the conditions of the pyrolysis undergoes a Cope 

rearrangement as outlined in Scheme 102. The observed cis, trans 
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CO2Me 

(188) 

 0 	6W 

Fig.29. 360MHz 1 H n. m. r. spectrum of cis, trans-octa-2, 6-diene-1, 8-

dicarboxylic acid dimethyl ester (188). 

Fig.30. 25. 2MHz 
13 

 C  n.m. r. specteum of cis, trans-octa- 2, 6-diene- 1, 8-

dicarboxylic acid dimethyl ester (188). 



190 

stereochemistry of (188) can be rationalized in terms of the usual 

chair-like Cope transition state as discussed in the introduction ( see 

Scheme 31, p.  34) whereas dl (171) would give rise to trans, trans (188) 

and cis, cis (188) diesters. 

1CO2M e 

[(188) 

j176% 

CO2Me 

rHI 	1 CO 2Me 

°2 
Sal -S02 

(115) 	CO2Me [(171) H 	
j 

Scheme 102 

The stereochemistry of (188) is interesting in that it is the 

same stereochemistry as that in compound (189) which is a component 

of gossyplure, the sex attractant of the female pink vollworm moth 

Pectinphora gossypiella. For maximum potency syhthetic sex 

(189) 

pheromones require stereochemically pure alkenes. 
178 

 However 

(189) can only be prepared in ca. 84% purity and since (188) is obtained 

in virtually 100% purity it could possibly be used as a key intermediate 

in the preparation of (189). This approach is currently under inves-

tigation but appears to suffer from the drawback that one requires to 

El 
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selectively protect one terminus of the molecule with retention of 

stereochemical purity. However as yet this problem has not been 

overcome. 
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Flash Vacuum Pyrolysis of the 3-Thiabicyclo[3.2.0]heptafle 3,3-Dioxide 
Ring System: a New Stereospecific Synthesis of 

cis-1,2-Dlvinyl Derivatives 

By J. I. G. CADOGAN 

(S.F. Research Centre, Chertsey Road, Sunbury-on-Thames, Middlesex TW16 7LN) 

- 	and IAN GO5NEY,* LEO M. MCLAUGHLIN, and (in part) BRENDAN J. HAMILL 

• (Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ) 

Summary A short and stereospecific route to cis- 1,2- 
divinyl compounds from derivatives of the readily avail-
able 3,3-dioxide (1) of 3-thiabicyclo [3. 2.0]heptane-6, 7-
dicarboxylic anhydride by cheleotropic elimination of 
502 is reported. 

THE considerable interest in cis-1,2-divinyl systems now 
current' is tempered by difficulties in synthetic access 
through existing methods2  which usually give mixtures of 
cis- and trans-isomers. We now report a simple, stereo- 

specific, and general route to novel cis- 1, 2-divinyl systems 
by thermal extrusion of SO 8  from derivatives of the 3,3-
dioxide (1) of 3-thiabicyclo [3. 2.0]heptane-6, 7-dicarboxylic 
anhydride, easily prepared by photolysis of 2,5-dihydro-
thiophen 1,1-dioxide and maleic anhydride for 24h in 
anhydrous acetone. 2  

Thus, esterification of (1) followed by reduction with 
LiA1H4  and subsequent cyclisation' of the resulting diol (2) 
afforded 4-oxa-9-thiatricyclo [5. 3.0.O'.']decane 9,9-dioxide 
(3, X=0; m.p. 129-130 0C)t which on pyrolysis under 

t All new compounds were fully chaxacterised by 'H and 13C n.m.r., i.r. and mass spectral and inicroanalytical data. 
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X: 0,S,NCH 2Ph 

 

flash vacuum conditions (625 'C at 10 mmHg) gave 
exclusively cis-3,4-divinyltetrahydrofuran (4, X= 0; b.p. 
40°C at 41 mmHg; 62%). Similar pyrolysis of the lactone 

(5); th.p 157-158 °C, prepared by reduction of (1) with 
NaBH4  in dimethylformamide, afforded the corresponding 
cis-1,2-divinyl derivative (6; b.p. 75°C at 0'! mmHg) in 
31% overall yield from (1). Further transformations of 
(1), which serve to illustrate the potential of our procedure, 
have been effected leading to (4, X=S; b.p. 140°C at 
16mmHg; 25%) and (4. X=NCH 2Ph; b.p. 100°C at 
001 mmHg; 67%) by pyrolysis of (3, X=S; m.p. 195-
196 'C) [conversion of (2) into its dimethanesuiphonate and 
treatment with Na,S-aq.EtOH; 82%] and (3, X=NCH 2-

Ph; m.p. 132-135 °C) [reaction of the ditosylate of (2) with 
benzylamine; 56%] respectively. We have also shown 
that flash vacuum pyrolysis of (1) gave cis-hexa-1,5-diene-
3,4-dicarboxylic anhydride (7; b.p. 65°C at 01 mmHg; 
80%) from which cis-1,2-divinyl systems of type (4) could 
be obtained by conventional synthetic methods. 

Stereospecificity in all cases exceeded 999% and the 
cis-stereochemistry, which is a consequence of the sym-
metrical structure of the starting anhydride (1), was 
validated by the essentially quantitative chemical trans-
formation of (7) into meso-2,3-diethylsuccinic acid, m.p. 
190-191 °C (decomp.) (lit, 5  192 'C; cf racemic acid, m.p. 
129 'C) by hydrolysis with boiling water and subsequent 
hydrogenation over 10% palladium-charcoal at room 
temperature. - 

(Received, 17th September 1980; Corn. 1019.) 
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