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Abstract

Digital communications have now become a fundamental part of modern society. In commu-

nications, channel coding is an effective way to reduce the information rate down to channel

capacity so that the information can be transmitted reliably through the channel. This thesis is

devoted to studying the mathematical theory and analysis of channel codes that possess a useful

diagonal structure in the parity-check and generator matrices. The first aspect of these codes

that is studied is the ability to describe the parity-check matrix of a code with sliding diagonal

structure using polynomials. Using this framework, an efficient new method is proposed to ob-

tain a generator matrix G from certain types of parity-check matrices with a so-called defective

cyclic block structure. By the nature of this method, G can also be completely described by a

polynomial, which leads to efficient encoder design using shift registers. In addition, there is no

need for the matrices to be in systematic form, thus avoiding the need for Gaussian elimination.

Following this work, we proceed to explore some of the properties of diagonally structured low-

density parity-check (LDPC) convolutional codes. LDPC convolutional codes have been shown

to be capable of achieving the same capacity-approaching performance as LDPC block codes

with iterative message-passing decoding. The first crucial property studied is the minimum

free distance of LDPC convolutional code ensembles, an important parameter contributing to

the error-correcting capability of the code. Here, asymptotic methods are used to form lower

bounds on the ratio of the free distance to constraint length for several ensembles of asymptot-

ically good, protograph-based LDPC convolutional codes. Further, it is shown that this ratio

of free distance to constraint length for such LDPC convolutional codes exceeds the ratio of

minimum distance to block length for corresponding LDPC block codes.

Another interesting property of these codes is the way in which the structure affects the perfor-

mance in the infamous error floor (which occurs at high signal to noise ratio) of the bit error

rate curve. It has been suggested that “near-codewords” may be a significant factor affecting

decoding failures of LDPC codes over an additive white Gaussian noise (AWGN) channel.

A near-codeword is a sequence that satisfies almost all of the check equations. These near-

codewords can be associated with so-called ‘trapping sets’ that exist in the Tanner graph of a

code. In the final major contribution of the thesis, trapping sets of protograph-based LDPC con-

volutional codes are analysed. Here, asymptotic methods are used to calculate a lower bound

for the trapping set growth rates for several ensembles of asymptotically good protograph-based

LDPC convolutional codes. This value can be used to predict where the error floor will occur

for these codes under iterative message-passing decoding.
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Introduction

1.1 Digital communications

Digital communications have now become a fundamental part of modern society. The need

for reliable data transmission and storage systems is paramount for applications such as high

speed data networks, mobile phones, the internet, large scale data storage for commercial and

governmental use, and many others. A major challenge of any system designer is how to

reproduce data reliably in the presence of errors.

In the landmark 1948 paper entitled “A mathematical theory of communication” by Claude

Shannon [Sha48], the concept of information was quantified and the field we know today as

Information Theory was born. Shannon gave a mathematical proof showing that, by proper

encoding, reliable transmission (or storage) of information is possible for a wide range of chan-

nels provided that the information (storage) rate does not exceed the so-called capacity of the

channel. The channel capacity is determined by the physical properties of the channel. A model

of the overall digital communications system based on the principles of this remarkable paper

is displayed in Figure 1.1.

Figure 1.1: The digital communications system.

Another important result reported in [Sha48] is that it is possible to separate the processing of

information being produced at a source into source coding and channel coding without suffering

any loss in optimality; this separation is shown in Figure 1.1. The information at the source can

be produced in a multitude of ways; for example, it could be a person, sound waves, a digital

computer, or a number of alternatives. The job of the source encoder is primarily to transform

this output into a sequence of binary digits called the information sequence u, but also to reduce

redundancy in the information, i.e., to minimize the amount of bits per unit of time needed to

2



Introduction

represent the source output while maintaining enough information to reconstruct the message

later. This operation is typically known as compression. In this thesis, we group the information

source and source encoder together (and consequently the destination and source decoder) and

assume that we are given an information sequence u directly from the digital source (and give

the resulting information estimate û to the digital sink). For more information about source

encoding and decoding, the reader is directed to [Ber71, Gra90, CT91].

The reliable transmission that Shannon guaranteed can be achieved by channel coding. Here,

the channel encoder is employed to add redundancy in a predefined mathematical way to the

information sequence u, creating a longer sequence (or codeword) x that is to be transmitted

over the channel. The motivation of this operation is to use the redundancy later to help with

error control when transmitting over a noisy channel. The channel encoder is the main focus of

this thesis, and is subsequently introduced in more detail in Section 1.3.

In practice, the channel could be, for example, telephone wires, radio, mobile telephony, satel-

lite links or storage media such as magnetic tapes, CDs, optical memory, and so on. All of

these examples can be affected by different forms of ‘noise’. For our purposes, we use a fixed

mathematical model for the channel. Typical models are presented in Section 1.2. In this work,

as shown in Figure 1.1, we group the modulator, the channel and the demodulator together. The

modulator should transform each symbol of x into a waveform x(t) of duration T seconds to

be transmitted over the channel. The noise will possibly corrupt this signal, and the received

waveform r(t) should be transformed into a received sequence r to pass to the channel decoder.

Thus in our simplified system, we pass the codeword x into the coding channel and receive only

the (noisy) vector r out of the coding channel.

In Section 1.4, the channel decoder block is described briefly. The role of the channel decoder

is to pass an estimate û of the original message u to the digital sink, having received the noisy

sequence r. How to decode a noisy sequence is another major challenge to system designers,

and many novel and diverse methods have been proposed in the literature. We will discuss later

that on the AWGN channel, the way to approach the theoretical Shannon limit is to use so-called

soft decisions with iterative decoding. Codes that perform within a few tenths of a decibel of

this limit are appropriately named capacity-approaching codes. The 1990s brought the arrival

of Turbo codes [BGT93, BG96] and the reintroduction of the now-implementable low-density

parity-check (LDPC) codes of Gallager [Gal62], the two classes of capacity-approaching codes

in use today. This thesis focuses primarily on LDPC codes, in both block and convolutional
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form, and Section 1.5 provides a brief but detailed review of these codes. Turbo type codes

and concatenated codes, the modern competitors of LDPC codes, are also briefly described in

Section 1.6.

This chapter serves as an introduction to the field of digital communications and in particular

channel coding. This should set the results of the rest of the thesis in context. We conclude this

chapter in Section 1.7 with a summary of the aims and motivation behind the main contributions

of the thesis and an outline of the thesis structure.

1.2 Channel models

In this section, we will describe briefly the three standard channels that are used by information

theorists, namely the binary symmetric channel (BSC), the binary erasure channel (BEC) and

the additive white Gaussian noise (AWGN) channel. Recall that here we are modelling the

coding channel block of Figure 1.1. In this thesis we will use only the AWGN channel; however

the others are included here for completeness. For full details of these and other common

channels, see [CT91].

1.2.1 The binary symmetric channel

The binary symmetric channel is the simplest noisy channel model. The transition probability

diagram for the BSC is illustrated in Figure 1.2.

Figure 1.2: Transition probability diagram for the binary symmetric channel (BSC).

The input to the channel is binary. Observe from Figure 1.2 that the output is equal to the input

with probability 1 − p. However, with probability p, an error occurs over the channel and a

transmitted 0 is received as a 1 and vice versa. Note that, for this channel, the receiver obtains

only a binary digit and hence does not know if the received bit is reliable or not. It can easily
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be shown (see, for example, [CT91, p. 187]) that the capacity C for this channel is given by the

formula

C = 1 + p log2 p + (1 − p) log2(1 − p).

1.2.2 The binary erasure channel

The binary erasure channel is another simple noisy channel. The main difference between this

channel and the BSC is that information cannot be corrupted. Instead it is either received or it

is not. The BEC is displayed in Figure 1.3.

Figure 1.3: Transition probability diagram for the binary erasure channel (BEC).

The BEC has binary inputs like the BSC. Again, a bit is successfully transmitted over the

channel with probability 1 − p. However, under this model, the bit can be erased with prob-

ability p. An important factor of this channel model is that there are 3 outputs. I.e., the re-

ceiver knows which bits have been erased. The capacity for the BEC is given by the formula

C = 1 − p [CT91, p189].

1.2.3 The additive white Gaussian noise channel

In this thesis, we assume BPSK modulation when using the additive white Gaussian noise

channel. The channel is modelled as a binary-input, discrete-time AWGN channel with input

power constraint Es and noise variance of σ2. Given a codeword x = [x0 x1 · · · xn−1 ] of

length n that is to be transmitted, the power constraint is given as:

1

n

n−1
∑

i=0

x2
i ≤ Es .

The discrete-time binary-input AWGN channel with BPSK modulation as discussed above is

illustrated in Figure 1.4.

5
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Figure 1.4: The binary-input additive white Gaussian noise (AWGN) channel.

For each of the n transmitted binary symbols xi, i = 0, . . . , n − 1, the optimal demodulator

generates the real-valued received symbol

ri = (2xi − 1)
√

Es + zi, i = 0, . . . , n − 1,

where zi corresponds to the noise.1 Each zi is an independent, identically distributed (i.i.d.)

variable from a Gaussian distribution with mean 0 and variance σ2. The demodulated output

will generally be chosen from a number of fixed symbols designed to suit a particular system.

However some systems may prefer the output as a real number. For more details on modu-

lation/demodulation, see [Pro01, LC04]. Note that if we restrict the output to binary symbols

only, the channel reduces to a BSC.

In practical situations we use a more complicated continuous-time channel model. For the

scope of this thesis however, we consider only the discretised model described above. For a

good discussion of the continuous-time signalling concept and the relation between discrete-

time and continuous-time modelling, the reader is directed to [Goe07, Pro01]. If the channel

that we are trying to model has noise formed from the superposition of a large number of i.i.d.

noise sources, then the AWGN channel is a very good model to use.

1.3 Channel coding: structure and encoding

Following Shannon’s seminal paper in 1948, tremendous effort has been placed in designing

efficient encoding and decoding methods for transmission over noisy channels. Channel codes

operate by adding redundancy to the information that is to be transmitted over the channel in

a predefined mathematical way. The aim of channel coding is to then use this redundancy to

extract the correct information vector from a received noisy vector. In this section, we focus

1If the output symbols are quantized in more than two levels, we say that the demodulator makes soft decisions.

If the symbols are quantized in exactly two levels (i.e., as binary symbols), then this is hard decision demodulation.

Hard and soft decision decoding will be discussed further in Section 1.4.
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on the channel encoder block of Figure 1.1 and introduce two broad categories of channel

codes, namely block and convolutional codes. A system employing an aptly named block

code transmits a block of n symbols at every time unit which is acted on independently by the

channel encoder/decoder. Convolutional codes, on the other hand, work continuously symbol

by symbol.2

1.3.1 Block codes

We begin by defining a binary linear block code.3 For binary codes we work over the finite

field (our alphabet) F = GF(2) = {0, 1}.4 Consider the space V = Fn of all n-tuples of 0’s

and 1’s with addition of vectors componentwise modulo 2. For example, let n = 7; then

[ 0 1 1 0 1 0 1 ] + [ 1 1 0 0 1 0 0 ] = [ 1 0 1 0 0 0 1 ].

Definition 1.1 An (n, k) linear code is the set of all linear combinations of k linearly indepen-

dent vectors of length n in V .

Clearly then a (n, k) binary linear code has 2k vectors or codewords. We regard each vector

as a word and will write the row vector x = [x0 x1 · · · xn−1 ] in the form of a word x =

x0x1 . . . xn−1. It should be evident from linear algebra (see, e.g., [All97]) that such a set of

codewords, C say, is actually a subspace of the vector space V ; hence it can be defined by

a basis. A matrix whose rows form a set of basis vectors for C is called a generator matrix.

Note that as a subspace has more than one basis, except in very trivial circumstances, the

corresponding code has more than one generator matrix, since any set of k linearly independent

codewords can be chosen as rows for the generator matrix.5

Example 1.1. Consider the (5, 3) binary linear code C with generator matrix

G =









1 0 0 1 0

0 1 0 0 1

0 0 1 1 1









.

2Convolutional codes can be (and often are) terminated. This termination effectively results in a block code.
3In this thesis we will consider only linear block codes. There exist some good nonlinear block codes such as

Kerdock [Ker72] and Preparata [Pre68] codes. For more information, the reader is directed to [Ple98].
4A finite field with q elements (where q is a power of prime p) is called a Galois field, named after the mathe-

matician Évariste Galois, and is denoted GF(q). See, for example, [All91] for more details.
5The members of the set of generator matrices for C are called equivalent generator matrices.
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Clearly the three chosen words are linearly independent due to the reduced row echelon struc-

ture of G. The associated code C has 23 = 8 distinct codewords and can be found as the set of

linear combinations of the three words forming G. Explicitly

C = {00000, 10010, 10101, 11011, 11100, 00111, 01001, 01110}. (1.1)

Further, as C is a vector subspace, we note that the linear combination of any number of code-

words from C modulo 2 results in a codeword from C . Indeed, choosing any k = 3 lin-

early independent codewords from C forms an equivalent generator matrix. For example, say

x0 = [1 0 1 0 1 ], x1 = [1 1 0 1 1 ], and x2 = [1 1 1 0 0 ]. Then we can form

G2 =









1 0 1 0 1

1 1 0 1 1

1 1 1 0 0









.

It is easy to check that these vectors are linearly independent and that the rowspace of G2 forms

the set C , i.e., G2 is also a generator matrix for C . �

As a binary (n, k) linear block code has 2k codewords, each codeword corresponds to a unique

k-tuple u, in the sense that x = u0G0+u1G1+. . . uk−1Gk−1 for x ∈ C where G0, . . . ,Gk−1

are the k basis vectors forming the rows of G. Thus we can encode any binary information

vector u of length k as a unique codeword uG = x ∈ C . Then the rate of an (n, k) linear

block code is defined as R = k/n in the sense that in every time unit, k information bits are

encoded into a vector of length n to be transmitted over the channel.

Example 1.1 (cont.). Suppose we wish to encode the information vector u = [u0 u1 u2 ] =

[1 0 1 ] using the (5, 3) binary linear code C of rate R = 3/5 defined above. We calculate

x = uG = [1 0 1 ]









1 0 0 1 0

0 1 0 0 1

0 0 1 1 1









= [1 0 1 0 1 ].

The codeword x = [1 0 1 0 1 ] can then be transmitted over the channel. �

We observe in the above example that the information vector u forms part of the codeword

x = [ u : p ]. This phenomenon happens because of the reduced row echelon structure of G.
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Such a generator matrix is called systematic.6 The vector p, of length n − k, contains the so-

called parity-check symbols. For an information sequence encoded using a systematic generator

matrix the parity-check symbols represent the redundant information transmitted alongside the

message to aid error control at the receiver. How to choose the redundant bits to improve error

control over a noisy channel is one of the major challenges of code design. The notion of

parity-checks leads us to another useful matrix associated with a linear block code.

It is a fact (see, e.g., [LC04, p. 70]) that if G is a k×n matrix with k linearly independent rows

then there exists an (n− k)× n matrix H with the property that any vector in the row space of

G is orthogonal to H , and any vector in the row space of H is orthogonal to G. In other words,

the linear combinations of rows of H form the null space of G. We call H the parity-check

matrix of the linear code C; this can be used to form an alternative definition of a linear block

code.

Definition 1.2 Let H be the parity-check matrix of an (n, k) linear block code with generator

matrix G. Then the code C is defined as the set of vectors x that satisfy xHT = 0.

The parity-check matrix proves helpful for error detection: if a received vector r does not satisfy

rHT = 0 then we know an error has occured. There exists a very useful theorem for obtaining

the parity check matrix from a generator matrix or vice versa.

Theorem 1.1 [Ple98, p. 9] If an (n, k) linear code C has a generator matrix G = [Ik : A]

in systematic form, then a parity check matrix of C is7 H = [−AT : In−k], where AT is the

transpose of A and, for example, Ik is the k × k identity matrix.

Example 1.1 (cont.). In this running example,

A =









1 0

0 1

1 1









and thus −AT = AT =





1 0 1

0 1 1



 .

6Note that in general for a generator matrix of rank k to be systematic we simply require the k × k identity

matrix appears in the matrix up to column permutations. The matrix is said to be in standard systematic form if the

identity matrix exists as a left hand block.
7When considering binary codes, −AT = AT .
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We can then form the corresponding parity-check matrix using Theorem 1.1 as follows:

H =





1 0 1 1 0

0 1 1 0 1



 ,

and by calculation, GHT = 0k×(n−k). �

Note that the 2n−k linear combinations of the rows of the parity-check matrix H described

above form a binary (n, n − k) linear code C⊥. This code C⊥ is called the dual code of C .

By the properties of parity-check and generator matrices we observe that any word x ∈ C⊥

satisfies xGT = 0. In other words, a parity-check matrix for C is a generator matrix for C⊥

and vice versa. See, for example, [LC04] for more details.

The notions of Hamming weight and Hamming distance were introduced in [Ham50]. The

Hamming weight of a codeword is simply the number of non-zero positions in the codeword.

The Hamming distance, or metric, d(x0,x1) between two codewords x0 and x1 is the num-

ber of positions in which they differ. Hamming used these definitions, in turn, to define the

minimum distance dmin of a linear block code C as follows:

dmin = min{d(x0,x1) | x0,x1 ∈ C, x0 6= x1}.

Due to the linearity of C , it can easily be shown that dmin is equal to the codeword with the

smallest Hamming weight. For example, we see from Equation (1.1) in the running example

that dmin = 2. Often, an (n, k) linear block code with minimum distance dmin will be referred

to as an (n, k, dmin) linear block code. The minumum distance is an very important parameter

for error-correction. For example, when considering the binary symmetric channel model, the

optimal way to decode is to choose the codeword that is closest in terms of Hamming distance.

Thus, an (n, k, dmin) linear block code transmitted over the BSC can guarantee the correct

decoding of a codeword provided less than or equal to t errors occur where8

t =

⌊

dmin − 1

2

⌋

.

This important parameter motivated the study of algebraic coding theory, which primarily

aimed to maximize dmin for a given n and k. This formed the main focus of channel cod-

ing theorists for over 20 years, following Shannon’s famous paper.

8The floor of the real number x is the largest integer that is not larger than x and is written as ⌊x⌋.
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1.3.2 Convolutional codes

Convolutional codes were first introduced by Elias [Eli55]. The idea of convolutional coding

is fundamentally different to that of block codes. The main difference of a convolutional code

is that the encoder contains memory, and thus the output at any time is dependant on both

the inputs at that time and a number of previous inputs.9 As we will observe in this section,

good properties of convolutional codes, such as low error probabilities and the equivalent of

large minimum distances for block codes, are achieved by increasing the memory order. In this

sense, convolutional codes are essentially motivated by the the concept of finding codes that

optimize the average performance as a function of encoding and decoding complexity [CF07],

i.e., they fall into the category of probabilistic coding rather than algebraic coding (this notion

will be discussed further in Section 1.4). For a thorough treatment of convolutional codes, the

reader is directed to [JZ99b].

An (n, k,m) convolutional encoder of rate R = k/n can be viewed as a linear sequential ciruit

with k inputs, n outputs and input memory m. The memory order m implies that inputs will

remain in the encoder for m time units after entering. The encoder for a rate R = 1/2 binary

convolutional code with memory order m = 2 is shown in Figure 1.5.

Figure 1.5: A rate R = 1/2 binary convolutional encoder with memory order m = 2.

A shift register receives a binary input symbol at each time unit and outputs this symbol at

the next time unit. The modulo 2 adders sum the binary symbols at the inputs and output this

value modulo 2 at each time unit. In practice, a modulo 2 adder with two inputs is simply an

exclusive-or (XOR) gate, and an adder with more than two inputs can be implemented using

9Encoders that use feedback result in so-called recursive convolutional codes. In this case, the output at any time

unit depends on infinitely many previous inputs.
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a sequence of XOR gates. The encoder shown in Figure 1.5 is called a feedforward encoder

as we have no feedback in the circuit. In order to be concise, we will not consider feedback

encoders in this section. The reader is directed to [LC04] for more details and examples.

Example 1.2. Consider the (2, 1, 2) binary feedforward convolutional encoder of rate R = 1/2

depicted in Figure 1.5. Suppose we wish to encode the infinite information sequence u =

[ 1 1 0 1 0 · · · ]. The parameters of the encoding circuit according to input sequence u are

displayed in Table 1.1.

Input Shift register contents Output symbols

t ut Register 1 Register 2 x(0) x(1)

...
...

...
...

...
...

−1 0 0 0 0 0
0 1 1 0 1 1
1 1 1 1 0 1
2 0 0 1 1 1
3 1 1 0 1 0
4 0 0 1 1 0
5 0 0 0 0 1
6 0 0 0 0 0
...

...
...

...
...

...

Table 1.1: Parameters of the convolutional encoding circuit of Example 1.2.

We note that the output at time unit t is given as

x
(0)
t = ut + ut−1 and x

(1)
t = ut + ut−2.

As these equations hold for every time unit, we say the convolutional code is time invariant.

From these equations we can form generator sequences g(i) for each output.10 For this example,

g(0) = [ 1 1 0 ] and g(1) = [ 1 0 1 ].

Then the output sequences can be obtained as

x(0) = u ⊛ g(0) = [ 1 0 1 1 1 0 0 · · · ]

x(1) = u ⊛ g(1) = [ 1 1 1 0 0 1 0 · · · ],

10Alternatively, the generator sequences can be obtained for this example by observing the two impulse responses

for m + 1 time units when inputting information sequence u = [ 1 0 0 · · · ].
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where ⊛ denotes discrete convolution and all operations are modulo 2.11 The two sequences

x(0) and x(1) are then multiplexed into a single codeword sequence as follows

x = [ x
(0)
0 x

(1)
0 x

(0)
1 x

(1)
1 · · · ] = [ 1 1 0 1 1 1 1 0 1 0 0 1 0 0 · · · ],

that can be transmitted over the channel. �

For a general rate R = k/n binary feedforward encoder with memory order12 m, each of the

n outputs will have a generator sequence according to each one of the k inputs; i.e., for each

output j = 0, . . . , n−1, there exist k generator sequences g
(j)
0 ,g

(j)
1 , . . . ,g

(j)
k−1 of length m+1.

These generator sequences can be used to form a generator matrix G for the convolutional

code, where

G =

















G0 G1 G2 · · · Gm

G0 G1 G2 · · · Gm

G0 G1 G2 · · · Gm

. . .
. . .

. . .
. . .

















,

where blank space corresponds to zero matrices of the appropriate size and each Gl is a k × n

matrix given as

Gl =

















g
(0)
0,l g

(1)
0,l · · · g

(n−1)
0,l

g
(0)
1,l g

(1)
1,l · · · g

(n−1)
1,l

...
...

...

g
(0)
k−1,l g

(1)
k−1,l · · · g

(n−1)
k−1,l

















.

Then for an information sequence u = [ u
(0)
0 u

(1)
0 · · · u

(k−1)
0 | u

(0)
1 u

(1)
1 · · · u

(k−1)
1 | · · · ],

the codeword x = [ x
(0)
0 x

(1)
0 · · · x

(n−1)
0 | x

(0)
1 x

(1)
1 · · · x

(n−1)
1 | · · · ] is given as x = uG.

Example 1.2 (cont.). Recall that the generator sequences for this rate R = 1/2 convolutional

encoder were given as g(0) = [ 1 1 0 ] and g(1) = [ 1 0 1 ]. The associated generator matrix

is

11To obtain the symbols x
(j)
l for l ≥ 0 using the convolution operation, we calculate x

(j)
l =

Pm

i=0 ul−ig
(j)
i for

outputs j = 1, 2, where ul−i , 0 for all l < i and all operations are modulo 2. Similar expressions exist for general

rate R = k/n convolutional encoders. The reader is directed to [LC04] for further details and examples.
12One needs to take care to calculate the memory order for more complicated convolutional encoders than the

one presented here. See [LC04, p. 459] for a formal definition.
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G =











G0 G1 G2

G0 G1 G2

. . .
. . .

. . .











=























1 1 1 0 0 1

1 1 1 0 0 1

1 1 1 0 0 1

1 1 1 0 0 1

. . .
. . .

. . .























.

Thus, for information sequence u = [ 1 1 0 1 0 · · · ], we calculate

x = uG = [ 1 1 0 1 1 1 1 0 1 0 0 1 0 0 · · · ],

which agrees with the previous calculation found by convolution. �

Recall that when discussing block codes we introduced the notion of systematic and nonsys-

tematic generator matrices. A generator matrix G of an (n, k) linear block code is in systematic

form if the k × k identity matrix appears in the matrix up to column permutations. This results

in the information vector symbols existing unchanged in the codeword to be transmitted. The

same phenomenon occurs for convolutional generator matrices. An identity matrix exists in the

generator matrix of a convolutional code precisely when each of the k inputs of the associated

rate R = k/n convolutional encoder are directly output with no modification. We observe

that this is not the case for the generator matrix and associated encoder for Example 1.2. Thus

we say the encoder in Figure 1.5 is a (2, 1, 2) binary nonsystematic feedforward encoder. For

examples of systematic convolutional encoders see, e.g., [LC04].

The notion of a parity-check matrix of a convolutional code is the same as that for a block

code. Hence Theorem 1.1 can be adapted to allow one to obtain a parity-check matrix H for a

systematic convolutional generator matrix. We may then formulate the alternative definition of

a convolutional code as the set of infinite sequences x that satisfy the equation

xHT = 0.

Another similarity between block codes and convolutional codes is the concept of a minimum

distance between codewords/code sequences. For convolutional codes, the (minimum) free

distance dfree is defined as the minimum Hamming distance between any two finite length

code sequences, i.e., sequences with only a finite number of non-zero symbols. If one of the

two sequences is shorter than the other, an appropriate number of zeros is added to make the
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lengths equal. Due to the linearity of convolutional codes, dfree is equal to the minimum

Hamming weight over all non-zero code sequences x ∈ C . Similarly to the case of block

codes, when considering transmission over the BSC, a convolutional code can guarantee the

correct decoding of a received noisy sequence with at most t = ⌊(dfree − 1)/2⌋ errors.

1.4 Channel coding: decoding

In this section, we concentrate on the channel decoder block of the digital communications

model depicted in Figure 1.1. The role of the channel decoder is to pass an estimate û of the

original message u to the digital sink, having received the noisy sequence r. This estimate is

clearly very important to the system and thus the reliability of a coding scheme depends not

only on the particular code employed but also the chosen decoding algorithm.

1.4.1 Decoding methods

When transmitting over the AWGN channel, the received noisy sequence r is real-valued. In

order to approach the Shannon limit with coding schemes over this channel it has been found

to be necessary to use so-called soft decision decoding [Pro01, LC04].13 When using soft

decision decoding, the decoder receives not only the 1 or 0 (hard) decision but also a measure

of the reliability of the channel output. Here, clearly the decoder must be able to receive more

than 2 different inputs. This will complicate decoder implementation, but it can be shown

(see for example [LC04]) that we can gain two to three decibels in transmit power. In this

section, we review the basic concepts of two of the standard decoding techniques, namely

maximum likelihood (ML) decoding and maximum a posteriori probability (MAP) decoding,

and highlight their relationship.

Recall that there is a one-to-one correspondence between the information sequence u and the

codeword to be transmitted x. The same correspondence follows for the decoder estimates x̂

and û. Suppose that the decoder receives the noisy vector r. Then the probability of decoder

error can be written as

P(e) =
∑

r

P(e|r)P(r) =
∑

r

P(x̂ 6= x|r)P(r),

13The first recorded algorithm employing soft decision decoding was so-called Wagner decoding [SB54].
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where P(r) is the probability of receiving sequence r. Of course, the probability P(r) is inde-

pendent of the decoder. Thus to decode optimally, the decoder should minimize P(x̂ 6= x|r),

or alternatively maximize P(x̂ = x|r). To use the ML rule, one should choose the x̂ ∈ C such

that P(r|x̂) is maximum among all P(r|x̃) for x̃ ∈ C . By following this approach, the word er-

ror probability will be minimized, provided that each information sequence u (and hence each

codeword x) is equally likely.

If this condition cannot be assumed, then the word error probability will be minimized by

choosing the codeword estimate x̂ ∈ C that maximizes the a posteriori probability (APP)

P(x̂|r), i.e., one should choose the estimate x̂ ∈ C such that P(x̂|r) is maximum among all

P(x̃|r) for x̃ ∈ C . Using Bayes’ Law, we obtain an expression for the MAP rule

P(x|r) =
P(r|x)P(x)

P(r)
.

Again, we arrive at the conclusion that if each codeword is equally likely then maximizing

P(x|r) is equivalent to maximizing P(r|x), i.e., the MAP rule is equivalent to the ML rule. As

an alternative to minimizing the error probability of an entire block or sequence, we can define

a symbol by symbol decoder. Here, the decoder should minimize the probability P(x̂i 6= xi|r).

A symbol by symbol soft decision MAP decoder maximizes the APP P(x̂i|r). A hard decision

for x̂i is a probability distribution such that P(x̂i|r) can equal either a one or a zero.

Many of the early decoding schemes for algebraic block codes used only hard decision de-

coding based on the algebraic structure of the code. The metric used here to make the hard

decisions is the Hamming distance and thus the goal of algebraic coding theory was primarily

to maximize the minimum distance dmin for a given block length n and dimension k. The

motivation behind probabilistic coding theory, on the other hand, was to focus on the aver-

age performance of codes with encoding and decoding complexity in mind. In view of good

performance, probabilistic decoders tend to use soft information both at the input and during

the decision making process. Convolutional codes were the early focus of probabilistic coding

theorists, and their natural trellis structure14 led to a very efficient ML decoding algorithm that

can use soft decisions, called the Viterbi algorithm [Vit67]. Probabilistic coding theory was

inspired by Shannon’s original probabilistic approach to coding and it has proven to be the way

to obtain modern capacity-approaching codes by using long random-like codes with iterative

soft-input soft-output (SISO) decoding algorithms.

14See, for example, [LC04] for definitions and examples of codes with trellis representations.
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1.4.2 Modern iterative decoding techniques

In his doctoral thesis, Gallager developed a (hard decision) iterative bit-flipping (BF) decoding

algorithm for low-density parity-check codes [Gal63]. LDPC codes are now often decoded

with an implementation of the popular sum-product algorithm (SPA) (see [KFL01]), which is

a symbol by symbol SISO iterative message-passing APP decoding algorithm based on belief

propagation (BP) [Pea82]. The SPA, whilst being a sub-optimal decoding method in practice,

has proven to be extremely efficient and effective for decoding LDPC codes. The reliability

measures (extrinsic information) computed by the algorithm for each symbol at the end of an

iteration are used as inputs for the next iteration. After each iteration, hard decisions are taken

and these decisions are then tested by evaluating the parity-check equations. If a codeword

is found, the decoding iterations are stopped; otherwise they continue until a pre-specified

maximum number of iterations is reached. In the latter case one would declare decoding failure,

or just use the hard decision even if this implies bit errors. For more details, see [Mac99,LC04].

In 1974, Bahl, Cocke, Jelinek, and Raviv (BCJR) proposed a SISO MAP iterative decoding al-

gorithm for convolutional codes (or block codes with a trellis structure) [BCJR74]. The BCJR

algorithm is more complex than the Viterbi algorithm and, as such, it is generally not employed

for decoding convolutional codes. However, the iterative SISO technique means that it is ideal

for decoder implementation of capacity-approaching turbo codes. This algorithm is now under-

stood to be an implementation of the SPA on a trellis [KFL01]. LDPC and turbo codes will be

discussed further in Sections 1.5 and 1.6 respectively.

To measure the error performance of a code we usually plot the bit-error probability, or bit-

error rate (BER), against the signal-to-noise ratio (SNR). Figure 1.6 shows the typical dynam-

ics of a capacity-approaching code under iterative message-passing decoding compared to an

uncoded BPSK transmission. In this figure, the SNR is given as the ratio of the energy per

transmitted information bit Eb to the one-sided power spectral density (PSD) N0 of the channel

noise. Another common measure is to plot the block or frame-error rate (FER) against the

SNR. There are two limits on the performance of the code, the Shannon limit and the iterative

decoding threshold.
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Figure 1.6: Typical error performance of a modern capacity-approaching code under iterative

message-passing decoding.

The Shannon limit defines channel capacity and is the ultimate limit of error performance.

This limit is a direct result of the physical properties of the channel. The iterative decoding

threshold differs in that it considers both the structure of a code and the (iterative) decoding

algorithm employed. In [RU01a], Richardson and Urbanke presented a technique to obtain the

iterative decoding threshold using a technique called density evolution. Density evolution tracks

the probability density functions of the messages in the Tanner graph of an LDPC code15 and

determines whether or not iterative message-passing decoding will converge for a given SNR.

Like the Shannon limit, the iterative decoding threshold limits the performance of an LDPC

code. By definition, the iterative decoding threshold cannot exceed the Shannon limit, and if

the threshold is equal to the Shannon limit then the code is said to be capacity-achieving. Long

irregular LDPC codes have been designed that almost achieve capacity [CFRU01].

Capacity-approaching codes have the desirable property that after a certain SNR there is a

steep slope called the waterfall region of the curve. Here, the error performance improves

dramatically with little increase in power. However, we also observe that when the SNR exceeds

a particular value the curve typically levels off, forming the so-called error floor region. Here

we achieve a relatively small improvement in performance for a large increase of power. For

15Density evolution is not restricted to LDPC codes. It can be employed for other graph-based codes with associ-

ated message-passing decoding. However, for codes with complicated structures such as turbo codes, the procedure

becomes intractable.
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capacity-approaching codes, the error floor typically occurs at very low BERs and thus cannot

be explored by conventional simulations. Recently, the error events contributing to this error

floor have been classified as trapping sets, graphical sub-structures existing in the Tanner graph

of LDPC codes [Ric03]. In this paper, Richardson also proposed a two-stage technique based on

trapping sets to predict the error floor performance of LDPC codes. This has sparked a wave of

research, as the error floor is a crucial consideration for the system designer. Trapping sets will

be discussed further in Chapter 4, and new results on the trapping sets of LDPC convolutional

codes are the focus of Chapter 6.

1.5 Low-density parity-check (LDPC) codes

Along with turbo codes, which will be described briefly later in Section 1.6, low-density parity-

check block codes form a class of codes which approach the (theoretical) Shannon limit. LDPC

codes were first introduced in the 1960s by Gallager [Gal62, Gal63]. However, they were con-

sidered impractical at that time, and very little related work was done until Tanner provided

a graphical interpretation of the parity-check matrix in 1981 [Tan81b]. More recently, in his

Ph.D. Thesis, Wiberg revived interest in LDPC codes and further developed the relation be-

tween Tanner graphs and iterative decoding [Wib96].

1.5.1 LDPC block codes

The 1990s brought the rediscovery of LDPC codes from two independent sources: Sipser and

Spielman proposed LDPC codes based on so-called Expander graphs [SS96] and the second

author proposed a linear-time encoding and decoding algorithm with reasonable error perfor-

mance [Spi96]; and independently, MacKay and Neil proposed MN codes [MN97] with a simi-

lar structure to that of Gallager codes [Gal62], and showed empirically that near Shannon limit

performance could be achieved by codes with very sparse matrices and an iterative decoding

belief propagation decoding algorithm [Mac98, Mac99]. Following these important contribu-

tions, long LDPC codes using belief propagation decoding have been shown to achieve near

capacity performance (see, e.g., [RSU01, RU01a, KLF01, LMSS01]). See, in particular, the

noteworthy achievement of designing LDPC codes just 0.0045 dB from the capacity limit of

the binary input AWGN channel [CFRU01].

LDPC codes are defined using the second of our approaches to linear codes, namely as the set

of sequences x forming the null space of a parity-check matrix H .
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Definition 1.3 A (J,K)-regular low-density parity-check (LDPC) code is defined as the null

space of a parity-check matrix H where each row of H consists of exactly K ones, each column

of H consists of exactly J ones, and both J and K are small compared with the number of rows

in H .

Example 1.3. Consider the parity-check matrix

H =



























1 0 1 1 0 0 0 0 0 0 1 0

0 1 1 0 1 1 0 0 0 0 0 0

0 0 0 1 1 0 0 1 1 0 0 0

1 0 0 0 0 0 1 0 1 1 0 0

0 0 0 0 0 1 1 1 0 0 0 1

0 1 0 0 0 0 0 0 0 1 1 1



























6×12

.

The parity-check matrix H has K = 4 ones in every row, J = 2 ones in every column, and

is of full rank. Thus, the set of all binary vectors x of length n = 12 satisfying the equation

xHT = 0 form a (2, 4)-regular LDPC block code of rate R = 1/2.16 �

In 1981, Tanner proposed a graphical interpretation of a code by means of a bipartite graph,

subsequently called a Tanner graph [Tan81b].17 In the Tanner graph of a parity-check matrix

H , each column of H corresponds to a variable node, and each row corresponds to a check or

constraint node. If position (i, j) of H is equal to one, then check node i should be connected

to variable node j in the Tanner graph, otherwise, there is no edge connecting these nodes.

Figure 1.7 shows the Tanner graph of the (2, 4)-regular LDPC code of Example 1.3.

Figure 1.7: The Tanner graph of a (2, 4)-regular low-density parity-check code.

16The parity-check matrix of Example 1.3 is much shorter and denser than that of a typical low-density parity-

check matrix. Parity-check matrices of LDPC codes with good error control performance typically have a very

sparse parity-check matrix and long block length [Mac99].
17A bipartite graph is a graph whose vertices can be divided into two disjoint sets A and B such that every edge

of the graph connects a vertex in set A to a vertex in set B.
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It has been shown in the literature that long irregular LDPC block codes have extremely good

error control performance [LMSS01, RSU01, RU01a, CFRU01]. An irregular LDPC code sim-

ply relaxes the LDPC constraints concerning row and column weight. Many such irregular

codes use the Tanner graph for design and construction.

Recall that a major factor in error control performance is the minimum distance of the chosen

code. In his thesis, Gallager showed that there exist so-called asymptotically good (J,K)-

regular LDPC code ensembles [Gal63]. A code ensemble is a set of codes which share certain

properties (such as common parameters J and K in this case). An asymptotically good en-

semble has the desireable property that the minimum distance dmin grows linearly with block

length n for an average member. Thus we can define the constant minimum distance growth

rate for such an ensemble as δmin = dmin/n. This result is remarkable, as many good code

ensembles that are used in practice do not have this property. However, the distance growth rate

of Gallager codes is typically not as good as the growth rate indicated by the Gilbert-Varshamov

bound [Gil52, Var57] which, for any given rate, proves the existence of at least one code with

a particular growth rate. Thus, we hypothesise that LDPC codes ensembles constructed in the

way proposed by Gallager are not as good as a randomly constructed code ensemble. However

it is possible to decode long length LDPC codes computationally, which is not currently the

case for randomly constructed codes.

1.5.2 LDPC convolutional codes

LDPC convolutional codes, the convolutional counterparts of LDPC block codes, were intro-

duced by Jiménez-Felström and Zigangirov in [JZ99a], and they have been shown to have cer-

tain advantages compared to LDPC block codes of the same complexity [CPBZ06,CPJD07].18

We start with a brief definition of a rate R = b/c binary LDPC convolutional code C (see

[JZ99a] for full details). An infinite code sequence x of an LDPC convolutional code satisfies

the equation

xHT = 0,

18The basic concepts of an LDPC convolutional code were independently described earlier in a patent application

by Tanner [Tan81a].
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where HT is the syndrome former matrix (i.e., transposed parity-check matrix) and

H =





























H0(0)

H1(1) H0(1)
...

...
. . .

Hms(ms) Hms−1(ms) . . . H0(ms)

Hms(ms + 1) Hms−1(ms + 1) . . . H0(ms + 1)

. . .
. . .

. . .





























is the parity-check matrix of the convolutional code C . The submatrices Hi(t), i = 0, 1, · · · ,ms,

t ≥ 0, are binary (c − b) × c submatrices, given by

Hi(t) =











h
(1,1)
i (t) · · · h

(1,c)
i (t)

...
...

h
(c−b,1)
i (t) · · · h

(c−b,c)
i (t)











,

that satisfy the following properties:

1. Hi(t) = 0(c−b)×c, i < 0 and i > ms, ∀ t.

2. There is a t such that Hms(t) 6= 0(c−b)×c.

We call ms the syndrome former memory and νs = (ms + 1)c the decoding constraint length.

These parameters determine the width of the nonzero diagonal region of H. The sparsity of the

parity-check matrix is ensured by demanding that its rows have very low Hamming weight, i.e.,

wH(hi) << (ms + 1) · c, i > 0, where hi denotes the i-th row of H . The code is said to be

regular if its parity-check matrix H has exactly J ones in every column and, starting from row

(c− b)ms + 1, K ones in every row. The other entries are zeros. We refer to a code with these

properties as an (ms, J,K)-regular LDPC convolutional code, and we note that, in general,

the code is time-varying and has rate R = b/c = 1 − J/K.19 A rate R = b/c, (ms, J,K)-

regular time-varying LDPC convolutional code is periodic with period T if Hi(t) is periodic,

i.e., Hi(t) = Hi(t + T ),∀ i, t, and if Hi(t) = Hi,∀ i, t, the code is called time-invariant.

19If linearly dependent rows exist in the parity-check matrix then the code will have rate R ≥ 1 − J/K.
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An LDPC convolutional code is called irregular if its row and column weights are not con-

stant. The notion of degree distribution is used to characterize the variations of check and

variable node degrees in the Tanner graph corresponding to an LDPC convolutional code. Sim-

ilarly to the case of block codes, optimized degree distributions have been used in the lit-

erature to design LDPC convolutional codes with good iterative decoding performance (see,

e.g., [SSCF03, RKZ06, PZC06, TZF07]).

1.6 Concatenated and turbo type codes

The idea of concatenated codes was first presented by Forney [For66]. Here, two linear block

codes were essentially implemented one after another, with similar serial decoding being per-

formed in reverse. The main idea behind this is that the two shorter codes should be easy to

encode and decode but the resulting concatenated code will be longer and much more powerful.

Turbo codes, introduced by Berrou, Glavieux and Thitimajshima [BGT93, BG96], shocked the

coding community by displaying excellent error control performance and reasonable decoding

complexity. Turbo codes are a form of concatenated code, but contrary to earlier concatenated

codes, turbo codes are parallel concatenated codes involving two encoders working in tandem.

The good performance of turbo codes can be attributed to the “random-like” structure of the

code, as the encoder uses a long interleaver and feedback. However, turbo codes do not have

good minimum distance properties. In fact, it has been shown that the minimum distance of

a turbo code grows only logarithmically with interleaver length [Bre04], and thus these codes

are not asymptotically optimum (unlike some ensembles of asymptotically good LDPC codes),

implying the error floor cannot be avoided [CF07].

“Turbo-like” codes called Repeat-Accumulate (RA) codes were proposed by Divsalar, Jin and

McEliece in 1998 [DJM98]. These codes were generated by serial concatenation of a repetition

code, a long interleaver and a simple convolutional encoder. The advantage of this construction

is that one is able to develop a general theory for such codes. Subsequent advances include Ir-

regular Repeat Accumulate (IRA) codes [JKM00] and Accumulate Repeat Accumulate (ARA)

codes [ADY07]. These codes also possess sublinear minimum distance, but similar methods

have been used to create asymptotically good code ensembles [DDJ06]. These codes all have a

simple graphical representation which will be discussed further in Chapter 4, and later used in

Chapters 5 and 6.
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1.7 Thesis outline and motivation

Motivated primarily by Theorem 1.1, which tells us how to obtain generator matrices and parity-

check matrices from one another (after using Gaussian elimination if necessary), in Part I of

the thesis we provide an efficient alternative to this theorem for codes with particular diagonal

structures. This method uses polynomials and associated algebra similar to that used for cyclic

codes. In Chapter 2, the theory of cyclic codes necessary to understand the contributions of

Chapter 3 is presented. Moreover, we review candidate codes with similar diagonal structure

that can be used by the proposed method for such codes and describe the existing alternative

encoding methods.

In Chapter 3, an efficient new method to obtain a generator matrix G from certain types of

parity-check matrices H with a so-called defective cyclic block structure is proposed. This

novel approach describes parity-check and generator matrices in terms of polynomials. More-

over, using this polynomial algebra, we show that efficient ways to implement the scheme can

be devised. In addition, this method is interesting as such, as it allows one to convert H into

G without a systematic encoder in between. The method can be used to find sparse generator

matrices for LDPC block codes, and the procedure can be implemented efficiently due to the

polynomial representation of the matrix H . Further, quasi-cyclic type structures emerging from

the non-binary version of the algorithm allow us to consider LDPC convolutional codes (which

have an inherent diagonal structure) as candidates, due to the close connections between such

block codes and LDPC convolutional codes.

This leads us logically to Part II of the thesis, which focuses on LDPC convolutional codes.

Motivated by Gallager’s result on the minimum distance growth rate of regular LDPC ensem-

bles (detailed at the end of Section 1.5.1), we wish to obtain similar results for LDPC convo-

lutional codes. Protograph-based LDPC block codes [Tho03] provide the framework for this

theory. In Chapter 4 we review previous results and theory concerning the minimum distance

and performance of protograph-based codes. The material presented in this chapter is essential

for the understanding of Chapters 5 and 6.

In Chapter 5, we present new methods to construct LDPC convolutional codes based on pro-

tographs. Then, asymptotic methods are used to form lower bounds on the ratio of free distance

to constraint length for several ensembles of asymptotically good, protograph-based LDPC

convolutional codes, i.e., ensembles that have the property of free distance growing linearly
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with constraint length. These results mirror Gallager’s results for regular LDPC block code en-

sembles. In addition, lower bounds on the free distance growth rate are found for two irregular

ensembles of practical interest. Finally, it is shown for all the ensembles considered that the

free distance to constraint length ratio of the LDPC convolutional codes exceeds the minimum

distance to block length ratio of corresponding LDPC block codes.

In Chapter 6, we use the framework of protographs again, this time in the context of the study

of the error floor of the asymptotically good LDPC convolutional codes derived in Chapter

5. Here, trapping sets of protograph-based LDPC convolutional codes are analysed and we

use asymptotic methods to calculate a lower bound for the trapping set growth rates for several

ensembles of asymptotically good protograph-based LDPC convolutional codes. Thus showing

that the size of the smallest non-empty trapping set (which dominates performance in the error

floor region) grows linearly with constraint length for these codes. These results can then be

used to predict where the error floor will occur for such codes under iterative message-passing

decoding.

Finally, in Chapter 7, some concluding remarks are made and recommendations for future

research are proposed.
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A New Method of Encoding Block

Codes with Polynomials
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Abstract

Cyclic codes, and other such structured codes, have been shown to have good error-correcting

properties and efficient encoder and decoder designs. In this chapter, we review previous re-

sults from the literature that are essential to put the contributions of Chapter 3 in context. In

particular, we focus on block codes with useful encoding structures.
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2.1 Introduction

In this chapter we primarily discuss results in the literature on block codes with sliding diagonal

structures. As discussed in Section 1.7, we are motivated to study such codes because, in

particular, the underlying structure helps make encoding and decoding easier [Meg61]. We

begin in Section 2.2 by exploring cyclic codes, the most famous and extensively studied type

of code with this structure, and include a brief summary of quasi-cyclic codes in section 2.2.2.

In Section 2.3, so-called polynomial codes are introduced which, while not necessarily cyclic,

contain several important cyclic codes as subclasses. Non-binary codes and code construction

methods are introduced in Section 2.4, with particular attention being paid to codes with the

important diagonal structure. Finally, in Section 2.5, we discuss various existing encoding

schemes for cyclic and quasi-cyclic codes, and also unstructured LDPC codes. The material

contained in this chapter provides a background for setting the new results of Chapter 3 in

context.

2.2 Cyclic codes

Cyclic codes were first presented in 1957 by Prange [Pra57]. The important structure of cyclic

codes leads to efficient encoding and decoding mechanisms [Meg61], and hence cyclic codes

are among the most studied of all codes. Cyclic codes include the important family of Bose-

Chaudhuri-Hocquenghem (BCH) codes [Hoc59] [BR60] (of which Reed-Solomon (RS) codes

[RS60] can be viewed as a subclass) and finite geometry codes (see [KLF01] and references

there for a good review of these codes). In addition, Hamming [Ham50], Golay [Gol49] and

shortened Reed-Muller (RM) [Ree54, Mul54] codes can be put into cyclic form. Cyclic codes

are also building blocks for other important codes such as Kerdock [Ker72], Preparata [Pre68]

and Justesen [Jus72] codes.

2.2.1 The structure of cyclic codes

To begin, we define what is meant by a cyclic code.

Definition 2.1 A linear block code C of length n over a field F is called cyclic if for any

codeword (c0c1 . . . cn−1) ∈ C we also have (cn−1c0c1 . . . cn−2) ∈ C .
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Let C be a cyclic block code of block length n over a field F . There exists a unique monic

polynomial g(t) over the field F such that g(t) generates C , denoted by C = 〈g(t)〉. By this it

is meant that C is viewed as a subcode of the factor ring Rn = F [t]/〈tn − 1〉 (considered as a

vector space over F ) and in Rn the code C is generated as an ideal by g(t) [MS77, pp. 188-190].

Hence we call g(t) the generator polynomial of C .

Let g(t) = g0 + g1t + . . . + gn−kt
n−k, g0 = gn−k = 1, where 0 < k < n. Then a generator

matrix G for the code C is formed using g(t), in the following way:

G =











g0 g1 . . . gn−k

. . .
. . .

. . .

g0 g1 . . . gn−k











k×n

, (2.1)

where blank spaces correspond to zeros.

Due to the structure of a cyclic code, there also exists a unique monic polynomial

h(t) =
tn − 1

g(t)

over F of degree k which we call the check or parity-check polynomial. Suppose h(t) =

h0 + h1t + . . . + hkt
k. Then it can be shown (see, e.g., [MS77, pp. 194-196]) that a parity-

check matrix H for C is given by:

H =









hk . . . h1 h0

. .
.

. .
.

. .
.

hk . . . h1 h0









(n−k)×n

. (2.2)

Note that gn−k = hk = 1, g0 = h0 = 1. This implies that the code C has dimension k and the

dual code C⊥ has dimension n − k.

Example 2.1. Consider the polynomial g(t) = 1 + t2 + t3 over the field GF(2). Then g(t)

defines a binary (7, 4) cyclic block code C over GF(2). We form a generator matrix from (2.1)

as follows:

G =















1 0 1 1 0 0 0

0 1 0 1 1 0 0

0 0 1 0 1 1 0

0 0 0 1 0 1 1















k×n=4×7

.
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The resulting 2k = 16 codewords can be partitioned into 4 completely cyclic sets

C ={0000000} + {1011000, 0101100, 0010110, 0001011, 1000101, 1100010, 0110001}

+ {1110100, 0111010, 0011101, 1001110, 0100111, 1010011, 1101001}

+ {1111111},

thus C satisfies Definition 2.1. We calculate

h(t) =
tn − 1

g(t)
=

t7 − 1

1 + t2 + t3
= 1 + t2 + t3 + t4,

and can form the corresponding parity-check matrix

H =









0 0 1 1 1 0 1

0 1 1 1 0 1 0

1 1 1 0 1 0 0









n−k×n=3×7

from equation (2.2). As H is of full rank, we observe that the dual code C⊥ has dimension

n− k = 3. This code is generated by h(t), and each of the 2n−k = 8 codewords can be seen to

be a cyclic shift of one another. �

2.2.2 Quasi-cyclic codes

As discussed in Section 2.2.1, cyclic codes possess full cyclic symmetry, i.e., cyclically shifting

a codeword any number of positions, either left or right, results in another codeword. This

structure again enables encoding and decoding to be performed using simple shift registers and

logic circuits.

Definition 2.2 A quasi-cyclic code is a linear code for which cyclically shifting a codeword a

fixed number n0 6= 1 (or a multiple of n0) of symbol positions either to the right or the left

results in another codeword.

It is clear that for n0 = 1, a quasi-cyclic (QC) code is a cyclic code.
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Example 2.2 [LC04, p. 185]. Consider the (9, 3) code generated by the following generator

matrix:

G =









1 1 1 1 0 0 1 1 0

1 1 0 1 1 1 1 0 0

1 0 0 1 1 0 1 1 1









.

The 8 codewords of this (9, 3) QC code are displayed in Table 2.1.

x0 0 0 0 0 0 0 0 0 0

x1 1 1 1 1 0 0 1 1 0
x2 1 1 0 1 1 1 1 0 0
x3 1 0 0 1 1 0 1 1 1

x4 0 0 1 0 1 1 0 1 0
x5 0 1 0 0 0 1 0 1 1
x6 0 1 1 0 1 0 0 0 1

x7 1 0 1 1 0 1 1 0 1

Table 2.1: The codewords of the quasi-cyclic code presented in Example 2.2.

We observe that n0 = 3, and the code is indeed quasi-cyclic. For example consider the code-

word x2 = 110111100. Cycling x2 one and two positions to the right results in the words

011011110 and 001101111 respectively which are not codewords from C . An encoding circuit

for this code is shown in [LC04, p. 186]. �

In general, the performance of QC LDPC block codes compares favourably with that of ran-

domly constructed LDPC codes for short to moderate block lengths. In fact, it has been shown

that certain QC LDPC codes perform close to the Shannon limit [CXDL04]. Further, non-

binary QC LDPC codes have been shown to have significant coding gains over RS codes of the

same lengths and rates decoded with algebraic decoding [SZLA06]. In addition, an LDPC con-

volutional code (introduced in Section 1.5.2) can be constructed by replicating the constraint

structure of the QC LDPC code at infinity [Tan87, ST79, EGSM98]. Recently, good convolu-

tional codes have been constructed in this way [PSVC07]. A comparison between the perfor-

mances of LDPC convolutional codes and the QC codes on which they are based is discussed

in [TSS+04].

32



Background: Block Codes with Diagonal Structures in the Parity-Check Matrix

2.3 Polynomial codes

Polynomial codes were introduced in 1968 by Kasami, Lin and Peterson [KLP68]. Polynomial

codes can be viewed as a generalisation of many important classes of codes such as BCH codes,

RS codes, RM codes and finite geometry codes. Shortened cyclic codes [LC04, pp. 179-183],

which are not cyclic, are also a type of polynomial code.

The aptly named shortened cyclic codes are obtained by puncturing a cyclic code in a certain

way. Consider a cyclic code C of length n and dimension k over a finite field F . Suppose

we can form a subset S of the codewords of C that have zeros in the first l positions for some

positive integer l. Deleting the first l information symbols from every member of S results in a

set Cshort of 2k−l vectors of length n − l. Cshort is a linear subcode of C , called a shortened

cyclic code. This follows from the echelon structure of the shortened cyclic generator matrix.

Example 2.3. Consider the (7, 4) cyclic code of Example 2.1. Let us form S by collecting all

the codewords with l = 1, i.e., all the codewords with a 0 in the first position. Explicitly,

S = {0000000, 0101100, 0010110, 0001011, 0110001, 0111010, 0011101, 0100111}.

Then we obtain the shortened cyclic code

Cshort = {000000, 101100, 010110, 001011, 110001, 111010, 011101, 100111},

which we observe is a linear code of length n−l = 6, with dimension k−l = 3, and is certainly

not cyclic. �

Shortened cyclic codes are of practical interest as shortening codes permits the designer to

obtain codes with a particular length or rate. Moreover, it is shown, for example in [LC04,

pp. 179-183], that the same encoding circuit used for the cyclic code can be used for shortened

cyclic codes. Recall from Section 2.2 that, in part, the motivation behind studying cyclic codes

is the ease of encoding due to their inherent algebra. In Chapter 3, we will examine similar

types of structure to that of shortened cyclic codes.
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2.4 Codes and constructions over GF(q)

We now consider the general case when F = GF (q), the finite field of q elements. It is known

that q must be a power of p where p is a prime (for details see, e.g., [All91]). If q is itself a prime

p then F can be thought of as the set of p elements 0, 1, . . . , p − 1 with arithmetic operations

performed modulo p. As motivation, LDPC codes defined over GF(q) of order q > 2 have been

shown to have significantly improved performance compared to analogous binary LDPC codes

when decoded using a decoding algorithm based on belief propagation [DM98].

In this thesis we focus on codes with diagonal structures in the parity-check matrix. Cyclic

block codes, introduced in Section 2.2, possess this structure by definition. Possibly the most fa-

mous non-binary cyclic codes are Reed-Solomon (RS) codes. RS codes have been widely used

for error-control in a variety of applications including deep-space communications [MS94] and

coding schemes for compact discs [Imm94]. Moreover, binary versions of RS codes have been

shown to be extremely adept (effectively optimal) at correcting burst errors [For71]. However,

the drawback here is worse error-correcting performance compared to binary BCH codes. The

key to implementing these codes was a decoding algorithm proposed by Berlekamp [Ber68]1.

As a testament to the qualities of these codes, Reed-Solomon codes are the main codes used

with an expanded alphabet today, and yet were discovered over 40 years ago. For a detailed

review of RS codes, see [WB94].

Low-density parity-check block codes, introduced in Section 1.5.1, are today’s standard binary

error-correcting block codes. Recently, very good LDPC block code constructions based on

finite geometries over GF(q) were proposed by Kou, Lin and Fossorier [KLF00, KLF01] and

extended by Tang, Xu, Lin and Abdel-Ghaffar [TXLA05]. This type of code will be either

cyclic or quasi-cyclic, thus enabling easy encoding by implementing shift registers. Moreover,

some of the long finite geometry LDPC block codes proposed in the above references have

error performance close to the Shannon limit (in the region of a few tenths of a decibel). Due

to the particular structure of the standard parity-check matrix of an LDPC code (see Section

1.5.1), finite geometries over such fields have an ideal structure to aid construction.

1The connection to linear codes was later observed by Massey the following year [Mas69]. The algorithm is

known as the Berlekamp-Massey algorithm.
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2.5 Existing encoding methods

In Chapter 3, a new method of obtaining a generator matrix for a so-called defectively cyclic

parity-check matrix will be presented. The method uses a simple polnomial division algorithm

similar to that of a cyclic code and outputs a generator matrix defined by a polynomial. Thus

we are able to use shift registers to encode the resulting code which is not necessarily cyclic or

quasi-cyclic. In this section, we review briefly some of the existing methods of encoding block

codes.

To begin, we study an encoding circuit for a cyclic code to illustrate the simple shift register and

feedback structure. Encoding and decoding circuits for cyclic codes were presented in [Meg61].

The standard way2 to encode an (n, k) cyclic code in systematic form involves three steps:

1. We multiply the information polynomial u(t) = u0 + u1t + . . . uk−1t
k−1 by tn−k;

2. the parity-bits polynomial p(t) for the codeword with information polynomial u(t) is

obtained as the remainder when dividing tn−ku(t) by g(t);

3. the codeword is then formed as x(t) = tn−ku(t) + p(t).

The steps in the above algorithm allow us to form a linear (n − k)-stage shift register with

feedback connections based on the generator polynomial g(t). The linear n− k = 3 stage shift

register with feedback connections for the cyclic code of Example 2.1 is shown in Figure 2.1.

Figure 2.1: An encoding circuit for the (7, 4) cyclic code of Example 2.1.

2A similar method to design encoding circuits based on the parity-check polynomial h(t) exists. In general,

circuit designers will choose the encoder based on h(t) if there are more parity-check digits than information digits;

otherwise the encoder based on g(t) will be preferred.
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Example 2.4. Consider the binary (7, 4) cyclic code of Example 2.1. Suppose, for example, we

wish to encode the sequence u = [ 1 1 0 1 ] arising from u(t) = 1 + t + t3. In systematic

form, the generator matrix for this cyclic code is

G =















1 0 1 1 0 0 0

1 1 1 0 1 0 0

1 1 0 0 0 1 0

0 1 1 0 0 0 1















,

and we calculate

tn−ku(t) + p(t) = t3(1 + t + t3) + t2 = t2 + t3 + t4 + t6 ≡ [ 0 0 1 1 1 0 1 ] = uG.

For encoding, we shift the information sequence in to the circuit (and hence directly into the

communication channel). Note that shifting the information sequence in to the channel at the

front end is equivalent to the multiplication tn−ku(t) = t3u(t). According to the input infor-

mation sequence, the contents of the registers will be updated at every step. The state of the

registers at every shift for this example is shown in Table 2.2. After the information bits have

been input, the gate (and hence the feedback loop) is closed. The registers now contain the

polynomial p(t) = t2 ≡ [ 0 0 1 ]. We finally shift the parity digits into the channel. Thus the

complete codeword is x = [ 0 0 1 1 1 0 1 ]. �

Shift number Input bit Register 1 Register 2 Register 3

0 0 0 0
1 1 1 0 1
2 0 1 1 1
3 1 0 1 1
4 1 0 0 1

Table 2.2: Shift register state for the encoding circuit of Example 2.4.

The binary cyclic encoding procedure described above can be modified for encoding non-

binary cyclic codes. An encoder design for Reed-Solomon codes was presented by Berlekamp

[Ber82]. We have observed that linear shift-register and feedback encoding circuits are par-

ticularly efficient for encoding block codes. This provides partial motivation for the study in

Chapter 3, where we will look to use this approach to encode non-cyclic codes.
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Today, LDPC block codes with long block length have virtually achieved the theoretical Shan-

non limit [CFRU01]. As discussed in Section 2.2.2, quasi-cyclic LDPC codes have been

constructed with capacity-approaching performance [CXDL04]. Further, in Section 2.4, the

method of LDPC block code construction based on finite geometries over GF(q) was high-

lighted. An advantage with this construction method is that the codes possess cyclic or quasi-

cyclic structure. A method of obtaining the generator matrices of quasi-cyclic LDPC codes and

subsequent efficient shift register based encoding circuits was presented in [LCZ+06].

While the structure of cyclic and quasi-cyclic codes certainly provides efficient encoder de-

sign, it was evident from Gallager’s seminal paper on LDPC codes [Gal62] that from the per-

formance point of view codes should be “random-like”, i.e., the distance distribution of the

codewords should resemble that of a randomly constructed code. Indeed, most of the capacity-

approaching LDPC codes have a random-like structure [SS96,Mac98,Mac99,CFRU01,RU01a,

RSU01, MN97]. However, the drawback is that this randomness will complicate the encoder

design. The benchmark encoding algorithm for randomly constructed LDPC block codes was

presented by Richardson and Urbanke [RU01b]. This state-of-the-art algorithm requires only

O(g) operations per symbol, where g << n.

In Chapter 3, we form less constrained generator matrices than those of cyclic or quasi-cyclic

codes, yet which can still be defined completely by polynomials. In this sense, they can be

viewed as more general codes that can still make use of simple shift register based encoding.
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Chapter 3

Efficient Encoding Using Polynomials
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Abstract

In this chapter, an efficient new method of obtaining a generator matrix G from certain types

of parity-check matrices H with a defective cyclic block structure is proposed. This novel

approach describes parity-check and generator matrices in terms of polynomials. Moreover,

using this polynomial algebra, we have found efficient ways to implement the scheme. In

addition, this method is interesting as such, as it allows us to convert H into G without a

systematic encoder in between (i.e., there is no diagonal subpart in the output). This alone is

striking as normally G would be dense if we were to form it from the given H by Gaussian

elimination. Further, we show that the new algorithm can be used to find generator matrices

for non-binary codes possessing a defective cyclic block structure. A selection of the results

presented here has been published previously in [MOG07] and [MOG08].
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3.1 Introduction

Cyclic codes, which were introduced as early as 1957 [Pra57], are the most studied of all

linear block codes. Due to their important cyclic structure, they can be encoded easily using

shift registers and practical decoding schemes can be devised to make use of the underlying

algebra [Meg61]. Cyclic codes were introduced in Section 2.2, and it was shown there that the

generator and parity-check matrices of cyclic codes can be obtained from one other by simple

polynomial division.

The generator and parity-check matrices can themselves be described by polynomials g(t) and

h(t) respectively, and providing that their product is tn − 1, where n is the block length of the

code, the polynomial division algorithm can be implemented easily. In this chapter, an efficient

new algorithm is proposed to obtain a generator matrix from a so-called defective parity-check

matrix. This matrix appears to be cyclic. However the would-be parity-check polynomial h(t)

does not satisfy the condition1 h(t)|tn−1 for such a code length. The generator matrix obtained

by this method is, in general, non-systematic and is completely defined by a polynomial (similar

to the case of a cyclic code). This inherent structure allows efficient encoding and decoding

schemes using shift registers to be employed.

Further, it is shown that this versatile method can be modified easily to work with a parity-check

matrix made up of multiple defective blocks. This multi-block structure has been observed to

arise frequently in the context of low-density parity-check (LDPC) block codes [LC04, pp. 851-

947]. Moreover, the proposed polynomial approach holds over GF(ps) where p is a prime and s

is a non-negative integer. Thus the method can be generalised to the consideration of non-binary

codes with this cyclic block structure.

The chapter is structured as follows. In Section 3.2 we begin by considering a parity check

matrix made up of a single defective block, and introduce an extension method which efficiently

finds a generator matrix even when the check polynomial h(t) does not divide the corresponding

tn − 1. Then, in Section 3.3, an approach is detailed for a parity-check matrix made up of two

blocks in cyclic form. The method is then extended in Section 3.4 to deal with an arbitrary

number of blocks. In Section 3.5, it is shown that we can use properties of the dual code in

order to obtain a parity-check matrix from a defective generator matrix without complicating

the procedure. Finally, in Section 3.6, the method is generalised to consider non-binary codes

1By the notation h(t)|(tn − 1) it is meant that h(t) divides tn − 1 without remainder. If this does not hold, we

write h(t) ∤ (tn − 1). Since there is no danger of ambiguity we abreviate notation by h(t)|tn − 1.
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with this defective cyclic block structure. This extension provides a huge selection of codes of

real practical interest that are suitable for the proposed polynomial encoding method.

3.2 The extension method

Definition 3.1 Suppose we have a parity-check matrix H in cyclic form (defined in equation

(2.2)), where h(t) ∤ tn − 1. Then h(t) is called defective, and the parity-check matrix H is said

to define a defectively cyclic code.

Suppose we have a defective parity-check matrix H . The proposed method of ‘extension’

outputs a generator matrix for the code using polynomial division and the truncation of an

interim matrix. This can be implemented efficiently using any standard Computer Algebra

package. The method begins by finding an n∗ > n such that h(t) divides tn
∗

− 1.

We must first show that such an n∗ exists and how to find it. Later we will see that finding and

working with a large n∗ is not necessary, but it is essential to show its existence. That this is

indeed the case is the first new result shown in Section 3.2.1 using two standard facts. We can

then use this to prove the main new theorem in Section 3.2.2. In Section 3.2.3, we propose a

practical refinement of this theorem that enables it to be implemented efficiently.

This optimization allows us to obtain the desired generator matrix directly via polynomial di-

vision, so avoiding the theoretical values displayed in Sections 3.2.1 and 3.2.2. In the case of a

single defective block, standard methods using Gaussian elimination are also easy to implement

due to the cyclic structure of the matrix. However, when we consider stacked blocks (Sections

3.3 and 3.4) this new method is a very efficient alternative.

3.2.1 Finding a suitable n
∗

Suppose h(t) is an irreducible polynomial of degree k > 1 over GF(2). We then create an

extension field GF(2k) in the usual way [Gar04]. This process produces an extending element

α which is a root of h(t). If we throw away the zero element from this field and consider

GF(2k)\{0}, we are left with an abelian group under multiplication. We now use:
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Theorem 3.1 (Lagrange [All97]) The order2 of an element g of a finite group G divides the

order |G| of G.

So g|G| = 1. Hence g is a root of the polynomial f(t) = t|G| − 1. Let G = GF(2k)\{0}, so

that |G| = 2k − 1. Suppose g = α where α is a root of h(t). Since f(α) = 0, it follows that

h(t)|f(t).

So for an irreducible polynomial h(t) of degree k > 1 over GF(2), we can immediately write

down an n∗ = 2k − 1 such that h(t)|tn
∗

− 1. If h(t) is not irreducible, we proceed by splitting

the polynomial into irreducible parts. We will see that there is a systematic way of choosing n∗

which depends on the structure of h(t). To avoid trivialities we assume that t ∤ h(t); this avoids

zero columns in H . Let us first recall a required result on the divisors of certain polynomials.

Theorem 3.2 [MS77, pp. 99–106] Over any field, xs − 1|xr − 1 if and only if s|r.

If we can reduce h(t) there are two possible cases:

Case (1): No repeated irreducible factors

In this case, suppose h(t) = q1(t)q2(t) · · · qs(t), where all the qi(t) are distinct and irreducible

over GF(2). Here we apply the above procedure to each of the s factors. Thus for each factor

we observe that qi(t)|t
n∗

i − 1 for a particular n∗
i . Now, using Theorem 3.2, we observe

tn
∗

i − 1|tn
∗

− 1 if and only if n∗
i |n

∗.

Thus if we set n∗ = lcm(n∗
1, n

∗
2, . . . , n

∗
s), h(t)|tn

∗

− 1, as each of the distinct factors qi(t) of

h(t) divides tn
∗

− 1.

Case (2): Repeated irreducible factors

If there are repeated irreducible factors, then h(t) = qr1
1 (t)qr2

2 (t) · · · qrs
s (t) where all the qi(t)

are distinct and irreducible and at least one of the ri ≥ 2. We observe that when working

modulo 2

(tk − 1)2 = t2k + 1.

2Recall for any element g from a group G if there exists a positive integer m such that gm = e (where e is the

identity element of the group) then the smallest such positive integer is called the order of g. If no such m exists we

say g is of infinite order. The order of a group G is simply the number of elements in the group: this is denoted by

|G|.
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Suppose we write tk − 1 = u1(t)u2(t) · · · up(t), where each of the ui(t) is irreducible over

GF(2). Then

(tk − 1)2 = t2k + 1 = u2
1(t)u

2
2(t) · · · u

2
p(t),

(tk − 1)4 = t4k + 1 = u4
1(t)u

4
2(t) · · · u

4
p(t),

...

In general t2
ik + 1 = u2i

1 (t)u2i

2 (t) · · · u2i

p (t). So if qi(t) is a factor of tk − 1 then qri

i (t) will be

a factor of t2
ik + 1 if 2i ≥ ri.

Thus the approach in this case is as follows. For each of the irreducible factors qi(t) we find an

n∗
i (in the usual way) such that qi(t)|t

n∗

i − 1 as in case (1). Set k = lcm(n∗
1, n

∗
2, . . . , n

∗
s). Let

r = max(r1, r2, . . . , rs). Using the above rule we find the least such integer c so that 2c ≥ r.

Finally we set n∗ = k · 2c. Then h(t)|tn
∗

− 1. Hence we have proved our first new result.

Theorem 3.3 In the above notation, there exists a positive integer n∗ such that h(t)|tn
∗

− 1.

3.2.2 Finding a generator matrix in the defective case

Now we know that an n∗ exists, we can state an algorithm to obtain a generator matrix:

1. we begin with a defective parity-check matrix H for a code C of block length n, in the

sense that H ‘looks’ cyclic (with corresponding check polynomial h(t)), but h(t) ∤ tn−1;

2. we find a larger n∗ such that h(t)|tn
∗

− 1;

3. we then calculate g(t) = (tn
∗

− 1)/h(t);

4. finally, the generator matrix associated to g(t) is truncated from the left so as to leave n

columns. This new matrix is a generator matrix of the original code.

Theorem 3.4 The matrix so formed is a generator matrix of the original code C .

Proof. The proof of this can be split into three parts. Throughout we will denote the check

polynomial by h(t) = h0 + h1t + . . . + hkt
k with hk = h0 = 1, where 0 < k < n.
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Claim 1. The matrix so formed has the appropriate rank and number of columns to be a gener-

ator matrix for C .

Proof. Suppose the parity-check matrix H is a (n − k) × n matrix with cyclic shift structure.

This matrix is necessarily of full rank, since H has a backwards echelon structure with hk 6= 0.

Let G be a generator matrix for C . Then G is a k × n matrix with rank k.

Note that the degree of the parity-check polynomial is k, as we require n − k rows in H .

Using tn
∗

− 1, we calculate the generator polynomial g(t) of the corresponding cyclic code as

g(t) = (tn
∗

−1)/h(t). Thus the degree of the generator polynomial g(t) of this extended matrix

is n∗ − k. Recall from Section 2.2.1 that the corresponding generator matrix G′ is formed by

‘sliding’ the coefficients of g(t) diagonally downwards as to to fill up the matrix (as in (2.1)).

Thus we calculate

row rank G′ = n∗ − (n∗ − k) = k = row rank G.

Now set G′′ to be G′ with the first n∗ − n columns removed. Then G′′ is an k × n matrix. The

final necessary condition is that G′′ must be of full rank. Recall that the generator polynomial

necessarily has non-zero coefficient gn∗−k. This creates an echelon structure in the cyclic

generator matrix G′. We note that the truncation length n is greater than k (from construction

of the check matrix). Thus the echelon structure of the cyclic generator matrix G′ is preserved

in this new matrix G′′. �

Claim 2. G′′HT = 0.

Proof. Let H ′ be the (n∗ − k) × n∗ parity-check matrix of the cyclic code of block length n∗

corresponding to the parity-check polynomial h(t). So

H ′ =







0 h(t)

||zz
zz

zz
zz







(n∗−k)×n∗

,

Then G′H ′T = 0k×(n∗−k) by construction. Now create a new matrix H ′′ which is equal to the

first n − k rows of H ′,

H ′′ =
[

0(n−k)×(n∗−n) H
]

(n−k)×n∗

.
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Observe that G′H ′′T = 0k×(n−k).

By construction, the first n∗ − n columns of H ′′ are all zero. Thus they are irrelevant in the

calculation. Remove the first n∗−n columns from G′ and H ′′, making G′′ and H ′′′ respectively.

Observe that

H ′′′ =







h(t)

}}||
||

||
||







(n−k)×n

= H.

Thus, G′′H ′′′T = G′′HT = 0k×n. �

Claim 3. Rowspace G′′ = rowspace G.

Proof. As G′′HT = 0 and GHT = 0 we know that each word in G′′ and G is perpendicular to

each word in H . Thus

rowspace G′′ ⊆ null space H,

rowspace G ⊆ null space H.

The null-space of the (n − k) × n parity-check matrix H (of full rank) must be of dimension

k. As both G and G′′ have rank k, it follows that rowspace G′′ = rowspace G. � �

Example 3.1. Suppose h(t) = t3 + t + 1 and n = 5. We observe that h(t) is irreducible over

GF(2) and that h(t) ∤ t5 − 1(mod 2), though the corresponding defective parity check matrix

H looks cyclic:

H =





0 1 0 1 1

1 0 1 1 0





2×5

.

We find that n∗ = 7, so h(t)|t7 − 1(mod 2). Then the generator polynomial for the extended

cyclic code is

g(t) = (t7 − 1)/(t3 + t + 1) = t4 + t2 + t + 1.

So the extended matrices are

H ′ =















0 0 0 1 0 1 1

0 0 1 0 1 1 0

0 1 0 1 1 0 0

1 0 1 1 0 0 0















4×7
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and

G′ =









1 1 1 0 1 0 0

0 1 1 1 0 1 0

0 0 1 1 1 0 1









3×7

.

Thus by construction G′H ′T = 03×4. Recall that the next step is to set H ′′ equal to the first

n − k rows of H ′

H ′′ = [ 02×2 H ]2×7 .

Clearly now G′H ′′T = 03×2. The final step is to observe there will be no contribution from the

first n∗ − n = 2 columns. Removing these columns from G′ results in G′′ (which is the boxed

area of G′). It should now be evident that G′′HT = 03×2 and hence G′′ is a generator matrix

for the code because of an argument using rank (as above), or by direct calculation here. �

3.2.3 Optimizing the method

It was noted earlier that the desired n∗ could be very large and hence polynomial division

would be very time-consuming. Depending on the desired block length n, we can optimize the

method to save on calculations. The generator matrix of the extended code is formed by sliding

the coefficients of the generator polynomial diagonally downwards (as in (2.1)). Then, as we

are truncating this extended matrix, some of the coefficients may be surplus to requirements.

This is best observed in an example.

Example 3.2. Let h(t) = t34 + t6 + t3 + 1. We observe h(t) is reducible; explicitly,

h(t) = (t7 + t5 + t4 + t3 + 1)(t6 + t5 + t4 + t + 1)

(t + 1)(t20 + t18 + t10 + t9 + t6 + t5 + t4 + t2 + 1).

The factors here are all irreducible. Note that there are no repeated factors, hence h(t) is a Case

(1) polynomial. We calculate

n∗ = lcm(27 − 1, 2 − 1, 26 − 1, 220 − 1) = 2796549525.

Suppose n = 37. (Typically we will choose a block length and this will define the rank of our

generator matrix, since the degree of h(t) is given.) In this case, as the degree of our check
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polynomial is k = 34, H is a 3× 37 matrix and G will be a 34× 37 generator matrix. However

we observe G′ looks as follows, where the entries are the coefficients of g(t):

G′ =

















⋆

gn∗−37 . . . gn∗−2 gn∗−1

gn∗−38 gn∗−37 . . . gn∗−2

...
...

...

gn∗−70 gn∗−69 . . . gn∗−34

















,

where

⋆ =

















g0 g1 . . . gn∗−39 gn∗−38

0 g0 g1 . . . gn∗−39

...
. . .

. . .
. . .

...

0 . . . 0 g0 g1 . . . gn∗−71

















.

Observe that the boxed section is the generator matrix G that we want. Thus the majority of the

matrix is irrelevant. So to write down G we only require the coefficients of tn
∗−1, . . . , tn

∗−70

from the generator polynomial g(t).

The division to obtain g(t) looks like

g(t) =
tn

∗

− 1

t34 + t6 + t3 + 1
= tn

∗−34 + tn
∗−62 + tn

∗−65 + tn
∗−68 + tn

∗−90 + . . . .

Thus there are only 4 non-zero coefficients to fill in to obtain the boxed area of G′, since

coefficients of terms of degree n∗ − 71 or less are in the non-boxed section of G′.

For the purpose of obtaining the necessary number of non-zero coefficients we can work with a

smaller value of n∗, denoted ñ. Using this smaller value of n∗ will result in a remainder which

can be discarded. So we will have

tñ − 1 = q(t)h(t) + r(t), (3.1)

where the polynomial q(t) has the correct coefficients to form the desired generator matrix G

(the boxed part of G′). There is a limit to how small we can choose ñ to be so that q(t) still

has the correct coefficients. We observe that in our example we require ñ ≥ 70 to include the
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coefficient of tñ−70. Observe that (3.1) in this case becomes

t70 − 1 = (t36 + t8 + t5 + t2)(t34 + t6 + t3 + 1) + t14 + t8 + t2 + 1.

Thus q(t) = t36+t8+t5+t2. Recall that the non-zero coefficients from G′ are tn
∗−34, tn

∗−62, tn
∗−65

and tn
∗−68. Observe that these coefficients match up when substituting n∗ = 70. So for ñ = 70

G =

















q33 . . . q68 q69

q32 q33 . . . q68

...
...

...

q0 q1 . . . q34

















.

�

Thus the optimized procedure established above can be summarised in the following new The-

orem.

Theorem 3.5 In the above notation given a block length n and a check polynomial of degree k

then ñ = n + k − 1.

3.3 Finding a generator matrix in the case of two defective blocks

3.3.1 Setup

Consider a parity-check matrix of the form

H =





H1

H2



 , (3.2)

where H1 and H2 are in ‘cyclic’ form, but defective. By that it is meant that the submatrices

appear as the form specified in Section 2.2.1 but the associated parity-check polynomials do not

both divide tn−1, where n is the number of columns of H . Let C1 and C2 be the codes formed

by the null space of the matrices H1 and H2 respectively. Then we define the concatenated

code [BBF+06]:

C1 ∔ C2 = {[x1 : x2 ] |x1 ∈ C1 and x2 ∈ C2}.
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We define the modulo 2 addition of two codes

C1 ⊕ C2 = {x1 + x2 mod 2 |x1 ∈ C1 and x2 ∈ C2}.

Consider the linear mapping [x1 : x2 ] → x1 ⊕ x2 of the concatenated code C1 ∔ C2 to the

modulo-2 sum of its two component codes. Using the conservation law of dimensions [All97]

we have

dim(C1 ∔ C2) = dim(C1 ⊕ C2) + dim(C1 ∩ C2). (3.3)

Notice that if C1 ∩ C2 = {0 . . . 0} then dim(C1 ∔ C2) = dim(C1 ⊕ C2). Let H1 and H2

have corresponding generator matrices G1 and G2. We are interested in the null space of the

parity-check matrix (3.2); this is the intersection of the null spaces C1 and C2. To get a nice

result on this code we will see that we can use the method of extension to bring H into a form

we can usefully work with.

We have that C1 and C2 are the rowspaces of G1 and G2 respectively. It is easily seen that

C1 ⊕ C2 = rowspace





G1

G2



 .

Using the method of extension, we know that for both the check polynomials h1(t) and h2(t)

associated with the blocks H1 and H2 there exists an integer n∗
i such that hi(t)|t

n∗

i −1, i = 1, 2.

We again suppose that t ∤ hi(t), i = 1, 2. Let n∗ = lcm (n∗
1, n

∗
2); then hi(t)|t

n∗

− 1, i = 1, 2.

We extend (3.2) to an ((n−k1)+(n−k2))×n∗ matrix, which consists of two cyclic blocks of

size (n∗−k∗
i )×n∗, i = 1, 2, where ki is the degree of polynomial hi(t). Now we can calculate

the generator polynomials g1(t) and g2(t) associated with the two extended blocks and form

the respective generator matrices in the usual way

G′
i =







gi(t)

!!
CC

CC
CC

CC







ki×n∗

.

Let the extended codes formed from these matrices be denoted C ′
1 and C ′

2 respectively. Note

that the sum of two codes is again cyclic and has generator polynomial equal to the greatest

common divisor of the individual generator polynomials. This is based on a standard result

in the ideal theory of the polynomial ring F [t]. If 〈g1(t)〉, 〈g2(t)〉 are two ideals in F [t], then

〈g1(t)〉 + 〈g2(t)〉 = 〈g(t)〉, where g(t) = gcd(g1(t), g2(t)). Moreover, if g1(t)|t
n − 1 and
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g2(t)|t
n − 1, then these statements continue to hold in the factor ring Rn = F [t]/〈tn − 1〉.

We now introduce notation for the truncation operation. Suppose a code C ′ of length n∗ > n is

truncated from the left to be of length n. We denote the new code C (the right hand side of the

original code) by C = C ′|RHS. Following the work done in Section 3.2, it should be evident

that truncating the sum of extended codes (from the left) to be of length n will result in the sum

of the required codes. That is,

(C ′
1 ⊕ C ′

2)
∣

∣

RHS
= C1 ⊕ C2.

Of course we are interested in the intersection of the codes C1 and C2. We have

(C ′
1 ∩ C ′

2)
∣

∣

RHS
⊆ C ′

1

∣

∣

RHS
∩ C ′

2

∣

∣

RHS
. (3.4)

This is easily seen by choosing a codeword x that exists in the intersection C ′
1 ∩ C ′

2. Suppose

we split x into left and right parts, so x = [ l : r ] with the part r of length n. Then

[ l : r ] ∈ C ′
1 ∩ C ′

2 ⇒ r ∈ C ′
1

∣

∣

RHS
∩ C ′

2

∣

∣

RHS
.

Note that if we can show equality in the dimensions of the two sides of (3.4) then the two

spaces must be equal because one is contained in the other. So we proceed by examining the

dimensions in (3.4). We immediately get the inequality

dim
(

(C ′
1 ∩ C ′

2)
∣

∣

RHS

)

≤ dim
(

C ′
1

∣

∣

RHS
∩ C ′

2

∣

∣

RHS

)

= dim (C1 ∩ C2) . (3.5)

We can write the left hand side of (3.5) as

dim
(

(C ′
1 ∩ C ′

2)
∣

∣

RHS

)

= dim
(

C ′
1 ∩ C ′

2

)

for a suitably large4 n,

= dim
(

C ′
1 ∔ C ′

2

)

− dim
(

C ′
1 ⊕ C ′

2

)

from (3.3),

= dim
(

C ′
1

)

+ dim
(

C ′
2

)

− dim
(

C ′
1 ⊕ C ′

2

)

,

4We require that n is larger than the degree of the least common multiple of check polynomials h1(t) and h2(t).
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where in the last line we use the fact that the dimension of the concatenated codes is equal to

the sum of the individual dimensions of the codes [BBF+06]. Using this property and (3.3) we

now write the right-hand side of (3.5) as

dim (C1 ∩ C2) = dim (C1) + dim (C2) − dim (C1 ⊕ C2) .

As the rank of the generator matrices of the original and the extended codes are equal, the

dimensions of the codes must be equal (dim(Ci) = dim(C ′
i)). The upshot is that we can now

re-write (3.5) as

dim
(

C ′
1 ⊕ C ′

2

)

≥ dim (C1 ⊕ C2) . (3.6)

Now, considering the modulo 2 sum of two codes as rowspaces of stacked generator matrices,

we observe

C1 ⊕ C2 = rowspace





G1

G2



 = rowspace





G′
1

G′
2

∣

∣

∣

∣

∣

∣

RHS





= (C ′
1 ⊕ C ′

2)
∣

∣

RHS
.

So as (C ′
1 ⊕ C ′

2)|RHS = C1 ⊕ C2 their dimensions must be equal. Thus (3.6) becomes

dim
(

C ′
1 ⊕ C ′

2

)

≥ dim
(

(C ′
1 ⊕ C ′

2)
∣

∣

RHS

)

.

Note that by design the truncation (block) length n is larger than the degree of the check poly-

nomials. Thus truncation leaves the echelon structure intact and we must have equality. Recall

that equality here implies that the spaces in (3.4) are equal.

3.3.2 Fundamental method

Given two polynomials h1(t) and h2(t), the method is as follows:

• calculate n∗ so that h1(t), h2(t)|t
n∗

− 1;

• solve gi(t) = (tn
∗

− 1)/hi(t) for i = 1, 2;

• solve g(t) = lcm(g1(t), g2(t)). This polynomial generates the intersection of the ex-

tended codes;
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• truncation from the left gives us the desired code, providing n is greater than the degree

of lcm(h1(t), h2(t)).

3.3.3 Optimizing the method

This process could be fairly time consuming if n∗ is large. If we work with polynomials of high

degree this method would probably not be beneficial. So we look to alternative means. We aim

to get the least common multiple of the two generator polynomials g1(t) and g2(t) (possibly of

very high degree).

Theorem 3.6 Given two generator polynomials g1(t) and g2(t) as discussed above and a pos-

itive integer n∗ as defined in Section 3.2.1, we have

lcm(g1(t), g2(t)) = (tn
∗

− 1)/gcd(h1(t), h2(t)).

Proof. The proof is a direct result of setting s = 2 in the proof of Theorem 3.7 below. �

Observe that this is now in the form of our original optimization problem. We solve (3.1) for

q(t) using h(t) = gcd(h1(t), h2(t)), where ñ is the number of rows plus the number of columns

of our desired generator matrix minus one.

Example 3.3. Let

h1(t) = 1 + t + t2 + t5 + t6 + t7 + t8 + t11,

h2(t) = 1 + t2 + t4 + t9 + t10 + t12 + t14 + t15.

We calculate the lcm(h1(t), h2(t)) and the gcd(h1(t), h2(t)). The degree of the l.c.m. is 16,

thus we must choose n > 16; let n = 32. We know G will be a 10 × 32 matrix; thus ñ = 41.

Now we can solve (3.1) for q(t):

t41 − 1 = q(t)(1 + t2 + t3 + t4 + t6 + t8 + t9 + t10) + r(t),
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and we find that

q(t) =1 + t3 + t4 + t8 + t10 + t13 + t14 + t15 + t19 + t21 + t22 + t23

+ t25 + t28 + t30 + t31.

These coefficients are entered into the matrix in the following way (with notation as before):

G =

















q9 . . . q39 q40

q8 q9 . . . q39

...
...

...

q0 q1 . . . q31

















.

The rowspace of this matrix G is the code we desire. �

3.4 An arbitrary number of parity-check blocks

The procedure given in the previous section can be extended to deal with an arbitrary number

of these defective blocks H1, . . . ,Hs. Suppose we wish to have a parity-check matrix

H =

















H1

H2

...

Hs

















,

defined by s polynomials h1(t), . . . , hs(t).

Theorem 3.7 Given a block length n such that n > degree(lcm(h1(t), h2(t), . . . , hs(t))), the

polynomial given by

lcm(g1(t), . . . , gs(t)) =
(tn

∗

− 1)

gcd(h1(t), . . . , hs(t))

generates the intersection of the extended codes.

Proof. Let tn
∗

− 1 = qr1
1 (t)qr2

2 (t) · · · qrs
s (t) where all the qi(t) are distinct and irreducible

and the ri ≥ 1 for i = 1, . . . , s. By the properties of cyclic codes gi(t)hi(t) = tn
∗

− 1 for
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i = 1, . . . , l. Let the generator polynomials be written as

g1(t) = q
k1,1

1 (t)q
k1,2

2 (t) · · · q
k1,s
s (t),

...

gl(t) = q
kl,1

1 (t)q
kl,2

2 (t) · · · q
kl,s
s (t),

for 0 ≤ ki,j ≤ ri, i = 1, . . . , l, j = 1, . . . , s. Let k′
i,j = rj − ki,j , to simplify notation. Then

h1(t) = q
k′

1,1

1 (t)q
k′

1,2

2 (t) · · · q
k′

1,s
s (t),

...

hl(t) = q
k′

l,1

1 (t)q
k′

l,2

2 (t) · · · q
k′

l,s
s (t).

Then for an arbitrary number l of polynomials, we have

gcd(g1(t), g2(t), . . . , gl(t)) = q
min(k1,1,k2,1,...,kl,1)
1 q

min(k1,2,k2,2,...,kl,2)
2 . . . q

min(k1,s,k2,s,...,kl,s)
s ,

(3.7)

and

lcm(g1(t), g2(t), . . . , gl(t)) = q
max(k1,1,k2,1,...,kl,1)
1 q

max(k1,2,k2,2,...,kl,2)
2 . . . q

max(k1,s,k2,s,...,kl,s)
s .

(3.8)

Then we use the rule; max{ki,j} = rj−min{k′
i,j}, where 1 ≤ j ≤ s is fixed and i ∈ {1, . . . , l}.

Thus (3.8) becomes

lcm(g1(t), g2(t), . . . , gl(t)) = q
r1−min{k′

i,1}

1 q
r2−min{k′

i,2}

2 . . . q
rs−min{k′

i,s}
s ,

=
qr1
1 (t)qr2

2 (t) . . . qrs
s (t)

q
min{k′

i,1}

1 q
min{k′

i,2}

2 . . . q
min{k′

i,s}
s

,

=
tn

∗

− 1

gcd(h1(t), h2(t)), . . . , hl(t))
, using (3.7),

where we minimize over i ∈ {1, . . . , l}. �

Let h(t) = gcd(h1(t), h2(t), . . . , hs(t)) and k = degree(h(t)). To form the k × n generator

matrix G associated with our original matrix H we solve (3.1) for q(t) with ñ = k + n − 1.
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Then the coefficients of the polynomial q(t) = q0 + q1t + . . . + qñtñ form G as follows:

G =

















qk−1 qk . . . qñ−1 qñ

qk−2 qk−1 . . . qñ−2 qñ−1

...
...

...
...

q0 q1 . . . qn−2 qn−1

















. (3.9)

From a practical point of view, the G that is created is non-systematic and we do not need Gaus-

sian elimination, which is an advantage when we are given an LDPC parity-check matrix with a

large block length. Moreover, G has a polynomial description which allows for an implemena-

tion of the encoder by simple shift registers rather than by a costly matrix multiplication. When

the parity-check matrix can be brought into the form stated above, the result is a very efficient

alternative to the method presented in [RU01b].

Example 3.4. We build a stacked parity-check matrix consisting of 3 defective cyclic blocks.

Let

h1(t) = 1 + t + t2 + t5 + t6 + t7 + t8 + t11,

h2(t) = 1 + t2 + t4 + t9 + t10 + t12 + t14 + t15,

h3(t) = 1 + t + t3 + t5 + t6 + t9 + t13 + t17.

Each block of the parity-check matrix is given as:

Hi =







hi(t)

}}{{
{{

{{
{{







n−degree(hi(t))×n

.

Thus the resulting parity-check matrix is

H =









H1

H2

H3









.

We now calculate the greatest common divisor of the three polynomials:

gcd(h1(t), h2(t), h3(t)) = 1 + t2 + t3 + t4 + t6 + t8 + t9 + t10 = h(t).
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The degree of the least common multiple of the three polynomials is 18. Thus we must choose

an n > 18; let n = 21.

We know G will be a 10 × 21 matrix. Thus we set ñ = 10 + 21 − 1 = 30 and solve (3.1) for

q(t). This results in the expression

q(t) = t2 + t3 + t4 + t8 + t10 + t11 + t12 + t14 + t17 + t19 + t20.

We now fill in matrix (3.9) with the coefficients of q(t) to obtain a generator matrix. �

3.5 Defective generator matrices

It is worth noting that, using properties of the dual code, this method can output a parity-check

matrix for a defective generator matrix3 in the form of (2.1), or indeed, for stacked blocks of

defective generator matrices. We use the following theorem:

Theorem 3.8 [LC04, p. 145] Let C be an (n, k) cyclic code with generator polynomial g(t).

The dual code of C is also cyclic and is generated by the polynomial tkh(t−1), where h(t) =

(tn − 1)/g(t).

Thus given a block length n and a generator polynomial g(t) of degree n − k we calculate the

polynomial

h′(t) = tn−kg(t−1),

and put these coefficients into a parity-check matrix as in (2.2). We now have a problem of the

form solved in Section 3.2.

Example 3.5. Let g(t) = 1 + t + t4 and n = 7. Note that g(t) ∤ t7 − 1 modulo 2. We see that

the resulting defective generator matrix is

G =









1 1 0 0 1 0 0

0 1 1 0 0 1 0

0 0 1 1 0 0 1









.

3The defective generator matrix can be viewed as a shortened cyclic code. Shortened cyclic codes were intro-

duced in Section 2.3, and it was discussed there that this type of code is of practical interest for ease of encoding

and code design.
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We calculate h′(t) = t4g(t−1) = t4 + t3 + 1. Forming a parity-check matrix with h′(t) and

n = 7 results in

H ′ =









0 0 1 1 0 0 1

0 1 1 0 0 1 0

1 1 0 0 1 0 0









.

This, we observe, is an equivalent matrix4 to G. The matrix H ′ is a defective parity-check

matrix. Thus we can find an associated generator matrix using our new method, which is

actually a parity-check matrix for G. �

The process described above can also be extended to an arbitrary number l of defective gen-

erator blocks. For each generator polynomial gi(t) we find h′
i(t) = tdegree(gi(t))gi(t

−1) for

i = 1, . . . , l. This allows us to use the machinery presented in Section 3.4 for multiple parity-

check polynomials. The matrix produced by the method is a parity-check matrix for the given

stacked generator matrix G.

3.6 Higher order fields

Until now we have considered only codes over GF(2) for simplicity. However the processes

described thus far can easily be extended to work over GF(ps), where p is a prime and s is a

non-negative integer. This allows for a larger class of codes to be considered for the method, or

indeed, translating to binary (see, e.g., [MS77]), some interesting quasi-cyclic type structures.

Quasi-cyclic LDPC codes, described in Section 2.2.2, have been shown in the literature to

have excellent performance while possessing a useful structure for encoding/decoding, see,

e.g., [CXDL04].

Example 3.6. Let us define h(t) = 1 + 2t + t4 over GF(3). Let n = 7. We observe that

h(t) ∤ t7 − 1. As the resulting parity-check matrix is necessarily of full rank we know that G

will be a 4×7 matrix. Solving t10−1 = h(t)q(t)+r(t) for q(t) results in q(t) = 1+2t2+t3+t6

and thus

G =















1 0 0 1 0 0 0

2 1 0 0 1 0 0

0 2 1 0 0 1 0

1 0 2 1 0 0 1















,

with GHT = 04×3 over GF(3). �

4By the term equivalent matrix, it is meant that linear combinations of the rows result in the same code.
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Example 3.7. Let GF(22) = {a + bα|a, b ∈ GF(2), α2 = 1 + α} be defined in the usual way.

Consider the polynomial h(t) = 1 + αt + αt3 and let n = 7. It can be shown that h(t) ∤ t7 − 1

and, because H is necessarily of full rank, G will be a 3 × 7 matrix. Note that under these

conditions, we have a non-binary defectively cyclic code. We solve t9 − 1 = h(t)q(t) + r(t)

for q(t) as usual. This results in

q(t) = α + α2t2 + αt3 + α2t4 + α2t6,

and thus

G =









α2 α α2 0 α2 0 0

0 α2 α α2 0 α2 0

α 0 α2 α α2 0 α2









,

with GHT = 03×4 over GF(22).

If we immediately translate these higher order symbols back in to binary we obtain a matrix

with sliding block structure. Here, using binary equivalents 0 = 00, 1 = 10, α = 01, and

α2 = 11, the resulting binary matrix is

Gbin =









1 1 0 1 1 1 0 0 1 1 0 0 0 0

0 0 1 1 0 1 1 1 0 0 1 1 0 0

0 1 0 0 1 1 0 1 1 1 0 0 1 1









.

This we observe has sliding 1×2 blocks from top left to bottom right. Using the same mapping,

the binary equivalent to H is given as

Hbin =















0 0 0 0 0 0 0 1 0 0 0 1 1 0

0 0 0 0 0 1 0 0 0 1 1 0 0 0

0 0 0 1 0 0 0 1 1 0 0 0 0 0

0 1 0 0 0 1 1 0 0 0 0 0 0 0















,

and we observe that both matrices are of full rank and GbinHT
bin = 03×4. �

The matrices formed in this fashion are, in general, non-systematic. In addition, due to the

polynomial division approach we have a degree of control over the density of the parity-check

and generator matrices by picking appropriate polynomials.
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3.7 Conclusions

In this chapter, a new method of obtaining a generator matrix G from certain types of parity-

check matrices with a defective cyclic block structure has been presented. The generator matri-

ces so-formed are described in terms of polynomials, and by using polynomial algebra we have

found efficient ways to implement the scheme. There is a large class of practical parity-check

matrices, e.g., LDPC codes, that are candidates for this method. Further, by careful choice of

polynomials we are free to choose any length and rate code we may desire, and the density of

G depends solely on its corresponding polynomial. The method was then extended to consider

non-binary codes with this cyclic block structure, and it was shown that equivalent binary codes

possess a quasi-cyclic type structure. This extension provides a huge selection of codes that are

suitable for the proposed polynomial encoding method.
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Asymptotically Good LDPC

Convolutional Codes
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Chapter 4

Background: Protograph-based Codes
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Abstract

Protograph-based LDPC block codes, a subclass of multi-edge type codes, have been shown to

have many desirable qualities, such as fast encoding/decoding, low iterative decoding thresh-

olds and linear minimum distance growth. In this chapter, we review previous results from

the literature concerning protographs and highlight the theory essential for the discussion in

Chapters 5 and 6.
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4.1 Introduction

Multi-edge type low-density parity-check codes [RU02, RU03], a generalisation of irregular

LDPC codes, have recently inspired the design of LDPC codes with imposed sub-structures.

LDPC codes based on a protograph [Tho03] (or projected graph [RN03]) form a subclass of

multi-edge type codes that have been shown in the literature to have many desirable qualities

such as fast encoding/decoding, low iterative decoding thresholds and linear minimum distance

growth, see for example, [DDJ06, ADY07] and references there.

This chapter is structured as follows. In Section 4.2, we review the protograph construction

method and describe the merits of the resulting codes. In Section 4.3, we summarize results

by Divsalar [Div06] to calculate ensemble average weight enumerators for protograph-based

LDPC codes which will later be used in Chapter 5. Finally, in Section 4.4, the notion of so-

called ‘trapping sets’ will be introduced, and recent results by Abu-Surra, Ryan and Divsalar

[ARD07a] concerning ensemble average trapping set enumerators of protograph-based LDPC

codes will be presented and discussed. These enumerators will later be used in Chapter 6.

4.2 Protographs

A protograph is a small bipartite graph (a formal definition can be found in [Tho03]). Figure

4.1 shows a protograph and the associated protograph parity-check matrix P .

P =





1 1 0 0
0 1 1 1
1 1 1 0





Figure 4.1: An example of a protograph and associated parity-check matrix.

4.2.1 Protograph-construction

Suppose a given protograph P has nv variable nodes and nc check nodes. A protograph-based

(LDPC) block code can be created using the copy-and-permute (CAP) operation [Tho03]. The

CAP operation consists of two steps; firstly, we take N copies of the original protograph, then

we permute the edges connecting the check and variable nodes, ensuring that the type of edge
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connection is maintained. An example of the Tanner graph obtained using the CAP method for

the protograph in Fig. 4.1 with N = 3 is illustrated in Fig. 4.2.

Figure 4.2: The copy-and-permute operation for a protograph.

A protograph-based block code with derived (or lifted) parity-check matrix H displays the

following properties:

• the code has block length n = Nnv;

• the code will have rate R = 1 − Nnc/Nnv = 1 − nc/nv provided that the rows of H

are linearly independent;

• each variable and check node maintains the same number and type of edge connection;

• if a sufficiently large positive integer N is chosen, the resulting block code satisfies the

low-density condition of an LDPC block code.

The underlying structure of protograph-based LDPC codes is essential for their analysis. This

will be discussed further in Section 4.2.2.

The parity-check matrix H corresponding to a protograph-based LDPC block code can be

obtained by replacing ones in the underlying protograph parity-check matrix P with N × N

permutation matrices and zeros from P with N ×N all-zeros matrices, where the permutation

matrices are chosen randomly and independently. This will be illustrated in the following

example.
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Example 4.1. Consider the protograph with parity-check matrix

P =

c0

c1

c2









1 1 0 0

0 1 1 1

1 1 1 0









nc×nv=3×4

v0 v1 v2 v3

as given in Figure 4.1. The Tanner graph of the protograph-based code after applying the CAP

operation displayed in Figure 4.2 can be written as follows:

H =

c0

c′0

c′′0

c1

c′1

c′′1

c2

c′2

c′′2













































0 1 0 0 1 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 1 0 1 0

0 0 0 1 0 0 0 1 0 1 0 0

0 0 0 0 1 0 1 0 0 0 0 1

1 0 0 1 0 0 1 0 0 0 0 0

0 0 1 0 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 1 0 0 0 0













































.

v0 v′0 v′′0 v1 v′1 v′′1 v2 v′2 v′′2 v3 v′3 v′′3

In protograph P , we observe, for example, that variable node v0 connects to check node c0.

Applying the copy and permute operation, we maintain the protograph structure by ensuring

that every variable node of type v0 connects to a distinct check node of type c0. Thus arranging

H as we have done here, the N ×N = 3× 3 submatrix related to nodes of type v0 and c0 is in

fact a 3× 3 permutation matrix. We observe the same phenomenon for every connection in the

base protograph with parity-check matrix P . If there is no connection, i.e., if the corresponding

position of P is zero, then there are no connections of this type in H and the resulting 3 × 3

submatrix is the all-zeros matrix. �

After taking N copies of a protograph, there are of course N ! ways to permute the edges

(or N ! choices of N × N permutation matrix to insert as a submatrix of H). An ensemble

of protograph-based LDPC block codes can be created by allowing the N × N permutation

matrices to vary. Every member of the resulting code ensemble has rate R = 1 − nc/nv

(provided that the parity-check matrices are of full rank), block length n = Nnv, and the

same degree distribution for each of its variable and check nodes as the underlying protograph.
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Moreover, allowing N to be sufficiently large results in a protograph-based LDPC block code

ensemble. The resulting ensemble of Example 4.1 is illustrated in Figure 4.3, where π denotes

a permutor of length N and Q denotes a varying N × N permutation matrix.

P =





Q Q 0 0
0 Q Q Q
Q Q Q 0





Figure 4.3: The protograph-based LDPC block code ensemble of Example 4.1.

We note that in Example 4.1 the row and column weights of P are not constant, so P represents

the parity-check matrix of an irregular protograph. The resulting ensemble of protograph-

based block codes will thus also be irregular since the structure is preserved. Note that it

is also possible to consider protograph parity-check matrices P with larger integer entries,

which represent parallel edges in the base protograph. In this case, the resulting block in H

consists of a sum of N × N permutation matrices [Tho03]. For binary codes, we ensure that

the permutation matrices involved in any summation do not overlap, i.e., none of the entries of

H should be larger than one. Thus we require N ≥ pmax where pmax is the largest integer

entry in P . This point is illustrated in the following example.

Example 4.2. Consider the irregular protograph with parity check matrix

P =





2 2 1 1

1 1 3 1



 .

Let N = 3. Then a resulting member of the protograph-based ensemble could have parity-

check matrix

H =



























1 1 0 0 1 1 1 0 0 1 0 0

1 0 1 1 1 0 0 1 0 0 0 1

0 1 1 1 0 1 0 0 1 0 1 0

0 1 0 0 0 1 1 1 1 0 1 0

1 0 0 1 0 0 1 1 1 1 0 0

0 0 1 0 1 0 1 1 1 0 0 1



























.
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The resulting code has rate R = 1 − Nnc/Nnv = 1/2 and block length n = Nnv = 12. We

observe that the edge connections and types of this protograph-based code are maintained when

summing the permutation matrices, and thus the row and column weights remain constant. �

4.2.2 Properties of protograph-based codes

In the previous section we saw that a protograph is a small bipartite graph which can be used to

construct a larger code with an underlying structure. As the constructed code has the same rate

and degree distribution of variable and check nodes as the base protograph, it also possesses

the same iterative decoding threshold. This occurs because the iterative decoding threshold

is a function of only the degree distribution. The computation of thresholds can be achieved

using the approach presented in [Chu00], which provides an accurate approximation to density

evolution. So-called Repeat-Accumulate (RA) [DJM98] codes, Irregular Repeat-Accumulate

(IRA) [JKM00] codes and Accumulate-Repeat-Accumulate (ARA) [ADY07] all have simple

protograph representations, and constructions described there have been shown to achieve very

low iterative decoding thresholds.

However, the construction schemes described above have sublinear minimum distance. In

the interests of having a low error floor, it is desirable to construct codes that are asymptoti-

cally good, i.e., they have the property that the minimum distance grows linearly with block

length. Protographs that achieve both linear minimum distance growth and low iterative de-

coding thresholds are thus of great interest. Good constructions can be found, for example,

in [DJDT05, DDJ06]. It can be shown that protograph-based ensembles are asymptotically

good by analysing ensemble weight enumerators as the block length n → ∞. In Section 4.3,

we review a method proposed by Divsalar [Div06] to calculate ensemble weight enumerators

for protograph-based LDPC code ensembles. Here, it is shown again that the protograph struc-

ture is crucial for the analysis as we need only consider the base protograph in the combinatorial

calculations.

Another factor that can affect the performance of the code in the error floor region of the BER

curve are so called trapping sets (see, e.g., [Ric03]) or near codewords. In Section 4.4 we

will formally introduce this concept and review the approach by Abu-Surra, Ryan and Divsalar

[ARD07a] where we see again that the protograph structure can be employed successfully in

order to calculate ensemble trapping set enumerators. These enumerators can then be used to

give an estimate of the error floor for protograph-based LDPC code ensembles.
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4.3 Protograph weight enumerators

An ensemble average weight enumerator Ad tells us that given a particular Hamming weight

d, an average member of the ensemble has Ad codewords of Hamming weight d.1 In 1962,

Gallager calculated asymptotic codeword weight enumerators for regular LDPC block code

ensembles [Gal62, Gal63]. Recently, this result has been extended to consider even unstruc-

tured irregular ensembles [LS02]. The method of constructing LDPC block codes based on

protographs was discussed in Section 4.2.1, and it was was suggested in Section 4.2.2 that

the structure of protograph-based codes could prove useful for calculating ensemble weight

enumerators. Combinatorial methods of calculating ensemble average weight enumerators for

protograph-based block codes have been presented in [FMT05] and [Div06]. These results have

since been extended to protograph-based generalised LDPC codes in [ARD07b]. In this section,

we summarise the results of [Div06] and derive expressions that will be used in Chapter 5.

4.3.1 Ensemble weight enumerators

Suppose we take N copies of the protograph to form the parity-check matrix for a protograph-

based code. Let Aci
wi

denote the number of sequences that satisfy (all N copies of) check node

ci given input weight vector wi = [wi,0 wi,1 . . . wi,qci
−1 ], where 0 ≤ wi,j ≤ N for each of

the j attached variable nodes. The input weight vector defines the weight distribution for the qci

variable nodes attached to check node ci, i.e., after the CAP operation, the sum of the (binary)

input weights to the N variable nodes of type j (i.e., the N nodes indexed by j) is equal to wi,j .

For a check node of degree three this can be counted as [Div06]

Aw0,w1,w2 =

(

N

s

)

s!

(s − w0)!(s − w1)!(s − w2)!
,

where s = w0+w1+w2
2 , max{w0, w1, w2} ≤ s ≤ N and w0 + w1 + w2 is even; otherwise

Aw0,w1,w2 = 0. A simple combinatorial argument can be used to prove this, see, e.g., [Div06].

Example 4.3. Figure 4.4 displays a protograph consisting of a degree 3 check node, and corre-

sponding Tanner graph after taking N = 3 copies.

1Note that ensemble average weight enumerator Ad need not be an integer.
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Figure 4.4: A check node of degree 3 before and after the CAP operation with N = 3.

(a) Consider the weight distribution w = [w0 w1 w2 ] = [2 1 1 ]. We calculate s = (w0 +

w1 + w2)/2 = 2, and max{w0, w1, w2} = 2 ≤ s = 2 ≤ N = 3. Thus, Aw0,w1,w2 = 6 from

equation (4.3.1). The resulting codewords are shown in Table 4.1

c0 c′0 c′′0
v0 v1 v2 v′0 v′1 v′2 v′′0 v′′1 v′′2
1 1 0 1 0 1 0 0 0
1 1 0 0 0 0 1 0 1
1 0 1 1 1 0 0 0 0
1 0 1 0 0 0 1 1 0
0 0 0 1 1 0 1 0 1
0 0 0 1 0 1 1 1 0

Table 4.1: Codewords satisfying the weight distribution of Example 4.3(a).

We observe that every codeword listed in Table 4.1 satisfies the weight distribution given by

input weight vector w = [w0 w1 w2 ] = [2 1 1 ]. The N = 3 nodes of type j = 0 (i.e.,

indexed by j = 0) have sum v0 + v′0 + v′′0 = 2 = w0. Similarly, the nodes indexed by j = 1

have sum v1 + v′1 + v′′1 = 1 = w1 and the nodes indexed by j = 2 have sum v2 + v′2 + v′′2 =

1 = w2. It is clear that there are no other ways to satisfy all three check nodes under this weight

distribution.

(b) Consider the weight distribution w = [w0 w1 w2 ] = [1 1 1 ]. As w0 + w1 + w2 is not

even, we have Aw0,w1,w2 = 0. It is clear that there is no way to satisfy the three check nodes

with this weight distribution. �

To calculate enumerators for a check node of degree 2 we can simply use the formulae for

a check node of degree 3 with weight 0 attached to the third input and the other two weight

inputs defined to be equal. This observation is detailed and derived in Proposition A.1. Further,

we can obtain enumerators for check nodes with degree larger than three by concatenation of

degree 3 check nodes [Div06].
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Having obtained an expression for the number of ways to satisfy any particular check node, we

may now form an ensemble average weight enumerator. Suppose that a protograph contains m

variable nodes connected to the channel and nv − m punctured variable nodes. Also, suppose

that each of the m transmitted variable nodes has an associated weight di, where 0 ≤ di ≤ N

for all i.2 Let Sd = {(d0, d1, . . . , dm−1)} be the set of all possible weight distributions such that

d0 + . . .+dm−1 = d, and let Sp be the set of all possible weight distributions for the remaining

punctured nodes. After performing the CAP operation N times, the ensemble average weight

enumerator for codewords with Hamming weight d for a protograph P is then given by [Div06]

Ad =
∑

{dk}∈Sd

∑

{dj}∈Sp

Ad, (4.1)

where

Ad =
Πnc

i=1A
ci

di

Πnv

i=1

(

N
di

)qvi
−1

is the average number of codewords in the ensemble with a particular weight distribution d =

(d0, d1, . . . , dnv−1). Here, the vector di is the input weight vector to check node ci.

4.3.2 Asymptotic weight enumerators

The normalized logarithmic asymptotic weight distribution or asymptotic spectral shape func-

tion of a code ensemble can be written as r(δ) = lim supn→∞ rn(δ), where rn(δ) = ln(Ad)
n

,

δ = d/n, d is the Hamming weight, n is the block length, and Ad is the ensemble aver-

age weight distribution given in (4.1). For protograph-based codes, we obtain the expression

r(δ) = 1
m

r̃(mδ) where [Div06]

r̃(δ̃) = max
{δk}∈Sδ̄

max
{δj}∈Sπ

lim sup
N→∞

(

nc
∑

i=1

ln Aci

di

N
−

nv
∑

i=1

(qvi
− 1) ln

(

N
di

)

N

)

,

and the sets Sδ̄ and Sπ are normalized versions of Sd and Sp respectively (each component is

divided by N as N → ∞).

2Since we use N copies of the protograph, the weight associated with a particular variable node in the protograph

can be as large as N .
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By defining the asymptotic check node weight enumerator as

aci(δi) , lim sup
N→∞

(

ln
Aci

di

N

)

,

where δi is the vector di normalized componentwise by N , we obtain an alternative formulation

for r(δ) as follows [Div06]:

r̃(δ̃) = max
{δk}∈Sδ̄

max
{δj}∈Sπ

(

nc
∑

i=1

aci(δi) −

nv
∑

i=1

(qvi
− 1)H(δi)

)

,

where H(x) = −(1 − x) ln(1 − x) − x ln x is the entropy function. Expressions for the

asymptotic weight enumerators were stated in [Div06], to help the reader these are derived in

Section A.2.

Suppose the first zero crossing of r(δ) occurs at δ = δmin. If r(δ) is negative in the range

0 < δ < δmin, then δmin is called the minimum distance growth rate of the code ensemble. By

considering the probability

P(d < δminn) =

δminn−1
∑

d=1

Ad,

it is clear that, as the block length n grows, if P(d < δminn) << 1, then we can say with high

probability that the majority of codes in the ensemble have a minimum distance that grows

linearly with n and that the minimum distance growth rate is δmin.

Example 4.4. Consider the (3, 6)-regular ensemble generated by the protograph with parity-

check matrix

P =









1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1









.

Using the method presented in [Div06], we can easily obtain an expression for the asymptotic

spectral shape function r(δ) of the resulting (3, 6)-regular LDPC block code ensemble. The

asymptotic spectral shape function is plotted against the normalised weight δ in Figure 4.5. We

observe that δmin = 0.023 for this ensemble, as originally computed by Gallager [Gal62]. �
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Figure 4.5: The asymptotic spectral shape function for Example 4.4.

4.4 Trapping sets of protograph-based codes

In [MP03], MacKay and Postol discovered a “weakness” in the structure of the Margulis con-

struction of a (3, 6)-regular Gallager code. Described as near-codewords, these small graphical

sub-structures existing in the Tanner graph of Low-Density Parity-Check (LDPC) codes cause

the iterative decoding algorithm to get trapped in error patterns. These weaknesses were shown

to contribute significantly to the performance of the code in the error floor, or high signal-to-

noise ratio (SNR), region of the bit error rate (BER) curve. Richardson developed this concept

in [Ric03], and defined these structures as trapping sets. In this paper, trapping sets were shown

to have a strong influence on the position and slope of the error floor and the author proposed a

two-stage technique to predict the error floor performance of LDPC codes based on computer

search strategies: first, we must search the Tanner graph for candidate trapping sets; then their

contribution to the error floor is evaluated. Asymptotic results on trapping set enumerators for

both regular and irregular LDPC block code ensembles were published in [MSW07].

Previously, such weaknesses of LDPC codes on the binary erasure channel (BEC) had been

defined as stopping sets [DPT+02], which can be viewed as trapping sets on the BEC under

belief propagation (BP) decoding. Stopping sets also play a role on Gaussian channels but

are not dominant. In [ZDN+06], the authors propose another important subclass of trapping
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sets called absorbing sets. An absorbing set is defined as a decoder-independent combinatorial

object that can be studied analytically. So-called fully absorbing sets have been shown to be

stable under bit-flipping operations [DLZ+09].

In this section, we review the approach and results of Abu-Surra, Ryan and Divsalar [ARD07a],

which will later be used to calculate trapping set enumerators for protograph-based LDPC con-

volutional codes in Chapter 6. In Section 4.4.1, we define general trapping sets and show how

a modified protograph structure can be employed successfully in order to calculate easily enu-

merators of these sets. Section 4.4.2 introduces an important subset of general trapping sets

called elementary trapping sets which have been shown to have a large (negative) affect on the

performance of codes in the error floor region. Finally, we discuss in Section 4.4.3 how to

form ensemble trapping set enumerators, and it is observed that for some asymptotically good

ensembles, the smallest trapping set grows linearly with block length.

4.4.1 General trapping set enumerators for protograph-based codes

Definition 4.1 An (a, b) general trapping set τa,b of a bipartite graph is a set of variable nodes

of size a which induce a subgraph with exactly b odd-degree check nodes (and an arbitrary

number of even-degree check nodes).

An ensemble average general trapping set enumerator Aa,b tells us that given particular gen-

eral trapping set parameters a and b, an average member of the ensemble has Aa,b (a, b) gen-

eral trapping sets. In order to calculate ensemble average general trapping set enumerators for

protograph-based block codes, we make use of the combinatorial arguments discussed in Sec-

tion 4.3 for calculating ensemble average weight enumerators [Div06, FMT05]. The technique

involves considering a two-part weight enumerator for a modified protograph with the property

that any (a, b) trapping set in the original protograph is a codeword in the modified protograph.

We now briefly describe the procedure introduced in [ARD07a]. An auxiliary ‘flag’ variable

node is added to each check node, as displayed in Figure 4.6.

Consider a subset S with cardinality a of the variable nodes V = {v0, v1, v2, v3}, for example

a = 3 and S = {v0, v1, v2}. We now attach weight 1 to these variable nodes and weight 0 to

the remaining nodes in V \S = {v3}. We observe that check nodes c0 and c1 are satisfied3,

3Recall that a check node corresponds to a row of a parity-check matrix. In this sense, if the check node has

an even number of connections the parity-check sum is equal to zero modulo 2 and that particular sum (or check

node) is deemed to be satisfied. If the check sum is equal to one modulo 2 (or the check node has an odd number of

connections) the parity-check equation fails and we say the node is unsatisfied.
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Figure 4.6: An example protograph and modified version with auxiliary variable nodes.

since they both have input weight 2, but that check node c2 (with input weight 3) is unsatisfied.

Thus there is b = 1 odd-degree (unsatisfied) check node. This is an example of a (3, 1) general

trapping set. Thus τ3,1 contains the subset S = {v0, v1, v2}.

For any subset of variable nodes, we can satisfy any odd-degree check nodes by assigning

weight 1 to the corresponding auxiliary variable node. Note that the weight of the variable

nodes V is a = 3 and the weight of the auxiliary nodes is b = 1 for this (3, 1) general trapping

set, which suggests that the general trapping sets of a protograph can be enumerated by applying

a two-part weight enumerator analysis to the modified protograph. We thus consider a two-

part weight enumerator over sets of variable nodes {v0, v1, . . . , vnv−1} and auxiliary nodes

{f0, f1, . . . , fnf−1}, where nv is the number of variable nodes in the initial protograph and nf

is the number of auxiliary variable nodes (equal to the number of check nodes nc). This method

of enumerating trapping sets for protograph-based codes is presented in [ARD07a].

4.4.2 Elementary trapping set enumerators

Definition 4.2 An (a, b) elementary trapping set τ e
a,b of a bipartite graph is a set of variable

nodes of size a which induce a subgraph with only degree-one and degree-two check nodes, and

exactly b degree-one check nodes.

Extensive simulations (see, e.g., [Ric03]) have shown that in fact most of the decoding fail-

ures in iterative decoding correspond to elementary trapping sets. Enumerators for elementary

trapping sets can be calculated in exactly the same way as those for general trapping sets after

introducing extra constraints on the check node degrees; see [ARD07a] for further details. An

example elementary trapping set is illustrated in Figure 4.7.
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Figure 4.7: A (3, 1) elementary trapping set in the Tanner graph of Example 4.1.

4.4.3 Ensemble trapping set enumerators

Suppose that a modified protograph contains nv variable nodes connected to the channel. Also,

suppose that each of the nv transmitted variable nodes has an associated weight di, where

0 ≤ di ≤ N for all i.4 Let Sd = {(d0, d1, . . . , dnv−1)} be the set of all possible weight

distributions such that d0 + . . .+ dnv−1 = a. Finally, suppose that Sf = {(f0, f1, . . . , fnf−1)}

is the set of all weight distributions such that f0 + . . . + fnf−1 = b, where 0 ≤ fi ≤ N for all

i. Then the two-part ensemble average trapping set enumerator for the modified protograph is

given by

Aa,b =
∑

{dk}∈Sd

∑

{fl}∈Sf

Ad,

where Ad is the average number of codewords in the modified ensemble with weight distribu-

tion

d = (d0, d1, . . . , dnv−1, f0, f1, . . . , fnf−1).

The two-part normalized logarithmic asymptotic trapping set spectral shape function of a code

ensemble can be written as

r(α, β) = lim sup
n→∞

rn(α, β),

where rn(α, β) =
ln(Aa,b)

n
, α = a/n, β = b/n, a and b are Hamming weights, n is the

block length, and Aa,b is the two-part ensemble average weight distribution. Figure 4.8 shows

the asymptotic trapping set spectral shape function for the (3, 6)-regular LDPC block code

ensemble of Example 4.4 for various fixed values of β.

4Since we use N copies of the protograph, the weight associated with a particular variable node in the protograph

can be as large as N .
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Figure 4.8: The asymptotic trapping set spectral shape function for Example 4.4 for various

fixed values of β.

Suppose now we are interested in the ratio of b to a for a general (a, b) trapping set enumerator.

Let ∆ = b/a = β/α, ∆ ∈ [0,∞). As proposed in [ARD07a], we may now classify the

trapping sets as

τ∆ = {τa,b|b = ∆ · a}.

For each ∆, we define dts(∆) to be the ∆-trapping set number, which is the size of the smallest,

non-empty trapping set in τ∆. Now consider fixing ∆ and plotting the normalized weight α

against the two-part asymptotic spectral shape function r(α, β) = r(α,∆α). Suppose α > 0

and the first zero-crossing of r(α, β) occurs at α = δts(∆). If r(α, β) is negative in the range

0 < α < δts(∆), then the first zero-crossing δts(∆) is called the ∆-trapping set growth rate of

the code ensemble. If δts(∆) exists, and if the probability

P(a < δts(∆)n) =

δts(∆)n−1
∑

a=1

Aa,b << 1

as the block length n grows, we can say with high probability that the majority of codes in the

ensemble have a ∆-trapping set number that increases linearly with n, i.e., dts(∆) = nδts(∆).

This implies that, for sufficiently large n, a typical member of the ensemble has no small trap-

ping sets. Figure 4.9 shows the asymptotic trapping set spectral shape function for the (3, 6)-

regular LDPC block code ensemble of Example 4.4 for various fixed values of ∆.
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Figure 4.9: Asymptotic general trapping set enumerators for Example 4.4 for various fixed

values of ∆.

Experimental results have indicated that the failure events that dominate the performance of

LDPC codes with iterative decoding in the error floor region of the BER curve can be attributed

to small trapping sets [Ric03]. Since small trapping sets contain relatively few variable nodes, it

is more likely that all of the variable nodes in a small trapping set have unreliable channel values

than in a larger trapping set. Further, examination of the small trapping sets dominating in the

error floor region has shown that the sets with low degree check nodes cause the most trouble.

This is because of the low connectivity of these check nodes to the rest of the graph, which

results in the trapping set not being able to obtain enough independent (and possibly helpful)

messages during decoding iterations. Thus an ensemble that guarantees no small trapping sets

on average is highly desirable.
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Chapter 5

Asymptotically Good LDPC

Convolutional Codes based on

Protographs
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Abstract

LDPC convolutional codes have been shown to be capable of achieving the same capacity-

approaching performance as LDPC block codes with iterative message-passing decoding. In

this chapter, asymptotic methods are used to form lower bounds on the free distance to con-

straint length ratio of several ensembles of asymptotically good, protograph-based LDPC con-

volutional codes. Further, it is shown that the free distance to constraint length ratio of the

LDPC convolutional codes exceeds the minimum distance to block length ratio of correspond-

ing LDPC block codes. A selection of the results presented here has previously been published

in [MPZC08] and [MPGC08].
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5.1 Introduction

In this chapter, we use ensembles of tail-biting LDPC convolutional codes (introduced in

[TZF07]) derived from a protograph-based ensemble of LDPC block codes to obtain a lower

bound for the free distance of unterminated, asymptotically good, time-varying LDPC convolu-

tional code ensembles, i.e., ensembles that have the property of free distance growing linearly

with constraint length.

In the process, it is shown that the minimum distances of ensembles of tail-biting LDPC con-

volutional codes approach the free distance of an associated unterminated, time-varying LDPC

convolutional code family as the block length of the tail-biting ensemble increases. We also

show, for rate 1/2 protograph-based ensembles with regular degree distributions, that the free

distance bounds are consistent with those recently derived for more general regular LDPC con-

volutional code ensembles in [STL+07] and [TZC09]. Further, the relatively low complexity

requirements of computing the bound allows us to calculate new free distance bounds that

grow linearly with constraint length for values of J and K that have not been previously con-

sidered in the literature. We show, for all the (J,K)-regular ensembles considered, that the

free distance to constraint length ratio exceeds the minimum distance to block length ratio of

the corresponding block codes. Further, for protographs with irregular degree distributions, we

obtain new free distance bounds that grow linearly with constraint length and whose free dis-

tance to constraint length ratio also exceeds the minimum distance to block length ratio of the

corresponding irregular block codes.

The chapter is structured as follows. In Section 5.2, the notion of a convolutional protograph

is introduced along with several new construction techniques for protograph-based LDPC con-

volutional codes. In Section 5.3, the construction of tail-biting LDPC convolutional codes

is described. It is then shown that the free distance of a (periodically) time-varying LDPC

convolutional code is lower bounded by the minimum distance of the block code formed by

terminating it as a tail-biting LDPC convolutional code. Finally, in Section 5.4 new results are

presented on the free distance of ensembles of regular and irregular LDPC convolutional codes

based on protographs.
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5.2 Protograph-based LDPC convolutional codes

The convolutional counterpart of LDPC block codes was described in Section 1.5.2. LDPC con-

volutional codes have been shown to have certain advantages compared to LDPC block codes of

the same complexity [CPBZ06,CPJD07]. In this section, we will use the copy-and-permute op-

eration (introduced in Section 4.2) to construct protograph-based (LDPC) convolutional codes.

We achieve this by forming a convolutional protograph that has the same number and type of

edge connections as the base block protograph that it is based on, and thus maintains many of

the desirable properties of protograph-based codes discussed in Section 4.2.

Throughout this section, we will suppose that a protograph, with protograph parity-check ma-

trix P , consists of nc check nodes and nv variable nodes. We wish to form a convolutional

protograph and this is achieved by ‘unwrapping’ the protograph with protograph parity-check

matrix P . Let y = gcd(nc, nv). Then, depending on the value of y, we will define different

unwrapping procedures.

5.2.1 Unwrapping a protograph with gcd(nc, nv) > 1

Suppose that we have an nc × nv protograph parity-check matrix P , where gcd(nc, nv) = y >

1. We then partition P as a y × y block matrix as follows:

P =











P1,1 . . . P1,y

...
...

Py,1 . . . Py,y











,

where each block Pi,j is of size nc/y × nv/y. P can now be separated into a lower triangular

part, Pl, and an upper triangular part minus the leading diagonal, Pu. Explicitly,

Pl =

















P1,1

P2,1 P2,2

...
...

. . .

Py,1 Py,2 . . . Py,y

















and Pu =

















P1,2 . . . P1,y

. . .
...

Py−1,y

















,

where blank spaces correspond to zeros. This operation is called ‘cutting’ a protograph parity-

check matrix.
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Rearranging the positions of these two triangular matrices and repeating them indefinitely re-

sults in a protograph parity-check matrix Pcc of an unterminated, periodically time-varying

convolutional code with decoding constraint length νs = nv and, in general, period T = y,

given by1

Pcc =

















Pl

Pu Pl

Pu Pl

. . .
. . .

















. (5.1)

Note that the unwrapping procedure described above preserves the row and column weights of

the protograph parity-check matrix. The Tanner graph of Pcc can be viewed as a convolutional

protograph.

5.2.2 Examples of unwrapped protograph-based convolutional codes

As mentioned in Section 5.2.1, the period of a convolutional code with protograph (or proto-

graph-based) parity check matrix is dependent on the structure of the initial protograph. Here,

we observe some toy examples to illustrate the possible periods and structures of the unwrapped

codes.

Example 5.1. Consider the following protograph parity-check matrix,

P =









2 1 0 1 2 1

0 1 1 1 2 1

1 2 1 0 1 2









.

For this example, we calculate gcd(nc, nv) = gcd(3, 6) = 3 = y. Thus the resulting rate

R = 1 − nc/nv = 1/2 convolutional code has infinite parity-check matrix

1The period of the convolutional code is dependent on the structure of the protograph. This will be discussed

further in Section 5.2.2.
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Pcc =

































2 1

0 1 1 1

1 2 1 0 1 2

0 1 2 1 2 1

2 1 0 1 1 1

1 2 1 0 1 2

. . .
. . .

































.

We observe that the decoding constraint length is νs = nv = 6. The submatrices Hi(t) are of

size nc/y × nv/y = 1 × 2, and Hi(t) = Hi(t + 3) ∀ i, t. Thus T = y = 3 for this example,

and by construction y|nv. �

This periodic property holds for different rate codes, as we observe in the next example.

Example 5.2. Consider the following rate R = 1/3 protograph parity-check matrix,

P =















1 0 3 0 1 1

0 1 1 1 1 0

1 0 0 1 1 2

2 1 2 1 1 1















.

For this example, we calculate gcd(nc, nv) = gcd(4, 6) = 2 = y. Thus we cut P with step size

nc/y × nv/y = 2 × 3 and the resulting rate R = 1 − nc/nv = 1/3 convolutional code has

infinite parity-check matrix

Pcc =













































1 0 3

0 1 1

1 0 0 1 1 2

2 1 2 1 1 1

0 1 1 1 0 3

1 1 0 0 1 1

1 0 0 1 1 2

2 1 2 1 1 1

. . .
. . .













































.
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The decoding constraint length is νs = nv = 6. The submatrices Hi(t) are of size nc/y ×

nv/y = 2 × 3, and Hi(t) = Hi(t + y) = Hi(t + 2) ∀ i, t. Thus T = y = 2 for this example,

and by construction y|nv. �

Depending on any sub-structures in P , it is possible to have a smaller period y′ ∈ Z+ where

y′|y. This can be seen in the next example.

Example 5.3. Consider the protograph parity-check matrix

P =















1 0 0 1 2 1 1 3

1 1 2 1 1 0 0 2

2 1 1 3 1 0 0 1

1 0 0 2 1 1 2 1















.

We calculate y = gcd(4, 8) = 4, and thus we ‘cut’ P with step size nc/y × nv/y = 1× 2. The

resulting infinite convolutional protograph parity-check matrix is

Pcc =













































1 0

1 1 2 1

2 1 1 3 1 0

1 0 0 2 1 1 2 1

0 1 2 1 1 3 1 0

1 0 0 2 1 1 2 1

0 1 2 1 1 3 1 0

1 0 0 2 1 1 2 1

. . .
. . .













































.

The submatrices Hi(t) are of equal size to the step size nc/y × nv/y = 1 × 2. The period

of this convolutional code is actually y′ = 2 because of the sub-structures in P , and thus

Hi(t) = Hi(t + y′) = Hi(t + 2) ∀ i, t. Note that y′|y, and thus we also have Hi(t) =

Hi(t + 2y′) = Hi(t + y) = Hi(t + 4) ∀ i, t. Thus T = y′ = 2 for this example. �

By construction, the equation

Hi(t) = Hi(t + y) (5.2)

holds for all i, t. We now formalise the observation that the smallest period y′ of Pcc must

satisfy y′|y.
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Proposition 5.1 Suppose we construct a convolutional protograph parity-check matrix Pcc as

defined in equation (5.1). Let the submatrix size of each Hi(t) be nc/y × nv/y, then Hi(t) =

Hi(t + y) ∀ i, t from equation (5.2). Suppose y′ ∈ Z+ is the smallest period of Pcc, i.e.,

Hi(t) = Hi(t + y′) ∀ i, t and y′ ≤ y with no smaller period. Then y′|y.

Proof. Define y′′ = gcd(y, y′). If y′′ = y then T = y = y′ is the smallest period of Pcc. If y′′ =

y′ then T = y′′ and y′′ = y′|y. We now show that there are no other possible situations. Note

that if the convolutional code is periodic with periods y and y′ then Hi(t) = Hi(t + ky + ly′)

∀ i, t for any k, l ∈ Z. If 1 < y′′ < y′, then from the Euclidean algorithm there exist k, l such

that ky + ly′ = y′′ and thus Hi(t) = Hi(t + y′′) ∀ i, t, and we have a contradiction as y′ is not

the smallest period.

Finally, if y and y′ are relatively prime, i.e., y′′ = 1, then T = y′ = y′′ = 1 (the convolutional

code is actually time-invariant). This can be easily seen again from the Euclidean algorithm.

If gcd(y, y′) = 1 then there exist k, l ∈ Z such that ky + ly′ = 1. Then it follows that

Hi(t) = Hi(t + 1) ∀ i, t. �

Example 5.4. Suppose Pcc is periodic with period T = y = 4. Suppose there exists ŷ = 3 such

that Hi(t) = Hi(t + ŷ) ∀ i, t. Then Hi(t) = Hi(t + 4k + 3l) ∀ i, t and for any k, l ∈ Z. As

gcd(3, 4) = 1, there exist k, l such that 4k + 3l = 1. We note that, for example k = −2 and

l = 3 satisfy the equation. We observe that this is indeed a solution, as if the code is periodic

with period y = 4 then Hi(t) = Hi(t + (−2) × 4) = Hi(t − 8) ∀ i, t, and if the code is also

periodic with period ŷ = 3 then Hi(t) = Hi(t− 8) = Hi(t− 8 + 3× 3) = Hi(t + 1) ∀ i, t. �

5.2.3 Unwrapping a protograph with gcd(nc, nv) = 1

If gcd(nc, nv) = 1, we cannot form a square block matrix larger than 1 × 1 with equal size

blocks. In this case, Pl = P and Pu is the all-zeros matrix of size nc × nv. This trivial cut

results in a convolutional code with syndrome former memory zero, with repeating blocks of

the original protograph on the leading diagonal. We now propose two methods of dealing with

this structure.
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5.2.3.1 Form an M -cover

Here we create a larger protograph parity-check matrix by using the copy and permute operation

M times on P for some small integer M . This results in an Mnc × Mnv = n′
c × n′

v parity-

check matrix where of course the gcd(n′
c, n

′
v) = M . The n′

c × n′
v protograph parity-check

matrix can then be cut following the procedure outlined above to form an infinite protograph

parity-check matrix Pcc, where the step size is Mnc/y × Mnv/y. The resulting unterminated,

periodically time-varying convolutional code has decoding constraint length νs = Mnv and, in

general, period T = y where each Hi(t) has size Mnc/y × Mnv/y. In effect, as there are M !

different choices of permutation matrix, this operation creates a mini ensemble of block codes

that can be unwrapped to an ensemble of convolutional codes.

5.2.3.2 Use a nonuniform cut

When gcd(nc, nv) = 1, we can also form a convolutional code by unwrapping the protograph

parity-check matrix using a nonuniform cut. Let the protograph parity-check matrix be written

as

P =











p1,1 . . . p1,nv

...
...

pnc,1 . . . pnc,nv











.

We define a vector ξ consisting of nc step parameters ξ = [ξ1 ξ2 · · · ξnc ], where 0 ≤ ξ1 <

ξnc ≤ nv, and each ξi−1 < ξi for i = 2, . . . , nc. As in the previous case, we form nc × nv

matrices Pl and Pu as follows

• for each ξi, i = 1, . . . , nc, the entries pi,1 to pi,ξi
are copied into the equivalent positions

in Pl;

• entries pi,ξi+1 to pi,nv are copied, if they exist, into the equivalent positions in Pu;

• the remaining positions in Pl and Pu are set to zero.

An LDPC convolutional code derived from an LDPC block code using a nonuniform cut

can be encoded and decoded using conventional encoding and decoding methods with mi-

nor modifications. For an LDPC convolutional code obtained using the nonuniform cut ξ =
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[ξ1 ξ2 · · · ξnc ], the maximum step width ξmax for the cut is given by

ξmax = max
i=2,...,nc

{ξ1, ξi − ξi−1}.

Then ξmax − ξi columns of zeros are appended immediately to the left of the columns in the

original protograph parity-check matrix P corresponding to the steps ξi, i = 1, 2, . . . , nc, to

form a modified protograph parity-check matrix P ′.

This process is illustrated for a (3,4)-regular protograph with the nonuniform cut ξ = [2 3 4 ]

below:

P =









1 1 1 1

1 1 1 1

1 1 1 1









⇒ P ′ =









1 1 0 1 0 1

1 1 0 1 0 1

1 1 0 1 0 1









.

LDPC convolutional codes unwrapped from P ′ can be encoded by a conventional LDPC con-

volutional encoder with the condition that information symbols are not assigned to the all-zeros

columns. Thus, these columns correspond to punctured symbols, and the code rate is not af-

fected. At the decoder, a conventional pipeline decoder (see, e.g., [JZ99a]) can be employed to

decode the received sequence. No special treatment is necessary for the symbols corresponding

to the all-zeros columns, since the column weight of zero ensures that they are not included in

any parity-check equations. I.e., the belief-propagation decoding algorithm ignores the corre-

sponding symbols.

We now form the parity-check matrix Pcc of an unterminated, periodically time-varying convo-

lutional code from P ′ as in (5.1). Note that nonuniform cuts do not change the row and column

weights of the original parity-check matrix P , and that the decoding constraint length remains

constant at νs = nv.

5.2.4 Ensembles of protograph-based LDPC convolutional codes

Ensembles of block codes based on protographs were introduced in Section 4.2. The parity-

check matrix of a protograph-based block code H is formed by replacing, for a fixed N ∈

Z+, the non-zero entries of P with N × N permutation matrices (or a summation of N × N

permutation matrices for integer entries larger than 1), where the permutation matrices are
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chosen randomly and independently, and replacing the zero entries of P with N × N all-

zeros matrices. This operation maintains the edge connections of the base protograph, and if

N is sufficiently large, then H is the parity-check matrix of a protograph-based LDPC block

code. So far in this section, we have discussed methods of forming an infinite convolutional

protograph with protograph parity-check matrix Pcc by unwrapping a base protograph P .

We may now form a family of unterminated, protograph-based, time-varying (LDPC) convo-

lutional codes with decoding constraint length νs = Nnv in the usual way, using the infinite

protograph parity-check matrix Pcc. We note that, in general, a member of this convolutional

family will have infinite period, as the permutation matrices are chosen randomly and inde-

pendently. However, if Pcc has period T = y then there will exist members of the convo-

lutional family with period T = ky for k ∈ Z+, where the submatrices Hi(t) are of size

Nnc/y × Nnv/y.

5.3 Free distance bounds

In this section we present a method for obtaining a lower bound for the free distance of an en-

semble of unterminated, asymptotically good, time-varying LDPC convolutional codes derived

from protograph-based LDPC block codes. To proceed, we will make use of a family of tail-

biting LDPC convolutional codes with incremental increases in block length. The tail-biting

codes will be used as a tool to obtain the desired bound for the free distance of the untermi-

nated codes.

5.3.1 Tail-biting convolutional codes

Consider the parity-check matrix Pcc of the protograph-based, unterminated convolutional code

introduced in Section 5.2. We now introduce the notion of tail-biting convolutional codes by

defining the ‘unwrapping factor’ λ as the number of times the sliding convolutional structure is

repeated before applying tail-biting termination. For λ ≥ 1, the parity-check matrix P
(λ)
tb of the

desired tail-biting protograph-based convolutional code with block length λnv can be written

as
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P
(λ)
tb =





















Pl Pu

Pu Pl

Pu Pl

. . .
. . .

Pu Pl





















λnc×λnv

. (5.3)

Note that the tail-biting convolutional code for λ = 1 is simply the original protograph-based

block code.

5.3.2 A tail-biting LDPC convolutional code ensemble

Given a protograph parity-check matrix P , we generate a family of tail-biting convolutional

codes with parity check matrices P
(λ)
tb and increasing block lengths λnv, λ = 1, 2, . . ., using

the process described above. Note that this can alternatively be viewed as terminating the

convolutional code with protograph parity-check matrix Pcc as a tail-biting convolutional code

with block length λnv for λ = 1, 2, . . .. Since tail-biting convolutional codes are themselves

block codes, we can treat the Tanner graph of P
(λ)
tb as a protograph for each value of λ.

Replacing the entries of this matrix with either N ×N permutation matrices or N ×N all-zeros

matrices, as discussed in Section 4.2, creates an ensemble of LDPC block codes which can be

analysed asymptotically as N goes to infinity, where the sparsity condition of an LDPC code is

satisfied for large N . Note that as the unwrapping factor λ increases, the tail-biting ensemble

with protograph parity-check matrix P
(λ)
tb becomes a better representation of the unterminated

convolutional code family with protograph parity-check matrix Pcc. This is reflected in the

weight enumerators, and it is shown in Section 5.4 that increasing λ provides us with minimum

distance growth rates that converge to a lower bound for the free distance growth rate of the

unterminated convolutional code.

In addition, we note that unwrapping any P
(λ)
tb indefinitely results in the protograph parity-

check matrix Pcc. Further, after inserting N × N permutation matrices and all-zeros matrices,

each tail-biting LDPC code ensemble in turn can be unwrapped and repeated indefinitely to

form an ensemble of unterminated, periodically time-varying LDPC convolutional codes. This

ensemble will have rate R = 1−Nnc/Nnv = 1−nc/nv, decoding constraint length νs = Nnv

and, in general, period T = λy.
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5.3.3 A free distance bound

Tail-biting convolutional codes can be used to establish a lower bound for the free distance of

the associated unterminated, periodically time-varying convolutional code by showing that the

free distance of the unterminated code is bounded below by the minimum distance of any of its

tail-biting versions. We can then extend this result to show a similar property for the average

free distance of an ensemble of convolutional codes with respect to the average minimum dis-

tance of any of its associated ensembles of tail-biting convolutional codes. Finally, we will use

this principle to find a lower bound for the average free distance for a family of unterminated,

time-varying, LDPC convolutional codes based on an infinite protograph.

The method used to prove the following bound is based on a similar proof of a minimum

distance bound first presented in [SPVC09]. The reader may find it helpful to consult Example

5.5 below when considering Theorem 5.2 and its proof.

Theorem 5.2 Consider a rate R = 1− nc/nv unterminated, periodically time-varying convo-

lutional code with decoding constraint length νs = nv and period T = y specified by (5.1) (see

Section 5.2.1). Let d
(λ)
min be the minimum distance of the associated tail-biting convolutional

code with block length n = λnv and unwrapping factor λ > 0. Then the free distance dfree of

the unterminated convolutional code is lower bounded by d
(λ)
min for any unwrapping factor λ.

I.e.,

dfree ≥ d
(λ)
min, ∀λ > 0.

Proof. Consider the unterminated convolutional code C whose parity-check matrix is given

in the form (5.1). We can consider any codeword x ∈ C with Hamming weight l as a set of

distinct variable nodes in the Tanner graph of the parity-check matrix, i.e.,

x ≡ X = {vI(0), vI(1), · · · , vI(l−1)}.

The equivalence arises as follows: if we apply weight one to each of the variable nodes in X

and weight zero to the remaining variable nodes of (5.1), then all of the check nodes will be

satisfied (i.e. have even weight).

Here, I = [I(0) I(1) · · · I(l − 1) ] is an index vector of length l and the elements vI(j) are

unique by definition. Consider the modular index vector Î obtained by letting Î(i) = I(i) mod

λnv, for i = 0, 1, . . . , l − 1.
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Proposition. The set of variable nodes

X̂ =







v0k0, v1k1, . . . , vλnv−1kλnv−1

∣

∣

∣

∣

∣

∣

ki =
l−1
∑

j=0

κ
Î(j),i mod 2







corresponds to a codeword in the tail-biting convolutional code with parity-check matrix given

in (5.3), where κa,b is the Kronecker Delta function2 : κa,b = 1 iff a = b and zero otherwise.

Proof. The modular operation defined above corresponds to wrapping the unterminated convo-

lutional code as a tail-biting convolutional code with unwrapping factor λ, with parity-check

matrix given in (5.3). Consider the infinite concatenated parity-check matrix

P (λ)
∞ =

[

P
(λ)
tb

∣

∣

∣
P

(λ)
tb

∣

∣

∣
. . .
]

=





















Pl Pu Pl Pu

Pu Pl Pu Pl

Pu Pl Pu Pl . . .

. . .
. . .

. . .
. . .

Pu Pl Pu Pl





















.

It is clear that any codeword x ∈ C satisfies x ·
(

P
(λ)
∞

)T

= 0, as the same symbols checked

in (5.1) are also checked by P
(λ)
∞ in addition to some extra symbols. Suppose now that we

partition x into sections of length λnv, i.e,

x =
[

x0 x1 . . . xλnv−1 xλnv
xλnv+1 . . . x2λnv−1 . . .

]

=
[

x0 x1 . . .
]

,

where each xi has length λnv. Consider the vector x̂ =
∑∞

k=0 xi mod 2 of length λnv. Because

of the repeated structure of P
(λ)
∞ , we observe that x̂ · (P

(λ)
tb )T = 0 and x̂ ≡ X̂. �

Suppose the codeword x̂ has Hamming weight l̂. By the construction of x̂, clearly l̂ ≤ l, as if

any of the elements of the modular index vector Î are repeated then we obtain a reduction in

l̂. If the elements of Î are unique, then we say that the original codeword x (with Hamming

weight l) has not been affected by the wrapping procedure and therefore l̂ equals l. If, however,

there are k > 1 copies of the same index value in Î, then the value of l̂ is reduced by 2⌊k
2⌋. This

corresponds to the equivalent case when multiple variable nodes in the codeword are wrapped

back on top of each other. If there is an even number of such nodes at the same position, none

2Here, we avoid the standard notation ‘δ’ for the Kronecker Delta function as in this work δ is used to denote

distance growth.
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of them survives as a member of the tail-biting codeword x̂, and if the repetition value k is odd,

only one node survives. These reductions are cumulative over all of the repetitive index values

in Î.

This implies that every codeword in the unterminated convolutional code induces a codeword

in any of its tail-biting terminated codes that has Hamming distance at most as large as the

original one. The main result now follows by wrapping back the unterminated codeword x̂

with minimum Hamming weight. �

Example 5.5. Consider the following protograph and associated protograph parity-check matrix

P =

[

1 0 1 1 1 0
0 1 1 1 0 1

]

Figure 5.1: An example protograph and associated protograph parity-check matrix.

We form the parity-check matrix of the unterminated periodically time-varying convolutional

code with rate R = 1 − nc/nv = 2/3, decoding constraint length νs = nv = 6 and period

T = y = 2 by unwrapping P with step (submatrix) size nc/y × nv/y = 1 × 3 as described in

Section 5.2.1. The convolutional code parity-check matrix is given as follows:

Pcc =

































1 0 1

0 1 1 1 0 1

1 1 0 1 0 1

0 1 1 1 0 1

1 1 0 1 0 1

0 1 1 1 0 1

. . .
. . .

































, (5.4)

where blank space corresponds to zeros. Consider the following infinite convolutional code-

word sequence with Hamming weight l = 9:

x = [1 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0 · · · ].
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Figure 5.2: A codeword sequence (a) in the infinite Tanner graph of the unterminated convo-

lutional code of Example 5.5 and associated wrapped codewords of the tail-biting

convolutional codes with unwrapping factors (b) λ = 1, (c) λ = 2, and (d) λ = 3.

Suppose, without loss of generality, that the equivalent set of variable nodes is

X = {v0, v2, v3, v6, v7, v11, v12, v13, v14},

with associated index vector I = [0 2 3 6 7 11 12 13 14 ]. The set X is highlighted in Fig.

5.2(a). We now consider wrapping the convolutional code onto itself with different unwrapping

factors λ.

• λ = 1. Here, we wrap the convolutional codeword x onto itself with modulus λnv = 6.

The resulting modular index vector is Î = [0 2 3 0 1 5 0 1 2 ]. Observe that index

values Î(0), Î(3) and Î(6) equal 0. I.e., k = 3 for this index value, and we obtain the

reduction value of 2⌊3
2⌋ = 2. Since k is odd, only one occurence of the resulting variable

node appears in the reduced codeword. As regards the other index values, Î(4) = Î(7) =

1 and Î(1) = Î(8) = 2. We observe that k = 2 in both these cases, which results in

a reduction value of 2 for both index values. Thus the variable nodes corresponding to

these index values do not appear in the reduced codeword. Finally, index values Î(2) = 3

and Î(5) = 5 appear only once, so both of the corresponding variable nodes are present
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in the reduced codeword. Then Î represents the set of variable nodes X̂ = {v̂0, v̂3, v̂5}

in the Tanner graph of the tail-biting convolutional code with unwrapping factor λ = 1.

We observe that X̂ ≡ x̂ = [1 0 0 1 0 1 ] is a codeword with Hamming weight l̂ = 3

in the tail-biting convolutional code with parity-check matrix P
(1)
tb . This is highlighted in

Fig. 5.2(b).

• λ = 2. With modulus λnv = 12, we calculate the resulting modular index vector as

Î = [0 2 3 6 7 11 0 1 2 ]. We obtain the reduction value of 2 for the following index

values: Î(0) = Î(6) = 0 and Î(1) = Î(8) = 2 respectively. The resulting codeword with

Hamming weight l̂ = 5 is represented by X̂ = {v̂1, v̂3, v̂6, v̂7, v̂11}. This is a codeword

of the tail-biting convolutional code with parity-check matrix P
(2)
tb shown in Fig. 5.2(c).

• λ ≥ 3. With modulus λnv for λ ≥ 3, the unwrapping factor is large enough that the

modular index vector is Î = I = [0 2 3 6 7 11 12 13 14 ]. Here we obtain no re-

duction for any of the index values and the resulting codeword with Hamming weight

l̂ = l = 9 is represented by X̂ = X = {v̂0, v̂2, v̂3, v̂6, v̂7, v̂11, v̂12, v̂13, v̂14}. This is a

codeword of the tail-biting convolutional code with parity-check matrix P
(λ)
tb for λ ≥ 3.

The codeword X̂ = X is illustrated in Fig. 5.2(d) for λ = 3. �

Example 5.6. Consider the rate R = 1/3 convolutional code with (3, 1, 2) binary nonsystematic

feedforward convolutional encoder given in Fig. 5.3.

Figure 5.3: A rate R = 1/3 binary nonsystematic feedforward convolutional encoder for the

convolutional code of Example 5.6.
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The associated generator matrix is

G =











1 0 1 0 1 1 1 1 1

1 0 1 0 1 1 1 1 1

. . .
. . .

. . .











,

and it can be shown easily that this convolutional code has free distance dfree = 7. The

codeword sequence with minimum weight is x = [1 0 1 0 1 1 1 1 1 0 · · · ] generated by

information sequence u = [1 0 0 · · · ]. The corresponding infinite parity check matrix can be

written as

Pcc =













































0 0 0

1 1 1

1 1 1 0 0 0

0 0 0 1 1 1

1 0 1 1 1 1 0 0 0

0 1 1 0 0 0 1 1 1

1 0 1 1 1 1 0 0 0

0 1 1 0 0 0 1 1 1

. . .
. . .

. . .













































.

The parity-check matrix Pcc can be viewed as an unwrapped protograph parity-check matrix

P , where

P = P
(1)
tb =



























0 0 0 1 0 1 1 1 1

1 1 1 0 1 1 0 0 0

1 1 1 0 0 0 1 0 1

0 0 0 1 1 1 0 1 1

1 0 1 1 1 1 0 0 0

0 1 1 0 0 0 1 1 1



























,

and we unwrap P with step size nc/y × nv/y = 2 × 3.

The convolutional codeword x with minimum Hamming weight l = 7 can be written as the set

of variable nodes

x ≡ X = {v0, v2, v4, v5, v6, v7, v8}.
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In this example, we observe that with modulus λnv = 9λ the modular index vector Î equals I

for all λ ≥ 1. Thus the corresponding wrapped codeword x̂ in any of the associated tail-biting

convolutional codes also has Hamming weight l̂ = l = 7.

However, consider the convolutional codeword

X = {v0, v2, v3, v4, v8, v9, v12, v13, v14},

generated by information sequence u = [ 1 1 1 0 . . . ]. For λ = 1, with modulus

λnv = 9, the associated modular index vector is Î = [0 2 3 4 8 0 3 4 5 ]. This vector

corresponds to the minimum Hamming weight codeword of the tail-biting convolutional code

X̂ = {v2, v5, v8}. �

After performing the copy-and-permute operation to a protograph, the following corollary for

protograph-based convolutional codes arises. Here, the low-density criteria of an LDPC code

is satisfied if we choose a sufficiently large positive integer N .

Corollary 5.3 Fix a positive integer N and let a protograph-based (LDPC) block code with

parity-check matrix H be formed by replacing each one in the protograph parity-check matrix

P with an N × N permutation matrix chosen randomly and independently and each zero

with an N × N all zero matrix as described in Section 5.2. Consider forming a rate R =

1 − Nnc/Nnv = 1 − nc/nv unterminated, periodically time-varying (LDPC) convolutional

code with decoding constraint length νs = Nnv and period T = y by unwrapping H with step

size Nnv/y ×Nnc/y. Let d
(λ)
min be the minimum distance of the associated (LDPC) tail-biting

convolutional code with block length n = λNnv and unwrapping factor λ > 0. Then the free

distance dfree of the unterminated (LDPC) convolutional code is lower bounded by d
(λ)
min for

any unwrapping factor λ.

Proof. The result follows directly by replacing nv by Nnv in the proof of Theorem 5.2. �

Example 5.7. Consider the protograph parity-check matrix of Example 5.5. Let N = 2. Then

the resulting N ! = 2 choices of permutation matrices are











1 0

0 1



 ,





0 1

1 0











.

Picking matrices randomly and independently from this set, a typical protograph-based block
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code parity-check matrix can be given as follows:

H = H
(1)
tb =















1 0 0 0 1 0 0 1 1 0 0 0

0 1 0 0 0 1 1 0 0 1 0 0

0 0 1 0 1 0 1 0 0 0 1 0

0 0 0 1 0 1 0 1 0 0 0 1















. (5.5)

The resulting parity-check matrix of a convolutional code, after unwrapping with step size

Nnc/y × Nnv/y = 2 × 6, is

Hcc =

































1 0 0 0 1 0

0 1 0 0 0 1

0 0 1 0 1 0 1 0 0 0 1 0

0 0 0 1 0 1 0 1 0 0 0 1

0 1 1 0 0 0 1 0 0 0 1 0

1 0 0 1 0 0 0 1 0 0 0 1

. . .
. . .

































. (5.6)

This convolutional code has rate R = 1 − Nnc/Nnv = 2/3, decoding constraint length

νs = Nnv = 12 and period T = y = 2, where the submatrix size is 2 × 6.

Consider the convolutional codeword

X = {v0, v3, v4, v6, v7, v12, v13, v14, v15, v22, v23},

with corresponding index vector I = [0 3 4 6 7 12 13 14 15 22 23 ] and Hamming weight

l = 11. For unwrapping factor λ = 1, we calculate the resulting modular index vector with

modulus λNnv = 12 as Î = [0 3 4 6 7 0 1 2 3 10 11 ]. We observe that the resulting

codeword in the tail-biting convolutional code with block length n = λNnv = 12 is

X = {v1, v2, v4, v6, v7, v10, v11} ≡ [ 0 1 1 0 1 0 1 1 0 0 1 1 ] = x̂,

which has Hamming weight l̂ = 7.
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For λ ≥ 2, we calculate Î = I = [0 3 4 6 7 12 13 14 15 22 23 ], and thus the corre-

sponding codeword in the tail-biting convolutional code with block length n = λNnv = 12λ

has Hamming weight l̂ = l = 11. �

Corollary 5.4 Consider forming the parity-check matrix H described in Corollary 5.3. By

letting the N × N permutation matrices vary over the N ! different choices we obtain an

ensemble of protograph-based (LDPC) block codes. The associated ensemble of rate R =

1 − Nnc/Nnv = 1 − nc/nv unterminated, periodically time-varying (LDPC) convolutional

code with decoding constraint length νs = Nnv and period T = y can be obtained by unwrap-

ping each parity-check matrix H in the block code ensemble with step size Nnv/y × Nnc/y.

Denote the average minimum distance of the associated (LDPC) tail-biting convolutional code

ensemble with block length n = λNnv and unwrapping factor λ > 0 by d
(λ)
min. Then the av-

erage free distance dfree of the unterminated (LDPC) convolutional code ensemble is bounded

below by d
(λ)
min for any unwrapping factor λ.

Proof. Consider unwrapping each member of the protograph-based block code ensemble in-

definitely to form the associated ensemble of rate R = 1 − Nnc/Nnv = 1 − nc/nv untermi-

nated, periodically time-varying (LDPC) convolutional code ensemble with decoding constraint

length νs = Nnv and period T = y. Now fix λ > 0, i.e., we fix a termination length for every

member of the convolutional ensemble. It follows from Corollary 5.3 that each member of

the (LDPC) convolutional code ensemble satisfies dfree ≥ d
(λ)
min, and thus the the average free

distance dfree of the unterminated (LDPC) convolutional code ensemble is bounded below by

the average minimum distance d
(λ)
min of any ensemble of tail-biting convolutional codes for any

fixed unwrapping factor λ and any permutation matrix size N . �

Note that, because there is no danger of ambiguity, from now on we will drop the overline

notation when discussing ensemble average distances. Thus for an ensemble of convolutional

codes dfree = dfree, and for an ensemble of tail-biting convolutional codes with unwrapping

factor λ, d
(λ)
min = d

(λ)
min. Note that for an ensemble average the value of dfree (respectively

dmin) need not be an integer.

Remark 5.5 By considering only λ = 1 in Corollary 5.4, it is easily seen that the average free

distance of a protograph-based unterminated (LDPC) convolutional code ensemble is bounded

below by the average minimum distance of the protograph-based (LDPC) block code ensemble

on which it is based.

101



Asymptotically Good LDPC Convolutional Codes based on Protographs

Theorem 5.2 and the subsequent Corollaries 5.3 and 5.4 allow us to prove our main result of this

section. We wish to bound the average free distance of an unterminated, time-varying LDPC

convolutional code family with rate R = 1−Nnc/Nnv = 1− nc/nv and decoding constraint

length νs = Nnv obtained by replacing ones with N ×N permutation matrices and zeros with

N × N all-zeros matrices in the convolutional protograph parity-check matrix Pcc defined in

equation (5.1).

As λ increases, we observe that the tail-biting convolutional code with parity-check matrix P
(λ)
tb

defined in (5.3) becomes a better representation of the associated unterminated convolutional

code, with λ → ∞ corresponding to the unterminated convolutional code with parity-check

matrix Pcc. In the following theorem, we show that the free distance of an unterminated, time-

varying LDPC convolutional code family based on protograph parity-check matrix Pcc can

be bounded below by the minimum distance of protograph-based block code ensemble with

protograph parity-check matrix P
(λ)
tb .

Theorem 5.6 Consider forming a family of unterminated, periodically time-varying (LDPC)

convolutional codes with rate R = 1 − Nnc/Nnv = 1 − nc/nv, constraint length νs = Nnv,

and period T = λy from (5.3), as described in Section 5.3.2. Let d
(λ)
free be the free distance

of the (LDPC) convolutional code ensemble with T = λy, and let dfree = max
λ>0

d
(λ)
free, which

we call the free distance of the unterminated convolutional code family. Then, for any tail-

biting termination of the unterminated convolutional code family with unwrapping factor λ,

dfree is bounded below by d
(λ)
min for any λ, where d

(λ)
min is the average minimum distance of the

protograph-based block code ensemble with parity-check matrix P
(λ)
tb . I.e.,

dfree ≥ d
(λ)
min, ∀λ > 0. (5.7)

Proof. Fix λ and consider the protograph parity-check matrix P
(λ)
tb of the tail-biting convolu-

tional code defined in (5.3). If we consider this matrix as the matrix P in Corollary 5.3 and

as the base protograph parity-check matrix generating the ensemble defined in Corollary 5.4,

then both results hold with the modification that the unwrapped convolutional code (resp. con-

volutional code ensemble) has, in general, period T = λy, where the submatrix size is now

Nnc/y ×Nnv/y. Thus d
(λ)
free ≥ d

(λ)
min for any λ > 0. The result then follows directly from the

definition of dfree. �

102



Asymptotically Good LDPC Convolutional Codes based on Protographs

Example 5.8. Consider the infinite protograph parity-check matrix Pcc of Example 5.5 defined

in equation (5.4). The resulting ensemble of time-varying (LDPC) convolutional codes will

have rate R = 1 − nc/nv = 2/3 and decoding constraint length νs = Nnv = 6N . Note

that, in general, any member of the ensemble will have infinite period for N > 1. Suppose

N = 2. Then a typical member of the unterminated convolutional code family could have a

parity-check matrix Hcc as follows:

























































1 0 0 0 1 0

0 1 0 0 0 1

0 0 1 0 1 0 1 0 0 0 0 1

0 0 0 1 0 1 0 1 0 0 1 0

1 0 0 1 0 0 1 0 0 0 0 1

0 1 1 0 0 0 0 1 0 0 1 0

0 0 0 1 1 0 0 1 0 0 0 1

0 0 1 0 0 1 1 0 0 0 1 0
. . .

0 1 1 0 0 0

1 0 0 1 0 0
. . .

























































,

where the submatrices Hi(t) are of size 2 × 6. Note that the difference between this matrix

and that given in equation (5.6) is that the submatrices need not satisfy the equality Hi(t) =

Hi(t + 2) for all i and t. If we terminate Hcc with ‘unwrapping factor’ λ = 1 we obtain the

terminated parity-check matrix

H
(1)
tb =















1 0 0 0 1 0 1 0 0 1 0 0

0 1 0 0 0 1 0 1 1 0 0 0

0 0 1 0 1 0 1 0 0 0 0 1

0 0 0 1 0 1 0 1 0 0 1 0















.

This matrix is a member of the ensemble with base protograph parity-check matrix P
(1)
tb and

N = 2, as we saw in equation (5.5). Thus dfree ≥ d
(1)
free ≥ d

(1)
min, where dfree is the free

distance of the unterminated convolutional code with parity-check matrix Hcc, d
(1)
free is the

free distance of the unterminated convolutional code ensemble obtained by unwrapping H
(1)
tb

with step size Nnc/y × Nnv/y = 2 × 6 and d
(1)
min is the minimum distance of the tail-biting

convolutional ensemble with parity-check matrix H
(1)
tb . This holds for any choice of Hcc.
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Terminating Hcc with ‘unwrapping factor’ λ = 2 results in the parity-check matrix H
(2)
tb given

as follows:







































1 0 0 0 1 0 0 1 1 0 0 0

0 1 0 0 0 1 1 0 0 1 0 0

0 0 1 0 1 0 1 0 0 0 0 1

0 0 0 1 0 1 0 1 0 0 1 0

1 0 0 1 0 0 1 0 0 0 0 1

0 1 1 0 0 0 0 1 0 0 1 0

0 0 0 1 1 0 0 1 0 0 0 1

0 0 1 0 0 1 1 0 0 0 1 0







































.

This can also be viewed as a protograph-based parity-check matrix from the ensemble formed

from P
(2)
tb by taking N = 2. Thus, dfree ≥ d

(2)
free ≥ d

(2)
min for any member of the unterminated

convolutional code family Hcc. �

5.3.4 The free distance growth rate

The distance growth rate δmin of a block code ensemble is defined as its asymptotic minimum

distance to block length ratio. For the protograph-based tail-biting LDPC convolutional code

ensembles with unwrapping factor λ defined in Section 5.3.2, this ratio is therefore given as

δ
(λ)
min =

d
(λ)
min

n
=

d
(λ)
min

λNnv

=
d
(λ)
min

λνs

.

Using (5.7) we obtain

δ
(λ)
min ≤

dfree

λνs
, (5.8)

where dfree is the free distance of the associated unterminated, time-varying LDPC convolu-

tional code family. It is important to note that for convolutional codes, the length of the shortest

codeword is equal to the encoding constraint length νe, which in general differs from the de-

coding constraint length νs. Assuming minimal encoder and syndrome former matrices, the

relation between νe and νs can be expressed as

νe =
1 − R

R
νs, (5.9)
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which implies that, for code rates less than 1/2, the encoding constraint length is larger than

the decoding constraint length, and vice versa for code rates greater than 1/2.

Combining (5.8) and (5.9) gives us the desired bound for the free distance growth rate

δfree ≥
R

1 − R
λδ

(λ)
min, (5.10)

where δfree = dfree/νe is the free distance growth rate of the unterminated LDPC convolu-

tional code family 3.

One must be careful in comparing the distance growth rates of codes with different underlying

structures. A fair basis for comparison generally requires equating the complexity of encoding

and/or decoding of the two codes. Traditionally, the minimum distance growth rate of block

codes is measured relative to block length, whereas constraint length is used to measure the

free distance growth rate of convolutional codes. These measures are based on the complexity

of decoding both types of codes on a trellis. Indeed, the typical number of states required to

decode a block code on a trellis is exponential in the block length, and similarly the number

of states required to decode a convolutional code is exponential in the constraint length. This

has been an accepted basis of comparing block and convolutional codes for decades, since

maximum-likelihood decoding can be implemented on a trellis for both types of codes.

The definition of decoding complexity is different, however, for LDPC codes. The sparsity

of their parity-check matrices, along with the iterative message-passing decoding algorithm

typically employed, implies that the decoding complexity per symbol depends on the degree

distribution of the variable and check nodes and is independent of both the block length and the

constraint length. The cutting technique described in Section 5.2 preserves the degree distribu-

tion of the underlying LDPC block code, and thus the decoding complexity per symbol is the

same for the block and convolutional codes considered in this thesis.

Also, for randomly constructed LDPC block codes, state-of-the-art encoding algorithms require

only O(g) operations per symbol, where g << n [RU01b], whereas for LDPC convolutional

codes, if the parity-check matrix satisfies the conditions listed in Section 1.5.2, the number of

encoding operations per symbol is only O(1) [PJS+09]. Here again, the encoding complexity

per symbol is essentially independent of both the block length and the constraint length.

3If the syndrome former matrix is not in minimal form, (5.9) results in an upper bound for νe, which implies that

δfree is underestimated in this case.
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Hence, to compare the distance growth rates of LDPC block and convolutional codes, we con-

sider the hardware complexity of implementing the encoding and decoding operations in hard-

ware. Typical hardware storage requirements for both LDPC block encoders and decoders

are proportional to the block length n. The corresponding hardware storage requirements

for LDPC convolutional encoders and decoders are proportional to the decoding constraint

length [PJS+09].4

5.4 Bound computations

We now present results on the free distance growth rate for ensembles of asymptotically good

LDPC convolutional codes based on protographs. We first consider a wide variety of regular

ensembles (including all the regular ensembles originally considered by Gallager [Gal62]),

and for each we calculate a lower bound for the free distance to constraint length ratio δfree.

We begin by considering the regular ensembles with gcd(nc, nv) > 1. Then the methods of

Section 5.2.3 are considered for the regular ensembles with gcd(nc, nv) = 1. Results for these

ensembles are then presented and discussed. Finally, we look at two irregular ensembles of

practical interest. For these ensembles, we calculate a lower bound for the free distance to

constraint length ratio δfree and compare it to the block code minimum distance growth rate

δmin previously calculated in the literature [DDJ06].

5.4.1 Regular ensembles with gcd(nc, nv) > 1

Example 5.9. Consider the rate R = 1/2, (3, 6)-regular LDPC code ensemble based on the

following protograph:

.

For this example, the minimum distance growth rate is δmin = 0.023, as originally computed

by Gallager [Gal62]. A family of tail-biting (3, 6)-regular LDPC convolutional code ensembles

can be generated according to the following cut:

4For rates other than 1/2, encoding constraint lengths may be preferred to decoding constraint lengths.
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P =









1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1









.

For λ = 2, 3, . . . , 8, the minimum distance growth rate δmin was calculated for the tail-biting

LDPC convolutional code ensembles using the approach outlined in Section 5.3.2 and the

method of [Div06]. These growth rates are shown in Fig. 5.4, along with the corresponding

lower bound for the free distance growth rate δfree of the associated ensemble of unterminated,

periodically time-varying LDPC convolutional codes. For this rate R = 1/2 ensemble, the

lower bound for δfree is simply δfree ≥
R

1−R
λδmin = λδmin, since R

1−R
= 1 in this case.
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Figure 5.4: Distance growth rates for Example 5.9.

We observe that, once the unwrapping factor λ of the tail-biting convolutional codes exceeds 3,

the lower bound for δfree levels off at δfree ≥ 0.086, which agrees with the results presented

in [STL+07] and [TZC09], and represents a significant increase over the value of δmin. In this

case, the minimum weight codeword in the unterminated convolutional code also appears as a

codeword in the tail-biting code. �
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Example 5.10. Consider a rate R = 1/3, (4, 6)-regular LDPC code ensemble. The minimum

distance growth rate for this ensemble is δmin = 0.128 [Gal62]. We form a protograph in

the usual fashion, creating four check nodes, each of which connect to all six variable nodes,

and we observe that gcd(4, 6) = 2. The protograph parity-check matrix and defined cut are

displayed below:

P =















1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1















.

For this rate R = 1/3 ensemble, the lower bound for δfree is δfree ≥ R
1−R

λδmin = 1
2λδmin.

We observe that, as in Example 5.9, the minimum distance growth rates calculated for increas-

ing λ provide us with a lower bound δfree ≥ 0.197 on the free distance growth rate of the

convolutional code ensemble, which exceeds the value of δmin. �

Example 5.11. Consider a rate R = 1/2, (4, 8)-regular LDPC code ensemble. The minimum

distance growth rate for this ensemble is δmin = 0.063 [Gal62]. The protograph parity-check

matrix is cut along the diagonal in steps of 1 × 2. For this rate R = 1/2 ensemble, the lower

bound for δfree is δfree ≥ R
1−R

λδmin = λδmin, and we obtain the lower bound δfree ≥ 0.191

on the free distance growth rate of the convolutional code ensemble, which is again significantly

larger than δmin and agrees with the results in [STL+07] and [TZC09]. �

We have now calculated a lower bound for the free distance growth rate for all the regular

ensembles with gcd(nc, nv) > 1 that Gallager considered in his celebrated work [Gal62]. For

the following regular ensembles with gcd(nc, nv) > 1, the trivial all-ones protograph parity-

check matrix of size nc × nv was formed as in the previous examples. The minimum distance

growth rate δmin of each LDPC block code ensemble was calculated using the usual spectral

shape analysis and the resulting lower bounds δfree ≥ R
1−R

λδmin for the free distance growth

rate are presented in Table 5.1.

For each ensemble considered, the lower bound for δfree is larger than δmin for the block code

ensemble. This is illustrated in Fig. 5.5, where the distance growth rates of each regular LDPC

code ensemble are compared to the corresponding lower bound for the optimal growth rate for

general block [Gil52, Var57] and convolutional [Cos74] codes.
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Ensemble Rate R δmin Lower bound for δfree

(3, 9) 2/3 0.0054 0.0372
(3, 12) 3/4 0.0021 0.0202
(4, 10) 3/5 0.037 0.134
(4, 12) 2/3 0.024 0.132
(5, 10) 1/2 0.084 0.238

Table 5.1: Lower bounds on the free distance growth rate for regular ensembles with

gcd(nc, nv) = 1.
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Figure 5.5: Comparison of calculated growth rates for regular ensembles with gcd(nc, nv) > 1
with the Gilbert-Varshamov bound for block code minimum distance growth rates

and the Costello bound for convolutional code free distance growth rates.

5.4.2 Regular ensembles with gcd(nc, nv) = 1

We now present results for the two methods of unwrapping a protograph with gcd(nc, nv) = 1

introduced in Section 5.2.3.

Example 5.12. Consider a rate R = 2/5, (3, 5)-regular ensemble. The minimum distance

growth rate for this ensemble is δmin = 0.045 [Gal62]. For this rate R = 2/5 ensemble, the

lower bound for δfree is δfree ≥ R
1−R

λδmin = 2
3λδmin. The first approach was to form a

two-cover of the regular protograph. The resulting mini-ensemble has 2nvnc = 215 members.
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Fifty distinct members were chosen randomly. The resulting lower bounds calculated for δfree

are shown in a box plot in Fig. 5.6.
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Figure 5.6: Free distance growth rates for 50 mini-ensemble members.

We observe a fairly large spread in results from the mini-ensemble. The median from the fifty

trials is δfree ≥ 0.097. We also observe that the smallest lower bound found is statistically an

outlier, since it lies reasonably far away from the lower quartile. Note that this smallest lower

bound (δfree ≥ 0.069) is larger than the block code growth rate δmin = 0.045. Also, the best

lower bound, δfree ≥ 0.108, is significantly larger than δmin.

We now consider the following two nonuniform cuts of the standard protograph parity-check

matrix for the regular (3, 5) ensemble:

P1 =









1 1 1 1 1

1 1 1 1 1

1 1 1 1 1









and P2 =









1 1 1 1 1

1 1 1 1 1

1 1 1 1 1









,

with corresponding cutting vectors ξ1 = [2 4 5 ] and ξ2 = [1 2 3 ]. We calculate a lower

bound of δfree ≥ 0.119 for cut one and δfree ≥ 0.111 for cut two. Note that both nonuniform

cuts give larger lower bounds on δfree than the mini-ensemble method. �

For the remaining regular ensembles with gcd(nc, nv) = 1, we used the nonuniform cut

method. The resulting bounds are given in Table 5.2.
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Ensemble Rate R Cut ξ δmin Lower bound for δfree

(3, 4) 1/4 [2 3 4 ] 0.112 [Gal62] 0.177
(3, 7) 4/7 [2 4 7 ] 0.0129 0.0616
(3, 8) 1/4 [3 6 8 ] 0.0081 0.0467
(4, 5) 1/5 [2 3 4 5 ] 0.210 [Gal62] 0.266
(5, 6) 1/6 [2 3 4 5 6 ] 0.254 [Gal62] 0.317
(5, 8) 3/8 [2 4 6 7 8 ] 0.136 0.249

Table 5.2: Lower bounds on the free distance growth rate for regular ensembles with a nonuni-

form cut.

For each ensemble considered, the lower bound for δfree is larger than δmin for the block code

ensemble. We may now update Fig. 5.5 to include the calculated distance growth rates5 for

regular ensembles with gcd(nc, nv) = 1. This is illustrated in Fig. 5.7.
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Figure 5.7: Comparison of calculated growth rates with the Gilbert-Varshamov bound for

block code minimum distance growth rates and the Costello bound for convolu-

tional code free distance growth rates.

5Note that it may be possible to improve the lower bound for δfree for these ensembles by choosing a better

nonuniform cut.
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5.4.3 Irregular ensembles

Example 5.13. The following irregular protograph is from the Repeat Jagged Accumulate (RJA)

family [DDJ06]. It was shown to have a good iterative decoding threshold (γiter = 1.0 dB) while

maintaining linear minimum distance growth (δmin = 0.013). We display below the associated

P matrix and cut used to generate the family of tail-biting LDPC convolutional code ensembles.

! P =





2 2 1 1

1 1 3 1



 .

We observe that, as in previous examples, the minimum distance growth rates calculated for

increasing λ provide us with a lower bound for the free distance growth rate of the convolutional

code ensemble using (5.10). The lower bound was calculated as δfree ≥ 0.057 (for λ ≥ 5),

significantly larger than the minimum distance growth rate δmin of the underlying block code

ensemble. �

Example 5.14 The following irregular protograph is from the Accumulate Repeat Jagged Ac-

cumulate family (ARJA) [DDJ06]:

,

where the white circle represents a punctured variable node. This protograph is of significant

practical interest, since it was shown to have δmin = 0.015 and iterative decoding threshold

γiter = 0.628, i.e., pre-coding the protograph of Example 5.13 provides an improvement in

both values.

In this ARJA example, the protograph matrix P is of size nc × nv = 3 × 5. We observe that

gcd(nc, nv) = 1, and thus we have the trivial cut mentioned in Section 5.3.1. Here we choose

to copy and permute P to generate a mini ensemble of block codes. Results are shown for

one particular member of the mini-ensemble with M = 2, but a change in performance can be

obtained by varying the particular permutation chosen. Increasing λ for the chosen permutation

results in a lower bound, found using (5.10), of δfree ≥ 0.053 for λ ≥ 4. Again, we observe a

significant increase in δfree compared to δmin. �
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5.4.4 Simulation results

Simulation results for LDPC block and convolutional codes based on the protograph of Ex-

ample 5.14 were obtained assuming BPSK modulation and an additive white Gaussian noise

(AWGN) channel. All decoders were allowed a maximum of 100 iterations and the block code

decoders employed a syndrome-check based stopping rule. As a result of their block struc-

ture, tail-biting LDPC convolutional codes were decoded using standard LDPC block decoders

employing a belief-propagation decoding algorithm. The LDPC convolutional code, on the

other hand, was decoded by a sliding-window based belief-propagation decoder [JZ99a]. The

resulting bit error rate (BER) performance is shown in Fig.5.8.
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Figure 5.8: Simulation results for Example 5.14.

We note that the protograph-based tail-biting LDPC convolutional codes outperform the under-

lying protograph-based LDPC block code (which can also be seen as a tail-biting code with

unwrapping factor λ = 1). Larger unwrapping factors yield improved error performance, even-

tually approaching the performance of the unterminated convolutional code, which can be seen

as a tail-biting code with an infinitely large unwrapping factor. We also note that no error floor

is observed for the convolutional code, which is expected, since the code ensemble is asymp-

totically good and has a relatively large (δfree ≥ 0.053) distance growth rate.
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We also note that the performance of the unterminated LDPC convolutional code is consistent

with the iterative decoding threshold computed for the underlying protograph. At a moderate

constraint length of 10000, the unterminated code achieves 10−5 BER at roughly 0.12 dB away

from the threshold, and with larger block (constraint) lengths, the performance will improve

even further. This is expected, since both the unterminated and the tail-biting convolutional

codes preserve the same degree distribution as the underlying protograph.

5.5 Conclusions

In this chapter, asymptotic methods were used to calculate a lower bound for free distance

that grows linearly with constraint length for several ensembles of regular and irregular, un-

terminated, protograph-based time-varying LDPC convolutional codes. It was shown that the

free distance growth rates of the regular LDPC convolutional code ensembles exceed the min-

imum distance growth rates of the corresponding regular LDPC block code ensembles. When

gcd(nc, nv) = 1, two new methods were proposed to unwrap the protograph parity-check ma-

trix in order to obtain the best possible lower bound for δfree. The results suggest that we

typically obtain better lower bounds by performing nonuniform cuts. Further, we observed that

for an irregular ensemble of practical interest the performance of the protograph-based LDPC

convolutional codes is consistent with the iterative decoding thresholds of the underlying pro-

tographs.
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Trapping Set Analysis for

Protograph-based LDPC

Convolutional Codes
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Abstract

It has been suggested that “near-codewords” may be a significant factor affecting decoding

failures of LDPC codes over the AWGN channel. A near-codeword is a sequence that satis-

fies almost all of the check equations. These near-codewords can be associated with so-called

‘trapping sets’ (as introduced in Section 4.4) that exist in the Tanner graph of a code. In this

chapter, trapping sets of protograph-based LDPC convolutional codes are analysed. LDPC con-

volutional codes have been shown to be capable of achieving the same capacity-approaching

performance as LDPC block codes with iterative message-passing decoding. Further, in Chap-

ter 5 it was shown that some ensembles of LDPC convolutional codes are asymptotically good,

in the sense that the average free distance grows linearly with constraint length. Here, asymp-

totic methods are used to calculate a lower bound for the trapping set growth rates for several

ensembles of asymptotically good protograph-based LDPC convolutional codes. This can be

used to predict where the error floor will occur for these codes under iterative message-passing

decoding. A selection of the results presented here has previously been published in [MPC09a]

and [MPC09b].
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6.1 Introduction

Trapping sets, as introduced in Section 4.4, are graphical sub-structures existing in the Tan-

ner graph of Low-Density Parity-Check (LDPC) codes. Known initially as near-codewords

[MP03], they were used to analyse the performance of LDPC codes in the error-floor, or high

signal-to-noise ratio (SNR), region of the bit error rate (BER) curve. In [Ric03], Richardson

developed these concepts and proposed a two-stage technique to predict the error floor perfor-

mance of LDPC codes based on trapping sets.

The analysis used in Chapter 5 to calculate ensemble average weight enumerators can be ex-

tended to the problem of finding ensemble average trapping set enumerators. In this chap-

ter, building on work by Abu-Surra, Ryan, and Divsalar [ARD07a] (discussed in Chapter 4),

asymptotic methods are used to calculate a lower bound for the average trapping set enumer-

ators for several ensembles of regular, asymptotically good, protograph-based LDPC convolu-

tional codes. As in Chapter 5, we will use ensembles of tail-biting LDPC convolutional codes

derived from a single protograph-based ensemble of LDPC block codes to obtain a lower bound

for the average trapping set enumerators of unterminated, asymptotically good, periodically

time-varying LDPC convolutional code ensembles. In the process, we show that the average

trapping set enumerators of ensembles of tail-biting LDPC convolutional codes approach the

average trapping set enumerator of an associated LDPC convolutional code ensemble as the

block length of the tail-biting ensemble increases.

The chapter is structured as follows. In Section 6.2, we modify our previous construction of

tail-biting LDPC convolutional codes to enable their use for protograph trapping set enumera-

tion. We then show that the smallest trapping set of a time-varying LDPC convolutional code

ensemble can be bounded below by the smallest trapping set of the LDPC block code ensemble

formed by tail-biting termination of the convolutional codes. Finally, in Section 6.3, we present

new results on the trapping set enumerators of several ensembles of LDPC convolutional codes

based on protographs.
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6.2 Trapping set enumerators for LDPC convolutional codes

Methods to form a family of protograph-based LDPC convolutional codes from a convolu-

tional protograph were presented in Section 5.2. In this section, a new method is presented

which obtains a lower bound for the ∆-trapping set number of an ensemble of unterminated,

asymptotically good, time-varying LDPC convolutional codes derived from protograph-based

LDPC block codes. To proceed, we form a family of tail-biting LDPC convolutional codes with

incremental increases in block length. The tail-biting codes are then used as a tool to obtain the

desired bound for the ∆-trapping set number of the unterminated codes.

6.2.1 Tail-biting convolutional codes for trapping set enumeration

Consider the parity-check matrix Pcc of the protograph-based, unterminated convolutional code

family introduced in Section 5.2. Recall that, in Chapter 5, tail-biting convolutional codes with

block length n = λnv were defined by their unwrapping factor λ. The unwrapping factor

can be viewed as the number of times the sliding convolutional structure is repeated before

applying tail-biting termination. For λ ≥ 1, the parity-check matrix P
(λ)
tb of the desired tail-

biting protograph-based convolutional code with block length λnv can be written as

P
(λ)
tb =





















Pl Pu

Pu Pl

Pu Pl

. . .
. . .

Pu Pl





















λnc×λnv

. (6.1)

Note that the tail-biting convolutional code for λ = 1 is simply the original protograph-based

block code.

Replacing the entries of this matrix with either N × N permutation matrices, or N × N all-

zeros matrices (as discussed in Section 4.2), creates an ensemble of LDPC codes that can be

analysed asymptotically as N goes to infinity, where the sparsity condition of an LDPC code is

satisfied for large N . Further, each block code ensemble based on P
(λ)
tb can be unwrapped to

form an ensemble of unterminated, periodically time-varying, LDPC convolutional codes with

decoding constraint length νs = Nnv and, in general, period T = λy, where the submatrices

Hi(t) are of size Nnc/y × Nnv/y.
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To study the average general trapping set enumerators of these block code ensembles, we add

auxiliary flag variables to the protograph following the procedure detailed in Section 4.4. The

resulting protograph-based modified parity-check matrix is given by

P̃
(λ)
tb =





















Pl Pu

Pu Pl

Pu Pl Iλnc

. . .
. . .

Pu Pl





















λnc×λ(nv+nc)

,

where In is the n × n identity matrix. For any λ, we can now follow the procedure detailed

in Section 4.4 to calculate the ∆-trapping set number d
(λ)
ts (∆) for the ensemble of LDPC tail-

biting convolutional codes based on the protograph parity-check matrix P
(λ)
tb .

As discussed in Chapter 5, as the unwrapping factor λ increases, the protograph parity-check

matrix P
(λ)
tb becomes a better representation of the infinite convolutional protograph parity-

check matrix Pcc. To calculate the general trapping set number of the convolutional code family

we should analyse the modified convolutional protograph associated with Pcc, which we denote

by P̃cc. An example of a modified convolutional protograph is shown in Figure 6.1(a).

Figure 6.1: An example of a modified convolutional protograph (a), and corresponding tail-

biting versions for (b) λ = 1, and (c) λ = 2.
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Note that as λ increases, the modified tail-biting protograph parity-check matrix P̃
(λ)
tb becomes

a better representation of P̃cc. This is reflected in the general trapping set enumerators, and we

will show in Section 6.2.2 that the trapping set numbers d
(λ)
ts (∆) obtained for increasing λ can

be used to form a lower bound for the general trapping set number of the unterminated LDPC

convolutional code family.

6.2.2 A lower bound for the convolutional ∆-trapping set number

In this section we present a technique to obtain a lower bound for the convolutional ∆-trapping

set number dccts(∆) by showing that dccts(∆) must be at least as large as the ∆-trapping

set number d
(λ)
ts (∆) of an ensemble of block codes obtained by tail-biting termination of the

underlying convolutional code with unwrapping factor λ. Due to the close connection between

general trapping sets and codewords of modified codes, the structure of this section follows

closely to that of Section 5.3.3. The reader may find it helpful to consult Example 6.1 when

considering Theorem 6.1 and its proof.

Theorem 6.1 Consider forming an unterminated, periodically time-varying convolutional code

with rate R = 1−nc/nv, constraint length νs = nv and period T = y from (5.1), as described

in Section 5.2. Let d
(λ)
ts (∆) be the ∆-trapping set number of a tail-biting convolutional code

with block length n = λnv formed by terminating the associated convolutional code with un-

wrapping factor λ > 0. Then, for any ∆ ≥ 0, the ∆-trapping set number dccts(∆) of the

unterminated LDPC convolutional code is bounded below by d
(λ)
ts (∆) for any unwrapping fac-

tor λ; i.e.,

dccts(∆) ≥ d
(λ)
ts (∆).

Proof. Consider the unterminated convolutional code whose parity-check matrix is given in

(5.1). Now take any (a, b) general trapping set that consists of a set of a variable nodes

Vts = {vI(0), vI(1), · · · , vI(a−1)}, (6.2)

that result in a set of exactly b odd-degree check nodes

Cts = {cJ(0), cJ(1), · · · , cJ(b−1)} (6.3)
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in the induced bipartite subgraph. Here, the vectors I = [I(0) I(1) · · · I(a − 1) ] and J =

[J(0) J(1) · · · J(b − 1) ] are index vectors of length a and b, respectively, and the entries of

each vector are unique. Consider the modular index vector Î (resp. Ĵ) obtained by letting Î(i) =

I(i) mod λnv, for i = 0, 1, . . . , a − 1 (resp. Ĵ(j) = J(j) mod λnc, for j = 0, 1, . . . , b − 1).

This operation corresponds to wrapping the unterminated convolutional code to a tail-biting

convolutional code with unwrapping factor λ whose parity-check matrix is given in (6.1).

Proposition. The sets

V̂ts =







v0k0, v1k1, . . . , vλnv−1kλnv−1

∣

∣

∣

∣

∣

∣

ki =

a−1
∑

j=0

κ
Î(j),i mod 2







(6.4)

Ĉts =







c0l0, c1l1, . . . , cλnc−1lλnc−1

∣

∣

∣

∣

∣

∣

li =

b−1
∑

j=0

κ
Ĵ(j),i mod 2







(6.5)

yield an (â, b̂) general trapping set in the Tanner graph of the tail-biting code, where κa,b is the

Kronecker Delta function: κa,b = 1 iff a = b, and zero otherwise.

Proof. Recall that an (â, b̂) general trapping set is a set of â variable nodes that induce b̂

odd-degree check nodes. The odd degree check nodes can be satisfied by setting appropriate

auxiliary flag variables to have weight one. Thus, combining (6.4) and (6.5), the proposition is

equivalent to the claim that

X̂ts = {v0k0, v1k1, . . . , vλnv−1kλnv−1, f0l0, f1l1, . . . , fλnc−1lλnc−1}

≡
[

k0 k1 . . . kλnv−1 l0 l1 . . . lλnc−1

]

= x̂ts,

where ki =
∑a−1

j=0 κ
Î(j),i mod 2 and li =

∑b−1
j=0 κ

Ĵ(j),i mod 2, is a codeword of the modified

tail-biting convolutional code with parity-check matrix P̃
(λ)
tb . Here, the auxiliary variable node

fi is attached to check node ci for i = 0, . . . , λnv.

The (a, b) general trapping set of the convolutional code with parity-check matrix Pcc defined

by equations (6.2) and (6.3) can equivalently be viewed as a codeword1 xts of the modified

convolutional code with parity-check matrix P̃cc, where

xts =
[

v0 . . . vλnv−1 f0 . . . fλnc−1 vλnv
. . . v2λnv−1 fλnc

. . . f2λnc−1 . . .
]

.

1This will be demonstrated in Example 6.1.
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Here, we continue the notation that vi = 1 if i ∈ I, otherwise vi = 0 (resp. fj = 1 if j ∈ J,

otherwise fj = 0). Consider the infinite concatenated parity-check matrix

P̃ (λ)
∞ =

[

P̃
(λ)
tb

∣

∣

∣
P̃

(λ)
tb

∣

∣

∣
. . .
]

.

It is clear that any codeword xts in the modified convolutional code satisfies xts ·
(

P̃
(λ)
∞

)T

= 0.

Suppose now that we partition xts into sections of length λ(nv + nc), i.e,

xts =
[

v0 . . . vλnv−1 f0 . . . fλnc−1 vλnv
. . . v2λnv−1 fλnc

. . . f2λnc−1 . . .
]

=
[

x0 x1 . . .
]

,

where each xi has length λ(nv + nc). Consider the vector x̂ts =
∑∞

k=0 xi mod 2 of length

λ(nv + nc). Due to the repeated structure of P̃
(λ)
∞ , we observe that x̂ts · (P̃

(λ)
tb )T = 0. Thus

proving that x̂ts is a codeword of the modified ensemble with parity-check matrix P̃
(λ)
tb , or

equivalently, an (â, b̂) general trapping set of the tail-biting convolutional code with parity-

check matrix P
(λ)
tb �

The values of â and b̂ are determined as follows: if the elements of the modular index vectors

Î and Ĵ are still unique, then we say that the original (a, b) general trapping set has not been

affected by the wrapping procedure and therefore â equals a and b̂ equals b. If, however, there

are k > 1 copies of the same index value in Î (resp. Ĵ), then the value of â (resp. b̂) is reduced

by 2⌊k
2⌋. This corresponds to the case when multiple variable or check nodes in the trapping

set are wrapped back on top of each other. If there is an even number of such nodes at the

same position, none of them survive as a member of the tail-biting (â, b̂) trapping set, and if the

repetition value k is odd, only one node survives. These reductions are cumulative over all the

repetitive index values in Î and Ĵ.

This implies that a general trapping set in the unterminated convolutional code induces a gen-

eral trapping set in any of its tail-biting terminated codes that has at most the same size as the

original one. It follows that the smallest general trapping set size of an unterminated convolu-

tional code is at least as large as the smallest general trapping set size of any of its tail-biting

terminated convolutional codes, i.e., codes with arbitrary unwrapping factor λ. �
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Example 6.1. Consider the following (3, 6)-regular protograph parity-check matrix of Exercise

5.9 given as follows:

P =









1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1









. (6.6)

We can form the convolutional protograph by unwrapping P with step size nc/y×nv/y = 1×2.

The appropriate cut is displayed in equation (6.6). Consider the set of variable nodes

Vts = {v0, v2, v6, v8, v10, v11, v14}

in the resulting convolutional protograph displayed in Figure 6.2(a). We observe that the seven

nodes in this set induce five odd-degree check nodes (Cts = {c0, c6, c7, c8, c9}). I.e., the re-

sulting subgraph corresponds to a (7, 5) general trapping set in the convolutional protograph

with parity-check matrix Pcc. This trapping set is highlighted in Figure 6.2(a). We observe in

Figure 6.2(b) that after modifying the convolutional prototograph and setting the auxiliary vari-

ables to appropriate values, this (7, 5) trapping set can be viewed as a codeword in the modified

convolutional protograph.

Figure 6.2: (a) A (7, 5) general trapping set in the Tanner graph of a (3, 6)-regular convolu-
tional code with parity-check matrix Pcc, and (b) the corresponding codeword in

the modified convolutional ensemble with parity-check matrix P̃cc.
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Suppose, without loss of generality, that the (7, 5) general trapping set has index vectors I =

[0 2 6 8 10 11 14 ] and J = [0 6 7 8 9 ]. Consider setting λ = 2. By wrapping the

unterminated code onto itself with modulus 2nv = 12 for variable nodes and with modulus

2nc = 6 for check nodes, we obtain a sequence in the (3, 6)-regular tail-biting convolutional

code with unwrapping factor λ = 2. The resulting modular index vectors, with modulus 12

and 6 respectively, are Î = [0 2 6 8 10 11 2 ] and Ĵ = [0 0 1 2 3 ]. Observe that index

values Î(1) and Î(6) equal 2, i.e., k = 2 for this index value, and we obtain the reduction

value of 2⌊2
2⌋ = 2. Since k is even, the variable nodes corresponding to these index values

do not appear in the reduced trapping set, and hence Î represents the set of variable nodes

{v̂0, v̂6, v̂8, v̂10, v̂11} in the Tanner graph of a (3, 6)-regular tail-biting convolutional code and

â = a−2 = 5. The same reduction in b̂ is obtained as a result of the equality Ĵ(0) = Ĵ(1) = 0.

Hence b̂ = b − 2 = 3, and the reduced set of check nodes represented by Ĵ is {ĉ1, ĉ2, ĉ3}. The

corresponding sequence is

V̂ts = {v̂0, v̂6, v̂8, v̂10, v̂11} ≡ [ 1 0 0 0 0 0 1 0 1 0 1 1 ],

and it induces a subgraph in the tail-biting convolutional code graph with three odd-degree

check nodes (ĉ1, ĉ2 and ĉ3); i.e., the modular index vectors Î and Ĵ represent a (5, 3) general

trapping set in the Tanner graph of a (3, 6)-regular tail-biting convolutional code, as illustrated

in Fig. 6.3.

Figure 6.3: A (5, 3) general trapping set in the Tanner graph of a (3, 6)-regular tail-biting

convolutional code with unwrapping factor λ = 2.

Setting the unwrapping factor λ = 1, with modulus nv = 6 and nc = 3 respectively, the

resulting modular index vectors are Î = [0 2 0 2 4 5 2 ] and Ĵ = [0 0 1 2 0 ]. The set

of variable nodes corresponding to Î is V̂ts = {v̂2, v̂4, v̂5}. We observe from Fig. 6.4 that V̂ts

induces three odd-degree check nodes Ĉts = {ĉ0, ĉ1, ĉ2}. It is easy to check that the set Ĉts

corresponds to the modular index vector Ĵ.
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Figure 6.4: A (3, 3) general trapping set in the Tanner graph of a (3, 6)-regular tail-biting

convolutional code with unwrapping factor λ = 1.

For the unwrapping factor λ = 4, with modulus 3nv = 18 and 3nc = 9 respectively, we

obtain the modular index vectors Î = [0 2 6 8 10 11 14 ] and Ĵ = [0 6 7 8 0 ]. The

only reduction occurs for J(0) = J(4) = 0. Thus in the tail-biting convolutional code with

unwrapping factor λ = 4, this results in a (7, 3) general trapping set. Finally, for λ ≥ 5, with

modulus λnv and λnc respectively, we obtain the modular vectors Î = I and Ĵ = J; i.e.,

there is no reduction in the (7, 5) general trapping set of the tail-biting convolutional code with

unwrapping factor λ ≥ 5. �

After performing the copy-and-permute operation to a protograph, the following corollary for

protograph-based convolutional codes results. Here, the low-density criteria for an LDPC code

is satisfied if we choose a sufficiently large positive integer N .

Corollary 6.2 Fix N ∈ Z, N > 0, and let a protograph-based (LDPC) block code with parity-

check matrix H be formed by replacing each one in the protograph parity-check matrix P with

anN×N permutation matrix chosen randomly and independently and each zero with anN×N

all-zeros matrix as described in Section 4.2. Consider forming a rate R = 1 − Nnc/Nnv =

1 − nc/nv unterminated, periodically time-varying (LDPC) convolutional code with decoding

constraint length νs = Nnv and, in general, period T = y, by unwrapping H with step size

Nnv/y × Nnc/y. Let d
(λ)
ts (∆) be the ∆-trapping set number of the associated (LDPC) tail-

biting convolutional code with block length n = λNnv and unwrapping factor λ > 0. Then,

for any ∆ ≥ 0, the ∆-trapping set number dccts(∆) of the unterminated LDPC convolutional

code is bounded below by d
(λ)
ts (∆), for any unwrapping factor λ.

Proof. The result follows directly by replacing nv by Nnv and nc by Nnc in the proof of

Theorem 6.1. �

We have now shown that the ∆-trapping set number dccts(∆) of an unterminated, periodi-

cally time-varying, protograph-based (LDPC) convolutional code obtained by unwrapping a
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protograph-based block code is bounded below by the ∆-trapping set number of any associated

(LDPC) tail-biting convolutional code. We now formalise the more general result that the same

result holds for ensemble averages.

Corollary 6.3 Consider forming the parity-check matrix H described in Corollary 6.2. By

letting the N × N permutation matrices vary over the N ! different choices, we obtain an

ensemble of protograph-based (LDPC) block codes. The associated ensemble of rate R =

1 − Nnc/Nnv = 1 − nc/nv unterminated, periodically time-varying (LDPC) convolutional

codes with decoding constraint length νs = Nnv and, in general, period T = y can be obtained

by unwrapping each parity-check matrix H in the block code ensemble with step size Nnv/y×

Nnc/y. Denote by d
(λ)
ts (∆) the average ∆-trapping set number of the associated (LDPC) tail-

biting convolutional code ensemble with block length n = λNnv and unwrapping factor λ > 0.

Then the average ∆-trapping set number dccts(∆) of the unterminated (LDPC) convolutional

code ensemble is bounded below by d
(λ)
ts (∆) for any unwrapping factor λ.

Proof. By using Corollary 6.2, it is clear that for every member of the ensemble dccts(∆) ≥

d
(λ)
ts (∆) for any ∆ > 0 and any unwrapping factor λ. The result dccts(∆) ≥ d

(λ)
ts (∆) then

follows directly. �

As there is no danger of ambiguity, from now on we will drop the overline notation when dis-

cussing ensemble average trapping set numbers. Thus for an ensemble of convolutional codes

dccts(∆) = dccts(∆), and for an ensemble of tail-biting convolutional codes with unwrapping

factor λ, d
(λ)
ts (∆) = d

(λ)
ts (∆). Note that ensemble average trapping set numbers dccts(∆) and

d
(λ)
ts (∆) need not be integers.

We can now prove our main result to demonstrate a lower bound for the ∆-trapping set number

of the unterminated, protograph-based (LDPC) convolutional code based on the convolutional

protograph Pcc defined in Section 5.1.

Theorem 6.4 Consider forming a family of unterminated, periodically time-varying LDPC

convolutional codes with rate R = 1 − Nnc/Nnv = 1 − nc/nv, constraint length νs = Nnv,

and period T = λy from (6.1), as described in Section 6.2.1. Let d
(λ)
ccts(∆) be the ∆-trapping

set number of the code with T = λy, and let dccts(∆) = max
λ>0

d
(λ)
ccts(∆), which we call the

∆-trapping set number of the unterminated convolutional code family. Then, for any tail-biting

termination with unwrapping factor λ, dccts(∆) is bounded below by d
(λ)
ts (∆) for any λ; i.e.,

dccts(∆) ≥ d
(λ)
ts (∆). (6.7)
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Proof. It follows from Corollary 6.3 that d
(λ)
ccts(∆) ≥ d

(λ)
ts (∆) for any λ. The result then follows

directly from the definition of dccts(∆). �

Intuitively, as λ increases, the tail-biting code becomes a better representation of its associ-

ated unterminated convolutional code, with λ → ∞ corresponding to a non-periodically time-

varying convolutional code. This is reflected in the average general trapping set enumerators,

and it will be shown in Section 6.3 that increasing λ provides us with ∆-trapping set growth

rates δ
(λ)
ts (∆) that converge to a lower bound for δccts(∆), which we call the ∆-trapping set

growth rate of the unterminated convolutional code family.

So far in this chapter we have considered only general trapping sets. However, there exist

an important subset of these sets called elementary trapping sets. These were introduced

formally in Section 4.4.2, and it was shown there that in order to calculate elementary trapping

set enumerators for protograph-based codes we require a slightly different analytical model

than the one used for general trapping sets. One such method was presented in [ARD07a].

Essentially, an (a, b) elementary trapping set is an (a, b) general trapping set with the restriction

that all of the induced check nodes must have either degree one or two, and there must be

exactly b degree-one check nodes. Under this modified analysis, the same principles that have

been discussed in this section hold.

Moreover, it has been shown that, in general, small trapping sets have the largest effect on

the error floor [Ric03, MSW07]. This is because small trapping sets contain relatively few

variable nodes, and thus it is more likely that all of the variable nodes in a small trapping set

have unreliable channel values than in a larger trapping set. Further, examinations of the small

trapping sets dominating in the error floor region have shown that the sets with low degree

check nodes cause the most trouble. This is because of the low connectivity of these check

nodes to the rest of the graph, which results in the trapping set not being able to obtain enough

independent (and possibly helpful) messages during decoding iterations. Extensive simulations

(see, e.g., [Ric03]) have shown that in fact most of the decoding failures in iterative decoding

correspond to elementary trapping sets.

As was discussed in [ARD07a], it is expected that the lower bounds calculated in Section 6.3 for

the ∆-trapping set number dccts(∆) of protograph-based LDPC convolutional code ensembles

obtained using general trapping sets will be approximately the same for those calculated using

elementary trapping sets. This is because for small a and b most of the general trapping sets are
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in fact elementary. However, similar results to those presented in this chapter for elementary

trapping sets should most definitely be the subject of future research. This will be discussed

further in Chapter 7.

6.2.3 The convolutional ∆-trapping set growth rate

As noted in Section 4.4.3, the ∆-trapping set growth rate of a block code ensemble is defined

as its ∆-trapping set number to block length ratio. For the protograph-based tail-biting LDPC

convolutional code ensembles defined in Section 6.2.1, this ratio is therefore given as

δ
(λ)
ts (∆) =

d
(λ)
ts (∆)

n
=

d
(λ)
ts (∆)

λNnv
=

d
(λ)
ts (∆)

λνs
.

Using (6.7), we then obtain

δ
(λ)
ts (∆) ≤

d
(λ)
ccts(∆)

λνs
≤

dccts(∆)

λνs
. (6.8)

We note that, for convolutional codes, the length of the shortest codeword is equal to the en-

coding constraint length νe, which in general differs from the decoding constraint length νs.

Assuming minimal encoder and syndrome former matrices, the relationship between νe and νs

can be expressed as

νe =
1 − R

R
νs, (6.9)

which implies that, for code rates less than 1/2, the encoding constraint length is larger than

the decoding constraint length, and vice versa for code rates greater than 1/2.

Combining (6.8) and (6.9) gives us the desired lower bound

δccts(∆) ≥
R

1 − R
λδ

(λ)
ts (∆),

where δccts(∆) = dccts(∆)/νe is the ∆-trapping set growth rate2 of the unterminated LDPC

convolutional code family.

2If the syndrome former matrix is not in minimal form, (6.9) results in an upper bound for νe, which implies that

δccts(∆) is underestimated in this case.
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6.3 Trapping set analysis

We now present a trapping set analysis for several asymptotically good ensembles of unter-

minated, time-varying LDPC convolutional codes. As described in Section 6.2, we make use

of ensembles of tail-biting LDPC convolutional codes to obtain a lower bound for the desired

∆-trapping set growth rate of the associated unterminated convolutional code family.

6.3.1 Regular ensembles with gcd(nc, nv) > 1

Example 6.2. Consider a (3, 6)-regular LDPC code with the following protograph and associ-

ated parity-check matrix:

P =









1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1









.

A family of rate R = 1/2 tail-biting LDPC convolutional code ensembles can be generated

according to the displayed cut. We now proceed to calculate the ∆-trapping set growth rate

δ
(λ)
ts (∆) for the modified tail-biting convolutional code ensembles with base parity-check ma-

trices P̃
(λ)
tb for various fixed values of ∆ and increasing values of the unwrapping factor λ.

Note that setting ∆ = β/α = 0 corresponds to the minimum distance growth rate problem

of Chapter 5. Thus, for λ = 1, which corresponds to the (3, 6)-regular block code ensemble,

δ
(1)
ts (0) = δmin = 0.023, where δmin is the minimum distance growth rate for the (3, 6)-regular

ensemble, as originally calculated by Gallager [Gal62]. Further, for larger values of λ, the

value for δ
(λ)
ts (0) agrees with the earlier results for minimum distance growth rates of tail-biting

convolutional codes given in Example 5.9.

As ∆ ranges from 0 to ∞, the points (δ
(λ)
ts (∆),∆ ·δ

(λ)
ts (∆)) trace out the so-called zero-contour

curve for a protograph-based block code ensemble [ARD07a]. Note that we are particularly in-

terested in small values of ∆, since this means that the ratio of odd-degree check nodes to

variable nodes inducing them is small. This implies that there are relatively few odd-degree

check nodes available to pass messages to the large number of variable nodes. The zero-contour

curves for Example 6.2 are shown in Figure 6.5, and the ∆-trapping set growth rates are high-

lighted for ∆ = 0.02.
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Figure 6.5: Zero-contour curves for Example 6.2.
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The zero-contour curve is key to understanding the role of trapping sets in iterative decoding.

Code ensembles with large ∆-trapping set numbers d
(λ)
ts (∆) are of primary interest, since small

trapping sets dominate iterative decoding performance in the error floor [Ric03]. Thus we want

the ∆-trapping set growth rate δ
(λ)
ts (∆) to exist and be as large as possible for each value of

∆. We observe in Fig. 6.5 that δ
(λ1)
ts (∆) ≤ δ

(λ2)
ts (∆) for λ1 > λ2. This is analogous to

the decrease in the minimum distance growth rate with increasing λ observed in Section 5.4.

If a zero-contour curve of ensemble A is always below the zero-contour curve of ensemble

B, then, in general, we would expect a code drawn from ensemble A to exhibit poorer error

floor performance than one drawn from ensemble B. Thus we would expect worse error floor

performance with increasing λ for the tail-biting convolutional code ensembles.3 For this (3,6)-

regular ensemble, the lower bound for δccts(∆) is simply δccts(∆) ≥ R
1−R

λδ
(λ)
ts (∆) = λδ

(λ)
ts ,

since R
1−R

= 1 in this case. The ∆-trapping set growth rates for Example 6.2 are plotted in Fig.

6.6 for ∆ = 0, 0.01 and 0.05.
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Figure 6.6: ∆-trapping set growth rates for Example 6.2.

3We observe from the zero-contour curves of Example 6.2 that increasing λ results in smaller ∆-trapping set

growth rates for λ ≥ 3. However, we must be careful in this case to remember that the block lengths also increase

and the ∆-trapping set number is d
(λ)
ts (∆) = nδ

(λ)
ts (∆) = Nλnvδ

(λ)
ts (∆).
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We observe that, once the unwrapping factor λ of the tail-biting convolutional code ensemble

exceeds 3, the lower bound for δccts(∆) levels off for each distinct value of ∆. We also observe

a significant increase in the value of δccts(∆) compared to δ
(1)
ts (∆), the ∆-trapping set growth

rate of the underlying block code ensemble. �

Example 6.3. Consider the rate R = 2/3, (3, 9)-regular LDPC code ensemble. We form a

protograph in the usual fashion, creating three check nodes, each of which connect to all nine

variable nodes, and we observe that gcd(3, 9) = 3. The protograph parity-check matrix and

defined cut are displayed below:

P =









1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1









.

For this rate R = 2/3 ensemble, the lower bound for δccts(∆) is δccts(∆) ≥ R
1−R

λδ
(λ)
ts (∆) =

2λδ
(λ)
ts (∆). We observe that, as in Example 6.2, the ∆-trapping set growth rates calculated

for fixed values of ∆ with increasing λ provide us with a lower bound on the convolutional

∆-trapping set growth rate, which exceeds the value of δ
(1)
ts (∆), the ∆-trapping set growth rate

of the protograph-based LDPC block code ensemble. The bounds calculated for several values

of ∆ are given in Table 6.1. �

∆ δ
(1)
ts (∆) lower bound for δccts(∆)

0 0.0054 0.037

0.01 0.0046 0.031

0.05 0.0027 0.018

0.10 0.0014 0.010

Table 6.1: Block code ∆-trapping set growth rates and lower bounds on the convolutional ∆-

trapping set growth rates for several values of ∆ for the regular (3, 9)-ensemble.

6.3.2 Regular ensembles with gcd(nc, nv) = 1

For the following R = 1/4, (3, 4)-regular and R = 2/5, (3, 5)-regular ensembles, we form

the trivial ‘all-ones’ protograph parity-check matrix of size nc × nv. The protograph is then

unwrapped according to the nonuniform cutting vector ξ method as described in Section 5.2.

The nonuniform cuts chosen are consistent with those previously presented in Chapter 5, and

they are displayed in Fig. 6.7.
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 and P =




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1 1 1 1 1



 ,

Figure 6.7: Protograph parity-check matrices with associated nonuniform cut for (a) the (3, 4)-
regular ensemble, and (b) the (3, 5)-regular ensemble.

Just as we expect the tail-biting ensemble zero-contour curve values δ
(λ)
ts (0) to correspond to

minimum distance growth rates of the associated block code ensembles, we expect that the

lower bound for the free distance growth rate δfree of the regular convolutional codes (found

in Chapter 5) based on the displayed cuts correspond to the value δccts(0) of the convolutional

lower bound zero-contour curve. This can be seen in Figure 6.8, where the lower bounds on

δccts(∆) = α are plotted against ∆α = β to form a convolutional lower bound zero-contour

curve for each of the regular convolutional ensembles considered.
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Figure 6.8: Lower bounds on δccts(∆) for several regular ensembles.

We observe that, in general, as the rate increases the convolutional lower bound zero-contour

curves become lower, indicating the likelihood of worse error-floor performance. This is con-

sistent with the conclusions drawn from the free distance bounds presented in Section 5.4.
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6.3.3 An irregular ensemble

Example 6.4. The following irregular protograph is from the Repeat Jagged Accumulate (RJA)

family [DDJ06]. In this paper, it was shown to have a good iterative decoding threshold (γiter =

1.0 dB) while maintaining linear minimum distance growth (δmin = 0.013). We display below

the associated P matrix and cut used to generate the family of tail-biting LDPC convolutional

code ensembles.

! P =





2 2 1 1

1 1 3 1



 .

A lower bound for the free distance growth rate of the unterminated LDPC convolutional code

family, δfree ≥ 0.057, obtained according to this cut was presented in Example 5.13. We ob-

serve that, as in previous examples, the ∆-trapping set growth rates calculated for increasing

λ provide us with a lower bound for the ∆-trapping set growth rate of the unterminated con-

volutional code ensemble, for each value of ∆. The bounds calculated for several values of

∆ are given below in Table 6.2. Recall that δ
(1)
ts (∆) is the ∆-trapping set growth rate of the

protograph-based LDPC block code ensemble. �

∆ δ
(1)
ts (∆) lower bound for δccts(∆)

0 0.013 0.057

0.01 0.010 0.046

0.04 0.005 0.026

0.12 0.001 0.005

Table 6.2: Results for the lower bounds on δccts(∆) calculated for several values of ∆ for

Example 6.4.

6.4 Conclusions

In this chapter, asymptotic methods were used to calculate a lower bound for the ∆-trapping

set number that grows linearly with constraint length for several regular, asymptotically good

ensembles of unterminated, protograph-based, time-varying LDPC convolutional codes. It was

shown that the ∆-trapping set growth rates of the LDPC convolutional code ensembles exceed

the growth rates of the corresponding LDPC block code ensembles on which they are based.

These large trapping set growth rates suggest that the LDPC convolutional codes will exhibit

good iterative decoding performance in the error floor.
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Concluding Remarks
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7.1 Summary of main contributions

Various aspects of channel codes with diagonal structures have been studied in this thesis. To

begin with, so-called defectively cyclic block codes were defined. The parity-check matrices

of these codes have a sliding diagonal structure and as such can be completely described by

a polynomial. The first major result presented in the thesis was, for such codes, an efficient

alternative to the standard method of obtaining a generator matrix G from a parity-check matrix

H using Gaussian elimination. The new method uses simple polynomial algebra resulting from

the diagonal structure, and the resulting G can be completely defined by a polynomial. In

general G will be non-systematic, and the polynomial representation leads to efficient encoder

implementation using shift registers. Further, the polynomial description enables the system

designer to choose any code length and code rate desired. Importantly, the density of G depends

solely on its corresponding polynomial.

The method was subsequently extended with little added complexity to handle a more compli-

cated parity-check matrix structure consisting of an arbitrary finite number of stacked defective

blocks. This allows a large class of practical parity-check matrices to be considered as candi-

dates for the method, e.g., those of LDPC block codes. The method itself is not particular to

binary codes and there is a natural extension to codes over GF(q) with this cyclic block struc-

ture. For these codes it was shown that the induced binary codes possess a quasi-cyclic type

structure.

The well-known links between quasi-cyclic codes and convolutional codes motivated the study

of Part II of the thesis. LDPC convolutional codes have an inherent diagonal structure by na-

ture, and in this part of the thesis we focus on two structural properties of these codes. The

first interesting property is the minimum free distance of LDPC convolutional code ensembles.

In Chapter 5, looking to mirror Gallager’s results for LDPC block code ensembles, asymptotic

methods were used to calculate a lower bound for free distance that grows linearly with con-

straint length for several ensembles of regular and irregular, unterminated, protograph-based

time-varying LDPC convolutional codes. It was shown that the free distance growth rates of

the LDPC convolutional code ensembles exceed the minimum distance growth rates of the cor-

responding LDPC block code ensembles. Further, it was observed that for an irregular ensem-

ble of practical interest the performance of the protograph-based LDPC convolutional codes is

consistent with the iterative decoding thresholds of the underlying protographs.
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The next property of LDPC convolutional codes studied is the so-called trapping sets. Trap-

ping sets are graphical sub-structures that exist in the Tanner graph of the diagonal parity-check

matrix. As discussed in Chapter 4, small trapping sets have been shown to have significant

effect on the error floor of modern capacity-approaching codes under iterative message-passing

decoding. In Chapter 6, asymptotic methods were used to calculate a lower bound for the

∆-trapping set number that grows linearly with constraint length for several regular and one ir-

regular asymptotically good ensembles of unterminated, protograph-based, time-varying LDPC

convolutional codes. This shows that the size of the smallest non-empty trapping set (which

dominates performance in the error floor region) grows linearly with constraint length for these

codes. Finally, it was shown that the ∆-trapping set growth rates of the LDPC convolutional

code ensembles exceed the growth rates of the corresponding LDPC block code ensembles on

which they are based. These large trapping set growth rates suggest that the LDPC convolu-

tional codes will exhibit good iterative decoding performance in the error floor.

7.2 Recommendations for future research

Following the summary of the new contributions of the thesis, this section details a selection of

the worthwhile future research directions to continue this body of work.

7.2.1 Part I: Efficient encoding of block codes using polynomials

• Selection of polynomials for code design. It was mentioned that the choice of polyno-

mials dictates the length and rate of the code. In addition, the density of the matrices

is also directly related to the choice of polynomials. In particular, it would be of inter-

est to use this polynomial framework to design LDPC parity-check matrices with sparse

parity-check and generator matrices. In general, sparsity of the generator matrix is not

automatic when using traditional Gaussian elimination techniques, and this property is

desirable when considering encoder complexity.

• Exploration of quasi-cyclic type structures. We observed that defective quasi-cyclic

structures emerge from the non-binary version of the method after translating back to

binary symbols. Quasi-cyclic LDPC codes have been shown in the literature to have ex-

cellent error control performance, thus it would be of interest to compare the performance

of defective quasi-cyclic LDPC codes, especially as they share the efficient shift register

encoding.

137



Concluding Remarks

7.2.2 Part II: Asymptotically good LDPC convolutional codes based on pro-

tographs

• Unwrapping procedures of protographs with gcd(nc,nv) = 1. Under this condition,

two new methods were proposed in Chapter 5 to unwrap the protograph parity-check

matrix in order to obtain the best possible lower bound for the free distance growth rate

δfree. The results suggest that we typically obtain better lower bounds by performing

nonuniform cuts. It would be of interest to develop the theory regarding these methods

to see if there is an optimal nonuniform cut, or how to choose the best member of the

mini-ensemble.

• The study of elementary trapping sets. An obvious extension of the theory and re-

sults of Chapter 6 would be to consider the elementary trapping sets of protograph-based

LDPC convolutional codes. This is not a trivial extension, requiring a slightly different

model and associated theory. As discussed in Section 6.2.2, it is expected that the re-

sults of this analysis should be approximately the same as those for general trapping sets,

because the smallest trapping sets tend to be of elementary type.
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Appendix A

Derivations of Protograph

Enumeration Results

A.1 A finite check node weight enumerator for a degree two check

node

Proposition A.1 Suppose we have a check node of degree 2 with input weight vector w =

(w0, w1) and we take N copies of the protograph. Thus 0 ≤ w0, w1 ≤ N . Then to satisfy each

of the checks we must have w0 = w1 and

Aw0,w1 =

(

N

w0

)

.

Proof. Suppose without loss of generality that w0 > w1 ≥ 0. Each check node will have one

connection to a variable node of type w0 and one connection to a variable node of type w1.

1. If w1 = 0, then we cannot satisfy any of the check nodes with input weight one from a

variable node of type w0 (and by definition there must be at least one such node).

2. If w1 > 0, then we can satisfy one of the N check nodes immediately. This leaves N − 1

remaining check nodes to be satisfied with weights w0 − 1 and w1 − 1 to be distributed

over variable nodes of type w0 and w1 respectively, where w0 − 1 > w1 − 1 ≥ 0. We

repeat this procedure and eventually arrive the situation where w0 − p > w1 − p = 0

for some 1 ≤ p ≤ N − 1, hence we cannot satisfy all of the check nodes because of

statement 1.

The result now follows that if w0 = w1 we can satisfy w0 distinct check nodes from a choice

of N . �
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A.2 Asymptotic weight enumerators

Recall from Section 4.3.1 that an expression for the number of sequences that satisfy a degree

three check node is given as follows [Div06]:

Aw0,w1,w2 =

(

N

s

)

s!

(s − w0)!(s − w1)!(s − w2)!
,

where s = w0+w1+w2
2 , max{w0, w1, w2} ≤ s ≤ N and w0 + w1 + w2 is even; otherwise

Aw0,w1,w2 = 0. We define the asymptotic check node weight enumerator for a degree 3 check

node to be

a(ǫ0, ǫ1, ǫ2) , lim sup
N→∞

ln(Aw0,w1,w2)

N
, (A.1)

where ǫi = wi/N .

Define σ = (ǫ1 + ǫ2 + ǫ3)/2 such that max{ǫ1, ǫ2, ǫ3} ≤ σ ≤ 1. We now derive the expression

stated in [Div06] for equation (A.1):

lim sup
N→∞

ln(Aw0,w1,w2)

N
= lim sup

N→∞

1

N
ln

((

N

s

)

s!

(s − w0)!(s − w1)!(s − w2)!

)

= lim sup
N→∞

1

N
ln

(

N !

(N − s)!(s − w0)!(s − w1)!(s − w2)!

)

= lim sup
N→∞

1

N
(ln N ! − ln(N − s)! − ln(s − w0)! − ln(s − w1)! − ln(s − w2)!)

≈ 1 lim sup
N→∞

1

N
(N ln N − N − (N − s) ln(N − s) + (N − s) − (s − w0) ln(s − w0)

+(s − w0) − (s − w1) ln(s − w1) + (s − w1) − (s − w2) ln(s − w2) + (s − w2))

= lim sup
N→∞

(ln N − (1 − σ) ln(N(1 − σ)) − (σ − ǫ1) ln(N(σ − ǫ1))

− (σ − ǫ2) ln(N(σ − ǫ2)) − (σ − ǫ3) ln(N(σ − ǫ3)))

= −(1 − σ) ln(1 − σ) − (σ − ǫ1) ln(σ − ǫ1) − (σ − ǫ2) ln(σ − ǫ2)

−(σ − ǫ3) ln(σ − ǫ3)

= −

(

1 −

3
∑

i=1

(σ − ǫi)

)

ln

(

1 −

3
∑

i=1

(σ − ǫi)

)

−

3
∑

i=1

(σ − ǫi) ln(σ − ǫi) (A.2)

1Using Stirling’s approximation ln(n!) ≈ n ln(n) − n. Note that better approximations exist but as n becomes

very large the additional terms tend to zero.
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Using the results of Section A.1, an asymptotic check node weight enumerator for a degree two

check node can be written as follows:

a(ǫ0, ǫ1) , lim sup
N→∞

ln(Aw0,w1)

N
, (A.3)

where ǫi = wi/N . An expression for (A.3) can be derived explicitly as above for a check

node of degree three. Alternatively, we can use the asymptotic degree three check node weight

enumerator (A.2): if ǫ0 6= ǫ1 then a(ǫ0, ǫ1) = 0, otherwise

a(ǫ0, ǫ1) = a(ǫ0, ǫ0, 0) = −(1 − ǫ0) ln(1 − ǫ0) − (ǫ0) ln(ǫ0) = H(ǫ0),

where H(x) = −(1 − x) ln(1 − x) − x ln x is the entropy function.

Mirroring the case for finite check node weight enumerators, expressions for the asymptotic

weight enumerators for check nodes of degree larger than three can be obtained by concate-

nation of the expression derived here for a check node of degree three. For further details,

see [Div06].
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