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Abstract

The major problem encountered by an airborne bistatic radar is the suppression of bistatic
clutter. Unlike clutter echoes for a sidelooking airborne monostatic radar, bistatic clutter echoes
are range dependent. Using training data from nearby range gates will result in widening of the
clutter notch of STAP (space-time adaptive processing) processor. This will cause target returns
from slow relative velocity aircraft to be suppressed or even go undetected. Some means of
Doppler compensation for mitigating the clutter range dependency must be carried out.

This thesis investigates the nature of the clutter echoes with different radar configurations. A
novel Doppler compensation method using Doppler interpolation in the angle-Doppler domain
and power correction for a JDL (joint domain localized) processor is proposed. Performing
Doppler compensation in the Doppler domain, allows several different Doppler compensations
to be carried out at the same time, using separate Doppler bins compensation. When using
a JDL processor, a 2-D Fourier transformation is required to transform space-time domain
training data into angular-Doppler domain. Performing Doppler compensation in the space-
time domain requires Fourier transformations of the Doppler compensated training data to be
carried out for every training range gate. The whole process is then repeated for every range
gate under test. On the other hand, Fourier transformations of the training data are required
only once for all range gates under test, when using Doppler interpolation. Before carrying out
any Doppler compensation, the peak clutter Doppler frequency difference between the training
range gate and the range gate under test, needs to be determined. A novel way of calculating the
Doppler frequency difference that is robust to error in pre-known parameters is also proposed.

Reducing the computational cost of the STAP processor has always been the desire of any
reduced dimension processors such as the JDL processor. Two methods of further reducing
the computational cost of the JDL processor are proposed. A tuned DFT algorithm allow the
size of the clutter sample covariance matrix of the JDL processor to be reduced by a factor
proportional to the number of array elements, without losses in processor performance. Using
alternate Doppler bins selection allows computational cost reduction, but with performance
loss outside the clutter notch region. Different systems parameters are also used to evaluate the
performance of the Doppler interpolation process and the JDL processor. Both clutter range
and Doppler ambiguity exist in radar systems operating in medium pulse repetitive frequency
mode. When suppressing range ambiguous clutter echoes, performing Doppler compensation
for the clutter echoes arriving from the nearest ambiguous range alone, appear to be sufficient.

Clutter sample covariance matrix is estimated using training data from the range or time or
both dimension. Investigations on the number of range and time training data required for the
estimation process in both space-time and angular-Doppler domain are carried out. Due to
error in the Doppler compensation process, a method of using the minimum amount of range
training data is proposed. The number of training data required for different clutter sample
covariance matrix sizes is also evaluated. For Doppler interpolation and power correction JDL
processor, the number of Doppler bins used can be increased, to reduce the amount of training
data required, while maintaining certain desirable processor performance characteristics.
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Chapter 1
Introduction

Radar is often used to detect objects that are not visible to our naked eyes. In a commercial

context it is widely used in safety applications, such as in air traffic control or speed cameras.

Radar can be used as an offensive or defensive tool in a military context. Controlling the air

space is the key element in modern warfare. The start of any modern arms conflict is usually

marked with the destruction of the enemy radar system. Having a modern and reliable radar

system plays a significant part in determining the outcome of the conflict. With the help of air-

borne and spaceborne radar, intelligence about the enemy units can be readily available before

the battle even begins. Besides being able to look further into the enemy territory and detect

low flying aircraft and vehicles in a hilly landscape, an airborne bistatic radar survivability is

greatly increased by positioning the transmitter in a “safe” location while the receiver is in the

enemy airspace operating in the passive mode. The greatest advantage of an airborne bistatic

radar is its ability to possibility detect targets which employ stealth technology. Using stealth

technology, the radar cross section (RCS) of target is reduced in the forward scattering direc-

tion, making target returns harder to separate from the noise. Examples of targets unable to be

detected reliably at significant range, using present radar technology are the stealth aircrafts:

F117, F22 fighter plane and B-2 bomber.

Within this thesis, the problem of designing a clutter i suppressing filter for an airborne bi-

static radar system is considered. The contributions of this work are in the understanding of

bistatic clutter echoes of a forward looking airborne bistatic radar, development of Doppler

compensation techniques for mitigating the effect of clutter Doppler range dependency and

an algorithm for reducing the dimension of a joint domain localised (JDL) processor. A new

method of estimating the clutter Doppler frequency difference between range gates is proposed.

A new technique for mitigating the effect of clutter Doppler range dependency using Doppler

interpolation and power compensation in angle-Doppler domain is also proposed. The altern-

ate Doppler bins selection and the tuned DFT are two proposed algorithms that allow further

iClutter are radar returns due to reflection from the ground and buildings.
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dimension reduction of the JDL processor. Further analysis on the proposed Doppler compens-

ation technique as well as its sample requirement will greatly assist in the design of the bistatic

clutter suppression filter.

This chapter presents a brief introduction to radar systems, in particular the airborne bistatic

radar. It highlights the reasons why airborne bistatic radar is once again gaining researchers’

interest after the decline of interest in bistatic radar in the late 1930s. The motivation and aim

of this work, simulation assumptions used as well as the thesis layout are also included.

1.1 RADAR

Figure 1.1 shows the different types of radar systems available [2–4]. A monostatic radar refers

to a radar system which has the transmitter and receiver located at the same site. It has been the

most widely used radar since it was developed in the late 1930s, primarily because it is easier

to operate and usually - but not always - performs better than bistatic radar (page 1 of [5]).

Monostatic

e.g. Early Warning Radar

Airborne Space-basedStationary

e.g. Over-the-Horizon Radar

Stationary

e.g. Netted Radar

Mobile

GroundShipborneAirborne

Bistatic Multi-Static

RADAR

Figure 1.1: Different types of Radar Systems.

Airborne early warning (AEW) radar is an example of an airborne monostatic radar. Although

monostatic means stationary, in airborne radar engineering it is used to address an individual

radar system. By having a radar on an aircraft, it enables the radar to look from above and fur-

ther into the enemy territory. Looking from above, detection of low flying aircraft and vehicles

in a hilly landscape is improved. However, by doing so, two serious problems are encountered.
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The signal return from the ground, normally known as clutter return or clutter echoes will be

much larger in amplitude because of the steeper aspect angle. Secondly, due to the aircraft mo-

tion, the clutter echoes will be Doppler shifted, hence making its suppression more complex.

Like any type of radar, a target hiding behind a chaff cloud could not be reliably detected. A

chaff cloud is formed by strips of metal foil/wire or clutter of material ejected into the air for

reflecting radar wave. It is used to confuse and prevent aircraft from being detected or tracked

by an enemy radar [6].

An airborne bistatic radar, as shown in Figure 1.2, generally refers to two airborne radars work-

ing together, one as the transmitter and the other as the receiver. As well as having the ad-

vantages of an airborne radar, it also has the advantages of a bistatic radar system. When the

transmitter and receiver are at different sites, the transmitter could be in a “safe” position, far

away from the war zone. While, the receiver is in the enemy airspace, it can only be detected

by active means (illuminated by another radar), as it is operating in the passive modeii. With

this combination, the airborne bistatic radar system survivability is greatly increased. It is also

very attractive to use an unmanned aerial vehicle (UAV) as a passive receiver, thus protecting

expensive assets. Being in the passive mode, the receiver is also immune to anti-radiation mis-

siles and is less likely to be jammed by an enemy jammer [7]. An attacking aircraft, being the

receiver in such a system, could get around restrictions imposed by the power-aperture product

(page 507 of [8]) and yet acquire real-time radar data. Last but not least, airborne bistatic radar

is believed to have anti-stealth technology capability. Before we take a look at stealth techno-

logy, in order to understand how is this possible, the disadvantages of the airborne bistatic radar

shall be investigated.

Beside having the mentioned disadvantages of an airborne monostatic radar, airborne bistatic

radar suffers from other disadvantages. Having the transmitter and receiver at different sites,

synchronisation between them is required for the operation of an electronically scanned phased

array. This requirement further increases the complexity of the radar system. The major prob-

lem with the airborne bistatic radar, however, is the range dependent nature of bistatic clutter

echoes.

iiPassive mode means that the radar does not emit any radar signal.
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Figure 1.2: An airborne bistatic radar system.

1.2 Motivation of this work

Radars are designed to detect, locate and track targets [9–24]. Most targets can be detected as

a matter of time. When the target gets nearer to the radar position, its echoes become stronger,

making it easier to be detected. The only targets that manage to hide from modern radar are

targets which employ stealth technology. Example of such targets are the F117 iii fighter /

bomber, B-2 bomber and F-22 fighter [25–31]. Finding such targets reliably remains one of the

greatest challenges in radar engineering.

Aircraft employing stealth technology are designed to produce a very weak radar return (target

echo). In other words, the aircrafts have a very small RCS area, so small that the radar return

cannot be differentiated from the clutter/interference and noise. Hence, making it undetectable

by a modern radar system reliably. In the following sub-sections, different ways of reducing

the RCS will be discussed.

iiiThe F-117 was the first aircraft to strike Baghdad in the opening minutes of the air war in Desert Storm. Footage
from cameras on board showed a number of 200 lbs bombs from F-117 scoring direct hits on Iraqi strategic targets
and mobile missile launchers.
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1.2.1 Antenna RCS

In order to minimise the RCS of the aircraft, several measures must be taken. Firstly, the RCS

of the installed antenna is reduced by carefully designing and fabricating the antenna, reducing

each of the four components of backscatter as shown in Figure 1.3 [32]. The components

of backscatter from a planar array antenna are the edge diffraction, antenna mode reflections,

structural mode reflections and random scattering. As seen in Figure 1.4, these mirror like

reflections from the antenna structure may be controlled by physically tilting the antenna. The

antenna is tilted at an angle, so that the reflections are not directed back in the direction from

which the illuminating radiation came from. Although the tilt does not reduce the reflections,

it prevents the threat radar from receiving them.

Broadside Direction
θ

θ

Incident Radiation

from Threat Radar

Structural Mode

Reflections
Ante

nn
a M

od
e

Refl
ec

tio
ns

Random
Scattering

Diffraction
Edge

Figure 1.3: Four basic components of backscatter from a planar array antenna.

1.2.2 Low Probability of Intercept

Secondly, a low probability of intercept (LPI) strategy is employed. LPI is the term used for

there being a low probability that radar emissions will be detected by an intercepting receiver

in another aircraft or on the ground. There are a number of design strategies that could be used

for LPI. One of them is to trade integration for reduced peak power. For a signal to be usefully

detected by an intercepting receiver, the intercepting receiver must detect strong individual

pulses. By coherently integrating the echoes received by the radar over a long period, the peak

power needed to detect a target can be greatly reduced, thereby reducing the probability of the

radar signal being detected [33].
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D 2θ Rays of Radiation
From Threat Radar

Rays of Structural

Mode Reflections

Figure 1.4: Antenna structural reflection.

1.2.3 Radar absorbing material (RAM)

Next, a masking technique is used to further reduce the RCS. A special coating known as

radar absorbing material is applied on the aircraft to absorb the energy of the incoming electro-

magnetic wave. Alternatively a radar absorbing structure (RAS) could be used [34]. For any

radar absorbing material to be used as a measure to reduce the RCS of any object, it has to be

matched to the wavelength of the incoming radar signal. Dielectric absorbers can consist of

layers of absorbing material, whose thickness has to be in the order of 0.01 to 0.1
�

(
�

being

the radar signal wavelength). At very high frequency (VHF)/ultra high frequency (UHF), this is

generally too thick to be applied to any aircraft. Magnetic absorbers can be manufactured to be

effective in thinner layers; however, they tend to be heavy and eat up a considerable portion of

the aircraft payload. Structural absorbers may be considered efficient at low frequencies, since

the required thickness can potentially be afforded. The application of state-of-the-art RAM,

can reduce the RCS by an average of 10 dB over a fairly large bandwidth at high frequencies.

However, it has proven to be ineffective in the VHF/UHF bands [35].

1.2.4 Surface facet shaping

The principal signature reduction technique employed, however, is surface facet shaping. Sur-

face facet shaping relies on shaping the aircraft geometry so as to deflect the electromagnetic
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energy impinging on it into directions other than the direction of illumination. By doing so,

the monostatic RCS of the aircraft is reduced. Since this cannot be achieved over the full 360 �

range of aspects of the aircraft, such stealth measures are generally concentrated on the nose-on

section in the range of ����� � to 60 � front aspect.

Scaled measurements of different stealth target models had been performed in an anechoic

chamber at DASA, Bremen, to analyse the effect of shaping on RCS reduction as a function of

radar frequency. The results obtained from measurements on a metallised 1:10-scale model of

an F117 type aircraft are considered in the following [35, 36].

The aircraft geometry was obtained from open literature and hence the target model does not

take into account fine structure details and surface materials such as RAM. This model is thus

regarded as a good example for demonstrating how a faceted stealth scheme, like that applied

in the F117, impacts on the RCS of a target. Figure 1.5iv shows the so-called K-plane view

for representing the spectral distribution of the target scattering properties as a function of the

aspect angle (0 �������	�� for 0 � elevation). The RCS values are indicated by colour coding and

ranged from -18 dBm
�

(dark blue) to +24 dBm
�

(red). The frequency ranges from 100 MHz

on the inner circle to 2 GHz on the outer circle. The aspect angle corresponds to the target

geometry sketch in the centre of the diagram.

The scaled measurement results presented in Figure 1.5 show that the attempt to reduce the

target RCS has been successful in the ��
�� � section around the nose-on aspect and for the fre-

quency range above 400 MHz v. High RCS values covering the whole frequency range occur

when the direction of illumination is perpendicular to the front or back edges of the wings or

other dominant structures of the fuselage. It can be concluded from the above measurement

results and the law of physics vi that, an airborne bistatic radar flying in certain flight config-

urations, can be used to detect a target employing stealth technique (primarily, against surface

facet shaping) [37, 38].

ivReproduced with permission of J �� rgen Kruse, EADS Germany.
vAnalysis of results are obtained from [35].

viThe laws of physics maintain that energy must be conserved. If the monostatic RCS is reduced by shaping,
the incident energy must be distributed elsewhere. As such, the target signature is increased at some or all bistatic
angles.
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Figure 1.5: K-plane RCS of F117-like target (courtesy of EADS, Bremen).

1.3 Aims of this work

The key objective of this thesis is the development of a signal processing system for an airborne

bistatic radar. Space-time adaptive processing (STAP) [39] has been shown to be successful in

suppressing clutter echoes of a sidelooking airborne monostatic radar. As the airborne mono-

static radar is a special case of the airborne bistatic radar, similarities and differences between

the two cases first need to be understood. Clutter Doppler range dependency is observed in the

forward looking airborne monostatic radar and in both the forward and the sidelooking airborne

bistatic radar.

STAP works by assuming knowledge of the true clutter sample covariance matrix. In practice,

the true clutter sample covariance matrix is estimated using clutter echoes from other neighbour

range gates or from the time dimension or both. The range dependent nature of the clutter

echoes will cause incorrect estimation of the true clutter sample covariance matrix and will

require continuous estimation of the clutter sample covariance matrix for every range gate under

test. Incorrect estimation of the true clutter sample covariance matrix, arising from the use
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of statistically different training range gates, will broaden the clutter suppression filter clutter

notch and result in a loss of processor performance. Meanwhile continuous estimation of the

clutter sample covariance matrix will cause an additional computational load for the adaptation

process.

Clutter Doppler range dependency also creates a dilemma. On one hand, the amount of training

range gates required to produce a sufficiently narrow clutter notch, may not be enough for

the adaptation of the estimated clutter sample covariance matrix, hence a loss in improvement

factor (defined in Section 2.5.1) will occur. On the other hand, if a large number of range

gates (with different Doppler frequencies) are used, broadening of clutter notch will result in

degradation of slow relative velocity target detection.

It is the ultimate goal of this research to study the range dependency of the forward looking

bistatic clutter and to develop a Doppler compensation algorithm than can mitigate the bistatic

clutter Doppler range dependency. The proposed algorithm should ideally be based on a re-

duced dimension STAP processor, to reduce the amount of training range gates required for the

estimation of the clutter sample covariance matrix, as well as to reduce the computational cost

of the clutter suppression filter adaptation with range.

As part of the proposed algorithm system analysis, the processor performance with various

system parameters such as the size of Doppler and spatial bins, size of the discrete Fourier

transform (DFT) processor, diagonal loading, radar ambiguities shall be investigated. In addi-

tion, the number of training data required in both range and time dimensions, for the estimation

of the clutter sample covariance matrix shall be studied.

1.4 Assumptions

In order to obtain a simplified understanding of the nature of the bistatic clutter, as well as to

develop and test the proposed Doppler compensation method, the radar and clutter models are

simplified as much as possible. The following assumptions are made:

1. The clutter statistics are stationary within the dwell time. Thus, adaptation of the clutter

sample covariance matrix with time is not considered. The effects of motion on adaptive

arrays has been studied extensively by HAYWARD [40]. Changes in the clutter statistic

due to such motion can be compensated using extended sample matrix inversion (ESMI)
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[41];

2. Interference caused by jamming is not considered in an airborne bistatic radar system, as

the location of the receiver is usually unknown to the enemy jammers;

3. Mutual coupling effects between elements of the array have been neglected [42–44];

4. The contributions of different scatterers to the clutter echoes are statistically independent;

5. Since the clutter echoes are a sum over a large number of scatterers, they are assumed

asymptotically Gaussian;

6. The reflectivity of the ground is assumed to be independent of the depression angle. In

practice, there is a strong dependence which is in turn associated with the kind of clutter

background (roughness);

7. Multiple-time around clutter occurs whenever the pulse repetition frequency (PRF) is

chosen such that the radar is range ambiguous within the visible radar range. In this

work, multiple clutter echoes have been neglected except in Section 4.8.4; and

8. Although range walk can lead to temporal decorrelation of space-time clutter echoes, its

effect is neglected. The influence of the range walk on space-time clutter sample cov-

ariance matrices and the associated power spectra has been analysed by KREYENKAMP

[45].

1.5 Thesis organisation and Original contributions to knowledge

This section summarises the contents of this thesis, as well as highlights the original contribu-

tions to knowledge contained within the chapters.

Chapter 2 offers a different perspective of the nature on the clutter echoes in both airborne

monostatic and bistatic radar systems from that normally portrayed in other literatures. The

space-time adaptive processing processor, which has been widely studied for clutter suppres-

sion in airborne monostatic radar is also discussed. In the second part of this chapter, the

performance metrics used for evaluating the performance of Doppler compensation schemes

are presented. Different methods of mitigating the range dependency are also shown. Lastly,

four different types of Doppler compensation algorithms are elaborated.
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The clutter Doppler range dependency is often presented in the Doppler- �����	� plane. For side-

looking airborne monostatic radar, the clutter echoes are shown to be range independent in

the Doppler- ����� � plane. Because of this feature, it is attractive to work in the �����	� plane

rather than the azimuth plane. However for airborne bistatic radar, clutter range independence

doesn’t exist in either plane. Hence the first contribution of this work is on the illustration of

the clutter Doppler range dependency for both airborne monostatic and bistatic radar, in the

Doppler-azimuth plane. The azimuth plane is chosen for this work to allow easier visualisation

of the angle of arrival. The range dependency of an airborne bistatic radar is widely studied

for cases using a sidelooking array and in the Doppler- �����	� plane. This work presents the

range dependency in Doppler-azimuth plane for a forward looking airborne bistatic radar, with

various flight configurations.

Chapter 3 describes a reduced dimension STAP processor called the joint domain localised

(JDL) processor [46], an angular-Doppler domain processor. A novel algorithm for estimating

the centre clutter Doppler frequency difference between range gates, that is to a certain ex-

tent, robust to errors in estimated parameters such as the transmitter velocity is proposed [47].

Using the JDL processor as the base of the clutter suppression filter, a novel way of perform-

ing Doppler compensation by Doppler interpolation and power correction is proposed [47]. A

method of further reducing the dimension of the JDL processor, called the tuned DFT is also

proposed [48]. The computational cost can be further reduced without affecting the processor

performance, when using the tuned DFT.

Chapter 4 is dedicated to the investigation of the proposed Doppler interpolation processor per-

formance when using different parameters. Carrying out analyses on the processor parameters

allows a better understanding and design of both the proposed Doppler interpolation processor

and the JDL processor. Using the proposed alternate Doppler bins selection, a computational

cost reduction or processor performance improvement can be achieved. The sensitivity of the

processor performance with error in pre-known parameters is also being investigated. The ex-

tent to which the processor performance is affected by radar ambiguity, - in particularly range

ambiguity, is presented. The last part of this chapter takes a look at the sample requirement

(for the estimation of the clutter sample covariance matrix) when using different Doppler com-

pensation processors and different data types. Using correctly selected training range gates in

situations where Doppler compensation is required, plays important part in reducing the sample

requirement.
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Finally, Chapter 5 summaries and concludes the work presented and highlights possible future

work.
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Chapter 2
Clutter nature of airborne bistatic

radar

2.1 Introduction

Clutter suppression in an airborne bistatic radar is very different from that of an airborne mono-

static radar. Bistatic clutter echoes are range dependent and change non-linearly with range.

Traditional methods of estimating the clutter sample covariance matrix, using training data in

the range dimension will only result in the widening of the clutter notch. The widening of the

clutter notch will degrade the target detection processor’s ability to detect low relative velocity

targets.

In this chapter, an insight into the clutter Doppler range dependency (in the Doppler-azimuth

plane) for both airborne monostatic and bistatic radar systems will be given. Similarity in

terms of range dependency between the clutter echoes received by a forward looking airborne

monostatic radar and an airborne bistatic radar (in the Doppler- �����	� plane) is observed [49].

Range dependency does exist in airborne monostatic radar (in both a sidelooking and forward

looking array). However due to the look angles normally employed, it is only in the forward

looking case where the range dependency becomes obvious.

Clutter suppression using space-time adaptive processing (STAP) has been shown to be very

successful in airborne monostatic radar systems [46, 47, 50–54]. An introduction to space-time

adaptive processing is given. The effects of bistatic clutter Doppler range dependency on the

STAP processor will be evaluated. Methods used in overcoming range dependency in forward

looking airborne radar provide suggestions on how range dependency in airborne bistatic radar

can be solved. Some of these Doppler compensation methods do not produce impressive results

when used by the airborne bistatic radar system, as the bistatic clutter echoes are much more

complex than the monostatic clutter echoes.

There are a number of ways to mitigate the effect of clutter Doppler range dependency. Some

form of Doppler compensation, however, seem to be highly desirable for neutralising the range
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dependency. Several compensation methods proposed by various authors (e.g. derivative-based

updating, Doppler warping, two-dimensional angle-Doppler compensation and scaling) are ex-

plained.

2.2 An airborne monostatic radar

Before analysing the clutter echoes received by an airborne bistatic radar, an understanding of

the monostatic clutter echoes is essential. An airborne radar system that uses a common an-

tenna for both transmitting and receiving is called an airborne monostatic radar. It is sometimes

referred to as a special case of the airborne bistatic radar, when the distance between the trans-

mitter and receiver equal zero, and both the transmitter and receiver are travelling at the same

velocity. Figure 2.1 shows the geometry of an airborne monostatic radar. The radar platform

(at position marked
�

) is assumed to be moving parallel to the ground in the 
 -direction at

velocity 
 � . The ground is also assumed to be planar. The scalar � denotes azimuth angle, � �

is the slant range, � � the ground range, � is the height of the platform and
�

the depression

angle.

ϕ

θ

Rs

gR

p P

v

y

xp

p

x

yH

O

z

Figure 2.1: Geometry of an airborne monostatic radar.

The clutter Doppler frequency, � � (for an airborne monostatic radar system) due to a certain
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stationary scatterer, P on the ground is proportional to the radar system’s radial velocity.

� � 	
� 
 �� ����� � ����� � (2.1)

where
�

is the wavelength of the radar signal. For every pair of angles ( � � � ), � � denotes an

individual clutter Doppler frequency. Curves of constant Doppler frequency on the ground are

called isodops, while curves of constant range are called isoranges.

Figure 2.2 shows an isodops and an isoranges plot for an airborne monostatic radar. The po-

sitions marked T and R represent the positions of the transmitter and receiver respectively.

The isodops consist of symmetric set of hyperbolas, which are obtained for a flight path par-

allel to the ground. For flight paths including a diving angle, the hyperbolas will become

non-symmetric about the y-axis. Parabolas or ellipses may also be obtained, depending on the

diving angle. The clutter Doppler frequency tends to be constant with range at a greater distance

and at azimuth angles close to 90 � .
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Figure 2.2: Isodops and isoranges for an airborne monostatic radar.

Array configurations for sidelooking and forward looking antennas can be seen in Figure 2.3.

A sidelooking array (represented by hollow circle) is an array with its elements lying along the
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flight path, while a forward looking array (represented by solid circle) has its elements lying

perpendicular to the flight path. Zero azimuth is defined as the 
 -axis. For a sidelooking array,

� ��� � ����� � � (port side) or � ��� � ��� � � � � (starboard side), while ����� �	� � � ��� � for a

forward looking array, looking towards the front of the aircraft. Anti-clockwise from the 
 -axis

is the positive � angle, while clockwise is the negative � angle.

θ

Rs

Rg

vpα

ψ β

p P
y

xp x

yH

z
Osidelooking

ϕ

forward looking

Figure 2.3: Geometry of a linear airborne array.

2.2.1 Sidelooking array configuration

Clutter suppression for a sidelooking airborne monostatic radar (SLAR) using the STAP has

been shown by a number of authors to be very successful (STAP is explained in Section 2.4).

Displaced phase centre antenna technique [55–57] has also been used in SLAR, by exploring

the range independent nature of the clutter echoes when operating in Doppler-cone angle plane.

An example of a typical Doppler-azimuth clutter spectrum (using the minimum variance es-

timator (MVE), see Appendix A and page 225-227 of [58]) for a SLAR is given in Figure 2.4
i.

The clutter echoes are separated by range gates. Range gates are very similar to isoranges,

where clutter echoes from ground scatterers in the same range are collected and superimposed

iGeneral simulation parameters for the MVE power spectrum plot are given in Table 2.1
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Figure 2.4: Clutter spectrum of a sidelooking airborne monostatic radar.

together. The spacing between range gates is normally set approximately equal to the pulse

width. Using a single range gate spacing with a 2:1 variation in pulse width ( two range gates

for one pulse width) is undesirable as it may result in unacceptable range gate straddling losses

and perhaps even missing samples. The maximum number of range gates samples possible is

determined by the height of the platform, the pulse width and the pulse repetition frequency

(PRF), using the following equation

Maximum number of range gates possible �

�

PRF �
���
�

pulse width
� (2.2)

where � is the speed of light. For PRF = 20kHz, pulse width = 0.5 � sec and a platform height

of 1km, the maximum number of range gates possible is approximately 86.

Figure 2.5 shows how the clutter Doppler frequency changes in azimuth and with range gate

(plotted on a Doppler-azimuth plane). The different colours represent the range gate numbers.

The range gate number starts counting from 25 (for this graph) as some of the range gates have
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no clutter echoesii. The number of range gates without clutter echoes is generally dependent

on the height of the radar platform. The spreading of the colours in the Doppler frequency axis

represents the range dependency of the clutter Doppler at a particular � angle. The wider the

spread of the colours, the higher the clutter Doppler range dependency. For ��� � � � � � � � � ,
there is not much change in Doppler frequency with different range gates, hence the clutter

echoes can be assumed to be range independent. Range dependency is obvious for � � � � �
� � � and � � � � � � � ��� � � . However due to the difficulty in resolving angles near endfire

(near the array axis), clutter echoes from these angles are suppressed. The mainlobe of the

transmitter beam pattern is seldom pointed towards the endfire. As a result, the clutter echoes

for a sidelooking airborne monostatic radar are generally considered to be range independent.
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Figure 2.5: Range dependency of a sidelooking airborne monostatic radar.

The range dependency of the clutter echoes received by a sidelooking array is explained slightly

differently from that given in literature, which uses the cone angle, � , [51, 59–62]. The clutter

Doppler range dependency is explained in terms of the look direction relative to the array, � .

iiAssuming no range ambiguity.
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The relative clutter Doppler frequency is given as

� � 	 ��� �
� 
 � 	 ����� � (2.3)

and

����� � 	 ����� � ����� � (2.4)

The look direction of the array is given by

�����	� 	 ������ � � � ������� �

	  ����� � ����� ����� � � ����� �

� ����� � ������� � (2.5)

where � is the look direction relative to the array,
�

is the crab angle. The crab angle is the

angle between the antenna array and the flight direction. For sidelooking array,
�
	 � � while

for a forward looking array,
�
	 ��� � . For � 	 � � this means the direction of the array axis.

To relate the relative Doppler frequency, � � with the look direction, �����	� , equation (2.5) is

solved for ����� � (see Appendix B).

� � 	 ��� �	� ����� � �	�  �����	� ����� � � �

�  ��
� � � � ����� � � ����� � � � (2.6)

For a side looking array,
�
	 � � , equation (2.6) reduces to

� � 	 ������� (2.7)

which is a straight line in the � � � �����	� plane and is also known as Doppler- �����	� plane with a

45 � slope. It means that the clutter Doppler frequency depends only on the look direction, but

not on range.

The main difference between a Doppler-azimuth plane and a Doppler- �����	� plane is that the

azimuth axis in the Doppler -azimuth plane, is independent of the range gate. However, for

the look direction ( ��� �	� ) axis in the Doppler- ����� � plane, �����	� is dependent on the depression

angle, which is determined by the range gate in an airborne monostatic radar environment.

This indirect dependency of �����	� causes the clutter Doppler range dependency presented on

the Doppler- �����	� plane to be different from that presented on the Doppler-azimuth plane.
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The range independence of the clutter Doppler frequency is a unique property of the sidelooking

airborne monostatic radar [60]. It has strong implications for the design of an adaptive processor

because training data can be obtained directly from the neighbouring range gates.

2.2.2 Forward looking array configuration

The statistics of the clutter echoes do not change when a non-sidelooking array, e.g. a forward

looking array, is used instead of a sidelooking array. The only difference is the angle of ar-

rival when different antenna array configurations are used. Figure 2.6 shows a clutter power

spectrum (using MVE), when using a forward looking array.
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Figure 2.6: Clutter spectrum of a forward looking airborne monostatic radar.

When a forward looking array looks toward the flight direction, the clutter power spectrum

consists of only positive Doppler frequencies (only true for airborne monostatic radar). The

negative Doppler frequency belongs to clutter echoes arriving from the back lobe, which are

normally suppressed using a metal reflector.

The range dependent nature for a forward looking array is different from that of a sidelooking

array shown on the Doppler-azimuth plane, because of the look angle employed. As mentioned
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earlier, a sidelooking array has difficulty in resolving azimuth angles � � � � � � � � and

� � � � � � � ��� � � , which are the azimuth angles that experience Doppler frequency variation

with range gate. For a forward looking array, azimuth angles ����� � � � � � 
 � � and 
 � � �
� � ��� � are the angles of arrival which experience clutter suppression due to the transmitter

beam pattern. Strong clutter echoes received by a sidelooking array may appear weak when

received by a forward looking array and vice versa. Figure 2.7 shows how the clutter Doppler

frequency changes with range gate in the Doppler-azimuth plane when a forward looking array

is used.
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Figure 2.7: Range dependency of a forward looking airborne monostatic radar.

Within the azimuth range of � ��� � � � � ��� � , a significant Doppler frequency change with

range is observed. These angles being the main look angles of a forward looking array, which

implies that the clutter Doppler frequency of a forward looking airborne radar are range de-

pendent.

Looking at the clutter Doppler range dependency on the Doppler- �����	� plane, from equation

(2.6), with
�
	 ��� �

� � 	 �
� ����� � �

� ��
� � � (2.8)
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Equation (2.8) shows that for a forward looking array, the clutter Doppler frequency is also

range dependent even when Doppler- �����	� plane is used.

For an airborne monostatic radar, the clutter echoes are considered to be range independent

when a sidelooking antenna array is used. On the other hand, when a forward looking antenna

array is used, the clutter Doppler is range dependent [63, 64]. Clutter Doppler range dependency

can also be observed when an inclined antenna array [52, 62], also known as non-sidelooking

antenna array [65, 66], is used. In the next section, the clutter Doppler range dependency for an

airborne bistatic radar will be investigated.

2.3 An airborne bistatic radar

The clutter spectrum for an airborne bistatic radar is much more complicated than an airborne

monostatic radar. It is dependent on the transmitter and receiver positions, as well as their

respective radial velocities. An airborne bistatic radar geometry is shown in Figure 2.8. The

receiver is at point Rx, at height, � � , above the 
 � � ground plane, and the transmitter is

at point Tx, at height, � 
 . The receiver moves in the 
 -direction at speed, 
 � , while the

transmitter moves at speed, 
 
 , at flight direction,
�
� . A transmit pulse hits the ground at point

�
after passing the transmit slant range, � � 
 , and the reflected pulse is received by the receiver

after passing the receiver slant range, � � � .
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Figure 2.8: Geometry of an airborne bistatic radar.
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Due to the motion of the two platforms, ground clutter echoes will exhibit a Doppler shift that

is proportional to the velocity of both the transmitter and the receiver. For the airborne bistatic

radar, the Doppler frequency of the clutter echo is given as follows:

��� 	 
 
 ������ � � � � � ������� � � � 
 � ����� � � ����� � �� (2.9)

where � � and � � are the azimuth angles of the transmitter and receiver respectively, and
�
�

and
� � are the depression angles of the transmitter and receiver respectively. The scalar � � is

sometime also referred to the look angle. For 
 
 	 
 � , � � 	 � � , � � 	 � � and
�
� 	 � , equation

(2.9) reduces to the monostatic case.

As observed from equation (2.9), any changes in transmitter and receiver configuration will

affect the isodops pattern of the clutter echoes. KLEMM in [49] has discussed the influence

of bistatic parameters when using a sidelooking array. He concluded that in bistatic radar, the

clutter Doppler frequency is in general range dependent even for a sidelooking array geometry.

In the rest of this section, the influence of the airborne bistatic radar configuration on the clut-

ter Doppler range dependency, when using forward looking array, will be investigated. The

relationship between the clutter Doppler frequency and the look direction ( ��� ��� ) will not be

developed here, as there is no range independent advantage for working in the Doppler- �����	�
plane for both sidelooking and forward looking array.

2.3.1 Transmitter and Receiver Aligned

Figure 2.9 shows the clutter isodops and the isoranges with both the transmitter and receiver

flying at the same speed and in the same direction. The transmitter is 2000 m ahead of the

receiver. The bistatic configuration chosen is symmetric about the flight axis. The isodops still

look very similar to the hyperbolas shown in Figure 2.2, except the centre region. Figure 2.10

shows the clutter Doppler range dependency of such a bistatic configuration. For the forward

direction (front of the receiver), the clutter Doppler frequency varies significantly with range

gate, especially in the lower range gates. A relatively uniform Doppler frequency variation can

be observed at all � � angles, as compared to the airborne monostatic radar using a forward

looking array, where the Doppler frequency variation is only observed for � ��� �	� � � � ��� � .
A much wider clutter Doppler frequency spreads across range gates, as compare to the airborne
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monostatic case, is also observed.
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Figure 2.9: Clutter isodops and isoranges pattern with transmitter and receiver aligned.

The backlobe clutter Doppler frequency responds in a different manner with range gate than

the forward direction clutter. The clutter Doppler frequency increases with range gate at certain

azimuth angles, but also decrease with range gate at other azimuth angles. This shows that the

clutter Doppler frequency variation is only symmetric about the flight axis and not about the

antenna axis. This is totally different when a side looking array is used in an airborne mono-

static radar, where the forward direction and backlobe parts coincide. In special applications

where omni-directional sensors are used to achieve a 360 � coverage, the difference between the

forward direction and backlobe will influence the clutter spectra. The adaptive processor will

produce a second clutter notch and, therefore requires additional degrees of freedom.

Figure 2.11 shows the clutter Doppler frequency variation when the transmitter is behind the

receiver. The clutter Doppler frequency variation at the forward direction is no longer uniform

across all � � angles. The minimum clutter Doppler range dependency is observed at � � �

� ��� � .
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Figure 2.10: Range dependency for a transmitter ahead of receiver with a forward looking
array.

2.3.2 Transmitter and Receiver on Parallel Flight Paths

The transmitter and the receiver are configured to be on parallel flight paths with a separation

of 2000 m. The isodops and isoranges pattern are shown in Figure 2.12.

As it can be seen, the lateral displacement of the transmitter causes the isodops pattern on the

ground to be asymmetric about the receiver flight path but symmetric about the antenna array

axis. Figure 2.13 shows the clutter Doppler range dependency of such configuration.

For � � angles � � � � � � � � � �� , the clutter Doppler frequency varies significantly with range.

However on the other side of the receiver (towards the transmitter), ����� � � � ��� � � � � ,
the clutter Doppler frequency variation with range is small. Such small clutter Doppler range

dependent can be used to minimise the effect of clutter Doppler range dependency.

KLEMM has shown in [49], that when the displacement between transmitter and receiver be-

comes small compared with its height, the bistatic configuration approaches the monostatic

case. Hence making the clutter Doppler frequency less range dependent.
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Figure 2.11: Range dependency for transmitter behind the receiver with forward looking array.

2.3.3 Transmitter and Receiver on Orthogonal Flight Paths

Figure 2.14 shows the isodops and isoranges pattern of a bistatic transmitter and receiver

aligned configuration, with the two flight paths orthogonal to each other (the transmitter’s flight

direction is 90 � from that of the receiver’s). This configuration is not very attractive from an

operational standpoint, because the configuration and the Doppler characteristics change with

time. Besides making the clutter echoes highly non-stationary, bistatic radar operation be-

comes impossible when the transmitter leaves the radar range. However, such situation may

occur during a manoeuvre, and a clutter suppression processor should still operate even under

such conditions.

The shape of the isodops is greatly changed. The isodops pattern is rotated by about 45 � anti-

clockwise. There are some ellipse-like forms in the lower left corner, while the isodops field in

the upper-right still look like hyperbolas. Figure 2.15 gives more insight on how the Doppler

changes with � � angle and range gate.

The complex, twist and turn nature of the isodops field is reflected in Figure 2.15 with the

crossing of different range gate clutter Doppler frequency at different � � angles. At certain � �
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Figure 2.12: Isodops and isoranges for transmitter and receiver on parallel flight paths with
forward looking array.

25 

30

35

40

45

50

55

60

−80 −60 −40 −20 0 20 40 60 80
−6000

−4000

−2000

0

2000

4000

6000

r
 (°)

D
op

pl
er

 F
re

qu
en

cy
 (

H
z)

ϕ

Range Gate 

forward direction 

back lobe 

Figure 2.13: Range dependency for transmitter and receiver on parallel flight paths with for-
ward looking array.
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Figure 2.14: Isodops and isoranges for transmitter and receiver on orthogonal flight paths with
forward looking array.
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Figure 2.15: Range dependency for transmitter and receiver on orthogonal flight paths with
forward looking array.
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angles, the Doppler frequency increases as range gate increases, while at other angles, the Dop-

pler frequency decreases as the range gate increases. Any assumption about how the Doppler

frequency changes (linear or non-linear) with range gate in such configuration will not be true

for all � � angles. Strong Doppler asymmetry between the forward direction and backlobe is

also observed. Minimum clutter Doppler range dependency is observed at � � � -33 � for the

forward direction and at � � � 0 � and at � � � 55 � for the backlobe direction. Figure 2.16 shows

the corresponding clutter power spectrum using the MVE for clutter return from range gate 27.

Omni-directional beam pattern is used for this simulation. The clutter power spectrum forms

two ridges in the Doppler-azimuth plane. This shows that the space-time adaptive processing

can still be effective in suppressing the clutter echoes.
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Figure 2.16: Clutter power spectrum for transmitter and receiver on orthogonal flight paths
with forward looking array from range gate 27.

Figures 2.17 and 2.18 shows the clutter power spectrum from range gates 25 and 29 respect-

ively, using transmitter beamwidth of 3 � and 30dB mainlobe to sidelobe ratio. The receiver

beam pattern is as defined in Equation (C.5). The ridge pattern appears largely the same in both

the figures and the clutter echoes range dependency can hardly be observed using the MVE

spectrum plot. On the other hand, the mainlobe to sidelobe ratio tends to be quite different at

different range gates. From these two figures, one can expect different processor performance
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when using training data from different range gates.
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Figure 2.17: Clutter power spectrum for transmitter and receiver on orthogonal flight paths
with forward looking array from range gate 25.

The clutter Doppler frequency of an airborne bistatic radar, operating in any configuration, is

in general range dependent, regardless of using a forward looking array or a sidelooking array

antenna [49, 67]. Greater clutter Doppler range dependency exists in the near range and it

decreases as range increases. Figure 2.19 shows how the MVE power spectrum varies with

range gate. The clutter echoes from range gate 1 to range gate 15 are the results of range

ambiguity. KLEMM provides an insight into the clutter Doppler range dependency when the

transmitter and the receiver aircraft are flying on parallel paths, with the transmitter above

the receiver (page 356 to 357 of [68]). HERBERT and RICHARDSON described the bistatic

clutter Doppler range dependency as having regions where small changes of angular location

correspond to large changes of clutter Doppler frequency. The variation of the clutter angle-

Doppler relationship due to topographic features, e.g. variations in ground height is also studied

by HERBERT and RICHARDSON [69, 70].

The clutter Doppler range dependent - non-stationary - nature of the clutter echoes may be

mitigated by appropriate choice of the transmitter-receiver configuration or by performing cer-

tain Doppler compensation. Examples of such configurations is when the transmitter height is
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Figure 2.18: Clutter power spectrum for transmitter and receiver on orthogonal flight paths
with forward looking array from range gate 29.

Figure 2.19: MVE power spectrum varies with range gate.
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much larger than the receiver height. Such configuration might be desirable anyway for oper-

ational reasons. Means to mitigate the effect of clutter Doppler range dependency on clutter

suppression filters such as the STAP, will be discussed in Section 2.6.

2.4 Space Time Adaptive Processing (STAP)

In an airborne radar, suppression of Doppler spread clutter echoes without minimising the tar-

get return (especially for low altitude and low relative velocity targets) has always been one

of the important tasks in radar signal processing. Attempts to remove the clutter using one

dimensional filtering such as the displaced phase centre antenna (DPCA) technique [55–57],

can achieve adequate rejection over the full spectral bandwidth of the clutter. However, this

is at the expense of attenuating clutter echoes from low relative velocity targets (i.e. targets

possessing the same Doppler frequency as the mainlobe clutter echoes). In contrast, space-time

adaptive processing (STAP) [39, 51, 68, 71–74] further distinguishes the clutter and target re-

turns in the angular domain by using antenna array, hence offering the capability of detecting

moving targets with low relative velocity. Calculating the two dimensional filter weights adapt-

ively leads to the advantages over DPCA in robustness to errors and capability for simultaneous

suppression of jamming and clutter echoes.

Figure 2.20 shows an illustration of spatial and spectral filtering for a sidelooking airborne

monostatic radar. The clutter as well as the target returns can be divided into the space and time

domains. As the target may be travelling at a different velocity to that of the airborne bistatic

radar system (transmitter and receiver), its echo is likely to have a different Doppler frequency

from that of the clutter echoes. Filtering the echoes in space and time domain, allows the target

return to be separated, even if it has the same direction of arrival (DOA) as the clutter echoes.

However, when the target Doppler frequency gets nearer to the clutter Doppler frequency (both

with the same DOA), nulling is required to suppress the clutter echoes, in order to detect the

target.

Radar systems using STAP typically emit repetitive identical pulses. The reflected echoes (con-

sisting of both target return and clutter echoes) are sensed at each of the � antenna array ele-

ments, and the sensed returns are sampled at each of the discrete range gates (total number of

range gates is
�
� )- covering the range interval of interest, over

�
successive pulse repetition

intervals (PRI) (see Appendix C for the clutter model used).
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Figure 2.20: Illustration of spatial and spectral filtering for a sidelooking airborne monostatic
radar.

Let the data received (reflected echoes) from all the range gates be stored in a cube data matrix
�

which has a dimension of ( ��� � � �
� ). The complex scalar

�
� � � � � , represents the � th

baseband complex (I/Q) data samples of the � th array channel in the � th range gate. The cube

data matrix
�

is defined by

� 	 � �  � � �  � � ��� � �  � � � � (2.10)

where
� ���� is an ��� � matrix

� ���� 	

�������
�

�
� � � � � �

� � � � � ��� � �
� � � � �

�
� � � � � �

� � � � � ��� � �
� � � � �

...
...

. . .
...

� � � � � � � � � � � � ��� � � � � �	� �

�
						
� (2.11)

where � 	 � � � ��� � � � and
�
� is the total number of range gates available.

Let the data matrix
� � =

�  � � where � is the range gate under test. Under the signal-absence

hypothesis � � , the data matrix
� � consists of clutter (also known as interference) and noise
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components only, i.e.,

� � 	 � � � �
(2.12)

where
� � and

�
are the clutter and noise matrices respectively. Both have the same dimension

as
� �  ��� � � . The elements in matrix

� � are given by � � � � � � as defined by equation (C.4),

while the elements in matrix
�

are additive white Gaussian noise (AWGN) with a variance

of �
�

� , generated by the radar receiver which is dominated by the first amplifier in the receiver

chain. The noise is assumed to be uncorrelated in time and space.

Under the signal-presence hypothesis � � , a target signal component also appears in the data

matrix, i.e.,

� � 	 � � � � � � � � �
(2.13)

where � � is an unknown complex constant, representing the amplitude of the target signal and
�

is the target signal matrix expressed by

� 	 �


�
 � � (2.14)

where


is the Kronecker product, � � and � � is the temporal and spatial dimensions of the target

signal respectively,

�


� 	

� ������� �� �	� � � � � � ���	���
� �� �	�  � � � � � � � � � (2.15)

and

� � 	 � �����
� �� �	� � � � � ��� �����
� �� �	�  � � � � � � � � �


� (2.16)

The superscript 	 is the transpose operator, � � � , the target signal temporal frequency and � � � ,
the target signal spatial frequency are given as

� � � 	
� 
 � � � PRI� (2.17)
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and

� � � 	
� � ����� � � �� (2.18)

respectively. 
 � � � is the relative velocity of the target,
� � 	 � � is the spacing between the

elements of the array antenna and � � � is the direction of arrival of the target-return planewave

with respect to the broadside of the array for a forward looking array.

In the case of unknown clutter statistics, the data from the adjacent range gates, conventionally

referred to as the training data, training range gates or secondary data, is used for the estimation

of the clutter sample covariance matrix. The training data (assumed to be free from target signal

and derived from a homogeneous clutter environmentiii) consists of only the clutter/interference

and noise components and is denoted by


 � 	 � � � � � (2.19)



=
�  �	� , is a data matrix with dimension ( � � � ) and � is the training range gate.

Matrices

 � and

� � are assumed to be independent of each other, but process the same clutter

statistics, i.e., vec(

 � ), a ( � � � � ) vector comprising the � � elements of


 � should have

a complex Gaussian distribution with zero mean and an estimated iv clutter sample covariance

matrix

	

. The notation vec(
�

) = [ �



� ���



� � � ��� ���


� ] where � � is a column of the matrix

�
and

using the maximum likelihood estimator (MLE) [78],

	

, a ( � � � � � ) matrix when using

only range dimension training data, is given as


	 	 �
�

��� � ���	��
�
��� ��� � � ����
����� ��� � � ��� ��� �

� � �	 
 � � � � �  
 � � � (2.20)

where � is the total number of “snapshots” used (or also known as sample support or sample

requirement) and

 � is the training data matrix from range gate � and � is the range gate under

test. The immediate neighbour range gates � � � and � � � are excluded to prevent target self-

nulling. Target self-nulling occurs when target energy leaks into neighbour range-gate. These

excluded gates are referred to as guard-gates. Snapshots, or samples, are a sequence of ( � � � )

iiiThe non-homogeneity detector (NHD) [75–77] can be used to remove non-homogeneous clutter.
ivIn this thesis, the clutter/interference + noise covariance matrix will be known as the clutter sample covariance

matrix ��
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data array of samples at successive range gates. In cases where the clutter Doppler frequency

is range dependent, snapshots from range gates with clutter echoes statistically different from

that of the range gate under test should be excluded. On the other hand, snapshots from the

time domain (obtained with a tapped delay line, with a PRI delay between the snapshots) may

be required, even though they are not independent identically distributed (i.i.d.). Figure 2.21

and Figure 2.22 show the data snapshots from the range domain and time domain respectively.
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Figure 2.21: Illustration of snapshots collected in the range domain.
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Figure 2.22: Illustration of snapshots collected in the time domain.

Due to the clutter Doppler range dependency, the clutter sample covariance matrix may differ
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from range gate to range gate.

	 � is an estimation of

	 � , the true clutter sample covariance

matrix from � range gate under test, using the training data and
	 � is given as

	 � 	 � � � 	 �

	 � � � � �  � � � � � �  � � � � � � � � � � �  � � � � � �  � ���
� �

(2.21)

where E[
�
] means the mathematical expectation, � � is covariance matrix of the target signal

+ clutter + noise,
	 � is the target signal covariance matrix, both for the range gate under test

� and superscript � is the Hermitian operator. For the rest of this thesis, the index � of the

clutter sample covariance matrix will be left out, as the STAP processor is always assumed to

be designed for the range gate under test.

For an optimum signal-to-clutter + noise ratio (SCNR) STAP processor, the weights are given

as

��� � � � ��� 	 	 � � � (2.22)

where
	 � �

is the inverse of
	

and � , a ( � � � � ) vector is the signal-steering vector matched

to the signal of interest (possible target signal). When the possible target signal is unknown, the

signal-steering vector has to sweep through the whole range of Doppler and spatial frequencies.

Theoretically, a fully-adaptive STAP can implement the optimal solution (a Wiener filter).

However, in practice, fully-adaptive STAP encounter several problems [79]. First, the num-

ber of weights in the linear filter can be extremely large. Even in a radar with the number of

antenna elements � of about a thousand, the value of � � may range from tens of thousands

to thousands of thousands (page 118 of [68]). Secondly, the adaption of the processor has to be

a moderately fast operation which should be able to cope with any changes in the data statistics.

Such changes may be the result of inhomogeneity of the clutter background and perturbations

caused by the radar motion. Finally, the number of snapshots required (as explained in Sec-

tion 4.9.2) to obtain a good estimation of the clutter sample covariance matrix, also known

as sample support is considered data intensive. The computational cost of directly inverting a

( � � � � � ) dimensional matrix, O  � � ��� , is also considered to be too expensive. In this

work, direct matrix inversion is used to invert the clutter sample covariance matrix, even though

matrix inversion algorithms that use less computational cost are available [80–83]. Both clutter

sample covariance matrix estimation and matrix inversion must be performed for every range
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gate under test. The weights of the STAP processor must also be calculated for every look

angle. All these processes must be carried out in real-time [84–88].

A number of projects which deal with searching for a real time, realizable and reduced rank

(or partially adaptive) sub-optimum approach, with low computational cost have been reported.

Some of the reduced rank STAPs will be introduced in Section 2.6.4. A number of studies,

along with some experimental data, have shown that STAP can be very efficient for clutter

suppression as well as target detection for both airborne monostatic and airborne bistatic radar

[46, 47, 50, 52–54, 89–93].

2.4.1 Effects on STAP processor caused by clutter Doppler range dependency

The non-stationary nature of the clutter ridge changing with range in Doppler-azimuth space

directly violates the intrinsic adaptive algorithm assumptionv, thereby complicating STAP im-

plementation and potentially degrading target detection performance. MELVIN et al. [67] in-

vestigated the effect of estimating the clutter sample covariance matrix using range dependent

training data. A significantly broadened MVE spectra response is observed. It indicates the

clutter sample covariance matrix mismatch with respect to other bistatic ranges of interest.

This is a result of the averaging operation in equation (2.20). The broadening of the MVE spec-

tra also implies an increase of minimum detectable velocity (MDV), making it harder to detect

slow relative velocity targets (i.e. targets which have only a small component of velocity in the

direction of the receiving radar).

The non-stationary clutter behaviour results in clutter sample covariance matrix estimation er-

rors which substantially degrade the target detection performance.

2.5 Performance Metric

Before we look at different methods of mitigating the problem caused by clutter Doppler range

dependency, the performance metric used to evaluate the performance of the processors in-

vestigated in this work is first described. The four performance metrics used in this work are

the improvement factor (IF) [51], improvement factor loss, mean improvement factor loss and

signal-to-interference + noise ratio. For all processor performances evaluated in this thesis, the

vAssumes a stationary set of training data.
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performance of the processors was calculated from an average of 20 independent trialsvi.

2.5.1 Improvement Factor

The efficiency of any linear processor, can be characterised by the improvement factor which

is defined as the ratio of signal-to-noise power ratios at the output and input, respectively.

��� 	
��� ����� � ����
� � ��� � ��

	
�
	����	��� 	�� �

� 	 ���� � � �

	
� � � � � � �����  	 �
� � 	 � � � � � (2.23)

where
� ��� �� ,

� ��� �
� ,

� � �� ,
� � �� , are the signal power at the output, noise power at the output, signal

power at the input and noise power at the input respectively. The vector � , a ( � � � � ) vector

is the weights of the processor, � , a ( � � � � ) vector is the signal-steering vector, Q is the true

clutter sample covariance matrix and tr() is the trace of a square matrix.

Specifically for the optimum (in the sense of SCNR) processor � � � � � ��� 	 	 � � � (equation

(2.22))vii, replacing
	

with

	

when the true clutter covariance matrix is not available, one gets

� � � � � � ��� 	
� � 
	 � � � � � 
	 � � � �����  	 �
� � 
	 � � 	 
	 � � � � � � � (2.24)

When

	

is a very good estimate of
	

,

	 	 	

, then
��� � � � � ��� 	 � � � ����� �

� � � ����� � 	
� � 	 � � � � � 	 � � � �����  	 �
� � 	 � � 	 	 � � � � � � �

	
� � 	 � � � �����  	 �

� � � (2.25)

IF is normalised by the theoretical maximum which is approximately � � � � ��� � , where

� � � is the clutter to noise ratio (see page 114 of [51]). When using reduced dimension

STAP processor such as the joint domain localized (JDL) processor, the reduced dimension

viAn error of about 5% may be expected when using 20 trials (see page 691-698 of [94])
viiThe processor is assumed to be perfectly matched to the expected target signal. In practice some losses occur

owing to the finite set of Doppler and spatial filters.
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clutter sample covariance matrix and steering vector would be concatenated with zeroes (at the

appropriate position) and expanded into a full dimension ( � � ) matrix and vector respectively.

2.5.2 Improvement factor loss (IF loss)

The loss incurred due to the difference between the true (
	

) and estimated (

	

) clutter sample

covariance matrix is shown by the improvement factor loss (IF loss). In the context of clutter

suppression in a range-dependent clutter environment, IF loss is a measure of the loss due to im-

perfect Doppler compensation. While in the context of reduced dimension STAP, it shows loss

in processor performance in return for lower computational cost. IF loss is typically evaluated

for a single look angle for all possible Doppler frequencies. The resulting IF loss curve then

gives an indication of the performance in terms of minimum detectable velocity for a specified,

maximum tolerable IF loss. IF loss is given by

����� 
� � 	
� � ������ � � � � �

	
� 	 ��� 
 ��� � � � � �� 	 �

� 	��� � 
 �� 	��� � 
 ��� � � � � �� 	��� � 
 ���� � 
 �	� � 	 �

	
� � 	 � � � � � 
	 � � 	 
	 � � � � � � �

� � � � � 
	 � � � � � 
	 � � � (2.26)

The minimum IF loss is unity or 0 dB, when

	 	 	

. All compensation algorithms will

try to achieve 0 dB IF loss (assuming that the number of samples used to estimate the clutter

sample covariance matrix is 
 � � � )viii. However, when using reduced dimension STAP, the

minimum IF loss achievable by the compensation process is often higher than the minimum IF

loss achievable with a full dimension STAP. In this work, the desired minimum IF loss is still

considered to be the 0 dB, even when using a reduced dimension STAP.

2.5.3 Mean IF loss

It is sometime desirable to obtain a number that can be used to describe the performance of the

processor. Mean IF loss is used for such a purpose. It is the mean of the improvement factor

loss across all Doppler frequency (-PRF/2 � ��� � PRF/2) at a particular look angle, � � . The

viiiRefer to Section 4.9 for details
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finer is the separation between the Doppler frequency, the better is the mean IF loss estimation.

�
� � � ����� 
� � 	

������
���	��

�

�
� � � ���  � � � � (2.27)

	
������

� �	��

�

�  � � �

	 � � 	 
	 � � �  � �
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� � (2.28)

where � is the Doppler frequency.

2.5.4 Signal-to-interference+noise power ratio

Signal-to-interference+noise power ratio is sometimes also used to determine the performance

of a processor. The signal-to-interference+noise power ratio is given as

� � � � 	
�
� ��� � ��

�
� ��� � �
�

	
� � � � � �
� � 	 � (2.29)

With the performance metrics defined, methods of mitigating the clutter Doppler range depend-

ency - for improving the clutter suppression performance - can now be investigated.

2.6 Mitigating clutter Doppler range dependency

Figure 2.23 shows the performance of the STAP processor without compensation, using radar

parameters shown in Table 2.1. The curve labelled “Ideal STAP processor” (in Figure 2.23(a))

assumed that the clutter sample covariance matrix is known. The curve labelled “without com-

pensation” in Figure 2.23(a) shows the improvement factor of the STAP processor when mitiga-

tion of the non-stationarity nature (in range) of the clutter echoes is not taken into consideration.

The range gate under test is chosen to be range gate 27. There are two reasons for this selection:

The range dependence of the clutter echoes tends to be more significant in the near range than

the far range. Choosing range gate under test to be range gate 27 will allow significant clutter

range dependency to be observed; Due to the computational power available, the number of

clutter return is finiteix. The nearer the range gate, the lesser the number of clutter returns.

Range gate 27 being approximately 1/3 of the total number of range gates available, is hence

ixThe simulated ground is formed using a grid system.
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the appropriate choice to being use as the range gate under test. Training data from neigh-

bour range gates 25 & 29 is used in this simulation. The curve in Figure 2.23(b) shows the

degradation in performance in terms of IF loss, when any form of compensation is not used.

Significant performance loss of up to 25 dB is observed at the clutter notch region. The ob-

jective of any mitigation or compensation method, will be to obtain an IF loss of 0 dB for all

Doppler frequency.
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Figure 2.23: STAP processor performance without compensation, using training data from
neighbour range gates 25 & 29 (a) Improvement factor plot, and (b) Improve-
ment factor loss plot.

To mitigate the impact of clutter echoes range dependency on clutter suppression, a number of

approaches can be used. They are:

1. Increasing the Degrees-of-Freedom;

2. Using variable range dimension training data size;

3. Using multiple staggered medium PRF;

4. Using reduced-dimension algorithm in order to reduce the amount of samples / training

range gates required;

5. Time-varying the adaptive filter response; and

6. Deterministically modifying the data or filter notch to account for the non-stationary

behaviour.
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number of antenna elements � 8
number of pulses delay

�
24

pulse repetition frequency
� � � 20 kHz

operating frequency � � 10 GHz
wavelength

�
0.03 m

array geometry linear forward looking
receiver & transmitter height � � � � 
 1000 m
receiver & transmitter velocity 
 � � 
 
 90 m/s
receiver flight angle

� � 0 �
transmitter flight angle

�
� 90 �

receiver look angle � � 45 �
baseline separation (along flight direction) 2000 m
total number of range gates 64
testing range gate � 27
training range gates � 25 & 29

Table 2.1: Radar Parameters.

2.6.1 Increasing the Degrees-of-Freedom

One method of reducing the degradation of MDV is to increase the number of degrees-of-

freedom (DOF) available to the STAP algorithm [62]. RICHARDSON had shown that, for

forward looking airborne monostatic radar with transmitter and receiver beams oriented at a

steep grazing angle to the ground (approximately 30 � ) and scanned off at an angle of 60 � from

broadside to the array, slow-moving target detection can be achieved using both azimuth and

elevation degrees of freedom (using a planar array) [95]. However with the increase of DOF,

more data samples are required and the computation cost will increase because of a bigger co-

variance matrix size. Limited fundamentally by the non-stationary nature of the training data

over range, more DOFs will provide a narrower clutter notch about the broaden clutter ridge but

nothing is done to address the difference between clutter ridges of different range gates. As a

result, increasing the degrees-of-freedom is effective when there is only a single training range

gate.

2.6.2 Variable range dimension training data size

Reducing the number of range dimension training data and the number of range gates under test

in a training set is another technique to lessen the effects of range dependency. In sidelooking

airborne monostatic radar, a certain amount of range gates under test are grouped as a training
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set, and each training set uses the same adaptive weights. Clutter non-stationarity is most severe

at the near range. Using less range training data at short range will minimise the spread of the

clutter ridge. The size of the range training data can increase with increasing range since clutter

non-stationary is less severe at long range. This technique however has two disadvantages.

More adaptive weight vectors need to be computed because of the increased number of training

sets used. The sample support consideration must also be taken into account when deciding the

number of training range gates required in each training set [52].

2.6.3 Multiple PRF

As discussed before, the clutter spectrum changes less significantly with range at far range,

adaptive processing without any Doppler compensation can hence be carried out at far range.

Unfortunately, it is very difficult to perform adaptive processing at near range because there are

not enough stationary data vectors. The area within this special near range is referred as the

insensitive area ( � � �
� ). For medium PRF (MPRF) mode, the lower range of MPRF can be used

to decrease the insensitive zones. Considering the range ambiguity and Doppler ambiguity in

MPRF radar, multiple staggered PRFs can be adopted to make the insensitive areas staggered.

This method of combining STAP with range-dimension information is called the multiple-PRF

STAP scheme [96]. The multiple-PRF STAP scheme may be described as follows. Beyond

the special range, adaptive processing is performed directly. For the special near range, the

insensitive areas could be directly given up or the receiver can adopt the conventional non-

adaptive method (using pre-designed filters). Multiple staggered PRFs are used to make the

insensitive and blind zones staggered [66].

2.6.4 Reduced dimension processing

Reducing the dimension of the STAP processor is often used to reduce the computational cost of

the processor. The inverse of the clutter sample covariance matrix is required when calculating

the STAP processor weights coefficient. As mentioned before, the inversion of a ( � � �
� � ) dimension covariance matrix (using direct inversion) requires a computational cost of
�  � � � � , which is considered too expensive for real time implementation. In order to build a

practical STAP processor, dimensional reduction is often used. Using reduced dimension STAP,

also known as reduced rank STAP, means that less training data will be required (as explained

in Section 4.9.2).
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In a non-stationary clutter environment, using less training data from different range gates

will minimise the widening of the clutter ridge. Compared with full dimension STAP, re-

duced dimension STAP processor may suffer from some degradation in clutter suppression

performance especially when system errors, such as array errors and channel mismatch are

in existence [97]. However, in situations where there are a limited amount of training data

available for the estimation of the clutter sample covariance matrix, reduced-dimension meth-

ods outperform full-dimension space-time adaptive processing. It is important to note that

dimension-reduction is not the only method for reducing sample support requirement. Other

examples of minimising the sample support, include methods which exploit properties of uni-

formly sampled spatial-temporal array such as Block-Block-Toeplitz estimation [98], persym-

metry and forward-backward (F/B) smoothing [99, 100], as well as parametric and multichannel

modelling methods [101, 102]. Sample support requirement for reduced dimensional STAP is

given in Section 4.9.3, Section 4.9.4 and Section 4.9.6 . A number of reduced dimensional or

suboptimal methods have been proposed by several authors. Some of them are:

1. Sum and difference STAP (
� � STAP) [51, 103–109];

2. Factored approach (FA) [110–112];

3. Extended factored approach (EFA) [110, 113];

4. Eigencanceler (EC) [114];

5. Factored time-space (FTS) [112, 115];

6. Pre-Doppler [116–118] and post-Doppler STAP [84, 119];

7. Space-time subspace transforms (see Chapter 5 of [51]);

8. Principal-components (PC) [120, 121];

9. Cross-spectral metric (CSM) [122–124];

10. Multistage wiener filter (MSWF) [125–127];

11. Joint-domain processing approach with multiple Doppler bins (mDT-SAP) [62, 105, 128];

12. hybrid STAP [73, 105];

13. Reduced-rank generalized sidelobe canceller (GSC) [129–131];
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14. Joint domain localised processor (JDL) [46, 132–134]; and

15. Modified joint domain localised STAP [54, 135].

Various reduced-rank STAP performances had been analysed and compared by numerous re-

searchers. Some of the researchers are PECKHAM et al. [136], GUERCI et al. [125], WANG et

al. [132, 137], GOLDSTEIN et al. [115, 138], HIMED et al. [139], GU et al. [71], ZULCH et al.

[140] and BAO et al. [105].

2.6.5 Derivative-based updating

Another approach that addresses the non-stationary clutter is to use STAP weights that vary

linearly from range gate to range gate. The entire interval of � range gates centred at range

gate � (range gate under test) is used to compute the range-varying STAP weights. The range-

varying STAP weights can be rewritten as a Taylor series expansion.

� 
 �� �	� 	 � � � � �� � � �
�

�
�� � � ��� � (2.30)

where � � = �  � � , �� � =
��  � � and

�� � =
��  � � are the weight vector, first order derivative (in

range) and second order derivative (in range) of the STAP weight vector at � 	 � , i.e. the centre

of the training interval, respectively.

This expansion can be approximated using only the first-order derivative provided that the

higher order terms are negligible. The result, known as derivative-based updating (DBU) [141–

144], can be written as a linearly range-varying weight vector

� ���   �	� 	 � � � � �� � (2.31)

The output of DBU-STAP processor is obtained by multiplying the range-varying weight vector
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from equation (2.31) with the � th data snapshot (range gate under test)

� ����  � � 	 � �
����  � � � � �  � � �

	 � �� � � �  � � � � � �� �� � � �  � � �

	 � � ��� ��� � � � � �  � � �
� � � �  � � � �

	 �� �
����

�	 ����  � � (2.32)

where
�	 ����  � � is the augmented data vector and

�� ���  is the augmented STAP weight vector.

Note that
�� ���� is not a function of � . Rather, the augmented data vector absorbs the varying

component. The clutter sample covariance matrix of the augmented data vector is computed

by using equation (2.20). This clutter sample covariance matrix can be modelled by using the

estimated clutter sample covariance matrix of each range gate

�	 ���  	 �
�

��� � � ����
�
��� ��� � � ����
�� �� ��� � � ��� ��� �

� 
	 �
�

	 �

�

	 �

�
�

	 � � � (2.33)

The resulting DBU-STAP weight vector is then found to be

�� ���� 	�� � ��� ��� 	 �	 � �

���� � �� � (2.34)

Note that the degrees of freedom for the DBU-STAP weights is now twice that of the other

STAP methods considered, since both the weights and their first-order derivative have to be

computed at range gate � . The number of data snapshots must also be doubled to ensure that
�	 ���� is full rank. In practice, as � increases, the condition number of

�	 ���� increases due

to the �
�

term in equation (2.33) and to avoid ill-conditioning, a scaling factor � �� is used in

the calculation of the
�	 ���   �	� (see page 481 of [141]).

DBU can be extended to cope with any suitably smooth non-linear range-variation by using

more terms from the series expansion of equation (2.30). Range-varying STAP weights raise

several issues, including the availability of sufficient training data as well as the computational

complexity.
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2.6.6 Doppler warping

Doppler warping [52, 143] also known as Doppler compensation [145], attempts to align the

clutter ridge using a range-dependent transformation on the data prior to STAP. It is based on

shifting the clutter echoes as a function of range such that the shifting follows the movement

of the clutter ridge over range. The clutter sample covariance matrix is computed by averaging

over a range interval, training data with the priori transformation.

This method takes data from each range gate and applies a Doppler shift to align the clutter

ridge at a common Doppler frequency for a given look angle, e.g., array broadside. If the

clutter ridge has a similar shape but is only displaced in Doppler over range, then this Doppler

shift will realign the clutter ridge for all ranges. Though this will perfectly align the clutter ridge

at one angle, for other angles the alignment is only approximate. Doppler warping incorporates

a Doppler shift by producing a phase ramp across pulses. The Doppler shift can be formulated

using the transformation matrix
�
���  � � �	� , which is given as

�
� �  � � �	� 	����������������������������

�


 �  � � �	�
. . .


 �  � � �	� �



�  � � �	�
. . .



�  � � �	�

. . .
. . .

� 
 � � �  � � �	�
. . .


 � � �  � � �	�

�
																											
�

(2.35)

where


 �  � � �	� 	 ��� ��� � � � ��� � � � � � �
for � 	 � � ��� � � � (2.36)

and � �  � � �	� is the Doppler shift to range gate � from range gate � and
�

is the number of

48



Clutter nature of airborne bistatic radar

successive pulses,

� �  � � �	� 	 � �� � � �� � (2.37)

� �� and � �� is the Doppler frequency of the clutter echo arriving from angle � ��� � for range gate

� and from angle � ��� � for range gate � respectively.

The Doppler warping transformation matrix
�
��� ( � � � � � ) simply Doppler shifts the entire

training data snapshot from range gate � to range gate � . The resulting Doppler warped output

to range gate � is

vec  
 ���  � � �	� � 	 � �
���  � � �	� vec  
 � � (2.38)

where

 � is the training data from range gate � .

Likewise, the clutter sample covariance matrix for range gate under test, � , following the Dop-

pler warping is given by


	
���  � � �	� 	 � �

���  � � �	�

	  �	� � � �  � � �	� (2.39)

2.6.7 Two-dimensional angle-Doppler compensation (ADC)

A two-dimensional angle-Doppler compensation (ADC) approach for pre-processing the sec-

ondary data was proposed by HIMED et al. [1, 53]. The intention of the compensation is to co-

locate the clutter spectral centres in both angle and Doppler, thus reducing bistatic geometry-

induced dispersion. The clutter spectral centre is defined as the peak position of the clutter

spectrum for a specified range gate. If the clutter echoes are range independent (only true for

side looking monostatic radar), the clutter spectral centres for different range gates should be

co-located. However, as the clutter spectrum for a specified range gate is modulated by the

transmitter antenna pattern and because of the nature of bistatic radar, the clutter centres usu-

ally vary in both angle and Doppler. In order to obtain a good estimate of the covariance matrix

using the secondary data from adjacent range gates, these clutter centres should be overlapping

(ideal case) or are as close to each other as possible.

Doppler warping manages to align the clutter spectrum in the Doppler domain only, the clutter

spectral centres from different range gates still do not overlap.; i.e., although the clutter Doppler
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frequencies aligns over range gates, its peak power in the angle domain remains different.

Therefore, a two-dimensional (2-D) compensation scheme is required to bring these clutter

centres together, rather than just Doppler compensation.

Denote the � -th realization of an � � -dimensional, complex baseband signal vector at spatial

frequency, �
�� , and Doppler frequency, � �� , as vec(


 �  �
�� � � �� � ). The proposed angle-Doppler

warping consists of obtaining transformation
�

� � � �  �
�� � � ���� � �� � � �� � , such that

vec  
 � � � �  �
�
� � � �� � � 	 �

� � � �  �
�� � � �� � � �� � � �� � � vec  
 �  �

�� � � �� � � � (2.40)

where “ � ” denotes the Hadamard product, �
�
� and � �� are the spatial and Doppler frequencies of

the range gate under test (range gate � ), respectively. The transformation
�

� � � �  �
�� � � ���� � �� � � �� �

can be generated in the following manner:

�
� � � �  �

�� � � �� � � �� � � �� � 	 ��� �����PRF

� ���
� � ���� �  � �

��	 �
 � � �� � � �� � �
� 	 � � � � � ��� �  � � � � � � 	 � � � � ��� �  � � � � (2.41)

The maximum likelihood (ML) estimate of the clutter sample covariance matrix is then given

by


	
� � � �  �

�
� � � �� � 	 �

�

��� � � ����
�
��� ��� � � �	��
�

vec  
 � � � �  �
�
� � � �� � � vec

�  
 � � � �  �
�
� � � �� � � �

���	 � � � � � � � � � (2.42)

2.6.8 Scaling

Doppler compensation using the scaling method was initially developed by Lapierre et al. for

airborne / space-base monostatic radar [146]. It was then applied to selected bistatic configur-

ations in [147]. The scaling method works by co-locating
� � with

� � , where
� � denotes the

clutter ridge (as shown in Figure 2.15) from neighbour range gate � and
� � denotes the clutter

ridge from range gate � (assuming that range gate � is the range gate under test). To do so in

the space-time frequency domain (power spectrum plot), the following steps have to be carried

out:

1. Rename the original variables ( �
�� � �

�
� ) for each clutter ridge as ( � �� � � �� ), where �

�� and �
�
�
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are the spatial frequency and Doppler frequency of the clutter echo in neighbour range

gate � respectively.

2. Bringing the “centre” (defined here to be the centre of the clutter ridge bounding rect-

angle) of each
� � to the origin of its ( � �� � � �� ) axes.

3. Scaling this translated clutter ridge, possibly inequally along � �� and ���� .

4. Bringing the scaled clutter ridge to the “centre” of
�
� .

Steps 2-4 transformed all the clutter ridges
� � s into the common system of coordinates ( � � � � � ),

which is also that of
� � . This is done by using a particular transformation

� �  �	� . Using

homogeneous coordinates for convenience, we have

 � �� � �� � �


	 � �  �	�  � � � � � �



(2.43)

where
� �  �	� is of the form

���
�
� � �

�� �
� � �

��
�

� � �

�
		
�
���
�
� � � � �

�
� �

� �

� � �

�
		
�
���
�
� � �

�� �
� � �

��
�

� � �

�
		
� � (2.44)

� � � � and � � � � are the space and time offsets for the � th translation respectively and
� � � and

� �
�

the space and time scaling factors respectively.

In practice, we only have access to the estimated clutter sample covariance matrix

	

, and

not the clutter ridges of power spectral density. The spectral-domain affine transformation is

expressed in the space-time domain of

	

by the following procedure:

1. Each

	  �	� (from range gate � ) is regarded as a 2D sequence with finite support and is

converted to a 2D continuous function by applying an interpolation filter to the elements

of the sequence.

The interpolation in the space-time domain corresponds to applying a window
 � �� � ��� � �

in the Fourier or spectral domain, where � � and � � are two axes.

2. The continuous 2D function obtained following the interpolation process is then subjec-

ted to the transformations corresponding to the translations and scaling that are required
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in the spectral domain.

The transformations that are needed are the phase shifts and scaling suggested by the

following Fourier transform pairs

�  
 � � � ��� ��� � ����� ��� ��� �	�
 � �� � �� � � 
 � � 
 � � (2.45)

�  
�
�
�
�
�
�
� �
 �

�
�
�
�  � ��� � � � 
 � � (2.46)

3. The transformed 2D function is then resampled on a grid identical to that of the original

matrix

	  �	� .

The whole transformation described can be represented by some operator
� � ��� � , so that


	 �  �	� 	 � � � 
	  �	� � � (2.47)

where

	 �  �	� is the scaled estimated clutter sample covariance matrix.

Since the algorithm was initially developed for monostatic cases, where all the clutter ridge in a

given range interval are exact scaled versions of each other, the algorithm works well in certain,

but not all bistatic cases.

2.7 Discussion on mitigating clutter Doppler range dependency in

airborne bistatic radar

Among the six methods of mitigating the effect of clutter Doppler range dependency, methods

that use reduced-dimension STAP, time-varying adaptive filter response and deterministically

modifying data or filter notch to account for non-stationary behaviour are widely used in air-

borne bistatic radar system. Very often, several of these methods are used together, in order to

achieve better clutter suppression performance.

MELVIN et al. [148] compared the performance of EFA and JDL algorithms and concluded that

the 5 � 5 JDL algorithm provides the best blend of adaptive DOFs and minimal sample support

requirement in the case studied. When investigating the time-varying weight method, modest

tracking of bistatic clutter features at range gates where clutter characteristics slowly change

was observed. As anticipated, the time-varying weight method appears to suffer in regions
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where clutter properties vary most dramatically .

MELVIN et al. [67] evaluated the suitability of JDL, EFA and adaptive DPCA (ADPCA) [149]

in bistatic environments. The reduced-dimension STAP investigated have shown greatly im-

proved detection capability. Implementing the time-varying weight scheme with JDL, further

improves the performance by up to 10 dB. This is possible as it takes advantage of the strengths

of both methods.

HIMED [150] studied performance of using the FTS, JDL, EFA, parametric adaptive matched

filter (PAMF)[151] and MSWF in a bistatic STAP processor. The MSWF, JDL and the PAMF

are shown to be data efficient approaches due to their low secondary data size requirement in

the vicinity of the range gate under test.

HIMED et al. [152] extended the Doppler warping and 2-D angle-Doppler compensation to the

FTS, EFA, JDL, EC and the PAMF approaches. For both cases, the PAMF follows by the JDL

provide superior performances when using ADC.

The clutter Doppler range dependency has been shown to vary with the angle of arrival. Per-

forming Doppler frequency compensation in the angle-Doppler domain may therefore be re-

quired. Hence, a reduced-dimension clutter suppression processor, operating in the angle-

Doppler domain appears to be a natural choice. Impressive performance of the angle-Doppler

domain JDL processor (as shown by MELVIN et al. and HIMED et al.) resulted in the use of

JDL as the reduced-dimension processor in this work.

2.8 Summary

In this chapter, the nature of the monostatic and bistatic clutter was investigated. Monostatic

clutter echoes tends to be range dependent, although the range dependency is more obvious

when using a forward looking than a sidelooking linear array antenna. The problem of range

dependency appears to be more serious in an airborne bistatic radar system. Several bistatic

radar configurations seem to experience more dramatic range dependency fluctuation than oth-

ers.

Clutter Doppler range dependency has a significant effect on the performance of the STAP

processor. Some form of Doppler compensation is desirable, although it requires extra com-

putational cost. A derivative-based updating approach may face difficulty in coping with the
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complex nature of the bistatic clutter. Until a better or more general affine transformation is

proposed, the scaling method can only work well in some, but not all bistatic configurations.

Doppler warping and ADC are the two proposed techniques for performing Doppler compens-

ation.

The performance metrics used to evaluate the processor performance were also introduced.

Towards the end of this chapter, the performance of clutter Doppler range dependency mitiga-

tion methods (for bistatic STAP), evaluated by MELVIN et al. and HIMED et al. are included.

This set forms the base for the proposed Doppler compensation using interpolation for JDL

processor, described in the next chapter.
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Chapter 3
Doppler and Power compensation for

JDL processor

3.1 Introduction

Doppler compensation has so far shown promising results in mitigating the impact of range

dependent clutter/interference statistics. Doppler compensation designed for the joint domain

localized (JDL) processor, using interpolation is now proposed. As the clutter power varies

with range gates due to the distance travelled, transmitter and receiver antenna patterns, clutter

power correction is also required. Doppler compensation methods that modify the data or filter

notch deterministically need to know the clutter Doppler frequency difference between range

gates (at the look angle). In this chapter, an algorithm that is robust to estimated parameter

error is proposed, to determine this Doppler frequency differences. A tuned discrete Fourier

transform (DFT) is also proposed to further reduce the size of the JDL processor.

3.2 Joint domain localized processor

The JDL algorithm was first introduced by Wang and Cai in [46]. It works by transforming

the space-time signal vector into angle-Doppler domain using a two-dimension (2-D) DFT.

The angle-Doppler data is then grouped into regions called the localised processing regions

(LPR). Adaptive processing is restricted to the LPRs, as shown in Figure 3.1. Forming LPRs

significantly reduces the number of unknowns while retaining maximal gain against thermal

noise. The reduced number of degrees of freedom leads to a corresponding reduction in the

required sample support and computational cost.

In practice, only a few angular bins covering the angle section centred around the look dir-

ection/angle, � � (where most of the transmitted energy is contained), are of interest. On the

other hand, all Doppler bins must be analysed as the target Doppler frequency is unknown to

the processor. The angle-Doppler domain training data,



F � , obtained by transforming space-

time domain signal into angle-Doppler domain signal, are divided to form


sub-groups,



L � � � ,
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Figure 3.1: An example of localised processing regions.

centred around the look direction. Each LPR consists of � � angular bins and
���

Doppler bins.

The choice of ��� and
���

are not directly dependent on the system and environment parameters

(e.g. large number of antenna array elements and pulses). The localisation of the target to a

small number of angular - Doppler bins decouples the number of adaptive degrees of freedom

necessary for handling clutter suppression from the size of the data matrix,
� ���� , defined by

equation (2.11), while retaining maximal gain against thermal noise. This is however, achieved

at the price of using a fast Fourier transform (FFT) (Chapter 10 of [153]) processor or a sliding

DFT [154].

The indices � in the data matrix are taken out in order to simplify the expression. The divided

��� � � � training data



L � , and the clutter/interference sample covariance matrix,

	

L � with

dimensions ( ��� ��� � ��� ��� ) (using only the range dimension snapshots), are given as



L � 	

�������
�

� F � � ��� � F � � ��� � � ��� � � F � � ��� � ��� � �

� F � � � � � � � F � � � � � � � � ��� � � F � � � � � � � � � � �

...
...

. . .
...

� F � ��� 	 � 
�� � � � F � ��� 	 � 
�� � � ��
 ��� � � F � �	� 	 � 
�� � � �	
 � � 


�
						
� (3.1)
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and


	
L � 	 �

�

��� � � ����
�
��� ��� � � ��� 
�

� � �  
 L � � � � � � �  
 L � � � � � for  ���	 � � � � � � � � � � (3.2)

respectively. The scalar � F in equation (3.1) is the element of the angle-Doppler domain training

data given by

� F � � � 	
� � �

�
� � � � ��� � �

� � �
� P  � � � � �

��� ����� �

 ��� � 
 � �

��� ��� � 	
� �

� 	 � � � � � � � ��� � � � � � � 	 � � � � � � � � � ��� � � � � � � � � (3.3)

and

� 	 � � ��� � �  (3.4)
�
	

� � ���
	 ��� �
� 	 �� ��� � ��� �  ���� � (3.5)

� � 	 � � � � �  ���� � � (3.6)



L � is a ( ��� � � � ) matrix. The scalar � is the number of training data, the superscript � is the

conjugate transpose operator and int() is the integer operation. Let the indices of � F be � � and

� � , where � ����� � � ��� � � ����� ��� and � ����� � � ��� � � � � � � � ��� respectively. If
�
� � � �  � �� � ,

� � may be less than 1. As the Doppler bins repeat themselves every pulse repetition frequency

(PRF), the value of � F � � � � � when � � � � is given as:

� F � � � � � 	 � F � � � � � � � � � (3.7)

with � � as the size of the DFT process (transform of time domain to Doppler domain).

The testing data,
�

( ��� � ), must also be transformed into angle-Doppler domain,
�

F ( ���
�

), and then divided into LPRs similar as that of the training data,



L � . Assuming that there

are no targets present, the true clutter/interference sample covariance matrix of the range gate

under test for each LPR is given as

	
L � 	 � � � � �� � L � � � � �  � L � � � � (3.8)

where
� 	 � � ��� � �  ,

�
L � is the

� ��� LPR testing data. Figure 3.2 shows the forming of a
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localised processing region.
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Figure 3.2: Forming of a localised processing region.

3.3 Clutter Doppler frequency difference between range gates

For any kind of Doppler compensation, the clutter Doppler frequency difference between range

gate � and range gate � needs to be determined. The clutter Doppler frequencies from range

gate � can be determined through calculation using estimated parameters, such as the velocity

and position of both the transmitter and receiver, as well as the clutter angle of arrival, or from

the received data. The disadvantage of just using a pre-calculated clutter Doppler frequency is

the inability to adapt to the physical environment. Any errors in the estimation of the estimated

parameter will not be detected and will affect the overall Doppler compensation performance.

Estimating the clutter Doppler frequency from the received data (assuming that no target is

present in that range gate) is hence preferred, although it represents an increase in real time

computation cost. The minimum variance estimator (MVE)i is used for the mainlobe clutter

Doppler frequency estimation, because of its high resolution spectrum. MVE tries to decom-

pose a signal into single peaks. This leads to very realistic spectra without sidelobes. The

iAlso referred to as “maximum-likelihood” estimator [155, 156].
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sidelobes of the transmitter and receiver beam can be noticed as clusters of peaks.

Unfortunately, the clutter Doppler frequency from range gate � cannot be estimated using the

received data due to the fact that the target signal may also be present. Therefore, it can only be

estimated by using estimated parameters.

Modifying equation (2.37) to take into account of any change in the physical environment, the

difference in clutter Doppler frequency at a particular angle of arrival/look angle between range

gate under test � and training range gate � is

� �  � � �	� 	
�
� �� � � �� (3.9)

where
�
� �� is the estimated clutter Doppler frequency from the received data obtained from range

gate � using MVE, and � �� is the calculated clutter Doppler frequency from range gate � using

estimated parameters, which is given as:

� �� 	 
 
 �����  � � � � � � � �	����� � � � � � 
 � ������ � ��� � � ������� � ��� �� � (3.10)

where � � � � and
�
� � � are the transmit azimuth and depression angles from range gate � respect-

ively. The clutter azimuth angle of arrival is given by � � and
� ��� � is the depression angle of

arrival from range gate � . The scalars
�
� and

� � denote the flight directions of the transmitter

and receiver respectively

Alternatively, the Doppler frequency difference, also known as Doppler frequency shift, can be

obtained (see Appendix D) using

� � 	
�
� ��
�
� � � ��

� ���� (3.11)

where � �� is the calculated clutter Doppler frequency from range gate � using estimated para-

meters and is given as:

� �� 	 
 
 �����  � � � � � � � ������� � � � � � 
 � ������ � � � � � ������� � ��� �� � (3.12)

The scalars � � � � and
�
� � � are the transmit azimuth and depression angles from range gate �

respectively. The depression angles of arrival from range gates � is given as
� ��� � .
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Substituting equations (3.10) and (3.12) into equation (3.11) and simplifying it,

� � 	
�
� ��
�
� � 
 
 ��� �� � � � � � � � �	����� � � � � � 
 � ������ � � � � � �	����� � ��� �


 
 �����  � � � � � � � ������� � � � � � 
 � �����  � � � � ���	��� � � ��� � � (3.13)

It can be shown that using equation (3.11), instead of equation (3.9), a better Doppler shift

estimation is obtained when there is any error in the estimated parameters. Assuming that

the only error in the estimated parameters is the transmitter velocity, the change in � �  � � �	� ,
�
�  � � � ��� � � �

, and the change in � � , �
�  � �

�
, due to error in 
 
 , � 
 
 are given as:

�
�  � � � ��� � � �

	
�
� � 
 �� � � �

�	
 
 �
� (3.14)

and

�
�  � �

�
	

�
�

�
� ��
�
� 
 �  
 
 � 
 � � � � � � � � 
 �  
 
 � 
 � � � � � �

 
 
 � 
 � � � � � � � � � � �
�	
 
 �

(3.15)

respectively (see Appendix E for the derivation). The scalars � 
 � ��� � � ��� 
 � and � � � are given

as:

� 
 � 	 ������ � � � � � � � ������� � � � � (3.16)

� � � 	 
 � ������ � � � � � ������� � ��� � (3.17)

� 
 � 	 ������ � � � � � � � ������� � � � � (3.18)

� � � 	 
 � ������ � � � � � ������� � ��� � (3.19)

Figure 3.3 shows the change in � �  � � �	� and � � due to error in the transmitter velocity. An

error in the transmitter velocity hardly affects the Doppler frequency shift estimation when

using equation (3.11). On the other hand, Doppler frequency shift estimation error is about 670

Hz (at the limit of the transmitter velocity error simulated) is observed, when using equation

(3.9).

The azimuth and depression angles in equation (3.13) can be expressed, with the clutter
�

coordinates 
 ��� � � (determined by � � and the range gate under test) and slant range � � 
 , � � � ,
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Figure 3.3: Error in estimation of Doppler frequency difference between range gates � and � ,
due to error in transmitter velocity.

using equations (3.20)-(3.27).

� � 	
�
� ��
�
� �


 
  �����
� ���� � � � ��� ������

�
� � � ��� � ���� � � � ��� �����  � � � � � 
 �  ����� � ���� � � � ��� ��� ��

� � � � ��� � ���� � � � ��� �����  � � � �

 
  �����

� � �� � � � � � ��� ��
�
� � � ��� � � �� � � � � � �����  � � � � � 
 �  ����� � � �� � � � � � ����� 

� � � � ��� � � �� � � � � � �����  � � � � �
(3.20)

where


 
 �  ��� 	 
�� ���� �


� � 
 
 � ��� � � � � (3.21)

� �� ��� 	 
 � � ii  ��� � 	 �� � � � (3.22)


 � �  ��� 	 
 � ���� �


� � 
 � (3.23)
 	 �  
 
 � 
 � � � �  � 
 � � � � � � 	� 
 �
�

� � �

(3.24)
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	� ���� 	
�

�

�
� � � �

���
� � � �

� � � � � � � �
 � �

� � � � �
�
�
����� ��� � � �
� � � � � � � � �

�

�
� � � � � � � � � ��� � � � � � � �� � � � � �
	 � � � � � � � � � � � 	 ����� ��� � � � ��� � � � �� � � 	 ��� � � � � � �� � � � � � � � � � � �

� � � � � � � � � � � � � � �
 �
� � � � �

�
�
���� ��� � � �
� � � � � � � � � � (3.25)

� 
 � � 	
� ���� � � 	 �  � � � �

(3.26)
� ���� 	 � 	 �	� � ���� (3.27)

The function 	 �	� �  ��� is the time taken for the signal to hit the ground in range gate � and back

to the receiver. The derivation of equation (3.25) is shown in Appendix F. The symbol � in

equation (3.25) represents an addition operation for �
�

� � � � � �
� and a subtraction operation

for
�

� � � � � �
�

� .

3.4 Interpolation of Doppler domain data and Doppler bins shift-

ing

Doppler compensation in the space-time domain is obtained using the transformation matrix
�
��� or

�
� � as described in Sections 2.6.6 and 2.6.7 respectively. However, Doppler compens-

ation can also be achieved by performing interpolation of data in the angle-Doppler domain

and applying Doppler bin shifting (re-addressing of Doppler bins). There are some advant-

ages for using the latter compensation technique. When a JDL processor is used as the base

of the clutter suppression filter, a 2-D discrete Fourier transformation is required to transform

the training data from the space-time domain into the angle-Doppler domain. Performing Dop-

pler compensation in the space-time domain requires Fourier transformations of the Doppler

compensated training data to be carried out for every training range gate. The whole process

is repeated for every range gate under test. On the other hand, Fourier transformations of the

training data are required only once for all range gates under test, when using Doppler interpol-

ation and bins shifting. Doppler compensation in angle-Doppler domain also allows multiple

Doppler bin compensation as explained in Section 3.8 and possibly multiple angular bin com-

pensation as explained in Section 5.2.

Performing the Doppler interpolation and bin shifting processes, the training data,

 � (equation

iiassuming that transmitter and receiver are aligned
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(2.19)), in the space-time domain, is first padded with zero padding to the temporal samples.

The zeroes padded training data matrix,



P � , is then transformed to the angle-Doppler domain

by applying DFT in both time and space domains (from equation 3.3)

� F � � � 	
� � �

�
� � � � ��� � �

� � �
� P  � � � � �

��� ����� �

 ��� � 
 � �

��� ��� � 	
� �

� 	 � � � � � � � ��� � � � ��� � 	 � � � � � � � � � ��� � � � � ��� � � (3.28)

where ��� 	 � ,
� � 	 � � 

, � and � are indices of the matrix



F � , while


is the number

of zero padding added to the temporal samples. The emphasis of this work is on the Doppler

compensation in the Doppler domain at the main spatial bin, corresponding to the mainbeam

centre, therefore spatial zero padding is not used. The Doppler domain DFT size, � � , is
 � �

,

while the spatial domain DFT size is still determined by the number of array elements � . The

angle-Doppler domain training data matrix,



F � , with dimension ( � � � � � ), represents the

data at the
���

Doppler bins, � � angular bins and � the snapshot number.

Next, Doppler bin data interpolation is performed, followed by Doppler bins shifting, carried

out by re-addressing the Doppler bins indexes. Interpolation of data allows signal components

at Doppler frequencies which lie between the Doppler bins to be determined and by using

interpolation, such as the cubic spline interpolation [157], a smooth fit between Doppler bins

is achieved. An illustration of the shifting process at one of the angular bins is given in Figure

3.4.

Let the Doppler frequency � � � � be the frequency of interest, and its signal component be � F � � � .

The steps to determine � F � � � is given as follows:

1) The corresponding Doppler frequency from the old data, � ��� � is defined as:

� � � � 	 � � � � � � � (3.29)

2) Given the signal components at Doppler frequencies around � � � � , the signal component � F � � �
at � ��� � , could be found using cubic spline interpolation.

3) The shifting process of Doppler frequency � � � � is completed by assigning � F � � � 	 � F � � � .

The process of frequency shifting of the training data with cubic spline interpolation across

each angular bin ( � � ) is carried out as explained next. For simplicity, the indices ( � and � ) for
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Figure 3.4: Illustration of frequency shifting at one of the angular bins.

� F will be dropped, i.e

� F
� 	 � F � � � � � (3.30)

where � F is a row vector from matrix



F, with a dimension of � � � � . The scalar � F � � � is

given as

� F � � �  � � 	�� �
� F �

� �
�
� F �

� � �
� F
� �
�
� � � � F

� �
� (3.31)

where

� � 	 � � � � � � � � � � � � � � �� � � � � � � � � � ��� � � � (3.32)

�
� 	 � � � � 	

� � � � � � � � ��� � � �
� � � � � � � � � � ��� � � � (3.33)

� � 	
�
�  � �� � � � �  � ��� � � � �

� � � � � � � � �
�

(3.34)

� � 	
�
� 
� �� �

�
� �  � � � � � � � � � � ��� � � � �

�

(3.35)
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and � F
� � � � �
� is obtained by solving the equation below using back substitution

� � � � � � � � � � � � � � �

�
� F
� �
� � �

� � ��� � � � � � � � � � � � � � �

�
� F
� �
�
� � � � � � � � � � � ��� � � �

�
� F
� �
� � �

	
� F � � � � � F �

� � � � � � � � � � � � � � � �
� F � � � F � � �

� � � � � � � � ��� � � � � �
for (� =2, ��� � , ��� � � ) (3.36)

with

�
� � � 	 �

� � � � � � for � 	 � to
���

(3.37)
�
� � � 	

�
� � � � � � (3.38)

� ��� � � � � � � � � � � iii � � ��� � � � � � (3.39)

The scalar
� � � is the pulse repetition interval. There are

� �
-2 linear equations in

� �
un-

knowns, � F
� �
� , � = 1, ��� � , ��� . Two more equations are required. The ’not-a-knot’ end condition

is used, where the second and second-last points is ignored [157]. Interpolation processes using

the cubic spline can be considered computationally intensive, therefore, there are other simpler

intensive interpolation methods that can be used, if it does not result in significant loss in pro-

cessor performance. Examples of other interpolation methods are: linear interpolation, cubic

interpolation and sinc interpolation [158, 159].

3.5 Power correction

For any radar system, the power of the clutter/interference differs from range gate to range gate

due to the difference in distance travelled. However for an airborne bistatic radar, the situ-

ation becomes more complicated. The clutter/interference power also changes with direction

of arrival in each range gate [160].

According to the radar range equation (see pages 2.4 - 2.15 in [161]), the power of the clut-

ter/interference arriving at the range gate under test (range gate � ), is estimated by multiplying

the power of the clutter/interference arriving from training range gate � ,
�� � ��� , with the power

iiiat the boundary, this condition might not be met (for all � values)
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correction,
� � , defined as

� � 	
� � � �
� � � �

	

� ��� ��� � � � � � � � � � �
���
� � � � � � � � � �

���
� � � � � � � � �� � � ��� � 
 � � � � � � � � �

� � � � � �� � � ��� � � � � � � � � � �
���
� � � � � � � � � �

���
� � � � � � � � �� � � � � � 
 � � � � � � � � �

� � � � � �
(3.40)

where
� � � � and

� � ��� are the clutter echoes power received from range gates � and � respectively.
� � stands for transmitted power,

�  � � for the transmit directivity pattern, �  � � as the sensors

directivity patterns,
  � � represents the reflectivity of the ground, �
	 ��� � is the thermal-noise

power and � � 
 � � � � � � � � � � � 
 � � and � � � � � are slant distance between transmitter ( 	 ) / receiver

( � ) and the ground from range gate � / � respectively.

Assuming that the sensors’ directivity pattern and the reflectivity of the ground do not change

significantly with a small change in the range gate number and
�  � � � � � � � � � � = 1 (since the

mainlobe is pointing at that azimuth and depression angles), the power compensation becomes

� � 	

�� � � � � �
� � � � � �

�
��� � � � � � � � � �� � � � � �

� � � � � �

	
�

�� 
 � � �
�� � � ��  � � � � � � � � � � � �� 
 � � �

�� � � �
� (3.41)

Finally, an overall view of the joint Doppler and power correction for JDL processor for a

single range gate under test in shown in Figure 3.5. In practice, training data from several range

gates are used to form the clutter sample covariance matrix. For the rest of this thesis, the joint

Doppler interpolation and power correction for JDL processor will be known as the Doppler

interpolation processor.

3.6 Simulation Results

The radar parameters shown in Table 2.1 are given for the case of a pulsed Doppler airborne

bistatic radar. As defined in Chapter 2, the performance matrices like the improvement factor

(IF), IF loss and averaged IF loss, are used whenever appropriate. Unless otherwise stated,

simulation results related to the JDL processor in this and next chapter are performed with
� �

(Doppler bins used) = 9, � � (angular bins used) = 3, � (sample support size) = 384 when using
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Figure 3.5: Block diagram of Doppler and power correction for JDL processor.

one training range gate; � = 768 when using both training range gates 25 & 29, � � (DFT size)

= 128 and the load-clutter to white noise ratio (LCNR) discussed in Section 4.7 = -30 dB. The

snapshots used are obtained in both range and time dimension.

Figure 3.6(a) plots improvement factor vs Doppler frequency for the Doppler interpolation

processor. The red curve shows the ideal JDL processor performance (assuming knowledge of

the true clutter sample covariance matrix), while the blue and green curves show the Doppler

interpolation processor performance with and without Doppler interpolation respectively.

The JDL processor, without Doppler interpolation, experienced a drop in improvement factor

of about 3 dB in most regions, and up to about 32 dB in the clutter notch region (also shown in

Fig. 3.6(b) - which shows the IF loss of the Doppler interpolation processors with (represented

by the blue curve) and without (represented by the red curve) Doppler interpolation). A drop

of 3 dB in the improvement factor is caused the reduction of Doppler bins used, as explained

in Section 4.2, while the IF loss in the clutter notch region is the result of inaccurate estimation

of the clutter sample covariance matrix. The degradation in the clutter notch region will cause

a slow relative velocity target signal to be attenuated. However, with the proposed Doppler

interpolation processor, the biggest IF loss is reduced to less than 10 dB, as shown by the blue

curve in Fig. 3.6(b).
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Figure 3.6: JDL processor performance (a) with improvement factor (b) Improvement factor
loss.

3.6.1 Power correction

Figure 3.7 shows the Doppler interpolation processor performance with and without power

correction. The blue and red curves show the processor performance with and without power

correction respectively. Figure 3.7(a) and Figure 3.7(b) use training data from range gate 29

and range gate 25 respectively, while Figure 3.7(c) uses training data from both range gates 29

& 25. In Figure 3.7(a), using power correction reduces the IF loss by average of about 1 dB. On

the other hand, Figure 3.7(b) shows that power correction does not result in any performance

improvement. This is due to the close proximity of the training range gate and the target range

gate, as there is not significant power difference between them. Similar performance is obtained

when using both training range gates as shown in Figure 3.7(c).

The performance of the proposed Doppler interpolation processor depends on a number of

parameters which will be analysed in the next chapter. In the next section, the performance of

the Doppler interpolation processor will be compared with Doppler warping compensation and

angle-Doppler compensation (ADC).

3.7 Comparison with other compensation methods

When comparing the proposed Doppler interpolation processor with other compensation meth-

ods, it is important to compare them on the same baseline. As the proposed compensations are

based on JDL which is a reduced dimension processor, we could either apply other compensa-
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Figure 3.7: Doppler interpolation processor performance with and without power correction,
using (a) training data from range gate 29, (b) training data from range gate 25,
and (c) training data from range gates 25 & 29.

tion methods to JDL processor or uses a full dimension JDL processor. Among all compensa-

tion methods mentioned in Chapter 2, Doppler warping and two-dimensional ADC have so far

shown the most promising performance, and will be used as performance references.

3.7.1 Doppler warping

Doppler compensation using interpolation is quite similar to Doppler warping, as both shift the

Doppler frequency of the clutter return. The difference between the two methods are: Doppler

interpolation compensation is performed in the angle-Doppler domain, while Doppler warping

is carried out in the space-time domain; Doppler warping is an exact frequency shift, while
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Doppler interpolation compensation is an approximation of the frequency shift. As the discrete

Fourier transformation is a linear transform, performing compensation in the angle-Doppler

domain should ideally produce a similar performance as the space-time domain (assuming that

the approximation error is negligible). However, in certain situations, the approximation error

is significant enough to cause a difference between the two compensation methods.

Figure 3.8, shows the IF loss of JDL processors using the two methods discussed. The red curve

shows the Doppler interpolation processor performance, while the blue curve shows JDL pro-

cessor performance using Doppler warping. Figure 3.8(a) and (b) show the use of training data

from range gate 29 and from range gate 25 respectively. Figure 3.8(c) shows the processors’

performance when using training data from both range gates 29 & 25. In Figure 3.8(a), we

can see that the Doppler interpolation processor has lower IF loss than the JDL Doppler warp-

ing processor across the frequency range outside the clutter notch region. For Figure 3.8(b),

the JDL Doppler warping processor has lower IF loss than interpolation, but only in the clut-

ter notch region. Similar performance is observed in other regions of the graph. When using

training data from both range gates 29 & 25, as shown in Figure 3.8(c), both methods show im-

provement when using both training range gates. However, the JDL Doppler warping processor

still shows better performance in the clutter notch region.

The reason why both methods behave differently to different training data is still not well un-

derstood. More investigation is required to have a better insight of what is happening in this

situation. A possible answer however, may lie in the statistics of the training data. This is an

area of possible further work as indicted in the conclusion section.

Figure 3.9 shows the comparison of a full dimension Doppler interpolation processor (
� �

=

128) and a space-time Doppler warping adaptive processor. The red curve shows JDL pro-

cessor performance using Doppler interpolation and the blue curve shows space-time adaptive

processor (STAP) performance using Doppler warping compensation. Figure 3.9(a) and (b)

show the use of training data from range gate 29 and from range gate 25 respectively. Figure

3.9(c) shows the case using training data from both range gates 29 & 25. In practice, a full

dimension Doppler interpolation processor would not be used at all, as the JDL processor is de-

signed as a reduced dimension processor. However, in order to compare using Doppler warping

compensation for the STAP processor with Doppler interpolation processor, a full dimension

Doppler interpolation processor is required.

70



Doppler and Power compensation for JDL processor

−1 −0.5 0 0.5 1
x 10

4

0

5

10

15

20

IF
 lo

ss
 (

dB
)

Doppler frequency (Hz)

Interpolation
Doppler warping

−1 −0.5 0 0.5 1
x 10

4

0

5

10

15

20

IF
 lo

ss
 (

dB
)

Doppler frequency (Hz)

Interpolation
Doppler warping

(a) (b)

−1 −0.5 0 0.5 1
x 10

4

0

5

10

15

20

IF
 lo

ss
 (

dB
)

Doppler frequency (Hz)

Interpolation
Doppler warping

(c)

Figure 3.8: Doppler interpolation and JDL Doppler warping processors’ performance, using
training data from (a) range gate 29, (b) range gate 25, and (c) range gates 25 &
29.

The performance of full dimension processors will be better than any reduced dimension pro-

cessor, but at the price of much higher computational cost. It can be seen from Figure 3.9(a)

that the Doppler interpolation processor using training data from range gate 29 produced a

similar shape clutter notch as Doppler warping. On the other hand, when using training data

from range gate 25 (Figure 3.9(b)), the clutter notch of Doppler interpolation processor has a

wider clutter notch than STAP with Doppler warping compensation. The IF loss of the Doppler

interpolation processor reduces when both range gates are used (as shown in Figure 3.9(c)).

This shows that, the Doppler interpolation processor is only suitable to be used as a reduced

dimension processor.
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Figure 3.9: Full dimension Doppler interpolation processor performance and STAP processor
performance with Doppler warping compensation, using training data from (a)
range gate 29, (b) range gate 25, and (c) range gates 25 & 29.

3.7.2 Two-dimensional angle-Doppler compensation (ADC)

Angle and Doppler compensations in the ADC co-locates the clutter spectral centres from dif-

ferent range gates. For our simulation, with training data from range gates 29 and 25, the

azimuth and depression angles differ from the range gate under test (range gate 27) by -0.8 � ,
-2.6 � (azimuth angle) and 3.8 � , 2.9 � (depression angle) respectively. The angles difference

between the range gates are considered to be not significant. Figure 3.10 shows the comparison

between Doppler interpolation, Doppler warping and ADC applied to JDL processor. Once

again, cases (a), (b) and (c) show the use of different training data. Figure 3.10 is similar to

Figure 3.8 except with the addition of the curve labelled “ADC”, which shows the performance
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of using the ADC.
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Figure 3.10: Comparison between JDL processor performance with Doppler interpolation,
Doppler warping and ADC, using training data from (a) range gate 29, (b) range
gate 25, and (c) range gates 25 & 29.

From Figure 3.10(a), when using training data from range gate 29, the ADC processor has the

worst performance among the three compensation methods. On the other hand, the Doppler

interpolation processor offers the lowest IF loss. When using training data from range gate 25

(Figure 3.10 (b)), using the ADC does not offer the same performance as using the Doppler

warping compensation method. However, significant improvement is observed for the ADC

processor using training data from range gate 29. Similar performance among the three different

compensation methods, for regions other than clutter notch region, is observed when both range

gates 29 and 25 are used. In the case of the ADC processor having a poorer performance than
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the Doppler warping processor, this is due to the close proximity of the range gate under test

and the training range gates. The benefit of using ADC over Doppler warping can be observed

when the clutter spectral centres from the training range gates are not in the mainbeam [1, 53].

3.7.3 Processor performance at different look angles

As discussed in Section 2.3.3 and illustrated in Figure 2.15, the clutter Doppler range depend-

ency changes with the look angle, � � . At certain � � angles, the corresponding clutter Doppler

frequency varies significantly with range gate, while at some other � � angles, the correspond-

ing clutter Doppler frequency remains almost constant across range gates. A clear example of

this situation where there is almost no Doppler frequency difference (between range gates 27

and 29), is when � � = -33.48 � .

For clutter echoes arriving from angles near � � , its Doppler frequencies will still be to a certain

extent range dependent. Depending on the beamwidth and mainlobe to sidelobe ratio, these

clutter echoes may be of a comparable strength to the clutter echo arriving from � � . For the

particular bistatic configuration considered in Table 2.1, at � � = -33.48 � , there is no significant

Doppler difference between the training range gates 29 & 25 and the range gate under test, range

gate 27, � � � 0 Hz (see Figure 2.15). In such a situation, all current Doppler compensation

processors would not attempt to carry out any Doppler compensation processiv. By doing so,

those range dependent clutter echoes arriving from angles near the look angle � � would not be

compensated properly. This will have a significant effect on the processor performance.

Figure 3.11 shows the JDL processor performance using both the training range gates 25 & 29,

where � � = -33.48 � . Figure 3.11(a) and Figure 3.11(b) show the use of a narrow beam with

beamwidth = 4 � and a widebeam with beamwidth = 16 � respectively. The red curve labelled

“Ideal JDL processor” assumes that the JDL processor processes the true clutter sample covari-

ance matrix. This serves as the performance upper bound when perfect Doppler compensation

is achieved. The blue curve labelled “uncompensated” shows the JDL processor performance

when no Doppler compensation is carried out. The green curve labelled “Doppler interpola-

tion” and black dashed curve labelled “Doppler warping” show the performance of the Doppler

interpolation processor and JDL Doppler warping processor respectively.

From Figure 3.11(a), it can be observed that none of the Doppler compensation methods provide

ivADC may still carry out angle compensation.
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Figure 3.11: JDL processor performance with � � = -33.48 � , using (a) Narrow beam - 4 � (b)
Widebeam - 16 � .

any significant performance gain. These results are not surprising as the clutter Doppler fre-

quency difference between the training range gates and the range gate under test, at � � = -33.48 �
is about 0 Hz. With a Doppler compensation of 0 Hz, those range dependent clutter echoes will

not experience any Doppler compensation, hence no significant performance improvement can

be achieved. In Figure 3.11(a) we can notice a performance difference of about 8 dB between

the ideal JDL processor (upper bound) and the Doppler compensated processor in the clut-

ter notch region. This performance gap can still be reduced using a more effective Doppler

compensation method.

Using a wider transmit mainbeam with beamwidth of 16 � (as shown in Figure 3.11(b)) results

in widening of the clutter notch region. This is caused by receiving more range dependent clut-

ter echoes with signal strength comparable to that of the peak clutter echo. Widening of clutter

notch means that it is harder to detect targets travelling at small relative velocities, correspond-

ing to the widened Doppler region. On the other hand, wider beamwidth is sometimes required

to allow shorter scanning duration and longer dwell time. Separate Doppler bins compensation

is hence proposed to perform different Doppler compensation for different Doppler bins.

3.8 Separate Doppler bins compensation

Due to the complex range dependency of the bistatic clutter, there are clutter echoes from certain

look angles that are range independent, while from other look angles, they are range depend-
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ent. Performing 0 Hz Doppler compensation on clutter echoes received from such look angles

(with range dependent clutter echoes), will not be able to correctly Doppler compensate range

dependent clutter echoes arriving from such range dependent angles. When processing sig-

nals received from such look angles, several different Doppler compensations may be required,

depending on the range dependency of the clutter echoes from those angles.

Performing Doppler compensation in the space-time domain (e.g. Doppler warping or ADC),

only allows one Doppler compensation per range gate. However, for Doppler compensation

using Doppler interpolation, different amounts of Doppler interpolation can be carried out at

different Doppler bins. In a very general sensev, different Doppler bins correspond to clut-

ter echoes arriving from different angles of arrival, even through clutter echoes arriving from

different angles of arrival are also separated in the angle domain. By Doppler compensating

Doppler bins differently, those range dependent clutter echoes can be Doppler compensated

separately, depending on their range dependency, while those range independent clutter echoes

are still being Doppler compensated with 0 Hz Doppler frequency shift. However, separate

angular bins compensation may also be desirable.

Separate Doppler bins compensation is carried out as follows:

1. The number of Doppler bins required for separate Doppler bins compensation,
� ���

is determined by the beamwidth of the mainlobe (assuming high mainlobe to sidelobe

ratio),

� ��� 	
� � 	���� � � ��� � � �

����� �
(3.42)

where � � is the size of the DFT process (transform of time domain to Doppler domain).

2. Determine the individual Doppler bins that require separate Doppler bins compensation.

This is achieved by centralising
� ��� Doppler bins to the Doppler bin corresponding to

the look angle � � (clutter notch Doppler bin), � � . For � � = -33.45 � , � � is Doppler bin

10.

3. Determine � ��� (
� ��� � � ), the angles of arrival (with respect to the range gate under

test) corresponding to these individual
� ��� Doppler bins.

vThe signal component of each Doppler bin depends on the clutter echo Doppler frequencies, as well as the size
and shape of the DFT windowing
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4. The Doppler frequency shift required at each of the � ��� angles is

� � ���  � � 	 � �� vii � � �� viii � � 	 � � � � � � � ��� (3.43)

As � � ��� is calculated without using the received clutter echoes, it will be affected by

any error in the estimated parameters.

5. Perform Doppler interpolation with the respective calculated � � ��� , on each of the
� ���

Doppler bins.

6. Some of the Doppler bins, which are not compensated separately, are compensated by

Doppler interpolation with a particular Doppler frequency shift, � � ��� , while the rest of

the Doppler bins are compensated with the original amount of Doppler frequency shift

� � . The number of Doppler bins that are compensated by � ����� , � ��� , as well as the

value of � � ��� , have yet to be precisely determined.

Figure 3.12 shows an illustration of the separate Doppler frequency shifting, while Figure 3.13

shows the JDL processor using training data from range gate 29 (range gate under test = 27),

with beamwidth = 16 � and a different amount of � ����� . The red curve labelled “Ideal JDL

processor” shows the JDL processor performance with true clutter sample covariance matrix.

The blue curve labelled “uniformed bins compensated” shows the processor performance when

using the originally proposed Doppler interpolation algorithm. The rest of the curves show

the processor performance using separate Doppler bins compensation with different amount of

� � ��� ranging from 23.45 Hz to 53.45 Hz. The objective of performing separate Doppler bins

compensation is to obtain processor performance as close as possible to that represented by the

ideal case.

A secondary notch at the frequency region of about -3000 Hz, determined by the value of
� ���

(
� ��� = 101 for this simulation) , is caused by sudden change in the Doppler bins compensation,

from � ����� to � � . The size of this secondary notch can be reduced by a gradual change in

Doppler bins compensation or it can be ignored using some kind of hybrid system. Other

processors that can produce ideal performance at the frequency region of about -3000 Hz, can

be used to replace the separate Doppler bins compensation processor (only for this secondary

notch region).

vicalculated from equation (3.12)
viicalculated from equation (3.10)
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Figure 3.12: Illustration of the separate Doppler frequency shifting.
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Figure 3.13: JDL processor with beamwidth = 16 � and different amount of � � ��� .
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When using different amount of � � ��� , performance differences at the right side of the clutter

notch are observed. With a high value of � � ��� (e.g. � ����� = 53.45 Hz), the separate Doppler

bins processor compensation performance in the region between 2600 Hz to 3500 Hz gets very

close to the ideal JDL processor performance. Maximum IF performance improvement of about

8 dB can be achieved in this region. However, in the region between 1500 Hz to 2600 Hz, a loss

of about 5 dB in term IF is observed. On the other hand, when using smaller value of � � ��� ,
e.g. � ����� = 23.45 Hz, a performance improvement is observed in the region between 1500

Hz to 2600 Hz, but with a smaller processor performance improvement in the region between

2600 Hz to 3500 Hz. The processor performance shown in Figure 3.13 is not the optimum

performance. Instead, it shows the possibility of improving the processor performance with

different � ����� . To obtain a good processor performance, some kind of hybrid system that uses

different � � ��� for different Doppler frequency regions, may be desirable.

Figure 3.14 shows the JDL processor performance using both separate bins compensation and

Doppler warping. These results are obtained using both the training range gates 25 and 29. Fig-

ure 3.14(a) and Figure 3.14(b) illustrate the performance for the cases of using a narrow beam

(beamwidth = 4 � ) and a widebeam (beamwidth = 16 � ) respectively. The red curve labelled

“Ideal JDL processor”, once again shows the JDL processor performance when it processes

the true clutter sample covariance matrix. The blue curve labelled “separate bins” and green

curve labelled “Doppler warping” show the JDL processor using separate bins compensation

and Doppler warping respectively.
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Figure 3.14: JDL processor performance with separate bins compensation, using (a) Narrow
beam - 4 � (b) Widebeam - 16 � .
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The secondary notch now appears at -8500 Hz as
� � � = 67 is used for these simulations.

For both cases (narrowbeam and widebeam), separate bins compensation clearly out-performs

Doppler warping in the region between 600 Hz and 1350 Hz for narrowbeam and between 500

Hz and 1350 Hz for widebeam. In these regions, separate bins compensation seems to be more

effective when a widebeam is used. The minimum IF loss in these regions falls to about 8.5 dB

when using narrowbeam and about 7.5 dB when using widebeam.

3.9 Tuned DFT

Transforming spatial samples into the angular domain using the DFT with a rectangular window

often results in smearing across several angular bins. The smearing depends on a number of

factors, such as: the number of antenna array element, � ; the size of the DFT; the angle of

arrival, � � ; the spatial sampling rate which is determined by the separation between the antenna

elements; windowing used; and zero padding added on the spatial samples. As a result of the

smearing, a number of angular bins, � � , (normally ��� , = 3) are grouped into each LPR in order

to gather a significant portion of the spatial energy.

Figure 3.15 shows the (angle-domain) 8-point DFT outputs of signals received by a forward

looking array. Five individual signals arriving from five different � � , with depression angle,
�

=
� 
 � , are received during five different experiments and plotted together. It can be seen that,

for the signals arriving at � � = 35 � and � � = 55 � , the DFT outputs concentrate at bin 3 and

bin 4 respectively. On the other hand for the signal arriving at � � = 45 � , it is attenuated and

spread widely across bin 2 and bin 6. This attenuation of the measured value of an angular

component that falls in between the DFT bins is known as scalloping loss [153]. Scalloping

loss can be reduced by using a tapered window function as well as performing zero padding.

Window tapering will however, widen the mainlobe, while zero padding will increase the DFT

size, hence increasing the computational cost.

A tuned DFT processor that minimises the scalloping loss and reduces the computational cost

significantly is proposed. The tuned DFT obtains an unattenuated angular component value

by matching the angular bin to the angular component. The system performance penalty of

using only one angular bin is offset by the reduction in scalloping loss. Using just one angular

bin allows the computational cost of calculating output at other angular bins to be saved. For

� = 8, computational cost saving of up to 87.5 � maybe be achieved at this stage. Further
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Figure 3.15: Output of DFT with varies angle of arrival.

computational saving is expected when the dimensions of the LPR are reduced from ( � � � � � )
to ( � � � � ).
The output of a tuned DFT for a spatial signal received by a linear array is given as

� F � 	 � �
��� � � (3.44)

where � � represents a ( ��� � ) spatial signal vector. The weight vector of the tuned DFT, � ��� ,

is given as

� ��� 	 �� ��� � ��� ��� � � ��� � ��� ��� � � � (3.45)

where

� ��� � 	 �����  � � �	� �  � � � � � � � ��� � � � � � � � (3.46)
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For a forward looking linear antenna array, � is defined as

� 	 � � � � � ����� � ��� �
� � � � � (3.47)

while for a sidelooking linear antenna array, this is given as

� 	 ����� � � ����� � ��� �
� � � � � � (3.48)

The different � values for different linear antenna arrays arises from the ability of the antenna

to differentiate between angles. By definition of � � , a forward looking array is only able to

differentiate ����� � � � � �	� , while a sidelooking array is able to differentiate � � � � � ��� � .
The factor of

�

� in equations (3.47) and (3.48) is due to the
��� �

spacing between the antenna

elements.

Back to the context of STAP, instead of performing a 2-dimensional DFT for space and time

transformation, a normal DFT will follow after the tuned Fourier transform. The normal DFT

will transform the time sample output of the tuned DFT ( � F � ) into Doppler domain, � F . Re-

writing equation (3.44) to take into account of the temporal samples, the output of tuned DFT

becomes

� F � 	 � �
���



(3.49)

where



(from equation (2.19)), a ( � � � ) matrix represents the space-time data samples.

The training data in each LPR becomes

� L � 	�� � F ��� � F ��� � � ��� � � F ��� � ��� � ��� (3.50)

3.9.1 Simulation Results

In order to compare the difference between JDL processors that use all angular bins, � � = 3

angular bins, one angular bin and the tuned DFT angular bin, common ground must be estab-

lished among them. The common ground is achieved by replacing
	

L � (from equation (3.8))
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with
	

LP � , 	 LP � is given as

	
LP � 	 � � � � �  � LP � � � � � � �  � LP � � � � � � (3.51)

where
�

LP � � � , a (  � � � ��� � � � ) matrix is the data samples in the
�
-th LPR group, grouped

from angle-Doppler data samples
�

P � . The scalar � � is the number of padding zeroes added

to the spatial samples and
�

P � , a (  � � � � � � � ) matrix is obtained by transforming
� �

(from equation (2.12)) into the angle-Doppler domain using a 2-dimensional DFT with zero

padding on the spatial samples. Zero padding is added to the spatial samples in order to obtain

a better estimate of the energy between the original (without zero padding) DFT angular bins.

All � � � � angular bins are included so that the performance upper bound can be established.

The signal-steering vector � � ��� is replaced by the zero padded angle-Doppler signal-steering

vector, � � ����� , which includes � angular bins as well as the � � angular bins created by the zero

padding, where index � � � ����� �  � � � � � � . Lastly,

	

L
� �

� needs to be modified in order to

achieve the same matrix size as
	

LP � . The reconstructing is carried out by adding zero into

angular and Doppler bins that is assumed to be zero. This is reasonable as the assumption of

using less angular bins assumes that the energy in the rest of the angular bin (unwanted bins) is

negligible ( � � ).

Figure 3.16 shows the improvement factor for the Doppler interpolation processor using dif-

ferent number of angular bins as well as the proposed tuned DFT angular bin. The parameters

used are:
�

(number of temporal pulses) = 128, � (number of antenna array element) = 8,
� �

(Doppler bins used) = 9, � � = 8, � � (look angle) = 55 � . The training data is obtained from

range gates 29 & 25. The curve labelled “All bins with zero padding” uses all 16 angular bins

( � � � � ), to form the processor performance upper limit. The curve labelled “All bins without

zero padding”, uses 8 angular bins formed without zero padding. Of the two curves, the latter

shows a performance degradation of about 3 dB, which is caused by the scalloping loss.

From Figure 3.15, we can see that for � 	 �� � , most of the spatial energy concentrates in

bin 4, and very little in bin 3 and bin 5. When angular bins 3,4 and 5 are used to calculate

the weights of the processor, identical performance as compared with using 8 angular bins is

achieved. Slight performance degradation around the notch region is observed when using just

one angular bin (bin 4 is chosen as it has the highest energy). This is so, as some energy is lost

when the energy in bin 3 and bin 5 is assumed to be zero. As expected, the tuned DFT did not
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Figure 3.16: Performance of angular bin reduction processor with � � 	��� � .

manage to have any performance improvement over using one angular bin (bin 4), since the

energy concentration in bin 4 is already very high.

Figure 3.17 shows the improvement factor for the Doppler interpolation processor with � � 	
��� � . Using bins 3,4 and 5 shows that a comparable performance (as compare to using 8 angular

bins) can be achieved by assuming the energy in the rest of the angular bins is approximately

zero. A 3 dB degradation in performance is however observed when only one angular bin (bin

4) is used. From Figure 3.15, we can see that significant energy is also present in bins 3 and 5,

excluding this energy will no doubt degrade the processor performance. The curve that uses the

angular bin output from the tuned DFT (labelled “with tuned DFT”) shows that by using one

angular bin which is tuned to the maximum energy, processor performance as good as using 8

angular bins can be achieved. However small performance degradation is observed at the notch

region.

This shows that very significant computational cost saving, in both the transformation of space-

time samples into angle-Doppler samples and calculation of the inverse of sample covariance

matrix can be achieved when using the propose tuned DFT. Degradation in processor perform-

ance due to using less angular bins is offset by reduction of scalloping loss. Reducing the
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Figure 3.17: Performance of angular bin reduction processor with � � 	���� � .

sample covariance matrix size to (1 � � � ) may further reduce the training data support size,

hence improving the JDL processor performance in a non-homogeneous environment.

3.10 Summary

The proposed joint Doppler and power correction offers an alternative compensation method

in the angle-Doppler domain to the Doppler warping compensation and ADC in the space-time

domain. When using training data from range gate 29, Doppler interpolation achieved lower

IF loss as compared with Doppler compensation methods using Doppler warping and ADC.

This advantage reduces when training data from range gate 25 is used individually or together

with training data from range gate 29. Doppler interpolation and ADC processors produce sim-

ilar IF loss when training data from both range gates 29 & 25 is used. The proposed method

of estimating the Doppler frequency shift shows robustness to errors in estimated parameters.

For the range of the transmitter velocity error considered, the proposed method of estimating

the Doppler frequency shift has an error of not more than 10 Hz. On the other hand, Doppler

frequency shift estimation using equation (3.9) has an estimation error of about 670 Hz at the
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transmitter velocity error range limit. Performing separate Doppler bins compensation allows

Doppler interpolation to Doppler compensate clutter echoes with different range dependency.

Significant processor performance improvement can be observed when comparing with Dop-

pler warping compensation processor. The tuned DFT allows significant computational cost

saving without reducing the processor performance by reducing the scalloping loss.
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Chapter 4
System performance analysis

4.1 Introduction

The performance of the proposed Doppler interpolation processor depends on a number of

parameters, such as the size of Doppler bins used,
� �

, angular bins used, � � , zero padding

used


, errors in estimated parameters (e.g. transmitter velocity, flight direction and position),

load-to-clutter + white noise ratio (LCNR) and interpolation algorithm. In this chapter, the per-

formance of the Doppler interpolation processor using different parameters will be investigated.

Due to the characteristics of a particular radar system, the statistics of the received signal may

be interpreted incorrectly and hence result in ambiguity. Ambiguity in a MPRF airborne radar

system, as well as the performance of the proposed Doppler interpolation processor in an am-

biguous environment shall be evaluated. It has always been believed that a reduced dimension

processor will reduce the amount of training data required [140]. The performance of different

processors with different amounts and types of training data for an airborne bistatic radar is

also analysed. A general overview of the computational cost difference between the Doppler

warping processor and the Doppler interpolation processor is also given.

4.2 Doppler bins,
���

The number of Doppler bins,
� �

, used by the Doppler interpolation processor determines a

significant part of the processor computational cost as the size of the clutter sample covariance

matrix is directly proportional to
� �

. On the other hand, the size of
� �

also directly affects

the performance of the processor as shown in Figure 4.1 (using � � 	 � ).

Using temporal zero padding,


= 104, Doppler domain DFT size, � � , of 128 and a maximum
� �

of 128 are obtained. The curve labelled “
� �

= 128” shows the best processor performance

when all the Doppler bins were used. Its computational cost will be even greater than that of

a full space-time STAP processor, because of a bigger matrix dimension, so it is only used to

provide the performance upper bound. The curve labelled
� �

= 1, shows the worst processor
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Figure 4.1: Doppler interpolation processor performance varies with
� �

.

performance that can be expected when using the minimum number of Doppler bins. Curves

plotted using
� �

= 5 shows the improvement factor (IF) varying in a 5 dB range, centred around

-12 dB, for the Doppler frequency regions outside the clutter notch region. Such IF variation is

the result of significant difference between the neighbouring JDL localised processing region

(LPR). This difference decreases with the increases of LPR size. Therefore, these variations are

greatly reduced with increase
� �

. For example, with
���

= 9, there is hardly any fluctuation in

IF. The performance is within 3 dB of the upper bound.

Figure 4.2 shows how the mean IF loss varies with
� �

for two different DFT sizes. For the

curve labelled “DFT size = 64”, using
� �

greater than 5 does not offer significant mean IF loss

reduction with increases in computational cost. However with “DFT size = 128”,
� �

needs

to be greater than 9, before the reduction in the mean IF loss becomes less significant. The

high minimum mean IF loss when using “DFT size = 64”, is due to the interpolation error as

explained in Section 4.5.
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4.3 Alternate Doppler bins selection

Using alternate Doppler bins (either the odd or even Doppler bins) in each LPR can reduce the

computational cost by about a factor of two. Figure 4.3 shows the processor performance when

alternate Doppler bins selection are used. The red solid curve shows the IF of the Doppler inter-

polation processor that uses “full” Doppler bins (
� �

= 9) in each LPR. The green solid curve

shows the IF of the same processor, except that only alternate Doppler bins are used in each

LPR. A 2.5 dB degradation in the IF is observed in the region outside the clutter notch when

using alternate Doppler bins selection. Within the clutter notch region, no obvious difference in

processor performance is observed. The blue dashed line represents the Doppler interpolation

processor with
���

= 18, using alternate Doppler bins selection. The computational cost for this

processor is the same as that using
� �

= 9 with “full” Doppler bins. However an IF degradation

of 1.5 dB (with respect to the IF with
� �

= 9, “full” Doppler bins) is observed in the region

outside the clutter notch. Some performance improvement is however, obtained on the right

side of the clutter notch. With lower computational cost, Doppler bins alternation offers same

low relative velocity target (in the clutter notch region) detection capability as that using “full”

Doppler bins. On the other hand, with the same amount of computational cost, using alternate
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bins selection offers better detection of low relative velocity targets.
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Figure 4.3: Doppler interpolation processor performance using alternate Doppler bins.

4.4 Spatial bins, ���

Two issues arise when discussing spatial bins. The first issue is whether different Doppler

compensation should be applied to different spatial bins, while the other issue is the size of

spatial bins, � � , required. With a beamwidth of 4 � , the mainlobe clutter is likely to arrive

within � � � of the look angle. Assuming that the sidelobe clutter strength is significantly lower

than the mainlobe clutter and the number of antenna elements used is small, most of the clutter

energy will be concentrated in one spatial bin, with some leakage into the nearby spatial bins.

In this case, using the same amount of Doppler compensation for all the spatial bins, will be

sufficient to mitigate the effect of the mainlobe clutter Doppler range dependency.

However, if a widebeam mainlobe or a large number of antenna elements are used, some of the

clutter energy will fall into the neighbouring spatial bins (around the spatial bin corresponding

to the look angle). On the other hand, if the mainlobe to sidelobe clutter ratio is small, the

clutter returns from the sidelobe may also exist in some of the neighbouring spatial bins. In
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these situations, the clutter Doppler range dependency in each spatial bin may be different from

one another. This is so, as these clutter echoes arrive from different angles of arrival. Different

amount of Doppler compensations for different spatial bins may hence be required to mitigate

the effect of different clutter Doppler range dependency. Separate spatial bins compensation is

not considered in this work due to time constraints.

Figure 4.4 shows the mean IF loss when different � � sizes are used. Due to the nature of

the sine function, the spatial bin does not correspond linearly with the signal angle of arrival.

For � � = 45 � , the spatial bin with the most energy is spatial bin 4. When using � � less than

the total number of antenna array elements, � , special care must be exercised when choosing

which spatial bins to use. For odd � � , the selected spatial bins are the spatial bin with the

highest energy and an equal number of its left and right spatial bins. However when using even

� � , choosing one more left or one more right spatial bin can make a difference in the processor

performance. The red solid line shows the use of spatial bins 3 and 4 when � � = 2, while the

blue dashed line shows spatial bins 4 and 5 being selected for � � = 2. A difference of 2 dB

mean IF loss is observed when different spatial bins were used.

The rate of change of mean IF loss, is reduced significantly for � � greater than 3. Increasing � �
beyond 3 at the expense of higher computational cost does not yield proportional performance

improvement.

4.5 Size of DFT processor, � �

The accuracy of the Doppler interpolation process is very much influenced by the frequency

separation between the Doppler bins. A small frequency separation between Doppler bins will

result in better Doppler compensation. The frequency separation is determined by the size of the

Doppler domain DFT, � � , and the
� � � . The signal component changes between Doppler bins

depends upon the frequency separation as well as the DFT resolution (defined by the number

of temporal pulses,
�

, used). Very often, the amount of temporal pulses available for signal

processing are limited, as it is related to the dwell time of the radar system (as mentioned in

Section 4.9.1). Zeroes are added to the temporal data to obtain a bigger Doppler domain DFT.

That computational cost increases, due to a bigger Doppler domain DFT size, is not a big issue,

as the fast Fourier transform (FFT) is widely used in modern radar systems.

Figure 4.5 shows the IF loss when using Doppler interpolation processor with different Doppler
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Figure 4.4: Doppler interpolation processor performance (IF loss mean) varies with � � , at
� �
	���� � �

domain DFT sizes (with
��� 	 � and ��� 	 � ). Using a � � of 24 and 32, represented by

curves labelled “ � � = 24” and “ � � = 32” respectively, IF loss of up to about 30 dB is observed

in the clutter notch region. This amount of IF loss is even greater than the IF loss from the

STAP processor without any compensation (shown in Figure 2.23(b)). The notch region is also

widened due to the interpolation error. Using � � of 64, does reduce the IF loss. However, the

notch region is still too wide, as compared to using processor without any compensation. With

� � of 96 or 128, much better performance is obtained. Although the curve labelled “ � � = 96”

shows better performance than the curve labelled “ � � = 128”, a � � of 128 should be used, as

it can be implemented using a FFT processor, which is not the case with � � = 96.

About 3 dB IF loss in the region outside the notch is observed when � � = 128 is used. For

this region, using a reduced dimensional STAP, without compensation, may be a better choice.

Good interpolation performance can be achieved when � � is very much greater than the number

of temporal pulses
�

used.
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Figure 4.5: Doppler compensation with different Doppler domain FFT sizes.

4.6 Errors in estimated parameters

The outcome of the interpolation process, besides depending on the Doppler domain DFT size,

� � , number of temporal pulses used,
�

, and the interpolation algorithm, is also influenced by

the estimation of the clutter Doppler shift, � � . From equation (3.20), � � is a function of
�
� �� ,

� � , 
 
 , 
 � ,
�
� ,
� � , position of the transmitter and receiver, and both the range gate under test and

the training range gate. The likely source of errors in these estimated parameters are the value

of
�
� �� , 
 
 ,

�
� and positions of the transmitter. Error in

�
� �� maybe be caused by the presence of

a target in the training range gate, while transmitter parameters may change in a continuously

changing environment. Figure 4.6 shows the Doppler interpolation processor performance (in

term of mean IF loss) when experiencing errors in some of the estimated parameters (with
� � 	 � � � � 	 � ).

The curve labelled “ 
 
 ” represents mean IF loss caused by error in the estimation of the trans-

mitter velocity. Curves labelled “
�
� ” and “ 
 � ” show mean IF loss due to errors in estimating

the transmitter flight direction and the transmitter x-axis position respectively. For all the three

curves, the simulated error used is in a � 20 � range, e.g. 72 m/sec � 
 � � 108 m/sec.
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Figure 4.6: JDL processor performance (IF loss mean) with various different errors.

The processor is not sensitive to error in the transmitter velocity. While error in the transmitter

flight direction will result in a significant loss of performance. A maximum mean IF loss of

9.2 dB and 6.2 dB is observed for errors in transmitter flight direction and transmitter x-axis

position respectively. It is also observed that the drop in performance is not symmetric about

the 0 % error axis. 0 % error should yield the best processor performance, however this is not

the case due to inaccuracy in the interpolation process.

4.7 Diagonal loading

Diagonal loading is a technique that designs adaptive processors by assuming that the white

noise is higher than its actual value. It makes the processor robust by attempting to preserve

good processor performance in the presence of any mismatch. In this work, the primary mis-

match is the mismatch between the estimated and the true clutter sample covariance matrix.

This technique is called regularisation in the statistical literature. In this work, diagonal load-

ing, adds an artificial noise to the diagonal elements of the estimated clutter sample covariance

matrix. Beside making the processor robust, it also helps to prevent inversion of a singular

matrix. The disadvantage of diagonal loading is that there is not enough prior information, to
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determine the ideal fixed loading level, as the environment changes over time. Although this

approach is not optimum, it is adequate in many cases and is widely used in practice [162].

When using an angle-Doppler domain processor, diagonal loading should be performed after

the Fourier transforms.

The load-to-clutter+white noise ratio is defined as

LCNR 	
� ��

� �

�
� � �� (4.1)

where � �� , � �

� and � �� are the loading noise variance, clutter variance and white noise variance

respectively. Bigger LCNR represents the use of bigger diagonal loading.

Figure 4.7 shows how the ideal JDL processor performance (assuming knowledge of true clutter

covariance matrix) varies with LCNR. Figure 4.7(b) shows a zoom in version of the processor

performance. The curve labelled “LCNR = -50 dB” shows the processor produces the deepest

clutter notch with this LCNR value. On the other hand, with LCNR = -30 dB, the clutter notch

is reduced by about 10dB. A deeper clutter notch means that the target echo needs to be stronger

before it can be detected. From Figure 4.7(a), an improvement in IF of about 1 dB is observed

in the Doppler frequency region outside the clutter notch, when bigger diagonal loading (LCNR

= -30 dB) is used.
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Figure 4.7: Ideal JDL processor performance with various LCNR (a) full scale (b) zoom in.

Figure 4.8(a) shows the improvement factor of an uncompensated JDL processor with various

LCNR. With the increase of diagonal loading, from LCNR = -50 dB to LCNR = -30 dB, the

improvement factor improves by at least 7dB across the whole spectrum. This shows the in-
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crease in robustness of the processor when experiencing mismatch between the uncompensated

and the true clutter sample covariance matrix (with the increase in diagonal loading).
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Figure 4.8: Ideal JDL processor performance with various LCNR (a) uncompensated (b) com-
pensated.

Figure 4.8(b) shows the IF loss of the Doppler interpolation processor. Increase of diagonal

loading once again shows an improvement in the processor performance. The IF loss reduces

by about 7 dB in the region outside the clutter notch and by about 10 dB in the clutter notch

region, when the LCNR is increased from -50 dB to -30 dB. These show that diagonal loading

helps to mitigate clutter Doppler range dependency.

4.8 Radar Ambiguities

Ambiguity refers to the concept that a reflector at one point on the ground reflects the transmit-

ted radar signal that, due to deficiency of the radar, is interpreted by the radar signal processor

as caused by another reflector at a different position. There are three kinds of ambiguity in a

pulse Doppler radar system. They are:

� Angle ambiguity,

� Range ambiguity, and

� Doppler ambiguity.
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4.8.1 Angle ambiguity

Angle ambiguity is often a result of using an antenna pattern with high-gain mainbeam and

sidelobes. The mainbeam is steered to a specific angle location. If a target is then detected, the

target angle would be assumed to be the same as the steering angle. However due to the high

sidelobe level, the target signal maybe reflected by a large cross section target at the sidelobe

angle. The target angle is incorrectly registered as the mainbeam steered angle. This is an angle

ambiguity. Although a mainbeam to sidelobe level ratio of more than 30 dB is typical in high-

performance airborne radar [163], the design of an airborne radome does have a certain impact

on the mainbeam to sidelobe level ratio [164]. In this work, angle ambiguity is not a problem,

as it is assumed that using a mainbeam to sidelobe level ratio of 30 dB is sufficient to prevent

any angle ambiguity.

4.8.2 Range ambiguity

For conventional pulse Doppler radar, range ambiguity occurs because of the transmission of

repetitive pulses, which are used to resolve the reflections from targets at different ranges. Using

a Medium PRF (MPRF) radar with a pulse repetition interval (PRI) of 100 � s for example, this

duration is equal to the time required for a two-way transmission to reach an object in the range

of 15km (obtained using equation (4.2)).

Unambiguous distance 	 Distance travelled
�

Distance travelled 	 Velocity of light � � � �
hence �

Unambiguous distance 	 Velocity of light � � � �
� (4.2)

If a reflector is more than 15km away, e.g. 20km, it will be assumed to be at a distance of 5km.

In other words, reflectors whose range exceeds that defined as the maximum instrumented range

are termed range ambiguous. Multiple-time-around echo is also used to describe the echo from

a range ambiguous reflector. Figure 4.9 is a curve of the unambiguous range versus pulse

repetition frequency (PRF).

Range ambiguities may theoretically be resolved, by observing the variation of the echo signal

strength with time (range). This is not always a practical technique, since the echo-signal
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amplitude can fluctuate strongly for reasons other than a change in range.
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Figure 4.9: Unambiguous range verse PRF.

One method of distinguishing multiple-time-around echoes from unambiguous echoes is to

operate with a varying PRF. The echo signal from an unambiguous range target will appear

at the same place on each sweep no matter whether the PRF is modulated or not. However,

echoes from multiple-time-around targets will be spread over a finite range. Using a planar

array with additional vertical adaptivity has been proven, to be successful in reducing the effect

of multiple-time-around clutter (see page 360 of [68]).

4.8.3 Doppler ambiguity

The Nyquist criterion states that the minimum sampling frequency needed to capture correctly

the frequency content of a signal is equal to twice the signal bandwidth. For a pulse Dop-

pler radar, the sampling frequency is the PRF. A simple single-channel radar extracts one data

sample in each PRI. It can therefore measure the Doppler shift over an unambiguous frequency

interval equal to PRF/2. A radar that extracts two samples per PRI (i.e., an I and a Q sample) has

an effective sampling rate of twice the PRF and provides an unambiguous frequency interval of

PRF.
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Equation (4.3) shows the phase change between pulses (i.e., samples).

�
�
	 �	� � � �	�� � (4.3)

where �	� is the range change between pulses. If the phase change between pulses is less than
�	�

, the Doppler frequency can be measured unambiguously. If the phase change is equal to
�	�

,

then the Doppler frequency equals the PRF. Obviously, a shift of
�	�

cannot be distinguished

from a shift of any integral multiple of
�	�

, including zero. If the phase change is greater than
�	�

, the observed Doppler frequency will not correctly represent the target speed. The observed

Doppler frequency will be incorrect by an integral multiple of the PRF.

Multiple PRFs (usually seven to nine) are used to resolve ambiguous target speed measurement.

The maximum resultant unambiguous velocity is


 � � ��� � 	 �
� � � � �

�
� (4.4)

The factor of 1/4 arises from the forward and return path travel by the radar signal, while

the � sign depends on the target flight direction and its position, if it is in front or behind

the airborne radar. The maximum resultant unambiguous velocity, 
 � � ��� � is the maximum

resultant velocity of the radar system and that of the target or clutter. Examples of the Doppler

unambiguity velocity are given in Table 4.1, where � � is the radar operating frequency.

� � (GHz) PRF(Hz) ���������
	 (m/sec)
3 300 � 7.5
3 20000 � 500

10 20000 � 150

Table 4.1: Unambiguous Doppler velocity.

Since the maximum unambiguous range is inversely related to the PRF while the maximum

unambiguous Doppler velocity is directly related to the PRF, there is no single PRF that can

maximise both at the same time. By using MPRF pulse Doppler radar, a compromise between

unambiguous range and Doppler velocity can be achieved. The main advantage of the MPRF

is the capability it provides to detect a slow-closing rate target from a high-speed platform

(operating in tail chase mode). In tail chase mode, the target needs to travel at a very high

relative velocity before its Doppler frequency becomes ambiguous.
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4.8.4 Ambiguity in MPRF airborne bistatic radar

For airborne bistatic radar signal processing considered in this work, it is the widening of the

clutter notch, that is of concern. Detection of low relative velocity targets tends to be difficult in

such situations. As a result, Doppler ambiguity is not as big a concern as range ambiguity in the

airborne bistatic radar system considered. For an airborne bistatic radar operation with PRF =

20kHz and � � = 10 GHz, the unambiguous range can be divided into 64 range gates. Clutter or

target returns received in range gate 27 for example, can possibly be originated from a distance

equivalent to that of range gates 27 + 64 � � � , where � � �  � � � � ��� � ��� � . The same applies to

clutter returns received in the neighbour range gates. The clutter Doppler frequencies difference

between range gates 27 and 29 is not the same as that between range gates 91 (27 + 64) and

93 (29 + 64), as shown in Figure 4.10. Compensating the two clutter Doppler frequencies

differences with the same Doppler frequency shift, does not seem to be a logical choice. We

shall now look at reasons why it might be justified to do so.
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Figure 4.10: Isodops pattern of airborne bistatic radar (a) for selected range gates (b) zoomed
version.

From Figure 4.10(b), which is a zoom-in version of Figure 4.10(a), the clutter Doppler fre-

quency difference between range gates 27 and 29 at � � = 45 � is about 110Hz. On the other

hand, there is hardly any Doppler frequency difference between range gates 91 and 93 (at � �
= 45 � ). This is because, as the clutter distance gets further, the change in clutter Doppler

frequency with range gate gets smaller. The clutter power also decreases significantly as the

clutter distance increases. As a result, clutter power from range gates 27 and 29 will be much

stronger than that from range gates 91 and 93. Although Doppler shifting the clutter spectrum

from training range gate 29 to range gate 27 (range gate under test) by the amount of Doppler
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frequency shift determined from the Doppler frequency difference between range gates 27 and

29, will cause the clutter echoes from range gate 93, to be compensated wrongly, the clutter

power difference between these ambiguous range gates will make this effect insignificant.

Figure 4.11 shows the JDL processor performance in the assumed situation, with and without

range ambiguity. The ideal processor performance (assumed knowledge of the true clutter

sample covariance matrix) is shown in Figure 4.11(a). There is no obvious difference between

the processors in the situation with and without range ambiguity. The clutter echoes from range

gate 91 is much weaker than the clutter echoes from range gate 27, to have any significant

effect on the processor weights. If the clutter power from range gate 91 is of the same order of

magnitude as that from range gate 27, we will expect the curve with range ambiguity to have a

notch at about 3930 Hz.

Figure 4.11(b) shows the IF loss of the Doppler interpolation processor. Although the Doppler

compensation for the clutter echoes from range gate 93 is compensated incorrectly, no signi-

ficant difference between the two curves is observed. Figure 4.11(c) shows a similar range

ambiguous conclusion when the Doppler warping - JDL processor is used.

KLEMM’s observation on range and Doppler ambiguities for an airborne bistatic STAP radar is

quite different from what is observed in this work (see page 357 to 360 of [68]). Ambiguous

clutter responses cause a broadening of the clutter notch or create secondary clutter notches. In

KLEMM’s simulations, the clutter power varies with range according to the radar range equa-

tion, i.e., the power due to a single point scatterer on the ground is
� � � � �� 	 � , where � � is the

distance travelled by the single point scatterer. The sensor pattern used is according to equation

(C.5). However, in this work, the clutter power is determined by the radar range equation, the

receive sensor patterni and a spotlight shape transmitter beam pattern (4 � beamwidth in both

azimuth and depression axes, with 30 dB mainlobe to sidelobe ratio). The difference in the

transmitter beam pattern used in both cases, may cause the clutter power from range gates far

away from the range gate under test, to be significantly different from one another. Because of

the transmit beam pattern used, as well as the Doppler compensation process performed on the

training data, neither broadening of the clutter notch nor presence of multiple clutter notches is

observed in this work.

iAccording to equation (C.5).
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Figure 4.11: JDL processor performance using Doppler interpolation, in situation with and
without range ambiguity, (a) Ideal processor, (b) Doppler Interpolation using
training data from range gates 25& 29, (c) Doppler warping using training data
from range gates 25 & 29.

4.9 Sample support for clutter sample covariance matrix estima-

tion

In the number of literature regarding STAP processing, training data for the STAP processor is

normally collected in the range dimension. For a sidelooking airborne monostatic radar, where

the clutter statistic is range independent, large amounts of training data can be collected in the

range dimension especially when operating in low PRF mode. The range samples/training data

are generally assumed to be independent identically distributed (i.i.d.), although Zatman and

Marshall [99] noted otherwise.
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As mentioned in the previous chapter, the clutter statistic of an airborne bistatic radar is range

dependent. Use of range samples require compensation to be performed on each of the range

gates used, which is rather computationally intensive. An airborne bistatic radar operating

in MPRF mode faces additional constraints. The low range ambiguity as well as finite pulse

width, limit the number of range gates available. As a result, obtaining additional training data

in the time dimension is highly necessary. The number of time samples available, depends on

the dwell time, scanning rate, mainlobe beamwidth of the radar and the coverage area (area of

interest).

In this section, we shall investigate the number of time samples available (considering only the

dwell time), as well as the number of training data required by the STAP processor and the JDL

processors.

4.9.1 Dwell Time

A phased-array pulse Doppler radar receiver receives discrete coherent bursts at the antenna

look angle. The duration of the bursts is specified by the coherent processing interval (CPI).

The measure of the signal-handling rate of a receiver, for a given reception from a particular

beam position is termed a dwell. A pulse Doppler dwell consists of a coherent bursts of duration

equal to the radar CPI. MPRF coherent bursts are typically transmitted and received within a

single dwell [165]. The duration of the dwell is known as the dwell time,


� � .



��� 	 � ��� � � � � (4.5)

where � ��� is the number of pulses within a single dwell.

Dwell time is often limited by the acceleration of the target, assuming that the radar system is

travelling at a constant velocity. From the beginning of the dwell till the end of it, the change

of target velocity, �	
 � , should not cause a significant change in its Doppler frequency. Signi-

ficant change is defined as a Doppler frequency change that is greater than the filter frequency

resolution [166]. It also assumes that the target does not exceed the range increment during the

dwell time.
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Change of target velocity, � 
 � is given as

�	
 � 	 � � � 
 � � (4.6)

where � � is the acceleration of the target.

The change of the target Doppler frequency, � � �

� ��� 	
� � �	
 �� � (4.7)

Substituting equations (4.5) and (4.6) into equation (4.7),

� � � 	
� � � � � � � � �� � (4.8)

The Doppler frequency bin separation, � � � , is given as

� � � 	 �
� ��� � � � � � (4.9)

In order to reduce the possibility of the target Doppler frequency from ending up in another

Doppler bin at the end of the dwell time,

� ��� � � � � � (4.10)

Substituting equations (4.8) and (4.9) into equation (4.10) and solve for � ��� ,

� � � � ��� � � �� 	
�

� ��� � � �

�
�

��� 	
�

� � � � � � �

� ��� 	
� �

� � � � � � � � (4.11)

A combat pilot is capable of withstanding an acceleration of 9 � the gravitational pull for a

couple of seconds. Let PRF = 20 kHz, � � = 90 meter/sec
�

and
�

= 0.03 meter, therefore the

number of time samples available for signal processing, � ��� is 258.
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4.9.2 Samples requirement for STAP processor

The true signal+clutter/interference+noise sample covariance matrix is given by

� 	 � ��� � �  � � � � � �  � � �
� �

(4.12)

where E[
�
] is the mathematical expectation operator and

� � is the received signal with target

signal present, from the range gate under test.

When the target signal is absent, then only the clutter/interference and noise are present, and

� 	 	
(4.13)

where
	

is the true clutter/interference + noise clutter sample covariance matrix.

In practice, Q is estimated by

�	 	
�
�

� � �
��� �
� � �	 
 � � � � �  
 � � � (4.14)

where

 � is the received signal from the training range gate (assuming that the target is absent).

Samples requirement is defined as the number of � snapshots (in both time and range dimen-

sion) required, such that the estimated clutter sample covariance matrix
�	

can be assumed to

be the true clutter sample covariance matrix
	

. A mean IF loss of less than 3 dB from that of

using the true clutter sample covariance matrix, is used to determine the samples requirement.

REED et al. [167] have shown that a adaptive system can achieve a performance roughly 3 dB

below the optimum signal to interference + noise ratio (SINR) (with the target signal absent),
� � � � � when the number of i.i.d. training data, is twice the order of the sample covariance

matrix: ��� � � � . � stands for the number of antenna array elements, while
�

stands for

the number of temporal pulse. If we want the SINR of the estimated clutter sample covariance

matrix,
� � � � �� 	 ��� � � � � � , then we require (see p.733 of [162]),

��� �
� � � � �

�
(4.15)

where ��� is the estimation performance factor. Table 4.2 shows the loss of performance with

various � values.
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� Loss of performance
� � � � 0.22 dB
� � � � 0.46 dB

 � � 0.67 dB
� � � 3 dB

Table 4.2: Performance loss for various � values.

This leads to the “rule of thumb” that the number of i.i.d. samples required to obtain a useful

clutter sample covariance matrix estimation (when the desired signal is absent) is at least twice

the number of adaptive degrees of freedom (DOF), for � � � �
and � � � � .

Monzingo and Miller (see p.298 of [168]) extended the result to include the case of a target

signal present. Feldman and Griffiths develop an approximate expression for � when the target

signal is present in the clutter sample covariance matrix estimation (see p.871 of [169]).

� 	  � � � � � �  � � � � � (4.16)

to be within 3 dB of the optimum SINR (with target signal present),
� � � � � .

� � � ���� is

the SINR using the estimated clutter sample covariance matrix with the target signal present.

Equation (4.16) is valid when

� 
 � �

� 
 � � �
� � � � � 
 � � �

This will be significantly larger than the previous � 	 � � � result, in most cases of interest.

In practice, obtaining lots of i.i.d. samples within the allowed time frame is not feasible. Data

samples are obtained with a tapped delay line, as shown in Figure 4.12. Data samples obtained

in this way are correlated with each other, hence are not i.i.d.-(independent). From Section

4.9.1 on dwell time, we know that a maximum number of 258 samples are available for signal

processing.

Let � ����� be the number of snapshots required to obtain the true clutter sample covariance mat-

rix. Figure 4.13 shows the number of ������� used to obtain the “optimum” STAP performance,
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Figure 4.12: Data samples from one of the training range gates.

with � 	 � � � 	 � � . With � ����� 	 � � � � the convergence rate (using ideal training dataii)

is more gentle than the curve using ������� 	 
 � � . The amount of change in the mean IF

loss from using � ����� 	 
 � � to using � ����� 	 � � � � is about the same as that from using

� ����� 	 � � � � to using � ����� 	 � � � � , but with significantly less simulation cost. Choos-

ing � ����� 	 � � � � reduces the amount of training data required as well as the computational

cost, without significantly affecting the convergence rate. As a result, for the rest of this work,

the optimum processor performance is assumed to be achieved when using the clutter sample

covariance matrix estimated, with ������� 	 � � � � .

Figure 4.14 shows the convergence rate of a STAP processor (with � 	 � � � 	 � � and

20 Monte Carlo simulations), using different kinds of training data. The curve labelled “Ideal

training data”, assumes knowledge of the clutter statistic in the range gate under test, range gate

27. In order to reach the 3 dB point, about 440 ideal data samples are required. In this section,

the 3 dB point is always defined as 3 dB below the mean IF loss of the processor using � �����

number of training samples. This amount of training data looks reasonable, as from the “rule of

thumb”, 384 i.i.d. samples are required to achieve a 3 dB performance loss. Keeping in mind

iiAssuming having training data from the range gate under test, but without target signal.
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Figure 4.13: STAP processor convergence rate with various � ����� .

that the ideal training data samples used are correlated with each other. When using training

data from the neighbour range gates, compensation using Doppler warping is carried out instead

of Doppler interpolation, as Doppler interpolation is not suitable to be used in straightforward

space-time processing.

The curves labelled “training range gate = 29” and “training range gate = 25,” show the conver-

gence rate using training data from only one of the neighbour range gates. Their convergence

rate to the 3 dB point (from the optimum mean IF loss), at about 3.68 dB (0.68 dB + 3 dB)

and 3.25 dB (0.25 dB + 3 dB) respectively, varies quite significantly from each other, by about

200 samples. This provides us with the first insight, that the statistic of the training data does

have certain influence over the convergence rate, assuming the Doppler compensation errors in

both cases are negligible. From earlier simulations in the previous chapter, we observed that the

Doppler warping compensation using training data from range gate 29, is not as good as that

using training data from range gate 25. It is therefore not surprising to see that the optimum

mean IF loss when using training data from range gate 29, is higher than that of using training

data from range gate 25.

The curve labelled “training range gates = 25 & 29”, shows the Doppler warping STAP pro-
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Figure 4.14: Mean IF loss plots with various training data.

cessor using training data from both range gates, range gates 25 & 29. The number of data

samples obtained from each training range gate (for this case when using training data from

two range gates) is half of that used when using training data from only one range gate. The

total number of � samples used for this case is therefore the same number of � samples used

in other cases. As both training range gates are far apart from each other, it can be can assumed

that half of the training data is to a certain extent, independent from the other half. The conver-

gence rate to the 3 dB point is observed to be about 320 samples, which is slightly less than the

value of
� � � . Using training data that is less correlated with or independent from each other,

produces a faster convergence rate as well as reducing the number of samples required to reach

the 3 dB point.

Figure 4.15 shows how the Doppler warping STAP processor performance varies with
�

(using

training data from range gates 25 & 29). According to the “rule of thumb” given by REED et al.,

the number of samples required to reach the 3 dB point for each of the
�

values are 320, 384

and 448 i.i.d. samples respectively. Simulations, however show that less samples are required

with the increase of
�

values. For
� 	 � � � � 	 � � and

� 	 � � , the number of samples

required to obtain a 3 dB mean IF loss, from that of the optimum mean IF loss point, are 348,
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337 and 324 respectively. In this case, the simulations result is not consistent with the REED

rule. The clutter statistic may have not changed significantly, with the increase in
�

, that may

cause an increase in � samples.
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Figure 4.15: Mean IF loss plots with various
�

.

4.9.3 Samples support for Doppler warping JDL processor (using i.i.d. samples)

Next, the convergence rate for the angle-Doppler domain STAP processor, when i.i.d. samples

obtained from the range dimension are used will be determined. How similar is it when com-

paring with similar work done by other researchers?

Figure 4.16 shows the number of i.i.d. samples required to obtain the minimum mean IF loss

when using the JDL processor with Doppler warping (DW) compensation. Two different kinds

of i.i.d. sample selection methods are used. Due to the distance of the transmitter and receiver

from the ground, the first range gate available for sampling is range gate 16. Range gates

far away from the range gate under test (assumed to be range gate 27) are also excluded, as

the clutter peak (required to perform Doppler warping) is too small to be correctly identified

by a 2-D DFT processor. As a result, only a maximum of 32 range gates are available. For

the simulations shown in Figure 4.16, the following parameters are used:
� 	 � � , � 	 � ,
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� � 	 � and � � 	 � (to be as similar as possible with the simulations discussed in Section

4.9.4).
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Figure 4.16: Mean IF loss plots with various combinations of using different training range
gates.

The red curve shows the convergence rate when the i.i.d. samples are obtained from range gates

nearest to the receiver (irrespective of the range gate under test). For example, when � samples

= 4, range gates 16, 17, 18 and 19 are used; when � samples = 12, range gates 16, 17, 18, 19,

20, 21, 22, 23, 24, 25, 29, 30 are used. The blue curve shows the convergence rate when the

i.i.d. samples are obtained from range gates nearest to the range gate under test. For example,

when � samples = 4, range gates 24, 25, 29, 30 are used; when � samples = 12, range gates

20, 21, 22, 23, 24, 25, 29, 30, 31, 32, 33, 34. The range gates beside the range gate under test -

the guard gates are excluded.

The Doppler warping JDL processor requires about 11 i.i.d. samples nearest to the receiver,

to obtain a 3 dB mean IF loss from the minimum mean IF loss. However, when using i.i.d.

samples nearest to the range gate under test, only 4 i.i.d. samples are required to achieve the

same performance. These simulations show that the “rule of thumb” does not apply to these

simulations because the samples are not completely i.i.d.-(identical). Errors in the Doppler

compensation process make the training range gates selection critical. The nearer the training
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range gate is to the range gate under test, the less is the error caused by the Doppler compensa-

tion process. Using training data with minimum error will reduce the number of i.i.d. samples

required. For the rest of the simulations explained in this thesis, i.i.d. training data should first

be obtained from the training range gates nearest to the range gate under test (when determining

the processor convergence rate).

4.9.4 Samples support for Angle-Doppler compensation (ADC) - JDL processor

(using i.i.d. samples)

Figure 4.17 shows the convergence rate of the JDL-ADC processor in two different bistatic

cases simulated and produced by HIMED et al.[1]. Figure 4.17(a) shows the convergence rate

of case 1 - the receiver is assumed to be moving at a velocity of 100 m/sec while the transmitter

velocity is 0 m/sec. Figure 4.17(b) shows the convergence rate of case 2 - the receiver is

assumed to be moving at a velocity of 100 m/sec while the transmitter velocity is 100 m/sec,

with an offset angle of 45 � . Other parameters used are: � � 	 � , � � 	 � , � 	 � � , � 	 � �
,

the transmitter center frequency is � � 	 �� � � GHz,
� � � 	 � ��� Hz, receiver height = 3.1

km, transmitter height = 4 km, and baseline separation = 100 km. Due to the geometry of the

airborne bistatic radar, the first range gate / smallest secondary data size, � , is 20.

(a) (b)

Figure 4.17: Convergence rate of JDL-ADC processor with receiver is assumed to be moving
at a velocity of 100 m/sec (a) case 1 - while the transmitter velocity is 0 m/sec (b)
case 2 - transmitter velocity is 100 m/sec, with an offset angle of 45 � . (Figure
obtained from [1]).

For case 1, it requires about 5 secondary data ( � samples) to reach the 3 dB average SINR

loss point, from the minimum mean SINR loss (from the solid line labelled “JDL-ADC”). On
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the other hand, for case 2, it requires about 15 secondary data to reach the 3 dB mean SINR

loss point, from the minimum average SINR loss (from the solid line labelled “JDL-ADC”).

According to the “rule of thumb”, the number of secondary data should be greater than 18

(
� � �  ��� � � �  ����� ) for both cases. Once again, the difference in the number of secondary

data may be the result of not having completely i.i.d.-(identical) data. It is interesting to note

that, for both cases, the number of secondary data required is less than 18, with case 1 - very

much less than 18. The use of diagonal loading may be the cause of this.

Comparing the convergence rate using training data obtained from range gates nearest to the

receiver (red curve) in Figure 4.16, with Figure 4.17(b), a similar convergence rate is achieved.

This similarity shows that the results obtained from the simulation carried out in this work (with

regard to the sampling requirement) is in line with the results obtained by other researchers.

4.9.5 Samples support for Doppler interpolation processor (using i.i.d. samples)

Figure 4.18 shows the convergence rate of the Doppler interpolation processor, with various
� �

using i.i.d. training data. The red, blue and magenta curves show the convergence rate

using
� � 	 � � � � 	 � �

and
��� 	 � � respectively, with

� 	 � � � � 	 � , � � 	 � , � � 	�� � �
and mainlobe beamwidth = � � .

It is observed that with the increase of � samples beyond 15, the mean IF loss increases signi-

ficantly. This is due to errors arising from the interpolation process. The further the range gate

is from the range gate under test, the more compensation required. Hence, the harder it is for it

to be compensated correctly.

From Section 4.2, it is not surprising to observe that using
� � 	 � produces the biggest mean

IF loss across most � samples range, and the mean IF loss decreases with the increase in
� �

.

However, with the increase in
� �

, the number of � samples required to obtain a 3 dB mean IF

loss from the minimum mean IF loss remains the same, at about 5. This is different from what

is expected - an increase in � samples with the increase in
� �

.

The convergence rate of the Doppler interpolation processor, with various
� �

using non-

independent data (with tapped delay line), from both training range gates, range gates 25 &

29, shall next be investigated.
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Figure 4.18: Mean IF loss curves of Doppler interpolation and power correction JDL pro-
cessor with various

� �
using i.i.d. training data.

4.9.6 Samples support for Doppler interpolationprocessor (using non-independent

data)

Figure 4.19 shows the convergence rate of the Doppler interpolation processor (using non-

independent data) with various
� �

. The non-independent data are obtained from range gates 25

and 29, with tapped delay line (the dimension sample). The different colour curves: red, blue,

magenta, cyan and black shows the convergence rate of the processor using
� � 	 � � � � 	

� � ��� 	 � � � ��� 	 � � and
� � 	 ��� respectively. For all cases, the number of angular bins

used, ��� , is 3. The respective colour arrows indicate the 3 dB mean IF loss from the minimum

mean IF loss of each curve.

With the increase of
� �

, the number of � samples required to reach the 3 dB mean IF loss from

the minimum mean IF loss reduces. It reduces from 426 with
� � 	 � to 340 with

��� 	 ��� .
This is about the same amount of � samples required by the STAP processor (shown in Figure

4.14). This number may be slightly bigger than what the dwell time can offer. But from Section

4.9.5, we know that, by using more nearby range gates, e.g. range gates 24 and 30, the number

of � samples required can be further reduced.
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Figure 4.19: Mean IF loss plots of Doppler interpolation processor with various
� �

using
non-independent data.

It is also interesting to note that, to obtain a mean IF loss of 13.34 dB, 426 � samples are

required when using
��� 	 � . However by increasing

� �
to 18, only 52 � samples are

required.

4.9.7 Discussion on samples support

The samples support for an airborne bistatic clutter suppression processor can be quite differ-

ent from a sidelooking airborne monostatic clutter suppression processor. In the sidelooking

airborne monostatic radar, the clutter echoes are assumed to be range independent. No Dop-

pler compensation is required for the training data and hence, no Doppler compensation error

will occur. On the other hand, the range dependent nature of the bistatic clutter echoes makes

Doppler compensation a necessity.

All Doppler compensation methods currently available are only an approximation. A certain

amount of error is to be expected. Different Doppler compensation methods produce different

amounts of error when dealing with different training range gates, in different radar config-

urations and at different look angles. Comparing ADC and Doppler warping, ADC offers
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considerable improvement, especially when � �
� ��� ( � samples are obtained in the range

dimension) [152]. Several airborne bistatic radar configurations can be used to mitigate the

range dependency of the clutter Doppler (page 361 of [68]). They operate by reducing the stat-

istical differences between clutter echoes in different training range gates. Section 3.7.3 shows

the Doppler compensation error when using Doppler warping and Doppler interpolation with

power correction, at � � = -33.48 � . When using training data from range ranges 25 & 29, Dop-

pler warping produces smaller error than Doppler interpolation at � � = 45 � . This advantage

disappears at � � = -33.48 � . The use of separate Doppler bins compensation allows Doppler

interpolation processor to offer better performance than Doppler warping processor at � � =

-33.48 � . Because of the above reasons, the samples support analysis carried out in this work

may be different from the analysis carried out by other researchers, when different parameters,

Doppler compensation methods or assumptions are used.

The blue line in Figure 4.16 (using Doppler warping) and Figure 4.18 (using Doppler inter-

polation) show the amount of error produced by different Doppler compensation processors.

Doppler interpolation seems to produce more error when performing Doppler compensation

for further training range gates (with respect to the range gate under test) then Doppler warp-

ing. Some kind of error detector may be required to prevent incorrectly Doppler compensated

training range gates from being used and degrading the clutter suppression processor perform-

ance.

Using a value of � less than the dimension of the covariance matrix will result in a singular

matrix. Overcoming this problem using diagonal loading, allows the use of a smaller training

sizes.

Similar convergence rate graphs obtained from the blue curve in Figure 4.16 and from the solid

line in Figure 4.17(b) provides confidence in the convergence simulations carried out in this

work. The solid line in Figure 4.17 (a) and (b) show that the samples support varies with the

airborne bistatic radar configuration, when using the ADC - JDL processor. This observation

is not reflected by REED’s “rule of thumb”. HALE et al. further investigated the REED “rule

of thumb” for cross spectral metric (CSM) - a kind of reduced dimension STAP algorithm -

and concluded that REED rule does not hold for the reduced dimension STAP algorithm studied

[124]. Using JDL with Doppler interpolation and power correction, the sample support is shown

to be about 5, when using i.i.d. training data, for all
� �

values investigated (as shown in Figure

4.18). This shows that REED rule also does not hold for the situation simulated in this case.
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Figure 4.18 also shows that the minimum mean IF loss achievable with
� �

= 15 using only

range samples is 3.82 dB. On the other hand, when using non-independent training data - train-

ing data obtained in both range dimension (range gates 25 & 29) and time dimension - a smaller

minimum mean IF loss of 2.13 dB is obtained. The slight disadvantage of using training data

from both dimensions is the increase in the number of � samples used, which increases the

computational cost of forming the estimated clutter sample covariance matrix.

Direct comparison between the samples support for (when using non-independent training data)

the STAP processor and the Doppler interpolation processor can not be made, as the processor

dimension used in each case are different. However, Figure 4.19 shows that the samples support

(when using non-independent training data) for the Doppler interpolation processor is compar-

able to the samples support for the STAP processor (shown in Figure 4.15). The reduction in

the clutter sample covariance matrix size from
� 	 � � � � 	 � to

� � 	 � � � � 	 � , does not

seem to reduce the sample support.

4.10 Computational cost

For the JDL based processor, the computational cost of performing Doppler compensation in

angle-Doppler domain (Doppler interpolation), is considered to be much less than that of per-

forming in space-time domain (Doppler warping). This may sound rather surprising, as com-

plex phasor multiplication is less computationally intensive than the interpolation process. The

reason lies in the fact that, for Doppler warping, a 2D DFT/FFT process must be carried out

after the multiplication process for every training range gate undergoing Doppler compensation.

Assuming that 10 training range gates are required to obtain a good estimation of the clutter

sample covariance matrix (for both Doppler warping and Doppler interpolation processor) and

power correction is not used.

When performing Doppler compensation for 48 (for PRF = 20 kHz) different range gates under

test, the number of 2D-FFT process required to transform space-time domain data to angle-

Doppler domain is as follow:

For Doppler compensation using Doppler warping, the 2D-FFT process can only be carried out

after the Doppler warping process has been carried out. For every range gate under test, each

training range gate needs to be compensated differently. Therefore, 10 (for 10 training range

gates) 2D-FFT processes are required for each range gate under test. 48 different range gates
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under test will hence require 48 (number of range gate under test) � 10 (number of 2D-FFT

processes per range gate under test) = 480 2D-FFT processes.

On the other hand, for Doppler compensation using Doppler interpolation, the 2D-FFT process

is carried out before the Doppler compensation process. With 48 different range gates under

test, we can assume that there are 48 training range gates (although not all training range gates

will be used by each range gate under test). Regardless of the number of range gate under

test, only 1 2D-FFT process is required for each available training range gate. As a result, 48

different range gates under test will require only 48 (training range gates) � 1 (number of 2-D

FFT processes per training range gate) = 48 2-D FFT processes.

The number of 2D FFT processes required when using Doppler warping will be much larger

when low PRF is used. This is because, there will be more range gates under test when operating

in low PRF mode. This comparison is only fair when mention is made about the possibility that

the FFT processor size, when using Doppler warping, may be smaller than that used by the

Doppler interpolation compensation.

4.11 Summary

This chapter has presented an investigation on a variety of parameters that will affect the per-

formance of the proposed Doppler interpolation processor.

The number of Doppler bins (
� �

) used will directly determine the computational cost and the

processor performance.
��� 	 � out of a maximum

���
of 128 is shown to offer the best

performance versus computational cost trade off. Using alternate Doppler bins selection offers

better detection of low relative velocity targets, without increasing computational cost. If a

tuned DFT is not being used, use of 3 spatial bins ( � � 	 � ) proves to be sufficient.

The performance of the interpolation process is greatly determined by the algorithm used as

well as the DFT size, � � . With temporal pulse
�

= 24 and � � = 128, the processor per-

formance manages to obtain a maximum IF loss of 10 dB at the clutter notch region. The

compensation process is shown to be most sensitive to error in the transmitter flight direction,

among the estimated parameters investigated. Diagonal loading increases the robustness of

the processor when experiencing mismatch between the estimated and the true clutter sample

covariance matrix.
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Range ambiguity is the major concern for a MPRF airborne bistatic radar. Due to weaker

clutter power arriving from further range gates, range ambiguity has no obvious effect on the

compensation performance. When using i.i.d. training data from the range dimension, the

Doppler interpolated processor required a sample support of about 5 � samples for various
� �

values considered. On the other hand, when using non-independent training data (obtained

from the time and range dimension), reducing the rank of the Doppler interpolated processor

does not reduce the amount of samples required to form a good clutter sample covariance

matrix estimation. For
� �

= 18 and � � = 3, the number of � samples required to reach the 3

dB point is 340 non-i.i.d. samples. The computational cost of using the Doppler interpolation

compensation for a JDL processor is shown to be much less than that required by the Doppler

warping compensation.
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Chapter 5
Conclusion

This chapter serves three purposes. First, to present a summary of the work that has been

conducted in each of the previous chapters. Secondly, to highlight the main conclusions drawn

from the novel findings. Finally, to conclude the chapter with suggestions on future research

options.

5.1 Summary

Chapter 1 described different kinds of radar systems, primarily the airborne monostatic radar

and the airborne bistatic radar. The advantages and disadvantages of using an airborne bistatic

radar, as well as the motivation of this work - to increase the probability of detecting targets

employing stealth technology, are highlighted. Scaled measurements of a stealth target per-

formed in an anechoic chamber at DASA, Bremen, provides very strong evidence that airborne

bistatic radar may indeed be used to detect stealth targets, if the bistatic clutter can be properly

suppressed. Assumptions made in this work are also stated.

Chapter 2 investigated the clutter Doppler range dependency in the Doppler-azimuth plane.

Relationships between the clutter Doppler range dependency for a sidelooking airborne mono-

static radar, a forward looking airborne monostatic radar and a forward looking airborne bistatic

radar are established. In the Doppler-azimuth plane, clutter Doppler range dependency exists

in both airborne monostatic and bistatic radar systems. However due to the look angles nor-

mally employed, clutter echoes for a sidelooking airborne monostatic radar appear to be range

independent. Clutter echoes for a forward looking airborne monostatic radar and an airborne

bistatic radar (for both sidelooking and forward looking) are in general range dependent. The

change in range dependency fluctuates widely with azimuth angle for an airborne bistatic radar,

but not as much for a forward looking airborne monostatic radar. It is also observed that the

clutter Doppler range dependency depends on the bistatic radar configuration. Certain bistatic

configurations can be chosen to minimise the range dependency.
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Clutter Doppler range dependency will widen the clutter notch of the STAP processor, and

cause slow-relative velocity targets to be suppressed, or even go undetected. A number of dif-

ferent methods can be used to mitigate the clutter Doppler range dependency. Among them, the

derivative-based updating, Doppler warping, 2-D angle-Doppler compensation and the scaling

method offer some form of Doppler compensation. The Derivative-based updating and scaling

method may not be able to react to the widely fluctuating nature of bistatic clutter Doppler

range dependency.

Chapter 3 begins with a description of the JDL processor, a reduced dimension angle-Doppler

domain STAP processor used as the clutter suppression filter in this work. The peak clutter

Doppler frequency difference between the training range gates and the range gate under test

is determined using the proposed equation (3.11). Equation (3.11) is shown to be more robust

to error in estimated parameters than equation (3.9), which is used in the Doppler warping

and the ADC Doppler compensation. Doppler compensation in the angle-Doppler domain is

carried out by interpolation of Doppler domain data. Angle-Doppler domain compensation is

highly desirable when using the JDL processor, as it removes the need of performing Fourier

transformations after each training range gate space-time Doppler compensation, and for every

range gate under test. Power correction is used to compensate for the difference in range gates

clutter echoes power, caused by the distance travelled and the beam pattern of the transmitting

and receiving antenna.

While Doppler interpolation may be considered to be an approximation of the Doppler warping

process, and hence likely to have a poorer performance than Doppler warping, it was noted that

when using a particular range gate for training (range gate 29), Doppler interpolation outper-

forms Doppler warping in the region outside the clutter notch. This shows the limitation of

Doppler warping when processing certain training data. The advantage of using 2-D ADC over

Doppler warping is not significant in the cases considered here, as the training range gates used

are in close vicinity to the range gate under test. Another advantage of performing Doppler

compensation in the angular-Doppler domain is the ability to carry out different amounts of

Doppler compensation in each of the two domains. Doppler warping and ADC are only cap-

able of performing an actual Doppler compensation on the peak clutter echoes, compensation

on other clutter echoes is only approximated. Separate Doppler bins compensation has shown

to offer better processor performance when Doppler warping fails to make any obvious im-

provement. Tuned DFT is proposed to further reduce the dimension of the localized processing
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region (LPR) clutter sample covariance matrix. By reducing scalloping loss, similar processor

performance can be obtained with great reduction in computational cost.

In Chapter 4, the performance of the JDL processor using Doppler interpolation and power

correction is analysed. Different parameters such as the number of Doppler bins used,
� �

, the

number of spatial bins used, � � , the size of the DFT, � � , errors in estimated parameters and

the size of the load-to-clutter+white noise ratio (LCNR), are used to determine its influence

over the processor performance. It is observed that processor performance of within 3 dB of

the optimum performance is achieved when
� �

is between 9 and 13. This observation may

be different for other JDL processors, as the proposed processor performance is determined by

the Doppler interpolation compensation process. Using alternate Doppler bins selection allows

computational reduction, but with performance loss at the region outside the clutter notch, or

same computational cost, but with better slow relative velocity target detection ability. Besides,

using the tuned DFT, the number of spatial bins used by the Doppler interpolation processor,

��� can be reduced to 2 (with the number of antenna array element used, � = 8) when the

spatial bins used are selected carefully. The accuracy of the interpolation process depends

greatly on the size of the DFT, � � , in relation with the amount of temporal pulse (
�

) used,

and the interpolation method used. The size of the DFT processor, which in turn determines

the number of temporal zero padding,


, required, should be of size
�
�

i (in order to apply the

fast Fourier transformation) and very much greater than
�

.

Among the three estimated parameters examined, the processor performance is greatly affected

by errors in the flight direction and position of the transmitter platform. It is also observed that

the processor performance is not directly influenced by the absolute error value, as the mean IF

loss is not symmetrical about the 0% error axis. Diagonal loading (decrease in clutter to noise

ratio) is often used to make the processor robust to signal mismatch. Diagonal loading is used

in this work to ensure that the clutter sample covariance matrix is not singular and to reduce the

difference between the estimated and true clutter sample covariance matrix.

The effect of range ambiguity on Doppler compensation is studied. Bistatic clutter Doppler

range dependency shows that different amounts of Doppler compensation are required for clut-

ter echoes from different range distances but which fall in the same range gate. However, with

the significant reduction of power with distance and transmitter beam pattern, Doppler com-

pensation error caused by using a single Doppler compensation does not have any obvious

iwhere � is a positive real number
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effect on the processor performance.

The assumption of having i.i.d. training samples is hardly fulfilled in this work. Training data

obtained from the range dimension is not identical to each other even after Doppler compens-

ation process, because of imperfect Doppler compensation. Greater Doppler compensation

errors are experienced by training range gates further away from the range gate under test. As

a result, training data from range gates nearest to the range gate under test (excluding the guard

gates) should always be used first in the estimation of the clutter sample covariance matrix. Due

to the limited number of suitable range gates available for clutter sample covariance matrix es-

timation, time dimension data is often required for the estimation process, even though they

are not independent from each other. Simulation results show that, when using both range and

time dimension training data, the number of samples required to reach the 3 dB point below the

optimum processor performance is not directly proportional to the size of
� �

(the size of the

clutter sample covariance matrix). On the other hand, bigger
� �

value seems to require lesser

training data to obtain similar processor performance as those obtained using smaller
� �

value,

but at the expense of higher computational cost.

5.2 Suggestion on future research options

To conclude this thesis, a couple of suggestions on future research options are given.

As discussed in Section 3.7.1, the Doppler interpolation processor and the Doppler warping

processor performance vary with the training data used. Further research into why the Doppler

interpolation processor performs better than Doppler warping when using training data from

range gate 29 should be carried out.

With the land area consisting of only less than 30% of the total earth surface area, it will be

desirable to operate the airborne bistatic radar above sea/ocean surfaces. Sea clutter is known

to be quite different from land clutter. Doppler compensation algorithms developed for the

suppression of land clutter may not be suitable for sea clutter suppression. Further research

may concentrate on studying Doppler compensation algorithms for suppression of sea clutter

for an airborne bistatic radar system. In addition to this, clutter echoes from a coastal area,

when the airborne bistatic radar system approaches the land from the sea or operating along the

international sea boundary, may require different types of Doppler compensation algorithm.
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Due to time constraints, the algorithm for separate bins compensation is not fully developed.

Among all Doppler compensation algorithms currently available, separate bins compensation

seems to be the only algorithm that offers the possibility of performing multiple Doppler com-

pensations on each training range gate, at the same time. Multiple Doppler compensation plays

an important role in clutter suppression when significant changes in clutter Doppler range de-

pendency occur as the azimuth angle changes or when a wide mainbeam is used. This is be-

cause the clutter echoes from different azimuth angles, require different amounts of Doppler

compensation. Further investigation on the clutter echoes relationship with each Doppler bin

(due to the Fourier transform) may provide better insight on the precise amount of Doppler

compensation required for each Doppler bin.

When using a small number of array elements (e.g. � = 8), the angular bins after Fourier

transformation corresponds to wide angles of arrival. Increasing the number of array elements

can be used to reduce the angle coverage by each of the angular bins. If the mainlobe and

significant sidelobe ii clutter echoes are spread across two or more angular bins, different Dop-

pler compensations may be required for each of those angular bins. This is because different

angular bins correspond to different azimuth angles, which have clutter echoes with different

range dependencies. Further exploiting the multiple Doppler compensations (in both angular

and Doppler dimension) capability offered by the Doppler interpolation process, better JDL

processor performance can be achieved.

The “rule of thumb” regarding the number of samples required for the estimation of the clut-

ter sample covariance matrix is derived using i.i.d. samples. When collecting training data,

either in range or time, or both dimensions, the training data are often correlated with each

other (non-i.i.d.). Further analysis on the relationship between the number of samples required

and the correlation between samples is required. For an airborne bistatic radar system, using

the absolute minimum number of training data required will help to prevent widening of the

clutter notch, caused by error in the Doppler compensation process. Reducing the training data

required will also reduce the computational cost associated with forming the clutter sample co-

variance matrix, as well as the dwell time required, which will allow a faster scanning rate or

narrower beamwidth.

The Doppler interpolation process is considered to more computational intensive than com-

plex phasor multiplication used by Doppler warping. Computationally effective interpolation

iifor low mainlobe to sidelobe ratio
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processes can be investigated to reduce the computational cost of the proposed Doppler inter-

polation processor.
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Appendix A
Minimum variance estimator (MVE)

Consider a linear uniformly spaced beamformer, the beamformer output, in response to the

antenna element inputs �  � � � �  � � � � � ��� � � �  � � � � � � , is given by

�  � � 	
� � �
��� � �

�� �  � � �	� (A.1)

where � is the elemental weights of the beamformer, superscript � is the conjugate operator

and � is the number of antenna elements used.

For the special case of a sinusoidal excitation, the input at time



is given as

�  
 � 	 � ��� � (A.2)

where � is the angular frequency of the excitation, which is normalised with respect to the

sampling rate. For the case of the array illuminated by an isotropic source located in the far

field, such that, at time


, a plane wave impinges on the array along a direction specified by the

angle
� � with respect to the perpendicular to the array. Equation (A.1) is rewritten as

�  
 � 	 � �  
 �
� � �
��� � �

�� � � � ��� � (A.3)

where the direction of arrival is defined by the electrical angle
� � that is related to the angle

of incidence, � �  
 � is the electrical signal picked up by the antenna element labelled 0 that is

treated as the point of reference.

The constrained optimisation problem to be solved, may be stated as follows:

Find the optimum set of elemental weights � � � � � � � � ��� � ��� � � � � � that minimises the mean

square value of the beamformer output �  
 � , subject to the linear constraint

� � �
��� � �

�� � � � ��� � 	 � (A.4)
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The beamformer is narrowband in the sense that its response needs to be constrained only at

a single frequency. To solve this constrained optimisation problem, the method of Lagrange

multipliers (see page 895 of [58]) is used. The real-valued cost function � that combines the

two parts of the constrained optimisation problem is defined as

� 	
� � �
��� �

� � �

�
� � �

�� � �
�  � � �	� � � � � � � �

� � �
��� � �

�� � � � � � � � � ��� (A.5)

where
�

is a complex Lagrange multiplier. To solve for the optimum values of the elemental

weights of the beamformer that minimise � . the gradient vector ��� is determined and set equal

to zero. The � th element of the gradient vector ��� is given as

� � � 	 �

� � �

�
� � � �

�  � � �	� � � �
� � � � � � (A.6)

Let � � � be the � th element of the optimum weight vector � � . Then the condition for optimality

of the beamformer is described by

� � �

�
� � � � �

�  � � �	� 	 �
� �

�
� � � � � � � � 	 � � � � � � � � � � � (A.7)

This system of � simultaneous equations defines the optimum values of the beamformer’s

elemental weights. Switching to matrix notation, the system of � simultaneous equations

given in equation (A.7) is rewritten simply as

� � � 	 �
� �

�
�  � � � (A.8)

where � is the � -by- � correlation matrix, and � � is the � -by-1 optimum weight vector of

the constrained beamformer. The � -by-1 steering vector �  � � � is defined by

�  � � � 	 � � � � � � � � � ��� � � � � � � � � � � � � � 

(A.9)

Solving equation (A.8) for � � ,

� � 	 �
� �

� � � � �  � � � (A.10)

where � � �

is the inverse of the covariance matrix � , assuming that � is nonsingular.

127



Minimum variance estimator (MVE)

From equation (A.4),

� �
� �  � � � 	 � (A.11)

To eliminate
� �

from equation (A.10), Hermitian transpose is carried out on both side of equa-

tion (A.10) and postmultiplied by �  � � � . Then using the linear constraint of equation (A.11),

�
	 �

�

� �  � � ��� � � �  � � � � (A.12)

Substituting equation (A.12) into equation (A.10), the optimum weight vector is given as

� � 	 � � � �  � � �
� �  � � ��� � � �  � � � � (A.13)

Expressing the minimum mean-square value (average power) of the optimum beamformer out-

put as the quadratic form

� � � � 	 � �
� � � � � (A.14)

Substituting equation (A.13) into equation (A.14) and simplifying it,

� � � � 	 �
� �  � � ��� � � �  � � � (A.15)

Generalising the result and obtain an estimate of variance as a function of direction by formu-

lating � � � � as a function of
�

, the MVE (spatial) power spectrum is defined as

� ������ � � 	 �
� �  � � � � � � �  � � � (A.16)

The MVE (spatial) power spectrum can be expanded into a spatial-temporal power spectrum

by replacing the covariance with a space-time covariance matrix and replacing �  � � � with
�  � � � � � � , where � � is the angular frequency of interest.
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Appendix B
Relative Doppler frequency,

���
, in term

of the look direction of the array, �����	�
Relating the relative Doppler frequency, � � (equation (2.3)) with the look direction of the array,

������� , equation (2.5) is first solved for ����� � . From equation (2.5)

��� ��� 	  ����� � ����� � � � � � ����� �

� ����� � �	����� � (B.1)
��� ���
����� � 	 ��� � � ����� � ��� � � ��� � �

� � � � � (B.2)

����� �
����� � � ����� � ����� � 	

� � � ����� �

� ����� � (B.3)�
�����	�
����� � � ����� � ����� � � �

	  � � ����� �

� �	� � � � �
(B.4)

�
�����	�
����� � � �

� �

�
����� �
��� � � � ����� � ����� � � ����� �

� ��� � � �
	 ����� � �

� ����� �

� � � � � �
(B.5)

����� �

� ����� � �
� �

�
����� �
��� � � � ����� � ����� � � ����� �

� ��� � � � � �
��� �	�
����� � �

�

� ����� � �
	 � (B.6)

����� �

�  ����� � � � ����� � � � � �

�
�����	�
����� � � ����� � ����� � �

�
��� �	�
����� � � �

� ����� � �
	 � (B.7)

����� �

� � �

�
�����	�
����� � � ����� � ����� � �

�
��� �	�
����� � � �

� ����� � �
	 � (B.8)

����� � 	

� ��
�����
���� � � ����� � ����� � �
�
� � ��
������
���� � � ��� � � ����� � � �

� � ����
������
���� � � �

� ����� � � �
� (B.9)
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Relative Doppler frequency, ��� , in term of the look direction of the array, �����	�

����� � 	 �����	�
����� � ��� � � � �

��� �
����� �
����� � � �

����� � �
�

�
��� �	�
����� � � � � ����� � �

(B.10)

Substituting equation (2.4) into equation (2.3)

� � 	 ����� � ��� � � (B.11)

Substituting equation (B.10) into equation (B.11)

� � 	 ����� �
�
��� �	�
����� � ����� � � �

��� � ��
 � �
����� � �

�

����� � �
�

�
�������
����� � �

� � ����� � � � (B.12)

� � 	 �����	� ����� � � ����� � �
��� �

�����	�
��� � � �

�

����� � �
�

�
�����	�
����� � �

� � � � � � �
(B.13)

� � 	 �����	� ����� � � � ����� � � ����� � �
� ����� � � � ����� � � ����� � �

(B.14)

� � � �����	� ����� � 	 � � ����� � � ����� � �
� ����� � � � ����� � � ����� � �

(B.15)

 � � � �����	� ����� � � �

	 ����� � � ����� � �
� ����� � � � ��� � � � ����� � �

(B.16)

� �

� � � � � ������� ����� ��� ����� � � ����� � �
	 ����� � � ����� � �

� ��
� � � � ����� � � � � � � �
(B.17)

� �

� � � � � ������� ����� ��� ��
� � � � ����� � � � � � � �
	 � (B.18)

� � 	
� �����	� ����� � � �  � ����� � ����� � � �

� �  ��
� � � � ����� � � � � � � � �
� (B.19)

� � 	 ��� �	� ����� � �	�  �����	� ����� � � �

�  ��
� � � � ����� � � ����� � � � (B.20)
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Appendix C
Clutter Model

The geometry of an airborne bistatic radar is shown in Figure 2.8. For sensor at 
 � � � � � � � , the

received signal is given as

� �  
 � 	 � �  � � � � � � � � � � � � ���
� �  � �	�
�  
 � � 	 ������ � � � � � ������� � �

�   
 � � � � � 	��������  � � � � � � � � � � � � � � ������� � � � � � � ����� � � � �
� 	 � � ��� � � 	 ����� � � (C.1)

where � is the number of array elements.

Since the received clutter echoes are a sum over a larger number of scatterer, they are asymp-

totically Gaussian. � � is a circular complex Gaussian-distributed variable (Gaussian amplitude

and uniformly distributed phase).

The time delay for sample � to reach the receiver is given as:

�
� � �
� � �  � � �

�
� � � � � � � � 	 ����� � � �	�

�  
 � ������ � � � � � ������� � �

� 
 � ��� �� � � � � � ������� � � �  � � � � � ��	 � � � 	 � � � �  � � (C.2)

where


is the number of time dimension data snapshots.

While the extra time delay taken to reach � -th sensor with respect to the sensor at the origin is

given as:

�
� � �
�  � � � � � � 	 ���
� � � �	�

�  
 � ����� � � � � � � � � � � ������� � � �
� � ����� � � � � (C.3)
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Clutter Model

The clutter model is given as

� � � � � � 	
� ���

�
�
� � � �� � � �

�
� � � � � � � � �  � � � � � �   � � � � � �

�  � � � � � � �
� � �� � �  � � � � � � � � � � � � �

� � �
�  � � � � � � � � (C.4)

where
�  � � � � � � � stands for the transmitter directivity pattern,

  � � � � � � � stands for the re-

flectivity of the ground which is general range dependent, while �  � � � � � � � stands for the

sensors directivity patterns and is given as

�  � � � � � � 	 � � �  � � ������ �  � � � � � � � �
� � �  � � ������ �  � � � � � � � � (C.5)

where the angle � � and
� � denote the direction of the maximum of the sensor pattern.
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Appendix D
Doppler frequency difference between

range gates

The Doppler frequency difference between the range gate under test and the training range gate,

is determined using both pre-known parameters and the received data.

Using only the pre-known parameters, the Doppler frequency difference is given as

� � 	 � �� � � �� (D.1)

where � �� and � �� are the calculated clutter Doppler frequency (at a particular look direction)

from range gates � and � respectively. Equation (D.1) does not provide a good estimation of

the Doppler frequency difference as it does not take into account the errors that may exist in the

pre-known parameters.

In order to consider the errors in the estimation of the pre-known parameters, an extra term
�
� ��

(obtained from the received data) is added to equation (D.1), which can now be expressed as

follow

� � 	
�
� ��
� ��  �

�� � � �� �

� � 	
�
� ��  �

�� � � ��
� �� �

� � 	
�
� ��  � � � ��

� �� � (D.2)

where
�
� �� is the estimated clutter Doppler frequency (at a particular look direction) from range

gate � using the received data. If there is not error in the pre-known parameters (
�� ��� �
� 	 � ), and

equation (D.2) is equivalent to equation (D.1).
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Appendix E
Errors in pre-known parameters for

calculation of Doppler frequency
difference between range gates

Equation (3.11) is considered to be more robust against errors in pre-known parameters than

equation (3.9) as it uses part of the received data. The errors in pre-known parameters are gen-

erally caused by sudden change in the transmitter’s movement (e.g. acceleration of transmitter

platform) which is not communicated to the receiver on time. Such errors include error in the

transmitter’s velocity, flight direction and position. Error in the transmitter’s velocity is used

here to develop the equations (3.11) and (3.9) with relation to the error in pre-known para-

meter. It is assumed that there is no other errors in the pre-known parameters (all parameters

are constant except the transmitter velocity).

From equation (3.11),

� � 	
�
� ��
�
� � � ��

� ���� (E.1)

where
�
� �� , � �� and � �� are the estimated clutter Doppler frequency from range gate � using

received data, the calculated clutter Doppler frequency from range gates � and � respectively.

� �� 	 
 
 �����  � � � � � � � �	����� � � � � � 
 � ������ � � � � � ������� � ��� �� (E.2)

and

� �� 	 
 
 ������ � � � � � � � ������� � � � � � 
 � ��� �  � � � � � ������� � ��� �� (E.3)

the angles � � � � , � � � � , � � � � and
�
� � � are the transmit azimuth and depression angles from range

gates � and � respectively. The scalar � � is the clutter azimuth angle of arrival,
� ��� � � � ��� � are the

depression angles of arrival from range gates � and � respectively. The scalars
�
� and

� � denote

the flight directions of the transmitter and receiver respectively (see Figure 2.8).
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Errors in pre-known parameters for calculation of Doppler frequency difference between
range gates

In order to simplify the equations (E.2) and (E.3), we let

� 
 � 	 ������ � � � � � � � ������� � � � � (E.4)

� � � 	 
 � ������ � � � � � ������� � ��� � (E.5)

� 
 � 	 ������ � � � � � � � ������� � � � � (E.6)

� � � 	 
 � ������ � � � � � ������� � ��� � (E.7)

then substitute equations (E.4) - (Equation E.7) into equations (E.2) and (E.3), finally equations

(E.2) and (E.3) in term of � 
 � ��� � � ��� 
 � and � � � and then used to express equation (E.1) as

follow

� � 	
�
� ��  � � 
 
 � 
 � � � � �


 
 � 
 � � � � � � (E.8)

Differentiating � � with respect to 
 
 , we obtain

� � �
� 
 
 	

� �
� ��

� 
 
 �
� �
� �
�
� ��� � � � � � � � �
� � � � � � � � �
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� � �
� 
 
 	 �

� ����� � � � � � � � � � � �
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� 
 
 � (E.9)

Using differentiation of quotient of two functions:

��� � 	 �

 �

� �
� 
 	


�� �
� �
� ��� �

� �
 � (E.10)

where � and 
 are functions of 
 .

� � �
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 � 
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 � 
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 	 �
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 � 
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 � 
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 � 
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�
� ��  
 
 � 
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 � 
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Errors in pre-known parameters for calculation of Doppler frequency difference between
range gates

�
� �
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 	 �

� �
� �� � 
 �  
 
 � 
 � � � � � � �

�
� �� � 
 �  
 
 � 
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 � 
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�
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 	 �
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� ��
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 � � � � � � � � 
 �  
 
 � 
 � � � � � �

 
 
 � 
 � � � � � � � � � (E.11)

From equation (3.9)

� �  � � �	� 	
�
� �� � � �� (E.12)

Using equations (E.4), (E.5) and (E.2) into equation (E.12),

� �  � � �	� 	
�
� �� � 
 
 � 
 � � � � �� � (E.13)

If we differentiates � �  � � �	� with respect to 
 
 , we obtain

� � �  � � �	�
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 �� � (E.14)

Now, let the function � � �  
 
 � = � � , using Taylor series (taking only the first order differenti-

ation into account)
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 �

(E.15)

where
�
�  � �

�
is the magnitude of the error in estimating the Doppler frequency difference

between range gates � and � , due to error in 
 
 , when using equation (3.11).

Applying Taylor series to function � � � � ��� � �  
 
 � , where � � � � ��� � �  
 
 � = � �  � � �	� , the magnitude of
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Errors in pre-known parameters for calculation of Doppler frequency difference between
range gates

the error in estimating the Doppler frequency difference between range gates � and � becomes

�
�  � � � ��� � � �

	
�
� � � � � ��� � �  
 
 �

� 
 

� � �
�	
 
 �

�
�  � � � ��� � � �

	
�
� � 
 �� � � �

�	
 
 �
� (E.16)
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Appendix F
Derivation of ��� �����

The transmitter-target/scatterer-receiver range measured by a bistatic radar is the sum, � � 
 �
� � � =

� ���� , (see to Figure 2.8, and defined in equation (3.27)) = 2 � � . This sum locates the

target/scatterer somewhere on the surface of an ellipsoid, the foci of which are the transmitting

and receiving locations, separated by the baseline
 � (defined in equation (3.24)), and with

major axis of 2 � � . The ellipsoid is defined by the parameters, � � , � � , � � and
 � , and is the

isorange ellipsoid of constant range sum 2 � � as shown in Figure F.1 [5].
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Figure F.1: Ellipsoid of constant range sum

Any point on the ellipsoid can be expressed by


 � ����
� �

� � � ����� �
� � � ����

� � 	 � (F.1)

where 
 �  ��� � � � ���� and � � ���� are the 
 , � and � -axes coordinate of the
�

scatterer from range

gate � . Let 
 � � be the x-axis distance from the receiver,


 � � 	 
 � ���� �


� (F.2)
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Derivation of 
 � ����

and

��� 	
�  ���

� (F.3)

� � 	 � � 	 �
�
� � ���� �

�  �

� (F.4)

Assuming that the transmitter and receiver are aligned on the flight direction (x-axis), then

� � ���� 	 
 � � � 	 �  � � � � (F.5)

With the transmitter and the receiver are travelling parallel to the ground,

� � ���� 	 � 
 	 � � � (F.6)

Substitute equation (F.2) into equation (F.5), we obtain

� �  ��� 	  
 � ���� �


� � � 	 �  � ��� (F.7)

Finally, we substitute equations (F.3), (F.4), (F.6) and (F.7) into equation (F.1) and solve for


 � ���� , it yields the following expression
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� � � � � � � � � � � � � � �
 �
� � � � �

�
�
���� ��� � � �
� � � � � � � � � � (F.8)
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ABSTRACT

In airborne bistatic radar the clutter Doppler is range de-
pendent. STAP processor using training data from other
range gate will experience widening of clutter notch.
Widening of the clutter notch causes a major problem in de-
tecting slow moving target. In this paper, Doppler compens-
ation using interpolation in the angle-Doppler domain, for
joint domain localised processor (JDL) is proposed. Com-
parison is made with Doppler compensated processor pro-
posed by Kreyenkamp and Klemm [1]. Significant improve-
ment in processor performance is observed across the whole
frequency spectrum.

1. INTRODUCTION

Airborne bistatic radar has in recent years, attracted the in-
terest of researchers from different part of the world because
of its capability to reduce the probability of the transmitter
being intercepted and directional jamming at the receiver
[2]. However, being an airborne system, it is by its nature
down looking and hence suffers from strong and complex
clutter returns. The challenge is to suppress these clutter
returns without diminishing the target’s echo.

Attempt to remove the clutter returns using one dimen-
sional filtering performed in the Doppler domain, can only
achieve adequate rejection over the full spectral bandwidth
of the clutter at the expense of attenuating echo from slow
moving target. However through the use of adaptive two di-
mensional filtering (in both spatial and temporal domains),
space-time adaptive processing (STAP) can achieve far bet-
ter clutter suppression performance.

For sidelooking monostatic radar, STAP algorithms are
generally performed under ideal conditions; where the clut-
ter spectra in angle-Doppler space is independent of range
and is therefore stationary. This allows the estimation of
the clutter covariance matrix to be performed using training
data obtained in the range dimension. In this ideal situation,

This work was funded and supported by BAE Systems (Edinburgh).

the clutter ridge is narrow in angle-Doppler space, hence
enable slow moving target to be detected.

However, in airborne bistatic radar the clutter spectra is
range dependent. This requires the weights of STAP pro-
cessor for individual range gate to be computed using their
respective range gate clutter covariance matrix � , which is
not obtainable in practice. In the existing literature, these
estimated covariance matrix �� are obtained using training
data from other range gates, assuming that its statistics do
not change significantly. Difference in the data statistics
will result in the widening of the clutter notch, which will
increase the system’s minimum detectable target’s velocity.

In this paper, power correction and Doppler compens-
ation for joint domain localised (JDL) processor is pro-
posed. Doppler compensation through interpolation in
angle-Doppler domain, allows clutter from different angles
and different frequencies to be Doppler compensated by dif-
ferent amounts. Such multiple Doppler compensation just
isn’t feasible using the space-time Doppler compensation
method suggested by Kreyenkamp.

2. POWER CORRECTION

For any radar system, the power of the clutter/interference
differs from range gate to range gate due to the differ-
ence in distance travelled. However for airborne bistatic
radar, the situation becomes more complicate. The clut-
ter/interference power also changes with direction of arrival
in each range gate.

The power of the clutter/interference arriving at the test-
ing range gate, � is estimated by multiplying the power of
the clutter/interference arriving at the training range gate, �
with the power correction, ��� .

���	� ��
� �
��
� �

�
������������� � � � ��� ����� ���"!�� � � � !�� ��� #$���"!�� � � � !�� ���� %'&(��)+*-,/.�0�132�4.�56� � 2�4.�7�� �������������� 8 � � ��� 8"��� ���"!�� 8 � � !�� 89��#:���"!�� 8 � � !�� 8$�� %'&(� ) *-,/.�0�132 4 .�56� 8 2 4 .�7�� 8 (1)
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where ��� stands for transmitted power, ����� � stands
for the transmit directivity pattern, 	
��� � stands for the
sensors directivity patterns, ����� � stands for the reflectiv-
ity of the ground, �������� is the thermal-noise power and� ����� ��� � ����� ��� � ����� � and

� ����� � are distance between
transmitter( � ) / receiver(

�
) and the ground from range gate 

/ ! respectively.
Assuming that the sensors directivity pattern and the re-

flectivity of the ground do not change significantly with near
by range gate and ���#"$��� �%�'&���� �(� = 1 (since the mainlobe is
pointing at that angle),

��)+* ,��-.0/21 3$��-.5461 37�8096: 1 ; � < : 1 ;>=��-.0/21 ;>��-.5461 ;* �@?����� � �@?���A� ����#"���� �B�'&���� �C� � ?�#��� � � ?����� � (2)

3. DOPPLER COMPENSATION

For airborne bistatic radar, the clutter Doppler is range de-
pendent and as a result, the training data does not have
same clutter/interference statistics as that of the testing data.
Some form of Doppler compensation is hence required be-
fore any clutter filter can be designed using the training clut-
ter covariance matrix DE .

The difference in clutter Doppler frequency, FHG between
testing range gate, ! and training range gate,

 
isF%GI*KJML�� � N�OQPR �IS�T2UV�#"���� � PXW ���6S�T2U�&Y��� �[Z R �%S�T2U\�#"�] PXW ]\�6S�T2U^&�]�� �R �IS�T2UV�#"���� � P_W ���6S�T2U>&Y��� �XZ R �%S�T`Ua�#"�] P_W ]\�6S�T2Ub&�]�� �dc (3)

where J\L�� � (obtained using minimum variance estimator) is
the clutter Doppler frequency of clutter arriving from angles" ]e� � and & ]e� � , while

W � and

W ] denote the flight directions
of the transmitter and receiver respectively.

The azimuth, " and depression, & angles can be expressed
by clutter � co-ordinates f6gb�'hYg and slant range

� ��� ,
� ��� ,

using equation (4)-(10) shown on the top of next page.
Doppler compensation process is achieved by transform-

ing the clutter data (with power correction), i P j into i F j
(in angle-Doppler domain) by applying Fourier transform
with zero padding in both space and time, interpolation of
clutter data and re-addressing the Doppler bin indices. The
angle-Doppler domain data matrix i F, k%l�m%nXGom%p , rep-
resents the data at the ndG Doppler bins, kol angle bins andp data snapshots from the training range gate.

1assume that transmitter and receiver is on the same flight path

Interpolation of data allows magnitude of signal with
Doppler frequency between the Doppler bins to be determ-
ined. Using interpolation such as the cubic spline interpol-
ation, a smooth fit between Doppler bins is achieved. An
illustration of the shifting process is given in Figure 1.
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Fig. 1. Illustration of frequency shifting

Let the Doppler frequency JM�6q�r be the frequency of in-
terest, and its magnitude be h F �6q�r . The steps to determineh F ��q�r is given as follows:

1) The corresponding Doppler frequency from the old
data, J\set L is given asJa��q�rX*KJ\set L P FIGbu (11)

2) Given the magnitude of Doppler frequencies aroundJ\set L , the magnitude of J2set L , h F s�t L could be found using in-
terpolation;

3) The shifting process to Doppler frequency J\��q�r is
completed by assigning h F �6q�rX*Kh F set L .

Doppler compensation process is completed when fre-
quency shifting of the whole data block is carried out.

4. JOINT DOMAIN LOCALISED (JDL)
PROCESSOR

In practice, only the few angle-bins covering the angle sec-
tion centred around the look direction (where most of the
transmitted energy is contained) is of interest. On the other
hand, all Doppler-bins must be analysed as the target Dop-
pler frequency is unknown to the processor. The angle-
Doppler bins of the training data, i F j are divided to form� sub-groups, i L t � j of angle-Doppler bins around the look
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���������
	 ��������
����������� �! "$# � � �% '&�(*) �,+�-/.'021
�'� �% "$# � � �% 3)54 6 �7+�-/.5.809� " ����:*�8� �% "$# : � �% '&
(;) �,+�<=.8021
�'� �% "$# : � �% >)/4 6 �7+�<�.5.� � � � �*� � �  " # �>� �  &�(*) �7+ - .�0 1 � � �  " # ��� �  )54 6 �7+ - .5.809� " � � :*� � �  " # :3� �  &�(*) �,+ < .'0 1 � � �  " # :>� �  )54 6 �,+ < .5.8? (4)

where @�A � BC. ��D " A 1 � BC.�EGF 6 �IHJ<�. BLKNM�OP5QLR (5)D " A � BC. �SD A �,BC. �UT VW�WD " (6)D � A � BC. �SD A �,BC. � T V �WD � (7)T �YX � D � �WD " .5Z[0\� @ � � @ " ./Z[0S�I]^� � ] " .5Z (8)

D A � BC. � �V_� ` -Ia^b � cedI 7f5gh[i7j - � k
 f/l g f� ` mh[i7j - � k� f 0 `onqp5r � c d  fh[i7j - � k� f l g f .%s � �ut Zwv HJ< v t Z .� t Zux H8< xzy tZ .`�{ l Z h[i7j - � k
 f -qaGb � c d  f g f^l>| h}i,j - � k
 fq~ f:e� h}i,j - � k� 7� l Z h[i7j - � k� f g f � g3� nIp/r � c d  f � | g f�~ f:3� g3� l3| nqp5r � c d  f h[i7j - � k
 fq~ f:3� nqp5r � c d  f h}i,j - � k
 ,�� h[i7j - � k� q� l h[i7j - � k� f � g f  � ` mh}i,j - � k� f 0 `�nqp5r � c d  fh}i,j - � k
 f l g f . ? (9)���q�^� � BC. ���J� �I�w� � BC. (10)

while
� �I�w� � BC. is the time taken for the signal to hit the ground in range gate B and back to the receiver.

—————————————————————————————————————————————————–

direction HJ< , called the localised processing regions (LPR)
[3] as shown in Figure 2.

The indices � in the data matrix is take out in order to
simplify the expression. The divided training data � L � and
the clutter/interference covariance matrix, �� L � ( � a���� � �$�� a���� � � ) becomes� L � ������ @

F < 	 �*� @
F < 	 �*� � m ����� @

F < 	 �*� �3��� � l m@
F < � m 	 �*� @

F < � m 	 �*� � m ����� @
F < � m 	 �*� �3��� � l m...

...
. . .

...

@
F dq�*�� 5¡�¢�£q¤ ¥ � @

F dq�*�¦ /¡�¢�£I¤ ¥ � ��£ ����� @
F dI�*�� 5¡^¢�£I¤ ¥ � �*§ � � ¢�£

¨^©©©ª
(12)

where

«J�¬� ����� T (13) �S® (�(;¯�4 6e° F 6e° ® ±�² 4 6 � 4 6 E�� � a��V . (14)³ � � � � l m´ i7µ m � � i .J0 � (15)

and �� L � � �¶¸· l m´¹�µ ��º ± & � � L � 	 ¹ . º ± & � � L � 	 ¹ . ~ (16)

respectively. � L � is a � a�� � � � � matrix, � a�� is the number
of angular bin, � � � is the number of Doppler bins in the

«
th
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Fig. 2. An example of localised processing regions

group, Vec( � ) is a matrix operation that stacks the columns
of a matrix under each other to form a new column vector
and

�
denotes conjugate transpose.

The testing data,
���

is also transformed into angle-
Doppler domain

�
F
�

and then divided into similar LPR.
The clutter/interference covariance matrix from the testing
range gate (assuming that there is no target present) be-
comes

�
L ���

	


������������������ � L � � ��� ������� � L � � ��� � (17)

Figure 3 shows the block diagram of the joint Doppler
compensation and JDL processor.
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Fig. 3. Block diagram of Doppler compensation for JDL
processor

5. SIMULATION AND RESULTS

The efficiency of any linear processor, can be characterised
by the improvement factor (IF) which is defined as the ratio
of signal-to-noise power ratios at the output and input, re-
spectively [4]. For optimum signal-to-clutter + noise ratio
(SCNR) processor, ( � ) *,+.-0/ �21� L

����43 � 576

8�9 � 576�) *,+.-0/ � 3 � � 576 1� L
�:��;3 � 576 3 � � 576 1� L

�:��;3 � 576<��=?> � � L � �
3 � � 576 1� L

���� �
L �@1� L

����A3 � 576<� 3 � � 576�3 � 576 (18)

where 3 � 576 , ( BDC ��EGF �IH 	 ) is the signal-steering vector in
angle-Doppler domain for the JLK th bin in M th group, JONP 	�Q�Q�Q BRC �TS and KN P 	�Q�Q�Q0EGF � S .

The radar parameters shown in Table 1 are for pulsed
Doppler airborne bistatic radar.

number of antenna elements B 8
number of pulses delay

E
24

pulse repetition frequency UDV 9 20 kHz
wavelength W 0.03 m
array geometry linear forward looking
receiver & transmitter height XZY [\X^] 1000 m
receiver & transmitter velocity _TY [\_.] 90 m/s
receiver flight angle `.a 0 b
transmitter flight angle `�- 90 b
receiver looking direction cda 45 b
baseline separation 2000 m
testing range gate e 27
training range gate f 29

Table 1. Radar Parameters

Figure 4 plots improvement factor vs Doppler frequency
for Doppler compensated JDL processor, where BgCh� 	�i

,EGF � 	�j�k
, lm� 	

, BRC � =1,
EGF � =64 and


 � j�n�i
. The

dashed and dotted line represent optimum processor per-
formance and processor performance without Doppler com-
pensation respectively, while the solid line represent pro-
cessor with only Doppler compensation.

Without Doppler compensation, we experience a degrade
in improvement factor of at least 10dB (in average) from 0
Hz to 6000 Hz. This degradation will cause target signal in
these region to be attenuated. However, with the proposed
Doppler compensated JDL processor, the average degrad-
ation in improvement factor in the same region reduced to
less than 3dB and less than 0.5dB in the rest of the region.

Figure 5 plots improvement factor vs Doppler frequency
for processor purposed by Kreyenkamp and Klemm. In
their technique, the range dependence is compensated by
multiplying the space-time data with a complex phasor mat-
rix o . The dotted line once again represents the processor
performance without Doppler compensation.
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Fig. 4. Doppler compensation for JDL processor

Comparing the performance of the two processors, the
proposed Doppler compensated JDL processor has a much
narrow clutter notch than the processor purposed by Krey-
enkamp. Significant improvement is also observed in region
outside the clutter notch.

The difference between the two dotted lines (in Figure 4
and Figure 5) shows the improvement of using just using a
JDL processor. A narrower clutter notch can be observed.

0 2000 4000 6000 8000 10000
−10

0

10

20

30

40

50

Im
pr

ov
em

en
t F

ac
to

r 
(d

B
)

Doppler frequency (Hz)

Optimum processing
without Doppler compensation
with Doppler compensation

Fig. 5. Doppler compensation with complex phasor

Figure 6 plots the improvement factor for JDL processor
using training data with Doppler compensation as well as
power correction (solid line). Further improvement in term
of improvement factor as compare to processor using just
the proposed Doppler compensation can be observed. The
proposed combine processor has a performance similar to
that of the optimum processor.
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Fig. 6. JDL processor with Doppler compensation and
power correction

6. CONCLUSIONS

In this paper, a different Doppler compensation method (us-
ing interpolation) is presented. Performing Doppler com-
pensation in angle-Doppler domain allows clutter returns
from different angles to be compensated separately. Signi-
ficant improvement over Doppler compensation with com-
plex phasor can be observed. With power correction as well
as Doppler compensation, further performance improve-
ment of up to 5dB is observed. Near optimum performance
similar to that of the optimum processor can be achieved.
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ABSTRACT

In this paper, we propose a modified joint domain local-
ised (JDL) processor that significantly reduces the com-
putational cost. Space-time adaptive processing (STAP)
has been proven to be able to suppress clutter efficiently.
However due to the size of its covariance matrix, forming
the inverse of the covariance matrix is computational ex-
pensive. JDL processor, a reduced dimension version of
STAP allows practical implementation through the use of
a small dimension covariance matrix (e.g. [ ����� ] matrix
when using a ����� JDL ). The propose modified JDL re-
duces the covariance matrix dimension further to a [ ����� ]
matrix by using a tuned discrete Fourier transform.

1. INTRODUCTION

In airborne radar, suppression of Doppler spread clutter
without minimising target return (especially low altitude
and low relative velocity target) has always been one of
the important tasks in radar signal processing. Attempts
to remove the clutter using one dimensional filtering per-
formed in the Doppler domain, can achieve adequate re-
jection over the full spectral bandwidth of the clutter.
However at the expense of attenuating returns from low
relative velocity target. In contrast, space-time adaptive
processing (STAP) further distinguishes the clutter and
target return in the angle domain by using antenna ar-
ray. Number of studies, along with some experimental
data have shown that STAP is very efficient for clut-
ter suppression as well as target detection for both air-
borne monostatic and airborne bistatic radar [1–7]. Dop-
pler compensation is however often required in cases
where forward looking antenna array is used (for airborne
monostatic radar) [3], or in airborne bistatic radar system
[4, 5].

Radar system using STAP typically emits repetitive
identical pulses. The reflected echos are collected and
sampled at 	 array elements and 
 successive pulses for
each range gate. The samples are then used to construct
the estimated clutter covariance matrix

��
. For an op-

timum signal-to-clutter + noise ratio (SCNR) STAP pro-

This work was funded and supported by BAE Systems (Edinburgh).

cessor, the weights are given as

�������������� ������! (1)

where
�� ���

is the inverse of
��

, a 	"
#�$	"
 matrix,
and

 
, a 	�
%�'& matrix is the signal-steering vector.

Clutter from the range gate under test, as well as the range
gates beside it (guard cells) are often excluded from the
computation of

��
. This is to ensure that

��
is free of any

possible target signal.
Real time implementation of STAP processor is con-

sidered impossible, as the computational cost of invert-
ing a 	�
(�)	�
 dimensional matrix, (O *+	�
-,�. ), is
considered too expensive, for large values of 	 and 
 .
Several methods of reducing the signal vector space and,
hence the computational load have since been proposed
[2, 7–9]. Among them is the joint domain localised (JDL)
processor. Beside reducing the computational costs, re-
duced dimension/rank STAP serves an increasingly im-
portant role in non-homogeneous environment. In en-
vironment where the clutter statics is range dependent,
collecting data samples over large amount of range gates
are subjected to considerable Doppler dispersion. With
the dimension reduction of

��
, fewer data samples are re-

quired, and hence minimising Doppler dispersion.

2. JOINT DOMAIN LOCALISED (JDL)
PROCESSOR

JDL algorithm was first introduced by Wang and Cai [7].
It works by transforming the space-time signal vector
into angle-Doppler domain using a two-dimension dis-
crete Fourier transform (DFT). The angle-Doppler data is
then grouped into region called the localised processing
regions (LPR). Adaptive processing is restricted to the
LPRs, as shown in Figure 1. Forming LPRs signific-
antly reduced the number of unknowns while retaining
maximal gain against thermal noise. The lower degrees
of freedom lead to a corresponding reduction in required
sample support and computational cost.

In practice, only the few angle-bins covering the angle
section centred around the look direction, / � (where most
of the transmitted energy is contained) is of interest. On
the other hand, all Doppler-bins must be analysed as the
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Fig. 1. An example of localised processing regions

target Doppler frequency is unknown to the processor.
The angle-Doppler bins of the training data, � F � are di-
vided to form � sub-groups, � L � � � centred around the
look direction. Each LPR consists of ��� angle bins and�
	

Doppler bins. The choice of � � and
��	

are inde-
pendent of the number of array elements and the number
of pulses. The localisation of the target to a single angle-
Doppler bin decouples the number of adaptive degrees of
freedom necessary for handling clutter suppression from
the size of the data cube, while retaining maximal gain
against thermal noise. This is however achieved at the
price of fast Fourier transform (FFT) processor.

The indices � in the data matrix is take out in order
to simplify the expression. The divided training data� L � and the clutter/interference covariance matrix,

�
L �

( ��� � 	�� ��� � 	 ) are given as� L �������
�

� F ��� ��� � F ��� ����� � !"!#! � F �$� �%�&�('*),+ �� F �-� �.� ��� � F �.� �-� ����� � !"!#! � F �.�/�.� ��� �('*)%+ �
...

...
. . .

...� F 021�354,687:9 ; � � F 0:1�354<657:9 ; � 157=!"!#! � F 0:1�384"65729 ; � 1�> ) 657
?-@@@
A
(2)

where B �DCE!"!#!F� (3)

G �IH�J5J�K5L�MONEP,MON%HRQTSOL�M�U
L�M5V"W �X�YIZ (4)

[ �(� B U\L�M5V]W � 	Y^Z (5)

and �
L �_� C`ba + �c�"dTegf Qih%W&� L � � � Z f Qih�Wj� L � � � Zlk (6)

respectively. � L � is a � � � �
	
matrix, Vec( m ) is a matrix

operation that stacks the columns of a matrix under each
other to form a new column vector,

`
is the number of

training data and k is the conjugate transpose operator. [ �
will be less than 1 for certain

B Uon-p LPR. As the Doppler
bins repeat itself every pulse repetition frequency (PRF),[ � �rq 	Xs [ �Ft for [ �Tu C (7)

where q 	 is the size of the time to Doppler domain DFT.
The testing data, vw� must also be transformed into

angle-Doppler domain v F � and then divided into similar
LPRs, � L � � � . The clutter/interference covariance matrix
of the testing range gate (assuming that there is no target
presents) becomes

�
L �T� C` a + �c�#dTeEf Q]h�Wjv L � � � Z f Q]h�W&v L � � � Z k (8)

3. ANGULAR BIN COMPRESSION

Transforming spatial samples into angular domain using
discrete Fourier transform (DFT) with a rectangular win-
dow often results in smearing across several angular bins.
The smearing depends on number of factors, such as: � ,
the size of the DFT; the angle of arrival ( xy� ); the spa-
tial sampling rate which is determined by the separation
between the antenna elements; as well as windowing and
zero padding performed on the spatial samples. As a res-
ult of the smearing, a number of angular bins, normally�X���Dz angular bins are grouped into each LPR in order
to gather a significant portion of the spatial energy.

Figure 2 shows the (angular-domain) 8-point DFT out-
puts of signals received by a forward looking array. Five
individual signals arriving from five different x{� , with de-
pression angle, | =

Y%}8~
are received during five different

experiments and plotted together. It can be seen that, for
signals arriving at x�� = 40

~
and x � = 55

~
, the DFT out-

put concentrate at bin 3 and bin 4 respectively. On the
other hand for signal arriving at x � = 45

~
, it is attenuated

and spread widely across bin 2 and bin 6. This atten-
uation of the measured value for an angular component
that falls in between the DFT bins is known as scallop-
ing loss [10]. Scalloping loss can be reduced by using a
tapered window function as well as performing zero pad-
ding. However, window tapering will widen mainlobe,
while zero padding will increase the DFT size, hence in-
crease computational cost.
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Fig. 2. Output of DFT with varies angle of arrival

In this paper, we propose a tuned DFT that will minim-
ise the scalloping loss and yet reduce the computational
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cost significantly. The tuned DFT obtains an unattenu-
ated angular component value, by matching angular bin
to the angular component. The systems performance pen-
alty of using only one angular bin is offset by the reduc-
tion in scalloping loss. Using just one angular bin, allows
the computational cost of calculating the output at other
angular bins to be saved. For � = 8, computational sav-
ing of up to 87.5 � maybe be achieved at this stage. Fur-
ther computational saving is expected when the dimen-
sional of the LPR is reduced from [ �������	� ] to [ 
����	� ].

The output of a tuned DFT for a spatial signal received
by a linear array is given as

�
F ������������� (9)

where ��� , represents a [ ����
 ] spatial signal vector. � ��� ,
the weight of the tuned DFT is

� ��� ����� �����! � ���#"$ &%&%&%' � ����(*) � (10)

while

� ����+ ��,.-0/��21436567�8���9:1;
 )<)= 9?>	@A
 %$%&% �CB (11)

For a forward looking linear antenna array,

8��ED
FHGJI�K�L=M

D
N

5  8�>PO (12)

while for a sidelooking linear antenna array,

8��
L.M
D
I K L=M

D
N

5  8�>CO (13)

The different 8 values for different linear antenna ar-
rays arises from the ability of the antenna to differentiate
between angles. By definition of

I K
, a forward looking

array is only able to differentiate 1JQ6R�S I K STQ6R , while
a sidelooking array is able to differentiate R�S I K S�
&U6R .
The factor of

�" in equ. 12 and equ. 13 is due to the V'W65
spacing between the antenna elements.

Back to the context of STAP, instead of performing a
2-dimensional DFT for space and time transformation, a
normal discrete Fourier transform will follow after the
tuned Fourier transform. The normal DFT will transform
the time sample output of the tuned DFT ( � F  ) into Dop-
pler domain, � F . Rewriting equ. 9 to take into account
of the time samples, the output of tuned DFT becomes

� F ����X��Y�[Z � � (14)

where Z � � , a [ �\�]� ] matrix represents the space-time
data samples.

The training data in each LPR becomes

� L ^'�E_ � F `6a � F `6acb �d%$%&% � F `6aHb'e*f6g �ih (15)

4. SIMULATION RESULTS

The efficiency of any linear processor, can be character-
ised by the improvement factor (IF) which is defined as
the ratio of signal-to-noise power ratios at the output and

input, respectively. For optimum signal-to-clutter + noise
ratio (SCNR) processor,

j6k ^ l2m$n �<o + Kqp �sr � ^ l2mut
v

L
g �^ r ^ l2m r � ^ lwmut

v
L
g �^ r ^ l2m�x=y<z �

v
L ^ )

r � ^ l2m t
v

L
g �^ v L ^ tv L

g �^ r ^ l2m�x r � ^ l2m r ^ lwm
(16)

where r ^ lwm , ( ���6�C�]�{
 ) is the signal-steering vector in
angle-Doppler domain for the |~} th bin in � th group, |�>@0
 %$%&% ���0B and }�>C@0
 %&%&% �	�uB .

In order to compare the difference between JDL pro-
cessors that use all angular bins, ��� = 3 angular bins,
one normal angular bin and the tuned DFT angular bin,
a common ground must be established among them. The
common ground is achieved by replacing

v
L ^ with

v
LP ^ .

v
LP ^'� 
�

� g ��
�&���4� ,

L ��� LP ^ � � ) � ,
L �Y� LP ^ � � ) � (17)

where � LP ^ � � , a [ ���\����� ) ���	� ] matrix is the data
samples in the � -th LPR group, grouped from angular-
Doppler data samples � P � . ��� is the number of zero
padding added to the spatial samples and � P � , a [ ���s���� ) ��� ] matrix is obtained by transforming � � into
the angular-Doppler domain using a 2-dimensional DFT
with zero padding on the spatial samples. Zero padding is
added to the spatial samples in order to take into account
of the energy between the original DFT spatial bins. All����� � angular bins are included so that the performance
upper limit can be established.

r ^ lwm needs to be replaced by r ^ �!�2m which is the angle-
Doppler signal-steering vector that includes � angular
bins as well as the ��� angular bins created by the zero
padding. �?>;@0
 %&%&% ���s����� ) B . Lastly, tv L

g �^ needs to
be reconstructed, to have the same matrix size as

v
LP ^ .

The reconstructing is carried out by adding zero in the ap-
propriate position. This is reasonable as the assumption
of using less angular bins assumes that the energy in the
rest of the angular bin (unwanted bins) is very small �TR .

Figure 3 shows the IF vs Doppler frequency for pro-
cessor using different number of angular bins as well as
the propose tuned DFT angular bin. Some of the paramet-
ers used are: ����5!�  ���EU  � � ���  � � ��U  I�K ��6���

. The plot labelled “All bins with zero padding” uses
all 16 ( �s����� ) angular bins, forms the processor per-
formance upper limit. The plot labelled “All bins without
zero padding”, uses 8 angular bins formed without zero
padding. Of the two plots, the latter shows a perform-
ance degradation of about 3dB, which is caused by the
scalloping loss.

From Figure 2, we can see that for
I � �6� �

, most of
the spatial energy concentrates in bin 4, and very little in
bin 3 and bin 5. When angular bin 3,4 and 5 are used to
calculate the weights of the processor, identical perform-
ance as compare with using 8 angular bins is achieved.
Slight performance degradation around the notch region
is observed when using just one angular bin (bin 4). This
is so, as some energy is lost when the energy in bin 3
and bin 5 is assumed to be zero. As expected, the tuned
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DFT didn’t manage to have any performance improve-
ment over using one angular bin (bin 4), since the energy
concentration in bin 4 is already very high.
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Fig. 3. Performance of angular bin reduction processor

Figure 4 shows the IF vs Doppler frequency for pro-
cessor with ���������
	 .
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Fig. 4. Performance of angular bin reduction processor

Using bin 3,4 and 5 shows that a comparable perform-
ance (as compare to using 8 angular bins) can be achieved
by assuming the energy in the rest of the angular bins is
approximately zero. A 3dB degrade in performance is
however observed when only one angular bin (bin 4) is
used. From Figure 2, we can see that significant energy
is also present in bin 3 and bin 5, excluding these energy
will no doubt degrade the processor performance. The
plot that uses the angular bin from the tuned DFT shows
that by using one angular bin which is tuned to the max-
imum energy, performance as good as using 8 angular
bins can be achieved. However some performance de-
gradation can be observed at the notch region.

5. CONCLUSION

Effective clutter suppression is achievable practically us-
ing reduced rank STAP processor such as JDL. Very sig-

nificant computational cost saving, in both the transform-
ation of space-time samples into angle-Doppler samples
and calculation of the inverse of covariance matrix can be
achieved when using the propose tuned DFT. Degrade in
processor performance due to using less angular bins, is
offset by reduction of scalloping loss. Reducing the cov-
ariance matrix size to � ������ may further reduce the train-
ing data support size, hence improving the STAP pro-
cessor performance in a non-homogeneous environment.
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