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Abstract

At present there is much debate about the impacts and benefitsof increasing the amount of

generation connected to the low voltage areas of the electricity distribution network. The UK

government is under political pressure to diversify energysources for environmental reasons,

for long-term sustainability and to buffer the potential insecurity of uncertain international

energy markets. UK Distribution Network Operators (DNOs) are processing large numbers

of applications to connect significant amounts of Distributed Generation (DG). DNOs hold

statutory responsibility to preserve supply quality and must screen the DG applications for

their impact on the network. The DNOs often require network upgrades or DG curtailment,

reducing the viability of proposed projects.

Many studies exist that identify barriers to the widespreadconnection of DG. Among them

are: suitability of existing protection equipment; ratingof existing lines and equipment;

impact in terms of expanded voltage envelope and increased harmonic content; conflict

with automatic voltage regulating equipment. These barriers can be overcome by expensive

upgrades of the distribution network or the expensive deep connection of DG to the higher

voltage, sub-transmission network.

This work identifies changes in network operating practice that could allow the connection

of more DG without costly upgrades. The thesis reported is that adopting options for a more

openly managed, actively controlled, distribution network can allow increased DG capacity

without upgrades.

Simulations have been performed showing DG connected with wind farm production time

series to a representative section of the Scottish distribution network. The simulations include

modelling of voltage regulation by network equipment and/or new generation. The cost

and effects of the consequent network behaviour evaluated in monetary terms are reported.

Alternative control strategies are shown and recommended,to reduce DNO operation and

maintenance costs and the cost of connection to the developer with no reduction in supply

quality.
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Chapter 1
Introduction

1.1 Project motivation

This study was conceived during a period of debate about the desirability and means of

connection of large amounts of renewable generation. The pressure for more renewable

generation arises from many factors. The UK and Scottish parliaments both support

renewable energy as part of a long-term strategy to deal withincreasing UK and global

energy demands [1] coupled with increasing awareness of thenegative impacts of fossil-fuel

based generation. The combustion of fossil-fuels inevitably release carbon dioxide (CO2 )

into the atmosphere which has been linked to the negative consequences of global warming

and associated sea-level rise and climate change [2]. An increased diversity of energy supply

also helps insulate the UK from price variations of fuel imports.

Renewable generation thus attracts financial and trading concessions from the UK

government and is currently seen as an excellent investmentopportunity. Onshore wind

generation is the majority source of new renewable projects. The environmental impact and

perceived high profitability combines to create local resistance of not only the construction

of the generation plant itself, but also to the upgrades in network infrastructure required

to connect the new plant. Infrastructure upgrades also add to the total cost of the energy

generated whether the cost is borne by the network operatorsor the electricity generators

themselves.

By its nature, renewable energy resources are geographically dispersed and are often distant

from the higher voltage transmission network that most efficiently carries the generated

energy. Potential renewable plant is, however, often closeto lower voltage lines which are

part of the distribution network. These distribution networks are managed by Distribution

Network Operators (DNOs) who hold statutory responsibility to preserve supply quality and

must screen the new generator applications for their impacton the network. The DNOs often
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require network upgrades or distributed generation (DG) curtailment, reducing the viability

of proposed projects.

One of the objections to connection of DG at lower voltages isits effect on local voltage

profiles and its impact on a network equipment used to controlvoltages at the distribution

level, specifically the under-load tap-changing transformer (ULTC). There is a lack of

published research that quantifies the real impact of DG on ULTCs and the resultant cost to

the DNO in terms of equipment maintenance and in terms of voltage rise and fluctuations.

The work was inspired by two ongoing areas of work within the Institute for Energy Systems

at the University of Edinburgh. The first was the use of optimal power flow techniques to

study the maximal connection of generation in an example rural network [3, 4]. The second

work designed and modelled a novel reactive power controller for a distributed generator

to maximise the capacity that could be connected to existingnetworks without detriment to

voltage quality [5, 6].

1.2 Project objectives

The project sought to increase understanding of the costs and operational changes associated

with the connection of variable power output generation connected to the distribution

network. With this increased knowledge, the use of existingequipment and lines can be

maximised with the result of lower connection and use-of-system charges. With lower

associated costs, more developments will become feasible allowing greater choice for

developers and utilities regarding the best locations for plant; and where the market exists

and planning authorities allow, a greater penetration of renewable plant.

The project objectives are summarised as follows:

• Create a method for the power-flow simulation of a distribution network over time.

• Estimate increased maintenance costs of transformers due to variable DG.

• Quantify effect of increased variable DG on voltage control.
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• Identify strategies to maximise benefit of increased variable DG.

1.3 Thesis and contribution to knowledge

The thesis of this study was that the additional operation and cost to the network operator of

ULTC voltage control as a result of increased distributed generation can be acceptably small

using existing equipment and revised control of the DG.

The operation of selected DG in voltage control mode has beenshown to be preferable

to constant power factor mode. Importantly, the voltage control mode does not cause the

currently perceived extent of conflict with transformer operation or result in dependency on

the DG for voltage control. This allows the DNO the option to require or allow new DG in

voltage control mode as part of its distribution network voltage control strategy.

In demonstrating the operation of ULTCs over time, a novel simulation method is reported

allowing for future work to incorporate more complex components such as agent-based

controllers and thermal constraint modelling.

The contributions to knowledge are summarised as follows:

• DG can be operated in PV mode with conflicating with ULTCs.

• PV mode operation of DG results in better voltage managementthan when in PQ mode.

• The maintenance cost due to increased operation of ULTCs due to time-varying DG is

low relative to energy revenues and the capital cost of new equipment.

1.4 Thesis outline

Chapter 2 outlines the negative and positive impacts of increased renewable generation

connected in the distribution network followed by a more detailed consideration of voltage

control in the distribution network and tap-changing transformer operation. Chapter 3

describes how the operation of tap-changing transformers is modelled over time using a
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combination of a commercial power flow solver and custom modules coded in Python. The

outcomes of simulations are shown to match expected system behaviour in Chapter 4.

Chapters 5 and 6 demonstrate network behaviour and tap-changer operation in response to

large amounts of distributed generation (DG). Chapter 5 employs DG in fixed power factor

mode only whereas Chapter 6 uses active power control and voltage control algorithms to

improve network voltages. The conclusions of this study arereported and discussed in

Chapter 7 with a summary of findings with respect to the original thesis and a number of

applications for the methods shown in this study in further research.
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Chapter 2
Distributed Generation in Future

Distribution Networks

This chapter highlights the reasons for the connection of generation in the distribution

network and the negative and positive impacts it can have on network operation and control.

The effect of distributed generation on voltage control is identified as a significant limitation

on the amount of new capacity that can be connected. A summaryof the types of generation

and their impact on voltage is given. The Under-Load Tap-Changing transformer (ULTC) is

currently the primary means of voltage control in the distribution network and strategies of

its operation are detailed.

2.1 Increasing Distributed Generation

At present there is much attention being paid to the impacts of increasing amount of

small-scale generation connected to the electricity supply network at the distribution level.

The target for the amount of Scotland’s generation to come from renewable resources by

2010 is set at 18% [7]. The Scottish Parliament in 2005 reported that exceeding this target

of connecting new renewables would not be possible due to availability of connections with

950 MW of onshore wind already having consent [8]. Power providers worldwide have

acknowledged there will be significant increased generation connected at low voltages [9] in

the future.

This study focused on activities in Scotland and the UK but will reference papers relating to

networks in other countries and has relevance to such networks.
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2.1.1 Distributed Generation

The paradigm for the electricity supply network in the 20th century in most countries, such

as the UK, is for large generators to be connected centrally to the high voltage transmission

network [10, 11]. The transmission network is for bulk inter-regional transfer of electrical

energy and is well interconnected.

Consumers are connected to the transmission network via lower voltage networks

collectively called the distribution network. These low and medium voltage networks are

largely connected to each other, connecting to the transmission network at a few grid supply

points (GSPs) [12]. In general, the resistance of the distribution lines dominates its reactance

as lower voltages and lighter lines are used towards the extremes of the network. This

has implications for the effect of the amount of additional generation capacity that can be

connected at this level; this is explored in Chapter 4.

Distributed Generation (DG) is that which is connected to the distribution network and will

often be connected both geographically and electrically close to consumers. Economics of

construction of the distribution network has resulted in lower demand towards the edges

being met by progressively reducing conductor areas. This radially tapered distribution

network exhibits increasing resistance per unit length towards its edges. As a consequence,

real power flow has a greater proportional effect on bus voltages here than closer to the

transmission network where larger conductors are used withconsequently less resistance.

DG has implications for voltage quality and the safe and proper functioning of the distribution

network as discussed in section 2.2.

2.1.2 Benefits of Distributed Generation

There are a number of reasons for the present interest in distributed generation.

Deregulation

Competitive practices require that electrical energy and ancillary services are bought from

any size energy supplier by open market trading or by negotiation. This allows any size of
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Generator to sell its services according to the price it demands for the relevant service.

System Losses

Siting generation near points of demand can reduce the transmission and distribution losses

caused by the resistance of the power lines, cables and transformers. Most demand is on

the distribution network and thus connecting generation toa point nearby the load on the

distribution network will tend to cause the least losses assuming the generation does not

greatly exceed the local demand.

Figure 2.1 shows line losses for varying generation connected at a load bus of fixed load.

Line losses are zero when the generation exactly supplies the load complex power. The curve

is approximately quadratic asLineLosses ∝ I2R andI ∝ S where:I is the line current;R

is the resistance andS is the apparent power flowing through the line. Note the zero losses at

10 MVA generated as the generation matches the load.
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Figure 2.1: Line losses between 2 buses separated by a 1km line with varyingconnected DG.
Losses are shown for three voltage levels. From [6].
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Most losses occur on the distribution network with an average 6% of generated energy lost

compared to 1.5% on the transmission network [2].

Small-scale CHP

The principle of combined heat and power (CHP) plants has beenapplied to units that operate

so as to provide heat like conventional boilers and also electrical power. These units are

designed to run in parallel to the electrical grid as the electrical power output is driven by

heat as opposed to electrical demand. The efficiency of the unit is greater than a unit designed

solely for heating. This is because the generation of the electricity using the same fuel at a

centralised generation plant usually will not utilise its waste heat but will dump it into the air

or into rivers or the sea. Despite the low electrical efficiency of smaller CHP units, the thermal

output is equivalent to the thermal boilers they replace with the benefit of the electricity doing

other useful work before resulting in heat energy.

The development of such devices, particularly micro-CHP units designed for homes, is tied

to the de-regulation of the electricity market and the development of codes of practice for

parallel operation of such devices with the electricity network.

CO2 reduction

The reduction of CO2 output by human activity is considered desirable and even essential.

In the UK government targets exist for CO2 emissions. Incentives and penalties exist for the

electricity industry as a means by which the goal of reduced CO2 will be achieved. Under

the Renewables Obligations (Scotland) [7], Electricity providers are motivated to source a

proportion of electricity supplied from renewable sources. These sources are considered low

or zero CO2 emission sources. Renewable plant is often relatively smalland may be located

far from the transmission network. For this reason it is morecheaply connected at lower

voltages.
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Diversification and security of supply

World economic and political pressures and ultimately the attainability of a particular fuel

source has implications for its unit price and for any industry requiring that source. It is

desirable that the electricity supply is diverse enough to be as independent as possible to the

price fluctuations or increases of a particular fuel.

The fuel source for UK electricity generation is split mainly between nuclear, coal, gas and oil

[13]. Increasing the generation portfolio to include sources not reliant on these fuels, reduces

the risk to the electricity industry and of price increases for consumers. One large hydro

project is under way in Glendoe, Inverness-shire with otheroptions for alternative energy

sources including wind, wave, tidal, small-scale hydro andbiomass. Many of these options

are well suited to small installations located away from thetransmission network as above.

With growing demand in the UK combined with the position of many large generating plant

nearing the end of their lifetimes, much more generating capacity is required to be built.

System security

With appropriate controls and restraints, a distributed generator can contribute to local system

security similar to how larger generators deliver system support for a larger network. DG

provides flexibility for reactive power support and voltageand power flow services [11, 14,

15]. Security of supply contributions of DG in the United Kingdom may be limited to firmer

types of DG such as biomass or land fill-gas plant, combined heat and power plant and to

some extent solar-photovoltaic installations [15].

For real power balancing, DG may be limited in the availability of its energy source, in the

sophistication of its control strategy and its coordination with other generation in the local

and higher voltage networks. By appropriate diversificationof DG energy sources such as

wind, wave and biomass plants, DG can however improve system-wide diversity of supply

[16].

As these problems are current research interests and any solutions not implemented in the

networks, DNOs and the electricity industry have in the pastconsidered distributed generation
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a detriment to system security [17].

Ease of finding sites

Planning guidelines, population location, historical andnature reserves and a strong

community awareness of local developments means that siting large generating plant can

mean a lengthy and expensive application process and even cause problems at the highest

political level. Siting smaller plant could cause less problems leading to cost reductions

in total project development costs [18]. Smaller plant is encouraged in new developments

reducing planning and construction costs.

Low capital cost

Similarly to easier siting, a small plant requires less initial investment than a large one and

hence less financial risk. Small plant can be added incrementally as required whereas large

plant such as nuclear requires extensive planning and public enquiries. New large plant also

requires major infrastructure investment, both in networkequipment, in terms of supply of

the energy source and in terms of staffing and training.

As discussed above, the cost of connection for DG tends to be lower than for plant connecting

at the transmission level. In particular very small scale generation connected below 1 kV

would have low connection costs. This type of generation could contribute up to 10% of

average load in Europe by 2020 [9].

It is cheaper for smaller generators to connect at lower voltages as protection and switching

equipment for lower voltage connection is cheaper than for high voltage connection [14].

Similarly generators restricted in their location by theirenergy source, such as a wind farm

located in an area of high average wind speed, will tend to connect to the distribution network.

In rural areas, lower voltage networks will usually be closer than higher voltage networks and

thus the cost of lines to connect will be lower.
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2.1.3 Types of plant

Types of generating plant can be distinguished by their effect on the distribution network and

any benefits they bring the DNO.

Dispatchable

The power output of dispatchable plant can be controlled. Dispatchable DG is limited to small

thermal plant and hydro schemes. The energy source for the prime mover of the generator

must itself be available on demand. Examples of dispatchable DG are small biomass plant,

small hydro with reservoir and electricity storage plant that stores electrical energy during

times of excess generation. The speed at which plant can react to control commands varies

with the technology.

Voltage control

Some plant may be available for voltage regulation. Automatic voltage regulation is usually

only achieved with plant using synchronous generators. Regulation is achieved by adjusting

the excitation of the synchronous generator. It is also possible to achieve the same effect

with power electronic converters. Plant using such power converters such as asynchronous

wind turbines, photo-voltaic installations and power storage could be employed to assist with

voltage control [5].

Power factor control

Plant not available for voltage control will usually be required to operate at a strict power

factor or within a small range. Indeed this is currently the case for all smaller plant [11]

which are required to operate at unity power factor [17]. In the case of smaller synchronous

generators, voltage control can lead to undesirable operating points in the machine [19].

The machine may become over-excited such that the field winding overheats or become

under-excited such that the machine loses synchronisationwith the network.
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2.1.4 Technical impacts of increased Distributed Generation

There are several network impacts that are seen as a result ofthe connection of DG and can

limit the capacity that can be accepted:

Reverse power flows

Reverse power flow describes the situation where a section of the network which previously

experienced power flow in one direction, from high voltage sections to low voltage ones, sees

power flow in the opposite direction. This is due to generating plant connected at low voltage

where the amount of generation exceeds local demand. Reversepower flow is greatest at

times of low local demand and high generating output.

Reverse power flow can be a problem for the Distribution Network Operator (DNO):

• The existing protection equipment may not allow reverse power flow or may not offer

protection while it occurs.

• Existing transformers, in particular those with ULTCs, are likely to have assumed

uni-directional power flow. They may not have the correct ratios or range of tap settings

available for selections and reverse power flow may only be allowed at a lower value

than the transformer rating [11].

Voltages

The connection of distributed generation can cause significant voltage rise in the local

network substation unless it absorbs reactive power [12, 14, 20]. This approach has

implications for charging for reactive power and may cause achange in voltage profile of the

feeder requiring a review of voltage control on the feeder [21].

Connection of generation at the distribution level can also cause step voltages. When a

generator starts, stops or is removed from the network quickly, it causes a step in the voltage

profile of the local network. The size of the step is related tothe transfer of active and reactive
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power between the network and generator. Unless the generator is at unity power factor the

size of the step is linked to the size of the generator.

The maximum step voltage a generator is allowed to cause is±3% in the UK [22]. Thus

the generator size is limited by, among other things, the step voltage it can cause in the local

network [17].

Certain generating plant can degrade voltage quality [11]. Fast changing power output can

cause corresponding changes in voltage level called flicker. Flicker due to wind turbines,

for example, occurs as a result of changing wind speeds and also as a result of the tower

shadow effect, the effect of wind turbine blades passing their supporting tower [23]. Plant

connecting via an electronic inverter which uses switchingto produce the AC output, can

introduce undesirable harmonics in the voltage [24].

Fault level

The connection of synchronous generators contributes to the fault level in the network near

the connection [10]. A majority of renewable generating sources, however, use induction

generators or electronic convertors which have a relatively lower fault contribution [11]. The

induction generator power output will drop to zero as the fault causes the induction generator

to lose excitation [24].

In addition, distributed generation can change the behaviour of Under-Load Tap-Changing

transformers (ULTCs). The impedance of a ULTC is related to tap position [25] and thus the

fault level of the network near the ULTC. If reverse power flow,due to generation exceeding

demand, raises the voltage below the ULTC then the impedanceof the ULTC will be lower

than if the generation was not there and thus can unacceptably raise the fault level. The

variation of tap position accounts for a variation in transformer impedance of±10 − 15% of

the nominal impedance [26].
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Current limit

The current carrying capacity of lines and transformers arelimited by their resistance.

Resistance causes electrical losses in the form of heat generated. The limit to the current

a line can carry is dependent on the line and also on the ambient temperature of the air

surrounding and cooling the line, leading to different lineratings depending on the season.

Similarly, transformers differ in construction and will dissipate heat due to losses better with

cooler exterior air temperatures. Ultimately the limit to the capacity is determined by a limit

on the ability of the lines or transformers to dissipate heatand their maximum acceptable

operating temperatures.

The introduction of generation in a radial rural distribution network for example, may lead to

higher power export to the transmission network or higher voltage substation, than the power

previously imported from it. The generation is limited thenby the rating of the transformers

and lines connecting to the higher voltage network minus theminimum local demand.

Protection

Other than potentially causing reverse power flow, DG may be limited by the protection

equipment installed on the local network [27]:

• Island operation

Connection of generation to the network is not allowed if the local network is

disconnected from the entire network, for example when disconnected by breakers

because of a fault. Thus loss of mains protection must be installed if not already

present [10]. This will disallow the export of power from thegenerator during

disconnection.

• Frequency

Under or over frequency protection will disconnect feedersor individual generators if

there is a mismatch or deviation in AC frequency. This limitsthe ability for generation

to support the network in times of heavy demand which can reduce the frequency of

the local network.
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Location of connection Maximum capacity (MW)
out on 11 kV network 1-2
11 kV substation busbar 8-10
out on 33 kV network 12-15
33 kV GSP substation busbar25-30
on 132 kV network 30-60

Table 2.1: Typical connection capacities at distribution voltages [29].

• Voltage

Under or over voltage protection can disconnect feeders or individual generators

connected at distribution level if there the bus voltage is outwith ±3% [4] of nominal.

This limit is part of Engineering Recommendation P28 and is more restrictive than

the±6% limit required by the Electricity Safety, Quality and Continuity Regulations

2002. It limits the ability of distribution generation to provide voltage support to the

network.

The DNO ensures suitable equipment and protection is utilised and maintained in the

distribution network and by connected generating plant. Power ratings of equipment must

not be exceeded to minimise equipment failure and thus disconnection of the consumer.

Protection should be sufficient to isolate faults locally, minimising the impact on the larger

network and thus minimising consumer outages [28].

Table 2.1 shows possible capacities of DG that can be connected at different voltage levels

[29] taking into account thermal limits and voltage rise problems.

Limits to system security contribution

DG is presently limited in its ability to provide energy and provide system security in

particular it has limited ability for balancing the real power output of system generation with

system demand. Most larger plant, some of which the DG might displace, is connected at the

transmission level and can deliver a wide range of power outputs as required. Such plant is

dispatchable, it can vary the real power output by the modification of the energy input into the
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generator such as water flow or the rate of fossil fuel burning. DG varies in its dispatchability

depending on its energy source and size.

Dispatchability of the plant is dependent on:

• Security of energy source: The control of energy input into the generator to be

converted to electrical energy must be controllable. For example the flow of gas into

a gas turbine can be controlled given a sufficient supply, whereas the wind for a wind

turbine is not controlled. Hydro plant is dispatchable but will be subject to limits such

as the total water in the reservoir.

• Output range of the electrical generator: A generator output could be from zero to its

rated power. In practice, the efficiency of conversion to electrical power may limit how

little it can produce economically.

• Control strategy: The design of some plant may not suit dispatch according to required

power output. For example, although a combined heat and power plant is capable of

operating to order, the efficiencies gained from using the waste heat are lost if the heat

is not required and thus the plant is usually operated according to heat demand [24].

Nuclear plant is usually operated with a steady electrical power output as the process

that provides the heat energy in older plants is not suited tofrequent and rapid changes

in output. Many coal plants are capable of rapid changes in power output as the steam

used to rotate the turbine is buffered and the rate at which itis released can be changed

very quickly. The rate of burning of the feedstock is then relatively rapidly adjusted to

maintain the steam buffer.

• Capacity: The DNO or the Transmission System Operator (TSO) exerts varying levels

of control to plant real power output. A small plant may be capable of the above

services but larger plants tend to be used for real power balancing and frequency

response as they can be more easily dispatched centrally to be in the required state

of readiness or operation as required by the Transmission System Operator (TSO) [15].

With present techniques it is simplest to control a small number of larger plant for this

purpose as this is easier than to control a large number of small ones [15]. For this

reason a large number of small DG may not be dispatched centrally.
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2.2 Traditional voltage management of the distribution

network

The direction of power flow is historically from the transmission network down into the

distribution network. Frequency and voltage are kept within statutory limits by the central

control and dispatch of large generating plant by National Grid.

The DNO has the responsibility to connect the consumers demanding for electricity to its

supply. Traditionally this has involved providing connection to the transmission network. All

but the largest industrial consumers are connected at lowervoltages than the transmission

network. The DNO is obliged to maintain the voltage at all LowVoltage buses over 400V

within ±6% and within+10%/ − 6% for 400V buses [28].

Power is fed to the distribution network at the Grid Supply Point (GSP) which is a transformer

or a number of parallel transformers feeding (usually) a 33 kV busbar. The high voltage side

of the GSP transformer is kept within voltage limits by the actions of plant connected to the

transmission network.

The voltage on the distribution side of the the GSP is regulated by the transformers which are

ULTCs. These are described further in the next section. Voltage control in the distribution

network, below each GSP, is largely automatic with predictable local control achieved by

good planning; some automatic devices, such as ULTCs on the primary transformers and

infrequent remote or on-site manual switching and adjustment.

The DNO may have contracts to connect generators to the distribution network. This

generation may be used to maintain voltages in the network. Connected generation may also

be used for frequency support, providing local demand for real power. The supply of these

services is usually only possible from firmer generation with a controllable energy source

such as a hydro scheme.

The most common automatic devices used for voltage control in the distribution network

in Scotland are ULTCs [30]. The following sections describe the role and operation of the

ULTC with a view to the simulation of its operation and ability to operate effectively and
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economically with increased DG.

2.2.1 The voltage regulating transformer

The voltage regulating transformer or Under Load Tap Changer(ULTC) performs the role of

stepping up or down the voltage between Medium Voltage (33 kV<MV≤132 kV) circuits

and High Voltage (HV≥132 kV) circuits or between MV and Low Voltage (LV<33 kV)

circuits or directly between LV and HV circuits. In additionto this it is able to vary the

exact transformer ratio by small steps as detailed further in this section. The actions are

determined by the Automatic Voltage Control relay (AVC). In this way it is able to manipulate

the voltage of buses connected either directly or indirectly to the ULTC. In a similar way, the

autotransformer can be used for voltage control between buses of similar nominal voltage

[31].

Location

There are two roles the ULTC can perform. The first is to step down the voltage at the grid

supply points (GSPs). Here the AVC acts to control the voltage of the lower voltage bus. The

second is to step up the voltage from generating plant. The AVC then acts to keep the voltage

of the higher voltage bus within limits.

In general then, the AVC seeks to control the voltage of the bus on the side closer to the

consumer. None of the examples in this study will contain transformers connecting buses of

similar nominal voltage.

Operation

The tap-changing ability of the ULTC is provided by a mechanism that connects more or less

of either the low voltage (LV) or high voltage (HV) winding [32, 33]. The voltage on the LV

winding is defined as:
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Parallel
operation

132kV

33kV

11kV

Figure 2.2: Example placement of transformers in the distribution network.

VLV = VHV
NLV

NHV

(2.1)

where N is the number of turns on each winding.NHV /NLV defines the turns ratio.

The transformers in the network examined are of the type thatchanges the number of turns of

the high voltage winding that are connected. In this case, connecting less of the high voltage

winding, lowers the tap ratio and thus raises the voltage on the low voltage side. Connecting

more will raise the tap ratio and thus lower the voltage on thelow voltage side.

As a product of the construction of a two winding transformer, reducing the number of turns

connected on the high voltage side is termed tapping up. A tapup raises the LV voltage and

a tap down lowers the LV voltage. Figure 2.3.

In this study, the lowest number of connected turns is termedtap position 1, the highest

number is termed tap position n where n is the number of taps. As a consequence of that

definition, the term “tap up” refers to increasing the tap position and consequently increasing

19



Distributed Generation in Future Distribution Networks

the number of turns on the HV winding. The term “tap down” refers to decreasing the tap

position and consequently decreasing the number of turns onthe HV winding.

N

33 kV

LVHV

132 kV

1

n

Figure 2.3: Transformer windings with taps numbered as used in this study.The diagram is
an edited copy from Harker [33]

Note, however, that this is contrary to the practice of numbering the taps according to their

physical arrangement in relation to the ground. Harker reports that the taps should be

numbered 1 for the most turns connected and N for the least number of turns connected

[33].

A single tap-changing operation, either up or down, takes a number of seconds to complete.

A tapping operation involves mechanically making the connection to the next tap before

breaking the connection the existing tap. Adivertor resistor or inductor is placed in series

with the short-circuited turns to prevent large short-circuit currents during this process [34].

On older devices the operation took in the order of 10 seconds[35]. Newer devices take

between 1 and 5 seconds [36–38].

The time taken for a complete tap change is significant thoughit is smaller than the delay

implemented by most existing and proposed AVCs as described in section 2.3.4.
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Cost of ULTC Operation

More significant than the time taken for a tap change is the appreciation that a tap change has

a cost associated to it as a result of the wear and tear on the mechanism [38, 39]. Maintenance

of the LTCs can account for 40-50% of transformer maintenancecosts [40].

A single transformer maintenance operation is approximated to be£18,000 by Handley in

2001 [41]. Such maintenance typically occurs either at 100,000 tap change operations and

two to seven years [40–42] of operation, whichever is the earlier.

Not taking into consideration the results of condition monitoring techniques, Redfern and

Handley, however, suggest a maintenance interval of only 40,000 tap operations [43]. This

figure arises as the result of a trade-off between the cost of maintenance and the probability

of failure multiplied by the cost of a failure.

The cost per tap operation is calculated as 50% of transformer maintenace costs. The

transformer maintenance cost per tap operation is calculated by dividing the maintenance

cost of a transformer by the expected number of tap operations between maintenance. This

gives the following equation:

TMC =
50

100
·

MaintenanceCost

OperationsBetweenMaintenance
=

1

2
·
18000

40000
(2.2)

resulting in a 22.5 penceTap Maintenance Costper tap operation.

To evaluate the system cost of ULTC tap operations, the number of tapping operations made

by each ULTC over the period of the scenario is determined. The total tapping cost for that

scenario is thus the number of tapping operations multiplied by the estimated cost of each

individual operation. Note that when evaluating the cost tothe system of a period of tap

operation, the evaluation also includes the loss of generating opportunity costs associated

with shutting down a ULTC for maintenance as described in section 3.6.1.

The capital cost of existing ULTCs are not included in the costper tap change in this

study. Connection costs attributable to transformers are available from Scottish Power and

Scottish and Southern for Grid transformers. SP and SSE charge£500,000 and£1,250,000

respectively for a new 132/33 kV 30MVA transformer requireddue to connections as of April

2007 [44, 45], with the former quoting ongoing yearly charges of£56,000.
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Transformer parameters

Apart from the power and voltage ratings of the transformer,a design decision has to be made

as to the number and spacing of the winding taps needed to provide sufficient voltage control.

The step size determines how fine the adjustments to the control voltage are made by the

transformer. A balance has to be struck between the following:

• The total number of taps.

• The range of required control.

• The allowed voltage limit on the control bus.

• The variability of the real and imaginary power flows throughthe transformer.

The exact relationship between the step width, number of taps and the total possible ratio

adjustment is defined later in section 2.3.4. The steps are usually linear steps of between 1%

and 5% [36, 39, 46–48].

Network evolution

The network changes over time. There are seasonal changes inaverage load, generation and

line and equipment properties. In addition load patterns change, generation requirements

change and new plant and equipment is installed. Such changes can require an adjustment

of the control parameters of the AVC. Many of these changes areeffected manually at the

location of the ULTC.

2.3 ULTC Development

There are many types of AVC installed today. The controllershave become increasingly

sophisticated as problems in their operation have been observed in the field, and predicted by

research.
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2.3.1 Digital control

Programmable logic circuits and microprocessors have beenused to improve the ease

of adjustment of ULTC AVCs as compared to previous analogue designs [49–51]. In

addition, most of the subsequent control strategies rely onthe digital controllers for ease of

implementation. Quoting Harlow [50]:

It is recognized that being able to mathematically define thedesired operation is
tantamount to its implementation when considering digitalcontrol.

2.3.2 Communication

Control units can be linked to each other or to central controlstations for remote adjustment

such as with the GenAVC ULTC AVC [52] as shown in Figure 2.4. Quoting [52],

“GenAVCTM operates by making an estimation of the voltages on the network controlled by

a primary substation transformer, using information aboutthe state of the network collected

from remote measurement units.” Communication also allows for certain strategies to

improve ULTC behaviour such as serial and parallel operation. This is discussed in section

2.3.5.

The benefits obtained from control strategies involving communication must be balanced

against capital and installation costs of communications equipment. Typical costs to modify

an AVC relay and install a remote voltage sensor are£2000 for the relay and£1000 for each

remote voltage sensor [31]. In addition, such units are capable of communicating alarm

signals and other operating data to the control station.

2.3.3 Periodic change

The pattern of electricity use and supply changes over time.There exist ULTC control units

that have been manufactured to change the way in which they operate according to the time

of day and day of the week.

Figure 2.5 demonstrates the seasonal variability of real power demand in the Scottish Power
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33kV

11kV

GENAVC

RTU

RTU

RTU

RTU

GENAVC

Figure 2.4: The GenAVC uses remote measurements to make tapping decisions.

area.

The difference in variation of real power translates into different requirements on voltage

regulating equipment to maintain acceptable voltage levels at consumer busbars.

2.3.4 Control strategies

Control strategies started with simple voltage regulation of one of the connected buses.

Increased sophistication has allowed the AVC to take into account a number of other factors:

• The actual or estimated voltage at remote points in the network.

• The operation of parallel ULTCs.

• The power flow through the ULTC.

• The operation of other voltage regulating devices.
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Figure 2.5: Real power demand depends on the time of year.

The next section starts with the most basic AVC strategy. Thefollowing sections describe

further developments that have been implemented or simulated.

Basic voltage regulator

This section describes the operation of the basic voltage regulating strategy for tap-changers

such as those used in the Scottish Power area [53]. The methodhas evolved to work well in

networks where power is supplied at high voltage and consumed at low voltages. Its goal is

to minimise voltage error from a set-point. Its actions are to tap-up, tap-down or stay put.

A common mode for the tap changer is to control the voltage on the lower voltage busbar to

which it is connected. Some of the rules that have evolved to determine the stepping actions

are described [31].

• The most basic rule by which a tap-changer operates is that ifthe controlled voltage

is lower than the set-point, the turns ratio is reduced and vice versa. The tap changer
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Figure 2.6: Tapping operations due to the control voltage being outwith limits for a period
of time.

changes the transformer turns ratio in fixed steps. There is alimit to how much the

turns ratio can be adjusted.

• The next most important rule is that the tapping action should only occur when the

voltage violation, measured per-unit, is at least unity±0.00625. This is half that of the

step-size per-unit of a typical ULTC. This avoids the situation called hunting, where

the tap-changer continually switches between two settingsas both result in a voltage

violation.

• To avoid frequent operation, the tap-changer will only act after voltage exceeds the

dead-band for a given delay, typically 45 to 60 seconds [53].Increased sophistication

has been achieved by reducing or cancelling the delay in situations where more than

one tap change is required to correct the voltage [54]. Another method is to change the

delay as a function of voltage as described in section 2.3.4.

• To allow rapid adjustment due to large voltage violations, an inter-tap delay which is
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lower than the normal delay, is allowed if the tap operation fails to bring the voltage

error within the dead-band.

Refinements of the basic voltage controller.

Direct control of tap-changer.

The operation of more than one transformer in parallel requires a method to avoid them

working against each other. Both of the following methods need continuous communication

between the transformers in parallel.

Parallel operation can be achieved where communication is possible between the transformers

and they can be operated in master-follower mode. The assumption of this method is that the

tap position for each transformer should always be identical. A rule of thumb suggested is

that the transformer impedances must be matched to within 7.5% of each other and have the

same tapping ratios [51].

Parallel transformers can be biased to tend towards equal settings with a difference in tap

setting no more than one step. This can be achieved by measuring any circulating current

between the transformers as a result of their relative tap position [55, 56]. This method

requires a signal between the parallel transformers reflecting the circulating current sensed

by a ”‘balancer”’ circuit [57].

Input voltage manipulation.

Improved accuracy of control under varying power flow can be achieved by adjusting the

measured voltage at the terminals of the secondary winding according to the product of

current and reactance of the line between the transformer and the point for which voltage

is controlled [58]. This is Line Drop Compensation.

This method relies on accurate adjustment of the measured voltage to reflect the properties

of the line. An incorrect adjustment can cause correct operation with the load at one power

factor but incorrect operation due to a change of power factor such as by the connection of
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distributed generation below the AVC. It does not necessarily improve the voltage profile of

points other than that point, the load centre, used to calculate the compensation parameters.

There is an alternative to the two methods described in section 2.3.4 for operating ULTCs

in parallel. The method, negative reactance compounding, uses a form of line drop

compensation with negative reactance [55, 56, 59]. This method has been unpopular due to

the resultant inaccuracy in control voltage estimation when the load power factor differs

from that for which the settings were designed, reports Harlow [57]. It is now recommended

for consideration as a useful method for paralleling between transformers where it is not

convenient to connect them with a signal wire or if their impedances or tapping ratios differ.

Harlow cites improvements in modern sensor accuracy and tighter constraints on load power

factor as reason for re-consideration of this technique. Thomson on the other hand argues

that the limitation on power factor is a limitation on distributed generation which may be

operating to correct for voltage drop along overhead lines.

Other more complex strategies involve manipulating the voltage input to achieve a change

in the basic controller behaviour, for example, coordination with a static condenser (section

2.3.5).

Delay timer manipulation - delay inversely proportional to error

The algorithm described in section 2.3.4 does not allow for the magnitude of the voltage

error outside the dead-band. The inter-tap delay reductionhelps correct a large voltage error

quickly. It does not avoid spurious operation due to low voltage errors occurring for periods

only slightly longer than the tap operation delay. A system where the tap operation delay

is inversely proportional to the voltage error outside the dead-band serves to tap quickly for

large errors and slowly for small errors [35, 36]. Example operation of a Calovic controller is

shown in 2.7.
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Figure 2.7: Control voltage and tapping actions due to Calovic’s controller.

2.3.5 More advanced control strategies

In addition to easier adjustment, digital controllers allow the possibility of implementing

more complex control strategies and protection rules as required.

Strategies that can be implemented are limited by:

• The cost of the controller.

• The cost and accuracy of input signals.

• Accuracy of system parameters in all operating environments

• The time taken to calculate a decision.

• Accuracy and speed of communication responses required from other devices or

operators.
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Coordination of generator AVR with a ULTC

Modelling of a system has been conducted by Cartwrightet al. in which the ULTC operates

according to the ability of nearby generation to provide reactive power support [60]. When

control voltage is low and the generator AVC cannot provide any more reactive power, the

ULTC will tap up and vice versa. The assumption is that a tap action can occur within 5

seconds of the AVC reaching a limit and that there is only 1 signal received by the ULTC by a

generator AVC. It seems evident that a fast acting generator AVC will reduce ULTC tapping

actions due to transients not caught by the timer delay if thegenerator AVC is kept away from

its control limits.

Present operating practice does not accommodate such interaction. It is historically believed

that the operation of the ULTC and the generator Automatic Voltage Controller will result in

some kind of conflict or control overlapping with each other [5, 31, 61, 62]. Another area for

concern is that with DG in constant voltage mode that subsequent loss of the DG causes

significant operational difficulties [63]. For example if a voltage control strategy uses a

generator to lift voltage at the end of a long feeder, and thatgenerator is then subject to

disconnection, the voltage at the end of the feeder may drop unacceptably low.

Coordination of FACTS devices with a ULTC

A static synchronous compensator (STATCOM) on its own is capable of voltage control by

absorbing or generating reactive power as well as real power[64]. The STATCOM is a

Flexible Alternating Current Transmission System (FACTS) device.

STATCOMs provide fast acting support though require stored energy to operate in real power

support mode. It is desirable that ULTCs perform slow acting voltage control to leave the

STATCOM in such a state as to be able to provide maximum fast acting support. Coordination

between a STATCOM and a ULTC has been simulated by Paserba [65]with two basic

strategies. A trade-off between improving voltage time-series and reducing tap changes of

the ULTC was demonstrated. Coordination was achieved by the manipulation of the gain of

the voltage error measuring circuit to shift the responsibility for a voltage change from the

STATCOM to the slower acting ULTC. In this way, the adjustment for short-term voltage
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changes is bourne by the STATCOM and long-term ones by the ULTC.

A similar method is proposed by Kwang Son that coordinates a Static Var Compensator

(SVC) with a ULTC in order to maintain the compensation marginof the SVC [66]. The

SVC can react to rapid changes in voltage but its compensating current is limited. The

compensation margin is maintained by manipulating the delay timing circuit of the ULTC

such that the delay is minimised when there is little operating margin left for the SVC and is

maximised when there is a large operating margin. As with theSTATCOM, the SVC alters

the ULTC measured voltage, in this according to how close to its limits the SVC is operating.

Coordination of multiple ULTCs operating in parallel.

It is very common for all but the smallest feeders to have multiple ULTCs working in parallel.

There are multiple benefits of having more than one ULTC in parallel:

• The most important is the increased capacity of the combinedULTCs.

• The combined rating can be modified as part of ongoing networkplanning activities

with individual ULTCs being swapped and upgraded as required.

• Maintenance can be scheduled for a ULTC at low load periods allowing the other

ULTCs to take the out of service ULTCs share.

The ULTCs may be of the same rating and in the same geographicallocation. In this case

the ULTCs may operate in master-follower mode with one masterAVC determining the tap

operations the master with the others replicating the operation.

Parallel ULTCs may be of different ratings or be geographically remote. In this case

master-follower may not be appropriate and various schemesexist to adequately share duty

by examining circulating current between the ULTCs [55, 56].

Parallel ULTCs in the network analysed in this study were of identical rating and tap

arrangements. The ULTCs were modelled such that the controller kept the same tap position

for each in the set.
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Coordination of multiple ULTCs operating in series.

It is recognised that it is beneficial for each delay setting for two or more transformers

operating in series to be different [39, 46, 67–69]. The difference ensures that two or more

transformers do not react at the same time to a single voltagedisturbance. Two transformers

acting at the same time in series could cause a voltage error in the opposite direction to that

being corrected. This would lead to one or more transformersperforming another corrective

tap operation with a result of three operations instead of just one to adjust for a change in

power flow.

The delay is normally shortest for higher voltage transformers, for example, 45 seconds in the

Scottish Power network. Delays of up to 180 seconds are used for lower voltage transformers.

The exception to this is when the ULTC is being used to connectgeneration to the network

when a shorter delay is used.

A more sophisticated approach to series ULTC coordination is achieved by blocking.

Blocking denotes cancelling tap operations of a ULTC if a higher voltage ULTC in series is

about to perform the same operation. The normal rules that demand tap changes according to

the voltage error have been combined using fuzzy logic with rules that block tap operations

according to the intentions of other ULTCs [70]. The method requires the communication of

tap operation intentions between transformers but does notneed centralised communication

or control.

Figure 2.8 shows that when the 132/33 kV transformer senses the controlled side voltage

dipping below its lower limit, it sends a blocking message tothe 33/11 kV transformers

below it. The 132/33 kV transformer then makes a corrective tap operation after a delay

to prevent spurious operation. The block is then lifted. This process reduces the number of

33/11 kV tap operations that result from correcting a voltage error that the 132/33 kV is about

to correct itself.
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Figure 2.8: A blocking signal prevents spurious operation of 33/11 kV transformer.

Coordination of multiple ULTCs in more complex configurations

The paralleling methods suggested in the previous section work if the transformers connect

to shared buses both upstream and downstream. Smithet al. describe a situation in which the

simple blocking rules do not enable optimal behaviour [39].

Consider Figure 2.9. If a disturbance occurs at L2 then all ULTCs observe a voltage change

however the duty of responsibility is only on ULTCT1 and ULTCT2. Smith proposes a Duty

of Responsibility algorithm that takes into account the change in the load experienced by

each transformer [39, 67]. A measured load change reduces the time delay imposed on the

transformer AVC to operate. The load change at a transformerimplies that this transformer

has a duty of responsibility to correct any voltage deviation resultant from the load change.

Care would need to be taken that given an equal load change on ULTCT2 and ULTCT3 that

the decrease in time delay does not cause conflict with ULTCT1.
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Figure 2.9: Smith’s example network.

Using voltage prediction.

The imposition of a time delay on voltage tapping actions reduces spurious operation due to

transients. The delay corresponds to an implicit assumption that if there is a voltage error for

Td seconds then it will continue to be outwith voltage limits without a correcting action. In

other words, the assumption is that the predicted voltage will continue to be outwith limits.

An alternative method to the basic ULTC AVC algorithm described in section 2.3.4 would

be to perform a tap operation according to an improved prediction of future voltages. Suzuki

et al. built auto-regressive moving-average (ARMA) models of nearfuture reactive power

and voltage [71]. They made tap changing decisions according to their automatic voltage

and reactive power control (AVQC) algorithm. The AVQC algorithm is based on a set of

fuzzy logic rules which combine the outputs of the ARMA model to provide a tap operation

decision.

At worst, the performance should be as good as the simple assumption made above. If the

model was well constructed, the increased amount of information it used to create a voltage

prediction should increase the accuracy of the voltage prediction. The assumption here is that

as the error of the voltage prediction tends to zero, the performance of the decision algorithm

increases monotonically. An example of tap operation according to projected voltages is

shown in Figure 2.10.
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For network and conditions given in [71], the AVQC algorithmis successful when compared

to the basic ULTC AVC. The algorithm avoids the hunting demonstrated at the start of the

paper. It is not clear however if the same results might have been achieved by simply widening

the voltage limits. Qiang demonstrated in [36] that there are situations in which oscillations

cannot be avoided by adjusting the control deadband so the Suzuki solution is of use if it was

demonstrated to work on more taxing examples.
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Figure 2.10: Simple example showing how projected voltage determines control actions to
keep voltage close to target voltage.

Fuzzy Logic

Fuzzy logic is not a control strategy in itself. Fuzzy logic is a method of combining several

control rules which may have conflicting goals, and arrivingat a decision or measurement.

A simple application of fuzzy logic to ULTC control was simulated by Kastztennyet al. [37].

The controller combines rules determining the direction oftap operation according to
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measured voltage error with rules determining the time delay again according to the

measured voltage error. The performance of the controller is similar to that of the inverse

time delay controller described in section 2.3.4. Advantages of the fuzzy logic method are:

1. Rules can be described in natural language and easily translated into fuzzy logic.

2. Many rules can be combined to produce complex behaviour.

In the case of tap-changer control decisions, the fuzzy logic system must ultimately provide

a decision at all times as to whether the ULTC is left as it is orwhether an up or down

tapping operation is required. There is no way to fuzzify thecontrol actions available to the

ULTC. The fuzzy logic system can be constructed so as the result can reflect the degree of

certainty of a decision. This certainty however can only be interpreted as one of the three

control decisions:stay, up or down, that are available. One way of using the certainty of a

decision is to introduce a probability that the actionsupor downdo not occur that is inversely

proportional to the certainty.

2.4 Summary

In future there will be many applications to the DNO to connect generation at the distribution

level. Such quantities of generation have a number of effects on the network which may

be solved by appropriate installation of protection or network upgrades. This chapter has

explored existing ULTC AVC methods and shown that there is considerable potential to

mitigate the voltage impact new DG can have on the network. This may be achieved by

increased understanding of the operation of ULTCs and appropriate control of the DG.

The next chapter shows the implementation of a method of simulating the operation and

interaction of DG with ULTCs. The method takes time series of generation and load

magnitude and creates time series of network voltages, power flows and ULTC operation.

The algorithms used for ULTC control and for control of the DGare detailed. A method for

evaluating the fitness of the network and the DG capacity assigned in terms of voltage control

is defined.

36



Chapter 3
Model Implementation and Evaluation

Methods

This chapter presents a method for exercising a network model and observing power flows

and voltages in response to the variation of input load and generation over time. Time series

define the changing loads and generation for whole days of operation. The network model is

generated from a definition file which could define any network. The method can incorporate

models of actively controlled network equipment such as ULTCs. This method thus allows

the observation of the operation and response of network equipment to time varying load and

generation.

Different scenarios can be created by the variation of inputfiles, equipment models,

equipment control parameters. The method allows many scenarios to be examined in a

single run by the repeated construction and testing of scenarios varying by predetermined

parameters.

The observation time series produced by the method are stored in a number of files such that

various analyses can be conducted on the observations such as:

• Equipment loading over time.

• Bus voltages over time.

• ULTC tap position over time.

• Total number of tap operations for each ULTC.

• Total energy generated,

These output time series enable a more complex evaluation ofsystem control fitness based

on equipment maintenance costs.
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3.1 Network simulation

A network model is defined by data such as: busbars, lines, transformers, generators and

loads. The simulation in this study, is defined as the encapsulation of the network model

inside scripts that can automate the repeated solving of thenetwork model with varying inputs

and parameters. The simulation manages the inputs to the network model and stores any

required observations from the solved network model.

3.1.1 Time series power flow analysis.

The controllers for ULTCs tested in this study operate on time-scales of the order of seconds,

as discussed in section 2.2.1. ULTCs controllers determine discrete control actions with

artificial delays imposed between the observation of an under or over voltage condition and

action. The controllers are designed to have a wide deadbandin their response to voltage

measurement such that frequent or opposing action is avoided.

There exist software tools for studying the response of controllers to network conditions

such as the dynamic study tool of Power System Simulator for Engineering (PSSE) and

SimPowerSystems toolbox for Simulink. These tools includemodels of closed loop control

systems controlling generator AVRs and ULTC controllers. Generator and load models can be

provided to determine their response through the simulation. They produce results showing

the operation of network equipment and network measurements in millisecond detail. Such

software tools produce dynamic network analyses.

A standard power flow calculation produces a network solution for a single point in time.

The network is defined with all line parameters, transformerratios, complex power loads

and generation set at the start. The solution is the complex power flow through the defined

network with generator voltage angles and bus voltages calculated. The solution includes

calculation of reactive power production for constant voltage generators to keep their

respective controlled buses at their target voltages subject to generator excitation limits.

Extra calculations can be made between iterations in the power flow solution to determine

optimal transformer ratios for ULTCs.
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The simulation in this study required the implementation ofseveral methods of control for

ULTCs and generators to determine their response to the connection of an increased amount

of distributed generation. The control methods may includeagent type methods where

communication between agents is required. The control methods must not be limited by

the descriptive power of the dynamic simulation tool. In addition, the generation and load

experienced by the network needed to be modified over time according to time series. For

this reason, the dynamic network analysis tools available were considered unsuitable for this

study.

Consider then a standard power flow calculation. The solutionis obtained for a given set

of starting conditions. If a load or loads were modified slightly in the solved case and

then the network was solved again, the comparison of the two solutions would provide a

good indication as to how the network responds to such a change. There is, however, no

information available to the solver that the two input network cases are related, they are solved

independently. For this reason, such a method is unsuited for the purpose of examining the

reaction of a closed loop control system as a result of a load change.

The ULTC control algorithm, however, has an artificially delayed feedback mechanism.

Short term oscillations from generator AVRs as a result of a ULTC control action will have

dissipated before another action is permitted. The calculation of these oscillations then are

not required to model the response of ULTCs to load and generation time series.

The simulation of ULTC operation requires that its control algorithm is presented with

network observations at a frequency sufficient that the working of the algorithm is equivalent

to that of a real-time model or experiment. The ULTCs operateafter time delays of the order

10 seconds and complete a tap change in the order of 1 second. For comparison, dynamic

studies generate results using time-steps in the order of 10ms.

A semi-steady-state method is proposed here that calculates a power flow solution at discrete

time-steps based on the network solution at the previous time-step and the adjustment of load

and generation according to the input time series. In addition, adjustments can be made to

the network model according to the actions of devices such asULTCs. The actions of such

devices are determined according to their observations of the network taken from previous
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time-steps.

A number of input data files determine the load and generator complex powers over time.

The simulation uses these files to initialise the network andthen consequently to modify the

network each time-step according to the pre-defined load andgeneration. The end result

of the simulation is a number of data files containing measurements for each time-step as

required. Figure 3.1 shows an overview of the simulation in terms of data flow. The Iterative

Network Model is examined in more detail in section 3.2.

ULTC & DG
Parameters

Line and equipment
data

ULTC and DG
control algorithms

Input

Control Definition

Network Definition

Results

Generation time series

Load time series
Network
Model

Iterative
Network observation time series

Figure 3.1: Overview of simulation data flow.

3.1.2 Discrete step simulation assumptions.

A number of assumptions were made in treating the repeated solution of a network as

simulating a continuous system.

The most obvious assumption is that the interaction of the fast-acting generator AVRs with

the changing power flows in the network are largely ignored. AVRs adjust the excitation of a

machine in seconds to match generator terminal voltage withthe target voltage. Their action

is a function of a number of time and gain constants.
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If properly adjusted the AVR will settle, for example, before a maximum of 4 seconds for a

digital control or below 10 seconds for an analogue one [72, 73]. The excitation level will

have brought the voltage close to the set point within about half the settling time. For this

reason the simulation allows an AVR to adjust its excitationfrom minimal to maximal in 5

seconds.

It was assumed that the action of AVRs is such that they do not interfere with each other

leading to cyclical or overshoot effects.

3.1.3 Network components

The simulation must model relevant network components. Themodel is generated from

a definition file of these components. The key components are busbars, lines, generating

plant, transformers, generators and loads. The network definition file contains their individual

electrical properties and limits as well as how each connects to the other.

Data was readily available as a definition file for the Scottish Power area that is used in this

study. These components were modelled sufficiently for the control methods to be presented

with realistic parameters by which they must infer control actions, and for the consequences

of such actions to be reflected in subsequent load flow solutions. A run of a simulation is

entirely repeatable.

3.1.4 User defined controllers

ULTC AVC

The required input parameter for conventional voltage control by ULTCs is simply the

control bus voltage. Refinements include observation of realand reactive power through

the transformer. These parameters are available as a resultof a power flow solution. In the

simulation, a power flow solution is repeatedly obtained from a network model. Before each

solution is made, control actions from previous iterationsand load and generation changes

are reflected in the network model as described in section 3.2.
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The following list defines the requirements of the simulation of the automatic voltage control

of ULTCs and other controllable network plant.

• The user defined controller is provided with the defined network measurements

obtained from the network model at each iteration.

• Available measurements are restricted according to the intentions of the current

simulation run.

• The controller produces an action at each time-step. The action is one of the following:

“Tap up”, “Tap down” or “No change”. The network model is thenupdated as required.

• The controller is not limited in computational complexity or resource requirements.

• Inter-controller interaction termed “agent communication” is restricted according to the

intentions of the current simulation run.

• The required input parameter for conventional voltage control is the control bus voltage.

• Refinements to the controller may also require observation ofreal and reactive power

through the transformer.

Generator controllers

The model supports user models for the control of DG operation. Control modes modelled

include:

PQ Generator in constant power factor mode.

PV Generator in constant voltage mode.

Generation shedding Over-voltage tripping and subsequent reconnection of the generator.

Generation constraint Putting a limit on the maximum real power output of the generator.
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3.1.5 Data input and output

The custom simulation software accepts data files that definethe network by for example

line and network equipment parameters. More detail on the input file format, the.raw file,

which is used for network definitions in the power flow simulator is found in section A.1.

The simulation accepts load and generation time series to define the load and generation at

each time-step. The time series are stored as files containing a row for each value in the

series. Two values separated by a tab are used for defining real and reactive components of

load or generation.

The simulation software enables the transfer of data between the power flow simulator and

the controller models.

The simulation software also stores network parameters at each time-step as a record of the

successful run of the simulation. The input.raw format is sufficient to record all network

data but is not used for the following reasons:

• The state of custom modules would need to be stored separately.

• It is relatively large.

• The format contains many values that do not change during thesimulation run.

• The resultant saved data would be difficult to extract data from using standard

spreadsheet or graphing software.

The records are separated into files in a form suitable for subsequent analysis. The simulation

software only stores required measurements and discards the rest. This is detailed further in

section A.2.4.

3.1.6 Network solution

The simulation software ensures that the network is solved at each time-step. This means

the solution must converge within reasonable limits in a maximum number of iterations. A
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section of code ensures that this happens as described in section A.2.3. Should that code

indicate a failed solution, the run exits gracefully, saving network measurements up to the

point of failure and allowing the simulation to start a new run with the next set of parameters

if specified.

In this way, a large number of scenarios can be simulated in succession, the simulation

software starting new runs as defined by the initialisation script. Should a scenario cause

the solver not to converge, that run will not be completed butother runs may complete. The

results of each run are kept separately.

The next section defines in more detail how the simulation software works and how a

simulation run is defined and executed.

3.2 Power System Simulator for Engineering

Power System SimulatorTM for Engineering (PSSE) is a commercial power flow package.

PSSE is capable of maintaining a network case with line and equipment properties,

transformer ratios and load and generation as required.

PSSE provides an Application Programming Interface (API) which enables the user to load,

observe and modify a network model maintained in PSSE using code written in Python.

The API also allows the code to initiate power flow solutions.It is this API that allows the

simulation model built for this study to encapsulate the network model in such a way as to

allow the PSSE load flow solvers to operate on network cases repeatedly modified by outside

code according to the scenario. Note the distinction between thesimulationand PSSE; PSSE

is always referred to as PSSE; thesimulationis the combination of PSSE and the external

code thatdrivesPSSE according to the input data and any custom device models. A more

detailed discussion of the use of the PSSE API is provided in Appendix A.

Load and generation scenarios for a day or days are created inadvance and along with fixed

network parameters. The data is then batch processed by the simulator. User created scripts

perform the following functions that are necessary for the observe-update-solve cycle as

summarised by the white boxes in Figure 3.2. The pseudocode for a 1 day simulation at
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5 second intervals for a single scenario is as follows:

1. Load network data such as branch impedances, loads and generation into the simulator.

2. Solve the network in its present form and ensure convergence.

3. For time = 1 to 17280

• Observe the solved network.

• Update network data:

– According to load and generation time series.

– According to controller actions.

• Solve the network using iterative solver and ensure convergence.

4. Exit simulator.

PSSE is capable of providing a solution to the network data inwhich ULTC winding ratios

are set to minimise deviation of bus voltages from their targets. This solution, however, omits

the real-time characteristic of all automatic tap-changers. The most important characteristics

are the delay between observing a condition that it should act to change and actually acting.

This includes any artificial delays used by real transformercontrollers. It also ignores that

adjustment of tap-position is sequential and usually only reflects local measurements. A real

network does not suddenly alter the tap-position of all transformers in an instant.

3.2.1 Custom simulation code using Python

The ULTC delay is implemented in the custom ULTC model, described further in section A.2,

in order that the ULTC does not operate too frequently as discussed in Chapter 2. Solution

of the network is achieved with the tap ratios fixed accordingto the network model at each

time-step. Operation of the taps is simulated during the Control Algorithms part of the cycle

in Figure 3.2 according to algorithms implemented in Python. The algorithm is supplied

relevant network details on which to base its operation. Thealgorithm determines what ratio
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1 Interface 4 Interface

Observe network Update network

Script

Solve network

5 PSSE

2 Script

Log data Algorithms
Control

3

Figure 3.2: The flow of control in the observe-modify-solve cycle with script activities.

the tap-changer is set to for the next time-step. The ratio isset during the update part of the

cycle. The network is then solved with these ratios fixed at the new values.

The interface to PSSE allows any algorithm to be implementedto control tap-changer action.

There are physical constraints such as finite tap ratios and non-zero time for a tap change.

The operation of the tap-changer according to these physical constraints on the device is the

responsibility of the algorithm or script interfacing withPSSE.

Automation scripts are written in Python, an object-oriented programming language. PSSE

can be set to run these scripts, providing an Application Programming Interface (API) with

which to modify the network case and run load flow solutions asrequired. These scripts

are responsible for performing a simulation run according to the many possible initialisation

parameters such as:

• Network definition file.
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• Load profile.

• Generator schedule.

• Generator controller parameters and methods.

• Individual ULTC controller parameters and methods.

• Data to be stored at each time-step for later analysis.

The scripts must also execute the additional tasks every time-step as in Figure 3.2. The tasks

shown in the shaded boxes are saving data at each time-step for later analysis and executing

the control algorithms. For simplicity of interaction, allcode external to PSSE, including

implementation of the control algorithms, was written in Python for this project.

The custom code written for this project is split into two distinct types, theCustom APIand

the rest of the simulation code. These are the shaded boxes inFigure 3.3. TheCustom APIis

the only code that calls the PSSE API and features an improvedtechnique of error checking

which causes the simulation to terminate with notices to theuser should the power-flow

solution fail to converge. It also simplifies PSSE function calls and provides key data to the

rest of the code about the network elements loaded into PSSE.The rest of the code reads in

scenario data and then performs the observe-update-solve as described above, using functions

supplied by theCustom APIonly.

A more detailed breakdown of the custom code written for the simulator is provided in

Appendix A. Figure A.4 in A expands on Figure 3.3 shown here.

3.2.2 Network solution parameters

There are a set of parameters that determine the performanceof the load flow methods. The

crucial parameters are acceleration factors and the maximum number of solver iterations.

In general, a larger network requires more solver iterations for the solver to converge on a

satisfactory solution. A large network, in particular if voltages differ greatly from nominal,

requires slow acceleration factors to converge at all.
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Figure 3.3: Diagram showing interactions within and between custom Pythoncode (shaded)
and PSSE.

To avoid always using small acceleration factors and a largenumber of solver iterations, the

solveFixed method first tries near default acceleration factors (ACCP, ACCQandACCM)

and the number of solver iterations (ITMX) is limited to 300. Should the solver have failed to

converge two further attempts are made with different parameters as shown by table 3.1.

Attempt ACCP ACCQ ACCM ITMX
1 1.0 1.0 1.0 300
2 0.06 0.06 0.06 2000
3 0.01 0.01 0.01 3000

Table 3.1: Gauss-Seidel solution method parameters

Should the solver fail at attempt 3 the simulation process exits.
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3.3 Load and generation data.

3.3.1 Load data

Typical load data is taken from an Electricity Association spreadsheet with data at hourly or

half-hourly bases. The data is split into eight types of load:

• Domestic unrestricted and Economy 7

• Non-Domestic unrestricted and Economy 7

• Non-Domestic load factors 0-20%, 20-30%, 30-40% and>40%

Each type of load is saved as a file containing 48 lines, each line consisting of two values

separated by whitespace denoting a complex power value. Each value is the average power

for a half-hour period. The complex power values are loaded into the simulation and then are

interpolated linearly to produce a value for each time-stepin the simulation.

Linear interpolation assumes that the power changes linearly between two half-hour values

For example, the daily average load curve for winter is givenfor domestic and small

commercial customers in Figure 3.4.

The proportion of different types of load present must then be given. An aggregated load

curve is created by summing all thetype curves, weighted by their respective proportions

defined by the vectorMix.

Lt =
∑

types

(Lt,type · Mixtype) (3.1)

whereL is the load,t is the time-step

This curve is then normalised by dividing each value by the curve’s maximum value.

Lnorm
t = Lt/max(real(L)) (3.2)

where real(L) is the real values ofL.

For example, a load with proportions 3,3,1,1 for: domestic;domestic economy-7;

non-domestic and non-domestic economy-7 respectively is shown in Figure 3.5.
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Figure 3.4: The average load variation due to different customers typesduring winter.
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Figure 3.5: The aggregated load variation due to a mix of load types.

This normalised curve can then be scaled by multiplying by the the maximum load required

on a bus during a day of a simulation run. The result is a time series that is the actual load set

for that bus for each time-step in the simulation run.

3.3.2 Generation data

The study has tested the reaction of the distribution network to medium voltage connected

variable generation. Although the simulation method is applicable to various types of variable

or non-firm distributed generation, wind-powered generation is one of the most common
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types with suitable data available.

The study uses data from the Wardlaw community wind farm in Scotland. The wind farm

comprises six 3MW turbines, not all of which are necessarilyoperational at any one time.

Figure 3.6 shows the real power output of the wind farm duringthe period sampled, just

under 3 days, with the vertical lines denoting 12 midnight.
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Figure 3.6: Wind farm real power output for a period just over 2 days in October 2006. The
sample period is 5 seconds.

The wind farm data is split into two 24 hour periods starting and ending at midnight. The

data is then normalised like the load data. The normalised curves can be multiplied by the

capacity of generation to be connected to a bus to produce thereal power output time series of

the generation for each time-step. Henceforth these two days of data are calledWardlaw-day1

andWardlaw-day2.

The data has been recorded with a sample period of 5 seconds. To be sure that ULTC

operation due to high frequency variation in DG is properly reflected, the sample period

was chosen to be much lower than the delay imposed on ULTC operation. A longer sample
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period gives different results. This effect is shown brieflyin Appendix B on page 197.

The study typically uses connected generation of maximum output 0.5 to 30 MW depending

on the location. The generation curve used for each generator in the simulation is one of

the 24 hour normalised curves multiplied by the maximum generation desired for that bus.

Note that the wind farm generation is of the order of magnitude of the generation capacities

connected in this study.

The reaction of the network is tested with different feedersusing different normalised

generation curves as a basis for connected generation time series. To achieve this, the study

may use a different generation curve on different feeders.

An alternative is to use curves taken with different time offsets from midnight. This simulates

geographical dispersion of generation experiencing identical natural resource power, i.e.

similar wind speeds, but at different times. An example construction of one curve is that

the data may be taken from midnight to midnight in the original Wardlaw time series, the

other from midnight + 120 seconds to the next midnight + 120 seconds. In this case the latter

will be calledWardlaw-dayN-plus120.

3.3.3 Generators

DG is connected in this study as either a negative load for PQ mode generation or as

a synchronous machine for PV mode generation. The study doesnot include dynamic

simulations or fault current analysis, only load flow calculations. For this reason it is not

important how many machines make up the generator connected. The generator is connected

with a given real and reactive power output in the PQ case. In the PV case the real power,

target voltage and reactive power limits are specified.

It is assumed that all new connected generation will have theability to control power factor

as a Doubly-Fed Induction Generator (DFIG). A DFIG is capable of continuous operation

at power factors from 0.95 leading to 0.95 lagging. The Wardlaw DG imports a very small

amount of real power during periods of very low wind-speed. It is assumed that if the DG

is absorbing real power it does so at unity power factor, thatis it does not export or import
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reactive power. These assumptions are illustrated in Figure 3.7.

0   20 40 60 80 100
−40

−20

Machine real power output / %

R
ea

ct
iv

e 
po

w
er

 o
ut

pu
t  

   
 

as
 p

er
ce

nt
ag

e 
of

 m
ax

 M
W

 / 
%

   

 20

 40

0.99± 0.95± Operating region

Figure 3.7: Machine capability diagram of PV mode DG implementation.

3.4 Voltage controllers.

The following sections detail the operation of different control strategies for ULTCs and DG

compared in the subsequent chapters.

This work treats identical parallel transformers as working in master/follower mode where

the follower acts in the same time step of the simulation as the master.

3.4.1 Basic voltage regulator

The basic voltage regulator operation outlined in section 2.3.4 is the basis for the ULTC AVR

used in this project. The code deciding on whether to initiate a tapping action is contained in

theact function of theVoltageRegulator class. The following pseudo-code is called

each time-step where the period of the time-step istimePassed:

If voltage < V lowerLimit

Setwaiting to True

Setoperation to tapDown

Decreasetimer by timePassed

Else Ifvoltage > V upperLimit
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Setwaiting to True

Setoperation to tapUp

Decreasetimer by timePassed

Else (voltage within limits)

Resettimer to OriginalDelay

Setwaiting to False

End If

If waiting is True andtimer ≤ 0

Execute tapping operation defined byoperation

Reset timer toOriginalDelay

TheVoltageRegulator must keep track of thetimer value between time-steps.

It can be seen that a tapping operation only occurs if the timer has counted down from

OriginalDelay down to zero. The timer only counts down each time-step the voltage is

outwith limits. The timer is always left at its maximum value, OriginalDelay, if the voltage

is within limits.

The tapping operation,operation, is executed even if the tap-position is at its limit. The

code thatoperation causes to run will do nothing if asked to tap outside the tap limits. PSSE

requires the exact ratio rather than the tap-position at each time-step. To achieve this, each

Transformer object keeps track of which tap position it is currently on. It only updates the

turns ratio in PSSE if it has been requested to tap-up or tap-down. It looks up the associated

turns ratio for the new tap position to pass to PSSE from a listof ratios calculated when the

object is initialised. The calculation of the list is definedin equation 3.4 in the next section.

Controller parameters

Table 3.2 shows example parameters for ULTC voltage regulators.

From Uncontrolled bus, usually the higher voltage bus.

To Controlled bus, usually the lower voltage bus.
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From To Base Voltage (kV) Num taps Rmax Rmin V+ V−

35011 35030 132/33 19 1.1 0.8 1.0125 0.9875
35012 35030 132/33 19 1.1 0.8 1.0125 0.9875
35030 67250 33/11 17 1.1 0.9 1.0125 0.9875
66331 66350 33/11 17 1.1 0.9 1.0125 0.9875
66831 66850 33/11 17 1.1 0.9 1.0125 0.9875
66832 66850 33/11 17 1.1 0.9 1.0125 0.9875

Table 3.2: Voltage regulator parameters in area A.

Base VoltageThe Higher/Lower nominal voltage of the connected buses.

Num taps The number of discrete taps on the controlled transformer for ratio adjustment.

V+ The upper limit to the controlled bus voltage above which a tap-operation may be

initiated.

V− The lower limit to the controlled bus voltage below which a tap-operation may be

initiated.

Rmax The maximum ratio as a product of a fixed ratio.

Rmin The minimum ratio as a product of a fixed ratio.

An important additional parameter, the time delayT , is not readily available for specific

transformers. In the Scottish Power network, from which figures the experimentation in

Chapter 4 is based, the delay is between 45 and 60 seconds [53].

The transformer ratiosTR for each tap position,n = 1 : NumberofTaps, are defined by

the minimum and maximum ratios of each transformer and the number of taps:

StepWidth = (Rmax − Rmin)/(NumTaps − 1) (3.3)

TRn = Rmin + (n − 1) · StepWidth (3.4)

The data is retrieved during initialisation of the simulation. It is taken from the network case

in PSSE via the API. The network case is loaded from a network definition file created from

Scottish Power data.
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3.5 Generation controllers.

PQ mode generation is implemented by the addition of negative loads to PSSE. PV mode

generation is built in to PSSE as a network component. These two modes are implemented

as described in section A.2.6.

It is assumed that the DG that is under power factor or voltagecontrol operates as a single

machine. Control of individual machines that make up the DG isleft to the DG operator.

Thus DG added at any bus that is not present in the original data from Scottish Power will

be added to the PSSE model in PV or PQ mode as required. All existing generation is in PV

mode with constant real power output.

The assumption of the constant power factor generation is that the power factor control of

the DG is perfect. A similar assumption is made about the constant voltage DG. It must be

noted that PSSE determines reactive power output of each constant voltage DG iteratively by

examining power flows and bus voltages of the entire network.

In reality the DG AVR will only react to the voltage at the point of connection. The model

used then may be unsuitable for simulations of multiple constant voltage machines connected

electrically close to each other, for example on the same bus. For analysis of multiple machine

AVR interaction a dynamic study is required. The model is suitable for examining interaction

between a single constant voltage machine and its nearby PQ mode DG and ULTCs, as the

ULTC time constants are of an order higher.

The above modes can be supplemented by one of the following two generation control

algorithms designed to avoid voltage excursions at the connected bus.

3.5.1 Generation shedding algorithm.

This algorithm defines how a generator is shed to avoid the voltage at the point of connection

from exceeding limits. The algorithm also defines how the generator may attempt to

reconnect.

The algorithm defines the generator to be in one of three states, In, Outor Ramping. Ramping
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itself has a number of states defined by the time required to ramp up from zero to full capacity.

The controller changes state according to the rules in the following pseudocode.

Capacity is the generators capacity in MW,Ramptime is the time to ramp from zero to full

capacity power output andTimeout is the time the controller keeps the generator at zero

output before attempting to ramp back up to capacity.

Constants Capacity, Ramptime, Timeout

Variables V , State, rampTimer, outT imer

At each time-step,t, first update theState by examiningV the voltage at the point

of connection, and with reference to timers kept between time-stepsrampTimer and

outT imer.

If alreadyOut then attempt to change toRamp state. This can be done if theoutT imer has

timed-out and if the voltage is within limits.

If State = Out

If V is inside limits

Increment outT imer.

If outT imer ≥ Timeout

Set State to Ramp

Set rampTimer to 0

If in the Ramp state then change toIn if V inside limits andrampTimer has timed out.

If State = Ramp

If V is inside limits

Increment rampTimer.

If rampTimer now equal toRampTime

Set State to In.

Always set state toOut if the voltage is outwith limits.

If V is outwith limits
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Set State to Out

Set outT imer to 0

Having updated theState, the current controller state, the output power is determined as a

function ofPt, the available power, and theState:

If State = Out

Output power is 0.

If State = In

Output power isPt.

If State = Ramp

Output power is the minimum ofPt and rampTimer
Ramptime

.Capacity.

Note that the power output at a time-step cannot be greater than that defined byPt which is

fetched from the applicable input time series.

3.5.2 Generation constraint algorithm

The generation constraint algorithm works alongside the shedding algorithm. The state of

the shedding algorithm is maintained as above. The real power output of the generator,DGt

is the minimum of that defined by the shedding algorithm and that defined by the present

generation capP cap.

The constraint algorithm is intended to avoid the necessityof entering the tripped stateOut

due to an over-voltage condition. TheV Limcap supplied to the constraint algorithm is thus

betweenV target andV Lim+.

In the event of the terminal voltage exceedingV Limcap, the real power output of the

generation is constrained or capped. There is no lower voltage limit for the constraint

algorithm.

The cap is relative to the generation at the time-step the voltage went above limits. In this

way the cap will have a similar level of control during periods of low generation and high
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generation. Importantly the cap is not raised unless the available powerPt is at least equal to

the cap. In this way the cap is not raised to capacity during short periods of low generation.

Similarly to the shedding algorithm the controller must maintain a number of variables:

Constants Capacity, CapT imeout, ǫ

Variables Cap, capT imer, capFactor

ǫ is a hysteresis constant preventing a cap raise when the voltage is close to the limit. The

capFactor is the fraction of the existing cap removed from it if the voltage is over the

limit. E.g. for a capFactor of 0.1 and an original cap of14.0 the new cap would be

(1 − 0.1) · 14.0 = 12.6 if V exceededV Limcap.

At each time-step,t, first update theCap. The cap is only raised if the available powerPt is

at the cap.

If V is equal to or belowV Limcap

If Cap is less thanCapacity See ifCap can be raised:

If V is belowV Limcap − ǫ

If Pt is at least equal toCap

Increment capT imer

If capT imer now at leastCapT imeout

Set cap to cap + capFactor

If the voltage is above the maximum defined for the constraintalgorithm then reduce the

maximum power allowed by the cap.

If V is aboveV Limcap

Set Cap to maximum of((1 − capFactor) · Cap) and zero

The actual power output each time-step is the minimum of the shedding algorithm power and

the capped power. The capped power is minimum ofPt and(Cap · Capacity).
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3.6 Performance evaluation.

To evaluate the fitness of the network and device control methods, a metric is needed that

reflects the extent to which the voltage is kept within limits. This metric is balanced against

the number of operations,NTC , required to achieve voltage control in a given time period.

There are two limits that could be used at the voltage levels found on the controlled buses of

transformers in this study. The statutory limit is±6% as required by The Electricity Safety,

Quality and Continuity Regulations 2002. The DNOs in Scotlandhowever set themselves a

stricter limit for planning purposes of±3%.

An evaluation function has been created for this study whichhas a voltage history component

called theTotal voltage cost penaltyand a component based on the number of tap changes

called theTap change cost. The sum of theTotal voltage cost penaltyand theTap change cost

is called theCombined cost penalty:

CombinedCostPenalty =

TapChangeCost+ TotalVoltageCostPenalty (3.5)

.

It is useful to compare theCombined cost penaltywith the revenue from generation connected

to the distribution network. In this way it can be seen if theCombined cost penaltychanges

in proportion to the generation connected.

To calculate the marginal cost to the system of the effects ofincreased DG, theCombined

cost penaltywith no DG is subtracted from theCombined cost penaltywith DG. Note that it

is possible to have a marginal cost less than zero if the combined cost penalty with the DG is

less than without any DG.

The following sections detail the components of theCombined cost penalty. The formulae

were implemented in Matlab routines and are run on the resultfiles from the PSSE

simulations. Key parameters such as ULTC voltage limits arestored in the results filenames.

Some of the routines rely on simple lookup tables that are written for the network being

analysed. These could have been automatically generated with the results, but for speed of
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implementation they were manually coded for the evaluationroutines. The tables required

are:

• feeders with their constituent buses.

• buses that have DG connected.

• ULTC bus numbers and the bus numbers of any ULTCs in the feedersbelow them in

the network.

3.6.1 Tap change cost

The TapChangeCostis the total number of tap operations in the network being examined

in a particular period, multiplied by the cost per tap change. The cost per tap change is

based on a transformer overhaul cost and expected life as in section 2.2.1. The cost per tap

change is complicated by the cost to generators and consumers of transformer down time. It

was assumed that if two or more transformers connect a busbarto the transmission network,

then the maintenance penalty (MP) will be zero. If only a single transformer provides the

connection to higher voltages, it was assumed that all generation will be required to be

disconnected during maintenance. The penalty reflects the maximum revenue that could be

lost by the generator during this time. It was assumed that the maintenance will be performed

at a season of low demand, which will be supplied by back-feeding or closing up normally

open inter-connectors between radial feeders.

TapOperations =
∑

t







1 TP t 6= TPt−1

0 TP t = TPt−1

(3.6)

whereTP is tap position.

TapChangeCost = (MP + TMC) ·
∑

ULTCs

TapOperations (3.7)

whereTMC is £0.225, the cost of a single tapping operation based on maintenance costs

as discussed in section 2.2.1;MP is the maintenance penalty based on loss of revenue from
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disconnected generation during maintenance.

MP = 0 if the ULTC is part of a group of two or more parallel transformers, otherwise the

cost is calculated as follows:

MP = (days · 24 · £(MWh)−1)/LifetimeTapOperations (3.8)

wheredays is the number of days required to perform ULTC maintenance, assumed to be 3;

£(MWh)−1 is £31.72 [74]; andLifetimeTapOperations is assumed to be100000.

3.6.2 Total voltage cost penalty

TheTotalVoltageCostPenaltyaims to penalise network operation where the voltage on buses

exceeds planned limits. TheTotalVoltageCostPenaltyis calculated over a period of operation

of a network. The metric should reflect the duration of voltage excursions and the relative

importance of the bus on which any excursion occurs during the period of operation.

The TotalVoltageCostPenaltyshould be comparable with theTapChangeCost. This is

achieved by weighting a voltage excursion with the generation connected below that

bus at that time-step multiplied by the average wholesale price of electricity. The

TotalVoltageCostPenaltythen can be considered the cost of the lost opportunity for the

generators during periods where the voltage exceeds limitsat any point in the feeder.

• Costs due to tap operations.

– Repair and maintenance.

∗ Labour and parts£22.5 per change in 2003 (see section 2.2.1).

∗ Transformer disconnection for maintenance penalty.

– Voltage quality affected by large or frequent voltage steps.

• Costs due to voltage excursions.

– Revenue lost to tripped distributed generation.

– Penalties to DNO for exceeding±6% (or +10 − 6%for < 1kV )
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As mentioned earlier, there are costs that are difficult to quantify such as the impact of

more frequent maintenance, the impact of more frequent tap changes on nearby connected

machines and equipment and the cost of operating at voltagesclose to legal limits.

The penalty due to voltage excursions is derived as a function of the bus voltage where

the function will be called thebarrier function. The function for the base penalty of the

VoltageCostPenalty, VPenalty, is shown in Figure 3.8 and is defined as follows:
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Figure 3.8: TheVPenaltyfunction.

The barrier function gives a zero base-penalty within±6%. Outwith±6%, the base-penalty

increases to 1. This reflects that generators that cause a feeder to exceed voltage limits would

normally be disconnected. TheVoltageCostPenaltyfor that feeder is equal to the lost revenue

during the time it would have been disconnected. Note that the penalty does not assume a

fixed time for disconnection but penalises every time-step that the voltage exceeds limits with

no penalty as soon as the voltage returns within limits.

V Penaltyt =







0 α(Vt) < 0

1 α(Vt) > 1
(3.9)
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Total voltage cost penalty definition

The method of calculatingTotalVoltageCostPenaltyis defined as follows where vector

operations are piecewise such that the binary operator+ is defined by:

A + B = [A1 + B1, ...,Ai + Bi, ...,An + Bn] (3.10)

the unary operator|| by:

|A| = [|A1|, ..., |Ai|, ..., |An|] (3.11)

and the summation function
∑

by:

∑

x∈X

A = [
∑

x∈X

A(x,1), ...,
∑

x∈X

A(x,i), ...,
∑

x∈X

A(x,n)] (3.12)

For each feeder:

1. Create vectorsBusVoltage,Load andDG which are the voltage, load and generation

at each bus in the feeder over time.

2. Apply barrier function 3.9 toBusVoltage.

BusPenalty = V Penalty(BusVoltage) (3.13)

3. Take the maximum value at each time-step over allBusPenalty vectors:

FeederPenalty =
max

FeederBuses
(BusPenalty) (3.14)

TheFeederPenalty is a time-series of voltage base-penalties which are either0 or 1.

4. Calculate theFeederWeighting:

FeederWeighting =
∑

FeederBuses

|Load| + |DG| (3.15)

The FeederWeighting reflects the value of the feeder in terms of DG and Load

revenue at each time-step.
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5. Calculate the dot product ofFeederPenalty andFeederWeighting:

WeightedFeederPenalty = FeederPenalty · FeederWeighting (3.16)

TheWeightedFeederPenalty is a single scalar value that is the generated electricity

and load supplied whilst outside voltage limits.

6. Adjust the weighting ofWeightedFeederPenalty by the wholesale electricity price:

TotalFeederCostPenalty = (3.17)

penceMW−1s−1 · SamplePeriod · WeightedFeederPenalty

The TotalFeederCostPenalty now reflects the value of electricity generated and

supplied on the feeder whilst exceeding voltage limits.

Finally theTotalV oltageCostPenalty is defined by summing theTotalFeederCostPenalty

over all feeders:

TotalV oltageCostPenalty =
∑

f∈Feeders

TotalFeederCostPenaltyf (3.18)

3.7 A more sophisticated penalty

The barrier function shown in Figure 3.8 does not penalise the operation of the network when

the feeder voltages are close to statutory limits. Such a penalty could not distinguish between

two strategies that both kept voltages within limits thoughone might keep voltages closer to

unity. An alternative is to create a penalty function that isgreatest outwith limits but reduces

continuously to zero within limits such as those shown in Figure 3.9. The penalty is greater

than zero when the voltage is outside±3% , the DNO planned voltage limits.

The value of this penalty is defined by Equation 3.19 for voltages outwith±3% but within

±6%.

α(v) =
1

τ
·
(

ln(v − 0.94) + ln(1.06 − v)
)

−
(

ln(0.97 − 0.94) + ln(1.06 − 1.03)
)

(3.19)

τ is atemperaturecoefficient that adjusts the steepness of the curve as shown in Figure 3.9
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Figure 3.9: Barrier functions with non-zero penalties close to statutory voltage limits.

This continuous penalty would be useful in a simulation thatiteratively or otherwise, modifies

the control strategy in an attempt to arrive at an optimal strategy. This penalty function has

not been used in this project however, as the assumptions about the financial cost basis of the

straight-sided function cannot be extended to penalising operation within±6%.

3.8 Summary

A method of simulating a network with load and generation changing over time has been

presented. The method entails repeated load-flow solution of the network with adjustments

for load, generation and tap-changing transformer positions. The simulation uses a power

flow solving program in conjunction with Python code to manipulate the load and generation,

implement tap-changing transformer ratios and to record required observations.

The voltage control algorithm for the tap-changing transformers has been detailed, as well

as two algorithms for the control of generator active power to minimise voltage excursions.

Finally, a method of evaluating the fitness of the control algorithms was presented.

The next chapter exercises the simulation method to confirm its correctness. The network

studied is introduced and examples are used to demonstrate evaluation of network voltage

control performance.
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Chapter 4
System Validation and ULTC Study

This chapter describes the emulation of distribution network behaviour in response to

time-varying loads and later varying generation. The network behaved in simulation as

expected in terms of reacting to time varying loads and distributed generation. The effects of

various ULTC AVC operating parameters were explored with the intention of understanding

their role as opposed to prescribing optimal settings for the network examined.

Results were produced by repeated power flow solution to simulate time series variation as

described in Chapter 3.

4.1 The Network.

The network that was simulated typifies a rural network with potential for further generation

in the area [75]. There are a number of grid supply points (GSPs) which are the basis for

splitting up the network into six distinct groups of buses named here A, B, C, D, D2 and E.

This chapter uses a subsection of this network as shown by Figure 4.1 which comprises of

groups A and B.
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Figure 4.1: A two GSP area of the Scottish Power Network.
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Above the GSPs are number of hydro plants and a nuclear plant connected to the 132 kV

network. The nuclear plant is no longer in operation but at the time at which the network data

was collected it was still operating so it was included.

The slack bus was selected as the bus MAYT1T which is adjacentto several of the hydro

plants, not shown, that operate to meet local demand in voltage control mode.

The GSPs are regulated by ULTCs from the 132 kV network. The 11 kV substations, the

primary substations, are at the ends of long radial feeders.The primary ULTCs regulate the

voltage on their LV, 11 kV bus, by adjustment of the turns ratio on the 33 kV side of the

transformer. Loads were varied according to simple daily demand profiles as described in

section 3.3. No additional generation was connected.

4.2 Operation of under-load tap-changing transformers.

In order to demonstrate the normal operation of under-load tap-changing transformers, the

network was simulated for one day using the load curve given in Figure 4.2 to modulate the

loads shown in Figure 4.1. The resulting bus voltages and ULTC operations are discussed.
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Figure 4.2: The load variation curve.

Note that the load curve is normalised. The maximum value of the real and reactive power

load at each bus was the maximum winter load as defined by Scottish Power network data.

The loads applied at each time-step are these values multiplied by the normalised load curve
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as discussed in section 3.3. The termload busapplies to the bus on which a load is placed in

thePSSEcase even though this may be a 11 kV bus.

4.2.1 Power flow solutions with simple load variation and fixed

tap-changers.

The network case was initialised with tap-positions adjusted for the loads at the first time-step

of the 1 day simulation, so as the control bus of each ULTC is close to its target voltage. The

simulation was then executed with all ULTCs fixed. Figure 4.3 shows the load bus voltages

in areaA.
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Figure 4.3: Voltage at the load buses with no ULTC regulation.

The bus voltages of each bus in the network were observed at each time step and appended

to their respective result files. These files were then loadedinto MATLAB and are plotted for

analysis. At a fixed power factor, as expected, it is shown that the increasing load causes the

voltage to drop. The buses shown almost stay within the±6% statutory limits without any

ULTC control though this is not a sufficiently tight limit if the load is in reality comprised
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of many loads connected at varying distances from the 11 kV load bus. The further the load

from the primary ULTC, the greater is the impedance between the load and the transformer.

A greater impedance implies a greater voltage drop between the primary transformer and

load. If at full load there is a 4% voltage drop between the substation and load then the ULTC

AVC will need to keep the LV bus voltage above nominal - 2% to keep the load bus within

statutory limits. As there is usually no active voltage control below the primary transformer, it

must control voltage to within tight limits to allow for loads at varying distances and varying

magnitudes from the transformer.

Bus 66350 has a small peak load of 0.96 MW. There is a relativelylarge impedance between

it and the GSP. There is a 17.9km and a 19.6km 33 kV line connecting it to the LV side of the

GSP transformer. This results in a wider variation of observed voltage than bus 67250.

Bus 67250 shows relatively little voltage variation. It is electrically closer to the GSP than bus

66350 having only a primary distribution transformer connecting it to the GSP transformer by

a negligibly short cable. It has a low peak load of 1.6 MW and shows relatively little voltage

variation.

Bus 68850 is also close to the GSP but shows a large variation inobserved bus voltage. This

is because the peak load at 68850 is relatively large at 18.4 MW resulting in a wide load

variation through the day.

4.2.2 Tap changer operation with simple load variation.

To keep the voltage closer to 1.0 pu the ULTCs must be allowed tooperate. The above

simulation was repeated with the automatic voltage controlalgorithm enabled for all ULTCs.

The dead-band was as supplied with the network data. The timedelay for each ULTC was 60

seconds.

Figure 4.4 shows the voltage at the load buses. This time the voltage was kept closer to 1.0

pu as expected. Note the sharp changes in voltage. These sharp changes correspond to the

tap operations shown in Figure 4.5. At each 5 second time-step, the ULTC AVC checks the

control bus voltage and makes adjustments to the turns ratioas appropriate. This results in
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different voltages and power flow time series than the previous section.

         
0.96

0.98

1

1.02

1.04
Bus 66350 

V
ol

ta
ge

/p
.u

.

         
0.96

0.98

1

1.02

1.04
Bus 67250 

V
ol

ta
ge

/p
.u

.

0 4 8 12 16 20 24
0.96

0.98

1

1.02

1.04
Bus 68850 

V
ol

ta
ge

/p
.u

.

Time / hours

Figure 4.4: Voltage at the load buses regulated by ULTCs. The dotted linesshown are at
0.97 and 1.03 p.u..

The tap operations reflect the modulation of the load throughthe day. As the load increases,

the ULTC controllers lower the turns ratio,NHV : NLV , by reducing the number of turns on

the HV side of the transformer to raise the voltage on the LV side. The peak load occurs just

after 16:00 which corresponds with the lowest tap positionsof the primary ULTCs as shown

in Figures 4.5.

As expected, the primary ULTC A3 (ULTCA3
P ), the transformer connecting buses 35030 and

67250, shows less activity than the other two ULTCs shown. It was observed earlier that the

load bus 67250 shows less voltage variation as a result of load modulation. Consequently

less voltage adjustment by tap operation is required to keepthe voltage within required AVC

voltage limits.

The tap positions of ULTCA6
P are not shown in Figure 4.5 as they are identical to ULTCA5

P .

The transformers have identical properties and share the same controlled bus in this case.
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Figure 4.5: Operation of the primary substation 33 kV/11 kV with load variation.

ULTCA1
GSP and ULTCA2

GSP have slightly different properties to each other and the line

reactances from the 132 kV bus to their HV sides are different. As a result they show

different behaviour as shown in Figure 4.6.
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Figure 4.6: Operation of the GSP transformers 132 kV/33 kV with load variation.

ULTCA1
GSP has slightly tighter voltage limits and consequently acts before ULTCA2

GSP when
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there is a slow voltage change on the control bus.

The voltage and ULTC tap position time series shown in this section do not end at the same

voltage or position as they start, despite the load being equal at the end as the start. The

reason for this is that the starting positions for the ULTCs are one of a number of possible

configurations that leave the control bus voltages within limits. As the loads change, the

ULTCs change tap position according to the algorithm specified. This may leave the tap

positions in different positions than the start of the day but still with the controlled buses

within limits. Continuing on the simulation further with theload time series repeating each

day results in cyclic behaviour with ULTCs in the same position each day at any time of the

day.

4.2.3 Adjusting the voltage dead-band.

The voltage dead-band, as described in section 2.3.4, was supplied by the DNO with the rest

of the network data for the GSP ULTCs. The voltage dead-band for the primary ULTCs has

been inferred from the step in ratio per tap change as 1.5 times the voltage adjustment due to

a single tap operation. The 1 day simulation was repeated with the dead-band increased by

a factor of1.0, 1.5 and2.0. Figures 4.7 and 4.8 compare the resulting load voltage and tap

operations for a single transformer ULTCA4
P with these different factors.

As expected, fewer tap changes are required with a relaxed voltage limit. It could be argued

that the original dead-band setting was too strict. As described in section 4.3, the voltage at

the primary substation must be kept within strict limits to ensure that each bus that is further

away from the GSP stays within statutory limits.

To illustrate the problem of having too small a dead-band thesimulation was run with all

ULTC dead-bands halved. Figure 4.9 shows that a tap operation to correct the voltage

exceeding one limit usually causes the control bus voltage to overshoot the other limit. The

repeated overshooting whereby an adjustment is too large tokeep the voltage within the

dead-band is called hunting. This is observed around hours 07:00 and 18:00.
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4.2.4 Adjusting the time delay.

Figures 4.10 and 4.11 show the load bus voltage of bus 66350 and operation of ULTCA4
P with

time delays of 30, 60 and 120 seconds.

Note that with few required tap operations, the time delay has no effect on the total number

required. The delay has a small effect on how close the voltage is kept to nominal. The delay

is more significant with a more varied power flow through the transformer as seen in the next

section.
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4.2.5 Section summary

This section demonstrated that the time series power flow simulation process produces results

consistent with expectations. The interaction of the externally implemented ULTC AVC

written for this study is shown to operate as intended. The ULTC AVC controller is shown to

control voltage to within the prescribed dead-band.

The voltage dead-band is shown to have a large effect on how close the ULTC AVC keeps

the controlled bus to nominal. Small variations in time delay are not shown to affect the

performance of voltage control for slowly modulated loads as in this section.
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4.3 Network response to increased distributed generation.

The previous section illustrates the basic behaviour of theULTC AVC and the effect of

the delay and voltage dead-band parameters. This section introduces several new elements

and considerations to the simulation in order to appreciatethe effect of connecting variable

generation at 11 kV:

• Non-zero impedance between load and primary distribution transformer.

• Voltage excursions on the high voltage bus of ULTCs.

• Variable generation in PQ mode connected at the primary substation and at the new

load buses.

• Unequal time delays at different voltage level ULTCs.

• Alternative ULTC AVC algorithms.

• Variable power factor control of generation.

4.3.1 Voltage at the load.

The previous section showed the successful control of the 11kV side of the primary

distribution transformer using the basic ULTC AVC algorithm. The model, however, fails to

reflect that the load is distributed geographically and as such will be connected electrically

by varying impedance to the distribution transformers. To more fully appreciate this, the

network model was adjusted by the addition of lines and a transformer between the primary

substation and the load.

The lines were assumed to be of hard drawn copper type, commonin older rural networks.

A single0.15inch2 circuit 2km long was used to connect each load bus, with the exception

of the largest load at bus 68850 which is assumed to be split into 3 with a0.15inch2 circuit

to each. A transformer was included at the load end of the circuit of reactance 1.0 p.u. at a

fixed ratio. The transformer tap was assumed to be manually adjusted at the planning stage

or seasonally as required. The loads, previously on bus numbers of the form XXX50 are
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labelled XXX59 with the intermediate bus before the fixed-tap booster transformers labelled

XXX51.

Initialisation of the network case

The secondary substation transformer ratios must be set at the planning stage. The load

connected is the mean value of the one day load time series which was described in section

3.3, multiplied by the peak winter value at each bus.

A trial and error process of manual adjustments and load flow solution without tap

adjustments was used to arrive at a solution leaving the ULTCsjust below a ratio of 1.0 and

the load bus voltages at 1.0 p.u. The low ULTC ratio was required to ensure there is room for

summer operation when there is less load. The load bus voltages should be close to 1.0 p.u.

as the load applied in the tap setting process was the mean forthe one day load time series.

This allowed for the voltage rise seen at the lower demand periods and the drop seen at the

higher demand periods.

The automatic tap assignment feature of the PSSE load flow solver could not be used. The

power flow solution failed to converge even at extreme solverparameter settings. At no point

in this study was the automatic adjustment of transformers allowed by the PSSE software.

Adjustment only occured automatically as a result of the ULTC algorithms in the external

simulation code.

The secondary distribution transformers were set as locked. The network definition file, the

.raw file, had the original ULTCs flagged as in auto-adjust mode. Theauto-adjust feature of

PSSE was not used but the flag in the.rawfile allows the external simulation code to recognise

which transformers should be controlled by the external code. The secondary distribution

transformers have been removed in the final chapters of this study.

Results

Figure 4.12 shows voltage profiles of the three feeders in area A from the 132 kV bus above

the GSP to the load buses with the days minimum, mean and maximum load connected. Note
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that the three feeders consist of different number of actualbuses from the GSP to the load

inclusive. For feeder 67259, positions 4,5 and 6 are the samebus. For feeder 68859, positions

5 and 6 are the same bus. With the ULTCs at the same position for each load flow solution, it

can be seen that the voltage profile for each feeder varies greatly between the minimum load

scenario and the maximum load scenario.
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Figure 4.12: Voltage profile in area A without tap adjustment. Loads are at bus 9 with ULTCs
at buses 3-4 and 6-7.

The reality is better as the ULTC AVCs are able to act to keep thecontrol buses at position 7

within stricter limits. The voltage profiles for the three area A feeders are shown as a result

of the ULTCs being allowed to regulate voltage are shown in Figure 4.13.

The buses at positions 4 and 9 are the LV side of the ULTCs on the feeder. The voltage is

close to 1 pu as the ULTC AVC action is able to react to the threedifferent load scenarios.

The scatter plots in Figure 4.14 show the voltages at position 7 and 9 from Figure 4.12, this

time for areas A and B combined. The plots are the voltages at each bus for each feeder.

The circles are used to plot the voltage as a result of minimumsummer load, the crosses for
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Figure 4.13: Voltage profile in area A with tap adjustment.

maximum winter load. There are seven feeders in areas A and B combined thus there are

seven circles and seven crosses in each plot.

The first plot is as before, with no AVC control at bus 7. Only the minimum and maximum

load scenarios are shown. There is a voltage rise in the minimum load case due to the fixed-tap

booster transformer inserted before the load bus in the network case used in this chapter. As

the ratio was adjusted for the mean of summer minimum and winter maximum, the voltage

is expected and shown to be higher for the minimum load and lower for the maximum load.

The second plot is after a period long enough to allow ULTC AVCcontrol actions. Load

bus voltages from different feeders overlap each other. This is because the controlled bus

voltage of each feeder’s primary ULTC may be anywhere withinthe ULTCs limits. The load

bus voltage can be higher for a higher load if the ULTC tap position happens to be near its

upper limit. The bus 9 voltages however are much closer to 1.0p.u. than in the uncontrolled

scenario.

Both plots show an increase in per-unit voltage variation between bus 7 and 9 with slightly
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more variation in the uncontrolled case. The load model usedcharacterises the load as

constant power with varying voltage when the voltage is above 0.7 per-unit. This assumption

will slightly exacerbate the voltage drop or rise seen from the primary transformer to load bus

as the voltage tends away from nominal.

The strict limits used in the ULTC control algorithm implementation keep the load bus within

a planned voltage limit of±3%.
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Figure 4.14: Scatter plot showing spread of voltage variations due to min and max loading.
The control buses of the primary transformers are at position 7 and the load
buses are at position 9. The+ and ◦ signs are from maximum and minimum
load conditions respectively.
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4.3.2 Additional distributed generation.

Generation added at 11 kV could be connected directly to the primary substation or at the

load bus as illustrated in Figure 4.15. The figure shows a primary transformer stepping down

from 33kV to 11kV with a fixed boost transformer and 2km line between the LV side of the

ULTC and the load as discussed in section 4.3.1.

35030

67259

1 

1 

  

67250

67251

A3

(a) DG connected to primary
substation.

35030

67259

1 1 

67250

67251

A3

(b) DG connected out on load bus.

Figure 4.15: The possible points of DG connection at 11 kV with feeder 67250as an example.

To show the difference in bus voltages between deep connected and load bus connected

generation, the simulation was run with varying parameters. A simulation run was conducted

for each combination of:

• Minimum or maximum load connected.
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• Deep or load bus connected DG.

• DG under each primary substation being a factor of 0.0,0.5,1.0 or 2.0 times the

maximum daily load under that substation.

The load and generation was constant through each run with the generation power factor at

unity. The simulation was run for a number of time-steps to allow the ULTC AVC to adjust

so that their respective control buses where within limits where possible. In this way the run

resulted in a steady-state power-flow and tap-position solution.

Figure 4.16 collates the results of the above simulation runs concentrating on the effect on

bus voltage at the load and control bus under each primary substation. DG factor defines the

real power output of the DG as a multiple of maximum daily loadfor that feeder. Thus each

feeder had a different daily load and DG capacity.

Connecting increasing amounts of generation at the primary substation has little effect on the

load bus voltage. So long as the ULTC tap position does not reach the limits of its adjustment

range, it can control the LV bus within tight limits leading to little load bus voltage variation.

Connecting increasing amounts of generation to the load bus results in voltage rise on the load

bus. Although this can be altered by changing the setting on the fixed tap transformer, this

does not mitigate the increased range of voltages observed as a result of increasing generation.

As expected, more generation can be connected at the ULTC LV bus than at a bus connected

to the ULTC LV side by a non-zero impedance as in the second case. The variation of voltage

rises in each scenarios is due to the different loads on each feeder. The extra impedances

connecting each load to the primary transformer were all multiples of a single 2km line as

described above, unlike the loads which were determined by the case data.
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Figure 4.16: Voltages at primary substation (7) and load bus (9). DGFactor denotes DG
real power connected as a multiple of the load. The+ and ◦ signs are from
maximum and minimum load conditions respectively.
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4.3.3 Voltage on the transformer buses.

In terms of steady state network behaviour, it appears that alot more DG could be connected

directly to the 11 kV primary substation than in the previousscatter plots. Figure 4.17 is the

same as Figure 4.16 but with the ULTC upstream bus voltage plotted.

With a DG factor of 2.0 the upstream bus exceeds or is very close to the statutory limits of

±6% whether the generation is connected deep or on the load bus. The worst instances occur

when the minimum load is connected.

These figures show that voltage rise at the point of connection is not the only place where

voltage rise due to distributed generation is a concern. Theevaluation function in section 3.6

takes into account the voltage of all the buses on a feeder to determine the suitability of the

network and generation setup.
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Figure 4.17: Voltages at primary substation (6 & 7) and load bus (9). The+ and◦ signs are
from maximum and minimum load conditions respectively.
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4.3.4 Tap changer operation with variable DG.

The previous results, shown with added DG, were steady stateresults. The following results

were generated from time series of generation real power output.

Constant power factor mode generation was added to the feederfor ULTCA5
P as seen in Figure

4.15(a). The added generation is referred to as the DG which was connected to the controlled

bus of ULTCA5
P to examine its tapping behaviour.

The peak output of the DG is defined in terms of the maximum capacity assigned to bus

68850 at unity power factor as defined in an optimal power flow evaluation of this section

of the network by Harrison and Wallace [4]. The output at eachtime step is defined by the

normalised power output curveWardlaw-day1multiplied by the DG peak output as described

in section 3.3.2

The resulting ULTC behaviour is shown by its tap positions over time. Figure 4.18 shows the

control bus voltage without and then with DG, and below, the tap position of the transformer

with and without DG. The limits represented as horizontal lines on the voltage plots are the

VLimsused by ULTCA5
P .

Without DG the voltage steps due to tap operations are clearly visible as before. The voltage

steps are less clear in the DG case as the voltage is already varying rapidly with DG power

output. It can be seen that voltage excursions occur that do not result in a tap operation. This

is a result of the time delay parameter, designed to avoid spurious tap operation. The voltage

may exceed the operating limit, but only for a few seconds so no tap operation occurs.

It is clear that the frequency of tap change operations increases with the addition of the DG.

Some of this increase is due to the highly variable power flow through the transformer. This

effect is seen in particular at 14:00.

The addition of time varying DG increases the range of power flows through the transformer.

Figure 4.19 shows this for the DG and no DG cases. The negativepower flow through

the transformer indicates power being exported from the feeder, a situation known as reverse

power flow.
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Figure 4.18: Voltage and ULTCA5
P tap position with generation added deep on the feeder at

bus 68850.
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The no DG case shows a positive power flow indicating power is flowing from the HV to the

LV side of the primary transformer. The curve is smooth as thevariation of load is smooth

according to the load time series. The DG case varies betweenpositive and negative. The

power flow is positive when the load exceeds generation and negative when the generation

exceeds the load. The curve varies rapidly as the aggregate output of several wind turbines in

theWardlaw-day1time series is similarly variable.

The increase in range of power flow variation results in an increase in the difference between

the minimum and maximum tap position in the day. This range oftap movements is

considered unavoidable with respect to improvement of ULTCcontrol parameters. The

frequency of tap movements such as the ones around 12:00 may be reduced by adjustment of

control parameters as evaluated in the following sections.

Adjusting the delay.

The previous example exhibited a behaviour in which a few tapoperations were reversed

within minutes of the first operation. These was due to the short term variability of the

generation connected.

To test this, the simulation of the previous section was repeated with increased ULTC AVC

time delays. Resulting variation in ULTC tap positions are shown in Figure 4.20.

Note the highlighted areas of the plots. The highlighted areas show areas where an increase in

ULTC delay has a significant effect on the operation of the AVC.It is shown that an increase

in the AVC delay parameter can reduce the number of tapping operations required for voltage

control. Doubling the delay reduced the number of tap operations by18% and tripling the

delay reduced the number of tap operations by30%. The delay causes the AVC to effectively

ignore short term voltage variations by only acting when thevoltage is outwith limits for a

period of time equal to the delay parameter. The longer the delay, the longer the voltage

must stay outwith limits before being corrected. The longerthe voltage is outwith limits, the

stronger is the indication that a tap operation and thus a voltage correction must be made.

The increase in delay has a consequence in the amount of time the ULTC control bus voltage
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Figure 4.20: Voltage and ULTCA5
P tap position due to different ULTC delays with generation

added deep on the feeder at bus 68850.

remains outside the ULTC Vlims. This in turn has an effect on the load bus voltage. There is

a compromise between delay and voltage control performancethat is explored more fully in

the next section.

Different delays for different transformers.

To determine the best value for the ULTC AVC delay parameter,the simulation can be run a

number of times, each run with a different delay time. As discussed in section 2.3.5 chapter

2, it is desirable to have different delays for transformersin series. To test this, an array of

delay values was constructed for the 132/33 kV ULTCs and a separate one for the 33/11 kV

ULTCs namedDelays132/33 andDelays33/11.

The simulation was then run with the delay for each voltage level selected from the relevant

array. The first simulation shown has no DG connected. It was run for each possible
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combination of delays where the arrays are both in the range(30, 195) with a step of15

seconds.

The results can be visualised by plotting a value obtained from the entire network onto the

two dimensions ofDelays132/33 andDelays33/11 giving a three dimensional surface. The

value plotted can be any single number reflecting a property of the entire simulation run for

that delay combination.

The numbers plotted in Figure 4.21 are theTapChangeCostand theTotalVoltageCostPenalty

for each run. TheTapChangeCostis a function of the number of tap operations for each

ULTC and the associated estimated cost per operation. TheTotalVoltageCostPenaltyis

a penalty incurred when any bus on a feeder exceeds the planned ±3% voltage limits.

The penalty increases up to the maximum penalty which is if any feeder bus exceeds the

statutory±6%limit. The TapChangeCostandTotalVoltageCostPenaltyis described in detail

in sections 3.6.1 and 3.6.2.

The two penalties indicate the fitness of the controller and network in terms of their combined

ability to keep bus voltages within limits. A high penalty indicates a poor ability to maintain

voltage. The two penalties are required as there is a tendency for the reduction of one to be

linked to an increase in the other. The goal of maintaining the voltage within limits contradicts

the goal of minimising the operation of the ULTC AVC.

Figure 4.21(a) shows that a low delay at the 132/33 kV transformers and a high delay at the

33/11 kV transformers gives the lowestTapChangeCost. TheTapChangeCostis constant for

a given DG capacity as exists in this set of results. Thus the lowestTapChangeCostamounts

to the lowest number of tap operations.

Figure 4.21(b) shows that a low delay at either transformer will minimise the

TotalVoltageCostPenalty. This indicates that all voltages on all feeders in the simulation run

are being kept within planned voltage limits.

The best combination of delays is a trade-off between theTapChangeCostand the

TotalVoltageCostPenaltyas shown in Figures 4.21(a) and 4.21(b) respectively. The trade-off

is made by weighting the two metrics according to the final cost function as described
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Figure 4.21: Cost components of a 1 day simulation with no DG. Both delay axesare in 15s
intervals from 30s to 195s inclusive.

in section 3.6 of chapter 3. The cost function for all combinations of Delays132/33 and

Delays33/11 is shown in Figure 4.22.

There is an easily discernible ridge along the line of equal delays. This confirms the rule

discussed in section 2.3.5 that suggests that the time delays should be different from each

other for two ULTCs in series. The GSP ULTC delay dominates thecost function. For GSP

delays of 30 seconds, there is little to differentiate between the primary ULTC delay settings.

Subsequent simulations have used a 45 and 60 second delay forGSP and primary ULTCs

respectively. These values are consistent with Scottish Power’s settings and with studies

finding that unequal delays give the best performance [53, 69].

A similarly constructed plot is shown in Figure 4.23. The data is from a set of simulations

described in chapter 5. A large amount of DG, termedDGmax is connected at unity power

factor to the network as detailed in that chapter. The figure serves as an indication that

optimal delay settings are dependent on the amount of DG connected. The graph shows

an optimal area for delay settings where the evaluation function is minimised. Unlike the

previous scenario, the optimal settings are for equal delays in both GSP and primary ULTCs.

The optimal setting exists in a shallow optimal area with 90,90. The method of varying
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Figure 4.22: TotalVoltageCostPenalty+ TapChangeCostof a 1 day simulation with no DG.

all GSP ULTC time delays and all primary ULTC time delays together ignores the likelihood

that different feeders are best suited to different delays.Using all the same delays, 90 seconds

appears to be the best compromise for both GSP and primary ULTCs. The fact that they are

the same for both and the lack of a ridge or trough indicates that the high variation of the DG

may mask the problems caused by equal delay settings.

4.4 Chapter summary

An area of the Scottish Power network was introduced as the basis for the simulations

in this project. The network comprises two GSPs and a number of rural radial feeders.

The simulation method has been used in a number of scenarios to verify the semi-steady

state method and introduce the different time series that have been examined in subsequent

chapters. The implementation of ULTC control behaves as expected.
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The controller parameters have been explored to further confirm the implementation. It is

shown that the dead-band in the voltage measurement part of the ULTC must be sufficiently

large to avoid hunting and sufficiently small to keep voltages close to the target voltage.

The TapChangeCostand TotalVoltageCostPenaltywere used to show the voltage control

fitness of a scenario. These metrics are used extensively in subsequent chapters. The metrics

were used to explore the time-delay parameter of the ULTC controller. The scenarios tested

did not demonstrate a clear rule to determine the best time delay settings. Subsequent chapters

will thus use 45 and 60 second delays for GSP and primary ULTCs respectively. These delays

are as used by Scottish Power and are not contradicted by the limited findings in this chapter.

The next chapter outlines the connection options for distributed generation and demonstrates

the fitness of a number of combinations of connection choices.
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Chapter 4 demonstrated the simulation of ULTCs over a 24 hour period. Simulation results

were obtained by repeated load flow solution as described in Chapter 3.

This chapter reports the use of the above techniques to demonstrate the impact of various DG

scenarios on the Dumfries and Galloway (D&G) network. The D&G network information

is accurate for the 132 kV and 33 kV part of the network. The 33 kV/11 kV transformer

parameters and 11 kV line parameters have been assigned withreference to typical equipment

parameters as discussed in section 4.1. Note that some modifications have been made to the

network in the next chapter. In this chapter, the target voltage for all load buses was 1.0pu.

This was achieved in the no DG case by the manual setting for the winter and summer cases,

of a fixed transformer below the primary transformer. The transformer was then fixed for all

scenarios.

Keeping the target voltage for all load buses the same allowsthe application of the evaluation

function to the network with a narrow voltage target. Chapter6, however, uses an evaluation

method using only statutory limits.

In this chapter, all connected generation was required to bein strict power factor control

mode or PQ mode. Most of the assumptions made are discussed inChapter 3 with additional

assumptions noted as necessary.

The scenarios tested are among the permutations of the following parameters.

• Feeder to which DG is connected.

• Connection voltage.

• Maximum power output of DG.
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• Power output time series.

• Power factor.

• Generation events such as ramping up or rapid loss of DG overlaid on the power output

time series.

• ULTC operating parametersTd andVlim.

The scenarios tested are not exhaustive, even given the few parameters above. The scenarios

do highlight the key concerns and impacts of DG.

5.1 Construction of the scenario

5.1.1 Feeder selection

The network shown in section 4.1 on page 67 has feeders of different properties. Some

feeders have a low impedance between the load bus and the gridsupply point (GSP) and are

termedstrongfeeders. Other, usually smaller loads, have higher impedances between them

and the GSP. These areweakfeeders.

This study initially examines the placement of DG in three different feeders, astrongfeeder,

amediumfeeder and aweakfeeder as shown in Figure 5.1.

Finally the study reports generation placed on all feeders in proportion to the maximum DG

that can be connected according to an optimal load flow solution.

5.1.2 Connection voltage

The network used in the simulation has three nominal voltagelevels: 132 kV, the

sub-transmission voltage in Scotland; 33 kV and 11 kV.

The connection of generation at 132 kV is not considered in this study.

DG was connected at 33 kV at the high voltage (HV) side of primary transformers (ULTCP ).
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Figure 5.1: Network diagram with three key feeders highlighted.

DG was connected at 11 kV at the low voltage (LV) side of the primary transformers and on

the load bus distant from the primary transformers as shown in section 4.3.2 in Figure 4.15

5.1.3 Power output time series

Several one day power output time series will be used to simulate the connection of DG as

described in section 3.3.2 page 50.

The time series contain steady outputs, linearly ramping outputs and rapidly varying outputs.

The linearly ramping time series allows clear observation of the network adjusting to

generation changing smoothly over time. The rapidly varying time series allows evaluation

of the network as a result of realistic outputs of generation. Key scenarios were also tested
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with a Generation eventas described in section 5.1.6 to simulate connection or rapid

disconnection of a DG source.

5.1.4 Maximum power output of DG

The power output time series are a vectorF in the range(0, 1) with themax(F) = 1. The

actual power output vector for a day’s simulation is obtained by multiplying the time series

with the maximum power output by the DG, the DG’s capacity. Totest the ability of the

network to absorb new DG the maximum power output for each simulation was the capacity

of the new DG.

The study identified the optimal placement of DG, maximisingtotal connected DG whilst

meeting thermal and voltage constraints. This was achievedby repeated optimal load flow

solutions and increasing generation by representing it as negative load shedding. The load

curve used in this study is for winter load so the 100% load andunity power factor results

were used forDGmax.

The connected capacity will be a function ofDGmax found in the Harrison study [4]. The

function is given by:

DGCapacityF = DGmax,F · DGFactor (5.1)

whereF is the feeder andDGFactor is the multiplier used for the scenario.

In many circumstances the maximum connected DG is roughly the local load plus the primary

transformer rating. This is an intuitive steady state result as the exported power would be the

power rating of the transformer. The study identified, however, buses that are constrained by

the connection of DG nearby and cannot support the capacities suggested by such a simple

approximation and thus some resulting capacities do not follow that approximation.

The optimal power flow method demonstrated the worst cases interms of equipment loading

and voltage rise. This study demonstrates a time series analysis method which shows that

greater capacities can be connected subject to dynamic generator constraints and shows the

associated loss of revenue of such a scheme.
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5.1.5 Power factor

DGmax was calculated by taking the maximum of three scenarios eachwith all generation

connected at different power factors. The power factors were 0.95 lagging (0.95−), unity

(1) and 0.95 leading (0.95+). These correspond to the approximate operating range of

Doubly-Fed Induction Generators (DFIGs) [30]. It is recognised that generation operating

at a slightly leading power factor is likely to be most favourable for the connection of larger

amounts of DG [30].

Scenarios were created for five different power factors:0.95−, 0.9875−, 1.0, 0.9875+ and

0.95+. In terms of reactive power output,0.9875− is half way between0.95− and unity.

Likewise generation operating at0.9875+ absorbs half as much reactive power as at0.95+.

5.1.6 Generation events

The power output time series combined with the maximum poweroutput for the DG combine

to create the actual power output for the connected DG duringthe simulation period. These

power output vectors define normal operation of the DG. It is desirable to examine the effect

of less frequent events such as the following:

1. Full loss of DG. No fault condition.

2. Temporary loss of DG followed by re-start and re-connection.

These events are created by multiplying the normal power output vector element-wise with

the vectors described by Figure 5.2.

5.1.7 ULTC operating parameters

The ULTC has two adjustable parameters according to the simple automatic voltage

regulation algorithm described in section 3.4.1. The parameters are delay and deadband.

Section 4.3.4 demonstrated a method to search for optimal delay settings. The ULTCs were

simply split into those with HV side at 132 kV and those with HVside at 33 kV. In the
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network examined this is equivalent to splitting into GSPs and the primary transformers. As

identified in section 2.3.5 the delay settings of two or more ULTCs in series are ideally set

differently.

Due to the limited data available to optimise the ULTC settings in section 4.3.4, the

approximate values used by Scottish Power [53] were used in this study. The HV ULTCs

have the shorter delay of 45s and the LV transformers 60s.

Deadband parameters are available for the GSP ULTCs in the D&Gnetwork. The deadband

parameters for the LV ULTCs were approximated from typical operating parameters as

discussed in section 4.2.3.

5.1.8 Scenario parameter summary

Table 5.1 summarises the features of a scenario. The study will not be exhaustive of these

combinations as there are 720 combinations of them just adding generation to one bus.

5.2 Investigation of DG connected in PQ mode.

This section reports the effect of DG in an area with previously no DG. The network used was

as described in section 4.1 differing only in the amount and position of connection of DG.

The generation was kept connected according to the scenario, despite any voltage violations
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Feeder VConnection Max
Pgen

Time series Power
factor

Events ULTC
Parameters

strong 33 kV varies Wardlaw-day1 0.95+ none FixedTd

medium 11 kV(deep) Wardlaw-day2 0.9875+ lossFull andVlim

weak 11 kV(shallow) flatMax 1.0 lossTemp
all ramp 0.9875−

0.95−

Table 5.1: Summary of scenario parameters.

that may occur. The evaluation methods described in section3.6 have been used to assess the

connection of extra DG.

Each subsection primarily investigates one variable of thescenario but may vary others in

order to explore the impact of the variable.

5.2.1 The effect of feeder selection.

Different feeders can support differing amounts of generation according to line and equipment

thermal limits and consumer voltage rise. The capacity of generation that will be connected at

each of the three feeders selected for examination is a multiple ofDGmax. The power factor

of the DG will be at unity as was used in the calculation ofDGmax.

Firstly, the simulation is run with the DG connected on the LVbus of the selected feeder

ULTCs with a steady generation profile. This profile provides the maximum power output

throughout the period of the simulation. The simulation demonstrates the ability of the

network to adequately control bus voltages for any of the load busbars for the given connected

power. The load varies according to the time series used for all loads in this study.

The three feeders selected differ in the impedance between the LV side of the primary

transformer and the 132 kV network. The impedances give an indication as to the effect

on voltage rise the DG will have. The impedances were calculated with the tie between the

two 33 kV busbars directly under the two GSPs open. Despite this simplification they give
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an indication as to the relative “strength” of connection ofeach feeder.

The first group of simulations shown had the same amount of DG connected to all three

feeders equal to theDGmax for the weakest of the three feeders. This simulation demonstrates

the differing ability of different feeders toabsorbDG. To emphasise this point, for this

simulation only, the ULTCs are fixed throughout the simulation.

Figure 5.3 shows the feeders’ load bus voltage levels with the voltage without DG shown as

reference.

1

1.05

1.1

1.15

V
66

35
9

1

1.05

1.1

1.15

V
68

65
9

00:00 06:00 12:00 18:00 24:00
1

1.05

1.1

1.15

Time of day / hours

V
68

45
9

No DG

Fixed DG

Figure 5.3: 11 kV bus voltage of the three selected feeders with and withoutthe fixed DG
connected and ULTCs stationary.

It is clear that the voltage is unacceptable, but it demonstrates the rise due to the DG is least

in the most strongly connected feeder, more in the medium oneand a little more in the weak

feeder.

Next, the feeders had DG connected equal to their respective(DGmax) values. A different run
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of the simulation was made for each feeder with the other feeders having no DG connected.

With the tap positions suited to no DG connected, the immediate connection of (DGmax)

results in a rapid sequence of tapping actions to restore thevoltage. All other generation time

series start with less than maximum DG. These time series require only a few adjustments

of the ULTC position. The evaluation method ignores the costof the adjustments in the first

minutes of the simulation.

Figure 5.4 shows the operation of each feeders’ ULTC in response to the changing load with

DGmax connected at fixed output with the no DG response as reference. Figure 5.5 shows

load bus voltage for the same scenario.
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Figure 5.4: Response of the ULTCP s to the changing load withDGmax.

Figure 5.4 shows few tapping operations at the primary ULTCs of each feeder. As expected

with steady generator real and reactive power output, the tap changing behaviour of the

primary ULTCs is similar with and without the DG. The main difference observed in both

theweakandmediumfeeder is the average tap position. The ULTCs operate at the start of
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Figure 5.5: Load bus voltage as a result of changing load and ULTC voltageregulation with
DGmax for three different feeders.

the day according to whether there is DG or not and then operate to control voltage changes

due to the load throughout the day.

Figure 5.5 shows small voltage steps up and down frequently for the LOW and MEDIUM

impedance feeders. This is as a result tapping actions of theGSP ULTC transformer for area

B. Note that the network is capable of maintaining the 11 kV load bus voltage well within the

prescribed planned±3% as expected.

Figure 5.6 shows the percentage primary ULTC loading over time for the feeders with DG

connected.

Each feeder has a thermal limit dictated by the line and transformer thermal limit. The thermal

limits are seasonally dependent and also have a steady staterating and a cyclic rating. The 33

kV/ 11kV primary transformer has been added to each feeder inthe model derived from the

Scottish Power network data according to typical transformer parameters. For this reason the

106



Connecting Fixed Power Factor DG

0

50

100
H

IG
H

 Z
 p

rim
ar

y
U

LT
C

 lo
ad

in
g 

/ %

0

20

40

M
E

D
IU

M
 Z

 p
rim

ar
y

U
LT

C
 lo

ad
in

g 
/ %

00:00 06:00 12:00 18:00 24:00
0

10

20

Time of day / hours

LO
W

 Z
 p

rim
ar

y
U

LT
C

 lo
ad

in
g 

/ %

Figure 5.6: Line loading withDGmax for the three feeders.

imported/exported power along the feeder is compared to theactual line rating of the feeder

as supplied by Scottish Power.

The percentage transformer loadings are lowest for thestrong feeder, the one with lowest

impedance. These feeders are good candidates for even more DG in terms of thermal rating

but may be limited by the ability of the area as a whole to maintain voltages within limits.

5.2.2 The effect of connection level.

Similarly to the connection of DG to different feeders, the level at which DG is connected

affects its impact on the feeder. The three connection levels identified, on the HV side of

ULTCP s, on the LV side of ULTCP s and “out on” the 11 kV load bus all have differing

impedances between the DG and the transmission network and between the DG and the load.

Three simulations were run with DG on the high impedance feeder. DGmax was connected

in the three different places identified:Out on the load bus, the LV side of ULTCP s and the
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HV side of ULTCP s. The generation time series used wasWardlaw-day1.

The feeder’s grid transformer (ULTCGSP ) and primary transformer (ULTCP ) operations

hardly vary between the different positions as seen in Figure 5.7.
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Figure 5.7: GSP and primary ULTC tap position withWardlaw-day1DGmax connected at
different voltage levels.

The patterns of operation are identical between connectionlevel scenarios. There are slight

variations in exact timing of each operation. The resultantload bus voltage time series in

Figure 5.8 differ between connection points as expected. The load bus voltage is higher when

it has DG connected to it. The amount of voltage rise changes as the DG output changes.

This makes it harder for the ULTC to regulate voltage such that the load bus is within limits.

The line loading for the line feeding the primary substationis very similar for all three

connection points and is shown in Figure 5.9.

The line loading over time only shows a peak of 50% of the steady state rating of the line.

Note the low line loading between 12:00 and 18:00. During this period the generation nearly
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Figure 5.9: Line loading withDGmax connected on the HV side of ULTCP .

matches the load. The smoother line loading between 18:00 and 24:00 occurs during a period

mainly of no generation. This results in a smoother voltage time series during this period as

shown in Figure 5.8.

The transformer reached a higher loading as a percentage of its rating than the line but is

discussed further with respect to the next simulation.

The next result shows a marked difference between connection levels. This time DG with the
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Wardlaw-day1time series was connected at each of the three voltage levelsin three simulation

runs. This time,DG2·max is connected each time.

The first two figures, 5.10 and 5.11 show that with connection at HV/LV ULTC P results in

adequate control of the load bus voltage.

Figure 5.10 shows that with the DG all connected at the load bus, a voltage rise occurs

bringing the voltage up to the planned±3% limits. There is little difference in load bus

voltage between the scenarios connecting on the HV side ULTCP and on the LV side.

Figure 5.11 shows that connection on the HV side of ULTCP results in a slightly more

extreme voltage profile for the HV side of the transformer. This is not translated into a load

bus voltage rise due to transformer tap operation.
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Figure 5.10: Load bus voltage for high Z feeder andDG2·max Wardlaw-day1.
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Figure 5.12 shows ULTCGSP tap operations as a result of the connection ofDG2·max at the

three positions.
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Figure 5.12: Tap position of ULTCGSP for high Z feeder andDG2·max connected with
Wardlaw-day1time series.

As expected there is little change between the cases. This isexplained by Figure 5.14 later on

page 114. The power flow seen by ULTCGSP differs only slightly between the three positions.

The operation of ULTCP shows a marked difference depending on the voltage level at which

the DG is connected, as shown in Figure 5.13. The scenarios were all with two timesDGmax

(DG2·max). The ULTCP exhibits a greater number of tap changes when the DG is connected

on the LV side of the ULTC than out on the load. The ULTCP responds with even greater

activity when the DG is connected to the HV side of the ULTC. This is explained by the

effect described above that the connection of DG on the HV side results in a greater range

of voltages on the HV side than if the DG is connected below theULTC. A greater range of

voltages on the HV side translates into a greater range of voltages on the LV side resulting in

more tap operations to correct it.
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Figure 5.13: Tap position of ULTCP for high Z feeder andDG2·max Wardlaw-day1.

Figure 5.14 shows the difference in line loading between thethree cases. Line loading is

measured in MVA and thus includes the real and reactive components of power flow. ULTC

operation affects the reactive power flow in the feeder. As the three scenarios exhibit different

ULTC behaviour, in particular different extremes of tap position, the line loading above the

ULTC is similarly affected by the reactive power term.

Figure 5.15 shows the difference in transformer loading between two of the connection cases.

Naturally with much greater DG capacity than load, the transformer loading is greater if the

DG is connected on its low voltage side. Connection on the loadbus results in slightly less

ULTC loading when the feeder is exporting power. This is due to 11 kV line losses.

Nameplate ratings of transformers can be exceeded for shortdurations. The extent to which it

can be exceeded is largely determined by the temperature rise in the transformer. Transformer

temperature is a function of: ambient temperature; transformer rating and construction; and

the power flow over time through the transformer.
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Figure 5.14: Line load due toDG2·max connected to HV side of ULTCP . Also shown are the
difference to this curve from DG connected at LV and off on load.
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Figure 5.15: ULTCP loading in HV and LV connected DG cases.
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In normal cyclic duty the British Standard Institution’s Codeof Practice 1010 recommends

that transformer current should not exceed 150% of nameplate rating [76].

Cyclic ratings can be determined for a transformer even afterinstallation by transformer

modelling. An EA Technology case study demonstrated up to a 47% greater cyclic rating

than nameplate rating [77] for a GSP transformer. This rating is indicated on the figure for

reference.

A study by Mott MacDonald for The Carbon Trust and the Department of Trade and Industry

[30] illustrates typical amounts of DG that can be connecteddepending on the connection

point in the feeder. Where 1.8MW can be connected out on 11 kV, 5MW can be connected

to the LV side of the primary ULTC and greater than 10MW can be connected to the HV side

of the primary ULTC. This approximation is taken as a ratio of 1:3 for DG capacity remote

from the LV side of the ULTC to the DG capacity connected directly to the LV bus of the

ULTC for a given amount of DG connected to a feeder. The 1:3 ratio is adopted in this study

to determine the placing of DG on a feeder where the capacity connected to the feeder as a

whole is of interest.

5.2.3 Power factor and voltage rise.

The power factor of DG has a large effect on local bus voltages. Choosing a leading power

factor is a method to reduce voltage rise by absorbing VArs and thus improve the ability of

the network to accept DG. This section shows that this can also increase ULTC operation

in cases where the generation output varies over short time periods such as cases with wind

powered generation.

Two load scenarios were simulated, one a steady minimum summer load, the other a steady

maximum winter load. Each load scenario was simulated with DG out on the load, modulated

according to the ramping output profile at one of five different power factors: 0.95lag,

0.9875lag, unity, 0.9875lead and 0.95lag. The time of day was thus not strictly important

but a semi-steady state simulation allowed for operation oftap changers and was otherwise

useful in showing the progression of bus voltage with DG change.
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The load bus voltage is shown in Figures 5.16 and 5.17.
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Figure 5.16: Load bus voltage as a result of minimum summer load andDGmax connected
at the same bus with 5 different power factors.

The voltage time series observed is similar for both winter and summer scenarios. With

a lagging power factor, the primary ULTC makes many voltage corrections. The load bus

moves from absorbing VArs to exporting VArs as the generation increases in the first part

of the simulation up to 12:00. This raises the load bus voltage and thus the LV side of the

primary transformer. The transformer AVC then repeatedly corrects this voltage rise.

The number of tapping operations reduces as the amount of VArs the DG exports is reduced.

The two scenarios with DG at a leading power factor required the same amount of correction.

Note that in the 0.95 leading case, the correction was for an under-voltage. The increasing

real power output of the DG tends to raise the load bus voltagebut the proportionate increase

in VAr absorption lowers the voltage. Small voltage steps are visible. These are as a result of

automatic GSP ULTC adjustment.

Increased reactive power generation on top of real power generation also causes greater

voltage rise on the HV side of the primary transformer as seenin Figures 5.18 and 5.19.
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Figure 5.17: Load bus voltage as a result of maximum winter load andDGmax connected at
the same bus with 5 different power factors.

These observations support the strategy of operating DG at aleading power factor as opposed

to unity or a lagging power factor. In the extreme lagging p.f. case, the voltage is caused to

exceed the statutory upper limit of+6% pu. The increased load in winter is not sole cause of

the large difference in the voltage on the HV side of the ULTC between the two figures. The

ULTCGSP is at a different tap setting and voltage on the LV side of the ULTCGSP is lower in

the winter case, hence the voltage on the HV side of the ULTCP is lower.

One reservation about operating DG at a leading power factoris illustrated in Figure 5.20. It

is shown that when the DG is operating at a leading power factor, the extra imported reactive

power causes slightly increased line loading. Only the two most extreme power factors tested

are shown as the difference is slight. In addition to increased line loading, the leading power

factor also adds to the reactive power requirements of the feeder. If it is the policy for all DG

to be operated with a leading power factor then the reactive power requirement would have

to be met by larger plant.

The difference in tap position that connecting DG makes compared to having no DG is very
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Figure 5.18: ULTCHV
P bus voltage, minimum summer load andDGmax connected out on the

load bus.
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Figure 5.19: ULTCHV
P bus voltage, maximum winter load andDGmax connected out on the

load bus.
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Figure 5.20: Feeder line loading at two different power factors.

important when it comes to assessing loss of generation events as explored in section 5.1.6.

If the tap position differs greatly between having DG connected and not, then the unplanned

disconnection of the generation will cause an undesirable large voltage step and then a number

of subsequent tapping operations.
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5.2.4 Varying output with different generation profiles.

Sample frequency

As shown in previous sections, DG varying on a short time scale can affect the amount of

tap operations performed by the ULTCs. The extent to which time-scale of power output

fluctuation affects tap operation was explored.

DG2·max was connected to just the low and medium impedance feeders. The power output

time series used for the DG was different for each graph in each figure. The first graph in

each figure usedWardlaw-day1for the DG output profile. The second graph had a power

output time series generated by creating a half hour moving average ofWardlaw-day1and

then under-sampling it with a sample period of half an hour. This second time series is the

equivalent time series that would be generated by a monitoring device producing only a half

hourly measurement. Such devices sample voltage at a much shorter period than half an hour

and then average the results to give half-hourly data.

The resulting time series of tap positions is shown in Figures 5.21 and 5.22 for feeder B1.
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Figure 5.21: The effect on ULTCGSP tap operations of DG output data sample period.

The time series of tap positions for the GSP and primary ULTCs on feeder B1 differ between

the two sampling frequencies. The difference is not as marked as might be expected, but

clearly the primary transformer shows reduced operation with the smoothed curve. ULTCGSP

shows similar operation as the range of the two curves is the same. Much of the ULTCGSP
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Figure 5.22: The effect on ULTCP tap operations of DG output data sample period.

operation handles the slower change in load and hence voltage. The time series simulations

in this study needed to use the higher frequency input time series in order to fully model the

operation of ULTCs in response to the higher frequency power fluctuations seen at DG such

as wind farms.

Geographical dispersion

In this study so far, all DG in the network has been varied by the same time series. In reality,

even if all the DG was from the same resource such as wind, the power outputs from these

geographically dispersed wind farms would not be synchronised. The aggregation of such

sources will lead to a smoother total power export time series. This section, however, tests

the hypothesis that if each generator follows different time series then the changing power

flows to and from each feeder could cause increased ULTC tapping operation to maintain

voltages within limits.

The following Figures 5.23 and 5.24 both used the Wardlaw data; however in the second

and third plot of each of these, the medium impedance feeder was given an output profile

offset from the originalWardlaw-day1by 300 s or 1200 s. These offsets correspond to

the propagation of a change in wind speed between the medium and low impedance feeder

occurring at 10 ms−1 over distances of 3 km and 12 km respectively.

121



Connecting Fixed Power Factor DG

5

10

15

20

No offset ULTCB1
GSP

  N
TC

: 59

T
ap

 p
os

iti
on

5

10

15

20

300s offset ULTCB1
GSP

  N
TC

: 59

T
ap

 p
os

iti
on

00:00 06:00 12:00 18:00 24:00
5

10

15

20

1200s offset ULTCB1
GSP

  N
TC

: 59

T
ap

 p
os

iti
on

Time of day / hours

Figure 5.23: Tap operation due to offset generation time series for ULTCGSP .
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Figure 5.24: Tap operation due to offset generation time series for ULTCP .
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Differences between the scenarios are circled. There is however no significant difference in

the number of ULTCGSP or ULTCP tapping operations.

5.2.5 Testing for maximum capacity.

The previous section demonstrated how different factors affect the impact of DG on voltage

and ULTC operation. After selecting the most desirable options, the capacity of the DG is

varied to demonstrate cost and benefits of different amountsof generation. As a starting point,

DG was connected to each feeder in the network with capacity as defined by the peak load,

optimal power factor scenario. Two power factors were used for the DG, unity and 0.9875

leading which seemed most favourable in previous sections.The power output time series

used wasWardlaw-day1.

As a result of examining the thermal branch loading, two further simulation runs were

conducted withDGmax multiplied by 120% and 140%. Note that the area of the network

simulated has two GSP transformers. These transformers andthe respective feeders

connected below them are named areas A and B.

Figure 5.25 plots the evaluation of the three scenarios withincreasing DG at unity and leading

power factors respectively.

The first column: Absolute Penalties

The first column shows theTotalVoltageCostPenaltyandTapChangeCostfor areas A and B as

described in section 3.6 on page 60 for one day of simulation.Tap costdenotes the cost of the

total number of tap changesTapChangeCost. The cost per tap change assumes disconnection

of DG when overhauling a feeder connected by a single ULTC in addition to the basic cost

of maintenance.

The absolute penalties increase with the amount of DG connected. The area A plot shows

that increasing DG connected at unity power factor aboveDGmax results in a significant rise

in TotalVoltageCostPenaltywith TapChangeCostrising only slowly. The cost of the effect

on bus voltages with increasing DG outweighs the cost of the change in the number of tap
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Figure 5.25: Cost penalties for 3 amounts ofWardlaw-day1DG in areas A and B.
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operations required. This is largely due to the over-voltages experienced on the HV side of

primary ULTCs as a result of exporting power from feeders.

The result for area A with DG connected at a leading power factor is markedly better. The

import of reactive power keeps voltage rise down thus reducing theTotalVoltageCostPenalty.

In addition theTapChangeCostis reduced. Any fluctuations of real power output correspond

to a proportionate fluctuation in reactive power import, reducing the fluctuation of bus

voltages as shown in section 5.2.3. Less fluctuation in bus voltages means a reduction in

the number of tapping operations.

The TapChangeCostis of the order of the DNO interim charge. The charge is supposed to

cover operation and maintenance of the whole distribution network, not just that of ULTCs.

TheTapChangeCostwas calculated for 2003, whereas the interim charge is for 2005 which

would suggest theTapChangeCostwould be even greater relative to the interim charge

using 2005 figures if available. TheTapChangeCostis exaggerated in these graphs as it

includes the cost of tapping operations with no DG. TheTapChangeCostincludes the cost

of compensating DG for disconnection during ULTC maintenance which the DNO interim

charge does not.

The first column: Differences in penalties by area

In both areas the increase in DG resulted in increasing penalties and the connection of DG at

a slightly reactive power factor reduced these penalties. The areas differ in that in area A the

greatest penalty arises from DG causing voltages to exceed the planned voltage limit of±3%

. In area B, the cost of tap operations dominates any voltage control problems.

The ULTCGSP in area B has a relatively fine degree of control for a tap changer and as such

reacts frequently to changing power flows and their consequent effects on voltage. In the

DGmax scenario, the HV winding ratios of ULTCA1
GSP and ULTCA2

GSP vary from 0.9667 to

1.0167 in 3, 1.66% steps with a total of 13 tapping actions. This is in contrast to ULTCB1
GSP

which varies from 0.9500 to 1.0063 in 9, 0.625% steps with a total of 107 tapping operations.

TheTapChangeCostis thus high in area B due to the GSP tapping actions. The fine degree of

control and lower connected capacities do however result ina lower number of tap operations

125



Connecting Fixed Power Factor DG

for the primary transformers.

In addition the area B has a higherTapChangeCostas its GSP ULTC consists of only a single

transformer which is more heavily penalised according to the TapChangeCostdefinition. To

be precise, for theDGmax scenario, theTapChangeCostdefinition assigns a cost of£0.23 to

each tapping operation of a GSP transformer in A but a£1.83 to a tapping operation in the

GSP for B.

TheTotalVoltageCostPenaltydoes not increase significantly in area B with increased DG, nor

does it decrease significantly with connection at a leading power factor. The total connected

capacity of DG in area B is much lower, limited by the thermal limits of ULTCB1
GSP . Thus for

similar line and transformer characteristics in area B feeders, there is less voltage drop or rise

caused by the import or export of power in the feeders.

The second column: Penalties compared to revenue

The second column has plotted the potential revenue from theDG in each area. The revenue

is the electricity generated for the day multiplied by the mean wholesale electricity price

for 2003. In addition, the revenue with theTotalVoltageCostPenaltysubtracted is shown. The

TotalVoltageCostPenaltyis a penalty whose value is based on lost revenue. The adjusted value

represents the revenue from generation that did not cause voltage excursions from statutory

limits.

For comparison theTapChangeCostis plotted with the two revenue values. The

TapChangeCostis very small compared even to the adjusted revenue. Thus if the DNO were

able to apportion the cost of extra tapping operations due toconnected DG the costs could

be passed to the DG. The significance ofTapChangeCostis shown more clearly by plotting

the penalty as a proportion of revenue.

Penalties as proportion of revenue

Figure 5.26 shows the combined penalties of areas A and B as a percentage of revenue

over the 3 scenarios. The penalties used in the calculationshave subtracted the
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TotalVoltageCostPenaltycalculated with no DG. In this scenario is£35.33 per day for

the combined cost penalty. The values are for areas A and B combined. The tap cost

component is given for the combined cost penalty and also has£35.33 subtracted from the

TapChangeCostas the only cost associated with the no DG case is theTapChangeCost. In

this way they are marginal penalties due to DG connection.
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(a) DG at unity power factor.
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Figure 5.26: Marginal penalties as a percentage of revenue forWardlaw-day1.

The two plots differ in the fixed power factor at which the DG isconnected. At both power

factors the percentage combined cost penalties increase with increased DG.

The TapChangeCostis defined such that a proportion of transformer maintenancecosts are
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proportionate to the frequency of tap operation. The tap cost component is thus of use for

assessing the increased maintenance cost of ULTCs as a resultof the connection of DG.

The TotalVoltageCostPenaltycomponent denotes a measure of the reduction of generation

that would ideally be imposed given adequate abilities of the DG to estimate the state of the

feeder beyond its connection point and constrain real poweroutput accordingly. The amount

of reduction used in the calculation is the total output of the DG in the feeder during times

where feeder voltages are outside limits.

The combination of theTotalVoltageCostPenaltyand theTapChangeCostin the combined

cost penalty are a measure of cost to the system for the connection of DG. The system in

this case is the DNO and the generators. The combined cost is independent of how such

costs are or should be apportioned between the parties within the system. When given as a

proportion of revenue, the combined cost indicates the proportion of potential revenue lost to

the penalties due to over-voltages in a feeder and to the increased cost of ULTC maintenance.

The combined cost not only increases in absolute terms with increased DG capacity, but it

also increases as a percentage of the revenue when the DG is connected at unity power factor.

The combined cost as a percentage of revenue is lower when theDG is connected at a slightly

leading power factor though similarly to the unity power factor case, the percentage combined

cost doubles from the 100%DGmax case to the 140%DGmax case.

Reactive power import

The combined cost of DG operating at a leading power factor islower than when operating

at unity. The lower costs are a result of variable reactive power imported by the DG. The

reactive power flow through the primary ULTC without DG is from the HV to LV side. With

the addition of DG operation at a leading power factor, this increases the reactive power flow

and thus increases transformer loading. This is of concern as transformer loading is a limiting

factor, even though it is not reflected in the cost penalty. TheDGmax·140% case with DG at a

leading power factor results in one ULTC exceeding the cyclic limit, 150% of the nameplate

rating, discussed in section 5.2.2.
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Wardlaw-day2 results

The set of simulations has been repeated forWardlaw-day2power output data.

First the absolute penalties are compared between the twoWardlawgeneration time series.

The difference between scenarios and areas is similar for DGat unity and leading power

factors. The same observations for the two power factors also apply toWardlaw-day2.

In area A theTotalVoltageCostPenaltyis much higher due toWardlaw-day2though the

TapChangeCostis lower. Voltage control is at its limits in area A forWardlaw-day1and

with Wardlaw-day2the generation output varies near its capacity for much longer so the HV

sides of primary transformers stay out of voltage limits forlonger and some load buses reach

their upper voltage limits.

The transformer loading time series reveals the differencebetween the two days in power

exported from the feeder and thus voltage rise down the feeder. The power export time

series and corresponding HV and LV voltages for ULTCA4
P are shown in Figure 5.28 for DG

connected at unity power factor.

The peak in export power inWardlaw-day1is much more short-lived than inWardlaw-day2.

Correspondingly the voltage rise on the HV side of the primaryULTCs stays higher for longer

for the Wardlaw-day2scenario and consequently theTotalVoltageCostPenaltyis higher for

Wardlaw-day2.

The TapChangeCostis lower as there are fewer larger power swings in theWardlaw-day2

scenario. Although high frequency power swings are more noticeable in theWardlaw-day2

scenario causing many tapping operations this is not as significant as the less frequent but

larger power swings.

The TapChangeCostis slightly lower in area B in theWardlaw-day2scenario. The main

difference is the fewer operations of the GSP transformer which as already mentioned is

penalised quite heavily. Although theTapChangeCostin area B is lower, as a percentage

of revenue it increases more noticeably in theWardlaw-day2scenario as shown in 5.29.

The smaller power swings due toWardlaw-day2become larger as the capacity of the DG

increases. As they exceed 100% ofDGmax the swings in power flow become larger and the
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Figure 5.27: Cost penalties for 3 amounts ofWardlaw-day2DG in areas A and B.
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Figure 5.28: Top, voltage on the HV side of the primary transformer on feeder 66350 for
each day at unity power factor; Bottom, primary transformer loading on feeder
66350.

GSP ULTC must compensate for the resulting voltage changes.

As noted there is a greater absolute combined cost penalty for areas A and B inWardlaw-day2

than in Wardlaw-day1. There is also an increase in energy exported and thus revenue of

approximately 10%. The increase in combined cost is greaterand thus the percentage

contribution of the DG to the combined cost is greater forWardlaw-day2.

5.2.6 Unplanned outages

Having determined an upper bound to the amount of DG that can be connected according to

the scenarios above, it is important to the operation of the distribution network what happens

in the event of a failure of the generation plant. As discussed in section 5.2.3, such a failure

could cause a large voltage step.

A large voltage step is undesirable. Quoting the G59/G75 working group of the Distribution
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(a) DG at unity power factor.

100 120 140
0

1

2

3

4

P
en

al
ty

 in
 p

ro
po

rt
io

n
to

 r
ev

en
ue

  /
 %

DG factor / %

Combined cost penalty
Tap cost proportion of adjusted revenue

(b) DG connected at 0.9875 leading.

Figure 5.29: Marginal penalties as a percentage of revenue forWardlaw-day2.

Code of Licensed Distribution Operators of Great Britain [22]:

Typical limits for Step Voltage Changes caused by the connection and
disconnection of Generating Plants from the Distribution System, should be
±3% step for infrequent planned switching events or outages (inaccordance
with Engineering Recommendation P28) and±6%for unplanned outages such
as faults. These limits are applicable to Step Voltage Changes as defined in this
Recommendation and should not be exceeded unless agreed withthe DNO first,
who will consider the impact of possible variations on existing customers.

The two Wardlaw time series have been modified according to the full-loss and
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temporary-loss filters shown in section 5.1.6. The resulting time series are shown in Figure

5.30.
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Figure 5.30: Wardlaw-day1 and Wardlaw-day2 time series in fullLoss and tempLoss
scenarios.

These time series are input to the simulation with DG set toDGmax. Firstly, the impact

of Wardlaw-day1-fullLossandWardlaw-day1-tempLosson the operation and bus voltages of

ULTCA5
P is shown in Figures 5.31 and 5.32.

The loss of generation results in a large voltage change. Thechange is outside the±6%

allowed by the G75/1 recommendations. The ULTCs operate to bring the control voltage

within limits.

Once this is done, the ULTCs operate as the no DG scenario in thefullLosscase and as in the

Wardlawscenario in thetempLosscase.

The simulations are repeated with the DG operating at a powerfactor of 0.9875 leading.

Figures 5.33 and 5.34 show the resulting voltage and primarytransformer time series for

feeder 68850.
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Figure 5.31: ULTCA5
P HV and LV voltage and tap position due to full loss scenario 1 at unity

power factor.
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Figure 5.32: ULTCA5
P HV and LV voltage and tap position due to temporary loss scenario 1

at unity power factor.

With generation operating at a leading power factor the voltage step is much smaller. The

import of reactive power being proportional to active powerresults in less of a voltage rise

when the DG is at its capacity than when operating at unity power factor. When the DG is

suddenly lost as in this case, as the voltage rise already corrected for by the primary ULTC is

less, the voltage step is less and also the ULTC requires lessoperations to restore the correct

voltage.

The 4% step is outside the “infrequent planned switching events or outages” limit of±3%
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Figure 5.33: ULTCA5
P HV and LV voltage and tap position due to full loss scenario 1 at

leading power factor.
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Figure 5.34: ULTCA5
P HV and LV voltage and tap position due to temporary loss scenario 1

at leading power factor.

quoted on page 132. The loss of generation scenario here involves the loss of generation

across the distribution network. Investigation into the loss of generation in chapter 6 uses the

loss of the largest generator on the network as the worst case.
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5.2.7 Summary

The simulation method and evaluation function has been exercised on a number of scenarios.

Some scenarios tested were designed to show the simulation model performed according to

expectations and achieved this. Other scenarios pushed thedistribution network to its limits

showing how the ULTC react to such a situation. The simulation method has been shown to

be able to include the effects of multiple generation time series on the network.

A number of factors are demonstrated that increase the number of tap operations required to

control voltage within limits in the distribution network.The number of operations increases

with capacity of DG, impedance between DG and 132 kV network,intermittency and outage

events. The connection of DG further from the transmission network is dominated by thermal

limits with a slight increase in reactive power requirementfor unity or leading power factor

connected generation.

The TapChangeCostandTotalVoltageCostPenaltyindicate the cost of tap operations and a

crude measure of generation curtailment. The combination of the two metrics asCombined

cost penaltyhas been used to compare scenarios in terms of the fitness of the network

to maintain voltage levels. This metric has indicated that the TapChangeCostis a small

percentage of the revenue from the generation.

Of concern, however, is the ability of the distribution network equipment to maintain

acceptable voltages. The operation of DG at a slightly leading power factor results in less

voltage variation due to variation of active power generation. The leading power factor also

reduces step voltages that arise due to sudden loss of DG. Thedisadvantage of such as

strategy is increased transformer loading and increased reactive power requirements of the

lower voltage end of feeders with DG connected.

The next chapter shows how the three methods of control of variable DG described in

Chapter 3 can reduce the combinedTapChangeCostandTotalVoltageCostPenaltyfor a given

power factor and thus minimise the costs and negative impacts associated with such non-firm

generation connecting to the distribution network.
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Chapter 6
Connection of DG with Active Control.

Chapter 5 used a penalty evaluation function,TotalVoltageCostPenalty, to explore the effects

of different DG connection strategies and scenarios. The final two sections showed the

fitness of the network of connecting theDGmax scenario in normal operation and with an

outage event. This chapter demonstrates three methods of DGcontrol described in section

3.5 that are implemented and tested with the scenarios from chapter 5. The methods show

a reduction inTotalVoltageCostPenaltycompared to leaving the DG in power factor control

with unconstrained real power output.

Two key changes are made to the network simulation from previous chapters.

It was ascertained that the ULTC dead-band parameters used by Harrison in the study of the

network used in this project were different to those used in the previous chapter. A simulation

was run with the results in Appendix C on page 199 that indicate that the parameters used

in the Harrison study have a marginally lower associatedTotalVoltageCostPenalty. In the

interests of continuity and because the values perform marginally better, they will be used for

this chapter.

Secondly, a modification has been made to the network below the primary transformer. The

load was previously connected via a 2km line and boost transformer. The boost transformer

has been removed. Generation connected at 11 kV away from thetransformer can now be

connected either on the load bus or on a separate 2 km line.

The four locations for DG are now as shown as loads on Figure 6.1. The actual load is

indicated by the non-zero load.

In section 5.2.2 it was stated that DG is added to a feeder by apportioning it in a 1:3 ratio

between the capacity of DG connected to the remote point fromthe LV side of the ULTC and

the LV bus of the ULTC itself. With the two remote points of connection, the 1:3 ratio was
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Figure 6.1: The four possible connection points of DG around a primary substation.

maintained and the two remote points were split 3:2 between the dedicated DG line and the

line feeding the load bus.

The key tests from chapter 5 were repeated with the new network model and ULTC

parameters. Again 100%, 120% and 140% ofDGmax is connected. DG at unity power

factor results are shown in Figures 6.2 to 6.5.

There are differences between these results and those on page 124.

The results shown here for both theWardlaw-day1andWardlaw-day2scenarios show a lower

TotalVoltageCostPenaltyfor area A and a lowerTapChangeCostfor area B. The impact of

that on the penalties expressed as percentages are as follows. For day one, the combined cost

penalties increase from 3 to 6.5% for the three DG amounts in Chapter 5. In this chapter

they increase from 2 to 5.5%. For day two the Chapter 5 combinedcost penalties increased

from 2.5% to 12%. In this chapter they increase from 2 to 9%. Despite the differences in

resulting combined cost penalties, it is possible to compare the three DG control methods in

this chapter to the PQ case by comparing to the results shown here.
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Figure 6.2: Penalty for 3 DG scenarios in areas A and B. DG isWardlaw-day1at unity p.f..
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Figure 6.3: Penalty for 3 DG scenarios in areas A and B. DG isWardlaw-day2at unity p.f..
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Figure 6.4: Marginal penalties as a percentage of revenue.Wardlaw-day1
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Figure 6.5: Marginal penalties as a percentage of revenue.Wardlaw-day2
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6.1 PQ mode DG connected with voltage limit.

In the previous chapter, section 5.2 showed that the connection of DG can cause voltage

violations. These violations may be violations of statutory limits or violations of operating

limits imposed by the DNO to ensure supply quality and ensurecompliance to the statutory

limits. In this section, the DG will be shed if it exceeds the limit imposed for the bus it is

connected to.

The threeDGmax scenarios were repeated with the shedding algorithm detailed in section

3.5.1 on page 56. The three scenarios were repeated withWardlaw-day1andWardlaw-day2

power production time series. The DG was connected at the DNOpreferred, unity power

factor, for comparison with the PQ mode results in the previous section.

As a reminder, the algorithm states that any bus violating set limits will have its DG, but not

load, reduced to zero. The limits used are±3%. Following a disconnection, the DG will try

to reconnect after a delay of 10 minutes. It will ramp up to itsoutput according to the scenario

over time.

The evaluations of the simulations are given in Figures 6.6 to 6.9. The marginal penalties give

an indication as to the contribution of DG to the cost of tapping operations during the period

simulated. The combined cost represents the system cost of the connection strategy, that is

the loss of potential revenue due to voltage violations and the cost of tapping operations. The

tap cost as a percentage of adjusted revenue is a measure of the ULTC maintenance costs

if passed on to the generator, as a percentage of the generator adjusted revenue where the

adjusted revenue is the potential revenue less the penalty due to voltage violations.

There is little difference in any of the penalty measures between the generation shedding

algorithm and the standard fixed power factor mode.
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Figure 6.6: Penalty for 3 DG scenarios in areas A and B with shedding.Wardlaw-day1
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Figure 6.7: Penalty for 3 DG scenarios in areas A and B with shedding.Wardlaw-day2

142



Connection of DG with Active Control.

100 120 140
0

2

4

6

8

P
en

al
ty

 in
 p

ro
po

rt
io

n
to

 r
ev

en
ue

  /
 %

DG factor / %

Combined cost penalty
Tap cost proportion of adjusted revenue

Figure 6.8: Marginal penalties as a percentage of revenue with shedding.Wardlaw-day1
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Figure 6.9: Marginal penalties as a percentage of revenue with shedding.Wardlaw-day2
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There is however a difference in operation. The power outputof DG on feeder 68850 is

shown forWardlaw-day2with an increase onDGmax of 40% in Figure 6.10.
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Figure 6.10: The three connected generators on feeder 68850. Even the DG on the ULTC
LV bus activates generation shedding.

The action of the shedding algorithm is evident. The impact of the generation shedding

affects the voltage level up the feeder. The act of a full disconnection of generation at

times of near maximum generation unsurprisingly causes large voltage fluctuations as seen in

Figure 6.11, though these are slightly masked by the variation due to the Wardlaw generation

time-series. The operation of the primary transformer can be seen correcting the voltage for

the no-generation state.

A shortfall of the algorithm is that it only looks at the connecting bus voltage to determine

whether the generation should be shed. As discussed in the previous section, the HV side

of the primary transformers spend a long period over the statutory voltage limits. The

generation however is all on the LV side, connected directlyand at the end of 2 km lines.

Thus the generation is causing over-voltages further up thefeeder as the power is exported up

towards the transmission network but the local voltage is not necessarily over itself and thus

the generation does not respond.
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The very slight improvement in cost penalty is accompanied by a slight decrease in revenue

as some of the generation is shed.
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6.2 PQ mode DG connected with curtailment algorithm.

The previous sections (5.2 and 6.1) showed that change in power flows brought about by the

connection of DG can cause voltage violations. To avoid thisthe DG can be shed. As a

consequence this can have a drastic effect on the network power flows and require a number

of corrections by ULTCs to restore voltages. Another controlalgorithm has been developed

for this study, working with the shedding algorithm as a backup it is able to reduce the impact

of mismatched generation and load.

The power limiter imposes a dynamic cap on the maximum outputallowed by the DG. The

cap is tightened as the connecting bus voltage gets close to the upper voltage limit for that

bus. Following a return of the connected bus voltage, the capis incrementally released should

the DG already be generating up to the cap. The DG curtailmentalgorithm is defined in detail

in section 3.5.2.

The threeDGmax scenarios are repeated with the curtailment algorithm. TheDG is connected

at the DNO preferred, unity power factor, for comparison with the PQ mode results in the

previous section.

Figures 6.12 and 6.13 show a reduction in combined cost compared to the original unlimited

DG results of Figures 6.2 to 6.3. The improved reduction in combined cost comes with less

lost generation than the voltage shedding case.

The total energy exported to the network by the DG in the most extremeDGmax + 40% case

was 1302.6 MWh for day 1 and day 2 combined. The shedding algorithm caused the loss of

3.9% of that energy with no noticeable improvement in combined cost. The curtailment

algorithm caused a limitation of production of 2.2% with a noticeable improvement in

combined cost. This is reflected in the graphs showing the combined cost due to the DG

as a percentage of revenue in Figures 6.14 to 6.15.
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Figure 6.12: Penalty for 3Wardlaw-day1DG scenarios with DG curtailment.
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Figure 6.13: Penalty for 3Wardlaw-day2DG scenarios with DG curtailment.
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Figure 6.15: Marginal penalties as a percentage of revenue with DG curtailment.
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6.3 DG connected in PV mode.

The final method of DG control simulated is the standard PV mode control with assumptions

as described in section 3.5. As discussed, the simulation does not dynamically model the

operation of the generator AVR. For this reason the simulation does not model any generator

interactions that may occur if they are electrically close.If they have similar time constants

it is possible that without communication the generators could work against each other, one

producing VArs with the other absorbing.

A maximum of one generator in PV mode is added per feeder in this section. Although

caution is observed here when adding PV generation, it is common to see load flow solutions

with multiple PV generators. Indeed above the GSPs in this simulation are a number of hydro

plant in PV mode maintaining 132 kV voltage with the help of tap changing transformers.

When multiple generators are on the same busbar, they are grouped as aPlant in PSSE,

which has an associated scheduled voltage. The case examined only includes multiple units

that are identical. PSSE adjusts each generator on the busbar so that they share the load and

thus have identical outputs.

The runs in this section were all conducted with theDGmax scenarios with DG controlled

by the shedding algorithm operating at the statutory±6%limits. The amount of voltage

control available for PV mode DG is limited by power factor asdescribed by Figure 3.7 on

page 53. The power factor range in these results is either 0.9875 leading/lagging or 0.95

leading/lagging.

The bus that the PV mode generation is connected to also is regulated by the primary

transformer. The transformer voltage limits are set equidistant from 1.0pu so the voltage

set-point of the transformers is 1.0pu. The set-point of thegeneration is the same as the

ULTC.

Again Wardlaw-day1andWardlaw-day2was used as the basis of generation time series for

all DG. All PQ DG is disconnected should the connecting bus voltage exceed the statutory

±6%limits and re-connected when the voltage is within limits bythe strategy demonstrated

in section 6.1.
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6.3.1 PQ mode DG with PV support

The first simulation shown has all DG operating in PQ mode except the largest generating

buses in each of the areas A and B which are buses 68850 and 68450 respectively. The

generators connected to these buses operated between a 0.9875 leading and a 0.9875 lagging

power factor. The results of the 3DGmax scenarios are shown in Figures 6.16 to 6.18.
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Figure 6.16: Penalty for 3 scenarios in areas A, B each with PV control.Wardlaw-day1

The combined costs are clearly lower with this control method. Both theTapChangeCostand

TotalVoltageCostPenaltyare lower compared to any of the previous control methods. 1.2%

of the generation is shed in days 1 and 2 combined which is lower than both other generation

control methods. These observations are confirmed by Figure6.18 showing the combined

cost as percentage of revenue for days 1 and 2.

A closer look at area A

Feeder voltages and transformer operations are shown to help understand how the PV mode

generation improves voltage quality and reduces tap changes. The most marked improvement
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Figure 6.17: Penalty for 3 scenarios in areas A, B each with PV control.Wardlaw-day2
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Figure 6.18: Marginal penalties as a percentage of revenue each with PV control.

is observed in theDGmax + 40% case. The operation of the three primary transformers in

area A are shown in Figure 6.19. The figure compares operationwith DG fixed at unity power

factor and with the PV mode setup.

The tap position time series of the primary has improved in two ways. Firstly, time series

is smoother in the PV case, that is, there is a reduction in thenumber of tap operations that

are reversed shortly after being made. Secondly, the range of tap positions during the day is
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Figure 6.19: Tap position of primary ULTCs for feeders 68850, 66350, 67250in area A for
Wardlaw-day1.

reduced in PV mode. The two characteristics combine to causea lowerTapChangeCostand

less step voltages caused by tap operations.

Note how the middle plot, the tap position time series for ULTCA4
P , is improved. The PV

DG is not directly connected to the feeder but as a result of its actions, it keeps bus 68832

at a more constant voltage. The 66350 feeder shares bus 68832with feeder 68850 and thus

benefits from voltage control in that latter.

It is shown in Figure 6.20 that in PV mode the voltage of the primary transformer LV side

is kept much closer to the target voltage of 1.0 pu. This in turn causes less variation in the

voltage at the load as shown in Figure 6.21.

An obvious consequence of the voltage being kept close to 1 puon the LV side of a ULTC is

that the ULTC does not need to change tap position. Thus whilst the PV DG is within reactive

power limits it completely stops the operation of the ULTC towhich it is closely connected.

This could lead to a reliance on the DG for voltage control that could cause large voltage

excursions in the event of a loss of that DG. This is tested in section 6.3.4.
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Figure 6.20: HV and LV voltage of primary on feeder 68850. Statutory limits are shown on
HV plots and ULTC dead-band on LV plots.
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Figure 6.21: Load bus voltage in PQ and PV scenarios with lower planned voltage limit of
−3% shown.
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The number of tap operations made by the GSP transformers in area A are not reduced by

the PV scenario forWardlaw-day1as shown in Figure 6.22. Some short term operation is

smoothed out but additional operations occur in the middle of the day. These operations

coincide with peak real power output of the DG.
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Figure 6.22: Tap position of GSP transformers for area A.

The PV mode does not prevent all tapping operations in ULTCs A5and A6 as the DG

repeatedly reaches its lower reactive power limit, or in other words its maximum Q import.

In PV mode the generator on bus 68850 is absorbing VArs when atpeak power output.

This is shown in Figure 6.23. The reactive power limitsQmin andQmax at a time-step are

proportional to the real power output at that time-step.
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Figure 6.23: Reactive power import/export by generator at bus 68850.

The generator at 68850 has 58% capacity of all DG in area A and thus impacts on bus voltages

in A. The import of so much reactive power during peak generation periods, as shown in
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Figure 6.23, causes the voltage on the GSP LV side to drop, requiring correction as shown by

Figure 6.24.
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Figure 6.24: HV and LV voltage of GSP on feeder 68850. Statutory limits areshown on HV
plots and ULTC dead-band on LV plots.

The power spike in theWardlaw-day1time series is short lived and thus the GSP must reverse

its tap operations. This spike in the GSP tap position time series adds little to the combined

cost though. The GSP consists of two parallel ULTCs resultingin a low per-operation cost as

maintenance should be possible without interfering with normal operation of the network in

low power flow periods.

A closer look at area B

The feeder with the largest DG in B was selected to have DG connection in PV mode with all

other DG in PQ mode. That feeder is also the lowest impedance feeder and already required

only a few tapping operations even in PQ mode. The PV mode reduced these slightly, with a

knock-on effect of greatly reducing the GSP ULTC operationsand operations of neighbouring

155



Connection of DG with Active Control.

feeders. This is shown as a table of tap operations forWardlaw-day1andWardlaw-day2with

DG at unity power factor except for two in each area being in PVmode with the0.9875− to

0.9875+ power factor range.

Scenario Tap operations by ULTC code
B1 B2 B3 B4/B5 B6/B7

All PQ 105 9 12 7 35
Day 1 PV Strong 63 9 10 5 29

PV Medium 73 11 10 7 17
All PQ 71 9 10 5 25

Day 2 PV Strong 55 9 10 7 21
PV Medium 69 9 12 7 17

Table 6.1: 140% case DG area B tap operations where PV Strong and Medium are scenarios
with area B PV connected to 68450 and 68650 respectively.

The third and sixth row have DG at busbar 68650, the medium impedance feeder in area B

in PV mode instead of 68450 the least impedance feeder. Putting the DG at 68450 reduced

the feeders primary tap operations as intended. The scenarios reduced the overall combined

cost penalty in both days by approximately 0.2%. This improvement was modest due to the

scenario not reducing GSP tap operations.

Aside from allowing multiple DG in each area being in PV mode,there are many

combinations of which DG to give voltage control, however they won’t be explored further

as the immediate benefit of employing PV mode DG is thus far demonstrated.

DG operates in both leading and lagging power factor when in PV mode

As shown in the previous sub-section, the PV mode DG in area A repeatedly reaches its lower

reactive power limit and can no longer keep the LV side of the primary transformer down.

The PV mode does not cause DG to operate solely in a leading power factor. Figure 6.25

shows the PV mode DG in areas A and B forWardlaw-day1andWardlaw-day2time series.

The area A PV generation operates at a leading power factor during its peak power output in

an attempt to compensate for the large amount of DG in that area.
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Figure 6.25: Reactive power output of PV mode DG in areas A and B forWardlaw-day1and
Wardlaw-day2.

The results for area B show the PV mode DG operates mainly at a lagging power factor

within its reactive power limits. For this reason the voltage is kept steady during the period

of rapid power output change in the afternoon ofWardlaw-day2reducing primary ULTC tap

operations.

6.3.2 A combination of PV and PQ leading generation

Operating the two larger DG in PV mode, the PV support scenario, is an improvement on

them all being in PQ mode at unity. TheCombinedCostPenalty, however, is greater in the

PV support scenario than in the scenario where all DG is in PQ mode with a slightly leading

power factor. The 140%DGmax case in the PV support sceanrio of the previous section

results in 2.2% and 4.2% for the combined cost as percentage of revenue for the PV mode in

days 1 and 2 respectively. This was shown in Figure 6.18. The figures for operation of all DG

in a slightly leading power factor mode are a much lower 1.5% and 1.9% for days 1 and 2
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respectively as previously shown in Figures 6.4 to 6.5. The leading fixed power factor mode

is better than the limited PV mode in both the number of tap changes seen over the two days

and in terms of the number of voltage excursions. The slightly leading power factor PQ mode

has already been shown to be superior in terms of voltage control and number of required

tapping operations to the unity PQ mode.

The largest two DGs are again operated in PV mode with all other DG in PQ mode at 0.9875

reactive power factor. The simulation is run forWardlaw-day1andWardlaw-day2and the

results combined to give a cost penalty as a percentage of thetwo days revenue combined.

This is shown in Figure 6.26.
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Figure 6.26: The tap cost as a percentage of adjusted revenue is shown for the PQ mode at
0.9875 leading p.f. and for the PV mode as described. The results are for days
1 and 2 combined. Also shown are the combined costs.

With all PQ generation at a leading power factor the PV mode shows improvement on the

all leading PQ mode in the tap cost as a proportion of adjustedrevenue as well as combined

cost. Operating the PQ DG such that it absorbs reactive powerin proportion to its real power

output reduces the voltage rise problem, as shown in earliersections, with the PV mode DG

providing extra control and a positive reactive power output when required.
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6.3.3 Increased reactive power capability

The last set of results with only one PV mode generator in eacharea has the power factor

limits of the PV mode DG expanded to the 0.95 leading/lagging. These limits are typical

of the latest DFIG wind turbines. The results are plotted alongside the previous results for

comparison in Figure 6.27.
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Figure 6.27: Combined cost as a percentage of revenue is shown for: the PQ mode at 0.9875
leading p.f.; PV mode with p.f. limits0.9875± (PV) and PV mode with p.f.
limits 0.95± (PV095). Also shown are the respective tap costs as a proportion
of adjusted revenue.

This setup leads to a better relative tap cost than the PQ setup and the previous PV setup.

The increased range of reactive power output of the PV mode DGincreases their ability to

moderate voltage changes due to real power output fluctuation.

6.3.4 Loss of generation in PV mode

The most favourable PV scenario with reactive power0.95± is selected for comparison

with the PQ mode scenario with power factor 0.9875 leading. Agenerator is disconnected

should its connecting bus exceed the statutory±6% per-unit voltage. Both scenarios use

Wardlaw-day1time series filtered byFullLoss for bus 68850 and theWardlaw-day1time

series for all other generation. The capacity of generationis defined byDGmax·140%.

Figures 6.28 and 6.29 show the voltage at the bus in question as well as the primary

transformer ULTCA5
P tap position. The LV side of ULTCA5

P is bus 68850, the bus from which
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the DG disconnects at its peak output.
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Figure 6.28: Bus voltage and primary transformer tap position as a resultof PQ DG loss at
68850.

The PQ scenario results in a 2% upward voltage spike. A numberof tap operations are

required however, to restore the voltage as the tap positionis four stops away from the

position at which it would operate without the DG. A number oftap operations are forced

on neighbouring feeders which are shortly corrected as feeder 68850 settles.

At the time of disconnection the PV scenario shows a significant 6% upward voltage spike.

This is as a result of the loss of the reactive power absorption of the generator at that point.

The spike is greater than in the PQ scenario as the PV mode DG isoperating at its maximum

reactive power absorption at a 0.95 leading power factor. The primary transformer reacts but

the action is reversed as the GSP transformer compensates.

The reactive power absorption was at its limit with the generator effectively operating at 0.95

leading. Thus the PV mode DG was absorbing twice the reactivepower as the PQ mode

transformer at the point of power loss.
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Figure 6.29: Bus voltage and primary transformer tap position as a resultof PV DG loss at
68850.

In both cases the large amount of generation lost leads to very similar corrective action by the

GSP transformer. The GSP transformer ultimately leads to the correction of the voltage.

The 6% voltage spike is undesirable and would lead to penalties to the DG operator that

would have been avoided if the generation was absorbing lessreactive power such as in the

slightly leading PQ mode. It remains to be answered whether the likelihood of such a rapid

loss of generation, and consequently reactive power support, outweighs the benefits gained

by operating in voltage control mode. The 6% spike would not have occured if the voltage

control mode was constrained to0.9875± so the likelihood of such a loss of DG occuring at

peak output must be balanced with the reduction in tap operation due to the greater range of

control of the PV at0.95±.
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6.3.5 Increased prevalence of PV mode generators

Each feeder has three points of connection for generation. Generation connected to the LV

side of primary transformers by a negligible impedance has an obvious target voltage that is

the target voltage of the transformer AVR. Two scenarios weretested where the DG connected

to the LV side of the primary ULTC in each feeder was in PV mode.The reactive power limits

were defined by a power factor of±0.9875 for one and±0.95 for the other. The PQ mode

DG was all at a 0.9875 leading power factor.

Figure 6.30 shows the resulting tap cost penalties as a percentage of adjusted revenue, that

is theTotalVoltageCostPenaltysubtracted from the potential revenue. Five curves are plotted

to link the results to the previous sections. The top dashed line is the percentage tap cost for

the scenario with all DG at a slightly leading, fixed power factor (PQ). The light and dark

dot-dash lines are results from simulations in which only the largest generator in each area

is in voltage control mode whilst the rest in the area are in the slightly leading PQ mode.

The reactive power limits of the PV mode generators are defined by minimum and maximum

power factors0.9875± and0.95± for the light and dark dot-dash lines respectively. The light

and dark solid lines are results from this section in which PVmode generation is connected

in each feeder again with power factor ranges0.9875± and0.95± for the light and dark lines

respectively.

For each power factor range, the scenarios with PV mode generation connected on each feeder

result in a lower tap cost than their respective per area scenarios. The PV generator on each

feeder reduces the number of tapping operations on the respective feeder primary ULTCs.

In the case of only one PV mode generator per area, the main gain is a reduction of tapping

operations of the primary ULTC on which the PV generator is connected as well as smaller

reductions in neighbouring feeders due to the smoothing of the voltage on the HV side of

their primary ULTCs.

The main contributor to the high tap cost penalty is the GSP inarea B as it is penalised for

being a single ULTC. The area B GSP (ULTCB1
GSP ) accounts for 62% rising to 70% of the

area A and B tap costs combined, from theDGmax scenario to theDGmax·140%. As the PV

strategies mainly reduce primary ULTC operation, the reduction in the cost of tap operations
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Figure 6.30: Contribution to penalty as a percentage of revenue for different PV control
scenarios.

is less for area B than in area A due to the high cost of GSP ULTC operations in area B. The

reduction is up to 52% in A for theDGmax·140% case and 38% in B.

The tight reactive power limits on the PV mode generators with power factor0.9875± mean

that they can never absorb more reactive power than in the PQ scenario with fixed power

factor of 0.9875 leading. This scenario then will fare better as a result of the loss of a single

generator than when that generator had a greater reactive power range for voltage control but

was the sole generator in PV mode. The strategy of a PV generator in each feeder with power

factor0.9875± exhibits the same 6% voltage spike on loss of generation as inthe previous

section.

The 6% voltage spike is only seen when the large added generator in area A is suddenly

disconnected. The generator comprises 58% of generation inarea A. The final strategy shown

is to take advantage of the larger reactive power limits on all DG added to the network except

for the large generator in A which is constrained to a power factor 0.9875±. The result is a

marginal percentage tap cost comparable to the feeder or area strategies with PV generation

at0.95± power factor as shown in Figure 6.31.

The voltage spike on disconnection of the largest DG in A is less than 1% which is similar
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Figure 6.31: Tap cost percentage of PV mode DG on each feeder with mixed powerfactor
limits is similar to limits of0.95± for all DG.

to the PQ mode with the benefit of greatly reduced tap operation of the primary ULTCs and

the resultant reduced percentage tap costs as previously indicated. The voltage spikes of the

other, smaller, DG in A and B result in small voltage spikes even though they have larger

reactive power ranges.

6.4 Summary and discussion.

This chapter demonstrated the effect on ULTC operation of DGconnected at a fixed power

factor with the real power output controlled by one of two algorithms intended to avoid

voltage violations in the feeder. The algorithms make a small improvement to the combined

cost penalty incurred but as a result of a lower amount of energy exported, the combined cost

penalty as a percentage of revenue is slightly higher.

The introduction of key PV mode generation with the tighter reactive power limits results in

a 20% reduction in DGs marginalTapChangeCostover the best PQ mode operation for the

DGmax·140% scenario. PV mode generation with the larger reactive powerlimit results in a

35% reduction in the DGs marginalTapChangeCostover the best PQ mode operation. The

PV mode generation resulted in a larger voltage step when thePV and PQ modes of operation

are compared with a generator outage event occurring at peakoutput. The PV mode scenario

resulted in less overall network and ULTC disturbance otherthan the short-lived spike and
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similarly to the PQ mode did not violate statutory limits.

A more distributed approach to voltage control with more modest reactive power limits results

in up to a 25% reduction in marginalTapChangeCostover the PQ mode. This approach excels

in the loss of generator scenario as the reactive power import or export is not so great that

the loss of one generator results in a large voltage step. Thedistributed approach with larger

reactive power limits suffers from the same problem of the voltage step due to the loss of the

largest generator. A compromise was demonstrated setting the larger generator to a tighter

reactive power limit resulting in a small voltage step on disconnection but an improvement

on DG marginalTapChangeCostof 35%.

The PQ mode and the mixed limit PV mode tap penalties are shownin Figure 6.32 along with

operation and maintenance component of the Distribution Use of System charges applied to

generators connecting in the UK after April 2005. The charges were split into three parts, the

first and second parts based on the cost of system reinforcement, the third to cover operation

and maintenance of the distribution network set at£1 per kW installed capacity. It is the third

part which is shown here.
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Figure 6.32: Tap cost of mixed PV mode, PQ mode and the DNO capacity based maintenance
charge.

The DNO maintenance charge was calculated at a time when DG was connected at a fixed

power factor. Given the assumption that by examination of the graph, that 50% of the DNO

maintenance charge is for transformer maintenance, it can be deduced from the marginal

tap cost reduction of 35% that mixed PV mode would save 17.5% of the DNO maintenance
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costs. If this saving was passed on directly to the generator, this would mean a yearly charge

of 82.5 pence per kW installed capacity instead of£1. In addition, the system reinforcement

requirements may be less depending on the case. The PV control method will reduce the

need for reinforcement for reasons of voltage control and voltage rise due to connected DG.

The method will not reduce the need for reinforcement where the MVA rating of connecting

transformers and lines are the limiting factor nor the need to ensure all protection is suited to

the bi-directional power flow associated with the connection of large amounts of DG.
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Chapter 7
Discussion of Results and Conclusions

This study was motivated by the desire to increase the economic and technical feasibility

of the connection of DG in the distribution network. Two recent projects conducted at

the University of Edinburgh provided direction to the study. The first project used optimal

power flow techniques to study the maximum connection of generation in an example rural

network, the second designed and modelled a novel reactive power controller for a distributed

generator to maximise the capacity that could be connected to existing networks without

detriment to voltage quality. The first project examined steady state network power flow

whilst the second used dynamic network and generator models. This study demonstrated

a technique using multiple steady-state power flow calculations to simulate a time-varying

network model with custom scripts to control time-dependent network components, in this

case under-load tap-changing transformers (ULTCs). Through the simulation of a number of

network scenarios which were based on the first study, a number of generator control methods

inspired by the second study were evaluated with attention to the effect on network voltages

and to the change in frequency of ULTC operations. Evaluation functions were developed

and used to evaluate network-wide control strategies, penalising bus voltage excursion and

ULTC operation. The result showed that a reduction in systemcosts can be achieved using a

strategy that requires some generators to be in voltage control mode.

7.1 Chapter summary

Chapter 1 stated the motivation behind the project: the increased demand for connection of

DG and the desirability of minimising the cost of connection. The project objective was thus

to maximise connection of DG using existing network equipment and lines. The increased

operation and hence maintenance costs of the ULTC was statedas one factor that limits the

acceptability of connection of generation at the distribution level. The thesis of this work
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was that simple methods exist to reduce the maintenance costs of the ULTC resulting from

increased DG.

Chapter 2 described in more detail the operation of the distribution network and the

requirements of Distribution Network Operators. It was stated that increased connection

of DG is possible with expensive network upgrades but that other methods also allow

satisfactory connection of DG without upgrades. The ULTC and its control methods were

described in more detail so that its operation could be modelled and evaluated.

A description of the simulation of ULTC operation over time in a rural network was given

in Chapter 3. The method applied a power-flow solver repeatedly on a network case with

external code updating the network model between solutions. This resulted in time series

of ULTC tap position and network flows and voltages. The ULTC control algorithm was

defined as well as an evaluation formula that was applied to the results after completion of

each simulation.

The ULTC control method was verified in Chapter 4 by its application to a rural network. The

response of the network and the ULTCs was observed in responseto time-varying load and

later also time-varying generation. Control parameters of the ULTC were varied to illuminate

the working of the control algorithm and to show that existing settings are reasonable. The

evaluation function described in Chapter 3 was demonstratedas a way of obtaining improved

parameters for the ULTC control algorithm.

Chapter 5 listed the various connection topologies for generation and demonstrated network

operation for a number of them. High penetration of DG was simulated and the connection

points and operating parameters demonstrated further. Theconnection of DG in a fixed

power factor (PQ) mode was evaluated including the observation of the network, in particular

voltage step changes, in response to the sudden loss of generation.

Chapter 6 applied two real power curtailment algorithms to the scenarios of chapter 5 in an

attempt to improve the cost penalties used to evaluate the system cost of increased generation.

Finally, DG was connected in voltage control (PV) mode. Extensive simulations were carried

out comparing the system cost of PV mode generation with the best PQ setup. PV control

was shown to be an improvement on the PQ mode when distributedthrough the distribution
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network.

This chapter describes the content of the thesis; the extentto which it answers the thesis

statement; the contribution to knowledge and further studythat is required.

7.2 The strengths and limitations of the approach

This study simulated a typical distribution network over a time-scale much longer than a

typical dynamic study but with the sufficient modelling of time-dependent components such

as load, generation and ULTC operation. PSSE, an industry standard power flow solver, was

chosen for speed of implementation and for confidence in the results. The main limitation of

this approach is the lack of detail in the generator AVR modeland thus the inability of the

approach to show the operation of the AVRs over suitable time-scales. Although the approach

cannot demonstrate dynamic adjustment of the system to a large step in power output from

a generator, it will indicate the best state the system can bein given the change in power

flow and current tap positions of the ULTCs. The delay used in the ULTC control algorithm

is an order of magnitude larger than the time taken for a generator AVR to settle following

a large step in output power. The time-step chosen is larger than the AVR settling time but

smaller than the ULTC delay used in the ULTC control algorithm. Thus the generator AVRs

are assumed to have settled between time-steps . For these reasons the method is sufficient

for the analysis of the ULTC interactions with generator AVRsand with each other.

The simulation approach allows custom code to be written to model any component of the

network. Code was written to model ULTC operation as well as toupdate generator and load

data according to input data files. The method also allowed the manipulation of parameters,

such as generator reactive power limits, at run-time as opposed to requiring adjustment of

the original input network data file. The changes made are saved as part of the simulation

management script on completion of the simulation.

The custom code maintained a copy of relevant network parameters using an object-oriented

style of programming with an instance of a network componentfor each component loaded

into PSSE that is either manipulated or controlled by external code or needs to be monitored
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by the external code. This means that there is much replication of network data in that it exists

in PSSE itself and in the custom code. This did not cause computer memory problems with

the number of buses in the order of tens or hundreds but could be a disadvantage with larger

networks and more complex custom models. The replication reduces the number of calls to

the PSSE API, speeding up the simulation process. The classes written to define network

components can be included in and extended by other classes allowing more complex control

rules and interactions as required for future work.

The ULTC model used throughout this study is sufficiently detailed to indicate the effect

of power fluctuations on tap operation frequency. However, the use of the time-step of

five seconds masks the inaccuracy of the analogue timing circuits used in most existing

transformer AVCs. The situation that the simulation may failto model is when two nearby

ULTCs operate at the same time-step. In reality one may operate first and the resulting

reactive power flow changes would then affect the control rule of the other. As a tap change

takes a number of seconds however, the effect of the tap change in reality might not be

observable for a number of seconds after the AVC has made a tapchange decision by which

time the hypothetical nearby ULTC AVC has also made its decision. In this sense then, the

five second period is sufficient to indicate the frequency of operation of ULTCs.

The construction of the evaluation function used to indicate increased system costs of

additional DG relies on a number of assumptions. The base cost of a tapping operation

is calculated as a function of expected operations between maintenance intervals and from

an estimate of maintenance costs. Both of these values will vary depending on operational

practices and the size and model of transformer installed. The ULTCs in this study were on

transformers whose capacity was between 5MVA and 60MVA and avaried number of total

tap positions from 17 to 49. The other component of a tap cost operation is the assumed

loss of revenue during transformer maintenance. DG is assumed to be ordered to disconnect

during transformer maintenance of the feeder which connects it to the transmission network

where only a single transformer provides the connection. The loss of revenue included in the

tap cost is based on the generator operating at capacity for the duration of the maintenance but

in reality this may be much lower with a typical capacity factor for wind of 30% for example.

The final figures for system cost savings are thus only indications but the evaluation function
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is still useful for comparison between different strategies. Lastly, the mean tap cost assumes

that the rate of degradation of the transformer and contactsis independent of the frequency

of operation and of the transformer loading at the moment of operation.

It was decided to obtain real data of a frequency suited to testing the sensitivity of ULTCs

to realistically rapid power fluctuations. The source was a wind farm of capacity 18 MW

which experienced a maximum power output of 15 MW over the period sampled. The

power output is the sum of the output of up to six wind turbines. The output power of the

generators in the study varied from 0.2 MW to 40 MW in the case of the largest generator

in area A as shown in Figure 7.1 The smaller generators would exhibit more rapid power
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Figure 7.1: Histogram of DG maximum output in theDGmax scenario.

fluctuations than the source as they would be comprised either of smaller machines with a

lower angular momentum that smooths out rapid wind fluctuations or of a farm with fewer

machines. The larger generator would be made up of more machines which would have

the effect of smoothing the short-term fluctuations of the power output. With regard to the

smaller generators, the simulation thus under-estimates the increase in tapping operations

due to short-term fluctuations. On the other hand, as the DG outputs are synchronised instead

of varying geographically, this over-exaggerates tap operation. The single larger generator

than the source data would be expected to exhibit slightly less short-term output power

fluctuations, which again would over-exaggerate tapping operations.
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7.3 Addressing the thesis

This study has demonstrated that the operating costs of distribution network equipment

in terms of transformer maintenance increases with the connection of DG. It was shown,

however, that this increase is a small percentage of the revenue from exported energy, before

taking into account incentives for renewable generation. The fear of high costs resulting from

ULTC interaction and competition was seen to be unfounded inall of the cases shown. Given

the capital cost and maintenance cost of transformers according to the Scottish DNOs SP and

SSE, it would be economically efficient to use existing equipment wherever possible, even if

it means much shorter maintenance intervals for automatic tap-changing equipment.

The operation of selected DG in voltage control mode was shown to be preferable to constant

power factor mode. The voltage control mode did not cause conflict with transformer

tap-changer operation. Operation of a large generator witha wide reactive power capability

in PV mode did result in some dependency on the DG for voltage control. The loss of such

large plant could result in a voltage step or spike at the limit of G75/1 recommendations.

The probability of such a loss of generation may be small enough such that the benefits of

increased voltage control outweighs the negative impact ofa large voltage step to voltage

regulation.

A strategy of assigning only limited reactive power ranges to the larger generator removed

the problem of the voltage step. With the PV mode plant distributed throughout the network,

this strategy also improved on the increased cost associated with connecting the generation

in constant power factor mode by 35% in terms of marginal ULTCmaintenance costs.

A novel method of simulating the operation of ULTCs over time has been demonstrated. It

benefits from the ability to apply alternative control algorithms for ULTCs and generators.

The algorithms are independent of proprietary scripting languages but were implemented

in Python, an open source, object-oriented and complete programming language. The

complexity of such algorithms are limited only by the computational power of the machine on

which the simulation is run. For example a module was writtenthat allows the simulation of

the communication of short messages between ULTC and generation controllers. The module

allowed for the variation in reliability and speed of the communication medium. Another
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module allows the creation of control rules in fuzzy logic. This technique has the advantage

that a number of potentially conflicting goals and data sources, such as the requirement to

control local voltage and to respond to a communication, canbe combined to provide a

decision.

7.4 Impacts of the study

The study has demonstrated that the increased transformer maintenance costs associated with

additional generation connected in the distribution network are small compared to the revenue

generated and the cost of network upgrades often associatedwith new generation. The

increased cost in terms of transformer maintenance in the scenarios shown are in Table 7.1

to be of the order of£100 a day for the distributed PV method. This amounts to£36,500

increased maintenance per year for the connection of 100 to 140 MW capacity of wind

generation. It is a small amount when compared to the cost of asingle grid transformer

(£0.5 to 1.0 million with£56,000 yearly charges to the former [44, 45]) and the cost and

planning difficulties associated with longer lines. Note, however, that theTapChangeCostis

based on 2003 estimates whereas the SP and SSE charges are 2007.

DGmax DGmax · 120% DGmax · 140%
£ £ £

PQ unity 401 518 643
PQ 0.9875 leading 251 330 482
PV mixed 188 251 328

Table 7.1: TapChangeCostfor different DG capacity and connection strategies over two
days.

The totalTapChangeCostover the two different days of operation can be compared between

the PV strategy and the PQ strategy. TheTapChangeCostfor the PV strategy withDGmax ·

120% is the same as theTapChangeCostfor DGmax connected in PQ mode with a slightly

leading power factor. In other words, for the same maintenance costs, 20% more DG can be

connected in the PV mode than the PQ mode. Compared to connecting DGmax in PQ mode

at unity power factor, the PV strategy results in a lowerTapChangeCostfor an additional 40%
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of capacity. No more than 40% was evaluated as this resulted in the GSP ULTCs exceeding

150% of their MVA rating.

Increased transformer maintenance can be a barrier to the connection of more DG. With

greater knowledge of the effect of DG on ULTC operation, the additional maintenance costs

can be estimated and apportioned appropriately. Transformers that are liable to suffer greatly

increased ULTC operation as a result of DG can be identified. The role of such transformers

can then be supported by upgrading the transformer, requiring increased voltage control from

DG or limiting the connection of highly variable DG as appropriate.

Greater capacity for the connection of plant using existingtransformers was demonstrated

allowing higher levels of renewable generation and geographically dependent plant such

as combined heat and power plant. Increased ULTC maintenance can be minimised by

enabling DG to operate in voltage control mode with strict power factor limits. The narrow

power factor range required for beneficial voltage control from DG minimises the cost for

asynchronous generators such as Doubly-Fed Induction Generators as it minimises the rating

of the power electronic converters used. The narrow power factor range recommended in this

study for PV DG and the slightly leading power factor PQ mode also limits the voltage step

experienced on the feeder should the DG be suddenly disconnected, for example due to a

fault. This allows a greater capacity of DG to be connected for a given maximum acceptable

voltage step if these recommendations are followed as opposed to connection at a fixed unity

power factor.

The study considers a small part of a paradigm of active management of the distribution

network. The paradigm sees greater control of components ofthe distribution network to

bring about more flexible voltage and frequency control to both accommodate new load

and generation and to maximise the use of existing equipment. The paradigm is often

associated with large amounts of communication between thecontrolling components. This

thesis demonstrates a method that at its simplest does not require additional communication

equipment.
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7.5 Suggestions for further work

A disadvantage of using a wide power factor range for generators in PV mode was shown to

be the risk of voltage steps due to loss of generation. Greater proportionate reactive power

limits for generators whilst operating below nominal capacity could be allowed. These would

maximise the voltage regulating ability of the generator atlower real power outputs, without

the associated risk of large voltage steps present when operating generation close to capacity.

The risk of voltage steps due to sudden loss of DG could also bereduced by coordination

of voltage control between the PV mode generator and the ULTCcontroller as discussed in

section 2.3.5. Such coordination would allow the ULTC to perform larger voltage adjustments

with the DG AVR performing smaller ones. In this way the DG canbe operated within

tighter reactive power limits such that a sudden change in available power and hence reactive

power control does not lead to excessive voltage steps. The greater reactive capability could

be limited to certain circumstances such as large changes inavailable power or according

to instructions from some form of hierarchical control system of the distribution network.

This method is an ideal step towards more flexible distribution network management as

communication is only required between the generating plant and the transformer substation.

The communication requirements themselves are likely not to require continual data to central

controllers and need no dedicated data connections. Messages might be sent by a generator

AVR agent to the ULTC control agent for example, indicating when a generator AVR changes

from being well within reactive power limits to being close to a reactive power limit. As

shown in Figure 6.25, this occurs only a few times daily requiring only a few simple messages

to a single pre-determined recipient.

A curtailment algorithm was demonstrated that sensed the voltage at the point of connection

and limited reactive power accordingly. The simulation method used could be easily extended

to model remote bus voltage measurement and the creation corresponding algorithms for

generation curtailment and target voltage where appropriate.

A major limitation to the export of power from variable generation is a function of the

thermal rating of the lines and transformer connecting it tothe higher voltage network, and

the local load. An extension of the ULTC and DG coordination strategy is for the ULTC
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to communicate according to its loading and operating temperature. In this way, larger

capacities of DG can be connected with the condition that they can be curtailed according

to network conditions, local load and neighbouring generating plant. The efficacy of such

a method can be evaluated by the addition of a time-dependentthermal model of lines and

transformers.

7.6 Thesis Conclusion

A novel method has been demonstrated to model the operation of ULTCs subject to time

varying network power flows. An evaluation function has beenconstructed that can be used

to compare different distribution network operating strategies and DG penetration levels in

terms of ULTC maintenance costs. The strategy of allowing automatic voltage control by the

larger generators in the distribution network results in lower maintenance costs than requiring

DG to be in constant power factor mode.
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Appendix A
Detail of the implementation of the

simulation model using PSSE and Python.

Power System SimulatorTMfor Engineering (PSSE) is a commercial power flow package.

PSSE is capable of maintaining a network case with line and equipment properties,

transformer ratios and load and generation as required.

The network case is created by PSSE from a network definition file. It has a number of

formats for saving and loading network models. The one used in this study is one of the three

.raw formats discussed further in section A.1. The.raw format uses whitespace, integer and

decimal numbers and a few keywords to define a network model. As such the file ishuman

readableand can be modified in a text editor as required. Some user defined code uses the

data in the.raw file to build up the parts of the simulation external to PSSE that are described

below.

A.0.1 Power flow automation

As described above, a power flow solution is repeatedly obtained from a network model.

Before each solution is made, control actions from previous time-steps and load and

generation values for the current time-step are reflected inthe network model.

To simulate tap-changer operation over a period of one day requires 17280 completions of the

observe-update-solve cycle. It would thus be infeasible toperform these cycles by manual

operation of the load flow software.

The package provides an Application Programming Interface(API) which enables the user

to load, observe and modify the model maintained in PSSE using code written in Python.

The API also allows the code to initiate power flow solutions.It is this API that allows the

simulation to encapsulate the network model in such a way as to allow the PSSE load flow
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solvers to operate on network cases repeatedly modified by outside code according to the

scenario. Note the distinction between thesimulationand PSSE; PSSE is always referred to

as PSSE; thesimulationis the combination of PSSE and the external code thatdrivesPSSE

according to the input data and any custom device models.

Load and generation scenarios for a day or days are created inadvance and along with fixed

network parameters. The data is then batch processed by the simulator. User created scripts

perform the following functions that are necessary for the observe-update-solve cycle as

summarised in Figure A.1. The pseudocode for a 1 day simulation at 5 second intervals

for a single scenario is as follows:

1. Load network data such as branch impedances, loads and generation into the simulator.

2. Solve the network in its present form and ensure convergence.

3. For time = 1 to 17280

• Observe the solved network.

• Update network data:

– According to load and generation time series.

– According to controller actions.

• Solve the network using iterative solver and ensure convergence.

4. Exit simulator.

PSSE is capable of providing a solution to the network data inwhich ULTC winding ratios

are set to minimise deviation of bus voltages from their targets. This solution, however, omits

the real-time characteristic of all automatic tap-changers. The most important characteristics

are the delay between observing a condition that it should act to change and actually acting.

This includes any artificial delays used by real transformercontrollers. It also ignores that

adjustment of tap-position is sequential and usually only reflects local measurements. A real

network does not suddenly alter the tap-position of all transformers in an instant.
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Update networkObserve network

Interface2Interface1

PSSE3

Solve network

Figure A.1: Flow of control in the observe-modify-solve cycle.

The delay is implemented in the custom ULTC model, describedfurther in section A.2, in

order that the ULTC does not operate too frequently as discussed in chapter 2. Solution of

the network is achieved with the tap ratios fixed according tothe network model at each

time-step. Operation of the taps is simulated during the observe-update part of the cycle

according to algorithms implemented in Python. The algorithm is supplied relevant network

details on which to base its operation. The algorithm determines what ratio the tap-changer is

set to for the next time-step. The ratio is set during the update part of the cycle. The network

is then solved with these ratios fixed at the new values.

The interface to PSSE thus allows any algorithm to be implemented to control tap-changer

action. There are physical constraints such as finite tap ratios and non-zero time for a tap

change. The operation of the tap-changer according to thesephysical constraints on the

device is the responsibility of the algorithm or script interfacing with PSSE.

Automation scripts are written in Python, an object-oriented programming language. PSSE

can be set to run these scripts, providing an Application Programming Interface (API) with

which to modify the network case and run load flow solutions asrequired. These scripts

are responsible for performing a simulation run according to the many possible initialisation

parameters such as:
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• Network definition file.

• Load profile.

• Generator schedule.

• Generator controller parameters and methods.

• Individual ULTC controller parameters and methods.

• Data to be stored at each time-step for later analysis.

The scripts must also execute the additional tasks every time-step as in Figure A.2. The

tasks shown are saving data at each time-step for later analysis and executing the control

algorithms. For simplicity of interaction, all code external to PSSE, including implementation

of the control algorithms, was written in Python for this project.

The object-orientated nature of Python allows the implementations of controllers to be

extensible; for distinct controllers to have access to limited input data and to allow a

simulation setup to be copied and re-used with minor modifications as required.

A.1 Python and the PSSE API

The API is made available by PSSE to the programmer as an object. A software object

is a collection of functions and variables which may themselves be objects. The API is

implemented in Python, an object-oriented programming language.

The PSSE API is organised as a collection of functions [78]. There are a number of types of

function used in this study. Most functions either modify a network value or PSSE parameter,

or return a network value or PSSE parameter value. Other functions request that PSSE

performs a calculation such as the load flow solution.

The functions all belong to the API object called “psspy”. According to Python programming

syntax, calling a function contained in an object is performed as follows:
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1 Interface 4 Interface

Observe network Update network

Script

Solve network

5 PSSE

2 Script

Log data Algorithms
Control

3

Figure A.2: The flow of control in the observe-modify-solve cycle with script activities.

returnValue = psspy.functionName(parameters)

where returnValue stores the value or values returned from the call andfunction

Name (...) is the name of the desired function with the required zero or more parameters

supplied inparameters .

The current network data loaded into PSSE is called the “current case”. The current case is

divided into different network component types. Each component type is divided into rows,

one for each component. This structure maps to the structureof PSSE network definition

files. Each row of the definition file is a separate network component except transformers

which use 3 or 4 rows for their definition. The rows are groupedin the file according to the

component type.

An extract from a.raw file, the network definition file format used in this study, is shown in

Figure A.3.
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Note that each component definition starts with a reference to one or more bus numbers that

define(s) its position. The file is edited with removed rows signified by “...”.

0 / END OF VSC DC LINE DATA, BEGIN SWITCHED SHUNT DATA
0 / END OF TWO−TERMINAL DC DATA, BEGIN VSC DC LINE DATA
0 / END OF AREA DATA, BEGIN TWO−TERMINAL DC DATA
0 / END OF TRANSFORMER DATA, BEGIN AREA DATA
...
1.00000,   0.000
1.10000,   0.000,  30.000,    15.00,    15.00,    15.00, 1,  31011, 1.10000, 0.80000, 1.00472, 0.99528,  49, 0, 0.00000, 0.00000
   0.04462,   0.75133,   100.00
 31011, 31050,     0,’1 ’,1,1,1,   0.00042,   0.00000,2,’CAFA HYD    ’,1,   2,1.0000

0 / END OF BRANCH DATA, BEGIN TRANSFORMER DATA
...
 35030,  68832,’1 ’,   0.25840,   0.45300,   0.00000,   27.20,   25.30,   20.70,  0.00000,  0.00000,  0.00000,  0.00000,1,  15.20,   2,1.0000
 35030,  68831,’1 ’,   0.33980,   0.45350,   0.00000,   19.20,   17.80,   15.40,  0.00000,  0.00000,  0.00000,  0.00000,1,  13.70,   2,1.0000
...

0 / END OF MULTI−TERMINAL DC DATA, BEGIN MULTI−SECTION LINE DATA

Transformer ratio limits

Voltage limits

Bus numbers

Complex power

Nominal voltage

Bus number

0 / END OF IMPEDANCE CORRECTION DATA, BEGIN MULTI−TERMINAL DC DATA

...

0 / END OF SWITCHED SHUNT DATA, BEGIN IMPEDANCE CORRECTION DATA

0 / END OF FACTS DEVICE DATA
0 / END OF OWNER DATA, BEGIN FACTS DEVICE DATA
   2,’SP          ’
0 / END OF INTER−AREA TRANSFER DATA, BEGIN OWNER DATA
0 / END OF ZONE DATA, BEGIN INTER−AREA TRANSFER DATA
0 / END OF MULTI−SECTION LINE DATA, BEGIN ZONE DATA

0 / END OF GENERATOR DATA, BEGIN BRANCH DATA

BORDERS−GALLOWAY TRANSMISSION NETWORK WITH 33KV DISTRIBUTION
SCOTTISH POWER WINTER 2001/02 ; 100% SMD ; 1800 MW EXPORT
0,   100.00          / PSS/E−30.0    THU, MAY 17 2007  17:30

...

...
 31050,’2 ’,     5.000,     4.500,     4.500,    −4.400,1.00000,     0,     7.500,   0.00000,   0.28000,   0.00000,   0.00000,1.00000,1,  100.0,     6.000,     0.000,   2,1.0000
 31050,’1 ’,     5.000,     4.500,     4.500,    −4.400,1.00000,     0,     7.500,   0.00000,   0.28000,   0.00000,   0.00000,1.00000,1,  100.0,     6.000,     0.000,   2,1.0000
...
0 / END OF LOAD DATA, BEGIN GENERATOR DATA
...
 66359,’1 ’,1,   2,   7,     0.976,     0.215,     0.000,     0.000,     0.000,     0.000,   2
...
0 / END OF BUS DATA, BEGIN LOAD DATA
...
 66350,’BARR5−      ’,  11.0000,1,     0.000,     0.000,   7,   2,0.99120, −35.6376,   2
...
 35030,’GLLU3−      ’,  33.0000,1,     0.000,     0.000,   7,   2,1.01176, −32.1937,   2
...
 31050,’CAFA5−      ’,  11.0000,2,     0.000,     0.000,   7,   2,0.98715, −24.5634,   2

Figure A.3: Raw file.

In addition to groups of values mapping to network components there are groups of values

that describe collections of other network components. Each row or item in the “Plants”

collection object defines the properties of all generators at each bus. For example each

generator is be given the same voltage set point by specifying it in the “Plants” collection.

The “Plants” collection is accessed using thepsspy methodplant_data .
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A.1.1 Set functions

The set functions refer either to network values or calculation parameters. A distinct function

is provided for each network component type such asbus_data(...) for setting the

parameters of existing buses andload_data(...) for setting the parameters of any loads

connected to the buses.

When modifying or setting a value of an existing network component in PSSE, all the

parameters for the component must be supplied to the relevant function in one go. To make

this a little easier the API accepts a value called the default value signifying that the existing

value be used. The supplied default value must match the typeof the argument it is being

substituted for. PSSE supplies two default values,_i for integers and_f for floating point

numbers. The PSSE documentation clearly states which parameters are of each type.

For example to set the bus type code to2 for bus35030 the programmer would use the

following syntax:

error = psspy.bus_data(35030,

[2,_i,_i,_i],

[_f,_f,_f,_f,_f],

"")

where:error is an integral error code returned by the API which is equal tozero if no error

occurred;_i is the default value for integers;_f is the default value for floating point values.

A.1.2 Get functions

There are get functions to retrieve the values of network data loaded into PSSE or to retrieve

PSSE parameters. Similarly to the set functions, a distinctfunction is provided for each

network component type. For example,busdat is the function that gets a parameter of

existing buses.

Unlike set functions, the get functions only return one value per call. To retrieve a particular

value, the name of that value is passed as a function argument. For example, to retrieve the
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base or nominal voltage of a bus the following function call is made:

error , nominalVoltage = psspy.busdat(busNumber, ’BASE’) .

Functions in Python may return more than one value. The get functions return a collection of

values called a tuple. Python syntax allows the assignment of all return values to a variable

when it becomes a tuple type. Alternatively, as in the example above, the return values are

assigned to two variables, each one being of the type of each value returned assuming there

are the same number of return values as assignment variables. In this way botherror and

nominalVoltage are modified or instantiated by the “busdat” function call.

A.1.3 Error values

Note that both the get and set type functions return an error value which is an integer. The

onus is on the programmer to include code to check its value. The convention for the PSSE

API is for a value of zero to mean that the function call was successful. Non-zero values

mean different things according to the function. The meaning of the values is provided in the

documentation accompanying PSSE [79]. For example, a common error is a “Bus not found”

error meaning that the bus number supplied in the function call does not exist in the current

case.

The simulation code written for this project ensures all returned error values are always

checked and turned into Exceptions as required according tosection A.2.7.

A.1.4 Executing user-defined code in PSSE

The simplest method of executing user-defined code is to openthe PSSE graphical user

interface (GUI) and select “Run Auto” in the command line interface labelled “CLI”[80].

In effect this imports the selected file/module with the API objectpsspy in the scope of the

imported module. The module is thus able to assume the existence of an object calledpsspy

when called from PSSE. It can then execute the API functions stored in thepsspy object.

184



Detail of the implementation of the simulation model using PSSE and Python.

A.2 Organisation of Python simulation and controller code

A simulation of a network over time using the method described in Figures A.1 and 3.2 is

termed a simulation run. A simulation run involves repeating the five main stages in addition

to any initialisation required at the start and clean-up code required at the end. It is desirable

that simulation runs be made with parameters as follows:

• Demand time series.

• Generation time series.

• Network definition files.

• Control algorithm implementation selection and parameters.

• Subset of network data to be recorded at each time-step.

For this reason the simulation code was separated into a distinct main experiment initialisation

file containing the specific parameters for the desired run, and other files that are included by

the main file containing code usable by any setup file.

Taking advantage of the object-oriented paradigm adopted by Python, most of the reusable

code created for the simulation is packaged into classes. A class is simply a collection of

code that defines objects that are created at runtime like the“psspy” object that contains the

PSSE API functions. The object can then be used to perform therequired tasks. The property

of class inheritance has been used to advantage where appropriate. This allowed the re-use

of code common to all classes.

The classes fall into areas of responsibility with theClass names of those classes as listed

below. Nesting of class names indicates inheritance which allows the child class to inherit

code written for the parent class.

• Providing a simple method of maintaining network componentvalues.

– PSSE_Bus
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– PSSE_Branch

– PSSE_Files

• Performing and initialising current run.

– Simulation_Run

– Simulation_Iteration

– PSSE_LoadFlow

• Storing run data at each time-step.

– Files

• Implementing ULTC control algorithms.

– Agents

∗ VoltageRegulator

∗ CalovicVoltageRegulator

∗ CommAgent

· FuzzyAgent

– Fuzzy

– Communicator

– Multicaster

In addition the following classes provide functionality used by the simulation classes:

• Exceptions provides improved error handling

• Useful implements essential mathematical functions such as interpolation

The data flow between key classes, PSSE and the input and results files are shown in Figure

A.4.

186



Detail of the implementation of the simulation model using PSSE and Python.

Simulation_Iteration

Siemens PTI

Simulation_run Files (object)

PSSE power flow software by

ULTC and DG control classes

All data flow with PSSE through PSSE_* objects

Simulation code written to drive PSSE for this project

Results

PSSE_LoadFlowPSSE_Files PSSE_Branch PSSE_Bus

Input files

Agents

Network Definition

Line and equipment
data

Observation time series& run parameters
Load & Gen Time series

PSSE

PSSE API

Figure A.4: Diagram showing interactions within and between custom Pythonobjects and
PSSE.

A.2.1 Providing a simple method of maintaining network component

values

During a single time-step of the simulation, it is possible that a parameter of a network

component is used several times. To minimise API function calls it is desirable to store

the result of a single call for repeated use. In addition, theprimitive error reporting method

used in the API requires a call to check the error message after each API call.

To simplify algorithm implementation it was appropriate totake advantage of the

object-oriented paradigm of Python and the associated error handling using “Exceptions”.
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For every network element in the study that is to be monitoredor modified at each time-step,

an object is created. At each time-step the object ensures itreflects the same values as the

PSSE element. It also modifies PSSE elements according to input time series and agent

decisions. The error value returned by each API function call is checked and handled

appropriately as discussed in section A.2.7

The Bus andBranch objects are used to illustrate the above points. TheBus object is

required to update its voltage at each time-step. All network elements are referenced by

either one or two bus numbers. TheBranch elements are referenced by the start and end

bus numbers of the each line. ABranch object contains a reference to the relevant twoBus

objects. The voltage at the busbars at each end of the line is found by following the reference

to eachBus object in theBranch object and looking up the stored value found there.

In addition to objects containing references to other objects, the use of hierarchy further

justifies the object paradigm. For example theTransformer class extends theBranch

class. Thus when aTransformer object is created, the same method is used to fetch

its terminal voltages as for theBranch . The Transformer class in addition provides

functionality to get and set the transformer tap ratio as appropriate.

All elements referenced by one bus number such asLoad and Machine contain an

instance of theBus class. This is illustrated in Figure A.5. To check the voltage in a

Load object, thegetVoltage method of theBus object is called. For examplev =

myLoad.bus.getVoltage() .

All elements referenced by two bus numbers such asTransformer extend theBranch

class. This is illustrated in Figure A.6. An example usage ofsuch inheritance is that to

examine the voltage of a bus in aTransformer object, the following syntax is used:v =

myTransformer.bus1.getVoltage() . A Transformer object inheritsbus1 and

bus2 from theBranch class definition.
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setTargetVoltage()
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Figure A.5: Class structure and important access methods of “single bus”objects.
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tapDictionary
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getKey()

Branch
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Figure A.6: Class hierarchy and important access methods of “two bus” objects.

A.2.2 Performing and initialising current run

The module SimulationRun contains the class definitionSimulationRun . It takes

amongst others the following initialisation arguments:

• Thepsspy object supplied by PSSE.

• The bus numbers of various network elements observed and controlled during each

time-step.
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• The type of controllers used for different network elements.

• The objects used to store results.

On initialisation the object builds all the required objects for the simulation. EachPSSE*

object is supplied a pointer to thepsspy object so that PSSE API function calls can be

performed as required. A loop is then executed that repeatedly performs a time-step cycle

using the object created by theSimulationIteration class definition.

Care was taken to handle exceptions as discussed in section A.2.7. Multiple

SimulationRun objects may be created, one following the other on completion of a cycle

for each time-step. If one run fails the simulation continues with the next one.

The nextIteration method of the SimulationIteration object is

repeatedly called with the time passed since the previous time-step as its argument.

SimulationIteration ensures the following:

1. Load demand and generator real power are set from the inputtime series for this

time-step.

2. The resulting network is solved using the required PSSE solver via the

PSSE_LoadFlow module.

3. PSSE solver output to the command window is suppressed during normal operation.

The modulePSSE_LoadFlow contains methods requesting that PSSE solves the current

case.

The Transformer objects are initialised inSimulationRun so that they reflect the

starting positions of the ULTCs.

After initialisation, tap-position changes are only initiated by the ULTC controller for each

transformer as described in the second observe-modify-solve cycle illustrated by Figure 3.2 in

section A.0.1. The load flow solution is thus obtained with the tap positions fixed so that PSSE

does not itself adjust any transformer ratios during the load-flow solution of the network.
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The method written to achieve this issolveFixed which sets PSSE solver parameters as

descibed in section A.2.3.

A.2.3 Network solution parameters

There are other parameters than the tap-fixing option, that determine the performance of the

load flow methods. The crucial parameters are acceleration factors and the maximum number

of solver iterations.

In general, a larger network requires more solver iterations for the solver to converge on a

satisfactory solution. A large network, in particular if voltages differ greatly from nominal,

requires slow acceleration factors to converge at all.

To avoid always using small acceleration factors and a largenumber of solver iterations, the

solveFixed method first tries near default acceleration factors (ACCP, ACCQandACCM)

and the number of solver iterations (ITMX) is limited to 300. Should the solver have failed to

converge two further attempts are made with different parameters as shown by table A.1.

Attempt ACCP ACCQ ACCM ITMX
1 1.0 1.0 1.0 300
2 0.06 0.06 0.06 2000
3 0.01 0.01 0.01 3000

Table A.1: Gauss-Seidel solution method parameters

Should the solver fail at attempt 3 the simulation process exits.

A.2.4 Storing run data at each time-step

The most important class definition in theFiles module is theDirectoryStore class.

TheDirectoryStore object ensures a directory exists for saving data to numerous files.

It is initialised with an indicator of each object it is required to save data from in a particular

directory. In addition, it is initialised with the requiredvariable names of each object that
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should be stored. The variable names are supplied as a list ofstrings matching the variable in

the object.

Files for each object-value pair are created separately in above directory. The filename is

derived from the object methodkey() defined for this type of purpose. The functionkey()

returns a string containing the defining bus number or numbers as well as other information

as appropriate.

For example aDirectoryStore object could be created for a number of lines needing

real and reactive power flows recorded. The object would create a directoryLines in the

results folder and inside that a number of files. The list of variable names supplied to the

object would be[’P’, ’Q’] . The directory structure created would look like this:

• ResultsFolder

– Lines

∗ P_BusA_BusB_1.dat

∗ P_BusA_BusC_1.dat

∗ P_BusA_BusC_2.dat

∗ Q_BusA_BusB_1.dat

∗ Q_BusA_BusC_1.dat

∗ Q_BusA_BusC_2.dat

The required values are stored at each time-step by calling theappendMembers() method

which does not itself require arguments. Each value is appended to its respective file as a new

line. Multiple columns are created where the value appendedis a complex number. Floating

point numbers are stored to 5 decimal places.

For a simulation run with 17280 time-steps, each.dat file would contain 17280 lines. These

files can then be imported easily into graphing packages. In this study MATLAB was used.

A simulation may result in millions of disk writes. This is made feasible by the sufficient

cacheing of the disk-write operations performed by the built-in Pythonwrite() function

found in theos module.
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A.2.5 Implementing ULTC control algorithms

A general classAgent in moduleAgents is tasked with holding the reference to the object

the agent is to control, called the device. TheAgent object also ensures that that device

reflects the current case in the methodact() . Theact() method is intended to be called

at each time-step and includes any code that thatAgent should execute each time-step.

The algorithms for two different types of ULTC controller are described in section 3.4. The

class definitionsVoltageRegulator andCalovicVoltageRegulator both extend

theAgent class. Both classes define the methodact() which first calls theAgent method

act() and then follows class specific code. Both classes maintain a record of the time passed

since the last tap operation and use this with the control voltage of the associated device to

make the next tap decision. The tap decision is acted upon by acall to thetapUp() or

tapDown() methods of the associatedTransformer object as required.

A.2.6 Implementing generator control modes

The generator control modes,PQ andPV are implemented by the creation of an object for

each generator of the classesPQMachine andMachine respectively. Both objects allow

the modification of real power output.

PQMachine references aBus object and creates a newLoad object for the bus. A constant

power factor mode machine is not available in PSSE. ThePQMachine acts by controlling

the load on the referenced bus except that the complex power value for the load supplied to

PSSE is negative that of the required generation. The power factor of the machine can be

specified at initialisation or be supplied each time the realpower output is specified.

Machine references aBus object and manipulates any machines connected to the reference

bus in PSSE. The machine reactive power output is determinedby the PSSE power flow

solver according to the target voltage and reactive power limits. TheMachine object can be

used to alter the target voltage, reactive power limits and its real power output.
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A.2.7 Additional module: Exceptions

Exceptions are an important part of many modern programminglanguages. Exceptions are

“raised” when certain errors occur. Rather than explicitly store the error or success message

from a function call, it can be caught by an “except” clause.

The function call must have been in the body of a corresponding “try” clause. Once the

exception is caught in the “except” clause, the programmer may require the program to

perform any task including exiting the program or raising further exceptions. If the function

call was not inside a “try” clause, or if a further exception is raised in the “except” clause,

more distant enclosing “try” clauses are sought. Should theexception occur with no enclosing

“try” clause then the exception terminates the program witha detailed message of where the

exception occurred.

Python provides a class for the exception object calledException . It also provides other

classes that extendException that signify particular errors. For example aKeyError

exception is thrown when there is an attempt to access a indexed data-structure with a

non-existent key.

The following code illustrates the use of “try” and “except”:

try:

...

try:

#attempt to create a new directory

os.mkdir(resultsDir)

except OSError,(code,message):

#if OSError code is not 17 then raise the OSError again

if code != 17:

raise OSError(code,message)

#if OSError code is 17 then directory exists so do nothing
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...

except Exception,message:

#if an Exception occurs execute required code,

#then re-raise Exception

print ’This is a message.’

raise Exception

The programmer may implement further exception classes extendingException or other

exceptions as appropriate. Custom exception classes have been created for this simulation in

the “Exceptions.py” file which is thus the module “Exceptions”.

In the simulation, calls to PSSE API functions are performedby objects with the definition

in files startingPSSE. Every time an API function call is made, the error value returned is

checked. Should the error value be greater than zero a customexception is thrown. Most of

the custom exceptions are of typePSSEException or PSSEWarning . If an error occurs

as a result of a call to a load flow solver another exceptionPSSESolverException is

raised. In addition to the exception type, a message is included which has been derived

from the PSSE API user manual. In this way the simulation can catch certain types of

exceptions and perhaps continue simulation after certain code is performed. If the situation

is not retrievable the exception “bubbles-up” the execution stack until the program is forced

to quit. This is invaluable for providing information as to whether the error occurs in the

PSSE program, perhaps as a result of exceptional network values, or whether the error is in

the control implementation.

A.2.8 Additional module: Useful

The “Useful.py” file contains some mathematical functions that were unable to be imported

when running the Python scripts via PSSE due to errors duringexecution. Importantly an

interpolation function and some improved collection typeshave been implemented.

The interpolation function allows the user to specify the time between each time-step. If the
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load and generation time series have a different frequency then a new series is inferred using

linear interpolation. For example, a steady generation time series can be defined using a two

line file, each line having the required steady value.

A dictionary class is implemented that can be constructed with a default value. Normally

a dictionary “value” is associated with a “key” which acts asan index. If the “key” is not

present, the dictionary returns the default “value”. This is useful for example when a minority

of transformers have a specified controller type and the userwishes all other transformers to

have a default type.
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Appendix B
Supplementary results for Chapter 3

Figure B.1 shows three results of simulating the connection of DG to two points on a 11kV

feeder. The DG output is varied according to three differentdata sets. The graphs show the

tap operations made by the feeder’s primary transformer in response to the connected load

and DG. The output of the DG each time-step is determined by a different method for each

graph.
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Figure B.1: Three plots showing ULTC tap position over a 1 day period when presented with
different versions of the same data set.
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Appendix C
Supplementary results for Chapter 6
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