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Abstract

Wireless spectrum is a limited resource that must be used efficiently. It is also

a broadcast medium, hence, additional procedures are required to maintain commu-

nication over the wireless spectrum private. In this thesis, we investigate three key

issues related to efficient use and privacy of wireless spectrum use. First, we propose

GAVEL, a truthful short-term auction mechanism that enables efficient use of the wire-

less spectrum through the licensed shared access model. Second, we propose CPRecy-

cle, an improved Orthogonal Frequency Division Multiplexing (OFDM) receiver that

retrieves useful information from the cyclic prefix for interference mitigation thus im-

proving spectral efficiency. Third and finally, we propose WiFi Glass, an attack vector

on home WiFi networks to infer private information about home occupants.

First we consider, spectrum auctions. Existing short-term spectrum auctions do

not satisfy all the features required for a heterogeneous spectrum market. We discover

that this is due to the underlying auction format, the sealed bid auction. We propose

GAVEL, a truthful auction mechanism, that is based on the ascending bid auction

format, that avoids the pitfalls of existing auction mechanisms that are based on the

sealed bid auction format. Using extensive simulations we observe that GAVEL can

achieve better performance than existing mechanisms.

Second, we study the use of cyclic prefix in Orthogonal Frequency Division Mul-

tiplexing. The cyclic prefix does contain useful information in the presence of inter-

ference. We discover that while the signal of interest is redundant in the cyclic prefix,

the interference component varies significantly. We use this insight to design CPRe-

cycle, an improved OFDM receiver that is capable of using the information in the

cyclic prefix to mitigate various types of interference. It improves spectral efficiency

by decoding packets in the presence of interference. CPRecycle require changes to the

OFDM receiver and can be deployed in most networks today.

Finally, home WiFi networks are considered private when encryption is enabled

using WPA2. However, experiments conducted in real homes, show that the wireless

activity on the home network can be used to infer occupancy and activity states such as

sleeping and watching television. With this insight, we propose WiFi Glass, an attack

vector that can be used to infer occupancy and activity states (limited to three activity

classes), using only the passively sniffed WiFi signal from the home environment.

Evaluation with real data shows that in most of the cases, only about 15 minutes of

sniffed WiFi signal is required to infer private information, highlighting the need for

countermeasures.
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Chapter 1

Introduction

Wireless communication is playing a vital part in the rapid advancement of information

and communication technologies (ICT) that has a central role in improving our lives

across a multitude of sectors such as healthcare, transportation, and energy efficiency

to name a few. Wireless spectrum is a limited resource that needs to be managed effi-

ciently. It is also a broadcast medium where any receiver in the range of the transmitter

can receive the signals. In this thesis, we examine three issues involving efficiency and

privacy of wireless spectrum use.

First, we consider access mechanisms for the licensed shared access market using

short-term spectrum auctions. Auction mechanisms are known to be in use since 500

B.C [3] and are considered an effective market mechanism due to their perceived fair-

ness and efficiency in allocating resources. However, the use of auction mechanism for

dynamic short term spectrum sharing is more recent. In 2008, the first truthful auction

mechanism, VERITAS [4] was proposed for dynamic short term spectrum sharing.

It was based on the sealed-bid auction format where the bidders submit sealed bids

to the auctioneer, who determines winners, as well as the winning prices. It was the

first auction for dynamic short-term spectrum auctions that achieved truthfulness as a

dominant strategy for bidders. However, since then, several problems, such as lack of

channel sharing and problem with rogue auctioneers, have been uncovered [5, 6], and

numerous auction mechanism have been proposed [7, 8] to solve some of these prob-

lems. Even so, a qualitative comparison of these truthful short-term spectrum auctions

reveal that only some of the concerns with VERITAS have been addressed in these

mechanisms that intend to replace VERITAS. A key common feature between these

auction mechanisms is that, they are all based on the sealed-bid auction format.

An in-depth analysis of these auction mechanisms reveals a surprising insight.
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Most of these problems associated with short-term dynamic spectrum auctions can be

attributed to the underlying auction format which these auction mechanisms are based

on, the sealed-bid auction format, and not due to the winner and price determination

schemes of these auction mechanisms. Furthermore, the sealed-bid auction format is

only one among many auction formats such as english auctions (also known as open

ascending price auctions), dutch auctions (open descending price), and the Vickery

auction format (second price auction). We find that the application of ascending-bid

auction format to short-term spectrum auctions does not suffer from the same problems

as existing short-term auction mechanisms that are based on the sealed-bid auction for-

mat. With this insight, we design GAVEL, a truthful short-term auction mechanism for

the LSA model. Simulation results using real world data of the geo-locations of over

2000 houses, show that GAVEL has a better performance than existing mechanisms,

in terms of revenue for the auctioneer, spectrum utilisation and number of winners.

Second, we consider the use of cyclic prefix in OFDM systems. Orthogonal Fre-

quency Division Multiplexing is the most commonly used modulation scheme for

wide-band communication. OFDM suffers from inter-symbol interference in a disper-

sive channel and a guard interval (between successive frames) equal to the dispersion

time of the channel during which no energy is transmitted is the simplest solution. In

1980, Peled and Ruis [9], proposed the use of the cyclic prefix to be transmitted during

the guard interval [10]. The cyclic prefix is a repetition of the last part of the trans-

mitted frame during the interval at the beginning of that frame. At the receiver, this

cyclic prefix is not used since it only contains redundant information (a copy of the last

part of the frame), resulting in a significant reduction in spectrum utilisation. In WiFi,

for instance, the duration of the cyclic prefix is 0.8µS from a data frame of 3.2µS, in

other words, around 20% of the frame duration is allocated for the cyclic prefix, which

results in a significant overhead. However, in the presence of interference, the utility

of cyclic prefix increases.

We discovered that while the cyclic prefix carries only redundant information about

the signal of interest, it carries unique information about the interference in the envi-

ronment. In other words, we observe that the signal carried in the cyclic prefix is

affected by different levels of interference when compared to the signal carried in the

later part of the frame. Using this key insight, we propose CPRecycle, an improved

OFDM receiver, that instead of discarding the cyclic prefix, exploits the redundant

information to mitigate several types of interference that occur commonly in current

popular deployment scenarios such as homes and public access points. Using USRPs

3



and off-the-shelf IEEE 802.11 access points, we demonstrate that CPRecycle can be

used to mitigate both adjacent channel interference and co-channel interference. In

contrast to several other interference mitigation schemes, the key advantage of CPRe-

cycle is that it only requires modifications at the receiver and does not requires any

changes to the protocol or the transmitter. Hence it can be supported on devices that

are in use today such as smart phones and laptops.

Third, we consider the privacy of encrypted home WiFi networks. The latest IEEE

802.11ac standard can achieve about 500 Mbps per stream throughput and the latest

consumer WiFi access points can support multi-input multi-output (MIMO) with up to

eight spatial streams, while occupying 120 MHz of wireless spectrum. This can enable

the latest WiFi routers to achieve a throughput of more than 1 Gbps [11], which can be

useful to support the growing number of WiFi enabled devices that demand a high data

rate such as smart 4K televisions (requires about 32 Mbps for compressed 4K video)

and wireless storage (about 500 Mbps) devices used for backup. However, wireless

networks are also more prone to several attacks due to the inherent broadcast nature of

the medium. Traditionally, this has been solved with the use of encryption, however,

not every part of the communication is encrypted, for instance the management frames.

Also, the size preserving encryption mechanisms in WiFi reveal traffic characteristics

of the network.

In this chapter, we explore the possibility of inferring private information from

passively sniffed WiFi signal from a home environment. We observe, using manual

analysis, with data collected from three homes in the UK, that private information such

as occupancy status of the home and activities of home occupants can be inferred. With

this insight, we propose WiFi Glass, a deep learning technique that can be used to infer

private information about home occupants using passively sniffed WiFi signal data.

Evaluation of WiFi Glass using real data shows that it can determine occupancy status

of a home and some activities (sleeping, watching television), with high accuracy.

In most cases, a rogue agent will only need to record the WiFi traffic in the home

environment for about 15 minutes, highlighting the need to develop countermeasures.
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Chapter 2

Short-term Spectrum Auctions

2.1 Spectrum auctions for licensed shared access

Mobile data traffic has been experiencing dramatic growth in the past several years and

this growth trend is expected to continue for the foreseeable future. Making more spec-

trum available is an obvious mechanism to cope with this growing demand. However

opportunities for clearing spectrum below 6 GHz, where most mobile networks operate

currently and will continue to do so in future, to create new bands for licensed exclu-

sive use by mobile network operators (MNOs) are dwindling. However MNOs prefer

licensed spectrum as it offers interference protection and lets them develop services

that provide guaranteed quality of service (QoS).

Licensed Shared Access (LSA) [12] has emerged as a new shared spectrum access

model that can unlock substantial amount of licensed spectrum below 6 GHz held by

incumbents not concerned with civilian wireless and mobile data communication and

enable more efficient use of such spectrum bands. LSA framework allows incumbents

to authorise other users (e.g., MNOs) to access all or part of the spectrum licensed to

them at designated times and in designated locations as per the sharing rules agreed

between them and mediated by the national regulator. From a MNO perspective, LSA

model opens up new spectrum bands for use that are qualitatively similar to licensed

spectrum to offer guaranteed QoS. While the current LSA use cases reflect relatively

longer term authorisation of incumbent spectrum to LSA licensees in the order of a few

years, it is believed that we will be heading to a future with a dynamic LSA model that

features short-term and fine-grained spectrum sharing [13], and potentially involving

new operators and business models [14].

Dynamic spectrum auctions can help address the aforementioned issues with LSA
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spectrum. In general, auctions are an effective market mechanism due to their per-

ceived fairness and efficiency in allocating resources. All the bidders have equal op-

portunity to win and the resources are sold to bidders who value them the most. In the

LSA context, auctions have two main advantages: (i) They allow dynamic allocation of

spectrum for short time periods and also even sharing at a fine-grained channel level as

opposed to the static allocation of spectrum over long periods usually spanning years;

(ii) They create incentives for the incumbents to participate in the auction, leading to

more spectrum availability in the market. When used to coordinate spectrum sharing

among LSA licensees, a suitable auction mechanism should be able to support het-

erogeneous spectrum bands and channels as the LSA spectrum as a whole is expected

to be fragmented across different parts of the spectrum with widely different prop-

agation characteristics. In practise, some auction scenarios may require regulatory

enforcement to ensure that all bidders may have equal opportunity for the channels.

For examples, in cases where the seller would value the channels based on the buyer

as they may be competitors. However, for our study, we assume that all bidders would

have equal opportunity to buy the channel and the valuations are buyer independent.

This chapter is organised as follows. First, an introduction to spectrum auctions

is presented in Section 2.2, followed by a survey of existing spectrum auction mech-

anisms. We discuss the importance of the underlying auction mechanism and iden-

tify that sealed-bid auction format could be the underlying reasons for complexities in

short-term spectrum auctions in Section 2.4. In Section 2.5, we propose, GAVEL, a

strategy-proof short term spectrum auction based on the ascending-bid auction format.

Using an example, we describe GAVEL and highlight its key properties in Section

2.5.2. The proofs for several properties of GAVEL are presented in Section 2.5.4,

followed by evaluations with real life data in Section 2.6.

2.2 Introduction to Auctions

An auction is a process via which a seller (or auctioneer) offers goods to a set of

buyers (or bidders), collects the bids and allocates the items based on competition.

This process involves a set of trading rules for resource allocation and pricing, which,

in the traditional scenarios where only a single item is offered, define four basic types

of auctions [15]: the English auction, the Dutch auction, the first-price sealed-bid

auction, and the second-price sealed-bid auction.

The English auction (also known as open, oral, or ascending-bid auction) is the
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most widely used type of auction. In this type, each bid is higher than the previous one

and the current highest bid is always known to the bidders. The price of the item is

either announced by the auctioneer or the bidders themselves. The auction ends when

no bidder wishes to bid further. The item is then sold to the buyer with the highest

bid. The Dutch auction (also known as descending-bid auction) is the opposite of

the English auction. Specifically, the auctioneer announces an initial high price and

lowers the price until one bidder accepts. The winner pays the last announced price.

In the first-price sealed-bid auction potential buyers submit sealed bids and no buyer

knows the bid of its opponent. The item is sold to the buyer who places the highest

bid. The winner then pays the amount she bid. Different from the English auction,

in this type, buyers can only bid once, thus they cannot observe their opponents’ bids

and accordingly change their decisions. Similarly to the first-price sealed-bid auction,

in the second-price sealed-bid auction (also known as Vickrey auction), each buyer

places a sealed bid independently of its rivals and the winner is the buyer with the

highest bid. The amount the winner pays, however, is the bid of the second highest

bidder (i.e., the bidder who would win the item if the current winner had not placed a

bid).

In a more complicated version, multiple items are sold simultaneously. These auc-

tions, called combinatorial auctions, enable buyers to bid on bundles of items rather

than individual items [16,17]. In this auction type, however, due to the large number of

possible combinations, bidding and winner determination becomes a challenge. Buy-

ers need a way to express their bids for every possible set of items and given the set

of all possible bids from every bidder, the seller needs to compute the allocation that

optimises some function – usually the obtained revenue. This optimisation problem,

however, has been shown to be NP-complete [16].

2.3 Existing Auction Mechanisms

Existing schemes do not satisfy all the properties that are of interest to enable spectrum

sharing in a dynamic LSA context. Since the first truthful short-term spectrum auction,

VERITAS [4] was proposed, issues such as privacy protection, heterogeneous channels

and false-name bids have been uncovered. Some of these issues have been addressed

in subsequent works [5, 8, 19, 28, 29, 31], although, they require increasingly complex

adaptations to the auction scheme.

The existing auctions for the short-term spectrum market, are based on the sealed
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Table 2.1: GAVEL compared with existing auction schemes

Auction Scheme Strategy-proof Hetero Spectrum Fine Grained Channels Privacy Protection

VERITAS [4] ✓ ✗ ✗ ✗

PROMISE [18] ✓ ✗ ✗ ✗

TRUST [19] ✓ ✗ ✗ ✗

ADAPTIVE [20] ✓ ✗ ✗ ✗

ALETHEIA [21] ✓ ✗ ✗ ✗

PPer [22] ✗ ✗ ✗ ✓

DEAR [23] ✗ ✗ ✗ ✓

PPS [24] ✓ ✗ ✗ ✓

SPRING [25] ✓ ✗ ✗ ✓

SATYA [26] ✓ ✗ ✓ ✗

KAS [27] ✓ ✗ ✓ ✗

SMASHER [8] ✓ ✓ ✓ ✗

∏ [28] ✓ ✓ ✗ ✗

TAMES [29] ✓ ✓ ✗ ✗

LOTUS [30] ✓ ✓ ✗ ✗

TAHES [5] ✓ ✓ ✗ ✗

AEGIS [31] ✓ ✓ ✗ ✗

GAVEL (This Paper) ✓ ✓ ✓ ✓

bid auction format. We discuss them with respect to support for the desirable proper-

ties outlined in the previous section: heterogeneous spectrum, fine-grained channels,

privacy protection, rich bidding language, and false-name bids. Looking into each of

these issues we observe that they can all be attributed to the behavioural characteristics

of the underlying auction framework: the sealed bid auction.

Heterogeneous Spectrum: When the market has heterogeneous spectrum, it leads

to additional design challenges in the auction mechanism. Bidders would have dif-

ferent valuations for different types of spectrum and may need to submit a different

bid for these different bands of spectrum, hence the need for bid diversity. Existing

auction schemes [4, 19] mostly treat spectrum as identical objects and apply the same

conflict graph for different spectrum while considering spectrum reuse. Some recent

works [5,8,28,29,31] have considered spectrum heterogeneity with increasingly com-

plex winner and price determination schemes. However these mechanisms are do not

protect the bid information from the auctioneer and also do not support sharing among

interfering users.

In sealed bid auction format, the market clearing price determination involves iden-

tifying the critical neighbour for each channel a bidder wins. The critical neighbour is

the bidder with the highest losing bid. The difficulty in providing support for heteroge-

neous spectrum is primarily due to the additional complexity in identifying the critical
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neighbour to determine the opportunity cost for each channel independently. The con-

flict graph is different and hence each bidder may have a different set of interfering

neighbours for each channel.

Fine-grained Channels: Most existing auction schemes preclude shared use among

interfering users and the allocations ensure no interference between winners. Gandhi

et al. [32] propose an auction framework to distribute spectrum based on dynamic de-

mand in real-time. This auction scheme supports only exclusive access but can be

adapted to share spectrum at a fine granularity. While it can be applied to share spec-

trum among neighboring users who want a portion of the spectrum, it lacks some de-

sired properties such as truthfulness and bid diversity. The auction scheme proposed by

Kasbekar et al. [27] can be adapted to enable shared use among neighbors. However,

they do not support heterogeneous channels and instead of a structured bidding lan-

guage, the bidders are allowed to express arbitrary externalities, making the approach

intractable. Kash et al. [26] propose SATYA, a truthful auction scheme for spectrum

sharing that uses bucketing and ironing of bids to maintain monotonicity for truthful-

ness. While this is the first scheme to support channel sharing, it has a few drawbacks.

Firstly, it does not support bid diversity. Secondly, it has an exponential run time and

is only polynomial under some restrictions. Finally, it does not support heterogeneous

spectrum and assumes that the conflict graph is constant across the spectrum.

Similar to the heterogeneous spectrum, supporting fine-grained channels requires

complex price and winner determination strategy. This is again due to the additional

complexity in identifying a critical neighbour when multiple interfering bidders can

win the same channel. Satya [26], for example, uses a complex scheme involving

bucketing and ironing of bids to determine winners which enables fine-grained chan-

nels, but at the cost of lacking support for heterogeneous channels among other prop-

erties.

Privacy Protection: An insincere auctioneer can leverage the bid information to

its own advantage [33]. Recently, a few auction schemes [22–25] that provide bid pri-

vacy have been proposed for dynamic spectrum allocation. Huang et al. [24] propose

PPS, a strategy proof auction scheme that protects bid information from the auctioneer

using Paillier’s cryptosystem. However, it lacks in several necessary properties such as

bid diversity and support for heterogeneous channels. Ming et al. [22] propose PPER,

an auction scheme that guarantees bid privacy and economic-robustness using the re-

verse simplex method that enables the LP problem to be solved in a distributed fashion.

However, the scheme is not strategy-proof and assumes that all channels are homoge-
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neous. Zhu et al. [23] proposed DEAR, which protects the bid privacy with the use

of cryptography tools. It is a single price auction where all the winners are expected

to pay the same price. Huang et al. [25] proposed SPRING, a strategy-proof auction

scheme that uses asymmetric key encryption to protect the bid information from the

auctioneer. However, a bidder can bid for only one channel, which severely limits its

use.

In sealed bid auction schemes, the auctioneer receives the bids from all the bidders

and is the only entity in the auction to have all the information. This information

bias can be avoided by encrypting the bids from the auctioneers. However, encrypting

the bid information from the auctioneer also leads to the limitations in these privacy

protecting auction schemes as discussed above.

False-name Bids: A rogue bidder can submit multiple bids from fictitious bid-

ders to improve its utility and affecting the revenue for the auctioneer. This problem

identified by Wang et al [21], is shown to reduce the revenue for the auctioneer by

about 40% in some cases. To counter false-name bids they propose ALETHEIA [21],

a false-name proof auction for short-term dynamic spectrum access. In ALETHIA, the

prices of bidders are computed first, based on which the winners are then determined.

For each bidder, a critical neighbour is identified such that a group of channels are

priced the same as the sum of the individual channels prices. However, its designed

on the basis that all channels are substitutes and hence does not support heterogeneous

channels. It also does not support bid diversity, privacy protection and fine-grained

channels.

In this cheating technique, a rouge bidder exploits the auctioneer’s need to identify

the critical neighbour for winner and clearing price determination. By creating a fic-

titious bidder in the neighbourhood the bidder can manipulate this critical neighbour

determination process and hence this vulnerability is common to all the sealed-bid

short term auctions. To prevent the manipulation of the critical neighbour identifica-

tion process, ALETHIA uses a different winner and price determination strategy that

only works for homogeneous spectrum.

Rich Bidding Language: The bidding language which is used by the bidders to

submit their bids, should provide the ability for bidders to express their preference for

substitute and complementary channels. The fundamental problem is that the exist-

ing auction mechanisms support either substitutes or complementary channels in the

market but not both. Auction mechanisms for homogeneous spectrum [4, 18, 21, 22]

assume all channels in the market are substitutes, while auctions for heterogeneous
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Figure 2.1: Sealed-bid auction format

spectrum [5, 29–31] assume all channels are complementary. However in a dynamic

LSA context, the market for heterogeneous spectrum would consist of both substitutes

and complementary channels. For example, channels in the 3.6-4.2 GHz band could be

considered substitutes, where as channels in 3.6-4.2GHz are considered complemen-

tary to channels in the 2.3-2.4 GHz band.

This problem is common to sealed bid auctions where the bidders express their

bids for all the channels simultaneously without being able to express package prefer-

ences. Providing such a bidding language would require a complex winner and price

determination strategy, not to mention the overhead for the bidders in computing bids

for all such possible combination of channels.

Table 2.1 qualitatively compares our proposed auction mechanism, GAVEL, with

existing schemes in terms of being strategy-proof and satisfying the above mentioned

properties.

2.4 Choice of Auction Format

The choice of the auction format is a key decision in auction design. The sealed bid and

ascending bid [34] auctions are two competing auction formats that can both identify

the minimum Walrasian equilibrium prices and enable truthful bidding. In the sealed

bid auction format, shown in Fig. 2.1, the bidders submit their bids for channels to

the auctioneer, who then computes the outcome (winners and clearing price) in one

shot. In the ascending bid auction framework, shown in Fig. 2.4, the bidders (through

a proxy agent) gradually submit their demand set to the auctioneer at increasing prices

over multiple rounds until all the demands are met. Hence the outcome is incrementally

computed in each round unlike in a sealed bid auction. While they have theoretically

equivalent outcomes, these behavioural differences influence the effectiveness of the

auction schemes in practice [35, 36].
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In applying the sealed bid and ascending bid auction formats to short term spectrum

auctions, there are two primary behavioural differences that affect the effectiveness

of the auction formats, (i) Information Bias (ii) Critical Neighbour identification, as

shown in Fig. 2.2.

Information Bias

Critical Neighbour
identification

Privacy Protection

Heterogeneous 
Spectrum

False-name Bids

Fine-grained 
Channels

Rich Bidding 
Language

Behavioural
differences

Known Issues

Figure 2.2: Behavioural differences and related issues

Information Bias: The information exchanged among the bidders and the auc-

tioneer play a critical role in the effectiveness of the auction. In the sealed bid auction

format, the bid information is not shared among the bidders. The auctioneer is the only

entity with access to all the bids. This information bias leads to two problems. First,

lack of bid privacy protection: the auction is now vulnerable to an insincere auctioneer

who could create a false second highest bid to increase its revenue at the cost of the

winning bidder. Second, enough information is not shared during the auction process

to enable bidders to react to price changes or for market price discovery.

Whereas in the ascending bid format, the right amount of information is shared

during the auction process. The demand set can be inferred by all the bidders during

the auction process with increasing prices and the auction for an item ends at the mar-

ket clearing price. This protects against an insincere auctioneer since the auctioneer

does not have access to the highest bid as the auction ends at the second highest price.

The information from the demand set can enable the bidders to react to price changes

and for market price discovery. Ascending bid auctions also have the additional advan-

tage of being transparent which can positively influence the bidding behaviour while

simplifying the bidding strategy.

Critical Neighbour identification: In sealed bid auction framework, the winner

and price determination involves identifying a unique critical neighbour for each win-
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ner and channel in such a manner than the auction mechanism is strategy proof. This

process gets increasingly complex with additional constraints such as support for het-

erogeneous channels, bid diversity, and fine-grained channels. Also, the need to iden-

tify a critical neighbour for determining market clearing price, can result in an auction

scheme that is not strategy proof using cheating techniques such as false name bids.

In ascending bid auctions, there is no need to identify a critical neighbour since the

price at which the demands can be met is the market clearing price. Hence, the com-

plexity of winner and price determination algorithm does not increase with additional

constraints. For the same reason, the auction mechanism also protects against cheating

techniques such as false name bids.

Considering these behavioural differences and as an alternative to the existing auc-

tion schemes we propose, GAVEL, a truthful auction mechanism that is based on the

ascending bid format for a dynamic short-term spectrum auctions.

2.4.1 Design Objectives

We discuss the set of design properties we aim to achieve in the proposed auction

scheme.

(i) Individual Rationality: The clearing price for the bidder should not be more than

its bid, (ii) Strategy-proof : The best strategy for a bidder should be to bid truthfully.

This eliminates the possibility of bidding strategies that can affect the outcome of the

auction, to prevent market manipulations and ensure fairness.

(iii) Privacy preserving: Protect the highest bid information from the auctioneer.

This is to prevent the auctioneer from exploiting the bid information to its advantage.

(iv) Computationally efficient: The outcome of the auction can be computed in

polynomial time. This is essential for short term online auctions.

(v) Social Welfare: The sum of valuations of the auction winners. This is the

primary objective of the auction scheme.

(vi) Revenue: The total payment from all the winners of the auction. While this is

not our primary goal, revenue generation serves as an incentive for the incumbents to

share their spectrum with the LSA licensees.

(vii) Spectrum Utilisation: A unique feature in spectrum auctions, the spectrum

reuse should be maximised by selling it to as many bidders as possible while satisfying

their requirements (proportion of channel share).

(viii) Shared Use and Exclusive Use: Bidders should be able to bid for a percentage
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Figure 2.3: Licensed Shared Access (LSA) Framework Illustrated.

of time to use a spectrum as well as for exclusive use. This reduces the entry barrier

and improves efficiency of spectrum use among users with bursty traffic.

(ix) Spectrum Heterogeneity: This comes from both spatial and frequency hetero-

geneity. With frequency heterogeneity, the conflict graph varies between spectrum

bands due to varying propagation characteristics. Hence, the set of bidders who are

allowed to reuse the channel changes with every band. Due to spatial heterogeneity,

the same set of channels are not available for all the bidders.

(x) Bid Diversity: An operator may bid for different spectrum for more than one

communication device or have multiple radios and should be able to express diverse

demands

2.5 GAVEL

2.5.1 LSA Model

Licensed Shared Access (LSA) [12] is a new shared spectrum access framework that

allows one or more LSA licensees to access the spectrum that has already been allo-

cated to an incumbent. This framework has been designed to serve the short-term to

mid-term needs through a quasi-static allocation of shared spectrum to LSA licensees.

Each licensees conform to certain sharing rules included in their rights to use the spec-

trum. During the period when the license is active, the incumbent forfeits the spectrum

access right to the LSA licensees. This enables both the incumbent and LSA licensees

to guarantee a certain QoS since the resources are now guaranteed.

The LSA framework consists of four main entities, the incumbents, LSA reposi-
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Table 2.2: Notations used in this chapter

Notation Description

t round index

Ck Channel k

p
Ck
t Price for channel Ck at round t

V
Ck
i Valuation for channel Ck by bidder i

d
Ck
i Demand from bidder i for channel Ck

e
Ck
i Portion of channel Ck available for bidder i

a
Ck
i Portion of channel Ck allocated to bidder i

tory, LSA controller and the LSA licensees shown in Fig. 2.3. The incumbent is the

spectrum owner, who own long term licenses for exclusive access to a spectrum band

(e.g., 3.5GHz band in US and 2.3GHz band in Europe). Incumbents propose sharing

agreements that could define, temporal, geographical, and power level constraints, so

as to protect themselves from interference. The LSA repository is a database which

receives from the incumbents the pieces of spectrum in terms of space, time and fre-

quency that are available for sharing along with the conditions they are subject to. The

LSA Controller is responsible for managing access to the shared spectrum that has

been made available to the LSA licensees based on the sharing rules and incumbent

usage provided by the LSA repository. While the LSA framework has a broader scope,

where each LSA controller can interface with more than one LSA repository as well

as with multiple LSA licensee networks that use different technologies, we focus on

a simpler and concrete scenario where there exists one LSA controller per licensee

(a MNO). LTE-A supports carrier aggregation and can aggregate spectrum across dif-

ferent bands. It is conceivable that LTE can use carrier aggregation to leverage the

spectrum available under LSA.

The basis for our proposal, GAVEL, is the ascending-bid auction mechanism pro-

posed by Ausubel [37], that is shown to be efficient and also replicates the outcome of

a VCG auction. But Ausubel’s mechanism [37] is not intended for dynamic spectrum

sharing. As such they do not account for any of the unique characteristics associated

with the dynamic spectrum allocation in general and the LSA model in particular. Spa-

tial reuse, which allows multiple users to be allocated the same channel provided they

do not interfere with each other, is one such characteristic. Heterogeneous spectrum

discussed in Section. 2.3 is another characteristic. Fine-grained channel sharing among

interfering neighbours is yet another characteristic that needs to be supported. The

overall architecture of the system based on our proposed auction mechanism GAVEL is
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Table 2.3: GAVEL Illustration: Price and Demand Vector over different rounds

Round Price Vector A B C D E Action

1 (1,1,1) (0.6,1,0.5) (0.3,0.4,0) (1,0.4,0.2) (0,0.2,1) (0,1,0.5) Ch 3 credited to A

2 (4,6,3) (0.6,1,0.5) (0.3,0.4,0) (0,0.4,0.2) (0,0,1) (0,1,0.5) Ch 1 to A and B, Ch 2 to E

3 (4,8,8) (0.6,0,0) (0.3,0.4,0) (0,0.4,0) (0,0,1) (0,1,0.5) Ch 2 credited to bidders B and C

4 (4,8,10) (0.6,0,0) (0.3,0.4,0) (0,0.4,0) (0,0,1) (0,1,0) Ch 3 credited to bidder D

shown in Fig. 2.4.

The timeline for the system in operation is seen as a sequence of epochs, each

consisting of a short Auction Phase followed by a much longer Spectrum Use Phase.

The definition of an epoch is typically a few hours depending on the use case. Each

Auction Phase consists of one or more rounds involving interaction between the auc-

tioneer (LSA Repository) and bidders (could be multiple per LSA Licensee) as part

of the auction to meet the spectrum demand of the bidders subject to their valuations,

spectrum availability and mutual conflicts. The bidders interaction with the auctioneer

can be managed using a proxy agent.

At the beginning of auction phase, the auctioneer announces the initial price, i.e.

the reserve price. It then waits for a bidding period to receive demands from the bid-

ders at that price. Depending on the demands, the auctioneer may allocate one or more

channels to some of the bidders at the current round price. The auction then may also

proceed to another round by increasing the reserve price to bring down excess demand.

This process may continue over several rounds until there there is no more demand to

be fulfilled. At the end of the auction phase, bidders whose bids are successful, pro-
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ceed to use the spectrum they won in the following Spectrum Use phase subject to the

sharing conditions, until the end of that epoch. This process repeats in the next epoch

and so on.

We now describe GAVEL. Referring to Fig. 2.4, at the beginning of an epoch (round

t = 1), the auctioneer announces a reserve price vector p1 = (p
C1

1 , p
C2

1 , . . . , p
Cm

1 ) for the

channels, and the bidders respond with the demand vector Di(t)= (dC1
i (t),dC2

i (t), . . .,dCm

i (t))

where 0 < d
Ck

i (t) ≤ e
Ck

i is the portion of channel Ck that bidder i desires at price p
C1

1

from what is available for use e
Ck

i . If a bidder desires exclusive use of a channel then

its demand would be 1. The round price controls the demand from each bidder in the

sense that the decision to bid for a channel is determined by the number of channels

within its private valuations. Only the channels that have higher valuations than the

current round price would be in demand from the bidder. This channel has to be avail-

able for the bidder to use which is determined by the LSA Controller with information

from the LSA Repository.

∀i ∈ N, ∀Ck ∈ C ∀t ≥ 1 d
Ck

i (t) ∈ {0,d
Ck

i (1)} (2.1)

At each round t with price vector pt , for channel Ck ∈C, the auctioneer determines

if for any bidder i the aggregate demand of bidder i’s neighbours in the conflict graph

GCk
is low enough to satisfy i demand. If so, d

Ck
i the portion of channel Ck demanded

by bidder i is credited to the bidder. Otherwise, any portion of channel Ck allocated to

bidder i is debited from the bidder, which can be written as,

a
Ck

i =











d
Ck

i , if ∑
j∈Ni∪i

d
Ck

j (t)< 1.

0, otherwise.

(2.2)

Appropriately, the current round price p
Ck
t for channel Ck is added or subtracted

from W
Ck

i , the total price to be paid by the bidder at the end of the auction.

The above process repeats with increasing round prices until there is no demand

from the bidders. The channels won by the bidders are now assigned to them and

removed from their list of available spectrum. In order to prevent the neighbours from

rebidding for the channels that they cannot use (because one of its neighbours already

won the channel), we remove these channels from the neighbours availability list as

well. All the bidders that won channel Ck are no longer treated as active players in the

auction scheme for channel Ck. The round price is now reset to the spectrum reserve

price and the multi-round auction process is repeated until there is no demand for
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channels at the reserve price.

Note that to allow for spatial reuse, we view only the neighbours of a node in

the conflict graph as its competing bidders. For example in the conflict graph shown

in Fig. 2.5 A competes with B and C in the auction; C competes with A, B and D;

and E competes only with D. This is unlike the classical VCG auction or Ausubel’s

mechanism where all bidders compete with each other.

2.5.2 An Example

A

B

C

D

E

A: C1, C2, C3C1, C2, C3

A: C1, C2C1, C2 A: C2, C3C2, C3

V: 13, 8, 6 V: 4, 16, 8

V: 6, 18

V: 12, 10

V: 14, 12

A: C1, C2, C3C1, C2, C3 A: C2, C3C2, C3

Figure 2.5: Auction Example: Graph showing conflict between five bidders with the

channels available for use (A:) and private values of those channels (V:)

We now illustrate the working of the GAVEL auction mechanism for the example in

Fig. 2.5. For simplicity we assume the bidders demand for channels are independent

and static, i.e. their demand for one channel does not influence their demand for an-

other. Note that in Fig. 2.5(a), the set of channels available at each LSA licensee with

“A:”. As a specific example, bidder A has three channels available (1, 2 and 3). A

fraction of the channel is assigned to a bidder only if the LSA controller identifies if

its available for use to the bidder. In this particular scenario, the demand is high with

all the bidders desiring for (a fraction of) every channel available to them. The price

vector announced by the auctioneer at different rounds and demand vector of bidders

at different rounds in the auction scheme are shown in Table 2.3. The demand vector

of bidders shown at round 1, are the fractions of channels required by the bidders.

In the first round of the auction with price p1 = (1,1,1), the auctioneer sets a

reserve price of 1 for channels 1, 2, and 3. The five bidders A, B, C, D, and E bid

for fractions of channels based on their demand (as they have higher valuations than

the current round price). For instance, bidder A has a demand of 60% of channel C1,

exclusive use of channel C2 and 50% of channel C3. Note that at bidder A,
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∑
j∈NA∪A

d
C3
j (p1) = d

C3

A +d
C3
B +d

C3

C = 0.7 < 1,

so bidder A is credited with channel 3. Since there is excess demand, the auction

proceeds to subsequent rounds with the price getting incremented at each round. At

price vector p = (4,6,3), at bidder E,

∑
j∈NE∪E

d
C2
j (p2) = d

C2
E +d

C2
D = 1≤ 1.

Since the cumulative demand from E’s neighbours show no competition, ie, at this

point in the auction, E is guaranteed to win channel 2. Similarly, bidder C does not

have demand for channel C1 anymore, so bidders A and B win channel 1 to be shared

between them at 60% and 30% respectively. At price vector p = (4,8,8), bidder A

loses interest in channel C2, and bidder C has no more demand for C3. So, B and C are

credited channel 2 at price 8. Finally, at p = (4,8,10), the market clears with bidder A

winning channels C1 and C3, bidder B winning C1 and C2, bidders C, D, and E winning

channels C2, C3 and C2 respectively.

It can be clearly seen from the above example that the result of the auction is

efficient: the auction has allocated the channels to the bidders who value them the

most. The formal proof is provided in section 2.5.4. It can also be seen that the

resultant pricing for channels won is equivalent to that of a VCG auction. For example,

bidder A wins channel C3 at the reserve price and channel C1 at the opportunity cost

(pC1 = 4) of bidder C. Similarly, bidder B wins C2 channel at the highest losing bid

(p = 8) amongst its neighbours and so on.

It can be easily seen from the auction design that GAVEL satisfies the final three

objectives. Shared Use and Exclusive Use: bidders can submit a demand 0 < d
Ck

i <

1 for shared use and d
Ck

i = 1 for exclusive use. Spectrum Heterogeneity: GAVEL

maintains a graph GCk
for each channel Ck and the winners are computed independently

for each channel. Bid Diversity: GAVEL allows demands d
Ck

i for all channel Ck ∈ C

and computes clearing prices for each channel independently.

2.5.3 GAVEL algorithm

Computation Complexity: GAVEL runs in O(NMR), where, N, M and R are the number

of bidders, number of channels, and the number of rounds respectively. In each auction

round, the neighbourhood demand is checked for each bidder and for each channel to

enable the channel credit/debit process (NM). In practise, the values of both M and R

are also quite small, further enabling the use of GAVEL in an online scenario.
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Input: ∀Ck ∈ C GCk
, ECk

, Price Vector P

Output: ∀i ∈N Channel allocation Ai

and Price to be paid Wi

t← 1

while True do

D(t)← GetDemandsFromBidders(P(t))

for i ∈ N do

for (Ck ∈ C) do

Otherwise

if ∑
j∈Ni∪i

d
Ck
j (t)≤ 1 then

If channel Ck is newly allocated in this round then it is credited to bidder i

and the price is adjusted

if a
Ck
i = 0 then

a
Ck
i ← d

Ck
i (t) ;W

Ck
i ← p

Ck
i (t)

end

end

If bidder i’s demand for channel Ck cannot be satisfied anymore then it is debited

from bidder i

if ∑
j∈Ni∪i

d
Ck
j (t)> 1 then

If channel Ck is not available for bidder i in this round then its debited and

the price is adjusted

if a
Ck
i > 0 then

a
Ck
i ← 0 ; W

Ck
i ← 0

end

end

end

t← t + 1

if (∀i ∈ N Di(t) = 0) then

if (t = 1) then

Exit Auction

end

if (t > 1) then

Debit a
Ck
i from existence vector E of winning bidders and their neighbours i,

for all channels Ck ∈ C

t← 1

end

end

end

end

Algorithm 1: GAVEL Auction Scheme
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2.5.4 Proof of Auction Properties

THEOREM 2.5.1. GAVEL is truthful.

Proof. In order to prove that an auction mechanism is truthful, we need to show: (i)

the pricing function does not depend on the bid of the winning bidder; and (ii) it is

monotonic, i.e. if bidder i wins a channel at bid p then he will win the channel at any

bid p∗ > p.

It is indeed the case that pricing function in GAVEL does not depend on the bid of

the winning bidder. In any given round, whether a channel is won by a bidder i is

not dependant on i’s demand but instead on the cumulative demand of i’s conflicting

neighbours. Even more crucially, the price that i needs to pay for the channels it is

credited in round t is the round price pt , which does not have any relation with i’s bid.

Now to the monotonicity. Assume bidder i wins a channel at price pt at round t

and at any of its subsequent rounds t∗ > t, the cumulative demand of i’s neighbours

∑
j∈N−i

d
Ck

j (t) ≥ ∑
j∈N−i

d
Ck

j (t∗). The only way bidder i cannot win the channel at higher

price p∗ is if the aggregate demand of i’s neighbours increases with the bid p∗. This

is not possible since we have assumed that the demand vectors are weakly decreasing

with higher round prices, which results in a monotonically non-increasing demand for

each channel with each new round. Thus i will always win the channel at any bid

p∗ > p.

Therefore, GAVEL is a truthful mechanism.

THEOREM 2.5.2. GAVEL protects against the frauds of an insincere auctioneer.

Proof. The auction should be able to protect the bidder from the auctioneer overcharg-

ing winners and colluding with other greedy bidders.

Overcharging Winners: In order to overcharge the winners the auctioneer must

have the knowledge of the winning bidder’s valuation. In GAVEL, the bidder never

have to reveal its demand curve beyond the winning price. Once a channel is won by a

bidder, it is not a player in the auction for that channel anymore.

Collusion with greedy bidders: For this trick to work, the greedy bidder must bid

above its own valuation but less than the winning bidder’s valuation to generate spoils.

In GAVEL, it is impossible for the greedy bidder to do this without risking winning

the channel at a price higher than its valuation. In which case the auctioneer may lose

all of its revenue and the greedy bidder will suffer a negative utility or loss.
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THEOREM 2.5.3. GAVEL protects against False-name bids.

Proof. To show that GAVEL protects against False-name bids, we need to show that

a bidder cannot increase his utility with false-name bids, given that the other bidders

and their bids remain the same.

This is a proof by contradiction. Suppose bidder i wins x fraction of channel Ck at

price pt and with a fictitious bidder i′ it wins x′ fraction of channel Ck where x 6= x′.

In GAVEL, x fraction of channel Ck can be won by bidder i at price pt if and only if

at round t, ∑
j∈Ni

d
Ck

j (t)≤ 1− x. With a fictitious bidder, if it wins x′ fraction of channel

Ck then it means ∑
j∈Ni′

d
Ck

j (t) ≤ 1− x′. Since i and i′ has the same set of neighbours

(Ni = Ni′) , this can only happen if the demand from the neighbours change, which is a

contradiction.

THEOREM 2.5.4. GAVEL is individually rational.

Proof. If bidder i wins channel Ck at round t with price p
Ck
t , then it means it has positive

demand at round t for channel Ck, ie., d
Ck
i (t)> 0 which means p

Ck
t <V

Ck
i .

Therefore, GAVEL is individually rational for all bidders.

2.5.5 Application with signal exchanges

In practise, we envision the auction mechanism occurs every few hours depending on

the model. As illustrated in Fig. 2.6, the LSA auctioneer broadcasts the auction param-

eters along with the spectrum availability vector, at the beginning of the auction epoch.

This communication occurs over a secondary channel, most likely using licensed spec-

trum that guarantees availability. The auction parameters and the availability vector is

used by the MNO agents to compute their value for each available channel.

The valuation function in the agents are directly used to compute the demand vec-

tor and is transmitted to the LSA auctioneer before the deadline set during the initial

broadcast. This process is repeated until the demands are satisfied and the LSA auc-

tioneer is able to determine the final allocations. The final channel allocations along

with the constraints associated with each of the channel use including transmit power

and duration are communicated to the LSA licensees.
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LSA Repository
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MNO N

Epoch +  Avalibility vector 

Demands

Round price

Final allocations 

Round price

Demands

Figure 2.6: Communication signalling during the auction process

2.6 Evaluation

For our evaluation, we follow the auctioning based LSA framework described in sec-

tion 2.3 with the LSA controller as the auctioneer and the LSA licensees with non-zero

demand as bidders. The bidders act as their own proxy agent with access to chan-

nel valuations. We compare the results obtained with different auction mechanisms.

Specifically, we compare GAVEL against two recently proposed truthful combinatorial

auction schemes, AEGIS-MP [38] and SMASHER-GR [8], which supports heteroge-

neous spectrum. AEGIS-MP is based on the English Clock auction format in which

losing bidders are allowed to increase their bids or shrink their bundles until the auc-

tion ends. It uses a greedy mechanism for channel allocation and identifies critical

neighbours to enable truthful bidding. However, it does not support fine-grained chan-

nels. SMASHER-GR is a sealed bid auction that uses the notion of virtual channels to

supports fine-grained channels. The bidders are expected to have uniform valuations

for any channel bundles they are interested in. Note that both these scheme do not

provide bid privacy protection.

To model an urban environment, we consider an area with a realistic distribution

of about 2000 houses per square kilometre. We also set the number of channels in the

market to 21 modelling after the TVWS bands. To simulate heterogeneous spectrum

in the market, we divide these 21 channels into three bands, 700 MHz, 2.4 GHz and
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3.5 GHz with 80m, 30m, and 10m interference range respectively. For each of these

three bands, the average number of neighbours within the interference range is about

20, 12 and 6 respectively.

Methodology: The auction schemes take as input the (i) conflict graph for each

channel in the market (ii) the valuation of channels for all bidders and (iii) the price

vector. For AEGIS-MP the demand from bidders are only for exclusive channel use,

since they do not support fine-grained channels. We adapt demand in the market by

changing the bidders’ channel valuations. For SMASHER-GR we use uniform valu-

ations for all channel bundles. We rerun these auction schemes 10 times for increas-

ing demand in the market. We evaluate the performance of GAVEL on the following

metrics while varying demand in the market, (i) Revenue (ii) Social Welfare (iii) Per-

centage of winners (iv) Spectrum utilisation. To benchmark auction mechanisms with

respect to the optimum, we use the following LP formulations that maximises each of

these four metrics individually.

Social Welfare :max
a

∑
i∈N

∑
Ck∈C

V
Ck

i a
Ck

i (2.3)

Revenue :max
a

∑
i∈N

∑
Ck∈C

p
Ck

i a
Ck

i (2.4)

Number of Winners :max
a

∑
i∈N

Yi (2.5)

Spectrum Utilisation :max
a

∑
i∈N

∑
Ck∈C

a
Ck
i (2.6)

Subject to, ∑
j∈N(i)∪i

a
Ck

i ≤ 1

ECk

i a
Ck

i ≤ 1, ∀i ∈ N,∀k ∈ C

0≤ a
Ck

i ≥ 1

where,

Yi = 0 if ∑
Ck∈C

a
Ck

i = 0

Yi = 1 if ∑
Ck∈C

a
Ck

i > 0

Results shown for optimal solution are obtained by solving the LP using the GUROBI

solver.

Social Welfare: The social welfare achieved in the market for different auction

schemes are compared against the optimal solution in Fig 2.7. As the demand in the
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Figure 2.7: Social Welfare vs Demand

market increases, the social welfare in the market also increases, as more bidders’ de-

mands are being satisfied. It can be seen from Fig. 2.7 that GAVEL outperforms both

AEGIS-MP and SMASHER-GR. This performance improvement is due to three main

factors. First, GAVEL does not limit any channel assignment opportunities in order

to retain the strategy-proof nature of the scheme. Second, the use of fine-grained

channels enables GAVEL to satisfy a significantly larger number bidders’ demand

when compared to AEGIS-MP. Finally, the use of channel bundles in AEGIS-MP and

SMASHER-GR results in additional channels being allocated to a bidder who has no

use for them, but still pays for those channels.

When compared to the optimal solution, the social welfare achieved in GAVEL is

lower primarily due to the lack of complete information of channel demands in the

market at each bidder. For every bidder any direct competition for channels is only

from its own neighbours. This leads to scenarios where maximising the social welfare

in a local neighbourhood may not be the best allocation to maximise the total social

welfare in the market.
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Figure 2.8: Revenue vs Demand
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Revenue: The revenue generated in the market with varying demand is shown in

Fig. 2.8. It can be seen GAVEL achieves higher revenue than the other two schemes.

There are two major contributing factor to this increase in revenue. First, the ability to

allocate fine-grained channels increases competition in the network, thereby increasing

the total revenue generated. While SMASHER-GR also supports fine-grained channels

it only allows uniform valuation for channel bundles which results in significant loss

of revenue. Second, unlike the other auction schemes, GAVEL does not group bidders

into groups to identify and charge a critical price from the winning bidders. Instead,

each winning bidder pays the exact opportunity cost in the network for his access to

the channel.

The higher revenue in the optimal allocation is due to better spectrum reusability

at the cost of economic robustness where channels are allocated to bidders without the

highest valuation in order to improve the overall revenue.
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Figure 2.9: Spectrum Utilisation vs Demand

Spectrum Utilisation: The percentage of spectrum utilised with varying demand in

the market is shown in Fig. 2.9. The optimal solution shows the amount of possible

spectrum utilisation in the scenario. As demand in the market increases, spectrum util-

isation also increases. When there is about 60% demand in the network, the spectrum

utilisation achieved is more than 90% for all the auction mechanisms. This is due to the

limited number of channels in the market. AEGIS-MP has a lower spectrum utilisation

since it does not support fine-grained channels. Also considering that it over allocates

channels to bidders who may not end up using these channels, the effective spectrum

utilisation should be even lower.

Percentage of Winners: Fig. 2.10, shows the percentage of winners in the auction.

The optimal scheme shows the maximum number of winners possible in this scenario.

It can be seen that for the auction mechanisms as the demand in the market increases,
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there is a lower number of winners, due to the increase in competition. Unlike the

auction schemes, the optimal solution is able to generate more winners with increasing

demand as it increases the opportunity for a bidder to win. GAVEL has a significant

increase in the percentage of winners when compared to AEGIS-MP due to the use of

fine-grained channels. Without the ability to allocate fine-grained channels, only one

bidder can win the channel in a neighbourhood. Whereas GAVEL supports both fine-

grained channels and whole channels, resulting in about 20% increase in winners. On

the other hand, SMASHER-GR has a high percentage of winners since it uses a greedy

scheme to allocate channels and support fine-grained channels. However even with a

high number of winners SMASHER-GR achieves a lower social welfare and revenue

due to the simplicity of the supported valuations, where all the channel bundles a bidder

desires has the same valuation.
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Figure 2.11: Revenue and Number of Rounds vs Price Increment Step Size

Round Price Increment: Unlike sealed bid auction schemes, GAVEL is an iterative
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mechanism that spans several rounds. The number of rounds is determined by the step

size of the price increment in each round. To analyse the effect of this price increment,

we fix the demand in the market to 60% to compute revenue and number of rounds for

different price increment values shown in Fig. 2.11. As expected, the highest revenue

is obtained with the smallest step size. On the other hand, the auction takes most

number of rounds to complete. Increasing the step size decreases the revenue because

a higher step size drives out demand quickly and gets the auction to a point when

effectively all the bidders have zero demand even though there are still unallocated

channels, explaining the drop in revenue. Clearly, a higher step size leads to auction

completing in fewer rounds. Interesting point to note is about how reduction in revenue

with increasing step size relates to the reduction in number of rounds. It can be seen

from Fig. 2.11 that increasing the step size from 1 to 5 results in about 15% loss

of revenue but reduces the number of rounds by about 70%, suggesting a value for

step size that keeps the duration and overhead of auction minimal without hurting the

revenue much.

To summarise, GAVEL generates higher revenues for the incumbents by enabling

fine-grained channels while efficiently using opportunities for channel reuse. This is an

incentive for the incumbents to share more spectrum in the market, which can in turn

benefit bidders. GAVEL achieves higher social welfare which means a higher number

of bidders are satisfied, while protecting the bid privacy from the auctioneer. This is an

incentive for the bidders to participate in the auction leading to more competition and

efficient use of the wireless spectrum.

2.7 Summary and Conclusion

In this chapter, we considered auction mechanisms for short-term dynamic spectrum

access. Existing auction mechanisms fail to satisfy all the requirements of a short-term

spectrum market. We analyse these auction mechanisms and argue that the problems

with these auction mechanisms are not due to the winner and price determination strat-

egy, rather due to the underlying auction format, the sealed-bid auction format. Based

on this insight, we proposed GAVEL, a truthful auction mechanism for short-term

spectrum auctions. Using geographical information of over 2000 houses in the UK,

we evaluated the performance of GAVEL against existing comparable auction mech-

anisms. GAVEL achieves better performance than existing mechanisms and is well

suited for the short-term dynamic spectrum market.
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Chapter 3

Recycling the Cyclic Prefix to Mitigate

Interference in OFDM

3.1 Introduction

Orthogonal Frequency Division Multiplexing (OFDM) is a spectrally efficient digi-

tal modulation method that is at the heart of almost all modern wireless systems. In

OFDM, the stream of symbols (that represent the digitally modulated form of user

data) are multiplexed over closely spaced sub-carriers and transmitted as parallel sub-

streams. Orthogonality of sub-carriers makes them non-interfering with each other and

in turn leads to other benefits including robustness to frequency-selective fading, flex-

ible/dynamic channel-aware allocation of sub-carriers to users and ease of spectrum

aggregation. For these reasons, Wi-Fi (WLANs based on IEEE 802.11) standards

since 802.11a/g have adopted OFDM as the physical layer underlying a CSMA/CA

multiple access scheme. 4G LTE mobile networks take this further by incorporating a

multiple access scheme called OFDMA that allocates different users to different sub-

sets of subcarriers1. The most recent digital audio/video broadcasting standards are

also based on OFDM.

In order to maintain orthogonality between consecutive OFDM symbols, an OFDM

transmitter adds a cyclic prefix in front of each symbol. This prefix is a copy of the

end of each OFDM symbol whose purpose is to maintain orthogonality. The length

of the prefix is adjusted to match the worst case delay spread that can occur in any

deployment. This value is typically over-provisioned. The first OFDM-based Wi-

1More precisely, LTE uses OFDMA in the downlink direction. A variant called SC-FDMA is used

for the uplink to suit lower cost and battery operated mobile transmitters with non-linear amplifiers.
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Fi standard, 802.11a/g, specified 0.8µs long cyclic prefixes which corresponded to a

signal path of 240m. Newer versions allowed the cyclic prefix to be halved, which

is still hugely over-provisioned, give that the range of most of the Wi-Fi links is only

few tens of meters. Similarly, standard LTE cyclic prefix lasts about 5µs and covers a

signal path of 1.5 km.

In this chapter, we present a novel receiver design called CPRecycle that leverages

the over-provisioned cyclic prefix to mitigate the interference from concurrent wireless

transmissions. The key observation underlying CPRecycle design is that when the re-

ceiver performs FFT with different starting points in the redundant portion of the cyclic

prefix, the resulting signal component remains the same across the different FFTs but

interference can vary by as much as 40dB, as we demonstrate in our measurements.

The main design challenge is how to find the optimal starting point for the FFT

as it depends on the content of the interfering packet and it varies across subcarriers.

This is very difficult as we cannot observe the interference signal in isolation. Instead,

we create an empirical model of the interference as a function of the starting position

of the FFT transformation. We then use this model to perform a maximum likelihood

detection using the decoding outputs of all starting positions.

We implement CPRecycle on USRPs. An attractive aspect of CPRecycle is that it

is local to the receiver and does not require any modification of the existing protocols

nor changes at the transmitter, thus it can work with legacy devices. It is applicable to

any OFDM/OFDMA based PHY with overprovisioned cyclic prefix. The computation

complexity of CPRecycle can be tuned and it gracefully degrades to a standard OFDM

receiver in the worst case.

In our evaluation we show that CPRecycle is useful in two important scenarios.

The first scenario, co-channel interference, is a common case in todays Wi-Fi deploy-

ments where multiple nodes access the same Wi-Fi channel at the same time. This can

cause interference and packet losses, in particular in hidden-node scenarios. In the co-

channel interference case we observe up to 15dB reduction in interference through the

use of CPRecycle , even in case of the highest modulation rate (64QAM) and lowest

coding rate (3/4).

The second important scenario is the adjacent channel interference scenario. All

wireless transmitters experience RF leakage and cause interference even outside of

their own channel. OFDM is able to maintain orthogonality between carriers only in

perfectly synchronised systems, which rarely occurs [39]. In practice, there is a non

negligible out-of-band interference and a guard-band is reserved to prevent interfer-
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ence between adjacent channels. We study the performance of CPRecycle interference

mitigation in the adjacent channel interference scenario where we remove the guard-

band and tightly pack channels together. We observe that CPRecycle can remove up to

25dB of interference.

Through extensive simulation and experimental evaluations using USRP and com-

modity Wi-Fi hardware, we demonstrate the effectiveness of CPRecycle in signifi-

cantly improving receiver side decoding in presence of interference, thereby also en-

abling efficient spectrum use. The network level benefits are significant due to the

sharp drop in the average number of interfering neighbors in the network. In summary,

• We propose CPRecycle , a novel receiver design that improves performance of

existing OFDM-based wireless systems through an improved signal processing

at the receiver, leveraging commonly overprovisioned OFDM cycle prefixes.

• As a part of CPRecycle , we propose a novel decoding algorithm that improves

decoding performance by jointly processing received signal over multiple FFT

window positions.

• In our evaluation we show that we can reduce the effects of co-channel inter-

ference on a Wi-Fi receiver by up to 15dB and the effects of adjacent channel

interference by up to 25dB by implementing only local modifications at the re-

ceiver.

3.2 Background

This sections gives a brief overview of interference in OFDM based systems and the

use of cyclic prefix for inter-symbol interference avoidance.

3.2.1 Interference in OFDM

Adjacent channel interference [40–45] occurs when an interferer while transmitting

in its own channels, leaks part of its power into the adjacent channels, corrupting the

signal received by a receiver in those adjacent channels. This can be due to intermodu-

lation of signals. Zubow et al, [43], analyse the effects of adjacent channel interference

on 802.11 WLANs and observe that adjacent channel interference causes severe prob-

lems with the carrier sensing mechanism in 802.11. It was found that the carrier sens-

ing mechanism can be too restrictive in some cases, leading the node to mistakingly

31



0 5 10 15 20 25 30 35 40 45
Frequency (MHz)

-70

-60

-50

-40

-30

-20

-10

0

10

P
ow

er
 (

dB
)

Adjacent-channel
interference

Signal of Interest

Co-channel
Interference

Noise Floor

Figure 3.1: Illustration of Adjacent Channel Interference and Co-channel Interference.

defer its transmission, and too optimistic in some cases resulting in packet losses. An

illustration of adjacent channel interference is shown in Fig. 3.1. In this example, the

sender is assigned a 20MHz channel (from 24 to 44MHz) in which it transmits the sig-

nal of interest. The interferer although assigned an adjacent non-overlapping 20MHz

channel (1 to 21MHz in Fig. 3.1) leaks energy into the adjacent band interfering with

the signal of interest leading to a drop in SINR by about 15dB.

Another scenario where adjacent channel interference might occur is when two

neighboring transmitters use partially overlapping channels, a very common scenario

in IEEE 802.11 networks due the limited number of non-overlapping channels. In this

scenario, there are three main problems caused due to adjacent channel interference.

(i) Incorrect determination of a busy medium: when a transmitter performs carrier

sensing before transmitting a packet, it may detect a high energy level due to an inter-

ferer leaking energy into its adjacent bands. This leads the transmitter to incorrectly

assume that the medium is in use and defer its transmission. (ii) Signal corruption due

to power heterogeneity: a weak signal received by a receiver can be corrupted a high

power interferer located close by leaking energy into the adjacent bands. (iii) Hidden

terminals and exposed terminals that cause signal corruption due to adjacent channel
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interference cannot be handled through RTS/CTS, since the nodes are operating on

a different channel, even though they are overlapping channels. One of the defining

features of adjacent channel interference is the effect of interference power hetero-

geneity. The subcarriers closer to the channels occupied by the interferer are affected

by a stronger interfering signal in relative to the other subcarriers, leading to a varying

effect in different subcarriers.

Co-channel interference [46, 47] occurs when multiple transmitters use the same

subset of frequencies for communication. In IEEE 802.11 standards, co-channel inter-

ference is mitigated with the use of CSMA/CA, where transmitters would scan for an

idle medium before transmissions. However, in dense IEEE 802.11 WLAN deploy-

ments, this situation cannot be avoided due to the limited number of non-overlapping

channels in the 2.4GHz ISM band and overcrowding [48]. Gummadi et al [49], in

their study of the effects of co-channel interference on 802.11 networks show how an

interfering signal that is orders of times weaker can cause significant packet losses in

a WLAN.

The presence of co-channel interference can have other indirect effects on the net-

work performance as well. Using CSMA/CA, 802.11 nodes must scan the medium

(for 4µs for 20MHz channel) and perform a clear channel assessment to determine if

the channel is busy before transmission. The clear channel assessment can result in a

busy medium when one of two following conditions are satisfied. (i) Carrier Sense;

It is able to detect and decode an 802.11 preamble (ii) Energy Detection; The energy

detected in the channel is atleast 20dB greater than the minimum modulation and cod-

ing rate sensitivity. In the presence of co-channel interference, the transmitter would

perform an exponential back-off which reduces the achievable throughput. Significant

improvements in throughput [50] can be achieved by reducing this energy detection

threshold.

In cellular networks, the use of femto cells can cause co-channel interference when

deployed in a co-channel or hybrid configuration. In these configurations, a macrocell

is overlaid with OFDM based femto cells assigned an overlapping set of channels. This

can cause co-channel interference between neighboring femto cells sharing the same

set of channels (co-tier interference) or between a femto cell and a macro cell (cross-

tier interference) [51]. While co-tier interference can be managed through an efficient

allocation of subcarriers, it is far more difficult to manage cross-tier interference due

to limited availability of the wireless spectrum.
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3.3 Related Work

Adjacent Channel Interference: OFDM systems are known to suffer from high levels

of out-of-band emissions. Several techniques have been proposed to reduce this out-

of-band radiation. Windowing is a time domain technique [52], where the signal is

multiplied with a windowing function before transmission to reduce the energy in the

side lobes. Techniques such as Subcarrier weighing [53], Multiple-choice sequences

[54], Cancellation carriers [55], constellation Expansion [56], and Adaptive symbol

transition [57] are some of the techniques that manipulate the frequency domain signal

at the transmitter to enable out of band reduction. A comprehensive comparison of

these side lobe reduction has been presented in [58]. One of the defining features

of adjacent channel interference is that only the subcarriers the band assigned to a

transmitter is affected. The schemes that suppress ACI are designed to mitigate the

interference in the edge subcarriers and hence are not suitable to suppress other types

of interference such as co-channel interference.

In LTE, fractional frequency reuse and adaptive power management is used to re-

duce the level of interference in the network. Active interference mitigation schemes

such as interference rejection combining [59], co-ordinated multipoint transmission

(COMP) [60], and channel coding are being used to mitigate co-channel interference.

Windowing is a time domain technique [52], where the signal is multiplied with a

windowing function before transmission to reduce the energy in the side lobes. How-

ever, it expands the signal in the time domain resulting in wastage of bandwidth.

Techniques such as Subcarrier weighing [53], Multiple-choice sequences [54], Can-

cellation carriers [55], Extended Active Interference cancellation [61], Constellation

Expansion [56], and Adaptive symbol transition [57] are some of the techniques that

manipulate the frequency domain signal at the transmitter to enable out of band reduc-

tion. An excellent comparison of these techniques has been presented in [58]. All of

these techniques require high computational complexity and some techniques [52, 54]

result in lower throughput due to the use of some subcarriers for control. Since these

techniques are designed to reduce OOB emissions from OFDM transmitters, they ei-

ther dont use the edge subcarriers for data or use them to transmit data that would

minimise the spurious emissions. Hence they cannot be used in cases where the ACI

is due to intentional use of partially overlapping channels. Co-channel Interference:

Co-channel interference management techniques can be grouped into two categories

(i) schemes that mitigate interference by modifying the transmitted signal (ii) schemes
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that decode the signal of interest in the presence of interference.

In 802.11 [62], co-channel interference is prevented using CSMA/CA, where a

transmitter would sense the channel and only transmit if the energy detected in the

channel is less than a threshold. This ensures that nodes using the same channel does

not cause co-channel interference. However, this leads to the exposed terminals prob-

lem, where nodes are made to unnecessarily defer their transmission even though si-

multaneous transmission would have been successful.

In LTE, fractional frequency reuse and adaptive power management is used to re-

duce the level of interference in the network. Active interference mitigation schemes

such as interference rejection combining [59], co-ordinated multipoint transmission

(COMP) [60], and channel coding are being used to mitigate co-channel interference.

Co-ordinated multipoint transmission is a well known technique to mitigate inter-cell

interference in 3GPP networks. It involves the coordination of multiple transmitters

with in a cell, where certain transmitters can be muted to improve the overall SINR.

Interference mitigation schemes such as [63,64], adapt the transmissions to be more

resilient to interference. Their application is limited to niche scenarios and moreover

they require changes to the existing standards and are not backward compatible. In-

terference alignment [65–67] is a recently proposed technique that in this category.

However, they require communication over the wired backbone and are not backward

compatible. Similarly, Swarun et al, propose OpenRF [68] a cross-layer architecture

for interference management that enables access points to cancel their interference at

the clients significantly improving the network capacity and is applicable only to mul-

tiple antenna systems.

Several schemes have been proposed to decode the signal of interest in the presence

of co-channel interference. Kong et al [69] propose MZig, a physical layer technique

to decode simultaneous transmissions from multiple ZigBee devices to provide an m-

fold increase in throughput. Gollakota et al, propose TIMO [70], an IEEE 802.11n

receiver that can decode the packets in the presence of cross-technology interference.

While TIMO can work even when the interference is persistent and lasts over a few

seconds, unlike, CPRecycle , it can only be applied to receivers with multiple antennas.

Yan et al, propose WizBee, [71], a ZigBee receiver that can decode ZigBee packets in

the presence of strong interference from 802.11 nodes limiting its application.

In contrast to the interference management schemes discussed above, CPRecycle

can mitigate different types of interference on single antenna systems and is also back-

ward compatible with legacy OFDM systems.
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Partial Packet Recovery: Partial packet recovery is a class of techniques that

attempt to recover corrupt packets instead of retransmitting them. Several approaches

[72–77] have been proposed to address this inefficiency in retransmitting an entire

packet due to a few bit errors. They can broadly be categorised into (i) co-operative

packet recovery and (ii) cross-layer packet recovery.

In co-operative packet recovery schemes such as [72–74,78] multiple access points

coordinate with each other to recover partially corrupted packets by exploiting receiver

diversity. SOFT and MRD use PHY layer information to identify corrupt blocks of bits

that needs to be transmitted. ZipTx uses adaptive FEC codes to improve probability

of repairing bit errors in co-operation with other APs in the vicinity. However, co-

operative packet recovery techniques (including MRD and SOFT) demand additional

constraints such as multiple coordinating APs, hardware changes, incompatible with

IEEE 802.11, and hence are not useful in scenarios where CPRecycle is applicable.

These techniques are useful in 802.11 mesh networks, where only the correct bits of a

packet are forwarded on and the receiver combines multiple such copies to recover the

entire packet, and in scenarios where these multiple APs coordinate through a wired

backbone to share partial packets with the receiver.

Cross-layer partial packet recovery techniques such as [75, 77] attempt to recover

partially corrupt retransmissions of the same packet and are in an way extensions of

the chase combining decoder (where multiple noisy copies of a packet are combined

to recover the packet). These techniques however require modification at both the

transmitter and receiver to use additional parity bits to identify corrupt blocks for re-

transmission.

Furthermore, both categories of partial packet recovery techniques are complemen-

tary to CPRecycle and can be used in combination to improve the packet reception rate

further. For example, SOFT and PPR use a confidence measure on decoding a bit as

’0’ or ’1’ cooperatively with multiple APs to improve decoding accuracy. When used

in combination with CPRecycle, it would receive higher confidence measures on the

decoding decision since CPRecycle exploits multiple copies of the signal in the cyclic

prefix to select the FFT window with the signal that is closest to the correct lattice

point.
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Figure 3.2: Illustration of Cyclic Prefix (CP) or guard interval.

3.3.1 Cyclic Prefix

In OFDM based systems, the cyclic prefix (CP) or guard interval, illustrated in Fig. 3.2,

is used primarily to prevent inter-symbol interference (ISI). ISI is a type of signal dis-

tortion that is caused when consecutively transmitted symbols interfere with each other

at the receiver. This is due to the multi-path propagation characteristics of the wire-

less channel, where a transmitted signal may take multiple paths from the transmitter

to the receiver with different propagation delays and the multiple copies of the signal

may interfere with itself. The cyclic prefix acts as a guard period between successive

OFDM symbols, thereby completely eliminating the ISI. The duration of the cyclic

prefix is chosen to be greater than the largest delay spread expected by any user in the

target environment. It is usually defined in the communication standards and cannot

be changed adaptively based on the environment due to interoperability issues.

In practice, cyclic prefix is a copy of a portion of the OFDM symbol towards its

end, and it is inserted before the actual OFDM symbol. Because of the way cyclic

prefix is constructed, only one symbol from the intended transmitter is received at any

point in time during the whole course of duration spanning the cyclic prefix and actual

OFDM symbol.

The downside of using cyclic prefix is that it lowers the spectral efficiency since no

additional information is transferred during the cyclic prefix period. Note that cyclic

prefix duration is chosen based on the maximum delay spread which can result in

substantial portion of the overall symbol period being consumed by the cyclic prefix.

For example, in 802.11 systems about 20% of the symbol duration is allocated for the

cyclic prefix.
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Standard Bandwidth FFT Size CP Size Duration

802.11a/g 20 MHz 64 16 0.8 µs

802.11n/ac 40 MHz 128 32 (16) 1.6 (0.8) µs

802.11n/ac 80 MHz 256 64 (32) 3.2 (1.6) µs

802.11n/ac 160 MHz 512 128 (64) 6.4 (3.2) µs

Table 3.1: Cyclic Prefix in 802.11 standards

Table 3.1 lists size and duration of cyclic prefix specified in different 802.11 stan-

dards with the default long guard interval as well as the short guard interval (in paren-

theses). In LTE, the normal cyclic prefix length is 4.7µs, an overhead about 7% in

a OFDM symbol with actual data portion of about 66.7µs. There is also an extended

cyclic prefix of length 16.7µs specified in LTE for broadcast services and environments

with long delay spreads, increasing the cyclic prefix related overhead to 25% in this

case.

Studies that model the indoor propagation characteristics [79–81] of wireless sig-

nals, however, show that in most of the cases the multi-path delay spread is in the order

of nano-seconds, suggesting that cyclic prefix in practice is usually over-provisioned

by a significant amount. In these measurement based studies, the power delay profile,

which is the strength of the received signal plotted against time, is used to charac-

terise the multipath channel. The time delay between the multipath arrivals is used

to determine the maximum delay spread in the environment, which is in the order of

nano-seconds for various environments [79–81]. Since the inter-symbol interference

from an OFDM symbol on the following OFDM symbol is limited to the maximum

delay spread, this suggests that the cyclic prefix is over-provisioned significantly in

several environments.

Furthermore, the latest standards such as IEEE 802.11n/ac, support wider channel

widths of upto 160MHz. With wider channels, as shown in Table 3.1, the duration of

the cyclic prefix increases due to the increase in number of subcarriers. However, since

the multipath delay spread is independent of the channel width, the number of samples

that are not affected by ISI (which is the portion of over-provisioned cyclic prefix) only

increases with channel width.
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Table 3.2: Notations used in this chapter

Notation Description

Xs Frequency domain signal to be transmitted

xs Time domain signal to be transmitted

X̂s Frequency domain signal received

P Number of samples unaffected by ISI

C Number of samples in cyclic prefix

F Number of subcarriers

L Alphabets of the IQ constellation

RA Amplitude variation

Rφ Phase variation

fm density function

Ba amplitude smoothing parameter

Bφ phase smoothing parameter

3.4 Opportunities in Cyclic Prefix

In a standard OFDM system (illustrated in Fig. 3.3), the receiver discards the cyclic

prefix before decoding the OFDM symbol. In this section we discuss the opportunities

in retaining the cyclic prefix and using it to improve symbol decoding. We start by

analyzing the effect of choosing different FFT windows on an OFDM symbol.

3.4.1 Sliding FFT Windows
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Figure 3.3: Schematic of a standard OFDM system.

Let us consider a discrete-time OFDM system, illustrated in Fig. 3.3. The system

consists of F subcarriers onto which complex data symbols Ds are modulated using an

inverse discrete Fourier transform (IDFT). Let vector

Xs =(Xs[0], · · · ,Xs[F−1])

where, Xs[ f ] ∈ L = {l1, l2, · · · , lk}
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denote, in frequency domain, a complex vector representing the sth OFDM symbol

transmitted by the nth user, and L denotes the finite set of alphabet from the transmit-

ter’s codebook, each corresponding to a lattice point. The time-domain representation

of the OFDM symbol s transmitted by the nth user is given by

xs = (xs[0], · · · ,xs[F−1])

where,

xs[t] =
1

F

F−1

∑
f=0

Xs[ f ]e
i2π f t/F , 0≤ t < F

To eliminate the effects of dispersed channel distortion a cyclic prefix, which is

a copy of a portion of the symbol, is prepended to each OFDM symbol. The time-

domain signal with a cyclic prefix of size C transmitted by node n can be written as

follows,

x′s[t] = xs[t mod F], −C ≤ t ≤ F−1

The received signal ys for OFDM symbol s, contains F +C samples, including the

cyclic prefix of C samples. To perform DFT on the received signal, a segment of size

F must be chosen with the rest of the C samples disregarded from ys. Since there are

P samples in the cyclic prefix that are not affected by ISI, as shown in Fig. 3.2, there

are P valid sampling windows which can be used to decode the data transmitted in

symbol s. We refer to each of these P sampling windows as segments. After channel

equalization, since these P segments are not affected by ISI, the signal received from

the jth segment at subcarrier f in OFDM symbol s can be written as,

X̂ j
s [ f ] =

1

Ĥ

F−1

∑
t=0

yi
s[ f ]e

−i2π(C−P+ j) f /F +E i
s[ f ] (3.1)

where, Ĥ is the estimated channel matrix and E i
s[ f ] is the cumulative noise on that

subcarrier from the environment and other interferers.

In the time domain, these different segments correspond to different cyclic shifts

of the data transmitted in the OFDM symbol. However, this translates to a frequency

dependant phase rotation in the frequency domain which can be computed (and easily

corrected) for the segment j and subcarrier f as,

θ j[ f ] = e−i2π(C−P+ j) f /F (3.2)
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Hence, this predictable phase shift can be easily corrected to obtain P copies of the

transmitted symbol.

PROPOSITION 3.4.1. Choosing different FFT segments of an OFDM symbol does not

affect the symbol except for a multiplicative phase shift due to the rotation in the time

domain.

3.4.2 Opportunities for Interference Mitigation

To understand the effects of interference in different FFT segments, we conduct real

life experiments with USRPs and implement the OFDM system illustrated in Fig. 3.3.

We consider the communication between an 802.11g access point and client in the

presence of (adjacent/co-channel) interference. The transmitter is assigned a total of

64 subcarriers of 312.5KHz width and the duration of the cyclic prefix is fixed at 0.8 µs

with 16 samples. To create a scenario with adjacent channel interference, contiguous

subcarriers are assigned to the sender and interferer with 4 subcarriers as guardband

in between. The interferer transmits the signal with a temporal offset that is greater

than 0.8 µs, the duration of the cyclic prefix to create adjacent channel interference.

To create co-channel interference, the interferer is assigned the same set of subcarriers

used by the sender. The key insight from analyzing the interference at the receiver is
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Figure 3.4: Almost 20dB reduction in interference by choosing best FFT segment for

each subcarrier

that the effect of interference varies significantly across the different FFT segments of

the same OFDM symbol. For instance, an OFDM symbol received with -20dB SIR,
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is shown in Fig. 3.4. In this scenario, the interferer occupies the subcarriers (68-132)

adjacent to the sender (1 to 64) and due to a temporal offset greater than the duration

of cyclic prefix, leaks energy into the adjacent bands distorting the sender’s signal.

The normalised interference power (obtained by muting the sender) at subcarrier 63

as seen by the receiver for different levels of SIR, over all 16 possible FFT segments

of an OFDM symbol is shown in Fig. 3.5. It can be seen that the interference power

varies significantly across the FFT segments. For instance, in the presence of adjacent

channel interference with -30dB SIR, the interference power varies by almost 40dB,

with the lowest at FFT segment 6.
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Figure 3.5: Interference power in a subcarrier at different FFT segments showing sig-

nificant variation

Combining this insight with the fact that these P values for each subcarrier f have

the same signal component as stated in Proposition 3.4.1, but are affected by a different

interference component as shown in Eq. 3.1, it is clear that identifying the best FFT

segments for each subcarrier can have significant benefits over discarding the cyclic

prefix as done in existing OFDM based wireless systems.

First, minimizing interference power in each subcarrier would reduce the overall

effects of interference, enabling signal decoding even in the presence of interference

and it can be effective for different types of interference. In the example discussed

above in Fig. 3.5 with SIR -30dB, a standard OFDM receiver would have discarded

the cyclic prefix and selected the 16th FFT segment where the interference is almost

35dB stronger than in FFT segment 6. We refer to a scheme identifying the FFT seg-
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ment yielding the lowest interference power as the Oracle scheme, which assumes

perfect knowledge of the interference at the receiver. The interference power in dif-

ferent subcarriers with a standard OFDM receiver and an Oracle receiver are shown in

Fig. 3.4. The oracle scheme is able to reduce the effects of interference in the channel

used by the sender by about 20dB as illustrated.

Second, the sharp spectrum mask realized by choosing the best FFT windows can

reduce the number of subcarriers used as guard-band between contiguous bands as-

signed to neighboring transmitters. This means cognitive users can be allocated fre-

quencies that are much closer to incumbents, improving efficiency of spectrum use. For

instance, from Fig. 3.4, the spectrum mask realized using the oracle scheme (shown in

red with empty circle as key) is very sharp compared to the vanilla case of not using

any adjacent channel interference mitigation mechanism (shown in blue with filled in

circle as key ). And the required guard band is significantly reduced from 5.3MHz to

just 625KHz for an adjacent channel interference threshold of about -20dB, enabling

efficient use of the spectrum.

However to exploit these opportunities, we need to be able to decode the received

symbol in the presence of P redundant copies of the signal and there are several chal-

lenges that must be overcome first.

3.4.3 Challenges with Decoding

It is not practical to possess perfect knowledge of interference at the receiver, without

which the FFT segments with the minimum interference power cannot be identified.

The Oracle scheme while it provides a clear picture of the opportunities for mitigating

interference, is thus impractical.

Using simple statistical metrics to decode OFDM symbols using P redundant copies

is not effective and as a result underlying opportunities for mitigating interference may

be squandered using them. To understand this, we define a naive decoder to identify

the closest lattice point around which the signal received in different FFT segments is

scattered. For each subcarrier we compute the average deviation of the received com-

plex vector from the various possible lattice points for the modulation scheme used,

over all the FFT segments. Then the lattice point with the minimum average deviation

is assumed to be the correct one [82]:

l∗= argmin
l∈L

P

∑
i=1

|X̂ i
s[ f ]− l| (3.3)

43



To evaluate the naive decoder, we use USRPs and the same WiFi settings described

above for the experiments. We vary the SIR for different modulation schemes and the

packet error rates for QPSK modulation are shown in Fig. 3.6, 3.7, and 3.8 for different

guardband sizes. As expected, the metric performs well at lower interference power.

When the SIR is about -10dB, both the Oracle scheme and the naive decoder are able

to eliminate the packet errors. However, at SIR -20dB, while the Oracle scheme is able

to decode all the packets successfully, using the naive decoder only results in marginal

improvements. In the presence of strong interference (with SIR less than -10dB), the

shortcomings of the naive decoder are apparent. The performance of the oracle scheme

with strong interference shows that there are FFT segments where the received signal

can be successfully decoded, however, the naive decoder is unable to find the right

lattice points. In analyzing the scenarios where the naive decoder fails, we identify

three main sources for these errors.
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Figure 3.6: Packet success rate using Oracle scheme and the naive decoder show-

ing deteriorating performance when interference increases; experiment settings: single

adjacent channel interferer, QPSK with 3/4 coding rate, varying guard band and SIR

values = 10 dB

To illustrate this, we use an example scenario shown in Fig. 3.9, with the set of

possible lattice points of the transmitted signal (blue plus marker) and the signal re-

ceived in different FFT segments (red cross marker). For simplicity, we consider only

two lattice points (BPSK) and P = 5 (five FFT segments are used for decoding). In

this instance, the transmitted signal corresponds to lattice point 1, and due to vary-

ing interference in different FFT segments, the received signal is scattered around the
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Figure 3.8: Packet success rate using Oracle scheme and the naive decoder showing

deteriorating performance when interference increases; experiment settings: single ad-

jacent channel interferer, QPSK with 3/4 coding rate, varying guard band and SIR =

30dB

transmitted lattice point. To illustrate different scenarios where errors occur, we con-

sider that one of the FFT segments suffers from strong interference and the received

signal is close to lattice point 0 even though the transmitted signal corresponds to lat-
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tice point 1.

The first source of the error is the use of arithmetic mean in the naive decoder to

determine the central tendency of the signal received in different FFT segments. It is

well known that arithmetic mean is susceptible to outliers making it ineffective either

due to a small sample size or if the underlying distribution is skewed. In the example

discussed above, the received signal in four of the five FFT segments are closer to

lattice point 1. However, due to a single outlier, on an average the five points are closer

to lattice point 0 and hence are incorrectly identified. The small number of ISI free

FFT segments further increase the proportion of these outliers.

Second the naive decoder assumes that the received signal from different FFT seg-

ments are on the correct lattice point. At the receiver, the signal corresponding to a

lattice point would have been affected by fading and AWGN noise due to the wireless

medium. The constellation decoders work under the assumption that of the received

signal with the effects due to fading and noise perfectly removed would be exactly one

of the lattice codes. However, this is not true in the presence of interference. With

interference affecting each of the FFT segments apart from fading effects and channel

noise, the received signal would be at a certain distance from the correct lattice point.

In the example discussed above, four of the five points are at a similar distance away

from the lattice point. Instead, if the received signal is expected to be at a certain

distance from lattice point 1 then the decoder has a better chance of identifying the
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outlier.

Finally, the naive decoder completely ignores the phase errors due to interfer-

ence. It only takes into account the amplitude effects of interference by computing

the Euclidian distance between the lattice points. Phase noise can be introduced due

to the fluctuation of the oscillators in the transmitters and the performance degrada-

tion [83–85] of OFDM systems in the presence of phase noise has been well studied.

The example discussed above shows such a case, where the same phase error on the

outlier would have a much larger change in the euclidean distance between the outlier

and the lattice points.

3.5 CPRecycle

Considering the aforementioned issues with using simple statistical metrics for decod-

ing, we design CPRecycle , a novel OFDM receiver that creates an interference model

from the preambles to effectively utilize the opportunities provided by the redundant

samples in the cyclic prefix.

3.5.1 Modeling the effect of interference

In OFDM based systems, the symbols with data is usually preceded by one or more

training symbols of known data called preambles for channel estimation and synchro-

nization. These preambles typically use a robust modulation scheme that can be de-

coded even at low SNR values. In CPRecycle receiver, using the P ISI free segments

of each of the preambles, P complex values are generated for each subcarrier with ev-

ery preamble symbol. These P complex values can be used to create a model of the

interference effects. We now discuss the various issues that needs to be addressed in

generating such a model.

The first hurdle with using the preambles to generate a model is that the modulation

schemes in preambles and the data symbols could be different. Lattice codes are gen-

erated by selecting a finite number of points from a two dimensional Euclidean space

R n depending on the modulation scheme. Hence the received signal in the preambles

cannot be directly used to create a model for the data symbols to use. To facilitate this,

we compute the variations of the received signal in different FFT segments relative to

the lattice point being considered. It can now be applied to a signal corresponding to

any lattice point and hence used across different modulation schemes.
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Figure 3.10: (a) Kernel density estimation with varying bandwidth; (b) Density estimates

and samples of amplitude variations showing accurate modeling for different SIR sce-

narios; (c) Illustration of lattice points with a sphere of radius R centered at the centroid

of signal received in 7 FFT segments.

Another issue is the limited number of samples that are available to create and

use the interference model. Most of the OFDM standards use utmost two preambles

for channel estimation and in each preamble the maximum number of samples for

each subcarrier is the number of samples in the cyclic prefix. Furthermore, since the

receiver does not possess any information about the interference, it is not accurate [86]

to assume a standard probability distribution (e.g., gaussian). Hence care has to be

taken to design a non standard probability distribution that works well with a small

sample size.

Finally, there is the need to decouple the amplitude and phase effects of interfer-

ence in different FFT segments, mainly because there is no correlation between them.

In scenarios with strong interference, it is reasonable to expect that the interfering sig-

nal is carrying data that either amplitude or phase modulated. In such cases too it is

beneficial to consider phase errors independently. Also, with amplitude and phase er-
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rors decoupled, a weighted function can be used to tune the impact of these errors to

improve the accuracy of the interference model.

Based on the issues discussed above, to effectively utilize the opportunities pro-

vided by the redundant samples in the cyclic prefix, we need a non-parametric density

estimation from the amplitude and phase changes in the different FFT segments that

works well with a small sample set.

The simplest method to estimate the probability density of the interference is to

use bins of constant or variable width in phase and amplitude and construct a bivariate

histogram. However, there are two main problems with using bivariate histograms to

model the effect of interference in our context: (i) with a small sample set there are

discontinuities in the estimated density due to empty bins (ii) it assumes that there is

no relation between the data in adjacent bins.

So we instead employ a more effective alternative called kernel density functions

[87–89] to generate a non parametric density. Unlike histograms, kernel density func-

tions does not have discontinuities and can produce a smooth distribution with a small

sample set. Furthermore, the amplitude and phase changes can be integrated using a

bivariate product kernel density function where the weight for amplitude and phase

variations can be tuned.

In order to generate a probability density function with the preamble data in each

subcarrier, we use a bivariate gaussian product kernel density estimation function with

a variable bandwidth. Let R
j
A[ f ] and R

j
φ[ f ] denote the set of amplitude and phase

variation values observed on a subcarrier f , 1≤ j ≤ P, from the preambles, which can

be computed as:

R
j
A[ f ] = A(X̂ j

s [ f ]−Xs[ f ]), 1≤ s≤ Np, 1≤ j ≤ P

R
j
φ[ f ] = Φ(X̂ j

s [ f ]−Xs[ f ]), 1≤ s≤ Np, 1≤ j ≤ P

where Np is the number of preambles used in modeling the interference. Then the
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probability density function can be written as:

fm(aobs,φobs) =
1

P∗Np

P∗Np

∑
j=1

[

Ka(
aobs−R

j
A[ f ]

Ba
)

×Kφ(
pobs−R

j
φ[ f ]

Bφ
)

]

where,

Ka(a) =
1

2π
e−a2/2 and Kφ(p) =

1

2π
e−p2/2

(3.4)

Ba and Bφ are the kernel-bandwidths which are smoothing parameters that determine

the range of amplitude and phase over which the sample points are averaged to generate

the probability density.

It is well known that the choice of the kernel-bandwidths has a significant impact

[90] on the accuracy of density estimation and it is crucial to identify right value.

To illustrate this consider an example of a set of amplitude variations along with the

kernel density function with three different bandwidths shown in Fig. 3.10(a). Larger

bandwidths result in over smoothing of the density estimate and smaller bandwidths

introduce large errors between the data points. In general, it is beneficial to have a

larger bandwidth at low densities and a smaller bandwidth at high densities of data.

In CPRecycle , we use the data driven approach to determine the best bandwidth

which is possible in the presence of at least two preambles. The Gaussian kernel den-

sity function shown above generates a smooth bivariate density function and the prob-

ability density function is recomputed each time a new set of preambles are received.

The density estimation of amplitude variations and the variations observed in the

data symbols, for different SIR values are shown in Fig. 3.10(b). The kernel density

functions accurately predict a density that is applicable for the amplitude variations in

the data symbol.

3.5.2 Maximum likelihood decoding

To decode the received symbols X̂s[ f ] to the correct lattice point, we use a maximum

likelihood decoder that identifies the lattice point with the maximum probability of the

received symbol corresponding to that point. When only one FFT segment is used, the

maximum likelihood decoder reduces to a minimum Euclidean distance decoder that
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identifies the codeword that is closest to the received symbol. However, with CPRe-

cycle receiver, each symbol transmitted on a subcarrier results in P received symbols,

one per FFT segment.

Let the transmitted symbols Xs[ f ] be drawn from a known finite alphabet L =

{l1, l2, · · · , lk} each corresponding to a point in the lattice. The maximum likelihood

decoder can be defined as:

l∗ , argmax
Xs[ f ]∈L

P (Xs[ f ]|X̂s[ f ]) (3.5)

where

P (Xs[ f ]|X̂s[ f ]) =
P

∏
j=1

P (X̂
j

s [ f ]|Xs[ f ])

P (Xs[ f ])

where P (Xs[ f ]) sent is constant and P (X̂
j

s [ f ]|Xs[ f ]) can be computed from the proba-

bility density function defined in Eq. 3.4 as follows:

P (X̂ j
s [ f ]|Xs[ f ]) = fXs[ f ](A(X̂ j

s [ f ]−Xs[ f ]),Φ(X̂ j
s [ f ]−Xs[ f ]))

With higher modulation schemes the search space for the decoder increases ex-

ponentially with the number of lattice points (as 2, 4, 16, 64, 256 for BPSK, QPSK,

16QAM, 64QAM, and 256QAM respectively). Hence it is essential to reduce the

number of possible lattice points for comparision. In CPRecycle , to select a subset of

possible lattice points we use the concept of a fixed sphere decoder.

The concept of a fixed sphere has been shown to be effective [91–93] to reduce the

search space in identifying the closest lattice point. For single antenna receivers, the

decoder searches through the lattice points that are located within a sphere of radius R

centered at the received signal. However, a slight variation is required in our case since

the decoder receives P signal values from which the lattice points need to be identified,

instead of one.

In CPRecycle , to identify the point around which the sphere is centered, we com-

pute the centroid of the cluster of P complex signal values. The centroid is simply the

average of the real and imaginary values of all the P values. Only the subset of lattice

points that fall in the sphere of radius R from the centroid of the P samples constitute

the search space for the decoder. The choice of lattice points for a sphere decoder is

illustrated in Fig. 3.10(c). In this instance, only the six lattice points that fall within the
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sphere are considered as possible transmitted codes by the decoder. This significantly

reduces the number of operations required in decoding the received symbol.

3.5.3 Putting It All Together

Input: Ba,Bφ,R ,X̂s,P

Output: Xs

if OFDM Symbol s is a preamble then

for each segment j ∈ {1,2, · · · ,P} do

Y
j

s = FFT (y j
s) R

j
A[ f ] = A(Y j

s [ f ]−Xs[ f ]) , ∀ f ∈ F R
j
φ[ f ] = Φ(Y j

s [ f ]−Xs[ f ]) , ∀ f ∈ F

end

end

else

for each subcarrier f ∈ F do

Lc ⊂ L s.t. ∀l ∈ L l ∈ Lc if A(l−Centroid(X̂s[ f ])) < R

Xs[ f ] = argmax
l∈Lc

P (l|X̂s[ f ])

end

end

Algorithm 2: CPRecycle

Algorithm 1 shows the overall procedure followed by CPRecycle receiver from

putting the above components together. When CPRecycle receiver receives a pream-

ble, it computes the number of ISI free samples in the CP to determine P. The P

segments in the preamble are used to generate a unique probability density function

for each subcarrier. These probability density functions are constantly updated when

subsequent preambles are received. Once the interference is modeled, the subsequent

OFDM symbols are decoding using the maximum likelihood decoder. The set of lat-

tice points over which the maximum likelihood detector searches for the transmitted

symbol is computed using the radius R which is an input parameter to the CPRecycle

receiver.

Note that from the above description it is clear that CPRecycle receiver does not

need to explicitly know the precise nature of interference (e.g., adjacent channel in-

terference, co-channel interference). It can leverage the preambles used for channel

estimation. The effectiveness of CPRecycle relies on the extent to which channel and

interference characteristics seen from a preamble apply to the subsequent OFDM sym-

bols with data. For rapidly varying or sporadic interference, more frequent preambles

are needed to accurately model the interference.
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Figure 3.11: Block diagram of CPRecycle receiver as implemented.

3.6 Experimental Evaluation

In this section, we experimentally evaluate the effectiveness of CPRecycle in mitigat-

ing different types of interference that can be mapped to practical scenarios.

3.6.1 Implementation

We have implemented a prototype of the CPRecycle receiver using the USRP radio

platform [94], Ziria [95] an SDR programming environment, and the GNU Radio soft-

ware package [96].

CPRecycle Receiver: We implement two variants of the CPRecycle receiver to run on

the USRP: (i) IEEE 802.11g receiver (ii) A generic configurable OFDM baseband re-

ceiver. For the IEEE 802.11g receiver, we modify the GNU Radio based receiver [96]

as shown in Fig. 3.11. Instead of discarding the CP, the ISI free portion of the CP

is used to generate P segments that are then passed on to the FFT block to generate

P values for each subcarrier corresponding to the signal transmitted on an individual

subcarrier. The maximum likelihood decoder then detects the signal transmitted on the

subcarrier using the interference model generated with the preambles for each subcar-

rier.

IEEE 802.11g Setting : The CPRecycle receiver is applicable to IEEE 802.11a/g/n

radios which are based on an OFDM PHY. For our experiments we use an off-the-

shelf 802.11g Linksys access point running tomato firmware. Each 20MHz channel

is composed of 64 subcarriers, spaced 312.5 KHz apart, of which 52 subcarriers are

used for data and 4 subcarriers for pilots. Each OFDM symbol has a duration of 4µsec.

and each data payload is preceded by a long training field that contains two OFDM

symbols for a duration of 8µsec, to enable synchronization and channel estimation.

The variation of the signal in different segments in this long training field is used to

create the interference model. For our experiments, we choose three MCS modes,

QPSK 1/2 (9 Mbps), 16-QAM 1/2 (24 Mbps), and 64-QAM 2/3 (36 Mbps).
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3.6.2 Results

We now evaluate the performance of CPRecycle in the presence of adjacent channel

interference and co-channel interference.

3.6.2.1 Adjacent Channel Interference

Single Interferer. For the adjacent channel interference case, we use an off-the-shelf

802.11g access point (Linksys) that continuously transmits 400 byte packets, in chan-

nel 11 ( 2462MHz ). To generate interference, we use a USRP (B210) to continuously

transmit 802.11 traffic in an overlapping channel, in this case channel 8 (2447MHz).

A CPRecycle receiver running on another USRP B210, that is capable of decoding

802.11g packets is placed in a fixed location. To choose the appropriate SNR for each

MCS, the Linksys router is re-positioned from the receiver until that MCS mode has

the highest throughput. Once the SNR for the MCS mode is fixed, the SIR is varied

by moving the interferer that generates 802.11 packets in the adjacent channel. We

transmit a total of 2000 packets for each scenario and the average values for packet

success rate is shown in Fig. 3.12.
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Figure 3.12: Packet success rates for different modulation and coding schemes with

one adjacent channel interferer

The severity of the effect of adjacent channel interference on the packet success

rates can be seen from the figures. At an SIR value of 0dB, where the power of the

signal and the interference is the same, the success rates of packet delivery drops signif-

icantly for all MCS modes. Being the highest rate, 64QAM suffers almost 50% packet
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loss and is unable to transmit a packet when SIR is -10dB. This effect is slightly less

pronounced for the lower modulation schemes such as QPSK, however, the increase in

packet loss rate with SIR is still steep, and becomes unusable when SIR decreases to

10dB.

With the CPRecycle receiver, the packet success rates are significantly improved

for all the MCS schemes with similar packet success rates achieved with atleast 15dB

of adjacent channel interference and in several cases upto 25dB of adjacent channel

interference for lower modulation schemes. Considering the packet success rates at

-10dB, for example, it can be observed that for all MCS modes the improvement in

packet success rates is significant and with higher modulation schemes communication

is made possible (with almost 80% packet delivery rate) that would not have otherwise

been possible without CPRecycle receiver.

Multiple Interferers. The effect of two interferers creating adjacent channel interfer-

ence on either side of the channel allocated to a transmitter is shown in Fig. 3.13. For

this experiment, the Linksys access point is allocated channel 10 (2457MHz) and the

interferers are allocated channels 7 (2442MHz) and 13 (2472MHz) respectively. This

is a common scenario in dense deployments of WLANs where overlapping channels

has to be allocated to neighboring access points. The packet success rates is noticeably

lower for all the modulation schemes, since the number of subcarriers that are affected

by adjacent channel interference is almost doubled. However since the interference

model is maintained independently per subcarrier, it does not have a significant impact

on the performance of the CPRecycle receiver. For example, when the SIR is -10dB,

CPRecycle is able to decode more than 80% of the packets successfully in most of the

cases.

Guard band needed with adjacent legacy OFDM transmitter. The effect of adja-

cent channel interference with different sizes of guard-bands for 16QAM is shown in

Fig. 3.14 respectively. For this experiment, the set of subcarriers assigned for the first

transmitter is fixed and the set of contiguous subcarriers assigned to the second trans-

mitter is varied to generate settings with different guard-bands between the two trans-

mitters. It can be observed that with CPRecycle the amount of guard-bands required

to achieve the same packet success rates is significantly lower for both the modulation

schemes. This shows that with CPRecycle , a cognitive radio can be allocated fre-

quencies much closer to a licensed band achieving a significantly more efficient use of

the wireless spectrum. For example, considering the case with 16QAM, if a cognitive

user is allocated a cluster of subcarriers adjacent to a licensed TV transmitter, whose
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Figure 3.13: Packet success rates with two adjacent channel interferers
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transmitter

signal is 10 times stronger, then the required guard-band would be reduced from about

15MHz to less than 5MHz to achieve a similar packet success rate.

3.6.2.2 Co-Channel Interference

Single Interferer. To generate co-channel interference, we use a setup that is similar to

the adjacent channel interference scenario, except, we use a USRP 802.11 transmitter.

This is so clear channel assessment can be turned off to enable simultaneous use of

the same channel by both the transmitter and the interferer. Similar to the adjacent

56



channel interference case, the SNR for each MCS mode is chosen such that any higher

modulation scheme would result in a lower throughput. In total, 2000 packets of size

400 bytes, are transmitted for each scenario for each MCS mode and a given SIR

setting, and the average packet success rates are computed. The results are shown in

Fig. 3.15.
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Figure 3.15: Packet success rates for different modulation and coding schemes with

single co-channel interferer

As expected, the effect of co-channel interference on 802.11 WLANs is far more

severe than adjacent channel interference, which is evident from the figures. Even with

SIR 10dB, when the signal of interest is three times stronger than the interference, the

packet reception rate drops steeply for all the MCS schemes. This is mainly due to

two reasons. (i) Unlike adjacent channel interference, the co-channel interference is

in-band. (ii) The number of subcarriers affected by interference is much higher in

the co-channel interference scenario. In most cases all the subcarriers used by the

transmitter is affected by strong interference.

Another observation is the steepness of the drop in packet reception rates with

increasing co-channel interference. The range of co-channel interference tolerated by

both with and without CPRecycle receiver is about 15dB in most cases, where as it was

about 30dB of adjacent channel interference for most MCS modes. This is mainly due

to the significantly higher number of subcarrier affected by interference when com-

pared to adjacent channel interference. However, CPRecycle is able to recover most of

these errors since it maintains a separate interference model for each subcarrier from

the preamble data.
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Figure 3.16: Packet success rates with two co-channel interferers

Multiple Interferers. The effect of multiple co-channel interferers is shown in Fig.

3.16. For this experiment, we setup an 802.11 transmitter with carrier sensing disabled,

and two interferers in the same channel, placed at the same distance from the transmit-

ter. The SNR is chosen for each MCS mode similar to the other experiments. The SIR

is varied by increasing the transmit power in both the interferers. It can be observed

that unlike in the case of adjacent channel interference, co-channel interference does

not have a significant impact on packet reception. This can be attributed to the fact

that the number of subcarriers affected by the higher number of interferers does not

change where as it almost doubles in the case of adjacent channel interference. The

improvement in packet success rate with CPRecycle is again significant even though

the variance of interference is presumably higher with more interferers, while the total

power of the interference remains the same. This is primarily due to the nature of the

interference model that considers both amplitude and phase changes in the interference

to generate the probabilistic model for each subcarrier.

Network Level Improvements. While it is clear that CPRecycle can decode signals

even in the presence of strong interference, the network level benefits of this are not

obvious. To highlight this, we plot the CDF of number of interfering neighbors for

access points in a real indoor office environment shown in Fig. 3.17. From Fig. 3.15,

it is evident that with the CPRecycle receiver, the level of co-channel interference that

can be tolerated is atleast 15dB for all the MCS modes. This is a direct measure of

the increase in energy detection threshold that the CPRecycle receiver would be able

to tolerate without additional packet errors.
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Figure 3.17: CDF of number of interfering neighbors for access points in a real office

environment with and without CPRecycle receiver.

We consider our office building [97] which has five floors with a large atirum and

most of the walls are made of glass. There are 40 access points deployed in the build-

ing with mostly the same place for access points in each floor. We measure the signal

strength of access points that can be detected at each of these locations and determine

the number of neighbors for the access points by reducing the threshold by 15dB de-

rived from Fig. 3.15. It can be seen that the number of neighbors with CPRecycle is

significantly reduced. For instance, with a standard receiver, more than 80% of access

points have atleast 12 interfering neighbors where as with CPRecycle more than 80%

of the access points have utmost 6 neighbors. This shows how CPRecycle can sig-

nificantly improve the network capacity of a dense WLAN by reducing the potential

interferers in the network.

3.7 Discussion

Detecting ISI free portion of CP : Several methods [98–101] have been proposed in

the literature for the detection of ISI-free region in the cyclic prefix. In each of these

schemes a correlation coefficient is computed between samples in a given window and

a threshold is used to estimate the range of ISI free samples in the CP.

The effect of the duration of the ISI free region over the performance of CPRecycle

is shown in Fig. 3.18, where the number of FFT segments represents the duration of the

ISI free region. A key observation here is that even when a portion (about 40%) of the
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cyclic prefix is unaffected by ISI, CPRecycle is able recover a significant percentage

of the erroneous packets. This suggests that CPRecycle can even be used in multipath

environments with a significant delay spread.

Computational Complexity and Oversampling: The computational complexity of

CPRecycle is O(PN2
p f ), where P is the number of ISI free samples in the CP, Np is

the number of preambles and f is the number of subcarriers. Since the number of

preambles is not a configurable parameter, we study the effect of P, the number of

samples. We conduct experiments for the ACI scenario with varying number of FFT

samples, with five preambles to observe the behavior of CPRecycle .
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Figure 3.18: Packet success rates with varying number of FFT segments

The packet success rate for three different SIR conditions with 16QAM modulation

is shown in Fig. 3.18. An interesting behaviour we observe with the number of FFT

segments is that, the benefits of the increasing the number of FFT segments for inter-

ference modelling saturates when P reaches about 60% of the samples even at very

high interference (SIR -30dB). With lower levels of interference, even 20% of the CP

is enough to reduce the packet error rates significantly. There are two advantages to

this behaviour with CPRecycle : (i) scenarios with high multi-path delays where the

number of ISI free samples in the CP is limited, can still make use of CPRecycle to

improve the performance of the receivers. (ii) on devices with limited computational

capability the number of FFT segments can be tuned to the capabilities of the device,

which gracefully degrades to a standard OFDM receiver with one FFT segment, in the

worst case. Hence it can be used in a wide variety of hardware configurations with

varying computational capabilities.

When unconstrained by computational capability, it is also beneficial to increase
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P beyond the number of ISI free samples available in the CP. This is possible through

oversampling with new devices that support higher sampling rates.

3.8 Summary

In this chapter, we presented CPRecycle, an improved OFDM receiver that improves

spectral efficiency by decoding packets in the presence of interference. Cyclic prefix

is typically unused at the receiver and results in a significant overhead. Exploiting the

fact that OFDM based wireless standards over-provision the cyclic prefix (CP) that

is meant for preventing inter-symbol interference, we presented a novel OFDM re-

ceiver design called CPRecycle that takes advantage of the redundant portion of the

cyclic prefix towards interference mitigation. Specifically, CPRecycle models the ef-

fect of interference in each subcarrier using a Gaussian kernel density function using

the preamble symbols and uses a fixed sphere maximum likelihood detector to decode

the following data carrying OFDM symbols subject to interference. Using off-the-shelf

IEEE 802.11g transmitters and interferers, we experimentally show the effectiveness of

CPRecycle for mitigating adjacent-channel interference and co-channel interference.

We also show that two preambles and small portion of cyclic prefix are sufficient to

realise significant benefits in terms of packet success rate with CPRecycle .
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Chapter 4

Privacy in Home WiFi Networks

4.1 Introduction

Home networks have become an unremarkable part of our lives [102]. The IEEE

802.11 a/g/n/ac standards, or commonly referred to as WiFi [103] are among the most

popular solutions for creating personal area networks in homes. The latest standard

IEEE 802.11ac can support a throughput in the upwards of 1 Gbps using techniques

such as channel aggregation and multiple-input multiple-output. It can support band-

width hungry in-home applications such as 4K TV that requires about 32 Mbps data

rate, or wireless virtual reality headsets that can require several 100 Mbps of bandwidth

for a seamless user experience [104].

A typical home network is composed of a WiFi access point to which one or more

WiFi clients are connected to. The access point is in turn connected to the Internet

and creates a wireless local area network that is used to connect devices such as smart

phones, televisions and computers. The WiFi network can be configured to use en-

cryption to keep the communication private. There are however, two problems this

approach. Not all data is encrypted as management frames are sent in clear text, which

can be used to identify devices present in the environment. Second, the size preserving

nature of encryption mechanisms used in WiFi, reveals the traffic characteristics in the

network. This information can in-turn be exploited to determine private activities of

the home occupants.

In this chapter, we explore the challenges in encrypted home WiFi networks to pre-

serve privacy of its home occupants. Specifically, we study the possibilities of deter-

mining the occupancy state of a home and the activity of its occupants, using passively

sniffed encrypted WiFi traffic from that home environment. First, a background on
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various passive attack vectors is presented followed by the results of experiments con-

ducted in dual-income homes over a two week period. A manual analysis of the signal

collected in these home environments shows that this information can be used to reveal

occupancy states and some activity classes such as watching television and sleeping.

With this insight, we propose WiFi Glass, an attack vector that uses deep learning to

identify the occupancy state and activity of a home (limited to three activity classes).

Evaluation of WiFi Glass shows that it achieves high accuracy in determining, both,

the occupancy state and activity class of a home, from only passively collected WiFi

signal. The chapter is concluded with a short discussion about promising directions

for countermeasures.

4.2 Background

In the past, several attack vectors [105] on home WiFi networks have been identified.

In this section we discuss some of these attack vectors that have significant impact in

the security of home WiFi networks. They can broadly be classified into active and

passive attack vectors. Active attacks involve transmitting some signal either to crack

encryption, gain access or to disrupt communication between legitimate devices. We

limit our scope to passive attack vectors and for a discussion of active attack vectors

on WiFi networks, refer to [106].

Attack Vectors in 
Home WiFi Networks

Active Attacks Passive Attacks

Crack Encryption Denial of Service

Unencrypted 
Management 

Frames

PHY Layer 
Characteristics

Evil Twin Attack
De-authentication 

attacks 

Traffic 
Characteristics

Figure 4.1: Attack vectors relevant to WiFi networks in home deployments
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4.2.1 Passive Attacks

Passive attacks in WiFi networks involve scanning the wireless medium and attempting

to gain information from the sniffed packets. In WiFi, a packet transmitted by a device

can be received by any other device, provided it is with in range of the transmitter. WiFi

clients that receive these packets check the MAC address in the destination address of

the received frame and drop them if it is not intended for them. However, WiFi sniffers

that work in ”monitor” mode can ignore this MAC address check and pass along all

the received WiFi frames up the network stack. Tools such as Wireshark [107] and

Kismet [108] can be used to decipher these packets and are available for free in the

Internet.

Probe Request

Probe Response

WiFi Client WiFi Access Point

Open system 
authentication request

Association Request

Association Response

Open system 
authentication response

Data

Figure 4.2: Illustration of Active Scanning by WiFi Clients.

One of the main vulnerabilities that are available for an adversary using passive

attacks are the unencrypted management data transmitted in the control packets. WiFi

uses three types of frames for communication, namely, data, control and management

frames.

• The data frames are used to carry encrypted data across the shared medium.
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• The control frames are used to coordinate communication among different clients

and the access point, which include the Request-to-Send and Clear-to-Send and

ACK messages.

• The management frames are used for network management tasks such as asso-

ciation, authentication and de-authentication.

The control and management frames are not encrypted and the information in these

frames can be used to decipher side channel information about the network and its

users.

4.2.1.1 WiFi Probe Requests

WiFi clients can passively listen for beacons from nearby access points to discover

and connect to them [109]. However, the demand for cloud services on smart phones

creates a need for a constant connection to the Internet. In order to enable client devices

to actively discover WiFi access points in their environment, IEEE 802.11 defines a

service discovery process that uses management frames called probe requests. The

client device can either transmit undirected (broadcast) or directed (unicast) probe

request frames and would wait for the access points in the vicinity to respond with a

probe response. The devices then proceed to exchange authentication and association

requests to establish a connection as illustrated in Fig. 4.2. Once the connection is

established the client is able to send and receive encrypted data with the access point.

The probe request messages can be either broadcast or unicast to specific access

points. Unicast probe request messages are used to connect to WiFi networks that do

not broadcast their SSIDs. Whereas, broadcast probe request messages would be an-

swered by any access point. In general, unicast probe request messages are rare when

compared to broadcast probe messages [2]. In case of a lack of response, the client

device periodically broadcasts the probe request frames until it receives a response as

illustrated in Fig. 4.3.

There are several ways in which WiFi probe request messages improve quality

of service. First, service discovery using beacons from access points are slow and

requires the clients to keep their radio on for a much longer duration leading to high

energy consumption [110]. With the use of probe messages, the client only need to

keep the radio on for a few milliseconds (to wait for a probe response) before turning

it off the save power. Otherwise, the client needs to keep the radio on until a beacon
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Probe Request

WiFi Client WiFi Access Point

Probe Response

Probe Request

Probe Request

Probe Request

Figure 4.3: Illustration of Active Scanning showing periodic probe request messages by

WiFi Clients.

is received from the access point leading to high energy use. This is also helpful for

mobile clients to quickly switch access points to maintain an uninterrupted connection.

Second, WiFi probe request messages enable a mobile phone to stay connected

to the access point even when its in sleep mode. The regular WiFi probe request

messages are used as keep-alive beacons that lets the access points know that the client

is still connected. Finally, the only way to connect to (hidden) WiFi networks that do

not broadcast their SSID, is to use probe request frames, since the access point does

not send beacons for service discovery. While this provides the access point certain

degree of privacy compared to broadcasting, the SSID is in the open. However, this has

unintended consequences, since the onus of privacy is now transferred to the mobile

clients who need to transmit probe request messages with the SSID of the access point.

Hence the WiFi probe request is a standard feature in most existing WiFi chipsets and

is also enabled by default.

The service discovery process in WiFi networks cannot be encrypted since no cryp-
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Figure 4.4: 48 bit MAC Address

tographic key has been shared prior to association [111]. Recently, WiFi probe request

frames have generated a lot of interest [1, 2, 112–127] and the transmission of unique

MAC address in WiFi probe frames has been shown to lead to various information

leaks. Smart phones transmit an alarming number of WiFi probe request packets that

can lead to loss of privacy among other problems [1]. On average some smart phones

can transmit about 55 WiFi probe messages every hour, increasing upto 2000 probe

request messages in some cases.

Figure 4.5: Frequency of probe request frame reproduced from [1]

The frequency of WiFi probe request frames are not defined in the IEEE 802.11

standards and is left for the vendors to decide. The frequency of probe request frames

transmitted by a smart phone depends on various factors, such as its manufacturer,

IEEE 802.11 implementation, and the state of the smart phone (display on/off, WiFi

on/off ..etc). Since the transmission characteristics of the WiFi probe request messages

has a strong correlation with the state of the device, this information can be used by

an adversary to determine the state of the smart phone. For example, Jamil et al [119],
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with more than 93% accuracy, is able to determine the (on/off) state of display on the

smart phone by analysing the pattern of WiFi probe request messages emanating from

the phone.

4.2.1.2 MAC Address and Preferred Networks

WiFi probe requests are considered a security vulnerability due to the fact that they

include the MAC address of the client devices in clear text. A MAC address is a 48

bit number that uniquely identifies a network interface [128]. The allocation of MAC

address is managed by IEEE Registration Authority [128], and is typically done in

blocks of 224 addresses. The first 24 bits represent the Organisational Unique Identi-

fier (OUI) and the last 24 bits represents the network interface card specific identifier.

Manufacturers are allocated a MAC address large block (MA-L) that is composed of

a 24 bit unique OUI and the right to generate various extended identifiers with the al-

located OUI. Hence the first 24 bits can be used to identify the device manufacturer,

for example, ”Apple” or ”Samsung”. The MAC address ”FF:FF:FF:FF:FF” is reserved

for broadcast messages. Most client devices use this unique global identifier as their

MAC address. This method of allocation opens an attack vector, where an adversary

is able to infer information about the device from just the MAC address. For instance

Martin et al, [129] analyse a dataset of 2 billion MAC address of devices and propose

a method where the MAC address alone can be used to infer significant information

about the device.

The MAC address embedded in the WiFi probe request messages has been ex-

ploited for several types of invasion of privacy, such as tracking people [122,130]. For

instance, in the UK, trash cans equipped with WiFi receivers were use to track the

movement of shoppers [118]. Several tracking systems have been deployed in pub-

lic shopping centres to track the movement of customers to gain more understanding.

Identifying the MAC address of a mobile device and linking it to its owner are two

different problems, with the latter being far more difficult due to the presence of other

devices and protection schemes such as MAC randomisation. Cunche [122], shows

how a MAC address can be used to link a mobile device to a person/identity in the real

world. This can be used to set WiFi booby traps where an action is triggered if a person

enters a particular area. This can be performed by simply monitoring the wireless ac-

tivity and checking for the MAC address in the source address field of the header. Such

attacks can be used for various purposes ranging from pranks to proximity weapons.

MAC Randomisation: A common strategy employed by most smart phone and
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computer operating systems is to randomise the MAC addresses. While the general

principle is the same, the details differ depending on the operating system and the man-

ufacturer. Some device change MAC addresses every 20 minutes and some every few

hours. This can provide some protection against MAC address profiling attacks, for

instance, in cases the OUI of the MAC address is used to determine the manufacturer.

However, all implementation of MAC address randomisation has been shown to fail in

providing adequate privacy protection [131]. Using unique fingerprints such as probe

burst rate, known SSIDs and pattern of IEs, it is possible to identify the device and

link it to the MAC addresses. In the network stack made of several interworking com-

ponents, the original MAC address is sometimes leaked, for instance, it was recently

discovered that the Access Network Query Protocol (ANQP) request on Linux and

Windows OSs used the original MAC address in their messages. Such developments

have showed the limitations of MAC randomisation in protecting the MAC addresses

of WiFi devices.

4.2.1.3 Probe request bursts

Since access points can be allocated any of the WiFi channels, the probe request mes-

sages must be sent out in all the channels that the client is allowed to use in the geo-

graphical location. Hence the probe messages are usually sent out in bursts in succes-

sive channels to enable discovery of access points in these different channels. While

this ensures that access points of interest would hear the probe request messages irre-

spective of the channel they occupy, it also exposes a new side-channel for attack.

The algorithm a client uses to send probe bursts across different WiFi channels

varies from one client device model to another. In particular this depends significantly

on the operating system and the WiFi chipset in use [132]. For instance, the algorithms

used by Samsung Galaxy S5 and Apple iPhone 4 can be visualised from Fig. 4.6. It can

be seen how the device sweeps the WiFi channels with its probe request frames. The

probe request burst characteristics can be used to accurately fingerprint a device since

there is a strong correlation between the burst characteristics and the device model.

4.3 Observations from monitoring Home WiFi networks

In order to understand the severity of information that can be manually inferred from

passive sniffing of encrypted home WiFi networks, experiments are conducted in three
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Figure 4.6: Frequency of probe request frame reproduced from [2]

dual-income family homes using passive WiFi sniffers, correlated with ground truth

activity information. In this section, we discuss different facets of private information

that can be manually inferred from the passively sniffed signal.

4.3.1 Experimental Methodology

To investigate the current state of security in home WiFi networks, we design a portable

WiFi sniffer that is capable of monitoring a home WiFi network. We deploy it in

the homes of three dual-income families for one week along with a feedback device

through which they are able to provide information about various activities such as

sleeping, cooking, and watching TV.

We design a portable sniffer that is capable of collecting the encrypted WiFi signals.

A schematics diagram illustrating various components used in the device is shown in

Fig. 4.7. The sniffer uses Odroid-XU4 [133], an octa-core single board computer that

can power a BLADE-RF [134] software defined radio. The Odroid-Xu4 is a good

choice for the experiments since it has USB 3.0 ports, supports eMMC storage, and
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Figure 4.7: Schematics of WiFi sniffer used by a typical rogue agent

is powered by ARM Cortex A15 and A7 octa-core processors. The BLADE-RF pairs

well with the Odroid-XU4 single board computer and they are connected through the

USB 3.0 port. It is capable of receiving 12-bit 40 MSPS and can be used to scan up to

40MHz of spectrum. We run a modified IEEE 802.11 GNURadio receiver [96] on the

Odroid-XU4 with modified firmwares, capable of storing frames to an external storage

at line rate.

In order to measure ground truth about home occupancy we include two additional

components, 10mm X 10mm push buttons and a pyro-electric infrared sensor (PIR)

sensor. The PIR sensor is capable of detecting human presence within its line of sight

and has about 135 degrees of wide coverage.

We deploy this device in three family homes in the UK for two weeks. We inten-

tionally choose three families with dual-incomes. The dynamics of home occupancy

and activity is significantly different for dual-income families [135]. For instance,

most dual-income family homes are unoccupied at regular timings each day, which

is not the case with single income homes. Kids tend to stay home alone more in the

case of dual-income families. The devices are placed in an easily assessable location

and the sniffer is separated from the WiFi access point by two walls or more in all the

homes, as illustrated in Fig. 4.8.

71



Smartphones

WiFi Sniffer
Home AP

Walls

Computer

Figure 4.8: Deployment of sniffer in home WiFi network

ID Income Type Occupants WiFi Devices

A Dual Income 32 years male and 32 years

female

9 devices; IPad tablet, IPod

music player, ROKU TV,

Chromecast dongle, PS3,

two laptops, and two apple

iPhones.

B Dual Income 38 year male, 35 year female

with two kids, 8 year old boy

and 2 year old girl

6+ devices; IPad tablet, Nin-

tendo WII, Smart TV, two

laptops, two smartphones and

some WiFi enabled toys.

C Dual Income 30 year male and 28 year fe-

male

7 devices; IPad tablet, Sony

PSP, chromecast HDMI

streamer , two laptop and two

smartphones.

Table 4.1: Information about homes involved in the experimental study
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Figure 4.9: Information collected through the sniffer

4.3.1.1 Information Collected with the WiFi Sniffers

The information collected by the WiFi sniffer is classified in Fig .4.9. The IEEE 802.11

MAC frames are processed for management frames and data frames. The data frames

are encrypted and hence no useful information can be obtained from the data itself.

However, the encrypted data frames can be used to measure traffic characteristics of

the home WiFi network which in turn can be used to infer the number of active devices

and their activity. This is made possible with the use of encryption schemes that retain

the original size of the data. The data frames are processed on the device and the

traffic metrics are extracted. We retain all the IEEE 802.11 management frames. In

the management frames, of particular interest, are the WiFi probe request/response

messages and authentication/de-authentication messages. The WiFi probe messages

and its frequency can be used to extract information about the availability and activity

of mobile WiFi clients such as smartphones.

We also collect other non-wireless information for ground truth measurements

about the occupants presence and activities. The PIR motion sensor provides infor-

mation about the occupancy of the home. We also provide push buttons on the device

for the home occupants to provide ground truth for events such as going to bed, waking

up, leaving home, arriving home, and watching TV. We use this information to identify

the presence of correlation between the events and the wireless activity.
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4.3.2 Information Leaks

In this section, two types of private information that can be inferred from the passively

sniffed wireless signal, namely, home occupancy and in-home activity are discussed.

Time ( 24:00 hours )
00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 24:00

Not Available 

in Vicinity

Available

Smartphone 1
Smartphone 2

Figure 4.10: Presence of smart phones in vicinity of Home A in a 24 hour period
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Not Available 

in Vicinity

Available

Smartphone 1
Smartphone 2

Figure 4.11: Presence of smart phones in vicinity of Home B in a 24 hour period

Home occupancy refers to a set of information related to the current occupancy

state of homes. This is privileged information which an adversary could use to target a

particular home or its occupants for abuse. The knowledge that a home is unoccupied

may increase the number of home burglaries. For instance, an offender could surf the
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Figure 4.12: Presence of smart phones in vicinity of Home C in a 24 hour period

streets with a portable WiFi scanner or enter a higher rise building (such as a residential

flat with multiple units), to identify an unoccupied house to target.

To identify home occupancy, the active devices in the home environment is iden-

tified from the sniffed signal data using the management frames. The availability of

smartphone in the home environment over a 24 hour period in homes A, B and C are

shown in Fig. 4.10, Fig. 4.11, and Fig. 4.12, respectively. We set a duration of 20

minutes of silence from a device to mark it as not present in the home. It can be seen

that in a 24 hour period, the frequency of WiFi probe request messages can be used to

accurately track the presence or absence of the device owner at home. This is helped by

the fact that, the smartphones never stop sending WiFi probe request messages, even

when they are connected to the home WiFi access point. While this is useful for the

smart phone to identify access points with a stronger signal it also enables tracking the

presence of smart phones even when they are not in use or in sleep mode.

Another metric that can be used to infer home occupancy without the need to iden-

tify devices involves monitoring the traffic between the home access point and the

wireless clients in a device agnostic manner. Instead of isolating the smartphones to

identify their presence, this method considers the uplink traffic characteristics of the

home WiFi access point to the wireless clients. The intuition behind this method is that

there is a significant difference in the usage of home WiFi networks when the home is

occupied when compared to when its unoccupied. When users are present in the home

they generate traffic on the home WiFi network, even when they are not using their
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devices due to background activity. We use the notion of active devices to capture this

effect. A device is considered active if it receives more than a certain threshold of data

within a set period.
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Figure 4.13: Active devices in home A during a 24 hour period

The results collected from the homes show strong correlation between the number

of active devices and the number of occupants in all three homes. The number of

active devices in a 24 hour time period in homes A, B and C are shown in Fig. 4.13,

Fig. 4.14, and Fig. 4.15, respectively. In all three cases, there is a clear drop in the

number of active devices when the home is unoccupied, which are due to the smart

phones and laptops leaving the home network in these particular cases. It is typical for

most people leaving their homes to carry with them some WiFi connected devices such

as smart phones, laptops, and music players. This has a clearly observable effect on

the in-home network and can be observed by an adversary outside the home premises

without the knowledge of the home occupants.

In-home activity such as sleeping or watching television, is private information.

One of the basic expectations from the home is that the activities of the occupants are

not observable for a stranger from outside. However, the ability of wireless signals

to penetrate through walls, while a very helpful feature to provide network coverage

for your entire home, it can also be seen by any (rogue) WiFi sniffer just outside the

home premises. If the wireless activity can be used to infer physical activities of the
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Figure 4.14: Active devices in home B during a 24 hour period

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 24:00
0

0.5

1

1.5

2

2.5

3

3.5

4

Home C -Day 2

Home Unoccupied

Time ( 24:00 Hours )

N
u

m
b

e
r 

o
f 
A

c
ti
v
e

 D
e

v
ic

e
s
 i
n

 t
h

e
 H

o
u

s
e

Figure 4.15: Active devices in home C during a 24 hour period

occupants, then that provides an adversary the ability to see through the home walls

with a simple WiFi sniffer.

The same concept of active devices can be used to determine some activities such

as sleeping. When all the home occupants are sleeping, naturally there is a drop in
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Figure 4.16: Sleep activity in home A
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Figure 4.17: Sleep activity in home B

the number of active devices such as televisions and laptops for example. However,

smart phones and laptops on standby continue to transmit WiFi probe request messages

among other background activity. The number of active devices in a 24 hour period

is shown in Fig. 4.16, Fig. 4.17, and Fig. 4.18. In all three cases, the reduction in

the number of active devices is clear. Some devices even when not in use continue

to transmit WiFi packets due to some background activities while other devices are

completely turned off (eg., television) during the time when the occupants are sleep.

Some activities such as watching television can be inferred from fingerprinting

the WiFi devices. In our case, the television in the three homes were equipped with
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Figure 4.18: Sleep activity in home C
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Figure 4.19: Television use in home A

WiFi, either integrated as part of the television or as an accessory such as a streaming

player. The MAC addresses were not randomised and unlike smart phones they are

not switched on all the time, so it is straight forward to identify the device from the

headers. The weekly usage of television in home A is shown in Fig. 4.19. The activity

detected from the chromecast corresponds precisely to the periods when the television

was on. The granularity can be further improved by reducing the buffer timer for the

alive counter.
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4.4 WiFi Glass

In this section, we present a systematic method to perform this inference from the

wireless signal information, using convolutional neural networks with deep learning.

A brief introduction to deep learning is presented, followed by the description of the

proposed scheme, referred to as WiFi Glass.

4.4.1 Machine Learning for classification

Recently, machine learning has been shown to solve a variety of pattern recognition

and classification problems [136], in some cases, surpassing human ability. In general,

the objective of machine learning is to find a function g, that defines the relationship

between the set of inputs X and set of outputs Y , given by,

g : X → Y (4.1)

The key difference between legacy pattern recognition techniques and machine

learning is that, the model is obtained from data rather than domain knowledge. Specif-

ically, the inputs X ∈ R consists of k discrete samples and can be represented as,

X =















x1

x2

...

xk















(4.2)

where, xi ∈ R j is the feature vector consisting of j observations corresponding to each

sample, denoted as,

xα =
[

xα1,xα2, . . . ,xα j,
]

,α = 1, . . . ,k (4.3)

Similarly, the outputs corresponding to j samples is given by,

Y =
[

y1,y2, . . . ,yk

]

(4.4)

The goal of the machine learning algorithm is to learn the mathematical model for

the function g from Eq.4.1. Real world observations in the form of,
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D = {(x1,y1), . . . ,(xk,yk)} (4.5)

are used to train the learning algorithm to determine g.

The accuracy of the learning algorithm is significantly influenced by the choice of

features used to train it. In practice, this is a significant limitation, as feature engineer-

ing is well known to be both difficult and expensive. As an alternative, feature learning

is a machine learning technique that allows the system to discover the features auto-

matically, alleviating the need for manual feature engineering. Feature learning can be

performed in a supervised or unsupervised setting. In supervised learning, the system

learns the features using labeled input data, where as, in unsupervised learning, the

system learns using unlabelled input data.

In recent years, deep artificial neural networks also known as, Deep Learning,

have won numerous contests in pattern recognition and classification using supervised

learning. It has been applied to various problems such as image classification, speech

recognition, medical imaging analysis and game play. In wireless communication, it

has been applied for indoor localisation [137], human activity detection using on body

sensors [138], signal modulation [139], and radio burst classification. Refer to [140]

for an overview of the application of deep learning in networking.

The basis of most deep learning algorithms is the artificial neural network. An ar-

tificial neural network (ANN) consists of three layers (input, hidden and output), each

made up of many simple, connected units called neurons, each producing a sequence of

real-valued activation a with parameters P = {W ,B}, where W is the set of weights

and B a set of bias. The activation at neuron t at layer l is give by,

at = σ(W x+b) (4.6)

where, σ is the transfer function, typically a sigmoid or hyperbolic tangent function.

The transfer function introduces non-linearity which enables multiple layers to be

stacked on top each other. Activation functions that are commonly used in layers are

the ReLU, sigmoid and the softmax functions. The rectified linear unit (ReLU) [141],

just removes all negative values in the vector and replaces them with zero. It is defined

as,

σ(xi) = max(0,xi) (4.7)

The sigmoid function produces a curve with a ’S’ shape and is a real-valued differ-
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entiable function and its derivate can be easily computed to determine gradients. The

function is given by,

σ(xi) =
1

1+ e−xi
(4.8)

The softmax function is typically used as the last layer of the network. It is used to

convert a k dimensional vector of arbitrary real values to a k dimensional vector of val-

ues in the range [0,1] whose sum is 1. This vector represents a probability distribution

over k possible outcomes. The softmax function is given by,

so f tmax(x;P ) =
eWix+bi

∑
j
q=1 eWqx+bq

(4.9)

Deep learning refers to a set of machine learning techniques that uses many hidden

layers to learn multiple representations of the data, as illustrated in Fig. 4.20. With

multiple layers, the function g becomes,

g(x;P ) = σ(W∞σ(W∈ . . .(Wγx+bγ))+b1) (4.10)

The objective of training the algorithm is to minimise the loss function given by,

Li =
1

K

K

∑
r=1

l(y∗r ,yr) (4.11)

where, y∗r is the output obtained by the neural network and yr is the actual output

obtained from the labeled training data. Deep neural networks can be trained using

simple stochastic gradient descent technique as long as the units are relatively smooth

functions of their inputs and weights. Using back-propagation, which is essentially an

application of the chain rule for derivatives, the gradient of the function can be com-

puted and used as a measure to adjust the weights. The key insight in back-propagation

is that, the derivative of the loss function with respect to the input layer can be com-

puted by working backwards from the gradient with respect to the output layer. This

technique can be applied recursively to compute gradients for all the layers, simplify-

ing the training process.

There are several successful deep neural network architectures, such as, Recurrent

Neural Network (RNN), Deep Belief Network (DBN) [142], Convolutional Neural

Network (CNN), and auto-encoder (AE). A Recurrent Neural Network (RNN) is made

up of neurons with feedback connections and use long short-term memory units. It

has been shown to be very successful in text compression, speech recognition and
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Figure 4.20: Deep Neural Network architecture showing input, output and dense hidden

layers

handwriting recognition tasks. A Deep Belief Network (DBN) is a stack of restricted

Boltzmann machines, which is a undirected connected bipartite graph consisting of

feature-detecting units. They were primarily proposed to solve the vanishing gradient

problem, which however can also be solved with the use of a Rectified Linear Unit

(ReLU) function. Autoencoder (AE) is an unsupervised technique that learns a latent

representation of the input value using hidden layers which is modelled as an encoding-

decoding process. Convolutional neural networks (CNN) use convolution to extract

features and were originally proposed [143] for image classification. Convolutional

neural networks are of particular interest to us, due to three key properties, namely,

weight sharing, translation invariance and pooling.

A typical CNN is composed of many layers for both feature representation and

classification. A convolution layer consists of a set of learned F kernel weights to

generate a feature map Y from an input matrix X using a convolution operation. The

role of the convolution process is to detect local conjunctions of features from the

previous layers. This enables the extraction of local features around each window. The

convolution layers are followed by a pooling layer which is used to reduce the spectral

variance in the input features. Several pooling algorithms have been proposed with

max, sum and average pooling being the most popular for recent applications. With
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Figure 4.21: Convolutional Neural Networks architecture showing convolution layers,

pooling layers followed by dense layers

max-pooling for example, the maximum value of a local patch of units is identified

and neighbouring pooling units take inputs from patches that are shifted by one row or

column, reducing the dimensions and resulting in translation invariance. The output of

the pooling layer is passed onto fully connected layers, finally ending with the softmax

layer. We use multiple convolution and pooling layers, linked to dense layers to extract

the occupancy and activity information.

4.4.2 WiFi Glass architecture

In this section, we describe WiFi Glass, a deep learning technique for identifying home

occupancy and activity using passively sniffed WiFi signals. This technique involves

an information collection phase, a training phase and a deployment phase as illustrated

in Fig. 4.22.

The information collection phase involves sniffing WiFi signal, collecting ground

truth information about activities and preprocessing that data into the appropriate in-

put vectors for the deep learning phase. The WiFi signal in the home environment is

processed at line rate to recover the information discussed in Section 4.3.1.1. In order

to combine the information of different modalities we use an information fusion layer,

that involves a sliding window technique to combine and segment the time series in-

formation into a collection of equal sized vectors. The physical layer parameters are

combined as illustrated in Fig. 4.23. The channel state information is averaged over

bins to reduce the number of subcarriers with a configurable step value. The traffic
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Figure 4.22: WiFi Glass : showing three key phases. 1. Information collection phase

(Green) 2. Training Phase (Blue) 3. Deployment phase (Red)

characteristics and the device activity computed from decoding the management pack-

ets as described in Section 4.3, are used to form an activity vector whose size depends

on the total number of devices being tracked. Using this technique, instead of simply

concatenating the vectors, we use a fully connected layer to combine the data. The

position of these vectors are kept constant to aid the temporal nature of the convolution

process.

The pre-processing learning process consists of a convolution layer followed by

a regularisation layer, a ReLU in our case and finally a pooling layer to reduce the

size of the image. This batch of three layers is repeated as many times as necessary

depending on the hierarchy of the features being captured, as illustrated in Fig. 4.24.

In the convolution layers, the previous layers features are convolved with kernels and

adjusted with a bias value to activate the current layer. The ReLU layer is used to

normalise the data and remove negative values from the system using the function

f (x) = max(x,0). In the pooling layer, the adjacent units are combined to reduce the

size of the images and to increase the invariance of the features to distortions of the

input data. In order to map the feature represented in the convolution layers, the output
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Figure 4.23: Constructing image from the collected information for the convolution op-

eration

from this network is fed into a fully connected network.

Convolution 

Layer

ReLU

Layer

Fully connected

Layers

Pooling

Layer

Convolution 

Layer

ReLU

Layer

Pooling

Layer

Figure 4.24: Architecture of CNN used in WiFi Glass, showing alternating convolution

and pooling layers

The fully connected network is a standard multilayer perceptron neural network

as described in Section 4.4.1 used to map the latent features into various classes of

activities and home occupancy states. For our experiments we use two sets of output

classes, namely occupancy and activity. In the dense network used to map occupancy,

we use two states, namely, occupied and unoccupied. In the dense network used to

map activity use use three states, namely, television, sleeping, and other. A softmax

function is used to convert the activations in this layer into a posterior probability of

the output classes, which is directly used to determine the activity or occupancy state.

Some of the hyper-parameters that needs to be tuned to improve the accuracy of
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Table 4.2: Hyperparameters involved in the deep learning process

Hyperparameter Influenced component Value/Range

Pool Size Max Pooling Layer 1x2 to 1x7

Pool Stride Max Pooling Layer 3 to 5

Number of layers Fully Connected Layers 1 to 5

Weight Decay Back Propagation 0.00001

Output Classes Last Layer 2 to 3

Dropout Probability Dropout 0.7

Kernel Size Convolution Layers 1x2 to 1x7

Loss Function Back Propagation L

Stopping Criteria Back Propagation |L t −L t−1|< τ

the classification process are listed in Table.4.2 along with the component they influ-

ence. During training phase, the various parameters such as the weights and bias that

minimise the loss function needs to be identified. This is a non trivial task as the loss

is a function of hundreds of parameters. A popular technique to solve this problem is

called back propagation using steepest gradient descent.

In order to prevent over-fitting of data to the training set, regularisation methods

such as L1 and L2 regularisation are employed to penalise some parameters. Dropout

is a popular technique [141] employed to prevent over-fitting. Instead of modifying

the cost function, dropout reduces co-adaptations between hidden units by randomly

dropping some hidden units. In other words, dropout reduces the value of a unit to

zero with probability p. This forces the hidden units to not depend on a few other

units increasing the number of paths through which activation happens, enabling the

network to learn redundant features.

4.5 Evaluation

In this section we evaluate the performance of the proposed scheme, WiFi Glass. In

particular, we evaluate the classification accuracy with both activity and occupancy

classes. In addition to the performance results, we also present some interesting be-

haviour of the CNN with respect to some key parameters such as kernel size, number

of layers and pool size. Finally, to understand the time a rogue agent needs to spend

capturing wireless information to carry out this attack, we evaluate the performance of

the proposed scheme with respect to the sniffing duration.

87



4.5.1 Training the model

To tune hyperparameters, we employ a greedy method where in the number of layers,

kernel size, pool size are adjusted while retaining the best configuration from the pre-

vious step. We arrived at a layer size of four, as the classification accuracy plateaus.

The learning rate used is 0.02 and a weight decay value of 0.00001 is used. Training is

performed for a high number of epochs (2000) for each scenario and is stopped if the

error change is less than the set threshold.

The data used to train the model is derived from the WiFi signal data collected from

the three homes using passive sniffing. This data corresponds to different scenarios

and are categorised based on the activity at the time. Furthermore, for training and

evaluation they are separated into two categories, namely, training set and evaluation

set. The signal collected on one of the days (selected in random) is separated from the

training data to be used for evaluating the trained classifier. In total, 420 observations

spanning between 5 minutes and upto 45 minutes were used for evaluation.
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Figure 4.25: Confusion matrix representing the classification accuracy of occupancy

detection

The trained model is ready to be used to identify home occupancy and activities

based on the evaluation WiFi signal set. The input signal is used to construct a set of

images which is then passed as an input to the CNN layers. The final layer outputs the

probability of the house being occupied. In case of activity detection, the final layer
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outputs the probability of the activity being performed at the house, which in our study

is limited to sleeping, watching television, and other activities.

4.5.2 Occupancy and Activity Recognition

The mean classification accuracy of WiFi Glass for occupancy detection across three

home environments is represented as a confusion matrix in Fig. 4.25. The proposed

scheme achieves a very high accuracy (94.85%) in detecting the occupancy states

across all three environments. It identifies unoccupied states with 93.6% probability

and unoccupied scenarios with 96.1%. The false detections of occupied and unoccu-

pied states are at 3.9% and 6.4% respectively. Analysis of these erroneous detections

revealed that most of the scenarios resulting in a false positive occurred within a short

period of time after a state change and most scenarios that resulted in false negative

were due to smart phones being turned off either deliberately or due to lack of power.

It seems possible to improve the accuracy of the scheme by collecting training data

around these edge cases.
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Figure 4.26: Confusion matrix representing the classification accuracy of activity detec-

tion

The confusion matrix for activity detection, classifying them into three activity

classes, namely, sleeping, watching television and other activities, is shown in Fig.
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4.26. All three activity classes are classified with high accuracy in the three envi-

ronments, with the average accuracy of 94.5%. Most of the erroneous detections are

when activities belonging to the other activities class are identified as belonging to the

sleeping activity class due to the similarity of traffic characteristics. Analysis of these

errors show that most of them occur when there is insufficient information about the

presence of smart phones and high reliance on the traffic characteristics. The accuracy

of the activity classification can be further improved by tuning the hyper-parameters,

particularly, the dropout parameters to reduce the reliance on traffic characteristics.

4.5.3 Hyper-parameters
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Figure 4.27: The effect of number of layers on the performance of the CNN

We now analyse the performance of WiFi Glass with respect to key hyper-parameters

such as the number of layers, kernel size, and pool size. The classification accuracy

of the CNN with varying number of layers in the network starting from one and in-

crementally increasing it up to five layers, as shown in Fig. 4.27. The accuracy of the

classification scheme peaks with four layers suggesting that the four layers are able to

capture the hierarchy of features required for both occupancy and activity detection.

With a higher number of layers, the problem of overfitting becomes more pronounced

and the accuracy of the testing set decreases.

The classification accuracy of the CNN with varying pool size is shown in Fig.

4.28. The pooling layer is used to reduce the spatial size of the representation and

the pool size refers to the number of units that are consolidated into a single unit. We

incrementally vary the pool size from 1x2 to 1x5. The classification accuracy of the
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Figure 4.28: The effect of pool size on the performance of the CNN

CNN does not follow a clear trend and hence the pool size does not seem to have any

potential to improve it.
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Figure 4.29: The effect of convolution kernel size on the performance of the CNN

The classification accuracy of the CNN with varying kernel size is shown in Fig.

4.29. The convolution layers convolve a kernel of size 1xk with the input layer before

passing it to the pooling layer. The size of the kernel affects the temporal range of

feature dependencies and hence needs to be tuned to the input data. The accuracy

of classification increases when the kernel size increases from 1x2 to 1x3, however,

beyond that, the classification accuracy saturates, suggesting 1x3 as an efficient kernel

size.

In order to understand the practical implications of the amount of time a rogue

agent has to sniff the data for training and classification, we train the network with
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Figure 4.30: The effect of sampling duration on the classification accuracy

varying amounts of labeled data from two days to 6 days of sniffing duration. For

classification, we use sliding windows of intervals ranging from 5 minutes to 45 min-

utes. This sliding window duration translates to the time spent by a rogue agent with

a passive WiFi sniffer in the home environment in order to determine its occupancy

state. The classification accuracy with increasing sniffing duration is shown in Fig.

4.30. As expected, the classification accuracy increases with increasing sniffing du-

ration. However, in all the environments, a sniffing duration of around 15 minutes is

enough to determine occupancy with more than 90% certainty. And, a sniffing dura-

tion of 30 minutes achieves a near perfect classification accuracy in two of the three

home environments, highlighting the practicality of this attack vector.

4.6 Promising Countermeasures

So far only a few attempts have been made using deep learning on passively sniffed en-

crypted WiFi signal to reveal private behaviour about its users. It seems inevitable that

the use of deep learning would continue to further challenge the preservation of pri-

vacy in an encrypted home WiFi network. Hence it is of crucial importance to identify

countermeasures to such attack vectors. Several promising directions for countermea-

sures to WiFi Glass exist for further research, such as use of encrypted management

frames, Obfuscation of traffic characteristics and using fake wireless transmissions.

Encrypted Management Frames: In IEEE 802.11 management frames send unen-

crypted information over the un-secure wireless medium. While this design choice

did not pose a concern two decades ago, now with new handoff mechanisms, radio
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resource management, and service discovery processes, the management frames have

come to contain sensitive information that must be protected. Additionally, the lack of

authentication of management frames lead to vulnerabilities which can be exploited in

de-authentication and disassociation attacks. The IEEE 802.11w protocol amendment

proposes Protected Management Frames (PMF), a specification for communicating

with encrypted management frames that can provide protection against the protocol

based attacks that use information in the management frames. This specification is a

mandatory requirement in order to obtain the certification for IEEE 802.11ac, the latest

WiFi standards for WLANs.

Obfuscation of traffic characteristics: In WiFi the data transmitted over the un-

secure wireless medium is encrypted. However, the 128-bit AES block cipher used to

encrypt the data preserves the original size of the plaintext data. This exposes a range

of side-channel information that an adversary could exploit, for instance, Akinson et

al, propose a mechanism that can detect the presence of Skype traffic with around 97%

accuracy using only the inter-arrival time between frames and frame size distributions

[144]. Traffic analysis has been shown to enable an adversary to infer the identity of

websites that the user travels to [145]. Our experimental study demonstrated that the

traffic characteristics may indeed be used to infer personal information about home

occupants. Hence it is clear that such information must be obfuscated, for example, by

padding to change the original size of the clear text.

4.7 Summary and Conclusion

Communications over the home WiFi network is considered private when encryption

and a strong passphrase is used. In this chapter, we showed that private information

can indeed be inferred from encrypted home WiFi networks using traffic analysis. We

presented WiFi Glass, an attack vector on home WiFi Networks that can be used to

determine the occupancy state of the home and some activity classes with high accu-

racy. Moreover, to determine such information in most cases, a rogue agent would

only need to spend around 15 mins, highlighting the practicality of the attack. The two

most promising avenues for countermeasures are obfuscation of traffic characteristics

and encrypted management frames. With the continuing proliferation of deep learning

techniques, it is crucial that countermeasures are developed for such attacks.
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Chapter 5

Summary

5.1 Summary of Contributions

This thesis discussed three issues related to efficient use and privacy of wireless spec-

trum use. Specifically, we proposed,

• GAVEL, a strategy-proof auction mechanism for short-term spectrum access

that improves spectral efficiency

• CPRecycle, an improved OFDM receiver that mitigates interference using in-

formation in the cyclic prefix to improve spectral efficiency

• WiFi Glass, an attack vector on home WiFi networks that reveals private infor-

mation about occupancy states and human activity using passively sniffed WiFi

signal.

First, we considered short-term spectrum auctions. Existing auction mechanisms

do not satisfy the requirements for a dynamic short-term spectrum market. Since the

first strategy-proof short-term auction mechanism, VERITAS, was proposed in 2008,

several problems have surfaced and several auction mechanisms have been proposed.

We identify that the root cause of all these problems may be due to the underlying

auction format (the sealed-bid auction format) and not the winner/price determination

strategies. With this insight, we proposed a truthful auction mechanisms, GAVEL, for

the Licensed Shared Access market, based on the ascending-bid auction. Performance

evaluations of the auction mechanism show that GAVEL improves revenue for the

auctioneers while achieving better utility for the bidders.
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Second, we investigated the use of cyclic prefix to decode data in the presence of in-

terference improving spectral efficiency. The cyclic prefix contains useful information

and can be utilised for interference mitigation. Through experiments involving US-

RPs, we observed the effects of the received signal in the cyclic prefix in the presence

of different types of interference. This led us to the key insight, that while the cyclic

prefix only contains redundant information about the signal of interest, the presence

of interference in the environment turns this information unique and useful to decode

the signal of interest in the presence of interference. Using this insight, we designed

CPRecycle, an improved OFDM receiver that is capable of using the information in the

cyclic prefix to mitigate various types of interference such as adjacent channel inter-

ference and co-channel interference. Performance evaluations using off-the-shelf WiFi

routers and USRPs, showed that CPRecycle is able to decode the signal of interest even

in the presence of strong interference in various deployment scenarios. Furthermore,

CPRecycle receiver only require modifications at the OFDM receiver and hence can

support the millions of smart phones and laptops that are already in use today.

Third and finally, we investigated the privacy of encrypted WiFi networks in home

environments. Using experiments in three dual-income family homes, we observe that

passively sniffed signal in the home environment can be used to infer highly private

information such as home occupancy and activities inside the home. We presented

WiFi Glass, an attack vector that uses deep learning to determine occupancy status of a

home and some activities of its occupants. Evaluations using real data shows that such

private information can be inferred with high accuracy and in most cases only requires

about 15 minutes of sniffed data. This highlights the need for countermeasures as such

attacks using deep learning would only get more capable in time. We briefly discussed

some promising avenues for countermeasures, covering, traffic characteristics obfus-

cation and encrypted management frames.

5.2 Future Work

Spectrum Auctions: GAVEL, the auction mechanism proposed in this thesis is the

first time ascending-bid auction format has been used as the basis for a dynamic short-

term spectrum auction mechanism that is strategy-proof. The nature of ascending-bid

auctions while it solves several problems associated with sealed-bid auction mecha-

nisms, opens other issues for consideration. For instance, the nature of sealed-bid

auction format avoided collusion by enforcing the secrecy of the bid. In the ascending-
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bid, the bidders are able to infer their competitors bids based on the demand curve.

This may open avenues for collusion and requires further investigation. GAVEL has

not been shown to maximise the social welfare, either exactly nor approximately, or to

be Pareto-efficient. This is due the distributed nature of channel assignment in GAVEL

and requires further investigation.

CPRecycle: There are two aspects of CPRecycle that needs further investigation.

Just as in with single antenna receivers, with MIMO, CPRecycle provides multiple

redundant copies of the signal received a few microseconds apart that could have suf-

fered from a different level of interference. Furthermore, along with spatial multiplex-

ing streams, CPRecycle offers another dimension of redundancy that can be exploited

in the decoding process. This requires further investigation. Second, further evalua-

tion of performance of CPRecycle with varying packet length, modulation schemes,

different interference sources, environments, and communication standards is left for

future work. Modern standards such as IEEE 802.11ac have a much longer duration

of cyclic prefix and the performance of cyclic prefix in such systems require further

investigation.

Privacy of encrypted home WiFi networks: With the continuing proliferation

of deep learning techniques, it is inevitable that techniques such as WiFi Glass would

only get better at extracting private information from encrypted WiFi networks based

on the context of their deployment. Hence, it is crucial to develop countermeasures

for such attacks to preserve privacy on home WiFi networks. In particular, the traffic

characteristics and the unencrypted management frames are promising avenue for such

countermeasures and requires further investigation.
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