
Automating the gathering of relevant

information from biomedical text

Catherine Canevet

Doctor of Philosophy

Institute for Communicating and Collaborative Systems

School of Informatics

University of Edinburgh

2009





Abstract

More and more, database curators rely on literature-miningtechniques to help them

gather and make use of the knowledge encoded in text documents. This thesis investi-

gates how an assisted annotation process can help and explores the hypothesis that it is

only with respect to full-text publications that a system can tell relevant and irrelevant

facts apart by studying their frequency.

A semi-automatic annotation process was developed for a particular database - the

Nuclear Protein Database (NPD), based on a set of full-text articles newly annotated

with regards to subnuclear protein localisation, along with eight lexicons. The annota-

tion process is carried out online, retrieving relevant documents (abstracts and full-text

papers) and highlighting sentences of interest in them. Theprocess also offers a sum-

mary Table of the facts found clustered by type of information.

Each method involved in each step of the tool is evaluated using cross-validation

results on the training data as well as test set results. The performance of the final tool,

called the “NPD Curator System Interface”, is estimated empirically in an experiment

where the NPD curator updates the database with pieces of information found rele-

vant in 31 publications using the interface. A final experiment complements our main

methodology by showing its extensibility to retrieving information on protein function

rather than localisation.

I argue that the general methods, the results they produced and the discussions they

engendered are useful for any subsequent attempt to generate semi-automatic database

annotation processes. The annotated corpora, gazetteers,methods and tool are fully

available on request of the author (catherine.canevet@bbsrc.ac.uk).
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Chapter 1

Introduction

Biologists used to study particular proteins and their interactions until entire genomes

and proteomes were discovered. Since then, scientists havebeen able to take a more

global approach to their research work by, for example, analysing all the factors in-

volved in a pathway at the same time. Leading their research in such a manner is only

possible thanks to large amounts of data being made available. Furthermore, this also

relies on relevant data being easily accessible.

The biological literature is a major and rapidly expanding repository of knowledge.

In order to make this source of data accessible, informationcan be extracted from it and

stored in databases where information is easier to find. Thisprocess can be achieved

by domain experts. They can read articles, select what is of interest to them and an-

notate accordingly their particular database. However, itis now virtually impossible

for curators to read or even skip through all the articles that are being published. This

issue means experts in the biomedical domain are craving solutions that can help them

save time without missing important information.

The first section of this chapter explains this need for text mining in biomedicine. It

also stresses the need for text mining on full text rather than on abstracts, and discusses

some of the additional problems that working on full-text papers introduces. The sec-

ond section presents existing protein subcellular localisation databases, and stresses

why working on protein localisation is important. The thirdsection then introduces

the Nuclear Protein Database (NPD), which is the subcellular localisation database

that I have worked with. The fourth section presents the NPD Curator System Inter-

face, the final tool I developed for this database. Finally, the claims of the thesis are

given in the fifth section while the last section gives an overview of the structure of the

thesis.

1



2 Chapter 1. Introduction

1.1 The need for text mining in biomedicine

Recent technological advances have driven the developmentof increasing high

throughput experimental methods in biomedicine, with a resulting explosion in data.

In most research areas - and biomedicine is no exception - scientists publish their re-

sults in conference articles and journals. This large number of data coming out has

triggered an exponential growth of publications. Whereas Figure 1.1 [RSKC05] shows

the growth in MEDLINE publications, Figure 1.2 (fromhttp://www.nlm.nih.gov/

bsd/medline_growth.html ) presents the growth in MEDLINE searches. It is inter-

esting to see that from 2002 to 2004 - in the space of only two years - the number

of publications in MEDLINE rose by about half a million (augmenting in a regular

manner - see exponential curve on Figure 1.1) while MEDLINE searches increased by

20 million. Although this definitely shows scientists use MEDLINE more and more,

these graphs do not tell us how many articles scientists reada year and, more to the

point, how many full-text papers they actually take time to entirely study. The truth is

not that many, as they simply cannot afford the time to do so.

Figure 1.1: Growth of MEDLINE publications [RSKC05].

It has become extremely difficult for researchers to find specific evidence in the lit-

erature they need in developing hypotheses, designing experiments or interpreting their
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Figure 1.2: Growth of MEDLINE searches, http://www.nlm.nih.gov/bsd/

medline_growth.html

results, as it is a very time-consuming task. There is a real need for computer scientists

to help biologists with this particular issue. Although biomedical text mining cannot

deliver results with 100% accuracy, it can provide biologists with a semi-automatic ap-

proach, which can save them a lot of time and hassle, and let them make the final and all

important decisions that, in some cases, only human expertscan take. This relatively

new research field has evolved to cover this need, taking advantage of computational

linguistics techniques (see Section 2.1) as well as domain-specific resources. Figure

1.3 illustrates this issue.

Natural Language Processing (NLP) is a very complex field of research in itself.

BioNLP, which represents NLP applied to the biomedical domain, is an even more

difficult task as the nature of its named entities (NEs) is much more variable. For

example, according to Acromine1 [OA06], “CAT” stands for 64 acronyms ranging

from “chloramphenicol acetyltransferase” to “computer assisted tomography”, not to

forget that cat, in a biomedical article, could also refer toan animal. Indeed the key

issue is disambiguation of NEs to avoid extracting information erroneously.

The incentives for research in bioNLP are numerous. It can help database curators

save time and/or extract more/richer information. It can help bench scientists improve

1Acromine is available fromhttp://www.nactem.ac.uk/software/acromine/
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Experimental data

Automatic text minin g can remove some  part of the work

Literature collection

MEDLINE

GenBank [BKML+05]

OMIM [OMI]

Swiss-Prot [BBA+03]

Expert annotation

Figure 1.3: From experimental data to publications to databases. Researchers pub-

lish their experimental results in articles. In turn, information can be extracted from

these publications and stored into databases. Expert annotation can be assisted and

annotation time speeded up using text-mining techniques.
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searches of sequence databases. Moreover, most bioscientists cannot keep up with the

literature getting published in their field and bioNLP can support them in doing so and

save them precious time.

The main achievements of bioNLP so far have come from three kinds of ap-

proaches: co-occurrence-based methods (see examples in Sections 2.3.5 and 2.3.8),

rule-based approaches (see examples in Sections 2.3.2 and 2.3.3) and finally statistical

approaches (see examples in Section 2.3.6 and Chapter 3). The first type of approach is

the least complex of the three as it mainly relies on Named Entity Recognition (NER,

see Section 2.1.2) results. The second one can require a considerable amount of time

to create the rules while the last one is based on Machine Learning (ML, see Section

2.2.5). Even the most sophisticated methods can still fail against complicated task such

as the extraction of protein function (see Section 6.1.4).

BioNLP exploits the fact that the biomedical literature is accessible on the Internet.

MEDLINE [med] is a database of bibliographic references to all biomedical papers.

For each such paper, it includes its title, authors, journallocation, abstract and numer-

ous forms of valuable meta-data. PubMed [Pub] is a computer system used to access

MEDLINE, as well as other databases. Full text is available in a variety of formats,

under a variety of licensing agreements. Section 4.1.2 discusses this further.

Beyond format issues and availability, why is working on full-text publications

more important, valuable and useful than working on abstracts only? As one might

expect, there are more facts of interest in the full text of anarticle than in its abstract. In

Chapter 4, I will review two articles that discuss this issue. As noted in Chapter 5, when

evaluating the system developed here, Professor Wendy Bickmore extracted protein

localisation relations from full-text articles that were not present in their abstract. Even

though she used to manually extract information from abstracts only, she is now happy

to curate extra information from full-text papers.

Moreoever, important protein localisation relations in full-text papers can be iden-

tified by looking at how frequently they are mentioned (see Section 4.3). Whereas

localisation relations that are important to a paper are generally present in the abstract,

working on abstracts only would not allow this analysis of frequency. Section 4.1.3

discusses this further.

Working on full-text articles does introduce problems not encountered when work-

ing on titles and abstracts alone. First of all, simply locating full-text papers and down-

loading them is a more complicated process than getting abstracts, which are readily

available through PubMed [Pub] in a consistent format.
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Then, once the full-text document is at hand, the format it has been downloaded in

can introduce further difficulties. As discussed in Section4.1.3, HTML is the chosen

format in this thesis work. HTML has its own challenges. For example, publications

are presented online using several separate files. Indeed, the main text of the article

and its Figures cannot be obtained in a single download.

Bickmore has mentioned many of the experimental results areshown in Figures

and their captions. In most cases, captions are in fact part of the main text file. Tradi-

tionally, images were not handled by text-processing systems. Besides, Figure legends

and Table captions tend to describe the material of interestthey embody.

However, a few tools do work with images and their captions notably FigSearch

[LJN+04] and more recently BioText [HDG+07]. BioText is a Web-based search en-

gine that enables users to perform a text-mining search on abstracts or Figure captions.

The results display the Figures along with the retrieved text. Image analysis is not an

area of research I considered for my thesis work but it seems it is now becoming more

prevalent. For example, a dedicated session will take placeat the ninth annual meet-

ing of BioLINK (Linking Literature, Information and Knowledge for Biology) Special

Interest Group at the conference on Intelligent Systems forMolecular Biology for the

first time in June 2009.

Moreover, full text in HTML format contains a lot of text thatis not actually part of

the article. In order to get a pure version of the text (free ofany menus, links,etc.), one

needs to pre-process the text before analysing it in any way.In Section 3.1, I present

the text pre-processor I developed for this thesis work.

The system I have developed is applied to full-length documents rather than ab-

stracts only and offers a complete annotation tool for a particular database. It is because

the tool is targeted and domain-specific that it can generaterelevant results. Moreover,

the extensibility of the approach is discussed in Chapter 6 and a final experiment shows

how the tool could be adapted in order to extract different kinds of information.

1.2 Protein subcellular localisation

A cell is the smallest unit of an organism that can function onits own (see Figure

1.4). Molecular biology studies all the interactions that take place in a cell, as well as

the way these interactions are regulated for the cell to operate as it should in healthy

organisms or faultily in diseased ones. In order to understand where these interactions

may occur, the next subsection presents the main organellescontained in a cell.
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1.2.1 A brief overview of cell structure

The nucleus is the core centre of the cell. It contains the cell’s chromosomes and is

highly important for the activities that occur therein. Indeed, most of the DNA repli-

cation and RNA synthesis take place in this organelle. Figure 1.5 shows the processes

of transcription and translation, which result in the creation of new proteins. Nuclear

sub-compartments do not have physical boundaries (unlike cytoplasmic ones). They

represent places where proteins involved in similar biological processes are concen-

trated together.

The nucleolus (http://npd.hgu.mrc.ac.uk/compartments/nucleolus.

html , [LTML05], [BvKNL07], see Figures 1.6 and 1.7) is the core ofthe nucleus

and contains various components called the fibrillar centers (FC), the dense fibrillar

components (DFC), the granular components (GC) and ribosomal DNA (rDNA).

Its main function is to produce ribosomes, which will, in turn, themselves produce

proteins.

In recent years, other roles have been attributed to this sub-organelle, such as con-

trol of the cell cycle and production of other types of functional ribonucleoproteins

(RNPs). The authors of [BvKNL07] expect that more functionsare yet to be dis-

covered and associated to the nucleolus. It is indeed a subnuclear compartment of

paramount importance as its dysfunction has been linked to causing diseases such as

genetic disorders and predisposition to cancer.

The nucleus also comprises Cajal bodies (CBs) and Gemini of coiled bodies or

gems (http://npd.hgu.mrc.ac.uk/compartments/gem-cajal.htm l ), promyelo-

cytic leukaemia (PML) bodies (http://npd.hgu.mrc.ac.uk/compartments/

pml.html ), paraspeckles (http://npd.hgu.mrc.ac.uk/compartments/

paraspeckles.html ) and splicing speckles (http://npd.hgu.mrc.ac.uk/

compartments/speckles.html ). In [KID08], the authors show that CBs form by

self-organisation after a certain concentration of snRNP is attained. They also suggest

de novoformation is possible for other subnuclear bodies.

The nucleus is bounded by a double lipid membrane, perforated by the nuclear

pores (see Figure 1.4). The nuclear lamina then underlies the inner nuclear membrane

and is composed of intermediate filaments of lamins. It maintains the shape of the

nucleus. It is also involved in various functions such as regulating transcription and

DNA replication.

The paraspeckles play a role in transcription and splicing.RNA contain non-coding
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Figure 1.4: The cell and its nucleus (http://bioweb.usc.edu/courses/2002-

fall/documents/bisc150-2.html ). The nucleus is the core of the cell. It is bounded

by the nuclear envelope. The nuclear pores allow materials to transit between the nu-

cleus and the cytoplasm. The ribosome is responsible for the translation step of protein

synthesis. The endoplasmic reticulum (ER) is divided into two categories: the rough ER

(RER) and the smooth ER (SER). The ER helps with the transport of proteins as well

as their folding. Only proteins that have been correctly folded can be transported from

the RER to the Golgi body. The Golgi body then modifies proteins in order to enable

them to reach their final cellular localisation. The mitochondrion is involved in aerobic

respiration and oxidative metabolism (formation of ATP). The centrioles are constituted

of microtubules and play a role in cell division. The perixosome is a membrane-bound

vesicle that contains over fifty enzymes carrying out diverse metabolic reactions. The

lysosome is the digestive organelle of the cell. The vacuole is a temporary storehouse.

Finally, the cell membrane is a barrier that provides a separation between the cell and

its environment only allowing the exchange of specific substances.
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Figure 1.5: Protein synthesis is composed of two steps: transcription and transla-

tion. Transcription converts double-stranded DNA into single-stranded messenger RNA

(mRNA). mRNA can leave the nucleus through a nuclear pore and, once in the cy-

toplasm, the translation step can take place. The ribosome can combine mRNA and

transfer RNA (tRNA) to create a sequence of amino acids forming a polypeptide or

protein. (http://fajerpc.magnet.fsu.edu/Education/2010/Lectur es/ )
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Figure 1.6: The nucleolus (https://npd.hgu.mrc.ac.uk/compartments/

nucleolus.html ) and its three distinct zones involved in ribosome biogenesis. DFC

and GC are organised as surrounding layers of FC.

sequences, called introns, that need to be taken out before mRNA can participate in

translation and create proteins. The process of splicing involves a spliceosome that

binds to the mRNA and removes introns. The splicing specklesare used to store mRNA

splicing factors.

A spliceosome is composed of several protein-RNA complexes, including small

nuclear ribonucleoproteins (snRNPs). The CBs and gems playa role in snRNPs bio-

genesis. The PML bodies have been suggested to be involved invarious activities such

as transcription, DNA repair, cell cycle regulation, proteolysis and apoptosis.

1.2.2 Motivation behind protein localisation

A protein needs to be located near specific components that engage in a specific process

in order for it to be capable of executing its function withinthat process. Hence the

motivation to understand protein localisation as it gives important clues as to what

processes a protein may be involved with. In [CC03a], the authors even explain how

localisation is often used to elucidate protein function.

I will now review, in subsection 1.2.3, the methods used in localising proteins be-

cause what can be recorded about them in a database relies on the methods that have

been used to capture the data. Subsection 1.2.4 gives examples of protein subcellular

localisation databases and motivates the need for different types of subcellular locali-

sation databases. The next section (Section 1.3) presents the database I have used in
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developing a curator’s assistant for my PhD thesis. This database focuses on one com-

partment of the cell, the nucleus (see Figure 1.7). As discussed in Section 1.2.1, this

particular component’s malfunction has been shown to lead to illnesses. Determining

the subnuclear localisation of proteins allows us to understand genome regulation and

to set us on the trail of discovering the function behind proteins.

Figure 1.7: The nuclear compartments (http://npd.hgu.mrc.ac.uk/

compartments.html ). The nucleolus is the core of the nucleus. Other nuclear

compartments include: PcG, PML, Sam68 bodies, perinucleolar compartment, cleav-

age body, nuclear pore complex, chromatin and heterochromatin, Cajal body and gem,

paraspeckles and splicing speckles.

1.2.3 Biological methods used to ascertain protein localis ation

This subsection introduces the different methods biologists use to resolve protein local-

isation. The nature of the information entered in databasesabout protein localisation

indeed relies on the kind of techniques used to localise proteins in the first place. The

final paragraph of this subsection explains what terms can beused to describe the lo-

calisation of a protein depending on what technique was used.

Because the subjects of study in cell and molecular biology are very small in size,

microscopyuses instruments called microscopes to provide scientistswith an enlarged

image of their subjects. There are two principal types of microscopy used in biology

- light and electron. The former uses visible light to illuminate the subject whilst the

latter directs an electron stream at the subject.

The advantages of light microscopy over electron microscopy are: mutiple colour
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detection (i.e. one can look at more than one thing at a time), ability to use fluorescence

(i.e. sensitivity), and the fact that it can be used on living cells(i.e. it is possible

to perform dynamic studies). Electron microscopy can only be done on fixed (i.e.

dead) material. It has high resolution (showing details about topography, morphology,

composition of the subject as well as crystallographic information) but low sensitivity.

Biologists use fluorescence microscopy to ascertain the localisation of a protein

[GAET06]. There are two techniques they can use, the first oneis calledGFP-tagging.

It uses a gene isolated from jellyfish that encodes a protein called Green Fluorescent

Protein (GFP). As its name suggests, this small protein emits a green fluorescent light

when it is excited by short wavelength light. The technique involves fusing the DNA

encoding GFP to the DNA encoding the protein of interest. Thefusion is assumed to

have no side effect to the movement or the function of either proteins. The resulting

composite DNA is put into a cell, which can be analysed using amicroscope. There

are now variants of GFP available in different colours. Its advantage is that it can be

used in living cells.

The second technique of fluorescence microscopy is calledimmunofluorescence.

In immunofluorescence, antibodies that are coupled to fluorochromes are used, but

this is for fixed (i.e. dead) cells. Humoral immunity is carried out by antibodies which

are blood-borne proteins. They are created by B lymphocytesin order to prevent for-

eign materials from entering a host cell. For this technique, antibodies need to be

specifically prepared against the protein of interest. The prepared antibody molecules

are then linked to a substance that makes them visible under the microscope, but that

has no other side effect. When an antibody’s binding site recognises a specific target

antigen, it binds to it. Immunofluorescence offers excellent clarity because whilst the

proteins bound by the antibody are revealed, the rest of the materials in the cell remain

invisible.

Biochemistry uses techniques such as homogenisation to break up cells andiso-

late organelles. Cell fractionation provides an insight ofthe molecular composition of

a structure. A protein’s location can be determined by observing the co-purification

of proteins in a biochemical fraction.Mass spectrometry (MS)is generally used to

identify the proteins in a purified biochemical fraction. Itinvolves measuring the mass-

to-charge ratio of ions in order to determine the composition of nuclear compartments

[TML07]. Another technique recently developed wasLOPIT , which stands for Lo-

calisation Of Proteins by Isotope Tagging. It is a high-throughput method to locate

proteins by MS where pure organelles are not required. In [DHS+06], the authors
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combine this technique with 2D liquid chromatography of peptides and tandem MS

in order to map theArabidopsisorganelle proteome.Immunoprecipitation enables

proteins that interact with each other to be identified. During immunoprecipitation, a

protein antigen is precipitated out of solution by using an antibody that targets this pro-

tein. Once isolated, proteins that interact with it can be identified by Western blotting

or MS. Western blot separates proteins using gel electrophoresis. Yeast two-hybrid

analysisalso checks for protein-protein interactions, or “Bait”-“Prey” interactions. In

two-hybrid screening, a transcription factor is fragmented into two parts: a binding

domain (BD) and an activating domain (AD). Two fusion proteins are then prepared.

They correspond to “BD + Bait” and “AD + Prey”. When Bait and Prey interact, the

transcription factor is indirectly connected and activates transcription. Therefore if

transcription occurs, this means the two proteins interact.

While microscopy gives better resolution than biochemisty, the latter allow biolo-

gists to look at molecular composition and thereby study things at a larger scale. Once

they have identified what particular organelle they need to look at, microscopy can pro-

vide them with more precise images. Different techniques can be combined to obtain

final results.

Some of these approaches can be associated with certain kinds of terms used in

the biomedical literature to describe the subcellular localisation of proteins. For ex-

ample, MS often describes proteins as “co-purifying with”.Other keywords linked

to this technique are “associate”, “contain”, “include” and “interact”, while terms de-

scribing localisation established utilising microscopy include “concentrate”, “detect”,

“found”, “move”, “observe”, “present”, “seen”, “shuttle”, “stain”, “traffick”, “transit”,

“visible”.

1.2.4 Examples of protein subcellular localisation databa ses

Databases in cell biology vary depending on what information they contain. Some only

comprise data about plants, some about one or more particular model organisms, some

ignore temporal aspects of when a protein is in a particular location, some contain

information about a protein’s normal location, while others may talk about mutated

alleles of the genes producing those proteins. It is becauseof this variety that there are

so many different databases available.

There are three domains of life: the archaea (archaebacteria), the bacteria (eubac-

teria) and the eukaria (eukaryotes). The archaea and the bacteria are both prokaryotes.
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Eukaryotes have a nucleus whereas prokaryotes do not. Even though there is a lot of

diversity within the eukaryotes, a handful are considered representative of them and

are therefore calledmodel organisms.

DBSubLoc [GHJS04] (http://www.bioinfo.tsinghua.edu.cn/dbsubloc.

html ) is a database that houses information about protein subcellular localisation in

general that has been collected from model organism genome projects (covering bac-

teria, eukaryotes, fungi, plants, animals, viruses and archaea), other databases as well

as information found in the literature.

PSORTdb [RAG+05] (http://db.psort.org/ ) is a database that houses infor-

mation on subcellular localisation for bacteria. It actually divides into two separate

sets: ePSORTdb, whose data come from experiments, and cPSORTdb, which stores

results from computational predictions. As none of the other databases presented in

this thesis are based on computational predictions, ePSORTdb is chosen as the dataset

of interest between the two, which will be compared to other databases in this section.

Arabidopsis thalianais the model organism of choice for plants and, for this rea-

son, was extensively studied, which resulted in it being thefirst plant to have its

whole genome sequenced. The SUBcellular location databasefor Arabidopsis(SUBA

[HVTF+07], http://www.suba.bcs.uwa.edu.au ) contains information on subcel-

lular localisations of proteins inArabidopsis, which ranges from results of experiments

to data from other databases and literature references.

LOCATE [FAD+06] (http://locate.imb.uq.edu.au/ ) is a database that pro-

vides information on the membrane organisation and subcellular localisation of pro-

teins from mouse and human. In [FAD+06], the authors explain that the membrane

organisation is the result of computations prediction, andsubcellular localisations data

comes from experiments as well as information extracted from the literature.

Table 1.1 compares the data contained in the four databases introduced above. Two

out of the four are specific to one organism only. The four databases contain between

2165 and 30357 protein entries each. While DBSubLoc contains 1367 non-redundant

proteins for the organism “Plant”, its dataset is not specific toArabidopsisand does not

include as many proteins as SUBA (6743 non-redundant proteins), which is a database

dedicated toArabidopsis, the model organism for plant biology.

The number of localisations these proteins are associated with varies from 6 to

31. Table 1.2 compares the different localisations included in these four databases.

They all contain “extracellular” as a localisation. Four localisations out of 31 are in

3 of the 4 databases: “cellular component unknown”, “cytoplasm”, “mitochondria”



1.3. The Nuclear Protein Database (NPD) 15

Organisms Localisations Non-redundant proteins

DBSubLoc 7 (list in text) 8 30357

ePSORTdb 1 (bacteria) 6 2165

SUBA 1 (arabidopsis) 13 6743

LOCATE 2 (mouse and human) 31 8076 (mouse) / 9108 (human)

Table 1.1: Content comparison of four subcellular localisation databases

and “nucleus”. The number of different entries associated with the Golgi body in the

Table shows where some of the text-mining challenges lie. Itis indeed very difficult to

recognise entities of interest when one concept can be represented by an undeterminate

list of terms. Section 2.1.2 will introduce NER in the next chapter.

Although LOCATE offers information on subcellular localisation of proteins from

mouse and human, it is not as specialised as, for example, a database that would pro-

vide a high level of detailed information on subnuclear localisation of proteins from

mouse and human, which would not be available anywhere else.The NPD was cre-

ated to cover this empty gap of knowledge representation in subcellular localisation

databases. The next section (Section 1.3) introduces the NPD, which I have been

working with for my PhD thesis.

Given how important protein subcellular localisation information is, it is no wonder

that the number of such databases is growing. All these databases share the same kinds

of information, i.e. protein entries with details of their localisations under different

conditions. Section 6.1 explains how extensible my work on the NPD Curator System

Interface is to other databases.

1.3 The Nuclear Protein Database (NPD)

The NPD [DFB03] is a database that houses data on over 2200 mouse and human pro-

teins that have been reported to be localised within 40 locations of the cell nucleus.

Comparing these facts to results in Table 1.1, it seems the NPD is closest to LOCATE

as they both contain data on proteins from the two same organisms (mouse and hu-

man). However, the NPD contains a lot less protein entries and also identifies more

and different types of localisations. LOCATE and the NPD share six location fields

(nucleus, cytoplasm, Golgi, centrosome, ribosome and ER) and differ on the rest of

them. LOCATE contains subcellular localisation terms whereas the NPD focusses on
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Localisations DBSubLoc ePSORTdb SUBA LOCATE

apical plasma membrane X

basolateral plasma membrane X

centrosome X

cell plate X

cell wall X

chloroplast X

cytoplasm X X X

cytoplasmic vesicles X

cytoplasmic membrane X

cytoskeleton X X

cytosol X

endoplasmic reticulum X X

endosomes X

early endosomes X

late endosomes X

ERGIC X

extracellular X X X X

golgi apparatus X X

medial-golgi X

golgi cis cisterna X

golgi trans cisterna X

golgi trans face X

lipid particles X

lysosomes X

melanosome X

membrane X

outer membrane X

mitochondria X X X

inner mitochondrial membrane X

outer mitochondrial membrane X

nucleus X X X

periplasmic X

peroxisome X X

plasma membrane X X

ribosome X

secretory granule X

synaptic vesicles X

tight junction X

transport vesicle X

vacuole X

cellular component unknown X X X

Table 1.2: Localisations included in four subcellular localisation databases
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Figure 1.8: The NPD entry for protein BIG1, http://npd.hgu.mrc.ac.uk/search.

php?action=builddetails\&geneid=1NP01781 . The first section “Names” gives

the main name of the protein, as well as other aliases, and the species the protein

is found in. The section “Keywords” gives keywords that can be associated with the

protein. The section “Subnuclear Localization” lists the different cell compartments the

protein can be located in, specifying at what stage of the cell cycle that would occur.

Extra details are given as well as link(s) to a relevant publication where experimental

evidence can be found. The section “Location” gives the cytogenetic position of the

protein, expressed in coordinates based upon the staining of chromosomes. As noted

in http://npd.hgu.mrc.ac.uk/About_NPD.html , the section “Sequences - Protein”

provides information on the amino acid sequence, predicted protein size and isoelectric

point, as well as any repeats, motifs or domains within the protein sequence, along

with links to other databases (e.g., Entrez, Swiss-Prot, OMIM, PubMed and PubMed

Central). The section “Function - Molecular” gives a GO (Gene Ontology) term along

with its ID and link(s) to a relevant publication where experimental evidence can be

found. The section “History” shows when the entry was created and modified.
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subnuclear terms, as shown in Appendix C. Therefore, the NPDcovers a gap in the

knowledge representation of subcellular localisation databases that no other database

provides.

The original motivation behind the NPD was a project which was going to result in

the identification of a hundred novel nuclear proteins. The idea was to combine these

discoveries with publicly available data on nuclear proteins to create a very specific

database. Undeniably, central databases containing data on entire genomes are very

much needed. However, smaller databases that contain specific information can be

extremely useful too. In making this point, Tom Mistelli used the NPD (http://jcs.

biologists.org/cgi/content/full/115/14/2805 ) as his example and wrote:

“A good example of a relatively small, but focused and highlypractical
database is the recently launched NPD - nuclear protein database.”

In [DFB03], the authors present the database as giving information on protein sub-

nuclear localisations at different stages of the cell cycle, as well as the amino acid

sequence, predicted protein size, isoelectric point, repeats, motifs or domains within

the protein sequence.

GO [ABB+00] terms are attributed to the proteins’ biological and molecular func-

tions. The database is also very well cross-referenced to other databases, such as Entrez

[Ent], Swiss-Prot [BBA+03], Online Mendelian Inheritance in Man (OMIM [OMI]),

PubMed [Pub] and PubMed Central [pmc]. Figure 1.8 presents ascreenshot of what

the database displays for the entry regarding protein Big1.The entire database is easily

searchable using most fields mentioned above. The Website also offers the possibility

to browse by nuclear compartments (see Figure 1.9) or by domain.

Until 2004, the database was maintained by only one human curator: Professor

Wendy Bickmore. Bickmore used to get a daily email from PubCrawler [HW04] giv-

ing her the new PubMed articles that had been retrieved from the daily PubMed update

by the search she had chosen to set, using keywords such as “chromosomes”2 and

“nucleus”3. This original annotation process is shown in Figure 1.10.

Generally, the process of manual maintenance of databases involves domain ex-

perts reading articles and extracting relevant facts for the database at hand and - al-

though annotation processes differ from one database to theother - this usually turns

out to be rather time-consuming. As explained earlier in this chapter, text-mining tools

2The “chromosomes” search uses the following keywords search string: “chromosome structure” or
“chromatin” or “heterochromatin” or “silencing” or “histone”

3The “nucleus” search uses: “nuclear structure” or “lamina”or “nucleolus” or “nuclear bodies” or
“splicing speckle”.
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Figure 1.9: The NPD nuclear compartment browser, http://npd.hgu.mrc.ac.uk/

compartments.html . By selecting a nuclear compartment, users are given its de-

scription as well as a list of all the proteins associated with that specific compartment

contained in the database.

can help specific annotation tasks. Section 2.5 presents examples of databases whose

maintenance is assisted in this way.

In conclusion, the NPD is a small database where the quality of precise information

matters a lot more than quantity. The content of the databaseis extremely trustwor-

thy as each entry has been carefully annotated by an expert. The text-mining work

achieved in this thesis can assist such an expert in their thorough annotation work,

thereby reducing the amount of time needed as well as increasing the amount of infor-

mation added to the database. On the one hand, this is atypical in the sense that it is a

much smaller database compared to the major ones (e.g., Swiss-Prot [BBA+03]). On

the other hand, it is typical as most curator assistant toolsonly provide semi-automatic

approaches to their users and usually leave the final decisions to the domain experts

(see Section 2.5).
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PUBMED

DATABASE

NUCLEAR
PROTEIN

updates the NPD with relevant

publications (z), subset of y

sends daily new articles (x)
PUBCRAWLER

CURATOR

depending on keywords set

sends a selection (y) of x

Figure 1.10: The NPD’s old annotation process. The curator had set two keyword

searches in PubCrawler, a free alerting service which gets updates from PubMed every

day. PubCrawler would email the curator daily with a list of articles of interest. Based

on the title and the abstract of each publication, the curator would decide which papers

were relevant to the NPD and which were not. Out of the relevant ones, the curator

would study the abstract and annotate an NPD entry with more information and a link

to the particular article, or create a new database entry if required and update it accord-

ingly.
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1.4 The NPD Curator System Interface

This section gives a brief summary of what tools the interface for the curator system

developed in this thesis work provides a curator with in order to introduce Chapter 2.

A detailed overview of all the different features the interface supports will be given in

Chapter 4. The interface allows users to either upload a file containing PubCrawler’s

results (in their normal email format) or simply type a PubMed identifier (PMID) of

interest. If PubCrawler’s results were uploaded, the curator is provided with a rank-

ordered list of PMIDs. Clicking on a PMID will launch the sameresults as typing a

PMID from scratch in the first place. If full text is found in HTML format, then the

curator is presented with a full-text analysis of the paper.The interface works with the

abstract otherwise.

In this thesis, I refer to “relevant sentences” or “sentences of interest” as sentences

that carry information about the subnuclear localisation of one or several protein(s),

unless stated otherwise (e.g., in Chapter 6). Therefore, “irrelevant sentences” are sen-

tences that do not contain any information about protein subnuclear localisation.

For the analysis of a paper, a first page highlights in yellow sentences classified as

relevant. A second page displays a summary Table of all the different types of protein

localisations found in the paper, rank-ordered by types that contain the highest num-

ber of sentences, with links to these sentences (which takesthe user to the following

page), and extra columns giving details as to whether this represents novel information

to the NPD. The final page displays the text using a colour-coded highlighting of rel-

evant sentences to a particular type of protein localisation information (selected in the

previous page).

1.5 Claims of the thesis

Manual database annotation and maintenance is hard and time-consuming. Firstly,

it is difficult to find articles that actually contain new facts supported by evidence.

Moreover, finding new evidence-supported facts in an article is very time-consuming

because it involves checking that there are experimental results backing up those facts

somewhere in the full-text paper which - without any assistance - requires spending

time reading it more or less completely.

The aims of this research work are to automatically find relevant information that

has not yet been extracted into a biomedical database devoted to such information,
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as one step in minimising the amount of time a human expert will need to spend to

keep this database up to date. Detecting redundancy is a research topic that has been

addressed in the newswire NLP domain (see Section 2.4) but not in the BioNLP area.

In the newswire domain, news overlap and the structure of thearticles is different from

articles in the biomedical literature. It seems both types of article contain repetition of

the information but in different places of the paper (see Section 4.3).

1.5.1 Claims

Not all facts of relevance for annotation can be found in an article’s abstract. An

abstract can also contain facts that are irrelevant for annotation. My thesis supports

the claim that it is only with respect to full articles that a system can tell relevant and

irrelevant facts apart. It also implements an annotation system that enables a curator to

analyse full-text papers effectively.

1.5.2 Evidence the claims are based on

The system I built was developed in order to support those claims. Even though the

system only has a superficial understanding of natural language, it can nevertheless

help a curator to find relevant facts quickly by providing thecurator with highlighted

sentences of interest in full text and a summary Table of all the different facts found

ranked in order of importance. Using the analysis of repetition in full-text biomedical

articles, the system can distinguish relevant and irrelevant facts as well as present the

relevant ones from the most important to the least important.

1.5.3 Contributions made in supporting claims

I have also contributed to the field by developing annotated corpora (see Section 3.3),

as well as gazetteers (see Section 3.2). Indeed, specialised resources are better at recog-

nising NEs in specialised text rather than every day text. I have created such resources

for several different kinds of entities (see Sections 3.4.1and 6.1.4). Availability is

discussed in Section 7.1.2.
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1.6 Structure of the thesis

This section outlines what work has been carried out in orderto support the claims

made in the previous Section (1.5) and gives an overview of the structure of the thesis.

Chapter 2 introduces the background for this research work.Chapter 3 focuses

on finding relevant information about protein locations in full-text papers. Chapter

4 presents all the different technical features supported by the NPD Curator System

Interface. Chapter 5 introduces the system interface itself - built to test the claims -

and evaluates it. Chapter 6 discusses extensibility and maintainability of my approach.

Finally, chapter 7 gives a conclusion.





Chapter 2

Background

The expansion of biological databases is increasingly relying on semi-automatic text-

mining of the biological literature. Indeed, there has beena growing volume of work in

text-mining for biological literature, and biomedical text-mining is a rapidly growing

field. Experts in biology have moved from small focussed studies to high-throughput

assays. Thus, there are more data in any one paper in the form of new evidence for

known facts, new facts, variations on and exceptions to known facts, and so on. To

clarify my previous definition of “relevant sentences” in this thesis (see Section 1.4),

“relevant sentences” refer to sentences that carry information about the subnuclear

localisation of one or several protein(s) - whether that piece of information constitutes

a known or new fact.

There are a few main streams in text-mining. The first sectionof this chapter

introduces them and, by doing so, gives an overview of what text-mining covers. The

second section provides background information on the various methods and tools

used in this thesis. The next two sections compare previous research work to the work

I have achieved and I am presenting in this thesis. Section 2.3 compares my system to

other systems that detect relevance in free biomedical text. Section 2.4 compares my

system to other systems that detect redundancy in free biomedical text. Section 2.5

presents how other biological databases are annotated. Finally, the last section offers a

conclusion for this background chapter.

2.1 Overview of text-mining

This first section is a background section that defines text-mining, its different domains

and what metrics it uses to evaluate results. Text-mining isa discipline that involves

25
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Knowledge

extraction

Corpus

annotation

Dynamic content

structuring

Raw text

(Implicit knowledge)

Structured knowle dge

(Explicit knowledge)

Figure 2.1: From implicit to explicit knowledge. Raw and implicit knowledge contained

in free text can be extracted using text-mining methods, and formatted into structured

and explicit knowledge.

looking for information of interest in free text and converting it into structured data

where the information will be easily searchable. The goal behind this task is for the

data to become readily available and gathered together withconnected information,

such as links to other databases for example. Figure 2.1 illustrates this process.

The text-mining tasks undertaken in this thesis are Information Retrieval (IR) both

at the document level (this is illustrated in Figure 2.2, which essentially fits within

Figure 2.1) and at the sentence level, NER and Information Extraction (IE, Figure

2.3). While a lot of research in the biomedical text-mining is focussed on extracting

protein interactions [CBLJ04, AGH+08], for my thesis - as described in Section 1.4, I

worked on protein-compartment relations and, more specifically, on the localisation of

a nuclear protein in a subnuclear compartment at a given timeof the cell cycle.

2.1.1 IR and TC

Information Retrieval (IR) involves trying to find all the items relevant to a specific

query. The items can vary in nature. They can be text documents (document retrieval),

sentences (sentence retrieval) or groups of subsequent sentences (passage retrieval).

These items can even be photographs or films.

There are two standard approaches to IR. The first one consists of the user speci-

fying a combination of keywords, this is called a Boolean query. For the second type,

instead of providing one or more keywords, the user gives a “query document” that
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will be used to retrieve documents considered similar.

Text categorisation (TC) is a task that automatically classifies text documents into

categories by looking at the content they hold. Figure 2.2 shows the TC task that was

achieved for my MRes ([Can04], see Section 4.1). TC divides up a given set into ones

belonging to different categories whereas IR returns a subset of a very large given set

that belong to a specified category.

Articles

relevant to the NPD

relevant to the NPD

Articles

not

Figure 2.2: Text categorisation tool taking PubCrawler’s alerts as an input and cate-

gorising PubMed abstracts in 2 categories - relevant or not relevant to the NPD.

2.1.2 IE and NER

Information Extraction (IE) involves extracting specific information of interest from

free text. It makes use of NER, which aims to identify items inthe text comprising

one or more subsequent words and classifying them into chosen NEs. This can be

achieved using a dictionary approach, a rule-based approach or, should there be an

annotated corpus available, ML can be used. In the newswire domain, names of organ-

isations, cities and people are of interest, while in the biomedical domain, the names of

proteins, cell compartments, phases of the cell cycle, takethe focus of NER (see Sec-

tion 3.4.1). For example, as Figure 2.3 shows, it is possibleto extract from a collection

of documents or some Webpage content, some entities (e.g., a protein name) and some
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LOCATION PHASE CONDITIONPROTEIN

Figure 2.3: Example of IE in the biomedical domain. Information can be extracted from

relevant free text and put into a structured format.

relationships (e.g., the subnuclear localisation of this protein).

The names of genes and proteins can take several forms. Each of them can usually

be referred to as full names (e.g., nucleoporin 153) or symbols (e.g., NUP153). For

each possible symbol, topographical variants also exist (e.g., NUP-153, NUP 153).

Some genes and proteins have synonyms (e.g., Nuclear pore complex protein), others

have ambiguous names that could have a different meaning in adifferent context (e.g.,

FRAP is a protein name in the NPD, however it is also the name ofa technique and

stands for “Fluorescence Recovery After Photobleaching”).

IE does not only consist of extracting NEs, it is also about extracting relations.

This can be achieved using co-occurrence, patterns or fuller parsing. Co-occurrence

statistics (see [RSKA+07] in Section 2.3.5) tend to provide high recall but low preci-

sion. Pattern-based methods (see [DA05a] in Section 2.3.3)retrieve results that offer a

higher precision as words should fit in a precise template. These last two methods can

also be combined. Fuller parsing methods pay attention to syntax and work with parse

trees, dependency treesetc.

2.1.3 Evaluation measures

In order to evaluate and compare results obtained by different techniques, text-mining

utilises common measures. Because it is not feasible to testsystems against absolutely

every single possibility, it is standard practice to perform evaluations using:

• an annotated corpus called a Gold Standard (GS),

• a measure that shows how well a system performs against such aGS.

The most reliable kind of GS is a corpus manually annotated bya domain expert.

However, acquiring this type of collection is very expensive, which is the reason why it

can sometimes be substituted by a surrogate GS. In a surrogate GS, the right answer(s)
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are assumed to be the most frequent one(s), or the set of answers returned by partic-

ipants for a contest. For example, the latter approach is used in TREC (see Section

2.4) and is referred to as “TREC pooling”. A surrogate GS, although not ideal, can

nevertheless aid researchers to evaluate their experiments and advance the field. It can

sometimes fail to help, in which case expert annotation is sought.

In the case of unassisted annotation, there can be multiple annotators [AGH+08], in

which case interannotator agreement experiments are in order to check the consistency

of the annotation within the corpus. When only one annotatoris involved, one can

look at their reliability across multiple articles or across the sentences within a single

article (see Section 3.3.1). My GS is the result of one human annotator who has been

the sole basis for deciding what information (articles and sentences) to extract in the

NPD all along. A small amount of surrogate GS data was also generated, as explained

in Section 3.3.1.

There are several standard measures to analyse the performance of systems. Two

that are commonly used in IR, IE and NER are calledprecisionandrecall. They are

calculated based on four counters (all usually displayed ina confusion matrix, see

Figure 2.4):

• True Positives (TP): itemscorrectly labelled as positive;

• False Positives (FP): itemsincorrectly labelled as positive;

• True Negatives (TN): itemscorrectly labelled as negative;

• False Negatives (FN): itemsincorrectly labelled as negative;

where the total number of items isN = TP + FP + TN + FN.

+   Guessed    −

TP

FP

FN

TN

+

True

−

Figure 2.4: The confusion matrix is a Table showing the number of TP, FP, TN and FN.
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Precision(P) represents the number of true positives with respect to thenumber

of items the system identified as positive, whereasRecall(R) represents the number of

true positives with respect to the total number of items thatshould have been identified

as positive:

Precision=
TP

TP+FP
(2.1)

Recall=
TP

TP+FN
(2.2)

In order to produce a single measure of system capability, precision (P) and recall

(R) can be combined together in a measure called F-measure or balancedF-score:

F-score=
2 ·Precision·Recall
Precision+Recall

(2.3)

In this equation, recall and precision are given equal weights, hence the name balanced

F-score. When one of precision or recall is more important than the other, one can

vary the weighting of the two.

Another way to look at the data is to consider the True Positive Rate (TPR) or

sensitivityand the True Negative Rate (TNR) orspecificity, defined as follows:

Sensitivity= Recall=
TP

TP+FN
= TPR (2.4)

Specificity=
TN

TN+FP
= TNR (2.5)

A common way to visualise the combination of the two is to create a Receiver

Operating Characteristic (ROC) curve. The TPR or sensitivity is represented on the

y axis while the False Positive Rate (FPR) or (1 - specificity)is represented on the x

axis of the curve. In order to obtain a summary of performancebased on this curve,

the Area under the ROC curve (AROC, [Bra97]) is usually considered. The AROC

corresponds to the probability that a classifier will position a positive instance higher

than a negative one in rank-ordered list. An area of 0.90 to 1 represents an excellent

result. 0.80 to 0.90 is good, 0.70 to 0.80 is fair while 0.60 to0.70 is poor and anything

below 0.60 would be a worthless result. The AROC is used as a measure in Section

2.4.1.

Recall and precision assume that all answers (hits) are equally good. If that is not

the case, then one might want evaluation metrics that reflectthe position of an answer

in a rank-ordered list. Presenting users with a rank-ordered list makes it easier for them

to check the critical cases,i.e. at the bottom of the list.
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Precision@n and recall@n show precision and recall calculated at position n in the

list of results. By computing these measures for different positions, it is possible to

see whether relevant items have correctly been placed before non relevant ones. These

metrics are therefore useful on showing the quality of the ranking [Can04].

Precision@n=
TP@n

n
(2.6)

Recall@n=
TP@n

N
(2.7)

where N is the total number of items retrieved.

The average precision can be calculated by computing an average value for all the

precision@n for all ranks in the hitlist:

Average Precision=
∑N

r=1(P@r ∗ rel(r))
number of relevant documents

(2.8)

where r stands for rank and rel(r) is a Boolean function on therelevance of the given

rank. This measure indicates whether the technique analysed returns more relevant

documents early in the list. Average precision describes the performance of a single

strategy with respect to a single query. Mean Average Precision (MAP) can be com-

puted when there is more than one query. This measure corresponds to the mean value

of the average precisions calculated for each of the queries. While the last two mea-

sures are not used to analyse my results, they are used by the TREC Genomics tracks

that I cover in my literature review in Section 2.4.2.

Often, it is convenient to neglect the exact precision and recall scores and simply

measure whether a system returns a relevant document. The metric a@n can be defined

as there being at least one instance of the answer within the first n elements in the list.

It is used in the field to calculate results when there is a single answer.

For my work in Section 3.4.4, I have introduced a new but related evaluation metric,

which I call A@n. It can be used to calculate results when there are several distinct

answers. It can show at what n (how far down the hitlist) all the different answers have

been retrieved (no matter how many instances of each were retrieved). It is customary

for a capital letter to stand for a set, and the small letter for an arbitrary member. My

“A@n” then stands for at least one instance of each answer, while “a@n” stood for at

least one instance of the answer. I define it as follows:

A@n=
number of answers retrieved @n

number of answers
(2.9)
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For example, if we wish to retrieve all the colours of the rainbow, we are actually

looking for seven distinct answers (violet, indigo, blue, green, yellow, orange and red).

If the first seven items retrieved all contain a different colour each then A@1 = 1/7,

A@2 = 2/7, A@3 = 3/7, A@4 = 4/7, A@5 = 5/7, A@6 = 6/7, A@7 = 7/7 = 1 and

any A@n where n> 7 is equal to 1. However if each colour is explained over two

consecutive items rather than a single one then A@1 = 1/7, A@2= 1/7, A@3 = 2/7,

A@4 = 2/7, A@5 = 3/7, A@6 = 3/7, A@7 = 4/7, A@8 = 4/7, A@9 = 5/7, A@10 =

5/7, A@11 = 6/7, A@12 = 6/7, A@13 and above are equal to 1.

It is interesting to see how far down the hitlist one needs to go to find all the distinct

answers one is looking for. In our first example, we only need to go down to the 7th

item in the list whereas, in our second example, we need to go down to the 13th.

This metric allows us to focus on the number of distinct answers retrieved rather than

the number of instances of answers retrieved. This is interesting when dealing with

documents containing repetition within the items retrieved.

2.2 Background on general methods and tools

In this section, I describe general methods and tools used inthe rest of the thesis. Some

NLP parts will refer to Part-of-speech tagging and stems. WEKA is a tool I used to

run ML algorithms such as Naive Bayes and Decision Tree. Maximum Entropy and

Support Vector Machines are other ML methods I used through other tools.

2.2.1 Part-Of-Speech (POS) tagging

There are eight main parts of speech: noun, verb, pronoun, preposition, adverb, con-

junction, adjective and article. Other parts of speech include numerals, determiners,

particles (“up”, “down”). POS tagging involves assigning asingle POS tag to each

word (and even punctuation). Part of speech taggers are usedto predict the behaviour

of unseen words. Words are simply divided into categories ofwords that behave sim-

ilarly. POS tagging then comes down to classifying words into their correct category.

A POS tagger can study the neighbourhood of an unseen word. Ifit is surrounded by

known words, it might be possible to draw conclusions from that. For example, we

know it is likely for a noun to appear after an adjective or a possessive pronoun, and

for a verb to appear after a pronoun.



2.2. Background on general methods and tools 33

2.2.2 Stem

A word stem is the part of a word that all variants have in common. Most of the time,

stems are roots and these variants differ in the prefixes and suffixes they attach to the

root. In this thesis work, words that contain a loca stem are of interest -e.g., “location”,

“located”, “localization”, “colocalized”,etc.

2.2.3 Stop words

Stop words are words that represent noise rather that meaningful data. It is common to

filter them out before undertaking analyses in NLP. AppendixE gives a list of the stop

words used in this thesis work.

2.2.4 TF.IDF

TF.IDF stands for “term frequency - inverse document frequency”. This measure cor-

responds to the importance of a term in a document with respect to a document collec-

tion. It is often used as a weight. The more times the term appears in the document,

the higher the TF.IDF score is. However the score decreases the more the term occurs

in the given corpus.

2.2.5 Machine Learning (ML)

Machine Learning (ML) is a field of Artificial Intelligence. ML techniques aim at

making a computer “learn” and then predict answers based on data. The two main

trends include supervised learning and unsupervised learning. With the first one, an

algorithm benefits from training data and takes decisions based on what it has learnt

by studying the training set. With the second one, there are no previously annotated

examples so an algorithm must model the set of inputs and makedecisions based on

that model.

2.2.6 WEKA

WEKA [WF05] (http://www.cs.waikato.ac.nz/ml/weka/ ) stands for the

Waikato Environment for Knowledge Analysis and is a data mining software writ-

ten in Java. It holds a set of machine learning algorithms that can be applied to various

kinds of data sets.
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Typically data sets are presented in feature vectors. A feature vector is a vector of

n dimensions of features. The features themselves can take various values defined by

the user at the top of an .arff file, which is the format WEKA requires. WEKA offers

tools for data pre-processing, classification, regression, clustering, association rules,

and visualisation. In this thesis, I use the pre-processingand classification tools (NB

and DT, see next two sections).

Typically, WEKA can perform an n-fold cross-validation on labeled data or an

actual testing on a test set to obtain results. One fold of cross-validation involves sep-

arating the labeled data into a training set and a random testing set. It is common

to use several folds so as to get averaged results. An actual testing on a test set re-

quires training a classifier on the labeled data and testing it on a separate set (usually

unlabeled).

2.2.7 Naive Bayes (NB)

The Bayes theorem is derived from conditional probability.Conditional proability says

that

P(C|A) =
P(A,C)

P(A)
(2.10)

This means that

P(A|C) =
P(A,C)

P(C)
(2.11)

The Bayes theorem can be obtained by replacingP(A,C) in equation 2.10 by its

definition in equation 2.11:

P(C|A) =
P(A|C)P(C)

P(A)
(2.12)

In Equation 2.12,C represents a hypothesis andP(C) represents the prior proba-

bility of C. P(C) is the probability that the hypothesisC is correct without knowing

anything about the data contained inA yet.

If there is a classC we are trying to predict given a set of attributesA1, ..., An, we

wish to find the value ofC that gives the highest value ofP(C|A1, ...,An). According

to Bayes theorem,

P(C|A1, ...,An) =
P(A1, ...,An|C)P(C)

P(A1, ...,An)
(2.13)

this means we wish to find the value ofC that gives the highest value ofP(A1, ...,An|C)-

P(C).
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An NB classifier is based on the Bayes theorem as well as a naiveapproach that

assumes all attributes are completely independent of one another. This implies that

P(A1, ...,An|Cj) = P(A1|Cj)P(A2|Cj)...P(An|Cj) (2.14)

Consequently, given a set of attributesA1, ..., An, the classCj will be assigned if

P(Cj)∏N
i=1P(Ai |C j) is maximal.

For example, say NB was trying to classify an unseen sentencesuch as “Fibrillarin

is located in the nucleolus.” based on the following attributes: p1 (one protein name),

c1 (one compartment name), ph0 (no phase name), loc1 (one loca stem, see Section

2.2.2). These features are presented in Section 3.4.1. NB would compute based on the

training data (with R meaning Relevant and I, Irrelevant) both

• P(R)P(p1|R)P(c1|R)P(ph0|R)P(loc1|R) and

• P(I)P(p1|I)P(c1|I)P(ph0|I)P(loc1|I)

whereP(R) andP(I) represent the prior probability that the sentence is relevant and

irrelevant respectively without knowing anything about the data the attributes contain

yet. Should the first formulae reach a higher value than the second one, the sentence

will be classified as relevant, irrelevant otherwise.

2.2.8 Decision Tree (DT)

WEKA performs a version of DT called “J48”, which is an implementation of the

Quinlan algorithm [Qui93]. The algorithm uses the trainingdata to create a decision

tree, which is literally a tree with a decision taken at each branch. To classify unseen

data from a test set, the algorithm will simply go down the tree following the attributes’

values and reach a final decision.

The tree is created in a simple and recursive manner. The firststep is to identify

the attribute that is the most discriminative within its values in the training data. This

attribute is said to have the “highest information gain”. If, for this chosen attribute,

a value always triggers the same classification, a termination is reached and a branch

can be ended. Otherwise the algorithm goes back to the first step and identifies the

next attribute with the highest information gain. It is thena combination of various

attributes’ values that is considered to terminate a branch. If it is not possible to find a

value that always triggers the same classification, the algorithm chooses the value that

triggers the same classification in most cases.
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For example, the tree generated by J48 for my cross-validation results in Section

3.7 is shown below. The following tree shows DT’s branches and how they terminate,

please refer to Chapter 3 for a detailed explanation of the attributes used in this tree.

The format used is “name of attribute = value of attribute: y (yes) or n (no) (items

correctly classified by this decision/ items incorrectly classified by this decision)”.

rule_b = rb0

| rule_c = rc0

| | rule_a = ra0: n (2015.0/72.0)

| | rule_a = ra1

| | | loca_stem = loc0: n (141.0/49.0)

| | | loca_stem = loc1

| | | | percentage <= 20

| | | | | protein_keywd = pk0: y (4.0/1.0)

| | | | | protein_keywd = pk1: n (3.0)

| | | | | protein_keywd = pk2: n (0.0)

| | | | | protein_keywd = pk3: n (0.0)

| | | | | protein_keywd = pk4: n (0.0)

| | | | | protein_keywd = pkn: n (0.0)

| | | | percentage > 20: y (24.0/1.0)

| | | loca_stem = locn: y (3.0/1.0)

| rule_c = rc1

| | compartment_name = cn0: y (0.0)

| | compartment_name = cn1

| | | protein_name = pn0: y (0.0)

| | | protein_name = pn1: y (88.0/27.0)

| | | protein_name = pn2

| | | | phase = ph0

| | | | | protein_keywd = pk0

| | | | | | percentage <= 21.95122: n (5.0/1.0)

| | | | | | percentage > 21.95122: y (13.0/4.0)

| | | | | protein_keywd = pk1: n (11.0/2.0)

| | | | | protein_keywd = pk2: n (3.0)

| | | | | protein_keywd = pk3: n (0.0)

| | | | | protein_keywd = pk4: y (1.0)

| | | | | protein_keywd = pkn: y (1.0)

| | | | phase = ph1: y (4.0)

| | | | phase = phn: n (4.0)



2.2. Background on general methods and tools 37

| | | protein_name = pn3: y (11.0/3.0)

| | | protein_name = pn4: y (9.0/4.0)

| | | protein_name = pnn: n (3.0)

| | compartment_name = cn2

| | | protein_keywd = pk0: y (61.0/16.0)

| | | protein_keywd = pk1

| | | | compartment_adj = ca0

| | | | | percentage <= 25.925926: n (2.0)

| | | | | percentage > 25.925926: y (9.0/1.0)

| | | | compartment_adj = ca1: n (4.0/1.0)

| | | | compartment_adj = ca2: y (0.0)

| | | | compartment_adj = ca3: y (0.0)

| | | | compartment_adj = can: y (0.0)

| | | protein_keywd = pk2

| | | | protein_name = pn0: y (0.0)

| | | | protein_name = pn1

| | | | | wd_of_interest = int0: y (0.0)

| | | | | wd_of_interest = int1: n (2.0)

| | | | | wd_of_interest = intn: y (3.0)

| | | | protein_name = pn2: y (0.0)

| | | | protein_name = pn3: y (2.0)

| | | | protein_name = pn4: n (1.0)

| | | | protein_name = pnn: y (0.0)

| | | protein_keywd = pk3: n (1.0)

| | | protein_keywd = pk4: y (0.0)

| | | protein_keywd = pkn: y (0.0)

| | compartment_name = cn3: y (37.0/6.0)

| | compartment_name = cnn: y (9.0/1.0)

rule_b = rb1: y (164.0/18.0)

On the third line of the DT, we see that if the three Boolean rules were set to 0 (or false)

then the sentence will automatically be classified as irrelevant according to this tree. The last

line of the DT shows that a sentence with rule b set to 1 (or true) will be classified as relevant.

The other lines represent more complicated cases with nested branches of ifs.
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2.2.9 Maximum Entropy (MaxEnt)

The principle behind maximum entropy is to compute all the models which satisfy thecon-

straints (features) of the training data and select the one with the maximum entropy, that is the

model which preserves the most randomness, disorder or uncertainty, the model which does

not add any extra constraint to the training data.

If the training dataD provides a set of constraints on the conditional distribution P(c|d)

for documentd and classc, [NLM99] explains the function of the documentd and classc as

fi(d,c) and:

1
|D|

∑d∈D fi(d,c(d)) = ∑d P(d) ·∑cP(c|d) fi(d,c) (2.15)

As the document distributionP(d) is not known, it is replaced by an approximation of it

using the training data as follows:

1
|D|

∑d∈D fi(d,c(d)) =
1
|D|

∑d∈D ·∑cP(c|d) fi(d,c) (2.16)

2.2.10 Support Vector Machine (SVM)

Support Vector Machines (SVMs) are a statistical method created by the field of ML. For each

item we wish to classify (e.g., sentence, document), a feature vector is gathered where the

last position is occupied by the Boolean class assigned to this vector (+1 or -1). This class is

given for the training set and generated by SVM for a test set.When the data is represented in

space, it is as if a hyperplane seperates both classes. The SVM training finds the hyperplane

that maximises the distance between the hyperplane itself and the feature vectors closest to it.

Automatically assigning classes to test vectors then involves looking up on which side of the

hyperplane determined during training they find themselveslocated on.

2.3 Related work on tools detecting relevant informa-

tion in abstracts and full-text articles

Although biomedical text-mining is a relatively new field, it has triggered sufficient interest

among researchers that a few tools have emerged to help the work of biologists and database

curators. For each tool, I will introduce the state of the artin automatic highlighting/extraction

of relevant information. Furthermore, at the end of each section, I will conclude with a sum-

mary of the significant features of that particular tool and justify the work carried out in this

thesis.
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2.3.1 iHOP

iHOP [HV04] stands for Information Hyperlinked Over Proteins and retrieves sentences

(from PubMed abstracts) related to a gene or protein name entered in a search box (http:

//www.ihop-net.org/ ). In each sentence various NEs are highlighted using a colour code for

each NE category. The sentences in this first page represent interactions between the searched

gene/protein and other NEs. A feature allows users to accessa summary overview of the in-

formation provided for the first page. This summary Table of the interactions of the searched

gene/protein displays four columns. The first column gives agene or protein symbol while the

second column gives its full name. The third column shows which organism this gene/protein

belongs to. Finally, the fourth column provides the number of sentences that relate to this

particular interaction (between the searched gene/protein and the one on this particular row).

In order to identify gene and protein names in free text, iHOPuses a dictionary approach.

The dictionary is based in LocusLink [PM01] and UniProt [Con07] both extended with ortho-

graphical variations. It contains 534,000 original terms and 3 million terms derived from the

original ones. iHOP then looks at sentences that contain zero, one or two genes and can fill

a gene-verb-gene pattern. Performance of correct gene-publication associations from the Lo-

cusLink database was evaluated. The average recall was of 87% and the average precision of

94%. iHOP’s Web services are still used at the present time, for example, in EcID [LEG+09]

(“a database for the inference of functional interactions in E. coli”) to extract possible interac-

tions from articles.

Summary:The most significant feature of iHOP is that it provides a gateway to PubMed

abstracts by navigating them from one gene/protein name (orhyperlink) to the next. The tool

retrieves sentences based on gene-verb-gene patterns, it is general and not customised to any

specific needs (for any specific database).

2.3.2 BioRAT

BioRAT stands for “Biological Research Assistant for Text-mining” and can be considered as

a research assistant that is given a query and finds a set of papers, parses them and highlights

the most relevant protein-protein interactions in each. [CBLJ04] shows the three components

integrated into BioRAT:

• Thedocument search interface, where the user can enter a query. BioRAT returns a list

of titles from articles it retrieved by searching PubMed. The user can then choose to

view the abstract or to download the full-length paper of anyresult from the list.

• Thetemplate design interface, where the user can view a document and choose specific

target words or phrases to be identified by BioRAT in the text.The user may also define
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its own templates in terms of POS, gazetteer headings or wordstems. Lexicons can

directly be edited through this same interface.

• The results interface, where BioRAT finally shows the protein-protein interactions it

found in the free text.

In [CBLJ04], the authors state that BioRAT is able to retrieve more information from full-

text articles rather than from abstracts alone. On average,less than half of the extracted infor-

mation comes from the abstract when working on full-length publications. BioRAT achieves

20.31% recall and 50.07% precision on abstracts against 43.6% and 51.25% respectively on

full-text papers.

Summary:The most significant feature of BioRAT is that it allows usersto design their

own templates and lexicons and to directly apply them on any text of interest. Moreover, the

study presented in [CBLJ04] on abstract and full-text articles prompted me to work on full text

and motivated my thesis hypothesis that it is only with respect to full-length publications that

a text-mining system can tell relevant and irrelevant factsapart.

2.3.3 BioIE

BioIE is a Web application that can operate on MEDLINE abstracts if the user chooses to use

the built-in PubMed IR facilities to retrieve text, or on anytext that the user loads into the

system (up to 200 Kb). It is an IE tool that the authors of [DA05a] define as “a rule-based

sentence extraction system”. The tool offers five predefinedcategories of types of information

related to proteins:

• structure,

• function,

• diseases and therapeutic compounds,

• localisation, and

• familial relationships.

The tool selects sentences based on predefined templates they may contain. The templates

can be one or more words and represent ways in which the five predefined categories (see

above) can be expressed. All the templates were handcraftedand based on keywords. They

vary in complexity from pair of words (composed of two keywords, or a keyword and a prepo-

sition), to more sophisticated patterns (comprising keywords, prepositions, and allowing for a

given number of words in between). BioIE stores different templates for each of these five cat-

egories. The templates used for the localisation category are displayed in Table 3.14. Section
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3.5 compares my method with BioIE’s. The section gives results obtained from performing

BioIE on my data.

Summary:The most significant feature of BioIE is that pre-defined templates were manu-

ally created and customised to five distinct categories. My work concentrates on one of those

categories - localisation.

2.3.4 METIS

METIS [MDK+05] is a Web-based annotation tool that integrates PRECIS [MRA03] - which

produces protein family reports given a query sequence - andimproves its results by adding

relevant sentences to it found in the biomedical literature. It can be accessed through Minautor

(“MINing Online Text - A User-friendly Resource”,http://www.bioinf.manchester.ac.

uk/dbbrowser/minotaur/about.html ). METIS is composed of two sentence classification

components. The first component consists of a set of three SVMs (see Section 2.2.10). They are

each trained on different annotated corpora: one on proteinstructure, one on protein function

and the last one is on disease. The second component is the BioIE tool presented in Section

2.3.3. The two components are not combined in METIS. The users can elect to use either the

BioIE templates or the Support Vector Machines to perform sentence classification, but not

both at the same time.

Topic Precision Recall

SVM BioIE SVM BioIE

Structure 51 33 74 85

Function 31 16 61 91

Disease 48 56 56 79

Table 2.1: Sentence classification results obtained by METIS

As shown in Table 2.1, BioIE achieves better results than SVMs for the disease category

and SVMs perform better than BioIE for the structure category. The authors suspect the disap-

pointing results obtained for the function category is due to the fact that the terms used for this

purpose are “polysemic” and “not specific to descriptions of function alone”.

Summary:The most significant feature of METIS is that it offers these two different ap-

proaches that have different stengths and weaknesses: The templates generally provide higher

recall, whilst the SVMs generally give higher precision. Myfinal tool combines two ap-

proaches to highlighting relevant sentences. The first one is based on a DT classifier and gives

higher precision, while the second one relies on NE co-occurrences and offers higher recall.

(see Sections 4.2 and 4.3).
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2.3.5 EBIMed

EBIMed [RSKA+07, RSKA+06], like BioIE, is a Web application. It is similar to Bio-

RAT in that it offers an IR service as well as IE. While BioRAT deals with protein-protein

interactions in full-text articles, EBIMed provides an overview of all relations found be-

tween UniProtKB/Swiss-Prot [BBA+03] protein/gene names, GO annotations and Drugs and

Species NEs in abstracts. EBIMed creates relations such as protein-protein interactions if two

UniProtKB/Swiss-Prot protein names occur in the same sentence, drug-protein associations if

a protein name and a drug name co-occur; protein function if aprotein name and a GO term

co-occur, it also relates a protein to a certain organism when a protein name and a species name

co-occur. EBIMed does not use any sentence pattern recognition.

The resulting overview is rank-ordered and is displayed in asummary Table (see Figure

2.5), where links to sentences in the context of abstracts are available. This user interface is

similar to mine (see Section 5.1.5), although mine offers links to sentences in the full text of

papers.

EBIMed extracts protein names with 90% precision. As the authors state in [RSKA+06],

this high precision is due to unambiguous protein names selected for this particular assessment.

The latter also revealed that the protein pairs extracted were meaningful in 37% of the cases

and in 50% of the cases for the drug protein pairs. While my NERdoes not do as well as

EBIMed’s, my tool extracts protein-localisation pairs (orlocalisation relations) at a higher rate

as discussed in Section 3.4.4.

Summary:The most significant feature of EBIMed is that it offers an overview of co-

occurrences of a large number of NEs in abstracts. Again, my work focusses on a certain type

of NEs (related to localisation) in full text. iHOP, BioRAT,BioIE and EBIMed provide users

with IR facilities based on PubMed. My work is driven by the requirements for the annotation

of the NPD. Indeed, the IR facilities are customised to the need of day-to-day annotation (by

accepting results from PubCrawler as input queries to the tool).

2.3.6 TXM project

[AGH+08] presents experiments conducted in order to evaluate theextent to which annotation

can be accelerated when supported by assistance from NLP. The paper also reports on scores

the curators gave to various aspects of the authors’ annotation tool, which provided them with

NLP hypotheses for protein-protein interactions (PPIs). The tool itself relies on ML for NER

and relation extraction and uses several components explained in [AHG07, Nie06, HM07].

An annotated corpus, named the enriched protein-protein interaction (EPPI) corpus, was

produced by a team of domain experts. It comprises 217 full-text papers containing experimen-

tal evidence of PPIs. The papers are retrieved in XML or HTML format and are then converted
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Figure 2.5: EBIMed screenshot (http://www.ebi.ac.uk/Rebholz-srv/ebimed/

processing.jsp?queryId=QueryDMYHMSms040520081413469 06) The summary

section shows the first 500 abstracts retrieved were analysed and for each type of NE a

Table displays the number of hits (the number of entities of that particular type found in

the 500 abstracts) as well as the number of hitPairs (the number of permutations pos-

sible when these entities are shown along with the other NEs they co-occur with). The

HitPair Table shows the co-occurrences found for nucleolin. Each column represents a

category of NEs. For each co-occurrence, EBIMed gives in brackets the number of and

links to abstracts and sentences the information was found in.
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to an internal XML format. The annotation was of:

• nine types of entities (Complex, CellLine, DrugCompound, ExperimentalMethod, Fu-

sion, Fragment, Modification, Mutant, and Protein),

• PPI relations,

• FRAG relations (which link Fragments or Mutants to their parent proteins).

One experiment is particularly relevant to the current work. In this experiment, they used

4 curators who annotated 4 papers in 3 different conditions:

• Unassisted: without assistance

• GSA-assisted: with integrated gold standard annotations

• NLP-assisted: with integrated NLP pipeline output

The authors of [AGH+08] further explain that each curator annotated an article only once with

either no assistance at all, GSA assistance or NLP assistance. However the curators were not

told under which condition they were working. Unassisted annotation gave the fewest records

(121) for all four publications. The curators annotated another 20 records (+ 16.5%) when

working with NLP assistance while they managed an extra 49 records (+ 40.5%) with GSA

assistance. This shows that providing NLP output helps curators to find more information.

The average length of time for annotating a record is inevitably the highest in the unassisted

annotation condition. NLP-assisted annotation is 22% faster, GSA-assisted annotation 34%

faster. Offering assistance to curators enables them to perform their work in less time, indeed

a third less time in the optimal condition, which is GSA-assisted annotation.

After annotating each paper, curators had to complete a questionnaire. They gave GSA

assistance a slightly better score than NLP assistance and although the experiments results

prove otherwise, the questionnaire revealed the curators were not sure if either GSA or NLP

assistance accelerated their work.

Summary:The most significant feature of the TXM project is that it offers a very interesting

user-based study of the evaluation of the tool provided. Thestudy demonstrates that NLP

assistance helps curators in their annotation work.

2.3.7 PolySearch

PolySearch [CKY+08] is a Web-based tool, which sets out to retrieve rank-ordered sentences

related to queries of type “Given X, find all associated Y” (e.g., given a disease, find all asso-

ciated genes). Once users have selected their X and Y, they are asked to specify search terms

for their X. Advanced search options are also available before submitting the query. One of the
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advanced option is to select which databases to search for results. Indeed, PolySearch is able to

look through PubMed as well as other databases such as OMIM [OMI], Swiss-Prot [BBA+03],

DrugBank [WKG+06], the Human Metabolome Database (HMDB) [WTK+07], the Human

Protein Reference Database (HPRD) [MSK+06] and the Human Genome Mutation Database

(HGMD) [SMB+09]. It displays results in a similar way to EBIMed. After submitting the

query, PolySearch provides users with status updates untilthe results are finally displayed.

PolySearch also offers facilities to analyse and study variations in DNA sequences.

The text-mining system of this tool uses a dictionary approach based on 9 lexicons:

• lexicons 1 and 2 - genes/proteins

Sources (manually edited): Swiss-Prot, Entrez Gene [Ent],Human Genome Organisa-

tion Gene Nomenclature Committee [WLDP02] and HPRD.

• lexicon 3 - diseases

Sources (manually edited): Unified Medical Language System(UMLS) [HL93] and

OMIM.

• lexicon 4 - drugs

Source: DrugBank.

• lexicon 5 - metabolites

Source: HMDB.

• lexicon 6 - pathways

Sources (manually edited): Kyoto Encyclopedia of Genes andGenomes (KEGG)

[OGS+99] and BioCarta (http://www.biocarta.com/ ).

• lexicon 7 and 8 - tissues and organs

Source (manually edited): Swiss-Prot.

• lexicon 9 - Subcellular localisations

Source: HPRD.

Like iHOP and EBIMed, PolySearch ranks the associations retrieved. The order of rele-

vance is calculated based on whether a database term, a queryterm, an association word (equiv-

alent to my ‘words of interest” - see Section 3.2) and a pattern were found. A sentence ranks

highest when all four are detected. The rules of their pattern recognition system mainly focus

on the number of words allowed between words identified as relevant in sentences. PolySearch

identifies gene and protein names with slightly better precision (0.9), recall (0.85) and F-score

(0.87) than iHOP. Their rule-based patterns and extensive evaluation is further explained at

http://wishart.biology.ualberta.ca/polysearch/cgi-b in/help.cgi .
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PolySearch seems to combine strengths from both iHOP (pattern recognition) and EBIMed

(flexible search whereas iHOP supports searching for genes only). Moreover, it also supports

IE from databases other than PubMed. Traditionally, the NPDcurator only relied on PubMed

articles for IE (see Figure 1.10). Like EBIMed, my final tool does not contain any pattern

recognition system. Its ranking is based on the number of instances found for each protein

localisation association (see Section 3.7 for a discussion).

Summary:Although it is interesting to see how iHOP, EBIMed and PolySearch retrieve

and rank sentences, they are general tools that are not customised to the needs of any database

annotation. Benefiting from a specific annotation task and anannotated corpus, my final tool

uses a supervised ML approach (see Section 3.4) to find relevant sentences. The most signifi-

cant feature of PolySearch is that it is capable of searchingthrough several databases, including

PubMed. Its numerous lexicons allow for query synonym expansion. Moreover, users can de-

fine their own “association” words to be recognised in patterns.

2.3.8 FACTA

FACTA [TTA08] is similar to EBIMed and PolySearch in its results display. It stands for

“Finding Associated Concepts with Text Analysis”, takes keyword(s) as an input and uses

co-occurrence statistics to produce results. The categories of NEs covered are: human

gene/proteins, diseases, symptoms, drugs, enzymes and chemical compounds. Its main differ-

ence with EBIMed is that it works with concepts as well as words. FACTA’s index of concepts

uses UniProt accession numbers [Con07], HMDB [WTK+07], KEGG [OGS+99] and Drug-

Bank [WKG+06], while its index of words uses the BioThesaurus [LHZW06]for gene/protein

names and aliases and the UMLS [HL93] for names of diseases and symptoms. Its main differ-

ence with PolySearch is that, using pre-indexes, this text search engine allows users to submit

Boolean queries composed of concept identifiers and keywords and to be presented with their

results instantly.

Summary:Whilst querying is not the main priority for the NPD annotation process, FACTA

certainly outperforms recent tools in terms of real-time response by storing and pre-indexing

data (both indexes mentioned above as well as sentences fromMEDLINE abstracts) in memory.

2.4 Previous work reported in open evaluation con-

tests

Many open evaluation contests have been organised over the past few years to allow different

research groups to compare their techniques against each other by testing them on the same data

and tasks in biomedical text-mining. Such challenges are important for the field to progress.
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The Text REtrieval Conference (TREC [Har93]), sponsored bythe National Institutes of

Standards and Technology (NIST), organised a lot of these contests for a variety of areas rang-

ing from the video track to the cross-language track. TREC was founded in 1992 and offers

several tracks each year. For each track, different data sets and tasks are set. Evaluation is

performed by NIST judges.

This section will start with a presentation of the KnowledgeDiscovery and Data mining

(KDD) Challenge Cup, which took place in 2003. I will then report on some TREC Genomics

tracks’ tasks that were relevant to my work between the track’s first year, 2003, to 2005. (From

2006 onwards, TREC Genomics tracks concentrated on retrieving passages rather than sen-

tences.)

Even though the Question Answering track in TREC 2006 was targeted towards the

newswire rather than biomedical domain, I will present an interesting paper [SZK+06] that

describes two methods implemented to deal with duplicate removal (see Section 2.4.3).

Indeed, in this thesis work, I looked at intra-document novelty and, more precisely, group-

ing sentences containing the same type of information together. To this extent, it involved du-

plicate clustering rather than catching the first sentence of a document that manifests a certain

piece of information. Section 4.3 presents how sentences were tagged with labels according to

what localisation relations were found in them, and were then grouped based on the labels they

had in common.

TREC also had tracks on Novelty detection in 2002, 2003 and 2004. They were specific to

the newswire domain and focussed on finding the first sentenceof a document that manifested

a piece of information. Nevertheless, some of the submittedruns used approaches relevant to

this thesis work, which I will present in subsection 2.4.4.

2.4.1 KDD Challenge Cup 2003

Until the KDD Challenge Cup [YHM03] in 2003, there had been noopen evaluation of tech-

niques and systems in the field of biomedical text-mining. This contest provided participants

with data from the FlyBase database [Con03], which gathers information on theDrosophila

(fruit fly) genome. The training data were composed of 862 journal articles referenced in Fly-

Base and contained a total of 283 positives. The test set comprised 213 papers. Eighteen groups

built systems that categorised articles for IR and IE. Contestants were given full-text papers and

had to return a rank-ordered list of papers from the most likely to the least likely to contain ex-

tractable information (that is, experimental evidence about products, such as mRNA transcripts

and proteins/polypeptides, associated with a specific gene), along with a yes/no answer as to

whether they considered the article as relevant for IR/IE. The contestants were also given a list

of genes that were discussed in each of those articles, for which they had to provide a yes/no

answer as to whether they had found experimental evidence inthe corresponding paper for the
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related gene products.

The winning team [RFLF02] used an approach similar to that ofBioIE, in that they man-

ually created rules and patterns considered of interest. Their score on the rank-ordering was

not reported, but they obtained 0.78 F-score on the yes/no relevance decision and 0.67 F-score

on the yes/no experimental evidence decision. The next team[SEM+02] handcrafted a set of

keywords and, for each paragraph of text, computed the distance between a gene name and a

keyword from this set. They store the minimum distance for each <gene, keyword> pair, as

well as the number of occurrences with that minimum distance, and use NB to obtain results.

They achieved 0.81 AROC (see Section 2.1.3) on the ranking and 0.73 F-score on the yes/no

relevance decision. F-score on the second task was not reported. Finally, a team from Imperial

College and a company called Inforsense [GGLZ02] performedranking with an AROC of 0.84,

0.58 F-score for the yes/no relevance decision and 0.59 for the yes/no experimental evidence

decision. They automatically extracted 335 regular expressions patterns from the training cor-

pus and applied those regular expressions to sentences in the test set containing a gene name.

The final decisions were made by an SVM (see Section 2.2.10) using the patterns found as

features.

Although the tasks set were only a small part of the FlyBase annotation process, this chal-

lenge still represented a valuable first contribution towards automating parts of this annotation

workflow, and progress in biomedical text-mining in general.

2.4.2 TREC Genomics tracks

The first task of TREC Genomics tracks in 2003 [HB03], 2004 [HBR+04] and 2005 [HCY+05]

was always anad hocretrieval task that required a document collection and topics for retrieval.

For the first year, the collection consisted of a year of MEDLINE records (525,938 documents)

and the topics were 50 gene names taken from the NLM’s (National Library of Medicine) Gene

Reference Into Function (GeneRIF) resource. For each gene name, the contestants had to find

all MEDLINE references which concentrated on its structure, genetics or function in normal or

disease states.

The second year (2004), the collection was much larger, as itrepresented 10 years of MED-

LINE records (4,591,008 documents). The topics were also more sophisticated as they were

the results of interviews with biologists discussing theirreal information needs. In 2005, the

document collection was the same as in 2004. However, the track’s organisers studied the pre-

vious year’s topics and created a set of 5 generic topic templates (GTTs). For each GTT, ten

information needs were chosen by surveying biologists, making up to 50 topics again.

Results were evaluated based on the MAP. As noted in section 2.1.3, average precision

describes the performance of a single strategy with respectto a single query, while MAP can

be computed when there is more than one query: it is the mean value of the average precision
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for each query.

In 2003, 25 groups participated and submitted 49 runs. The best two teams were NLM-

based and achieved MAPs of 0.4165 and 0.3994. They operated NER in non-text fields such

as MeSH (Medical Subject Headings) and RN (Chemical Abstracts Service Registry Number)

and identified species using MeSH. They also used very general keywords, such as “genetics”

and “sequence”. The next team (UC Berkeley, MAP of 0.3912) utilised an ML approach based

on gene name occurrence rules for document classification aswell as document ranking.

In 2004, 27 groups submitted 47 runs. Patolis Corp. obtainedthe best results (MAP of

0.4075). They used LocusLink [PM01] to expand symbols, Porter stemming [RRP80] and

Okapi weighting [RJ88]. The University of Waterloo was the next winning team that year.

While in 2003 they used NER in RN fields and query expansion based on Okapi weighting

as well as gene name bigrams, in 2004 they also tried pseudo-relevance feedback and general

domain-specific query expansion that made use of lexical variants, acronyms, gene and protein

name synonyms.

In 2005, 32 groups submitted 58 runs. The winning team (York University [XML05])

implemented two new query expansion algorithms in order to deal with acronyms, homonyms

and synonyms, which represent important problems in biomedical IR. Their first algorithm was

run for their automatic submission and made use of “break-points” (positions where a string can

be separated by a space) and “replacements” (substrings within strings that can be substituted

with another character(s),e.g., alpha by a or 2 by ii).

Their second algorithm was run for their manual submission and made use of two databases

(AcroMed [PCC+01] and LocusLink [PM01]) to produce two lists of variants ofa gene name.

After the merge, a domain expert was asked to manually correct the resulting list. Their auto-

matic run obtained a MAP of 0.2888 and their manual one 0.3020.

In 2003, the second task of the TREC Genomics track [HB03] wasan “exploratory” IE

task, which consisted of extracting the GeneRIF statement from the MEDLINE record or full-

text article, without any training data. The testing data were composed of 139 GeneRIFs,

for which the organisers managed to obtain full-text accessfrom “Highwire”. The evaluation

measures were derivatives of the Dice coefficient, which calculates the overlap between two

strings (in this case, a proposed GeneRIF and a real one) as follows:

Dice(a, b)=
2 * bigram overlap

bigrams in a+bigrams in b
(2.17)

For example, in order to calculate the Dice coefficient of thewords “cold” and “cool” we look

at the bigrams in each word:{co, ol, ld} and{co, oo, ol}. Each set contains three elements and

they have two elements in common: co and ol. Therefore,

Dice(cold, cool)=
2∗2
3+3

=
2
3

(2.18)
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The three derivatives overcame the limitations of the Dice coefficient (e.g., not taking into

account stop words, the order of the words,etc.). The four evaluation measures were the

following:

1. Theclassic Dicecoefficient measures the overlap between 2 strings.

2. Theunigram Dicegave additional weight to terms that were present several times in

both strings.

3. Thebigram Dicegave extra weight if words occured in the same order, as it wasmea-

sured based on bigrams rather than unigrams.

4. Thephrase Dicewas introduced to allow capture of bigrams that were separated by stop

words.

Fourteen groups participated and submitted a total of 24 runs. The winning team was a

group from Erasmus University, which obtained 57.83 classic, 59.63 unigram, 46.75 bigram,

49.11 phrase Dice scores. They utilised classifiers to rank-order sentences from the most likely

to contain the GeneRIF statement to the least likely. For example, in [BNSH03], the ranking

was performed using TF.IDF (see Section 2.2.4) weights on non-Boolean features. Participants

realised that, in most cases, the GeneRIF statement was taken from sentences in the title, some-

times the abstract, rarely the rest of the full text. A baseline was then computed using titles only

which resulted in the following Dice coefficients: 50.47 classic, 52.60 unigram, 34.82 bigram

and 37.91 phrase. Only a handful of participating teams actually outperformed this baseline.

2.4.3 TREC 2006 QA track

In order to detect intra-document novelty (see Section 4.3), it is important to identify all the

sentences in the document that refer to the same type of information,i.e. duplicates. In 2006,

for the TREC Question Answering track, [SZK+06] describes two methods the authors imple-

mented to deal with duplicate removal.

The first method uses the BLEU score. BLEU stands for BiLingual Evaluation Understudy

and is a metric developed by IBM to evaluate the performance of Machine Translation (MT

offers automatic text translation from one language to another) techniques. The authors con-

sider a duplicate sentence as a paraphrase of the original sentence and explain that given BLEU

was created to measure redundancy between sentences, a highBLEU score means the two sen-

tences are very similar. Their approach involves calculating BLEU scores for all possible pair

of sentences and storing the results in a matrix. They then choose a threshold and declare any

pair of sentences that obtained a score above it a duplicate of one another.

The second method the authors present uses word-level edit distance. They used a clus-

tering algorithm in order to group similar sentences, wherethe distance between sentences is
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defined by the edit-distance metric. Then they tried to identify the longest sentence from each

group of duplicates.

The BLEU metric approach outperformed the edit-distance metric method in the authors’

comparative study where four different questions were asked and a human standard was set

as to which answers ought to be removed because they were duplicates. The BLEU metric

approach’s best F-score was of 0.98 against 0.93 for the edit-distance metric. Furthermore, the

BLEU metric approach’s worst F-score was of 0.95 against 0.77 for the edit-distance metric.

The authors explain that the reordering of words in duplicate sentences affects the edit-distance

whereas it does not influence BLEU in any way.

2.4.4 TREC Novelty tracks

The first TREC Novelty track [Har02] took place in 2002 and wasused as a trial run. The data

created that year were of poor quality and results were low, with F-scores around 0.2.

On the other hand, the corpora developed for TREC Novelty tracks 2003 and 2004 rep-

resent valuable data sets for the research field of Novelty detection in the newswire domain.

Most groups identified novel sentences by assessing their dissimilarity to past sentences. Term

expansion was a popular approach amongst participants, which they used in order to enhance

their sentence similarity detection.

In 2003 [SH03], the winning team was Tsinghua University whoobtained an F-score of

0.5. They used sentence clustering and also tried calculating sentence redundancy by measuring

unsymmetrical sentence overlap. They utilised a supervised redundancy threshold learning and

developed a new tool for their experiments called TMiner.

In 2004 [Sob04], Tsinghua University used an approach basedon cosine similarity com-

puted between sentences after Principal Component Analysis (PCA), which is a technique

similar to Singular Value Decomposition (SVD, see Section 3.6). They were again amongst

the top runs but did not win.

The best team that year was the University of Iowa [EZB+04], with an F-score of 0.8. They

chose a “new entity threshold” and computed for each sentence the number of NEs and noun

phrases previously unseen. They then classified a sentence as novel if this number exceeded

their threshold.

2.5 Related work on machine-assisted database main-

tenance

This section reports on how other biological databases are annotated, focussing on databases

that involve annotation information from the literature for all or part of their data, with the rest
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provided directly from experiments.

2.5.1 BRENDA

BRENDA stands for BRaunschweig ENzyme DAtabase. It houses molecular and metabolic

data on 83,000 enzymes from 9,800 different organisms. Information contained in the database

was extracted from the literature by domain experts, and represents a valuable resource to

researchers in the domain of biochemistry and medicine. Theurl for BRENDA is http://

www.brenda-enzymes.info/ .

BRENDA is structured by EC (Enzyme Commission) number. For each EC entry, the

database contains information on a recommended name, namesof the different enzymes for

different organisms, a list of substrates and products for the catalysed reaction, a list of in-

hibitors, a list of activating compounds as well as a list of cofactors, all referenced to PMIDs

where the information was found in the literature. The Website states the database holds over

500,000 enzyme-ligand relationships, over 46,000 chemical compounds operating as ligands

and 34,500 structures of ligands issued from over 56,000 papers.

In [HS05], the authors describe a method to automatically annotate enzyme classes

with disease-related information extracted from the biomedical literature for inclusion in the

database. The method uses a dictionary approach to recognise enzymes from the BRENDA

database in abstracts. The dictionary contains six names per enzyme on average and concepts

from the UMLS are identified using the MetaMap program [Aro01]. MetaMap parses free text

and, for each noun phrase it finds, generates variants based on acronyms, abbreviations, syn-

onyms and spelling variations. The automatic annotation isthen based on the co-occurrence

of those UMLS concepts and the enzyme names found in each sentence of abstracts. An SVM

classifier was trained with a 1500 annotated sentences of which 18.2% involved one or more

relations between an enzyme and a UMLS disease. The method was assessed. If an enzyme

name and a disease-related term were both identified in a sentence, the co-occurrence would

incur a relation between the two concepts. Out of the 430 relations annotated by a domain

expert, 84.8% were retrieved correctly with 82.1% precision.

2.5.2 FlyBase

The FlyBase database [Con03] houses information on theDrosophila (fruit fly) genome and

related species. It incorporates data extracted from the literature with data of different prove-

nances such as other genome projects. The FlyBase annotation is supported by domain experts

manually extracting information of interest from full-text articles coming from 35 journals.

In [KLS+07], the authors address the FlyBase curators’ real needs and present a generic

tool developed to assist them. An interface called PaperBrowser was developed, which shows
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curators the full-text article with gene names highlighted. The user can have access to an

ordered list of gene names as they appear in the text (using the PaperView navigation panel),

as well as a list of all the groups of words that were identifiedas related to the same gene name

(through the EntitiesView navigation panel). Both navigation panels can redirect the user to

the corresponding paragraph in the text window where a particular gene name or related entity

can be found highlighted in context. The tool is used almost daily by FlyBase curators as they

find working from PaperBrowser easier than looking at a PDF viewer on screen or a printed

out version of the article.

There are three main steps to their curator assistance tool [KSL+08]:

• the NER step is performed using Conditional Random Fields (CRFs) [Vla07] and

achieves 61.4% recall, 89.2% precision and 72.7% F-score

• the sentence parser [BCW06]

• the anaphora resolution component [Gas06] performs with 53.4% recall, 63.0% preci-

sion and 57.8% F-score (the authors did not evaluate the impact of the anaphora resolu-

tion module on the annotation process separately)

The PaperView navigation panel uses the results of the NER step whereas the EntitiesView

navigation panel makes use of the anaphora resolution results on top of the NER ones. In-

deed, the combination of the two allow the tool to create the list of related entities previously

mentioned.

2.5.3 Protein fingerprint database (PRINTS)

PRINTS [Att02] is a protein fingerprint database. A protein fingerprint can be defined as “a

collection of aligned, unweighted sequence motifs”. PRINTS is annotated by analysing results

from the fingerprinting method. To start with, a Multiple Sequence Alignment (MSA) is per-

formed. Conserved motifs are then extracted for iterative scanning of a Swiss-Prot [BBA+03]

and TrEMBL [BA96] composite in order to identify further family members. The iteration

stops when no more family members can be found. The fingerprint is then ready to be anno-

tated.

PRINTS provides for each fingerprint detailed and handcrafted annotation. In order to help

PRINTS annotation, a system was developed called BioIE [DA05a] which I previously pre-

sented in Section 2.3.3. BioIE was tested to extract pertinent sentences from the literature and

to match them to the annotation statements [DA05b]. On average, 50% of the statements were

matched. Out of the unmatched annotations, 85.2% were actually not available in the original

text. Indeed, PRINTS annotators had interpreted and summarised some relevant statements

they had found in the literature. Moreover, they also added statements based on their own
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knowledge so that the annotations would make sense as stand-alone comments. 3.6% of the

unmatched annotations were down to missing patterns in BioIE (such as variants of unit terms)

which were consequently added to the tool. The last 11.2% were due to idiosyncrasies of

biomedical text. In [DA05b], the authors conclude that the main problem was actually getting

hold of the correct pieces of text automatically.

2.6 Summary

Some biological databases (see Section 2.5) have used biomedical text-mining in order to re-

duce annotation time. In [AGH+08], the authors offer user-oriented experiments and show

text-mining can indeed assist in annotation.

Like most systems presented in Section 2.3, my tool (see Section 1.4, Chapters 4 and 5)

provides the user with both IR and IE. It displays all the facts found in a summary Table, and

highlighted full text is available by clicking on items in the Table in the same style as EBIMed,

PolySearch and FACTA. What this thesis addresses that has not been done so far is providing

customised IR, IE and novelty with regard to a particular database’s content - in this case the

NPD. The tool developed in this work allows the curator to make supported decisions all the

way through the annotation process and is yet extensible to other databases (see Section 6.1).



Chapter 3

Retrieval of relevant sentences in full

text biomedical papers

The question this chapter addresses is, given papers of interest, how best to retrieve relevant

sentences from full text of biomedical articles? In my final tool, documents of interest are

retrieved using a combined classifier developed during my MRes [Can04] presented in Section

4.1.

Different techniques can be used to retrieve sentences froma document. In this chapter, I

present a supervised ML method (see Section 3.4) I developedduring my PhD and compare its

performance to two other types of method on this task:

• rule-based with BioIE (see Section 3.5),

• and unsupervised ML with Infomap (see Section 3.6).

Unsupervised ML claims advantages of portability and less work on the part of the expert,

as they do not have to manually classify every data element ina possibly large training set.

BioIE (see section 2.3 and [DA05a]) has the advantage of being an existing system with already

specified templates for the localisation domain. This chapter first focuses on presenting my

supervised method before introducing the other two and comparing them.

3.1 Text pre-processing

Full text of journal articles can be retrieved from the Internet, using journal Websites, as HTML

files. They can then be converted from raw text to “clean” textthat is ready to be processed by

text-mining tools. This section goes over the text pre-processing steps.

First of all, the “lynx” command is used under linux in order to convert the HTML file into

plain text. Then some cleaning scripts are used so that noise(for example, HTML links) and

55
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sections not to be considered in the study can be removed fromthe text file.

Full stops are quite important as they are used to tokenise sentences later on. Therefore,

I make sure full stops that do not represent the end of a sentence (e.g., “Fig.”) will not be

regarded as such. Also, words that are not part of the next sentence (e.g., section title such as

“Introduction”) need to be separated from the following text by adding a full stop.

Finally, it is common in biomedical articles to have titles for paragraphs within a section

or subsection of the paper. Sometimes these titles do not endwith a full stop, they are still

recognised by a human eye, as they appear in bold, with a paragraph then starting on the next

line. Unfortunately, without a full stop, my sentence tokeniser would not separate the title from

the first sentence of the paragraph; this is why the cleaning process also adds full stops in these

cases.

The cleaning process involves:

• Getting rid of noise created by HTML links, examples of such lines:

– [1][title.gif]

– [3][Home]|[4][Help]

– [25][Top]

– Right arrow [11] Abstract freely available

– View larger version (32K)

– View this table

– 1. file://localhost

– 256. http://www.pnas.org/

• Getting rid of all the blank lines and metadata before the title

• Getting rid of Figure and Table legends (because they can sometimes appear in the mid-

dle of a sentence and create problems)

• Getting rid of the end of files, Acknowledgments and References (not Footnotes as they

may contain sentences of interest)

• When a section title is found (such as Title, Abstract, Introduction, Results, Discussion,

Materials and Methods, Footnotes, Acknowledgments, References), a full stop is added

after it (so that it will not be considered as the first word of the section’s paragraph).

• Making sure the full stops in “Fig.” and “Tab.” are not considered the end of a sentence

(otherwise it breaks a sentence into two)

• Making sure a sentence only contains valid characters before validating it
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• Adding full stops at the end of subsection/paragraph titles(so that the title is not consid-

ered as part of the first sentence of the paragraph). Going through the text, I look out for

empty lines, as a sequence of two or more empty lines might indicate the start of a new

paragraph. Then I need to check

– there is not already a full stop at the end of the title (two full stops would also

confuse the sentence tokeniser),

– the next line after the title (which might have been on one or two lines) started

with a capital letter.

Although porting to a new set of journals would require changes to the pre-processor, the

current version is very well adapted to its current task. It was evaluated on the test set (see

Section 3.3.2) and performs with 94% accuracy (the sentencetokeniser with 92%).

3.2 Set of gazetteers

As noted in Section 2.6, this thesis work offers customised IE to a database annotation’s needs.

In order to provide for this level of customisation, I created eight gazetteers so as to automati-

cally recognise NEs of interest. The protein names gazetteer was built based on all the protein

entries’ names and aliases in the NPD. The compartment namesgazetteer contains all the com-

partment names known to be in the nucleus, as well as some important compartments of the

cell, such as the ribosome and the ER (endoplasmic reticulum). I handcrafted all the other lex-

icons by observing positive sentences in the training data.Advice from an expert - the curator

of the NPD - was also sought.

There is one gazetteer per NE category, and terms cannot appear in more than one gazetteer.

The categories are given in Table 3.1, along with the number of instances found in each (which

includes aliases and different forms of the terms). The gazetteers are specific to extracting data

about proteins in the nucleus. Section 6.1 discusses how extensible the approach is, given how

easy it is to modify or add new elements to gazetteers, provides ideas of what resources could

be used in order to achieve this, and considers methods that could be applied to improve results.

3.3 Corpora

Professor Wendy Bickmore - the creator and curator of the NPD- would regularly extract infor-

mation from the literature and update her database through the process shown in Figure 1.10. In

order to create a training corpus as well as some testing data, I asked her to manually highlight

sentences she was normally interested in when updating the NPD. The articles contained in the
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Category Abbreviation No in gazetteer

protein name PN 7787

protein keyword PK 12 (see Appendix D)

compartment name CN 89 (see Appendix C)

compartment adjective CA 11

compartment keyword CK 60

phase name PHAS 26

loca stem LOC 45

word of interest INT 163

Table 3.1: Categories of NE, their abbreviation and number of instances in each

gazetteer

training set (see Section 3.3.1) and testing set (see Section 3.3.2) were part of the next batch

of publications she was going to extract information from. The number of papers contained in

both corpora were the result of what Bickmore had highlighted in a certain timeframe rather

than a conscious decision of limiting the sets to those numbers.

3.3.1 Training set

She chose a set of 14 articles from the next publications she was about to annotate ([PPRMV04,

ALF+02, SWJ+00, CDG+03, CSK98, DMO00, DO98, KZCJ02, LS02, MKC+05, PDF00,

RRB+03, SSS+05, SPL00]) that constituted a representative selection ofthe kind of papers

she, the manual curator, has to deal with on a regular basis. However, the 14 documents have

one thing in common: they all relate to the localisation of proteins in the nucleolus (see Section

1.2.1). See Section 6.1 for a discussion of extending the annotation of protein localisation

beyond papers on the nucleolus.

Once those 14 papers were identified, Bickmore manually annotated them by highlighting

sentences that were relevant to the localisation of a nuclear protein within a cell at a particular

stage of the cell cycle. The cleansed version of each HTML filewas mapped automatically to

a file consisting of a sequence of feature vectors (see Section 2.2.6), one per sentence. High-

lighting on the paper version of the article was added manually as a positive class label to the

corresponding sentences. This is to say, a sentence was represented by its feature vector fol-

lowed by this class label, yes or no{y, n} (e.g., “pn3, pk0, cn1, ca1, ck0, ph0, loc0, int1, ra1,

rb0, rc1, 30, y”). The first eight features relate to the number of words found in the sentences

that belong to certain categories (see Table 3.1). The next three features are Boolean rules. All

features are discussed in Section 3.4.1.
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PMID Number of sentences Number of positives Percentage of positives

14973189 106 43 40.56%

10931858 252 33 13.09%

11062265 198 63 31.82%

12397076 158 27 17.09%

11074001 200 25 12.5%

9725903 208 33 15.86%

12963707 165 36 21.82%

11790298 197 12 6.09%

9420331 205 38 18.54%

12134069 206 38 18.44%

11948183 198 34 17.17%

16186106 172 41 23.84%

16129783 180 41 22.78%

10891491 193 21 10.88%

Table 3.2: Number of sentences (total and positives only) for each full-text paper in the

training corpus and percentage of positives in each paper
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On the other hand, sentences that were not highlighted were manually reviewed, as I dis-

covered that Bickmore, like other curators, did not hightlight all sentences containing the same

relevant information. Hence, a lack of highlighting cannotbe interpreted as an assertion of

irrelevance. I augmented the set of positive sentences in order to have a more complete and

representative set of training data.

Indeed, I confirmed with Bickmore that she had sometimes omitted to highlight some rel-

evant sentences. The reasons for this were that some sentences were repeating sentences she

had already highlighted previously, or some sentences weregiving information that was al-

ready contained in the NPD. Neither of these two reasons for not highlighting material should

be relevant to the “interesting/not-interesting” decision to be made, as opposed to the subse-

quent “novel/seen” decision. Therefore, adding these sentences to my set of positive examples

is justified.

The training corpus is composed of 2638 sentences:

• 485 positive sentences (about 18.4%)

• 2153 negative sentences

• with the frequency of positive sentences ranging from 6 to 40.5% just in the 14 articles

constituting the training set (see Table 3.2).

Positive examples from [PPRMV04] include:

“BIG1 was also concentrated in nucleolar areas and was coimmunopre-
cipitated with nucleolin.”

“In HepG2 cells incubated without FBS, virtually all nucleicontained
some FKBP13, but the fraction in the cytoplasm was greater than that
of BIG1.”

“It seemed clear also that BIG1 and FKBP13 were quite differently local-
ized in the nuclei, just as they were in the cytoplasm.”

Negative examples from [PPRMV04] include:

“Incubation of those cells with FK506 had increased the recovery of both
BIG1 and ARF in membrane fractions, but no proteins were precipitated
by the FKBP13 antibodies after FK506 treatment, presumablybecause
FK506 binding alters the FKBP13 epitope.”

“Differences between nucleoporin p62 distribution in cells with and with-
out BIG1 in the nucleus are shown in fields of FBS-starved cells.”

“From HepG2 cell nuclei purified by density gradient centrifugation, anti-
bodies against BIG1, nucleoporin, or nucleolin each precipitated also the
other two proteins.”
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Entity type PN PK CN CK CA PH LOC INT

Number in corpus 2290 1237 1946 620 735 413 453 2583

Density/sentence 0.868 0.469 0.737 0.235 0.278 0.156 0.1710.979

Table 3.3: Detailed description of the training corpus in terms of the types and frequen-

cies of NEs (see Table 3.1)

Table 3.1 introduces the different kinds of NE while Table 3.3 gives a more detailed de-

scription of the training corpus based on those. It shows thedensity of each entity type per

sentence (i.e. the average number of tokens of each type in a sentence), and the number of

entities of each type in the corpus.

3.3.2 Test set

The test set is composed of three papers ([MNM+00, OSWG02, SSE+98]) again, chosen by

Professor Wendy Bickmore from the set she was about to annotate. Table 3.4 shows the per-

centage of positive sentences in each of these three articles.

PMID Number of sentences Number of positives Percentage of positives

10716735 99 10 10.10%

12045181 173 30 17.34%

98447599 221 29 13.12%

Table 3.4: Number of sentences for each paper in the test set

Positive examples from [OSWG02] include:

“Nuclear localization was mediated by the COOH terminus of c-erbB-3,
and a nuclear localization signal was identified by site-directed mutagen-
esis and by transfer of the signal to chicken pyruvate kinase.”

“Moreover, c-erbB-3 was found in the nucleoli of differentiated polarized
MTSV1-7 and exported into the cytoplasm upon addition of exogenous
HRG.”

“In MCF10A, MCF-7, T47D (Fig. 2 A), and BT474 cells (unpublished
data), LMB clearly caused nuclear concentration of c-erbB-3.”

Negative examples from [OSWG02] include:

“Heregulin (HRG) binds to c-erbB-3 or -4 and induces heterodimerization
of these receptors with c-erbB-2. ”



62 Chapter 3. Retrieval of relevant sentences in full text biomedical papers

“All c-erbB receptors can form functionally active heterodimers.”

“This drug specifically blocks the chromatin region maintenance (CRM)1
nuclear export factor by covalent modification.”

3.4 Supervised method

Supervised learning uses training data labelled with both features and an output value to train a

classifier to learn a good correspondence between features and output. It can then classify new

data by reproducing the learned classification.

3.4.1 Set of features

The objects of interest here are sentences paired with an output annotation of “interesting for

annotation”/“uninteresting”, hence the need to representsentences as feature vectors (see Sec-

tion 2.2.6). A lot of features can be considered valid candidates to represent a sentence. Most

of them arise when parsing the sentences: they can be consideredbasic features. Others can be

computed from basic features. The following list contains all the features that I have considered

to represent sentences.

• number of protein names (e.g., “fibrillarin”)

• number of protein keywords (e.g., “protein”)

• number of protein-related terms, which groups both proteinnames and protein keywords

• number of compartment names (e.g., “nucleolus”)

• number of compartment adjectives (e.g., “nucleolar”)

• number of compartment keywords (e.g., “compartment”)

• number of compartment-related terms, which combines compartment names, compart-

ment adjectives and compartment keywords

• number of cell-cycle phase names (e.g., “interphase”)

• number of loca stems (see Section 2.2.2,e.g., “localized”)

• number of verbs of observation (verbs such as “appears”, “contains” and “identified”)

• number of verbs of movement (verbs such as “shuttles”, “moves” or “trafficking”)

• number of words of interest (observation or movement term,e.g., “appears”, “found”,

“visible”, “present”, “shuttles”, “moves”)
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• the percentage of relevant words in a sentence (without counting stop words, see Section

2.2.3 and Appendix E)

I have also considered the following Boolean features derived from the above basic features.

• Rule A is set to 1 if

– the number of protein names> 0

– the number of compartment adjectives> 0.

(e.g., “nucleolar fibrillarin”)

• Rule B is set to 1 if

– the number of protein names> 0

– the number of compartment names> 0

– the number of loca stems> 0.

(e.g., “Fibrillarin is localized in the nucleolus”)

• Rule C is set to 1 if

– the number of protein names> 0

– the number of compartment names> 0

– the number of words of interest> 0

– the percentage of relevant words in the sentence (calculated without counting the

stop words) is>= 20.

(e.g., “Fibrillarin was found in the nucleolus”)

Before settling for a final set, features were tested by experimenting with different combi-

nations of them and studying the cross-validation results on the training set. As a result, the

following features were discarded:

• the number of verbs of observation and the number of verbs of movement. Both were

interesting features but not as powerful as the feature “words of interest”. The latter

counts all the words (not just verbs) whose stems refer to terms of observation and

movement.

• the number of protein related terms, which grouped both protein names and protein

keywords. Two separate features gave better results. As Section 3.4.2 explained, protein

keywords constitute a much more reliable feature than protein names. Therefore, it is

important for the classifier to be able to access this number independently.
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• the number of compartment related terms, which combined compartment names, com-

partment adjectives (e.g., the word “nucleolar”) and compartment keywords (e.g., the

words “compartment”, “region”, “site”, “foci”). Three separate features gave better re-

sults.

My final chosen set is therefore composed of eleven features:

• number of protein names

• number of protein keywords

• number of compartment names

• number of compartment adjectives

• number of compartment keywords

• number of phase names

• number of loca stems

• number of words of interest

• rule A (Boolean feature)

• rule B (Boolean feature)

• rule C (Boolean feature)

Other possible features would have been:

• the number of adverbs of interest.

• regular expressions (Boolean feature set to 1 if the sentence matches the regular expres-

sion, 0 otherwise). Regular expressions allow users to define flexible patterns they wish

to look for. For example, here we would be interested to capture the following flexible

pattern or “frame”: protein name, up to five words, the verb “localizes” followed by the

preposition “in” and a compartment name. BioIE (see Sections 2.3.3 and 3.5) uses such

regular expressions.

• other rules, such as A, B and C above. Example of another possible rule: set the rule to

1 if

– the number of protein names or keywords> 0

– the number of loca stems or words of interest> 0

– the number of prepositions of interest> 0
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– the number of compartment names or keywords> 0.

(e.g., “These proteins were visible in CBs”)

I used the Curran and Clark (C&C) tagger [CC03b] to identify basic features (such as the

number of protein names or adverbs of interest per sentences), and then a separate program to

compute the derived features.

Many other features could have possibly been considered, but as this was only one part

of a thesis aimed at demonstrating that a complete end-to-end system could be developed for

part-time curators, I stopped with these. This could clearly be developed in future work. For

example, parsing would give more features, as would the nameof the section in which the

sentence was found, whether the sentence was a Figure caption, whether it also occured in the

abstract,etc.

3.4.2 From sentences to feature vectors

In order for the training corpus to reflect all these features, I needed to develop a procedure that

processed each sentence in the training data, computed results for each feature, and store these

results in a vector, called a feature vector (see Section 2.2.6). I used the C&C tagger [CC03b]

to recognise NEs of interest.

Each line in the C&C tagger input file follows the same format:WORD POS CLASS. POS

stands for Part Of Speech (see Section 2.2.1) while CLASS is the category the word has been

classified as by the tagger. Moreover, it is possible to add extra columns to this input file, which

the C&C tagger will take into account when making its decisions. A fourth column was added

to show whether the word was contained in any of my lexicons (see Section 3.2). The C&C

tagger input file is then of the following format: WORD POS CLASS LEXICON.

The C&C tagger uses the IOB system for this CLASS column:

• I- the word on this line is the continuation of an NE (Inside the NE),

• O- the word on this line is not an NE (Out),

• B- the word on this line is an NE (Beginning of the NE,i.e. could be continued on the

next line).

Examples of input lines are:

• Nuclear JJ B-CA CA

• localization NN B-LOC LOC

The word “Nuclear” is an adjective (POS JJ), it has been classified by the tagger as the begin-

ning word of an NE of type “compartment adjectives” (B-CA) and it had also been found in
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that particular lexicon (CA). The word “localization” is a noun (POS NN), it has been classified

by the tagger as the beginning word of an NE of type “loca stems” (see Section 2.2.2, B-LOC)

and it had also been found in that particular lexicon (LOC).

For the training corpus, the CLASS column in the C&C tagger output file required a little

bit of manual annotation in order to use the IOB system to its full potential. The lexicon column

was automatically copied over to the CLASS column. If the lexicon value was not null, it was

simply a case of deciding whether an “I-” or a “B-” should go infront of the lexicon value for

the class value. The C&C tag or class value indicates which category (see Table 3.1) a word

has been classified as. For example, Table 3.5 displays the four columns for the third sentence

of the abstract of article [SPL00]:

“Immunofluorescence analysis shows that Bop1 is localized predomi-
nantly to the nucleolus.”

Immunofluorescence UH O NONE

analysis NN O NONE

shows NNS B-INT INT

that IN O STOP

Bop1 NNP B-PN PN

is VBZ O STOP

localized VBN B-LOC LOC

predominantly RB O STOP

to TO O STOP

the DT O STOP

nucleolus NN B-CN CN

. . O NONE

Table 3.5: Four column-output from the C&C tagger for the third sentence of the abstract

of article [SPL00]. (The POS-tags for “shows” and “to” were incorrectly assigned. The

word “shows” was incorrectly POS-tagged but correctly recognised in the “words of

interest” lexicon.)

The first entity recognised is “shows”, a term from the “wordsof interest” lexicon. “Bop1”

is recognised as a protein name, “localized” as a loca stem and “nucleolus” as a compartment

name. A few stop words are recognised too. Stop words do not represent an NE category of

interest and infer the C&C tag O. Stop words are only recognised by the fourth column in order

to count the number of non-stop words per sentence so as to generate the percentage of relevant

words in a sentence. Appendix F provides other examples of sentences.
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For the test set, the trained C&C tagger is run and gives an output corresponding to the

input file with the CLASS column having been modified based on what was learned from the

training corpus. The fourth column is used when training thetagger and when the C&C tagger

produces an output file for a test set. However, the C&C taggerdoes not make all its decisions

solely on the basis of gazetteers it consults, as it is trained with my training data before being

applied to test data.

A perl script was written to convert the output of the C&C tagger into feature vectors for

each sentence. Counting B- starting entities in the third column ensured counting an NE spread

over several words only once. Finally, a simple function calculates the percentage of relevant

words in a sentence (without counting the stop words). Another one sets up the correct Boolean

flags for the rules (RULEA, RULE B, RULE C).

For the example in Table 3.5, the following feature vector isobtained: “pn1, pk0, cn1, ca0,

ck0, ph0, loc1, int1, ra0, rb1, rc1, 57.14285714, y”. One protein name or “B-PN” (in this case

Bop1) was found. No protein keyword, compartment keyword nor phase name were identified.

One compartment name, one loca stem and one word of interest were found. Two rules were

set to 1 and one to 0. Finally, 57.14% of the “non-stop” words in this sentence were identified

as NEs and therefore relevant. Again, Appendix F gives further examples. Table 3.6 shows the

possible values for each feature in the vector. Their numberwas adjusted to achieve the best

cross-validation results on the training data.

Features Values

protein name {pn0, pn1, pn2, pn3, pn4, pnn}

protein keyword {pk0, pk1, pk2, pk3, pk4, pkn}

compartment name {cn0, cn1, cn2, cn3, cnn}

compartment adjective{ca0, ca1, ca2, ca3, can}

compartment keyword {ck0, ck1, ck2, ck3, ckn}

phase name {ph0, ph1, phn}

loca stem {loc0, loc1, locn}

word of interest {int0, int1, intn}

rule A {ra0, ra1}

rule B {rb0, rb1}

rule C {rc0, rc1}

percentage real number

relevant {y, n}

Table 3.6: Feature vector’s possible values. Should more than one phase name of the

cell cycle occur in a sentence, the feature vector would show “phn”.
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The C&C tagger output on the test set shows the NER is performed with:

• 51% recall and 82% precision for the protein names (PN),

• 99% recall and 99% precision for the other categories.

It is well-known that variation in how proteins are specifiedmeans that NE recognisers for pro-

teins either must allow for a wide range of variation or will miss a significant number of protein

references (false negatives). Even though the protein NE recogniser misses many instances, in

82% of cases, the protein keyword feature picks up the presence of a protein. Protein keywords

can therefore be considered as a reliable safety net.

The features can be tested on how well they represent the databy running cross-validation

experiments on the training corpus. Table 3.7 shows these results for three different meth-

ods: DT (see Section 2.2.8), NB (see Section 2.2.7) and MaxEnt (see Section 2.2.9). WEKA

(see Section 2.2.6) was used to obtain results from DT and NB.The MaxEnt tool used in my

experiments is Zhang Le’s toolkit [Le03], which only outputs an accuracy percentage (rather

than precision, recall and F-score results) on cross-validation results. Three quarters of the

sentences are correctly identified as interesting when using cross-validation. The next section

applies this trained model to test data.

Decision Tree Naive Bayes MaxEnt

Precision 0.755 0.738

Recall 0.713 0.767

F-score 0.734 0.752 accuracy: 81.673%

Table 3.7: 10-fold cross-validation on the training corpus

In order to ascertain whether the size of the training data set was adequate, or whether

the range in variation from paper to paper meant that a largertraining set was required, I

characterised the learning curve of my system. I identified the best results I could achieve on

the test set from training on the full set of 14 articles, thenonly 13, 12, 11, 10 articles,etc.

Results are shown in Figure 3.1. Performance starts plateauing early so it is safe to say that I

have sufficient data.

I would not say the curve is plateauing too early because, although the x axis on the graph

represents the number of documents, the classifier is actually learning how to categorise sen-

tences. As Table 3.2 shows, these articles contain between 106 and 252 sentences each. There-

fore, the curve is not showing that one element is enough to learn how to classify another

element, the curve is showing one set of elements is enough toreach a certain level of confi-

dence to classify other elements. Furthermore, recall doesnot plateau until the 7th document.

Nevertheless, a larger training set could potentially yield better results.



3.4. Supervised method 69

Figure 3.1: Learning curve on the size of the training corpus showing there are enough

labelled documents in this collection.
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3.4.3 Baseline

A baseline is required to assess system performance. Precision and recall for this baseline

show, in part, the contribution of NER to the decision. The baseline used here was created

using a classifier developed by Tamara Polajnar, based on thesame approach as the SVM (see

Section 2.2.10) used for PreBIND [DMdB+03]. The MexSVM (http://webspace.ship.

edu/thbrig/mexsvm/ ) Matlab interface for the SVMlight classifier is used for these SVM

experiments. Table 3.8 shows the results obtained by this classifier categorising sentences in

the training and testing sets as relevant or irrelevant.

Cross-validation on training set Testing on test set

Accuracy 87.98 84.80

Precision 67.67 0

Recall 66.53 0

F-score 66.70 0

Table 3.8: Baseline results using SVM on cross-validation on the training set as well as

testing on the test set

The results show SVM guesses mainly negative, which gives ita high accuracy but a preci-

sion, recall and F-score of zero as no positives were presentin the returned set. High accuracy

is a consequence of the large number of true negatives in the training and test sets, which the

SVM-based method was very good at recognising. This experiment demonstrates that using

SVM bag of words is, in this case, similar to guessing negative all the time.

Comparing the results in Table 3.8 with those in Table 3.7 shows that the SVM approach

performs worse with respect to cross-validation than the other three approaches – Decision

Tree, Naive Bayes and MaxEnt. The next section presents experiments and results achieved

on the test data set. The SVM baseline obtained on the test setwill serve as the baseline of

reference for these experiments.

3.4.4 Experiments and Results

Table 3.9 gives the results obtained for the same three methods on the test set. Ensemble meth-

ods make decisions based on the individual decisions of the different classifiers. In Ensemble

methods, the individual classifiers vote on each item. Theirvotes can be equally weighted, or

one might learn a better weighting.

I tried Ensemble methods weighted differently on the results from Decision Tree, Naive

Bayes and MaxEnt. In most cases, Ensemble Learning did not achieve better results than the

best technique out of the three (DT). Usually, Ensemble can correctly classify some FNs as TPs
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Decision Tree Naive Bayes MaxEnt

Precision 0.569 0.519 0.533

Recall 0.652 0.580 0.348

F-score 0.608 0.548 0.421

Table 3.9: Results on the test set

that the best technique would have missed out. Table 3.10 shows DT, NB and MaxEnt do not

learn the data differently and must agree most of the time. Because NB and MaxEnt are lower

versions of DT in this case (i.e. they do not perform as well as DT), there is no gain obtained

by using an Ensemble method.

Ensemble Precision Recall F-score

DT NB MaxEnt

1 1 1 0.541 0.666 0.597

1.2 1 0.8 0.527 0.695 0.6

1.5 1 0.5 0.527 0.695 0.6

1.5 0.75 0.75 0.527 0.695 0.6

1.8 0.6 0.6 0.527 0.695 0.6

2 0.5 0.5 0.539 0.695 0.607

2 0.7 0.3 0.539 0.695 0.607

2 0.4 0.6 0.539 0.695 0.607

prio/1 /1 /1 0.527 0.695 0.6

prio/1 /0.6 /1.4 0.51 0.71 0.594

prio/1 /1.4 /0.6 0.51 0.71 0.594

prio/0 /0.5 /2.5 0.51 0.71 0.594

prio/0 /2.5 /0.5 0.51 0.71 0.594

prio/0 /1.3 /1.7 0.51 0.69 0.586

prio/0 /1.5 /1.5 0.51 0.69 0.586

Table 3.10: Ensemble results on the test set. Numbers in the first 3 columns correspond

to the weight given to each method (DT, NB and MaxEnt) by the Ensemble method;

“prio” means a method gets priority if it has classified an instance as positive itself.

The last 7 rows of Table 3.10 show Ensemble methods where DT - performing best out of

the 3 methods - gets priority (“prio”) if it has classified an instance as positive. If it has not

then different weights are given to the three methods. Although for some combinations recall
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is higher than DT’s performance, none of the different combinations of weights produced a

higher precision and DT’s F-score is never outperformed. Precision is more important to the

curator as any important piece of information will be repeated and hopefully caught at some

point within an article (see Section 3.4.5). Therefore, I will use DT’s results through the rest of

the thesis.

In order to make my classifier most useful, I used MaxEnt to order the results on my

testing sets. It seems that even if the ranking was not performing very well, it can only be

better than lists ordered by sentence number. Ranking is an interesting idea as it allows the

curator system interface to show the user which sentences are “very likely” to be relevant and

which are “possibly likely”. This can be shown by different shades of colour (see Section 4.5).

While ranking using MaxEnt percentages might not be the mosteffective method, it can still

be useful if precision@n scores are high enough above a threshold that one can ascertain and

low below the threshold.

Based on DT’s results, I computed ranked lists of sentences ordered by their MaxEnt per-

centage. From these lists, it was possible to calculate the results @n, as shown in Table 3.11.

Results@n, n = 10 20 30 40 50 60 70

Precision 0.5 0.5 0.5 0.525 0.54 0.533 0.557

Recall 0.071 0.143 0.214 0.3 0.386 0.57 0.557

F-score 0.124 0.222 0.3 0.382 0.45 0.55 0.557

Table 3.11: Results on the test set @n

3.4.5 Analysis of the results

Table 3.7 shows that three quarters of the sentences are correctly identified when using cross-

validation. When this trained model is applied to test data,it does not do as well. However, it

still delivers approximatively 60% of the sentences correctly (see NB and DT in Table 3.9).

The difference in performance between cross-validation and application of the model to the

test set could have been the result of the way cross-validation was performed. Indeed, assigning

sentences at random to a fold (like WEKA does by default, see Section 2.2.6) may result

in folds in which sentences from the same document (possiblyexpressing the same content)

appear in both training and testing sets. This would mean that the test set, while unseen, may

be more similar to the training set than would be the case witha held-out test set, resulting in

higher cross-validation scores than the scores on the test set.

The following experiment was conducted in an attempt to rectify the problem by ensuring

that, in each fold, the sentences in the test set come from different documents from the sen-
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tences in the training set. As there are 14 documents in the training set, these were used to

make seven folds, each using 12 documents in the training setand two in the test set. Table

3.12 shows the results for this experiment.

The results are more or less the same, sometimes lower, sometimes higher. Another reason

for the difference of performance between cross-validation and application of the model to the

test set could be that the NER is not performing as well on the test set as it was on the training

corpus. Section 3.4.2 provides NER results on the test set and explains how the protein keyword

feature aids to recognise a sentence discusses a protein when the protein name itself was not

caught (or in the case of an anaphora).

Fold no DT prec DT rec DT F-sc NB prec NB rec NB F-sc

1 0.745 0.661 0.701 0.705 0.693 0.699

2 0.753 0.813 0.782 0.744 0.853 0.795

3 0.581 0.895 0.705 0.572 0.934 0.710

4 0.829 0.812 0.821 0.800 0.833 0.816

5 0.926 0.431 0.588 0.919 0.586 0.716

6 0.805 0.644 0.716 0.807 0.744 0.774

7 0.875 0.645 0.742 0.831 0.711 0.766

Table 3.12: ‘DIY’ cross-validation results (precision, recall and F-score) on the training

corpus

Looking at the results @n, a slow but steady increase with n onrecall and F-score is ob-

served, where precision is always about 0.5. Indeed, the results in Table 3.11 show that relevant

sentences do not congregate at the top of the ordering. As I godown the ranking, I appear to

be picking up an approximately equal number of relevant and irrelevant sentences.

There is a lot of repetition in biomedical papers. As a result, the same information can be

extracted from several different sentences within an article. As in other kinds of publication,

there is repetition between the Abstract and the Discussionsections of a paper. In biomedical

publications, the end of the Introduction section usually summarises the article too. Trying

to convince the readers that their points are valid, the authors will confirm the main facts of

the paper several times in the Results section when elaborating and justifying their arguments

based on different techniques and results. Also, a piece of information introduced at one point

in the text can subsequently be presented as background information. For example, if at some

stage in the paper it is established that protein X is localised in the nucleolus, several times in

the rest of the document, protein X can be referred to as “nucleolar protein X”.

On top of these results, and as a transition to the next chapters of the thesis, I also computed

results for another metric, which I call A@n (see Section 2.1.3). This metric is like recall@n
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where only the first member of an equivalence class of answersis counted. Results on the test

set for A@n are shown in Table 3.13.

To get these figures, I manually assessed how many actual different “topics” were in the

relevant sentences, by grouping sentences per type of information (which is done automatically

in the annotation system - see Section 4.3). I then counted the number of clusters obtained.

While I found 28 clusters in the three-paper test set, not allof them are important. Important

topics are core to an article and thus tend to get repeated a lot within the full text paper. For

example, throughout the 14 articles comprising the training corpus, on average 83.063% of the

sentences addressing localisation of a protein are sentences covering “major” topics,i.e. topics

referring to the main protein(s) of interest in the publication, being located in the nucleus or

a subnuclear compartment. I considered there were 5 major topics in the test set: c-erB-3 in

nucleus, c-erB-3 in nucleolus, DEDD in nucleus, DEDD in nucleolus, DEK in nucleus. Results

shown in Tables 3.13, 3.17, 3.20 are based on these 5 main topics in the test set. There is a

discussion about this in Section 3.7, where these results are also given when taking into account

all of the 28 topics.

n 5 10 14

A@n 0.4 0.8 1

Table 3.13: Results on the test set A@n

The results A@n show that if not all the occurrences of a type of information are caught

with my classifier, at least no information is lost. Not only did I catch at least one instance of

each type of information in the test set, I also got those instances ranked high in the ordered list

produced by my supervised method. In the top five sentences ofmy ranked ordered list, almost

half of the topics have been covered already (see Table 3.13). I only need to go down to the

14th sentence of the list to get all the topics covered.

3.5 Rule-based method with BioIE

This section compares the method I developed and presented in the previous section to an

existing one based on pre-defined rules. Comparing results obtained by different methods

on the same data offers an interesting perspective as to whattheir respective strengths and

weaknesses are (see Section 3.7).

In Section 2.3 of the last chapter I presented BioIE [DA05a],a rule-based sentence ex-

traction system. The tool offers five predefined categories of types of information related to

proteins:

• structure,
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• function,

• diseases and therapeutic compounds,

• localisation, and

• familial relationships.

BioIE stores different templates for each of these five categories. The templates used for the

localisation category are displayed in Table 3.14, where regular expressions have been used to

formulate the patterns sought. For example,

• exist[a-z]0,3 inrefers to “exist in”, “exists in”, “existed in”, “existing in” as [a-z]0,3

stands for any letter between ‘a’ and ‘z’ repeated 0, 1, 2 or 3 times.

• locali[s|z]e[a-z]0,1 inrefers to “localize in”, “localizes in”, “localized in”, “localise in”,

“localises in”, “localised in” as[s|z] gives a choice of using an ‘s’ or a ‘z’.

Out of the 22 patterns BioIE uses, 12 contain words that are present in two of my lexicons (loca

stems and words of interest). The first column of the Table displays those 12 items while the

second column shows patterns containing words my lexicons do not use.

contained in derived

detected in extracellular

distributed in encoded in

distributed along discovered in

found in common in

found within inside

found only in expressed in

found throughout intracellular

found at exist[a-z]0,3 in

observed in allocat[a-z]0,3

locali[s|z]e[a-z]0,1 in

colocali[s|z]e[a-z]0,1 with

Table 3.14: BioIE templates for the localisation category [DA05a]

The results obtained by loading the training corpus onto BioIE’s Webpage1 are indicated

in Table 3.15. Results on the training set give a precision of0.401, a recall of 0.361 and an

F-score of 0.380.

1I would like to thank Dr Anna Divoli for altering the BioIE’s 200 KB limit for a weekend so that I
could compute the tool’s results on my training corpus.
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TP = 175 FN = 310

FP = 261 TN = 1892

Table 3.15: Confusion Matrix for BioIE on training set

The results obtained by loading the test set onto BioIE’s Webpage are indicated in Table

3.16. The first column of the Table gives “regular” precision, recall and F-score on BioIE’s

results as a whole, whereas the next columns show results forprecision, recall and F-score @n.

Results BioIE @10 @20 @30 @40 @50 @60 @70

Precision 0.280 0.2 0.25 0.266 0.275 0.24 0.266 0.271

Recall 0.328 0.029 0.071 0.114 0.157 0.171 0.229 0.271

F-score 0.303 0.051 0.11 0.161 0.2 0.2 0.246 0.271

Table 3.16: Results produced by BioIE on the same test set

The sentences extracted by BioIE are ranked in order of importance, according to the num-

ber and complexity of templates they contain. The templatesthat BioIE uses exhibit a range

of syntactic complexity. The more complex a template is, therefore more specific and thus

containing more precise information, the more it is weighted. Less complex templates are also

considered but are weighted less. As BioIE’s results are rank-ordered, I can calculate its A@n

results as well. These results are shown in Table 3.17. It is only by the 39th result that all five

major topics were caught.

n 10 20 30 39

A@n 0.4 0.8 0.8 1

Table 3.17: Results produced by BioIE on the test set A@n

3.6 Unsupervised method: Vector Space Models with

Infomap

After presenting results obtained on my data by BioIE, a rule-based method, another interest-

ing method to compare mine with is that of Infomap. Section 3.7 will discuss all the results

presented in this chapter.

As noted in Section 3.4, unsupervised learning, unlike supervised learning, does not benefit

from any labelled data. Instead, it looks for patterns in thedata. Groupings within the patterns
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Sentence 1 Sentence 2 Sentence 3

Term 1 x1 y1 z1

Term 2 x2 y2 z2

Term 3 x3 y3 z3

Full query x1+x2+x3 y1+y2+y3 z1+z2+z3

Table 3.18: Normalised term-sentence matrix. The last row shows semantic composi-

tion by simple vector addition (if the full query is composed of the three terms in the first

three rows).

may be taken to indicate distinct classes. Patterns can sometimes be seen by mapping each data

item to a point in a vector space whose dimensions correspondto the features. This is called a

Vector Space Model (VSM)of the data.

Infomap [WP] is an information retrieval system based on VSM. It can retrieve items con-

taining free text at any level. The article level is used for document retrieval. Here, I used

Infomap to retrieve items at the sentence level.

Infomap initially uses the VSM to interact with the user and create a query that reflects both

the concept of interest to the user and how it is realised in the document collection. My original

query was simply the word “localized”. Infomap then offeredme a list of 50 related words that

I could add to my query if I felt it increased the accuracy of its meaning, or disregard other-

wise. I rejected terms such as “accessible”, “aspect”, “beneath”, “distant”, “involvement” and

“overlying”. The final query contained the most relevant 25 terms: “confined”, “densely”, “de-

tected”, “diffusely”, “discovered”, “distributed”, “localised”, “localization”, “localize”, “local-

ized”, “localizes”, “localizing”, “located”, “locates”,“locations”, “migrate”, “moves”, “pre-

dominant”, “predominantly”, “present”, “region”, “regions”, “site”, “sites”, “situated”.

Infomap then computed a normalised term-sentence matrix that represented sentences as

vectors in the same space as the query words. This allowed semantic composition by simple

vector addition as illustrated in Table 3.18. The most relevant sentence was the sentence whose

vector had the highest cosine similarity with the full queryvector. For example, the three

sentences in Table 3.18 could be represented in a three-dimensional space (term 1, 2 and 3

from the Table now correspond to 3 elements in a vector) where

• Sentence1 = (1,0,0),

• Sentence2 = (0,1,0) and

• Sentence3 = (0,0,1).

Then
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• cos(Fullquery,Sentence1) = x1+x2+x3,

• cos(Fullquery,Sentence2) = y1+y2+y3 and

• cos(Fullquery,Sentence3) = z1+z2+z3.

Whichever cosine value is highest (lowest) would show whichsentence is the most (least)

relevant. Infomap can thereby return a rank-ordered list ofbest matching sentences to the

query.

Infomap’s results are further improved by using a statistical technique calledSingular

Value Decomposition (SVD). SVD maps a vector space to a lower dimension and looks at

word relationships by studying the distribution of its co-occurrences in order to associate terms

with similar meanings. For example, SVD might be able to learn that a protein name and its

aliases are related terms. The results obtained by loading the test set in Infomap are indicated

in Table 3.19. The first column of the Table gives “regular” precision, recall and F-score on

Infomap’s results as a whole, whereas the next columns show results for precision, recall and

F-score @n.

Results Infomap @10 @20 @30 @40 @50 @60 @70

Precision 0.32 0.8 0.75 0.566 0.475 0.42 0.4 0.371

Recall 0.457 0.114 0.214 0.243 0.271 0.3 0.343 0.371

F-score 0.376 0.2 0.333 0.34 0.345 0.35 0.37 0.371

Table 3.19: Results produced by Infomap on the same test set

The Infomap output is a list of sentences best matching the query in descending order of

relevance. As Infomap’s results are rank-ordered, I can calculate its A@n results. These results

are shown in Table 3.20.

n 10 20 30 40 49

A@n 0.4 0.8 0.8 0.8 1

Table 3.20: Results produced by Infomap on the test set A@n

The results presented above were for the test set. For completeness, I tried to obtain results

on the larger training set. Unfortunately, testing the training corpus on Infomap was more

difficult as Infomap will at most retrieve 200 documents (sentences in my case). The training

corpus contains 485 positive sentences (and 2638 sentencesin total). According to support

groups on Infomap, it is possible to alter the source code in Cand get the tool to retrieve a

higher number of results. Unfortunately, this requires a lot more than simply changing the
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number “200” in the original code. Based on what I know Infomap retrieved for the first 200

results, Table 3.21 sums up my calculations.

Results hypothetical worst case best case regular case

Number of+ves 200 485 485 485

TPs retrieved 104 104 389 104

Sentences retrieved 200 485 485 200

Precision 0.52 0.214 0.8 0.52

Recall 0.52 0.214 0.8 0.21

F-score 0.52 0.214 0.8 0.299

Table 3.21: Infomap’s results on the training set. The first column shows the results

if the training corpus contained 200 positives rather than the actual 485. The second

column gives the results in the worst case scenario (Infomap does not find any more

positives). The third column gives the results in the best case scenario (Infomap finds

all the remaining positives). Finally, the last column shows the results as they are (only

200 sentences retrieved but 485 actual positives in the corpus).

The results obtained in this section were for a particular choice of initial query word (“lo-

calized”) and for a particular manual pruning that I performed, retaining 25 terms out of the 50

returned by Infomap. Other terms and/or other pruning of theset of words suggested would

produce somewhat different results.

3.7 Discussion

Tables 3.9, 3.11, 3.13, 3.16, 3.17, 3.19, 3.20 show that the classifier I developed using super-

vised ML outperforms the rule-based and the unsupervised MLmethods. The best F-score for

supervised ML was achieved using Decision Tree (Table 3.9):0.608. BioIE struggled to attain

half this F-score (Table 3.16): 0.303. Infomap scores a little bit better than BioIE, with an

F-score of 0.376.

The A@n metric measures the number of sentences retrieved before picking up all the

different topics in the test set. It confirms my supervised classifier performs better than the

other two tools again, as 14 sentences were enough to cover all the topics in the test set (Table

3.13), against 39 for BioIE (Table 3.17) and 49 for Infomap (Table 3.20).

As I explained in Section 3.4.4, 28 clusters of different sizes were found in the three-paper

test set but not all of them were considered important. Therefore, I did not use the number 28

to calculate the results shown in Tables 3.13, 3.17, 3.20. Instead, I worked out there were 5
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main topics in the test set, the 5 larger clusters, and used that number. The reason for this is

that I wanted to show there is at least one instance of every important topic being picked up

high in the rank-ordered list of results.

Is counting only important topics justified? In multi-document summarisation, there is a

heuristic that material occurring in many documents -i.e. multiple times - is probably more

important than material that occurs in only a few documents -i.e. a few times. It seems that

the above heuristic applies within a document being assessed for IR as it does across a set of

documents being summarised. Indeed, in biomedical papers,only facts that are core to the

article tend to be repeated. Pieces of information that are in a paper as part of the arguments

(e.g., background knowledge) are repeated less often than the actual message authors are trying

to put across.

For example, one of the three publications that constitute the test set is mainly about protein

c-erB-3 (see [OSWG02]). Proteins c-erB-1, c-erB-2 and c-erB-4 are mentioned in 18 sentences

in the full text paper (which comprises 172 sentences). Out of these 18 sentences, 6 talk about

localisation of these “satellite” proteins (1 sentence forc-erB-1, 3 for c-erB-2 and 2 for c-

erB-4), and 2 were highlighted by our expert. 93 sentences inthe document mention c-erB-3,

30 of them talk about its localisation and 20 were originallyhighlighted by our expert. This

means the localisation of c-erB-3 is discussed five times more than the localisation of these

three “satellite” proteins all together. In my supervised method, only 1 out of these 6 sentences

about satellite proteins was caught. But when I want to evaluate how well my method is doing, I

want to check that all the important topics have been caught high in the list,i.e. the localisation

of c-erB-3.

Moreover, the curator of the NPD only adds to her database facts that are backed up by

experimental evidence. If a piece of information is not repeated, either it is a well-known

fact in molecular biology (and it is most likely already in the NPD), or there is no (or only

preliminary) evidence to support it in the article. In this case, she prefers to wait for a future

paper that will give full evidence for this new piece of information before adding it to the

database.

Having discussed how results were calculated in Tables 3.13, 3.17, 3.20, I also worked

out what the results of A@n would be like if I considered the total 28 topics. The results in

Table 3.22 show that none of the three methods retrieve sentences covering all the 28 topics.

BioIE only starts performing better than my supervised method somewhere between the top 30

sentences and the top 40. After that, BioIE actually managesto catch sentences about half the

total number of topics in the test set. Infomap gives better results than my supervised method

in this Table right from the beginning, and manages to retrieve sentences about 42.8% of the

total 28 topics.

It seems BioIE’s many patterns allows it to open up to more possibilities than my super-
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Supervised BioIE Infomap

A@10 0.143 0.107 0.178

A@20 0.178 0.178 0.357

A@30 0.214 0.178 0.357

A@40 0.214 0.321 0.357

A@50 0.286 0.357 0.393

A@60 0.286 0.428 0.393

A@70 0.321 0.428 0.393

A@80 - 0.5 0.393

A@90 - - 0.428

Table 3.22: Results obtained by 3 different methods on the same test set for A@n

considering the total 28 topics

vised method, which focusses on particular features quite quickly. These features are very

useful for recognising specific forms associated with important topics, but lack the breadth

needed to catch all the different topics.

As for Infomap, the key property for exploiting word co-occurrence patterns is that SVD

finds the optimal projection to a low-dimensional space. SVDrepresents terms and sentences

in the lower dimensional space as well as possible. In the process, some words that have

similar co-occurrence patterns are projected onto the samedimension. As a consequence, the

similarity metric will make topically similar sentences and queries come out as similar even if

different words are used for describing the topic. Again, this approach seems more open than

my supervised method and I speculate this might be the reasonwhy it captures more of the 28

topics.

But what is more important to a “spare time” database curator? Catching as many topics

as possible per document OR making sure that all the main topics of a document are caught

early on in the rank-ordered list? When reading the paper mentioned earlier about c-erB-3

[OSWG02], the curator cares about sentences confirming where the protein localises within

a compartment of the cell nucleus (i.e., in this case, sentences mentioning c-erB-3 is in the

nucleolus). Topics such as locating the protein in the cytoplasm, or about “satellite” proteins

(c-erB-1 or c-erB-4) do not matter as much.

Therefore, Tables 3.13, 3.17 and 3.20 reflect that my supervised method is the best out of

the three techniques I experimented with in this chapter forthe purpose at hand. It is no surprise

that supervised learning is doing better in my experiments.Indeed, my classifier benefits from

a lot of manually annotated training data and handcrafted gazetteers. With these advantages, it

should do better than techniques solely based on templates or VSMs.
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More generally, results could be improved by using syntactic features derived from deep-

parsing analysis. For example, as mentioned in Section 3.4.2, the protein keyword feature can

help to pick up on a relevant sentence that does not contain a protein name (or that does but

the latter was not recognised). However, a real anaphora resolution module such as the one

described in [Gas06] and used in [KSL+08] could enhance results.

Furthermore, as the tool’s features are mainly based on the recognition of NEs, improving

NER results - notably of protein names - would benefit it. Although, FACTA itself (see Section

2.3.8) does not deal with disambiguation at present and has separate indexes for concepts and

for words, working with concepts seems to present an advantage. Indeed, all names and aliases

of a protein can be kept under a unique concept identifier or concept accession number. This

approach could facilitate merging multiple dictionaries from different databases containing

protein names and their variants, thereby enriching the protein name lexicon and keeping track

of conceptual NEs.

The use of conceptual features was proven to benefit IR results as early as 2003 in the

TREC Genomicsad hoc retrieval task ([HB03], see Section 2.4.2), when Medical Subject

Headings (http://www.nlm.nih.gov/mesh/ ) and other unambiguous terms were used to ob-

tain better results. Concept recognition tools were first openly evaluated during BioCreative II

[KLRPV08], which set tasks such as gene mention tagging [STnA+08] and gene normalisation

[MLW +08]. Based on this recent community-wide effort, [BLJ+08] introduces an integrated

system that achieves better results than traditional protein name recognition methods by per-

forming concept recognition. This kind of method could significantly enhance our NER results.

Finally, to keep the training data automatically updated and growing, training data could

be collected on an ongoing basis. For example, BIND (Biomolecular Interaction Network

Database) is curated using an IE system developed to automatically identify protein-protein

interactions and present results through an interface for BIND curators. This system is called

Pre-BIND/Textomy (text anatomy). In [DMdB+03], the authors explain that the training cor-

pus of PreBIND and Textomy is continually improved as the feedback of curators using the

tool can be saved whilst they are working. This allows their system to enhance its performance

on a regular basis. A similar approach could be implemented for the NPD Curator System

Interface.

My final system (see Chapter 5) suggests to the curator what the most important topics

are, given a new paper, based on which topics gathered the highest number of instances (see

similarity clustering in Section 4.3). The system shows major and minor topics found in the

new article. It also gives a counter revealing how many instances were caught per type of

information, and gives links to all these sentences highlighted in the full text.

In conclusion, the classifier I developed using supervised ML is the method I used to de-

velop my tool. The A@n measure enabled us to realise that if not all occurrences of a piece of
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information are caught by my classifier, at least one of them is for each and every one of them.

This brings us to the next step towards developing a tool to help annotate the NPD. When more

than one occurrence per topic is caught by my classifier, how can I detect that two or several

sentences in my ranked ordered list are actually referring to the same piece of information?

3.8 Summary

In this chapter, I have presented my corpora and my methods for retrieving sentences relevant

to protein localisation in full text papers. I have also compared my results to results obtained by

performing other tools on my data. Finally, from analysis ofthe results and discussion emerged

a clear conclusion for what my final tool (see Chapter 5) should use for detecting relevancy.





Chapter 4

Elements of automated annotation

assistance

Before introducing the Curator System Interface in the nextchapter, this chapter presents the

technical side of all the different components of automatedannotation assistance it provides.

While Section 4.1 explains how relevant documents were retrieved (work achieved during my

Masters by Research which was integrated as a pre-step to thefinal interface) and Section

4.2 talks about detecting sentences relevant to the localisation of nuclear proteins (which was

covered in the previous chapter), the following two sections present features that were not

previously explained in this thesis or elsewhere. Section 4.3 talks about detecting redundancy

and grouping sentences that refer to the same kind of information. Section 4.4 talks about

detecting novelty with regard to the NPD.

4.1 Document retrieval

4.1.1 Text categorisation task

For my Masters by Research thesis [Can04], I tackled the firstissue encountered when main-

taining a database, which consists of retrieving documentsof interest to the database. The

thesis explored different ways to perform automatic classification of articles from the biomedi-

cal literature into two classes: articles of interest to theNPD (which therefore should be linked

from the database), and articles that are not of interest.

In order to present the curator with results she can easily and quickly exploit, the final tool

uses a combination of different classifiers including Rainbow, DT, NB, MaxEnt and displays

rank-ordered lists of articles. While sentence-classification did not benefit from an ensemble

of multiple methods (see Section 3.4.4), this TC task did.

DT, NB, MaxEnt were introduced in Section 2.2. Bow is a library of C code for statistical

85
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Figure 4.1: Categorisation of PMIDs returned from PubCrawler. The tool uses a com-

bination of existing tools and perl scripts to produce rank-ordered results.

text analysis, language modeling and information retrieval. Rainbow [RAI] is the front-end to

the library that supports text classification. It was used asa feature for this tool in order to

mimic a domain expert searching the title and abstract for relevant evidence.

Finally, the rank-ordering is performed based on the percentages MaxEnt gives out as

shown in Figure 4.1. The tool achieved a precision of 0.7, a recall of 0.636 and an F-score

of 0.667.

Before my MRes, Professor Wendy Bickmore would get a daily email from PubCrawler

[HW04], a gateway to the biomedical literature that lets users set keywords according to the

kind of articles they would like the tool to retrieve for them(see Figure 1.10). After my MRes

and until July 2007, I would send her an email every fortnightwith the output of the tool, as

shown in Figure 4.2,i.e. rank-ordered lists of positive and negative PubMed identifiers, along

with links to the corresponding PubMed page. Bickmore wouldstudy the list of positives and

check the very top of the list of negatives for FNs. She estimated the tool decreased her reading

time by a factor of 10.

Since July 2007, Bickmore can use the interface I developed during my PhD to upload

PubCrawler’s results and compute the lists of positives andnegatives by herself as the MRes

tool has been incorporated into the final interface. Moreover, she can then directly launch the

IE on the full-text paper (work achieved during my PhD) by simply clicking on the PubMed

identifiers in the lists (see Section 5.1.3).
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Figure 4.2: Example of email sent to curator every fortnight. Each line starts with a

PMID, followed by its clickable Entrez URL. This output contains less FPs than Pub-

Crawler’s alerts and therefore saves time to the curator.
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4.1.2 Format issues

The annotation tool I have developed deals with all articles, working with abstracts when full

text is not accessible. While abstracts are, in most cases, easily accessible through central

collections such as PubMed [Pub], the availibility of full-text papers is more sparse. Indeed,

some articles may be obtainable via publishers’ Websites, whereas others would be through

PubMed Central or from local repositories.

Sometimes, the full-text articles are simply not freely available online and require paid sub-

scriptions to access them. (Advent of “open-access” publications should reduce this problems

in the future.) Sometimes they will only be available in PDF format rather than HTML format.

When full text is available online, owing to existing problems with analysing PDF, the tool has

been developed for freely-available or locally-licensed articles in HTML format.

To sum up, in this thesis work, I am only dealing with full-text papers available in HTML

format, or abstracts if full text is not available in HTML (see Chapter 5). The following para-

graphs discuss the reasons why.

The FlySlip project1 has developed an interface to help the annotation process ofscientific

papers. In a talk on FlySlip, Nikiforos Karamanis noted thatthe project used a commercial

tool applied to the output of Optical Character Recognition(OCR) in order to be able to deal

with PDF papers. However, he admitted that parts of the text were getting lost through the

conversion. Rather than working on correcting errors from PDF conversion tools, he affirmed

it makes more sense to contribute towards the work being doneto generate SciXML structured

text from PDF documents. In [Lew07], Ian Lewin explains thatSciXML will probably become

the common markup language of choice for scientific publications and that this should help the

interoperability of text-mining efforts.

To conclude, I decided not to work on full-text papers in PDF format for three different

reasons. Good PDF conversion was only available using commercial tools. PDF conversion,

no matter how good, loses text. In addition, it seems now is not the time to investigate ways of

making free PDF conversion better as, hopefully, SciXML will make a breakthrough and will

be more and more used for scientific papers. SciXML came alongtoo late to be an integral

component of my PhD research.

4.1.3 Abstracts vs. Full Text

Beyond format issues and availability, why is it preferableto work on full-text publications

rather than on abstracts only? Inevitably, a full-text article does provide more information than

an abstract. In [SWS+04], the authors explain that although information densityis higher in the

abstract, information content is higher in full text. Moreover, they argue that for IE tools that

1htt p : //www.cl.cam.ac.uk/ nk304/Pro ject Index/index.html
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can distinguish relevant sentences from irrelvant ones in full text, information density should

not be of concern and conclude full text should be used for text mining.

The only reason why Professor Wendy Bickmore would extract information from abstracts

rather than full texts in the past was that it would have been too time-consuming. However,

since the Curator System Interface (described in Chapter 5)was put in use, she has benefited

from extracting information located in abstracts as well asother sections.

This thesis claims it is only with respect to the full text that it is possible to distinguish

major localisation relations the authors are trying to put across from minor ones. Indeed, this is

achieved through a study of the frequency of occurrence of all the localisation relations within

an article (see Section 4.3).

In order to support this argument, I examined two papers: [PPRMV04] from my training

corpus and [SSE+98] from the testing corpus (see Section 3.3 for corpora). Figures 4.3 and 4.4

show the PubMed entries for these two articles.

The main facts in [PPRMV04] are protein BIG1 in the nucleus and protein BIG1 in the

nucleolus. Similarly, the main facts in [SSE+98] are protein DEDD in the nucleus and protein

DEDD in the nucleolus. I first looked at these four main facts,where and how often they

appeared in the text. For the record, both abstracts containa total of 10 sentences each.

Before looking at the results in Table 4.1, let us comment on the importance of major facts

in a paper. Other facts can be, and indeed are, extracted froman article to update a database.

However, in order to make sure we are not missing any important information and in order to

provide the curator with a list of facts ordered by their importance, we need to focus on the

number of times a piece of information is stated. As mentioned earlier, the more authors repeat

a certain piece of information the more we can be confident they are trying to put this message

across in particular.

[PPRMV04] [PPRMV04] [SSE+98] [SSE+98]

BIG1 BIG1 DEDD DEDD

in nucleus in nucleolus in nucleus in nucleolus

Abstract 6 2 3 2

Rest 37 7 30 15

Table 4.1: Number of sentences covering the most important facts of two articles from

my corpora in the abstract alone or the rest of the paper. BIG1 (also called Brefeldin

A-inhibited GEP 1) and DEDD (also named DEDPRO1) are two nuclear proteins.

In total for these two papers and their two main facts each, 13sentences were from the

abstract and 89 were retrieved from other sections in the publications. The conclusion is both

most important localisation relations for both papers I manually assessed were found in the
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Figure 4.3: PubMed entry showing the abstract of [PPRMV04] and its sentences iden-

tified as relevant by the curator highlighted in yellow.
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Figure 4.4: PubMed entry showing the abstract of [SSE+98] and its sentences identified

as relevant by the curator highlighted in yellow.
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abstract and more than once too. However, other localisation relations were also found in the

abstract, as shown below, making it impossible to identify the main facts of the paper simply

based on the abstract.

[PPRMV04]’s abstract contain another 8 localisation relations:

• nucleoporin p62 in nucleus (2 sentences)

• nucleoporin p62 in nucleolus (1 sentence)

• nucleolin in nucleus (1 sentence)

• BIG2 in nucleus (2 sentences)

• BIG1 in Golgi (1 sentence)2

• BIG2 in Golgi (1 sentence)

These occur as often or not much less often than the two main facts. Similarly [SSE+98]’s

abstract contain another 3 localisation relations:

• DEDD in cytoplasm (1 sentence)

• UBF in nucleus (1 sentence)

• UBF in nucleolus (1 sentence)

These results suggest that abstracts do not yield to as simple a method as frequency of occur-

rence for determining the main facts of a paper. It is not thatthe facts listed above are not

interesting for extraction, it is simply that if they are notthe main facts the authors are trying to

put across. This means these facts are most probably not new and original research, therefore

they might already be present in the NPD.

4.2 Relevance detection

When going through free text and checking for particular information, rather than a story or

an argument, not all parts of the text are equally relevant. For simple infomation, such as a

two-place relation (a protein and its localisation), the locus of that information may be as small

as a single sentence or even a single clause or phrase. More complex information might only be

conveyed in a sequence of sentences, or the text as a whole. However, with simple information,

some sentences may convey the relation and others not. Therefore, the first are relevant, the

others not.

2BIG1 in cytosol was not captured as “cytosol” is not listed inthe compartment gazetteer.
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In order to automatically highlight sentences in full-textpapers that are relevant to the

localisation of nuclear proteins, I chose to automaticallygo through the free text and check

for a set of different features a sentence carries. Chapter 3compared the performance of three

different types of method for retrieving sentences of interest from a document:

• supervised Machine Learning (see section 3.4),

• rule-based with BioIE (see section 3.5),

• and unsupervised Machine Learning with Infomap (see section 3.6).

Using DT, the method that performed best, the interface highlights sentences that are con-

sidered relevant to the sublocalisation of nuclear proteins (see Section 5.1.4).

4.3 Redundancy detection

In biomedical articles, the main piece of information is often repeated several times throughout

the text. For example, simply in the abstract of [SWJ+00] from the training corpus, the authors

state fibrillarin is in the nucleolus and in Cajal Bodies (abbreviated CBs, see Section 1.2.1)

several times:

• “presence of nucleolar proteins such as fibrillarin in CBs”

• “structural domains of fibrillarin are required for correctintranuclear localization of

fibrillarin to nucleoli and CBs”

• “appear to target fibrillarin, respectively, to the nucleolar transcription centers and

CBs”

As discussed in Section 3.7, the same piece of information may be stated several times in

an article for different purposes (e.g., as speculation, as claim, as given,etc.). Therefore, the

more sentences refer to a particular localisation relation, the more this localisation relation is

likely to be important within the document.

This section looks at redundancy of information within a document, and indeed grouping

sentences that refer to the same kind of information together. The next section (Section 4.4)

will look at detecting novelty to the NPD.

In order to group similar sentences together, I decided to tag each sentence with all the

localisation relations (a protein and its localisation) itrepresented. Figure 4.5 illustrates how

this is an extra step towards domain-specific annotation. Sentences may manifest zero, one or

more than one localisation relation(s). The number of instances for each localisation relation

can be counted, and determine what localisation relations are important to a paper.



94 Chapter 4. Elements of automated annotation assistance
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Figure 4.5: Each extra layer of tagging allows us to transform raw text into a domain-

specific annotation-rich corpus. The layers displayed in the triangle represent the steps

taken in this work.

The group of sentences manifesting a single relation can be identified. My interface (see

Chapter 5) then displays a Table containing the list of relations found in the article ordered by

importance (or size of the group). For each localisation relation, the curator can have access to

all the sentences that manifest that same fact in context, asthey are highlighted in the full-text

document.

In order to tag sentences with localisation relations, I decided to use a locally developed

tool called lxtransduce [GMT06]. Unlike my previous work, lxtransduce uses XML and adds

markup containing NE tags (like the C&C tagger to some extent, see Section 3.4.2) to the text.

I will first introduce the tool itself, explain how its outputcan be used to tag sentences with

localisation relations, then show the results it achieved and discuss them.

4.3.1 Introduction to lxtransduce

TTT2 [GMT06] is the second release of a Text Tokenisation Tool written by the Language

Technology Group (LTG,http://www.ltg.ed.ac.uk/ ) at the University of Edinburgh. The

system tokenises text and offers the possibility of adding XML markup tags at specified levels

of the text. The main component of TTT2, “lxtransduce”, is a transduction program that works

on XML files. It lets users write their own lexicons (lists of terms of interest) and grammars

of rules that specify where the tool should place its markup tags signalling to the users the

presence of NEs in the text.

I used TTT2-bundled utilities to convert my training corpusinto the XML format required

by lxtransduce. I converted my original gazetteers (see Section 3.4.1) to create lexicons re-
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specting the TTT2 format. I also created a grammar for lxtransduce to tag my corpus with NEs

of interest. lxtransduce provides a rule (the<seq> element) that allows users to ask for some

NE to appear one after the other (in sequence). Using this specific rule, I was able to provide

lxtransduce with an equivalent to rule A (see Section 3.4.1). lxtransduce can then annotate each

sentence with NE tags. At this stage, it is possible to group sentences that manifest the same

localisation relation by analysing the tags lxtransduce has associated them with. The method

used to perform this grouping is described below.

4.3.2 Grouping sentences manifesting the same localisatio n rela-

tions

The output from lxtransduce is an XML file with XML tags signalling the presence of NEs.

Some sentences contain a single protein tag as well as a single location tag, and therefore will

be labelled with a single localisation relation. Some sentences contain a single protein tag

and multiple compartment tags, or a single compartment tag and multiple protein tags. Some

sentences contain multiple tags for both.

I have developed a perl script that parses the output file of lxtransduce and looks for XML

tags signalling the presence of NEs. I wrote the program in such a way that any protein name

and any compartment name in a sentence would be paired up as a potential localisation relation

in that sentence. For example, if an author writes that “Protein P1 is located in compartment

C1 whereas protein P2 is found in compartment C2”, my programsays P1-C2 and P2-C1 are

valid localisation relations for that sentence, which is not the case.

The program can be improved by only matching protein and compartment names that are

closest to each other in the sentence distance-wise (see Section 4.3.4) or, even better, by us-

ing parsing or chunking as a way of actually seeing which proteins and compartments do go

together. I also considered dealing with negation, but realised that as I am looking for the local-

isation relations that are mentioned most often in an article, I either would have a lot of tokens

of the same relation appearing in a negative context or I would have some positive and some

negative tokens. Both cases would probably be of interest tothe curator.

4.3.3 Results

Section 3.3 presented the training corpus (composed of 14 publications) and the testing corpus

(composed of 3 articles). Results show the evaluation of thelists of sentences retrieved, one

for each<protein, compartment> pair found in an article. Precision in Table 4.2 corresponds

to an average for all the different lists obtained. The precision for one particular list relates the

number of sentences that truly convey the localisation relation associated to that list to the total

number of sentences retrieved by the algorithm for that listor <protein, compartment> pair.
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Corpora training testing Both

Precision 0.532 0.635 0.538

Table 4.2: Grouping precision on training and testing corpora

Recall would then be the number of sentences conveying the correct localisation relation

to the total number of sentences, which should have been retrieved from that particular local-

isation relation, and is estimated very high. I have not calculated it as it would be too time-

consuming. It involves reading through both corpora and checking for any FNs, which would

include, for example, anaphora as in the following sequenceof sentences from [DMO00]:

“In early anaphaseprotein B23andfibrillarin had nearly identical patterns
of localisation (Fig 8, A-C).Both proteins were localized in perichromo-
somal regions (PRs) and NDF3 as well as being distributed generally in
the cell plasm.”

4.3.4 Discussion

When analysing the results of the algorithm explained in Section 4.3.2, I found that two types of

error predominated. The first one was expected because of theway the algorithm was written,

as explained in the previous section.

“The nucleolar localization of DEDD suggests that it may affect some
important nucleolar functions, and therefore interferes with ribosome
biosynthesis.”

This sentence was tagged as containing two localisation relations. According to Bickmore’s

manual annotation, the first one (“DEDD in nucleolus”) is correct whereas the second one

(“DEDD in ribosome”) is not.

The second type of predominating error is encountered when asentence indicates what

would happen in conditions that are not natural.

“Since DEDD was found to associate with FADD and caspase-8 invitro,
we tested whether under conditions with significant amountsof DEDD in
the cytoplasm an association with endogenous FADD and/or caspase-8
could be found in vivo.”

This sentence was tagged as containing two localisation relations. “DEDD in cytoplasm” is not

an acceptable localisation relation, as the sentence mentions it in an experiment context. Also

“FADD in cytoplasm” is incorrect and falls into the first typeof predominating error. The pair

“caspase-8 in cytoplasm” was not retrieved, as caspase is not part of the protein names lexicon.

3NDF stands for Nucleolus-Derived Foci.
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The first type of error could be dealt with by improving my script. For example, a distance-

based algorithm could resolve the problems mentioned above(“DEDD in ribosome” and-

“FADD in cytoplasm”). However, it could also miss out on somesentences such as

“DEDD, a novel death effector domain-containing protein, targeted to the
nucleolus”

where the protein name is far away from the compartment name.

As far as the second main source of error is concerned, a filtercould be installed in order to

avoid sentences that contain keywords like “test”, “in vitro”, “under conditions”, “experiment”.

This strategy, too, could have a negative effect on the results, where a sentence such as

“Immunofluorescence microscopy experiments showed that hGAR1,
hNOP10, and hNHP2 are localized in the dense fibrillar component of
the nucleolus and in Cajal (coiled) bodies.”

would not produce the localisation relations “hGAR1 in DFC”(Dense Fibrillar Component),

“hNOP10 in DFC”, “hNHP2 in DFC”, “hGAR1 in nucleolus”, “hNOP10 in nucleolus”,

“hNHP2 in nucleolus”, “hGAR1 in CBs”, “hNOP10 in CBs”, “hNHP2 in CBs” any longer.

As this algorithm’s results obtained scores of an acceptable quality, I decided to keep using

it without experimenting any further. Further experimentsmight not have improved the results

significantly. Moreover, it would have meant manually assessing the results again, which is a

tedious and highly time-consuming task.

4.4 Novelty detection with regards to the NPD

Once different types of information have been detected in a paper, the next step towards assist-

ing the annotation of the NPD is to check whether any of the localisation relations are new or

novel to the NPD.

4.4.1 Getting the latest version of the NPD

The latest uploaded version of the NPD is publicly availableon ftp://ftp.hgu.mrc.ac.uk/

pub/npd/ as a link from the NPD’s Website indicates. My tool checks this site for the date

of the latest update. If it is more recent than the version thetool is currently working with, it

downloads it.

Working on the latest “esqladd.txt”, I can look through the different existing Tables in

the database and identify the ones I need. Themytsummeta Table gives all the protein names

and aliases, along with the NPD ID they have been associated with. Themytsumprotsubnlocal

Table gives details about the phase of the cell cycle, the localisation and extra information on

conditions.
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I convert both Tables into separate files. I use the linux commands “sort” and “uniq” to get

the files sorted by NPD IDs and get rid of duplicates. Themytsumprotsubnlocal Table actually

may have several lines for each NPD ID, so it is important thatthese lines should be grouped

together for the next step.

4.4.2 Checking NPD flat file

Having created these two files sorted by NPD IDs, I can now easily search through them. Using

the file containing all the protein names, it is possible to check whether a protein has an entry

in the database or not.

If the protein does have an entry in the database, it is then possible to check the file with

all the localisation information to see whether the localisation relation found in the article is

already registered in the NPD, by looking for the protein NPDID and checking whether the

compartment the article mentions is in any of the NPD entriesfor that particular protein NPD

ID.

For example, if an article talks about protein DDX18 in nucleolus, I check the protein file

for DDX18 and find the ID “1NP00037”. Then I search the localisation file with 1NP00037

and get: “1NP00037; Interphase; nucleolus; NULL4”. As nucleolus appears in this entry, the

interface would say that the protein is in the NPD and the protein localisation is too.

4.4.3 Checking aliases

The NPD might use different protein or compartment names from the paper in current auto-

matic annotation. Therefore it is important to check for aliases.

Indeed, a paper can talk about a compartment such as the NDF but the NPD might only

have information about the protein in the nucleolus derivedfoci. Without checking for aliases,

the program would return the protein localisation is not present in the NPD, when in fact it is,

only under a different name.

A subroutine in my script deals with this issue using lists ofaliases computed previously,

as explained in Section 3.4.1.

4.4.4 Results and assessment

I tested the tool on 10 papers from the training corpus ([PPRMV04, SCD+02, SWJ+00,

CDG+03, CSK98, DMO00, DO98, KZCJ02, LS02, MKC+05]). For the 62 distinct proteins

mentioned in these 10 papers,

• 36 were correctly matched to their NPD entry (TPs),

4The keyword NULL indicates there was no value entered for a particular field.
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• 11 were incorrectly matched (FPs),

• 10 were not in the database and

• 6 were incorrectly identified as proteins in the first place.

According to the TPs and FPs, the tool achieves a precision of0.766. In the 10 papers examined

here, no FNs were found which gives a recall of 1 and an F-scoreof 0.867.

However, it is likely that some papers will contain proteinsthat are present in the NPD but

which are talked about using an alias that is not entered in the NPD. Mistakes due to unknown

aliases (as well as how often the ftp site is updated with a more recent version of the NPD) will

incur FNs.

It would be possible to generate for each article a local listof proteins and their aliases.

This way, when a sentence refers to an alias that is absent from the NPD, one could check

whether any other local aliases to the paper are actually present in the NPD. Previous work in

finding and resolving local aliases include:

• In 2002, [CSA02] implemented a statistical learning algorithm that relies on a training

corpus of expert-annotated abbreviations to automatically produce identification rules to

then match abbreviations with their expansions in text. Their method was tested on the

Medstract corpus and performed with 88% precision and 83% recall.

• In 2004, [EYD04] built a dictionary-based system, called ProtScan, which identifies

mammalian protein names in MEDLINE records with 98% precision and 88% re-

call. They also tested their approach on abstracts only (without MEDLINE fields) and

achieved 98.5% precision and 84% recall.

• At the EBI, in 2005 [GKRS05] automatically created a dictionary of <abbreviation,

sense> pairs by mining all MEDLINE abstracts from 1965 to 2004. Theyuse this

resource to resolve abbreviations. In some cases, abbreviations can have several senses,

which can only be distinguished by studying their context. The authors train an SVM

classifier (see Section 2.2.10) to associate a large number of words with a context for

each sense. They obtained 5-fold cross-validation resultsof 98.9% precision and 98.2%

recall.

Looking at entities that were incorrectly identified as proteins in the 10 tested papers, we

found “FRAP” and “methylase”. There is an entry in the NPD forthe FRAP protein:

• main name: FRAP

• aliases: mTOR, RAFT1, FRAP2, target of rapamycin, TOR
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Unfortunately, FRAP is also an acronym for a technique in biology called Fluorescence Recov-

ery After Photobleaching. Authors tend to mention this common technique in its abbreviated

form. This is therefore quite a recurrent problem.

There is also an entry in the NPD that contains the word “methylase” (which is a collective

name for a particular type of enzyme):

• main name: DNMT1

• aliases: DNA methyltransferase 1, maintenance methylase,DNA (cytosine-5-)-methyl-

transferase 1.

However, in the sentence“As a fibrillarin homologue in Methanococcus jannaschii hasbeen

shown to contain a methylase fold (Wang et al. 2000), this enzymatic activity of fibrillarin may

also be required in CBs.”the authors of the publication [SWJ+00] are not referring to DNMT1.

False positives can be explained by looking at the way the script checks for novelty with

regard to the NPD. When looking through the protein names file, the script stops at the first

corresponding name it finds. However, for some proteins, their names can be followed by a

space and a number.

For example, “nucleoporin” has 12 entries in the NPD:

• F9/17A4, F9/17D3, Nucl pore complex prot, NUP153, NUCLEOPORIN 153

• NUP62, nucleoporin 62

• nucleoporin 358, NUP358, RANBP2, RBP2

• nucleoporin 107

• NUP98, Nucleoporin 98, Nup98-Nup96 precursor

• NUP96, Nup98-Nup96 precursor, Nucleoporin 96

• NUP155, nucleoporin 155

• NUP188, nucleoporin 188

• NUP93, nucleoporin 93, KIAA0095, NIC96

• NUP205, nucleoporin 205, KIAA0255

• NUP54, nucleoporin 54

• NUP58, nucleoporin 58
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If an article talks about NUP62 the tool will get the correct protein in this file. If an article

talks about nucleoporin 62, the number will not be recorded and the tool will get the first

“nucleoporin” entry it can find in the file. There are currently 2159 different proteins in the

NPD: 1973 of them have numbered versions; only 186 do not. Using a protein’s canonical

form could be a good way of avoiding this problem. Other ways of solving this problem could

involve dealing with two or several tokens per NE so as to capture the full name of a protein

when it contains one or more white spaces, or working with concept recognition (see Section

3.7) rather than NER.

4.5 Highlighting sentences related to a localisation re-

lation using colour codes

The final tool (see Chapter 5) can highlight, for each type of information, all the sentences

related to that particular type of information using a colour code.

The colour code will allow the user to distinguish:

• sentences that are related to a particular type of information in pink from

• sentences that are related to a particular type of information AND were also picked up

by my relevance detector (see Section 4.2), in red.

Ultimately, the results combining the pink and red sentences should equal the ones reported

in Section 4.3, as the tool is only using those results and colour coding them for the user inter-

face. In order to compare the two different categories of sentences, I calculated precision based

on 4 random papers from the training corpus ([PPRMV04, SCD+02, SWJ+00, CDG+03]).

(Unfortunately, calculating precision for the whole of thetraining corpus would have been a

too time-consuming task.) When looking at all the differenttypes of information and all the

sentences highlighted for each of them, I found these 4 articles contained:

• 34 pink sentences,

• 145 red sentences,

• 179 sentences in total.

Colour Pink Red Both

Precision 0.529 0.786 0.737

Table 4.3: Highlighting sentences: precision based on 4 papers from the training corpus
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Recall was not calculated as I only evaluated highlighted sentences. As explained in Sec-

tion 4.3.3, it would be difficult to go through all the sentences to find false negatives that were

missed by my system. Section 4.3.4 presented a discussion over the error analysis.

Table 4.3 shows a higher precision is obtained for the red sentences making them - as

intended - more trustworthy for the curator.

4.6 Summary

This chapter covered all the different features the CuratorSystem Interface uses. The document

retrieval is performed by the tool I developed during my MReswith a precision of 0.7, a recall

of 0.636 and an F-score of 0.667. Decision Tree performed best for the relevance detector

and achieved a precision of 0.569, a recall of 0.652 and an F-score of 0.608. The redundancy

detector achieved a precision of 0.538 over both training and testing corpora. Error analyses

were carried out and used to point out areas where system performance could be improved.

The novelty detector achieved a precision of 0.766 over ten articles from the training corpus.

The highlighting of sentences related to a localisation relation achieved a precision of 0.737

based on 4 articles from the training corpus. The next chapter introduces the graphical user

interface of the NPD Curator System Interface and evaluatesthe system as a whole on various

levels.



Chapter 5

The NPD Curator System Interface for

annotation assistance

This chapter presents the tool [CWB08] developed to test andsupport the claims made in this

thesis. The first part of the chapter introduces all the different pages the interface offers. The

second part gives an evaluation of the tool.

5.1 The Curator-System Interface

This section shows the interface the curator of the databaseis presented with in order to help

her update the database.

5.1.1 Homepage

The homepage of the NPD curator system interface (see Figure5.1) allows the user to:

• launch the tool working on a specific PMID,

• post comments in order to log feedback.

5.1.2 Documents retrieval

The “Documents retrieval” page and the “Retrieval results”page incorporate my Masters by

Research [Can04] tool (see Section 4.1) into the NPD CuratorSystem Interface. The “Docu-

ments retrieval” page (see Figure 5.2(a)) allows the user toload a file containing results from

PubCrawler (see Section 4.1.1 for more details).

103



104 Chapter 5. The NPD Curator System Interface for annotation assistance

Figure 5.1: Screenshot of the NPD Curator System Interface Homepage
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(a) Screenshot of the “‘Documents retrieval” page

(b) Screenshot of the “Retrieval results” page

Figure 5.2: Screenshots showing the documents retrieval tool (developed for my MRes

[Can04]) integrated in the final interface
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5.1.3 Retrieval results

The “Retrieval results” page (see Figure 5.2(b)) provides the user with the results my MRes

tool returns. From this page, the user can click on:

• a PMID to launch the tool working on that particular paper,

• a “PubMed link” to be redirected to the PubMed page for that particular paper.

5.1.4 Highlighted full text

The “Highlighted full text” page shows:

• highlighted full text (see Figure 5.4) if full text was foundonline in HTML format,

• highlighted abstract otherwise (see Figure 5.3).

Relevant sentences are highlighted based on the results of asupervised method presented in

Chapter 3.

5.1.5 Summary results

The “Summary results” page displays a Table summarising thelocalisation relations found in

the article. Groups of sentences manifesting a single relation are identified using the algorithm

described in Section 4.3. The number of instances for each localisation relation is counted and

determines what localisation relations are important to a paper. The interface displays the list

of relations identified in the article ordered by importanceor size of the group (see Figure 5.5).

For each localisation relation found, the Table - using the algorithm described in Section

4.4 - also provides the user with information with respect to:

• whether the NPD contains an entry for this protein (“Protein” column),

• if it does, the Table displays details of the NPD’s current content for that particular entry

(“Currently in NPD” column), and

• whether the NPD already has a record for this localisation relation (“Protein localiza-

tion” column) accordingly.

5.1.6 Highlight info type

For each localisation relation shown in the Table (see “Summary results” page, Section 5.1.5),

the curator can have access to all the sentences related to it. Indeed, clicking on the numbers of

sentences found (“number of instances” column in the Table,see Figure 5.5) launches the last

page of the tool where these sentences are highlighted in context. Figure 5.6 and its caption

explain the colour code used on this “Highlight info type” page.
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Figure 5.3: Screenshot of the “Highlighted full text” page (abstract only, no full text avail-

able in HTML format). Sentences highlighted in yellow show the sentences classified

as relevant by the supervised method presented in Chapter 3.
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Figure 5.4: Screenshot of the “Highlighted full text” page (full text found, PMID:

11062265). Section titles in the full-text article are highlighted in blue. Sentences high-

lighted in yellow show the sentences classified as relevant by the supervised method

presented in Chapter 3.
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Figure 5.5: Screenshot of the “Summary results” page. For each <protein, compart-

ment> pair, the tool displays (in the last column of the summary Table) what information

is currently held in the database about that specific protein. The format of this column

is over several lines that correspond to the stage of the cell cycle, the localisation and

conditions. If several localisation relations are kept in the database for this protein,

several rows appear in the summary Table. The column before last draws conclusions

based on the content of the NPD displayed on that row. If all rows for a <protein,

compartment> pair indicate “not in NPD”, the protein localisation relation is novel to

the database.
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Figure 5.6: Screenshot of the “Highlight info type” page. Sentences in pink represent

sentences that manifest the specific localisation relation. Sentences in red correspond

to sentences that not only manifest the specific localisation relation, but also were clas-

sified as relevant sentences (see Section 4.2) and highlighted in yellow earlier on by the

tool (see Figure 5.4).
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5.2 Evaluation

This section compares Bickmore’s previous approach of extracting information from abstracts

only and from a printed out paper version, with the new approach using my tool, which helps

her extract information from full-text publications.

Prior to this evaluation period, Bickmore was asked to manually log how much time she

spent extracting information from abstracts (on average ten minutes). Furthermore, it is pos-

sible to estimate how much information was extracted from abstracts or full-text papers by

looking at the NPD entries (i.e. number of entries created, number of fields created or up-

dated). This is what the following comparison study about the amount of information extracted

is based on.

The evaluation process lasted for three months. During thattime, Bickmore used the Cura-

tor System Interface to study papers that she was about to look at next for the annotation of the

NPD. In total, she studied 31 full-text articles. Once the evaluation period was over, Bickmore

was asked to fill in a questionnaire about how useful the tool had been. She was asked to give

scores on a Likert scale1 ranged from 1 to 5, 1 being the most helpful.

Category Score

tool as a whole 3

sentences highlighted in yellow 3.5

summary Table 1.5

sentences highlighted in pink 3

sentences highlighted in red 2

Table 5.1: Scores indicating the usefulness of the tool (ranged from 1 to 5, 1 being the

most helpful)

Table 5.1 shows that the summary Table is the most interesting component to the curator,

closely followed by the sentences highlighted in red (see Section 5.1.6 for definition). Bick-

more explained a summary of all the localisation relations found is quicker to study than a

whole document with a few sentences highlighted. Furthermore, she commented the sum-

mary Table could at times be a little too long. This Table could be enhanced by displaying

localisation relations of 2 or more sentences only, or displaying localisation relations that were

captured as relevant by the DT classifier (see Section 4.2) only. The tool as a whole is scored a

3, which shows it can be improved to suit the curator’s needs,based on this evaluation.

Figure 5.7(a) shows how much time the curator spent on each paper (in minutes). Figure

5.7(b) shows the tool is able to load full-text papers (when available in HTML format, see

1Psychometric scale used in questionnaires to measure and analyse users’ response.
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discussion in Section 4.1.2) in under a minute. The Curator System Interface might be slow

compared to other tools, however, it performs on full-length publications rather than abstracts.

Moreover, it was developed as a prototype along different consecutive research experiments

explained in Chapters 3 and 4. After this evaluation, the tool could be redesigned so as to avoid

wasting time loading pages the curator benefits little from and to enhance its speed on pages

the curator uses the most. While no particular bottlenecks were identified, it seems saving

results that have already been loaded up (so that they can be retrieved again immediately, like

in PolySearch - see Section 2.3.7) or, even better, allowingfor results to be obtained offline

could be the first steps towards minimising the amount of waiting time.

One recent tool that manages to obtain IE results immediately from all MEDLINE abstracts

rather than the top few hundreds obtained by an IR step (e.g., top 500 in the case of EBIMed -

see Section 2.3.5) is FACTA (see Section 2.3.8). However, ituses a 2.2GHz server with 16GB

memory to store its indexes alone. An external storage is also needed to keep sentences from

MEDLINE abstracts. This would not be a possible solution unless those kinds of resources

were made readily available.

Looking at the different periods of time it takes the user to extract information from an

article using the NPD Curator System Interface, it seems that the papers can be grouped into

three main categories.

1. less than 5 minutes: the paper generally does not contain any information of interest for

the NPD.

2. between 5 and 20 minutes: the paper does contain information of interest that can be

added to the NPD.

3. more than 20 minutes: the paper contains information of interest and makes the curator

check up on other issues (for example, about protein function), or may identify a new

protein that needs checking through other databases (for example, PSORT [RAG+05]

or SMART [SMBP98] for protein domains).

For each of these three categories, and for the 31 papers thatwere tested on the NPD Cu-

rator System Interface, Table 5.2 shows the number of publications that fell into each category,

as well as the amount of time spent on each category on averagefor analysis.

5.2.1 Comparing amount of information extracted

Still looking at articles correctly identified as containing useful information (TPs), Bickmore

now extracts 25% more information, as relevant sentences outside the abstract are highlighted

and therefore easier to spot. She does not necessarily persevere in holding to only extracting

the major localisation relations in a paper. She now takes advantage of being able to extract
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(a) Graph showing the time spent on each paper by the curator in minutes

(b) Graph showing the tool loading time for full text in seconds

Figure 5.7: Graphs showing the time spent on each paper by the curator (in minutes)

and the tool loading time for full text (in seconds)
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Category Number of articles tested with the interface Average time (in minutes)

1 10 2.07

2 17 11.63

3 4 31.41

Table 5.2: Number of publications falling into each category and average time spent

information from full text without having to read through itall. Bickmore extracts facts from

major and minor localisation relations in articles, as wellas other facts, such as protein func-

tion. Because of this, it may be a problem that the system fails to identify a percentage of the

localisation relations (FNs).

Three structured controlled vocabularies were developed by the GO project. They are “bi-

ological process”, “cellular component” and “molecular function”. The NPD fields distinguish

functions of biological process type and of molecular type and associates GO terms to them.

Sentences describing localisation also contain other information that is useful to extract. In-

deed, of the 31 papers tested on the NPD Curator System Interface, Bickmore updated the NPD

with information

• coming from 10 of the articles

• to 13 protein entries of the database

• about 7 protein localisations

• about 7 protein functions of biological process type

• about 2 protein functions of molecular type

This shows that even though sentences were highlighted based on their relevance to protein

localisation, it has led to sentences that can also be relevant to protein function as well because

the two are interlinked, as explained in Section 1.2.2. The next chapter gives an experiment

showing how extensible the tool is from identifying sentences relevant to protein localisation

to identifying sentences relevant to protein function (seeSection 6.1.4).

It would have been interesting to directly compare the amount of time and information

captured with and without the tool. However, this was not possible. Asking the curator to

extract information from a publication twice using two different methods (with and without

the Curator System Interface) would not make sense. Indeed,the results of the second method

would always be falsified as the curator would already know what information the article holds.

Asking a different curator to perform the second method could have been interesting. Unfor-

tunately, my experiments were limited to a single curator. Moreover, had two curators been
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available, inter-annotator agreement experiments would have been needed. Indeed, as men-

tioned in Section 2.1.3, curators usually work differentlyas they can take more or less time and

extract more or less information.

5.2.2 Comparing amount of time spent annotating

For articles correctly identified as containing extractable information (TPs), Bickmore used to

spend 10 minutes for each abstract alone. She now spends 11.63 minutes on average with the

tool on full-text articles, and therefore 16.30% more time than she used to. The time spent

varies depending on how much information is extracted as well as how many distinct NPD

entries need updating and how many cross-references need adding. When Bickmore takes

more than 20 minutes, she states she has actually taken time out to look at another paper or

another Website in order to find more information, for example, about protein function.

Of the 31 papers tested so far on the NPD Curator System Interface, Bickmore updated

the database with information coming from 10 of them. The average amount of time spent to

analyse these 10 papers is 15.21 minutes per paper. Bickmoreis very selective in what she

annotates, which explains the fact that the number of papersin the group of category 2 (17

articles) is higher than the number of publications she updated the NPD with (10 articles).

She can spend time on papers without annotating anything from them in the end. In fact, she

extracted information from one paper in category 1, seven papers in category 2 and two papers

from the third category.

5.2.3 Comparing amount of time wasted on FPs

Bickmore states she still looks at the abstract of articles to be able to determine whether they

were incorrectly identified as containing extractable information (FPs), like she used to. On

top of this, she now also takes a quick look at the summary Table (see Section 5.1.5), in case it

might give interesting and novel localisation relations, which means she spends a few seconds

longer than she used to.

5.2.4 Conclusion and future work

The interface allows the user to extract 25% more information from papers by spending 16.30%

more time than she used to. The scoring of the tool in this evaluation part of the chapter shows

the interface could be improved. First, Bickmore mentionedthe summary Table can at times

be especially long. The Table could be modified to be based on sentences picked up as relevant

by my supervised method (sentences in yellow, see Section 5.1.4) only.

Bickmore also said she tends to go straight to the last pages of the tool. The “Highlighted
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full text” page (sentences in yellow, see Section 5.1.4) could be removed and, indeed, the

last two pages could present the user with more concise information, taking into account the

information that was displayed in the deleted page. The onlyrisk would be to lose some of the

information Bickmore might have extracted otherwise. Conducting an experiment on this to

check how much time can be saved and how much information would be lost, would be very

interesting. This will be left to future work.

This evaluation is based on a single annotator because the database had only one curator

at the time of the study. In [KLS+07], the evaluation is also based on a single subject. In

[KSL+08], two curators took part in the study. In [AGH+08], the evaluation is three-fold.

While the first part (reported in Section 2.3.6) is based on 4 curators, the other two parts are

evaluated with a single curator. This suggests how difficultit is to carry out multi-annotators

studies. Indeed, finding additional curators who will commit to spending time on evaluating

our research tools can prove very difficult.

5.3 Summary

The NPD Curator System Interface provides the curator with several options. First of all, it

gives the user the option of running a document retrieval method that identifies papers that are

appropriate for IE. The user can then choose to launch the tool on a particular article (which is

also possible directly from the homepage). The tool presents the user with highlighted text, as

well as a Table summarising all the different localisation relations found in order of importance.

The interface allows the user to extract 25% more information from full-text papers by

spending 16.30% more time than when working on printed-out paper version of abstracts. The

trade-off seems interesting enough that the tool, as it is, can be used in day-to-day annotation

after this evaluation period.
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Extensibility and maintainability

This chapter explains how extensible the work developed forthis thesis is, as well as how easy

it will be to maintain the system in order to keep it working. Indeed, for my thesis work to be

of continuing value, it is important to first evaluate my methods (see Chapters 3 and 4) and the

tool developed (see Chapter 5), as well as show that these methods are extensible, reusable and

maintainable.

6.1 Extensibility

This section discusses the degree of extensibility of my methods. Extensibility is studied using

a step by step approach.

6.1.1 From the nucleolus to the nucleus and other compartmen ts

In previous chapters, I introduced “rule A”, which looks forcompartment adjectives followed

by, or in the same sentence as, a protein name (see respectively Section 4.3.1 and Section 3.4.1).

Although compartments that have a corresponding adjectivemight be at an advantage because

of this particular rule - not all compartments have a matching adjective - all other rules and

computed features can be associated with all the compartments.

The training corpora, both for the MRes tool (IR) and the PhD tool (IE), comprise papers

that are primarily about proteins located in the nucleolus.However, as examples below will

show, other compartments were inevitably mentioned in those articles too. The tool picks up on

any kind of compartments present in my lexicon (see Section 3.4.1 and Appendix C). Because

the training data are never treated as strings, but always converted to features and assessed on

these features, the nucleolus is “a” compartment and that isall the classifiers will learn from the

sentences. Any compartment present in my lexicon can therefore fill a specific pattern and this

lexicon can easily be modified if need be. This proves the extensibility of the “compartment
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name” lexicon.

The “words of interest” lexicon is the other gazetteer that needs to be proven extensible.

Looking at [SWJ+00], [DMO00] and [PPRMV04] from the training corpus, I foundexamples

of linguistic patterns (highlighted in red) for different compartments:

• “ the reason for thepresence of nucleolar proteins such asfibrillarin in CBs remains

uncertain”

• “ The GAR Domain of FibrillarinContains a Nucleolar Localization Signal”

• “ fibrillarin is present inboth nucleoli and CBs”

• “ fibrillarin is always seen inthe NDF and ispresent intelophase PNBs, but itdisap-

pears fromthem in early G cells”

• “ fibrillarin preferentially localizes tothe DFC”

• “ BIG1 was partially colocalized withnucleolin in nuclei but not in cytoplasm, where,

especially near the plasma membrane, collections of nucleolin were clearly notassoci-

ated withBIG1.”

• “ In cells with little or no nuclear BIG1, nucleoporin p62 is clearly concentrated at

the periphery of most nuclei (presumably the nuclear envelope), with somescattered

throughthe cytoplasm and little to beseen withinthe nucleus.”

• “ There is also less nucleoporin p62 in the cytoplasm and morescattered throughthe

nuclei in these cells.”

The penultimate example might suggest that the phrase “scattered through” is a specific

linguistic pattern to a mass like the cytoplasm. But the lastexample shows it is not the case, as

the same phrase is used for the nuclei. Besides, my approach is based on a count of NEs rather

than specific templates. Therefore, if the lexico-syntactic patterns that authors use to refer to

the nucleolus are revealed to be in any way different to the ones used when talking about other

compartments, the“words of interest” lexicon could be accordingly altered in order to allow for

those to be caught.

In conclusion, although one particular feature and rule wasshown biaised to compartments

that have a matching adjective, the “compartment name” lexicon was proven easily extensible.

The other gazetteer of concern is the “words of interest” lexicon that could require further

investigation for its extension (studying more example sentences, seeking advice from a domain

expert,etc.), however, it is entirely extensible. Therefore, my work can be applicable to the

whole of the nucleus by modifying two existing gazetteers.
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6.1.2 From the nucleus to the cell

The following step is to discuss extensibility from the nucleus to the cell. If the approach is

extensible to the whole of the nucleus by modifying the “compartment name” and “word of

interest” lexicons, the approach is likely to be extensibleto the rest of the cell by adapting

those two lexicons to work with localisations outside the nucleus.

The Cell Component Ontology (CCO) is a controlled vocabulary that describes 160 cellular

components, as well as the relationships between them. There is one class-subclass relation-

ship and three class-instance relationships (is-a, component-of and surrounded-by). A class

represents a type of biological entity (e.g., organelle) whereas an instance represents a particu-

lar biological entity (e.g., mitochondrion). Each term in this ontology has a main name,along

with possible synonyms for it, a referenced definition and one or more taxonomic classes of

organisms to which they apply. The class hierarchy is given in Appendix B. Using the Cell

Component Ontology to create a new gazetteer and possibly extending the “words of inter-

est” lexicon too, my approach could be extended to the whole cell. Although superclasses and

relationships in CCO might not be of use, all the other terms would constitute a rich lexicon.

In Section 6.1.1, I discussed how all computed features (except for one that favours certain

kinds of compartment) can work for any type of localisation terms placed in the “compartment

name” lexicon. In Section 6.1.4, I back up this hypothesis with an experiment on my data

using a new gazetteer on protein function. Moreover, the next section looks at previous work

on domain adaptation. Indeed, changing the domain and extending system coverage to a wider

cross-range of domains may have distinct problems. Evaluation of the modified or extended

system would be required. If system performance were significantly degraded as a consequence

of the change or extension, domain adaptation research methods could be applied to improve

results. Section 6.1.3 presents several domain adaptationapproaches that have been proven to

help.

6.1.3 From inside the cell to outside the cell

Many other lexicons could be used to reuse my approach in order to find sentences relevant to

other types of localisation.

• The Open Biomedical Ontologies (OBO, http://obofoundry.org/ , [SAR+07]) con-

sist of more than 50 controlled vocabularies that are well structured and developed for

shared use accross domains such as anatomy, behaviour, phentoype and sequence.

• The Gene Ontology (GO, http://www.geneontology.org/ , [ABB+00]) consortium

creates and maintains a controlled vocabulary that describes gene products for all organ-

isms under three main categories (cellular component, molecular function and biological

process). GO is one of the vocabularies included within OBO.
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• The UMLS (http://www.nlm.nih.gov/research/umls/ , [HL93]) is composed of

several controlled vocabularies in the biomedical domain.It provides a mapping be-

tween these vocabularies, as well as NLP utilities that developers in medical or health

informatics can use to make sense of all the different terminology systems.

For example, the Common Anatomy Reference Ontology (CARO,http://www.

obofoundry.org/cgi-bin/detail.cgi?id=caro ) is being developed by Albert Burger,

Duncan Davidson and Richard Baldock at the University of Edinburgh to enhance interop-

erability of anatomy ontologies accross species. Writing agazetteer based on this ontology,

my approach would be extensible to identifying sentences relevant to localisation of certain

entities in the anatomy.

While the extensibility discussed in Section 6.1.1 is plausible to a certain extent as the

lexicons and corpora used for this thesis work already include all nuclear compartments (rather

than nucleolar ones only), one cannot assume that the same approach would smoothly port

to other biological topics such as disease, anatomy, or evencellular components. Domain

adaptation offers techniques to make it possible to apply approaches developed using domain-

specific labeled training data to text from a different domain with no labeled data available.

In [BMP06], the authors use Structural Correspondence Learning (SCL) to model the cor-

relation of different domains with what they call “pivot features”. They claim and test (on

POS tagging in two different domains, Wall Street Journal and MEDLINE) that it is possible

to learn what features are meaningful in the source and target domains based on unlabeled data

for both, train a model with the labeled data from the source domain using those features, and

obtain results showing the approach generalises well to thetarget domain. They selectpivot

featuresbased on frequent occurrences and similar behaviour in the unlabeled data of both

domains. Those features enable them to generate correspondences between different domains.

This is further explained in John Blitzer’s PhD thesis [Bli08].

In [JC06], the authors use a ranking system where they first rank features within each

domain and then combine the rankings to select features thatwere highly ranked in all domains

or “generalisable across domains”. They train their classifier by focussing on those features

and evaluate their method by identifying gene names from 3 distinct species in text. They

present 3 experiments where, in each, the training data is composed of two species and the test

data of the third species. Their results show that their proposed technique outperformed results

obtained by the state of the art NER methods.

More recently, in [KBP08], the authors use a “multiobjective genetic algorithm” in order

to select the best features out of a set of all the domain-independent features collected. They

name their system DINERS, which stands for “Domain Independent Named Entity Recognition

System”. The two domains they tested DINERS on were Newswire(Reuters news stories from

the CoNLL - conference on Computational Natural Language Learning - 2003 data set) and
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judicial data (taken from the Uganda Courts of Judicature’scourt cases). Their results show

that using domain independent features yields enhanced performance on precision as well as

recall across all entities (the training and testing data were alternated in their experiments for

both domains).

6.1.4 From localisation to function

Not only does the NPD host information about nuclear proteinlocalisation, it also contains data

about their biological and molecular functions. Identifying sentences containing information

on protein function involves picking up on phrases such as:

• “the ATRX complex displays ATP-dependent activities”

• “it may remodel chromatin differently”

• “modulates”

• “regulates”

• “mediates”

• “loss of this protein affects the development of ...”

• “this protein has an essential role in the development of ...”

• “this protein may act as a transcription regulator”

In order to demonstrate that the approach I have developed isextensible from detecting

sentences relevant to protein localisation to sentences relevant to protein function, I designed a

new experiment, which I describe below.

New lexicon on protein function

I added a new lexicon to my set of gazetteers (see Section 3.4.1) containing function related

keywords so that my tool would identify them as NEs. I collected 153 terms from the function

fields of the NPD, both the “molecular function” field and the “biological process” field, in

order to compose this new lexicon. Examples of terms include: “acetylation”, “splicing”,

“repair” and “transcription”.

Corpora

All 2638 sentences of the training corpus (see Section 3.3.1) were then tagged with function

relations based on NE tags present in them. To complete Table3.3, the number of such tags in

the training corpus is 1041. This gives a density of 0.395 persentence for this NE. I manually

assessed the results obtained on the test set (see Section 3.3.2). 286 NE tags were found, which

gives a density per sentence of 0.58. This means the density per sentence of the test set is

higher than the one of the training set.



122 Chapter 6. Extensibility and maintainability

Results obtained using my approach

I did not compute recall, as identifying all the false negatives would have taken too much

time. I gathered a precision of 0.559, which is in the same range as the precision obtained on

localisation relations (see Table 4.2) rather than function relations.

Results obtained using BioIE

I performed BioIE on my test set selecting the field “Function” (rather than Structure, Diseases

and Therapeutic Compounds, Localisation or Familial Relationships) in order to extract sen-

tences that contain templates related to protein functions. BioIE returned 299 sentences, this is

to say 60.65% of the test set (which contains 493 sentences).My method returned 96 sentences

or 19.47% of the test set.

Manually assessing 299 sentences would unfortunately takea long time. BioIE, in this

experiment, might be trading a high recall for a lower precision. However, the reason BioIE

returns these 299 sentences is probably because they all happen to carry its predefined templates

and rules. Perhaps this simply means my test set describes “Function” of proteins extensively.

This certainly coincides with the fact that 58% of the words in the sentences contained in the

test set were tagged as a function NE.

Discussion

On April 19th 2009, GO contained 27204 terms (http://www.geneontology.org/GO.

downloads.ontology.shtml ):

• 16330 for the biological process category

• 8547 for the molecular function category

• 2327 for the cellular component category

• (as well as 1392 obsolete terms not included in the above statistics)

Firstly, we notice that GO terms for function are divided into two broad categories: molec-

ular function (e.g., “is an ATPase”) and biological process (e.g., “is involved in regulating

splicing”). This indicates the ontology for function is more elaborated than the one for locali-

sation. The two categories for function represent 24877 terms whereas location is covered by

2327 terms only. It means that GO has over ten times more termsfor function than location.

This suggests how much more there is to say about function compared to the amount there is

to say about localisation and implies there must be more different ways to talk about function

than localisation at the lexical, syntactic and text level.

A consequence of this content richness and language variability is that describing protein

function is more complex than describing protein localisation. Such a description can span

over multiple sentences, making it more difficult to identify “functional sentences” as passages

might be more suitable in this case. Moreover, as pointed outin [MDK +05], terms used to
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describe protein function are not specific to it and can be used for other purposes. It is this lack

of informative and representative keywords that makes the task so difficult.

In what follows, I present previous work related to extracting protein function from free

text, as described in [BLKV05], [MDK+05], [KMAM07] and [CO08]. In the first BioCreative

competition, the goal of task 2.1 was to “assess tools able toextract text fragments to support

the annotation of a given protein-GO term association” ([BLKV05], p. 6). Most participants

used full-text articles and based their approach at the sentence level. Most groups used an ML

method. Pattern matching and regular expressions were alsopopular approaches.

The highest precision (0.80) was achieved by Chianget al. [CY04]. Their recall, although

not calculated, was low, as their system only predicted 36 annotations correctly. Their approach

made use of MeKE [JHHC02], an ontology-based text-mining system which extracts gene

products’ function by studying pattern matching.

The two groups that achieved the highest number of correct predictions (TPs) were

Krallinger et al. [KPV05] and Coutoet al. [CSC05], with 303 and 301 annotations respec-

tively, although both groups obtained a precision just under 0.29. Krallingeret al. calculated

sentence scores for each NE of interest (protein names and GOterms) using weight scores

based on the entity’s occurrence in Gene Ontology Annotation (GOA) abstracts as well as

heuristic estimates. Coutoet al. used an unsupervised method called FiGO (Finding Genomic

Ontology) which, for each GO term, returns a rank-ordered list of sentences likely to contain

the term based on its information content.

Section 2.3.4 explained how METIS struggled with extracting information about function

too, with BioIE (see Section 2.3.3) achieving a precision of0.16 for function alone. A paper

published at ISMB 2007 [KMAM07] presented an IE system wherecurators provide relevant

and irrelevant sentences to a given topic to start with. The system then deduces IE rules from

the training data that users can choose to select or disqualify. Based on those, the system

returned a set of relations found in the text on various topics of interest. After gathering a

precision of 0.66 and a recall of 0.15 on protein function, the authors warn:

“In a biomedical context, protein structure is about a protein itself and
its components, and can be expressed in a simple way in texts,whereas
function- and disease-related relations appear to exhibita higher level of
complexity and cannot be so narrowly defined.” ([KMAM07], p.i262)

In 2008, the authors of [CO08] describe GEANN, a “Genomic Entity Annotation Sys-

tem”, whose experiments on associating GO terms to genes yielded better results than previous

attempts. They created textual patterns by studying GO concept evidence publications and

extracting patterns that appeared frequently without figuring in all abstracts. Their textual pat-

terns were then extended semantically using WordNet [Fel98] (a database of English words)

and similarity measures. Moreover, larger patterns were constructed when overlappings were
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found in previously created ones. The system was tested on its annotation predictions for genes

in GenBank [BKML+05], which were already annotated. Results from 114 GO terms(from all

3 categories) generated for 7357 genes (with 6805 evidence abstracts) were evaluated and gave

a precision of 0.78 and a recall of 0.61. Furthermore, they claim their approach could generate

annotations when run over full text too.

Conclusion

Automatically extracting information about protein function has been proven to be an ex-

tremely difficult task. The results of this attempt, performed by adding a new lexicon to my

system, can be placed in the same context as the previous efforts. Nevertheless, the results of

this experiment demonstrate the extensibility of my approach.

6.1.5 Unsupervised learning for extensibility

If the NPD Curator System Interface did not need any trainingdata, it would be more extensi-

ble. In Section 3.6, Infomap produced a rank-ordered outputwithout using any training data.

This method could ultimately be used instead of my supervised classifier. One would have to

go further down the list though, in order to retrieve all the different types of information, as

Table 3.20 shows in chapter 3.

Moreover, as mentioned in Chapter 5, it seems the curator tends to go directly to the page

of the tool that displays the summarising Table. This Table is not generated using any training

data. Therefore, the most valuable part of the tool for the user is actually extremely extensible.

Alternatively, Infomap could also be used to perform a cosine similarity approach to group

similar sentences together.

6.1.6 Generic re-usable elements

Other than creating and using new lexicons, my approach is extensible in other ways. Indeed

some concepts I used in my PhD work are generic enough to be applicable to any kind of

annotation. To this extent, the work achieved in this thesiscould potentially be applied to other

domains.

• In section 3.4.5, I introduced a new metric A@n. A@n stands for at least one instance

of each answer. This new metric derives from the known metric“a@n”, which itself

stands for at least one instance of “the” answer. Using rank-ordered lists of results and

A@n made the analysis of the results easier and the discussion more interesting.

• Previous research work has been done on sentence similarityusing the BLEU score,

word-level edit-distance (see [SZK+06]) or vector space models and cosine similarity

experiments using, for example, Infomap [WP]. In this thesis work, sentences were
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tagged with labels according to what localisation relations were found in them, and

were then grouped based on the labels they had in common.

• Finally, using colour coding to highlight sentences is another concept that would be

extensible to other work. Table 4.3 in section 4.5 gives results that show that sentences

highlighted in red by the tool have indeed a much higher precision than sentences in

pink. The evaluation of the tool also confirmed this was useful for the user.

6.2 Maintainability

This section discusses what would need to be done, as well as how often, in order to maintain

my system and keep it working to its best potential.

6.2.1 MRes tool

The tool uses the year of publication as one of its features. This particular feature has a set

number of values (similarly to values in Table 3.6). Indeed,the classification is more efficient

with a set number of values (a value for each recent year and the value “old”) rather than with

integer as type of the feature. For example, DT is able to havebranches labeled “year: old”

and have a specific treatment for less recent articles. Each year, this set of values needs to be

updated with the new year coming up, so that papers to appear in the following year will have

a value for its year attribute that is recognisable by the system. The threshold for the “old”

papers could also be updated by simply deleting older years from the set of values.

The tool also uses the list of all the articles (or more precisely their PMIDs) cited in the

NPD in order to compute the number of related articles to a particular paper (under the text

categorisation process) already entered in the database. The “related articles” feature, as shown

in [Can04] (p. 27), is one the strongest features of the tool,it could therefore be important to

update this list.

Other than that, the reason behind updating the system any further would be that the writing

style of publications has evolved or, even more likely, thatnew concepts have emerged in the

research field, which authors describe in ways that are not reflected in the current training

corpus. Whenever the material contained in the NPD has been modified significantly enough

compared to the 2004 version of the database the tool is usingat the moment, it would be ideal

to update the training data for the tool. (The document retrieval step of the tool is based on

the 2004 version of the NPD whilst other parts of the tool are based on the latest version as

explained in Chapter 4.)

I updated the data in 2005 and it did not make much difference.In fact, the results were

similar and slightly better with the 2004 version of the database so I kept using the latter.
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However, after five or ten years, the tool could benefit from anupdate or it might not perform

at its best. The appropriate frequency of updating is an empirical question that will have to

be assessed over the next few years. For example, one could produce a learning curve giving

results obtained after updating the tool every year. It would then be possible to determine

the number of years after which the curve shows significant improvement, and therefore the

number of years after which it would be best to update the system.

This task would involve rebuilding models used to compute some features (see [Can04]

Figure 7 p. 32), recomputing and updating features. Four sub-tasks can be identified: one

would need to

• build a new Rainbow model (Rainbow was introduced in Section4.1.1).

• build a new MaxEnt model (MaxEnt was introduced in Section 2.2.9). The system uses

an Ensemble method which combines results from DT, NB and MaxEnt.

• compute features for all the new PMIDs cited in the NPD in arffformat in order to run

WEKA on DT and NB, and update the training corpus and its features. WEKA and the

arff format were introduced in Section 2.2.6.

6.2.2 Retrieving full text

In order to retrieve full text in HTML, my script goes from oneURL to the next following the

links to the page that actually displays the full-text paperin HTML format. This process could

perhaps fail in the future if the Websites used made any modifications to their HTML format

or the way they work. Also if SciXML (discussed in Section 4.1.2) or any other format (see

Section 7.2) makes a breakthrough, it will be more and more used for scientific papers, but the

Curator System Interface will not deal with this format unless adapted to it.

Chapter 3 covers text preprocessing and explains that different journals may have different

formats for their HTML source pages. My text preprocessor is, to an extent, customised to the

current standards of the main journals of interest to the curator. Again, if these journals change

their way of displaying information, this process could perhaps fail.

6.2.3 Updating the protein names lexicon

For the summarising Table (see Section 5.1.5), in order to give accurate information about

what is new or not new to the NPD, the tool checks that it is working with the up-to-date

version of the database flat files and if it is not, downloads the latest version uploaded on

ftp://ftp.hgu.mrc.ac.uk/pub/npd/ . The novelty-detection component can then provide

the user with the information that is currently contained inthe database. The protein names

lexicon could be updated with new protein entries to the NPD each time the tool downloads a
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new version of the database, or whenever a significant amountof proteins have been added to

the database.

6.3 Summary

In this chapter, I showed how extensible the work achieved for this thesis is. I first discussed

extensibility from one localisation to a broader one (from the nucleolus to the nucleus, from the

nucleus to the cell, from the cell to outside the cell). I thenshowed, using an experiment, how

extensible the approach was from identifying sentences relevant to the localisation of proteins

to identifying sentences relevant to the function of proteins. I also discussed how much the tool

could rely on unsupervised methods, which do not use any training data and are therefore a lot

more extensible. Finally, the last section of this chapter gave suggestions as to how much work

needs to be done to keep the tool working at its best.





Chapter 7

Epilogue

The first part of this chapter gives conclusions for this thesis. It revisits the initial claims made

in Section 1.5 and offers a discussion on the contribution this PhD thesis brings to the field.

The second part of this chapter presents ideas for future work on this project and in the field in

general.

7.1 Conclusions

7.1.1 Claims of the thesis revisited

The research I have carried out supports the claim that relevant information that is new to

biomedical databases can be found automatically, as one step in minimising the amount of

time a human expert will need to spend to keep these databasesup to date.

The claim was supported by presenting methods and their results working for a particular

database - the NPD - and by demonstrating the extensibility of the approach.

Bickmore could not afford to spend time reading through a whole publication on a printed

out paper version, or online. She can now extract 25% extra information from full text articles

using the NPD Curator System Interface.

If instead of the 10 minutes that she used to spend on average reading through an abstract,

it now takes her 16.30% more time on a full text article, the extra minute(s) mean she can

annotate the database with major localisation relations contained in the paper, minor ones that

were not mentioned in the abstract, as well as other information, such as protein function.

7.1.2 Contribution to the field

The NPD Curator System Interface is based on extensible methods, as discussed in Section 6.1.

In order to obtain good results that are specific to a particular area, one needs to customise a

129
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general tool with appropriate resources. Although the toolis customised to the NPD’s needs, it

can be adapted to other projects.

I have also contributed to the field by developing annotated corpora (see Section 3.3), as

well as gazetteers. Specialised resources are better at recognising NEs in specialised text rather

than every-day text. I have, for this purpose, created such resources for several different kinds

of entities (see Sections 3.4.1 and 6.1.4).

The software, annotated corpora and gazetteers are all available on request. Please contact

me at catherine.canevet@bbsrc.ac.uk.

7.2 Future work

This section presents ideas that could be explored in the future. For example, more informa-

tion could be extracted from the text. Rather than looking at<protein, localisation> pairs or

<protein, function> pairs, work could be done to extract extra information aboutthe conditions

of these facts (which the database stores in a field named “Detail”):

• Manner (using keywords such as adverbs or “by”, “through”, “via”, “using”, “direction”,

“ in vitro”, “ in vivo”)

• Instrument (using keywords such as “with”, “without the aidof”, “by”, “through”, “via”,

“using”)

• Temporal (using keywords such as “during”, “before”, “after”)

• Condition (using keywords such as “in the presence of”, “in response to”)

In order to illustrate this issue, a sentence was selected from the training corpus as an

example. Manner is highlighted in red while temporal information is highlighted in blue:

By confocal immunofluorescence microscopy, BIG1 was localized with nu-
cleoporin p62 at the nuclear envelope (probablyduring nucleocytoplasmic
transport) and also in nucleoli, clearly visible against the less concen-
trated overall matrix staining.

Some of the words that key manner also key instrument (e.g., “by”, “through”, “via”, “us-

ing”). Therefore, something more than keywords would be needed to distinguish them. Also

manner, condition, temporal and, possibly, instrument will probably take more than one word

to specify. This is not something I considered in looking forproteins and compartments.

Once this extra information was captured, one could use XML tags to label each passage

or sentence with them. In a talk given at the BOTM workshop (“Bridging Ontologies and

Text-Mining”, http://www.ebi.ac.uk/Information/events/botm/ , 2007), Jung-Jae Kim

showed the use of such tags to annotate text passages with attributes such as polarity (i.e.



7.2. Future work 131

whether the sentence is positive or negative), source, target, phase, condition of events.http:

//www.ebi.ac.uk/ ˜ kim/eventannotation/ gives a short introduction and examples of the

annotation used. Using XML tags to label passages this way would enable the intra-document

novelty detection of my approach (see Section 4.3) to cluster sentences per type of information

of a much finer granularity.

As discussed in Section 3.7, the NPD Curator System Interface could take input from

its users in order to update the training corpus and improve the tool’s results continuously.

Moreover, the NPD Curator System Interface could not only provide the curator with more

information about sentences (or indeed entire text passages), enhance results on a regular basis

using the curator’s feedback, it could also let the user specify what protein name they want to

work with on a particular article and give them the option of saving that protein name in the

lexicon so that the tool can recognise it in the future. [STMA08] demonstrates how users can

improve the performance of tools this way.

More generally, as bio-curators do not always concur on annotation, there is a need to

get original authors involved. Indeed, it makes sense to getthem to add as much metadata as

possible before articles enter the publishing process. IE is traditionally run after papers has

been published as raw free text. This means that the intent ofthe author is not clearly known

and IE results are not easy to validate. Furthermore, the results produced do not conform to a

standard format. The quality of the results could be greatlyimproved if authors were providing

support for future IE. If authors were providing information on their publication whilst they

were writing it, the authors’ intent would be correctly captured and the information could be

stored in a standard format. This would require an agreed format, tools for authoring as well

as authors and publishers to comply. It might prove like a difficult stage to get to, however, this

seems like a more effective distribution of the labour.

Text-mining could be facilitated and indeed improved if publications were correctly as-

sociated with ontology terms as keywords or even in the text every time such a concept is

mentioned. Ontologies are well developed, and this would definitely ameliorate text-mining

results. Moreover, database entries could be linked directly from the text. This would enrich

articles considerably as they would become an integral partof the Semantic Web. It would also

reduce the problem of ambiguity in NER tasks.

As it is not possible to expect authors to annotate their papers with such information while

they are writing it in their usual text editor, work has recently been undertaken to provide help

for authors to enrich their manuscripts semantically. Firstly, in his Masters thesis [Kav08]

Silvestras Kavaliauskas developed an online tool called PaperMaker (http://www.dev.ebi.

ac.uk/Rebholz-srv/PaperMaker/ ). Authors feed the tool their original paper, PaperMaker

then goes through a succession of modules in the following order:

• module 1: spell check
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• module 2: acronym resolution

• module 3: NER

• module 4: GO term recognition

• module 5: MeSH term recognition

• module 6: reference check (this module finds authors that were found in the bibliography

but not in the body of the publication and vice versa)

• module 7: related work (this module finds related work that isnot already mentioned in

the bibliography)

• module 8: summary (this module offers a summary of the article from its number of

words to its possible keywords, GO and MeSH termsetc.)

Finally, authors can download a modified publication or a digital abstract. Either way, this

allows them to submit a paper where general readibility is improved, the use of domain termi-

nology is consistent, and indexing this article correctly is made easier.

The OKKAM project (http://www.okkam.org/ ) entitled “Enabling the Web of Entities”

provides amongst other things an entity editor in MicrosoftWord as part of one of their work-

packages named “Entity-centric authoring environment”. While this is only a prototype, a

Microsoft Word 2007 plugin has been developed at the University of California San Diego

in collaboration with Microsoft External Research, as partof the BioLit [FKWB08] project

(http://biolit.ucsd.edu/ ). This Microsoft Word 2007 add-in (http://www.codeplex.

com/UCSDBioLit ) allows authors to embed metadata into their manuscript. Asthey are writ-

ing, hovering their mouse over a word will offer them possible mark-up(s). It is then possible

for them to ignore the suggestions, view the proposed term inits ontology (or all terms in their

different ontologies) or add one of the mark-ups suggested.Once a term has been marked-up,

hovering over it will offer authors to apply this mark-up to all other occurrences of this term

in the document or to stop recognising this term as such. The ontologies used are OBO (see

Section 6.1.3) to which it is possible to add custom metadatato suit specific needs. It will

also soon be possible to provide the tool with a url to download another ontology of interest to

the authors. In terms of databases identifiers assigned, at the moment those come from Gen-

Bank/RefSeq [PTM05], UniProtKB/Swiss-Prot [BBA+03] and the Protein Data Bank (PDB

[BKW+77, BWF+00]).

Microsoft Word is not the only writing environment used in the scientific community,

LaTeX is also extensively used. SALT (Semantically Annotated LaTeX, [GMH+07]) al-

lows LaTeX authors to add information about the claims they are making and their argu-

ments. KonneX [GHMD08] is an infrastructure created in order to support finding claims
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and links within Argumentation Discourse Networks (ADNs).It is a Semantic Web applica-

tion which uses the Resource Description Framework (RDF,http://www.w3.org/RDF/ ) as

well as the Linking Open Data (LOD,http://esw.w3.org/topic/SweoIG/TaskForces/

CommunityProjects/LinkingOpenData ). RDF is based on XML but is highly structured.

The principle behind LOD is to link data on the Semantic Web. This allows KonneX to offer

users a navigation over ADNs for articles that have been written using SALT.

Other recent initiatives have emanated the same flavour. Thesociety for Neuroscience in

2008 launched new strategies for data mining. One of the suggested strategy was to publish

with metadata so as to improve IR, another one was to enhance links between databases and

journals. The SWAN project (Semantic Web Applications in Neuromedicine) is working on the

creation of the SWAN ontology, which is a framework aimed at enriching scientific discourse

based on the Semantic Web approach. Having more structure inthe data will definitely mean

less hard work for new IE software.

Whilst in chemical informatics, the International Chemical Identifier (InChI) has solved

the problem of having unique accessions for each concept, inbioinformatics no such thing

has arisen and NER for genes and proteins in text still represents a big challenge. Microsoft

Office Word 2007 also provides a way for authors to write semantically-rich chemistry in-

formation easily with Chem4Word (http://research.microsoft.com/en-us/projects/

chem4word/ ).

Another initiative in biochemistry was the Federation of European Biochemical Societies

(FEBS) Letters Structured Digital Abstracts (SDAs) experiment launched in April 2008 and

implemented in ScienceDirect. Authors can provide SDAs using four-column spreadsheets

where the first two columns represent protein names (X and Y),the third one is a verb (V) while

the last one is a method Z. For example, the quadruple(X,Y, interact,Z) would correspond to

a sentence like “protein X interacts with protein Y, by method Z”. This is a nice experiment

coming from a journal but reveals the need for an appropriateXML editor or other authoring

environment at the very least for SDAs.

Will publishers soon require authors to submit SDAs or even entire publications se-

mantically enriched? Would semantic links then become partof the peer review process?

Or will authors publish and contribute to the scientific community using different means?

Possibly one step ahead of the game, Robert Hoffmann has created Wikigenes ([Hof08],

http://www.wikigenes.org ), a wiki system about genes, proteins and chemical compounds

where authorship is recorded, authors can rate each other and the data is semantically linked.

Will such wikis turn out to be the future of scientific publishing? One way or another, it looks

as though efforts are undertaken, solutions are on their wayand the days of “raw text-mining”

are being counted.
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In fact, in June 2009, the ninth annual meeting of BioLINK (Linking Literature, Informa-

tion and Knowledge for Biology) Special Interest Group willtake place at the conference on

Intelligent Systems for Molecular Biology and it will be thefirst time that BioLINK holds a

session on scientific publishing and how it will affect IE methods in the future. Indeed, text

miners should not be out of a job but they will have to adapt to new tasks taking into account all

the various metadata and links made available. This new trend will hopefully significantly en-

hance results, which will be very welcome in areas whereraw text-mininghas been struggling,

such as detecting information on protein function (see Section 6.1.4).
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Abbreviations

ADN: Argumentation Discourse Network

AROC: Area under the ROC curve

BLEU: BiLingual Evaluation Understudy

CARO: Common Anatomy Reference Ontology

CB: Cajal Bodies

C&C tagger: Curran and Clark tagger

CCO: Cell Component Ontology

DFC: Dense Fibrillar Components

DNA: Deoxyribonucleic acid

DT: Decision Tree

EBI: European Bioinformatics Institute

Ensemble: Ensemble Learning method

ER: Endoplasmic Reticulum

FC: Fibrillar Centers

FEBS: Federation of European Biochemical Societies

FN: False Negative

FP: False Positive

FPR: False Positive Rate

GC: Granular Components

GeneRIF: Gene Reference Into Function

GFP: Green Fluorescent Protein

GO: Gene Ontology

GOA: Gene Ontology Annotation

GPs: Gaussian Processes

GS: Gold Standard

GSA: Gold Standard Annotations
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GTT: Generic Topic Template

HGMD: Human Genome Mutation Database

HMDB: Human Metabolome Database

HPRD: Human Protein Reference Database

IE: Information Extraction

InChI: International Chemical Identifier

IR: Information Retrieval

KDD: Knowledge Discovery and Data mining

KEGG: Kyoto Encyclopedia of Genes and Genomes

LOD: Linking Open Data

MAP: Mean Average Precision

MaxEnt: Maximum Entropy

MeSH: Medical Subject Headings

ML: Machine Learning

mRNA: messenger RNA

MRR: Mean Reciprocal Rank

MS: Mass Spectrometry

MSA: Multiple Sequence Alignment

MT: Machine Translation

NB: Naive Bayes

NDF: Nucleolus-Derived Foci

NE: Named Entity

NER: Named Entity Recognition

NIST: National Institutes of Standards and Technology

NLM: National Library of Medicine

NLP: Natural Language Processing

NPD: Nuclear Protein Database

OBO: Open Biomedical Ontologies

OCR: Optical Character Recognition

OMIM: Online Mendelian Inheritance in Man

PCA: Principal Component Analysis

PDB: Protein Data Bank

PMID: PubMed IDentifier

PML: ProMyeolocytic Leukaemia

POS: Part Of Speech

PPI: Protein-Protein Interaction

RDF: Resource Description Framework
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rDNA: ribosomal DNA

RER: Rough ER

RN: (Chemical Abstracts Service) Registry Number

RNA: RiboNucleic Acid

RNP: RiboNucleoProtein

ROC: Receiver Operating Characteristic

SALT: Semantically Annotated LaTeX

SCL: Structural Correspondence Learning

SDA: Structured Digital Abstract

SER: Smooth ER

snRNP: small nuclear RNP

SVD: Singular Value Decomposition

SVM: Support Vector Machine

TC: Text Categorisation

TF.IDF: Term Frequency . Inverse Document Frequency

TN: True Negative

TNR: True Negative Rate

TP: True Positive

TPR: True Positive Rate

TREC: Text REtrieval Conference

tRNA: transfer RNA

TTT2: Text Tokenisation Tool 2

UMLS: Unified Medical Language System

VSM: Vector Space Model





Appendix B

The Cell Component Ontology (CCO)

The Cell Component Ontology (CCO) is a controlled vocabulary that describes 160 cellular

components as well as the relationships between them. This appendix lists the classes and

subclasses in its class hierarchy (without displaying the terms that correspond to the instances

of each subclass 6.1.2).

• cell fraction

– microsome

• cell surface matrix

– cell wall

– extracellular matrix (sensu Animalia)

• envelope

– cell envelope (sensu Bacteria)

– organellar envelope

• membrane

– endoplasmic reticulum membrane

– endosome membrane

– microbody membrane

– mitochondrial membrane

– nuclear membrane

– plasma membrane

– plastid membrane
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– thylakoid membrane

– Golgi membrane

– lysosomal membrane

– outer membrane (sensu Gram-negative Bacteria)

– vacuolar membrane

– vesicle membrane

• organelle

– membrane-bound organelle

– non-membrane-bound organelle

• space

– endoplasmic reticulum lumen

– endosome lumen

– microbody lumen

– periplasmic space

– plastid intermembrane space

– plastid stroma

– thylakoid lumen

– cytosol

– extracellular space

– Golgi lumen

– lysosome lumen

– mitochondrial intermembrane space

– mitochondrial lumen

– nuclear lumen

– perinuclear space

– vacuolar lumen

– vesicle lumen

• suborganelle compartment

– Golgi cisterna
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– plastid thylakoid

• super component

– cytoplasm
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The compartment name lexicon

<?xml version="1.0"?>

<lexicon name="cn">

<lex word="nucleus"/>

<lex word="nuclei"/>

<lex word="nucleolus"/>

<lex word="nucleoli"/>

<lex word="nucleoplasm"/>

<lex word="speckle"/>

<lex word="speckles"/>

<lex word="paraspeckles"/>

<lex word="NDF"/>

<lex word="NDFs"/>

<lex word="Sam68"/>

<lex word="SLM"/>

<lex word="SNB"/>

<lex word="PML"/>

<lex word="chromatin"/>

<lex word="heterochromatin"/>

<lex word="interchromatin"/>

<lex word="IGC"/>

<lex word="IGCs"/>

<lex word="SLMs"/>

<lex word="SNBs"/>

<lex word="PMLs"/>

<lex word="chromatins"/>

<lex word="heterochromatins"/>
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<lex word="cajal"/>

<lex word="coiled"/>

<lex word="CB"/>

<lex word="CBs"/>

<lex word="gem"/>

<lex word="gems"/>

<lex word="polycomb"/>

<lex word="PcG"/>

<lex word="Pc-G"/>

<lex word="Pc-Gs"/>

<lex word="NPC"/>

<lex word="OPT"/>

<lex word="PcGs"/>

<lex word="NPCs"/>

<lex word="OPTs"/>

<lex word="cytoskeleton"/>

<lex word="lamina"/>

<lex word="laminas"/>

<lex word="INM"/>

<lex word="PNC"/>

<lex word="INMs"/>

<lex word="PNCs"/>

<lex word="chromosomal"/>

<lex word="chromosome"/>

<lex word="chromosomes"/>

<lex word="cleavage"/>

<lex word="PR"/>

<lex word="PRs"/>

<lex word="cytoplasm"/>

<lex word="granular"/>

<lex word="GC"/>

<lex word="MIG"/>

<lex word="PNB"/>

<lex word="DFC"/>

<lex word="GCs"/>

<lex word="MIGs"/>

<lex word="NORs"/>
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<lex word="PNBs"/>

<lex word="DFCs"/>

<lex word="fibrillar"/>

<lex word="spindle"/>

<lex word="TC"/>

<lex word="spindles"/>

<lex word="TCs"/>

<lex word="Golgi"/>

<lex word="synaptonemal"/>

<lex word="SC"/>

<lex word="SCs"/>

<lex word="centrosome"/>

<lex word="centrosomes"/>

<lex word="centromere"/>

<lex word="centromeres"/>

<lex word="endoplasmic"/>

<lex word="reticulum"/>

<lex word="ER"/>

<lex word="ERs"/>

<lex word="IR"/>

<lex word="IRs"/>

<lex word="kinetochore"/>

<lex word="X"/>

<lex word="XY"/>

<lex word="telomere"/>

<lex word="ribosome"/>

<lex word="telomeres"/>

<lex word="ribosomes"/>

</lexicon>
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The protein keyword lexicon

<?xml version="1.0"?>

<lexicon name="pk">

<lex word="protein"/>

<lex word="receptor"/>

<lex word="kinase"/>

<lex word="enzyme"/>

<lex word="histone"/>

<lex word="proteins"/>

<lex word="receptors"/>

<lex word="kinases"/>

<lex word="enzymes"/>

<lex word="histones"/>

<lex word="kDa"/>

<lex word="GFP"/>

</lexicon>
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Appendix E

The list of stop words

a accordingly after again against

all almost already also although

always among an and another

any anyone apparently are as

aside at away be because

been before being between both

briefly but by can cannot

certain certainly copyright could did

different due during do does

done each either else enough

especially et-al etc ever every

following for found from further

gave gets give given giving

gone got had has hardly

have having here her how

however if immediately importance important

in into is it its

itself just keep kept kg

km mg might knowledge largely

like made mainly make many

may ml more most mostly

much mug must nearly necessarily

neither next no none nor

normally nos not now of

often on only or other

ought our out owing particularly

past perhaps please poorly possible
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possibly potentially somewhat regardless predominantly

present previously primarily probably prompt

promptly quickly quite rather readily

really recently refs relatively respectively

results upon several should significantly

similar similarly since slightly so

some sometimes somewhat soon specifically

strongly substantially successfully such sufficiently

than that the their theirs

them then there therefore these

they this those though through

throughout to too toward towards

under until upon usefully usefulness

usually various was were what

when where whether which while

who whose why widely will

with within without would yet
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Examples of sentence classification

F.1 Third sentence of the abstract of article [RRB +03]

Table F.1 displays the four columns for the third sentence ofthe abstract of article [RRB+03]:

“Microscopic analysis of both fixed and live mammalian cellsshowed that
NuSAP is primarily nucleolar in interphase, and localizes prominently to
central spindle microtubules during mitosis.”

The resulting feature vector is “pn1, pk0, cn1, ca1, ck1, phn, loc1, int1, ra1, rb1, rc1,

44.44444444, y”.

F.2 Title of article [CSK98]

Table F.2 displays the four columns for the title of article [CSK98]:

“A specific subset of SR proteins shuttles continuously between the nu-
cleus and the cytoplasm.”

The resulting feature vector is “pn1, pk1, cn2, ca0, ck0, ph0, loc0, int1, ra0, rb0, rc1, 50, y”.

F.3 Fourth sentence of the abstract of article [KZCJ02]

Table F.3 displays the four columns for the fourth sentence of the abstract of article [KZCJ02]:

“hCdc14A dynamically localizes to interphase but not mitotic centro-
somes, and hCdc14B localizes to the interphase nucleolus.”

The resulting feature vector is “pn2, pk0, cn2, ca0, ck0, phn, locn, int0, ra0, rb1, rc0, 75, y”.
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Microscopic JJ O NONE

analysis NN O NONE

of IN O STOP

both DT O STOP

fixed JJ O NONE

and CC O STOP

live JJ O NONE

mammalian JJ O NONE

cells NNS O NONE

showed VBD B-INT INT

that IN O STOP

NuSAP NNP B-PN PN

is VBZ O STOP

primarily RB O STOP

nucleolar JJ B-CA CA

in IN O STOP

interphase NN B-PHAS PHAS

, , O NONE

and CC O STOP

localizes VBZ B-LOC LOC

prominently RB O NONE

to TO O STOP

central JJ O NONE

spindle NN B-CN CN

microtubules NNS B-CK CK

during IN O STOP

mitosis NN B-PHAS PHAS

. . O NONE

Table F.1: Four column-output from the C&C tagger for the third sentence of the abstract

of article [RRB+03]
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A DT O NONE

specific JJ O NONE

subset NN O NONE

of IN O STOP

SR SYM B-PN PN

proteins NNS B-PK PK

shuttles VBZ B-INT INT

continuously RB O NONE

between IN O STOP

the DT O STOP

nucleus NN B-CN CN

and CC O STOP

the DT O STOP

cytoplasm NN B-CN CN

. . O NONE

Table F.2: Four column-output from the C&C tagger for the title of article [CSK98]
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hCdc14A NN B-PN PN

dynamically RB O NONE

localizes VBZ B-LOC LOC

to TO O STOP

interphase VB B-PHAS PHAS

but CC O STOP

not RB O STOP

mitotic JJ B-PHAS PHAS

centrosomes NNS B-CN CN

, , O NONE

and CC O STOP

hCdc14B SYM B-PN PN

localizes VBZ B-LOC LOC

to TO O STOP

the DT O STOP

interphase NN B-PHAS PHAS

nucleolus NN B-CN CN

. . O NONE

Table F.3: Four column-output from the C&C tagger for the fourth sentence of the ab-

stract of article [KZCJ02]
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