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Abstract

In this paper we study the interaction of subtyping
and parametricity. We describe a logic for a program-
ming language with parametric polymorphism and sub-
typing. The logic supports the formal definition and
use of relational parametricity. We give two models
for it, and compare it with other formal systems for the
same language. In particular, we examine the “Penn
interpretation” of subtyping as implicit coercion.

Without subtyping, parametricity yields, for exam-
ple, an encoding of abstract types and of initial alge-
bras, with the corresponding proof principles of simu-
lation and induction. With subtyping, we obtain par-
tially abstract types and certain initial order-sorted al-
gebras, and may derive proof principles for them.

1 Introduction

A function is polymorphic if it works on inputs
of several types. We may distinguish various no-
tions of polymorphism, particularly parametric poly-
morphism (e.g. [Rey83]) and subtype polymorphism
(e.g. [CW85]). These may exist in isolation, as in
ML [MTH90] or in Amber [Car86], but they can also
interact, with useful results. For example, a theory
of object-oriented programming has been based on a
certain kind of bounded polymorphism (e.g. [CHC90,
Bru93]).

In this paper we study the interaction of subtyp-
ing and parametricity. A polymorphic function may
be said to be parametric in Strachey’s sense [Str67,
Rey83, PA93] if it can be given by a uniform algo-
rithm or program, independently of the type of its
arguments. A semantic definition of parametricity is
due to Reynolds [Rey83], who requires instead that
instances of the polymorphic function at related types
be related. Reynolds’ definition has been formalized
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in previous work [ACC93, PA93]. In this paper we
extend the formalization of [PA93] to a programming
language with subtyping.

A logic serves as the setting for this study. This
logic can be viewed as an analogue of Scott’s LCF, that
is, as a fairly general system for proving properties of
programs. Here the programs are those of System F≤,
which is an extension of Girard’s System F [Gir72]
with subtyping, abstracted from work of Cardelli and
Wegner [CW85] by Curien and Ghelli [CG92, CG94].
Our logic for F≤ is an extension of the logic for F pre-
sented in [PA93]. Beyond its possible use in program
verification, the logic provides a language for stating
parametricity assumptions and rules for deriving their
consequences, formally and without reference to par-
ticular models.

While it remains to consider what might be the ap-
propriate general form for parametric models of F≤
and of our logic, we do construct particular models—
indeed two such. The first is a parametric per model
combining the idea of Bruce and Longo [BL90] of
treating subtypes as subpers with that of Bainbridge
et al. [BFSS90] of forcing parametricity into per mod-
els of System F. The second is a closed-term model,
following an idea of Moggi for System F [Mog86]. Hav-
ing at least one non-trivial model, it follows that if
two terms of the same type can be proved equal in
our logic, then they are observationally equivalent.

A variant F<: of F≤ was given by Cardelli et
al. [CMMS94]. A weakened version is derivable within
our logic. Both this version and the full F<: yield some
of the results associated with parametricity, frequently
with a limitation to closed terms. Our logic gives these
and other results in full generality, for terms with free
variables. We conjecture that in fact F<: itself is deriv-
able within our logic. Indeed we formulate a stronger
theory, which may be said to embody Strachey’s view
of parametric polymorphism for F≤, and conjecture
that it is derivable.

We also examine the “Penn interpretation” of
F≤ [BCGS91], with its view of subtyping as implicit
coercion. This interpretation is based on a transla-
tion from F≤ to F. We show that this translation
can be extended to formulae; theorems of the logic
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for F≤ are translated into theorems of the logic for F
given in [PA93]. We consider full-abstraction issues
and show that the translation is not conservative.

Parametricity conditions play an important role in
the study of F and of similar languages (e.g. [Rey83,
BFSS90, Wad89]). They appear in semantic construc-
tions. They yield useful properties of types, for ex-
ample that Int = ∀X. ((X → X) → (X → X)), the
type of Church integers, is isomorphic to the standard
natural numbers. And they can be exploited in prov-
ing properties of polymorphic programs, for example
that all functions of type ∀X. (X → Int) are constant.
These results have interesting analogues for F≤. Just
as the logic for F offers abstract types, initial algebras,
and final co-algebras, the logic for F≤ offers partially
abstract types, certain initial order-sorted algebras,
and certain final order-sorted co-algebras, with corre-
sponding proof principles. Further, we can apply the
logic to prove theorems about programs from their
types, or “theorems for free,” as Wadler calls them.
Some of these have an object-oriented flavor, in line
with one of the intended applications of F≤.

There has been much related work for languages
without subtyping. However, the combination of para-
metricity and subtyping has been little considered. As
mentioned above, System F<: of Cardelli et al. incor-
porates a modest notion of parametricity (partly mo-
tivated by dinaturality considerations). Ma [Ma92]
expresses parametricity for F via a translation into a
language with subtyping and intersection types. Ma
focuses on parametricity in F, not on parametricity in
his target language with subtyping.

The next section introduces our logic and some fun-
damental results about it. Discussion of its seman-
tics appears in section 3. Section 4 treats other theo-
ries for F≤, including one induced by the Penn inter-
pretation. Section 5 provides encodings of extensible
records, partially abstract types, and order-sorted al-
gebras.

2 Basic logic

This section defines the logic. In this paper we
sometimes reference or borrow from [PA93] for the
fragment that corresponds to F. We emphasize the
novelties, which concern subtyping.

2.1 Well-formed formulae

The type expressions and terms are those of F≤.
The type expressions of F≤ are like those of F, with
the addition of a largest type Top and a generalization

from quantifiers to bounded quantifiers. The terms are
extended similarly, with a constant (top) and bounded
type abstractions. Type expressions and terms are
given by the grammar:

Types: A ::= X | A → B | Top | ∀X≤B. A
Terms: t ::= x | λx :A. t | u(t) | top |

ΛX≤B. t | t(A)

Here X ranges over type variables and x over ordinary
variables. We use notations such as A[X] to indicate
possible occurrences of variables in expressions, and
then may write, for example, A[B] to represent the
result of substituting B for X in A (avoiding capture of
bound variables). Unbounded binders abbreviate the
corresponding binders with bound Top; so for example
∀X.A stands for ∀X≤Top.A. Throughout, expressions
are understood up to α-equivalence.

We build formulae from equations and binary rela-
tions between terms.

Formulae: φ ::= (t =A u) | R(t, u) | φ ⊃ ψ |
∀x :A. φ | ∀X≤B. φ | ∀R⊂A×B. φ |
⊥| φ ∧ ψ | φ ∨ ψ |
∃x :A. φ | ∃X≤B. φ | ∃R⊂A×B. φ

Here R ranges over relation variables. The equality
symbol is subscripted with a type expression, the type
of the terms being equated. In F, this expression is
unique, and so can be left implicit, but it proves nec-
essary in treating subtyping, as we see below. The
basic constructs are implication (⊃) and three sorts of
universal quantification: over values, over types, and
over relations between types (where R⊂A×B is read
as “R is a relation between A and B”). The other con-
structs are useful but not altogether necessary. When
writing formulae we often make use of evident abbre-
viations. While there are primitive notions of subtype
and of bounded type quantification, there is no need
for a corresponding primitive notion for relations.

A second-order environment E is a finite sequence
of type variables with bounds X ≤ A or typings x :A
in which no variable is introduced twice. The typing
judgment E ` t : A and the subtyping judgment E `
A≤B are defined as in [CG92, CG94].

To specify the well-formed formulae, we also need
relation environments, which are finite sequences of
relational typings R⊂A×B with no relation variable
repeated. We define a judgment E ` G REnv to as-
sert that G is a well-formed relation environment given
E; the judgment holds if whenever R⊂A×B appears
in G then A and B are well-formed type expressions
given E. We define a judgment E; G ` φ Prop to as-
sert that φ is a well-formed formula given E and G.



The rules for atomic formulae are:

E ` t :A E ` u :A E ` G REnv
E; G ` t =A u Prop

E ` t :A E ` u :B E ` G REnv R⊂A×B in G
E; G ` R(t, u) Prop

Among the other rules we have, for example:

E,X ≤ B;G ` φ Prop
E; G ` ∀X≤B. φ Prop

E;G,R⊂A×B ` φ Prop
E; G ` ∀R⊂A×B. φ Prop

2.2 Relational formulae

Next we introduce relational formulae. They are
given by the grammar:

Relational formulae: ρ ::= (x :A, y :B). φ[x, y]

We say that such a ρ is a relational formula between A
and B, and write ρ⊂A×B. We write E;G ` ρ⊂A×B
for the judgment that ρ is a well-formed relational
formula between A and B given E and G. There is
one rule for this judgment:

E, x :A, y :B; G ` φ Prop
E; G ` (x :A, y :B). φ⊂A×B

For example, eqA = (x : A, y : A). (x =A y) is a rela-
tional formula denoting the equality relation over A.
With subtyping, useful, new relations become avail-
able, for example a variant of the equality relation is
denoted by (x :A, y :B). (x =B y)⊂A×B; this is well
formed in any environment where A≤B.

We sometimes treat a relation variable R⊂A × B
as the relational formula (x : A, y : B). R(x, y). Also,
when ρ is (x : A, y : B). φ[x, y], we sometimes use the
abbreviations ρ(t, u) or tρu for φ[t, u]. A relational
formula ρ can be substituted for a relation variable R
in a formula φ[R], yielding φ[ρ]. In particular when φ
is R(t, u), the result of the substitution is ρ(t, u).

2.3 Operations on relations

In order to give our axiomatization of parametric-
ity, we need to be able to combine relations by expo-
nentiation and bounded universal quantification.

For ρ⊂A×B and ρ′⊂A′ ×B′, we define (ρ → ρ′)⊂
(A → A′)×(B → B′) to be:

(f :A → A′, g :B → B′).
∀x :A ∀y :B. (xρy ⊃ f(x)ρ′g(y))

If E;G ` ρ ⊂ A × B and E;G ` ρ′ ⊂ A′ × B′ then
E;G ` (ρ → ρ′)⊂(A → A′)× (B → B′).

Next, for ρ⊂C ×D and ρ′⊂A×B, we define
(∀(Y≤C, Z≤D, R≤ρ). ρ′)⊂ (∀Y≤C. A) × (∀Z≤D. B)
to be:

(y : (∀Y≤C. A), z : (∀Z≤D. B)).
∀Y≤C∀Z≤D∀R⊂Y×Z. (R ≤ ρ ⊃ (yY )ρ′(zZ))

where ρ1 ≤ ρ2 stands for ∀x : C1∀y : D1. (ρ1(x, y) ⊃
ρ2(x, y)), for ρ1⊂C1 ×D1 and ρ2⊂C2 ×D2. Suppose
that E;G ` ρ⊂C×D and E′ ` ρ′⊂A×B, where E′

is E, Y ≤ C,Z ≤ D; G,R ⊂ Y ×Z. Then E; G `
(∀(Y≤C, Z≤D,R≤ρ). ρ′)⊂(∀Y≤C. A)× (∀Z≤D. B).

We can now abbreviate relational formulae by type
expressions with a certain substitution of relational
formulae for their free variables. If ~X = X1, . . . , Xn,
~B = B1, . . . , Bn, ~C = C1, . . . , Cn, and ~ρ = ρ1, . . . , ρn

with ρi⊂Bi×Ci, then A[~ρ]⊂A[ ~B]×A[ ~C] is the result
of substituting ~ρ for ~X in A[ ~X]. It is defined by cases:

• if A is Xi then A[~ρ] is ρi;

• if A is A′[ ~X] → A′′[ ~X] then A[~ρ] is A′[~ρ] → A′′[~ρ];

• if A is Top then A[~ρ] is eqTop;

• lastly, if A is ∀X ′≤D[ ~X]. A′[ ~X,X ′] then A[~ρ] is
∀(Y≤D[ ~B], Z≤D[~C], R≤D[~ρ]). A′[~ρ,R].

If E;G ` ρi⊂Bi×Ci then E;G ` A[~ρ]⊂A[ ~B]×A[~C].
For example if A[X] is ∀X ′≤X. X ′ then A[eqInt ] is

∀(Y≤Int , Z≤Int , R≤eqInt). R. The definition applies
when A is closed, when we write A[ ] for the relational
formula obtained. For example (∀X ′≤Top. X ′)[ ] is
∀(Y≤Top, Z≤Top, R≤eqTop). R.

2.4 Consequence

It remains to give axiom schemas and rules in order
to define the consequence relation of the logic. This
relation is written as Γ `E;G φ, where Γ is a finite
set of formulae, and all formulae involved are well-
formed given E and G. The proof system has three
parts: standard rules for the connectives and quanti-
fiers; equational axioms (corresponding to the equa-
tional system of [CG94]); and a schema to express re-
lational parametricity. We adopt the convention that
if an axiom φ is written, what is meant is that the
sequent Γ `E;G φ is asserted, provided φ and all for-
mulae in Γ are well-formed given E and G.

The rules for the connectives and quantifiers are
given as usual for natural deduction. Propositional
logic is standard; intuitionistic rules suffice for our pur-
poses, but classical rules are consistent as well. The



rules for predicate logic consist of introduction and
elimination rules for each of the quantifiers, such as:

Γ `E,X≤B;G φ[X]
Γ `E;G ∀X≤B. φ[X]

Γ `E;G ∀X≤B. φ[X] E ` A ≤ B
Γ `E;G φ[A]

Γ `E;G,R⊂A×B φ[R]
Γ `E;G ∀R⊂A×B. φ[R]

Γ `E;G ∀R⊂A×B. φ[R] E; G ` ρ⊂A×B
Γ `E;G φ[ρ]

with the usual provisions about variable occurrences.
The axioms for equality include a reflexivity axiom,

a substitution axiom, two congruence schemas, and
some β-equalities and η-equalities:

∀X∀x :X. (x =X x)

∀X∀Y ∀R⊂X×Y ∀x :X∀x′ :X∀y :Y ∀y′ :Y.
R(x, y) ∧ x =X x′ ∧ y =Y y′ ⊃ R(x′, y′)

(∀x :A. t =B u) ⊃ (λx :A. t) =A→B (λx :A. u)

(∀X≤B. t =A u) ⊃ (ΛX≤B. t) =∀X≤B. A (ΛX≤B. u)

∀x :A. ((λx :A. t)x =B t)

∀X≤A. ((ΛX≤A. t)X =B t)

∀X∀Y ∀f :X → Y. ((λx :X. fx) =X→Y f)

∀f : (∀X≤A. B). ((ΛX≤A. fX) =∀X≤A. B f)

∀x, y :Top. (x =Top y)

Parametricity is embodied by an axiom schema:

∀Y1 . . . ∀Yn∀u : (∀X≤B. A)[~Y ]. u((∀X≤B. A)[eq~Y ])u

where A has free type variables among X,Y1, . . . , Yn

and B has free type variables among Y1, . . . , Yn and
eq~Y is eqY1

, . . . , eqYn
. To understand this, it is con-

venient to expand the definition, obtaining that if
X ′ ≤ B[~Y ], X ′′ ≤ B[~Y ], R⊂X ′ × X ′′, R ≤ B[eq~Y ],
and u : (∀X≤B. A[~Y ]), then u(X ′)A[eq~Y , R]u(X ′′).
Thus, if one instantiates a polymorphic value u at
two related types X ′ and X ′′ then the two values ob-
tained u(X ′) and u(X ′′) are themselves related. This
statement expresses Reynolds’ idea of relational para-
metricity. It is adapted to a calculus with subtyping
by constraining X ′ and X ′′ to be subtypes of B[~Y ] and
the relation R between X ′ and X ′′ to be included in
B[eq~Y ] (which is provably the identity relation on B—
see Lemma 1).

Note that ∀X∀x, y :X. (x =Top y) is provable, while
∀X∀x, y :X. (x =X y) is false in any nontrivial model.
This explains why the equality relation is indexed by
a type.

2.5 Basic lemmas

The basic provable schemas within our logic are
given by the Identity Extension Lemma, the Logical
Relations Lemma, the Dinaturality Lemma, and the
Graph Lemma, following the lines of [PA93].

Lemma 1 (Identity Extension Lemma)
Let A[ ~X] have free variables in ~X. It is provable that

∀u, v :A[ ~X]. (uA[eq ~X ]v ≡ (u =A[ ~X] v))

The following simple version of the Logical Rela-
tions Lemma implies a more general one, which does
not require B and t to be closed:

Lemma 2 (Logical Relations Lemma)
Suppose t : B where B and t are closed. Then it is
provable without using the parametricity schema that
t B[ ] t.

Types and the functions between them form a cat-
egory within our logic, as in [PA93]. In extending
types A[~Y , ~X] to multivariant functors we impose not
only that all occurrences of variables from ~Y are neg-
ative and all occurrences of variables from ~X positive,
but also that none occur free in any bound; proceed-
ing further than this presents a challenge. (In a type
expression ∀Z≤C. B the bound C is considered anti-
monotonic and the body B monotonic.)

Lemma 3 (Dinaturality Lemma)
It is provable that:

∀f :X → Y. (A[idX , f ]o(·)X = A[f, idY ]o(·)Y )

where in A[Y,X], Y occurs only negatively, X only
positively, and neither are free in any bound.

In order to state the Graph Lemma, we write 〈t〉A,B

for (x :A, y :B). tx =B y (with x, y not free in t), write
ρop for (x : A, y : B). yρx (where ρ⊂B × A and x, y
are not free in t) and consider two relations as equal
if they coincide extensionally:

Lemma 4 (Graph Lemma)
Suppose A[~Y , ~X] has all its free variables in ~Y , ~X, the
variables in ~Y occur only negatively, the variables in
~X only positively, and none are free in any bound.
Then, for distinct ~Y , ~X, ~Y ′, ~X ′, it is provable that:

∀~g : ~Y ′ → ~Y ∀~f : ~X → ~X ′. (〈A[~g, ~f ]〉 = A[〈~g〉op, 〈~f〉])



3 Semantics

The categorical semantics of parametric models of
F has been investigated by Hasegawa and by Reynolds
and Ma [Has94, MR92]. The categorical structures
needed for models of F≤ have been investigated by
Phoa [Pho92]. It remains to combine these investi-
gations to provide a general categorical semantics of
parametric models of F≤.

Fortunately, we do not need a general notion to con-
sider particular models. We give ad hoc presentations
of two models, one of partial equivalence relations and
another based on closed terms.

For the first model, fix a partial combinatory al-
gebra and take the types of the model to be the par-
tial equivalence relations (pers); these are the sym-
metric and transitive relations (over the algebra). A
triple (R, P, Q) is a (¬¬-closed) relation between pers
P and Q iff R is a binary relation and R = P ;R; Q.
We set dom(R, P,Q) = P and cod(R, P, Q) = Q; we
say that (R,P, Q) is a subrelation of (R′, P ′, Q′) and
write (R, P, Q) ⊆ (R′, P ′, Q′) iff R ⊆ R′, P ⊆ P ′,
and Q ⊆ Q′; and we write ̂P for the identity relation
(P, P, P ) on a per P .

Type expressions receive a double interpretation.
The first interpretation assigns to every type expres-
sion A a per T [[A]]η (for η a type environment, map-
ping type variables to pers). The second interpre-
tation assigns a relation R[[A]]θ between T [[A]]domoθ
and T [[A]]codoθ (for θ a (semantic) relation environ-
ment, mapping relation variables to relations between
pers). The type interpretation of universal quantifi-
cation is: a(T [[∀X≤B. A]]η)a′ iff (i) a(T [[A]]η{P/X})a

′

for all P ⊆ T [[B]]η, and (ii) a(R[[A]]η̂{(R,P,Q)/X})a
and a′(R[[A]]η̂{(R,P,Q)/X})a

′ for all (R, P,Q) ⊆ R[[B]]η̂,

where η̂(Y ) = ̂η(Y ). For relations, R[[∀X≤B. A]]θ is
the triple (R, P, Q) where P is T [[∀X≤B. A]]domoθ, Q
is T [[∀X≤B. A]]codoθ, and aRa′ iff (i) aPa and a′Qa′,
and (ii) a(R[[A]]θ{(R′,P ′,Q′)/X})a

′ for all (R′, P ′, Q′) ⊆
R[[B]]θ. Proposition 1 relates the two interpretations:

Proposition 1 For all type expressions A and all
type environments η, R[[A]]η̂ = ̂T [[A]]η.

An interpretation of the logic extends the inter-
pretation of F≤. Formulae are interpreted classically,
with type variables ranging over pers, ordinary vari-
ables over elements of the domain of the appropri-
ate per, and relation variables over relations between
the appropriate pers. With this, a relational formula
ρ ⊂ A × B can be interpreted as a relation between
the pers denoted by A and B. It is straightforward to
validate all the axioms and rules of inference, except

that the axiom of parametricity needs some work. For
this Proposition 1 applies. One also needs a “seman-
tic substitution lemma” to the effect that the relation
defined by the substitution of relational formulae in a
type expression is the same as the relational seman-
tics of the type expression in the relation environment
induced by the relational formulae being substituted.

For the second model, we follow the construction of
a closed-term model of System F by Moggi [Mog86].
We work with a natural contextual (or observational)
equivalence relation 'A, indexed by closed type ex-
pressions A. Here, for any closed F≤ terms t and u
of type A, t 'A u holds iff for every closed term c of
type (A→ Int), ` ct = 0 : Int holds in the equational
system of [CG94] iff ` cu = 0:Int does.

We take the types (of the model) to be the closed
type expressions. For any such type A, set TermsA =
{t | ` t : A} and say a relation between two types A
and B is a relation between TermsA and TermsB that
is closed under '. Type and relation environments
are defined as before; (ordinary) environments ν are
taken to be maps from (ordinary) variables to closed
terms. Type and ordinary environments are extended
to type expressions and terms by substitution. For
any E and G such that E ` G REnv, we take the
judgment η, ν, θ |= E; G to hold iff ` ν(x) : η(A) for
each x : A in E, and ` η(X)≤η(A) for each X≤A in
E, and θ(R) is a relation between η(A) and η(B) for
each R⊂A×B in G.

Next, for any E, G, and φ such that E;G ` φ Prop
and η, ν, θ |= E; G, we define a satisfaction judgment
E; G |=η,ν,θ φ by induction on the structure of φ. In
particular we set E;G |=η,ν,θ t =A u iff ν(t) 'A ν(u).
It follows from the following lemma that all the equal-
ity axioms are valid (in the now evident sense):

Lemma 5 1. Let B and C be closed type expres-
sions and let t and u be closed terms of type
B → C. Then t 'B→C u iff tv 'C uv for all
closed terms v of type B.

2. [Ghe90] Let t and u be closed terms of type Top.
Then t 'Top u.

3. Let ∀X≤B. A[X] be a closed type expression and
let t and u be closed terms of that type. Then
t '∀X≤B.A[X] u iff tC 'A[C] uC for all closed
type expressions C with C a subtype of B.

As the rules of the logic are also valid, the Logical
Relations Lemma holds in this interpretation. With
that and a semantic substitution lemma, one can ver-
ify that the parametricity schema is valid (essentially
because all elements of types are definable). Thus we
have a second model of our logic.



4 On other systems for F≤

In this section we relate our logic to other systems
for F≤. These are: the equational system of [CG94];
the equational system F<: of [CMMS94]; an equa-
tional schema which expresses Strachey’s view of para-
metric polymorphism (in the context of F≤!); and the
system obtained by combining the Penn interpretation
with parametricity assumptions.

4.1 Equations for F≤

The equational system of [CG94] corresponds to the
equational fragment of our logic, less parametricity.
Writing E ` t = u : A for provability in this system,
we have:

Proposition 2 E ` t = u : A iff `E; t =A u is
provable without using the parametricity schema.

Using the parametricity schema, we can derive a
weakening of the equational system F<:. The differ-
ence between F<: and F≤ concerns the rule (Eq appl2)
of [CMMS94], which in the context of F≤ is equivalent
to the equation:

λx : (∀X≤A. B[X]). xA′

=(∀X≤A. B[X])→C
λx : (∀X≤A. B[X]). xA′′

assuming an environment E where A′, A′′ ≤ A and
B[A′], B[A′′] ≤ C hold. The weakening contains in-
stead the rule (Eq appl2−+) of [CMMS94], which in
the context of F≤ is equivalent to the equation:

λx : (∀X≤A. B[X,X]). xA′

=(∀X≤A. B[X,X])→B[A′,A′′]
λx : (∀X≤A. B[X,X]). xA′′

where B[X−, X+] is a type expression in which X−

occurs only negatively and X+ occurs only positively,
and assuming an environment E where A′ ≤ A′′ ≤ A
holds. The variant system with the rule (Eq appl2−+)
suffices for the results of [CMMS94]. Derivability in
this system is written as E `−+ t = u :A.

Proposition 3 If E `−+ t = u :A then `E; t =A u.

The only difficulty in the proof of this result is in
the derivation of (Eq appl2−+) in our logic. To
show this, take =A′,A′′ to be the relational formula
(x : A′, y : A′′). (x =A′′ y). Then we have that
=A′,A′′≤ eqA, and, by parametricity, for any x in
∀X≤A. B[X, X], (xA′)B[=A′,A′′ , =A′,A′′ ](xA′′). But
eqA′ ≤ (=A′,A′′) ≤ eqA′′ ; so we may use the facts that

if X occurs only positively in a type C[X] and ρ ≤ ρ′

then C[ρ] ≤ C[ρ′], and similarly in the negative case,
to get (xA′)B[eqA′ , eqA′′ ](xA′′). The result then fol-
lows by the Identity Extension Lemma.

Note that this proof is given in the usual infor-
mal mathematical style rather than presented formally
within the logic; however, a formal version can easily
be given. We proceed similarly with other arguments.

The equation for (Eq appl2) is an instance of a more
general schema which asserts all equations t =A u in
which t and u have the same type erasures, assuming
an environment E in which t and u have the same
type A. (The type erasure of a term is the term of
the untyped λ-calculus obtained from it by removing
all type expressions in λ-abstractions, and all type ab-
stractions and applications.) We conjecture that this
schema is derivable in our logic. In [ACC93, PA93]
similar conjectures were made for System F and the
corresponding equational schema was argued to ex-
press Strachey’s view of parametric polymorphism.

4.2 The Penn interpretation

In [BCGS91], Breazu-Tannen et al. describe a
translation of an extension of F≤ to an extension of
F (the Penn interpretation) and prove a coherence re-
sult. This work straightforwardly restricts to a trans-
lation of F≤ to F extended with a type Top. Re-
placing Top with ∀X. (X → X), we obtain a trans-
lation to F. Each type expression A is mapped to
an F type expression A?, for example (∀X≤B. A)?

is ∀X. ((X → B?) → A?), showing how subtyping
is modeled by—arbitrary—coercion. Next, each envi-
ronment E is mapped to an F environment E?, and
for each proof Π of a typing E ` t :A one obtains an
F term tΠ and an F proof of E? ` tΠ :A?. According
to the coherence result, tΠ is independent of Π up to
provable equality, and we can write t? rather than tΠ.
We omit the definitions.

We now extend this translation, mapping our logic
for F≤ to the logic for F of [PA93]. To trans-
late relation environments, we replace each declara-
tion R ⊂ A × B by R ⊂ A? × B?. To each prov-
able sequent E;G ` φ Prop we associate a sequent
E?;G? ` φ? Prop by induction on the structure of
φ. Here we just give two cases. If φ is t =A u then
the translation is E?; G? ` t? =A? u? Prop where
E? ` t? : A? is the translation of E ` t : A and
similarly for u. If φ is ∀X≤B. ψ then the transla-
tion is E?; G? ` ∀X∀f : X → B?. ψ? Prop where
E?, X, f :X → B?;G? ` ψ? Prop is the translation of
E,X ≤ B ` ψ Prop.



Theorem 1 (Translation Theorem)
Suppose that the translation of E;G ` φ Prop is
E?; G? ` φ? Prop. If `E;G φ is provable in the logic
for F≤ then `E?;G? φ? is provable in the logic for F.

Not everything translates well, however. The trans-
lation reflects but does not preserve the contextual
equivalence relation ' (defined for F as for F≤). It
is simple to prove reflection: that t? 'A? u? implies
t 'A u. As to the failure of preservation, set B to be
∀Y. ((∀X≤Y. X) → (∀X.(X → Y ) → X)). There are
no closed terms of type B, but there is a closed term
of type B?. Now let A be B → Int , t be λx :B. 0, and
u be λx :B. 1. Lemma 5 yields t 'A u. On the other
hand, it is easy to see that for some term c, c(t?) is
βη-equivalent to 0 and c(u?) to 1 and so t? 6'A? u?.
This can be viewed as a failure of full abstraction for
the Penn interpretation.

In fact, t? and u? will have different denotations in
any non-trivial model of F, so any model of F≤ defined
by factoring through the Penn interpretation will not
be fully abstract. (Answering a question of Breazu-
Tannen, t and u also receive different interpretations in
the parametric per model outlined in section 3 as there
B has the same denotations as Top; so that model is
not fully abstract either.)

Further, the translation of the logic is not conser-
vative. Specifically, take φ to be (t =A u ⊃ 0 =Int 1).
Then φ? is provable in the logic for F (even without
parametricity) but φ is not provable in the logic for
F≤ as it is false in the closed-term model given above.
We do not know whether the translation is conserva-
tive for equations.

It is not clear how seriously one should take these
inadequacies of the Penn interpretation. After all, as
we show, the logic for F≤ is powerful in that it sup-
plies all the usual reasoning principles one might ex-
pect, and the Translation Theorem implies that the
logic for F is powerful too. On the other hand, it is
uncomfortable that via the translation one can prove
false statements (in a certain sense) and it would be
interesting to have a principled extension of the logic
for F≤ that would refute statements like φ.

5 Datatypes

Finite products and sums, existentials, initial alge-
bras, and final co-algebras can be treated without sub-
typing; see [PA93] for details. Now, in addition, exten-
sible record and variant types, bounded existentials,
and order-sorted algebras become available. That is,
they can be represented as F≤ types, and the logic

enables us to prove that these F≤ types have certain
expected properties, for example that two extensible
records of a type A are equal if they agree on the fields
declared in A.

5.1 Extensible records

Extensible record types are treated as in [Car92].
One fixes an ordered, countably infinite list of names li
(i = 1, 2, . . .) and takes the record type Π∗l∈LAl (where
L is a finite set of names) to be Πi≤n+1Bi where n is
the greatest index of any element of L, Bi = Ali (if
li ∈ L) and = Top (otherwise). This type is a finite
product, categorically.

One can define extensible sums analogously. If one
has available a least type Bot (necessarily the initial
type) one can set Σ∗l∈LAl = Σi≤n+1Bi with n as above
and Bi = Ali (if li ∈ L) and = Bot (otherwise). This
yields a categorical sum. One can get the same effect
without Bot by taking Bi = ∀X. ((Ali → X) → X) (if
li ∈ L; X not in Ali) and = ∀X. (Top → X) (other-
wise).

Records and bounded quantification have been used
in combination to model some aspects of object-
oriented programming. Parametricity is useful in un-
derstanding the issues involved in this approach to
objects. The first example considered seems to have
been a simple one concerning the type Point of ex-
tensible records with integer fields x and y. (Infor-
mally, we write Point as {x, y : Int}, and think of
points as objects.) The type ∀P≤Point . (P → P )
was intended as the type of a program that modifies
the x and y components of an element of an arbitrary
subtype P of Point , that is, the type of a program
that “moves a point” parametrically for any subtype
of Point . However, Mitchell pointed out that in a
per model this type contains only the identity func-
tion, hence no value of this type can “move” any-
thing in a per model. This can be verified in gen-
eral in our logic for F≤: if f : ∀X≤A. (X → X) then
∀X≤A∀x :X. (f(X)(x) =X x). To show this, one con-
siders a type X and an element x in X, and applies
the parametricity scheme for ∀X≤A. (X → X) to the
relational formula (y :X, z :X).y =X z =X x.

What should then be the type of a parametric move
function? One solution is to use a richer notion of
extensible records. As in [Car92], we write Z↑{x, y}
to mean that Z is a “record extension” that does not
contain the labels x and y, so that {x, y : Int, Z} is a
well-formed record type. Then we take:

move : ∀Z↑{x, y}. ({x, y :Int , Z} → {x, y :Int , Z})



that is, the move function takes any extension of the
record type {x, y : Int} with Z and returns a similar
extension, possibly modifying x and y. These extensi-
ble records can be encoded in F≤ as shown in [Car92],
and so our logic applies to them as well. The encod-
ing depends on an enumeration of labels. If we assume
that x and y occur, say, first and third in the enumer-
ation, then the type of the move function under the
encoding is:

∀X2∀X4.((Int×X2×Int×X4) → (Int×X2×Int×X4))

Now, using parametricity, it is easy to show that
∀X. (X → X) is isomorphic to Top, and also that
∀X. (X → Y ) is isomorphic to Y . From this we may
deduce that ∀X. ((X × Y ) → (X × Z)) is isomorphic
to Y → Z. It follows that the type of move is iso-
morphic to (Int × Int) → (Int × Int), and hence can
indeed contain a genuine move function.

5.2 Partially abstract types

Just as existential types model abstract types
[MP85], bounded existential types model a corre-
sponding programming construct: partially abstract
types [CW85]. A partially abstract type is a type
whose representation is left unspecified, but whose
properties are partially known by virtue of it being
a subtype of a known type. Partially abstract types
are a significant feature of some object-oriented lan-
guages that support abstraction [Wir88, Nel91].

Formally, bounded existentials can be defined from
bounded universals:

∃X≤B. A[X] = ∀Y. ((∀X≤B. (A[X] → Y )) → Y )

Combinators pack and unpack are available:

pack :∀X≤B. (A[X] → ∃X≤B. A[X])
unpack : (∃X≤B. A[X])

→ ∀Y. ((∀X≤B. (A[X] → Y )) → Y )

with packXxY f =Y fXx for any X ≤ B, x : A[X],
and f : ∀X≤B. (A[X] → Y ), and unpack given by
the identity. We have: unpack(packXx)Y f =Y fXx.
One has a categorical characterization: for any func-
tion f :∀X≤B. (A[X] → Y ) there is a unique function
g : (∃X≤B. A[X]) → Y such that for any X ≤ B and
x : A[X], fXx =Y g ◦ (packXx). One can also show
how the bounded existential operates on relations. A
bounded simulation principle can then be derived. It is
a rule for proving equalities between elements of par-
tially abstract types: omitting parameters and types

on equalities, for any u, v :∃X≤B. A[X], u = v holds
if

∃X≤B, Y≤B ∃x :A[X], y :A[Y ] ∃S⊂X×Y.
S ≤ eqB ∧ u = packXx ∧ v = packY y ∧ xA[S]y

This rule yields representation-independence the-
orems for partially abstract types. For example,
the type ∃X≤Point . (X × (Point → X)) the type
of a package providing an element of an unknown
subtype X of Point and a function from Point to
X, is isomorphic to the much less intriguing type
∃X≤Point . (Point × (Point → Point)), and in turn
to Point × (Point → Point), the type of a pair of a
Point and a function over Point .

More generally, one can replace occurrences of an
existentially quantified variable with its bound in a
package interface, provided all its occurrences in the
interface are positive, and none occur freely in a
bound. This is a consequence of the corresponding
statement for types ∀X≤B.A[X] with universal quan-
tifiers and negative occurrences. For such a type, (·)B :
(∀X≤B. A[X]) → A[B] is an isomorphism with in-
verse g = λy :A[B]ΛX≤B. A[ι](y), where ι is the type
inclusion (λx :X. x) :X → B. That go(·)B is the iden-
tity follows from ∀z : (∀X≤B. A[X]). zX =X A[ι](zB)
which is proved using parametricity with the relation
〈ι〉op

X,B and then the Graph Lemma. That (·)Bog is the
identity is proved by equational reasoning.

5.3 Order-sorted algebras

Initial algebras and final co-algebras can be han-
dled without subtyping, so for example the initial
A[X]-algebra is ∀X. ((A[X] → X) → X). One might
also imagine bounded initial algebras, setting I to
be µX≤B. A[X] when A[B] ≤ B. One would
like I ≤ B to hold; however the obvious attempt
∀X≤B. ((A[X] → X) → X) does not work.

One can construct a variety of initial order-sorted
algebras [GM92] and final order-sorted co-algebras.
Let L be a finite partial order over the set of names
(recall section 5.1); for each l ∈ L let Al[ ~X] be a type
expression with ~X a vector of |L| variables all occur-
ring only positively in Al and not in any bound. Then
a (formal) order-sorted ~A-algebra ((Bl)l∈L, (gl)l∈L) is
a collection of types Bl (l ∈ L) such that Bm ≤ Bl
if m ≤ l—the carriers of the algebra—and functions
gl :Al[ ~B] → Bl—the operations of the algebra. For ex-
ample, one might have types P and N , with P ≤ N ,
and operations succ : N → P and 0 : 1 → N . (Think
of the natural numbers and the positive natural num-
bers.) Taking L = {0, 1} with 0 ≤ 1, A0[X0, X1] is X1
and A1[X0, X1] is 1.



An order-sorted homomorphism from an order-
sorted ~A-algebra ((Bl)l∈L, (gl)l∈L) to an order-sorted
~A-algebra ((B′

l)l∈L, (g′l)l∈L) is a collection of functions
hl :Bl → B′

l which respects the operations in the sense
that

hlogl =(Al[Bl]→B′l)
g′loAl[~h]

(for l in L) and also respects the sorts, in the sense
that

hloιm,l =(Bm→B′l)
ι′m,lohm

(for m ≤ l), where ιm,l : Bm → Bl and ι′m,l : B′
m → B′

l
are the evident type inclusions.

One can show that an initial order-sorted alge-
bra exists. The idea is to set A∗l = Σ∗m≤lAl and
let ((Bl)l∈L, (gl)l∈L) be an initial ~A∗-algebra (for l
in L), using the well-known extension of the single-
sorted case in System F (see for example [PA93]). Set
Cl = A∗l [ ~B] and take fl to be the composite:

Al[~C]
Al[~g]→ Al[ ~B] inl→ A∗l [ ~B] = Cl

where in l : Al[ ~B] → A∗l [ ~B] is the evident injection.
Then ((Cl)l∈L, (fl)l∈L) is the initial order-sorted ~A-
algebra.

The final order-sorted ~A-co-algebra can be similarly
constructed from the final order-sorted ~A∗-co-algebra.

One would really want to improve these results to
allow coherent overloading (as exemplified by a + op-
eration over both natural numbers and reals). This
can perhaps be achieved by extending F≤ with inter-
section types, following Reynolds and Pierce [Pie91,
Rey88]. It seems straightforward to extend our logic
to handle these constructs.

Acknowledgments

We benefited from discussions with Val Breazu-
Tannen, Pierre-Louis Curien, and John Mitchell.

References

[ACC93] Mart́ın Abadi, Luca Cardelli, and Pierre-
Louis Curien. Formal parametric polymor-
phism. Theoretical Computer Science, 121(1–
2):9–58, December 1993.

[BCGS91] Val Breazu-Tannen, Thierry Coquand, Carl
A. Gunter, and Andre Scedrov. Inheritance
as implicit coercion. Information and Com-
putation, 93(1):172–222, July 1991.

[BFSS90] E. S. Bainbridge, Peter J. Freyd, Andre Sce-
drov, and Philip J. Scott. Functorial poly-
morphism. Theoretical Computer Science,
70(1):35–64, January 15 1990. Corrigendum
in (3) 71, 10 April 1990, p. 431.

[BL90] Kim Bruce and Giuseppe Longo. A modest
model of records, inheritance and bounded
quantification. Information and Computa-
tion, 87(1/2):196–240, 1990.

[Bru93] Kim Bruce. Safe type checking in a statically-
typed object-oriented programming language.
In Proceedings of the Twentieth Annual ACM
Symposium on the Principles of Programming
Languages, pages 285–298, January 1993.

[Car86] Luca Cardelli. Amber. In Guy Cousineau,
Pierre-Louis Curien, and Bernard Robinet,
editors, Combinators and Functional Pro-
gramming Languages, pages 21–47. Springer-
Verlag, 1986. Lecture Notes in Computer Sci-
ence No. 242.

[Car92] Luca Cardelli. Extensible records in a pure
calculus of subtyping. In Carl A. Gunter and
John C. Mitchell, editors, Theoretical Aspects
of Object-oriented Programming: Types, Se-
mantics and Language Design. MIT Press, to
appear. A preliminary version appeared as
SRC Research Report No. 81, 1992.

[CG92] Pierre-Louis Curien and Giorgio Ghelli. Co-
herence of subsumption, minimum typing and
type-checking in F≤. Mathematical Struc-
tures in Computer Science, 2(1):55–92, March
1992.

[CG94] Pierre-Louis Curien and Giorgio Ghelli. De-
cidability and confluence of βηtop≤ reduction
in F≤. Information and Computation, 94(1–
2):57–114, February/March 1994.

[CHC90] William R. Cook, Walter L. Hill, and Pe-
ter S. Canning. Inheritance is not subtyping.
In Seventeenth Annual ACM Symposium on
Principles of Programming Languages, pages
125–135. ACM, January 1990.

[CMMS94] Luca Cardelli, Simone Martini, John C.
Mitchell, and Andre Scedrov. An extension
of system F with subtyping. Information and
Computation, 94(1–2):4–56, February/March
1994.

[CW85] Luca Cardelli and Peter Wegner. On under-
standing types, data abstraction, and poly-
morphism. Computing Surveys, 17(4):471–
522, December 1985.



[Ghe90] Giorgio Ghelli. Proof-Theoretic Studies about
a Minimal Type System Integrating Inclusion
and Parametric Polymorphism. PhD thesis,
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