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ABSTRACT 

This work describes a light scattering study of two crystalline 

borates, a system for automated Brillouin spectroscopy, and a 

theoretical investigation of incommensurate-commensurate transitions. 

Firstly, the Raman spectrum of zinc metaborate (Zn 4B 6O13) is 

reported and discussed, and a tentative assignment is made of vibrations 

of the B-O framework. An interference feature in the spectrum is 

analysed in terms of models involving anharmonic phonon-phonon and 

phonon-continuum coupling. 

The inelastic and elastic light scattering spectrum of nLkel-

iodine boracite (Ni 3B 7O 13 I) is presented for the first time, at 

temperatures between 6K and 295K. Anomalies in the phonon lifetimes 

and frequencies at 130K are correlated with concomitant abnormalities 

in the structural, elastic and magnetoelectric properties, but a 

structural transition at this temperature is not indicated. The 

dynamics of the improper pareelectric-ferroelectric transitiCTI at 

68K are discussed, and possible symmetries considered. Furthermore, 

the data reveals a new transition at 7K, which is thought to be 

both structural and magnetic. Critical modes are studied, and a 

strongly temperature dependent. mode is identified, whose behaviour 

cannot be fully explained. 

A proven modular approach to computer control of experiments is 

presented, and a system for control of Brillouin scattering experiments 

is described. Examples of the resultant spectra are presented, along 

with some speculation as to future developments. 

Finally, the theory of incommensurate-commensurate lock-in tran-

sitions has been studied, and the method and conclusions are detailed. 



Two distinct types of lock-in transition are identified, and the 

corresponding distortion profiles are derived, within a simple 

Landau theory. 
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CHAPTER 1 

BASIC THEORETICAL AND EXPERIMENTAL CONSIDERATIONS 

The Raman effect is the inelastic scattering of electromagnetic 

radiation by matter, giving rise to a change of frequency. It was 

first reported by Raman in 1928 (1) as a new phenomenon, distinct 

from fluorescence, although the possibility of such a process had been-

theoretically envisaged (2). 	Raman first observed the scattering 

of filtered sunlight, from CC2 4 , photographically. The effect is 

very weak, and it became necessary to use arc lamps to increase the 

usefulness of the technique as a probe of excitation spectra. Photo-

graphic detection techniques have now been almost universally super-

seded by photoelectric methods, but by far the biggest single advance 

in the technology of Raman &cattering came with the advent of the 

laser (3) as a source of radiation. 

The quantum mechanical theory of the Raman effect was first dis-

cussed in detail by Plazcek (4). In this treatment, the Raman 

scattered light was considered as the electric dipole radiation from 

an oscillating dipole. The incident radiation was introduced as a 

quantum mechanical perturbation. The discussion in §1.1 of the 

scattering cross-section follows a similar approach, but uses the 

results of second order, time dependent perturbation theory, and 

the formalism surrounding the quantisation of the radiation field. 

Raman scattering from crystals was first investigated in 1928 

(5), very soon after the original experiments. Since then it has 

proved a valuable tool for probing the normal mode frequency spectrum 

(phonon scattering), as well as scattering from other types of ex- 

citation (e.g. magnetic and electronic). Most of the available published 
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Raman spectra of solids were measured in the past 15 years, since the 

laser revolutionised Raman spectroscopy. 

It is the intention of this chapter to outline the theoretical 

calculations relevant to the ensuing chapters, and to describe the 

experimental equipment used for the bulk of the work therein. There 

are basically two types, of information to be extracted from a 'Raman 

spectrum. Firstly, one can make certain assertions about vibrational 

symmetries in the crystal, and secondly, one can study the inter-

actions between excitaticns. These considerations can, in many cases, 

give clues as to why a system exists in .a given state at a given 

point in phase space. 

In 91.1 the form of the cross-section for Raman scattering from 

crystals is derived, giving a general expression which may be further 

manipulated. In 91.2, a familiar lattice dynamical calculation is 

presented (in the harmonic approximation) leading to the concept of 

a phonon. This much-documented calculation is reproduced here for 

completeness' sake, and also to define the notation of the rest of 

the chapter, which is in some places not standard to avoid confusion. 

In §1.3 and 51.4, an attempt is made to discuss the physics behind 

the classification of phonon symmetries, using some (unproved) results 

of formal group theory. 

The introduction of some aspects of many-body theory in §1.5 

and Appendix 1 may seem like using a sledgehammer to crack a nut. 

It is, however, useful to review the particular aspects of Greens 

function theory relevant to Raman scattering lineshapes, as this 

connection is often obscured in a more general treatment. In short, 

the calculations presented can all be found elsewhere, but are col-

lected here to define the vocabulary and notation of this work. 
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Finally, in 91.6, the requirements of a successful Rmnan experi-

ment are detailed, and the choice of equipment described and justified. 

§1.1 	The Scattering Cross-section 

Fermi's Golden Rule of perturbation theory, applied in first and 

second order, gives the probability/unit time of transitions from a 

state 1c> to a.state 	13>  of any system as (6) 

1.1 R 13  = 	<13lH1k> - 	
<!H1l><yIH1k> 12 	

6(E 	E° ) 

	

Y 	CA 

where the Hamiltonian of the system can be written as 

1.2 	 H = H 0 + }11 (t) 

The {E} are the energy e igenvalues of the Schrdinger equation, 

H 16> =E16> and H1 (t) is a small time dependent perturbation. 

Expressing the eigenstates {ld>} as the direct products of the 

crystal eigenstates {jD>} and the second quantisation representation 

photon field state vectors {1d1 , d2 , d3 ..... >}, written in short-

hand form { Id>} , we have 

1.3 R 	 < - .1LHBIbIH...Ia>IA>_z 13 	 I  
Gg 	E° - E 

Gg 	Aa 

x 6 (E b  - E)Aa 

The quantum numbers d1 , d2  etc. represent the number of photons of 

type 1, 2 etc. 
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Now the interaction energy between a dipole moment M and an 

electric field E is -M•E. 	It is fruitful to express the operator 

of the electric field in terms of the photon creation and annihilation 

* 
operators b 	and b (7). 

twn  I 	* 
1.4 E(r,t) = L i(2 	(bn(t) - b(t)) 

n 	0 

The quantities ê 	and w 
n 
 are the polarisation and frequency, res- 

pectively, of a photon of wavevector k 	and V is a box noivalisation 

constant. The operators b, b*  have the properties 

1.5 bid>= ,1i— d,,..., d - l ...> exp i 	- nt 1  

1.6 b*Id> = 	d+l Id1 ,..., d+l, ...> exp -i (k.r - 	t) 
n 	 n' 

For first order Raman scattering, the transition is between states 

d., d f> and Id.±i,  df+l> with all other d's unchanged and the 

first term in the modulus of 1.3 is zero. Thus the transition rate 

may be written 

1.7 R 	
=t11tü)jWf 

2c 2
V2 Gk 

0 

<GI<a.,a f 	f 
.+lIMb. 	f2. (a.1,a>IA> 

1.  x 
0 

EGA + 

* 
<B<a -i ,  af  lIMIKbf Cfkkil ,  af>IG> 

+ 

<Gt<a 
A 

.-1,afi i 1Mb E. 9 1 
a.,af>IA> 

2  

1  

0 
'GB - trw f  

- E) 
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This is the expression describing a process in which a photon of fre-

quency c. is scattered to produce a photon Wf . This is a two-stage 

process, and the two terms in the modulus of 1.7 are represented 

schemati.cally in Figures la and lb. When w > w we have Stokes 

scattering, and when w. < w, Antistokes scattering, as shown in 

Figure 2. Also defined are the Cartesian labels k, £. and 

	

1.8 	 = E - E 	 DADA 

Using 1.5 and 1.6, and defining the transition polarisability P 

if 	
<BIM.jG.>G IMIA> 

	

1.9 	P(BA) = 	{ - 

tGA + W f ) 

<BIMIG.>cCjNjA> 

11 (W GB

+ 	 ) 
- W f ) 

equation 1.7 becomes 

1.10 
iWf a.(af+l) 	

2 	Pif 
	'(AB) 

= - 2c 2V2 	k2mn kk 
	mn 

0 

A A A A 	

- w. 
i 	

) 	. xc c c e 	ô(w 	+ kf2.. imfn 	BA 	f 	1  

Now a. can be written as (per unit volume) 

a. 	cE2  
1.0 

V 	2 = 	 •lIw. 
1 

and if a  = 0 initially, the intensity of scattering to a group of 

frequencies around w  described by P(W f) is given by 



FIGURE 1: Schematic representation of the first(la) and 

second(lb) terms of equation 1.7. The broad 

arrow represents the radiation field, 

FIGURE 2: Energy levels in first order normal Ramaii 

scattering processes. 
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1.12 	Idwfdc = - 	 P(BA) 	AB)E E 

	

inn 	k m fiCf n  kk 
32ir 2c 3 c 

0 AkPmn 

exp(- EA) 
X z 

	

X 	 + W -BA 

• Now, Ek,  Eare the k and in components of the incident 

radiation field strength, and Z the partition function 0 	1 /kT). 

- 	1.12 represents the total Raman scattering intensity of frequency 

Vç into an element of solidangle dc(= sinO dO d) with a general 

input field polarisation E = (Ek, E, 0). 	The sum over (weighted) 

states {[A>}  constitutes a thermal average, and the s-function 

defines JB> uniquely. The symmetry properties and the quantinu 

if 
mechanical definition of the terms Pk(BA)  are exploited in §1.4 

and §1.5. In the standard notation a(bc)d used to describe a Raman 

experiment, (a) and (d) denote the direction of the incident and 

scattered light, and (b c) describe the respective polarisations, 

given by 	and 

§1.2 	Normal Modes of a Crystal 

This brief discussion follows the arguments of Born and Huang 

(8) in analysing the internal oscillations of a crystal in terms of 

a set of uncoupled 'normal modes' (in the harmonic approximation). 

Although this calculation is now coninonpiace, its inclusion here is 

- useful to define the notation and terminology of §1.3 and §1.4. It 
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is also necessary to provide the link between the classical, description 

of lattice vibrations and the quantum mechanical formalism of §1.5. 

The Hamiltonian of the crystal, in the harmonic approximation, may 

be written in terms of the momenta {p.} and displacements from equili-

brium positions {.} of the N atoms as- 

N_, 2 	N 
1.13 	H + + 	)' 

1=1 	
1  

With the simple rescaling given by 

1.14 	W. 	= 	q. 
1 

; 	 . . 	= 	4).. ~ 
-1 	 1- 	-13 	-13 	13 

and the use of the canonical equation (9) 

1.15 	. 	 = 
- ____ 

Dqiq  

the equation of motion is given by 

1.16 	W. 	= 	- 	
i9..j 

W. 	(2w, m are Cartesian labels) 
m jm 

is called the dynamical matrix and contains all the information 

about the interatomic interactions in the harmonic approximation. It 

transpires that a further transformation to 'normal co-ordinates' 

renders 	. diagonal and thus decouples the oscillations. To this end, 

define firstly Fourier co-ordinates {Q . } 

- 1.17 	Q2, 	= 	 W1. 	ir!) 
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l.8 	W1= 	 Q. exp(i.I) 

The quantity Wrp, is now the mass weighted displacement of the 

i-th atom of the unit cell of origin I. 	With this definition 1.16 

becomes 

1.19 	Q 
11
2. = 
	D.9.() Qzjm 	 - 

jM 

1.20 	[D 	(Y)= 	iijm expiQ - !) ] 

We have thus block-diagonalised j to a set of Heruiitean matrices 

D.  which are 3r x 3r where r = number of atoms/primitive cell. A 

Herinitean matrix has a set of orthonormal complex eigenvectors 

with corresponding real eigenvalues {w} , i.e. 

1.21 	Djp,j() c a (jm•) 	= 	W)  C a(i•LZ) 
im 

b 

We can define complex normal co-ordinates from the Fourier co-ordinates 

{Q 1, } by: 

1.22ya 
	= 	: (iy) 	

= 	
c.(iZ)Q 

19. 
	Xa 

-whereupon 1.19 becomes 

-. 1.23 	Qya 	= 
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This is the equation of motion for the displacement from equ1i 

br_urn of a simple harmonic oscillator of frequencywa() 	The equa- 

Lion 1.16 describing 3N coupled oscillators has been decaupled to 

give 1.23. for a set of 3N uncoupled oscillators. 

The transition from the purely classical discussion leading to 

1.22 into quantum mechanical operator notation is achieved by writing 

the normal coordinate Q 	as a Hermitean operator Q 	and defining 

new operators b 
L, 

 b* 	by (10) 
-  

__  
(b 	+ b *) 1.24 	a 	= 	a 

* 
1.25 	P 	= 	2 	

(b 	- b 	) 
ya 	 L 

where P 
xa 

 is the conjugate momentum to 0 . From the classical 

Poisson brackets (11) 

za' 'y' b 1 	= 	' (z - L')ab 	and 

{Qya' y'b 	
= 	0 

* 
b and b can be shown to have the commutation relations 

	

1. 26a 	[b , b*  

	

La 	
= 	- Lab 

* 	* 

	

1.26b 	{b , b tb] 	= 	[b, bib ] 	= 	0Za 

and are therefore boson creation and annihilation operators respectively. 

The bosons in question are the quanta of the lattice vibration 'field', 



called PHONONS, PHONONS, which are respectively created or annihilated in 

Stokes and Antistokes Raman experiments. 

Footnote to 91.2 

Although y is used as the symbol for phonon wave rector through-

out this chapter (to avoid confusion with displacement 
), 

the letter 

g is conventionally used for wavevector. This latter convention is 

adopted for the rest of this thesis. 

§1.3 	Symntry Classification of the Normal Modes 

The literature of group theory is profuse, and the application of 

group theoretical methods to crystal vibration theory is also well 

documented (e.g. (12)). The purpose of this section is to emphasize 

the physical significance of some useful results expressed in rigorous 

group theoretical terms, leading to the symmetry classification of the 

normal nodes. No purely group theoretical results are proved here, 

as such proofs, along with the details of the nomenclature, can be 

found in McWeeny (13). 

Consider the eigenvalue equation 1.21, written in matrix 

notation: 

1.26 	D c 	= 	w 2 a —a 

Since the dynamical matrix j.  must exhibit the symmetry of the structure, 

it must therefore be invariant under any operation C in the symmetry 

group G. Operating on 1.26 with the matrix representative R of C 

gives 
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1.27 	Rca 	 ca 	= 	Waca 

This means that R e 	represents a set of eigenvectors with the same ==c —a 

eigenvalue of D as the original set -s-a 	
and are consequently linear 

combinations of the original set. This is true for any set of eigen-

vectors with a coixinon eigenvalue, and each such set consequently forms 

the basis for an irreducible representation of G. 	Each eigenvalue 

o() corresponds to a normal mode, and therefore each normal mode 

corresponds to an irreducible representation of G. 	The complication 

of accidental degeneracies, where force constants are such that two 

distinct normal modes have the same frequency, is ignored here. 

Now the normal coordinates Q 	can be written in terms of theya 

mass-weighted Cartesian coordinates 

1.28 	Qya= ._! 	c*(i9.) W1 . 9  exp(-iI) 

1.29 	Q= T.W in matrix notation 

where T is unitary. This means that the matrices of a representation 

based on 3N Cartesian coordinates are related to that based upon the 

normal coordinates by a similarity transformation, and the representa-

tions are therefore equivalent. A representation based on the complete 

set of normal mode coordinates is therefore, in general, not irreduäible, 

and provides the same set of irreducible representations of G as does 

the representation based on the Cartesian displacements. 

The group C has not yet been defined. In general, when D .  is 

a function of y, C is the 'group of the wave vector 	', i.e. 

those operations which preserve the translational symmetry of y (14). 
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Fortunately, in first order Raman scattering, wave vector conservation 

requires y z 0 and this group corresponds to the point group of the 

sr:ructure. 

The procedurefor classifying the normal modes of a crystal is 

therefore as follows:- 

Associate a set of Cartesian axes with each atom in the unit cell. 

Construct the matrix representatives of the group operations with 

respect to these vectors, giving a representation r. 

Reduce r. 

For the purposes of classification of modes, the complete matrix re-

presentatives for r are fortunately not necessary, and it is suf-

ficient to work with the characters {xr (c)} of the matrices in 2) 

and 3), and use the orthogonality relation (13) 

1 	 * 
1,30 	n 

r 	= 	- 

	

I 	g 	xr(c)xy(c) 
C 

where g is the order of the group, xy ( c) the trace of the c-matrix 

in irreducible representation y, xr(c) the trace of the c-matrix in 

I', and n1'  the number of y z 0 modes of symmetry y for the crystal. 

§1.4 	Selection Rules for First Order Raman Scattering 

Due to the nature of the interaction between the photons and the 

phonons given by 1.12, only modes corresponding to certain irreducible 

representations can interact with the radiation. This gives rise to 

'Selection Rules'. The one-phonon Raman cross-section depends on 

transition polarisability terms of the form 1.9 
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if 	1 	<BIMkIG><CIMIA> .<2. "k> 

	

1.31 	P (BA) = - 	 - 	+ 
-. 	 •(W+Wf ) 	WGBWf 

It proves useful, in the case of the normal Raman effect, to use 

Placzek's approximation (8) which has the following physical signi-

ficance. 

In the adiabatic approximation, the electrons in a crystal 

are assumed to follow the nuclear motion. This enables the 

wavefunction to be written as the product of a wavefunction for the 

electrons in a given nuclear configuration, and the wavefunction 

for the given nuclear configuration. The corresponding energy 

aigenvalues are the sums of electronic and nuclear eigenvalues. 

Assuming that the states IA> and IB> are both electronic ground 

states, (i.e. no electronic Raman scattering), it is possible, to 
0 

a good approximation, to divide 1.31 into ionic and electronic parts, 

depending on nuclear and electronic quantum numbers respectively. 

The conditions for this approximation to be good are that nuclear 

eigenvalues are much smaller than electronic eigenvaiues, and that 

the probe frequency w. ( W f ) is not close to an electron excitation 

energy. With the further constraint that the probe frequency is 

much greater than the phonon frequencies (w. >> w(O, the ionic 

part can be ignored, This is always the case for normal Raman 

scattering and we can write: 

	

1.32 	P (BA) 	E 	
Ien><en if 	 B I  Mk  

O 	G e  

'k> 
+ 

eGO W  
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where CD  and n are the electronic and nuclear quantum numbers 

of the state ID>. 	Now 1.32 is of the form 

1.33 	P(BA) 	- 	<0 n)3IPkPjO nA> 

where P 	is a unitary tensor operator. Since the numbers In 

can be taken to represent the number of phonons of each type (see 

§1.5), state 10 n 	 differs from 10 n A>  by the addition of one 

phonon. It can be shon that the matrix element 1.33 is zero unless 

the polarisability tensor element P 	 transforms according to the 

same irreducible representation of C as does the phcnon created 

(15, 16). This is due to the group theoretical result that the inner 

product <AlL> of two vectors is zero unless the vectors transform 

similarly under the group operations. The transformation properties 

of the second rank tensor P 	 can be derived for the 6 crystal
kZ  

classes, and have been tabulated in the definitive article by Loudon 

(15, 17). 

With the information given by the calculations of §1.3 and 51.4, 

one can predict the symmetries of modes appearing as peaks in the Raman 

spectrum for a given input field E = (Ek, EZ.  Em)  and a given 

output field direction C =-'fk 	
c). These may not, of course, 

be visible due to absorption, or small values of the elements of 

§1.5 	Greens Functions and Raman Scattering 

Useful information about the atomic vibrations of a crystal can 

obviously be gleaned from the Raman spectrum by applying the methods of 

§1.3 and §1.4, which describe the presence or absence of peaks in the 
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spectrum. More often than not, the shape of a peak is also of interest. 

For a harmonic system, simple 'response function' arguments produce an 

expression for the lineshape comprising delta-functions at &'ifts of 

= 

In the presence of anharmonicity, a simple 'harmonic oscillator 

with viscous damping' analysis gives rise to a broadening of the delta 

functions. This semiclassical argument is physically unrealistic, 

and furthermore does not describe many experimental resultsit: all 

wall. With the help of many-body theory, and in particular Greens 

function methods, however, one can derive from equation 1.12 a general 

expression for the lineshape without recourse to mythical danped 

oscillators. 	The fundamental assumption of the Greens function 

analysis of anharmonicity in solids is that the crystal may he re-

garded as an ensemble of bosons (phonons). These bosons interact 

through anharinonic terms in the Hamiltonian, and as they can be created 

or destroyed, 'particle number' is not conserved. Instead of con-

sidering the complete wavefunction of the system, it is necessary to 

go over to the second quantisation representation, which deals in the 

occupation numbers of the phonon states (19). 

The arguments in this section follow those of Abrikosov et al. 

(20) and Cowley (21). It is assumed that the formalism of the three 

'pictures' of quantum mechanics is familiar (11). These are the 

Schrdinger, Heisenberg (subscript H) and Interaction () pictures. 

The presence of anharuDnicity implies the existence of terms additive 

to 1.13 for the Hamiltonian. These are of the form: 

1.34 	H' 	= 	 cj q7 
ijk 

imn 
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This may be written in terms of the normal coordinates of 1.22 as 

1.35 	H 1 	 V( a b C 	 a 	2b Q 
	S (Z] + 2 + 	+ K) 

l23 
a b C 	 (K = Reciprocal lattice vector) 

which in turn expresses the interaction Hamiltonian H in te.ms-of 

the phonon creation and annihilation operators. 

In general, the single particle Greens function is defined in 

terms of the second quantisation operators for creation and arinihilation. 

of a particle at a particular point in sace. For phonons, however, it 

is. convenient to define the Greens function in the momentum representation 

as: - 

1.36 	G(a, 1 1 b,t) = 

where T t is the time ordering operator, Z the canonical partition 

function, and 

* 
1.37 	*(a) 	= b 	+ bya 

If the crystal is to be invariant under the operations of the trans-

lation group, then the Greens function is zero unless y 	It is 

essential to the development of finite temperature Greens function 

theory to note that G is periodic in the 'complex time' it = 

provided 	 Thus we can expand G in terms of a 'complex 

frequency' to give 

CO 

1.38 	G(ab,t) 	'I
=

G(ab, iw)exp iwT 
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1 	BtI 
1.39 	G(ab, iw) =Tf 	G(h, t)exp -Ii di 

- 

where 	W = 	x 

The usefulness of this transformation will not become clear until 

it is applied in the (exactly soluble) harmonic approximation, and in 

the anharmonic Case, when some form of perturbation theory will have 

to be applied. It is best, therefore, to proceed with the purely 

formal manipulation of G until some physically useful quantity 

emerges. If the time dependent properties of the Heisenberg picture 

operators are taken into account 

	

iHt 	 -iHt 
(H(8t) 	exp -j— 	(a) exp -i-- ) 

and the trace is expanded in terms of the eigenstates {ID>}  of H, 

we can write: 

1.40 	G(ab,t>0) = 4 	<Ajexp(- + )H ip(a)e 	B>hr 

x <B! 1)
* 
 (xb)IA> 

It is unnecessary to write G(t <0) as it is uniquely defined by 

1.40 and the periodicity of G along the complex time axis. Thus 

* 
1.41 	G(ab,i>0) = I I exp(-E - 

A, B 	
A 	BA AB 	BA 

and if a real function p(ab, w) is defined 

- 1 	
exp - EA AB(Z.a)*BA() x 	

- BA 1.42 	p(Lab, w) 
- ZAB 

then 1.41 can be written 
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00  1.43 	G(ab,T>O) 	= f p(ab, )exp - wT dw 

It is now possible to relate p(ab, w) to the Raman intensity 

1.12. This expression contains matrix elements of the polarisability 

if 
riperator P 	of 1.33, within the adiabatic approdmatien. The cor- 

r2sponding classical polarisability can be expanded as a Taylor series 

in the atomic displacements 

1.44 	P 	 = P(0) 	P(im) j  + 
jM 

Expressing {.} in terms of {QLa }, the normal ccordinates for 
-'  

a phonon of wavevector y and dispersion branch 'a', and thus in 

terms of p(a), the matrix elements in 1.12 become 

1.45 	P(BA) 	<BP(0) + 	P(a)g(a) 	IA> 

The first term obviously vanishes when IA> # IB>, and 1.12 becomes 

W 	

kf fn P (ia) 	(y'b)
kk  

1.46 	Idufdc? 	
32ir 2c 3 	mn 
	if 	f E E 	c 

0 
kP. 
ab 

x{ 	exp - EA 	* 

A 	Z 

X 	 +W. - w.)}BA  

The expression in curly brackets is, in fact, the function p(ab,- f4w1 ) 

defined by 1.42 when, again, f= y for translational invariance. 



-20- 

The Raman cross-section may therefore be written 

	

1.47 	Idwfd1 = 	 L 	k m f 
E E c 	f P 

32i2c3c 	
L. 
	

k(.a) 	(yb) 

0 
Xab 

p(ab,wf  + w.) 
1 

This 'spectral function', p(vab, w). is obtained from G(2'ab., 1w ) n 

by combining 1.39 and 1.43 to give 

	

1 .48 	C (tab, 1w) 	= 	
1 	(1 - exp C- h)) ('ab , w) d

00 
n 	

'I

w+iw 
n 

It is obvious that this function is 

p(ab, w) as there is an imaginary 

is overcome by. analytically continu 

axis, through the complex plane, to 

1w + w+ic 	w . This yields 
c+O 

not yet useful for calculating 

f re uency involved. This problem 

ing G(ab, 1w) from the imaginary 

the real frequency axis, by writing 

1.49 	p(ab, w) 	
= 	-h 

2iri(1 - exp(- tiw)) 

x Lim [G(w + Ic) - G(w 	Ic)] 

In the low momentum transfer limit ( 	0) of Raman scattering, this 

gives, for the. cross-section: 

wf  
1.50 	IdwfdQ =- 	 E k E 	P(Oa)P(0b) 

	

327r 3 c 3 c k9.mn 	m ft fn kt 	mu 
0 ab 

X Im 	(w)J 	(1 - exp(- $tiw)) [Gab 
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and the Raman scattered intensity has been related to the one-phonon 

Greens function matrix, indexed by a and b. In the harmonic approxi-

mation, the effect of the operators j, i 	on the states {ID>}  can be 

deduced from L24, 1.26 and the harmonic Greens function G   can be 

written, from 1.42, 1.43 as 

1.31 	GH() aa 

2w 

h(w 2  - w 2 ) 

and also 

1.52 	p H (Oa  a 	= [a + l)w - 	+ n(w + 

The Raman spectrum therefore consists of two 'spikes' at frequencies 

± W
a 	the energy of the 	O phonon of the dispersion branch 'a' 

When anharmonicity is present, the Greens function is obtained by 

summation of an infinite perturbation series. This summation, and the 

use of diagram techniques to evaluate anharmonic Greens functions, is 

described in Appendix 1. The result is that Gab(W)  is given by the 

matrix equation 

1.53 	1 [(w2 - w2)6 ab 	a + 2w (A ab (w) + i•i' ab (w))lGb(w) 

= 2w  6  a 

In general, the terms A and r depend on the form of the Fourier 

coefficients V of the anharmonic potential 4. 	It is not hard to see 

that the substitution A = constant, r a w gives the broadening and 

shift of the delta functions of 1.52 analogous to the response of a 

damped oscillator. 
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§l6 	Experimental Techniques 

Raman scattering in crystals is very weak, and frequency shifts 

are small compared with typical visible light frequencies. The 

ratio of inelastic/elastic scattering is of the order of lO or 

smaller. This gives rise to a set of criteria for a Raman experiment. 

The source of radiation must be monochromatic, very intense, 

well collimated, of very low bandwidth and accurately polarised. 

The scattered light must be efficiently analysed and dispersed. 

The detector of scattered light must be very efficient. 

In addition, comparative studies create a further requirement 

The system must collect large amounts of data in an accurate, 

repeatable manner. A system which fulfils all these require-

ments is represented by Figure 3. Requirement 1 is met by a 

gas ion laser (Spectra Physics model 165 argon or krypton tubes), 

which offers the bonus of a variety of exciting frequencies. The 

Coderg T800 triple grating spectrometer complies excellently with 

requirement 2, and a low-noise photomultiplier tube with an 

appropriate frequency response satisfies condition 3. The 

additional (optional) extra of computer control and data 

acquisition (23, 24) meets requirement 4 and also facilitates 

digital data analysis (23, 25). 

In the particular case of acoustic mode scattering, the triple 

grating spectrometer is replaced by a higher resolution, low spectral 

range Fabry-Perot interferometer. This was not necessary for any of 

the experiments described, but the details of such a system are given 

in Chapter 5, as its construction formed a significant part of my thesis 

work. 
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FIGURE 3: The experimental system used for the majority 

cif the Raman scattering work in this thesis 

(schematic). tGt  denotes a diffraction grating, 

a mirror, 'S' a slit and 'L'a lens. The flow 

of information between the system and the computer 

is- also represented schematically. 
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CHAPTER 2 

A RAMAN SPECTRAL STUDY OF ZINC METABORATE 

Introduction 

The study of zinc metaborate, Zn 4B6O 13  (ZBO) was intended as a 

precursor to the main work of this thesis - the examination of nickel-

iodine boracite, Ni 3B 7O13I. 	ZBO contains boron atoms in exclusively 

fourfold coordination with oxygen atoms, while boracites have mixed 

threefold/fourfold -- B - 0 coordination. The intention was to classify 

the vibrational symmetries, and in particular to identify levels 

associated with the B - 0 framework. Some success was achieved in this, 

and the Raman spectrum proved interesting in its own right. In 

§2.1 - §2.3, the Raman spectrum of ZBO is reported and the assignment 

of q z 0 normal mode symmetries is made (26). The vibrational levels 

of the B - 0 framework are tentatively identified and correlated with 

results from some boracite spectra in §2.4, with the aid of some simple 

molecular potential function calculations. The conclusions regarding 

symmetries of bands are summarised in 92.5, and an interesting inter-

ference feature is identified in the spectrum (27, 28). The des-

criptions of this phenomenon by two distinct theoretical models des-

cribed in §2.6 and 52.7 are compared, and a conclusion as to applica-

bility is reached in §2.8. 

§2.1 	Symmetry Considerations 

Zn4B6013  has the symmorphic cubic space group T 	(I3m), with 

the B0 4  groups linked to form an infinitely extended three-dimensional 

framework based on B60 12  rings (29). The tetrahedral .B - 0 coordination 

- is unusual in that stability usually requires threefold coordination in 
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metaborates. All the known crystals with exclusively fourfold B - 0 

coordination are of the form (M 0) (B 203), where M is a divalent 

metal such as Cu (30), Sr (31), Pb (31) or, of course, Zn (29). A 

listing of mixed coordination borates is given by Marezio et al. (32). 

A group theoretical analysis according to the methods of §1.3 

	

predicts the following classification of the 	0 normal modes of 

ZBO in terms of the irreducible representations of point group 

Td (T3m,see table lY: 

r = 	3A1  + 2A2  + 5E + 7F 1  + 11F 2* 

Furthermore, the evaluation of the selection rules of 91.4 for cubic 

crystals gives, for the polarisability tensors, in terms of the cubic 

<100> axes (15, 17), X, Y and Z: V  

	

A1 	a 	. 	. 	E 	. 	. 	and 	V'b 

. 	a 	. 	. 	b 	. 	 . 	-i/b 

a 	. 	. 	-2b 	 . 

	

F 2 (X) 	. 	. 	. 	F(Y) 	. 	. 	d 	F2 (Z) 	. 	d 

• 	. 	d 	 • 	. 	. 	 d 

• 	d 	. 	 d 	• 	• 	 . 	. 

where the bracketed index denotes the polarisation of the phonon (given 

by the (i) of §1.2). The Raman spectrum should therefore comprise 

3A1  + SE + 1OP 2  optic modes. A calculation similar to §1.4 for matrix 

elements of the dipole moment reveals that only F 2  modes are also 

	

-- infrared active. 	
V 	 V 

It is obvious that no scattering geometry with this orientation 
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TABLE 1 

The character table for the irreducible repre-

sentations of point group Td(43m)  (12). 

E 	8C3  3C2 6°d 	6S4 

1 	1 1 1 	 1 

A2  

B 2 	-1 2 0 	0 

F1  3 	0  

F2  3 	0  
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contains A1  or E modes alone. This problem is overcome (26,33) by 

rotating the sample about [o 0 11 such that the laser direction is 

[1 1 0], or V. The E symmetry tensors become 

	

E b 	. 	. 	and 

	

• 	b 	
. 

	

• 	. 	-2b 	 • 	0 

and the X?(Y?Xt)Yt spectrum contains only E syninetry peaks (see 

§1.1 for notlation). 	Since the experimental data is in digital form 

(24), it is 
I 
a routine matter to subtract the X'(Y'X')Y' spectrum from 

the X 
0 
 (ZZ)Y l \spectrum, with an appropriate scale factor, to laybare 

the A1  modes. 

§2.2 Experimental Details 

The crystal of ZBO was a byproduct in the growth of Zn - I 

boracite. The vapour transport method was used (34) and a shortage of 

Zn1 2  vapour led to the production of ZBO instead of Zn 3B 70 13I.. The 

crystal growth faces were <110>, so <100> faces were cut and polished, 

using l.i diamond powder, to facilitate both scattering geometries. 

Placing the sample between crossed polarisers revealed growth strains, 

leading to inhomogeneous optical properties. This gives rise to mixing 

of spectra over and above the expected intrusion of features from other 

spectra caused by the wide angle of the lens at the spectrometer entrance 

aperture. Since any spectrum is therefore, to a good approximation, 

a linear combination of mixed spectra, with the 'correct' spectrum 



dominant, the same digital subtraction process described in §2.1 may 

be used to remove spurious features. Only in the case of F 2  'leak 

through' is this impossible, due to transverse/longitudinal (TO-LO) 

mode frequency splittings and the corresponding intensity mismatching. 

The criterion for any subtraction to be possible is that some clear 

spectral feature is present, which can be used to determine a scale 

factor. 

Zinc metaborate exhibits fluorescence around the 500-600 rim wave- 

length region (35).----This was verified by survey Stokes spectra 	--------------- 

excited by 514.5 rim argon laser radiation. To avoid confusion of the 

Raman spectra by fluorescence, therefore, the •spectra were excited by 

350 mW of 476.5 nm argon laser light. The apparatus of §1.6 was used 

in both the 900  geometry as shown in Figure 3, and in 1800  (back- 

scattering) geometry. 	The spectra are recorded to a resolution of 

1.0 cm -1  in the 07 500 cm -1  region, and to 1.5 cm 
1 
 in the 500 - 1500 

-]_ 	 -1 
cm region. Further spectra in the 1500 -4000 cm frequency range 

revealed no further sharp features. An Oxford instruments flow 

cryostat was used to perform a brief study of the temperature depen-

dence of the interference feature, although the results of this study 

were only qualitative. 

§2.3 	Description of Spectra 

In the ensuing description, and in the following chapter, the 

labels X, Y, Z refer to the cubic [i 0 o] , [o 1 o] and [o o ii 

directions respectively, and X',Y' to the [1 1 o] and 1 0] 

directions. 1 represents [T 0 01 
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The A1  spectrum: 

This spectrum, shown in Figure 4, is the result of subtraction of 

the X'(Y'X')Y' spectrum of Figure 5 from the X'(ZZ)Y' of Figure 6. 

Using the E mode at 414.5 cm as the clear feature mentioned above, 

a scale factor of 1.03 ± 0.07 was found to give cancellation. This is 

not equal to the expected 1.33 from the form of the Raman tensors due 

to the birefringent properties of the sample, and to experimental 

variations between spectra. The sudden increase in the Poisson noise 

fluctuations in Figure 4 marks the disappearance of an E mode, and. 

is caused by the IN— proportionality of the photon 'particle number' 

fluctuations. The sha rp 'differential' features, other than the resonant 

feature at 122.5 cm
-1 
 are due to slight calibration mismatches between 

the X'(Y'X')Y' and X'(ZZ)Y' spectra. There are four sharp features, 

and some broad second order structure. One of the discrete modes appears 

as the resonant interference feature at 122.5 cm . 
	- 

The E spectrum: 

This spectrum, depicted in Figure 5, comprises twelve peaks, of 

which sixre attributable to F 2  admixtures, and one to another 

interference feature. The mode at 89.4 cm -1  is not the result of A1  

'leak-through', and is without doubt an E mode. 

The F2  spectrum: 

The form of the F 2  Raman tensors of §2.1 suggests that the 

X(YX)Y spectrum should reveal only TO modes, the X(YZ)X only LO 

modes, and the X(YZ)Y both TO + LO modes. These spectra are pre-

sented as Figures 7, 8 and 9 respectively. In Figure 9, admixtures of 
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FIGURES  4-9: The Raman spectrum of Zn 4B6O13  in the frequency 

-1 
regions 0 - 500 cm and 500 - 1500 cm -1  

at room temperature. 

FIGURE 4: In X'(ZZ)Y' - X'(Y'X')Y' geometry. 

FIGURE 5: In X'(Y'x')Y' geometry. 

FIGURE 6: In X'(ZZ)Y t  geometry. 

FIGURE 7: In X(YX)Y geometry. 

FIGURE 8: In X(Yz)Y geometry. 

FIGURE 9: In x(Yz)x geometry. 
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A1  and E spectra have been subtracted out, and the intense 'spikes' 

in Figure 8 are the result of elastic scattering of argon laser plasma 

lines. This is often a problem in backscattering experiments. It is 

possible to identify ten F 2  modes, allowing for TO - LO pairs, from 

a detailed study of Figures 7, 8 and 9 and use of a computer peak 

finding routine (25). The modes at 93.1 cm and 181.6 cm-1  are worthy 

of remark due to their near-degeneracy with A 1  and E modes. 

The peak frequencies w and linewidths y  of the Raman active 

modes, along with their symmetry assignments, are presented in Table 2. 

The infrared results of Krogh-Moe (36) and Tarte (37) are also tabulated, 

and are discussed in §2.5. 

§2.4 	Molecular Potential Calculations for XY 4  Molecules 

To describe molecular vibrations theoretically it is necessary to 

propose some phenomenological form for the potential function. Some 

such functions for simple molecular groups are described in Herzberg 

(38). The model used here for tetrahedral XY 4  molecules is due to Urey 

and Bradley (39), and assumes harmonic forces along and perpendicular to 

the chemical bonds. If the distance between two Y atoms Y. and Y. 
1 	 3 

is y.. = y + ay.., the distance between the X atom and a particular 

Y atom Y. 1  is x 1 	0 , 
 = x

1  
+ ax., and the inter-bond angle is 

0. = 0 +0., then the potential function can be written 
1 	0 	1 

k 	 2 
2.1 	V = V + 	 x. + 	(Lx) 2  + .a x 2  (o ) ] 

	

Lax. 	1 	2 	2 	
. 	2 	o 	i 

i=l 	1 	 ax. 
1 

+ 	

i a2v 	)2] ty. 
y 	ij + 	ay z(y 

1J 	ii 	 ii 



TABLE 2 

Peak frequencies 3(cm), linewidths Y(cm 1) and assignments for the Raman-active 

modes of Zn4 B6013 , with the infrared (F2) frequencies w. 	of references 36 and 37. 

A E F2  

CA) 	 y Ci) y C') y Wi 

94.7 	11.5 ± 1.5 89.4 12 ± 1 93.1 15 ± 2 

122.5 	 - 122.5 - 

249.3 	3 ± 0.6 183.0 4 ± 0.5 181.6 4 ± 0.5 183 

421.9 	3 ± 0.6 414.5 3.3 ± 0.3 196.7 5 ± 0.5 204 c 

727.2 12.5 ± 1.5 222.4 2 ± 0.5 

835.9 9 ± 1.5 278.0 6.5 ± 2 280 c 

284.2 6.5 ± 2 

471.1 14 ± 1.5 478 c 

488.2 9.5 ± 1.5 

653.0 20 ± 6 655 c 
7 50bc 

906.2 14 ± 2 
930b 

1 1005.0 - a 997b 

1040.0 - a 1038b 

1074.4 19 ± 1.5 1081b 

1189.0 23.5 ± 1.5 1142 

w < 500 
cml, 

 resolution 	1.0 cm. 	 a) Not 'sufficiently resolved for meaningful measurement 
w > 500 cm , resolution = 1.5 cm • 	 b) From reference 36. 

N) 
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If the potential energy V is taken to have a term k 3 (Ly..) 

i.e. some inverse power of the Y-Y separation, and the requirement of 

equilibrium configuration stability is imposed, then: 

2.2 	 = -6 	av 	= n k 	
6 

xi 	 ayij 	 n+1 - = 	yo13 

This yields a potential function in terms of three empirical force 

constants. These are k 	= ( 	) , which describes the X -Y 
x.2  0 

'central forces' interaction; k 2 1 which relates to the bond bending; 

and Y3 	which describes the Y--Y interaction. It turns out that 

values of n between 5 and 9 give a good representation of the 

experimental results for most XY 4  groups. If the determinantal 

equation for the normal mode frequencies w 
- 	 is set up and solved 

for n = 7, these are given by the four equations: 

2.3 	W 2 E (k 1  + 813 ) 

2.4 	(4 E (k2  + 
•4 Y) 4- 	my  

2.5 	w2 + 	= 	(— 23  r 3  + 2k 1  + k2) ~ 3m 

+ (213  + k 1  + 2k  2 )_-L 3 p 

2.6 	w2 
 - 	 = 	2 	23 13 + 2k 1  + k2 ) 	3 

 MY 

- (213 + k 1 :+ 2k2) 	.L 31,12 

+ 2 
9m (13 + k2 - k 1 ) 2] 

where i =inmy(4m + m) 	is the reduced mass. The normal modes 
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w,, tL)2,  w 3  and w4
transform according to the representation 

r = A1  + E + 2F 2  in terms of the irreducible representations of Td. 

They are represented in Figure 10 and it is clear why w 1  and 

are independent of k 2  and k1  respectively. 

It can be seen that the three force constants can be determined 

from three of the equations 2.3 - 2.6, leaving the fourth as a check 

on the validity of the model. This was the method used by Urey and 

Bradley. In this work, a least squares minimisation routine was used 

to 'fit' the model to the frequencies w 1  - w 4 , yielding three force 

constants and a goodness-of-fit parameter. Different combinations of 

the frequencies of Table 2 were tried until the best fit was obtained 

for ZBO, and for copper-chlorine and nickel-iodine boracite. The 

orders of magnitude of frequencies v 1 _4 , and starting values for k 1  

k2  and Y3  were obtained from the results of applying the fitting 

technique to some isolated and well known XY 4  groups. This produced 

similar values for k 1 , k 2  and Y3as were obtained by Urey and 

Bradley (39). The results for B04  groups in ZBO and the above boracites 

are presented in Fig. 11 and in table 3, along with those for some other 

XY4  molecules. The relative Intensities of the B0 4  frequencies show 

reasonable agreement between ZBO and boracites, as do the frequencies 

themselves. A calculation similar to that described above, but with 

k2  = 0 (central forces only) produced worse fits, but the same pre-

ferred sets of frequencies \) 14  

The results of this calculation must be viewed with some scepticism 

due to the cavalier assumption that the B0 4  groups behave as free 

nlecules. The shortcomings of this model are illustrated by the 

change in sign of 13  from other XY 4  groups. Since 13  is an 

empirical constant, this is not altogether a damning fault, but it 

does indicate that the rest of the atoms in ZBO do alter the 
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FIGURE 10: The normal modes of vibration of a tetrahedral 

XY molecule. 

FIGURE 11: The frequencies associated with the normal 

vibrations of the B - 0 framework in Zn 4B6O13,  

Cr 3 7 13 	 3 7 13 
B 0 c2, and Ni B 0 I. 
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TABLE 3 

Frequencies of normal modes and force constants for the Urey and 

Bradley model (39) for some XY4  groups 	(see §2.4). 

Material Frequencies (cm 1 ) Force constants (Nm 1 ) 

"1 
V 4  k 1  k2  

CBr4a 265 123 667 184 141 17.8 23.8 

S1CZ 422 148 609 216 259 14.8 13.5 

S0 981 451 1104 613 622 111.0 35.8 

935 462 1102 628 656 154.0 21.1 

p0 4  b 980 363 1082 515 616 42.8 36.3 

Zfl4B6013c 421 183 1075 278 325 75.9 -19.8 

Cr3B7013C2..d 375 232 1160 252 345 110.0 -26.5 

N1 3B 7013Ie 378 248 1100 255 295 103.0 -20.1 

Reference 39 

Reference 38 

Reference 26 

Reference 26 

See Chapter 3. 

'J) 
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environment of the B04  groups significantly. Furthermore, the 

frequency is lower than might have been expected. Nevertheless, it 

appears that frequencies at about 400 cm (A) 	200 cm 1 (E) and 

1100 cm 1 , 260 cm- 
I 
 (F2) are characteristic of a B - 0 framework 

containing B0 4  tetrahedra. It would, in theory, be possible to set 

up a more complicated expression for the potential of the crystal, 

and solve for the phonon dispersion curves at 	0 (10). For a 

crystal as complicated in structure as ZBO or the boracites, however, 

this is outwith_the-scope of this thesis. 

§2.5 	Symmetry Conclusions 

From table 2 it can be seen that the A1  and E Raman spectra 

are not totally in agreement with the group theoretical predictions, 

as both contain one mode too many. The Raman data would seem to sug-

gest that the 122.5 cm-1  mode is spurious. However, the infrared data 

(36, 37) shows the presence of an F2  mode at 750 cm', absent from 

the Raman spectrum. It is now thought, therefore, that the modes at 

around 90 cm are the origin of the discrepancy. Apart from the 

750 cm- 
1  mode, the agreement between Raman and infrared results is 

good. The 'extra' modes are thought to be attributable to some local 

vibrations associated with impurity ions. Terol and Otero (35) re-

marked that the 'cavities' in the B - 0 framework are large enough 

to accommodate impurity ions. Their results indicate, furthermore, 

that the fluorescence observed in. the survey Raman spectra is due to 

the presence of some Mn carried over from the growth materials as an 

impurity, giving a luminescence peak at 540 nm. This is confirmed 

as a possibility by Schmid (40). The concentration of Mn would be 
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too small to produce an impurity mode with an appreciable normal Raman 

cross-section, and the spurious features are attributed tentatively to 

some iodine species (perhaps HI) trapped within the B - 0 framework. 

The A1  and E symmetry interference bands are of interest, as 

resonant interference of this type has only rarely been observed 

(e.g. Sj0 2  (41), A2PO4  (42) and BaTiO 3  (43)). Interference between 

modes most commonly occurs when a soft mode associated with a phase 

transition overlaps -  in frequency another mode of the same symmetry 

species as temperature or pressure is varied. The interaction 	 - 

commonly results in asymmetric peaks, and two models are used here to 

describe the resultant cross-section. 

The first model, in §2.6, involves coupling between two phonons, 

via anharmonicity, whose lifetimes are widely different. The second 

model, described in §2.7, is due to Fano (44) and was developed to 

describe the phase shifts in atomic state wavefunctions, and the re-

sultant excitation spectra, due to the configuration interaction be-

tween a discrete state and a continuum of states. This interaction 

produces asymmetries in the continuous absorption bands of atomic and 

molecular systems. 

§2.6 	The Coupled Modes Model 

This model exploits the properties of the one-phonon thermodynamic 

Greens function as described in §1.5 and Appendix 1. It is assumed for 

this description that the feature at 122.5 cm-1  is attributable to the 

interaction between two first-order phonons. The most general form 

for Gab(w) is obtained from equation 1.53, in matrix form: 
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2.7 r 	- W2 + 2 ( 	+ir ) 

	

a 	a aa. 	aa 

	

[ 2 
	ba + 

2w(b +  irab) 	I 

-W2 + + irbb) 

X 	G 	G 	 w aa 	ab 	 a 
2 

Gba 	Gbb 	- Oil wb 

This rather complicated expression can be simplified, within certain 

approximations, to provide a more tractable function for a computer 

fitting process. 

Firstly, it is useful to consider the three lowest order contri-

butions to the vertex part of Dyson's equation. These are represented 

in Figure 12. It can be shown (21) that 12a and 12b contribute a 

temperature dependent term Aab(T)  to  Sab(W) 	and that the addition 

of 12c gives Sb(w)  of the form 

2.8 	S (w) = A (T) - I! 	- ]. - 2 	
0 

ab 	ab 	 112 d a c 	d 
V 
 b c 

x {(n 
C + d + 	 + W +w) 	+ 	c + d - 

) _l] 

+ (nd_n C ) [ (wc  Wd + W)P + 	c Wd 0 P] L  

+ i(n 	 c c 
+ rid + 1)[6(u) + W 

d 	 c + w) - '(w + W  

+ i(nd - nc)[wc - 	- 6 c - °d -u)] } 

where subscript 'P' denotes ' Principal part'. In the (w, T) region 

?w << kT, it can be seen that Sb(w)  can be approximated by 
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FIGURE 12: The three lowest order contributions to the 

vertex--part of equationAl.7, Dyson's equation. 

FIGURE 13: The lineshape resulting from two Raman active 

modes where r  = 5r b & rab = 21'a Figure 13a 

represents modes 'a' and 'b', uncoupled and 

figure 13b gives the total crossection in the 

uncoupled (solid line) and coupled (broken line) 

cases. 
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2.9 	S ab (w) 	
A ab  (T) + B a b(T, 	ab 

+ IC (T, w) 

U 

where A, B, C areall symmetric with respect to :  the indices a,b. 

Furthermore, B is an even function of w, and C is odd. If B 

is approximated by B(T) and C by wC(T), then the large matrix of 

2.7 may.be  written 

2.10 	W 2  - (,)2 + 2w ( 	+ iwl' ) a 	a a 	a 

- 	 2wb(b + iwr ab) 

2w(b + iwrab) 

-+ 2wb(b + lwrb) 

Apart from a constant factor i + 2/WaWb , this is G 1 (w) and 

a' b may now be interpreted as shifts in the zero position of 

(w2 - w 2), ( 	- 2) and therefore in the peak position. The net 

result is that the intensity of Raman scattering may be written, from 

equations 1.50 and 2.10: 

2.11 	Idwfdw = 	P a b P Im ab G (w) 
a l b 
=1,2 

2.12 	where G'(w) = w2 - w 2  + ir.j 	ab + ir abw 

	

+ir W 	 w2 -w2 +irw 
ab 	ab 	b 	b 

It should be noted that (Ai a b , W 	are now the shifted characteristic 

frequencies, and the A and r parameters have also been trivially 

redefined. The parameters w a b , w , a r , r b '  ab 	ab t 	and r 	may now be 

regarded as adjustable fitting parameters, and the P a' b as 

'strength' parameters. Performing a suitable unitary transformation 
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on 	renders either its real or imaginary part diagonal, corres- 

ponding to 'purely imaginary or real coupling' respectively. With a 

further redefinition of the remaining parameters, this gives 2.10 with 

either A 
ab  or rab = 0. The choice of real or imaginary coupling is 

purely arbitrary unless a soft mode is involved, as in Chapter 3 where 

the distinction is discussed in detail. 

Figure 13a represents a response function of the form of 2.11 and 

2.12 with r  = 5r 	and A ab 	rb = 0. This is usually referred 
to as two 'uncoupled'-modes. For 13b, r ab = 2r a , and the effect of. 

'coupling' the modes is evident in the pronounced asymmetry of the 

sharper feature in particular. 

52.7 	The Fano Model 

This model (44) makes use of the fact that the interference of a 

discrete state with a continuum of states gives rise to asymmetric 

peaks in the excitation spectrum. 

If we represent the discrete state by 1p> , the continuum states 

by 	'E>' and the perturbed wavefunction of eigenvalue E by 

I 	we are concerned with the cross-section a 1 (w) for tran- 

sitions from some state Ii> to I E> which for a transition 

operator component P 	(see 1.33) is proportional toxy 

The matrix elements-of the total Hamiltonian H are given as: 

2.13 	Hip> 	= 	Ep> 

2.14 	
<E> 	= 	V  

2.15 	<''E' 
	
E ll  > 	 E' S(E' - E"). 
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The state lE> must now be written as an admixture of Ip> and 

2.16 	10 
E> 	= 	a(E)lp> + f b(E t )I 1PE ,>dE'. 

When this expression is applied to 2.14 and 2.15, it is found (44) 

that the parameter b describes a relative phase of Ip> and the 

in 2.16, which varies by 	ii as E traverses the 'resonance 

ene rgy 	E:. 	 - 

2.17 	E 	= 
0 	 p 

E + P f IV E, 1 2  dE' 	(E0 - E') 

It is this variation of wavefunction phase that is responsible for the 

different contributions to 1E> 
 from the {111E,>}  on either side of 

the resonance, giving rise to asymmetries. The variable a(E) des-

cribes a 'smearing out' of Ip> in 2.16 through a region given by, 

roughly, 	IE - El 	IVEI2, the region of rapid phase variation, such 

that the perturbed state 'GE> 
 contains an admixture of Ip> given by, 

in 2.16, 

2.18 	a(E) 	% 	
l"El 

(E - E 
0
)2 + 7r2IVE14 

It can be shown by combining 2.16 with the explicit form of the phase-

shift parameter b(E), that c1 1 (w) can be obtained from the expression 

2.19 E I P xy 11>1 2 	= 

< y  Ii> I 	x 
XI * 	 + 

(VE <1 E I xy Ii> 

E-E 	2 
+ (_

0  

I VE 12 

1 E' txy Iii 

E - E 	2. 

I V  
12 
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where 

2.20 	113> 	= 	Ip> + P f V, 'GE'>  dE' T' 	CE - E') 

Introducing new variables q(E) and r(E), a 	may be written in 

terms of the cross-section c(w) for scattering from ji> to I E > 

- 	 -- 	 W 	2 
2; 	

.1.
2l 	a,(w) 	= 	a (w)(q + 
	

° ) 
 0 	 1 

• 	 _________ 

(1 	( 	
0)2) 

- 

Ii> 	 E - E 
2.22 	q = 	 ; 	

0 	= 	 0 

• 	- 	 IrVE <IPEIPI 1> 	hivE1 

Regarding the quantities q, r 	as constant over the range of interest, 

2.21 defines a family of curves for different q, which are depicted 

in Figure 14. Fano also showed that when more than one continuum is 

present (e.g. many orders of multiphonon scattering), the cross-section 

may be written as 

a 	= 	a1 (w) + o 2 (w) 

where a2(c)  corresponds to the underlying noninteracting continua, 

and cr0 (w) is redefined as a particular linear combination of con-

tinua. It is worth remarking that the state Ip> is assumed to decay 

only into the continuum, and that this interaction alone is responsible 

for its noninfinite lifetime. 
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FIGURE 14: The shape of function 2.21 for different values of 

the parameter q. 
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§2.8 Comparison with Experiment 

Three functions derived from §2.6 and §2.7 were used to perform 

a computer least squares fit to the observed room temperature A1  and 

E spectra of ZBO (28). These are as follows:- 

Coupled Modes: 

A lineshape of the form 2.12 may be used to describe the spectra 

between 70 cm-1  and 140 cm 1 , provided it is extended to have a Gcc 

similar to G 
aa 	bb 

and G , 	
ac 

and G = C bc = 0. With a flat, con- 

tinuous background and A
ab 
 = 0, this corresponds to two coupled modes 

and one uncoupled mode, corrected for photomultiplier dark current and 

noninteracting continua. Figure 15 and table 4 summarise the results of 

this analysis. 

Table 4 : Coupled mode parameters (cm 1 ) 

r 	 r 	r 	W 	 r 
a 	a 	b 	b 	ab 	c 	c 

A1 	124.4 	4.3 	143.1 	73.6 	12.4 	94.9 	11.8 

E 	123.8 	1.8 	163.8 	103.2 	7.2 	90.2 	12.2 

Fano Interference (I): 

For the 70 cm-1  - 140 cm-1  region to be described by the Fano 

model, a diagonal 2x 2 Greens function must be included to describe 

the noninteracting modes 'b' and 'c' above, as well as a constant 

background as before. This gives the same number of variable parameters 

as the coupled mode model, and results in Figure 16 and table 5. 
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FIGURES 15 and 16: Experimental and theoretical forms for 

the room temperature A1  and E spectra of zinc 

metaborate in the frequency region 70 - 140 cm'. 

FIGURE 15: Described by the coupled modes model. 

FIGURE 16: Desc-r-ibed-by the Fano model (I). 

FIGURE 17: The theoretical fits of figures 15 and 16 enlarged 

over the frequency range 115 - 135 cm 1 . 

FIGURE 18: Experimental and theoretical forms for the A1  spectrum 

of Zn 4B6 O 3 , described by the Fano model (II). 
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FIG 16 

Zn 4B 60 13  Al, FANO MODEL 

70 >_ 
I- 
(n 
I-u 
I— 60. 

50 

40 

30 

20 

10 

1• 

70 	80 

>- 
I- 

U) 

Lu 
F- 

30 

0 	100 	110 	120 	130 	140 

WAVENUMBER 

Zn 4B 60 13  X' (Y' X') Y' EANO MODEL 

20 

10 

I 	 I 
70 	80 	90 	mo 	un 	u'n 	iqn 

WA V EN UM BER 

!ul 



FIG 17 
Al COUPLED MODES 	,PANO 

/ 

/ 

/ 

/ 
/ 

/ 
/ 

, 

115 	 120 	 125 	 130 	 135 

WA V ENUMBER 

E COUPLED MODES 	,FANO - - - 
20 

I- 

(I) 

LU 
I- 18 

16 

14 

12 

10 

8 
115 	 120 	 125 	 130 	 135 

> 

I- 

(1) 

uJ 
F- 

20 

15 

10 



>-
F- 

(1) 
z 
LU 

S 
I .  

50 

40 

•30 

• 20 

10 

0 

Zn 4B 60 13  Al FANO MODEL(MODIFIED) 

m 

03 

70 	80 	90 	100 	110' 	1U 	1u 	i40 

' 	 If!tKII tMDCfl 



Table 5 Fano Model Parameters 

	

-1 	-1 	-1 	-1 	-1 	-1 
q 	w(cm ) 	r(cm ) 	wb(cm ) 	rb(cm ) 	w(cm 	.r 

	

) 	(cm ) 

A1 	-1.59 	123.5 	3.06 	141.5 	63.4 	95.0 	12.0 

E 	-2.26 	123.9 	1.49 	163.2 	101.6 	90.2 	12.3 

The parameters describing the noninteracting modes are in good agreement 

with those of Table 4, although they now describe uncoupled modes. The 

______- - fitted--spectra of Figure 15 are indistinguishable from those of Figure 16 

- unless enlarged (Figure 17). The goodness-of-fit test shows that the Fano 

description is less than one per cent better in both A 1  and E symmetries, 

which is hardly significant. 

Fano Interference (II): 

Following the reasoning of Rousseau and Porto (43) an analysis was 

attempted with a 	 in 2.21 represented by an anharmonic oscillator 

function, and o, by a constant. This gave a poor fit (Figure 18), 

with parameter values of q = -0.5, & = 125.0 cm 
1 
 and r = 1.2 cm 1 

for the A 1  spectrum. Convergence proved impossible for the E spectrum. 

§2.9 	Conclusions 

Firstly, the Fano model (II) may be dismissed as an inadequate des- 

cription of the interference feature in ZBO. The coupled modes model 

and the Fano model (I) are indistinguishable within the accuracy of the 

experiment. For the coupled modes model of §2.6 to be valid, the modes 

at 143.1 cm -1  (A1 ) and 163.8 cm 	(E) would have to be first order. 
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This would mean that Figures 15 each comprises three first order bands. 

This would increase the number of A1  and E normal modes by one in 

both cases, which would further contradict the group theoretical pro-

diction of 52.1. For this reason it is concluded that the Fano model 

(I) description is more significant for ZBO. A brief study of the 

temperature dependence of the interference feature revealed only 

'normal' sharpening effects, with no evidence of decoupling. 
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('IIAflT'C'T 	13 

THE PECULIAR PARAELECTRIC PHASE OF NICKEL IODINE BORACITE 

Introduction to Boracite Properties 

The boracites are the family of compounds with the generalised 

formula M 1B 70 3X, where N is a divalent metal and X a halogen 
1 

or chalcogen, which exhibit intriguing ferroelectric, magnetic and 

structural properties. These properties are reviewed exhaustively 

by Nelmes (45) but a summary of the details relevant to this thesis 

is given below. A boracite is conveniently referred to by its metal 

and halogen/ chalcogen only (e.g. Ni 3B 7 O13I = Ni - I). 

Most halogen boracites undergo a transition from a high tempera- 

5 
ture, cubic, paraelectric phase of symmetry T 	to a low temperature, 

orthorhombic, ferroelectri,c phase of symmetry C. The transition 

temperature T 	can be as high as 798K (Cd - C9., ref. 34) or as low 

as 68K (Ni - I, refs. 45, 46, 47), and is that of a 'coupled' tran-

sition, giving an improper ferroelectric. These terms will be defined 

more fully in Chapter 4, but the essential point is that the primary 

order parameter is not the spontaneous polarisation at an improper 

ferroelectric transition. The primary order parameter is defined to 

be a quantity whose non-zero value below T leads to the appropriate 

group symmetry change (48). The improper transition is itself a 

stimulus to interest in boracites, but their magnet oelectric pro- 

perties provide an added basis for speculation as to device applications-. 

Many transition-metal boracites become ferromagnetic, with a 

concomitant onset of weak anti ferromagnetism, at a transition (Néel) 
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temperature TN < T. The interesting feature of this phenomenon is 

that it has been shown in Ni - I (49) that the mutually perpendicular 

Spontaneous electric and magnetic polarisations for T < TN Q 	and 

, respectively) are coupled. In fact, we can write the electric and 

magnetic dipole moments as: 

= 	 = 

where X is the magnetoelectric susceptibility tensor, which is of the 

form 

X 	= •_ 

• 	• x 
yz 

• 	x 
zy 

Thus, switching of 	from boil to [ooT J rotates M from 

[110] to [110], and vice versa. Boracites are almest unique in dis-

playing this property. 

Since this chapter is concerned with only the idiosyncrasies 

of the cubic phase of Ni - I, a discussion of the known properties 

for T > T c is given in 53.1. The discussion of the transition(s) 

in Ni - I, and of improper transitions in general, is deferred to 

Chapter 4. While graphical representations of the variation with 

temperature of normal mode frequencies and damping parameters are 

included in this chapter and the next, the tabulated values of these 

parameters are relegated to Appendix II, in most cases. This is done 

to avoid fragmenting the text unnecessarily, and because the actual 

numbers are not, in general, essential to the arguments. The details 

zN- 
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of. the experiment are given in §3.2, and the group theoretical pre-

dictions and experimental results are described in §3.3. In §3.4, 

the analytical methods for data reduction are outlined, and in 

§3.5 - §3.7 the classification of cubic phase modes, and their tempera-

ture variation throughout the cubic phase are discused, and conclusions 

are drawn. 

§3.1 	Properties of Cubic Ni - I 

Ni - I has been shown to have the nonsymmerphic cubic space group 

at room temperature (50) and 77K (51) by X-ray and neutron dif-

fraction respectively. Cubic Ni - I is however, birefringent due to 

the fact that crystal growth rate is anisotropic, and different 'growth 

sectors' occur. This is, of course, more of a nuisance than an object 

of delight in Raman scattering, as it causes polarisation mixing, but 

careful choice of sample can minimise the inconvenience. 

The interesting feature of cubic Ni - I is the anomalous behaviour 

of the dielectric, magnetic and structural properties at a temperature 

T. 130K. These anomalies, illustrated in Figure 19, comprise broad 

maxima in the magnetic and dielectric susceptibilities (49) and an 

increase of about 0.1% in the lattice constant (52). It might be 

expected that some manifestation of these abnormal magnetoelectric 

and structural properties would occur in the Raman spectrum. Such an 

expectation is reinforced by the observation of a broad maximum at 

115K, and a broad minimum at 140K in the elastic stiffness component 

C44  (= C2323 , ref. 53). This result was obtained by piezoelectrically 	- 

excited shear mode resonance measurements, and is in keeping with the 

broad minimum and maximum found at 120K and 150K respectively in the 
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FIGURES 19a and 19b: Temperature variation of the dielectric (s), 

and magnetic (Xg)  susceptibilities and the lattice 

constant (a) {figure 19a}, and of the elastic 

coefficient 	figure 19b} of N13B70131. 
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elastic compliance (47). In this study the authors observed simultaneous-

ly the piezoelectric resonance frequency and the Faraday rotation of 

the polarisation of light in Ni - I. 

In addition to these results, there is a published infrared study 

of Ni - I at 300K and lOOK (54), which gives a further probe of F 2  

symmetry vibrational frequencies (see §2.1). The results of the pre - 

ant Raman spectral study of cubic Ni - I have been published in survey 

(55) and in full (56). 

§3.2 	Experiment 

Since Ni - I has thwarted past attempts to record its Raman 

spectrum the details of the sample, equipment, and methods used are 

given here at some length. The problematic properties of Ni - I are its 

opacity to most visible light frequencies, and its birefringence in the 

cubic phase. 

The optical absorption spectrum of Ni - I (57) shows that it 

absorbs strongly almost all the resonant frequencies available from 

krypton and argon ion lasers. On transmission of white light, Ni - I 

appears dark brownish-green. Trials revealed a maximum intensity 

transmission of 11% for 676.4 nm and 5% for 647.1 nm of krypton laser 

light through 0.55 mm of Ni - I. For successful Stokes Raman scatter-

ing, however, it is essential to use the 647.1 nm. wavelength, as 

absorption increases sharply for A > 676.4 tim (57), such that the 

intensity transmission for a Raman shift of 1400 cm -1  would be less 

than 3% through 0.55 mm. In addition, Raman scattered light from 

boracites is of low intensity, and a photomultiplier tube of high 

sensitivity to red light is essential. A Spectra Physics 165 krypton 
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laser giving 400 mW at A = 647.1 nm, and an RCA C31034A photo-

multiplier tube were used,the.90 ° scattered radiation was dispersed 

by the Coderg T800 triple inonochromator system of 91.6 (T < 2950, 

and a Spex. 1400 double -  monochromator digital system (T =295K). The 

resolution was 2.5 cm-1  in both instruments. 

The crystal used was the same B 11  enriched single crystal [lao] 

growth sector used for the structure determination at 77K (51), which 

was supplied by Dr. H. Schmid, and grown by the vapour transport 

method (34). 	Although birefringence is a minimum for Iodine boracites, 

it is still necessary to use a [100] sector, which has c birefringence 

1 	 - 

of only ' 0.0003. The birerringence parameters ror the other growth 

sectors (46) are ;c, 0.0007 ([ill]) and 0.004 ([110]). This choice of 

sample minimises polarisation mixing. The sample formed a cuboid of 

dimensions 1.4 x 2.2 x 0.55 mm3 , the dimensions corresponding to the 

cubic [ilo] (X'), [flo] (Y') and [ooi] (Z) directions respectively. 

The natural growth faces were polished with 1 pm diamond powder. To 

minimise the absorption, and therefore the attendant laser heating, 

the incident light was aligned along the shortest axis (Z), and was 

placed as close to the [Tb] face as possible, to maximise heat dis-

sipation. This orientation, Z (??) Y', coincidentally produced the 

strongest Raman signal. 

Cooling was achieved by use of a Thor nitrogen vapour flow cryostat, 

with a Thor model 3010 temperature controller, and a chromel vs. gold-

iron thermocouple for temperature measurement. Approximately 5K of 

laser heating was detected at the thermocouple despite the above pre-

cautions, which suggests that the temperature at the beam position was 

a few degrees higher than that measured. An elaborate screen had to be 

constructed on the cold finger of the cryostat to prevent the intrusion 
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of the Raman spectrum of nitrogen, and the sample was clamped across 

the large <001> faces, again to maximise heat dissipation. 

§3.3 	Group Thy and Description of Spectra 

A group theoretical analysis of the 	0 modes as described in 

§1,3 gives the following classification in terms of the species of 

Point group Td (2 3m, see Tablel): 

r = 4A1  + 6A2  + bE + 18F 	+ 20F2  of which 4A1  + 10E + 19F2  

optic modes should be Raman-active, and 19F 2  infrared active (see 

§2.1). The spectra in the four polarisations permitted by the geo-

metry are presented as Figures 20-23. 

According to §2.1, the Z(Y'X')Y' spectrum should contain E 

ides only, and the Z(X'X')Y' spectrum modes of A1  + E + F2  symmetry 

since the F 2  Raman tensors for this geometry are of the form: 

. 	. 	d 	 • 	. 	d 

F 
2(XI) (x') = 	. 	. 	d , F (Y') = 	- . 	. -d 

d 	d 	. 	 d-d 

and F2(Z) 

= 	H 	]• 

The E symmetry modes can be subtracted from Z(X'X')Y' to give 

Figure 24, with a suitable scale factor, but the F 2  modes cannot 

be removed as no suitable scaling feature is present. The Z(Y'Z)Y' 
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spectrum should contain F 2 (TO + La) modes and the Z(X'Z)Y' spectrum 

only F2 (TO) modes. As the F 2  scattering is roughly ten times weaker 

than the Al  + E scattering, its contribution to Figure 24 is ignored 

for assignment purposes. The spectra are described below: 

The A1  spectrum (Figure 24): 

This spectrum contains a wing feature, con to all boracites 

(58, 59), but less pronounced in Ni - I, such that its influence on 

the cross-section is negligible beyond 	100 cm-1 . There is a broad 

feature centred on 	154 cm , with an indistinct but non-negligible 

band peaking at 100 cm*- 
1.  Only two other distinct spectral features 

are visible at 378 cm- 
I 
 and 655 cm 1 . 

The E spectrum (Figure 21): 

This spectrum resembles the A 1  spectrum in the region 0 - 300 

cm , with a wing feature, and broad bands peaking at 160 and 84 cm 1 . 

There are five additional, discrete nodes. 

The F2  spectrum (Figures 22 and 23): 

The F2  scattering is very weak. Again, a narrow wing feature 

is present, with an odd scattering profile below 200 cm -l ' comprising 

apparently two bands, plus two very weak bands (a TO - LO pair) at 

-1 	 -1 255 cm and 280 cm • It becomes clear at low temperatures that the 

structure around 1000-1200cm 1 isa superposition of weak first order bands 

(see Chapter 4). The signal-attenuating effect of cryostat windows 

rendered the low temperature F 2  spectra weaker still, which made 

detailed analysis impossible. 
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FIGURES 20 - 24: The room temperature Raman spectrum of N1 3B 70131 

in the frequency range 0 - 1500 cm 

FIGURE 20: Z(X'X')Y geometry. 

FIGURE 21: Z(Y'X')Y' geometry. 

FIGURE 22: z(Y'z)Y' geometry. 

FIGURE 23: Z(X'Z)Y' geometry. 

FIGURE 24: Z(X'X')Y' - Z(Y'X')Y' geometry. 

N.B. The ordinate scales in figures 20,21 and 24 

are Xl ( lower) and X5 ( upper). 
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§3.4 	Analysis of Results 

The computer least-squares fitting routine used in §2.8 proved 

essential to investigating the temperature dependence of the Raman 

spectra. Discussion of the procedure is made easier by dividing the 

spectra into low frequency (0 - 300 cm 1 ) and high frequency 

(300 - 1400 cm 1 ) regions. 

The high frequency spectra: 

Each of the high frequency peaks may be represented by a 1 x 

Greens functions, giving a response function (see §1.5) 

srw(n(w) + 1) 3.1 	I() 	 , 	S 	' strength' 
(w 2  - w2 ) 2  + r 2w2  

0 

The low frequency spectra: 

The model response function proves more problematic here. Firstly, 

the wing feature is described by a 1 x 1 Greens function, giving a response 

function 	3.1, but with r >> w 	This limit corresponds to over- 

damped (i.e. very short lived) excitations, and reduces 3.1 to the 

functional form 

3.2 	I(o) 	
Sw(n(w) + 1) 

1 	
W
2 

= 
+ 
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where 



3.3 	2= 	 ; 	S = 'strength' 
T2- - 2w2  

- 	0 

Secondly, a 2 x  2 Greens function must be included to account 

for the broad modes below 200 cm-l . This can be chosen to be a diagonal 

matrix, giving an 'uncoupled des' model, with two functions of the 

form of 3.1. Alternatively, the form 2.12 can be used, representing 

two coupled modes. In this case, however, the w-dependence of the 

imaginary terms in GM means that the choice of diagonalisation 

--V 

 

convention (c.f. §2.6) is critical. In the case of a ferroelectric 

transition, we may be looking for a 'soft de', whose characteristic 

frequency 1a  varies as (T - T 	• 	Now, it can be shown (21) that 

the dielectric susceptibility tensor x(w) is given by: 

I 

3.4 x  (w) 	M G(w) M 	is the Green's function of §1.5, 
, cm 	 zzz = 	-U'  

where M is a vector whose elements are the 2.'th Cartesian components 

of the lowest order phonon expansion coefficients of the dipole moment 

Operator (c.f. {P.} of §1.5) such that the dipole moment operator 

is given by 

3.5 	M2. 	= 	- 	142. (a)i (a) + ..... 
ja 

and x=O by the translational invariance requirement. For a Curie-Weiss 

behaviour of 	X2. 2. (0), we require X2. 2.(0)cL (T - T,,') , to describe 

the dielectric anomaly in ,a ferroelectric. Substituting for G(0) 

in 3.4 9  we have for the cases of real and imaginary coupling res-. 

pectively, X 
R 
 and 
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3.6 	X(0) 	a 
	M(b)w 2  + M(a)w 	-2M , (a)M9, (b) 

a 	a 

+ 

	

3.7 	X(0) 	a 

a 616 

Only in the secoi 

substitution of 	2  a a 

(T - T). 	Thus, for 

imaginary coupling is 

id case (purely imaginary coupling) can the 

(T - Tc) give a denominator proportional to 

real coupling, T' # T. 	For this .ceascn, 

chosen. 

93.5 	Symmetry Classification of the Modes 

The parameters produced by an analysis of the room temperature 

spectra in terms of uncoupled modes throughout are presented in 

table 6, along with the results of the infrared experiment (54). 

It is evident that the correct number of A 1  symmetry hands 

appears in the Raman spectrum, but that there is a dearth of E and 

F2  peaks. The most serious discrepancy occurs in F 2  symmetry, 

where only five peaks can be seen, the pair at 	250 cm 1  and 280 

Cm 
-1  being obviously a TO - LO pair from both the Raman and infra-

red data. The fitted low frequency spectra are presented in Figure 

25. The infrared result suggests that the poor fit in Fig. 25a for 

F 2  symmetry is because the 0 - 300 cm' spectrum actually comprises 

at.least nine bands, not just four. The fit for E symmetry is good, 

while that for A 1  symmetry is not. A coupled mode fit to this 

region (Figure 26a) did not improve the agreement over the 100-240 

cm 
1  region as was hoped, and furthermore produced parameter incon-

sistencies between different temperatures (see Appendix II). 
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FIGURE 25: The low frequency spectra of Ni-I with theoretical 

fits (smooth lines) in terms of two uncoupled 

oscillators plus an overdamped wing. 

F2  symmetry. 

E symmetry. 

A1  (+F2) symmetry. 

FIGURE 26: a) The low frequency A1  (i-F2) spectrum of Ni-I 

with theoretical fit (smooth line) in terms of 

a coupled modes model. 

b) The Z(x'x')Y' (upper) and X'(ZZ)Y' spectra'of 

Ni-I at low frequency. 
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TABLE 6 

Resonant frequencies 	(cm 1), damping parameters r (cm') and assignments 
for the Raman active modes, and frequencies for the infrared active modes (54) 

of Ni - I at room temperature. 

A 	 E 	 F 	 F (infrared) 1   2  
r 	 r 	T& 	LO r  

0 	 0 	 0 	 0 	 0 

81.5 61 84.5 35 74.5 	48 42 42 
163.5 76 170.0 90 152.5 	42 54 70 

18 611.5 20 2550'b 89 91 
655.0 30 863.5 15 28O.OJb 112 114 

943.0 36 135 136 
1125.5 43 168 168 
1199.5 74 195 198 

224 226 
258 286 
308 308 
320 322 

All w and r are from computer fits except: 

a Measured from spectrum. 

b Measured from spectrum and too weak for assignment of r. 

C' 
(J- 
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The discrepancy must therefore be attributed to the weak F 2  com-

ponent introduced by the form of the Raman tensors, or to other ex-

citations (e.g. multi-phonon). An attempt to subtract the Xt(ZZ)Y? 

spectrum (A1  + E, Fig. 26b) from the Z(X'X')Y' spectrum (Fig. 26b) 

to lay bare F2  modes was unsuccessful, due to the low intensity in 

the X'(??)Y' geometry and the different E symmetry scale factors. 

The molecular.,  potential calculation of 52.4 suggests that the 

378 cm 1  (A1) and 255 cm-1  (F2) bands are associated with B-0 

vibrations. Also, the presence of a first order F2  band around 

1100 cm and an E mode at about 250 cm is indicated. This latter 

node actually becomes visible at lower temperatures. These frequencies 

should be relatively insensitive to change of halogen or metal in the 

boracite formula, as such a change does not drastically disturb the 

B-O framework (45, 60). This is borne out by Figure 11 and the re-

sults-for Cu - CL (59) of 385 cm 
1 
 (A1) 239 cm 1  (E) and 1167 cm 1 , 

264 cm 
1  (F2) 

The low frequency nodes for Ni. - I are more heavily damped than 

their counterparts for other boracites, particularly in E symmetry. 

The lowering of characteristic frequencies from Cr - CL and Cu - CL 

to •Ni - I produces a low, frequency total cross-section of great com-

plexity. This increases the probability of interactions, and thus may 

contribute to the shortening of phonon lifetimes, and consequently 

higher damping. The frequency lowering also confirms that these low 

frequency modes are largely attributable to metal and halogen notion, 

in particular the latter. 

The wing feature is much narrower in Ni - I than in Cr - CL 

and Cu - CL, where it was conjectured as being due to disorder (58). 

X-ray structural studies have shown that this disorder, if extant, is 
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associated mainly with the Ci ion, being greatest in Cu - 

and corresponds to a displacement of the halogen ions along the 

<ill> axes (60, 61). The Raman spectra of Ni - I suggest that 

any disorder is much less than in the Ci boracites, in accord 

with structural results for Cr - CZ, Cu - Ci and Ni - I (60, 

50, 51, 61). In addition, the Ni - I spectra contain a wing in 

all polarisations, suggesting that the disorder lacks definite 

symmetry, and is therefore more isotropic than in Ci boracites. 

3.6 Temperature Dependence of the Normal Modes 

The A1  and E spectra at a series of temperatures betveen 

88K and 300K, along with the variation of the (uncoupled) node 

parameters, are represented by Figures 27-31 and table 7 (see also 

Appendix II). 	The F2  spectra are too weak and too complicated 

to permit such a detailed study. The parameters of Figures 28, 30 

and 31 are all results of fits. The normal behaviour of the para -

meters w and r as temperature decreases consist of a steady 

rise in w of  with a drop in r , as the lattice contracts and 

anharnxnicity decreases (e.g. see equation 2.8). 

It can be seen from Figures 28a and 30 that this behaviour in 

Ni - I is interrupted by an anomalous 

crease in r for the high frequency 

The parameters of Fig. 28a for the A1  

due to the proximity of the 611.5 cm
-1 
 

decrease in w , and in- 
0 

and E modes around 128K. 

mode are rather scattered, 

E mode. The calibration of 

the spectra was checked by studying the laser frequency, the krypton 

emission lines, and the duplication of E modes in the Z(X'X')Y' 

and Z(Y'X')Y' spectra (55, see Appendix II). This unusual result 
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FIGURE 27: The A1  (+F2) spectrum of Ni-I at different temperatures. 

- FIGURE 28: The temperature variation of the frequencies w (squares) 

and damping parameters r (triangles) of the 655.0 cm-1  

A1  mode (28a) and the 163.5 cm A 1  mode (28b) in Ni-I. 

FIGURE 29: The E spectrum of Ni-I at different temper.tures. 

FIGURE 30: The temperature variation of the frequencies w (squares) 

and damping parameters r (triangles) of some E symmetry 

modes in Ni-I. 

FIGURE 31: The temperature variation of the frequency w (squares) 

and damping parameter r(triangles) of the 170.0 cm 

E mode in Ni-I. 

N.B. The lines in figures 30 and 31 are intended merely 

as a guide to the eye. 
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TABLE 7 

The temperature dependence of the computer fitted 

frequency w (cm) and damping r (cm-1) para-

iiters of the 170.0 cm 
1  (E) and 163.5 cm 1 

modes in cubic Ni - I. 

• E A1  

Temperature W r w r 

295 170.0 89.7 163.5 76.0 
210 160.9 87.9 156.6 76.4 
165 160.0 87.7 158.7 72.6 
148 156.3 84.4 - - 

128 162.0 80.6 161.5 69.4 
125 154.9 80.5 - - 

122 152.9 81.1 155.3 	• 85.8 
118 148.9 80.7 146.9 71.3 
115 152.3 76.2 149.2 69.6 
109 151.6 77.4 149.8 72.G 
98 151.9 75.6 149.1 79.4 
88 148.3. 77.7 153.5 63.8 

73t 134.9 77.1 
68t 133.3 71.3 
511-  127.8 74.0 
25t 125.0 68.0 

1- See ahead §4.8 
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is in agreement with the X-ray work of Will and Norche (52), who 

reported the unit cell expansion and contraction at around 130K. 

While this X-ray powder diffraction study was unlikely to yield 

accurate thermal motion parameters, the unit cell dimension would 

be much more reliably determined (62). 

The low frequency modes behave even more strangely. The fre- 

quencies hi 	 for the 163.5 cm -1  (A1) and 170 cm -1  (E) modes 

fail with decreasing temperature, with an anomalous rise at 128K, 

while the damping parameters r fall more or less smoothly 

(Figures 28b and 31, table 7). The A1  mode parameters are again 

- more scattered, due to the subtraction process, and to the under-

lying F2  (and unknown) scattering. The anomalies at 128K again 

suggest that some disturbance in the structure occurs at 128K, al-

though the spectra of Figures 27 and 29 indicate cubic synmetry for 

88K < T < 300K, in accord with the structure refinements (50, 51). 

Furthermre, the 20 cm-1  (E) and 15 cm-1  (A1) mode softenings 

are completely uncharacteristic of boracite behaviour. In Cr - C9. 

and Cu - C2, only the A 1  wing feature is strongly temperature 

dependent. Softening of this magnitude is usually precursive to a 

phase transition, and since the low frequency modes have been 

associated mainly with metal and halogen notions, some displacement 

of these ions at a temperature below 68K seems likely. This point 

wil 1 be developed in Chapter 4. Discussion of the lack of a dis-

placive transition at 128K is also deferred until then. 
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!3.7 	Conclusions 

	

The number of 	0 normal mode frequencies visible as peaks 

ii the Raman spectrum is in reasonable agreement with the group 

theoretical prediction, considering the highly absorptive nature of 

the material, and the low scattering efficiencies. A cubic space 

group is indicated at a selection of temperatures between 88K and 

300K. The characteristic frequencies 	and the damping para- 

nters {ra} of the Raman active modes do not behave entirely nor-

mally with varying temperature. The anomalies in these parameters 

are, however ?  consistent with the expansion of the lattice at around 

128K. It would appear that the abnormal behaviour of the frequencies 

and damping parameters, and of the lattice parameter, is related to 

the irregularities in the dielectric and magnetic properties. These 

magnetoelectric properties seem to indicate the occurrence of a 

phase transition at = 128K, but we find no evidence of this. At 

temperatures not close to 128K, the high frequency modes exhibit 

normal temperature dependence. The interesting dynamic changes 

occur in the low frequency Raman spectra of boracites, in general. 

This region for Ni - I is very complicated, and contains many modes, 

so the complex interatomic interactions required to explain the ob-

served temperature dependence cannot be determined from the Raman 

spectra alone. There is, in particular., an intriguing, and inex-

plicable 'soft mode' in this frequency region, which does not seem 

to be associated with the ferroelectric transition. 

The dielectric properties of Ni - I are especially related 

to the modes of F2  sytry. Unfortunately, these modes are very 

weak in the Raman spectrum, and no useful predictions concerning 
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dielectric variations can be made from the F 2  Raman spectra. 

These 'polar' ides are, however, infrared active. There is, 

therefore, considerable scope for a useful, exhaustive infrared 

study of cubic Ni - I, as well as a need for further inelastic 

neutron scattering studies. 
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CHAPTER 4 

PHASE TRANSITIONS IN NICKEL-IODINE BORACITE 

Introduction 

In Chapter 3, the properiies of the cubic phase of Ni - I 

were discussed in some detail. It is the purpose of this chapter 

to present the results. of a Raman spectral study of the f3rro-

electric transition in Ni - I, and further to report and discuss 

the existence of .a further transition at a temperature of roughly 

10K. 

Since the primary reason for the study of boracites is given 

by their properties as improper ferroelectrics, a discussion of this 

class of transition is presented in §4.1. This discussion is given 

in terms of the phenomenological Landau theory of phasa transitions. 

This theory is inadequate in many cases, and of limited scope in 

all instances, but is sufficient for a discussion at the level of 

sophistication of 54.1. The properties of cubic Ni - I were given 

in 93.1, and the known transition properties are given in 54.2 to 

complete the picture to date. The experimental details, and the 

results of both inelastic and elastic light scattering experiments, 

are described in §4.3 and 94.4. In §4.5 are presented the group 

theoretical predictions for the normal mode symmetries and for the 

existence of soft modes in any boracite with the assumed sequence 

of transitions. Although Ni - I has not been proved to follow this 

sequence, these predictions form a basis for further discussion of 

the measured spectra. In §4.6 and §4.7 are the possible inferences 
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to be made from the Raman spectra, with regard to structural and 

magnetic properties and transitions in Ni - I. There are apparent 

structural instabilities in the form of soft nodes in the Raman 

spectra of Ni - I, and these are described and discussed in §4.8. 

Finally, in 54.9, the known transition properties of Ni - I and 

the results of the Raman spectral investigation are collated and 

conclusions are drawn. 

§4.1 	Landau Theory and Improper Ferroelectrics 

Since Landau originally put forward his phenomenological theory 

of phase transitions in 1937 (64) there have been many excellent re-

views and critiques of its methods, successes and shortcomings (e.g. 

48, 64). The theory is often maligned by theoreticians, but is, in 

fact., a useful tool for describing many phase transition (PT) pro-

perties, provided its limitations are borne in mind. Both Landau 

theory and improper ferroelectric theory are complicated topics, so 

the following discussion is of necessity inadequate, and emphasises 

only the points of particular relevance to boracites. For greater 

detail and completeness, the articles by Cochran (64) and Dvoák (65) 

are most useful and concise. 

The fundamental assumption of Landau theory is that the free 

energy F of a crystal may be written as a power series in the 

order parameters {}. 	 An order parameter is a quantity which is 

zero on one 'side' of the transition, and nonzero on the other. 

The fundamental characteristic of an improper transition is that more 

than one order parameter is critically involved. Thus we write: 
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4.1 	F = F + ' A.. + 	B. 	+ 	C.. 
0 	• 	1]. 	.. 	1313 	.. 	ijkijk 

1 

+ ijkZ DIjk 
	 + 1jk  

where all the coefficients A. B etc. are assumed to be nonsingular 

functions of temperature. It is largely this assertion which renders 

Landau's theory inadequate, particularly at temperatures close to the 

transition temperature T. The form 4.1 can be further simplified 

it the requirements of group symmetry and stability are imposed. 

Translational invariance of the crystal gives B.. 13 = B 
1 13
.6.., and 

equilibrium configuration stability requires: 

	

4.2 	(.-) 	= 	0 	; 	 > 	0 	; 	Vi. 
iE 	

DC2E 

It follows that A 1  = 0, or the 'high temperature' phase is always 

unstable. The expression 4.1 now becomes 

	

4.3 	F = F +j B.(T) 	+ 	Ci.k(T) 
i 	

i.k 
1 	 jk 

+.Di.k(T)ik. + 

and the relative values and signs of the B, C, D coefficients decide 

the order of the transition, and the stable configuration. This will 

now be illustrated in the particular case of the boracite free energy 

formula (in a much simplified form:). A detailed and rigorous treatment 

is given in refs. 66 - 68. 
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The essential terms required in 4.3 to produce an improper PT 

are: 

44 	F s  = 	 + 	+ c 	+ IDE 4 + 

'where the factors ,have been introduced for convenience. A first 

o-ider transition occurs at T 	for B 1 	c 	 2 a T - T 	and D < 2C 2 /B , and 
o  

a continuous(second order) transition occurs at T 	for D > 2C 2 /B23' 

provided B 2 , C, D and E are taken as constants. The resultant 

forms of the free energy as a function of 	l 
 are illustrated in 

Figures 32a and 32b. A transition is termed first order when two 

distinct phases are in equilibrium at the transition, and second 

order if these two phases are identical. For Figure 32, the stability 

conditions 4.1 give the following relations: 

2 

4.6 	i 2 	= 	
- EB1 	- G 	= 	- 

Therefore, if the transition is first order, it occurs at T = T > T o 	c 

and the order parameters, vary as shown in Figure 33a. For a second 

order transition, the transition is at T = T = 
0 	c 

T , and the 

variation of E l'  E
2  is.as  shown in Figure 33b. It can be seen that 

the order parameter variation is continuous, while at .a first order 
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e 

FIGURE 32: .The free energy of equation 4.4 for temperatures 

above, below and equal to T 0 . 

Figure 32a: A first order transitibn; 

3 	(D- 
	

) 
- 

	T6 —Ea B 

Figure 32b: A continuous transition 

To = T 

FIGURE 33: The temperature variation of the energetically 

favoured values of the primary () and 

secondary (E2) order parameters at: 

a first order improper transition. 

a continuous improper transition. 
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transition, there is a discontinuous jump in 	and 	at T0 . 

It is clear, 	particularly in Figure 33b, that the primary order 

parameter is that with strongest temperature dependence close to 

T0 . In terms of symmetry changes, the introduction of a nonzero 

primary order parameter leads to the correct change of symmetry, 

whereas a nonzero secondary order parameter alone does not. 

Dvorak and Petzelt (66) have considered the possible lowest 

order expansion terms for boracites which are invariant under the 

space group operations. They find that there are terms in the 

free energy of the form of 4.4, with the spontaneous polarisation 

as secondary order parameter. Furthermore, they find cubic 

invariants in addition to that in 4.4, which imply that the cubic-

orthorhombic transition in boracites is, of necessity, first order. 

The spontaneous polarisation alone cannot produce the required 

symmetry change. 

The connection between the Landau theory, and the familiar 

soft mode theory of displacive transitions can be established as 

follows. 	If the anharmonic free energy of equations 1.13 and 1.35 

in the i-representation is extended to higher orders, and the 

eigenvalue equation 1.21 is accounted for, the free energy becomes 

(K is a reciprocal lattice vector): 

4.7 F 	 W2 
 (a) I 	2 + 	v 1213 

a b c 1a a2b a 

	

	 3 c 1196213 

21 + a2 + 13 + K) + ..... 

- This is of the form of 4.3,. and a transition with B. c (T - T) is 

given by w(a) 	(T - Ta). 	This expansion is, of course, only valid 
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in the weakly anharmonic case. In the case of a second order tran- 

• sitión, this represents a mode which 'freezes out' at the tran-

sition. For a first order transition, however,, the transition 

occurs before this can happen (at T 0  > Tc)• In proper ferro-

electrics, at a second order transition, it is a q 0 mode whose 

frequency might. be  'expected to go to zero. This would imply a 

Curie-Weiss law for the static dielectric constant, provided that 

the Lyddane-Sachs-Teller law holds (10), i.e. 

= 	
(%(L0) 	= 	w2 (L0) 	w(L0)

11  4.8 	c(0)   fl 	 a. 	-- 
c (°) 

	

b A(T0) 	2(T0) ba w(T0)  

where a transverse node is assumed to be 'soft'. 	If W 2  -0, there 

- 

	

	is no 'restoring force', and the structure is unstable against a dis- 

tortion to the ferroelectric phase. 

In the boracites, however, the 'soft' coordinate is associated 

with a zone boundary X-point mode, of wavevector (strictly a star of 

wavevectors (14)) < 	, 0, 0'. 	This means there is no q 	0 soft 

mode, although there will be soft modes for T < T (see §4.5). The 

physical origin of coupling of P 	 to the soft coordinate is discussed 

by Cochran (64). In essence, the secondary displacements giving rise 

to P are induced by the primary displacements associated with 

through anharnonic forces. 
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§4.2 	The Known Transition Properties of Ni - I 

N 	- I 	is unique among boracites in that its 	Néel and Curie 

temperatures (TN  and  TC)  are coincident. The transition at 

Tc = 68K (46, 47, 49, 53, 69) is therefore thought to be not only 

the usual boracite coupled transition, but a transition from a para-

magnetic phase to-an antiferromagnetic phase, with a weak ferro-

magnetic component. Apart from a low temperature neutron diffraction 

study of Ni - I (70), to determine the magnetic structure, no struc- 

rural data has been published for Ni - I below 68K. Since the neutron 

experiment of ref. 70 was performed at a very low tenoerature, there 

no conclusive evidence that the transition at 68K is, in fact, to 

an orthorhombic phase. Furthermore, light scattering data indicates 

the presence of a further transition at T < 10K, which is precisely 

the temperature régime of the neutron experiment (stated as being at 

6K). 

It was proposed that the anomalies in the structural and magneto-

electric properties of Ni - I (see §3.1) at T NIU 130Kwere. indicative 

of the phase transition (71) to an antiferromagnetic phase, but this 

proposition has since been invalidated by the discovery that para-

magnetism persists as far as 68K (72). It has further been suggested 

(52) that the peculiar behaviour of the lattice parameter indicates 

a structural transition, although this has also beers shown to be 

incorrect by structural (50, 51) and light scattering (55, 56, 

Chapter 3 of this thesis) measurements. 

Finally, the results of a low-temperature study of the magnetic 

properties of Ni - I must be accounted for' (69, 70). There is a 

change in the nature of the magnetisation curves (magnetisation a 
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vs. applied field H) of Ni - I at a temperature of roughly 10K, 

and there is a ferromagnetic moment parallel to P at 6K. It has 

been suggstad (73) that the existence of a magnetic transition in 

the region of 10K can be inferred from these results, and that this 

transition must also involve a structural change (see §4.5). 

§4.3 	Experiment 

The experimental details are essentially the same as those des-

cribed in §3.2, so only the differences in techniques need be dis-

cussed here. The sample was the same [1. 0 o] growth sector as was 

used for the study of the cubic phase, and the Cc.derg T800 system of 

was used to disperse the scattered light and record the spectra, 

again to a resolution of 2.5 cm 

Cooling was effected by use of a Thor flow cryostat ;  with 

nitrogen vapour flow for 88-295K, and helium vapour flow for T < 88K. 

Again, the =5K of laser heating mentioned in §3.2 must be accounted 

for. In addition to the study of the Raman scattered light, a record 

was made of the intensity of elastic scattering as a function of 

temperature. The method behind this experiment entailed making a 

real time record of the w = 0 scattering, with a spectral slit 

width of 4 cm. 1 , as temperature varied. This induces a time lag, 

and consequently a temperature lag, between thermocouple and sample, 

and thus yields a wrong absolute temperature. Provided 	is kept 
at 

fairly constant, however, this error should be constant for all 

temperatures and does not render the data useless. As the laser 

intensity for the elastic scattering experiment was very low (4pW), 



laser heating is negligible, and can be ignored. This low intensity 

was achieved by use of a 105  filter. 

Footnote to §4.3 

Since all the spectra in Chapter 4 are of Z(??)Y' geometry, 

this will be contracted to merely ?? e.g. Z(Y'X')Y' + Y'X'. 

§4.4 	Presentation of Results and Analysis 

In Figures 34-37 are presented the Raman spectra in the four 

polarisations permitted by the scattering geometry, each at four 

representative teeratures. These temperatures were chosen to 

give the form of the cross-section in the four regimes relevant 

to the transition properties of Ni - I. These are: 

Well above the 130K anomalous region (295K). 

Between the anomalous region and the ferroelectric 

transition at T = 68K (lOOK). 

In the ferroelectric phase (25K). 

At the lowest temperature attainable with the system 

of §4.3 (< 7K). 

It should be remembered that these temperatures may be too low by a 

few degrees (less than 5K, see 93.2), although they have been chosen 

to be at least this far from the critical temperatures where possible. 

The resonant frequencies and damping parameters of the bands—in 

these spectra are presented in tables 8 and 9.Where bands are very 

weak, the fitting procedure giving rise to these parameters cannot 
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FIGURES 34-37: The Raman spectrum of NI-I at four representative 

temperatures, in four polarisations. 

FIGURE 34: Z(X'X')Y' geometry. 

FIGURE 35: Z(Y'X')Y' geometry. 

- 

	

	FIGURE 36: Z(Y'Z)Y' geometry. 

FIGURE 37: Z(X'Z)Y' geometry. 
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TABLES 8 and 9. 	Frequencies and damping parameters in cm 1  (if appropriate) for the Raman active optic 

nodes of Ni - I at .our representative temperatures. 

x  
295 K 	100 K 	25 K 7 K 295 K 	100 K 25 K - 	7 K 

72.0 * 	68 .0* 	56.0* 85,0(35) 	82.0(65) 59.0(23) 55.0(23) 

* 	* 	 * 
148.5 	144.0 	120.0 

* 
122.0 

•1• 100.0 

167.Ot 170.0(90) 	152.0(76) 125.0(68) 118.0 
* 

194.0 
t 

194.0 
1- 137.0  

286.0 286.0 248.0 
248.o t 245.0 

380.0 	383.0(9) 

612.5(17) 	616.5(13) 	621.5(7) 	624.0(4) 	611.5(20) 	618.5(13) 	624.0(7) 	623.0(7) 

655.0(30) 	653.5(21) 	653.0(16) 	654.0(16) 

863.0(16) 	867.5(11) 	871.5(6) 	874.5(5) 	863.5(15) 	870.0(11) 	874.0(6) 	874.0(6) 

970.0 t 	977.0 t 
	986•0(7)t 	988.0 	970.0 	979.5(14) 	987.0(5) 	986.5(6) 

1008.0 t 

1046.0 	1049.0 

1078.0 	1082.0 
+ 	 1- 

1128.0(40) 	1134.5(31) 	1141.0(15) 	1144.5(9) 	1125.5(43) 	1136.2(31) 	1144.0(12) 	1143.3(11) 

1200.5(61) 	1208.5(43) 	1212.0(17) 	1213.5(8) 	1199.5(74) 	1208.5(43) 	1214.0(14) 	1213.5(10) 

* - Known to consist of more than one band (see §2). 

- Too weak for fitting procedure (see §2). 

00 
1•.) 

TABLE 8 



S 

295 K 	100 K 
Y Z 
 25 K 	 7 K 	295 K 	100 K 	25 K 	 7 K 

* 
74.5 

* 
54.0 

* 
50.0 

* 
45.0 

* 
58.5 

* 
56.0 

* 
49.5 

81.0 79.0 81.0 81 . 0± 81 . 0± 90 . 0± 

* 
152.5 140.0 106.0 100.0 

* 
158.0 131.0 131.0 

200 . 0± 

255.0± 257 . 0± 255 . 0± 257.0± 260.0± 257.0± 257.0± 

280.0± 280.0± 286.0± 2870t 3825t 382.5 

621 . 0± 623.0± 623.0 

1046 . 0± 1057.6t 1046.0 1045.0± 

1062.0± 1069.0. t 1078 . 0± 1080.0± 1080.0± 

1148.0± 1141.0± 1161.0t 1143.0± 1144 . 0± 

1233.0 1235.0 1170.0± 

* - Known to consist of more than one band (see §2). 

- Too weak for fitting procedure (see §2). 

CO 

TABLE 9 
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be used, and the values given in tables 8 and 9 are measured from 

Figures 34-37. Similarly, when features are known to consist of 

u3re than one band, these are marked in tables 8 and 9. This can 

occur due to overlap in frequ2ncy of contiguous bands, or to the 

form of the Raman tensors in the cubic phase. 

The variation of the intensity of elastic scattering in the 

X'? polarisation, as a function of temperature, is plotted in 

Figure 38. The dashed lines indicate extrapolated data. This 

extrapolation became necessary as the intensity fluctuated wildly 

- - 

	

	in the critical. regions, and the readings of intensity during a 

count--time of one second were consequently unreliable. 

In Figures 39 and 40 are presented the characteristic fre-

queucies 	and the damping parameters r respectively, of four 

'high frequency' Y'X' modes. Figure 41 portrays the temperature 

dependence of these parameters for the 170.0cm , Y'X' mode. 

The parameters are, of course, those of equation 3.1. The solid 

lines in Figures 38-40 are intended merely as a guide to the eye. 

§4.5 	Symmetry Considerations 

It is thought that the sequence of translational symmetries of 

boracites, with decreasing temperature, is: 

cubic -* orthorhombic 	-'. uDnoclinic -' trigonal (45). 

This sequence is, however, far from complete in many boracites. The 

space group sequence corresponding to the above transitions is: 

5 	 2  T(F43C) 	c 2V  (Pca2 1) -- C (Pa) ± C 	(R3 
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FIGURE 38: Temperature variation of the intensity of elastic 

scattering in Ni-I (intensity in arbitrary units). 

FIGURE 39: Temperature variation of the resonant frequencies 

of four Y'X' modes in Ni-I. 

FIGURE 40: Temperature variation of the damping parameters 

of the four modes of figure 39, with corresponding 

symbols. 

FIGURE 41: Temperature variation of the frequency (squares) 

and damping parameter (triangles) of the 170.0 cm 

Y'X' mode in Ni-I. The ordinate calibration is in 

units of (w0  - 125) cm for frequency and 

' (r - 65) cm for damping. 
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If the primitive unit cell in the cubic phase has volume V, the 

primitive cell volume changes according to the sequence 

V - 2V + 4V 	V (45, 74). 

Applying the methods of §1.3 and 51.4, there should be 

4A1  + 10E + 20F 2  Raman active optic modes for cubic Ni - I, and 

72A1  + 72A2  + 72B1  + 72B2  (including acoustic modes) for 'rtho-

rhombic Ni - I.The respective point groups are Td  and C 2V 

(see tables 1 and 10). . Since no detailed analysis of the atomic 

positions in the monoclinic boracite phase exists, a classification 

of the 	0 normal modes in this phase is not possible. It is 

possible, however, to construdt a correlation table for the normal 

mode symmetries between the cubic, orthorhombic and monoclinic 

phases (table 12, also see table 11). The indices (ZX) indicate 

that the (ZX) mirror plane of the C 2  point group has been 

chosen as the plane for the Cs  group. The Raman tensors for 

these three phases, with respect to the cubic (X', Y', Z) axes 

are given in table 13 (15, 17. 33). It can be seen that the cubic 

X' and '1' axes have been chosen to be the new orthorhombic axes, 

while Z defines the orthorhombic c-axis. The composition of the 

Raman spectrum is given in table 14, with this choice of axes. 

It has been shown (66) that the primary order parameter for 

the transition is associated with a doubly degenerate X-point 

(zone boundary) mode corresponding to representation ¶ 5  of the 

5 , 
i group of 	= (0, 2ir 

	 2ir 
-, 0) or -, 0, 0) 	n space group Td. 

Furthermore, this critical mode splits into homogeneous modes of 

A1  + A2  symmetry with 	= 0 in the new, 'folded' Brillouin zone. 

These should appear in the Raman spectrum as features with a fre-

quency- temperature dependence similar to the 1-temperature 

dependence of Figure 33a (i.e. strongly temperature dependent near 

constant for T << T0.) 
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TABLE 10 

The character table for the irreducible representations 

of point group C 2v  (mm2) (12). 



TABLE 11 

The character table for the irreducible representations 

of the point group C 5 (ZX), (12). 

p 



TABLE 12 

4 

The correlations between the species of the point 

group T  and those of its subgroups C2 
V 

and C 
S 

T 	 C 	 C 
d 	 2v 	 s 

Al  

A 2  

E 

F1  

F 2  

A 

A2  

B 1  

B2  

A' 

A'' 
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TABLE 13 

The Raman tensors for the cubic, orthorhombic 

and monoclinic symmetry classes (15). 

Table 13a) 	Cubic Raman tensors (axes X', Y', Z, see 2.5) 

A1 	a 	.; 	E 	b 	. 	. 	and 

a 	. 	 b 	. 	r3 b 

a 	 . 	. -2b 

F 2(X') 	. 	. 	. 	d 
AT 

d 

d 	d 

and F2 (Z) 	d 	. 

-d 

F 2 (Y' 	'. 	d 

-d 

d -d 

a 
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Table 13b) Ortho.rhombjc Raman Tensors 

A1  a 

. 

. 

• 

; A2  . d 

• b d 

• C 

4 

• e B2  

[. 

Table 13c) 	Monoclinic Raman Tensors 

A'(ZX) 	a 	• 	d 

• 	b 

d 	• 	C]  

	

A' t (ZX) 	• 	e 

e 	• 	f 

	

- 	• 	f 
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TABLE 14 

Symmetries of modes present in the four scattering 

polarisations in the cubic, orthorhombic and mono-

clinic phases of Ni - I. 

I x'x' 	I'x' 	 Y'z 	 x'z 

A1  + E 	+2 	E 	F2(TO + LO) 	F2 (TO) 

C 2v 	 1 
A 	 A2 	 B2 	 B1  

C 	 A s 	 A" 	 A" 	 A' 
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§4.6 	Structural Information in the Raman Spectra 

A transition at 130K? 

Firstly, it can be stated that the Raman spectra, as discussed 

in §3.6, indicate that although there is a disturbance to the 

lattice at a temperature = 130K there is no structural transition 

at this temperatüe. 	This result, that Ni - I is cubic above 88K, 

is in agreement with the structural work at 77K (51) and 300K (50), 

but not with the speculation of Will and Morche (52) that a di,s-

placive transition occurs at 130K. It can be seen from tables 6 

and 8, 9 that 	4k, + 8E + 8F2  modes have been detected, while 

4A 1  + lOE + 19F2  are predicted. The asterisks in tables 8 and 9 

indicate the multiple F 2  bands and reflect the dearth of lw fre-

quency Y'Z and X'Z modes. The lOOK spectra of F 2  symmetry con-

firm the tentative suggestion of §3.5 that the structure around 

1100 cm 
-1 
 contains first order bands, as these are considerably 

'sharper' at lOOK. Also, gratifyingly, a very weak E symntry 

band can be discerned at 248 cm- 
1. 
 One could not presume to have 

identified this without the retrospective knowledge of its presence 

in the 25K spectrum (Fig. 35). The eye of faith can discern its 

presence in Figure 29 

The ferroelectric transition at 68K: 

At the ferroelectric transition, new bands appear in all the 

spectra. There should, in fact, be 71A 1  + 72A2  + 71B1  + 71B2  

Raman active optic modes, if the transition is to the normal boracite 

orthorhombic phase, which would require 204 new modes to appear below 



-94- 	 -: 

68K. 	About one half of the Raman-active modes have been identified 

in the orthorhombic phases of Cr - C9 (75), Cu - C2 (59) and 

Mn - C9. (76), but Only a few of the 204 new modes can be identified 

in Ni - I s 	This is due partly to the weak scattering properties 

of boracites, and the highly absorptive nature of Ni - I, and 

partly to the complicated low frequency (w < 300 cm. 	profiles. 

The failure to resolve the low frequency Y'Z and X'Z modes is 

a function of the intrinsic near-degeneracies and bandwidths, not 

of the spectrometer resolution which was, again, 2.5 cm —1 

The wing feature in Ni - I for T > T does not reduce at, 

or below, the ferroelectric transition (Figures 34-37) and it 

appears in all polarisations. In other boracites there is a broader, more 

prominent wing for T > T 0, and this wing appears in A1  symmetry 

only. A further disparity between Ni - I and other boracites is 

seen in the fact that the A1  wing in Cr - -CZ and Cu - CL reduces 

as theferroelectric phase is reached, and subsequently disappears 

for T < T - 80K. Unfortunately, for Ni - I, the wing is so 

narrow that the insertion of filters during scanning over the laser 

frequency removes much of the information about the width and 

strength of the wing. The result is that the parameter y and  the 

strength S in equation 3.2 do not show consistent temperature be-

haviour. This is because a wide variety of S and y  describe any 

one spectral wing in Ni - I equally well. No quantitative state-

ments can therefore be made regarding the behaviour of the wing at 

the transition. The A1  wing in Cr - CL and Cu - CL was con-

jectured as being due to disorder (see §3.5) associated mainly with 

the CL ion. Qualitatively, the dissimilar nature and behaviour of 

of the wing in Ni - I suggests that it is either (i) not due to 
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disorder at all or (ii) the disorder in Ni - I lacks definite sym-

metry, is considerably less than in Cr - C2. and Cu - C2, and 

persists well below T. 

The frequencies associated in Chapter 4 with B04  vibrations 

of around 250 cm 1  (E), 378 cmL  (A1 ) and 255.0 cm 1 , 1100.0 cm' 

(F2) are confirmed by the icwer temperature spectrum. The first 

three are clearly measurable and show little frequency shift through 

the ferroelectric transition. The rigidity of the B - 0 framework 

to metal and halogen substitution makes this discovery not too 

surprising. 

It can be seen from Figure 39 that the characteristic frequencies 

of most of the Y'X' modes rise fairly abruptly at Tel  with the 

notable exception of the 170 cm 1  (at295K.) Y'X' mode, which 

actually drops in frequency by 13 cm 
1  at the transition (Figure 

41). The 655.0 cm 	X'X' mode shows no frequency shift. The 

linewidths of the X I X' and Y'X' modes reduce by approximately 

a factor of two at the transition (Figure 40) with again the measur-

able exceptions of the 655.0 c1p. 1  X I X' mode, and the 170.0 cm' 

Y'X' mode (Figure 41) which show no sharp variation in r at T  

The frequency and damping parameter shifts indicate that there is 

indeed a transition at a temperature of about 70K. Furthermore, 

the shifts imply that anharmonic interactions in Ni - I must, on 

average, decrease below T,  to account for the general reduction 

in the phonon self energies, and thus the reduced 'damping'. It is 

this reduction in the parameters {ra} that is wholly responsible 

for the increase in intensity of the high frequency modes in Figures 

34 and 35, as the parameters S of equation 3.1 do not show any 

significant increase at T 	This means that the polarisabilities c   

of the modes do not change significantly at T. 	The persistent 
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softening of the 170 cm' mode in Y'X' is remarkable, and is dis-

cussed elsewhere (4.8). The A 1  soft mode in the cubic phase 

(Figure 28b) cannot be 'followed' into the ferroelectric phase as 

the subtraction process of §3.3 is no longer possible, and the con-

position of the w < 300 cm region in the X'X' spectrum below T 

is no longer clear. The Y'Z and X'Z spectra for T < T c are 

still similar in appearance, and do not have any strongly tempera-

ture dependent mode frequencies, although again the damping de-

creases in general, and some new modes do appear. 

A detailed investigatLn of the spectra at a temperature 

just below T, and at 25K, revealed no discernible splitting 

in frequency or damping parameter of any of the modes to corres-

pond to the correlations E 	A1  + A2 , 	F2  + A1  + B 1  + B2  

between groups Td  and C2 . 	These spectral results are con- 

sistent with a distortion at a temperature of about 70K, from 

a cubic to an orthorhonibic phase. It must be remarked, however, 

that other crystal classes cannot be precluded from the Raman 

spectra alone. The lack of frequency or linewidth splittings 

between spectra indicate that the magnitude of the deviation 

from cubic symmetry is small. The actual temperature of the 

transition may be seen to be 73K ± 4K from the central peak 

result of Figure 38. Superficially, this temperature might 

appear to be at variance with the accepted value of 68K (47) 

but the discrepancy is the result of the time-lag mentioned in 

§4.4, and the consequent temperature lag between thermocouple 

and sample. 	It can further be seen from the central peak 

result that, whatever is the cause of the central peak, or peaks, 

at the transition, domain walls did not cause parasitic scattering 
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below T, as the intensity of elastic scattering returns to its 

'cubic' value. A similar effect was observed in Cr - C9.. (75). 

This, along with the lack of spectral 'mixing' in the 25K spectrum 

suggests that the sample formed a single ferroelectric domain in the 

region of the laser beam path, with the axes chosen in § 4.5. The 

'choice' of which two of the cubic <110> axes become the ortho-

rhombic 'a' and 'b' axes may have been affected by the boundary 

conditions, in which the faces of the sample were [1101, [ho] 

and 	ooi], as the sample was not poled. 

A transition at : 7K: 

At a temperature below 7K (±2.5K), a further phase can be seen 

to exist from the Raman spectra, which has a different symmetry 

from the phase between 7K and 68K. The existence of this 'new' 

transition can be verified from the elastic scattering intensity 

of Figure 38 where there is a further maximum at 12 K (±5K). This 

temperature is again too high due to the time lag alluded tc above, 

and the -5K correction gives a transition temperature of 7K (±5K). 

The most marked changes in spectral lineshape occur in the pre-

viously non-critical Y'Z and X'Z spectra. These are quite 

different from their counterparts in the orthorhombic phase, and 

from each other. The wing feature in Y'Z polarisation has dis-

appeared below 7K, and the lineshape in this spectrum around 135 

cm' is most peculiar, with an apparent anti-resonance dip. The 

X'Z spectrum also has no wing feature below T 0 , and shows an 

extremely unusual (particularly at low temperature) broad structure, 

comprising asymmetric humps. There are also some new sharp features. 

In the X'X' spectrum again more new bands appear, and there are 

considerable intensity changes in some modes. The intensity 
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• changes in the high frequency modes at 1144 cm 1  and 1214 cm-1  

in the X I X' spectrum are not attributable to a change in the 

r parameters, but to a reduction in the mode strength S, which 

indicates a changing polarisability tensor element. The broad, 

low frequency modes in both X'X' and Y'X' polarisations are 

now split into obvious superpositions of several modes. There 

are no further measurable changes in the Y'X' spectrum, and the 

X'X' and Y'X' wing features are undiminished below 7K. The 

disappearance of the overdamped wing in the Y'Z and X'Z spectrum 

indicates that if dynamic disorder is the origin of the wing (see 

93.5) this disorder has acquired a definite symmetry in the new 

phase. The modes do not appear to sharpen at this transition, 

indicating that there is no reduction in the anharmonicity as 

there was at the ferroelectric transition. 

If this new phase is the monoclinic boracite phase of 6.4.5 

one would expect from table 14 that the X'X' and X'Z spectra 

should contain the same (A') modes, and the Y'X' and 

the same (A") modes. The relative sizes of the polarisability 

tensor elements a -* f in table 13(c) are unknown, however, and 

can contrive to make the two spectra for either of the monoclinic 

mode symmetries quite different in appearance from each other. 

• This appearance of modes in, for instance, Y'X and Y'Z, can be 

seen to occur at (e.g.) 623 cm 1 . 	If this were merely spectral 

mixing due to birefringence, the mode at 874 cm 1  in Y'X' would 

also appear in Y'Z, and more strongly. It does not do this. A 

similar argument can be applied for the X'X' and X'Z spectra 

in relation to the modes at, for instance, 1144 cm' and 167.0 cm
-1 

 

(X'X' only). This lack of obvious depolarisation, along with the 
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result of the elastic scattering experiment, indicates again a lack 

of disorientated domains, with no domain wall effects to cause 

parasitic scattering. This may seem improbably fortuitous, but the 

size of the region of sample probed by the beam mist, be borne in 

mind. The spectral results are not inconsistent with a monoclinic 

crystal class, and the differences between A?  and A" spectra 

can be accounted for by the values of the tensor elements a -* f. 

Again, it ust be said that an irrefutable assignment of a crystal 

class cannot be made from the "Raman spectra alone for T < 7K. A 

later experiment produced a highly birefringent sample below 7K, 

with an elastic scattering intensity which remained high below the 

transition. This would support the above discussion of domain 

w1l effects at this (7K) transition, and suggest that a multi-

domain sample had been produced in the later experiment. 

§4.7 	Magnetism in Ni - I 

Magnetic ordering at 130K? 

As a structural transition does not occur at 130K, the sug-

gestion first put forward by Quzel and Schmid (77)  seems most 

plausible. They proposed that the magnetic susceptibility maximum 

at 130K was attributable to short range magnetic ordering. There 

is no evidence of long range magnetic order in the form of new 

excitations at 130K in the Raman spectrum. The disturbance to the 

lattice (52) has, however, been verified by the Raman result, and 

it seems reasonable to put forward the phenomenological argument 

that this disturbance might well affect the spin-spin correlations 
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and give rise to a change in the degree of short range magnetic 

urdering, and thus to a change in susceptibility. 

Magnetic ordering at 68K? 

Since Ni - I becomes antiferromagnetic, with a weak. ferro-

1agnetic component, at 68K, one might expect to see evidence of 

the long-range magnetic ordering involved in the Raman spectrum. 

As one-magnon scattering from zone-centre magnons would be at 

low frequency, any such evidence might be in the form of multi-

nagnon scattering. The lineshape of this scattering would depend on 

the density of magnon states, but it would certainly produce broad 

features. There is nothing in the Raman spectra to attribute to 

such a scattering mechanism, but there are no results elsewhere 

from which to estimate the energy of magnon scattering in Ni - I. 

Magnetic ordering below 7K 

The magnetic structure determined by von Wartburg (70) predicts 

that at 6K, the space group is C 	(orthorhombic) cd that there 

is a weak ferromagnetic moment m z in the direction of the spon- 

taneous polarisation, [001]. 	Previously (46, 49) the magnetic moment 

was thought to be in the xy plane. This result, coupled with the 

change in the nature of the magnetisation curves (69) at 10K 

stimulated a group theoretical study of 'the magnetic structure at 

6K (73) to investigate the possibility of a magnetic transition at 

10K. The authors constructed a phenomenological free energy ex- 

I 

-- pression (c.f. equation 4.1) in terms of the anti ferromagnetic vectors 
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invariant under the group operations of C. They found that the 

term necessary for the existence of an energetically-favoured non-- 

zero in was not allowable within C 	(this term is proportional 

to ni2., where 2. is one of the antiferromagnetic vector,-). 

They argued that any magnetic transition at =JOK mustalso be 

structural, and to a lower symmetry (e.g. monoclinic) phase. This 

would contradict the nuclear structure determination of von Wartburg 

(70), although the orthorhombic monoclinic distortion could merely 

be very small. It is possible that the peculiar X'Z Raman spectral 

lineshape at T < 7K is attributable to magnetic excitations, but no 

temperature dependent spectra (in this phase) exist to substantiate 

this notion. What is almost certain, however, is that the tran-

sition at 10K suggested by the magnetic studies corresponds to the 

7K structural transition indicated by the Raman spectra. 

§4,8 	Soft 	des in Ni - I 

The A1  and A2  soft modes for T < 68K have been discussed 

in §4.5, and should appear in the X'X' and Y'X' Raman spectra 

respectively. Such modes have been observed in Cr - C2. at 149.5 

cm- 1  (A1 ) and 91 cm-1  (A2), (75), and in Cu - C2. at 136.0 cm-1  (A1 ) 

and 67.0 cm 	(A2). Bearing in mind the general lowering of fre- 

quencies between chlorine boracites and Ni - I, the appearance of 

a distinct 'shoulder' at about 194 cm 
1  on the side of the 120.0 cm 1 

X I X' band in Ni - I is tentatively assigned to the A1  critical 

mode. The feature at 82.0 cm '  (at lOOK) in the Y'X' spectrum 

can also be seen to sharpen below T, and subsequently to undergo 
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a complicated change of shape for temperatures close to and below 

T. Although the level of Poisson 'noise' fluctuations obscures 

the details of this behaviour, this sharpening is thought to be due 

to the appearance of the A2  soft mode, superimposed upon the 

existing band or bands. The subsequent variation in shape could 

be due to the temperature dependence of the soft mode frequency. 

The complexity of this frequency region in Ni - I makes an 

unequivocal assignment impossible. 

The mode in the Y'X' spectrum whose temperature frequency 

is 170 cm' is an enigma. Its frequency does conform approxi-

mately to a W2  a (T - T) law (Figure 42), with two regions 

of different Tt,  but the values of T t involved are both nega-

tive (approximately -600K for line. 'a', and -370K for line 'b' 

in Figure 42.) The mode is certainly not an order parameter for 

either of the transitions dealt with in 54.6 and §4.7. It does 

not correspond to the sane dispersion branch at% 0 as the 

zone boundary soft mode for the 68K transition, and is not an 

obvious precursor to the trigonal phase. It can be shown (16) 

that, within Landau theory, the soft mode for the cubic-trigonal 

transition would have to have F 2  symmetry. It may represent 

some competing instability which is 'beaten' by both of the 

above transitions, but the nature of this instability is not 

clear. The A1  soft mode in the cubic phase can, of course, 

no longer be studied in the ferroelectric phase, as it is no 

longer separable from other modes at low frequency. 
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FIGURE 42: Temperature variation of ( frequency) 2  for the 170.0 cra 1  

mode in Ni-I. The straight lines are of 	(T T) 

where T 
C 

is -600K (a) and -370K (b). 
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§4.9 	Conclusions 

The results of the elastic and inelastic light scattering 

spectra of Ni3B70 13I 	indicate that it is cubic for all tempera- 

tures between 68K and room temperature, and that no dispiacive 

transition occurs at 130K, as has been suggested. At 68K there is 

a transition to a lower symmetry crystal class which is almost cer-

tainly orthorhombic by analogy with other boracites. At a tempera-

ture of i 7K, a further transition is seen to occur, which is 

structural, and probably magnetic. 

That the ferroelectric transition exists is obvious from the 

new modes which appear in the Raman spectrum below 68K. This is 

confirmed by the presence of a central peak at 	70K, the mode 

frequency shifts, and the reduction in phonon damping below 68K. 

The Jack of mode splitting below 68K suggests that the lattice 

distortion is small, and that the orthorhombic phase is therefore 

almost cubic. The reduction in damping indicates a reduction in 

anharnrrnicity, and the sample studied was a single ferroelectric 

domain in the region of the beam path. This is consistent with 

the results of Raman spectroscopic studies of other boracites. 

If the wing feature for T > 68K is caused by some kind of 

dynamic disorder, the disorder persists well below T,  and 

lacks definite symmetry. This is not consistent with the results 

in other boracites. There is no direct evidence in the Raman 

spectra of magnetic excitations associated with the short range 

magnetic order postulated to account for the susceptibility maxi- 

mum at 130K. Neither is there any direct spectroscopic evidence of 

the onset of antiferromagnetic/weak ferromagnetic order known to set 
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in at 68K. The critical modes associated with the primary order 

parameter for the improper ferroelectric transition can be 

tentatively identified in the orthorhombic phase. 

The second, new transition can be seen from the Raman spectra 

to be to a lower symmetry, consistent with the primitive unit cell 

doubling at the orthorhombic to monoclinic transition in boracites, 

as more new modes-appear and intensities and lineshapes alter 

dramatically. This transition is almost certainly the magnetic and 

structural transition predicted at about 10K in Ni - I. The struc-

tural nature of the transition would indicate that the direction of 

the ferromagnetic moment in Ni - I at 6K was correctly determined 

by von Wartburg (70) but that the nuclear structure was not, in that 

it was given as orthorhombi.c, C. Again, if the wing feature is 

attributable to dynamic disorder, the disorder acquires a well 

defined sytry in the new phase. From the spectral data and the 

elastic scattering data it can be seen that the sample formed a 

single domain once more below 7K. 

Finally, the puzzlingly persistent soft mode must be left as 

an unknown mechanism. It is associated with neither of the two 

transitions mentioned above, and is not an obvious precursor to 

any of the known boracite transitions. What is more, the 'tran- 

sition temperature' apparently associated with this mode is negative, 

and the 'transition' must therefore be considered 'virtual'. 

The results of this chapter are to be published in summary 

(78) and in full (79). 
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CHAPTER 5 

A COMPUTER CONTROLLED SYSTEM FOR BRILLOUIN 

SPECTROSCOPY 

Introduction: 

This, system for automatic Brillouin spectroscopy represents 

essentially the culmination of a programme of work which began 

several years ago with the automation of two double grating Raman 

spectrometers (23, 80). 	In both cases, control is effected by 

pre-setting rows of switches, and the data is output in digital 

form on paper tape. This original work has provided the basis 

for a more versatile and complex computer controlled system 

(23, 24) which offers automatic control of Raman experiments, 

graphical equipment, temperature scanning experiments, and now 

Brillouin spectroscopy. This system is now fully operational, 

although possible extension to control of further experimental 

parameters can be envisaged. It is the purpose of this chapter 

to give a fairly brief description of the methods involved in 

the particular case of the Brillouin system. While programme 

development for the other computer controlled facilities formed 

part of my thesis work, the design, construction and program-

ming for the Brillouin system represents a far greater part 

(performed in collaboration with Dr. J.W. Arthur).. 

Any attempt to describe and discuss the operating cycle of 

a logic circuit is almost doomed to become verbose. In an attempt 

to avoid this pitfall, therefore, the discussion in this chapter 

is kept one or more stages removed from the actual circuit diagrams, 

and a presentation is made in terms of schematic diagrams. The 

d 
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diagrams themselves, in full detail, are included in Appendix 3. 

At this stage, therefore, a short discussion of the very basic 

philosophy of logic circuit design is appropriate. 

Every point in a logic circuit is at a potential '1' or '0'; 

'on' or 'off'. In the case of TTL system circuits, logic level 1 

represents SV. 	Designing a logic circuit involves putting to- 

gether circuit elements with known properties such that a predeter-

mined sequence of logic level changes occurs and produces some 

• 

	

	desired result. One of the simplest logic circuit elements is the 

NAND gate. This device is represented by the symbol and 'truth 

table' shown below. 	 V 	V  

N AND 

A 	B 	I 	C 

0 1 1 

1 1 0 

The truth table implies that, if wire A and wire B are both at a 

potential of +5V ('1'), then and only then is wire C at OV. 

Logic circuit elements represent Boolean algebraic forms, and NAND 

means 'not A and B' or A ii B . 	The basic circuit elements are 

put together to form arbitrarily complex circuits to perform com-

plicated functions. 

In §5.1, the ability of the computer is described in general 

terms, as far as it is relevant to this system. It has, of course, 

abilities in addition to those mentioned. The nature of this par-

ticular computer placed constraints upon the design philosophy in 
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that it is a time shared computer, which is used by several research 

groups. While this means that a costly, dedicated computer is not 

required, it also means that the system does not command the un-

divided attention of the computer. This problem is cvercome by the 

use of multiplexing techniques, as described briefly in 55.2. This 

section is not essential to the rest of the chapter and, indeed, the 

multiplexing/demuitiplexing network existed before the Brillouin 

system, and so did not form part of this chapter's project. Its 

inclusion, however, is useful to justify the approach adopted 

to the control circuitry, although this approach was largely deter-

wined by the need to be compatible with the existing equipment. 

In §5.3 are described the requirements of the Fabry-Perot 

interferometer. The basic theory of this high resolution device 

is well documented (e.g. 81). 	§5.4 puts together the computer's 

abilities and the interferometer's requirements in a manner com-

patible with the existing equipment, and suitable for operating 

within a nondedicated (time shared) computer environment. In 

55.5, some of the details of the blocks or modules used in building up 

the complete system are described, and the discussion is in terms of 

'black boxes'. Detailed understanding is left to contemplation of 

Appendix 3. 

The logical structure of the operating control programme for 

the Fabry-Perot system is described in §5.6, and the results of its 

operation in two distinct modes are presented in 95.7. These results 

demonstrate both the simplicity of operation for the control of the 

system and the convenient format of the results produced. Finally, 

in §5.8, the scope of the system is critically examined, and possible 

future developments are proposed. These proposed developments take 
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the form both of additions to the existing system, and total re-

designing of the entire system (24). 

§5.1 	The Ability of the Computer 

The computer is a Digital Equipment Corporation PDP11 1145 16-

bit machine. It is best regarded as a transmitter and receiver 

of 16 digit binary numbers or 'words' (83). These words ray, on 

transmission from the computer, carry information regarding the 

running of the experiment. The words received by the computer 

may contain the data resultant from the experiment, and any ex-

periment is seen by the computer as a system with which to ex-

change words. 

The additional and vital ability of the computer is, of 

course, the ability to perform arithmetic and logical functions, 

and to store data. The computer is thus able to concoct a 16-bit 

word from information supplied to it by the experimentalist and/ 

or by a programme running in the computer. Since this word has 

the function of controlling the experiment it is known as the 

'controiword', and it is assumed that the transmission of a control-

word by the computer initiates some action on the part of the 

experiment. The subsequent word transmitted from experiment to 

computer is a 'dataword'. This exchange of controiwords and 

data-words between computer and experiment takes place along a common 

set of 16 wires, and is illustrated schematically in Figure 43. 

(The set of cables is often called the data 'bus'.) 

Included in Figure 43 is a representation of a technique which 

is employed here to synchronise transmission and receipt of 'words 
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FIGURE 43: Schematic representation of the flow of 16-bit binary 

between computer and experiment. 

FIGURE 44: Schematic diagram cf the multiplexing/ demultiplexing 

network implemented according to table 15. 
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by the computer, but is also applied at many levels of the ccntrol 

circuitry. When the computer has generated a controlword as pre-

scribed by the experimentalist, it signals to the experiment that 

there is a controlword ready for use. This signal takes the form 

• of an electronic pulse 'Q' along an extra wire. The control.word 

is transmitted by the computer, and a subsequent signal 'R' along 

a further wire informs the computer that the controlword has been 

received. There is an exactly analogous pair of signals associated 

with the receipt, by the computer, of a dataword, except that the 

-• 	functions of 'Q' and 'R' are reversed. This exchange of sigflals 

is a con contrivance in data transmission circuitry, and the 

signals 'Q'and 'R' can be seen to form a 'message-boy' service 

which ensures that events occur in the correct order (for instance, 

the computer will certainly not send a new controlword until the 

'R' signal is returned to indicate that the previous .controlword 

has been received by the experiment.) 	This pair of signals is 

sometimes known as a 'handshake loop'. 

5.2 Multiplexing and Demultiplexing 

Multiplexing and demultiplexing techniques are essential when 

the computer is of the nondedicated variety, and its time must there- 

fore be shared between users. The computer must then be able to 

exchange controlwords and datawords with many experiments by switching 

its single controiword transmission channel to many experimental 

channels (demultiplexing), and switching many experimental data 

channels to the one ccmputer data receipt channel (multiplexing). 
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The enormous advantage of this scheme of operation is that the corn- .  

puter may exchange words with several different experiments belong-

ing to several different users., apparently simultaneously, due to 

the high operation speed of the computer. Under normal circumstances, 

different experiments have no adverse effects upon each other. 

In the system implemented here, the techniques of multiplexing/ 

demultiplexing are also applied at the level of the particular control 

system, which allows the design of the on-line control circ-iitry to 

be approached on a 'modular' basis. The single computer 'transmit' 

and 'receive' channels allocated to light scattering experiments are 

thus split further into eight channels for controiwords and eight for 

datawords. This level of operation is represented by Figure 44 and 

by the table of subchannel allocation, Table 15. The lower 'select 

channels' route for the controlword in Figure 44 expresses the fact 

that it is an extra controiword which is sent prior to the control-

word for the experiment which defines the control channel A H 

and the data channel a + h relevant to the experiment in question 

(23, 24). Not all devices require to return data to the computer 

(e.g. an X-Y plotter, channel C), and the unallocated channels of 

Table 15 indicate the scope for expansion to further control of 

experiments (see §5.8) without further connections to the computer 

itself. Devices corresponding to A -'- D and a -'- d do not inter-

fere with one another and may be controlled simultaneously and inde-

pendently, or disconnected completely, as required. 
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TABLE 15. 	Allocation of control and data subchannels at 

control system level, as implemented (see 

Figure 44). 

A Coderg T800 triple no- 	 a Photon counter for A 

chrotnator 

B Digital voltmeter input 
	 b Digital voltmeter output 

C X - Y plotter 	 C Not allocated 

D Fabry-Perot interferometer 
	d Photon counter fcr D 

E 

F 

Not allocated 

G 

H 

e 

f 

Not allocated 

g 

11 
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§5.3 	The Requirements of the Interferometer 

In order to explain the generation and the meaning of the 

controiwords and datawords of §5.1 for the interferometer experi-

ment it is necessary to give an - account of the 'manual' operation 

of the interferometer, that is before the computer is introduced. 

The interferometer is a Burleigh RC42 piezoelectrically 

scanned etalon, with three piezoelectric elements or 'stacks'. 

The expression for the angular position 8 of a maximum of in- 

tensity in the pattern produced by multiple reflection at an etalon 

5.1. 	 2nd cos 0 	= 	mA 

where n is the refractive index of the material between the plates, 

d the plate deparation, m an integer and A the wavelength. In 

the RC2 etalon, n, 0 and m are held fixed while d is changed 

by the application of a 1 KV 'ramp' voltage to the stacks. This 

results in a scan 	over a range of A which is small compared 

to the range of a grating spectrometer, but the resolution is much 

higher. In some other instruments, A is scanned by altering the 

gas pressure between the plates, and consequently n. Since the 

ramp voltage V evolves linearly in time, a plot of intensity vs. 

time on a 'Y - t' chart recorder corresponds to a spectral scan. 

This same time linearity can be exploited in interfacing the system 

to a multichannel analyser (MCA), which has (say) 100 channels and 

'strobes' the photon count over a time = T + 100 into each suc-

cessive channel, where T is the ramp duration (in time). Each 
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MCA channel therefore corresponds to an integrated intensity over a 

range of wavelength 6X equal to 

5.2 	LX 	= 	(Free spectral range) 	100. 

The data in the MCA can then be recorded on paper tape and sub-

r.equently transferred to a computer memory. The plates are then 

tracked back by the reduction of the stack voltage to OV, and a 

fresh scan can be initiated manually. 

There are some disadvantages to this method, and these are as 

follows: 

1) 	The transfer of data from MCA - paper tape + computer is 

cumbersome and time-wasting. 

Large amounts of data => large amounts of papertape. 

Comparative studies cannot be performed idiate1y. 

The data format is not immediately compatible with existing 

data-handling routines (84). 

Each data point corresponds to an integration over a non-

zero wavelength range SA. 

The etalon plates will drift axially due to temperature effects 

and mechanical instabilities, destroying calibration. 

The etalon plates will deviate from parallelism for reasons 

as in vi) above, degrading finesse (81). 

The scheme of computer control implemented here takes care of 

1) -' vi), and could be extended to remove vii) (see §5.8). 
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§5.4 	Interfacing the Computer to the Interferometer 

It would be possible, if a dedicated computer were available, 

merely to use such a computer as a glorified MCA. This would 

remove disadvantages i) - iv) of §5.3. The computer is, as has 

been said, not dedicated, and some means. must be devised whereby 

the multiplexing/demultiplexing system can be allowed to switch 

the computer's attention off the interferometer experiment, and 

on to another user or experiment (temporarily). This makes 

linear time evolution impossible. 

The problem is overcome by substituting a 'staircase' voltage 

for the ' ramp '  voltage. Such a voltage is depicted in Figure 45. 

In this mode, while the voltage V is constant, the photon count 

can be recorded for a given length of count time, and the computer 

can devote its attention to some other experiment. The fact that 

the count occurs when the voltage is constant, and therefore the 

etalon plates stationary, carries with it the added advantage that 

each data point now corresponds to a single setting, and not to an 

integral over a range oX. 	This discontinuous mode of operation 

is essential to the scheme of things. The sequence of events is 

thus: 

Lpp. Step----O-Count 	Do Store Data- 

In Figure 45, the intervals AB, EF, IJ and MN represent an 

increase OV in V and therefore a step 6X in A . Intervals 

CD, GH and KL are 'count times' and are therefore of equal 
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FIGURE 45: The evolution in time of the etalon 'stack' voltage 

within the- on-line control system. 
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length St, and intervals BC, FG and JK are 250 Vs waits 

induced by the computer to allow for mechanical 'ringing' of the 

etalon plates to be damped out. The intervals DE, HI and LM are 

deliberately drawn as unequal. time intervals, as these are the 

• junctures at which the system releases the computer to attend to 

other users. At these times, the waiting periods enforced by the 

computer have no adverse effect, provided the etalon remains stable. 

We are no in a position to detail the controlword and dataword 

associated with a complete step-count operation (e.g. A - E of 

Figure 45). 

The experiment requires to know the step size, the length of 

time for each photon count operation and the direction of scanning 

av (i.e. ispositive or negative). The convention for the 

allocation of controiword bits adoptedhere is given below. 

Bit 8 gives the sign of 	, bit 9 allows the option of either 

at, or 6t x  10 being used as the count time. Bit 10 ensures that 

the ramp generator is reset properly (see §5.5) and bit 11 clears an 

- optional manually-induced interrupt. This interrupt is arranged to 

occur during the 'dead' interval (e.g. DE, HI and LM of Figure 
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45) and is useful if something goes wrong, or adjustments must be 

made during a scan. Bits 12 -+ 15 are redundant in this case.. 

The computer generates this controlword by use of the following 

algorithm:- 

5.3 	Controiword = 20  x stepsize + 2 x  count time + 2.8  x direction 

+ 2 x (ôtxlO) + 2 10  x reset + 211  x clear interrupt. 

The values of the parameters are therefore 0 < stepsize < 15; 

0 < count time < 15; 	direction = 	±1; ót x  10 = 	±1; 

reset = ±1; clear interrupt = ±1. 

The dataword is much more simply explained. When the system 

has acted upon the controlword, the number of photons counted is 

relayed back to the computer as a 16-bit binary dataword, so that 

the maximum number of photons counted during ôt must be kept below 

216 = 65536 (or 2 16  x 8 = 524288 if the 	8 facility is used, 

see §5.5). 

§5.5 	The Interferometer Modules 

The basic modules are illustrated schematically in Figure 46, 

and the circuits are given in full in Appendix 3 (Figures A3a -' A30. 

It would be uninformative in this context to try to explain in detail 

the operation of the individual circuits in terms of their component 

parts, as this is best understood by staring at the circuit diagrams 

with the aid of the Texas instruments TTh data book (82). In essence, 

however, the controiword is acted upon by the modules as follows. 
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FIGURE 46: The modules for the Fabry - Perot interferometer (FtP) 

and Coderg T800 spectrometer interfaces, with the flow 

of information between modules, and to /from the computer. 

FIGURE 47: The overall architecture of the computer-controlled 

system for Brillouin spectroscopy. 

I 
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Firstly, the step control module interprets iSV as an integer, 

and generates a sequence of iSV pulses, which are subsequently 

summed up, and converted to an analogue increment of 1 Volt by the 

ramp generator, the sign being determined by bit 8. This incre- 

ment is input to the 'external' socket of the interferometer's own 

ramp generator,which now operates merely as a D.C. amplifier of 

gain 1000X. 	Before the stream of pulses is summed by the computer 

ramp generator, however, the 'counters' are reset to zero by bit 10 

of the controlword (see §5.4)'. After the 250 i.is wait mentioned in 

§5.4 to stabilise the etaloii, a pulse of duration 	sec.mds (or 
10 ­ 

iS t if bit 9 = 0) is sent to the photon scaler. This pui;e, the 

'count gate' of Figure 45, effectively 'opens' the scaler for 
10 

seconds. At the end of this gate pulse, the accumulated, photon 

count is relayed back to the computer via channel d. There is a 

'message-boy' loop of signals (c.f. 55.1) associated with the step 

pulse generation/count pulse generation in addition to the 'Q' 

and 'R' of Figure 43. These are labelled 'step done' and 'count 

done' respectively in Figure A3a. 

The step size has been chosen such that the voltage cannot 

possibly evolve in time faster than the maximum - 	of manual 
at 

operation, and the digital -- analogue conversion is such that 1 

step represents 2V. 	The total number of single steps in a scan 

is therefore given by (1KV) -t (2V) = 500. It can be seen that 

the count time has alternative ranges of 0 - 1.5 seconds or 

0 -- 15 seconds, depending on the value of bit 9. The additional 

facility of an optional predivision of the photon count by eight, 

switchable manually, allows for high-statistic counting to be 

performed. 
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It is, perhaps, useful to present two sample controiwords and 

their interpretation. Firstly, in 

b 11  b 10  b 9  b 8  b 7  b6  b 5  b 4  b 3  b 2  b 1  b 

0 1 0 JI 0 1  Ii 1 0 	1 

referring to §5.4, ôt = 0101, 6txlO = 0, so count time = 5 

seconds; step size = 1100 = 12, so the scan will comprise 

500 	12 = 41 steps, and thus 42 - data points. Similarly, 

011100100101 	gives a count time of 0.2 seconds and a stepsize of 5. 

The overall architecture of the Fabry-Perot system is re-

presented by Figure 47. 

Footnote to 95.5: 

The modules in Figure 45 are the same, essentially, for the 

Coderg T800 system, except that the pulses generated by the step 

control module are used directly as stepper motor pulses for the 

grating drive motor (23, 24). 

§5.6 	The Control Programme 

A complete spectral scan is represented by Figure 45, extended 

to M. This is therefore composed of a sequence of controiwords, 

and their corresponding datawords. The flow diagram for a computer 

programme which creates such a sequence is presented in Figure 48, 

with an additional, useful facility. 

-- 	If 'scans' = 1 in the diagram, the programme controls a single 

scan, measuring photon counts for a period of 5t seconds, at a 
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set of frequencies v. in regular steps of ISv. If, however, 

'scans' > 1, the programme corrects for axial drift of the plates 

by refraining from storing any counts until a threshold level is 

reached. It is therefore possible, under programme control, to 

accumulate multiple scans with threshold triggering at somein-

tensity between the maximum Brillouin intensity and the maximum 

Rayleigh intensity. This is a particular advantage when the 

scattering is weak, as it automatically compensates for axial 

drift of the etalon plates, which would destroy the frequency 

calibration in a single scan of long duration. Thus, disadvantage 

vi) of §5.3 has been overcome. In Figure 48, the stars indicate 

junctures at which the computer is effectively released by the 

control programme. This programme was written in the assembly 

language of the PDP11 computer (83) but there is no reason why 

it could not have been written in a high level language and com-

piled on a special compiler. 

§5.7 	Results 

In Figures 49 and 50 are presented the results of two separate- 

- 	Brillouin scans of BaMnF 3 . Firstly, the sequence of control in- 

structions is presented, along with the resultant stored data file. 

Below these are plots of the corresponding spectra, drawn by the 

X - Y plotter in Table 15, controlled by a graphics programme 

compatible with both the Coderg T800 system and interferometer 

system-files. Figure 50 is of particular interest, as it repre-

sents a multiple scan. It can be seen that the stored data begins 
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FIGURE 48: Flow diagram for the interferometer control programme, 

including the ' multiscan ' option. The scan will actually 

be linear in wavele'.gth. X, but also linear in frequency 

V to within 	0.3%. 

FIGURE 49: Command sequence , resultant datafile and plot for a 

Brillouin scan in 'single scan' mode. The underlined 

sections are computer prompts. 

FIGURE 50: Command sequence , resultant datafile and plot for a 

Brillouin scan in 'multiscan' mode. The underlined 

sections are computer prompts. 
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at the threshold level, on the 'leading edge' of a Rayleigh peak. 

The methods of processing these data files are discussed in 

references 23, 25 and 84. 

5.8 	Conclusions and Speculation 

The system described in the preceding sections of this chapter 

certainly provides a reliable, working facility for high resolution 

light scattering spectroscopy. The data is collected in a useful 

format, and in a precisely controlled and repeatable manner. The 

design of the system requires only that a data handling terminal 

and a time shared computer be available, so that the scope is not 

limited by the cost of a dedicated computer. The computer provides 

the addition-'al facilities of disc storage, programme compilers and 

data links to a larger job-processing computer, so the large amount 

of data created by comparative studies does not present a problem. 

The data is readily available for immediate manipulation, or for 

later analysis on the larger computer. 

The control method incorporates an ability to minimise the 

detrimental effects of axial drift of the etalon plates. Non-axial 

drift still presents a problem, however, in that the resultant loss 

of plate parallelism degrades finesse and thus renders very lOw 

statistic experiments impractical due to the long times involved. 

This could, in principle, be rectified within the scope of the 

existing system, by the application of a small 'trimming' voltage 

- to each of the piezoelectric stacks independently. The decision 

as to the magnitude and sense of these voltages could be made by 
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the computer. This might involve a multiscanning mode of operation 

in which the computer compares each successive scan with its pre-

decessor and decides whether or not finesse is deteriorating. The 

trimming voltages could then be adjusted by the computer (via 

digital/analogue convertors) to converge upon optimal plate align-

ment. The criterion for such a convergence could simply be that 

the height of the Rayleigh peak be maximised. A more sophisticated 

method, however, would be to study the shape and width of the 

Rayleigh peak, and to regard high peak intensity and narro'.rne.ss 

as desirable qualities. There are a number of ways in which this 

criterion might be applied. This proposed addition to the scope 

of the system could be made within the framework of the existing 

multiplexing network, using channel E of Table 15. Obviously 

some further circuitry would be required and a more complicated 

control program would result. 

A much more drastic development, however, would be the intro-

duction of a microprocessor (85), and the complete replacement of 

the entire Raman/Brillouin system control circuitry. Although the 

combined system at present offers more than adequate capabilities, 

it is not independent of the vagaries of the computer itself. The 

circuitry would be simpler, as much of the work currently done by 

circuits would be done by microprocessor programmes, and a link to 

a computer could, of course, be included. The future of automatic 

spectroscopic systems must surely lie in the direction of the 

microprocessor. 
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CHAPTER 6 

INCOMMENSURATE - COMMENSURATE TRANSITIONS: A THEORETICAL STUDY 

Introduction 

There has been considerable interest in recent years in the class 

of transition leading to an aperiodic system,known as an incommensurate 

phase ,which is not strictly amorphous. Many of the properties and 

characteristics of such materials have been summarised by Axe (86). 

The analysis reported in this chapter forms part of a current 

programme of study involving several aspects of incommensurate transition 

theory (87, 88, 89). I am particularly grateful to Professor R.A. 

Coxiey and Dr. A.D. Bruce for encouraging my collaboration in this 

exciting project. 	
/ 

§6.1 	Incommensurate Transitions: a Definition 

The dictionary definition of 'commensurate' (actually commen-

surable) is "capable of being measured exactly by the same unit." 

The unit of measurement for a crystal lattice is the unit cell dimen-

sion (e.g. 'a' in Figure 51(1)). If a distortion of such a simple 

structure occurs (as temperature is lowered) which can be described 

by a displacement field u(z) = u1 cos q 0z + u2sin qz and q 	 is a 

simple rational fraction of r = .1E, 	the transition is said to be 

from a disordered to a commensurate phase. The classification 

'disordered' is borrowed from the terminology of magnetic transitions. 

Such a disordered-commensurate transition is given by imposing a 
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FIGURE 51: 1) A linear monatomic chain of primitive cell dimension 'a'. 

A distortion of the form u(z)= U cos q z, where q =. 1L 
T  c 3a 

The structure produced by a distortion 51(11) on 51(i). 

FIGURE 52: 1) A distortion of the form u(z)= U cos q z, where q = 
C 	 . 	c 3a 

The structure produced by a distortion 52(1) on 51(i). 

A distortion of the form u(z)= U cos qz, where q. 
1 	 1 

is close to, bui not equal to 
3a 

The structure produced by a distortion 52(iii) on 51(i). 

A distortion of the form u(z)= U cos( q 	+ (z)), where 

q = 	- and 4(z) 'contains two phase solitons'. 
c 3a 

The soliton regions are marked 'S'. 

The structure produced by a distortion 52(v) on 51(1). 

The solitons can be seen as regions of local aperiodicity 

separated by regions of local orde.ring as In 52(11). 

FIGURE 53: 1) The form of (z) corresponding to a two-soliton 

distortion of 51(1) close to a lock-in transition to 

q  _ 271 
c 3a 

A distortion of the form u(z)= U cos( q z + (z)), where 

and (z) contains two phase solitons as given by 53(1). 

(identical to 52(v)). 

The structure produced by a distortion 53(u) on 51(1). 

(identical to 52(vi)). 
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distortion u(z) given by 51(u) on the disordered structure 51(i) 

to produce 51(111) (commensurate). Clearly the new unit cell 

d1Ension is 3a, and the structure 51(iii) can indeed be measured 

by the same unit 'a'. The wavevector q 	is here equal to 1. 

The modulation in the structure can be thought of in terms of a 

'soft' phonon with wavevector q which condenses to w = 0 to 

produce the commensurate structure. Obviously, a distortion where 

the minimum in the soft mode dispersion occurs at q c  = T = 0 is 

homogeneous, and the unit cell dimension does not change. The class 

- 	of transition termed incommensurate occurs when the soft mode located 

by the minimum in w(q) has e. wavevector q 1  which cannot be ex-

pressed as a simple fraction of t, and the distortion induced by 

the condensation of the soft mode produces an aperiodic system. Such 

a system obviously cannot be measured exactly by the unit 'a'. A 

distortion of Figure 51(i) of the form u(z) = U cos q 1z is plotted 

in 52(111) and (iv), with q i  close to but not equal to -. 	This 

phase is not strictly crystalline. In fact, anharmonic terms in the 

Hamiltonian ensure that to some extent, the incommensurate distortion 

will include harmonics of q. (90). The extent of the contribution 

from these harmonics depends on the detail of the soft mode dispersion 

(see §6.2 and §6.3). 

In the case of an incommensurate transition in a conductor, the 

presence of a Fermi surface associated with the conduction electrons 

can provide an excuse for incommensurability. It is well known (91) 

that the proximity of a phonon wavevector to the Fermi surface results 

in Kohn anomalies - points of inflection in the dispersion curve. 

It is plausible that the enhanced screening of phorion frequencies 

caused by the electron-phonon interaction at the Fermi surface could 
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also affect the temperature dependence of the frequencies to provide 

an incommensurate soft mode. Instances of incommensurate transitions 

with characteristic wavevectors identical to the wavevectors cf marked 

Kohn anomalies have beer. reported, particularly in quasi-one-dimensional 

conductors (e.g. (92)). 

By no means all structurally incommensurate transitions occur in 

conductors, however, and for illustrative purposes 

commensurate transition at T. = 130K in K SeO 
1 	 2 	4 

The temperature dependence of the soft nude branch 

relation of K2SeO4  (from inelastic neutron scatte 

sented schematically in Figure 54. It can be seen 

the disordered- in-

is relevant here. 

of the dispersion 

ring (93)) is pre-

that the soft phonon 

condenses to zero frequency at 130K ata wavevector of 0.31T, pro-

ducing an incommensurate structure (c.f. Fig. 52(iii) and (iv), where 

= 0.323r). When the incommensurate distortion occurs in K2SeO4 , 

there is a concomitant appearance of satellite Bragg peaks in the 

neutron scattering cross-section at S i  (or X-ray scattering cross-

section). This is due to the fact that the distortion is itself 

periodic (c.f. Fig. 52(iii)) although the structure it produces is 

not. If the modulation were commensurate, of course, the new Bragg peaks 

would occur at ac , some rational fraction of t . A study of the 

elastic scattering therefore provides a probe of the value of 

In K2SeO4, jj is close to T/3, and may be expressed as Si = 

LI3 - 	= &C  - 6, where 6 is small. A study of the temperature 

dependence of s. in K204 
Se(93) is represented by Figure 55. At 

the satellite reflections appear at S i
c (1 - 0.07)t/3 and 

shift to cl, 	(1 - 0.02)t/3 over the following 	40K. 

At T = 93K, a further transition can be seen to occur, at 

which 6 -- 0 apparently discontinuously and therefore S i  + 
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FIGURE 54: The form of the soft-mode dispersion at temperatures above 

and equal to the disordered-incommensurate transition T. 

for K2SeO4  (schematic). The parameter cS measures the deviation 

from commensurate, L ordering (reference 93). 

FIGURE 55: The variation with temperature of the parameter 6 for 

K 
2 	... 
SeQ, 	

c 
. At a temperature T , 6 -* 0, apparently discontinuously, 

corresponding to a lock-in to commensurate I ordering. 



> 
U 
z 
u-I 

0 
Ui 

U- 

-n .  
C) 

• 	Ui 

39 
WAVEVECTOR 	 •. 



ue 

W-1  

mll 

MAI 

- 

I 	 - 

I 

I 	 - 

IC 

TEMPERATURE 

m 

U-' 
Ui 



-132- 

The structure below T. is 
:i 

cell, dimension 3X that of 

sequence of transitions in 

analogous to the one-dimens 

consequently commensurate, and has a unit 

the disordered phase (above T.). The 

K2  Sao 4  as temperature is lowered is thus 

ional sequence from Figure 51(1) to 52(iv) 

at Ti. and finally to 52(u) at T. 	The transition at T c where 

the wavevector of the distortion jumps to a commensurate value is 

commonly termed a lock-in transition. It is the purpose of this 

chapter (and reference (88)) to elucidate the nature of the dis-

tortion just above T, the lock-in transition temperature. 

No detailed argument is offered here to explain the existence 

of irrational wavevectors for soft nodes in insulators. Inbiitively, 

it is not surprising that, in some materials, zone boundary or zone 

centre modes become unstable, as these are obvious critical points 

on the dispersion curve, and it seems reasonable to expect other 

high symmetry points to provide lock-in wavevectors. The existence 

of energetically favourable incommensurate modulations is controlled 

by the nature of the atomic forces. The philosophy of this chapter, 

therefore, is to investigate model Hamiltonians with suitable minima 

in the soft mode dispersion branch, and to adjust the harmonic 

parameters to induce phase transitions. This Landau-style manipula-

tion will be applied to the lock-in transition. A discussion of the 

disordered-incommensurate transition is given in reference 87 

The phase diagram with respect to the parameter 6 is essen-

tially given by Figure 56. For 6 = 0, the transition is directly 

from the disordered phase to a commensurate phase. Otherwise there 

is an intervening incommensurate phase which is traversed as tempera-

turels lowered. It must be remarked that not all incommensurate 

phases lock in to commensurability (e.g. NbSe 2  (90)). For the pur-

poses of this work, incommensurate lock-in transitions can be classed 
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FIGURE 56: Schematic phase diagram for a system exhibiting 

disordered-commensurate, disordered-incommensuratc, and 

incommensurate-commensurate ('lock-in') transitions, in 

terms of the parameter 6. 
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as being one of two types. At type II transitions, the lock-in wave-

vector 	defines a point of inversion symmetry (e.g. 	= 0; 

= T/2), at type Itransitions it does not (e.g. 1/3). These 

two cases have a different Hamiltonian, and consequently a different 

incommensurate distortion profile. 

A simplified reformulaticn is given in §6.2 of the analysis of 

the type I Hamiltonian, as studied by McMillan (94) and Bak and Emery 

(95). In §6.3, the Hamiltonian is constructed and analysed for type 

II transitions, and the form-of the distortion profile derived. In 

§6.4, conclusions are drawn. 

6.2 	Type I Transitions 	Tip; p > 2) 

So far, the illustrative example has been a monatomic linear 

chain. It turns out that examining the form of the incommensurate 

modulation in one dimension (the direction of 	= [o, 0, q.] does 

not obscure any of the physics, provided the generalisation to 3D is 

carefully considered. 

The basic model for both types I and II transitions is illustrated 

schematically in Figure 57. In this model (96) the atoms are assumed 

to move in double well potentials, localised on the undistorted 

positions, and of the form A u 2 (z) + B u(z), where u(z) is the 

displacement of the atom at z from its undist )rted position. 

Furthermore, there are assumed to be (generally anharmonic) inter-

atomic interactions. 

Since we know that q i  is close to some q at the lock-in 

boundary, let us represent u(z) by: 

6.1 	 u(z) 	= v'U(z) cos (qz + 



-135- 

FIGURE 57: A simple model for a system undergoing displacive phase 

transitions. The parameters characterising the double wells 

and the interatomic forces can be adjusted to produce an 

- 

	

	 energetically favourad incommensurate phase. The circles 

represent atcms, and the 'springs' atomic forces. 
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The essential anharnonic terms in the Hamiltonian density in terms 

of these variables are 

6.2 	 H (z) 	BU(z) + C U(z)cos p 4(z) 
an 

where q = 	and H = JH(z)dz. The exact forms of these terms 

are most conveniently obtained by expressing the full Hamiltonian in 

the form of equation 4.7, i.e. ( excluding kinetic energy> 

6.3 	 H. = 	fw2 (q) IQqI2  dq 

+111 V3 (q 1 q 2q 3 )Qq Qq Qq (q 1  + q 2 + q3  + K)dq1dq2dq 3  

+ ..... 

Considering the anharnonic terms, and restricting the range of q 

to small regions around ±q by means of the transformation: 

6.4 	 %q+4 	
= 	(P1 (a) ± i P 2 ())/V'I 

then expressing the Fourier transforms of the P's as 

6.5 	 P1(z) = U(z)cos 4(z); P 2 (z) = -U(z)sin 4(z) 

yields equations 6.1 and 6.2. The first and second terms in 6.2 can 

be identified respectively with the B u4 (z) term in the double 

potential well, and the p-th order anharmonic interatomic coupling 

term in the model. It is clear that the 6(E q..3 + K) associated 

with each term of 6.3 restricts the order of anharnonicity in which 
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coordinates with q. 	q 	= t/p can appear. 

The form of the harmonic term is critical, as it essentially 

defines the difference between type I and type II transitions. When 

does not define a centre of inversion sy mmetry for the dispersion 

curve, w 2 (q) can be represented for the regions around ±q i  by the 

form 

6.6 	 W2 (q) = 	+ (q - q 1 ) 2  

and 	T - Ti  gives the required variation. It is important to 

note that this is not a valid approximation for type II transitions 

(see 6.3). With the same set of variable changes as described for 

the anharmnic terms in H(z). we have for the harmonic terms: 

6.7 	 H(z) = 	
WO 
2U2 (z) + 	 + U2 (z)(Vc(z)) 2  

+ U2 (z)6 2  - U2 (z)V(z) 

a 
where V = - and 

6.8 	 q1 	= 	+ 6. 

The full (essential) Hamiltonian density is now given by 

H = H0  + Han and we can attempt to adjust the form of u(z) to 

minimize the corresponding free energy. With no loss of generality, 

we may restrict our discussion to q = T/3. Before presenting the 

result of this procedure, it is fruitful to consider the single plane 

wave incommensurate distortion of Figures 52(iii) and 52(iv). This 
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corresponds to U(z) = constant, c(z) = 6z = O.Olz in equation 

6.1, and the only z-dependerit term in H is ClJ 3cos(0.03z). This 

term provides equal positive and negative contributions to the free 

energy, depending on the value, of the cosine. A net lowering of the 

free energy can he obtained by modulating the amplitude U or the 

phase 	(or both). Since the term in 6.7 which lowers the free 

energy for 'S 0 0,(i.e. which favours incommensurability) depends 

only on 	Vq(z), it seems plausible that phase modulation is more 

important. McMillan (90) noted also that modulating the amplitude 

increases the positive U 2., U 	terms of 6.2 and 6.7, more than 

dces a variation of 	, such that in his language, 'amplitude 

modulation costs more energy'. Accordingly, the phase-modulation-

only hypothesis is adopted, although it most be borne in mind that 

U(z) may vary. Indeed the fact that U most at least vary from 

zero above T to some small nonzero value below T suggests 
i 	 , 	 I 

that the phase-modulation-only form should not be applied near , T.
1. 

With this reservation, therefore, setting u(z)=, 12U cos(-z 4' 

for amonatomic chain of length L we have a free energy/ unit cell 

6.9 	 F =  
u2 L 

 + UC cos 3)dz 
Lfo  2 

u2 o 2  
- -(4 -  •)o + L L 	o 	2 

Within this expression, there is a 'competition' between the 

integral term, which is minimised for 4(z) = constant = 0,j 

(remember C < 0), and the term in 
( 1JL - •), which provides a 

negative contribution to F if 	z) varies along L. Given that 

z) should vary, therefore, the minimisation of the integral demands 
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that the variation of 	z) be in steps of il  and that the steps 

satisfy the sine-Gordon equatioi (SGE) • =+3UCsin 3, onc of whose 

solutions is the SOLITON,(97) 

6.10 	 (z) 	= i-tan - 
	 2 exp (-9UCz ) 

A two-soliton_distortion of the structure of Figure 51(i) is given 

by Figure 52(vi)', and the corresponding form of u(z) by Figure 52(v) 

(also Figure 53(u)), The corresponding variation of 	(z) is given 

in Figure 53(1). Clearly, this distortion corresponds to regions of 

comnsurate, periodic - ordering where 	is constant, separated 

by regions of local rapid phase variation (phase solitons, marked s) 

giving rise to localised aperlodicity. The soliton regions may be 

regarded as 'domain walls' between the locally coensurate' regions. 

At a lock-in transition to q C = 	the solitons must space out 

until 	= constant over the whole crystal, so the soliton density 

must go to zero continuously as T + T+. 	The order parameter for 

the lock-in transition is therefore the soliton density. McMillan 

(90) has shown analytically that S, and therefore soliton density 

goes continuously to zero at T c and the lock-in transition is 

continuous. In the event that macroscopic strain appears in the 

Hamiltonian as a coupling to the soliton density, the strain acts 

as an intermediary between widely, separated solitons and it can be 

shown (88) that the transition is then of necessity first order 

(cf. Figure 32a). In practice this will almost certainly be the case. 

A further inadequacy of the theory above is that it does not take 

any account of the underlying lattice. Obviously a solitor is not a 

useful concept when its width is comparable to the lattice spacing, 
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as it would then represent a dislocation, and not merely a discommen-

suration (94) . Furthermore, the lattice may well provide preferred 

soliton locations. Work is currently in progress to study the 

nature of incommensurate distortions (if they exist) without regarding 

u(z) as a continuous field. This is algebraically messy, and numerical 

methods will have to be used. An attempt to analyse the model by 

analogy with the description of a submonolayer film on a substrate 

(98) failed due to the singular nature cf the double well potential. 

§6.3 	Type II Transitions 	0) 

As has been said, when q. = 0 + 6, the expansion w 2 (3.) = 

c 2 +q-a. 2  is not valid since - 	must -* 0 as 	- 0. This means 
0 -1 

that steps 6.6 - 6.7 are impossible, and 6.3 - 6.5 unhelpful for 

type II transitions. It is most useful to consider the model of 

Figure 57, with nearest and next-nearest neighbour harmonic inter-

actions, explicitly. The model Hamiltonian is therefore, in a real-

space notation 

6.11 	H = E[ 
	+ * 

- 2 
+C(u 	u) + C (u 	u ) 

2 	+2 . 
	2] 
- 

1  

where u ,  is the displacement of the 9.'th atom. 	Using that fact 

that, for the type II incommensurate distortion, wavelength 

>> a, we can expand u as a Taylor series and thus go to 
qi  2 

the continuum limit, i.e. u 9,4  = u(9.a) + na Vu(Za) + 
	a V 2ua + 
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This projects out a Hamiltonian density 

	

6.12 	H(x) = 	U2(x) + 	U(x) 

	

+C(VU(x)) 2  -[(V2U(x)) 2  + 	VU(x)V 3U(x)] 

where 

I 	 1/8 

	

6.13 	U = B 4 u ; 	x = -2B 	z/((C1  + 16C 2)a) 

and k, C have been similarly defined. 

Equation 6.12 provides a suitable function to investigate the 

energetically stable configuration for U(x) by integrating over a 

length L of 'crystal', and minimising the resultant free energy. 

This calculation will be performed within two hypotheses. 

6.3(i) 	A single-Fourier-component distortion (SPW) 

This form for U(X) is represented by 

	

6.14 	U(z) 	= U cos q x 

and gives a free energy/unit cell  of: 

U2 2 	+ 	+ 	q) 	5U 

	

6.15 	FL = i- w (q) 	32 	4 	+ 

l 

	

6.16 	w2 (q) 	= 	+ Cq 2  + 	t+ 
q 

-- This form for the harmonic term clearly describes a system which, for 
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C < 0, can have an energetically favoured phase with q= 

i—C q1 	6 = (- 	, i.e., a minimum in the dispersion at 6. 

It can be seen that the disordered (d) phase corresponds to U = 0, 

the incommensurate (i) phase to U # 0, q 1 	6 and the commen- 

surate (c) phase to U 0, q = 	= 0. Within the single plane 

wave approximation, therefore, we have 

- 	6.17a 

6.17b 

6.17c 

(F,.) 	(FL) 	when C < 0 < A ; C 2  = 	A 

(FL) 	(FL c) 	
when C, A < 0; 

(FL) 	(FL) 	when C > 0 	; 
d 	c 

C2.= (1 i14 A 

A0 

"I 

and the phase diagram is given by Figure 58 where A is regarded as the 

temperature dependent parameter. It now seems reasonabl. to apply a 

inre general trial form for U(x) 	incorporating harmonics. 

§6.3(u) 	A multi-plane wave distortion (MPW) 

Substitution of a multiple-component Fourier series for U(x): 

6.18 	U(x) 	FU 
in 

cos m q x 
m 

projects out as free energy/unit length from 6.12 

6.19 	F = - U2 	+ 	E U2  cz 2 (mq) + 
L 	2o 

m>O M 	
32 

+ 	z U  U U [46 (m-n-o-p) + 36(m-4-n-o-p)] 
32 	 mnop 

mnop 



L t 1j 

FIGURE 58: Phase diagram for a system exhibiting a type II lock-in 

transition ,within the simple single-Fourier-component 

distortion (SPW) model of §6.3(i). 
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where 	2()  is given by 6.16. 

A computer minimisation programme was used to minimise 6.1.9 

"V 
for a particular C, A in terms of 1, 2, 3, ... 7-component. Fourier 

distortions with a view to a soliton-like form. Substitution of the 

Fourier components of a soliton does produce a minimum in F.., but 

not an absolute minimum (i.e. the SPW free energy is always lower). 

A further multi-component series does yield a lower FL  than the 

SPW, but the series is rapidly convergent, and therefore the form 

of U(x) almost sinusoidal. The variation of the SPW and MIPW free 

energies with C is shown in Figure 59(i) and (ii) respectively, 

along with the commensurate free energy 59(iii). It can be seen chat 

the lock in transition occurs at a value of T CJ 	= -0.92 
between a NPW state and a commensurate state. The MPW series has 

U. = 0 for m even, and U 3 	- 0.035U 1 . The self-consistencyM.  

of this solution can be checked analytically in terms of a two-plane-

wave distortion with this ratio of U 1 : U3  

It can also be shown (88) that the rescaled displacement field: 

6.20 	W(
4',
x) 	= 	(—A) 2  U(x3A

A, 
 l !) 

obeys a fourth order, nonlinear differential equation 

U,, 
,r. A, 

6.21 	W - C 	/A W + (W2  - l)W = 0 

This equation is the type II transition analogue of the SCE, but does 

not appear to have a simple analytic solution. A numerical analysis 

of 6.21, looking for a domain wall solution, shows that such a solution 
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FIGURE 59: The variation with parameter C of equation 6.12 of the 

incommenstfrate phase free energy within the single-Fourier-

component model (SPW) of §6.31 (line i), and the multi-plane-

wave model of §6.3ii (line ii). Line iii represents the 

commensurate phase free energy. 

FIGUIE 60: The variation with parameter C of equation 6.12 of the 

energy of a domain-wall type solution (soliton-like) to 

equation 6.21. Note that for C> -1.14, the disordered phase 

free energy (=0) is less than that of a domain wall, and that 

for C<  -0.98, the MFW incommensurate phase is already favoured. 

This means that the domain-wall solution is never favourable 

in type II transitions. 
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does exist, but that its free energy is never lower than that of 

either a disordered, commensurate, or incommensurate SPW phase. In 

other words, although asoliton phase does 'exist', as a minimum in 

FL, it is never energetically favourable. This is clear from 

Figure 60, in that by the time the soliton energy is less than the 

disordered phase energy at C < - 1.14, the SPW phase has already 

become favourable. This is entirely consistent with the results of 

- 	the NPW analysis and Figure 59. 

It seems, therefore, that the different form of the soft mode 

-- 	dispersion in type II materials leads to a qualitatively different 

distortion profile in the incommensurate phase from that of type I 

materials. The fact that the lock-in transition occurs at C = -0.92 

means that, even within an MPW model, the deviation from commen-

surability 5 (= (- -) ) must vary discontinuously to zero at T 

and that the lock-in transition is first order regardless of coupling 

to strain degrees of freedom. 

§6.4 	Conclusions 

Types I and II transitions have been shown to have qualitatively 

different distortion profiles, corresponding to the extremely Un-

sinusoidal modulation characterised by an array of phase solitons, 

and a nearly sinusoidal form respectively. This qualitative difference 

demands that a type I lock-in transition can in principle, be con-

tinuous, as soliton density goes to zero, although in practice it will 

almost certainly be first order. A type II transition is, of necessity, 

first order. 
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In three dimensions, the solitons and plane waves become in-

finitely extended planar wavefronts. There is no a priori reason 

why discommensuratjons cannot occur in more than one direction, and 

the 'crossing' of solitons may lead to dislocations (90). 

The modes of excitation of any incommensurate single-plane-wave 

ground state (89) correspond to a local phase modulation (phason) 

or a local amplitude modulation (ampliton?). An attempt to detect 

phasons (whose dispersion should resemble acoustic modes) in BaNnF 4  

by Brillouin spectroscopy failed, although a critically temperature 

dependent node of vibration was found. This temperature dependence 

has been conjectured by Scott (99) to be due to acoustic mode-phason 

coupling, although no direct observation of phason scattering has 

yet been reported. There is, therefore, a need for high resolution 

Brillouin and neutron scattering studies at T <T 1  to verify 

directly the presence of a phason dispersion branch, whose frequency 

+ 0 as ci -- ci.. Possible materials for such studies are BaNnF 
-..- 	-i-i. 	 4' 

K 2SeO4  (type I) and NaNO 2  (type II). The failure of the Brillouin 

experiments to observe phason scattering directly may be due to 

inadequate resolution. Alternatively, there may be a gap in the 

phason dispersion, due to pinning effects (particularly in the 

soliton limit). This could shift phason peaks out of the free spectral 

range of the interferometer. Neutron and Raman studies, along with a 

detailed lattice dynamical study, should resolve this question. 
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APPENDIX 1 	Perturbation Theory and the Anharmonic Greens Function 

In the Schrodinger picture of Quantum Mechanics, the wave function 

evolves in time according to the equation: 

A1.1 	1W)> 	exp -i 
Ht

Iip(0 )> 	= 

- which, in the interaction picture becomes 

iH t 
o 	-iHt 

A1.2 	hIi(t)> 	= 	exp 	exp 	I(0)>ri  

= 

where U(t 2 ,t 1 ), (t2t 1 ) are the time evolution operators between times 

t. 1 , t 2  (= 0, t in A1.1 and A1.2). 	U has the property 

A1.3 	fl(t3 ,t 2)u(t2 ,t 1 ) 	= 	iJ(t3 ,t1 ) 

Now consider expression 1.36 for G(ab,r). Using the definition 

of the interaction picture (11) and the properties of Tt,  this gives 

Tr 	-H 	[ 	a,t)-* 
	- 

A1.4 	G(ab,t) = .- {exp 	T 	(p (rb, 0) u(fl,o)]} 

Differentiating A1.2 gives a differential equation for U, 

Al .5 	U(t,O) 	= 	- ' ii(t, 0) 

where ii' is the additive term 1.35 to the harmonic Hamiltonian. This 

can be solved iteratively to give (20), (22): 

- A1.6 	il(t,O) = 1 + 	1 -1 n -  (_ 	f T 
	T(H'(T 	H'( i) -'- 	t 	d 

	

))t 	di
n 	

i 
n 	1 

	

U 	 00 	
n 
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When substituted into A1.4, this gives 

A1.6 	G(ab,t) 	= 	GH( aa , t ) 

+ Tr -j- ( -  ç) f. I Tjexp - H H' (T 	.+ 

X p(a,T) p (1b,O)] dt 1  - dt 
U 

When expression 1.35 is used for H', and V is redefined such that 

4-  'P(a), we have, for 
[ ] 

in A1.6, a string of 'P and 

operators at all the dummy'times' {T}, with their respective 

{V(-1 12 3)} coefficients, as well as 'P(ya,'t) 
 and 'Px(yb,0). 

a b c 
Wick's theorem (20) allows this to be written as a series of products 

of harmonic Greens functions, and obviously we must have an even number 

of 'P and 	for a particular (ia), or the trace is zero. Going 

over to the frequency Greens function G(ab, iw), we have a series 

of 'P operators, separated by V coefficients. For each V(123) there 

is a term 116(w  + '2 + w3), as well as the "-1 + 2 + ) 3) of 

1.35. 	There is also a term 
( _1)  fl associated with the properties of 

(20). It can be shown (20) that terms with more than two 	for any 

(ia) disappear as n - . 	We can now generalise to higher order 

anharmonicity, and represent the series diagrammatically. If each 

V(123...) constitutes a circle, and each GH(iw)  a line, with r 

running left to right, then some terms of the frequency Greens function 

are illustrated in Figure Ala. Two useful simplifications can be made. 

It can be shown that the (n!) 1  in A1.6 can be dropped if only topo-

logically distinct diagrams are drawn (Ala ii and iii are not) and 

-1 	
i 	i the Z 	'can be ignored f disconnected diagrams (e.g. Ala iv) are 

ignored. 
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From the above considerations, one can work backwards and cal -

culate a term in G from a diagram. The diagram has thus become the 

manipulative tool, instead of equation A1.6. We can construct 1.53 

for infinite order as follows. If 	is taken 

to represent the full Green's function and 

is taken to represent 11S(ab, i), the vertex contribution for all 

connected diagrams, then 'equation' Fig. Albi is true. Thus equation 

1.6 may be written as Fig. Albii, which gives for G(ab, in) 

A1.7 	G(b, iw) 

= 6 	G11 (.z iw) - 	tI GH(.,  iw)S(1ac, iw)G(cb, iw) 
ab aa 

C 

S is called the (complex) self-energy. 	A1.7 reduces to 1.53 when 

S is written as A + iT, and 1.51 is written for GH. Equations A1.7 

and Albv are equivalent, and are known as Dyson's e quation. 
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FIGURE Ala: Some tern's in the diagranatic summation of the perturbation 

series for the frequency Greens function. 

FIGURE Alb: The diagraiatic formulation of Dyson's equation for the 

one-phonon Greens function, equation A1.7. 
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APPENDIX 2 	 TABLES 

Tabulated values of the fitted parameters represented 

graphically in Chapters 3 and 4. 
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TABLE Alla 

-1 
The parameters of equation 2.12 for the 167.1 cm 	A1  mode in 

cubic Ni - I, with coupling to the 76.8 cm '  mode. 

Temperature (K) w  	 (cm-1  ) 'a (CM-1  ) 
-1 

(% (cm 	) 
-1 

rb(cm 	) rab 

295 167.1 91.0 76.8 45.4 0.03 

210 161.5 82.4 65.3 49.4 -21.18 

165 163.1 84.0 69.8 56.5 -15.6 

128 164.9 84.3 67.3 56.0 -10.3 

122 157.5 84.9 64.3 55.6 -18.6 

118 157.0 82.4 51.4 34.4 -40.0 

115 152.2 82.9 67.2 47.4 -6.7 

109 152.5 83.4 87.5 148.5 -2.1 

98 152.1 81.5 61.1 51.7 -19.3 

88 159.3 83.5 69.5 58.0 -16.2 
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The parameters of equation 3.1 for the 655.0 A 1  mode in 

cubic Ni - I. 

Temperature (K) 
-1 

w 	(cm 	) 
-1 r (cm 	) 

295 655.0 31.3 

210 658.1 31.8 

165 655.1 25.1 

128 652.4 20.5 

122 658.7 31.7 

118 655.1 22.8 

115 657.7 26.7 

109 658.4 18.2 

98 653.6 19.5 

88 654.3 21.7 
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TABLE ATIc 

The parameters of equation 3.L for the 1125.5 cm' mode in Y'X'. 

and X'X' polarisations. 

Temperature (K) Y' X' X'X' - 

r w r 
0 0 

295 1125.5 43.2 1127.8 40.1 

210 1130.3 38.9 

165 1130.8 36.9 

148 1131.1 34.6 

128 1125.8 39.4 1125.1 49.9 

125 1133.8 34.6 

122 1134.4 32.3 

118 1136.0 29.1 1133.4 33.6 

115 1135.6 30.4 

109 1136.1 30.4 

98 1136.2 30.5 1134.3 30.8 

88 1136.0 29.0 1132.7 42.5 

68 1140.0 16.9 1144.6 19.8 

51 1142.0 15.2 1142.0 15.9 

25 1143.8 12.0 1141.0 15.3 

<7 1143.3 11.0 1144.3 8.8 
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TABLE Aild 

The parameters of equation 2.12 for the 863.5 cm modein Y'X 

and X'X t  polarisations. 

Temperature (K) 	 Y'X' X'X' 

(A) F w 
0 0 

295 863.3 15.6 863.0 

210 866.1 	- 13.6 867.2 

165 866.9 13.0 865.5 

148 866.3 12.1 

128 862.5 15.1 863.5 

125 867.9 11.4 

122 868.3 11.3 868.8 

118 869.0 10.1 867.0 

115 869.0 10.8 868.5 

109 869.5 11.4 867.6 

98 869.7 10.9 867.3 

88 869.7 10.1 868.3 

73 873.9 6.8 

68 871.0 7.5 
* 

876.9 

51 872.7 6.5 
* 

872.7 

25 874.2 5.7 871.7 

<7 8739 5.7 874.3 

- taken from poor quality spectrum. 

F 

15.5 

14.0 

16.5 

13.6 

9.3 

10.4 

15.3 

11.1 

10.5 

14.5 

5.2 

6.3 

6.4 

4.8 
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TABLE Alle 

The parameters of equation 3.1 for the 611.4 cm' mode in 

Y'X' polarisation. 

Temperature (K) w r 

295 611.4 20.0 

210 614.5 17.8 

165 615.5 16.7 

148 615.1 15.4 

128 610.7 20.5 

125 616.8 13.4 

122 616.4 13.4 

118 618.1 13.0 

115 617.6 13.3 

109 618.2 14.0 

98 618.7 13.3 

88 618.8 13.5 

73 623.4 8.0 

68 622.3 9.1 

51 622.5 7.5 

25 623.8 6.5 

<7 623.0 7.3 
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TABLE Alif 

The parameters of equation 31. for the 1199.5 cm' mode in Y'X' 

and X'X' polarisations. 

Temperature (K). Y'X' x'X' 

r r 
0 0 

295 1199.3 73.6 1200.6 60.8 

210 1204.0 57.2 

165 1204.1 66.9 

148 1203.1 51.7 

128 1201.2 60.3 1202.2 62.6 

125 1207.2 46.3 

122 1206.8 44.1 

118 1207.8 37.5 1205.6 41.9 

115 1207.8 42.2 

109 1208.0 .41.3 

98 1208.3 43.0 1208.4 43.1 

88 1208.0 44.4 1209.2 46.7 

68 1210.7 21.3 1216.3 23.3 

51 1213.0 16.1 1212.6 18.1 

25 1213.8 13.6 1211.8 17.0 

<7 1213.7 9.7 1213.7 8.25 
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APPENDIX 3 	CIRCUIT DIAGRAMS FOR THE BRILLOUIN SYSTEM 

FIGURE A3a: The step control module of Figure 46. 

FIGURE A3b: The photon count scaler module of Figure 46. 

FIGURE A3c: The ramp generator module ( converts digital 

pulses to analogue voltage steps ). 

FIGURE A3d: Front-panel connections of the step control (D) 

photon count scaler (K) and ramp generator modules. 
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Abstract- The Raman spectrumof Ni 3 B0 1 1 is reported and the number of q = 0 phonon 
frequencies observed is compared with the group-theoretical prediction. Anomalies in the 
temperature dependence of phonon lifetimes and frequencies are correlated with abnormali-
ties in the dielectric, magnetic and structural properties at 130 K. The lRaman spectra 
at temperatures from 8$ K to 300 K indicate cubic symmetry. The static and temperature 
dependent structure of the Raman spectia are compared and contrasted with their counter-

parts for other horacies. It is concluded that NiB 4 O 1 3 1 is unique among bc'tudies in many 

ways, at least in its cubic phase. 

1. Introduction 

Nickel-iodine boracite. N'3 13 ,0 13 1 
 (NIA) Undergoes an improper first-order transition 

from a high-temperature paraelectrtc phase of cubic symmetry (T) to a ferroelectric 
phase at 7' 68 K. with a concomitant onset of weak antiferroniagnelic ordering 
(Schmid 1969, Nelmcs 1974. Lockwood ci a! 1978). The existence of ferroclectric and 
ferromagnetic transitions is a characteristic of the horacite famthy (Nelnics 1974). 
that is. those compounds of the form N-1313,01 3 X. where M represents a divalent metal. 
and X a halogen or chalcogen. Of the halogen boracites studied so far by various tech-
niques. only Ni-I has been found to exhibit a simultaneous ferroetectric magnetic 

transitofl. 
Ni-I is particularly interesting. however, for reasons additional to the usual boracite 

improper and therefore 'coupled' phase transition. involving more than one order 
parameter (Nelmes 1974). These are the existence of 'growth sectors'. with the attendant 
optical anisotropy (Schmid 1969. Nelmes and Thornley 1976b), and the anomalous 
dielectric, magnetic and structural properties of the cubic phase at T 

,
1 3  )0 K. These 

anomalies, illustrated in figure I. comprise broad maxima in the magnetic and dielectric 
susceptibilities (Ascher ci a! 1966) and an increase of about 0- 1 in the lattice constant 

(Will and Morche 1977 1 . 

The light-scattering study reportd in this paper is concerned with the cubic phase. 
as a first step in understanding the dynamics of this interesting compound. It could 
he anticipated that some manifestation of the abnormalities in the magnetoelectric 
and structural properties should occur in the Raman spectrum. Such an expectation 
is reinforced by the existence of a broad maximum at 115 K and a broad minimum at 
140 K in the elastic coefficient C44 , 

given by shear-mode measurements (W Rehwald 
1977. private communication), and it minimum at 120 K. with a maximum at 150 K. 

Solid State Phys MS. 799— 	 001 
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in (lie claslic compliance (Lockwood tI al 978). The phenomenon of growth sectors 
should present no difficulties under the experimental conditions described below, 
involvinu a single [100] growth sector. where the birefringence is barely measurable 
(Schmid 1969). 

An infrared studs' of Ni-I at 300 K and 100 K (Petzelt and Mayerová 1973) provides 
a useful basis for comparison of F. scattering properties. Also, the published Raman 
spectra of the paraclectric phases of Cr-Cl (Lockwood 1976) and Cu—Cl (Lockwood and 
Svme 1978) may he collated with their counterparts foi Nil, with a view to identifying 
equivalent bands. 

/1 
/ 

0 	 100 128 

Temperature (K) 

Figure 1. Temperature dependence of the dielectric (z:) and magnetic (7k) susceptibilities 

(Ascher ci al (966) and the lattice constant (a (Will and Morche 1977) of Ni-I in the cubic 

phase. 

While the structure of the ferroelectric phase of NI—I is not clear, the paraelectric 
phase has been shown to be cubic from a full structural analysis at room temperature 
and 77 K. by x-ray (Nelmes and ThornIer 1976a. b) and neutron (Thornicy eta! 1976) 
diffraction respectively, and from powder diffraction studies of the lattice constant 
over the range 77 K to 300 K (Will and Morche 1977). 

2. Eperimental 

The crvsiiil used was the same 11 13-enriched  single crystal [100] growth sector used by 

Thornley et a! (1976). supplied by Dr H Schmid. and grown by the vapour transport 
method (Schniid I 965).The sample formed a cuboid of dimensions 22 x I'4 x 055 mm 3 , 

these dimensions corresponding to the cubic <110>. <110> and <001\ directions re-
spectively. ('r stal faces were polished with I im diamond powder. 

Ni 1 appears dark green when viewed before white light, and is in fact almost 
Opaque to all the resonant lines available from krypton and argon ion lasers. This 
can be cOl'tiIrlliL'd from the published optical absorption spectrum (Dormann 1970). 
Trials showed that there is sufficient transmission for use of the 647.1 urn krypton laser 
line. Raman scattered light from Ni- I and other horacites is to low intensity and a photo- 
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multiplier tube of high sensitivity to red light is necessary to observe this. It is our 

experience that the RCA C31034A tube is essential for this cr it el:i on to be met. As 

absorption of radiation, with the corresponding heating involved, must be kept to a 
minimum axis of the sample proved most satisfactory. This orientation coincidentally 
shortest axis of the sample proved most satisfactory. This orientation coincidentally 
produced the strongest Raman signal. Consequently, the indices X'. 1" and Z used to 

categorise scattering geometries refer to the <110>. (110> and <001> directions re- 

spectively. 
Observation of the sample between the crossed polarisers of a polarising microscope 

revealed apparently negligible growth, strains, a fact borne out by the conspicuous lack 
of mixing of spectra. There was therefore no necessity for subtraction of unwanted 
modes (Mrray and Lockwood 1976). - 

Using 400 m of the 647'1 nm krypton laser light, the 90 °  scattered radiation was 

dispersed b\L..a Coderg TSOO triple monochromatOr (T < 295 K) and a Spex 1400 

double monochromator (T = 295 K) to a resolution of 25 cm in both instruments. 
The scattered light was analysed with Polaroid sheet followed bya polarisation scrambler. 
The spectrometers were automatically controlled and data collected digitally (Arthur 
and Lockwood 1974. Arthur and Murray 1978). Temperature control was achieved 
by use of  Thor nitrogen vapour flow cryostat with a chromel;gold—iron thermocouple 
for temperature measurement. The laser beam was positioned as close as possible 
to the sample surface to maximise heat dissipation. but z515 K of laser heating was 
still detected at the thermocouple. This would seem to suggest that the temperature 
at the beam position was a few degrees higher than that measured by the thermocouple. 

3. Results 

A group-theoretical analysis of the zone-centre normal modes of the Ni—I structure 
predicts the following decomposition according to the irreducible representations of 

point group 43 in 

F = 4A 1  + 6A, + lOE ± 1SF 1  ± 20F, 

of which, excluding acoustic modes. 4A 1  + IOE + 19F, should be Raman-active 

and 19F-, infrared active. 
The form of the Raman tensors (Loudon 1964) means that the Z(Y'ZjY' spectrum 

contains modes ofF 2  s mmetry (figure 2a). the Z(YX')Y' spectrum. modes ofE symmetry 

(figure 21). and the Z(.V.V')Y' spectrum modes of A 1  + E + F, symmetry (figure 2c). 

Subtraction of the Spectrum Of figure 2b from that of figure 2c with a suitable choice 

of scale factor reveals the A 1  + F-, spectrum (Murray and Lockwood 1976). (figure 11). 

As the F, scattering is roughly ten times weaker than the A 1  ± E scattering, we have 

ignored its contribution to figure 1!. Subtraction is in this case quite impossible. no 
suitable 'scaling mode' being present. The resultant spectra are described below. 

3.1. The 	sped rum 

This spectrum exhibits a Dehyc-like wing feature, common to all boracites (Lockwood 
1976. Lockwood and Syme 1978) but less pronounced in this case. its influence on the 
cross-section being negligible beyond 100 cm '. There is a broad feature centred 

n 	154 cm -' with an indistinct but non-negligible broad feature e peaking at 100 c - 
o  



004 	A F j1urrav and D J Lockwood. 

Over the rest of the frequency range studied only two further discrete peaks are visible 
at 378cm 1  and 655cin'. with some structure in the 900-1400cm' range. 

3.2. The E speerruin 
This spectrum resembles the A 1  spectrum in the region 0-300 cm . having a similar 
Debye-lik- d wing. with broad modes peaking at 160 and.84 cm '.There are. in addition, 
three discrete, isolated bands and a pair of high-frequency modes. characteristic of a 
cubic boracite. - - - 

El 

•Co) 

2 	j(b) 

2 

0 	200 400 600 600 1000 1200 1400 

• 	 Wavenumber 	 - 

Figure 2. The room temperature Raman spectra of Ni-1 in the different Scattering geometries: 
• (a) Z(Y'Z)Y'. F 2  modes; (I;) Z(Y'X)Y, E modes; (c) Z(XX)Y. A --+ - E --F F modes; 

(d) Subtracted spectrum (see §3), A 1  .+ F, modes. N.B. The ordinate calibration is given 

in Units of counts -t- SO. 

0 	 - 

3.3. The F, spectrum 	- 	- 	 •. 	 - 	- 	- - - 

The scattering of F, symmetry is very weak. Again, a narrow Debye wing feature is 
present. with an oddly shaped scattering profile below 200 cm - . comprising apparently 
two bands, plus two very weak bands at 255 cm 	and 280 cm 	It is impossible 
to decide at this stage whether the broad structure around 600 cm - and 1000-1200 cm 
is a result of some superposition of weak first-order bands or of second or higher order. 
The Z( }"Z) 1' spectrum contains TO and LO features. the Z(XZ) Y' spectrum differing 
only in the absence of io modes. 

In table I the frequencies and lincwidths (where appropriate) are presented for 
Ni- I at room temperature. along with the results of the infrared investigation at 300 K 
(Peizelt and Maycrová 1973). - 

In Iigures3 and4 wepresenta selection of spectra of E and A 1  symmetries respectively. 
recorded at various temperatures. From a visual scrutiny of these figures it is apparent 
that no change in the composition of the spectrum occurs as the temperature is varied 
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UR 

'0 
Wovenumber 	 Wovenumber 

Figure 3. The E symmetry Raman spectrum 	 Figure 4. The A 1  (+ F, symmetry Raman 

of Ni—I at different temperatures. 	 spectrum of Ni—1 at different tempera- 

tures. 	 - 

from 295K to 88 K. The only obvious modification to the scattering cr0SSseC(iOI1 
is a sharpening of the peaks. A computer fitting procedure proved essential in order that 
the true behaviour of the Raman spectrum as a function of temperature could be ex-
plored. The F, spectrum was studied over the region 0-300cm at temperatures 
between 88 K and 300 K but the signal-attenuating effects of cryostat windows rendered 
the results too weak for detailed analysis. 

Table 1. Resonant frequencies v 0(cm). damping parameters F(cm) and assignments 

for the Raman-active modes and frequencies for the infrared-active modes (Petzelt and 

Mayerová 1973) of Ni—l. 

A, 	 E 	 F, F. (infrared) 

F 	 r 	 r 1,1.0 

815 	61 	 845 	35 	 745 	48 42 • 42 

1635 	76 	 1700 	90 	 1525 	42 54 70 

3780 	IS 	 6115 	20 	 255-0 89 91 

6550 	30 	 863:5 	15 	 280-05 	h  112 114 

943-() 	36 13 136 

11255 	43 168 168 

11995 	74 195 198 

224 226 
5 	 - 	

- 258 286 

308 - 	 308 
- 	 0  320 322 

All w0  and F are from computer fits except: 

Measured from spectrum: 
 

" Measured from spectrum and too Nveak for assignment of F. - 	 - 

• ----.---•.-.- 	
-__-i-________ 
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4. Analysis of results 

As mentioned in K3. a computer least-squares fitting procedure was used to investigate 
the temperature variation of the Raman spectra. Discussion of this procedure benefits 
from a segregation of the spectra into low-frequency (0-300 cm -  and high-frequency 

(300-1400 cm') regions. 

4.1. The hiqh -freqtleiuv spectra 

The peaks in the high-frequency spectra may each be represented by the response function 

SFe 
G(w)  

+ Vcr 

where cu,, represents the resonant frequency. r the damping constant and S the oscillator 
strength. Incorporating the appropriate thermal weighting factor, the parameters 00  

and F for several E modes and the 655 cm -' A 1  mode were obtained. These are presented 

in figures 5 and 6 respectively. 

1210- 

-, 60 

1200.- 	: 	

- 
.40 

1135 	 . 0 
.. 

1130- 
 

1125 	--- - - 	 - 	 - 	

- 30 	E 
C 	870—... -. 	.- 

-16 	- 
.... 

- 

-- 	

. 12 	
: 

8621 8 
620 	-------------------- 

--20 

- 14 

610.--..-' .... 60  -•  
1
....... 2.0

...... 2....... 80 	120 	 0 	40 280 

Temperature (K) 

Figure 5. Temperatures variation of the resonant frequency w0  (squares) and damping r 
(triangles) of sonic E symmetry modes of Ni-I. The lines are intended merely as a guide 

to the eve.  

4.2. The low -frequency spectra  

The model response function in this case proves more problematic. Firstly, a Debye-
like wing feature with response function 

-. 	Sw 
6(w) = 



• 	Raman spec!iu,n (if parael('ctric NiB7011 	 007 

660 

.••- 	•. 
• 	•E 	 . 	 o 

656 - 	
1.. 

20 

652i A ---+ 

80 	120 	160 	203 	240 	280 

Temperature (K) 	 •, 

Figure 6. Temperature variation of the resonant frequency w 0  (squares) and damping r 
(triangles) of the 6550 cnr' A 1  symmetry mode. 

must be added to two functions of the form presented in §4.1. where S is again a strength 
parameter and a width. The resultant function, when fitted to the observed data, 
produced the fitted profiles represented by the smooth curves in figure 7 and the para-
meters for the E and A 1  spectra presented in figures 8 and 9. 

Secondly. if coupling is presumed to occur between the low-frequency modes. an  

inverse response function having matrix form 	 • 	- 

- V)
2 + ir' 1 w 	i'(l) 

LI  
L 	1,'() 	 — (Y + 

.• 	.,_, 

IA 	
• 	 / • 

I I 
(C) 

• 	 \. 

0 	100 	200 	3(X) 

Wavenimber 	- 	 - 

Figure 7. The low-frequency spectra of Ni-! with theoretical (its (smooth lines) in terms 

of two oscillators plus a Dehve-tike wing (a) F. symmetry: IN E symmetry. 1(1 A,(+ F) 

symliteiry. 
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790 

485 

155 
80 

	

80 	120 	160 	200 	21.0 	280 

Temperature (K) 

Figure 8. Temperature variation of the resonant frequency 	(squares) and damping r 
(triangles) of the 1700cm 	E symmetry mode. The lines are intended merely as a guide 

to the eye. 
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Figure 9. Temperature variation of the resonant frequency 	(squares) and the damping 

f (triangles) of the 1635 cm A 1  symmetry mode. 

must be postulated, having a response function given by 

G(w) = 	S 1 Sg 1 w). 	 - 
ij 

The motivation for such an ansatz conies from the poor agreement between the 
obs'.r'cd and calculated lineshapes in the A and F. symmetries (figures 7a and c. In 
fact, coupling did not improve the fitted description of the data and. in some cases, 
produced considerably poorer fits. 

4.3. Errors 	 S 	 : 

As thechannel width forall thespectrawas I cm '.an estimated errorin w 0  of ±05 cm 
seems reasonable, in agreement with tile uncertainty values calculated by the fitting 
routine. Fitted values of F are accurate to approximately ± I cm . These errors are 
not incorporated in the diagrams for reasons of clarity. 

5. Discussion 

5.1. Classification of room iei;iperoturc ::odcs  

Frni table I it is evident that, while the correct number of A symmetry bands are 
present. there is a dearth of both E and F. peaks. There are seven E peaks clearly visible 

U 

L 
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along with, we suspect, a very weak feature around 360cm 1  (see discussion bclo). 
This is a shortfall of two upon the predicted ten E modes. The most serious deficiency 
occurs in the F 2  symmetry. where only four peaks are found. the bracketed pair in table I 

being a TO-LO pair. This assertion is confirmed by comparison of the Raman frequencies 
at 255'0 cm ' and 2800 cm ' with the infrared peaks at 258 cm '(To) and 286 cm 

(Lo. The infrared spectra also indicate that the .F,0-300 cm 'spectrum does not merely 
compromise two peaks. and is far more complex than it appears at first sight (see table I). 
This would account for the peculiar low-frequency line profile in figure 2(a). 

Some clue as to the whereabouts of missing' bands can be gained from a comparison 
of the B0 4  molecular vibration frequencies obtained by fitting a generalised force field 
model for XY 4  molecules (Urey and Bradley 1931) to the vibrational frequencies of 

Zn 40(BO1) 6  and Cr-Cl (Murray and Lockwood 1976). These frequencies should be 
relatively insensitive to change of halogen or metal in the boracite formula, as such a 
change does nV drastically disturb the B-O framework (Nelmes 1974, Nelmes and 
Thornlcy 1974). Comparison with Cr-CI and Z11 40(B02 )6 results suggest that the 

378 cm 1  (A,) and 255 crn 1  (F 2 ) modes can be associated with B-O framework 
vibrations. Füithërnorc, the existence of vibrations at frequencies around 300 cm'-
(E) and 1100 cm (F,) is suggested by this comparison. This would leinforce the 
presence of an E band at about 360 cm' and support the notion that the structure 
around llOOcm' alluded to in §3.3 contains first-orcer peaks. The comparable 
modes in Cr-CI are at :475cm - ' (A,), 232cm' (E) and 1160cm, 252cm' (F,) 
(Murray and Lockwood 1976) and in Cu-CI at 385 cm' (A,), 239 cm 1  (E) and 
1167 cm', 264 cm' (F,) (Lockwood and Syme 1978). The insensitivity to metal 
substitution is clearly demonstrated. 

The low-frequency modes in all spectra are more heavily damped than their counter-
parts in Cr-Cl and Cu-Cl. particularly in the E symmetry. where the damping is roughly 
ten times greater for NJ- 1. The lowering of frequencies from Cr -CI and Cu-Cito Ni-I 

produces a low-frequency iotal cross -section of great complexity, which may contribute 
to the shortening of the phonon lifetimes, and consequently higher damping. The fre-
quency lowering also confirms that these vibrations are largely attributable to motions 
of the metal and halogen ions. in particular the latter. 

The A, Debye wing is considerably narrower than in Cr-CI and Cu-Cl. where the 
wing was conjectured as being due to disorder (Lockwood 1976). X-ray structural studies 
have shown that this disorder. if extant. is associated mainly with the Cl ion, being most 

V  obvious in Cu-C], and corresponds to a displacement of the halogen ions along the 
[Ill] axes (Nelmes and Thornlev 1974. Kennedy 1977). The Raman results for Ni-I 
suggest that any disorder is much less than in Cl horacites. in accord with structural 
results for cubic Cr-Cl. Cu-Cl. and Ni-I (Nelmes and Thornley 1974. 1976a. b, Thornley V 

ci a! 1976, Kennedy 1977). In addition, the Ni-1 spectra contain a Debye wing in 
the E and F, symmetries, suggesting that the disorder lack definite symmetry, and is 
consequently more homogeneous thin in Cl boracites, where no such wing was 

observed. •V 
V  VV  

From the fitted spectra in figure 7 it is apparent that the A and F 2  low-frequency 
spectra are not adequately described by the model of §4.2. In the case of F, symmetry 
this is undoubtedly due to the complexity of the low-frequency F, lineshape revealed by 
the infrared results (Pctzelt and Mayerová 1973). Inspection of the two-mode lit of 
figure 7(a) suggests. in fact, the presence of at least four hands. In the A 1  spectrum, where 
the numbers of observed and predicted modes agree, such an explanation is not valid. 
As the coupled mode analysis described in §4.2 did not improve the fits, the additional 
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structure must he duct o the small admixture of F, niodes introduced by the form of the 
Raman tensors. 

5.2. Tc'nlperc!tt!rL' (leJ'cn(lcltcc oft/iL' modes 

The normal behaviour of the parameters w 0  and F' as temperature is decreased consists 
of a stead rise in w 0  with a drop in V. as the lattice contracts and anharmonic effects 
reduce. From figure 5 it can be seen that this behaviour is interrupted by an anomalous 
decrease in 	and increase in r for the high-frequency F modes around 128 K. In figure 6 
asimilar effect is observed for the 655 cm 	A 1  feature. although its proximity to the 
611-5 cm ' F mode made fitting less exact. This unusual phenomenon suggests that, in 
agreement with thex-ray work of Will and Morche(1977).tlie unit cell dimension 
and contracts again over the interesting temperature region.t The calibration of the 
Raman spectra can be verified by studying the laser frequency, the krypton emission 
lines, and the duplication of E-symmetry peaks in the Z(X'X') Y' and Z( Y'.V) Y' spectra. 

The low-frequency niodis behave even more oddly. Figures 8 and 9 reveal frequency 
' falling with decreasing temperature. with an anomalous rise at 128 K.and the dampiiig 
I decreasing more or less smoothly with decreasing temperature. Again, the parameters 
for the A 1  symmetry mode are more scattered due to the subtraction process, and are 
possibly somewhat unreliable due to the underlying F2 component. Firstly. however, 
it can he gleaned from figures 8 and 9 that some disturbance in the lattice occurs at 
around 128 K. Secondly. the 20cm' (E) and15cm (A 1 ) mode softenings are 
completely uncharacteristic of boracite behaviour. This can be seen from the Cr—Cl and 
Cu—Cl spectra where only the A Debye wing has strong temperature dependence, the 
other modes behaving normally. Such a softening is usually precursive to a displacive 
phase transition. Since the low-frequency modes can he attributed largely to motions 
of the Ni and I atoms as described in § 5.1. a transition to a phase with these atoms 
repositioned seems likely at some low temperature, in addition to the known 68K 
transition (Murray and Lockwood 1978). 

6. Conclusion 

The Ranian spectrum of Ni—1 displays reasonable argccment with group theoretical 
predictions. considering the highly absorptive nature of the material, and indicates a 

cubic space group from SS K to 300K. The anomalies in the frequencies and linewidths of 
the Raman bands must he associated with the irregularities in the magnetic and dielectric 
properties. These anomalies are also consistent with the expansion of the lattice at 
around 128 K. The dielectric response is especially related to the F, modes and no useful 

Note that our results don ot acrcc with Will and Morche (1 977) With regard tothe temp&a-

lure dependence of thermal motion. They report an overall increase in thermal motion 

from room temperature to 77 K, and quote in support the results of von Wartburg (1974) 

which have subsequently been shown, conclusively. to be incorrect by Thornley em a! (3976). 

The latter authors find that all thermal amplitudes decrease from loom temperature to 

77 K. in accord with the normal temperature dependence ofw(, and F (apart from the anomaly 

around 128 K) found by us. The x-ray powder-diffraction technique used by Will and 

Morche (3977) is likely to yield unit cell dimensions much more accurately than it yields 

thermal parameters (R J Nelnics. private communication). 
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predictions concerning dielectric variations can be obtained from our weak F. spectra. 
Such information should, however, result from an exhaustive infrared studs' of cubic 

Ni—I. 	 ' 
Our Raman results have confirmed the puzzling temperature dependent behaviour 

ofNi—I.ThC dielectric and magnetic susceptibility data sugcstS a phase transition but we 
find no evidence of this. All modes shift anomalously as temperature is lowered through 
128 K. but the crystal subsequently exhibits 'normal' temperature dependence. and 
remains firmly cubic throughout. This is very strange phenomenon, of which there is as 
yet no explanation. The interesting dynamic changes occur in the low-frequency boracite 
spectra. This region for Ni—1 contains many modes, and the complex interatomic inter-
actions which are required to explain the observed temperature dependence cannot be 
determined from the Raman spectra alone. There is a need for further lattice dynamical 

studies using inelastic neutron scattering and infrared spectroscopy together with more 

detailed structural studies. 
Work is in-progressto investigate further both the unusual A 1  and E mode softening 

and the dynamics of the ferroelectriC transition. 
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Abstract. The Raman spectrum of cubic zinc metaborate contains an interference feature at 
1225 cm' in both the A 1  and E symmetries. The lineshape is analysed using models 
involving either the interaction between a one-phonon state and a continuum of multi-phonon 
states, or anharmonic coupling between one-phonon states. Both models describe the results 
adequately, but the former is preferred on theoretical grounds. 

Introduction 

Evidence of strong coupling between phonon excitations in solids has been reported in 
numerous materials such as BaTiO 3  (Rousseau and Porto 1968), quartz (Scott 1968) 

and A1PO 4  (Scott 1970). Coupling is most commonly observed when a soft mode asso-
ciated with a phase transition overlaps in frequency another phonon of the same 
symmetry as a result of a change in pressure or temperature. Resonant interference has 
only rarely been observed (e.g. Si0 2  and A1PO4). We have measured the room tempera-
ture Raman spectrum of cubic zinc metaborate and have recorded an interference feature 
of this type at 1225 cm -' . We describe in this paper the analysis of the resultapt Raman 
cross section in terms of two distinct models. 

The first model, outlined in section two, was developed by Fano (1961) to describe 
the phase shifts in atomic state wavefunctions, and the corresponding excitation spectra, 
due to the configuration interaction between a discrete state and a continuum of states 
(or a number of continua). This interaction produces asymmetric peaks in the continuous 
absorption spectra of atomic or molecular systems. We have used this formalism to des-
cribe the Raman spectral lineshape due to interaction between a well defined phonon 
and a broad second or higher-order background. 

The second model involves coupling, via anharmonic terms in the crystal Hamiltonian, 
of two phonons. This predicts a lineshape similar to that observed in Zn 40(B0 2)6  when 
the lifetime of one of the phonons is much greater than that of the other (see for instance 
Cowley 1966). The details of this model are outlined in section three. 

We compare the results of two different applications of the Fano model, involving 
different assumptions, and the application of the coupled oscillator model, in §4. 

The Fano model 

Strictly, this model describes the lineshape due to a discrete state which decays only into 

387 
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the continuum. This means that the configuration interaction is wholly responsible for the 
finite lifetime of the state. 

If we represent the discrete state by Ip>, the continuum states by {i'I'E>} and the 
perturbed wavefunction of eigenvalue E by I OEX we wish to study o- 1 (E), the scattering 
cross section for transitions from initial state I i>  to final state I OEX which for a transition 
operator component ;, is proportional to I<4EHXYIi>12. With the following definitions 
in terms of total Hamiltonian H, 

Hip> = EIp>,  (2.1) 

= "k, (2.2) 

<IE,IHiIIE,> = E'5(E' - E"), (2.3) 

it can be shown that 

_ 	 0' I ( <PkIt> + E —_E)2F 	IE - E \21-1 
= 	 itIl'I 	[ + (M2 ) 

j . (2.4) 

where 

IP = ip> + P f VE I > dE'/(E —E'), 	 (2.5) 

E0  = E + PJiVE.I 2 d/(E —E') 	 (2.6) 

and P denotes 'principal part'. 
Writing 

q 
=<EkXYi> 	

(2.7) 

and 

E - E0  = w - coo  
rilI2 	'F 	

(2.8) 
2 

the cross section (a r ) for scattering to the perturbed state of energy E in terms of the cross 
section (a0) for scattering to the unperturbed state I VIO is given by 

Do  2] -1 CO CO 
a1 (w) = ao(a))(q 

+ — 02 

[1 

() - 

	

, , 	+ 	—r-) 	. 	 (2.9) 
2 	/ 	2 

Some of the family of curves defined by this function are plotted in figure 1. Fano (196 1) 
has shown that when more than one continuum of states is present, the scattering cross 
section may be written as 

a((0) = a1 (w) + o 2 (w), 	 (2.10) 

where a 2 ((0) corresponds to the underlying noninteracting continuum, and o 0(w) is 
redefined as one linear combination of the continua. 

3. Coupled modes 

The application of one phonon Green function techniques to the analysis of coupling 
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between optical phonons is now commonplace (e.g. Cowley 1966, Scott 1971). Only the 
briefest survey need be given here to define the notation used. 

a 

ac'J 
jq -3 q=3 

qO  

Frequency w (arbitrary units) 

Figure 1. Shape of function (29) for different values of q. 

The cross section for light scattering from optical phonons may be written: 

a(co) = (n(w) + 1) Y SSIm(G(w)), 	 (3.1) 
i,j - 1 

where ñ(w) + 1 is the Bose population factor, G 3.((o) the one phonon Green function 
matrix, and S i  , S may be loosely termed the scattering strengths of the uncoupled modes. 
They include the polarisability tensor elements, the input field strength, w 2 , and other 
constant factors. It can be shown that the inverse of G(w) in the case of two modes (a and 
b), coupled by anharmonic terms in the crystal Hamiltonian, may be written: 

G1(w) 
= 

( a)

w - w 2  + Ta  A+ 	

)
(3.2) 

A+iy 	Co — W 2 +iWFb 

By choice of a suitable unitary transformation, either the real or imaginary part of 
G 1 (w) may be diagonalised, corresponding to purely imaginary or real coupling 
respectively. If the other oscillator parameters are redefined suitably, the cross section is 
unaffected by this transformation. The distinction between real and imaginary coupling 
only becomes apparent when a soft mode is involved, so we may arbitrarily choose 
imaginary coupling in this case. Inversion of G '(w) leads to a complicated function in 
which the parameters of oscillators a and b may not be decoupled, and there is an anti-
resonance dip between Wa  and Wb  when Fb > F. This function corresponds to coupling 
between one-phonon states, and therefore differs in concept from the Fano model. 

4. Comparison with experiment 

Three functions were used to perform a computerised least squares fit to the observed 
room temperature A 1  and E spectra of zinc metaborate (Murray and Lockwood 1976). 
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These are as follows. 

4.1. Coupled modes 

A lineshape of the form (3.1) with N = 3 and G 2 3' = G,] = 0 corresponds to two coupled 
modes and one uncoupled mode. A flat continuous background must be included to 
account for noninteracting continua and the photomultiplier dark current. If w, 1' are 
the resonant frequency and linewidth of the uncoupled mode, table 1 summarises the 
results of this analysis. 

Table 1. Coupled oscillator parameters 

co(cm') 	F(cm') 	wb (CM  1 ) 	Fb (CM  ') 	y 	w(cm) 	r(cm - ') 

A, 	1244 	43 	 1431 	736 	12'4 	949 	118 
E 	1238 	18 	 1638 	1032 	72 	902 	122 

The resulting functions, along with the experimental results, are presented in figure 2. 
The fine detail of this description in the vicinity of the resonance feature is represented by 
the broken line in the inset to figure 2. 

AlAs 
50 70 90 110 130 150 

Wovenumber (cm -1 ) 

Figure 2. Experimental and theoretical forms for the room temperature A 1  and E spectra of 
Zn 40(B0 2 )6  in the frequency region 50 cm - '-160 cm -  1 . 

4.2. Fano interference 

If Fano interference between a discrete state and a featureless continuum of states is 
assumed, a diagonal 2 x 2 Green function must be included to describe the noninteracting 
modes, and an additive constant, again to account for the noninteracting continua and 
the dark current. This model involves the same number of variable parameters as 4.1. If 
(Obl b' Co c I 1' are the noninteracting oscillator parameters, the fitted results are given by 
table 2. 

The parameters describing the noninteracting modes are in good agreement with those 
of table 1, although they now describe uncoupled excitations. The fitted spectrum obtained 
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is indistinguishable from that of4.l to the scale of the large graph in figure 2, but the 
detail is shown in the inset as a full curve. 

Table 2. Fano model parameters. 

q 	cot, (cm-' ) 	f (cm - ') 	co,, (cm) 	F,, (cm 1) 	co (cm I) 	F (cm') 

A, 	- 1 - 59 	1235 	306 	1415 	634 	95-0 	12-0 
E 	—2-26 	123-9 	1-49 	163-2 	1016 	90-2 	12-3 

43. Modified Fano interference 

Following the reasoning of Rousseau and Porto (1968), an analysis was attempted 
involving Fano interference with o 0(w) in (2.10) represented by an oscillator function and 
a1 (w) by a constant, with a single uncoupled oscillator to describe the 95 cm mode. 
This led to values of q = —05,w 0  = 125-0 cm - ' and  = 1-2 cm - ' for the A 1  spectrum, 
corresponding to figure 3. Convergence proved impossible in the case of E symmetry. 

A, 
>-' 

"1 
C 

C 

C 
0 
E 
0 

Wovenumber (cm -1 ) 

Figure 3. Experimental and theoretical forms for the A, spectrum of Zn 40(B0 2 )6  in the 
frequency region 50 cm - '-160 cm', using the model described in §4.3. 

5. Conclusion 

Firstly, function 4.3 may be dismissed as an inadequate description of this phenomenon 
in the case of zinc metaborate. The function involves fewer variable parameters. The 
results obtained from functions 4.1 and 4.2 are almost indistinguishable in figure 2. The 
goodness of fit test indicates that the Fano description is as good as the coupled mode 
description in the E symmetry, and less than one per cent better in the A 1  case.This is 
hardly significant. Physically the Fano model would appear to be the more suitable, as 
the coupled oscillator analysis involves assuming that the broad background peak is 
first order. This would contradict the group theoretical prediction (Murray and Lock-
wood 1976). For this reason, we believe the Fano description to be more significant, 
although the experiment is not accurate enough to discriminate between the two theories. 
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A study of the temperature dependence of this feature revealed little change in the spectral 
lineshape as far as 130K, with no evidence of decoupling. 
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3 B 1707 	* PHONON COUPLING IN ZINC METABORATE 

• 	 AF. MURRAY, D.J, LOCKWOOD 
Physics Department, Edinburgh 
University, Edinburgh EH9 3JZ, 
Scotland 

Evidence of coupling between phonon states has been reported 

in the Raman spectra of BaTiO 3 1  and quartz 2 . We have measured 
the room temperature Raman spectrum of Zn 40(B02 ) 6  and have 

recorded a feature similar to that found at 175cm in BaTiO 3 . 

Group theory predicts that the Raman spectrum of Zn 40(B02 ) 6  
should contain 3A1+5E-I-10F2  modes. These have been identified, 

along with an additional interference feature present in the 
A1  and E spectra. 3  

The quantum mechanical formalism surrounding resonant Inter-

ference (Auger processes) 4  can be summarised as follows. If a 

discrete one-phonon state () is superimposed on a continuum 

of states 
PE' they may interact via anharmonic terms in the 

potential function to cause a perturbation of . The (perturb-

ed) wavefunction of the coupled state 	consists of a 

mixture of the discrete state wavefunction and the continuum, 
wavefunctions. If the transition operator between initial 

state ip and the state TE is 	., the Raman cross-section 

depends on the matrix element <Ekijko>. Fano has shown 

that the ratio of the probability, of such a transition to the 

probability of transition to the unperturbed continuum is 

1<9  E la ij
ipo>1 2 	+ 	

where 	
= E - E = h(v - 

a. 
, 	 71 JVEI 2 	½r 

The width parameter VE  depends on coupling strength, and the 

line profile parameter q on the transition probability to a, 

modified state. As the frequency v of emitted photons 

studied is varied through v 	the scattering cross-section is 
of the fort? 

aao (g+c)2 
0   

1 1 + 

A' computerised curve fitting to this function produced-the 
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smooth lines in the diagram, along with the tabulated optimal 

values ãf v  , q and r. In the E spectrum, an underdamped 

simple harmonic oscillator was fitted to the 89.4 cm mode, 

and in the A1  spectrum, to the 94.7 cm-1  mode. The fitted A 1  

and E profiles also incorporate a heavily damped harmonic 

oscillator function to describe the multi-phonon background 

empirically. It can be inferred from the values of r that the 
Fano-type interference in the A 1  spectrum is due to a stronger 

coupling to the background than in the E symmetry. As for 

BaTiO 3 , where again there is interference between one- and two-  

phonon states, the Fano model is a good fit to the data. The 

interference feature does, however, have mixed symmetry, and 

is thought to be due to some iodine species trapped as an 

impurity in the lattice, or to resonant Raman scattering from 

a manganese impurity content. 3  

1. D. Rousseau & S. Porto, Phys. Rev. Letters 20, 1354. (1968) 

2.J,F. Scott, Phys. Rev. Letters 21, 907 (1968) 

3.A.F. Murray & D.J. Lockwood, J. Phys. C. to he published 

4.U. Fano, Phys. Rev. 124, 1866 (1961) 
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Abstract. The first-order Raman spectrum of cubic zinc metaborate has been measured at 
room temperature, and the number of q = 0 phonon frequencies found exceeds the group 
.theoretical prediction by one. The additional band appears as an interference feature at 
1225 cm - ' and is thought to be attributable to some impurity introduced during crystal 
growth. The results are in reasonable agreement with an earlier qualitative investigation of 
the infrared transmission spectrum of this material, and the reported fluorescent properties 
are verified. A comparison between the Raman results for zinc metaborate and those for 

C1 shows some correlations. A simple force-constant calculation identified four Cr 3 B7 O 13   
bands in each compound that can be associated with vibrations of B0 4  tetrahedra contained 
within the boron-oxygen framework. 

1. Introduction 

The crystal Zn 40(B0 2)6  is unusual in that it is one of the few anhydrous metaborates 
with all the boron atoms in fourfold coordination. In general, stability demands threefold 
coordination in anhydrous metaborates at atmospheric pressure. Crystals of basic zinc 
metaborate are cubic, having a bimolecular unit cell of edge length 748 A. Boron and 
oxygen atoms are bound together to form an infinitely extended three-dimensional 
framework based on (B 60 12 )6  rings (Smith et al 1964). Each boron atom is at the centre 
of four tetrahedrally distributed oxygen atoms, with a boron—oxygen distance of 1 52 A 
and a boron—boron distance of 264A. The zinc atoms lie inside irregular tetrahedra whose 
corners are occupied by three oxygen atoms from metaborate ions and one 'free' oxygen 
atom. 

All the crystals thought to contain boron atoms in exclusively fourfold coordination 
are of the form (MeO) m .(B 203 )

n1 
 where Me is a divalent metal. These are CuO B 203  

(Martinez-Ripoll et a! 1971), SrO . (B 203 ) 2  and PbO . (B 203 )2  (Perloff and Block 1966) 
and (ZnO)4  (B 2 03 ) 3  (Smith et a! 1964). There are, however, several materials having all 
boron atoms in fourfold coordination in a high-pressure phase. These are SrB 204  (IV) 
(Dernier 1969). B 2 03  (II) (Prewitt and Shannon 1968), HB0 2  (III) (Zachariasen 1963). 
LiBO 2  (III) (Marezio and Remeika 1966) and CaB 2 O4  (IV) (Marezio et a! 1969). In 
addition, there are several compounds with mixed threefold and fourfold coordination, 
some of which are listed by Marezio et a! (1969). The boracites (Nelmes 1974) are another 
example of this type of compound. 

Apart from a qualitative examination of the infrared spectrum (Krogh-Moe 1962), 
there is no detailed investigation of the lattice vibrations of zinc metaborate. Here we 
report the Raman spectrum of this material with a view to characterizing the q = 0 
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vibrations of a crystal lattice involving a boron—oxygen framework with fourfold co-
ordination. While the results are of interest in their own right, they are also of value for 
comparison with some current work on the lattice vibrations of boracites. The dynamics 
of the ferroelectric phase transition exhibited by boracites are being investigated using 
Raman spectroscopy, and as part of this study, the lattice vibrations of the cubic phase of 
Cr 3B 7 0 13C1 have been measured (Lockwood 1974, 1976). The elements common to the 
structures of zinc metaborate and boracite may produce common features in the Raman 
spectrum, which would facilitate a definite assignment. 

2. Experiments and results 

2.1. Group theory 

A group theoretical analysis of the normal modes of vibration of the zinc metaborate 
structure at q = 0 predicts the following decomposition according to the irreducible 
representation of point group 43m: 

F = 3A + 2A2  + 5E+ 7F 1  + hF2  

The polarizability tensors for crystals of cubic symmetry are of the form (Loudon 1964) 

A 1  [a - -] 	[b - - 	 rJ3b - 	- 
— a 	 - b - 	and - —j3b - 

— a] 	 - —2b 	 [- - 	- 

F2[— -- 1 [- - d 	- d - 
I——dI,I-----—I and ci--. 
I 	 I 	I 	 I 

d —j  [ci - 	 - - - 
The Raman activities are indicated by the appropriate non-zero- components of the 
polarizability tensor. Excluding acoustic modes, therefore, the Raman spectrum should 
comprise 3A 1  + 5E + 10F2  normal modes of vibration. Only modes of F 2  symmetry are 
infrared active. 

The problem of distinguishing modes of A 1  symmetry from those of E symmetry is 
readily solved (Lockwood 1974). Briefly, the solution involves aligning the incident light 
along an axis, say x', at 450  to the cubic x and y axes, and observing the light scattered in 
direction y', orthogonal to x'. The E spectrum is obtained by measuring the polarizability 
tensor element ;• A point for point subtraction of the spectrum corresponding to 
tensor element oy, from that of c, leaves a spectrum of pure A 1  symmetry modes, pro-
vided an appropriate scaling factor is used. 

2.2. Experimental details 

The single crystal of Zn 40(BO 2 ) 6  was grown by the vapour transport method (Schmid 
1965) as a byproduct in the attempted growth of Zn-I-boracite, the reaction mechanism 
being 

4ZnI 2(g) + 4H2 0(g) + 3B 2 03(9 or 1) = Zn 40(B02 )6(s) + 8H1(g). 

The formation of zinc metaborate instead of the boracite is a result of an insufficient 
quantity of Zn1 2  vapour (Schmid 1965). The crystal formed was a rhombic dodecahedron 
of approximate size 2mm. The natural growth faces of the crystal were I  lO}, and con- 
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sequently faces perpendicular to the <100> directions were cut and polished (using 1 iim 
diamond powder) for use in the conventional Raman scattering measurements. Inspec-
tion of the crystal under a polarizing microscope revealed considerable growth strains, 
which lead to inhomogeneous optical properties. As a result, spectra of any polarization 
may contain additional features attributable to admixtures from spectra of other polari-
zations. A minor degree of mixing of spectra always occurs due to the wide collection 
angle of the lens used to gather the scattered light, but in this experiment the depolariza-
tion problem was more troublesome because of the strain birefringence. Adopting the 
approach that any spectrum is a combination of the true spectrum and small proportions 
of other spectra, the subtraction process described above may be used to remove un-
wanted modes. Provided a clear spectral feature can be used to determine a scale factor, a 
point for point subtraction should reveal the pure spectrum. It is, however, impossible to 
use this method when the spurious modes are attributable to the F 2  spectrum, due to 
TO-LO intensity effects. 

Zinc metaborate is known to exhibit fluorescence (Terol and Otero 1961), and a broad 
emission band peaked at 5372 nm was observed in survey spectra excited by the 5145 nm 
radiation from an argon laser. Therefore, in order that the Raman spectrum should not 
be confused with the broad fluorescent background, 350 mW of 476-5 nm argon laser 
light was used to excite all the spectra presented here. The Raman spectrum was recorded 
at room temperature from both 90° and 180° scattering geometries using a Coderg 
T800 triple monochromator with a spectral slit width of 10 and 15 cm 'for the 0-500 
cm -' and 500-1500 cm 'frequency regions respectively. The spectrometer is connected 
via an interface too-a PDP11 computer (Arthur and Lockwood 1974) which enables 
spectra to be stored in digital form. The data may be subsequently transferred to a time-
sharing multi-access computer in order that the subtraction routine, along with other 
data handling routines (Arthur 1974, 1976) may be performed in an interactive 
manner.  

In the following description of results, the labels K. Y refer to the [100] and [010] 
directions and K', Y' to the [110] and [[10] directions. 

2.3. The A 1  spectrum 

This spectrum was isolated, as described earlier, by subtracting the K'(Y'K')Y' E sym-
metry-spectrum from the K1ZZ)Y' spectrum which contains features of both A 1  and E 
symmetry. These latter spectra are shown in figures 1 and 2. A first approximation to the 
scaling factor was found by comparing the relative intensities of the distinct E peak at 
4145 cm' in both spectra, and then adjusting the factor for complete cancellation. This 
led to the isolated A, spectrum of figure 3. The theoretical intensity scaling factors of 
4b2  and 3b 2  for the ZZ and Y'X' spectra, respectively, indicate that cancellation should 
be achieved when the Y'X' spectrum is multiplied by 1.33 and subtracted from the ZZ 
spectrum (Lockwood 1974). In fact, due to crystal and experimental imperfections, the 
scaling factor was found to be 1-03 ± 007. In figure 3, the disappearance of a mode of E 
symmetry is marked by an increase in the level of noise, for obvious reasons, and in 
places by a sharp differential feature due to a slight mismatch in the wavenumber cali-
bration between ZZ and Y'K' spectra. There are, apart from some broad second-order 
structure, four sharp features. One of these takes the form of a resonance interference at 
122-5 cm between a sharp peak and a broader second-order background. The peaks at 
2493 cm and 4219 cm' are clearly of A 1  symmetry, but the nature of the feature at 
94-7 cm 'is partially disguised by the proximity of F and F 2  features. The different nor- 
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Figurel. The X(Z7)Y' spectrum of Zn 40(B0 2)6  in the regions 0-500cm 1  and 500-1500 

cm 

mal-mode frequencies in this closely spaced trio are revealed by the use of the subtraction 
process and a computerized peak-finding routine (Arthur 1976), whereas visual inspection 
of the spectra suggests only one mode to be present. Table 1 shows all the measured fre-
quencies, assignments, and linewidths where appropriate. 

2.4. The E spectrum 

From the X'( Y'X') Y' spectrum of figure 2, assignments of E symmetry modes are fairly 
straightforward, apart from the interference feature mentioned above. F 2  symmetry 
modes appearing in this spectrum cannot be subtracted out due to the TO—LO intensity 

variations. The frequencies are tabulated in table 1. 

>S 

U, 
C 
€1. 
C 

2.5. The F2  spectrum 

Identification of modes of F 2  symmetry is complicated by splitting between the transverse 
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Figure 2. The X'( Y'X') Y' spectrum of Zn4O(O2) 6  in the regions 0-500 cm 'and 500-1500 
CM -1 . 

and longitudinal components of some F 2  modes. The X( YK) Y spectrum contains F 2  
modes of transverse character only, and this spectrum is shown in figure 4. Other 900 
scattering off-diagonal spectra such as K( YZ) Y (see figure 5) contain both TO and LO 
features. In order to clarify the assignment of F °  modes, the K( YZ)X backscattering 
spectrum was measured; this spectrum contains only longitudinal modes. The signal in 
this spectrum was weak, and the argon laser plasma lines strong, but the assignments in 
table 1, taken from the K( YZ) Y spectrum of figure 5, were confirmed. Once again the 
subtraction routine was used, in this case to remove the admixture of modes of A 1  and E .  
symmetry to give figure 5. This involved subtraction from the YZ spectrum of the ZZ and 
Y'K' spectra with scale factors 0045 and 02 respectively. This procedure reveals other-
wise partially hidden spectral features of definite F 2  symmetry at 93i cm and 181-6 
cm -' . The peak-finding computer routine again proved invaluable in detecting small 
wavenumber differences and very weak- modes, such as the peak at 2842 cm'. 
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Figure 3. The A 1  spectrum of Zn 40(B0 2 )6  in the regions 0-500 cm and 500-1500cm 1 . 

Table 1. Peak frequencies w (cm -' ), linewidths y (cm -' ) and assignments for the Raman-

active modes of Zn 40(B0 2) 6 . 

A 1 	 E 	 F 2  

CO 	 Y 	 U) 	 y 	 U) 

947 	115 ± I•51 894 12 ± IC 931 15 ± 21 

1225 1225 
2493 	3 ± 061  1830 4 + 0-5 1  1816 4 +0-51  

4219 	3 ± 061 4145 33 ± 0.3' 1967 5 ± 051 

7272 125 ± 1-5 b 2224 2 ± 051 

8359 9 ± 1.5b f 2780 65 ± 21 

. 2842 65 ± 2C 

f 4711 14 ± 151 

1. 4882 9.5—+ 1•5 
653 20±6b 

f 9062 14 ± 2b 

1005 
1040 

J1074.4 19 ± I'S" 

( 11890 23-5—+ 15" 

Spectral slit width 10cm -'. 
b  Spectral slit width 15 cm 
C  Not sufficiently resolved for meaningful measurement 

>. 
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Figure 4. The K(YK)Y spectrum of Zn 40(B0 2)6  in the regions 0-500 cm and 500-1500 
cm - 	 - 

3. Discussion 

From the assignments in table 1 it is clear that th ç  A and E spectra are not totally in 
agreement with group theoretical predictions. While the F 2  spectrum contains ten distinct 
peaks as predicted by theory. the A, spectrum contains four peaks and the E spectrum 
contains six, both of which exceed the predicted number of modes by one. There are-two 
possible explanations of this discrepancy. It is conceivable that the broad peak appear-
ing in both the  and A 1  spectra (figures 2 and 3) around 90-94 cm is spurious. This 
feature has been clearly resolved into three peaks of E, F 2  and A 1  symmetry at 894 cm, 
931 cm and 947 cm' respectively. This near-degeneracy is quite remarkable, but 
these distinct frequencies, together with the intensities of the individual bands (figures 2, 
3, 4 and 5) suggest that this is an intrinsic property. Therefore, it is anticipated that the 
interference feature at 1225 cm' is the spurious mode. The intensity of this mode is 
comparable, and has the same frequency, in both the A 1  and E spectra. 

The F2  spectrum of figures 4 and 5 contains ten modes, allowing for splitting between 
transverse and longitudinal components, and should show some agreement with the 
infrared spectrum. The only published infrared investigation of the lattice vibrations of 
zinc metaborate (Krogh-Moe 1962) is very qualitative and no frequency assignments are 
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Figure 5. The X(YZ)Y spectrum of Zn40(B02)6  in the regions 0-500cm 1  and 500-1500 

cm 

tabulated. This makes detailed comparison difficult, but measurements on the published 
spectrum from 670 to 5000 cm do reveal some correlations. There are strong absorp-
tion peaks at 1040 ± 6 cm and 1080 ± 6 cm and a broader feature stretching from 
915 cm -'  to 945 cm 1,  while there are shoulder features at 990 cm and 1140 cm 
which could correspond to longitudinal components. It seems reasonable to assume that 
the two sharper features correspond to the tabulated Raman frequencies of 1040 cm' 
and 10744 cm- I  and the broader feature to the 9062 cm mode, with longitudinal com-
ponents where appropriate. There is, however, a strong infrared absorption at 720 cm 1,  

which is completely absent in the Raman spectrum. This could arise from second-order 
absorption, or may indicate the presence of an impurity in the sample used for the 
infrared measurements due to the different method of preparation (crystallization from 
the melt of fused zinc oxide and boric acid). 

It is interesting and informative to compare the observed fluorescence band at 537 nm 
with the luminescence data of Terol and Otero (1961). Terol and Otero observed that pure 
cubic zinc borate is luminescent under 2537 nm excitation with the emission comprising 
a narrow band peaked at 435 nm with a weaker secondary band peaked at 535 nm. The 
luminescent response to 365 nm excitation was very weak. The luminescence is ascribed 
to trapped electrons (or positive holes) due to absences of 'free' oxygen (or zinc) atoms in 
the crystal structure: oxygen vacancies in the B0 4  tetrahedra are not likely because of the 
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high strength of the B-O framework. Activation with a small amount of Mn produces a 
strong green luminescence, peaked at 540 nm, under ultraviolet excitation: the Mn is 
divalent and is assumed to substitute for Zn. The fluorescence observed in the Raman 
experiments is presumed to be excited by the near-ultraviolet light characteristically 
produced in the argon laser plasma discharge. As noted above, low-energy excitation 
produces only weak luminescence in pure zinc borate. Therefore, even though there is 
good agreement between the peak position at 537 nm found here and the sideband at 
535 nm reported by Terol and Otero, it seems unlikely that the emission is from the pure 
crystal, particularly as we found no evidence of the contiguous band at 435 nm. A more 
likely explanation, confirmed by H Schmid (1976, private communication), is the pre-
sence of some Mn in the crystal carried over as an impurity from the starting materials 
(see § 22); the Mn"+  luminescence is strong and peaks at 540 nm, which agrees well with 
our observations. 

Terol and Otero (1961) note that the multiple closed chains of linked (B0 2 )6  groups 
form a basket-like framework containing many cavities that are large enough to accom-
modate positive and negative ions. Some of these cavities are, of course, occupied by the 
zinc and 'free' oxygen atoms that make up the chemical formula. However, there is the 
possibility of other species occupying these cavities and, in particular, the growth 
mechanism (§ 22) suggests that HI or some other iodine species may be trapped in these 
sites. The presence of iodine during crystal growth could also result in I - substituting for 
cavity oxygen. The spurious interference band at 1225 cm - ' is, therefore, tentatively 
assigned to a local mode vibration of some iodine species trapped within the lattice. (The 
Mn ion concentration would be too small to observe an impurity mode from this ion in 
the absence of resonant Raman scattering.) The variation of the interference band profile 
with temperature and excitation frequency is being studied in an attempt to divine its 
origin and to obtain more information on the coupling mechanism to the phonon bath. 

Any explanation of the origin of the interference feature must resolve the puzzling 
fact that the mode has A, and E symmetry. 

The Raman results obtained for zinc metaborate may be compared with the q = 0 
frequencies of chromium chlorine boracite. (Lockwood 1974, 1976) with a view to 
determining common features arising from vibrations of the B-O framework. There are a 
large number of normal modes in both crystals, and some simplifications are needed 
to facilitate the comparison. We assume that the basic B0 4  molecular units within each 
crystal are independent. The vibrations of this tetrahedral molecule transform as A, + 
E + 2F2, and these are considered to be internal modes in the cubic crystal. Unfortuna-
tely, the vibrational frequencies of the free BO ion are unknown, and therefore no 
ready comparison and assignment can be made. An indirect approach was adopted. 
Using the known values for the vibrational frequencies of the tetrahedral ions SiO, 
PO, SO and ClO as a guide, possible A 1 , E and F2  frequencies for borate were 
selected from the results for zinc metaborate and chromium chlorine boracite. Appro-
priate combinations of these frequencies were then used to obtain force constants for two 
different models representing the forces in tetrahedral molecules. One model-assumed 
central forces only, and the other was the more sophisticated generalized force field model 
of the Urey-Bradley (193 1) type. The force constants were calculated on a computer from 
a simultaneous least-squares fit to the four equations connecting frequencies and force 
constants. Different combinations from the previously selected A 1 , E and F 2  frequencies 
were tried until the best fit was obtained. The best and most sensible fits were obtained from 
the same data sets for both models. These data sets are shown in table 2. The frequencies 
in each column are remarkably similar. Furthermore, the relative intensities show close 
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Table, 2. Data sets for the two models (frequencies in cm 

A 1 0 , 1 ) E(v 2 ) F2 (v 3) F2(v 4) 

Zn 40(B0 2 ) 6 	421 
Cr3 B 7 0 13 C1 	375 

183 
232 

1075 
1160 

278 
252 

agreement: the v 1 , v 2  and v 3  bands are strong, while the V4 band is weak in both cases. The 
force constants obtained are somewhat different from those calculated for a free molecule 
like SiO, as can be expected. In particular, the v 1  band in the crystal is undoubtedly 
much lower in frequency than one would anticipate for the free molecule. Nevertheless, 
it appears that frequencies at about A, = 400 cm', E = 200 cm', F 2  = 1100 cm 

and F 2  = 260 cm are characteristic of a B—O framework comprising or containing 

B04  tetrahedra. 
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There is a possibility that the lattice 
vacancies accompaning the free carriers will 
affect the lattice instability' 2 . However, 
the effect of magnetic field on the lattice 
instability will give a definitive evidence 
for the importance of the electronic excita-
tion. 
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be much lager than the value for SaTeuse to 
explain the carrier dependence of soft phon 
frequency, which was 5.6 eV. However, if we 
take into account that the Fermi energy for 
SnTe qecimens with carrier concentrations of 

4x10 ° cnr is about '.O.6 eV, the reducing 
factor (1+2E/Eg) becomes 'O.2 (E g=0.3 meV). 
If we allow of the shift of the lowest Landau 
level, taking account of the effect of spin 
splitting, these parameters would change. 
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RAMAN SPECTRAL STUDY OF CUBIC NICKEL-IODINE BORACITE 

A.F. Murray and D.J. Lockwood 

Physics Department, University of Edinburgh, 
Edinburgh, EH9 3Jz, Scotland. 

The Raman spectrum of cubic nickel-iodine boracite is reported for 
temperatures between 88 and 295 K. Anomalies in the temperature 
dependance of E and Al symmetry modes at 128 K are interpreted as 
being related to anomalies in the structural, magnetic, and 
electrical properties of this material. A 20 cm- softening of a 
broad E symmetry mode is also noted. The 88 to 295 K results for 
this system are all characteristic of a material with a cubic space 
group. 

Nickel iodine boracite, N1 3B 7013I (Ni - I), 
has a first order transition from a high tempera-
ture paraelectric cubic phase to an orthorhombic 
improper ferroelectric phase at Tc = 64 K, at 
which temperature Ni - I also becomes weakly 
ferromagnetic. 1  Both the dielectric constant and 
magnetic susceptibility exhibit a broad maximum 
at around 125 K l,  while the lattice constant 
increases anomalously by about 0.l%.2  Apart from 
a tentative suggestion that this behaviour may 
be due to short-range magnetic ordering associated 
with localised structural ordering', the micro-
scopic origin of this phenomenon is not understood. 

We have studied the Raman spectrum of Ni - I 
using the same single 11001 growth sector B- 3-
enriched sample examined in reference 3. With 
400 mW of 647.1 nm krypton laser light aligned  

along the [ooij crystal axis the Raman scattering 
along the [110] axis was analysed in all polarisa-
tions. The sample temperature was varied between 
88 K and 295 K by use of a nitrogen vapour flow 
cryostat, and the scattered light dispersed by a 
Spex 1400 double monochromator (295 K) and a Coderg 
T800 triple monochromator (88 - 210 K) with a 
spectral slit width of 2.5 cm in both cases. 

The room temperature Raman spectra are pre-
sented in Figure 1. E and F 2  symmetry modes are 
active in the Z(Y'X)Y and Z(Y'Z)YI polarisations 
respectively, where X',Y,Z refer to the crystal 
[110] , [110] , [001] directions. Allowing that 
the F2 spectrum is relatively weak, the A1  spec-
trum is isolated by subtracting the Z(Y'X')Y 
spectrum from the Z(X'X)Y' spectrum . The 
results between 88 K and room temperature are con- 

2 

Ai 

RVENU?BZR 

Figure 1. The room temperature Raman spectrum of Ni - I. 



istent with a cubic crystal space group through-
ut this temperature range, in agreement with X-ray 
esults at 77 K and room temperature 3 ' 5 , and are 
iso consistent with a structure containing B04 
roups. 4  The low frequency F 2  and A1  symmetry 
me profiles are characteristic of a cubic 
oracite6  but the expected A 1  wing is far less 
cell-defined, and the low frequency A1  and E 
ymmetry modes more heavily damped than their 
ounterparts in the spectra of other boracites 
e.g. Cu - C9, Cr - C94. 

Part of the work concerning the temperature 
'ariation of the Raman spectra is illustrated in 
igures 2 and 3. In Figure 2 the peak position of 
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emperature dependence of an E mode peak frequency. 
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L'emperature dependence of the broad E mode natural 
crequency  
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one of the higher frequency E modes is plotted as 
a function of temperature, from experiments per-
formed at different times and in different polar-
isations. The black circles represent Z(Y'X)Y' 
results and the open circles, z(VV)Y' spectra- . 
The triangles and squares illustrate later experi-
ments in Z(YX)Y' geometry, with temperature in-
creasing and decreasing respectively. From these 
results it is clear that the natural frequency 
rises with decreasing temperature, dropping 
anomalously at about 128 K. This effect became 
less pronounced as the sample 'deteriorated' after 
several temperature cycles, but was characteristic 
of all the high frequency E modes. The linewidths 
of these bands show the opposite behaviour, de-
creasing with falling temperature and increasing 
at 128 K. In contrast, the broad 170 cm- E 
mode frequency decreases with temperature, in-
creasing anomalously at 128 K as shown in Figure 
3. There is no corresponding linewidth anomaly 
for this mode in the given temperature range. 
The frequencies and linewidths for this feature 
are taken from a computerised least squares fitt-
ing of an anharmonically damped oscillator line-
shape over the region 30 - 240'cm 1 . Examples - 
of fitted Al,  E and F2  spectra are shown in 	- - -. 
Figure 1. The broad A1 peak at 166 cm- exhibits 
a similar, if less dramatic, temperature varia- - 
tion. No signifiant temperature variation can 
be attributed to the very weak F 2  spectrum; 

From these resilts it is apparent that -thre' 
is some disturbance of the structure at around 
128 K, but there is no spectrosàäpic evidence -

- 11 for either a structural transition, or long 
range antiferromagnetic ordering. These results" 
are in accord withthe suggestion of short range 
magnetic ordering giving rise to the suscept- 	

c) 

ibility maximum. The softening of the heavily mln  

damped E mode is unlike the results in Cr - C2 
and Cu - C2,- and suggests that the 64 K transi-
tion differs from the usual boracite behaviour. 
The low frequency modes are mostly related to - 
vibrations involving motion of the nickel and 
iodine ions. Softening of these modes would 
therefore indicate a repositioning of one or more 
of these ions. Such displacements must, how- 	- 
ever, retain the overall cubic symmetry, as - 
verified in reference 2. At all - temperatures in 
our study of Ni - I, the Raman spectrum indicates - 
that the system is cubic. 
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Pig'N A1 Reman spectra for different applied 
\ stress, T 	140C, scattering con.figur- 
\tion X(zz)Y, stress in X direction. 

ston force 	a) 0 lb, b) 50 lb, 
c)\1 00 lb, d) 150 lb, e) 200 lb. 
A cstant background was subtracted 
from \ie original data, 

lines, the difficul in estimating the back-
ground, and the contrutions from minor un-
resolved lines, permitt\d only a crude 
Lorentzian analysis of t\

constt 

d 100 car' 
lines. For both lines, 	asfound to be in- 
dependent of stress (var less than 22) 
as found previously for 	 m t line. On 
the other hand, F decrea 	by 	50% for 
the 75 cm-'line but stay mt (± 20%) 
for the 100 cm line. \

For a constant w , 	 ntzfhp line- 
width is proportional°to k heit, so 
we have examined peak he ios as own 
in Table I below. 

664 	 II. STRUCTURAL PHASE TRANSITIONS 

RAMAN-SCATTERING MEASUREMENTS OF THE EFFECT OF UNIAXIJ. STRESS 
ON THE FERRDELECTRIC TRANSITION IN Gd2  (moo  4 ) 3* 

Q. Kim, F. C. Ullman, R. D. Kirby, and J. R. Hardy 
University of Nebraska, Lincoln, Nebraska 68588 

The 50 and 75 cm-1  lines of the A1  Raman spectrum of ferroelectrjc 
Gd (moo 4) were found to vary identically with uniaxial stress up to 
l. 8 kbar In the temnperature1ange (T-T c) < 20C. The force constant 
parameter, w , of the 75 cm line was independent of stress while its 
daming consant F decreased by 50%, similar to the behavior of the 50 
cm line reported previously. These results ar offered as further 
confirmation of the identification of the 75 cm line as one of the two 
unstable modes of the ferroelectric phase. 

The ferroeJ\ctric rare-earth inolybdates, 
the first impropeferroelectrics 2  to be 
studied, undergo thr ferroelectric transi-
tion at T = 160C. 11 is cell-doubling tran-
sition is%elieved to iginate from the 
softening of a doubly denerate, T , zone 
boundary mode of the paraectric phse2; 
below T , the degeneracy is"çemoved and the 
two mods transform to A 1  syntry and move 
to the zone center. 	 \ 

Infrared 3  and Raman-scatterg 4 ' 5  studies 
of the low frequency A 1  spectrum h\ve isolated 
three modes that exhibit abnormal be\avior 
with temperature. At 80K, they peak ç 44.5, 
51.5, and 83 cm. At 300K, the broadd 
51.5 cmline obscures the 44.5 cm line\ and 
the 83 am-' line is broadened and its peak \ 
downshifted to 75 cnc 1where it remains up to 
T ; above T , all three are absent from the 
AC spectrum In back-scattering, however, in 
tie configuration z(xx)z, the symmetry 
changes from A below T , to B above. The 
51.5 cm 1 ljne hoes not b 	

2 
vanish above T in this 

case and so has been identified as a gone-
center mode 5  (the other two vanish and so 
must be zone boundary modes). There has been 
some recent controversy 697 over this assign-
ment since the 44.5 and 51.5 ca7 1  modes had 
been suggested previously 3  to be the soft 
modes that degenerate into the soft zone 
boundary mode of the paraelectric phase. 

Prior to the discovery of the abnormal 
behavior of the 83 cm m li'ne, measurements of 
the effect of uniaxial stress on the 51.5 cm 
line at temperatures near T showed a nearly 
constant w but a steep, non-linear decrease 
in F with ?ncreasing stress 8 . 

In this paper, we describe uniaxial 
stress measurements on the A Raman spectrum 
in the temperature range (T-T) < 20C. Three 
lines, which for clarity are designated here 
as peaking at 50, 75, and 100 cm-  , were 
studied over a stress range of 0-1.0 kbar. 
The apparatus and other experimental details 
were as described previously 0 . Typical re-
sults are shown in Fig. 1. It can be seen 
that the 50 and 75 cm- lines narrow and in-
crease in peak height with increasing stress 
whereas the 100 car 1 1ine in essentially un-
changed. The overlap of the 75 and 100 car 1  
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