A LIGHT SCATTERING STUDY OF THE BORATES

i i1 B 1.
‘ Zn4B6013 AND 113 7O13

ALAN FRASER MURRAY

THESIS SUBMITTED FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF EDINBURGH

JUNE 1978




I am a Bear of Very Little Brain,
and long words Bother me.
A.A.Milne

AWinnie- the- Pooh



The research described in this thesis was the unaided work
of the author, unless otherwise indicated. Where the research was
done in collsboration with others, there was a significant

contribution by the author.



ACKNOWLEDGEMENTS

The preparation of this work would have been less of a pleasure,
more of a chore, and probably impossible were it not for the presence
of a large number of people. I would like to express my deep=st thaﬁks:
to Professor R.A. Cowley, 7.R.S. and Dr. W. Taylor for their super-
vision and enccuragement;
to Drs. J.W. Arthur, A.D. Bruce and D.J. Lockwood fér their colla-
boration at various stages;
to Drs. K.C. Bowler, H. Montgomery and R.J. Nelmes for their oft-
needed advice;
to Mr. H. Vass for his technical assistance;
to all members of the Physics Department whose friendship made life
pleasant; |
to my wife, Glynis, for support and much more, and for prcof~réading
this work;
to my parents and parents—in-law, for their encouragement, and to
Mrs. R.W. Chester, who bravely undertook the tyﬁing of this thesis;
to the almost-human EMAS computer system;
to the Science Research Council for financial support.

Finally I would like to thank Professor W. Cochran for his

encouragement, and for the facilities of the Physics Department.



ABSTRACT

This work describes a light scattering study of two crystalline
borates, a system for automated Brillouin spectroscopy, and a
theoretical investigation of incommensurate-commensurate irausitions.

Firstly, the Raman spectrum cf zinc metaborate (Zn,E_ O is

476 13)
reported and discussed, and a tentative assignment is made of vibratioms
of the B-0 framework. An interference feature in the spectium is
analysed in terms of models involving anharmonic phonon-phonen’ and
phonon-continuum coupling.

The inelastic and elastic light scattering spectrum cf nickel-
iodine boracite (Ni3370131) is presented for the fir;t time, at
temperatures between 6K and 295K. Anomalies in the phonon lifetimes
and frequencies at 130K are correlated with concoﬁitant abnormalities
in the structural, elastic and magnetoelgctric properties, but a
structural transition at this temperature is not indicated. The
dynamics of the improper parzelectric—ferroelectric transiticn at
68K are discuséed, and possible symmetries considered. Furthermore,
the data reveals a new transition at 7K, which is thought to be
both structural and magnetic. Critical modes are stpdied, and a
strongly temperature dependent. mode ié identified, whose behaviour
cannot be fully explained.

A proven modular approach to coﬁputer_control of experiments is
presented, and a system for control of Brillouin scattering experiments
is described. Examples of thé regultant spéctra'are presented, along
with some speculation as to future developments.

Finally, the theory of incommensurate-commensurate lock-in tran-

sitions has been studied, and the method and conclusions are detailed.



Two distinct types of lock-in transition are identified, and the
corresponding distortion profiles are derived, within a simple

Landau theory.
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CHAPTER 1

BASIC THEORETICAL AND EXPERIMENTAL CONSIDERATIONS

The Raman effect is the inelastic scattering of electromagnetic
radiation by matter, giving rise to a change of frequency. Ié was
first reported by Raman in 1928 (1) as a new phenomenon, distinct
theoretically envisaged (2). Raman first observed the scattering
of filtered sunlight, from CC24,'photographica11y. The effact is
very weak, and it became necessary to use arc lamps to increase the
usefulness of the technique as a probe of excitation spectra. Photo~
graphic detection techniques have now been almost universally super—
seded by photoelectric methods, but by far the biggest single advance
in the technology df Raman scattering came with the advent of the
laser (3) as é source of radiation.

The quantum mechanical theory of the Raman effect was first dis-
cussed in detail by Plazcek (4). In this treatment, the Raman
écattered light was considered as the electric dipole radiation from
an oscillafing_dipole. The incident radiation was introduced as a
quantum mechanical perturbation. The discussion in §1.1_of the
scattering cross—section follows a sibilar approach, but uses the
results of second order, time dependent perturbation theory, and
" the formalism surrounding the quantisation of the radiation field.

Raman scattering from crystals was first investigated in 1928
(5), very soon after the original experiments. Since then it has
proved a valuable tool for probing the normal mode frequency spectrum
(phonon scattering), as well as scattering from other types of ex-

citation (e.g. magnetic and electronic). Most of the available published



Raman spectra of solids were measured in the past 15 years, since thé
laser revolutionised Raman spectroscopy.

It is the-intention of this chapter to outline the theoretical
calculations relevant to the ensuing chapters, and tc describe the
experimental equipment used for the bulk of the work therein. There
are basically two types of information to be extracted from a Raman

svectrum. Firstly, one can make certain assertions about vibrational

syrmetries in the crystal, and secondly, one can study the inter-

actions between excitaticns. These consideraticns can, in many cases,

.zlve clues as to why a system exists in a given state at a given
¥ y :

pecint in phase space.

In §1.1 the form pf the cross-section fbr Raman scattering fram
crystalis is derived, giving a gereral expression which may be furthe?
wanipulated. In §1.2, a familiar lattice dynamical calculation is
presented (in the harmonic approximation) leading to the concept of
a phonon. This much-documented calculation is reproduced here for
completeness' sake, and also to define the notation of the rest cf
the chapter, which is in some places not standard to avcid confusion.-
In §1.3 and §1.4, an attempt is made to discuss the pﬁysibs behind
the classification of phonon symmetries, using some (unproved) results
of formal group theory. |

‘The introduction of some aspects of many-body theory in §1.5
and Appendix 1 may seem like using a sledgehammer fo crack a nut.

It is, however, useful to review the particular aspects éf Greens
function theory relevant to Raman scattering lineshapes, as this
ccnnection is often obscured in a more general treatment. In short,
the calculations presented can all be found elsewhere, but are col-

lected here to define the vocabulary and notation of this work..



Finally, in §1.6, the requirements of a successful Raman experi-

ment are detailed, and the choice of equipnent described and justified.

§1.1 The Scattering Cross-section

Fermi's Golden Rule of perturbation theory, applied in first and
second order, gives the probability/unit time of transitions from a

state |a> to a.state |[B> of any system as (6)

2
: <BIH IY><Y!H !a> -
1Ry = Al e - 2~ = { x §(E

,:0 _ [0}
YoE E,

where the Hamiltonian of the system can be written as
1.2 ‘ H = Ho + HI(t) .

The {Eg} are the energy eigenvalues of the Schrodinger equation ,

Ho |6> = E§[6> and HI(t) is a small time dependent perturbstion,
Expressing the eigenstates {|6>} as the direct products of the
crystal eigenstates {|D>} and the second quantisation representation
photon field state vectors {Idl’dz’d3 eeese >}, written in short-

hand form {|d>}, we have

8] bl |g>lo><c gl |a>| 2> |2

27
1.3 R = 7R

<Bl<b|HI|a>|A> ~I S 5

Gg Ec;g - Eul

o} o
x §(Bgy —Ep ) -

The quantum numbers dl, d2 etc., represent the number of photons of

type 1, 2 etc.



Now the interaction energy between a dipole moment M aad an
electric field E is -ME. It is fruitful to express the operator

of the electric field in terms of the photon creation and annihilation

*
operators b and b (7).

hmn i * '
1.4 E(x,t) = I i(ﬁ) (bn(t) -bn(t))gn .
n o

The quantities £ and w_ are the polarisation and frequency, res-
. =n n

pectively, of a photon of wavevector En and V 1is a box ancrmralisatien

*
constant. The operators bn’ bn have the properties

1.5 bnld> = /E; !dl,..., dn-l, ...f exp 1 (Eﬂ-z - wnt)
* -
1.6 bn|d> = /dnﬂ Idl,..., d +1, ...> exp ~i (k T w_t) -

For first order Raman scattering, the transition is between states

{di, dg> and Idiil, df';1> with all other d's unchanged and the

first term in the medulus of 1.3 is zero. Thus the transition rate
may be written
- A ’
. <B|<a. - + B, ..a +1>]e>
hrw we z B[ a; 1,a lleb1 1k|al,af 1 |G

1 L] 7 R . =
af 2€2V2 Gk&
(o]

, x
<G[<aifaf+1|M2bf Efllai’af>|A>

X

(o]
EGA + ﬁ.wf
<B|<a.-1, a +i| b 2 Ié.-l a.>|G>
, Bieal 3 tIMOe faddiTh A
<Gl<a,-1,a.|M b .3 la,,a>|A> 2
. AR AR 25 T S ANE SaE -
(o}
EGB n we

'XG(EBCJ)‘B - B
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This is the expression describing a procéss in which a photon of fre-
quency w, is scattered to produce a photon wf.' This is a two-stage
process, and the two terms in fhe modulus of 1.7 are represented
schematicaily in Figures la and lb. When w, > wg we have Stokes
scattering, and when w, < W, Antistokes scattering, as shown in -

Figure 2. Also defined are the Cartesian labels k, & and

Using 1.5 and 1.6, and defining the transition polarisability P

<B|M [6><G|M |A>

1.9 Pii(A) = ]
‘ G Tlug, + wg)

sl [e><c [ |»

‘ﬁ(wGB - mf)‘

equation 1.7 becomes

hTwwe ai(af+l) Z

1.10 R = AB)

if —if
a8 P (BA) P

(
2e°2V2 k2mn mn

A

X 8 Ce€infen Slopy g T 0)

Now a; can be written as (per unit volume)

8 o
1.11 5 = f ﬁwi

and if a. =0 initially, the intensity of scattering to a group of

frequencies around we described by p(wf) is given by



FIGURE 1: Schematic represantation of the first(la) and
second(1b) terms of equation 1.7. The broad

arrow represents the radiation field,

FIGURE 2: Energy levels in first order ncrmal Ramau

scattering processes.
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N
w . .
N f , if =if A N
1.12 TdugdR = ——— ) Py (BA) P (AB)EE E e
32n“c’¢e
o Akfmn .
§ exp (-E ,)
Z

+ - w.
X Slug, +wp = wy)

Now, Ek’ Eﬁ“‘are_the k and m components of the incident
radiation field strength, and Z the partition function (8 = 1/kT).
1.12 represents the total Raman scattering intensity of frequency
e into an element of solid angle dQ(= sin6 d6 d¢) with a general

&~

input field polarisation E = (E Em’ 0). The sum over (weighted)

K’
v states {]a>} constitutes a thermal average, and the &-function
defines |B> uniquely, The symmetry prOpertieS’and’the quantum
mechanical definition of the terms P;i(BA) are exploited in §1.4
andv§1.5. In the standard notation a(bc)d used to describe a Raman
experiment, (a) and (d) denote the direction of the incident and

scattered light, and (b c¢) describe the respective polarisations,

A A . A
given by g and Er -

§1.2 Normal Modes of a Crystal

This brief discussion follows the arguments of Born and Huang
(8) in analysing the internal oscillations of a crystal in terms of
a set of uncoupled 'normal modes' (in the harmonic approximation).
Although this calculation is now commonplace, its.inclusion here is

"useful to define the notation and terminology of §1.3 and §l.4. It



is also necessary to provide the link between the classical description
of léttice vibrations and the quantum mechanical formalism of §1.5.

| The Hamiltonian of the crystal, in the harmonic approximation, may

~ be written_in terms of the mcmenta {Ei} and displacements from equili-

brium positions {Si} of the . N atoms as:-

N__p;2 N
©
1.13 H = ] bl 445
i= i,j=1
With the simple rescaling given by
1.14 W. = ¥m, q.; ©o.. = ¢.. % /m.m,
o= i3 -ij 2ij 1]

and the use of the canonical equation (9)

9H
1.15 P. = - —
il quz

the equation of motion is given by

L16 W = = Lo Vi
. jm

(2, m are Cartesian labels)
2 is called the dynamical matrix and contains all the information
- about the interatomic interactions in the harmonic approximation. It

transpires that a further transformation to 'normal co-ordinates'

renders ¢ diagonal and thus decouples the oscillations. To this end,

define firstly Fourier co-ordinates {Qliz} :
1.17 Q = L 1% (-iy-I)
' yis " L Wpg, ewCiyl
I



Q;, exp(iy"D)

i.18 W, =
: pA

L]
112
L N y
The quantity W

Iig is now the mass weighted displacement of the

i-th atom of the unit cell of origin I. With this definition 1.16
beccmes
" o
1.19 Qig = = 1D Ui
jm
1.2 = ' coulT - T
.20 [Dizjm(z) ¢£i£ijm expiy*(J - I) ] .

et~

We have thus block-diagonalised ¢ to a set of Herwitean matrices
D which are 3r x 3r where r = number of atoms/primitive cell. A
Hermitean matrix has a set of orthonormal complex eigenvectors

Lga} with corresponding real eigenvalues {wg} » l.€.

1.21 jg Dipim@ £,(my) = Wi e (i

.

We can define complex normal co-ordinates from the Fourier co-ordinates

{Q}Liﬂ} by:

i
o~
[y}
o
PanY
[T
=
NS
fo
[v'
(5
L0
R
©

) (1D,

a

1.22 Qla ' I

whereupon 1.19 becomes

. " .— _ 2
1.23 Qla = wg 6'2) Qxa .
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3
e

s
'\i/‘/
This is the equation of motion for the displacement from equili-

brium of a siﬁxple harmonic oscillator of frequénéy ma(z). The equa;'-\;_"
tion 1.16 describing 3N coupled oscillators has been d'igst;pled to’ -
give 1.23 for a set of 3N uncoupled oscillators. // .

The transition from the purely classical discussion leading to

1.22 into quantum mechanical operator notation is achieved by writing

tiie normal coordinate Qza as a Hermitean operator QZ.a and defining

— - * .
new operat_ors "'y_a’ b'la | by. (10)
t x
1.24 Q —E) b + b))
ya Zma(y) ya -ya
tw_(y) 4 *
1.25 Pla = i > (bla - b"la)

"~ where P.);'.a is the conjugate momentum to Qza. From the classical

Poisson brackets (11)

{Qza, Pl,b} §{y - 38 and

Qs Q)

. * . ° - -
b and b can be shovn to have the commutation relations

1.26 b, b = _—
reha ya’ X'b] - 8Cr = 38,
- _ * * _
i.26b [bla, bl.b] = [bla, by ] 0

and are therefore boson creation and annihilation operators respectively.

The bosons in question are the quanta of the lattice vibration 'field',

T~
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called PHONONS, which are respectively created or annihilated in

Stokes and Antistokes Raman experiments.

Footnote to §1.2

Although y 1is used as the symbol for phonon wavevector through-
out this chapter (to avoid confusion with displacement g), the letter
q 1is conventionally used for wavevector. This latter convention is

adopted for the rest of this thesis,

§1.3 Symmetry Classification of the Normal Modes

The literature of group theory is profuse, and thé application of
~ group thecretical methﬁds to crystal vibration theory is also well
documented (e.g. (12)). The purpose of this section is to emphasize
the physical significance of some useful results expressed in rigorous
group theoretical terms, leading to the symmetry ciassification of the
normal modes. No purely group theoretical results are.proved here,
as such proofs, along with the details of the nomenclature, can be
found in McWeeny (13).

Consider the eigenvalue equation’1.21, written in matrix

notation:

1.26 D.g, a &£

Since the dynamical matrix D must exhibit the symmetry of the structure,
it must therefore be invariart under any operation C in the symmetry
group G. Operating on 1.26 with the matrix representative Et of C

gives
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1.27

o

R € = DR ¢ = w2 R ¢
= == —a a= —a

d

This means that R g, represents a set of eigenvectcrs wich the same
eigenvalue of D as the original set £y and are conseguently linéar
‘combinations of the criginal set. This is true for any set of eigen-
vectors with a common eigénvalue, and eaph such set conseguently forms
the basis for an irreducible representation of G. Each eigen&alue
mg(z) corresponégﬁéo a normal mode, and therefore each normal mode
corresponds to an irreducible representation of G. The complication
of acciden;al degeneracies, Qhere force constants are such that two

distinct normal modes have the same frequency, is ignored here.

Now the normal coordinates QZ? can be written in terms of the

mass—weighted Cartesian coordinates Wiig B
1.28  Q 1 *(iey) W (-iy-I)
. = — e (i .. exp(-iye
12 K opfe TaE ML TS
1.29 Q = TW in matrix notation

where T is unitary. This means that the matrices of a representation
based on 3& Cartesian coordinates are related to that based upon the
normal c&ordinates by a similarity transformation, and the representa-
tions are therefore equivalent. A representation based on the complete
set of normal mode coordinates is therefore, in general, not irreducible,
and provides the same set of irreducible representations of G as does
the representation based on the Cartesian displacements.

The group G has not yet been defined. In general, whem D is
a function of y, G 1is the 'group of the wave vector y', i.e.

_ those operatjons which preserve the translational symmetry of y (14).



-13- . IR

-Fortunately, in first order Raman scattering, wave vector conservation
requires y * O and this éroup corresponds to the.point group of the
st:ructure.

The‘procedure'fcr classifying the normal modes of a cryotal is
thorefore as follows:-
1) Associate a set of Caftesian axes with each atom in ﬁhe unit cell.

2 Construct the matrix representatives of the group operations with

respect tc these vectors, giving a representation T.

3) Reduce T.

For the purposes of classification of modes, the complete matrix re-
- presentatives for T are fortunately not necessary, and it is suf-
ficient to work with the characters {XP(C)} of the matrices in 2)

and 3), and use the orthogonality relation (13)
A . .
1030 n = - C Cc
5 L xp(edx (o)
c
where g 1is the order of the group, XY(C) the trace of the c-matrix

in irreducible representation v, XP(C) the trace of the c-matrix in

'y and ni the number of y = O modes of symmetry <y for the crystal.

81.4 Selection Rules for First Order Raman Scattering ‘

Due to the nature of the interaction between the photons and the
phonons given by 1.12, only modes corresponding to certain irreducible
representations can interact with the radiation. This gives rise to
'Selection Rules'. The one-phonon Raman cross-section depends on

transition polarisability terms of the form 1.9
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L p=k>
+ e

(wgy + wg) (wgp ~ wg)

<B|Mk[G><GiM2|A>

1.31 '.Pii(BA)‘ = %é
Tt proves useful, in the case of the normal Raman effect, to use
flaczek's approximation (8) which has the following physical signi-
ficance. '

"In the adiabatic approximation, the electrons in 2 crystal
are assumed to follow the rniuclear motion, This enables the
wavefunction to be written as the product of a wavefunction for the
electrons in a given nuciear configuration, and the wavefunction
for thé given nuclear configuration. The corresponding energy
eigenvalues are the sﬁms of electronic and nuclear eigeﬁvalues.
Assuming that the states |A> and |B> are both electfbnic gréund
" states, (i.e. no electronic Raman scattering), it is possible, to

L]

a gﬁod approximation, to divide 1,31 into ionic and electronic parts,
depending on nuclear and electronic quantum numbers respectively,
The conditions for this approxiﬁation to be good are that nuclear
éigenvalues are much smaller than electronic eigenvalues, and that
the probe frequency ws (= wf) is not close to an electron excitation
energy. With the further constraint that the probe frequency is
much greater than the‘phonon frequencies (wi >} wa(O)), thevionic
part can be ignored, This is always the case for normal Raman
scattering and we can write:
] <0 hBIMkIeGnG><eGnG|M£|O\pé‘

we O + wf

#0 ¢ v

=}

G
e

@

Q%>

w eGO"' U.)f
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D and nﬁ are the electronic and nuclear quantum numbers

of the state |D>, Now 1.32 is of the form

where e

if . if
1.33 - P (BA) = <0 nylp [0 n,>

}

i . . . '
where P £ is a unitary tensor operator. Since the numbers {n

ke D

can be taken to represent the number of phonons of each type (see

§1.5), state |0 n > differs from |O n,> by the addition of one

B A

phonon., It can be shown that {the matrix element %.,33 is zero unless

the polarisability tensor element P transforms according to the

: k&
same irreducible representation of G as does the phcnor created
(15, 16). This is due to the group theoretical result that the inrer
‘product <A[B> of two vectors is zero unless the vectors transform
.similarly under the group operations. The transfofmation properties
of the second rank tensor Pk£ can be derived for the 6 crystal
~classes, and have been tabulated in the definitive articie by lLoudon
(15, 17). |

With the information given by the calculations of §1.3 and §1.4,

one can predict the symmetries of modes éppearing as pegks in the Raman

spectrum for a given input field E = (Ek, Ez, Em) and a given
A .
output field direction §_ = v(gfk’ Sfl, efm). These may not, of course,

be visible due to absorption, or small values of the elements of Pkl'

§1.5 Greens Functions and Raman Scattering

Useful information about the atomic vibrations of a crystal can
obviously be gleaned from the Raman spectrum by applying the methods of

§1.3 and §1.4, which describe the presence or absence of peaks in the
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spectrum. More often than not, the shape of a peak is also of interest.
For a harmonic system, simple 'response function' arguments produce an
expression for the lineshape comprising delta—functions at chifts of

wf = @, * W, (18). .

-

i
In the presence of anharmonicity, a simple 'harmonic oscillator

with viscous damping' analysis gives rise to a broadening of the delta
mping g

functions. This semiclassical argument is physically unrealistic,

and furthermore does not describe many experimental results at all

well, With the help of many-body theory, and in particulzar Greens

function methods, however, cne can derive from equation 1.12 a gereral
expression for the lineshape without recourse to ﬁythical danped -
oscillators. Tﬁe furdamental assunption of the Greens function
analysis of anharmonicity in solids is that the crystal may be re-
garded as an ensemble of bosons (phonons). These bosons interact

through anharmonic terms in the  Hamiltonian, and as they can be created

‘or destroyed, 'particle number' is not conserved. Instead cf con-

sidering the complete wavefunction of the system, it is necessary to
go over to the second quantisation representﬁtion, which deals in the
occupétion numbers of the phonon states (19).

The arguménts in this section followvthosé of Abrikosov et al.
(20) .and Cowley (21). It is assumed that the formalism of the three
‘pictures' of éuantuulmechénics is familiar (11). These are the
Schrddinger, Heisenberg (subscript H) and Interaétion (*) pictures.
The presence of anharmonicity implies the existence of terms additive
to 1.13 for the Hamiltonian. These are of the form:
iJZk 6 70 a5 4

Lmn

m
j

=
i}

n
1.34 9y .
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This may be written in terms of the normal coordinates of 1.22 as

: PAPLYA ' '
1.35 o= ] W 1b2 3)AQy_ Qp Q X80y *3) 33+ K
' oanhe 12 L0 I3¢ |
PAPENA
abc

(g = Reciprocal lattice vector)

which in turn expresses the interactioﬁ ﬁamiltonian H' in tewms-of
the phonon creation and annihilation operators.

In general, the single particle Greens function is defined in
terms of the second quantisation operators for creation and arnihilation
cf a particle at a particular point in space. For phonons, however, it
is- convenient to*define'che Greens function in the mémentum representation

as:-
- . ' Tr *
1.36 G(Z_a’ 3y b9t) = _'Z-{exp(_BH)Tt [IPH(}La,t)IPH(X b,O))]}

"where Tt is the time ordering operator, Z the canonical partition

function, and
1.37 y(ya) = b + b .

If the crystal is to be invariant under the operations of the trans-
,lation group, then the Greens function is zero unless y = y'. It ig
.essential to the development of finite temperature Greens function
theory to note that G is periodic in‘the 'complex time' it =T,
provided ITI < pfi. Thus we can expand G in terms‘of a "complex
frequency' to give

- . . S,

o

1.38 G(yab,t) = ‘z G(yab, iwn)exp iwnr

n=— «
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: 1 BH

1.39 G(yab, iwn) = 28h -Jfﬁn G(yeab, ‘r)ex? - iwn'r‘ dt
. o

where w, o= (Bﬁ) Xxn .

The usefulness of this transformation will not become clear until
it is applied in the (exactly soluble)Aharmonic appréximation, and in
the anharmonic case, when some form of perturbation theory will have
to be applied. It is best, therefore, to proceed with the purely
formel manipulation of G until some physiéally useful quantity
emerges. If the time dependent properties of the Heisenberg picture
operators are taken into account

and the trace is expanded in terms of the eigenstates {|D>} of H,

we can write:

140 G(yeb,1>0) = '% ) <Alexp(-8 + %)H v(ya)exp -éi |B>
A’B . ) 3 =k

*
x <B| ¢ (yb)|A> .

It 1is unnecessary.to write G(t <0) as it is uniquely defined by

1.40 and the periodicity of G along the complex time axis. Thus

1.41  G(yab,t>0) = %- ) exp(—BEA - wBAT)wAB(Xa)ng(zb)
A,B

and if a real function p(yab, w) 1is defined

*x "
.42 o(zab, w) = 7z [ exp - BE, ¥, (ya)u,(yb) x S(a - wy,)
A,B A _

then 1.41 can be written
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-]

1.43 G(yab,t>0) = f p(yab, w)exp - wt dw .

It is now possibhle ﬁg.relate- p(zéb, w) to the Raman intensity
1.12. This expression contains matrix elements of the _polarisability
operator P;f of 1.33, within the adiabatic Aapproximatinn‘. The cor-
respondingvclassical polariszbility can be expanded as a Taylor series
in the atomic displacements

if if

if,. -
1.44 Pkg = B ,(0) = %n sz(Jm)qjm Fouenes e

Expressing {q.} in terms of {%r_a}’ the normal ccordinates for
3

1.t

a phonon of wavevector y and dispersion branch 'a’', and thus in

terms of Y(ya), the matrix elements in 1.12 become

if _ if if
1.45 P (B&) = <B|P(0) + Za Poo@a(ya) ..... [a> .

The first term obviously vanishes when |A> # |B>, and 1.12 becomes

y

w
f .
1.46 Idw _dQ = ———— A A . .
£ 3212c3e . kimm P 06 Plf(}_r_a) ?f(y'b)
7o kg m =

Y y'ab

exp - BE %
" {zzx —'_E'"_A Upp (L2)Vp, 77D

X G(NBA *wg T wi)} .

The expression in curly brackets is, in fact, the function p(y_ab,-wf*u\i)

defined by 1.42 when, again, y'=y for translational invariance.
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The Raman cross—-section may therefore be written

L .
. w - .
f . v A A 1f —if
1.47 ldwdf = ———— )} EE£&_ € P (ya) P (yb)
£ 321\'2C380 kS‘;mn k m fX, fn ke kl

Xﬁb

g:>(lab,—-mf + wi) .
This ‘'spectral function', p(yab, w). is obtained from G(}_r_a"b.,'iwn)

by combining 1.39 and 1.43 to give

o

; _ 1 (1 - exp (- Bru))p (yab,w)dw
1.48 G(zab? 1wn) 25 I — iwn

It is obvious that this function is not yet useful for calculating
p(yab, w) 4ds there is an imaginary frequency involved. This problem
is overcome by. analytically continuing G(yab, imh) from the imaginary
axis, through the complex plane, to the real frequency ‘axis, by writing

iw > w+ie + w . This yields
n
e+ O :

1.49 p(yab, w) = Bh
27i(l - exp (- ghw))

x Lim {G(w + ig) - G(w - ie)] .
>0+ .

In the low momentum transfer limit (y *:0) of Raman scattering, this
gives, for the. cross-section:

y .
we Bn A A

B EnCfeCen

1.50 IdwfdQ =- P;i(Oa)Plf(Ob)
' 321r3c3eo k2mn mn

ab

x Im[Gab(w)] + (1 - exp (- Bhuw))



-21-

and the Raman scattered iﬁtensity has been related to the one-phonon
Greens function matrix, indexed by a and b, In the harmonic approxi-
mation, the effect of the operators ¢, w* on the states {|D>} can be
deduced from 1.24, 1.26 and the harmonic Greens function _GH can be

written, from 1.42, 1.43 as

1,51 ¢h () = 2
e ph(w_ 2 - w2)
a
and also “
1.52 Hoaa, w) = [(n. + 1)6(w -~ w) +n 5w+ w )]
‘- - P ’ a a Ta a *

The Raman speétrum therefore consists of two 'spikes' at frequencies

* W, the energy of the y =:0 phonon of the dispersion branch 'a' .
' When anharmonicity is present, the Greens function is obtained by

summation of an infinite perturbation series. This summation, and the

use of diagram techniques to evaluate anharmonic Greens functions, is

described in Appendix 1. The result is that Ga (w) 1is given by the

b

matrix equation

1.53 L (w2 = w28,y + 20, (8, @) + il ()]G, (W)
b

c= 2wa 6. ¥ Bh .
In general, the terms A and T depend on the form of the Fourier
coefficients V of the anharmonic potential ¢. It is not hard to see
that the substitution A = constant, [ o w gives the broadening and
shift of the delta functions of 1.52 analogous to the response of a

damped oscillator,
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§1,6 Experimental Techniques

Raman scattering in crystals is very weak, and frequency shifts
{@a} are small compared with typical visible light frequencies. The
ratio of inelastic/elastic scattering is of the order of 10-6 or
smaller, This gives rise to a set of criteria for a Raman experiment,
i) The source of radiation must be monochromatic, veryAintense,
well collimated, of very low bandwidth and accurately polarised.

2) The scattered lighﬁ must be efficiently analysed and dispersed.

3) The detector of scatteved light must be very efficient.

In 2ddition, comparative studies create a further requirement

4) The system must collect large amounts of data in an accurate,
repeatable mamner. A system which fulfils all these require-
ments is represented by Figure 3. Requirement 1 is met by a
gas ion laser (Spectra Physics model 165 argon or krypton tubes),
which offers the bonus of a variety.of exciting frequencies. The
Coderg TSOO triple grating spectrometer complies excellently with
requirement 2, and a léw-noise photoﬁultiplier tube with an
appropriate frequency response satisfies condition 3. The
additional (optional) extra of computer control and data
acquiéition (23, 24) meets requiremgnt 4 and also facilitates
digital data analysis (23, 25).

In the particular case of acoustic mode scattering, the triple
grating spectrometer is replaced by a highe; resolution, low spectral
range-Fabry-Perot interferometer. This was not necessary for aﬁy of
the experiments described, but the details of such a system are given
in Chapter 5, as its construction formed a significant part of my thesis

- work.
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FIGURE 3: The experiﬁental syétem used for the majority-
‘cf the Raman scattering work in this thesis
(schematic). 'G' denotes a diffraction grating,
;M' a mirror, 'S' a slit and 'L' a lens. The flow
of information between the system and the computer

is. also represented schematically.
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CHAPTER 2

A RAMAN SPECTRAL STUDY OF ZINC METABORATE

Introduction

The ;tudy of zinc metaborate,A Zn4B6O13 (ZBO) was intended as ?
precursor to the main work of this thesis - the examination of nickel-
iodine boracite, Ni3B7013I. ZBO contains boron atoms iﬁ exclusively
fourfold coordination with dxygen atoms, while boracites have mixed

threefold/fourfold - B - O coordination. The intention was to classify

the vibrational symmetries, and in particular to identify levels

associated with the B - O framéwork."Some success was achie&eérin tﬂis,
a;d the Raman spectfum proved interesting in its own right. In

§2.1 - §2.3, the Raman spectrum of ZBO is reported and the assignm;nt
of g x 0 normal mode symmetries is made (26). The vibrational levels
of the B - 0 framework are tentatively identified and correlated with
results from some boracite spectra in §2.4, with the aid of some simple
ﬁnlecular potential function calculations. The conclusions regarding
symme tries of bands are summarised in 82,5, and an interesting inter-
fereﬁce feature is identified in the spectrum (27, 28). The des-
criptions of this phenomenon by two distinct theoreticél models des-

cribed in §2.6 and §2.7 are compared, and a conclusion as to applica-

bility is reached in §2.8.

§2.1 Symmet;XVConsideratibns

Zn4B6O13 has the symmorphic cubic space group Tg (143m), with
the'BO4 groups linked to form an infinitely extended three-dimensional
framework based on B6012 rings (29). The tetrahedral .B - O coordination

~is unusual in that stability usually requires threefold coordination in
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metaboraées. All the known crystals with exclusively fourfold B - 0O
coordination are of the form (M O)m (B203)n’ where M 1s a divalent
metal such as Cu (30), Sr (31), Pb (31) or, of course, Zn (29): A
listing of mixed coordination borates is given by Marezio et al. (32).

A group theoretical analysis according to the methods of §1.3 |
predicts the following classification of the g * O normal modes of
ZBO in terms éf the irreducible representations of point group

Td (me,see table 1):

r = 3A1 + 2A

+ S5E + 7F1 + 11F,.

2 2

Furthermore, the evaluation of the selection rules of §l.4 for cubic
crystals gives, for the polarisability tensors, in terms of the cubic

<100> axes (15, 17), X, Y and Z:

A [a . E [b . .] and [ /3 .

. a . R b . . -/3b .

. . a . . -2b . . .
FZ(X) . . . FZ(Y) . . d F2(Z) R d .
. . d . . . d . .
. d . d . . . . .

- where the bracketed index denotes the polarisation of the phonon tgiven
by the éa(iz) of §1.2). The Raman spectrum should therefore comprise
3A1 + 5E + 10F2 optic modes. A calculation similar to §l1.4 for matrix
elements of the dipole moment reveals that only F2 modes are also

_infrared active.

It is obvious that no scattering geometry with this orientation
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TABLE 1

The character table for the irreducible repre-

sentations of point group Td(z3m) (12).

E 8C, 3c, 60 4 6S
1 1 1 1 1
1 1 1 -1 -1
2 -1 2 0 0
3 0 -1 -1 1
3 0 -1 1 -1
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contains A1 or E - modes alone. This problem is overcome (26,33) by

‘rotating the sample about [0 O 1] such that the laser directionm is

[110], or X'". The E symmetry tensors become

E i b . . -I and [ . /3— . ]
. b . V3b . .
. . 'Zb . . .

and the X'(Y'X’)Y' éﬁectrum contaiﬁs only E symetry peaks (see
§1.1 for noJation). Since the experimental data is in digital form
(24), it is a routine matter to subtract the X'(Y'X")Y' spectrum from
the XkZZ)Y'\spectrum; with an appropriate scale factor, to lay bare

the A1 modes.

§2.2 Experimental Details

Thé crystal of ZBO was a byproduct in the growth of Zn - I
boracite. The vapour transport method was used (34) and a shortage of
ZnI2 vapour led to the production of ZBO instead of Zn3B7013I.. The
crystal growth faces were <110>, so <100> faces were cut and polished;
using ly diamond powder, to facilitate both scattering geometries.
Placing the sample between crossed polarisers revealed growth strains,
'leading to inhomogeneous optical properties. This gives rise to mixing
of spectra over and above the expected intrusion of features from other
spectra caused by the wide angle df the lens at the spectrometer entrance

aperture. Since any spectrum is therefore, to a good approximation,

a linear combination of mixed spectra, with the 'correct' spectrum
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dominant, the same digital subtraction process described in §2.1 may
be used to remove spurious features. Only in the case of F, 'leak
through' is this impossible, due to transverse/longitudinal (TO-LO)
mode frequency splittings and the corresponding intensity mismatching.
The criterion for any subtraction to be possible is that some clear
spectral feature is present, whiéh can be used to determine a scale
factor.

Zinc metaborégé exhibits fluorescence around the 500-600 nm wave-—
length region (35)-+—This was verified by survey Stokes spectra
excited by 514.5 nm argon laser radiation. To avoid confusion of the
Raman spectra by fluorescénce, therefore, the spectra were excited by
350 oW of 476.5 nm argon laser light., The apparatus of §1.6 was used
in both the 90° geometry as shown in Figure 3, and in 180° (back-
scattering) geometry. .The spectra are recorded to a resolution of

1.0 em Y in the O - 500 cm ' region, and to 1.5 em™ ! in the 500 - 1500
cm region. Further spectra in the 1500 - 4000 cm-l ffequency range
revealed no further sharp features. An Oxford instruments flow
cryostat was used to perform a brief study of the temperatdre depen-

denée of the interference feature, although the results of this study

were only qualitative.

§2.3 Description of Spectra

In the ensuing description, and in the following chapter, the
labels X, Y, Z refer to the cubic |10 0], [01 0] and [0 0 1]
directions respectively, and X',Y' to the [l 1 dl and [T 1 Cﬂ

"directions. X represents [T 0 0].
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The Al spectrum:

This spectrum, shown in Figure 4, is the result of subtraction of
the X'(Y'X")Y' spectrum of Figure 5 from the X'(ZZ)Y' of Figure 6.
Using the E mode.at 414.5 cm.—1 as the clear feature mentioned above,
a scale factor of 1.03 + 0.07 was found to give cancellation. This is
ﬁot equél to the expected 1.33 from the form of the Raman tensors due
fo the birefringent properties of the sample, and to e#perimental
variations between spectra. The sudden increase in the Poisson noise
fluctuations in Figure 4 marks the disappearance of an E mode, and-
is caused by the /N proportionality of the photon 'particle number’
fluctuations. The sharp 'differential’ features, other than the resonant
feature at 122.5 cm-l, are due to slight calibration mismatches between
the X'(Y'X')Y' and X'(ZZ)Y' spectra. There are four sharp features,
and some broad second order structure. One of the discrete modes appears

. . -1
as the resonant interférence feature at 122.5 cm .

The E spectrum:

This spectrum, depicted in Figure 5, comprises twelve peaks, of
which six agre attributable to F2 admixtures, and one to another
. )
interference feature. The mode at 89.4 cm = is not the result of A

'leak-through', and is without doubt an E mode.

The F2 spectrum:

The form of the F-2 Raman tensors of §2.1 suggests that the
X(¥YX)Y spectrum should reveal only TO modes, the X(YZ)X only LO
modes, and the X(YZ)Y both TO + LO modes. These spectra are pre-

sented as Figures 7, 8 and 9 respectively. In Figure 9, admixtures of
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The Raman épectrum of Zn486013 in the frequency
regions O - 500 cmm1 and 500 - 1500 cm_l_
at room temperature.

X'(ZZ)Y' - X'"(Y'X")Y' geometry.
X'(Y'X")Y' geometry.

X'(ZZ)Y' geometry.

X(YX)Y geometry.

X(YZ)Y geometry.

X(Yz)i geometry.
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A1 and E spectra have been subtracted out, and the intense 'spikes'
in Figure 8 are the result of elastic scattering of argon laser plasma
lines. This is often a problem in backscattering experiments. It is

possible to identify ten F, modes, allowing for TO - LO pairs, from

2
a detailed study of Figures 7, 8 and 9 and use of a computer peak
finding routine (25). The modes at 93.1 anﬂ' and 181.6 c:m-1 are worthy

of remark due to their near-degeneracy with Al and E modes.,

The peak frequencies w and linewidths vy of the Raman active
modes, along with their symmetry assignments, are presented in Table 2.
The infrared results of Krogh-Moe (36) and Tarte (37) are also tabulated,

.and are discussed in §2.5.

§2.4 Molecular Potential Calculations for XY‘,+ Molecules

To describe molecular vibrations theoretically it is necessary to
propose some phenomenological form for the potential function. Some
such functions for simple molecular groups are described in Herzberg
(38) . The model used here for tetrahedral XY4 molecules is due to Urey
and Bradley (39), and assumes harmonic forces along and perpendicular to
the chemical bonds. If the distance between two Y atoms Yi and Yj
is y.. = Yo * Ayij’ the distance between the X at?m and a particular

1]
Y atom Yi is X, = x0-+ Axi, and the inter-bond angle is

ei = 6, + 46, then the potential function can be written
4 1 a2 k 2
21 v o= v o+ YA ax + L2V (an 2 4 22 52 (pe.)
o Lo [o9x, i 2 2 1 2 o i
i=1 axi -

3y. . 1] 4 9y

2
- + LW g+ 22V g 2|
2.1 2 y . . le
J 1] 1]



TABLE 2

Peak frequencies 6(cm71), linewidths Y(cm—l) and assignments for the Raman-active

modes of Zn4B6013, with the infrared (FZ) frequencies s of references 36 and 37.

Al E F, %
w . Y w . Y W . Y mir
94.7 11.5 £ 1.5 89.4 « 12%1 93.1 15 + 2
122.5 - 122.5 -
249.3 3 + 0.6 183.0 4 + 0.5 181.6 4 + 0.5 183°€
421.9 3+0.6 414.5 3.3 £ 0.3 196.7 5+ 0.5 - 204°
727.2 12.5 £ 1.5 222.4 2£0.5 |
835.9 9 + 1.5 278.0 6.5 + 2 280°
[zsa.z 6.5 2
471.1 14 + 1.5 478°
{488.2 9.5 + 1.5
653.0 20 * 6 655°
750P¢
906.2 14+ 2 930°
[1005.0 -2 997°
1040.0 -2 1038° .
1074.4 19 + 1.5 1081°
1189.0  23.5 * 1.5 1142°
w < 500 cm:l, resolution = 1.0 cm:i. a) Not ‘sufficiently resolved for peaningful measurement

b) From reference 36.

g kB o d Yy -

"
-
o
O
B

w > 500 ecm ~, resolution
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If the potential energy V 1is taken to have a term 1<3(Ayij)_n
i.e. some inverse power of the Y-Y separation, and the requirement of

equilibrium configuration stability is imposed, then:

.

2.2 BV | b oV 6nky g*

: % dy. . n+l z Yo¥3
1 1] yo

This yields a potential function in terms of three empirical force

9 N
constants. These are k1 = (a v ) , which describes the X-Y

: 9X.% o
'central forces' interaction; k21 which relates to the bond bending;

and Y3 which'describes the Y-Y interaction. It turns out that
values of- n between 5 and 9 give a good representation of the
experimental results for most XY4 groups. If the determinantal
equation for the normal mode frequencies W) T oW, is set up and solved

for n =7, these are given by the four equations:

2 = -
2.3 oh = (kl + 8y3) P omy
2 _ 9 .
2.4 »mz = (k2 + 4 Y3) . mY
2 2 - 23 .
2.5 w3t (g + 2Ky + k) ¢ 3my
+ (2y3 + kl + 2k2)% 3u
26 w2-w2 = 2By, + 2k +k) 3
. 3 4 . 2 Y3 1 2 Ty
- . 2
(ZY3 + 'k.lf_.+, 2k,) : 3u}
+ 2 (v, + k, - k )2 }
9umY 3 2 1

where u =<u&mY(4mY + mx)_l- is the reduced mass. The normal modes



-34-

Wys Wos Woq and w, transform according to the representation

3

r = A1 + E + 2F2 in terms of the irreducible representations of Td.

They are represented in Figure 10 and it is clear why Wy and w,
are independent of k2 and k1 respectively.

It can be seen that the three force constants can be determined
from three of the equatioms 2.3 - 2.6, leaving the fourth as a check
on the validity of the model. This was the method used by Urey and

Bradley. In this work, a least squares minimisation routine was used

to '"fit' the model to the frequencies Wy T Wy yielding three force

constants and a goodness—of-fit parameter. Different combinations of
the frequencies of Table 2 were tried until the best fit was obtained
for ZBO, and for copper-chlorine and nickel-iodine boracite. The

orders of magnitude of frequencies and starting values for k

Vi-4? 1

k2 and Yqs Were obtained from the results of applying the fitting

technique to some isolated and well known XY4 groups. This produced
similar values for kl’ k2 and Yy as were obtained by Urey and-

Bradley (39). The results for BO4 groups in ZBO and the above boracites
are presented in Fig. 11 and in table 3, along with those for some cther
XY4 molecules. The relative intensities of the BO4 frequencies show
reasonable agreement betwéen ZBO and boracites, as do the frequencies
themselves. A calculation similar to that described above, but with

k2 = 0 (central forces only) produced worse fits, but the same pre-
ferred sets of frequencies V14"

The results of this calculation must be viewed with some scepticism
due to the cavalier aésumption that the BO4 groups beﬁave as free
molecules. The shortcomings of this model are illustrated by the
change in sign of -y3 from other XY4 groups. Since Y3 is an

empirical constant, this is not altogether a damning fault, but it

does indicate that the rest of the atoms in ZBO do alter the
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FIGURE 10: The normal modes of vibration of a tetrahedral

XY4 molecule.

FIGURE 11: The frequencies associated with the normal

vibrations of the B - 0 framework in Zn,B 0O
476713,

Cr3B7013C2, and N13B7013I.
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TABLE 3

Frequencies of normal modes and force constants for the Urey and

Bradley model (39) for some XY, groups (see §2.4).

Material Frequencies (cm_l) Force constants (Nm—l)
21 v, y3 Vy kl : k2 i YB
cnraa 265 123 667 184 141 17.8 | 23.8
sicey 422 148 609 216 259 14.8 i 13.5
s=og 981 451 1104 613 622  111.0  35.8
o’ ' 935 462 1102 628 656  154.0 21.1
P:o4 b 980 363 1082 515 616 42.8 36.3
Zn,B0; ¢ s 421 183 1075 278 325 75.9  -19.8
Cr 4B,0; ,C2 375 232 1160 252 345  110.0  :=26.5
Ni,B.0, jIe 378 248 1100 255 - 295  103.0  -20.1

~

a) Reference 39
b) Reference 38
¢) Reference 26
d) Reference 26
e) See Chapter 3.
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environment of the BO4 groups significantly. Furthermore, the 121
frequency is lower than might have been expected. Nevertheless, it
appears that frequencies at about 400 cm_1 (Al)’ 200 cm—l(E) and

1100 cmfl, 260 cm—1 (F are characteristic of a B - O framework

2)
containing B04 tetrahedra. It would, in theory, be possible to set

up a more complicated expression for the potential of the crystal,

and solve for the phonon dispersion curves at ¢ = 0 (10). For a

crystal as complicated in structure as ZBO or the boracites, however,

this is outwith _the_scope of this thesis.

§2.5 Symmetry Conclusions

From table 2 it can be seen that the Al and E Raman spectra
are not totally in agreement with the group theoretical predictions,
as both contain one mode too many. The Raman data would seem to sug— -
gest that the 122.5 cm—1 mode is spurious. ﬁowever, the infrared data
.(36, 37) shows the presence of an F2 mode at‘750 cmfl, absent from
the Raman spectrum. It is now thought, therefore, that the modes at
arouéd 90 cm_l are the origin of the discrepancy. Apart from the
750 cm-1 mode, the agreement between Raman and infrared results is
good.. The 'extra' modes are thought to be attributable to some local
vibrations associated with impurity ions. Terol and Otero (35) re—.
marked that the 'cavities' in the B - O framework are large enough
to accommodate impurity ioms. Their results indicate, furthermore,
that the fluorescence observed in the survey Raman spectra is due to
the preseﬁce of some Mn carried over from the growth materials as an
imﬁurity, giving a luminescence peak at 540 nm., This is confirmed

as a possibility by Schmid (40). The concentration of Mn would be
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too small to produce an impurity mode with an appreciable normal Raman
cross-section, and the spurious features are attribﬁted tentatively to
some iodine species (perhaps HI) trapped witﬁin the B - 0 framework.

. The A1 and E symmetry inte;ference bands are of interest, as
resonant interference of this type.has only rarely been observed
(e.g. SiO2 41), AQPO4 (42) and BaTiO3 (43)). Interference between
modes most commonly occurs when a soft mode associated with a phase
transition overlaps in frequency another mode of the same symmetry
species as temperature or pressure is varied. Tﬁe interaction T
commonly resﬁlts in asymmetric peaks, and two models are used here to
describe the resultant cross-section.

The firét model, in §2.6, involves coupling between two phonons,

via anharmonicity, whose lifetimes are widely différent. The second
model, described in §2.7, is due to Fano (44) and was developed to
describe the phase shifts in atomic state wavefunctions, and the re-
sultant excitation spectra, due to the configuration interaction be-
vtween a discrete state and a continuum of states. This interaction
produces asymmetries in the continuous absorption bands of atomic and

molecular systems.

§2.6 The Coupled Modes Model

This modelﬂexp}pits the properties of the one-phonon thermodynamic
Greens function as described in §1.5 and Appendix 1. It is assumed for
this description that the feature'at 122.5 cm--1 is attributable to the
interaction between two first-order phonons. The most general form

for Gab(m) is obtained from equation 1.53, in matrix form:
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2 - .2 . - y . .
2.7 wl - Wt o+ zwa(Aaaflraa) ‘ Zwa(Aab + 1Fab)
. 2 - 2 i . )
Zmb (Aba + lrba) wg e+ Zwb(Abb + 1Pbb)
% Gaa Gab ©a *
' = 2
ba Cbb B . “y

This rather complicated expression can be simplified, within certain
approximations, to provide a more tractable function for a computer
fitting process.

Firstly, it is useful to consider the three lowest order contri-
butions to the vertex part of Dyson's equation. These are represented
in Figure 12. It can be shown (21) that 12a and 12b contribute a
temperature dependent term Aab(T) to Sab(w), ‘and that the addition

of 12c gives Sab(w) of the form

‘ 0-y, -x 0 ¥, ¥
= _ 18 1 2 1 2
2.8 Sab(m) B Aab(T) n2 Z V(a c d ) V(b c d-)
-XIXZCd
x {( + + 1} ( + +m)_1 + (w_ + - w)—l
Be T Mg Ye T Y% P c” % P | .
+ (n; - n )[-(w -w, + ou)—1 + (é -w, - w)-l ]
d c c d P c d P
+i(nc+nd+ 1)[6(mc'+ wd+m) -G(wc+wd -w)J
+i(ny - nc)[:ﬁ(wc - wg tw) = 8w, - wy —w)] }

where subscript 'P' denotes ' Principal part'. In the (w, T) region

fiw << kT, it can be seen that Sab(w) can be approximated by
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FIGURE 13:
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The three lowest order contributions to the

vertex-part of equation-Al.7, Dyson's equation.

The lineshape resulting from two Raman active

modes yhere Pa = 5Ty & rab = 2Fa._Figure 13a

t,t

represents modes 'a' and 'b', uncoupled and
figure 13b gives the total crossection in the
uncoupled (solid line) and coupled (broken line)

cases.
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2.9

wn

ab(w) < Aab(T) + Bab(T,w) + 1Cab(T,w)

where A, B, C are all symmetric with respect to the indices a,b.
Furthermore, B 1is an even function of w, and C 1is odd. If B
is approximated by B(T) and C by wC(T), then the large matrix of
2.7 may.be written

2 _ .2 » ' .
2i10_ wl - w +_2wa(Aa + 1mFa) zwa(Aab + 1wFab)

. 2 - 2 .
2wb(Aab + 1wFab) W we + 2wb(Ab + 1wa) .

Apart from a constant factor *h %VZJG;EE-, this is E'l(w) and
Aa,rAB may now be interpreted as shifts in fhe zero position of

(wg - w?), (w% - »2) and therefore in the peak position. The net‘
result is that the intensity of Raman scattering may be written, from

equations 1.50 and 2.10:

2.11 Idegdo = ] PP ImG, (w)
a,b
=1,2
2.12 whére G-l(w) = |02 - w2+ il w - A + il . w
* A a a* ab ab
. 2_ 2 .
Aab + 1Pabw wb ws + 1Fbm .

It should be noted that w,s Wy are now the shifted characteristic
frequencies, and the A and T ﬁarameters have also been trivially
redefined. The parameters W, wb, Fa, Fb, Aab and rab may now be
regarded as adjustable fitting parameters, and the P_, P, as

'strength' parameters. Performing a suitable unitary transformation
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on G“1 renders either its real or imaginary part diagomal, corres-
ponding to 'purely imaginary or real coupling' respectively., With a
further redefinition of the remaining parameters, this gives 2.10 with
either bp OF Ty = 0. The choice of real or imaginary coupling is
purely arbitrary unless a soft mode is involved, as in Chapter 3 where
the distinction is discussed in detail.

Figure 13a represents a response function of the form of 2,11 and

2.12 with Fa = SFb and Aab = rab = 0. This i1s usually referred

to as two 'uncoupled' modes. For 13b, Ty = 2T, and the effect of. _._
‘coupling' the modes is evident in the pronounced asymmetry of the

sharper feature in particular.

§2.7 The Fano Model

»This model (44) makes use‘of the fact that the interference of a
discrete state with a continuum of states gives rise to asymmetriq
peaks in the excitation spectrum,

If we represent the discrete state by |p> s the continuum statés
by ile>}, and the perturbed wavefunction of eigenvalue E by
|¢E>, we are concerned with the cross-section cl(m) for tran-
sitions from some state |i> to _|¢E>, which for a transition
opérator component ny (see 1.33) is proportional to |<¢E|ny|i>12.

The matrix elements of the total Hamiltonian H are given as:

2.13 4 H|p> = Ep p>

]
<

2.14 <¢E|H|p>

2.15 <upE.|H|wE,.> E' §(E' - E").
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The state |¢E> must now be written as an admixture of [p> and

Lg>te
2.16 |¢E> = a(E)|p>+ [ b(E')le,>dE'.

When this expression is applied to 2.14 and 2.15, it is found (44)
that the parameter b describes a relative phase of [p> and the
{IwE.>} in 2.16, which varies by m as E traverses the 'resonance

energyl_-EaL-mn_

.

t

2.17 E E o+ P[ |v_,|2 dE' =+ (E,-E") .

It ?s_this variation of wavefunction phase that is responsible for the
different contributions to |¢E> from tﬁe {IwE,>} on either side of
the resonance, giving rise to asymmetries., The variable a(E) des-~
cribes a 'smearing out' of |p> in 2.16 through a region given by,
roughly, |E - EOI < IVEIZ, the region of rapid phase variation, such
that the perturbed state |¢E> contains an admixture of |p> given by,
iﬁ 2.16,

v, 2

2.18 a(E) % ' .
(E - E)2 + n2[V |*

It can be shown by combining 2.16 with the explicit form of the phase-

shift parameter b(E), that cl(w) can be obtained from the expression

219 el mlisl2 = el pg li]2
< ;|ny|i> E-E z
X = : + ————
e le, Ji> wlvg]2
E-E_
$ (1o —=—)

m|vg|?



.

where

2,20 | 5> p> + P [ Vi |yg.> dE' ¢+ (E -E") .

Introducing new variables q(E) and T(E), 'cl(m) may be written in

terms of the cross—-section Go(w) for scattering from |i> to |w g

....... W= w 2
2,21 o (@) = o (w(q+ —=2)
1 o] IT
2
w - w
1+ (—=2)2)
ir
<plPX li> E - E w - w
2.22 q = —F ;g = —
] 1rVE<1pE|ny|i> m [V |2 ir

Regarding the quantities q, I as constant over the range of interest,
2.21 defines a family of curves for different q, which are depicted
in Figure 14, Fano alsd showed that when more than one continuum is
present (e.g. many orders of multiphonon scattering), the cross-section

may be written as

a(w) = ol(w) + oz(w)

where oz(m) corresponds to the underlying noninteractiﬁg continua,
And oo(w) is redeflned as a particular linear combination of con-
tinua. It is worth remarking that the state |p> is assumed to decay
only into the continuum, and that this interaction alone is responsible

for its noninfinite lifetime.
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FIGURE 14: The shape of function 2.21 for different values of

the parameter q.
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§2.8 Comparison with Experiment /

Three functions derived from §2.6 and §2.7 were used to perform

a computer least squares fit to the observed room temperature A1 and

E spectra of ZBO (28). These are as follows:-

Coupled Modes:

o ~

A 1ineshape-of the form 2.12 may be used to describe the spectra
between 70 cm-'1 and 140 cm_l, provided it is extended to have a Gcc

similar to Gaa and G and Ga =G =0. With a flat, con-

bb’ c bc

tinuous background and Aab = 0, this corresponds to two coupled modes
and one uncoupled mode, corrected for photomultiplier dark current and

noninteracting continua. Figure 15 and table 4 summarise the results of

this analysis.

Table 4 : Coupled mode parameters (cm-l)

wa I‘a wE I‘b I‘ab We I‘c
A1 T 124.4 4.3 143.1 73.6 12.4 94.9 11.8
E . 123.8 1.8 163.8 103.2 7.2 90.2 12.2

Fano Interference (I):

For the 70 cm—1 - 140 cm-1 region to be described by the Fano
model, a diagonal 2x2 Greens function must be included to describe
the noninteracting modes 'b' and 'c' above, as well as a constant

background as before. This gives the same number of variable parameters

as the coupled mode model, and results in Figure 16 and table 5.



FIGURES 15 and 16: Experimental and theoretical forms for

FIGURE 15:

FIGURE 16:

FIGURE 17:

FIGURE 18:

-47-

the room temperature A1 and E spectra of zinc

metaborate in the frequency region 70 - 140 em .

Described by the coupled modes model.

Described-by the Fano model (I),

The theoretical fits of figures 15

over the frequency range 115 - 135

Experimental and theoretical forms

of Zn4B6O

13°

described by the Fano

1

and 16 enlarged

-1
cm .

for the A1

model (II).

spectrum
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Table 5 : Fano Model Parameters

q wo(cmfl) I'(em 1) mb(cm—l) rb(cm"l) mc(cm—l) Hrc(cm’l)
Al -1.59 123.5 3.06 141.5 63.4 95.0 -12.0
E -2.26 123.9 1.49 163.2 101.6 90.2 12.3

The parameters describing the nOninteracting modes are in good agreement

with those of Table 4, although they now describe uncoupled modes. The

-fitted-spectra of Figure 15 are indistinguishable from those of Figure 16

unless enlarged (Figure 17). The goodness-of-fit test shows that the Fano
description is less than one per cent better in both A1 and E symmetries,

which is hardly significant.

Fano Interference (II):

Following the reasoning of Rousseau and Porto (43) an analysis was
attempted with o, in 2.21 represented by an anharmonic -oscillator

function, and 9y by a constant. This gave a poor fit (Figure 18),

with parameter values of q = -0.5, w, = 125.0 cxn—1 and T = 1.2 cm-.1

for the A1 spectrum. Convergence proved impossible for the E spectrum.

§2.9 Conclusions

Firstly, the Fano model (II) may be dismissed és an inadequate des-
cription of the interference feature in ZBO. The coupled modes model
and the Fano model (I) ére.indistipguishable within the accuracy of the
experiment. Fof the coupled modes model of §2.6 to be valid, the modes

_1 - .
at 143.1 cm (Al) and 163.8 cm 1 (E) would have to be first order.
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This would mean that Figures 15 eacﬁ comprises three first order bands.
This would increase the number of Al and E normal modes by one in
both cases, which would further contradict the group theoretical pro-
diction of §2.1. For this reason it is concluded that the Fano model
(I) description is more signific#nt for ZBO. A brief study of the

temperature dependence of the interference feature revealed only

'normal' sharpening effects, with no evidence of decoupling.



-50-

CHAPTER 3
v

THE PECULIAR PARAELECTRIC PHASE OF NICKEL IODINE BORACITE

Introduction to Boracite Prcperties

The boracites are the family of compoimds with the generalised
formula M337013X,— where M 1is a divalent metal and X a halogen
or chalcogen, which exhibit intriguiﬁg ferrocelectric, magnetic and
structural properties. These properties are reviewad exhaustively
by Nelmes {45) but a summary of the details relevant to tﬁis thesis
is giyen below. A boracite is conveniently referrsd to by its metal

and halogen/chalcogen only (e.g. ¥Ni,B.O,.I = Ni - I),.

377713
Most halogen boracites undargo a transition from a high tempera-
ture, cubic, pagaelectric phase of s&mmetry Tg to a low temperature,
orthorhombic, ferroelectric phase of symmetry Cgv' The transition
temperature Tc can be as high asA798K (Cd - C2, ref. 34) or as low
as 68K (Ni - I, refs. 45, 46, 47), and is that of a 'coupled' tran-
sition, giving an improper ferroelectric. These terms will be defined
more fully in Chapter 4, but the essential point is that the primary
" order parameter is not the spontaneous polarisation at an improper |
ferroelectric transition. The primary order parameter is defined to
. be a quantity whose non-zero vélue below Tc leads to the appropriate
group symmetry change (48). The improper transition is itself a
stimulus to interest in boracites, but their magnefoelectric pro-
perties provide an added basis for speculation as to device applications.
Many transition-metal boracites become ferromagnetic, with a

concomitant onset of weak antiferromagnetism, at a transition (Néel)
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temperature TN < Tc' The interesting feature of this phenomenon is

that it has been shown in Ni - I (49) that the mutually perpendicular

spontaneous electric and magnetic polarisations for T < T and

v &g

M, respectively) are coupled. In fact, we can write the electric and

magnetic dipole moments as:

8
]
e
(=<t
=
]

M XE

where y is the magnetoelectric susceptibility tensor, which is of the

_:A__ = '-- . ] T
. . x
yz
. x L]
zy

Thus, switching of P_  from [501] to [OOT ] rotates M_  from
[110] to [110], and vice versa. Boracites are almst unique in dis-
playing this property.
Since this chapter is comncerned with onlf the idiosyncrasies

of the cubic phase of Ni - I, a discussion of the known properties
for T > Tc is given in §3.1. The discussion of the transitién(s)
.in Ni - I, and of improper transitions in general, is deferred to
Chapter 4. While graphical representations of tﬁe variation with
temperature of normal mode frequencies and damping paramcfers are
included in this chapter and the next, the tabulated values of these
parameters are relegated to Appendix II, in most cases. This is done
to avoid fragmenting the text unnecessarily, and because the actual

numbers are not, in general, essential to the arguments. The details
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cf the experiment are given in §3.2,.and the group theoretical pre-
dictions and experimental results are described in §3.3. In §3.4,

the analytical methods for data reduction are outlined, and in

§3.5 — §3.7 the classification of cubic phase modes, and their tempera-
ture ﬁariation throughout the cubic phase are discussed, and conclusions

are drawvn.

§3.1 = Properties of Cubic Ni - I

Ni = I has been shovmn to have the nonsymmcrphic cubic space group
5

Td at room temperature (50) and 77K (515 by X-ray apd neut ron dif-
fraction respectively. Cubic Ni - I is however, birefringent due to
the fact that crystal growth rate is anisotropic, and different 'growth
sectors"occur. This is, of course, more of a nuisance than an object
of delight in Raman scattering, as it causes polarisation mixing, but
careful choice of sample can minimise the inconvenience.

The interesting feature of cubic Ni - I is the anomalous behaviour
of the dielectric, magnetic and structural properties at a ﬁemperature
T. % 130K. These anomalies, illustrated in Figure 19, comprise broad
maxima in the magnetic and dielectric susceptibilities (49) and an
increase of about 0.1% in the lattice constant (52). It might be

expected that some man;festation of these abnormal magnetoelectric
and structural properties would occur in the Raman spectrum. Such an
expectation is reinforced by the observafion of a bréad meximum at
115K, and a broad minimum at 140K in the elastic stiffness component
C44 (= C2323, ref. 53). This result was obtained by piezoelectrically

. excited shear mode resonance measurements, and is in keeping with the

broad minimum and maximum found at 120K and 150K respectively in the



FIGURES 19a and 19b: Temperaiture variation of the dielectric (g),
and magnetic (Xg) susceptibilities and the lattice
constant (ao) {figure 19a}, and of the elastic

ffici { figure 1 £Ni B O _I.
coefficient C44{ figure i9b} o N13 7013
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~elastic compliance (47). In this study the authors observed simultangoqu
ly the piezoelectric resonance frequency and the Faraday rotation of
the polarisation of light in Ni - I.

In additicn to these results, there is a published infraredvstudy
of Ni - T at 300K and 100K (54), which gives a further probe of F,
symmetry vibrational frequencies (see §2.1). The results of the pre-
seant Raman spectral study of cubic Ni - I have been published in survey

-

{55) and in full (56).

§3.2 Exp eriment

Since Ni - I has thwa?ted past attempts to record its Raman
spectrum the details of the sample, equipment, and methods used are
given here at some length. The problematic properties of Ni - I are its
opacity to ﬁost visible light frequencieé, and its birefringence in the
cubic phase.

The optical absorption spectrum of Ni - I (57) showé that it
absorbs strongly almost all the resonant frequencies available from
krypton and argon ion lasers. On transmission of white light, Ni - I
appears dark brownish-green. Trials revealed a maximum intensity
transmission of 11% for 676.4 nm and 5% for 647.1 nm of krypton laser
light through 0.55 mm of Ni.— iﬂ For successful Stokes Raman scatter—‘
ing, however, it is essential to use the 647.1 nm Qavelength, as
absorption increases sharply‘for X > 676.4 nm (57), éuch that the
intensity transmission for a Raman shift of 1400 cm—l would be less
than 3% through 0.55 mm. In addition, Raman scattered light from
boracites is of low intensity, and a photomultiplier tube of ﬁigh

sensitivity to red light is essential. A Spectra Physics 165 krypton
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laser giving 400 mW at A = 647.1 nm, and an RCA C31034A photo-
multiplie% tube were used, the. 90%scattered radiation was dispersed
.by the Coderg T800 triple monockromator system of §1.6 (T < 295K),
and a Spex: 1400 double monochromator digital system (T =295K ). The
resolution was 2.5 cm,_1 in both instruments,

The crystal used was the same Bl1 enriched single crystal [100]

growth sector used for the structure determination at 77K (51), which

.was supplied by Dr. H. Schmid, and grown by the vapour transport

method (34). Although birefringence is a minimum for Iodine boracites, -
it is still necessary to use a [100] sector, which has o birefringence
of only ~ 0.0003. The birefringence parameters for the other growth
sectors (46) are = 0.0007 ([i11]) and 0.004 ([110})}. This choice of
sample minimises polarisation mixing. The saaple forﬁﬁd a cuboid of
dimensions 1.4 x 2.2 x 0,55 mm3, the dimensions co;responding to the
cubic [110] "), [Tlo] (Y') and [001] (Z) directicns respectively.
The natural. growth faces were polished Qith 1 ym diamond powder. To
minimise the absorption, and therefore the attendant léser heating,

the incident light was aligned along the shortest axis (Z), and was
placed 8s close to the [TIO] face as possible, to maximise heat dis-
sipation. This orientation, 2 (??) Y', coincidentally produced the
strongest Raman signal.

Cooling was achieved by use of a Thor nitrogen vapour flow cryostat,

"with a Thor model 3010 temperature controller, and a chromel vs. gold-
iron thermocouple for temperature measurement. Approximately 5K of
laser heating was detected at the thermocouple despite the above pre-
cautions, which suggests that the femperature at the beam position was

a few degrees higher than that measured. An elaborate screen had to be

constructed on the cold finger of the cryostat to prevent the intrusion
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of the Raman spectrum of nitrogen, and the sample was clamped across

the large <001> faces, again to maximise heat dissipationm.

§3.3 Croup Theory and Description of Spectra

A group theoretical analysis of the 3_3-0 modes as described in
§1,3 gives the following classification in terms of the species of

point group T (43m, see Table.l):

d

r = 4A1' + 6A2 + .10E + 1sF1 + 20F2 of which 4A1 + 10E + .19F

optic mcdes should be Raman-;ctive, and 19Fé infrared active (see
§2.1). The spectra in the four polarisations permitted by the geo-
metry are presented as Figures 20-23.

f Accordiang to 52.1, the Z(Y'X")Y' spectfum should contain E
‘modes only, and the Z(X'X')Y' spectrum modes of 'Al + E + F2 symmetry

since the F2 Raman tensors for this geometry are of the form:

. . d . . d
1 1
F,(X') = — |[. . df, F, ') = —|. . =d
2 Jg' 2 5
d d . d -d .
d . .
and F2(Z) = |, -d . .

The E symmetry modes can be subtracted from Z(X'X')Y' to give
Figure 24, with a suitable scale factor, but the - F2 modes cannot

be removed as no suitable scaling feature is present. The Z(Y'Z)Y'
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spectrum should contain FZ(TO + LO) modes and the 2Z(X'Z)Y' spectrum

only FZ(TO) modes. As the F, scattering is roughly ten times weaker

2
than the A, + E scattering, its contribution to Figure 24 is ignored
for assignment purposes. The spectra are described below:

The A1 spectrum (Figure 24):

"This spectrum contains & wing feature, common to all bdracites
(58, 59), but les;w;fonsunced in Ni - I, such that its influence on
the cross-section is negligible beyond o, 100 cm-l. There is a broad
feature centred on ~ 154 cmnl, with an indistinct but non-negligible
band peaking at 100 cmnl. Only two other distinct spectral features

are visible at 378 cm_1 and 655 cm-l.

. The E spectrum (Figure 21):

This spectrum resembles the A1 spectrum in the region O - 300

cm 1, with a wing feature, and broad bands peaking at 160 and 84 cm~1.

There are five additional, discrete modes.

The F2 spectrum (Figures 22 and 23):

The F2 scattering is very weak. Again, a narrow wing feature
is present, with an odd scattering profile below 200 cm—l, comprising
apparently two bands, plus two very weak bands (a  TO - LO pair) at
255 c:m-1 and 280 cm_l. It becomes clear at low tewperatures that the
structure arounleOO-lZOOcnflisa superposition of weak.first order bands
(see Chapter 4). The signal-attenuating‘effect of c?yostat windows
rendered the low temperature F2 spectra weaker still, which.made

detailed analysis impossible.
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FIGURES 20 - 24: The room temperature Raman spectrum of Ni3B7013I

in the frequency rangé 0 - 1500 cm .
FIGURE 20: Z{X'X')Y"' geometry.
FIGURE 21: Z{Y'X')Y' geometry.
FIGURE 2Z: Z(Y'Z)Y' geometry.
FIGURE 23: Z(X'Z)Y' geometry.
FIGURE 24: Z(X'X")Y' - Z(Q'X')Y' geometry.
N.B. The ordinate scales in figures 20,21 and 24

are X1 ( lower) and X5 ( upper).
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§3.4 Analysis of Results

The computer least-squares fitting routine used in §2.8 proved
essential to investigating the temperature dependence of the Raman
spectra. Discussion of the procedure is made easier by dividing the
‘spectra into low frequency (0 - 300 cufl) and high frequency

-1 .
300 - 1400 cm ") .regioms.

The high frequency spectra:

Each of the high frequency peaks may be represented by a 1 x 1

Greens functions, giving a response function (see §1.5)

STw(n{w) + 1)
(wg - w2)2 4+ 122

S ="' strength' .

3.1 I(w) - =

The low frequency spectra:

The model response function proves more problematic here. Firstly,
the wing feature is described by a 1 x 1 Greens function, giving a response
_ fungtion ' 3.1, but with T >> w, - This limit gorresponds to over-
damped (i.e. very short 1ived) excitations, and reduces 3.1 to the

- functional form

Swn(w) + 1)
2

3.2 . I(w)

w? + Y

where
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wt

3.3 y2 = _— S = 'strength' .

“e

-Secondly, a 2 x 2 Greens function must be included to account
for the broad modes bel cw 200 cm-l. This can be chosen to be a diagonal
matrix, giving an 'uncoupled modes' model, with two functions of the
form of 3.1, Alternatively, the form 2,12 can be used, representing
two coupled modestw_ln this case, however, the w-dependence of the
imaginary terms in G(w) means that the choice of diagonalisation
convention (c.f. §2.6) is critical. 1In the case of a ferroelectric
transition, we may be iocoking for a 'soft mode', whose characteristic
frequency o varies as (T - Tc)i. Now, it can be shown (21) that
the dielectric susceptibility tensor éﬁw) is given by:

;
3.4 xzm(w) o M G(w) M ; & is the Green's function of §1.5,
where ﬁﬁ is a vector whose elements are the £'th Cartesian components
of the lowest order phonon expansion coefficients of the dipole moment

operator (c.f. {gi} of §1.5) such that the dipole moment operator

M is given by

3.5 M, = ) Mn(zg)w(zﬁ) MEREER

ya
and y=0 by the translational. invariance requirement, Fof a Curie-Weiss
behaviour of xll(o), we require XQQ(O)& (T - Tc')_l, to describe
the dielectric anomaly in a ferroelectric. Substituting for Eﬁo)
in 3.4, we have for the cases of real and imaginary coupling res-..

pectively, ZR and xI
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2
R Mg(b)ma + M;’;(a)wlf -2M, (a)M, (b)

3.6 le(o) a 2~ .
a b ab
2 2 4+ M2 2
I Mz(b)wa + Ml(a)wb
3.7 ng(O) o .

2 2
“a “%

Only in the second case (purely imaginary coupling) can the
substitution of ‘ag-a (T - Tc) give a denominator proportional to
(T - Tc)' Thus, for real coupling, Tc' # Tc' For this reascn,

imaginary coupling is chosen.

§3.5 Symmetry Classification of the Modes

The parameters produced by an analysis of the room temperature
spectra in terms of uncoupled modes throughout are presented in
table 6, along with the results of the infrared experiment (54).

It is evident that the correct number of A1 symmetry bands

s

appears in the Raman spectrum, but that there is a dearth of E and

F2 peaks. The most serious discrepancy occurs in F2 symmetry,

where only five peaks can be seen, the paif at ~ 250 cm—1 and 280

cm 1 being obviously a TO - LO pair from both the Raman and infra-
red data. The fitted low frequency spectra are presented in Figure
25. The infrared result suggests that the poor fit in Fig. 25a for

F2 symnetry is because the 0 - 300 curl spectrum actually comprises

at .least nine bands, not just four. The fit for E symmetry is good,

while that for A1 symmetry is not. A coupled mode fit to this

region (Figure 26a) did not improve the agreement over the 100-240

cm = region as was hoped, and furthermore produced parameter incon-

sistencies between different temperatures (see Appendix II).
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FIGURE 25: The low frequency spectra of Ni-I with theoretical
fits ggpooth lires) in terms of two uncoupled
oscillators plus an overdamped wing.

a) F2 symmetry.

b) E symmetry.

c) A] (+F2) symmetry.

'FICURE 26: a) The low frequency A1 (+F2) spéctrum of MNi-T
with theoretical fit (smooth 1line) in terms of

a coupled modes model. .
b) The Z(X'X')Y' (upper) and X'(ZZ)Y' spectra of

Ni-I at low frequency.
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TABLE 6

Resonant frequencies - W, (cnrl), damping parameters T (cmul) and assignments

for the Raman active modes, and frequencies for the infrared active modes (54)

of Ni - I at room temperature.

F,(infrared)

1 2 i T L0

W, T W, r W, T Wy mo
81.5 61 84.5 35 74 .5 48 42 42
163.5 76 . 170.0 90 152.5 42 54 70
378.02 182 611.5 20 255.o]b 89 91
655.0 30 863.5 15 280.0)b 112 114
: : . 943.0 36 135 136
1125.5 43 168 168
1199.5 74 195 198
224 226
258 286
308 308
320 322

All @y and T are from computer fits except:

8  Measured from spectrum.

Measured from spectrum and too weak for assignment of T. .

-£9-
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The discrepancy must therefore be attributed to the weak F2 com-
ponent introduced by the form of the Raman tensors, or to other ex-—
citations (e.g. multifphonon). An attempt to subtract thev X' (zZ2)Y!
spectrum (Al + E, Fig. 26b) from the Z(X'X')Y' spectrum (Fig. 26b)

to lay bare F, modes was unsuccessful, due to the low intensity in

2
the X'(??)Y' geometry and the different E symmetry scale factors.
'The molecular potential calculation of §2.4 suggests that the

378 cmfl (Al) and 255 cm._1 (F.) . bands are associated with B-0

2
vibratioﬁs. Also, the presence of a first order F2 band around

1100 c:m—1 and an E mode at about 250 cm-1 is indicated. This latter
mode actually becomes visible at lower temperatures. These frequencies
should be relatively insensitive to change of halogen or metal in the
boracite formula, as such a change does not drastically disturb the
B-O framework (45, 60). This is borme out by‘Figure 11 and the re-
sults for Cu - CL (59) of 385 cm-1 (Al) 239 cm,-1 (E) and 1167 cm-l,
264 cm © (F,).

The low frequenc§ modes for Ni - I are more heavily damped than
their counterparts for other boracites, particularly in E symmetry.
The lowering of characteristic frequencies from Cr - Cf and Cu - C{
to Ni - I produces a low frequency total cross-section of great com-
plexity. This increases the probability of interacﬁions, and thus may
contribute to the shortening of phonon lifetimes, and consequently
. higher damping. The frequency lowering also confirms that these low
frequency mdes are largely attributable to uetai and halogen motion,
in particular the latter.

The wing feature is much narrower in Ni - I than in Cr - C
and Cu - C&, 'where it was conjectured as being due to disorder (58).

X-ray structural studies have shown that this dicorder, if extant, is

.
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associated mainly with the C% ion, being greatest in Cu = C2,
and cofresponds to a displacement of the~halogen ions along tﬁe |
<111> axes (60, 61). The Raman spectra of .Ni - I suggest that
any disorder is much less than in the C& boraqites, in accord
with structural results for Cr - C%, Cu -C2 and Ni - I (60,
50, 51, 61). 1In addition, the Ni - I spectra contain a wing in
all polarisationé, suggesting that the disorder lacks definite

syhmetry, and is therefore more isotropic than in Cg boracites.

$3.6 Temperature Dependence of the Normal Modes

The A1 and E spectra at a2 series of temperatures between
88K and 300K, along with the variation of the (uncoupled) node
. paraméters, are represented by Figures 27-31 and table 7 (see also
Appendix II). The F2 spectra are too weak and too complicated
tc permit such a detailed study. The parameters of Figures 28, 30
and 31 are all results of fits. The normal behaviour of the para-
meters and T ac temperature decreases consist of a steady
riée in Wys with a drep in T , as the lattice contracte and
anharmonicity decreases (é.g. see equation 2.8).

It caﬁlbe seen from Figures 28a and 30 that this behavicur in
Ni - I 1is interrupted by an anomalous dec:ease in w s and in-
crease in T for the high frequency A, and E modes arcund 128K.

1
The parameters of Fig. 28a for the -Al' mode are rather scattered,
due to the proximity of the 611.5 cm-1 E mode. The calibration of
the spectra was checked by studying the laser frequency, the krypton ’

emission lines, and the duplication of  E modes in the Z(X'X")Y'

and Z(Y'X")Y' spectra (55, see Appendix II). This unusual result
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The A1 (+F2) spectrum of Ni-I at different temperatures.

: The temperature variation of the frequencies W, (squares)

and damping parameters T (triangles) of the 655.0 cm !

A1 mode (282) and tﬁe 163.5 cm ! A1 mode (28b) in Ni-I.

The E spectrum of Ni-I at different temperztures.

The temperature variation of the frequencies wo(squares)
and damping parameters I' (triangles) of some E symmetry

modes in Ni-I.

The temperature variation of the frequency w (squares)
' o

and damping parameter TI'(triangles) of the 170.0 cm™!

E mode in Ni-T,

N.B. The lines in figures 30 and 31 are intended merely

as a guide to the eye.
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TABLE 7

The temperature dependence of the computer fitted
frequency w_ (cm_l) and damping T (cm—l) para-
meters of the 170.0 cm-1 (E) and 163.5 c:m-1 (Al)

modes in cubic Ni - 1.

E A

1
Temperature {K) W r W, T

295 170.C 89.7 163.5 76.0
210 » 160.9 87.9 156.6 76 .4
165 ' 160.0 87.7 158.7 72.6
148 156.3 84.4 - -
128 162.0 80.6 161.5 69.4
125 154.¢ - 80.5 - -
122 152.9 81.1 155.3 - 85.8
118 148.9 80.7 146.9 71.2
115 ' 152.3 76.2 149.2 69.6
109 - 151.6 77.4 149.8 72.56
98 151.9 75.6 149.1 79.4
88 148.1 77.7 153.5 63.8
73 134.9 77.1

68+ 133.3 - 71.3

51+ 127.8 74.0

25t 125.0 68.0

* See ahead §4.8
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is in agreement with the X-ray work of Will and Morche (52), who
reported the unit cell expansion and contraction at around 130K,
While this X-ray powder diffraction study was unlikely to yield
accurate thermal motion parameters, the unit eell dimensien would
be much more reliably determined (62).

The low frequency modes behave even more strangely. The fre-

1 1

quencies w0 for .the 163.5 cm =~ (A and 170 cm = (E) modes

»
fall with decreasing temperature, with an anomalous rise at 128K,
while the damping parameters T© fall more or less smoothly
(FigufeS'ZSb and 31, table 7). The A1 mode parameters are again
more scattered, due to the subtraction process, and to the under-
lying F2 (and unknown) scattering. The anomalies at 128K again
suggest that some disturbance in the structure occurs at 128K, al-
though the spectra of Figures 27 and 29 indicate cubic symmetry for
88K < T < 300K, 1in accord with the structure refinements (50, 51).

Furthermore, the 20 cm_1 (E) and 15 cm.-1 (A,) mode softenings

1

are ccmpletely uncharacteristic of boracite behaviour. In Cr - C

and Cu - C2, only the A, - wing feature is strongly temperature

1
dependent. Softening of this magnitude is usually precursive to a
phase transition, and since the low frequency modes have been

associated mainly with metal and halogen motions, some displacement

of these ions at a temperature below 68K seems likely. This point

wil 1 be developed in Chapter 4. Discussion of the lack of a dis-’

placive transition at 128K is also deferred until then,
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£3.7 Conclusions

The'number of q ¥ 0 normal mode fréquencies visible as peaks
izt the Raman spectrum is in reasonable agreement with the group
theoretical p;ediction, considering the highly ébsorptive nature of
the material, and the low scattering efficiencies. A cubic Space.
group is indicated at a selection of temperatures between 88K and
300K, The characteristic frequeﬁcigs {wa} and the damping para-
neters A{Pa} of the Raman active modes do not behave entirely nor-
m2lly with varying temperature., The anomalies in these parameters’
are, nowever, consistent with the expansion of the latiice ét around
128K.- It would appear that the abnormal behaviour of the frequencies .
and damping parameters, and of the lattice parametér, is related to
the irregﬁlarities in the dieleétric and magnetic properties. These
magﬁetqelectric properties seam to indicate the occurrence of a
phase tramsition at = 128K, but we find~no-evideice of this. At
temperatures not close to 128K, the_high frequency modes exhibit
normal temperature dependence. The interesting dynamic changes
occur in the low frequency Raman spectra of boracites, in general.
This region fof Ni - I is very complicated, and contains many modes,
so the complex interatomic interactions required to explain the ob-
served temperature dependence cannot be determined from the Raman’
spectra alone. There ig, in particular, an intrigﬁing, and inex-
plicable 'soft mode' in this.frequency region, which does not seem
to be associated with the ferroelectric transition.

The dielectric proéerties of Ni - 1 are especially related
to the modes of F2 syumefry.' Unfortunately, these modes are very

weak in the Raman spectrum, and no useful predictions ccncerning
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dielectric variations can b;vmade from the F2 Raman spectra,
These 'polar' modes are, however, infrared‘acfive. There 1is,
' therefore, considerable scope for a useful, e#haustive infrared
study of cubic Ni - I, as well as a need for further inelastic

neutron scattering studies.
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CHAPTER 4

PHASE TRANSITIONS IN NICKEL-IODINE BORACITE

Introduction

In Chapter 3, the properties of the cubic phase of Ni -1
were discussed in some detail. It is the purpose of this chapter
to present the results of a Raman spectral study of the ferro-
electric transition in Ni - I, and further to report and discuss
the existence of 2 further transition at a temperature of roughly
10K,

Since the primary reason for the study of boracites is given
by their properties as improper ferroelectrics, a discussion of this
class of transition is presented in §4.1, This discussioa is given
in terms cf the phenomenological Landau theory of phasz transitions.
This theory is inadequate in many cases, and of limited scope in
all instances, but is sufficient for a discussion at the level of
sophistication of §4.1. The properties of cqbic Ni - I were given
in §3.1, and the known transition properties are given in §4.2 to
complete the picture to date. The experimental details, and the
results of both inelastic and elastic light scattering experiments,
are described in §4.3 and §4.4. In §4.5 are presented the group
. theoreticai predictions for the normal mode symmetries and for the
existeﬁce of soft modes in any boracite with the assumed séquence
of transitions. Although Ni - I has not been proved to follow this
sequence, these predictions form a basisifor further discussion of

the measured spectra. In §4.6 and §4.7 are the possible inferences
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+0 be made from the Raman spectra, with regard to structural and
magnetic properties and trénsitions in Ni - I, There are épparent
structural instabilities in the formlof soft modes in the Raman
spectra of Ni - I, and these are described and discussed in §4.8.
Finally, in §4.9, the known transition properties of Ni -1 and’
the results of the Raman spectral inveétigation are collated and

conclusions are drawn.

§4.1 Landau Theory and Improper Ferroelectrics

Since Landau originally put forward his phenomenologicai theory
of phase transitions in 1937 (64) there have been many excellent re-
views and critiques of its methods, successes and shortcomings (e.g.
48, 64). The theory'is often maligned by theoreticiané, but is, in
fact, a useful tool for describing many phase transition (PT) pro-
perties, provided its limitations are borne in mind. Both Landau
theory and improper ferroeléctric theory are complicated tbpics, SO
the following discussion is of necessity inadequate, and emphasises
only the points of particular relevance to boracitgs. .For greater
detail and compléteness, the articles by Cochran (64) and Dvo¥ék (65)A
are most useful and concise.

The fundamental assumption of Landau theory is that the frée
energy F of a crystal may be written as a power series in the
order parameters {Ei}. An order parameter is a quantity which is
zero on one 'side' of the transitioﬁ, and nonzero on the other.

The fundamental characteristic of an improper transition is that more

than one order parameter is critically involved. Thus we write:
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41 F = F o+ [ AE;+) BEEs iJZk Ci5k5i85%

+ Y D,. E.5.E gl  eeenn
) 1jkg 1737k’

wﬁere all the coefficients A, B etc. are assumed to be nonsingular
functions of tempé;ﬁture. It is 1arge1y this assertion which renders
Landau's theory inadequate, particularly at temperatures close to the
t#ansition temperature Tc. The form 4.1 can be further simplified

"~ if the requirements of group symmetry and stability are imposed.

Translational invariance of the crystal gives Bij = Biéij’ and

equilibrium configuration stability requires:

n2
b2 &) = 0 5 &) > 0 Vi
“iE : 3t E
It follows that A, = 0, or the 'high temperature' phase is always

unstable. The expression 4.1 now becomes

= 2
4.3 F F o+ ] B,(DEZ + 1} Cy i (DE; 855
1 ijk

+. ) D, (TIEE.EE, + vuues
ijkllez i°3°k’8
and the relative values and signs of the B, C, D coefficients decide
the order of the transition, and the stable configuration. This will
now be illustrated in the particular case of the boracite free energy
formula (in a much simplified form!). A detailed and rigoroué treatment

is given in refs. 66 - 68.
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The essential terms required in 4.3 to produce an improper PT

are:

v 2 2 . 2 Inpl + lor6
4.4 F £B1g1 + iBzgz + Cgl 52 + 4Dgl + EEE

- ‘where the factors 4, } have been introduced for convenience. A first

order transition occurs at To for B1 a T - Tc and D < 2C2/Bé, and
a continuous({second order) transition occurs at, T, for D > 2C2/Bé;
provided BZ’ C,'D and E s&srxe taken as constants. The resultant
forms of the free energy as a functiqn of gi are illustrated in
Figures 32a and 32b. A transifion is termed first order when two
distinct phases are in equilibrium at the transition, and second
order if these two phases are identical. For Figure 32, the stability

conditions 4.1 give the following relations:

4.5 &, = glz

4.6 g2 =

Therefore, if the transition is first order, it occurs at T =T > T
énd the order parameters vary as shown in Figure 33a. For a second
order transition,-the-transition is at T = T°-= Tc’ and the
variation of 51, 52 is.as sﬁown in Figure 33b. It can be seen that

the order parameter variation is continuous, while at.a first order
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FIGURE 32: The free energy of equation 4.4 for temperatures
above, below and equal to T .

Figure 32a: A first order transition;

2

16Ea B2

Figure 32b: A continuous transition

FIGURE 33: The temperature variation of the energetically
| favoured values of the primary (El) and
secondary (£,) order parametefs at:
a) a first order improper transition.

b) a continuous improper transition.
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transition, there is a discontinuous jump in gl and gz at To.
It is clear, particularly in Figure 33b, that the primary order
parameter is that with strongest temperature dependence close to
To' in terms of symmetry changes, tﬁe introduction of a nonzero
primary order parameter leads to the correct changé of symmetry,
whereas a nonzero secondary order parameter alone does not.

DvoY¥ak and Petzelt (66) have considered the possible lowest
order expansion terms for boracites which are invariant under the
space group operations. They find that there are terms in the
free energy of the form of 4.4, with the sﬁontaneous polarication
Ks as secondary order pafameter. Furthermore, they find cubic
invariants in addition to that in 4.4, which imply that the cubic-
orthorhombic transition in boracites is, of necessity,'first order.
The spontaneous polavisation alone cannot produce the requi:ed
symmetry change.

The connection between the Landau theory, and the familiar
soft mode theory of displacive transitions can be established as
follows. If the anharmonic ffee energy of equations 1.13 and 1.35
in the g-representation is extended to higher orders, and the
_eigenvalue equation 1.21 is accounted for, the free energy becomes

(K is a reciprocal lattice vector):

1;3,43
yov( ). . Q . Q
343233 a b‘c 518 Agab SSC

4.7 F = i z wg(ﬂ)lQ&alz +
: qa :

X 6(ﬂl+32+_q_3+§_) + heeee

This is of the form of 4.3,. and a transition with Bi o (T - TC) is

given by wi(g) a (T - Tc)’ This expansion is, of course, only wvalid
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in the weakly anharmonic case. In the case of a second order tran-
sition, this represents a mode which 'freezes out' at the tran-
sition. TFor a first order transition, however, the transition
occurs before this can happen (at To > ch. In proper ferro-
electrics, at a second order transition, it is a ¢ ¥ 0 mode whoée
freéuency might. be ‘expected to go to zero. This would iwply a
Curie-Weiss law for the static dielectric constant, provided that

the Lyddane-5achs-Teller law holds (10), i.e.

is EO . o w::;(LO) i wg(LO) i w%(LO) . 1
e(=) b wZ(T0) w(T0) bfa wZ(T0) (T-%,)

where a transverse mode is assumea to be 'soft'. If w2 + 0, there
is no 'restoring force', and the structure is unstable against a dis-
tortion to the ferroelectric phase. |

In the boracites, however, the 'soft' coordinate is associated
with a zone poundary X-point mode, of wavevector (strictl& a star of
wayevectors (14)) < %1 , 0, 0>, This means there is no g N 0 soft
mode, although there will be soft modes for T < To (see §4.5). The
'physical origin of coupling of g% to the soft coordinate is discussed
by Cochran (64). In essence, the secondary displacements giving rise

to Es are induced by the érimary displacements associated with &,

through anharmonic forces.
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84.2 The Known Transition Properties of Ni ~ I

Ni - I is unique among boracites in that its Néel and Curie

temperatures (T and 'TC) are coincident. The transition at

N
TC = 68K (46, 47, 49, 53, 69) is therefore thought to bz not only
the usual boracite coupléd transition, But a transition from a para-
magnetic phase to an antiferromagnetic phase, with a weak ferro-
ragnetic component. Apart from ailow temperature neutron diffraction
study of Ni - I (70), to determine the magnetic strﬁcture, no struc-
turaldata has been published for Ni - I below 68K. Since the neutron
experiment of ref., 70 was~performéd at a very low teaperature, there
s no conclusive evidence that the transition at 68K is, in fact, to
an orthorhombic phase. Furthermore, light scattering data indicates
the presence of a further transition at T < 10K, which is precisely
the temperature régime of the neutron experiment (stated as being at
€X) .

It was proposed that the anomalies in the structural and magneto-
electric properties of Ni - I (see 83.1) at T N 130K were. indicative
of the phase transition (71) to an antiferromagnetic phase, but this
proposition has since been invalidated by the discovery that para-
magnetism persists as far as 68K (72). It has further been suggested
(52) that the peculiar behaviour of the lattice parameter indicates
a structural transition, although this has also been shown to be
incorrect by structural (50, 51) and light scattering (55, 56,

Chapter 3 of this thesis) measurements.
Finally, the results of a low-temperature study of the magnetic

properties of Ni - I must be accounted for (69, 70). There is a

change in the nature of the magnetisation curves (magnetisation g



-79~-

vs. applied field H) of Ni - I at a temperature of roughly 16K,
and there is a ferromagnetic moment parallel to Es at 6K. It has
bz2en suggestad (73) that the existence of a magnetic tramsition in
the region of 10K can be inferred from these reéults, and that this

transition must also involve a structural change (see §4.5).

§%4.3 Experiment

The experimental details are essentially the same as those deSf
cribed in §3.2, s0 oniy the differences in techniques need be dis-
cussed here. The sample was the same fl 0 0] growth sector as was
used for the study cf the cubic phase, and ghe Coderg T80C system of
81.6 was used to disperse the scattered light and record the spectra,

again to a resolution of 2.5 cm-l.

Cooling was effected by use of a Thor flow cryostat. with
nitrogén vépouf flow for 88-295K, and helium vapour flow for T < 88K,
Again, the =5K of laser heating mentioned in §3.2 must be accounted
for. 1In addition to the study of the Raﬁan scattered light, a reco;d
was made of the intensity of elastic scattering as a'function of
temperature. The method behind this experiment entailed making a
real time record of the w = O scattering, with a spectral slit
width of 4 cm—l, as temperature varied. This induces a time lag,
and coﬁsequently a temperature lag, between thermocouple and ;anple,
and-thus yields a wrong absolute temperature. Provided %%- is kept
fairly éonétant, however, this error should be constant for all

temperatures and does not render the data useless. As the laser

intensity for the elastic scattering experiment was very low (=4uW),
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laser heating is negligible, and can be ignored. This low intensity

was achieved by use of a 105 filter.

Footnote to §4.3

Since all the spectra in Chapter 4 are of Z(?7)Y' geometry,

this will be contracted to merely ?? e.g. Z(Y'X")Y' > Y'X',

4.4  Presentation of Results and Analysis

In Figures 34-37 are preseﬁted the Raman spectra in the four
pclarisations permitted by the scattering geometry, each at four
representative temperatures. These temperatures were chosen to
give'the form of the cross-section in tﬁe four régimes relevant

to the transition properties of Ni - I. These are:

a) - Well above the 130K anomalous region (295K).

b) Between the anomalousAregion and the ferroelectric
transition at T, = 68K (100K).

c) In the ferroelectric phase (25K).

d) At the lowest temperature attainable with the system

of §4.3 (< 7K).

If should be remembered that these tempérétures may be too low by a
few degrees (less than 5K, see §3.2), although they have been chosen
to be at least this far from the critical temperatures where possible.
The resonant frequencies and damping parameters of the bandsin

these spectra are presented in tables 8 and 9,Where bands are very

weak, the fitting procedure giving rise to these parameters cannot
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FIGURES 34-37: The Raman spectrum of Ni-I at four representative
temperatures, in four polarisatioms.

FIGURE 34: z(x'x7§&' geometry.

FIGURE 35: Z(Y'X")Y' geometry.

FIGURE 36: Z(Y'Z)Y' geometryv.

FIGURE 37: Z(X'Z)Y' geometry.
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TABLES 8 and 9. Frequencies and damping parameters in c:m-1 (if appropriate) for the Raman active optic

\

modes of Ni - I at four representative temperatures.

' )

Y X

_Z8-.

295 K 100 K 25 K 7K 295 ¥ 100 K 25 K 7K
72.0" 68.0" 56.0" ~85,0(35) 82.,0(65) 59.0(23) 55.0(23)
85.0" 85.0"
148.5" 144.0" 120.0" 122.0" { 100.0"
167.0% - 170.0(90) 152.0(76) ' 125.0(68) 118.0"
. 194.0" 194.0" ' ' 137.0"
; 286.0" 286,07 248.0" 248.0" 245.0"
378.0% 380.0 .7 383.009)" 381.0¢5)" | | |
612.5(17)  616.5(13) . 621.5(7) 624.0(4) 611.5(20) 618.5(13) 624.0(7) 623.0(7)
655.0(30) 653.5(21) 653.0(16) 654.0(16)
863.0(16)  867.5(11) 871.5(6) 874.5(5) 863.5(15) 870.0(11) 874.0(6) 874.0(6)
970.0" 977.0" 986.0(7)" 988.0" 970.0" 979.5(14) 987.0(5) 986.5(6)
1008.0" '
1046.0" 1049.0"
1078.0" 1082.0" |
1128.0(40)  1134.5(31)  1141.0(15)  1144.5(9)  1125.5(43) 1136.2(31) 1144.0(12)  1143.3(11)
1200.5(61) 1208.5(43)  1212.0(17)  1213.5(8) 1159.5¢74) 1208.5(43) 1214.0(14) 1213.5(10)

. .
- Known to consist of more than one band (see §2).

T - Too weak for fitting procedure (see §2).

TABLE 8



X'z

7K

*

.i.

295 K 100 K 25 K 7 K 295 K 100 X 25 K
* * * % % * *
74.5 54.0 50.0 45.0 58.5 56.0 49.5
1.0 79.0" 81.01 81.0" 81.0" 90.0
* % *x * * s ! *
152.5 140.0 106.0 100.0 158.0 131.0 131.0
| 200.0% |
255.07 257.07 255.0° | 257.0" 260.0" 257.0" 257.0"
280.0" 280.0" 286,07 - . 287.0" 378.0" - 382.57 382.5 ©
621.0" 623.0" 623.0 T
+ + + +
1046.0 1057.0 1046.0 1045.0
1062.0" 1069.0" 1078.0" 1080.07 1080.0"
1148.07 1141.0" ‘1161.0" 1143.0" 1144.07
1233.07 1235.07 1170.0"

- Known to consist of more than one band (see §2).

- = Too weak for fitting procedure (see §2).

TABLE 9

_88_
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be used, and the values given in tables 8 and 9 are measured from
Figures 34-37. Similarly, when features are known to consist of
wore than one band,'theée are marked in tables 8 and 9. This can
occur due to overlap in‘frequepcy of contiguous bands, or to the
form of the Raman tensors in the cubic phase.

The variation of the intensity of elastic scattering in the
X'? polarisation{_as a function éf teuperatufe, is plotted in
Figure 38, The dashed lines indicate extrapolated data. This
extrapolation became necessary as the intensity fluctuated wildly
in the critical regions, and the readings of intensity during a
count-time of one second were consequently unreliable.

In Figures 39 and 40 are presented the characteristic fre-
quencies. g and the damping parameters I respectively, of four
'high ffequency' Y'X' modes. Figure 41 portrays the tamperature
dependence of these parameters for the 170.0.cm71, Y'X' mode.

The parameters are, of course, those of equation 3.1. Tke solid

lines in Figures 38-40 are intended merely as a guide to the eye.

§4.5 Symmetry Considerations

It is thought that the sequence of translational symmetries of

boracites, with decreasing temperature, is:
cubic - orthorhombic —+ monoclinic = trigonal (45).

This sequence is, however, far from complete in many boracites. The

space group sequence corresponding to the above transitions is:

5,7 5 2 6
T (Fi3C) ~ € (Pca2)) =+ C_ (Pa) > Cgy (R3e) .
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FIGURE 38: Temperature variation of the intensity of elastic
scattering in Ni-I (intensity in arbitrary units).
FIGURE 39: Temperature variaticn of the resonant frequencies

of four Y'X' modes in Ni-I.

FIGURE 40: Temperature variation of the damping parameters
of the four modes of figure 39, with corresponding

symbols. .

FIGURE 41: Temperature variation of the frequency (squares)
and damping parameter (triangles) of the 170.0 cm—1
Y'X' mode in Ni-I. The ordiﬁate calibration is in
units of (wo - 125) cm._1 for frequency and

aT - 65) cm.-_1 for damping.-
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1

If the primitive unit cell in the cubic phase has Qolume V, the
primitive cell volume changes according to the sequence
V + 2V > 4V > V (45, 74).

Applying the methods of §1.3 and §1.4, there should te

4A1 + 10E + 20F., Raman active optic modes for cubic Ni - I, and

2

72A1 + 72A2 + 72B1 + 72B (including accustic modes) for ortho-

2

(see tables lﬂand 10). .Since uc detailed analysis cf the atomic
positions in the monoclinic boracite phase exists, a classification
of the- g = O normal modes in this phase is nct possible. It is
possible, however, to construct a correlaticn taﬁle fer fhe normal
mode symmetries between the cubic, orthorhombic and monoclinic
phases (table 12, also see table 11). The indices (ZX) indicate
that the (ZX)- mirror plane of the C2V pbint group has been
chosen as the plane for the CS group. The Raman tensors for
these three phases, with recpect to the c¢ubic (X', Y', Z) axes
are given in table 13 tlS, 17, 33). It can be seen that the cubic
X' and Y' axes have been chosen to be the new orthorhombic axes,
while 2 defines the orthorhombic c-axis. The composition of the
Raman specﬁrum is given in table 14, with this choice of axes.

It has been shown (66) that the primary order parameter for
the transition'is associated with a doubly degenerate X—péinf
(zone boundary) mode corresponding to representation Tg of the
group of g = (O, %33 0) or (él, 0, 0) .in space group iz;
Furthermore, this critical mode splits into homogeneous mecdes of
A} + A, symmetry with g =0 in the new, 'folded' Brillouin zone.
These should appear in the Raman spectrum as features with a fre-
quency- temperature dependence similar to the gl—téupefature

dependence of Figure 33a (i.e. strongly temperature dependent near

To’ constant for T << To.)
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TABLE 10

-

The character table for the irreducible representations

of point group sz (mm2) (12).

17 S

E C, ov(ZX) o, (YZ;
A 1 1 1 1
A2 1 1 -1 -1
B1 1 ,fl 1 -1
B2 1 -1 -1 1
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TABI.E 11

The character table for the irreducible representations

of the point group CS(ZX), (12).

A ' 1 1
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TABLE 12

The correlations between the species of the point

group Td and those of its subgroups C and Cs.

2v

Al

Tt
Fy
B . .
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TABLE 13

The Raman tensors for the cubic, orthorhombic

and monoclinic symmetry classes (15).

a . . b . ng . ’
. Ll a L] L ] -2b * . L]
1 1
F, (x") — |[. . d F,(Y')— . . d
2 /2- 4 2 /é‘
. .o d Ll . -d
d d . d -d .

and Fz(Z) d . .
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Table iBb) Orthorhombic Raman Tensors

A1 a . . ; A2 .
. b . d
* L] c .
El . . e 5 B2 .

Table 13c¢) Monoclinic Raman Tensors

A'(ZX) a . d. ; A" (ZX) .

v)
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TABLE 14

Symmetries of modes present in the four scattering
polarisations in the cubic, orthorhombic and mono-

clinic phases of Ni - I,

X'x' Y'x' ¥'z X'z
Td A1 + E + F2 E F2(T0 + LO) FZ(TO)
Cov A ) B By
C Al ' A" A" ’ A'
s
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§4.6 Structural Information in the Raman Spectra

A transition at 130K? :

Firstly, it can be stated that the Raman spectra, as discussed
in §3.6, indicate that although there is a diéturbance o the.
Alattice at a temperature = 130K there is no structural transition
" at this temperatire. This result, that Ni - I is cubic above 88K,
is in agreement with thé structural work at 77K (51) and 30CK (50},
but not with the épeculation of Will and Morche (52) that a dis—

- placive transition occurs at 130K. It can be seen from tabies 6
and 8, 9 that A 4Al + 8E + 8F2 modes have been detecfed, whi1e 
'4A1 + 10E + 19F, are predicted. The asterisks in tables 8 and ¢
. indicate the multipie Fz bands and reflect the dearth of lsw fre-
quency Y'Z and X'Z modes. The 100K spectra of F2 symmetry con-
firm the tentative suggestion of §3.5 thaﬁ the structure arouﬁd
1100 cm.-1 contains first order_bands, as these are considerably

. 'sharper' at 100K. Also, gratifyingly, a very weak E symmetry
band can be discerned at 248 cmfl. One could not presume to have
identified this without the retrospective knowledge of its preéence
“in the 25K specﬁrum (Fig. 35). The eye of faith can discern its

presence in Figure 29!

The ferroelectric transition at 68K:

At the ferroelectric transition, new bands appear in all the
spectra. There should, in fact, be 71A1 + 72A2 + 7IB1 + 71B2

Raman active optic modes, if the transition is to the normal boracite

orthorhombic phase, which would require 204 new modes to appear below



68K. About one half of the Raman-active modes have been identified
in the orthorhombic phases bf Cr = C% (75), Cu - C& (59) and
Mn - CL (76}, but only a few of the 204 new modes can be identified
in Ni - I, . This is due partly to the weak scattering’propergies
of boracites, and the highly absorptive nature of Ni - I, and
partly to the complicated low frequency . (w < 300 cmfl) pfofiles.
The failure to resclve the low frequency Y'Z and X'Z mecdes is
a2 function of the intrinsic near-degeneracies and bandwidths, not
of the spectrometer resolution which was, again, 2.5 cm—l.

The wing feature in Ni - I fo; T > Tc does not reduce at,
cr below, the ferrcelectric transition: (Figures 34-37) and it
appears in all polarisations. 1In other boracites there ‘is a broader, more
prominent wing for T > Tc’ and this wing appears in Al symmetry
only. A'further disparity between Ni - I and other boracites is
ceen -in the fact that the A1 wingAin Cr - CL and Cu - CR reduces
as the ferroelectric phase is reached, and subseguently disappears
for T < TC ~ 80K. Unfortunately, for Ni - I, thg wing is so
narrow that the insertion of filters during scanning over the laser
frequency removes much of the information agout the width and
strenggh of the wing. The result is that the parameter vy and the
strength S iﬁ equation 3.2 do not show consistent temperature be-
haviour. This is because a wide variety of S and ¥y describe any
one spectral wing in Ni - I équally well, No quantitative state- '
ments can therefore be made regarding the behaviour of the wing at
the transition. The A1 wing in Cr - C¢ and Cu - CL was con-
jectured as being due to disorder (see §3.5) associated mainly with

the Cf ion. Qualitatively, the dissimilar nature and behaviour of

of the wing in Ni - I suggests that it is either (i) not due to
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' disorder at all or (ii) the disorder in Ni - I 1lacks definité sym-
metry, is considerably less than in - Cr - C£ and Cu - C2, aﬁd
persists well below Tc.-

The frequencies associated in Chapter 4 with BO4 vibrations

1, 1100.0 cm }

of around 250 cm-1 (E), 378 cm,"'1L (Al) and 255.0 cﬁf
(FZ) are confirmed by the icwer femperéture'spectrum. The first
three are clearly measurable and show little frequency shift through
the ferroelectric transition. The rigidity cf the B - 0 framework
to metal and halogen substituticn makes this discevery rot oo
surprising.

It can be seen from Figure 39 that the characteristic frequencies
of most of the Y'X' modes rise fairly abrupt;y at Tc’ with the
notable exception of the 170 cmfl (at2§5K;) Y'X' wmode, which
actually drops in’frequency by 13 cm'-1 at the transition (Figure

1 X'X' wmode shows no frequency shift. The

41) . The 655.0 cm
linewidths of the X'X' and Y'X' modes reduce by approximately

a factor of two at the transition (Figure 40) with again the measur-
able exceptions of the. 655.0 cnrl X'X' mode, and the 170.0 cm-l
Y'X' mode (Figure 41) which show nc sharp variation in T at Tc.
The frequency and damping parameter shifts indicate that there is
indeed a transition at a temperature of aBout 70K, Furthermore,

the shifts imply that anharmonic interactions in Ni - I must, on
average, deérease below Tc’ to account for the general reduction
in the phonon self energies, and thus the reduced 'damping'. It is
this reduction in the parameters {r,} that is wholly responsible
for the increase in intensity of the high frequeﬁcy modes in Figures
34 and 35, as the parameters S -of equation 3.1 do not show any
significant ichgase at T_. This means that the polarisabilities

of the modes do not change significantly at Tc' The persistent
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softening of the 170 curl mode in Y'X' 1is remarkable,'and is dis~-
cussed elsewhere (§4.8). The Al soft mode in the cubic phase
(Figure 28b) cannot be ffollqwed' intc the ferroelectric phase as
the sub;raction process of §3.3 is no longer possible,‘and the com-
position of the w < 300 éurl region in the X'X' spectrum below TC‘
is no longer clear. The Y'Z' and X'Z spectra for T_< 'I‘c are
still similar in appearance, and do not have any strongly tempera-
ture dependent mggé-frequencies, although again the damping de-
creases in general, and some new modes do appear.

A detailed investigation of the spectra at a temperature
just below IC, and at 25K, revéaled no discernible splitting
in frequency or damping parzmeter cf any of the modes to corres-

pond to the correlations E - A  + AZ’ F, -~ A + B,  + B

2 1 1 2

These spectral results are con-

1

and C

between groups Td

2V’
sistent with a distortion at a temperature of about 70K, from

a cubic to an orthorhombié phase. It must be remarked, however,
that other crystal classes cannot be pfecluded from the Raman
spectra alone. The lack of frequency or linewidth splitting V
between spectra indicate that the magnitﬁde of the deviation
from cubic symmetry is small. The actual temperature of the
transition may be seen to Be 73K = 4K from the central peak
result cf Figure 38. Superficiaily, this temperature might
appear to be at variance with the accepted value of 68K (47)
but the discrepancyAis the result of the time-lag‘mentioned in
84,4, and the consequent temperature lag between thermocouple
and samplef It can further be seen from the central peak

result that, whatever is the cause of the central peak, or peaks,

‘at the transition, domain walls did not cause parasitic scattering
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below Tc’ as the intensity of elastic scattering returns to its
'cubic' value. A similar effect was observed in Cr - C& (75).
This, along with the lack of spectral 'mixing' in the 23K =spectrum
suggests that the sample formed a single ferroelectric domain in the
region of the laser beam path, with ﬁhe axes chosen in § 4.5. The
'choice' of which two of the cubic <110> axes become the ortho-
rhombic 'a' and 'b' axes may have been affected by the boundary

conditions, in which the faces of the sample were [110], {510]

and [001], as the sample was not poled.

A transition at ¥ 7K:

At a temperature below 7K (#2.5K), a further phase can be seen
to exist from the Raman spectra, which has a different symmetry
from the phase between 7K and 68K, The existence of this 'new'
transition can be verified from the elastic scattering intensity
of Figure 38 where there is a further maximum at 12 K (¥5K). This
temperature is again too high due to the time lag alluded tc abcve,
and the -5K correction gives a transition temperature of 7K (#5K).
The most marked changes in spectral lineshape occur in the pre-
-viously non-critical Y'Z and X'Z spectra. These are quite
different from their ccunterparts in the orthorhombic phase, and
from each other. The Qing feature in Y'Z ﬁolarisation has dis-
appeared below 7K, and the lineshape in this spectrum around 135
cm.-1 is most peculiar, with an apparent anti-resonance dip. The
X'Z spectrum also has no wing feature below Tc’ and shows an
extremely unusual (particularly.at low temperature) broad structure,
comprising_asymmetric humps. There are also some new.sharp features.
In.the X'X' spectrum again mofe new bands appear, and there are

considerable intensity changes in some modes. The intensity
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changes in the high frequency modes at 1144 cm.—1 and 1214 cm.-1

in the X'X' spectrum are not attributable to a change in the
I' parameters, but to a reduction in the mode stréngth S, which
indicates a changiné polarisability tensor element. The broad,
low frequency modes in both X'X' and Y'X' polarisations are
now split-into obvious superpositions of several modes. There
are no further measurable changes in the Y'X' spectrum, and the
X'X' and Y'X' wing features are undiminished below 7K. The
disappearance of the overdamped wing in the Y'Z and X'Z spectrum
indicates that if dynamic disorder is the origin of the wing (see
§3.5) this disorder has acquired a definite symmetry in the new
phase. The modes do not appear to sharpen at this transition,
indicating that there is no reduction in the anharmonicity as
there was at the ferroelectric transition.

If this new phase is the monoclinic boracite phase of 84.5
one would expect from table 14 that the X'X' and X'Z spectra
should contain the saﬁe (A{) modes, and the Y'X' and Y'Z
the same (A") modes. The relative sizes of the polarisabi}ity
tensor elements a + f in table 13(c) are unknown, however, and
can contrive to make the two spectra for either of the monoclinic
mode symmetries quite different in appearance from each. other.
This appearance of modes in, for insténce, Y'X and Y'Z, can be.
seen to occur at (e.g.) 623 curl. If this were merely speg:ral
mixing due to birefringence, the mode at 874 cm—1 in Y'X' would
also appear in Y'Z, and more strongly. It does not do this.» A
simil#r argument can be applied for the X'X' and X'Z spectra

in relation to the modes at, for instance, 1144 cm-1 and 167.0 cm-1

-

(X'X' only). This lack of obvious depolarisation, along with the
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result of thé elastic scattéring experiment, indicates again a iack
of disorientated domains, Qith no domain wall effects to cause
parasitic»scattering._ This may s;em improbably fortuitous, but the
size of the region of sample probed by the beam must be borné in
mind. The spectral results are not inconsistent with a monoclinic
crystal class, and the differences between A' and A" 'spectra
can be accounted for by the Qalues of tﬁe tensor elements a - f.
Again, it must.be said that an irrefutable assignment.of a crystal
class cannot be made from the Raman spectra alone for T < 7K. A
‘later experiment produced a highly birefringent sampie'below 7K,
with an elastic scattering intensity which remained high below the
transition. This would support the above discussion of demain

wall effects at this (7K) transition, and suggest that a multi-

domain sample had been produced in the later experiment.

84,7 Magnetism in Ni - I

Magnetic ordering at 130K? :

As. a sfrﬁctural transition does not occur at 130K, the sug-
gestion first put forward by Quézel and Schmid (77) seems most
plausible. They proposed that the magnetic susceptibility maximum
at 130K was attributable to short range magnetic ordering. There
is no evidence of long range magnetic order in the form of new
excitations at 130K in the Raman spectrum. The disturbance to the
laﬁtice (52) has, however, been verified by the Raman result, and
it'seéms reasonablé to put forward the phenomenologiéal argument

that this disturbance might well affect the spin-spin correlations
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and give rise to a change in the degree of short range magnetic

ordering, and thus to a change in susceptibility.

Magnetic ordering at 68K?-:

Since Ni = I becomes antiferromagnetic, with a weak. ferro-

- wagnetic component, at 68K, one might expect to see evidence of

thevlong-range ﬁagnetic crdering involved in the Raman spectrum.

As one-magnon scattering from zone-centre magnons would be at

low frequency, any such evidence might be in the form of multi-
inagnon scattering. The lineshape of this scattering would depend on
the denéity of magnon states, but it would certainly produce broad
féatures. There is nothing in the Raman spectra to attribute tec
such a scattering mechanism, but there are no restlts elsewhere‘

irom which to estimate the energy of magnon scattering in Ni - I.

Magnetic ordering below 7K :

The magnetic structure determined by von Wartburg (70) predicts

(orthorhombic) =:2¢d that there

that at 6K, the space group is Cgv

is a weak ferromagnetic moment m, in the direction of the spon-

Z

 taneous polarisation,[QOl]. "Previously (46, 49) the magnetic moment

was thought to be in the xy plane. This result, c;dpled with the
change in the nature of the magnetisation curves (69) at 10K
stimulated a group theoretical study of‘the magnetic structuré at
6K (73) to investigate the possibility of a magnetic transition at
10K. The authors constructed a phenomenological free energy ex-

pression (c.f. equation 4.1) in terms of the antiferromagnetic vectors
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invariant under the group operations of C;V. They found that the
term necessary for the existence of an energetically-favoured non-

(this term is proportional

zero m, was not allowable within C;V

to uila, where £ 1is one of the antiferromagnetic vectors).

They argued that any magnetic transition at = 10K must also be

structural, and to a lower symmetry (e.g. monoclinic) phase. This
would gontradictmibe nuclear structure determination of von Waftburg
(70), although'the orthorhombic + monoclinic distortion could merely
‘be very small. It is possible that the peculiar X'Z Rarman spectral
lineshape at T < 7K 1is attributable to magnetic exci;atiﬁns, but no
temperature dependent spectra (in this phase) exist to substantiate
this notion. What is almost certain, however, is that the tran-

sition at 10K suggested by the magnetic studies corresponds to the

7K structural transition indicated by the Raman spectra.

84.8 Soft Modes in Mi - I

The A1 and A2 soft modes for T < 68K have been discussed
in §4.5, and should appear in the X'X' and Y'X' Raman spectra
respectively, Such modes have been observed in Cr - C2 at 149.5
cm-1 (Al) and 91 cm.—1 (Az), (75), and in Cu - C2& at 136.0 cm-.l (Al)
.and 67.0 curl (A2). Bearing in mind the general lowering of fre-
quencies between chlorine boracites and Ni - I, tﬁe appearance of
a distinct 'shoulder' at about &94 cm.-1 on the side of the 120.0 cm-1
X'X' band in Ni - I. is tentatively assigned to the A1 critical
mode. The feature at 82.0 cm-1 (at 100K) in the Y'X' spectrum

can also be seen to sharpen below Tc’ and subsequently to undergo -
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a complicated change of shape for temperatures close to and below
Tc' Although the level of Foisson 'noise' fluctuations obscures
the details of this behaviour, this sharpening is thought to be due
to the appearance of the A2 soft mode, superimposed upon the
existing band or bands. The subsequent variation in shape could
be due to the temperature deperdence of the soft mede frequency.
The'complexity of this frequency region in Ni - I makes an
unequivocal assignment impossible.

The mode in the Y'X' spectrum whose temperature frequéncy
is 170 cm-1 is an enigma. Its frequency does conforw approxi-
mately to a mg a (T - Tt) law (Figure 42}, with two regions
of different Tt’ but the values of Tg involved are both nega-
tive (approximately -600K fcr line 'a', and -370K for line 'b'.
in Figure 42.) The mode is certainly not an order parameter for
either of the transitions dealt with in §4.6 and §4.7. It does
not correépond to the same dispersion branéh at g_% 0 as the
zone boundary soft mode for the 68K transition, and is not an
obvious precursor to the trigonal phase. It can be shown {(16)
that, within Landau theory, the soft mode for the cubic-trigonal
transifion would have to have F, symmetry. It may represent
some competing instability which is 'beaten' by both of the
above transitions, but the nature of this instability is not
clear. ’The A1 soft mode in the cubic phase can, of course,

no longer be studied in the ferroelectric phase, as it is no

longer separable from other modes at low frequency.
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2 -1
Temperature variation of ( frequency) for the 170.0 cn
2 .
mode in Ni-I, The straight lines are of w  a (T - Tc)

where TC is -600K (a) and ~370K (b).
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4.9 Conclusions

The results of the elastic'and inelastic light scattering
spectra of Ni3B7013I indicate that it is cubic for all tempera~
tures between 68K and roomitemperéture, and that no aisplacive
transition occurs at 130K, as has been suggested. At 68K there is
a transition to a lower symmelry crystal class which is almost cer-
tainly orthorhombic by analogy with other boracites. At a tempera-
ture of é 7K, a further transition is seen to occur, which is
structural, and probably magnetic.

That the ferrcelectric transition exists is obvicus from the
new modes whiqh appear in the Raman spectrum telow 68K. This is
confirmed by the presence of a central peak aﬁ ~ 70K, the mode
frequency shifts, and the reduction in phonon damping below 68K.
Thé,lack of mode splitting below 68K suggests that the lattice
distortion is small, and that the orthorhombic phase is therefore
2lmost cubic. The reduction in damping indicates a reduction in
anharmonicity, and the sample studied was a single ferroelectric
domain in the fegion of the beam path., This is consistent with
the results of Raman spectroscopic studies of other boracites.
If'the.wing feature for T > 68K 1is caused by some kind of
dynamic disorder, the disorder persists well below Tc’ and
lacks definite symmetry. This is not consistent with the results
in other bofacites. There is no direct evidence in the Raman
spectra of magnetic excitations associated with the short range
magnetic order postulated to accoﬁnt for the susceptibility maxi-

mm at 130K. Neither is there any direct spectroscopic evidence of

the onset of antiferromagnetic/weak ferromagnetic order known to set
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iﬁ at 68K. The critical modes associated with the primary order
parameter for the improper ferroelectric transition can be
tentatively identified in the orthorhombic phase.

The second, new transition can Be seen from the Raman spectra
to be to a lower symmetry, consistent with the primitive unit cell
douBling at the orthorhombic to monoclinic transitién in boracites,
as more néw nndésgappear and intensities and lineshapes alter
dramatically. This transition is almost certainly the magnetic and
structural transition predicted at about 10K in Ni - I. The struc-
tural nature of the transition would indicate that the direction of
the ferromagnetic moment in Ni - I at 6K was correctly determined
by von Wartburg (70) but that the nuclear structure was not, in that

it was given as orthorhombic, CS Again, if the wing feature is

A
attributable to dynamic disorder, the disorder acquires_a wel
defined symmetry in the new phase. From the spectral data and the
e¢lastic scattering data it can be seen that the sample formed a
single domin once more below 7K.

Finally, the puzzlingly persistent soft mode must be left as
aﬁ unknown mechanism. It is associated with neither of the two
transitions mentioned above, and is not an obvious precursof to
ahy of the known boracite transitions. What is more, the 'tran-
sition temperature' apparently associated with this mode is*negativg,
and the 'transition' must therefore be considered 'virtual'.

The results of this chapter are to be published in summary

(78) and in full (79).
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CHAPTER 5

. A COMPUTER CONTROLLED SYSTEM FOR BRILLOUIN

SPECTROSCOPY

Introduction:

This system for automatic Brillouin spectroscopy reprecsents
essentially the culmination of a programmé of work which began
several years ago with the automation of two double grating Raman
spectrometers (23, 80). -Iﬁ both cases, control is effected by
pre-setting rows of switches, and the-data is output in digital
form on paper tape. This original work has provided the basis
for a more versatile and complex computer controlled sfstem
(23, 24) which offers automatic control of Raman experiments,
graphical equipment, témperature scanning experiments, and now
Brillouin spectroscépy.' This system is now fully operational,
although possible extension to control of further experimental
parameters can be envisaged.. It is the'purpose of this chapter
to give a fairly brief description of the methods involved in
‘the particular case of the Brillouin system. While programme
development for the other computer controlled facilities formed
part of my thesis work, the design, construction and program-
ming for the Brillouin system represents a far greater part
(performed in collaboration with Dr. J.ﬁ. Arthur) .. '

Any attempt to describe and discuss the operating cycle of
a logic ci;cuit is almwost doomed to become verbose. In an attempt
to avoid this pitfall, therefore, the discussion in this chapter
is kept one or more stages removed from the actual circuit diagrams,

and a presentation is made in terms of schematic diagrams. The
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diagrams thénmelves, in full detaii, are included in Appendix 3.
At this stage, therefore, a short discussion of the very basic
philosophy of logic circuit design ig appropriate.

Every point in a logic circuit is at a potential 'l' or 'O';

on' or '"off'. In the case of TTL system circuits, logic level 1

represents 5V. Designing a logic circuit involves putting to-
aether circuit elements with known prbperties such that a predeter-
mined sequence oéwiogic level changes occurs and produces some
desired result. One of the simplest logic circuit elements is the
NAND gate. This device is represented by the symbol and 'truth

~

table' shown below.

NAND
A B c
A o ' o 1

, C :

___B_)O—

| 1 0 1
0 1 1
1 1 0

The truth table implies that; if wiré A and wire B are both at a
- potential of +5V ('1'), then and only then is wire C at OV.
Logic circuit elements represent Boolean algebraic forms, and NAND
means 'mot A and B' or Au B . The basic circuit elements are
put together to form arbitrarily complex circuits to perform com-
plicated functions.

In §5.1, the ability of the combuter is described in general
terms, as far as it is relevant to this system. It has, of ;ourse,

abilities in addition to those mentioned. The nature of this par-

ticular computer placed constraints upon the desigan philosophy in
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that it is a time shared computer, which is used by several research
groups. While this means that a éostly, dedica;ed computer is not
required, it also means that the system does not command the un-
divided attention of the computer. This problem is cvercome by the
use of multiplexing techniques, as described briefly in §5.2. This
section is not essential to the rest of the chapter and, indeed; the
multiplexing/den@lpiplexing retwork existed before the Brillouin
system, and so did not form part of this chapter's project. Its
inclusion, however, 1is useful to justify the approach adopted
to the control circuitry, although this approach was largely deter-
wined by the need to be compatible with the existing equipment,

In §5.3 are described the requirements of the Fabry-Perot
interferometer. The basic theory of fhis high resolution device
is well docurmented (e.g. 81). §5.4 puts together the coumputer's
abilities and the interferometer's requirements in a manner com—
patible with the existing equipment, and suitable for operatiﬁg
within a nondedicated (tiue shared) computer environment. In
§5.5, scme of the details of the blocks or modules used in building up
the complete system are described, and the discussion is in terms of
'black boxes'. Detailed understanding is left to contemplation of
Appendix 3.

The logical structure of the opera;ing control programme for
the Fabry-Perot system is described in §5.6, and the results of its
operation in two distinct modes are presented in §5.7. These results
demonstrate both the simplicity of operation for the control of thé
system and the convenient format of the results produced. Finally,
in 8§5.8, the scope of the system is critically examined, and possible

future developments are proposed. These proposed developments take
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the form both of additions to the existing system, and total re-

designing of the entire system (24).

§5.1 The Ability of the Computer

The cbmbuter is a Digital Equipment Corporation PDP11/45 16-
bit machine. It is best regarded as a transmitter and receiver
of 16 digit binary numbers or 'words{ (83). These words may, on
transmission from the computer, carry irformation regarding the
running of the experiment. The words received by the computer
may contain the data resultant from the experiment, and any ex-
periment is seen by the computer as a system with which to ex-
change words.

The additional and vitﬁl ability of the computer is, of
course, the ability to perform arithmetic and logical functionms,
and to store data. The computer is thus able to concoct a 16-bit
word from information supplied to it by the experimentalist and/
or by a programme running in the computer. Since this word has
the function of controlling the experiment it is known as the
'controlword', and it is assumed that the tfansmission of a control-
word by the computer initiates some action on the part of the
experiment, The subsequent word transmitted from experiment to
computer is a 'dataword'. This exchange of controlwords and
datawords between computer and experiment takes place along a common
‘set of 16 wires, and is illustrated schematically in Figure 43.
(The set of cables is often called the data 'bus'.)

Includéd in Figure 43 is a representation of a techniqge which

is employed here to synchronise transmission and receipt of words
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FIGURE 44:
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Schematic representation of the flow of 16-bit binary
'words' between computer and experiment.
Schematic diagram cf the multiplexing/ demultiplexing

network implemented according to table 15.
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by the computer, but is also applied at manyllevels of the ccntrol
circuitry. When the computer has generéted a controlword as pre-
scribed by the experimentalist, it signals to the experiment that
there is a controlword ready for use. This signal takes fhevform
of an electronic pulse 'Q' along an extfa wire. The controlword

is transmitted by the computer, and a subsequent signal 'R' along
a further wire informs the computer that the controlword has been
received. 1gfé01; an exactly analogous pair of signals asscciated
with the receipt, by the computer, pf a dataword, except tha:t the
functions of 'Q"and 'R' are reve;sed.' This exchange of signéls

is a common contrivance in data transmission circgitry, and the
signals 'Q' and 'R' can be scen to form a 'message-boy' service
which ensures that events occur in the correct order (for instance,
the computer will certainly not send a new controlword until the
'R' éignal is returned to indicate that the previous .controlword
has been received by the experiment.) .This pair of signals is

sometimes known as a 'handshake loop'.

§5.2 Multiplexing and Demultiplexing

Multiplexing and demultiplexing techniques are essential when
the computer is of the nondedicated variety, and its time must there-
fore be shared between users. The computer must then be able to
exchange controlwords and datawords with many experiments by switching
its single cdntrolword transmission channel to many experimental
channels (demultiplexing), and switching many experimental data

channels to the one ccmputer data receipt channel (multiplexing).
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The enormous advantage of this scheme of operation is that the com -
puter may exchange words with several different experiments belong-
ing to séveral different users, apparently simultaneously, due to

the high operation speed of the computer, Under normal circumstances,
different experiments have no adverse effects upon each other.

In the sysfem implemented here, the techniques of multiplexing/
demultiplexing are also applied at thé level of the partiéular control
system, which ai&ows the design of the on-line coatrol circuitry to
be approached on a 'modular' basis. The single computer 'transmit'
and 'receive' channels allocated to light scattering experiments are
thus split further into eight channels for controlwords and eight for
datawords. This level of operation is represented by Figure 44 and
by the table of subchannel ailocation, Table 15. The lower 'select

channels' route for the controlword in Figure 44 expresses the fact

that it is an extra controlwerd which is sent prior to the control-

word for the experiment which defines the control channel A+ H

and the data channel a + h relevant to the experiment in question
(23, 24). Not all devices require to return data to the computer
(e.g. an X-Y plotter, channel C), and the unallocated channels of
Table 15 indicate the scope for expansion to further control of
expefinmnts (see §5.8) witﬁout further connections to the computer
itself. Devices corresponding to A+ D and a > d do not inter-
fere with one another and may be controlled simultaneously and inde-

pendently, or disconnected completely, as required.



TABLE 15.

<]

Allocation of control and data subchannels at

control system level, as implemented (see

Figure 44).

chromator
Digital voltmeter input

Y

X - Y plotter

Fabry-Perot interfercmeter

Not allocated

a

Photon counter for A
Digital voltmeter output
Not allocated

Photon counter Zcrx D

Not allocated
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§5.3 The Requirements of the Interferometer

In order to explain the generation and the meaning of thé
controlwords and datawords of §5.1 for the'ipterferometer experi-
ment it is necessary to give an account of the "manual' operation
of the interferometer, that is before the computer is introduced.

The interferometer is a Burleigh RC42 piezoelectrically
scanned etalon, with three piezoelectric elements or 'stacks'.

The expression for the. angular position 6 of a maximum of in-
tensity in the pattern produced by multiple reflection at an etalon

g3

Fe

5.1 ‘2nd cos 8§

g

where n is the refractive index of the material between the plates,
d the plate deparation, m an integer and A the wavelength. 1In
the RC42 etalon, n, 8 and m are held fixed while d is changed
by the application of a 1 KV 'ramp' voltage to the stacks. This
results in a scan over a range of X which is small compared
to the range of a grating spectronmter,.but the resolution is much
higher. 1In some other instruments, XA 1is scanned by altering.the
gas pressure between the plates, and consequently n. Since the
ramp voltage V evolves linearly in time, a plot of intensity VS.
time.on a 'Y - t' chart recorder corresponds to a speétral scan.
This same time linearity can be exploited in interfacing the system
to a multichannel analyser (MCA), which has (say) 100 channels and
'strobes' the photon count over a time = T + 100 into each suc-

cessive channel, where T 1is the ramp duration (in time). Each
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MCA channel therefore corresponds to an integrated intensity over a

range of wavelength §X equal to

5.2 S

(Free spectral range) + 100.

The data in the MCA can then be recorded on paper tape and sub-
sequently transferred to a computer memory. The plates are then
tracked back by'Eﬁé reduction of the stack voltage to OV, andla
fresh scan can be initiated manually.

There are some disadvantages to this method, and these are as

follows:

i) The transfer of data from MCA - paper tape - computer is

cumbersome and time-wasting.

e
[T
~r

Large amounts of data => large amounts of pzpertape.

S8
[
e
N

Comparative studies cannot be performed immediately.

iv) The data format is not immediately compatible with existing
data-handling routines (84).‘

v) Each data point corresponds to an integration over a non-
zero wavelength rangé SA.

vi) The etalon plates wiil drift axially due to temperature effects
and mechanical instabilities, destroying calibration.

vii) The etalon plates will deviate from parallelism for reasons

as in vi) above, degrading finesse (81).

The scheme of computer control implemented here takes care of

i) » vi), and could be extended to remove vii) (see §5.8) .

3
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"~ §5.4 Interfacing the Computer to the Interferometer

‘ It would be poséible;.if a dedicated computer were availablé,
merely to use such a computer as a glorified MCA. . This would
remove disadvantages 1) - iv) of §5.3. The compufer is, as has
been said, not dedicated, and some means.must be devised whereby
the multiplexing/demultiplexing system can be aliowed to switch
the computer's attention off the interferometer experiment, and
on to another user or experiment (temporarily). Thié makes
linear time evolution impossible.

The problem is overcomie by substituting a 'staircase voltage
for the 'ramp' voltage. Such a voltage is depicted in Figure 45.
'In this mode, while the voltage V 1is constant, the photon count
can be recorded for a given length of count time, and the computer
can devote its attention to some other experiment. The fact that
the count occurs when the voltage is constant, and therefore the
etalon plates stationary, carries with it the added advantage that
each data point now corresponds to a single setting, and not to an
integral over a range 6. This discontinuous mode of operation
is essential to the scheme of things. The sequence of events is

thus:

L—> S_tep-—"-ﬂbCount ey Store Data——=l

In Figure 45, the intervals AB, EF, IJ and MN represent an
increase 6V in V .and therefore a step §X in A . Intervals

CD, GH and KL are 'count times' and are therefore of equal
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FIGURE 45: The evolution in time of the etalon 'stack' voltage

within the on-line control system.
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length 8t, and intervals BC, FG and JK are 250 us‘ waits
induced by the computer to allow for mechanical 'ringing' of the
etalon plates to be damped out. The intervals DE, HI and LM are
.deliberately drawn as unequal time intervals, as these are tﬁe
. junctures at which the system releases the computer to attend to
other users. At these times, the waiting periods enforce& by the
computer have no adverse effect, provided the etalon remains stable.
We are now in a';;;ition to detail the controlword and dataword
associated with a complete step-coﬁnt operation (e.g. A =+ E of
Figuré 45) .

The experiment requires to know the step size, the length of
time for each photon count operation and the direction of scanning

P . aV s . . .
(i.e. is 5t positive or negative). The convention for the

zllocation of controlword bits adopted here is given below.

11 10 9 8 7 6 5 4 3 2 1 0

Count time Ot Step size SX
Direction (1 = up)

6t x 10 (0 = X10, 1 = X1)
Reset, (1 = reset)

Clear interrupt (0O = clear)

Bit 8 gives the sign of bit 9 allows the option of either

av
ot *
§t, or &t x 10 being used as the count time. Bit 10 ensures that
the ramp generator is reset properly (see §5.5) and bit 11 clears an

optional manually-induced interrupt. This interrupt is arranged to

occur during the 'dead' interval (e.g. DE, HI and LM of Figure
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45) and is useful if something goes wrogg, or adjustments must be
made during a scan. Bits 12 »+ 15 are redundant in this case.

The computer generates this controlword by use of the following
algorithm:-

o

5.3 Controlword = 2  x stepsize + 24 x count time + 23 x direction

9

+ 27 x (6tx10) + 210 X reset + 211 x clear interrupt.

The values of the parameters are therefore O < stepsize < 15;

it

O < count time < 153 direction = +1; &t x 16 +1;
reset = il;x'clear interrupt = #1,

The dataword is much more simply explained, When the system
kas acted upon the controlword, the number of photons counted is
relayed back to the computer as a 16-bit binary dataword, so that
the maximum number of photons counted during 6t must be kept below

16 16 . . - .o .
277 = 65536 (or 2 x 8 = 524288 1if the + '8 facility is used,

see §5.5). ~

85.5 The Interferometer Modules

The basic modules a%é illustrated schematically in Figure 46,
and thé circuits are given in full in Appendix 3 {Figures A3a + A3c).
It would be uninformative in this context to try to explain in detail
the operation of the individual circuits in terms of their component
parts, as this is best understood by staring at the circuit diagrams
with the aid of the Texas instruments TTL data book (82). 1In essence,

however, the controlword is acted upon by the modules as follows.
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FIGURE 46: The modules for the Fabry - Perot interferometer (F/P)
and Coderg T800 spectrometer interfaces, with the flow

of information between. modules, and to / from the computer.

FIGURE 47: The overall architecture cf the computer-controlled

system for Brillouin spectroscopy.
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Firstly, the‘step control module interprets &V as an integer,
and generates a sequence of 6V pulses, which afe subsequently
summed up, and converted to an analogue inérement éf 1 Volt by the
ramp generator, the sign being determined by bit 8. This incre-
ment is input to the 'external' socket of the interferometer's own
ramp generator, which now opefateé merely as a D.C. amplifier of
gain 1600X. Before the stream of pulses ié sumred by the computer
ramp generator, however, the 'counters' are reset to.zero ty bit 10
of the controlword (see §5.4). After the 250 us wéit mentioned in
§5.4 to ;tabilise the etalon, a pulse of duraticn %% seconds (or

§ t if bit 9 = 0) is sent tc the photon scaler. This pulse, the

&t
10

seconds. At the end of thic gate pulse, the accumulated . photon

'count gate' of Figure 45, effectively ‘opens' the scaler for

count is relayed back to the computer via channél d. There is a
'message~boy' loop of signals (c.f. §5.1) associated with the step
pulse generation/count pulse generation in addition to the 'Q'
and 'R' of Figure 43. These are labelled 'step done' and 'count
done' respectively in Figure A3a,

The step size has been chosen such that the voltage cannot
possibly evolve in time faster than the maximum %% of manual
operation, and the digital - anélogue conversion is such that 1
step represents 2V, The total number of single steps inAa scan
is therefore given by (1KV) & (2V) = 500. It can be seen that
the count time has alternative ranges of 0 - 1.5 seconds or
0 » 15 seconds, depending on the value of bit 9. The additional
facility of an optional predivision of the photon count by eight,
switchable manually, allows for high—statistié counting to be

performed.
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It is, perhaps, useful to present two sample controlwords and

their interpretation. Firstly, in

11710179 1°%81°71% 1°5}1 % |°31%21°1]%

referring to §5.4, &t = 0101, &txl0 =" 0, so count time = 5
seconds; stepA§E;é = 1100 = 12, =so the scan will comprise

500 = ié = Ai steps, and tﬁus ZZ'daté points, Similarly,
011100100101 gives a coung time of_0.2 seconds and a stepsize of 5.

The overall architecture of the Fabry-Perot system is re-

presented by Figure 47.

Footnote to §5.5:

The modules in Figure 45 are the same, essentially, for the
Coderg T800 system, except that the pulses generated by the step
control module are used directly as stepper motor pulses for the

grating drive motor (23, 24).

§5.6 The Control Programme

A complete spectral scan is represented by Figure 45, extended
to 1KV, This is therefore composed of a sequenceiqf controlwords,
~ and their corresponding.datawords. The flow diagram for a computer .
programme which creates such a sequence is presented in Figure 48,
with an additional, useful facility.

If 'scans' =1 in the diagram, the programme controls a single

scan, measuring photon counts for a period of &t seconds, at a
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set of frequencies 2 in regular'steps of év. if, however,
'scans' > 1, the programme corrects for axial drift of the plates
by refraining from storiﬁg any counts untii a threshold level is
reached. It is therefore possible, under programme control, to
accumulate multiple scans with threshold triggering at some in-
tensity between the maximum Brillouin intensity and the maximum
Rayleigh intensity. This.is & particular advantage when the
scattering is weak, as it automatically.compensates for axial
drift of the etalon plates, which would destroy the frequency
calibration in a single scan of long duration. Thus, disadvantage
vi) of §5.3 has been overcome. In Figure 48, the stars indicate
junctures at which the computer is effectively released by the
control programme. This programme was written in the assembly
language of the PDP1ll computer (83) but there is no reason why

it could not have been written in a high ievel language and comr

piled on a special compiler.

§5.7 Results

In Figures 49 and 50 are presented the results of two separate.
Bfillouin scans of BaMnF3. Firstly, the sequence of control in-
structions is presented, along Qith the resultant stored data file.
Below these are plots of the corresponding spectra, drawn by the
X - Y plotter in Table 15, controlled by a graphics'programme
compatible with both the Coderg T800 system ane interferometer
system files. Figure 50 is of particular interest, as it repre-

sents a multiple scan. It can be seen that the stored data begins
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FIGURE 48: Flow diagram for the interferometer control programme,
including the ' multiscan ' option. The scan will actually
be linear in wavelength A, but also linear in frequency

V to within 0.37%.

FIGURE 49: Cormand sequence , resuvltant datafile and plot for a
Brillouin scan in 'single scan' mcde. The underlined

sections are computer prompts.

FIGURE 50: Command sequence , resultant detafile and plot for a
Brillouin scan in 'multiscan' mode. The underlined

sections are computer prompts.
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53 35 25 18 14 13 9 8
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N>

119 16 11 9 11 12 .
12 12 14 16 21 31 4C 64 ’ .
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7787889 13
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6 77766 5 17
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11 13 16 1€ 17 21 3¢ 48 \
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FILF:TEST@2, )

STFEP=2, TIME=2, TEiP=4%0,SCANS=2, THRESHQL L= 16060,

NOTES :DE40ONSTRATION OF MULTISCAN

GozY '

SCAN COMPLETEC(BRILLOLIN)

FILE:TESTO2
START=2 , END=5¢0 ,STEP=2,TIME=2, TEMP=400,SCANS=2, THRESHOLD=1600,
NOTES :DEIJONSTRATION OF MULTISCAN

DATA=

682 745

841 748 522 373 27t 187 113 65

43 32 26 21 16 14 12 1@

9978886 7
78887177S°S
688876 68

' 77878768
798 11 12 t4 15 l4-

12 1t 11 18 11 13 12 13
13 14 15 18 24 35 58 80

' 113 123 122 185 85 70 52 46
4% 36 31 32 32 33 34 44
S4 78 112 135 132 166 79 61
42 27 21 18 12 12 18 9

88 778 18 11 13 . -
12 11 898776 _

6 67 68 7817 -

7675777717

79887689

788 10 10 12 18 11

14 1S5 18 24 41 83 166 328
626 10845 1266 753 546 42 259 147
97 66 47 3t 24 22 16 12

1299 12 89 8 7
877771771
§8777776
., 66777718
78 169 11 14 16 13
. ' 14 11 10 18 12 11 11 11 : .
] 11 13 16 18 22 36 49 72 /
; 183 128 126 111 96 78 58 48 ’
42 38 34
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at the threshold level, on the 'leading edge' of a Rayleigh peak.
The methods of processing these data files are discussed in

references 23, 25 and 84,

§5.8 Conclusions and Speculation

The system described in the preceding sections of this chapter
certainly provides & reliable, working facility for high resolution
light seattering spectroscopy. AThe data is collected in a useful
format, and in a precisely controlled and repeatable manner. The
design of the system requires only that a data handling terminal
and a time shared computer be available, so that the scope is not
limited by the cost of a dedicated computer. The computer nrovides
the.additional facilities of disc storage, pfdgramme compilers and
data links to a larger job-processing computer, so .the 1afge amount
of data created by comparative stndies does not present e prnblem.
The data is readily available for immediate manipulation, or for
later analyeis on the iarger computer.

The control method incorporates an ability to minimise the
detrimental effects of axial drift of the etalon plafes. Non-axial
drift still presents a problem, however, in that the resultant loss
of plate parallelism degredes finesse and thus renders very low
statistic experiupnts impraetical due to the long times involved.
This could, in principle, be rectified within the scope of.the
existing sjstem, by the application of a small 'trimming' voltage
‘to each of the piezoelectric stacks independently. The decision

as to the magnitude and sense of these voltages could be made by
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. the computer. This might involve a multiscanning mode of operation

in which the computer compares each su;cessive scan with its pre-
decessor ané decides whether or not finesse is deteriorating. The
trimming voltages could then be adjuéted by éhe computer (via
digital/analogue convertors) to con&erge upon optimal plate zlign-
ment., The criterion for such a convergenée could simply be that
the height of the Rayleigh peak be maximised. A more scphisticated

method, however, would be to study the shape and width of the

. Rayleigh peak, and to regard high peak intensity and narrowness

as desirable qualities. There are a number of ways_in which this
criterion might be applied. This proposed addition to the ccope
of the system could be made within the framework of the existing
miltiplexing network, using channel E of Table 15. Obviously
some further circuitry would be required-and a more complicated
control-program would result.

A much more drastic development, however, would be the intro-
duction of a microprocesscr (85), and the complete replacement of
the entire Raman/Brillouin system control circuitry. Although the
combined system at present offers more than adequate capabilities,
it'isAnot independent of the vagaries of the computer itself. The
circuitry would be simpler, as much of the work currently-done by
circuits would be domne by~microprocessor programmes, gnd a link to
a computer could, of course, be included. The future of automatic.

spectroscopic systems must surely lie in the direction of the

- mMLCroprocessor.



-127-

CHAPTER 6

INCOMMENSURATE —~ COMMENSURATE TRANSITIONS: A THEORETICAL STUDY

Introduction

There has been considerable interest in recent years in the class
of transition leading to an aperiodic systemyknown as an incommensurate
phase ,which is not strictly awmorphous. Many of the properties and
" characteristics of such materials have been summarised by Axe (86)L

The analysis reported in this chapter forms part of a current

programme of study involving several aspects of incommensurate transition

theory (87, 88, 89). I am particularly grateful to Professor R.A.
Cowiey and Dr. A.D. Bruce for encouraging my collaboration in this

Fd

exciting project.

§6.1 Incommensurate Transiticns: a Definition

The dictionary definition of 'commensurate' (actually commen-
surable) is '"capable of being measured exactly by the same unit."
The unit of measurement for a crystal lattice is the unit cell dimen=-
sion (e.g. 'a' in Figure 51(i)). If a distortion of such a simple
structure occurs (as temperature 1is lowere&) which can be described

by a displacement field u(z) =

cos q .z + in q z d i
u cos q, u,sin q .z and q, 1s a
. . . 27 P . .
simple rational fraction of T = 5 the transition is said to be

from a disordered to a commensurate phase. The classification

'disordered' is borrowed from the terminology of magnetic transitions.

Such a disordered-commensurate transition is given by imposing a
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1,1

FIGUEE 51: i) A linear monatomic chain of primitive cell dimension 'a'.
ii) A distortion of the form u(z)= U cos q z, where q = %%.
c c

i1i) The structure produced by a distortion 51(ii) on 51(i).

F1GURE 52: i) A distortion cf the form u(z)= U cos q z, where q = %1.
c - ¢ 3a
ii) The structure produced by a distortion 52(i) on 51(i).

i1i) A distortion of the form u(z)= U cos a

.2, where q,
i i

2m

is close to, but not equal tc 3
a

iv) The structure prcduced by a distortion 52(iii) omn 51(i).

v) A distortion of the form u(z)= U cos( qcz + ¢(z)), where

q = %% and ¢$(z) 'contains two phase solitons’,

c
The soliton regions are marked 'S',

vi) The structure produced by a distortion 52(v) on 51(i).
The solitons can be seen as regions of local aperiodicity

separated by regions of local ordering as in 52(ii).

FIGURE 53: i) The form of ¢(z) corresponding to a two-soliton

distortion of 51(i) close to a lock-in transition to

_ 27
9.7 3

ii) A distortion of the form u(z)= U cos( ¢ z + &(z)), where
c

qc= %g-and $(z) contains two phase solitons as given by 53(i).

(identical to 52(v)).

iii) The structure produced by a distortion 53(ii) on 51(i).

(identical to 52(vi)).
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distortion u(z) given by 51(ii) on the disordered structure 51(i)
to produce 51(iii) (commensﬁrate). Clearly the new unit cell

dimension is 3a, and the structure 51(iii) can indeed be measured

. ' T
a'. The wavevector q, is here equal to =

3

The modulation in the structure can be thought of in terms of a

by the same unit

'soft' phonon with wavevector q, which condenses to w, = 0 to
produce the commensurate structure. Obviously, a distortion where
the minimun in tﬂgﬁsoft mode dispersion occurs at 9. =T = 0 is
homogeneous, and the unit cell dimension does nct change. The class
of transition termed incommensurate occurs when the soft mode located
by the minimum iﬁ .w(q) has a wa?evector q which cannot be ex-
pressed as a simple fraction of 1, and the distortion induced by
the condensation of the soft mode produces an apefiodic system. Such
a system obviously cannot be measured exactly by the unit 'a'. A

distortion of Figure 51(i) of the form wu(z) = U cos g,z 1is plotted

i

in 52(iii) ard (iv), with q; close to but not equal to This

X
3

phése is not strictly crystalline. In fact, anharmonic terms in the

Hamiltonian ensure that to some extent, the incommensurate distortion
will include‘harnnnics of q; (90). The extent of the contribution
from these harmonics depends on‘the detail of the soft mode dispersion
(see 56;2 and §6.3). |

In the case of an incommensurate transition in a conductor, the
presence of a Fermi surface associated with the coﬁduction electrons
can provide an excuse for incommensurability. It is well known (91)
that the proximity of a phonon wavevector to the Fermi surface results
in Kohn anomalies - points of inflection in the dispersion curve.
It is plausible that the enhanced screening of phonon freqqencies

(9

caused by the electron-phonon interaction at the Fermi surface could
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also affec; the temperature dependence of the frequencies to provide
an incommensurate soft mode. Instances of incommensurate transitions
with characteristic wavevectors identical to the wavevectors c<f marked
Kohn anomalies have beern reported, particularly in quasi-one-dimensional
conductors (e.g. (éZ)).

By no means all structurally incommensurate transitions occur in
conductors, hbwever, and for illustrative pu;poses the disordered- in-

commensurate transition at Ti = 130K 1in KZSeO4 is relevant here.

L)

The temperature deperndence of the soft mode branch of the dispersion
relation of KZS'eO4 (from inelastic neutron scattering (S3)) is pre-
sented échematically in Figure 54. It can be seen that the soft phonon
condenses to zero frequency at 130K at 'a wavevector of 0.211, preo-
ducing an incommensurate structure (c.f. Fig. 52(iii) and {iv), where
qi_=‘0.323r). When the incommensurate distortion occurs in KZSeOQ,
there is a concomitant appearance of satellite Bragg peaks in the
neutron scatter{ng cross—section at q; (or X-ray scattering cross-
gection). This is due to the fact that the distortion is itself
periodic (c.f. Fig. 52(iii)) although the structure it produces is

not. If the modulation were commensurate, of course, the new Bragg peaks
would occur at g4.» some rational fraction of T. A study of the
elastic scattering therefore provides a probe of the value of q;-

In K25e04, q; is close to 1/3, and may be expressed as q; =
/3-8 = 9 - 8§, where § 1is small. A study of the temperature
dependence of 9; in KZSeO4 (93) is represented by Figure 55? At

T,, the satellite reflections appear at 9 @ (1 -0.07)x/3 and

shift to g, é (1 - 0.02)1/3 over the following &« 4OK.

At Tc = 93K, a further transition can be seen to occur, at

which & +~ 0 apparently discontinuously and therefore q; > 9.
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The form of the soft-mode dispersion at temperatures above

and equal to the cdisordered-incommensurate transition Ti

for KZSeO4 (schematic). The parameter § measuves the deviation

from commensurate, §. ordering (reference 93).

The variation with temperature of the parameter § for

KZSeOI. At a temperature Tc’ § - 0, apparently discontinuously,
4

corresponding to a lock-in to commensurate % ordering.
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The structure below Ti is consequently commensurate, and has a unit

cell dimension 3X that of the disordered phase (above Ti\. The

’

sequence of transitions in KvSeO4 as temperature is lowered is thus

2 .
‘analogous to the one-dimensional sequence from Figure 51(i) to 52(iv)
at Ti’ and finally to 52(ii) at Tc. The transition at Tc where

the wavevector of the distortion jumps to a commensurate value is

commonly termed a lock-in transition. It is the purpose of this

chapter (and reference (88)) to elucidate the nature of the dis-
tortion just above Tc* the lock—in transition temperature.

No detailed argument is offered here to explain the existence
of irrational wavévectors for soft modes in insulators, Intuitively,
it is not surprising that, in some materials, zone boundary or zone
centre modes become unstable, as these are cbvious critical points
on the dispersion curve, and it seems reasonable to expect other
high symmetry points to provide lock-in wavevectors. The existence
of energetically favouraﬁle incommensurate modulations is controlled
by the nature of the atomic forces. The philosophy of this chapter,
therefore, is to invesﬁigate wodel Hamiltonians with suitable minima
in the soft mode dispersion branch, and to édjust the harmonic
parameters to induce phase transitiéns. This Landau-style manipula-
tion will be applied to the lock-in transition. A discussion of the
disordered-incommensgrate transition is given in reference 87 .

The phase diagram with respect to the parameter &§ 1is essen-
tially given by Figure 56. For & = O, the transition is directly
from the disordered pﬁas; to a commensurate phase. Otherwise there
is an intervening incommensurate phase which is traversed as tempera-
ture is lowered. It must be remarked that not all ingommensurate
phases lock in to commensurability (e.g. NbSe2 (90)). For the pur-

poses of this work, incommensurate lock-in transitions can be classed
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FIGURE 56: Schematic phase diagram for a system exhibiting
disordered~commerisurate, disordered-incommensurate, and
incommensurate-commensurate ('lock-in') transitions, in

terms of the parameter 6.
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as.being one of two types. At type II transitions, the lock-in wave-
.vector 9. defines a point of inversion symmetry (e.g. 9 = 03
9. = 1/2), at type I tranmsitions it does not (e.g. £j3); These
tvo cases have a different Haniltonian, and consequently a different
incommensurate distortion profile. |
A simplified reformulaticn is given in §6.2 of the analysis ofl
(65)." In §6.3, the Hamiltonian is constructed and analysed for type
I1 transitions, and the form.of the distortion profile derived. In

§6.4, conclusions are drawn.

§6.2 Type I Transitions (ﬂd ~t/ps p > 2)

So far, the illustrative example has been a monatomic linear
chain. It turns out that examining the form of the incommensurate
modulatioq in one dimension (the direction of q; = [p, o, qi] does
not obscure any of the physics, provided the generalisation to 3D is
carefully considered.

The basic model for both types I and II transitions is illustrated
schematically in Figure 57.. In this model (96) the atoms are assumed
to move in double well potentials, localised on the undistorted
positions, and of thé form A u2?(z) + B u"(z), where u(z) 1is the
displacement of‘the atom at z from its undistorted.position.
Furthermore, there are assumed to be (generally anmharmonic) inter-
atomic interactions,

Since we know that q is close to some q, at tﬁe lock-in

boundary, let us represent u(z) by:

6.1 u(z) = v/3U(z) cos (a2 + $(2).
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FIGURE 57: A simple model for a system undergoing displacive phase
transitions. The parameters characterising the double wells
and the interatomic forces can be adjusted to produce an

energetically favourad incommensurate phase. The circles

represent atcms, and the 'springs' atomic forces.
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The essential anharmonic terms in the Hamiltonian density in terms

of these variables are

6.2 Han(z) ‘= BuyH(z) + C UP(z2)cos p ¢(2)-
where q. = %- and H = JH(z)dz. Tue exact forms of these terms

are most conveniently obtaired by expressing the full Hamiitonian in

the form of equatioﬁ 4.7, i.e. ( excluding kinetic enérgy)
6.3 H = }/w?(q) Iquz dq

/1 V3§q1q2q3)quQq2Qq §(q; *+ g, * qy + K)dq,dq,dq,

3

+ ee oo .

Considering the anharmonic terms, and restricting the range of ¢

to small regions around tq, by means of the transformation:

6.4 .thc+q = (pl(a) i Pz(a))/QE

" then expressing the Fourier -transforms of the P's as
6.5 Pl(z) = U(z)cos ¢$(z); Pz(z) = =U(z)sin ¢(2)

yields equations 6.1 and 6.2. The first and second terms in 6.2 can
be identified respectively with the B u*(z) term in the double
potential well, and the p-th order anharmonic interatomic coupling
term in the model. It is clear that the 6(? qj + K) associated

J
with each term of 6.3 restricts the order of anharmonicity in which
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cobrdinates with q; ~ Q. = T/p can appear.

The form of the harmonié term is critical; as it essentially
defines the difference betwcern type I and type II transiticons. When -
q. does not define a centre of inversion symmetry for the dispersion
curve, w?(q) can be represented for the regions around tqi by the

form

2008 = 02 4 (e — a2
6.6 w*(q) wS * fqa-4qy)
and ,mg a T - '1‘i gives the required variation. It is important to
note that this is not a valid approximztion for type II transitions
(see 6.3). With the same et of variable changes as described for

the anharmonic terms in H(z). we have for the harmonic terms:

6.7 B (2) = $0202(2) + §(WU{z))? + U2(2) (V9(2))?

+ 3U2(2)82 - U2(2)&V4 (2)
3
where V = -—— and
9z
6.8 q. = q + 4.

The fuil (essential) Hamiltonian density is now given by
H = H +H_ and we can attempt to adjust the form of u(z) to
miﬁiﬁize the corresponding free energy. With no loss of generality,
we may restrict our discussion to 4. = t/3. Before presenting the

result of this procedure, it is fruitful to consider the single plane

wave incommensurate distortion of Figures 52(iii) and 52(iv). This
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corrésponds to U(z) = constant, ¢(z) = 8z = 0.0lz in equation
é.l, and the only z;dependent'term in H 1is CU3cos(0.03z). This
term providés equal positive and negative contributions to the free
energy, depending on the value of the cosine. A net lowering of the
free energy can he obtained by modulating the amplitude U or the
phage ¢ (or both). Since the term in 6.7 which lowers the free
energvy for 6 # O0__(i.e. which favours incommensurability) depends
.only on ‘ Vo(z), it seems pléusible that phase modulation is more
important. McMillan (90) noted also that modulating the aﬁplitude
jncreases the positive U?%, U* terms of 6.2 and 6.7, more thaﬁ
~dces a variation of ¢, sucﬁ that in his language, 'amplitude
mdulation costs more eﬁergy'. Accerdingly, the phase—uodulafion—
ornly hypothesis is adopted, élthough it must be borne in mind that
U{z) may vary. Indeed the fact that U must at least vary from

zcro above T to some small nonzero value below T

suggests
i i .

that the phase-modulation-only form should not be applied near Ti

With this reservation, therefore, setting wu(z)=/2U cos(%lz + ¢$(2))
a

for a monatomic chain of length L we have a free energy/ unit cell

2 (L !>
6.9 F = Hf j (25- + UC cos 3¢)dz
o .
U2 _ y242
—I'(¢L | ¢o)5 + >

Within this expression, there is a 'competiticn' between the
‘ 21 4m
3, 3...

( remember C < 0), and the term in (¢L - ¢o), which provides a

integral term, which is minimised for ¢(z) = constant = O,

negative contribution to F if ¢(z) varies along L. Given that

$(z) should vary, therefore, the minimisation of the integral demands
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that the variation of ¢(z) be in steps of Z% and that the steps
1"
satisfy the sine-Gordon equation (SGE) ¢ =+3UCsin 3¢, one of whose

solutions is the SOLITON (97)

.6.10 : @(z) = %tan-l eip (-9UCz2)i .

A twc-soliton_distortion of the stiucture of Figure 51(i) is given
by Figure 52(vi), and the corresponding form of wu(z) by Figuve 52(v)
‘ (also-Figure 53(ii)), The corresponding variation of ¢(z) is givenb
in Figure 53(i). Clearly, this distortion cor:esponds te regions of
commensurate, pefiodic %- ordéring vhere ¢ 1s constant, separated
by regions of local rapid phase variation (phase solitoﬁé, marked s)
giving rise to localised aperiodicity. The soliton regions may be
regarded as 'domain walls' between the locally commensurate regicns.

At a lock-in transition to q, = %- the solitons must space out’
until ¢ = constant over the whole crystal, so the soliton density
must go to zero continuously as T » T:. The order parameter for’
the lock=-in transition is therefore thebsoliton density. McMillan
(90) has shown analytically that &, and therefore soliton density
goes continuously’td zero at TC and the lock-in transition is
continuous."In the event that macroscopic strain appears in the
Hamiltonian as a coupling to the soliton density, the strain acts
as an intermediary bétween widely,éeparated solitons and it can be
shown (88) that the transition is then of necessity first order
(cf. Figure 32a). 1In practice this will almost certainly be the case.

A further inadequacy of the theory above is that it does not take
any account of the underlying lattice. Obviously a soliton is not a

useful concept when its width is comparable to the lattice spacing,
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as it would then represent a dislocation, and not merely a discommen-—
suration (94). Furthermore, the lattice may well provide preferred
soliton locatiops. Work is zurrently in progress to study the

nature of incommensurate disfortions (if they exist) without regarding

u(z) as a continuous field. This is algebraically messy, and numerical

methods will have to be used. An attempt to analyse the model by

analogy with the description of a submonolayer film on a substrate

(98) failed due to the singular nature cf the double well potential.

ee

§6.3 Type II Transitions (gi 0)

As has been said, when g4; = 0 + 8, the expansion wz(g) =
w2+|q-~g_.|2 is not valid since W st + 0 as q > 0. This means
o '~ 4 . aq
that steps 6.6 - 6.7 are impossible, and 6.3 - 6.5 unhelpful for
type II transitions. It is most useful to consider the model of
Figure 57, with nearest and next-nearest neighbour harmonic inter-

actions, explicitly. The model Hamiltonian is therefore, in a real-

space notation

6.11 H = Z[—-u2 +%u

where u_, is the displacement of the &'th atom. Using that fact

2
that, for the type II incommensurate distortion, wavelength
Ai = §£->> a, we can expand u as a Taylor series and thus go to
i
the continuuim limit, i.e. u, = u(fa) + na Vu(fa) + (“a) V2a(a) + ... .

2+n
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This projects out a Hamiltonian density

6.12 H(x) = %-Uz(x) + ut(x)

+1C(VU(x)) 2 -4 [(V2U(x))2 + % VU () 73U (x) ]

where

6.13 U = Bu ; x = -28!/8 2/((C, + 16C,)a")

and R; € have bcen similarly defined.

Equation 6.12 provides a éuitable function'go investigate the
enefgetically stable configuration for U(x) by integrating over a
length L of 'crystal', and minimising the resultant free energy.

This calculation will be performed within two hypotheses.

§6.3(1) A single-Fourier—component distortion (SPW)

This form for U(X) is represented by
6.14 U(z) = Ucos q x

and gives a free energy/unit cell of:

L 30", 8(q) () y2 4 SUY
6.15 ‘ K = i (@) + Er R (A U + ) )
6.16 ‘ w2(q) = X + Cq? + %q“ .

This form for the harmonic term clearly describes a system which, for
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can have an energetically favoured phase with 4=

)5,, i.e., a minimum in the dispersion at §.

It can be seen that the disordered (d) phase corresponds to U =0,

surate (c) phase to

‘the incommensurate (i) phase to U # O, qQ; = §

U # 0, q =

and the commen-

= O.

o Within the single plane

wave approximation, therefore, we have

6.17a
6.17b

6.17¢c

(FL). wvhen
i

(FL) when
c

(FL) when
c

and the phase diagram is given by

tewperature dependent parameter,

more general trial form for U(x)

§6.3(i1)

ny

(@]

\'4

o
.

n
Figure 58 where A 1is regarded as
It now seems reasonable to apply a

incorporating harmonics.

A multi-plane wave distortion (MPW)

Substitution of a multiple-component Fourier series for U(x):

6.18

L Um cos mq X

m

projects out as free energy/unit length from 6.12

6.19

X2
2

————

1
3

(o]

2+ oz U2 0(mq) + o

i
32

m>0

z UﬁUnUoUp[46 (m-n-o—p) + 35(m+n-o-p) ]

mnop

the
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transition,within the simple single-Fourier-component

distortion (SPW) model of §6.3(i).
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where wz(mq) 'is given by 6.16.

A computer minimisation pfogramme was used to minimise €.19.
for a particular C, X in terms of 1, 2, 3, ... 7-component Fourier
distortions with a view to a soliton-like form. Substitution of the
Fourier components of a soliton does produce a ;ﬁniumm in FL’ but
not an absolute minimum (i.e. the SPW free energy is always lower) .
A further multi-gggppnent series does yield a lower FL than the
SPW, but the series is rapidly convergent, and therefore the form
of U(x) almost sinusoidal. The variation of the SPW and MPW free

energies with C is shown in Figure 59(i) and (ii) respectively,

along with the commensurate free energy 59(iii). It can be seen that

the lock in transition occurs at a value of C = C /T%T = -0.92
between a MPW state and a commensurate state. The MPW series has
U.m =0 for m even, and 113 x - 0.035U1. The self-consistency

- of this solution can be checked analytically in terms of a two-plane-

wave distortion with this ratio of U U

1} Y3

It can also be shown (88) that the rescaled displacement field:
~ N TTY
6.20 W(x) = (—A)? ux|3al®)

obeys a fourth order, nonlinear differential equation

1

~ H. . ’
6.21 W—Cﬁ/AW+(w2—1)W = 0 .

This equation is the type II transition analogue of the SGE, but does
not appear to have a simple analytic solution. A numerical analysis

of 6.21, looking for a dome2in wall solution, shows that such a solution
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FIGURE 59: The variation wiéh parameter C of equation 6.12 of the
incommensurate phase free energy within the single-Fourier-
component model (SPW) of 86.31 (line i), and the multi-plane-
wave model of 86.3ii (line ii). Line iii represents the.

commensurate phase free energy.

FIGUKE 60: The variation with parameter C of equatien 6.12 of the
energy of a domain-wall type solution (soliton-like) to
equation 6.21. Note that for C> -1,14, the disordered phase
. free energy (=0) is less than that of a domain wall, and that
for C< -0.98, the MPW incommensurate phase is alresady favoured.
This means that the domezin-wall solution is never favourable

in type II transitions,
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does exist, but that its free energy is never lower than tﬁét of
either a disordered, commensurate, or incommensurate SPW phase. In
other words, although a soliton phase does 'exist', as a minimum in
FL’ it is never energetically favourable. This is clear from
Figure 66, in that by the time the soliton energy is less than the

disordered phase energy at C < - 1.14, the SPW phase has already

become favourable. This is entirely consistent with the results of

the MPW analysis and Figure 59.

Ip seems, therefore, that the different form of the soft mode
dispersion in type II materials leads to a qualitatively different
distortion profile in the incommensurate phase from that of type I
materials. The fact that tﬂe lock-in transition occurs at C = =~0.92
means that, even within an MPW model, the deviation from commen-
surability § (= (- %E)i) must vary discontinuously to zero at TC
and that the 1l ock-in transition is first order regardless of coupling

to strain degrees of freedom.

§6.4 Conclusions

Types I and II transitions have been shown toc have-qualitatively
different distortion profiles, corresponding to the extremely un-
sinusoidal modulation characterised by an array of phase solitons,
and a nearly sinusoidal form respectively. This qualitative difference

demands that a type I lock-in transitioﬁ can in principle, be éon-
tinuoﬁs, as soliton density goes to zero, although in éractice‘it will
almost certainly be first order. . A tjpe II transition is, of necessity,

first order.
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In three dimensions, the sclitons and plane waves become in-
finitely extended planar wavefronts. There is no a priori regéon
why'disconmensurations cannot occur in more than one direction, and
the 'crossing' of solitons may lead to dislocations (90).

The modes of excitation of any incommensurate single—~plane-wave
ground state (89) correspond to a local phase modulation (phason)

or a local amplitude modulation (ampliton?). An attempt to detect

phasons (whose dispersion shéuld resemble acoustic modes) in BaMnF4
by Brillouin spectroscopy faileg, although a critically tewperature
dependent mode of vibration was found. This temperature dependence
has been conjectured by Scott (39) to be due to acoustic mode-phason
coupling, although no direct observation of phason scattering has

yet been reported. There is, therefore, a need for high resolution
Brillouin and neutron écattering studies at T <T; to verify
directly the presence of a phason dispersion brancﬁ, whose frequency

+~ 0 as g~ q;- Possible materials for such studies are BaMnFA,
K28e04 (type I) and NaNO2 (type II). The failure of the Brillouin
experiments to observe phascn scattering directly may be due to
inadequéte resolution. Alternatively, therefmay be a gap in the
phason dispersion, due to pinning effects'(particularly in the

soliton limit). This could shift phason peaks out of the free spectral

range of the interferometer. Neutron and Raman studies, along with a

. detailed lattice dynamical study, should resolve this question.
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APPENDIX 1 Perturbation Theory and the Anharmonic Greens Function

In the Schrodinger picture of Quantum Mechanics, the wave function

evolves in time according to the equation:

Al.l

Al.2

where

t

Al.3

loe)> = exp ZHE [p(0)> = U(£,00[4(0)>

" which, in the interaction picture becomes

¥Hot -i Ht ;~
exp —&— eXp — g [v(0)>

"

lpCed>

= U(t,0) |y{O)>

U(t2,t1), ﬁ(tztl) are the time evolution operators between times .

(= 0, t in Al.1 and Al.2). U has the property

U(t3,t2)U(t2,t1) = U(t3,tl) .

Now consider expression 1.36 for G(yab,t). Using the definition

of the interaction picture (11) and the properties of Tt’ this gives

Al.4

Gyab,t) = 2= fexp - 8, T,[ $(za, 9" (zb, 0) T(pn,0)]}

Differentiating Al.2 gives a differential equation for U,

Al.5

where

U (t,0)

- - ~' 1
h 3T H' U(T, 0)

H' is the additive term 1.35 to the harmonic Hamiltonian. This

can be solved iteratively to give (20), (22):

Al.6

5,0 =1+ J 2, DT [T T @ () > B ))dry » dr
: n (o] [0} . '
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When substituted into Al.4, this gives

Al.6 G(yab, 1) = GH(Xpa,r)

1 17T . 3
+ Tr Z EET(_ ﬁ) f > f Tt[exp - BHO H'(rl) > H'(Tn)
' n o o
~ ~%
x Y(ya,t) ¥ (zb,O)] drl > dTn .

When expression 1.35 is used for H', and V is redefined such that

ng > y(ya), we have, for [ ] in Al1.6, a string of i' and @*'
operators at all the dummy ‘times' {Tn}, with their respective

{Vn(21 Iy ¥3)}) coéfficients, as well as @(xﬁ,t) and ﬁ*(xb,o).
Wick?s thesrem (20) allows this to be written as a sgries of products
df harmonic Greens functions; and obvioud y we must have an evén number
of @ and i* for a particular (ya), or the trace is zero. Going
over to the frequency Greens function G(z@b,-iwn), we have a series
of,@ operators, separated by V coefficients. For each V(123) there
is a term Ashé(wi +w, + m3), as well as the 6.(2_1 + Y, + 13) of
1.35. There is also a term (-1)n associated'with the propertieé of
T, (20). It can.be shown (20) that terms with more than two § for any
(ya) disappear as n > «®, We can now generalise to higher order
anharmbnicity, and represent the series diagrammatically. If each
v(123...) cénstitutes a circle, and each Gza(iwn) a line, with =
"running left to right, then some terms of the frequency Greens function
are illustrated in Figure Ala. Two useful simplifications can be made.

-1

It can be shown that the (n!) in Al.6 can be dropped if only topo-

logically distinct diagrams are drawn (Ala ii and iii are not) and

-the 2 1 ‘can be ignored if discomnected diagrams (e.g. Ala iv) are

ignored.
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From the above considerations, one can work backwards and cal-

culate a term in G from a diagram. The diagram has thus become the

manipulative tool, instead of equation Al.6. We can construct 1.53

for infinite order as follows. If 2 1s taken

to represent the full Green's function and

S

is taken to represent HS(yab, iwn), the vertex contribution for all
connected diagrams, then 'equation' Fig. Albi is true. Thus equation

1.6 may be written as Fig. Albii, which gives for G(yab, iwn)

Al.7 G(Zab’ iwn)

H . H . . .
= 8.4 G, (¥ iw) - Z Bh G__(y, iw )S(yac, iw )G(ycb, iw )

. 8 1is called the (comple*) self-energy. Al.7 reduces to-1.53 when

S is written as A + il'y and 1.51 is written for GH. Equations Al.7

and Albv are equivalent, and are known as Dyson's equation.
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FIGUPRE Ala: Some terms in the diasgrammatic summation of the perturbation
series for the frequency Greens function.
FIGURE Alb: The diagrarmatic formulation of Dyson's equation for the

one~phonon Greens function, equation Al,7,
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- APPENDIX 2 TABLES

Tabulated values of the fitted parameters represented

graphically in_éhapters 3 and 4,
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TABLE Alla

The parameters of equation 2.12 for the 167.1 cm-1 A1 mode in

. . . . -1
cubic Ni - I& with coupling to the 76.8 cm mode.

, o o P -1 -1 -1
Femperatuzg (K) W, (cm 7) Ia (cm ) - Wy (em ) Fb(cm ) rab

1295 S 167 .1 91.0 76.8 45.4 0.03

210 161.5 82.4 65.3 49.4  -21.18
165 ©163.1 84.0  69.8 56.5  -15.6
128 164.9  84.3 67.3 56.0  -10.3
122 . 157.5 84.9 64.3 55.6  -18.6
118 157.0 82.4 51.4 34.4  -40.0
115 152.2 82.9 67.2 47.4 -6.7
109 152.5 83.4 87.5 148.5  -2.1

98 152.1 81.5 61.1 51.7 -19.3

88 159.3  83.5 ~ 69.5 58.0  -16.2

.
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TABLE AIIb

The parameters of equation 3.1 for the 655.0 A1 mode in

cubic Ni - I.

Temperature tK) 0, (cm_l) r (Cm—l)
: 2§;~\ o 655.0 31.3
210 | 658.1 31.8
165 655.1 25.1
128 | 652.4 20.5
122 658.7 31.7
118 655.1 22.8
115 657.7 26.7
109 . 658.4 18.2
98  653.6 - 19.5

88 654.3 21.7
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TABLE AIlc

The parameters of equation 3.1 for the 1125.5 cm_1 mode in Y'X’

‘and X'X' polarisations.

_Tgmperature (R) ‘Y'X' X'xt
————— Wy r W, r
295 ~1125.5 43.2 1127.8 40.1
210 1130.3 38.9
165 . 1130.8 36.9
148 o 0 1131.1 34.6
128 | '1125.8 39.4 1125.1 49.9
125 1133.8 34.6
122 1134 32.3
118 1136.0 29.1 1133.4 3306
115 1135.6 30.4 |
109 1136.1 30.4
98 1136.2 30.5 1134.3 30.8 B
88 1136.0 29.0 1132.7 42.5
68 © 1140.0 16.9 1144 .6 19.8
51 1142.0 15.2 1142.0 15.9
25 1143.8 12.0 1141.0 o 15.3

<7 1143.3 11.0 - 1144.3 . 8.8
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TABLE AIId

The parameters of équation 2.12 for the 863.5 cm-llmode in Y'X'

and X'X' polarisations.

femperature (K> _ Y'x' | X'x!
wo r wo T
295 | 863.3 15.6  863.0 15.5
210 866.1 -  13.6 867.2 14.0
165 866.9 13.0  865.5 16.5
148 866.3 12.1
128 . 862.5 15.1 863.5 13.6
125 867.9 11.4 ;
122 868.3 11.3 868.8 9.3
118 869.0 .  10.1 867.0 10.4
115 869.0 10.8 - 868.5  15.3
109 | 869.5 11.4 867.6  11.1
98 869.7 10.9 867.3 10.5
88 869.7 10.1 868.3 14.5
73 873.9 6.8
68 | 871.0 7.5 . 876.9° . 5.2
51 872.7 6.5 872.7" 6.3
25 874.2 5.7 871.7 6.4
<7 873.9 5.7 874.3 4.8

% - taken from poor quality spectrum.



The parameters of equation 3.l. for the 611.4 cm--1 mode "in

Y'X' polarisation.

Temperature (K)

295
210
165
148
128
125
122
- 118
115
109
98
88
73
68
51
25

<7
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TABLE Alle

w

611.4
614.5
615.5
615.1
610.7
616.8
616.4
618.1
617.6

- 618.2
618.7
618.8
623.4
622.3
622.5
623.8

623.0

20.0

17.8

16‘7

15.4

120.5

13.4
13.4
13.0
13.3
14.0
13.3
13.5
8.0
9.1
7.5
6.5

7.3
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TABLE AIIf

The parameters of equation 3.1 for the 1199.5 cm.—1 mode in ¥Y'X'

and X'X' polarisations.

Tempe:ature-(K) . 'x' . : X'X;
W, T W, r
295 1199.3 73.6 1200.6 60.3
210 ' 1204.0 57.2
165 1204.1 66.9
148 | 1203.1  51.7
128 | 1201.2 60.3 1202.2 62.6
125 ©1207.2 46.3 |
122 ' 1206.8 44.1
118 | 1207.8 37.5 1205.6 41.9
115 1207.8 42.2 |
109 1208.0 41.3
98 1208.3 43.0 1208.4 43.1
88 1208.0 444 1209.2  46.7
68 1210.7 21.3 1216.3  23.3
51 1213.0 16.1 1212.6  18.1
25 1213.8 13.6 1211.8 17.0

<7 1213.7 9.7 1213.7 8.25
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APPENDIX 3 CIRCUIT DIAGRAMS FOR THE BRILLOUIN SYSTEM

FIGURE A3a: The step control module of Figure 46.

- FIGURE A3b: The photon count scaler moduie of Figure 46.

FIGURE A3c: The ramp generator module ( converts digital'

pulses to analogue voltage steps ), -

FIGURE A3d: Front-panel ccnnections of the step control (D) ,

photon count scaler (K) and ramp generator modules,
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Abstract. The Raman spectrum of Ni,B.0,;1 is reported and the number of ¢ = 0 phonon
frequencies observed is compared with the group-theoretical prediction. Aromalies in the
temperature dependence of phonon lifetimes and frequencies are correlated with abuormali-
ties in the dielectric. magnetic and structural properties at =130 K. The Raman specura
at temperatures from 88 K to 300 K indicate cubic symmetry. The static and temperature
dependent structure of the Raman spectra are compared and contrasted with their counter-
parts for other boracites. It is concluded that NiyB;0, ;5] is unique among boracites in many
ways. at least in its cubic phase.

1. Introduction

Nickel-iodine boracite, Ni;B-O ;1 (Ni-T undergoes an improper first-order transition
from a high-temperature paraelectric phase of cubic symmetry (T3 to a ferroclectric
phase at T, = 68 K. with a concomitant onset of weak antiferromagnetic ordering
(Schmid 1969, Nelmes 1974. Lockwood et al 1978). The existence of ferroclectric and
ferromagnetic transitions is a characteristic of the boracite family (Nelmes 1974).
that is. those compounds of the form M,B,O,;X. where M represents a divalent metal.
and X a halogen or chalcogen. Of the halogen boracites studied so far by varicus tech-
niques. only Ni-1 has been found to exhibit a simultaneous ferroelectric magnetic
transition.

Ni-1 is particularly interesting. however. for reasons additional to the usual boracite
improper and therefore “coupled” phase transition. involving more than one order
parameter (Nelmes 1974). Thesc are the existence of ‘growth sectors’. with iiie attendant
optical anisotropy (Schmid "1969. Nelmes and Thornley 1976b), and the anomalous
dieleciric. magnetic and structural properties of the cubic phase at T = 130 K. These
anomalies. illustrated in figure 1. comprise broad maxima in the magnetic and dielectric
susceptibilities tAscher er al 1966) and an increase of about 019, in the lattice constant
(Will and Morche 1977).

The light-scattering study reported in this paper is concerned with the cubic phase.
as a first step in understanding the dynamics of this interesting compound. It could

e anticipated that some manifestation of the abnormalities in the magnetoelectric
and structural properties should occur in the Raman spectrum. Such an expectation
is reinforced by the existence of a broad maximum at 115K and a broad minimum at
140 K in the elastic coefficient C,,. given by shear-mode measurements (W Rehwald
1977. private communication). and a minimum at 120 K. with a maximum at 130 K.

Solid State Phys MS,799— | ' T 001
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in the elistic compliance (Lockwood ¢t al 1978). The phenomenon of growth seclors
should present no difficultics under the experimental conditions described below,
involving a single [100] growth secior. where the birefringence is barely measurable
(Schmid 1969). '

An infrared study of Ni-1at 300 K and 100 K (Petzelt and Mayerova 1973) provides

a useful basis for comparison of F, scattering properties. Also, the published Raman
spectra of the paraclectric phases of Cr-Cl (Lockwood 1976) and Cu-Cl (Lockwood and
'Syme 1978) may be collated with their counterparts for Ni-1. with a view to identifying
equivalent bands.

=
_ ~
| o s ;
i R ‘\‘/
\ ;’,’4\ /,/'/\\ Xq
\\/ / \x/ ’ ‘ ~.
/ \\ \\.
/N N
0 00 128 266 300

Temperature (K)

Fi%;urc 1. Temperature dependence of the dielectric (z) and magnetic (z,) susceptibilities
(Ascher et al 1966) and the lattice constant {ag) (Will and Morche 1977) of Ni-1 in the cubic
phase. i ’

While the structure of the ferroclectric phase of Ni-I is not clear. the paraclectric
phase has been shown to be cubic from full structural analysis at room temperature
and 77 K. by x-ray (Nelmes and Thornley 1976a. b) and neutron (Thornley ¢t al 1976)
diffraction respectively. and from powder diffraction studies of the lattice constant
over the range 77 K to 300 K (Will and Morche 1977).

2. Experimental
The crvstal used was the same ' B-enriched single crystal [100] growth sector uscd by

Thornley ¢ al (1976). supplicd by Dr H Schmid. and grown by the vapour transport
method (Schmid l‘)65).Thcs;\mplcformcducuboidofdimcnsions2-2 x -4 x 0:55mm?,

these dimensions corresponding 1o the cubic (1107, C1T0Y and <001} directions re-

spectively. Crystal faces were polished with 1 pm diamond powder.

Ni-1 appears dark green when viewed before white light. and is in fact almost
opague 1o all the resonant lines available from krypton and argon ion lasers. This
can be confirmed from the published eptical absorption spectrum (Dormann 1970).
Trials showed that there is sufficient transmission for use of the 647-1 nm krypton laser
line. Raman scattered light from Ni- 1 and other boracites is to low intensity and a photo-

Fi
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multiplier tube of high sensitivity to red light is necessary to observe this. 1t is cur
expericnce that the RCA C31034A tube is essential for this criterion to be met. As
absorption of radiation. with the corresponding heating involved. must be kept to a
minimum axis of the sample proved most satisfactory. This orientation coincidentally
shortest axis of the sample proved most satisfactory. This orientation coincidentally
produced the strongest Raman signal. Consequently. the indices X’. Y' and Z uscd to
- calegorise scattering geometries refer to the (110>, (110) and {001 directions re-
~ spectively. " ’ ‘

Observation of the sample between the crossed polarisers of a polarising microscope
revealed apparently negligible growth strains. a fact borne out by the conspicuous lack
of mixing of spectra. There was therefore no nccessity for subtraction of unwanted
modes (Mrray and Lockwood 1976). . :

Using 400 mW of the 647-1 nm krypton laser light, the 90° scattered radiation was

disperscd by-a- Coderg TS00 triple monochromator (T < 295 K) and a Spex 1400
" double monochromator (7" = 295K) to a resolution of 2:5cm ™! in both instruments.
"Thescattered light wasanalysed with Pola roid sheet followed by a polarisation scrambler.
The spectrometers were automatically controlled and data collected digitally (Arthur
" and Lockwood 1974, Arthur and Murray 1978). Temperature control was achieved
- by use of a Thor nitrogen vapour flow cryostat with a chromel;gold-iron thermocouple
for temperature meusurement. The laser beam was positioned as close as possible
to the sample surface to maximise heat dissipation. but ~15K of laser heating was
still detected at the thermocouple. This would seem to suggest that the temperature
at the beam position was a few degrees higher than that measured by the thermocouple.

" 3. Results

A group-theoretical analysis of the zone-centre normal modes of the Ni-T structure
predicts the following decomposition according to the irreducible representations of

point group 43 m
I = 4A, + 6A, + 10E + ISF, + 20F,

of which. excluding acoustic modes. 4A, + 10E + 19F, should be Raman-active
and 19F , infrared active. .

The form of the Raman tensors (Loudon 1964) means that the Z(Y'Z)Y ' spectrum
contains modes of F, symmetry (figurc 24).the Z(Y'X)Y’ spectrum. modes of E symmetry
(figure 2b). and the Z(X'X")Y" spectrum medes of A, + E + F, symmetry (figure 2¢).
Subtraction of the spectrum of figure o) from that of figure 2¢ with a suitable choice
of scale factor reveals the A, + F, spectrum (Murray and Lockwood 1976). (figure 2d).
As the F, scattering is roughly ten times weaker than the A, + E scattering. we have
ignored its contribution to figure 2d. Subtraction is in this case quite impossible. no
suitable ‘scaling mode” being present. The resultant spectra arc described below.

3.1. The A, spectrum

This spectrum exhibits a Debye-like wing feature, common 10 all boracites (Lockwood
1976. Lockwood and Syme 1978) but less pronounced in this case. its influence on the
© cross-section being negligible beyond =100 em™ 1. There is a broad feature centred

on =~ 154 cm ™! with an indistinct but non-negligible broad feature peaking at 100 cm™ '
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Over the rest of the frequency range studied only two further discrete peaks are visible
at 378 cm ™! and 655 cim ™!, with some structure in the 900-1400 cm ™! range. :

' 3 2. The E spectrun

: 'Ihls spectrum rescmbles the A spectrum in the region 0—300 cm™ !, having a similar
Debye-liké wing. with broad modes peaking at 160 and 84 cm ™', There are. in addition,
three discrete, isolated bands and a palr of high- frequency modes. characteristic of a

cubic boracite.
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Figure 2. The room temperature Raman spectra of Ni-Tin the different scattering geometries:
(@) Z(Y'Z)Y'. F, modes; (b) Z(Y'X)Y', E modes: () Z(X'X)Y'. A;+ E~F F; modes;
(d) Subtracted spectrum (see §3), A, + F, modes. N.B. The ordinate calibration is given -
in units of counts s~ ' + 80.

33 TheF N spc*ctfum

The scattering of F, symmetry is very weak. Again. a narrow Debye wing feature is
present. with an oddly shaped scattering profile below 200 em™ ' comprising apparently
two bands. plus two very weak bands at 255cm™! and 280cm™'. It is impossible
todecide at this stage whether the broad structure around 600 cm ™~ ' and 1000-1200 cm ™!
is a result of some superposition of weak first-order bands or of second or higher order.
The Z(Y'Z)Y ' spectrum contains To and 1.0 features. the Z(X'2)Y’ spucuum differing
only in the absence of Lo modes.

In table 1 the frequencies and linewidths (w here appropriate) are presented for
Ni-Tat room temperature. along with the results of the infrared investigation at 300 K
(Petzelt and Mayerova 1973).

Infigures 3 and 4 we present a selection ofspccn a ofE and A sy mmetries respectively,
recorded at various temperatures. From a visual scrutiny of tln.se figures it is apparent
that no change in the composition of the spectrum occurs as the temperature is varied
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Figure 3,
of Ni-1 at different temperatures.

The E symmetry Raman spectrum

Figuré 4. The A1 (+ F,) symmetry Raman

spectrum of Ni-I at different tempera-
tures.

from 295K to 88 K. The only obvious modification to the scattering cross-section
is a sharpening of the peaks. A computer fitting procedure proved essential in order that
the true behaviour of the Raman spectrum as a function of temperature could be ex-
plored. The F, spectrum was studied over the region 0-300cm™! at temperatures
between 88 K and 300 K but the signal-attenuating effects of cryostat windows rendered
the results too weak for detailed analysis. . '

“Fable 1. Resonant frequencies ¢ylcm™'). damping paramcters Tem™!) and assignments
for the Raman-active modes and frequencies for the infrared-active modes (Petzelt and

Mayerova 1973) of Ni-L

A, E F, F, (infrared)

N - F o r e r - T eng® wh©
815 61 845 35 74-5 48 2. 42

1635 76 170-0 90 1525 42 54 70
37807 18° 6115 20 2550 } v 89 91
655-0 30 §63:5 15 280-0 ® 112 114
943.0 36 135 136

11255 43 168 168

1199-5 74 195 198

224 226

258 286

208 308

320 KRk

Al g and I are from computer fits except:

* Measured from spectrum:

® Measured from spectrum and too weak for assignment of T
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4. Analysis of results

Asmentioned in §3.a computer least-squares fitting procedure was used 1o investigate
the temperature variation of the Raman spectra. Discussion of this procedure benefits
from a segrcgation of the spectra into low-frequency (0-300 cm™ Y and high-frequency -
(300-1400 cm = ") regions. : : 3 : .

4.1. The high-frequency spectra , _
The peaks in the high-frequency spectra may each be represented by the response function

A STe

G(("') = 3 3.3 » 3
(¢ — ) + e’

where o, represents the resonant frequency. I the damping constant and S the oscillator
strength. Incorporating the appropriate thermal weighting factor, the parameters o,
and T for several E modes and the 655 cm ™! A, mode were obtained. These arc presented
in figures 5 and 6 respectively. '

X .60
. - Lo
135: " ° " 40
m30. ¢, . :
- Ps v ; ) FE
7 AL S —
£ 46 2
5 T
F o - ) '
o R 2
B
. .20
BT T :
B10.. e S e e
8071200 160 200 240~ 280

Temperature (K} . .
Figure 5, Temperatures variation of the resonant frequency g (squares) and damping T
(triungles) of some E symmetry modes of Ni-I. The lines are intended merely as a guide
10 the eye. - : S

- 4.2, The low-frequency spectra

The model response function in this casc proves more problematic. Firstly, a Debye-
like wing feature with response function '

Sw

Glw) = s
m? + 2
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Figure 6, Temperature variation of the resonant frequency g (squares) and damping r
(triangles) of the 6550 cm ™! A} symmetry mode. ‘

" must be added to two functions of the form presented in §4.1. where § is again a strength

parmnelerfm-d‘;-' a width. The resultant function. when fitted to the observed data,
produced the fitted profiles represented by the smooth curvesin figure 7 and the para-
meters for the E and A, spectra presented in figures 8 and 9. :

Sccondly. if coupling is presumed to occur between the low-frequency modes. an
inverse response function having matrix form .

“Ye) o} — o+ il iym
g~ Hw) =

i 0} — o’ +ilho

] '\‘ . . (a}
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Figure 7. The low-frequency specira of Ni-1 with theoretical fits (smeoth lines) in terms
of two oscillutors plus a Debye-like wing () F, symmetry: (h) E symmetry:ich A+ FJa
symmetry.
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160 200
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Figure 8. Temperature variation of the resonant frequency ), (squares) and damping T
uriangles) of the 170-0 cm ™! E symmetry mode. The lines are intended merely as a guide

to the eve.
165 —=
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Figure 9. Temperature variation of the resonant frequency ¢ (squares) and the dampmg
I" (triangles) of the 163-5cm ™! A, symmetry mode.

must be postulated, having a response function given by
. G(@) = Z 5:S;gifw).
ij '

The motivation for such an ansatz comes from the poor agrcement between the
observed and calculated lineshapes in the A, and F, symmetries (figures 7a and ¢). In
fact. coupling did not improve the fitted description of the data and. in some cases,
produced considerably poorer fits.

4.3. ErrorsA

As the channelwidth for all the spectrawas 1 cm ™ ! anestimated errorin mg of £0-5cm ™!
sccms reasonable, in agreement with the uncertainty values calculated by the fitting
routine. Fitted values of I” are accurate to approximately +1cm™!. These errors are
not incorporated in the diagrams for reasons of clarity. '

. Discussion
3.1. Classification of room temperature modes

From table 1 it is evident that, while the correct number of A, symmetry lmnds are

present. there is a dearth of both E and F, peaks. There are seven E peaks clearly visible
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along with. we suspect. a very weak feature around 360cm ™! (see discussion below).
This is a shortfall of two upon the predicted ten E modes. The most serious deficiency
“occurs in the F, symmetry. where only four peaks arc found. the bracketed pair in table |
being a T0~L0 pair. This assertion is confirmed by comparison of the Raman frequencies
at 255-0 cm~ ! and 280-0 cm ™! with the infrared peaks at 258 cm ™! (10) and 286 cm™!?
(Lo). The infrared spectra also indicate that the F,0-300cm~™ ! spectrum does not merely
compromise two peaks, and is far more complex than itappears at first sight (see table 1).
This would account for the peculiar low-frequency line profile in figure 2(a).
~ Some clue as to the whereabouts of ‘missing’ bands can be gained from a comparison
of the BO, molecular vibration frequencies obtained by fitting a generalised force field
model for XY, molecules (Urey and Bradley 1931) to the vibrational frequencies of
Zn,O(BO,)¢ and Cr-Cl (Murray and Lockwood 1976). These frequencies should be
relatively insensitive to change of halogen or metal in the boracite formula. as such a
change does not drastically disturb the B-O framework (Nelmes 1974, Nelmes and
Thornley 1974). Comparison with Cr-Cl and Zn,O(BO,)6 results suggest that the
378cm~! (A,) and 255cm™! (F,) modes can be associated with B-O framework
vibrations. Furthermore, the existence of vibrations at frequencies around 300 em™ L
(E) and 1100 cm™" (F,) is suggested by this comparison. This would lIeinforce the
presence of an E band at about 360 cm™! and support the notion that the structure
around 1100 cm™! alluded to in §3.3 contains first-orcer peaks. The comparable
modes in Cr—Cl are at 375cm™! (A,), 232cm ™! (E) and 1160cm ™!, 252cm™" (F,)
(Murray and Lockwood 1976) and in Cu-Cl at 385cm™! (A)), 239 cm~! (E) and
1167cm~!, 264cm™! (F,) (Lockwood and Syme. 1978). The insensitivity to metal
substitution is clearly demonstrated.

The low-frequency modes in all spectra are more heavily damped than their counter-
parts in Cr-Cland Cu-Cl. particularly in the E symmetry. where the damping is roughly
ten times greater for Ni-1. The lowering of frequencies from Cr-Cl and Cu-Cl.to Ni-1I
produces a low-frequency total cross-section of great complexity, which may contribute
to the shortening of the phonon lifetimes. and consequently higher damping. The fre-
quency lowering also confirms that these vibrations are largely attributable to motions
of the metal and halogen ions. in particular the latter.’

The A, Debye wing is considerably narrower than in Cr-Cl and Cu-Cl. where the
wing was conjectured as being due 1o disorder (Lockwood 1976). X-ray structural studies
have shown that this disorder. if extant. is associated mainly with the Clion. being most

" obvious in Cu—Cl, and corresponds to a displacement of the halogen ions along the
[111] axes (Nelmes and Thornley 1974. Kennedy 1977). The Raman results for Ni-1
suggest that any disorder is much less than in Cl boracites. in accord with structural
results for cubic Cr-Cl. Cu~Cl. and Ni~I (Nelmes and Thornley 1974, 1976a. b, Tnornley

et al 1976, Kennedy 1977). In addition, the Ni-I spectra contain a Debye wing in- ‘

the E and F, symmetries, suggesting that the disorder lack definite symmetry, and is

consequently more homogeneous thdn in Cl boracites, where no such wing was
observed. .

From the fitted spectra in figure 7 it is apparent that the A and F, low-frequency

spectra are not adequately described by the model of §4.2. In the case of F, symmetry
this is undoubtedly due to the complexity of the low-frequency F, lineshape revealed by
. the infrared results (Petzelt and Mayerova 1973). Inspection of the two-mode fit of
figure 7(«) suggests. in fact, the presence of at least four bands. In the A, spectrum, where
the numbers of observed and predicted modes agree. such an explanation is not valid.
As the coupled mode analysis described in §4.2 did not improve.the fits, the additional

R
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structure must be due to the small admixture of F, modes iniroduced by the form of the
Raman tensors.

5.2, Temperature dependence. of the modes

The normal behaviour of the parameters o, and T as temperature is decreased consists
of a steady Tise in @, with a drop in T, as the lattice contracts and anharmonic effccts
reduce. From figure 5 it can be seen that this behaviour is interrupted by an anomalous
decrease in ¢, and increase in I for the high-frequency E modes around 128 K. In figure 6

a similar effect is observed for the 655cm ™! A, feature, although its proximity to the’

611-5cm™! E mode made fitting less exact. This unusual phenomenon suggests that, in
agreement with the x-ray work of Willand Morche (1977). the unitcell dimensionexpands
and contracts again over the interesting temperature region.t The calibration of the
Raman spectra can be verificd by studying the laser frequency. the krypton emission
lines. and the duplication of E-symmetry peaks in the Z(X'X)Y" and Z( Y'X)Y’ spectra.

The low-frequency modés behave even more oddly. Figures 8 and 9 reveal frequency
v, falling with decreasing temperature, with an anomalous riscat 128 K.and thedamping
I decreasing more or less smoothly with decreasing temperature. Again. the parameters

for the A, symmetry mode arc more scattered due to the subtraction proccss, and are .
possibly somewhat unreliable due to the underlying F, component. Firstly. however, -

it can be glecaned from figures 8 and 9 that some disturbance in the lattice occurs at
around 128 K. Secondly. the ~20cm™! (E) and =~ 15em™! (A)) mode softenings are
completely uncharacteristic of boracite behaviour. This can be seen from the Cr-Cland
Cu—Cl spectra where only the A, Debye wing has strong temperature dependence, the
other modes behaving normally. Such a softening is usually przcursive to a displacive
phase transition. Since the low-frequency modes can be attributed largely to motions
of the Ni and I atoms as described in §5.1, a transition to a phase with these atoms
repositioned seems likely at some low temperature, in addition to the known 68K
transition (Murray and Lockwood 1973).

6. Conclusion

The Raman spectrum of Ni-I displays reasonable argecment with group theoretical
predictions. considering the highly absorptive nature of the material. and indicates a

cubic space group from 88 K to 300 K. The anomalies in the frequencies and linewidths of .

the Raman bands must be associated with the irregularities in the magnetic and dielectric
propertics. These anomalies are also consistent with the expansion of the lattice at
around 128 K. The diclectric response is especially related to the F, modes and no useful

# Note that our results do not agree with Will and Morche (1977) with regard to the tempe’a-
ture dependence of thermal motion. They report an overall increuse in thermal motion
from room temperature to 77 K, and quote in support the resulis of von Wartburg (1974)
which have subsequently been shown, conclusively, to be incorrect by Thornley er al (1976).
The latter authors find that all thermal amplitudes decrease from toom temperature to
77 K. in accord with the normal temperature dependence of e, and I (apart from the anomaly
around 128 K) found by us. The x-ray powder-diffraction technique used by Will and
Morche (1977) is likely to yicld unit cell dimensions much more accurately than it yiclds
thermal parameters (R J Nelmes, private communication).
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predictions concerning dielectric variations can be obtained from our weak F, spectra.
Such information should. however. result from an exhaustive infrared study of cubic
Ni-1. T . - o :

Our Raman results have confirmed the puzzling temperature dependent behaviour

of Ni-1. Thedielectricand magnetic susceptibility data suggests a phase transition but we
find no evidence of this. All modes shift anomalously as temperature is lowered through
128 K, but the crystal subsequently exhibits ‘normal’ temperature dependence, and

remains firmly cubic throughout. This is very strange phenomenon, of which thereis as:

yet no explanation. The interesting dynamic changes occur in the low-frequency boracite

spectra. This region for Ni-1 contains many modes, and the complex interatomic inter- .

actions which are required to explain the observed temperature dependence cannot be
determined from the Raman spectra alone. There is a need for further lattice dynamical
studies using inelastic neutron scattering and infrared spectroscopy together with more
detailed structural studies. — e

Work isin-progress to investigate further both the unusual A, and E mode softening
and the dynamics of the ferroclectric transition. -

Acknlwledgments

We arc grateful to DrH Schmid for invaluable discussions on the physical properties of

boracites and to Dr R J Nelmes for discussions on structural aspects of Ni-1. This work
was supported by the SRC (AFM), the Battelle Research Centre, Geneva, and the US
Army Research and Development Group (Europe) (DJL). : :

References

Arthur J Wand Lockwood D J 1974 J. Ramain Specirosc. 2 53-69 -
Arthur J W and Murray A F 1978 10 be published
Ascher E. Rieder H. Schmid H and Stdssel H 1966 J. Appl. Phys. 37 1404-5
. Dormann E 1970 J. Phys. Chem. Salids 31 199-214
Kennedy N S J 1977 PhD thesis University of Edinburgh
Lockwood D ¥ 1976 Ferroclectrics 12 3534 -
Lockwood D J. Rivera 3-P and Schmid H 1978 10 be published
Lockwood D J and Syme R W G 1978 Ferrocleciries 1o be published
Loudon R 1964 A4dv. Phys. 13 42382 (crratum 14 621) )
Murray A F and Lockwood D ) 1976 J. Phys. C: Solid Si. Phys. 9 3691-700
1978 Ferroclectries 10 be published
Nelmes R J 1974 J. Phys. C: Solid St. Phys. 7 3840-54
Nelmes R § and Thornley F R T 1974 J. Phyvs. C: Solid St. Plys. 7 3855-74
o 1976a J. Phys. C: Solid St. Phys. 9 655-80 '
——— 1976b Ferroclectrics 13 355-6
petzelt J and Nayerovda 11973 C=cch. J: Phys. B231277-80
Schmid H 1965 J. Phys. Chem. Solids 26 973-88
1969 Growth of Crystals Vol 7 (New York: Consultants Bureau) pp 25-52
Thornley F R T. Kenncdy NS J and Nelmes R 31976 J. Phys. C: Solid S1. Phys. 9 681-92
Urey H C and Bradley C A 1931 Phys. Rer. 38 1969-78
von Wartburg W 1974 Phys. Stat. Solidi (a) 21 557-68
Will G and Morche H 1977 J.Phys. C: Solid S1. Phys. 10 1389-94



¢

J. Phys. C: Solid State Phys., Vol. 11, 1978. Printed in Great Britain. © 1978

Phonon coupling in Zn,O(BO ), studied by Raman spectroscopy

A F Murray and D J Lockwood
Department of Physics, University of Edinburgh, Edinburgh EH9 3JZ, Scotland

Received 9 August 1977

Abstract. The Raman spectrum of cubic zinc metaborate contains an interference feature at
1225cm™! in both the A, and E symmetries. The lineshape is analysed using models
involvingeither the interaction between a one-phonon state and a continuum of multi-phonon
states, or anharmonic coupling between one-phonon states. Both models describe the results
adequately, but the former is preferred on theoretical grounds.

1. Introduction

Evidence of strong coupling between phonon excitations in solids has been reported in
numerous materials such as BaTiO, (Rousseau and Porto 1968), quartz (Scott 1968)
and AIPO, (Scott 1970). Coupling is most commonly observed when a soft mode asso-
ciated w1th a phase transition overlaps in frequency another phonon of the same

symmetry as a result of a change in pressure or temperature. Resonant interference has
only rarely been observed (e.g. SiO, and AIPO,). We have measured the room tempera-
ture Raman spectrum of cubic zinc metaborate and have recorded an interference feature
of this type at 1225 cm™*. We describe in this paper the analysis of the resultant Raman
cross section in terms of two distinct models.

The first model, outlined in section two, was developed by Fano (1961) to describe
the phase shifts in atomic state wavefunctions, and the corresponding excitation spectra,
due to the configuration interaction between a discrete state and a continuum of states
(or a number of continua). This interaction produces asymmetric peaks in the continuous
absorption spectra of atomic or molecular systems. We have used this formalism to des-
cribe the Raman spectral lineshape due to interaction between a well defined phonon
and a broad second or higher-order background

The second model involves coupling, via anharmonic termsin the crystal Hamiltonian,
of two phonons. This predicts a lineshape similar to that observed in Zn 1+0(BO,)¢ when
the lifetime of one of the phonons is much greater than that of the other (see for instance
Cowley 1966). The details of this model are outlined in section three.

We compare the results of two different applications of the Fano model, involving
different assumptions, and the application of the coupled oscillator model, in §4.

2. The Fano model

Strictly, this model describes the lineshape due to a discrete state which decays only into

387
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the continuum. This means that the configuration interaction is wholly responsible for the
finite lifetime of the state.

If we represent the discrete state by |p), the continuum states by {|/.>}, and the
perturbed wavefunction of eigenvalue E by |¢.>, we wish to study o,(E), the scattering
cross section for transitions from initial state | i) to final state | >, which for a transition
operator component a, , is proportional to [{¢ e, |i>|*>. With the following definitions

in terms of total Hamiltonian H,

H|p)> = E,|p), 2.1)
<¢E|HIP> = Vg 2.2)
g |H|Ypy = E'S(E — E"), 2.3)

it can be shown that

N2 — N |2 <I3|axy|i> E — E \? E — E)\*| !
|<¢E|a"y|l>|2 - |<l‘[/5'axyll>| (nV;Q/’Eldxy'i) * nl%lzo) [1 M (”IVEIZ) :| ’ (274)

where

15> = |p> + PJ‘VE"‘//E‘) dE'/(E —E"), (2.5)
E,=E, + PJ| Ve |*d ENE — E) (2.6)
and P denotes ‘principal part’.
Writing
<p|a, |
= . 2.7
T RVE oy [ 27
and

E—-E, o-o,
m[ Vel 2T

(2.8)

the cross section (g, ) for scattering to the perturbed state of energy E in terms of the cross
section (o,) for scattering to the unperturbed state |, ) is given by

0 — w, \? w—wy\ |t
0,(w) = oo(w) (q + T") [1 + <~?—9) ] . 2.9)

Some of the family of curves defined by this function are plotted in figure 1. Fano (1961)
has shown that when more than one continuum of states is present, the scattering cross
section may be written as

o(w) = 0,(w) + 0,(w), _ - (2.10)

where ¢,(w) corresponds to the underlying noninteracting continuum, and oy(w) is
redefined as one linear combination of the continua.

3. Coupled modes

The application of one phonon Green function techniques to the analysis of coupling
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between optical phonons is now commonplace (e.g. Cowley 1966, Scott 1971). Only the
briefest survey need be given here to define the notation used.

2 . w- 2 -1
¥ (—“ﬁr/z)l

w-wy
72

{q+

Frequency w{arbitrary units)

Figure 1. Shape of function (2-9) for different values of q.

The cross section for light scattering from optical phonons may be written:

N
o(w) = (ilw) + 1) Y §8;Im(G (), (3.1)
ij=1

where 7i(w) + 1 is the Bose population factor, G,{(w) the one phonon Green function
matrix, and §;, S;may be loosely termed the scattering strengths of the uncoupled modes.
They mclude the polarisability tensor elements, the input field strength, w?, and other
constant factors. It can be shown that the inverse of G(w) in the case of two modes (aand
b), coupled by anharmonic terms in the crystal Hamiltonian, may be written:

0! — o? +iel, A+iyw
G () = _ ) (32)
A + iyo 0l — 0? + ol

By choice of a suitable unitary transformation, either the real or imaginary part of
G~ (w) may be diagonalised, corresponding to purely imaginary or real coupling
respectively. If the other oscillator parameters are redefined suitably, the cross section is
unaffected by this transformation. The distinction between real and imaginary coupling
only becomes apparent when a soft mode is involved, so we may arbitrarily choose
imaginary coupling in this case. Inversion of G™!(w) leads to a complicated function in
which the parameters of oscillators a and b may not be decoupled, and there is an anti-
resonance dip between w, and w, when I, > I. This function corresponds to coupling
between one-phonon states, and therefore differs in concept from the Fano model.

4. Comparison with experiment

Three functions were used to perform a computerised least squares fit to the observed
room temperature A, and E spectra of zinc metaborate (Murray and Lockwood 1976).
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These are as follows.

4.1. Coupled modes

Alineshape of the form (3.1) with N = 3and G;3! = G, = Ocorrespondsto two coupled
modes and one uncoupled mode. A flat continuous background must be included to
account for noninteracting continua and the photomultiplier dark current. If w_, T, are
the resonant frequency and linewidth of the uncoupled mode, table 1 summarises the
results of this analysis.

Table 1. Coupled oscillator parameters

w, (cm™1) I,(cm™") w, (cm™?) T,(cm™") y o, (cm™?) T (cm™1)
A 124-4 4-3 1431 736 12:4 94-9 11-8
E 123-8 1-8 1638 103-2 72 90-2 12:2

The resulting functions, along with the experimental results, are presented in figure 2.
The fine detail of this description in the vicinity of the resonance feature is represented by
the broken line in the inset to figure 2.

4

Raman intensity

s A % i 10 10

Wavenumber (cm-1)

Figure 2. Experimental and theoretical forms for the room temperature A, and E spectra of
Zn,O(BO,); in the frequency region 50 cm™'-160 cm™".

4.2. Fano interference

If Fano interference between a discrete state and a featureless continuum of states is
assumed,adiagonal2 x 2 Green function must be included to describe the noninteracting
modes, and an additive constant, again to account for the noninteracting continua and
the dark current. This model involves the same number of variable parameters as 4.1. If
w,, I',, o, I', are the noninteracting oscillator parameters, the fitted results are given by
table 2.

The parameters describing the noninteracting modes are in good agreement with those
oftable 1,although they now describe uncoupled excitations. The fitted spectrum obtained
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is indistinguishable from that of §4.1 to the scale of the lérge graph in figure 2, but the
detail is shown in the inset as a full curve.

Table 2. Fano model parameters.

q w, (cm™?) I'(cm™?) w, (cm™?) Iy (em™Y) o, (cm™") I.(cm™?)
A —1-59 123-5 3-06 141-5 634 95-0 12:0
E —-2:26 1239 1-49 1632 101-6 90-2 12:3

4.3. Modified Fano interference

Following the reasoning of Rousseau and Porto (1968), an analysis was attempted
involving Fano interference with g () in (2.10) represented by an oscillator function and
o,(w) by a constant, with a single uncoupled oscillator to describe the 95 cm™! mode.
This led to valuesof g = —0-5,w, = 1250cm ™' and I' = 12 cm ™" for the A, spectrum,
corresponding to figure 3. Convergence proved impossible in the case of E symmetry.

Raman intensity

70 90 | to 10 . 10
Wavenumber (cm)

80

Figure 3. Experimental and theoretical forms for the A, spectrum of Zn,O(BO,), in the
frequency region 50 cm~ '-160 cm ~', using the model described in §4.3.

5. Conclusion

Firstly, function 4.3 may be dismissed as an inadequate description of this phenomenon
in the case of zinc metaborate. The function involves fewer variable parameters. The
results obtained from functions 4.1 and 4.2 are almost indistinguishable in figure 2. The
goodness of fit test indicates that the Fano description is as good as the coupled mode
description in the E symmetry, and less than one per cent better in the A, case.This is
hardly significant. Physically ,the Fano model would appear to be the more suitable, as
the coupled oscillator analysis involves assuming that the broad background peak is
first order. This would contradict the group theoretical prediction (Murray and Lock-
wood 1976). For this reason, we believe the Fano description to be more significant,
although the experiment is not accurate enough to discriminate between the two theories.
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A study of the temperature dependence of this feature revealed little change in the spectral
lineshape as far as 130 K, with no evidence of decoupling.
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5 B 1707 ¥ PHONON COUPLING IN ZINC METABORATE

A.F, MURRAY, D.J, LOCKWOOD
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Evidence of coupling between phonon states has been reported
in the Raman spectra of BaTiO31 and quartzz. We have measured
the room temperature Raman spectrum of Zn4O(B02)6 and have
recorded a feature similar to that found at 175<:m-l in BaTiO3.
.Group theory predicts that the Raman spectrum of Zn40(1302)6
should contain 3Al+SE+1OP2‘modes. These have been identified,
along with an additional interference feature present in the
Al and E.spectra.3 }

The quantum mechanical formalism surrounding resonant inter-
ference (Auger processes)4 can be summarised as follows. If a
discrete one-phonon state (¢) is superimposed on a continuum
of states {wE.} they may interact via anharmonic terms in the
potential function to cause a perturbation of ¢. The (perturb-
ed) wavefunction of the coupled state (WE) consists of a
mixture of the discrete state wavefunction and the continuum
wavefunctions. 1If the transition operator between initial
state wo and the state WE is dij' the Raman cross-section
depends on the matrix element <WE|aij|wo>.- Fano? has shown .
that the ratio of the probability of such a transition to the
probability of transition to the unperturbed continuum is

|<WE|uij|¢o>'|z : (o + ¢)? E-E. h(v-v)

= where € = ” =
|<wE]aij|¢°>[z: 1+ ez" 'n[VE[2 T

The widfh'parameter VE dependé on coupling strength, and the
line profile parameter g on the transition probability to a
modified ¢ state. As the frequency v of emitted photons
studied is varied through Ve s the scattering cross-section 1is
¢f the form® '

o ,01 -

o =0 +o0, dare)?
: 1 + €2

A computerised curve fitting to this function pioduced«the
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smooth lines in the diagram, along with the tabulated optimal
vaiues'Gf vr , g and T. In the E spectrum, an underdamped
simple harmonic oscillator was fitted to the 89.4 crn—1 mode,
and in the Al spectrum, to the 94.7 cm'-l mode. The fitted Al
and E profiles also incorporate a heavily damped harmonic
oscillator function to describe the multi-phoncn background
empirically. It can be inferred from the values of T that the
Fano-type interference in the Al spectrum-is due to a stronger
coupling to the background than in the E symmetry. As for
BaTi63, where again there is interference between one- and two-
phonon states, the Fano model is a good fit to the data. The
interference feature does, however, have mixed symmetry, and
is thought to be due to some iodine species trapped as an
impurity in the lattice, or to resonant Raman scattering £from

a manganese impurity content.3

1. D. Rousseau & S. Porto, Phys. Rev. Letters 20, 1354 (1968)
2.J.F. Scott, Phys. Rev, Letters 21, 907 (1968)
“3.A.F. Murray & D.J. Lockwood, J. Phys. C. to be published

4.U. Fano, Phys. Rev. 124, 1866 (1961)
o 3
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Abstract. The first-order Raman spectrum of cubic zinc metaborate has been measured at
room temperature, and the number of g = 0 phonon frequencies found exceeds the group
theoretical prediction by one. The additional band appears as an interference feature at
122:5cm™! and is thought to be attributable to some impurity introduced during crystal
growth. The results are in reasonable agreement with an earlier qualitative investigation of
the infrared transmission spectrum of this material, and the reported fluorescent properties
are verified. A comparison between the Raman results for zinc metaborate and those for
Cr3B,0,,Cl shows some correlations. A simple force-constant calculation identified four
bands in each compound that can be associated with vibrations of BO, tetrahedra contained
within the boron-oxygen framework.

1. Introduction
2

The crystal Zn,O(BO,), is unusual in that it is one of the few anhydrous metaborates
with all the boron atoms in fourfold coordination. In general, stability demands threefold
coordination in anhydrous metaborates at atmospheric pressure. Crystals of basic zinc
metaborate are cubic, having a bimolecular unit cell of edge length 748 A. Boron and
oxygen atoms are bound together to form an infinitely extended three-dimensional
framework based on (B4O,,)°~ rings (Smith et al 1964). Each boron atom is at the centre
of four tetrahedrally distributed oxygen atoms, with a boron—oxygen distance of 1:52 A
and a boron-boron distance of 2-64A. The zinc atoms lie inside irregular tetrahedra whose
corners are occupied by three oxygen atoms from metaborate ions and one ‘free’ oxygen
atom.

All the crystals thought to contain boron atoms in, exclusively fourfold coordin'a‘tion
are of the form (MeO),.(B,0,),, where Me is a divalent metal. These are CuO.B,0,
(Martinez-Ripoll et al 1971), SrO.(B,0;), and PbO . (B,0,), (Perloff and Block 1966)
and (ZnO), . (B,0,); (Smith et al 1964). There are, however, several materials having all
boron atoms in fourfold coordination in a high-pressure phase. These are SrB,0, (I1V)
(Dernier 1969). B,O, (II) (Prewitt and Shannon 1968), HBO, (III) (Zachariasen 1963).
LiBO, (IIT) (Marezio and Remeika 1966) and CaB,0, (IV) (Marezio et al 1969). In
addition, there are several compounds with mixed threefold and fourfold coordination.
some of which are listed by Marezio et al (1969). The boracites (Nelmes 1974) are another
example of this type of compound. :

Apart from a qualitative examination of the infrared spectrum (Krogh-Moe 1962),
there is no detailed investigation of the lattice vibrations of zinc metaborate. Here we
report the Raman spectrum of this material with a view to characterizing the ¢ = 0

- ' 3691
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vibrations of a crystal lattice involving a boron-oxygen framework with fourfold co-
ordination. While the results are of interest in their own right, they are also of value for
comparison with some current work on the lattice vibrations of boracites. The dynamics
of the ferroelectric phase transition exhibited by boracites are being investigated using
Raman spectroscopy, and as part of this study, the lattice vibrations of the cubic phase of
Cr;B,0,,Cl have been measured (Lockwood 1974, 1976). The elements common to the
structures of zinc metaborate and boracite may produce common features in the Raman
spectrum, which would facilitate a definite assignment.

2. Experiments and results

2.1. Group theory

A group theoretical analysis of the normal modes of vibration of the zinc metaborate
structure at ¢ = O predicts the following decomposition according to the irreducible
representation of point group 43m:

I =3A, + 2A, + 5E + 7F, + 11F,.

The polarizability tensors for crystals of cubic symmetry are of the form (Loudon 1964)

AlTa — — E[b — — ] J3b — —

F,

— a

| — d

a

d

and

— -3 —

The Raman activities are indicated by the appropriate non-zera components of the
polarizability tensor. Excluding acoustic modes, therefore, the Raman spectrum should
comprise 3A, + SE + 10F, normal modes of vibration. Only modes of F, symmetry are
infrared active.

The problem of distinguishing modes of A; symmetry from those of E symmetry is
readily solved (Lockwood 1974). Briefly, the solution involves aligning the incident light
along an axis, say x’, at 45° to the cubic x and y axes, and observing the light scattered in .
direction y’, orthogonal to x". The E spectrum is obtained by measuring the polarizability
tensor element a,,.. A point for point subtraction of the spectrum corresponding to
tensor element a,,,. from that of o, leaves a spectrum of pure A; symmetry modes, pro-
vided an appropriate scaling factor is used.

2.2. Experimental details

The single crystal of Zn,O(BO,)s was grown by the vapour transport method (Schmid
1965) as a byproduct in the attempted growth of Zn-I-boracite, the reaction mechanism
being

4Znl,(g) + 4H,0(g) + 3B,04(g or 1) = Zn,O(BO,)4(s) + 8HI(g).

The formation of zinc metaborate instead of the boracite is a result of an insufficient
quantity of ZnlI, vapour (Schmid 1965). The crystal formed was a rhombic dodecahedron
of approximate size 2 mm. The natural growth faces of the crystal were {110}, and con-
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sequently faces perpendicular to the (100) directions were cut and polished (using 1 um
diamond powder) for use in the conventional Raman scattering measurements. Inspec-
tion of the crystal under a polarizing microscope revealed considerable growth strains,
which lead to inhomogeneous optical properties. As a result, spectra of any polarization
may contain additional features attributable to admixtures from spectra of other polari-
zations. A minor degree of mixing of spectra always occurs due to the wide collection
angle of the lens used to gather the scattered light, but in this experiment the depolariza-
tion problem was more troublesome because of the strain birefringence. Adopting the
approach that any spectrum is a combination of the true spectrum and small proportions
of other spectra, the subtraction process described above may be used to remove un-
wanted modes. Provided a clear spectral feature can be used to determine a scale factor, a
point for point subtraction should reveal the pure spectrum. It is, however, impossible to
use this method when the spurious modes are attributable to the F, spectrum, due to
TO-LO intensity effects.

Zinc metaborate is known to exhibit fluorescence (Terol and Otero 1961), and a broad
emission band peaked at 537-2 nm was observed in survey spectra excited by the 514-5nm
radiation from an argon laser. Therefore, in order that the Raman spectrum should not
be confused with the broad fluorescent background, 350 mW of 476:5 nm argon laser
light was used to excite all the spectra presented here. The Raman spectrum was recorded
at room temperature from both 90° and 180° scattering geometries using a Coderg ~
T800 triple monochromator with a spectral slit width of 1-0 and 1-5 cm ™! for the 0-500
cm ™" and 500-1500 cm ™! frequency regions respectively. The spectrometer is connected
via an interface to-a PDP11 computer (Arthur and Lockwood 1974) which enables
spectra to be stored in digital form. The data may be subsequently transferred to a time-
sharing multi-access computer in order that the subtraction routine, along with other
data handling routines (Arthur 1974, 1976) may be performed in an interactive
manner. . .

In the following description of results, the labels X, Y refer to the [100] and [010]
directions and X', Y' to the [110] and [110] directions.

2.3. The A, spectrum

This spectrum was isolated, as described earlier, by subtracting the X'(Y'X")Y’ E sym-
metry-spectrum from the X'(ZZ)Y’ spectrum which contains features of both A, and E
symmetry. These latter spectra are shown in figures 1 and 2. A first approximation to the
scaling factor was found by comparing the relative intensities of the distinct E peak at
414-5 cm ™! in both spectra, and then adjusting the factor for complete cancellation. This
led to the isolated A, spectrum of figure 3. The theoretical intensity scaling factors of
4b* and 3b? for the ZZ and Y'X’ spectra, respectively, indicate that cancellation should
be achieved when the Y’ X’ spectrum is multiplied by 1-33 and subtracted from the ZZ
spectrum (Lockwood 1974). In fact, due to crystal and experimental imperfections, the
scaling factor was found to be 1-03 + 0-07. In figure 3, the disappearance of a mode of E
symmetry is marked by an increase in the level of noise, for obvious reasons, and in
places by a sharp differential feature due to a slight mismatch in the wavenumber cali-
bration between ZZ and Y'X' spectra. There are, apart from some broad second-order
structure, four sharp features. One of these takes the form of a resonance interference at
122:5cm ™! between a sharp peak and a broader second-order background. The peaks at
249-3cm™ ! and 4219 cm™* are clearly of A, symmetry, but the nature of the feature at
947 cm ™ ! is partially disguised by the proximity of E and F, features. The different nor-
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Figurel. The X'(ZZ)Y’ spectrum of Zn,O(BO,); in the regions 0-500 cm™! and 500-1500

cm™ L

mal-mode frequencies in this closely spaced trio are revealed by the use of the subtraction
process and a computerized peak-finding routine (Arthur 1976), whereas visualinspection
of the spectra suggests only one mode to be present. Table 1 shows all the measured fre-
quencies, assignments, and linewidths where appropriate.

24. The E spectrum

From the X’'(Y’'X')Y’ spectrum of figure 2, assignments of E symmetry modes are fairly
straightforward, apart from the interference feature mentioned above. F, symmetry
modes appearing in this spectrum cannot be subtracted out due to the To-LO intensity
variations. The frequencies are tabulated in table 1.

2.5. The F, spectrum

Identification of modes of F, symmetry is complicated by splitting between the transverse
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Figure 2. The X'(Y'X")Y' spectrum of Zn,O(BO,), in the regions 0-500 cm~ ! and 500-1500
cm™!,

and longitudinal components of some F, modes. The X(YX)Y spectrum contains F,
modes of transverse character only, and this spectrum is shown in figure 4. Other 90°
scattering off-diagonal spectra such as X(YZ)Y (see figure 5) contain both Tc and Lo
features. In order to clarify the assignment of F5° modes, the X(YZ)X backscattering
spectrum was measured; this spectrum contains only longitudinal modes. The signal in
this spectrum was weak, and the argon laser plasma lines strong, but the assignments in
table 1, taken from the X(YZ)Y spectrum of figure 5, were confirmed. Once again the
subtraction routine was used, in this case to remove the admixture of modes of A,and E
symmetry to give figure 5. This involved subtraction from the YZ spectrum of the ZZ and
Y'X" spectra with scale factors 0-045 and 0-2 respectively. This procedure reveals other-
wise partially hidden spectral features of definite F, symmetry at 93-1 cm ™! and 181-6
cm™'. The peak-finding computer routine again proved invaluable in detecting small
wavenumber differences and very weak modes, such as the peak at 284-2cm L. :
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Figure 3. The A, spectrum of Zn,O(BO,)s in the regions 0-500 cm~! and 500-1500 cm ™.

1500

1

Table 1. Peak frequencies w (cm™'), linewidths y (cm~') and assignments for the Raman-
active modes of Zn,O(BO,),.

A, E F,
w y (] b4 [ v
94-7 115 + 1-5° 89-4 12 + 10 931 15 £ 2°
122:5 122:5
2493 3 + 06° 183-0 4 4 05° 181-6 4 + 05
4219 3406 4145 33 +03° 1967 54+ 05°
7272 12:5 + 1:5° 2224 2 +05°
8359 9+ 1:5° {2%0 65 + 2°
2842 65 + 2°
{ 4711 14 + 1-5°
4882 95 + 1-5°
653 20 + 6°
906-2 14 4 2°
{1005 _
1040 —c
{10744 19 4+ 1-5°
1189-0 235 + 1-5°

@ Spectral slit width 1-0cm ™",
b Spectral slit width 1-5¢cm™!.

1
1

© Not sufficiently resolved for meaningful measurement.
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Figure 4. The X(YX)Y spectrum of Zn,O(BO,)s in the regions 0~500 cm ™' and 500-1500
cm™!,

3. Discussion '

From the assignments in table 1 it is clear that the A, and E spectra are not totally in
agreement with group theoretical predictions. While the F, spectrum contains ten distinct
peaks as predicted by theory. the A, spectrum contains four peaks and the E spectrum
contains six, both of which exceed the predicted number of modes by one. There are two
possible explanations of this discrepancy. It is conceivable that the broad peak appear-
ing in both the-E and A, spectra (figures 2 and 3) around 90-94 cm ~! is spurious. This
feature has been clearly resolved into three peaks of E,F, and A, symmetry at89-4cm™!,
93-1cm™! and 94-7cm™! respectively. This near- degeneracy is quite remarkable, but
these distinct frequencies, together with the intensities of the individual bands (ﬁgures 2,
3,4 and 5) suggest that this is an intrinsic property. Therefore, it is anticipated that the
interference feature at 122:5cm ™" is the spurious mode. The intensity of this mode is
comparable, and has the same frequency, in both the A, and E spectra. .

The F, spectrum of figures 4 and 5 contains ten modes, allowing for splitting between
transverse and longitudinal components, and should show some agreement with the
infrared spectrum. The only published infrared investigation of the laitice vibrations of
zinc metaborate (Krogh-Moe 1962) is very qualitative and no frequency assignments are
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Figure 5. The X(YZ)Y spectrum of Zn,O(BO,), in the regions 0-500cm ™! and 5001500
cm™?

tabulated. This makes detailed comparison difficult, but measurements on the published
spectrum from 670 to 5000 cm ™! do reveal some correlations. There are strong absorp-
tion peaks at 1040 + 6cm ™' and 1080 + 6 cm ™' and a broader feature stretching from
915cm™"! to 945 cm ™!, while there are shoulder features at 990cm ™! and 1140 cm ™!
~ which could correspond to longitudinal components. It seems reasonable to assume that
the two sharper features correspond to the tabulated Raman frequencies of 1040 cm ™!
- and 1074-4 cm ™~ ! and the broader feature to the 906:2 cm ~ ! mode, with longitudinal com-
ponents where appropriate. There is, however, a strong infrared absorption at 720 cm ™ !
which is completely absent in the Raman spectrum. This could arise from second-order
absorption, or may indicate the presence of an impurity in the sample used for the
infrared measurements due to the different method of preparation (crystallization from
the melt of fused zinc oxide and boric acid).

It is interesting and informative to compare the observed fluorescence band at 537 nm
with the luminescence data of Terol and Otero (1961). Terol and Otero observed that pure
cubic zinc borate is luminescent under 253-7 nm excitation with the emission comprising
a narrow band peaked at 435 nm with a weaker secondary band peaked at 535 nm. The
luminescent response to 365 nm excitation was very weak. The luminescence is ascribed
to trapped electrons (or positive holes) due to absences of ‘free’ oxygen (or zinc) atoms in
the crystal structure : oxygen vacancies in the BO, tetrahedra are not likely because of the
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high strength of the B-O framework. Activation with a small amount of Mn produces a
strong green luminescence, peaked at 540 nm, under ultraviolet excitation: the Mn is
divalent and is assumed to substitute for Zn. The fluorescence observed in the Raman
experiments is presumed to be excited by the near-ultraviolet light characteristically
produced in the argon laser plasma discharge. As noted above, low-energy excitation
produces only weak luminescence in pure zinc borate. Therefore, even though there is
good agreement between the peak position at 537 nm found here and the sideband at
535 nm reported by Terol and Otero, it seems unlikely that the emission is from the pure
crystal, particularly as we found no evidence of the contiguous band at 435 nm. A more
likely explanation, confirmed by H Schmid (1976, private communication), is the pre-
sence of some Mn in the crystal carried over as an impurity from the starting materials
(see §2-2); the Mn?* luminescence is strong and peaks at 540 nm, which agrees well with
our observations.

Terol and Otero (1961) note that the multiple closed chains of linked (BO,)¢ groups
form a basket-like framework containing many cavities that are large enough to accom-
modate positive and negative ions. Some of these cavities are, of course, occupied by the
zinc and ‘free’ oxygen atoms that make up the chemical formula. However, there is the
possibility of other species occupying these cavities and, in particular, the growth
mechanism (§2-2) suggests that HI or some other iodine species may be trapped in these
sites. The presence of iodine during crystal growth could also result in I~ substituting for
cavity oxygen. The spurious interference band at 122:5cm™! is, therefore, tentatively
assigned to a local mode vibration of some iodine species trapped within the lattice. (The
Mn ion concentration would be too small to observe an impurity mode from this ion in
the absence of resonant Raman scattering.) The variation of the interference band profile
with temperature and excitation frequency is being studied in an attempt to divine its
origin and to obtain more information on the coupling mechanism to the phonon bath.

Any explanation of the origin of the interference feature must resolve the puzzling
fact that the mode has A and E symmetry.

The Raman results obtained for zinc metaborate may be compared with the g = 0
frequencies of chromium chlorine boracite (Lockwood 1974, 1976) with a view to
determining common features arising from vibrations of the B-O framework. There are a
large number of normal modes in both crystals, and some simplifications are needed
to facilitate the comparison. We assume that the basic BO, molecular units within each
crystal are independent. The vibrations of this tetrahedral molecule transform as A+
E + 2F,, and these are considered to be internal modes in the cubic crystal. Unfortuna-
tely, the vibrational frequencies of the free BO3~ ion are unknown, and therefore no
ready comparison and assignment can be made. An indirect approach was adopted.
Using the known values for the vibrational frequencies of the tetrahedral ions SiO%-,
PO; ", SO}~ and ClO; as a guide, possible A,, E and F, frequencies for borate were
selected from the results for zinc metaborate and chromium chlorine boracite. Appro-
priate combinations of these frequencies were then used to obtain force constants for two
different models representing the forces in tetrahedral molecules. One model-assumed
central forces only, and the other was the more sophisticated generalized force field model
of the Urey-Bradley (1931) type. The force constants were calculated on a computer from
a simultaneous least-squares fit to the four equations connecting frequencies and force
constants. Different combinations from the previously selected A,, E and F, frequencies
were tried until the best fit was obtained. The best and most sensible fits were obtained from
the same data sets for both models. These data sets are shown in table 2. The frequencies
in each column are remarkably similar. Furthermore, the relative intensities show close
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Table, 2. Data sets for the two models (frequencies in.cm™*).

Alyvy) E(vy) Fy(vs) Fa(ve)
Zn,O(BO,), 421 183 1075 278
Cr;B,0,,Cl 375 232 1160 252

agreement : the v,, v, and v, bands are strong, while the v, band is weak in both cases. The
force constants obtained are somewhat different from those calculated for a free molecule
like SiO2 ", as can be expected. In particular, the v, band in the crystal is undoubtedly
much lower in frequency than one would anticipate for the free molecule. Nevertheless,
it appears that frequencies at about A; = 400cm ™!, E = 200 cm~ !, F, = 1100cm ™!
and F, = 260 cm ™! are characteristic of a B-O framework comprising or containing
BO, tetrahedra.

Aclmowledgmenis

We wish to thank H Schmid for considerable advice and for providing the crystal growing
facilities,.and H Tippmann for technical assistance in the growth of the zinc metaborate
crystal. The work was supported by the Science Research Council and the Battelle Re-
search Centre, Geneva. One of us (AFM) acknowledges the support of an SRC student-
ship.

References

Arthur J W 1974 PhD thesis University of Edinburgh

1976 J. Raman Spectrosc. to be published

Arthur J W and Lockwood D J 1974 J. Raman Spectrosc. 2 53-69

Dernier P D 1969 Acta Crystallogr. B 25 1001-3

Krogh-Moe J 1962 Z. Kristallogr. 117 166-70

' Lockwood D J 1974 J. Raman Spectrosc. 2 555-62

—— 1976 to be published

Loudon R 1964 Adv. Phys. 13 423-82 (erratum 14 621)

Marezio M and Remeika J P 1966 J. Chem. Phys. 44 3348-53

Marezio M, Remeika J P and Dernier P D 1969 Acta Crystallogr. B 25 965-70
Martinez-Ripoll M, Martinez-Carrera S and Garcia-Blanco S 1971 Acta Crystallogr. B 27 677-81
Nelmes R J 1974 J. Phys. C: Solid St. Phys. T 3840-54

Perloff A and Block S 1966 Acta Crystallogr. 20 274-9

Prewitt C T and Shannon R D 1968 Acta Crystallogr. B 24 869-74

Schmid H 1965 J. Phys. Chem. Solids 26 973-88

Smith P, Garcia-Blanco S and Rivoir L 1964 Z. Kriszallogr. 119 375-83

Terol S and Otero M J 1961 Z. Naturf. 16 920-7

Urey H C and Bradley C A 1931 Phys. Rev. 38 1969-78

Zachariasen W H 1963 Acta Crystallogr. 16 385-9




PROCEEDINGS
_ OF THE
INTERNATIONAL CONFERENCE

on

. LATTICE DYNAMICS

(Paris, September 5-9, 1977)

~ edited by

. M.BALKANSKI

Flammarion Sciencés
20, rue de Vaugirard, Paris 6°



EFFECT OF ELECTRON-PHONON INTERACTION ON FERROELECTRIC TRANSITION
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to There is a possibility that the lattice
vacancies accompaning the free carriers will
affect the lattice instabilityl2. However,

the effect of magnetic field on the lattice

instability will give a definitive evidence

for the importance of the electronic excita-
tion.

be much lager than the value for SnTe use
explain the carrier dependence of soft phon
frequency, which was 5.6 eV. However, if we
take into account that the Fermi energy for
SnTe sgecimens with carrier concentrations of
A 4x10%%m—3 is about 0.6 eV, the reducing
factor (1+2]E:/Eg)‘1 becomes 0.2 (Eg=0.3 meV).
If we allow of the shift of the lowest Landau
level, taking account of the effect of spin=
splitting, these parameters would change.
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RAMAN SPECTRAL STUDY OF CUBIC NICKEL-IODINE BORACITE

A.F. Murray and D.J. Lockwood

Physics Department, University of Edinburgh,
Edinburgh, EH9 3JZ, Scotland.

The Raman spectrum of cubic nickel-iodine boracite is reported for

temperatures between 88 and 295 K.

Anomalies in the temperature

dependance of E and A; symmetry modes at 128 K are interpreted as
being related to anomalies in the structural, magnetic, and
electrical properties of this material. A 20 em~1 softening of a

broad E symmetry mode is also noted.

The 88 to 295 K results for

this system are all characteristic of a material with a cubic space

group.

Nickel iodine boracite, Ni3B5073I (Ni - I),
has a first order transition from a high tempera-
ture paraelectric cubic phase to an orthorhombic
improper ferroelectric phase at T. = 64 K, at
which temperature Ni - I also becomes weakly
ferromagnetic. Both the dielectric constant and
magnetic susceptibility exhibit a broad maximum
at around 125 K 1, while the lattice_constant
increases anomalously by about O.1l%. Apart from
a tentative suggestion that this behaviour may
be due to short-range magnetic ordering associated
with localised structural ordering®, the micro-
scopic origin of this phenomenon is not understood.

We have studied the Raman spectrum of Ni - I
using the same single [100] growth sector Bll
enriched sample examined in reference 3. With
400 mW of 647.1 nm krypton laser light aligned

along the [ 001} crystal axis the Raman scattering
along the [ 110] axis was analysed in all polarisa-
tions. The sample temperature was varied between
88 K and 295 K by use of a nitrogen vapour flow
cryostat, and the scattered light dispersed by a
SpeX 1400 double monochromator - (295 K) and a Coderg
T800 triple monochromator (BB_§ - 210 K) with a
spectral slit width of 2.5 cm in both cases.

The room temperature Raman spectra are pre-
sented in Figure 1. E and F2 symmetry modes are
active in the Z(Y'X')Y' and Z(Y'Z)Y' polarisations
respectively, where X',Y',Z refer to the crystal
{110}, [110] , [001] directions. Allowing that
the F, spectrum is relatively weak, the A, spec-
trum is isolated by subtracting the Z(Y'X')Y'
spectrum from the Z(X'X')Y' spectrum 4, The
results between 88 K and room temperature are con-

INTENSITY
o

Figure 1.

1doo 1500
YAVENURBER

The room temperature Raman spectrum of Ni - I.
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istent with a cubic crystal space group through-
ut this temperature range, in agreement with X-ray
esults at 77 K and room temperature3'5, and are
1so consistent with a structure containing BO4
'roups.4 The low frequency F2 and A; symmetry
ine profiles are characteristic of a cubic
oracite” but the expected A, wing is far less
ell-defined, and the low frequency A; and E
ymmetry modes more heavily damped than their
ounterparts in the spectra of other boracites
e.g. Cu -~ C%, Cr - C).

Part of the work concerning the temperature
ariation of the Raman spectra is illustrated in
'igures 2 and 3. In Figure 2 the peak position of

871

abd

one of the higher frequency E modes is plotted as
a function of temperature, from experiments per-
formed at different times and in different polar-
isations. The black circles represent Z(Y'X')Y’
results and the open circles, Z(X'X')Y' spectra.
The triangles and squares illustrate later experi-
ments in Z(Y'X')Y' geometry, with temperature in-

creasing and decreasing respectively. From these

results it is clear that the natural frequency
rises with decreasing temperature, dropping
anomalously at about 128 K. This effect became
less pronounced as the sample 'deteriorated' after
several temperature cycles, but was characteristic
of all the high frequency E modes. The linewidths

‘of these bands show the opposite behaviour, de-

creasing with falling temperature and increasing
at 128 K. In contrast, the broad 170 cm~l E
mode frequency decreases with temperature, in-
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creasing anomalously at 128 K as shown in Figure

3.
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There is no corresponding linewidth anomaly
this mode in the given temperature range.
frequencies and linewidths for this feature
taken from a computerised least squares fitt-
of an anharmonically damped oscillator line-
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.128 K, but there is no spectfg%?@pic evidence ’

shape over the region 30 - 240'cm~l, Examples
of fitted A;, E and F, spectra are shown in ’ ‘ 
Figure 1. The broad A, peak at 166 cm~l exhibits
a similar, if less dramatic, temperature varia-
tion. No significant temperature variation can’ :
be attributed to the very weak F, spectrum. ‘'

From these results it is apparent that'thérei
is some disturbance of the structure at around'’

for either a structural transition, or long ‘
range antiferromagnetic’ordering. These result
are in accord with the suggestion of short rang
magnetic ordering giving rise to the suscept-
ibility maximum. The softening of the heavily «
damped E mode is unlike the results in Cr - C
and Cu - C%, and suggests that the 64 K transi-
tion differs from the usual boracite behaviour.
The low frequency modes are mostly related to
vibrations involving motion of the nickel and =’
iodine ions. Softening of these modes would
therefore indicate a repositioning of one or more
of these ions. Such displacements must, how-
ever, retain the overall cubic symmetry, as =
verified in reference 2. At all temperatures in
our study of Ni - I, the Raman spectrum indicates
that the system is cubic.

iy
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RAMAN-SCATTERING MEASUREMENTS OF THE EFFECT OF UNIAXIAL STRESS
ON THE FERROELECTRIC TRANSITION IN Gdz(MoO4)3*

Q. Kim, F. G. Ullman, R. D. Kirby, and J. R. Hardy
University of Nebraska, Lincoln, Nebraska 68588

The 50 and 75 f.:m_1 lines of the A, Raman spectrum of ferroelectric

Gd (Mooa) were found to vary identically with uniaxial stress up to

1.0 kbar ;n the temperature_fange (T-T ) < 20C. The force constant
parameter, w_, of the 75 cm ~ line was independent of stress while its
damping constant I' decreased by 50%, similar to the behavior of the 50
cm line reported previously. These results arg offered as further
confirmation of the identification of the 75 cm — line as one of the two
unstable modes of the ferroelectric phase.

The ferroelyectric rare-earth molybdates,
the first impropeN ferroelectrics® to be
studied, undergo thd}r ferroelectric transi-
tion at T = 160C. is cell-doubling tran-—
sition isbelieved to oxiginate from the
softening of a doubly dedenerate, T_, zone .
boundary mode of the paraelectric ph%sez;
below T , the degeneracy 1is \xemoved and the
two mod€s transform to A1 symetry and move
to the zone center.

Infrared’ and Raman-scatter Q8 studies
of the low frequency A, spectrum hiye isolated
three modes that exhib%t abnormal bey
with temperature. At 80K, they peak A
51.5, and 83 cm~!. At 300K, the broadehed (
51.5 em~'1ine obscures the 44.5 cm~?! 1iné
the 83 em™?line is broadened and its peak

435

—

(e.

~

[+3
downshifted to 75 cm where it remains up to ©
T ; above T , all three are absent from the (b)
AS spectrum? In back-scattering, however, in ,
tﬁe configuration z(xx)z, the symmetry
changes from A, below T , to B, above. The (a)

51.5 em~!line &oes not Vanish &bove T in this
case and so has been identified as a Sone-
center mode® (the other two vanish and so
must be zone boundary modes). There has been
some recent controversy°’7over this assign-
ment since the 44.5 and 51.5 cm~! modes had
been suggested previously? to be the soft
modes that degenerate into the soft zone
boundary mode of the paraelectric phase.

Prior to the discovery of the abnormal
behavior of the 83 cm !lihe, measurements of
the effect of uniaxial stress on the 51.5 cm~} from
line at temperatures near T showed a nearly
constant w_ but a steep, nofi~linear decrease
in T with Tncreasing stress®.

In this paper, we describe uniaxial
stress measurements on the A, Raman spectrum
in the temperature range (T lT) < 20C. Three

235 335 435 535 635 735 835 935 1035 I35 1235
FREQUENCY SHIFT (CM-)

Raman spectra for different applied
stress, T ~ 140C, scattering configur-
ation X(22)Y, stress in X direction.
Pyston force : a) 0 1v, b) 50 1b,
c¢)N\ 00 1b, d) 150 1b, e) 200 1b.

A coxstant background was subtracted
\he original data,

lines, the difficuldy in estimating the back-
ground, and the contriputions from minor un-—
resolved lines, permittkd only a crude

Lorentzian analysis of the 75 and 100 cm—?

lines, which for clarity aré desi§nated here lines. For both lines, w \was found to be in-

as peaking at 50, 75, and 100 cm~*, were
studied over a stress range of 0-1.0 kbar.
The apparatus and other experimental details
were as described previously®. Typical re-
sults are shown in Fig. 1. It can be seen
that the 50 and 75 cm~! lines narrow and in-
crease in peak height with increasing stress
whereas the 100 cm~'line is essentially un-
changed. The overlap of the 75 and 100 cm~!

%“Supported by the Army Research Office.

dependent of stress (vatygni by less than 2%)
as found previously for the 58 cm~!line. On
the other hand, I' decreased by Wpout 50% for
the 75 cm~!line but stayed consta
for the 100 cm~! line.

For a constant w_, the Lorentzijn line-
width is proportional to its peak heigt so
ve have examined peak height ratlos as
in Table I below.



