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Abstract 

Growth rate and flowering time are agriculturally important traits that are linked to 

fitness, productivity and reproductive success of plants.  To study the genetic basis for 

natural variation in growth rate and flowering time between local accessions of 

Arabidopsis thaliana, hybrids were produced between fast growing / late flowering and 

slow growing / early flowering parents.  F3 and F5 hybrid families were grown under a 

range of conditions – under a constant controlled environment, outside over the winter 

and outside in spring and early summer.  Growth rates were estimated from repeated 

images of rosettes.  Flowering time, as number of leaves to flower, was also recorded 

both in control and natural conditions for F5 lines.  Damage by slugs and stress-induced 

production of anthocyanin pigments were also recorded for plants grown outside.  Broad-

sense heritability estimates were higher for F5 families than F3, in which more loci will 

segregate, and ranged from 48% to 89%.  No significant correlation between growth rates 

under different environments was observed in most cases for F3 populations, however 

significant correlations were detected for F5 families outside and under controlled 

conditions, suggesting that same genes can affect growth rate in more than one 

environment.  The genotypes of F3 families were determined at thirty-nine SSLP (simple 

sequence length polymorphism) loci and used in regression with phenotype data to search 

for quantitative trait loci (QTL).  Significant QTLs were detected in F3 families for 

growth rate, flowering time and anthocyanin production, but not for herbivore damage.  

To confirm QTL detected in the F3 and to detect additional loci, bulk segregant analysis 

was carried out in F5 families grown under different conditions.  Potentially linked 

markers were tested further in individual F5 plants and QTL mapped on a finer scale in 



ii 

 

F5 families that remained heterozygous for candidate regions.  VIP5 and LDL1 were 

selected as potential candidate genes for flowering time variation.  These genes were 

sequenced for two parental alleles.  A transposon insertion and 5’ UTR deletion were 

found in the LDL1 allele from the late flowering parent and SNPs (single nucleotide 

polymorphisms) were observed throughout the gene.  However both alleles appeared to 

be expressed at similar levels.  Transgenic lines have been produced carrying the LDL1 

allele from the early flowering parent (4D1) in the background of the later flowering 

parent (11C1).  This work is on-going and will hopefully reveal whether LDL1 underlies 

differences in flowering behaviour seen between 11C1 and 4D1. 
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Lay summary 

This thesis demonstrates that there is an extensive genetically-determined variation in 

growth rate and flowering time between two local accessions of Arabidopsis thaliana.  

To understand the genetic basis for this variation, hybrids between the accessions were 

grown in a range of natural and controlled conditions.  In hybrids, heritability of growth 

rate and flowering time was lower in autumn in natural conditions, which might reflect 

longer exposure of plants to variable environments.  Correlation between the growth rates 

of hybrid lines in different conditions suggests that similar genes might influence growth 

rate in different conditions.  Anthocyanin production over winter showed high heritability 

and a significant correlation with growth rate, suggesting a common genetic basis.  

Similarly, susceptibility to herbivory also correlated with growth rate.  QTL mapping was 

undertaken in F3 and F5 hybrid populations.  This identified significant QTLs for 

flowering time variation, growth rate and anthocyanin production.  Two marker loci, 

CIW1 on chromosome 1, and CIW4 on 3, showed significant association to growth rate in 

F3, F4 and F5 populations and CIW1 to flowering time in some segregating F5 families.  

Two candidate genes for flowering variation - LDL1 and VIP5 were investigated further.  

These genes were sequenced for the parental lines.  Besides SNPs in both genes, a 24 bp 

deletion at the start of LDL1 gene and 882 bp insertion of a transposon in the 5’UTR were 

found in the allele from the late flowering parent.  Although both alleles were expressed 

at a similar level, the 5’-RACE PCR showed that the late flowering parent produced only 

a shortened transcript, suggesting that it might carry an ldl1 loss-of-function mutation.  

This could account for the later flowering of this parent and possibly also for its faster 

growth rate. 
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1.0 INTRODUCTION 

Arabidopsis is a major model plant which is suited for genetic and molecular studies.  

The completely known genomic sequence and data for gene disruptions make it a 

unique research resource.  It makes it possible to analyse the function of individual 

genes or group of genes by studying the phenotypes of mutants.  This study of the 

function of individual genes has increased our knowledge but still there is a need to 

study the genes, gene combinations and gene products that affect complex traits. 

1.1 Growth and growth rate 

Growth is usually defined as an irreversible increase in the size of a cell, organ or 

whole organism.  In plants, at early stages of development, it is often accompanied by 

cell division, although the later growth of many organs, including leaves, can involve 

only cell expansion (Jackson, 1980).  The increase in size of an organism or part of an 

organism per unit time is referred to as the growth rate.  Growth of an organism may 

stop at maturity, as in case for most mammals, or it may continue throughout life, as 

in some plants.  Growth is highly regulated and coordinated throughout plant 

development.  Two levels of growth coordination can be distinguished in plants, one 

is the final size (Paul and Foyer, 2001), the second being the specific patterns of organ 

formation (Beemster et al., 2005).  Growth rate is therefore a complex trait in plants 

that is affected by variation in cell division, cell expansion, rate of photosynthesis and 

organogenesis (Zhang et al., 2012) and it occurs at different levels ranging from cells 

to the whole body.  Leaf area expansion, a proxy of leaf growth that can be measured 

using a non-invasive image analysis approach (Arvidsson et al., 2011; El-Lithy et al., 
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2004; Granier et al., 2006), was shown to be controlled by many significant genetic 

factors (El-Lithy et al., 2004; Massonnet et al., 2010; Tisne et al., 2008).  Growth rate 

is also an environmentally sensitive trait interconnecting cell biology, organogenesis, 

and physiology. 

 

1.1.1 Phenotyping aims 

The basic aim of phenotyping in plants is to quantify the different morphological traits 

(Walter et al., 2012) to investigate basic principles involved or in selection of specific 

genotypes in plant breeding programmes.  Automation of this technology is currently 

improving day by day, for example for measuring the total leaf area of smaller plants 

like Arabidopsis (Leister et al., 1999) or to measure a number of traits simultaneously 

and repeatedly at high throughput (Rajendran et al., 2009).  At the same time, field 

monitoring and imaging technologies have also been improved to provide meaningful 

information about plants phenotypes in the field (Montes et al., 2007), which is 

important in breeding programmes.  Recording of a set of environmental parameters 

in an experimental period is also required to analyse genotype × environment 

interactions. 

1.1.2 Tools for phenotyping 

Various strategies have been adopted to measure the morphological traits of plants.  

The most simple and traditional ones are the use of manual devices to take 

measurements of traits.  Reliability in these cases is always questionable and 

measurements may cause injuries and stress to the plants.  This is particularly 

important when studying traits that involve changes over time, for example growth 

rates.  To quantify morphological traits with more accuracy, automatic phenotyping 
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approaches are needed.  One of the modern technologies, ubiquitous sensor networks 

(USN) used fixed and rotary sensor-based measurement (Suk et al., 2011).  

Automated techniques have been applied to measure different traits in Arabidopsis, 

for example, growth of the root (Miller et al., 2010), hypocotyl (Cole et al., 2011) or 

seedling (Walter et al., 2007), and pathogen resistance (Berger et al., 2007).  The uses 

of digital images of rosette area to estimate growth rates have been used successfully 

in Arabidopsis and in many crop studies (Campillo et al., 2010). 

1.2 Plant growth parameters 

Growth parameters are the characteristics by which the growth and growth rate of 

plants can be measured.  These include rate of increase in plant height or shoot length, 

girth, number of leaves, leaf chlorophyll, leaf colour, fresh and dry weight, and rosette 

area of leaves (Leister et al., 1999; Li et al., 1998).  The rate of leaf production as a 

growth rate measurement has also been used in small herbaceous plants.  Fresh and 

dry weights of plants can also be measured (Wood and Roper, 2000), however these 

has the disadvantage that repeated measurements cannot be made on the same plants, 

introducing another source of variance in estimates. 

1.2.1 Plant height and shoot length in Arabidopsis 

Plant height is an important component of plant architecture that is highly correlated 

with biomass yield in many species.  Biomass and height are significantly and 

positively related with each other in maize, Zea mays L. and sorghum (Murray et al., 

2008).  Plant height is also positively correlated with flowering time in sorghum 

(Ritter et al., 2008).  Plant height is often used to estimate the growth of trees.  

Variable techniques are used to measure the height of trees depending upon number of 
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factors like species, location and habits etc.  Various factors have been found to 

increase the rate of increase in tree height, like increasing nitrogen and phosphorus 

supplies by fertilizer application (Assuero et al., 2004; Lynch et al., 1991).  The ratio 

between root and shoot growth is also key parameter in crop production, life histories 

and responses to unfavourable conditions (Poorter et al., 2005).  For example, drought 

tends to increase root-to-shoot biomass across a range of species. 

Significant variation was observed between Arabidopsis thaliana genotypes in branch 

number and shoot architecture (Ungerer et al., 2002).  There are also evidences of 

secondary growth in Arabidopsis shoot, hypocotyl and root (Ko and Han, 2004; 

Melzer et al., 2008; Sibout et al., 2008), though these aspects of growth remain poorly 

understood. 

1.2.2 Measuring the rosette areas of plants 

Measuring fresh and dry weight of plants as growth rate, are destructive methods and 

need a large number of plants to obtain accurate estimates.  A non-destructive 

approach will always be preferable, e.g. using image analysis.  Plant growth rate 

analysis was done successfully by measuring the area of whole plants (Motooka S, 

1991).  For Arabidopsis, which in its vegetative phase grows as a flat rosette with 

limited leaf overlap, the use of digital video and image analysis has been effective in 

estimating plant growth rate non-destructively, even during early developmental 

stages (Leister et al., 1999).  Digital image analysis has become an important tool in 

biological research over scales ranging from satellite images to micrographs (Nilsson, 

1995).  For measuring root or shoot length, areas of leaves or whole plants, images are 

taken at definite time points (e.g. daily or weekly, depending on the rate of growth) 

and converted to binary images that distinguish the plant from its background.  The 
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area, shape or length of the plant or its organs can then be analysed quantitatively 

from these images.  There are number of companies and research groups that have set 

up automated platforms to calculate root elongation and architecture (Armengaud et 

al., 2009; Hund et al., 2009; Nagel et al., 2009), root gravitropic curvature (Miller et 

al., 2007), the projected area of single leaf (Granier et al., 2006) or total leaf area (El-

Lithy et al., 2004; Granier et al., 2006; Leister et al., 1999; Walter et al., 2012) and 

shape parameters for leaves or rosettes (Jansen et al., 2009).  

 1.2.3 Single time point rosette area as proxy for growth rate 

Growth can be measured in a number of ways.  Absolute growth usually refers to the 

rate of change in size over a particular period, for example the final height of a plant 

divided by the time taken to reach that height.  However, growth of many organs is 

not linear with time and often approaches exponential during periods of fastest 

growth.  Therefore the concept of relative growth rate (RGR) is often used.  This 

measures the rate of increase in size or mass per unit of size or mass already present 

(Hoffmann, 2002)  . For example,  

RGR = ln (M2) - ln (M1) ∕ (t2-t1) 

Where ln (M1) and ln (M2) are the natural logs of the plants’ dry masses at times t1 

and t2, respectively.  RGR is therefore equivalent to the slope of a plot of ln (M) 

against time. 

However, it is important to acknowledge a potential disadvantage of RGR; it involves 

at least two estimates of area, each with an associated error (Hoffman & Poorer 2002). 

This could potentially lead to a less accurate estimate of genetically determined 

growth rate than an estimate made from a single measurement. J. Atkinson showed 

(PhD thesis submitted to The University of Edinburgh, 2006) that rosette area was a 
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good proxy for mass as it was directly proportional to fresh weight with an r
 2 

value of 

0.89  (Figure 1). 
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Figure 1: J. Atkinson recorded regression of fresh mass against plant rosette 

area at 32days. 

Plant rosette area is significantly correlated with fresh mass (r2
 
= 0.89) and dry mass (r2

 
= 0.96). 119 

plants were used in the experiment (J. Atkinson, PhD thesis to The University of Edinburgh, 2006). 
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Later stage rosette areas increase in some genotypes did not reflect earlier stage 

growth rates (Poay Lim, PhD thesis to The University of Edinburgh, 2013).  It is 

highly desirable to measure rosette areas of plants at an early stage of development 

with minimal effects of other factors on growth like bolting or degree of leaf overlap. 

It is always necessary to set a time point of area measurement where plants were 

grown to size that allowed more accurate estimates with minimal leaf overlapping. 

Poay Lim (PhD thesis to The University of Edinburgh, 2013) showed that different 

genotypes grow at different rates and continuous to increase with time under uniform 

conditions before flowering (Figure 2). Rosette areas of genotypes (if germination 

starts at same point) were compared within an experiment as growth rate, so it is 

relative growth rate not absolute. 
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Figure 2: Poay Lim (PhD thesis to The University of Edinburgh, 2013) findings 

of relationship of average rosette areas of plants to days since germination.  

Rosette areas of genotypes were compared within an experiment as growth rate, so it is relative growth 

rate not absolute. 
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1.3 Natural variation and evolution 

Intraspecific natural variation may be broadly defined as the phenotypic variation 

within-species that is caused by spontaneously arising mutations.  This variation 

might be maintained by artificial or natural selection or might accumulate in the 

absence of selection (under neutrality or drift) (Alonso-Blanco et al., 1999).  

Phenotypic variation which is due to heritable genetic variation is a fundamental 

prerequisite for evolution by natural or artificial selection.  It is the living organism as 

a whole that contributes (or not) to the next generation, so natural selection affects the 

genetic structure of a population indirectly via the phenotypes.  No genetic variation 

means no heritable phenotypic variation, no adaptation or drift and hence no 

evolution. 

The interaction between genotype and phenotype has often been conceptualized by 

the following relationship: 

Genotype + environment → phenotype  

Or, to account for variation which is not caused by genotype or environmental 

conditions as: 

Genotype + environment + random-variation → phenotype  

The phenotype variation, whether in wild or cultivated plants, may be discontinuous if 

it affected by very few genes that have large effects on the phenotype, relative to the 

environment.  For example, resistance to a particular genotype of a pathogen can be 

determined by a single resistance (R) gene.  However, the majority of traits are 

determined by multiple genes, which have small effects relative to each other or to 

variation cause by the environment.  The trait therefore typically shows continuous 
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variation within a population and, because it cannot easily be categorised, is usually 

measured quantitatively.  Such traits are therefore referred to as quantitative traits and 

the underlying genes as quantitative trait loci or QTL (Buescher et al., 2010a; 

Robertson A  1967).  

1.4 Quantitative traits and quantitative trait loci 

Although a QTL represents one or more genes within a particular chromosome region, 

very few QTL have been localised to a gene.  Therefore QTL is usually taken to mean 

a chromosome region that affects the trait value.  QTL analysis is a statistical method 

that links two types of information - phenotypic data (trait measurement) and 

genotypic data (Kearsey and Farquhar, 1998).  Molecular markers are used for 

genotyping because they are produced at high densities and are unlikely to affect the 

trait of interest.  Several types of markers are commonly used in genotyping including 

single nucleotide polymorphisms (SNPs), simple sequence repeats (SSRs or 

microsatellites), restriction fragment length polymorphisms (RFLPs) and transposable 

element positions (Gupta and Rustgi, 2004).  To carry out the QTL analysis, the 

parental strains are crossed, obtaining F1 individuals which are then selfed or crossed 

using one of a number of different schemes to generate a segregating population 

(Darvasi, 1998).  Finally, phenotypes and genotypes of the segregating population 

(e.g., F2, F3 or back-cross generation) are scored.  Markers that are genetically linked 

to a QTL influencing the trait of interest should show a correlation between genotype 

and phenotype values, whereas unlinked markers will not show significant association 

with phenotype.  It is possible to account for fixed-effects (e.g., known environmental 

differences or sex) in the analysis.  QTL may also be used for traits in which 

phenotypes are affected by interactions – for example between QTL (epistasis), 
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between QTL and the environment (by-environment interactions) or between QTL 

and the sex of the individual (genotype-by-sex), although these might require a 

specialist experimental design or the use of more individuals to detect significant 

interactions. 

When related traits are found to have QTL that map to similar positions, the variation 

for these traits might be controlled by the same gene - in genetic terminology 

pleiotropic.  One example of a pleiotropic QTL is the Arabidopsis ERECTA gene, 

which encodes a receptor kinase.  Because a mutant allele is present in the Landsberg 

erecta parent of many QTL mapping populations, it has been found to affect many 

different quantitative traits including shade-avoidance (Patel et al., 2013), resistance 

to bacterial and fungal pathogens (Godiard et al., 2003; Llorente et al., 2005) and 

transpiration rate (Masle et al., 2005) in addition to plant morphology. 

In practice the ability to detect a QTL and to map it accurately depends on a number 

of factors.  These include the heritability of the trait (the extent to which the 

phenotype is determined by genotype), the magnitude of the effect of the QTL, the 

number of recombinant chromosomes being analysed, which is related to the number 

of hybrid individuals used in mapping, and the density of molecular markers. 

1.4.1 QTL analysis in plants 

Development of molecular markers that allow cost effective genotyping of mapping 

populations has allowed QTL analysis to be applied to a wide range of plant species.  

Many of these studies have been carried out on crop plants because identification of 

molecular markers that are linked to desirable traits allows the markers to be used to 

select the traits in breeding programs.  For example, SSRs markers have been used to 
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detect QTLs for fruit size and quality traits in apricot (Ruiz D, 2010) and different 

types of populations used to map QTLs for fruit weight, firmness, flavour and other 

traits in tomato (Bertin et al., 2009; Causse et al., 2002) and grapes (Mejía et al., 

2007) or kernel shape and size in barley (Hordeum vulgare L.). 

1.4.2 Natural variation in plant growth rate   

Arabidopsis thaliana is predominantly a selfing species, and therefore most plants 

collected in nature represent inbred lines.  These wild homozygous lines are 

commonly referred to as ecotypes.  However the use of this word in Arabidopsis does 

not strictly conform to its ecological definition – a genotype that is adapted to specific 

local conditions.  Because the ecological meaning has been lost, the term accession, as 

it is often used in germplasm collections, is becoming more commonly used to refer to 

a sample collected at a specific location (Alonso-Blanco and Koornneef, 2000).  

Genetic variation within populations of Arabidopsis, and especially among 

populations, has been studied extensively using a variety of tools.  Arabidopsis has 

been used extensively for QTL studies.  Its complete genome sequence has allowed 

development of a large number of genetic markers at known positions in 

chromosomes.  Its short generation time allows rapid generation of segregating 

mapping populations – recombinant inbred lines (RILs), near-isogenic lines (NILs) 

etc.  and its small size allows many plants to be grown in a limited space.  In addition, 

the functions of many Arabidopsis genes are known from mutations, allowing 

identification of candidate genes for QTL.  Many of these studies have used 

genotyped RILs that are available as a public resource.  QTL studies have examined a 

large number of traits in Arabidopsis, including flowering time, seed germination and 

plant architecture etc. 
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The extensive natural variation that occurs in Arabidopsis is being exploited 

increasingly as a source of genetic variation for the analysis of important adaptive 

traits, e.g. flowering time, seed size, seed dormancy, pathogen resistance, and 

tolerance to abiotic stresses etc. (Alonso-Blanco and Koornneef, 2000; Koornneef et 

al., 2004). Recombinant inbred lines (RILs) provide an immortal population, as each 

individual is practically homozygous, and large numbers of genetically identical 

individuals can be obtained, allowing repeated measurements of various traits in 

different conditions (Alonso-Blanco and Koornneef, 2000; Doerge, 2002) 

Plants raised from seeds collected in nature have been analysed phenotypically for 

numerous characteristics including morphological traits and flowering time; and 

genotyped with a range of different markers like microsatellites (Vander Zwan et al., 

2000) restriction fragment length polymorphisms, mainly analysed as cleaved 

amplified polymorphic sequences (CAPS) markers (Ullrich et al., 1997), amplified 

fragment length polymorphisms (AFLPs) (Sharbel et al., 2000) and extensive DNA 

sequencing (Schmid et al., 2003).  Currently 1001 accessions of A. thaliana are being 

resequenced (www.1001.org).  Most studies have focused on detecting 

polymorphisms in single copy nuclear sequences. However, variation has also been 

studied in including mtDNA (Ullrich et al., 1997), and in repeated sequences, 

including centromere repeats (Hall et al., 2003) and transposable elements (Frank et 

al., 1998).  Cytogenetic polymorphisms have also been found, but these have been 

studied only in a limited number of accessions (Koornneef et al., 2004).  From all 

these analyses, we can conclude that within populations of Arabidopsis, 

polymorphisms are relatively frequent.  In initial analyses, the relatively high genetic 

variation found among Arabidopsis accessions using genome-wide markers such as 
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AFLP, CAPS and microsatellites (Ullrich et al., 1997) shows that in general there was 

no association (or weak association) between geographical origin and genetic 

distance.  Genetic isolation-by-distance (an inverse correlation between geographic 

distance and sharing of polymorphisms) was found by analysing 79 AFLP markers in 

a worldwide collection of 142 accessions, with a major representation from central 

Europe (Sharbel et al., 2000).  These authors suggested that after the last glaciation 

Arabidopsis colonized Central and Northern Europe from Asia and from 

Mediterranean Pleistocene refugia.  More recent studies involving at large number of 

SNPs and world-wide accessions, however, have identified a correlation between 

genetic distance over a range of geographic scales (Nordborg et al., 2005; Pico et al., 

2008; Platt et al., 2010).  More than 25 genes have been systematically sequenced and 

compared in various accessions and the number of genes for DNA sequence 

comparisons among accessions is increasing rapidly (Tian et al., 2002).  These include 

mainly floral and meristem developmental genes, pathogen resistance and defence 

genes, and genes encoding metabolic enzymes. Sequence analyses of individual genes 

revealed nucleotide diversity values ranging from 0.0006 for ATTI to 0.0558 for CLV2 

with an average value of 0.006.  Similar levels of variation have been estimated by 

analysing 606 sequence tagged sites (STS) in 12 accessions, where the mean sequence 

divergence to the Col accession was 0.68 (Clauss and Mitchell-Olds, 2003). 

The genetic architecture of growth rate and size variation has also been studied in 

Arabidopsis.  Several QTLs were detected for shoot growth variation by using Bur-0 

× Col-0 RILs (Vlad et al., 2010).   By using a recombinant inbred line population 

derived from Ler and Cvi, quantitative trait loci (QTLs) were mapped that affected 12 

life history traits related to seed size, fruit size, seed number, and plant resources 
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(Alonso-Blanco et al., 1999).  Quantitative trait locus (QTL) analysis, using 114 (F9 

generation) recombinant inbred lines derived from the cross between Ler and 

Shahdara, revealed QTLs for seed weight, plant area, dry weight, relative growth rate, 

chlorophyll fluorescence and flowering time.  Growth traits (plant area, dry weight, 

and relative growth rate) co-located at five genomic regions.  At the bottom of 

chromosome 5, co-location was found of QTLs for leaf area, leaf initiation speed, 

specific leaf area and chlorophyll fluorescence, indicating that this locus might be 

involved in leaf development.  No consistent correlation between growth traits and 

flowering time was observed despite some co-locations.  Some of the QTLs detected 

for flowering time overlapped with loci detected in other recombinant inbred line 

populations, but also new loci were identified (El-Lithy et al., 2004).  This suggests 

that variation in growth rate can involve different genes in different accessions.  

Phenotypic variation for shoot growth in the Bur-0 × Col-0 RIL population was 

mapped to several QTLs.  Using a fine-mapping strategy, one of the QTL was 

mapped to At4g30720, which encodes a new chloroplast-located protein essential to 

ensure a correct electron flow through the photosynthetic chain and, hence, 

photosynthesis efficiency and normal growth (Vlad et al., 2010).  

Many environmental and non- environmental factors influence these growth 

parameters (Massonnet et al., 2010; Pereyra-Irujo et al., 2008), thus affecting plant 

growth. 

Several QTL studies have examined the control of root growth rate.  QTLs were 

mapped in the Bay-0 x Sha RIL population for effects on the growth of roots.  One 

locus was found to be responsible for approximately 80% of the variance of the 

observed difference in root length in the RIL population.  This gene, named BREVIS 
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RADIX (BRX), controls the extent of cell proliferation and elongation in the growth 

zone of the root tip.  BRX was isolated by positional cloning and found to encode a 

member of a small, plant specific family of proteins.  Analysis of Arabidopsis mutants 

lacking activity of the other genes suggested that BRX is the only gene of this family 

with a role in root development (Mouchel et al., 2004).  An additional 12 QTLs for 

primary root length, lateral root number and density and for total length of the lateral 

root system were mapped and one epistatic interaction between QTLs was detected.  

Sha QTL alleles always increased the length of the lateral roots which may be taken 

as an adaptation to its very dry natural environment in Tajikistan (Loudet et al., 2005).  

The same population was used to map genes involved in the root growth response to 

low phosphate.  One of these QTL, LRPI, explains 52% of variance of primary root 

length changes in response to phosphate.  A single QTL was also detected for primary 

root cell elongation in response to low P value (Reymond et al., 2006). 

Differences in the accumulation of elements have been found between accessions and 

over a hundred QTLs for elemental accumulation estimated in RIL populations.  A 

strong effect of plant environment was observed between elements and QTLs 

controlling elemental accumulation (Buescher et al., 2010b). 

1.4.3 Usefulness of RILs in QTLs study 

Recombinant Inbred Lines (RILs) are very useful in QTL analysis as each represents a 

unique combination of parental genotypes.  Replicates of each genotype can therefore 

be grown in the same condition, to increase the accuracy of estimates of genetically-

determined phenotype values and reduce the effects of non-genetic variation.  They 

can also be used for the analysis of traits in many environments.  During the 

production of RILs, there are additional opportunities for recombination during the 
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selfing generations, and therefore a chromosome in a RIL population will typically 

carry twice as many recombinations as a chromosome in an F2 population, though 

each chromosome is likely to be homozygous in a RIL.  A further improvement is in 

the advanced intercross approach, in which individuals from the F1 or F2 population 

are randomly intercrossed, thus increasing the opportunity of recombination before 

genotypes are fixed by selfing (Darvasi and Soller, 1995).  It is also possible to 

incorporate more than two parental genomes in the population by inter-crossing F1 

hybrids from different parents to generate multi-parent advanced genetic inter-cross 

(MAGIC) lines.  Several A. thaliana RIL populations have been used for QTL 

mapping and subsequent molecular identification of the responsible genes.  However, 

only relatively few large populations have been densely genotyped, limiting the 

resolution of QTL maps (Rosloski et al., 2010).  The disadvantages of RILs are that 

they do not allow the dominance of QTL alleles to be examined, because they consist 

only of homozygous genotypes and also they have not been subjected to selection.  

Dominance relationships can be used to infer whether a QTL allele might involve a 

reduction in activity including a loss of function. 

1.5 Flowering 

Flowering is a crucial event in the life of plants which is linked to their reproductive 

success and fitness.  Flowering time is controlled by hundreds of different genes in 

different plant species.  Thus so-called flowering-time genes have been placed in a 

number of genetically defined pathways that integrate external stimuli such as 

photoperiod, ambient temperature, or prolonged exposure to cold, with endogenous 

signals including phytohormones and plant age (Amasino and Michaels, 2010; Bäurle 

and Dean, 2006; Greenup et al., 2009; Kobayashi and Weigel, 2007; Turck et al., 
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2008).  These pathways promote, repress or initiate flowering in quantitative manner 

(Coupland, 1995; Levy and Dean, 1998; Simpson and Dean, 2002).  The most 

important environmental factors that influence the initiation of flowering are day 

length (photoperiod), ambient temperature and prolonged exposure to cold 

(vernalization).  These factors not only change with seasons but also with 

geographical region 

1.5.1 Genetic control of flowering in Arabidopsis  

Studies have shown that flowering in Arabidopsis is regulated by range of internal and 

external stimuli.  Flowering time genes identified so far have been placed into four 

main pathways: the autonomous, vernalization, photoperiod and gibberellic acid (GA) 

pathways.  The vernalization and autonomous pathways control activity of the 

flowering repressor encoded by the FLOWERING LOCUS C (FLC) gene, so we 

categorise flowering time pathways in Arabidopsis into FLC-dependent and FLC-

independent pathways (i.e., GA and photoperiod pathways). 

1.5.2 FLOWERING LOCUS C (FLC) 

FLOWERING LOCUS C (FLC) is a MADS-box gene that encodes a well 

characterized floral repressor.  Related MADS box genes, from MADS AFFECTING 

FLOWERING 1 (MAF1 or FLM), MAF2 and MAF5 have been found to have similar 

roles in flowering (Ratcliffe et al., 2003; Ratcliffe et al., 2001). 

When plants are exposed to cold, FLC expression is reduced.  If this reduced level of 

expression is maintained, there will be early flowering (Sheldon et al., 2000).  

Flowering in Arabidopsis is also regulated through transcriptional and epigenetic 

control of FLC by the autonomous pathway.  The first intron of FLC is 3.5Kb long 
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which makes about half of the whole gene (Hanada et al., 2007).  Human genes 

having long introns were found to have more conserved sequences than average 

which indicated that they might be involved in regulation (Sironi et al., 2005). 
 

1.5.2.1 Regulation of FLC by FRIGIDA (FRI) 

FLC expression is up-regulated by the FRI protein that consists of double coiled 

domains and has 609 amino acids.  It acts as a complex consisting of FRI, FRL1 and 

FRL2 (FRIGIDA LIKE1 and 2) and the C2H2 zinc-finger protein SUPPRESSOR OF 

FRIGIDA4 (SUF4).  Mutation in any of the genes encoding members of this complex 

results in lower FLC expression.  The complex activates FLC transcription by direct 

binding to its 5’ promoter region (Sheldon et al., 2002). 

There are also other components that are involved FRI-mediated up-regulation of FLC 

that are similar to SWR1 and Paf1C in yeast.  SWR1-like members consist of 

PHOTOPERIOD-INDEPENDENT EARLY FLOWERING 1 (PIE1), ACTIN 

RELATED PROTEINS 6 (ARP6) and SERRATED LEAVES AND EARLY 

FLOWERING (SEF) and Paf1 C consists of VIP4 and VIP5 (VERNALIZATION 

INDEPENDENCE4 and 5) and ELF7 and ELF8 (EARLY FLOWERING7 and 8).  

All these genes have a more general role than FRI in gene expression regulation (Choi 

et al., 2007; March-Diaz et al., 2007). 

FLX (FLC EXPRESSOR), a leucine zipper-containing protein, has also been found to 

regulate FLC.  Plants carrying flx mutation have reduced levels of FLC expression, 

while other regulators of FLC remain unaffected (Andersson et al., 2008).  The effect 

of the flx mutation is reduced if there is also a mutation in the autonomous pathway 

consistent with FLX acting together with FRI.  However, FLX also promotes the 

expression of FLC-like MAF1 and MAF2 genes, unlike FRI (Andersson et al., 2008). 
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1.5.2.2 The Autonomous pathway 

Components of the autonomous pathway control flowering via RNA processing and 

epigenetic regulation of FLC.  The known autonomous pathway components are: 

FCA, FY, FPA, FVE, FLD and FLK (FLOWERING LOCUS CA, Y, PA, VE, LD 

and LK) and LUMINIDEPENDENS (LD).  FLD and FVE regulate FLC via histone 

deacetylation, independently of all other components in the pathway (Ausin et al., 

2004; He et al., 2003).  FCA and FY are RNA binding proteins and their interaction 

helps in determination of polyadenylation site selection in antisense transcripts from 

FLC, so mutation in FCA and FY produce more transcripts that are antisense to the 

FLC promoter and this might enhance FLC expression (Hornyik et al., 2010; Quesada 

et al., 2003; Simpson, 2004).  However, activity of both these proteins is not limited 

to FLC.  FPA and FLK are also RNA binding proteins that work independently from 

each other and from FCA and FY (Lim et al., 2004; Schomburg et al., 2001a).  FPA 

has a similar effect on polyadenylation site selection to FCA and FY, though it 

functions independently of them (Hornyik et al., 2010).  LD is known to encode a 

homeodomain protein.  Although homeodomains are typically associated with binding 

to DNA, there is evidence that they can bind to RNA and this would be consistent 

with regulation of FLC by different non-coding RNAs (Dubnau and Struhl, 1996; Lee 

et al., 1994a; Rivera-Pomar et al., 1996). 

Components of the autonomous pathway are widely conserved in flowering plants 

whereas FLC is not; as yet orthologs of FLC have been identified only in the 

Brassicaceae.  This suggests that the autonomous pathway might have more general 

role in regulation of gene expression than just flowering.  
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1.5.2.3 The vernalization pathway 

The process by which flowering is promoted as plants sense exposure to the cold 

temperatures of winter, vernalization, is one of the systems plants have developed to 

sense environmental cues and modify their growth and development accordingly.  

Vernalization is an adaptive trait that helps to prevent flowering before winter and 

permits flowering in the favourable conditions of spring.  It has been known for many 

years that a vernalized plant can maintain the memory of this vernalization mitotically 

under warmer conditions and that an unvernalized state is reset during development of 

the embryo (Sheldon et al., 2008).  The autonomous and vernalization pathways 

functions to suppress FLC but there is evidence that some vernalization responses are 

independent of FLC.  For example, MADS AFFECTING FLOWERING2 (MAF2) was 

shown to be involved in preventing flowering after short periods of cold - maf2 

mutants showed the same response to 10 days of cold as wild type plants after 85 days 

of cold (Ratcliffe et al., 2003) . 

Additionally ectopic expression of the SOC1 homolog AGAMOUS LIKE 19 (AGL19) 

has been shown to result in rapid induction of flowering.  AGL19 expression increases 

in response to cold independently of VERNALIZATION INSENSITIVE 3 (VIN3), 

which is necessary for the repression of FLC by cold, as agl19 vin3 double mutants 

have a more impaired vernalization response than either of the single mutants.  In 

contrast to FLC, the response of AGL19 to vernalization is transient and is reversed 

once plants are returned to the warm (Schonrock et al., 2006). 

Several studies have shown that vernalization regulates flowering time and FLC 

expression in a dose-dependent manner; longer cold periods giving lower FLC mRNA 

levels and shorter times to flowering (Michaels and Amasino, 1999a; Sheldon et al., 
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2000).  However there is also evidence to suggest that it is not the absolute amount by 

which cold initially reduces FLC expression that is crucial for the effect on flowering 

time but the stability of that repression if the plant is returned to warm conditions 

(Shindo et al., 2006).  In natural Swedish accessions of Arabidopsis neither the initial 

unvernalized level of FLC nor the decrease in its RNA levels in response to cold 

correlated with flowering times.  Instead a correlation was found with the length of 

vernalization required for stable repression of FLC so that expression did not increase 

again if plants were returned to the warm.  Three genes are known to be involved in 

vernalization pathway: VERNALIZATION1, 2 and 3 (VRN1 VRN2 and VIN3).  VIN3 

encodes a protein containing a plant homeodomain (PHD) and fibronectrin type III 

repeats, usually involved in protein-protein interactions.  It is induced in response to 

cold and required to establish cold-induced epigenetic silencing of FLC.  VRN1 

encodes a Myb-related protein and VRN2 a component of the Polycomb repressive 

complex 2 (PRC2), which acts by methylating lysine residues of histone H3 in 

chromatin, which is thought to lead to stable repression (Gendall et al., 2001; Levy et 

al., 2002). 

1.5.3.4 Histone Deacetylase (HDAC) co-repressor complex 

A number of nueronal genes are silenced in non-nueronal tissues during 

differentiation in mammalian development.  A number of these genes contain a 23 bp 

regulatory element called repressor element-1 (RE1) (Ballas et al., 2001; Maue et al., 

1990).
  

This RE1 is bound by RE1-silencing transcription factor (REST) directly 

(Chong et al., 1995). 

The components of the complex provide enzymatic activity that represses the 

expression of target neuronal genes by modifying histones.  The enzymatic activities 
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of complex include (1) histone deacetylases (HDACs) 1 and 2 (Andres et al., 1999); 

(2) LSD1, which contains two domains – a SWIRM domain that helps in anchoring 

the tail of the histone H3 molecule (Tochio et al., 2006), and a PAO (polyamine 

oxidase)-like domain that acts as a histone H3 lysine demethylase (Shi et al., 2004) 

and (3) G9a, a SET domain protein with histone methyltransferase (HMT) activity 

(Roopra et al., 2004; Tachibana et al., 2001).
  
 Besides these major components, other 

proteins, e.g., REST-associated mSin3, methyl-DNA binding factor MeCP2, are parts 

of the co-repressor complex (Ballas and Mandel, 2005; Grimes et al., 2000). 

In Arabidopsis, FLOWERING LOCUS D (FLD) is a homolog of LSD1 that down 

regulates FLC via histone hypo-methylation.  However, the role of FLD in repression 

of FLC is not fully understood.  Histone modifications are well characterised in 

Arabidopsis e.g. its chromatin contains histone H3 methylated at lysine (K) residues 

4, 9, 27 and 36, with H3K4/H3K36 and H3K9/H3K27 representing active and 

inactive chromatin, respectively (Zhao et al., 2005).  Such modifications play an 

important role in regulation of FLC expression e.g. histone H3 trimethylation at Lys-4 

(H3K4me3) and histone acetylation are associated with active FLC transcription, 

whereas histone deacetylation and histone H3 methylation at Lys-9 (H3K9) and Lys-

27 (H3K27) are associated with FLC repression (He and Amasino, 2005b). 

Similarly, vernalization leads to repressive histone modifications of FLC chromatin, 

including deacetylation, and increased methylation of H3K9 and H3K27 (Bastow et 

al., 2004; Jean Finnegan et al., 2005; Sung et al., 2006).  Activation of FLC 

expression and the corresponding increase in H3K4 trimethylation require the PAF1 

(for RNA Polymerase II–Associated Factor1)–like complex (He et al., 2004).  H3K4 

methylation, which is associated with actively transcribed genes, plays an important 
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role in regulating transcription (Martin and Zhang, 2005).  In yeast (Saccharomyces 

cerevisiae), trimethylated H3K4 is associated with active euchromatic genes (Santos-

Rosa et al., 2002), whereas H3K4 dimethylation (H3K4me2) occurs in both inactive 

and active euchromatic genes (Ng et al., 2003).  Similar to its association in S. 

cerevisiae, H3K4 trimethylation is associated with active transcribed genes in 

multicellular eukaryotes; however, in contrast with yeast, H3K4 dimethylation is also 

associated with active genes in multicellular eukaryotes (Schneider et al., 2004).  It 

has also been shown that in Arabidopsis, elevated levels of H3K4me2 and H3K4me3 

are associated with active genes and that these modifications occur in 5′ promoters 

and coding regions but are absent from nontranscribed intergenic regions (Alvarez-

Venegas and Avramova, 2005).  

Histone H3K4 methylation is dynamically regulated by histone methylases and 

demethylases (Martin and Zhang, 2005).  A component of transcriptional corepressor 

complexes, Lysine-Specific Demethylase1, has been shown to demethylate H3K4 and 

repress target gene expression in mammalian cells (Shi et al., 2004).  Human LSD1 

specifically demethylates monomethyl and dimethyl H3K4 (Forneris et al., 2005; Lee 

et al., 2005; Shi et al., 2004) and, when complexed with an androgen receptor, also 

destabilizes dimethyl H3K9 (H3K9me2)(Metzger et al., 2005).  LSD1 is an integral 

component of several mammalian histone deacetylase (HDAC) corepressor 

complexes (Hakimi et al., 2002; Humphrey et al., 2001) in which HDACs and LSD1 

may act together to remove activating acetyl and methyl histone modifications (Lee et 

al., 2006; Shi et al., 2005).  Consistent with this model, in one such complex (the 

BRAF-HDAC complex), the enzymatic activities of HDACs and LSD1 are closely 
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linked, as HDAC inhibitors diminish histone demethylation activity and the lower 

LSD1 activity decreases the deacetylation activity of this complex (Lee et al., 2006).  

1.6 Natural variation in flowering in cereals crops 

Molecular studies of natural variation in flowering time in barley identified 25 

different QTL with major effects (Alonso-Blanco et al., 2009).  One to four 

segregating QTL were detected in each of the eight different environments including 

growth chambers and natural conditions.  Functional diversity of CO-like 

(CONSTANS) and FT-like genes was also found in barley that correlate with 

quantitative responses to photoperiod (Kikuchi et al., 2009).  Three VERNALIZATION 

(VRN) loci have been detected in wheat and barley that affect the flowering in 

response to low temperature.  Three major loci controlling the vernalization response 

in both wheat and barley map to collinear locations in their respective genomes, 

suggesting that they represent orthologous genes (Dubcovsky et al., 1998; Karsai et 

al., 2005; Laurie et al., 1995).  

In Brachypodium, a single orthologue of the rice flowering time gene Hd3a (an FT-

like gene) was detected (Hasterok et al., 2006).  When Brachypodium was 

transformed with floral repressor, TERMINAL FLOWER 1 (TF1) from Arabidopsis or 

ryegrass, which antagonises FT activity, it repressed flowering (Jensen et al., 2001; 

Olsen et al., 2006; Shannon and Meeks-Wagner, 1991), suggesting conservation of 

the mechanisms controlling flowering within grasses  Little is known regarding effect 

of variation in photoperiod or day-length on flowering time of sorghum (Menz et al., 

2002).   
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Figure 3:  The transition from vegetative to flowering time is controlled by 

regulatory networks in Arabidopsis.  

This figure shows FLC-dependent flowering regulatory networks in which Fri and PAF1c upregulates 

FLC (shown in light blue colour) whereas autonomous pathway, vernalization and HDAC corepressor 

are down regulators of FLC (shown in pink colour). 
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1.7 Natural variation in flowering in Brassicaceae 

Genes have been identified for flowering time in response to vernalization in Brassica 

napus (Ferreira et al., 1995) in populations produced by crosses of annual and biennial 

oilseed cultivars.  Like Arabidopsis, other species in the family of Brassicaceae 

respond to vernalization and this appears to involve conserved roles for FLC-like and 

FRI-like genes (Osborn et al., 1997).  In fact, several FLC homologs have been 

isolated from Brassica species, such as B. napus (Tadege et al., 2001) and doubled 

haploid lines of Brassica rapa and Brassica oleracea (Schranz et al., 2002).  

Moreover, genetic manipulation of FLC expression has been proven to modify 

flowering time in both Arabidopsis (Michaels and Amasino, 1999a; Sheldon et al., 

1999b) and B. napus (Tadege et al., 2001).  Constitutive expression of Arabidopsis 

thaliana FLC in an early-flowering Brassica napus cultivar delayed flowering by 2–6 

weeks (Tadege et al., 2001). BrFLC1, BrFLC2, and BrFLC5, which are B. rapa 

homologs of FLC, co-segregate with QTL that determine flowering time in late-

flowering ecotypes of B. rapa (Schranz et al., 2002).  Five FLC-related homologs 

(BnFLC1-5) isolated from B. napus delayed flowering significantly when expressed in 

Arabidopsis.  Two homologs of FLC, BoFLC3-2, and BoFLC4-1, have been isolated 

from cabbage and expression patterns were analysed by using reporter gene in 

Arabidopsis.  These data showed the molecular mechanisms that repress FLC 

expression in the vernalization response can also act on BoFLC genes (Lin et al., 

2005).  These results showed that FLC homologs of Brassica species likely act in a 

similar way to FLC in Arabidopsis and play a central role as repressors of flowering. 
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1.8   Natural genetic variation in flowering time in Arabidopsis 

The transition timing from the vegetative to reproductive phase of a plant (called 

flowering time) is crucial for reproductive success of plants, for example to ensure 

that flowers are produced in a favourable environment and in synchrony with 

pollinators and potential mates.  Mutant screens have identified around 100 genes that 

affect in the different flowering time pathways in Arabidopsis (Koornneef et al., 1998; 

Koornneef et al., 2004; Mouradov et al., 2002).  However Arabidopsis accessions 

show a large amount of heritable variation for flowering time.  Some of the accessions 

flower in few weeks whereas others do not flower for months unless vernalized.  

Arabidopsis shows two extreme life cycles, summer and winter annuals, in which 

winter annuals germinate one year, overwinter as vegetative rosettes and flower the 

following year (Grennan, 2006; Johanson et al., 2000).  They are typically late 

flowering and responsive to vernalization.  Summer annuals, in contrast, germinate 

and flower in the same year and typically are quicker flowering and respond less to 

vernalization or show no response.  Natural accessions also differ in their responses to 

photoperiod and vernalization (Balasubramanian and Weigel, 2006; Henderson et al., 

2003).  Flowering time variation is usually a multigenic trait and QTLs analysis is 

required to identify and map corresponding QTLs.  A minimum number of 14 QTLs 

for flowering time were identified in Arabidopsis accessions in environments 

differing for photoperiod and vernalization treatment (Alonso-Blanco et al., 1998; 

Clarke et al., 1995; Jansen et al., 1995; Loudet et al., 2002; Stratton, 1998; Weinig et 

al., 2002).  Comparing the effects and position of QTLs with known flowering genes 

has enabled the identification of candidate genes for most of the QTLs (Alonso-

Blanco et al., 1998; Loudet et al., 2002; Ungerer et al., 2002).  
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Many summer-annual accessions like Columbia (Col), Wassilewskija (Ws), and 

Landsberg erecta (Ler), are early flowering without vernalization as they carry loss-

of-function mutations in FRI (Johanson et al., 2000).  Low FLC levels after 

vernalization in the presence of FRI show that vernalization has the ability to 

supersede the ability of FRI to activate FLC (Michaels and Amasino, 1999a; Sheldon 

et al., 1999b). 

In both mutant strains and natural accessions, there is a broad correlation of FLC 

expression levels and flowering time such that when FLC level is low, flowering 

occurs early and vice versa (Gazzani et al., 2003; Michaels and Amasino, 1999a; 

Michaels et al., 2003; Sheldon et al., 1999b; Sheldon et al., 2000).  However, FLC 

expression variation was also observed among late-flowering accessions (Werner et 

al., 2005a).  Genetic analyses also demonstrate that the difference in flowering 

behaviour between late- and early-flowering ecotypes is due to allelic variation at one 

or both of two loci, FRIGIDA (FRI) and FLOWERING LOCUS C (FLC) (Burn et al., 

1993; Clarke and Dean, 1994; Koornneef et al., 1994; Lee et al., 1994b). 

Vernalization causes epigenetic silencing of the FLC locus and early flowering.  

Independently of vernalization, FLC is also negatively regulated by the autonomous 

pathway, which was thought to act independently of the environmental cues.  

However, it has been found that this pathway may also mediate response to ambient 

growth temperature (Blazquez et al., 2003).  

1.9 Summary of previous work in Hudson lab 

J. Atkinson (PhD thesis to The University of Edinburgh, 2006) finding that rosette 

area is significantly associated to dry mass (Figure 1) has been referred in my thesis.  

Poay Lim (PhD thesis to The University of Edinburgh, 2013) studied natural variation 
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in growth rate, flowering time and seed production in local accessions of A. thaliana.  

Her findings that different plant genotypes respond variably to seasons (Figure 7), 

variation in growth rate within and between families in control environment (Figure 

6), rosette area regression to days to germination (Figure 2) and table of sites of 

collections of wild plants (Table 1) was taken from her thesis.  However, no direct 

data collected by J. Atkinson and Poay Lim was used in my thesis.   

Hayley Mc
 
Culloch (PhD thesis to The University of Edinburgh, 2011) worked on the 

genetic basis of natural variation in flowering time in local accessions of A. thaliana.  

She grew and collected flowering time data of F3 plants both from field and growth 

room conditions.  This data was used with her permission in QTL mapping of 

flowering time of F3 plants in my project.  No other work or her data was used in my 

experiments. 
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2.0 MATERIALS AND METHODS 

2.1 Seeds sterilization and growth conditions of plants 

Seeds were stratified at 4
o
C in 0.1% agar for 48 to 72 hours to break dormancy and 

promote germination.  Plants were grown using pre-mixed compost (Levington F2) 

without any added insecticides.  Pots were filled with compost and compressed very 

lightly to give a firm bed.  Seeds were sown on the surface of the compost with a 

pipette.  Trays were covered with transparent sheets until the seeds had germinated.  

The plants were then watered from below when the surface of the compost started 

drying.  Thinning was carried out to retain only one plant per pot.  For populations 

grown outside, one set of plants was transferred to a garden approximately after one 

week under natural condition whereas the other set was kept in a greenhouse 

maintained at 16
o
C-21

o
C with 16 hrs photoperiod and with light levels of 

~150umol/m
2
/s or in a growth room maintained at 21

o
C during the day and night with 

16 hrs photoperiod and light levels of ~100 µmol/m
2
/s and ~65% relative humidity 

during the day and ~50% relative humidity at night.  Photographs were taken on a 

weekly basis and were analysed with Adobe Photoshop and Image Tool to calculate 

rosette areas of plants. 

2.2 Adobe Photoshop 

Images were taken from above trays of plants, each with a size marker of known area 

for calibration (a 10p coin, which has an area of 471 mm
2
).  Images were prepared for 

analysis with Adobe Photoshop (Fig. 4a).  First the resolution was set to 72 

pixels/inch.  A green sample was selected from a rosette with the eye dropper tool and 
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also the size marker was selected with the magic wand tool.  Then, the size marker 

was deleted and filled its place with the green colour using the paint-bucket tool.  

After this, the middle of a typical, large rosette or several leaves if plants were smaller 

were selected by using the elliptical marquee tool.  The next step was to select similar 

colours and to grow the selection so that it included all the plant tissue.  After setting 

white as the background colour, the plant images were cut, selected the remaining 

background and deleted, and pasted the rosettes and marker back onto the white 

background (Fig. 4b).  The median blur image function, set to 2 pixel radius, was used 

to fill holes in the image and to remove small background objects that had been 

selected with rosettes.  The image was then turned into a binary (black and white) 

image (Fig. 4c).  To make a binary image, the adjust hue-saturation function was used 

to set the lightness to -100 and the image was flattened afterwards (Fig. 4a).  These 

steps were recorded as an action so that they could be applied to other images.  To 

remove remaining background objects, the rosettes were selected, with the magic 

wand tool and were cut, the background was selected and deleted and pasted the 

rosette back onto white background.  Any unconnected parts of plants were joined 

using the paintbrush, so that each would be treated as one object by ImageTool.  

Finally, the image was saved as a jpg file. 
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Figure 4: Working with Adobe Photoshop and Image Tool.  

Photographs of rosettes and a size standard (a) were cut and pasted onto a white background (b) and 

converted to binary images (c) in Adobe Photoshop.  The binary images were used to calculate rosette 

areas, using Image Tool (d). 
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2.3 Arabidopsis collection sites in and around Edinburgh 

Wild A. thaliana is found in different types of habitats in and around Edinburgh, such 

as dry ground, cliffs, and skeletal soils over rocks and gardens like The Royal Botanic 

Garden Edinburgh etc.  In this study, Andrew Hudson and an Honours student, S. 

Whithall, sampled thirteen populations of A. thaliana in a radius of 5 kilometres from 

The University of Edinburgh King’s Buildings campus at elevation ranging from 62 

to 249 meters above sea level (Table 1 from Poay Lim  PhD thesis to The University 

of Edinburgh, 2013). Two to twenty plants were collected from each locality within a 

10 m radius and were transferred to green house with long day conditions.  Seeds 

were collected from these plants.  One individual was grown from each parent and its 

seeds collected and coded for identification.  For example, 11C1 denotes a particular 

genotype, “11” represents the site of collection, “C” represents the pot in which plants 

were originally transferred and “1” represents the first plant of the pot.  Each coded 

stock is also referred as family (Thesis - from Poay Lim, PhD thesis to The University 

of Edinburgh, 2013). 
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Site ID Location 

Elevation from sea 

level 

Population size 

1 

U. of Edinburgh, 

Kings Buildings, S. 

of Swann Building 

70 m 10% cover 

2 

U. of Edinburgh, 

Kings Buildings, N. 

of Swann Building 

70 m < 1% cover 

3 

U. of Edinburgh, 

Kings Buildings, S. 

of Rutherford 

Building 

67 m 15% cover 

4 

U. of Edinburgh, 

Kings Buildings, 

Forestry plots 

62 m 15% cover 

5 

U. of Edinburgh, 

Kings Buildings, S. 

of JCMB 

75 m 80% cover 

6 

U. of Edinburgh, 

Kings Buildings, 

W. of CSEC 

78 m 30% cover 

7 

U. of Edinburgh, 

Kings Buildings, 

W. of CSEC 

79 m  
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8 

U. of Edinburgh, 

Kings Buildings, 

W. of CSEC 

79 m 5% cover 

9 

U. of Edinburgh, 

Kings Buildings, 

W. of SAC 

79 m 5% cover 

10 Loanhead 148 m 5% cover 

11 Hillend 249 m 20% cover 

12 Liberton 115 m 50% cover 

13 Straiton 152 m 50% cover 

  

Table 1: Collection sites detail of A. thaliana local accessions from in and around 

Edinburgh. 
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2.4 Measurements of rosette areas of plants in Image Tool 

UTHSCSA ImageTool (IT) is an image processing and analysis programme 

(compdent.uthscsa.edu/dig/itdesc.html).  For calculation of rosette areas, Image Tool 

was set to recognise an object as a minimum of 200 black pixels to avoid picking up 

any speckles as objects.  A binary image of plants was opened and the Find Object 

function used on manual to adjust threshold levels so that rosettes were selected 

completely.  The programme then said how many objects it had found and numbered 

them.  The object outlines and their numbers are shown in red on the image (Fig.4c).  

Image Tool numbers objects from the bottom upwards in the order that it first 

encounters them.  The areas of each object, in pixels, were written to a table of 

measurements which could be copied and pasted into an Excel spread sheet.  These 

values were converted to mm
2
 using the known area of the marker e.g., a 10p coin has 

an area of 471.44 mm
2
 and so the area of a rosette in mm

2
= (area of rosette in pixels 

/area of coin in pixels) x 471.44 mm
2
. 

2.5 Flowering time measurements 

Five plants per line for an F5 population (89 lines in total) were grown together in a 

growth room.  The number of rosette leaves produced before flowering was counted 

for each plant.  Cotyledons and cauline leaves were not taken into consideration.  For 

each line, the mean value of its five members was calculated.  The number of days to 

flowering was also recorded for each plant.  Again, the mean value of the line was 

calculated. 
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2.6 Scoring of anthocyanin production  

Arabidopsis plants produce anthocyanin when experiencing cold stress and change 

their colour from green to purple.  Winter-grown F3 population changed colour during 

frosty conditions.  Photographs of plants were used to score this colour change on a 

scale of 1-5, with 1 being the greenest plant and 5 being the most purple, against 

images of a plant representing each point on the scale. 

 2.7 Herbivory estimates 

When plants are grown in natural conditions, herbivore attack may occur.  In our 

experiment, an F3 population grown outside in the winter experienced herbivory, 

probably by slugs.  Not all plants in the population were attacked.  To estimate the 

amount of tissue eaten, the rosette areas of all plants were calculated before and after 

the attack.  Plants that had not been eaten were used to calculate the mean relative 

increase in rosette area during the period of the attack by linear regression.  The mean 

relative increase (the slope, m, of the regression of the final area on the initial area) 

and the y intercept (c) were used to estimate the expected final area of plants had they 

not been eaten (A*): 

Expected areas of plants if they had not been eaten (A* after) = (A before × m) + c 

Therefore the area of the plants that had been eaten could be estimated by the 

following formula, where A obs. is the measured area of the plants after attack: 

Eaten areas of plants= A* after – A obs. 

(Where A obs, was the observed area after attack) 

Percentage eaten areas of plants= (A* after – A obs.) ×100 / A* after 
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2.8 Quantitative Trait Loci (QTLs) analysis 

Average values for each trait were regressed onto genotypes to search for Quantitative 

trait loci (QTLs).  QTL analysis was performed with Windows QTL Cartographer 

software v2.5   (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm), using the option for 

mapping in inbred lines.  The Composite Interval Mapping (CIM) analysis technique 

(Jansen, 1996b) was used to detect the potential QTLs with 500 permutations and 0.05 

significance levels for all traits with 1.0 cM precision. 

2.9 Bulk –Segregant analysis 

Monogenic qualitative traits are usually analysed by this rapid mapping technique.  In 

this case it was used to test for linkage of markers to growth rate QTL that were 

segregating in F5 populations.  Pools of DNA were made from the eight fastest and 

eight slowest growing plants of an F5 populations, grown either outside in natural 

conditions or in growth room conditions.  No more than one fast or slow plant was 

taken from a family (offspring of the same F4 parent), to minimise the effects of allele 

sharing due to common ancestry.  These pools were then genotyped with all of the 19 

microsatellite markers which had been found to be polymorphic in the F3 population. 

2.10 Heritability estimates 

One-way analysis of variance was performed to calculate the broad-sense heritability 

of each trait in each population.  This method is based on Box 9.1 and Box 9.2 of 

Sokal and Rohlf (Sokal and Rohlf, 1995)  (http://udel.edu/~mcdonald/anova.xls and 

http://udel.edu/~mcdonald/statintro.html).  It involved calculating the proportion of 

the total variance in the trait that occurred between lines (which is expected to have a 

genetic basis).  This is likely to under-estimate the heritability of the trait, because it 

http://statgen.ncsu.edu/qtlcart/WQTLCart.htm
http://udel.edu/~mcdonald/anova.xls
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assumes that all members of a line are genetically identical and therefore that variance 

within a line has only a non-genetic (environmental) basis. 

2.11 Collection of tissues for DNA extraction  

Similar amounts of plant tissue from all five members of a line (about 200 mg from 

each plant) were placed in 1.5 ml Eppendorf tubes and leaves pushed down with the 

help of forceps.  Two steel ball bearings were added to the tube.  Tissues were either 

used directly for DNA extraction or kept in a -80
o
C freezer until needed. 

2.11.1 Genomic DNA extraction by CTAB (Hexadecyltrimethyl 

ammonium bromide) method 

This is partially modified from the method of (Doyle and Doyle, 1987) for plant DNA 

extraction.  A 24 holes block for a Retch mixer mill was chilled at -80
o
C.  Tubes with 

frozen tissues were quickly transferred to the block and after the block had been 

assembled and clamped into the mixer mill, it was shaken for 1 min at maximum 

frequency (50 Hz).  Working quickly, the lids of the block were rotated 180
o
 so that 

the arrangement of tubes was reversed such that the tubes previously at the front were 

now are at the back and the blocks shaken again.  After disassembling the block and 

opening the tubes, 1 ml of extraction buffer was added (Table 2).  Then the tubes were 

recapped and the block reassembled and shaken it for 1 min to mix the tissue with the 

buffer.  After, incubating the tubes in a heating block at 65
o
C for 10-20 min in a fume 

hood, it was allowed to cool for ~2 min.  Each tube was then filled with 500 µl of 

chloroform and mixed.  Tubes were centrifuged at 13000 x g for 5 min.  The material 

in the tubes separated into three distinct layers, a top clear aqueous layer, a middle 

interface of precipitated proteins etc. and a green organic layer at the bottom.  The top 
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clear aqueous layer was removed to a clean tube and 440 µl of isopropanol added and 

mixed gently by rocking the tubes end over end.  Centrifuging for 5 minutes 

recovered a grey pellet of nucleic acids.   The alcohol was tipped off, spun the tubes 

again for 1 min to dry the sides of the tubes and removed the rest of the alcohol with a 

pipette without displacing the nucleic acid pellet.  The pellet was dissolved in 100 µl 

of TE buffer (Table 4) with 1/1000
th

 volume of 10 mg/ml RNase A, and kept 

overnight to ensure complete dissolution of DNA.  DNA was then precipitated by 

adding 260 µl of a mixture of 10 ml of 100% alcohol and 400 µl of 3M NaOAc 

solution (pH 7.4) which was mixed completely by rocking.  DNA was recovered by 

centrifugation at maximum speed for 5 min, giving a transparent pellet.  After 

removing the alcohol, the DNA was air dried and dissolved in 50 µl of dH2O or TE 

buffer.  Finally, the concentration of DNA was measured with a Nanodrop 

spectrometer and the DNA diluted to ~10 ng/µl. 
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Stock Amount Final concentration 

1 M Tris-HCl,     pH 8.0 15 ml 100 mM 

0.5 M EDTA,      pH 8.0 6 ml 20 mM 

5 M NaCl 42 ml 1.4 M 

CTAB 3 g 2% w/v 

dH2O 50 ml  

Final volume adjusted to 150ml with dH2O 

Table 2: Recipe for CTAB extraction buffer. 
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2.11.2 Genomic DNA extraction by Edwards method 

The method of (Edwards et al., 1991) was modified for the extraction of genomic 

DNA.  Frozen samples were placed in a mixer-block cooled at -80
o
C.  Tissues were 

ground at maximum speed for 1 min in the mixer mill, as for the CTAB extraction 

method.  This was repeated after rotating the block by 180
o
.  Extraction buffer (400 

µl) was then added and the contents of the tube mixed for 1 min in the mixer mill.  

The extraction buffer consisted of 200 mM Tris HCl pH 7.4, 250 mM NaCl, 25 mM 

EDTA and 0.5% SDS (Table 3).  Samples were incubated at room temperature for 

one hour and spun at 13,000 x g in a centrifuge for 5 min. Supernatant (300 µl) was 

transferred to a clean tube and 300 µl of isopropanol was added and the contents 

mixed.  Tubes were centrifuged for 5 min at maximum speed.  Liquid was removed 

and tubes were briefly spun to dry the sides.  The remaining liquid was removed with 

a yellow pipette tip.                                                                       

The pellet was dissolved in 150 µl of 0.1x TE (10 mM Tris pH 8.0, 0.1 µM EDTA) 

and 1 µl of the solution was used in each PCR reaction.  The remaining solution was 

stored at -20
o
C. 
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Stock Amount Final concentration 

200 mM 5 ml of Tris HCl (pH7.5) 2 M Tris HCl (pH7.5) 

250 mM 2.5 ml NaCl 5 M NaCl 

25 mM 2.5 ml of EDTA 0.5 M EDTA 

0.5% 2.5 ml of SDS 10% SDS 

Adjusted final volume to 50 ml with dH2O 

Table 3: Recipe of Edward’s extraction buffer solution. 
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2.11.3    10x TE buffer recipe 

This buffer consists of 100 mM Tris-HCl (pH 7.5) and 10 mM EDTA (pH 8.0).  The 

working concentration is 1x or lower.  To make 1 litre 10x TE (Tris-EDTA) buffer, 

the following were mixed, 

 

1 
100 ml 1 M Tris-HCl (pH 7.5) 

2 
20 ml 500 mM EDTA (pH 7.5) 

3 
880 ml ultrapure water 

 

Table 4: Recipe for 10x TE buffer. 
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2.12 Simple Sequence Length Polymorphism (SSLP) markers 

SSLP markers (microsatellites) were used for genotyping.  A total of 137 

microsatellite markers were tested for polymorphism between the mapping parents, 

11C1 and 4D1, of the hybrids in my experiments.  SSLPs markers used for 

genotyping were described in two main sources; The Arabidopsis Information Service 

(http://arabidopsis.org/servlets/Search?action=new_search&type=marker) and the 

INRAMSAT database (http://www.inra.fr/internet/Produits/vast/msat.php).  The map 

position of each SSLP marker in cM was estimated from its position in the 

Arabidopsis genome sequence relative to makers for which recombination frequencies 

had been determined in other mapping populations.  For QTL analysis, the first 

marker on each of the 5 linkage groups was given the position 0 cM.  A list of the 39 

markers which showed polymorphism for 11C1 and 4D1 with their complete 

description is given in Table 5. 

  

http://arabidopsis.org/servlets/Search?action=new_search&type=marker
http://www.inra.fr/internet/Produits/vast/msat.php
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Locus 

name 

Map 

position 

(cM) 

Primer sequence 
Chr: 

No. 

Annealing 

temperature 

(Ta)
 o

C 

ACC2 0.00 
F: 5’-AAATGTGCAATTGCCTTC-3’ 

R: 5’-AGAAGTTTAGACAGGTAC-3’ 
1 

49 

49 

F21M12 
6.64 

F: 5’-TTACTTTTTGCCTCTTGTCATTG-

3’ 

R: 5’-GGCTTTCTCGAAATCTGTCC-3’ 

1 
50 

52 

NGA392 
41.64 

F: 5’-GGTGTTAAATGCGGTGTTC-3’ 

R: 5’-TTGAATAATTTGTAGCCATG-3’ 
1 

55 

50 

CIW1 72.00 
F: 5’-ACATTTTCTCAATCCTTACTC-3’ 

R: 5’-GAGAGCTTCTTTATTTGTGAT-3’ 
1 

53 

53 

F5114-

49495 92.08 
F: 5’-CTGCCTGAAATTGTCGAAAC-3’ 

R: 5’-GGCATCACAGTTCTGATTCC-3’ 
1 

56 

58 

NGA692 
119.25 

F: 5’-AGCGTTTAGCTCAACCCTAGG-3’ 

R: 5’-TTTAGAGAGAGAGAGCGCGG-3’ 
1 

60 

61 

ALT_ 

NYUP 

8H12R 
132.00 

F: 5’-

CACGACGTTGTAAAACGACCACTGAA

ACCACTTCCCACA-3’ 

R: 5’-GCTTGAGCCAAGTCGAGAGT-3’ 

1 
68 

54 

CIW2 
0.00 

F: 5’-CCCAAAAGTTAATTATACTGT-3’ 

R: 5’-CCGGGTTAATAATAAATGT-3’ 
2 

52 

49 

CIW3 
24.00 

F: 5’-GAAACTCAATGAAATCCACTT-3’ 

R: 5’-TGAACTTGTTGTGAGCTTTGA-3’ 
2 

46 

47 

MSAT 

2.36 30.00 
F: 5’-GATCTGCCTCTTGATCAGC-3’ 

R: 5’-CCAAGAACTCAAAACCGTT-3’ 
2 

58 

53 
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PLS3 
44.00 

F: 5’-TAGTCGTTTCTCTGGTTGTAG-3’ 

R: 5’-TTGCCTGTCGATGTAGATTTGT-

3’ 

2 
58 

58 

CZSOD2 
56.94 

F: 5’-GAATCTCAATATGTGTCAAC-3’ 

R: 5’-GCATTACTCCGGTGTCGTC-3’ 
2 

52 

60 

NGA361 
63.02 

F: 5’-

ACATATCAATATATTAAAGTAGC-3’ 

R: 5’-AAAGAGATGAGAATTTGGAC-3’ 

2 
52 

52 

UBIQUE 
82.00 

F: 5’-

CACGACGTTGTAAAACGACACGACAT

GGCAGATTTCTCC-3’ 

R: 5’-AGGCAAATGTCCATTTCATTG-3’ 

2 
68 

48 

NGA172 
0.00 

F: 5’-CATCCGAATGCCATTGTTC-3’ 

R: 5’-AGCTGCTTCCTTATAGCGTCC-3’ 
3 

49 

54 

NGA162 
20.56 

F: 5’-CTCTGTCACTCTTTTCCTCTGG-3’ 

R: 5’-CATGCAATTTGCATCTGAGG-3’ 
3 

55 

50 

CIW11 
43.00 

F: 5’-CCCCGAGTTGAGGTATT-3’ 

R: 5’-GAAGAAATTCCTAAAGCATTC-3’ 
3 

47 

46 

CIW4 
76.00 

F: 5’-GTTCATTAAACTTGCGTGTGT-3’ 

R: 5’-TACGGTCAGATTGAGTGATTC-3’ 
3 

55 

57 

FUS6.2 
86.41 

F: 5’-TTCCTTGATCAGATTTGGTCG-3’ 

R: 5’-TCGTTACACTGGCTTGCTTG-3’ 
3 

57 

58 

NGA6 
90.00 

F: 5’-ATGGAGAAGCTTACACTGATC-3’ 

R: 5’-TGGATTTCTTCCTCTCTTCAC-3’ 
3 

57 

57 

JV30/31 
0.00 

F: 5’-CATTAAAATCACCGCCAAAAA-3’ 

R: 5’-TTTTGTTACATCGAACCACACA-

3’ 

4 
53 

56 
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NGA8 
16.56 

F: 5’-TGGCTTTCGTTTATAAACATCC-

3’ 

R: 5’-GAGGGCAAATCTTTATTTCGG-3’ 

4 
56 

58 

DET1.2 
21.44 

F: 5’-GGTGAAAATGGAGGAGACG -3’ 

R: 5’-TTCAAACACCAATATCAGGCC-3’ 
4 

52 

50 

CIW6 
37.00 

F: 5’-CTCGTAGTGCACTTTCATCA-3’ 

R: 5’-CACATGGTTAGGGAAACAATA-

3’ 

4 
56 

55 

MSAT4.12 
43.00 

F: 5’-AAAGGAAGAAGACTGTT-3’ 

R: 5’-AGAAGAAGAAGCGAGATT-3’ 
4 

52 

49 

MSAT4.14 
47.00 

F: 5’-GACCGTTTCTAGTGCTCACA-3’ 

R: 5’-ACGGAATAAGCGGAGGA-3’ 
4 

58 

52 

CIW7 
65.00 

F: 5’-AATTTGGAGATTAGCTGGAA-3’ 

 R: 5’-CCATGTTGATGATAAGCACAA-

3’ 

4 
46 

48 

MSAT4.9 
40.00 

F: 5’-GAAATCAACGGCTGAG-3’ 

R: 5’-AAGTAATTAAGACGCTGAGA-3’ 
4 

48 

52 

MSAT4.12 
43.00 

F: 5’-GGAACAAGAACACAGTGAA-3’ 

R: 5’-ATAAATCTAGGCAGGACAAG-3’ 
4 

53 

54 

MSAT4.18 
50.00 

F: 5’-TGTAAATATCGGCTTCTAAG-3’ 

R: 5’-CTGAAACAAATCGCATTA-3’ 
4 

52 

47 

MSAT4.19 
53.00 

F: 5’-TGAACTAAAGACTTGATGCC-3’ 

R: 5’-CCAAACGCAAATAGTGTT-3’ 
4 

54 

49 

NGA 

1139 73.41 
F: 5’-TTTTTCCTTGTGTTGCATTC-3’  

R: 5’-TAGCCGGATGAGTTGGTACC-3’ 
4 

46 

54 
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NGA158 
0.00 

F: 5’-ACCTGAACCATCCTCCGTC-3’ 

R: 5’-TCATTTTGGCCGACTTAGC-3’ 
5 

60 

55 

ALT_NGA

151 29.62 

F: 5’-

CAGTCTAAAAGCGAGAGTATGATG-3’ 

R: 5’- GTTTTGGGAAGTTTTGCTGG-3’ 

5 
54 

50 

CIW8 
42.00 

F: 5’-TAGTGAAACCTTTCTCAGAT-3’  

R: 5’-TTATGTTTTCTTCAATCAGTT-3’ 
5 

46 

43 

S0262 
65.20 

F: 5’-ATCATCTGCCCATGGTTTTT-3’ 

R: 5’-TTGCTTTTTGGTTATATTCGGA-3’ 
5 

54 

55 

CIW9 
88.00 

F: 5’-CAGACGTATCAAATGACAAATG-

3’ 

R: 5’- GACTACTGCTCAAACTATTCGG-

3’ 

5 
56 

60 

NGA129 
105.41 

F: 5’-CACACTGAAGATGGTCTTGAGG-

3’ 

R: 5’-

TCAGGAGGAACTAAAGTGAGGG-3’ 

5 
62 

62 

ALT_ 

CIW10 115.00 
F: 5’-CCACATTTTCCTTCTTTCATA-3’ 

R: 5’- CAACATTTAGCAAATCAACTT-3’ 
5 

46 

45 

JV61/62 
130.00 

F: 5’-CGCTTTCCTTGTGTCATTCC-3’  

R: 5’-

AAATGCAAATATTGATGTGTGAAA-3’ 

5 
52 

47 

 

Table 5: SSLPs with complete description. 
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2.12.1 SSLP analysis 

SSLPs were amplified from genomic DNA by PCR.  For genotyping of the F3 

mapping population, the PCR products were fluorescently labelled for analysis in a 

capillary DNA sequencing machine.  Three primers were used in amplification of 

fluorescently labelled products.  One matched the Arabidopsis sequence to one side of 

the polymorphic site.  The second matched the Arabidopsis sequence to the other side 

of the polymorphism at its 3’ end, but had the sequence of the M13 forward 

sequencing primer (5’-GTAAAACGACGGCCAGT-3’) at its 5’ end.  The third 

primer consisted of the M13 sequencing primer labelled with one of four fluorescent 

dyes at its 5’ end (6-FAM, VIC, NED or PET).  PCR therefore amplified a 

fluorescently labelled product and the use of four different dyes allowed the products 

of different PCR reactions to be analysed together.  The PCR reactions were pooled, 

after being diluted according to the amount of product present for each primer 

combination, and further diluted 1:10 with ABI Hi-Dye formamide mix and 1:500 

dilution of ABI LIZ-500 size standard.  Reactions were analysed using ABI 3730 

DNA sequencer.  Alternatively, the fluorescent M13 primer was omitted and 

fragments analysed by gel electrophoresis stained with ethidium bromide.  Files from 

the ABI 3730 were analysed using ABI Gene Scan analysis software and then 

imported into Genographer (www.softpedia.com › Windows › Science / CAD), which 

displays fluorescent amplification products as bands and determines the size of these 

products.  The SSLP loci that have been analysed are shown in Table 5. 

http://win.softpedia.com/
http://www.softpedia.com/get/Science-CAD/
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2.12.2 PCR reactions 

All amplifications were performed using a GRI DNA Engine or a G-Storm 

thermocycler using home-made Taq polymerase.  Each reaction was performed with 

1µl or 2 µl of DNA (10-20 ng of DNA) with a mix 19 µl or 18 µl reactions mix 

respectively (Table 6). 
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Constituents Amount Description 

10x buffer 2 µl 
Standard 10x 

buffer 

10 mM dNTPs 0.4 µl Rova lab. 

Forward primer 

(10 μM) 
0.4 µl IDT 

Reverse primer 

(10 μM) 
0.4 µl IDT 

Taq polymerase 

(5 units/μl) 
0.1 µl  

H2O 14.7 µl Sterilized 

TOTAL 18 µl  

 

Table 6: Components of PCR mixes. 

All PCR reactions were carried out with the standard PCR programme shown in Table 6. 
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Step 1 94
o
C 2 mins. 

Step 2 94
o
C 30 secs. 

Step 3 Ta* 30 secs. 

Step 4 72
o
C 1 min. 

Step 5 Go to step 2 34X 

Step 6 72
o
C 10 mins 

Step 7 4
o
C 4 hrs. 

Step 8 End  

* the annealing temperature, Ta, was varied according to the primers used. 

       Table 7: Standard PCR programme. 
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2.13 Agarose Gel Electrophoresis 

2.13.1 Materials 

An adequate volume of electrophoresis buffer was prepared (0.5x TBE; Table 8) to 

fill the electrophoresis tank and to prepare the gel.  For the gel, electrophoresis-grade 

agarose was added to the buffer and dissolved by heating in a microwave.  The gels 

that were used in my experiments contained between 1.0% and 3.0% agarose and 50 

ng/ml ethidium bromide.  In the next step, the melted agarose was poured into a gel 

tray and inserted the gel comb, ensuring that no bubbles were present. 
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1 108 g Tris base 

2 55 g boric acid 

3 40 ml 0.5 M EDTA (pH 8.0) 

4 Autoclave for 20 min 

 

Table 8: 10x TBE Buffer (1 Litre). 
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2.13.2 Loading and running agarose gels 

After the gel had set, the combs were removed and tried not to tear the wells.  After 

placing the gel into the electrophoresis tank, a sufficient amount of 0.5x TBE buffer 

was added to cover the gel to a depth of about 1 mm.  Around 5 µl of each DNA 

sample was loaded, with 1/10
th

 volume of 10x loading buffer, when needed.  Size 

markers, usually 1 kb (GeneRulerTm) or 100 bp DNA ladder (New England Bio 

Labs, 500 µg/ml), were loaded in at least one well.  Leads were attached in such a 

way that DNA migrated towards the anode.  The voltage was set to give a potential 

gradient of ~0.5 – 0.8 V/cm (100 V to 150 V for a 20 cm tank) to begin 

electrophoresis.  After 45 minutes to 1 hour, the power supply was turned off.  Since 

ethidium bromide is present in the gel, the DNA could be visualized by placing the 

gel on a UV light source and photographed directly.  The sizes of PCR products were 

estimated by comparison to fragments of the size standard. 

2.14 Cloning, bacterial transformation and sequencing 

Regions of the flowering time genes, LDL1 and VIP5, were amplified from parental 

plants and either sequenced directly, or purified from gels before sequencing or 

cloning in a plasmid vector.  Both genes were initially amplified in three overlapping 

fragments.  PCR reactions were conducted as described in 2.11.2.  When more than 

one product was produced in PCR, fragments were purified by cutting the required 

band from an agarose gel and extracting the DNA with a QIAquick Gel extraction Kit 

by QIAGEN.  Products were either sequenced directly, or cloned into pJET1.2 

plasmid, using a CloneJET™ PCR cloning kit by Fermentas.  The kit was used with 

the modifications shown in Table 9.  The reaction components shown in Table 8 were 
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mixed in a 500 µl PCR tube spun and incubated at 70
o
C for 5 min in a PRC machine 

to make PCR products blunt-ended.  Tubes were then chilled on ice and 0.5 µl each of 

the pJET1.2 blunt vector (http://abo.com.pl/pl/p/CloneJET-PCR-Cloning-Kit/14261; 

Figure 5) and T4 DNA ligase were added.  Components were mixed, spun and 

incubated at room temperature for 10 minutes before being used in transformation of 

E. coli. 

  

http://abo.com.pl/pl/p/CloneJET-PCR-Cloning-Kit/14261
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Figure 5: pJET 1.2/ blunt vector map (http://abo.com.pl/pl/p/CloneJET-PCR-

Cloning-Kit/14261). 
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Constituents Concentration 

2x reaction buffer 5 µl 

PCR products 0.5 µl 

Water 12 µl 

DNA blunting enzyme 

(Proof reading Taq 

Polymerase) 

0.5 µl 

 18 µl 

 

Table 9: pJET cloning kit components with their amounts. 
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2.14.1 Preparation of KCM competent cells 

A seed culture of DH5α was grown in 5 ml of LB media.  This was kept overnight at 

37
o
C with shaking.  The following day, 1.5 ml of the culture was used to inoculate 

500 ml of LB medium in 2 litre flask.  The optical density (OD) of the culture (at 600 

nm) was checked after 4 hrs and the culture allowed to grow until it had reached 

around 0.30.  The culture was then placed on ice for 5 min and 50 ml aliquots in 

chilled Falcon tubes were centrifuged for 15 min at 4
o
C (10,000 x g).  The pellet of 

cells was kept and supernatant was discarded.  Transformation and storage solution 

(TSS) (1 ml) was used to resuspend the cells and aliquots of 100 µl of cells in 1.5 ml 

Eppendorf tubes were frozen in liquid nitrogen and stored at -80
o
C.    

2.14.2 DH5α transformation 

DH5α transformation was carried out using the protocol available online at 

(http://openwetware.org/wiki/Huang:_DH5alpha_transformation), with the following 

changes.  Competent cells were thawed on ice and 100 µl of cells added to 5 µl of 

ligation in a 1.5 ml Eppendorf tube.  Tubes were then incubated on ice for 30 min, 

heat shocked in a water bath at 42
o
C for 90 seconds and returned to ice for 2 minutes.  

L-broth (1 ml) was added and cells incubated at 37
o
C for an hour with continuous 

shaking.  The culture was centrifuged at 6000 x g for 5 min.  Most (900 µl) of the 

medium was removed and the remainder used to resuspend the cells.  Cells were 

spread on LB agar plates with ampicillin (200 µg/ml) and incubated at 37
o
C in 

inverted position overnight. 
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2.14.3 Bacterial transformation using di-methyl sulphoxide (DMSO) and 

polyethylene glycol (PEG)  

This is a modified version of the protocol described by (Chung et al., 1989) and later 

published by (Walhout et al., 2000) with modification.  Competent cells were allowed 

to thaw on ice.  100 µl (70 µl H2O, 10 µl ligation  and 20 μl of 5X keratinocyte 

conditioned medium buffer (KCM buffer recipe; Table 10) were added to an 

Eppendorf tube containing 100 μl of a suspension of thawed competent cells and 

incubated on ice for 20 minutes.  The mixture was then heat-shocked at 37
o
C for 5 

min and chilled again on ice for 5min.  LB was heated to 65
o
C for 5 sec and 800 µl of 

warm LB was added to the mixture.  It was incubated at 37
o
C for 40 min and 300 µl 

was then spread on LB agar plates with ampicillin (200 µg/ml).  Plates were incubated 

overnight at 37
o
C in an inverted position. 
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Reagents Conc. 

KCl 0.5 M 

CaCl2 0.15 M 

MgCl2 0.25 M 

 

Table 10: showing components of 5X KCM buffer. 
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2.13.4 Making of LB-agar plates  

Solid LB-agar (250 ml) was heated in microwave to about 100
o
C to melt it and then 

allowed to cool to approximately 65
o
C.  Ampicillin was added from a 50 mg/ml stock 

in water to give a final concentration of 50 μg/ml and mixed.  Around 30 ml of agar 

was poured into each plate in a laminar flow hood.  After the agar had set, plates were 

allowed to dry for 15 minutes in the laminar flow hood by lifting their lids. 

2.14.5 PCR reactions with pJET primers 

Colony PCR reactions were done to test for the presence of an insert following the 

standard PCR protocols in Table 11, except that no DNA solution was added as 

template.  The template was provided by touching a colony with a yellow pipette tip 

and stirring the tip in the PCR mixture.  The primers flanked the cloning site in 

pJET1.2 (for sequence Appendix A and for cloning site Figure 5). 
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Constituents Conc. Description 

10X buffer 2 µl 
Standard 10X 

buffer 

2.5 mM each 

dNTPs 

(or 10 mM) 

1.6 µl 

(0.4 µl) 
Rova lab. 

pJET forward 

primer (10 μM) 
0.4 µl pJET cloning kit 

pJET reverse 

primer(10 μM) 
0.4 µl pJET cloning kit 

Taq 

polymerase 

(5U/μl) 
0.1 µl  

H2O 
13.5 µl 

 
Sterilized 

 18 µl  

 

Table 11: Colony PCR reactions with pJET primers. 

PCR products were loaded in gels for identification of plasmids carrying inserts of the expected size.  

For selected plasmids, 1 μl of the PCR product was used in a sequencing reaction with 0.5 µl of (10 

μM) primer. 
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2.14.6 Gel purification of DNA amplicons 

Gel purification was done with a QIAquick Gel Extraction Kit.  The required DNA 

fragment was excised from the agarose gel with clean and sharp scalpel under UV 

light.  The gel slice was weighed in an Eppendorf tube and 6 volumes of Buffer QG 

were added to 1 gel volume.  Tubes were incubated at 50
o
C with occasional vortex 

mixing until the gel slice has completely dissolved.  Then, 10 μl of 3M sodium acetate 

(pH 5.0) was added and mixed.  The colour of the mixture turned yellow.  One gel 

volume of isopropanol was added to the sample and mixed.  The mixture was loaded 

into a QIAquick spin column in a 2 ml collection tube.  The column was centrifuged 

for 1 minute at 13,000 x g to force the liquid through it.  The flow-through was 

discarded and the column placed back into the same tube.  Since the purification was 

being carried out for sequencing, 0.5 ml of Buffer QG was added to the column and 

centrifuged it for 1 minute to wash it.  The flow through was again discarded and the 

QIAquick column placed back into the same tube.  A second wash of 0.75 ml buffer 

PE was added to the column and the column was allowed to stand for 2-5 minutes 

before being centrifuged.  The flow through was discarded again and the column 

placed back into the same tube and centrifuged once more to remove the residual 

wash buffer.  Then, the QIAquick column was placed into a clean 1.5 ml Eppendorf 

tube and 50 µl buffers EB (10 mM Tris HCl, pH 8.5) was added to the centre of the 

column.  The eluted DNA in solution was collected by centrifuging the column and 

then the flow through were concentrated in a rotary evaporator, at medium heat, until 

only 10 μl of liquid was left.  Purified DNA fragments were cloned into pJET1.2 as 

described in 2.14.2-6.  Alternatively, purified DNA was used directly for sequencing. 
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2.14.7 DNA Sequencing 

PCR products were either sequenced directly or after gel purification (as described in 

2.13.5).  Template (1 µl of PCR product) and primers (0.5 μl of 10 μM primers) were 

mixed in a 0.2 ml PCR tubes and sent to The GenePool Genomics and Bioinformatics 

Facility, Ashworth laboratories, the University Of Edinburgh.  Sanger sequencing was 

carried out by the GenePool using the BigDye-terminator V3.1.  Sequence files were 

returned in .ABI format and were aligned with Seqman II software (Lasergene 

Seqman, DNAStar). 

2.15 Reverse transcription polymerase chain reaction (RT-PCR) for 

gene expression analysis 

Expression analysis of LDL1 and VIP5 genes was done by RT-PCR. 

2.15.1 Trizol method of RNA extraction 

RNA extraction was done by a modification of the Trizol method described by 

(Chomczynski and Mackey, 1995) followed by purification on silica spun columns.  

Less than 100 mg of tissues, either fresh or frozen, were grounds in Trizol (1 ml /100 

mg of tissue) in mortar and pestle in the fume hood.  Blue pipette tips with the ends 

cut off were used to transfer ground tissue to Eppendorf tubes.  These were 

centrifuged at 13,000 x g for 10 min at 4
o
C.  The supernatant was taken and 0.2 

volume of CHCl3 added vortexed and spun for 15 min. at 4
o
C.  The supernatant was 

transferred to a clean tube and 100% ethanol was added to give a final concentration 

of 35% ethanol (i.e. for 500 µl supernatant 270 µl 100% ethanol was added).  The 

components were mixed well and up to 700 μl added to a spun column (Invitrogen 

Purelink RNA column).   The column was spun at 12,000 x g for 15 sec. at room 
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temperature.  The flow-through was discarded and more sample was loaded until all 

the sample has been through the column.  The flow-through was discarded and 700 µl 

of wash buffer I was added and spun.  The flow-through and collection tube were then 

discarded.  The column was put in a new collection tube and 500 µl of wash buffer II 

(with ethanol) was added, spun through the column and discarded.  This step with 

wash buffer II was repeated and the wash solution was again discarded.  The column 

was spun for 1 min to remove any remaining wash buffer.  It was transferred to new 

collection tube, 50 µl of RNase-free water was added to the column and it was spun 

for 1 min to elute the RNA.  The RNA sample was put on ice and the column was 

discarded.  An aliquot of the RNA solution (5 μl) was taken to estimate its 

concentration with a Nanodrop spectrophotometer and the rest was kept frozen at -

80
o
C or in liquid nitrogen.  The concentration was measured in a 2 µl aliquot using 

the Nanodrop.  A260 and A280 absorbance readings were also taken.  A 1 µg/µl solution 

of pure RNA should have an A260 of 25 and an A260/A280 ratio close to 2.0 in water. 

Because RNA is very susceptible to digestion by RNase, which is present on skin etc. 

and can survive even after autoclaving, several precautionary measures were taken.  

Tubes and pipette tips were used from newly opened bags and handled with gloves.  

Finally, RNA was dissolved in Diethylpyrocarbonate (DEPC)-treated water (RNase-

free).   

2.15.2 cDNA synthesis 

PCR tubes with caps and Eppendorf tubes were taken from newly opened bags, 

wrapped in Saran Wrap and irradiated on UV transilliminator for 1 min to destroy any 

RNAse contamination. 
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2.15.3 RT buffer, dNTPs and Oligo dT primer mix 

RT buffer, dNTPs and oligo dT primer were thawed. PCR tubes were on ice and 

contains the following reaction mix 

 

Components Volume 

RNA (1 µg total) 1.0 µl 

Oligo dT primer 

(100 µM) 
1.0 µl 

H2O (RNase-free 

water) 
3.0 µl 

 

Table 12: showing RT buffer, dNTPs and Oligo dT primer mix. 

Step 1 85
o
C 5 mins. 

Step 2 4
o
C On hold 

Step 3 25
o
C 5 min. 

Step 4 42
o
C 60 min. 

Step 5 70
o
C 10 min. 

Step 6 4
o
C On hold 

 

Table 13: showing RT-PCR programme. 
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Components Volume 

5X buffer 8.0 µl 

dNTPs 

(10 mM each) 
2.0 µl 

H2O (RNase-free 

water) 
17.0 µl 

RNase inhibitor 

(40U/μl) 
1.0 µl 

AMV RT (10U/μl) 3.0 µl 

 

Table 14:  showing RT cocktail mix. 

15 µl of cocktail mix was added to each of PCR tubes, mixed, spun again and the PCR programme 

continued.  When the PCR programme finished, 30 µl of H2O was added to each tube and stored at -

20
o
C before PCR. 
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Constituents Volume Description 

10X buffer 1.0 µl 
Standard 10X 

buffer 

2.5 mM of each 

dNTPs 
0.2 µl Rova lab. 

Forward primer (10 

μM) 
0.2 µl IDT 

Reverse primer 

(10μM) 
0.2 µl IDT 

Taq polymerase 

(5U/μl) 
0.1 µl  

cDNA 3.0  

H2O 5.3 µl RNase-free water 

TOTAL 10 µl  

 

Table 15: showing protocols for RT-PCR. 
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Step 1 94 
o
C 1 min. 

Step 2 94 
o
C 10 secs. 

Step 3 Ta 
o
C 15 secs. 

Step 4 72 
o
C 35 sec. 

Step 5 Go to step 2 20X 

Step 6 4 
o
C On hold 

Step 7 Go to step 2 25X 

Step 8 4 
o
C On hold 

Step 9 Go to step 2 30X 

Step 10 72 
o
C 10 min. 

Step 11 End  

 

Table 16: showing RT-PCR programme 
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2.16 5’-RACE (rapid amplification of cDNA ends) 

When reverse transcriptase reaches the 5’ end of the mRNA, it adds oligo (dC) to the 

3’ end of the cDNA (manganese ions are essential for this activity) (Goldschmidt et 

al., 2006).  The Smart II oligo anneals to this GGG extension, providing a template for 

reverse transcriptase to continue cDNA synthesis, incorporating the complement of 

the Smart II oligo at the end of cDNA.  

Amplification is carried out with a mixture of UPML and UPML. The L “long” 

primer anneals to most of the Smart II sequence and S “Short” primer to its 5’ part.  A 

mixture of these primers is used in a first-round of amplification with a gene-specific 

primer.  If necessary nested PCR was carried out with NUP (nested upstream primer) 

and a gene-specific primer closer to the 5’ end of transcript. 
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Name Sequence Tm 

(
0
C) 

SMARTII 5’-AAGCAGTGGTAACAACGCAGAGTACGCGGG-3’ 62 

NUP 5’-AAGCAGTGGTAACAACGCAGAGT-3’ 62 

UPML 5’-

CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT-3’ 
62 

UPMS 5’-CTAATACGACTCACTATAGGGC-3’ 62 

GSP1 5’-GAGGAGGAGGAAGAGGAAGAGGCTGA-3’ 62 

GSP2  5’-CTTCTTCAATATTTTGCTCCGATTGG-3’ 62 

 

Table 17: showing primers for 5’ RACE. 
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Components Volume 

Oligo dT (30 µM) 1.0 µl 

dNTPs (10 mM each) 1.0 µl 

Smart II oligo (30 µM) 1.0 µl 

RNA (1 µg total RNA) 1.0 µl 

H2O 11.5 µl 

 14.5 µl 

 

Table 18: showing reaction mix for 5’ RACE. 

 

Components Volume 

5X RT buffer 4.0 µl 

0.1M DTT 2.0 µl 

BSA (10 mg/ml) 0.5 µl 

MnCl2 (80 mM) 0.5 µl 

RNase inhibitor 

(40U/μl) 
0.5 µl 

Superscript II RT (200 

U/ µl) 
1.0 µl 

TOTAL 8.5 µl 

 

Table 19:  showing cocktail mix. 

This mix was always kept on ice. 
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Temp.(
 0

C ) Time 

80  3 min. 

4 On hold 

25 3 min 

42 60 min. 

4 On hold 

 

Table 20:  showing PCR programme for 5’ RACE. 

 

Components Volume 

10X yellow PCR buffer 2.0 µl 

dNTPs (10 mM) 0.4 µl 

UP primer mix
1
 0.4 µl 

GSP1(10 µM)
2 

0.4 µl 

cDNA template 2.0 µl 

Taq (5U/μl) 0.1 µl 

H2O 14.7 µl 

TOTAL 20.0 

 

Table 21:  showing constituents of first round PCR with cDNA. 

1:
 This is a mixture of 10 µl of 10 µM UPMS, 2 µl of 10 µM UPML and 88 µl H2O. 

2:
  More downstream of gene-specific primers. 
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A normal PCR programme, as described in 2.12.3, was used with annealing temperature of 62
0
C.  

Because transcription can be initiated at different positions, slightly fuzzy bands were expected.  

Because there were number of visible bands, nested PCR was done to increase specificity.  First-round 

PCR was diluted (~1:100 with water) and 1 µl of this dilution used in PCR with GSP2 and NUP (at 

usual concentrations). 
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2.16.1 Purification of cDNA free of Oligos using Qiaquick gel extraction kit 

Purification of the cDNA was done with a Qiaquick Gel Extraction Kit to remove 

oligonucleotides that might interfere with amplification.  Buffer QG (60 µl from the 

gel extraction kit) was added to each RT reaction and mixed well.  Isopropanol (20 µl) 

was added to each reaction and again mixed well.  The liquid was loaded onto a spun 

column in a collection tube and spun for 1 min at 17, 0000 x g.  The flow-through was 

reloaded and again spun and discarded.   PE (0.75 ml with added ethanol) was added 

to column to give it a wash.  It was left for 2 min and then spun and the liquid 

discarded.  This washing step was repeated once more.  The column was put in a 

clean Eppendorf tube with its lid cut off and 50 µl H2O was added and kept for 1 min. 

and spun.  The column was discarded and flow through was stored at -20
0
C. 
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2.17 Gateway Cloning  

2.17.1 To Create a Gateway Entry Clone 

The LDL1 allele from parent 4D1 (genomic DNA) was amplified by PCR and 

transferred to a T-DNA binary vector using Gateway recombination.  This involved 

three steps,  

Step One – To produce PCR product 

The LDL1 allele was amplified by PCR as described in 2.12.2 (Table 6), except that 

Q5 proof-reading polymerase (New England Bio labs) was used to reduce the chance 

of PCR-generated mutations. 

Step Two – To perform the TOPO Cloning Reaction 

The PCR product was cloned in the plasmid vector pENTR dTOPO 

(http://www.lifetechnologies.com/order/catalog/product/K240020). This uses 

topoisomerase, rather than ligase, to join the vector and PCR product.  The 

components were mixed gently and incubated for 5 minutes at room temperature and 

then kept on ice while proceeding to next step. 

Step Three - Transformation of E. coli 

Competent E. coli cells (section 2.14.2) were thawed and mixed with 2 µl of the 

TOPO cloning reaction.  The mix was incubated on ice for around 20 minutes.  Cells 

were then heat shocked for 30 sec. at 42°C without shaking and tubes transferred to 

ice immediately.  Super Optimal broth with Catabolite repression (SOC) medium (1 

ml) was added and cells incubated at 37°C for 1 hour with shaking.  The bacterial 

culture was spread on LB agar plates containing 100 µg/ml kanamycin sulphate and 

http://www.lifetechnologies.com/order/catalog/product/K240020
http://en.wikipedia.org/wiki/Catabolite_repression
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incubated overnight at 37°C.  Colonies were assessed for the presence of the correct 

insert by colony PCR (section 2.14.5) using LDL1 primers.  An overnight culture of a 

positive clone was grown in 5 ml of LB with 100 μM kanamycin and the plasmid 

extracted using a Qiagen Qiaprep spin mini kit.  The insert of the plasmid was 

sequenced with the same primers used to sequence PCR products from genomic 

DNA, to validate the absence of PCR-generated mutations. 

2.17.2 LR Clonase Reaction 

The cloning site in the pENTR D-TOPO vector is flanked by attL recombination sites 

(attL1 and attL2).  This allows the insert to be transferred to a Gateway vector 

carrying attR sequences by recombination with a commercial mixture of recombinase 

enzymes (LR Clonase, Invitrogen).  The following components were added to 1.5 ml 

Eppendorf tube at room temperature and mixed.  

1 

pENTR/D-TOPO donor 

plasmid (~150 ng/μl) 

1 μl 

2 

pGWB1 acceptor plasmid 

(150 ng/µl) 

1 μl 

3 TE buffer, pH 8.0 8 μl 

4 Total 10 μl 

 

The LR Clonase™ II enzyme was thawed on ice for about 2 minutes and vortexed 

briefly twice to mix (2 seconds each time).  2 µl of the enzyme mix was then added to 

the above reaction mix, vortexed twice and micro-centrifuged.  The reaction was 

incubated for 1 hour at 25°C in a PCR machine.  1 µl of the Proteinase K solution 
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supplied with the Clonase was then added to the mix to terminate the reaction.  The 

sample was mixed and incubated at 37°C for 10 minutes. 

2.17.3 Transformation 

1 µl of each LR reaction was transformed into 50 µl of competent DH5 cells and 

100 µl of each transformation were spread onto selective plates containing 100 µg/ml 

kanamycin and 50 μg/ml hygromycin (pGWB1 encodes resistance to both antibiotics, 

but the pENTR dTOPO donor also encodes kanamycin resistance).  Colonies were 

screened for the insert by PCR and the recombinant plasmid was extracted and 

transformed into Agrobacterium with the freeze-thaw method.  No control was used in 

this case. 
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Reagent Volume 

Fresh PCR product 3 µl 

Salt Solution 1 µl 

Dilute Salt Solution -- 

Sterile Water 5 µl to a final volume of 5 µl 

pENTR/D-TOPO Vector 1 µl 

Total volume 10 µl 

 

Table 22: Constituents of TOPO Cloning Reaction. 
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2.17.4 Agrobacterium strain GV3101:  

This strain carries resistant to gentamycin, encoded by the binary helper plasmid, and 

rifampicin encoded in the bacterial chromosome, therefore, 50 µg/ml Gentamycin and 

10 µg/ ml rifampicin were added to LB broth or agar for selection.  GV3101 is 

sensitive to kanamycin, so is a good strain for use with binary vectors that confer 

kanamycin resistance (or chloramphenicol resistance) in bacteria.  The binary helper 

plasmid consists of a disarmed Ti plasmid that possesses the virulence genes needed 

for T-DNA transfer but has no functional T-DNA region of its own.  The strain was 

grown at 28-30°C and stored as glycerol stock (800 ml of fresh overnight culture + 

200 µl sterile 80% glycerol) at -80°C.  

2.18 Transformation of A. tumefaciens with plasmid DNA (binary 

vector system) 

A freeze/thaw shock transformation method was used for transformation of GV3101, 

thus eliminating the need for the old genetic method of transferring a plasmid 

maintained in E. coli by tri-parental mating. 

2.18.1 Freeze/thaw shock transformation  

A single colony of GV3101 was picked and was and inoculated into 3 ml of LB with 

gentamycin and rifampicin in a 15 ml snap-cap tube.  It was grown at 30°C overnight 

in a shaking incubator.  50 ml of LB with antibiotics was inoculated in a 250 ml flask 

with 0.5 ml (1/100 volume) of the overnight culture and grow at 30°C for around 4 

hours until it reached mid-log phase (an OD600 between 0.5 and 1.0).  The culture 

was chilled for 5-10 min on ice and centrifuged at 3000 x g for 5 min at 4°C in 
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chilled, sterile centrifuge tubes.  The supernatant was discarded and the tube drained 

tube by keeping them inverted for 30-60 seconds.  The bacteria were resuspended in 1 

ml of ice cold 20 mM CaCl2 and 0.1 ml of bacterial suspension was dispensed into 

pre-chilled 1.5 ml Eppendorf tubes on ice, frozen in liquid nitrogen and stored at -

80°C.  For transformation, cell suspensions were allowed to thaw on ice; around 1 µg 

of plasmid DNA was added and mixed gently.  Tubes were then frozen in liquid 

nitrogen and thawed in a water bath at 37°C for 5 min.  One ml of LB was added to 

each tube, and the suspension transferred it to a 15 ml snap-cap tube and incubated for 

~2 hours in a shaking incubator at 30°C.  The mix was then transferred into a 1.5 ml 

microfuge tube and spun at 13,000 xg for 5 minutes to pellet cells.  Most of the 

supernatant was discarded, the pellet resuspended in the remainder and spread onto 

LB plates with antibiotic selection (100 μg/ml kanamycin, 50 μg/ml gentamycin).  

Plates were incubated at 30°C and transformed colonies became visible on the second 

day of incubation.  The presence of the correct T-DNA was confirmed by colony 

PCR. 

2.18.2 Floral Dip of Arabidopsis transformation 

This method was adapted from (Clough and Bent, 1998).  Plants were dipped once the 

first flowers had started to open.  Three days prior to plant transformation, 5-ml of 

liquid culture of Agrobacterium carrying a binary vector was inoculated and incubated 

at 28ºC with vigorous agitation.  LB medium was used containing antibiotics that 

select both the Ti and the T-DNA plasmids (gentamycin and kanamycin, 

respectively).  After 2 days, 200 ml of LB medium was inoculated with 1 ml of the 

pre-culture and incubated again with vigorous agitation for an additional 24 hours at 

28ºC.  Agrobacterium was pelleted by centrifuging at 6 000 rpm in a GSA rotor and 
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the cell pellet resuspended in 400 ml of 5% sucrose solution with 0.1% Silwet.  The 

suspension was transferred to the lid from a box of disposable pipette tips and plants 

were inverted to dip the inflorescence shoots into the suspension and allowed to soak 

for ~30 seconds.  After dipping, the pots were laid on their sides and covered with a 

transparent propagator for the 24 hours.  After 24 hours, the covers were removed and 

the plants stood upright.  Plants were dipped again after 1 week.  Seeds were collected 

about 3 weeks later. No selection of transformed plants was done due to shortage of 

time. 
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3.0 RESULTS AND DISCUSSION 

3.1 Growth rate variation, anthocyanin synthesis and herbivory in 

plants of F3 and F5 populations. 

3.2 Introduction  

Heritable variation had been found in the growth rate and flowering times of local 

accessions of Arabidopsis (Figure 6).  These accessions had been collected from in 

and around Edinburgh.  Evidence had also been found that some local genotypes grew 

faster, relative to the genotypes as a whole, in spring compared to autumn (Figure 7), 

suggesting that variation in local populations might be maintained by adaptation to 

factors that varied between season.  However some genotypes remained fast or slow 

growing in both seasons.  This suggested that the local accessions might differ for 

genes that affect growth rate in both spring and autumn or that affect growth more in 

one season than the other.  A major aim of this chapter was to study the inheritance of 

growth rate variation in a hybrid population between local accessions that responded 

differently to season and to test how different genes might respond to season by 

growing recombinant offspring under different field conditions.  Plants grown in the 

field were also seen to produce different levels of anthocyanin pigment in response to 

freezing temperature and to show different levels of herbivore damage.  The 

heritability of these traits was also examined and tested for correlation to growth rate 

and flowering time.  Different genotypes also flowered at different times in the field 

and responded differently to vernalization (the effects of low temperature on 
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flowering), so could flower later than others in one season but before others in another 

season.   

Growth of plants responds to both external and internal factors and final plant size 

results from integration of both environmental and genetic factors (Granier and 

Tardieu, 2009).  Natural genetic variation has been reported for different growth rate 

parameters that vary from few to many times (Koornneef et al., 2004). Genetic 

variation in growth rate, measured using digital images of rosette area has also been 

described in Arabidopsis (Leister et al., 1999).  High growth rate has been reported to 

be positively correlated with the fitness of plants (Milla et al., 2009).  Correlations 

have also been found between growth rate parameters and other aspects of plant 

behaviour.  These include positive correlations between stable carbon isotope ratios 

and flowering time (McKay et al., 2003).  Genetic variation has also been assessed in 

Arabidopsis grown in variable environments differing mainly in mineral content like 

phosphorus and nitrogen (Loudet et al., 2003a; Rauh et al., 2002)
.
  Because 

Arabidopsis is a member of the Brassicaceae, an economically important family, 

genes involved in growth rate variation in Arabidopsis may be relevant to crop 

breeding programmes.  

The ability of a plant to maintain fitness despite herbivore damage is expected to 

change during the life cycle of a plant as it is linked to growth and resources available 

for growth (Tucker and Avila-Sakar, 2010).  Studying correlations between herbivory 

and growth rate and flowering time might reveal interactions between plant 

development and herbivory. 

Attraction of pollinators and seed dispersers are major functions of coloured 

anthocyanin in plants.  Anthocyanins also provide protection against UV (Sarma and 
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Sharma, 1999) and cold temperature (Christie et al., 1994).  They are also produced in 

response to microbial attack (Lorenc-Kukula et al., 2005) and drought (Castellarin et 

al., 2007).  Scoring anthocyanin productions in response to cold stress is a part of this 

study. 
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3.3 Growth rate variations in control conditions 

 

 

Figure 6: Growth rate variations within and between different lines in local 

accessions of Arabidopsis thaliana.  

Variation in growth rate was observed not only in the plants of different lines (due to difference in 

environmental conditions and genotype) but also in the plants of the same line (due to non-genetic 

variation, including environmental conditions).  Most of the variation in this case occurred within lines, 

showing that the trait is highly heritable. Images from (Lim and Hudson, 2013). 
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Figure 7: Growth of plants in different seasons.  

Each point represents the mean growth rate of one genotype (± SEM) under autumn compared to spring 

conditions.  Different genotype responded differently when they were grown in spring or autumn.  

Some showed better growth, relative to the rest of the plants, in both spring and autumn whereas some 

showed poor growth in both seasons.  Others performed better in spring or in autumn.  (Figure from 

(Lim and Hudson, 2013).  

 

 

(Area in mm2) 
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3.4 Mapping of growth rate genes  

A fast growing accession of Arabidopsis thaliana, 11C1 was crossed to slow growing 

4D1 as female to get F1 progeny and F1 lines were allowed to self-pollinate for a 

further four generations to get F5 families.  F3 and F5 plants were used in my project 

(Figure 8).  Because members of an F3 or F5 family are more genetically similar to 

each other than they are to other families in the same generation, they can be used to 

replicate similar genotypes either under the same conditions, to give a better estimate 

of the mean phenotype (e.g., growth rate) for the genotype, or under different 

conditions, to examine the responses of genotypes to the environment. 

Earlier results had indicated that 11C1 is faster growing both under long day and short 

day conditions than the mother, 4D1.  To map growth rate genes, the F3 generation 

were grown in a greenhouse (controlled conditions) and outside (natural conditions) in 

both spring and autumn.  Similarly, F5 plants were grown in a growth room 

(controlled conditions) and outside (natural conditions) in both seasons.  F3 families 

were used in initial QTL analysis whereas F5 lines were used in bulk-segregant 

analysis.  Pedigrees of both parents and offspring used in the experiments are shown 

in Figure 8. 
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Figure 8: Pedigree of parent plants and offspring used in experiments. 

This figure shows production of populations from F1 to F5.  A single plant from each family was 

allowed to self-pollinate in the F2 generation.  The seeds of more than one member of each F3 family 

were harvested separately to grow F4 families; therefore some families in the F4 and F5 generations are 

more closely related to each other than to the rest.  Each F5 family was produced from the bulked seeds 

of five members of an F4 family.  Therefore the frequency of F5 families carrying both parental alleles 

is usually lower than 50%. 
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3.4.1 Estimation of plant growth in a greenhouse (controlled conditions) of 

F3 population 

In the green house, 71 F3 hybrid lines were grown in autumn (GH1) and 82 lines in 

spring (GH2) with five members of each line.  Plants of each line were randomised in 

different trays for observation to minimise the effects of environmental variation 

within the greenhouse on the mean growth rate of each line.  The two parent lines 

were also grown.  Plant rosette areas were estimated with Adobe Photoshop and 

Image Tool in mm
2
.  Area was used as a proxy for growth rate because it had been 

shown to be more heritable than estimates of relative growth rate made from two or 

more rosette area estimates and because the increase in rosette area with time is closer 

to linear than the exponential rate assumed in calculation of relative growth rate (Poay 

Lim, personal communication).  In GH1 conditions, plants showed transgressive 

segregation for growth rate - some plants showed a growth rate that was higher than 

the 11C1 parents; others grew slower than the 4D1 parent (Figure 9a).  This suggests 

that the parents carry different combinations of alleles that increase or decrease 

growth in autumn conditions, so that some of their offspring can inherit more 

increasing or decreasing alleles than were present in one of their parents.  In spring, 

however, 11C1 grew faster than all the F3 lines (Figure 9b), suggesting that 11C1 

carries mainly genes that, under spring conditions, increase growth. 

3.4.2 Estimation of plant growth in outside garden (natural conditions) of 

F3 population. 

A set of 87 F3 lines was grown outside in autumn and another set of 80 lines in spring 

with five members of each line.  Plants were grown in standard compost in pots, to 
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minimise any differences in substrate, and pots were randomised as in the greenhouse.  

A near-normal distribution of plant areas was again seen (Figure 9c and 9d).  

Transgressive segregation was again observed, suggesting that both parents may 

contain fast and slow alleles of growth rate genes. 

3.4.3 Estimation of plant growth in an outside garden (natural conditions) 

of F5 population. 

Eighty-nine lines were grown in the outside garden in spring (OS3) and autumn (OS4) 

with five members of each line.  The populations showed transgressive segregation 

for growth rate (Figure 10a and 10b).  This suggests that the parents carry different 

combinations of alleles that increase or decrease growth in outside autumn and spring 

conditions. 

3.4.4 Estimation of plant growth rates in a growth room (control 

conditions) for the F5 population. 

The 89 F5 lines were grown in spring (GR1) and autumn (GR2) in a growth-room 

with five members of each line.  In GR1 and GR2 plants showed transgressive 

segregation for growth rate.  Some plants showed a growth rate that was higher than 

the 11C1 parents; others grew slower than the 4D1 parent (Figure 10c and 10d). This 

suggests that the parents carry different combinations of alleles that increase or 

decrease growth in control conditions of growth room in autumn and spring. 

Though transgressive segregation was observed in F3 and F5 populations in all 

conditions there were differences between the sets of plants (Figure 9 and 10).  For 

the F3 population grown in the green house both in autumn and spring and in natural 

conditions in spring most of hybrid lines are skewed to lower values than the parental 
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lines, compared to natural conditions in autumn where most of the hybrids are in 

between the parental lines (Figure 9).  This suggests that alleles of the genes that 

underlie differences in natural conditions (autumn) are mostly distributed so that the 

fast parent has the increasing alleles and the slow parent the decreasing alleles.  For 

the genes that determine growth of F3 population in other conditions, the alleles are 

more mixed in their distribution between parents.  However, in the F5 population the 

parents grow faster than most of hybrids in natural conditions in spring compared to 

autumn and in growth room in both seasons where most of the hybrids are in between 

parental lines (Figure 10).  These results suggest that genes that underlie variation in 

growth rate in the growth room (both in autumn and spring) and in autumn when 

grown in natural conditions have a more mixed distribution between parents than the 

genes expressed in natural conditions in spring. 
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Figure 9: Variation in growth rate in (a) green house (autumn) and (b) green house (spring) and (c) natural conditions (autumn) and (d) 

natural conditions (spring).   

These graphs showed the distribution of mean rosette areas (mm
2
) with (± SEM) of 5 plants of each F3 line (blue bars) including parental lines in the 6

th
 week after sowing 

(parental lines are shown in red bars).  Transgressive segregation was observed in F3 lines in both autumn and spring seasons in the green house and natural conditions, 

suggesting that parental lines contain both fast and slow alleles of growth rate genes. 
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Figure 10: Growth rate variation in plants of F5 population with (± SEM) grown in (a) natural conditions (spring) and (b) natural 

conditions (autumn) and (c) growth room (spring) and (b) growth room (autumn).  

These variations in growth rate of F5 lines (blue bars) in growth room and natural conditions in both seasons suggest that parental lines (shown in red bars) contain mixtures 

of fast and slow alleles of growth rate genes.   
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3.4.5 Growth rate variation within an experiment  

F3 lines growing in the green house in autumn were analysed for area after weeks 6 and 7.  

The mean area measurements for families on these two dates were correlated, but only 

loosely (Figure 11). These results suggest either that there is a significant error in estimating 

rosette area at one or both time-points and that growth rate is not constant for all lines during 

the experiment. 



100 

  

 

 

Figure 11: Comparison rosette areas for F3 families in the green house in week 6 and 7. 

Although areas at week 7 and week 6 are correlated, there is considerable variation around the regression line with p (uncorr) = 2× 10
-8

 and r= 0.63.  Values are mean rosette 

areas of 5 F3 plants. 
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3.5 Heritability 

If members of the same lines are genetically identical, the differences in growth 

within a line will only be due to non-genetic differences (“environment”) while 

variation between lines will be due to genetics and environment (Figure 6).  The 

broad-sense heritability of a character can therefore be estimated as the proportion of 

the total variance that occurs between lines.  However, although members of an F3 

line are more closely related to each other than to other F3 lines, they are not 

genetically identical - 50% of families on average will segregate for each QTL (Figure 

12).  Although heterozygosity will be lower in the F5 lines, 25% of families will have 

a mixture of genotypes at each QTL locus (each family consists of the bulked 

offspring of five F3 parents).  Therefore, some of the variations within each line will 

be due to genetics, rather than environment.  Therefore, estimates of heritability (H
2
) 

values from F3 and F5 will probably be the underestimates and the estimates should 

be lower for the F3 than the F5.  Estimates of between-family variance also do not 

take into account any environmental effects on the seeds, because the seeds of a line 

were produced on the same parent at the same time.  This might increase the estimate 

of heritability.  However, previous studies have found that these maternal effects are 

low (Mousseau and Fox, 1998). 
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Figure 12: 50% families do not segregate in F3 (only for one locus) 

Calculation of heritability is done with following formula, 

Heritability (H
2
) = Variance between plant lines / Total variance 
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Population and 

seasons 

Natural (outside) 

conditions 

Green house 

conditions 

Growth room 

conditions 

F3 autumn 56% 54% -- 

F3 spring 72% 86% -- 

F5 spring 86% -- 80% 

F5 autumn 80% -- 80% 

 

Table 23:  Heritability estimates for F3 and F5 populations in different 

environmental conditions and seasons.  

These values are conservative as not all lines in F3 and F5 populations are genetically identical, as 

assumed while calculating these values. 
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Heritability of growth rate for the F3 generation in the green house was estimated as 54% in 

autumn, and 86% in spring.  It was similar outside in autumn (56%) and lowers than in the 

greenhouse (72%) in spring (Table 23).  In general higher heritability was observed in spring 

compared to autumn.  One possible explanation for this is that autumn plants grew for a 

longer period over winter and therefore had more opportunity to be affected differently by 

environmental factors.  For the F5 population heritability estimates ranged from 80% to 86% 

(Table 23).  These were generally higher than for the F3 population, as expected because of 

the lower frequency of segregating families in this generation.  Again, estimates for 

populations grown outside were higher in spring, presumably because they have shorter life 

cycles in spring.  This is supported by the similarity of the values for the growth room 

(controlled conditions) in both seasons.  These heritability values always give minimum 

estimates as we assume that all members of same line are genetically identical. 

3.6 Growth rate correlations 

If the same genes determine growth rate variation under different conditions, then the growth 

rates of families under different conditions should be correlated.  Growth rate correlations 

between lines of F3 and F5 populations grown under different environmental conditions were 

tested. 

3.6.1 Growth rate correlations between lines of F3 population 

Correlations were examined between the growth rates of F3 lines grown in green house and 

natural conditions in autumn and spring.  
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TRAITS GH1 

Green house autumn (GH1) p r GH2 

Green house spring (GH2) 0.70 0.04 p r OS1 

Natural conditions autumn (OS1) 0.07 0.21 0.96 0.004 p r 

Natural conditions spring (OS2) 0.01 0.28 0.24 0.13 0.07 0.12 

 

Table 24:  Growth rate correlations between F3 lines in different environmental 

conditions and seasons. 

Mean area values for each family were used in each condition of growth.  Non-significant correlations suggest 

the involvement different genes in growth in different conditions or high non-genetic components of variation. 
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 No significant correlation was observed between GH1 and GH2 [p (uncorr) = 0.70 and 

r=0.04], GH2 and OS2 [p (uncorr) = 0.24 and r = 0.13], and GH2 and OS1 [p (uncorr) = 0.96 

and r = 0.004] (Table 20).  Significant but low correlations were seen between (OS1 and OS2 

[p (uncorr) = 0.0.07 and r =0.12], GH1 and OS1 [p (uncorr) = 0.07 and r = 0.21] and GH1 

and OS2 [p (uncorr) = 0.01 and r =0.28] (Table 24).  This suggests either that different genes 

are involved in growth of plants in different seasons and also in different environmental 

conditions.  Alternatively, the environmental component of variance might be high enough to 

hide any genetically determined correlation.  When the same plants were compared at two 

different times OS1 (November) and OS1 (March), correlations were significant and higher 

(p (uncorr) = 2.1E-06 and r= 0.48).  Although it is not surprising that plants that were large in 

autumn remained large in spring, and vice versa, the relatively low level of correlation 

suggests that environmental variance is high. 

The growth rate values for the F3 lines were used together with their genotypes to test for 

growth rate QTL under the different conditions. 

3.6.2 Growth rate correlations between lines of F5 population 

Correlations were also examined between the growth rates of F5 lines grown in natural and 

growth room conditions in both autumn and spring.  If different genes are involved in growth 

rate in different conditions, then the fastest growing plant in one condition might not be the 

fastest growing in other conditions and vice versa. 

 

 



107 

  

 

 

TRAITS GR1 

Growth room spring (GR1) p r GR2 

Growth room autumn (GR2) 0.003 0.30 p r OS3 

Natural conditions spring (OS3) 2.6 ×  10
-9

 0.58 0.07 0.19 p r 

Natural conditions autumn (OS4) 0.003 0.30 3.5 ×  10
-5

 0.42 0.001 0.33 

 

Table 25:  Growth rate correlations between F5 lines in different environmental conditions and seasons. 

Mean values for family rosette area were used.  High correlation values suggest the involvement of similar genes in growth rate in different conditions. 
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Relatively high correlations (r>0.30) were seen in all cases except OS3 and GH1 

(r=0.19; Table 25).  These suggest that the same genes might affect growth rate 

in different environmental conditions in autumn and spring.  Correlations are 

generally higher in the F5 than in the F3.  This can be explained that there will 

be more homozygous families for growth rate QTL in F5 population compared 

to the F3.  These growth rate values of F5 lines were used in the bulk-segregant 

analysis described later.  

3.6.3 Growth rate and flowering time correlations of F5 population 

Correlations were also examined between growth rates and flowering time of F5 

lines grown in growth room and natural conditions in autumn and spring (Table 

26).  Significant correlations were observed between growth rates and flowering 

time of lines grown in natural conditions and between lines grown in natural 

conditions and growth room (Table 26; r>0.32) suggesting the involvement of 

similar genes in growth rate and flowering time in different conditions.  

However, no significant correlation was found between growth rate and 

flowering time in other sets of plants in the F5 population (Table 26) which 

suggest the involvement of different genes in growth rate and flowering time in 

growth room and natural conditions.  Similarly, no significant correlations were 

found between flowering times of F5 plants grown in natural conditions and 

growth room in autumn (data not shown). 
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Traits 

Natural conditions autumn 

(OS4)-flowering time 

p r 

Natural conditions autumn (OS4)-

growth rate 
0.0001 0.39 

Growth room autumn 

(GR2)-flowering time 

p r 

Natural conditions spring (OS3)-

growth rate 0.59 0.05 0.34 -0.1 

Growth room autumn (GR2)-

growth rate 0.001 0.32 0.33 0.10 

Growth room spring (GR1)-

growth rate 
0.21 0.13 0.59 0.05 

 

Table 26: Growth rate and flowering time correlations between F5 lines in 

different environmental conditions in autumn. 

Mean values for family rosette areas were used as an estimate of growth rate and mean family 

values for the number of leaves were used as flowering time estimates.  High correlation values 

suggest the involvement of similar genes in growth rate and flowering time in different 

conditions. 
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3.7 Anthocyanin production 

Plant leaves change their colour in winter mainly due to the anthocyanin 

production, which can therefore be considered as marker for cold stress.  Some 

members of the set of 87 F3 lines that were grown outside from October 

produced anthocyanin during the winter.  Anthocyanin production was scored at 

the end of January on a scale of 1-5 from green (Fig. 13c) to purple (Fig. 13d) 

by comparing images of plants.  A heritability value of 48% was found for this 

trait.  This trait data was also used in QTL analysis, as described later.  A 

significant correlation was found between anthocyanin production and growth 

rate of plants in natural condition in autumn (Table 27) suggesting that faster 

growing plants tend to produce more anthocyanin. 
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Trait Green house 

(autumn) 

Green house 

(spring) 

Natural 

conditions 

(autumn) 

Natural 

conditions 

(spring) 

Flowering 

time-natural 

conditions-

spring 

Flowering 

time-growth 

room-spring 

Anthocyanin 

in autumn 

 p r p r p r p r p r p r p r 

Anthocyanin 

production 
0.17 0.16 0.28 0.13 0.02 0.27 0.50 0.08 0.64 -0.10 0.39 0.19 

  

Herbivory 

0.40 0.10 0.30 0.12 0.05 0.23 0.88 -0.01 0.006 -0.57 0.74 -0.07 0.31 0.23 

 

Table 27:  Anthocyanin synthesis and herbivory correlations with growth rates and flowering times of F3 lines.  

Significant correlation between anthocyanin production and growth rate suggest that fast growing plants tends to produce more anthocyanin. Negative significant correlation 

between herbivory and flowering time suggests that early flowering plants are more susceptible to herbivory. 
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3.8 Herbivory  

Between October and January, herbivores, probably slugs, attacked and damaged 

plants in the field (Figure 13a, b).  Most of the plants were eaten either partially or 

totally.  The percentage area of each plant eaten was estimate as the difference in the 

predicted area in January (estimated by regression of January and October rosette 

areas for uneaten plants – see Materials & Methods) and the area remaining.  A 

minimum heritability estimate of 48% was found for this trait.  The data for this trait 

are used later in QTL analysis. Plants were randomly placed in the garden and there 

were no protective measures against slugs. However, herbivory may rely on the other 

factors like positioning of plants as well.   A significant correlation was found 

between herbivory of families and their growth rates (Table 27), suggesting that faster 

growing plants are more susceptible or perhaps more attractive to herbivory.  A 

significant negative correlation was also found between herbivory and flowering time 

(Table 27), suggest that earlier flowering plants are more susceptible to herbivory. 
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Figure 13: Herbivory and anthocyanin production 

a) shows a plant in October that was partly eaten by January (b).  (c) is an example of a plant 

with the lowest level of anthocyanin in January and (d) a plant with the highest level.  

a 
b 

c d 
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3.9 Discussion 

Relatively high heritability estimates for growth rate of either F3 or F5 populations 

showed that much of the variation, in either controlled or natural conditions, is 

genetically determined. 

Higher heritability in growth rates was observed in spring than autumn in both F3 

and F5 populations, in both natural conditions and in more uniform environmental 

conditions of the greenhouse and growth room.  This trend of higher heritability of 

growth rate variation in spring than autumn continued with same pattern at different 

time points of plants growth.  There is evidence that spring phenology has a strong 

genetic component in perennial plants (Pellis et al., 2004; Tsarouhas et al., 2003; 

Weih, 2009) and this might affect productivity, because it enables the plants to use 

the conditions that are more favourable during spring and early summer than in 

autumn.  Autumn phenology is closely linked to frost in many plants and a 

correlation between frost resistance and low growth or growth cessation has been 

confirmed in perennial plants (Ögren, 1999).  The nitrogen contents of plants are also 

positively related to plants survival in winter and shoot growth in spring (Chapin et 

al., 1990).  There is also evidence that Arabidopsis shows inherently high growth rate 

when grown in favourable conditions (Grime and Hunt, 1975; Poorter and Remkes, 

1990). 

In the F3 population, growth rate of plants grown in the green house in autumn were 

significantly correlated with plants grown in natural conditions in autumn and spring.  

Similarly, plants grown in autumn and spring in natural conditions were also 

significantly correlated with each other.  These results support the idea of 

involvement of similar genes in plants growth in different conditions.  No significant 
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correlation in growth rate in other plants sets of F3 generation suggest that there 

might be different genetic factors involved in growth in different conditions.  

Significant correlations in growth rate were observed for all sets of plants grown in 

both natural conditions and the growth room in autumn and spring for F5 

populations.  This again suggests that similar genetic factors might be involved in 

growth rate in different conditions. 

High broad-sense heritability estimate of anthocyanin production shows that it is also 

genetically determined trait.  Anthocyanin production was significantly correlated 

with the growth rate of plants outside in winter.  This means that fast growing plants 

tends to produce more anthocyanin and vice versa.  This also suggests the 

involvement of similar genes in growth rate and anthocyanin production.  One 

possibility is that the same genes control anthocyanin production and growth in 

parallel.  So, for example, plants that are better adapted to low temperature respond 

by maintaining their growth and producing more anthocyanin.  Alternatively, the 

underlying genes might affect anthocyanin production, which then affects growth or 

vice versa.  This hypothesis could be tested by studying the effects of anthocyanin 

mutations on growth rate or the effects of isolated growth rate QTL on anthocyanin 

production. 

The results also showed that susceptibility to herbivory is also heritable trait.  A 

variety of herbivores use plants as food and different plants have different methods to 

tackle these attacks and survive.  At the individual level, these herbivores have 

negative effect on plant growth, reproduction and survival (Crawley, 2009).  Plants 

use both direct and indirect strategies of defence to herbivores (Snoeren et al., 2010).  

Indirect defence in plants has been studied extensively (Arimura et al., 2005; Dicke 
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et al., 2009).  The epicuticular wax loads, trichomes or glucosinolate levels are the 

direct defence methods for plants and are proved to be  natural variation in these 

traits in Arabidopsis thaliana (Reymond et al., 2004).  These direct methods of 

defence might explain the observed variation in leaf consumption of Arabidopsis by 

insect herbivores (Mewis et al., 2005).  Genetic variation has also been reported for 

resistance to herbivores (Broekgaarden et al., 2008; Kusnierczyk et al., 2007; 

Steppuhn et al., 2008). 

Herbivory was significantly correlated with growth rate (faster growing plants tended 

to be more susceptible) and it showed a significant negative correlation with 

flowering time (earlier flowering plants were more susceptible).  Again this 

correlation can be explained if the same genes (linked genes) affect more than one 

trait.  It is possible that either traits respond to the same gene, or that variation in 

growth rate or flowering time affect herbivory, or vice versa.  For example, the 

transition to flowering might involve an increase in compounds that are attractive to 

herbivores or a decrease in protective compounds.  Similarly, there could be a cost to 

producing protective compounds that affects growth, so plants that are more resistant 

grow more slowly. 

The cost-of-resistance hypothesis holds for many cultivated plants where slow 

growing species have more constitutive resistance than fast-growing species, but not 

for wild plant species (Kempel et al., 2011).  If resistance is provided by low cost 

compounds then the trade-off between growth and constitutive resistance does not 

exist (Valverde et al., 2003).  Lower concentrations of compounds are accumulated 

in fast-growing species than slow growing species which tend to accumulate 

compounds that reduce the digestibility of the plants (Poorter, 1992).  My results are 



117 

  

also in agreement with the study that early bolting plants are more susceptible to 

herbivores but that susceptibility does not necessarily reduce the plants fitness 

(Weinig et al., 2003).   

Because relatively high broad-sense heritability estimates for variation in growth rate 

in different environmental conditions, anthocyanin production and herbivory suggest 

that these are mainly genetically determined traits.  I focus my attention on dissecting 

the genetic basis of these traits by QTL mapping in the experiments that follow. 
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4.0 QTL analysis of growth variations, anthocyanin production and 

herbivory 

4.1 Introduction 

To identify the number and positions of loci that account for natural genetic variation 

in growth, anthocyanin production and herbivory in two local accessions of 

Arabidopsis thaliana are the main aims of this chapter.  Little is known about the 

genetic basis of natural variation in plant growth, despite known variations in growth 

related traits in plants.  QTL analysis of rate of leaf production in vegetative 

development indicated that the differences between Ler and Fei-0 accessions are 

caused by 10 detectable loci.  Comparative study of these hybrid also showed that 

most of the genomic regions involved in flowering time and total leaf number are 

also involved in the rate of leaf production (Mendez-Vigo et al., 2010).  In (Ler × 

Cvi) population of RILs, eight QTLs that control height were detected on 

chromosomes 2, 3 and 5 and 19 QTLs for leaf characters, five of them on 

chromosome 5, were also found (Bandaranayake et al., 2004).  Similarly, QTLs for 

plant height were also detected on chromosomes 2 and 5 in a Ler x Col population 

(Ungerer et al., 2002).  QTLs for dry weight and rosette area were also found around 

the ERECTA locus in the populations having Ler as one of the parents (Alonso-

Blanco et al., 1999; Loudet et al., 2003a; Loudet et al., 2003b; Weinig et al., 2002).  

This can be explained by the fact that Ler carries an erecta loss-of-function mutation 

that affects many aspects of plant development.  QTL mapping experiments have 

also been carried out for metabolic and biochemical components of plants growth.  A 

major QTL was detected for sugar contents in mature seeds of Ler × Cvi RIL 
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population (Bentsink et al., 2000).  QTLs were also mapped for enzymes activities in 

primary and secondary metabolism in leaves of the Ler × Col RIL population 

(Mitchell-Olds and Pedersen, 1998).  Loci have identified in many populations for 

leaf and seeds phosphate contents (Bentsink et al., 2003; Loudet et al., 2003a) and 

for growth rate parameters in environments having different nitrogen sources 

(Loudet et al., 2003b; Rauh et al., 2002). 

Flavonoids and phenylpropanoid metabolites, found in the plant kingdom including 

Arabidopsis thaliana, have an important role in the life of plants by providing blue, 

red and purple pigments.  These protect plants against UV radiation, attract 

pollinators and other beneficial organisms, or also have a role in plant–microbe 

interactions (Buer et al., 2010).  Plants also have specific responses to environmental 

stresses which helped them to survive in adverse environments (Chinnusamy et al., 

2004), for example when plants are exposed to cold, it triggers well regulated cold-

acclimation processes.  This involves increased expression of a set of cold-regulation 

genes that are likely to mitigate cold stress, but their main functions are largely 

unknown (Christie et al., 1994).  In contrast the anthocyanin biosynthetic pathway, 

and its regulation is well described in plants including Arabidopsis thaliana (Pelletier 

et al., 1997) and anthocyanin biosynthesis is increased in response to several stresses.  

However, little is known about natural variation of anthocyanin production in 

Arabidopsis, or in responses to cold in natural environments. 

In plants, defence against herbivores is achieved through tolerance and resistance 

(Strauss and Agrawal, 1999).  The ability to tolerate damage mainly depends on 

meristems and available resources to growth and reproduction (Strauss and Agrawal, 

1999), while resistance can involve a range of deterrent, both chemical and physical.  
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The relationship between growth and resistance or tolerance to herbivores is 

complex.  For example growth enables plants to get more resources which they can 

invest in resistance (Boege and Marquis, 2005; Val and Dirzo, 2003).  On the other 

hand, defence mechanisms may require an investment that could otherwise be used 

for growth.  Resistance genes increase plant fitness when a pathogen is present but 

can be a disadvantage when the pathogen is not present (Todesco et al., 2010) .  

Studying the genetic basis of variation in herbivory in local accession will provide 

more information about the genomic regions involved in this trait. 

4.2 Genotyping the F3 populations with Simple Sequence Length 

Polymorphisms (SSLPs) 

A total of 137 microsatellite markers were tested for polymorphism between the 

parents, 11C1 and 4D1, of the hybrids in my experiment.  Thirty-nine were found to 

be polymorphic between the parental lines.  The map position of each SSLP marker 

in cM was estimated from its position in the Arabidopsis genome sequence relative 

to markers for which recombination frequencies had been determined in other 

mapping populations (Figure 14). 

4.2.1 Genotype scoring on agarose gels and using an ABI 3730 sequencer 

SSLPs were amplified by PCR and the products were analysed either in agarose gels 

(Figure 15a) or with an ABI 3730 sequencer (Figure 15).  All the loci had co-

dominant alleles, so if an F3 hybrid produced a single band, it was homozygous for 

the allele from either 4D1 or 11C1 and was scored as “a” or “b” respectively, and if 

there were two bands, it was heterozygous and was scored as “h” (Figure 15a).  For 

products separated on the sequencer, a third primer was used, which consisted of the 
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M13 sequencing primer labelled with one of four fluorescent dyes at its 5’ end (6-

FAM, VIC, NED or PET).  PCR therefore amplified a fluorescently labelled product 

and the use of four different dyes allowed the products of different PCR reactions to 

be analysed together.  Genotype screening results were in four colours and were 

scored as “a” or “b” if they were homozygous for the 4D1 or 11C1 alleles and were 

scored “h” if they had both bands (Figure 15b). 

4.3 QTL mapping of growth variations, anthocyanin production and 

herbivory of F3 population 

To detect the genetic regions that are involved in growth rate variation of plants 

grown in the greenhouse or natural conditions in autumn or spring, Composite 

Interval Mapping (CIM) QTL analysis (Jansen, 1996a; Zeng, 1994) was performed 

for the F3 population.  QTL mapping was also carried out to dissect the genetic basis 

of anthocyanin production in winter in natural conditions and herbivory in autumn in 

natural conditions. 

Because plant growth rate is very sensitive to environmental variation, which might 

reduce the genetically-determined component of variation, tests were carried out to 

determine the best age at which to estimate growth rate for QTL analysis.  Rosette 

areas of randomly selected lines were quantified at different time points and the 

broad-sense heritability calculated.  As an example heritability values estimated from 

five lines grown in the growth room was lower in week 5 (60%) compared to week 6 

(66%).  Therefore phenotypic data for growth rate (rosette area) was estimated for all 

line at week 6 and included in QTL analysis (Appendix E).  Growth data for plants 

grown in the greenhouse and natural conditions in autumn and spring were also used.  
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However, anthocyanin production and herbivory (percentage plant area eaten) were 

quantified only for the plants grown outside from an autumn sowing and were 

measured in winter (January), because only this set of plants showed a significant 

colour change or herbivore damage.  Five plants of each F3 family were grown in 

each condition and the mean value of each phenotypic trait for each family was used 

in QTL analysis.  A bulk of each F3 family was genotyped, so the experiments were 

equivalent to mapping in an F2, except that F3 lines have an advantage of a better 

estimate of the genetically-determined phenotype value.  With these data sets, QTL 

analysis was performed for each trait in each condition.  Significant QTLs for growth 

rate were detected for plants grown in natural conditions or the greenhouse in autumn 

(Figure 16).  The significant QTLs were at the bottom of chromosomes 1 and 5 for 

plants grown in natural conditions and at the top of chromosome 1 for plants grown 

in the greenhouse (Figure 16).  No significant QTLs for growth variations were 

detected for plants grown in natural conditions (Figure 15) or in the greenhouse in 

spring (Figure 17).  Significant QTL for anthocyanin production was detected at the 

top of chromosome 2 (Figure 16) but no significant QTL was found for herbivory 

(Figure 18). 
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Figure 14: Genetic linkage map of Arabidopsis thaliana.  

Positions of microsatellite markers used in genotyping the F3 and map distances are shown in cM.  

Potential loci linked to growth rate and flowering time are shown in red colour. 
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Figure 15: Examples of SSLP genotyping. 

a) Fragments separated in an agarose gel.  11C1 and 4D1 show the mapping parents.  The double 

bands of three F3 families had both parental alleles and were scored as heterozygotes (“h”).  Single 

bands were scored as either “a” or “b” as they were homozygous for either the 4D1 or 11C1 allele, 

respectively. 

b) Shows a virtual gel, reconstructed from trace files produced by the ABI3730 sequencer.  Each 

colour shows a different SSLP locus.  Three representative genotypes are shown for the blue locus. 

a 

b 
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Figure 16: Composite Interval Mapping of QTL for growth variation in the F3 

population in autumn  

(a) Plants grown outside in natural conditions.  The x-axis shows the distance along the five 

Arabidopsis chromosomes, as in Figure 14, with the genotyped marker loci.  The y-axis shows the 

log-of-odds (LOD) score for the probability of a QTL at each chromosome position.  The horizontal 

line at 2.5 LOD is an arbitrary threshold for significance of a QTL as a conventional value used.  

Significant QTLs are detected at the bottom of chromosomes 1 and 5.  In plants grown in the 

greenhouse (b) a significant QTL was detected at the top of chromosome 1. 

a 

b 
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Figure 17: QTL mapping for plant growth variation in the F3 population in 

spring. 

No QTL were detected at a significant level of 2.5 LOD under either natural conditions (a) or in the 

greenhouse (b). 

  

a 

b 
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Figure 18: QTL mapping for anthocyanin production and herbivory in F3 

plants in winter. 

A significant QTL was detected at the top of chromosome 2 for anthocyanin production (a) but no 

significant QTL was found for herbivory (b).  

 

 

b 

a 
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Phenotypic traits in QTL analysis included plants growth rate variation in the green 

house and natural conditions in both seasons (autumn and spring) and herbivory and 

anthocyanin production in autumn.  Significant QTLs were detected for growth rate 

for the autumn plants grown in both conditions but not for spring plants.  A QTL for 

anthocyanin production was also detected at the top chromosome 2.  However, 

relatively few QTLs were detected in the analysis.  This could be because heritability 

was low (which is likely, given that many of the families will still segregate), 

population size was relatively small, or because there are many genes involved and 

each has a small effect.  Though significant correlations were found in phenotypic 

traits between different sets of plants in the F3, suggesting that the same genes might 

underlie variation in different traits, none of the significant QTL for different traits 

map to the same position. 

This experiment was therefore extended to the F5 population where comparatively 

fewer families will segregate and heritability estimates are higher.. 

4.4 Bulk-segregant analysis for F5 population 

Bulk-segregant analysis was used to test for linkage of markers to growth rate QTLs 

in the F5 population.  Pools of the 9 fastest and 8 slowest growing plants in the 

growth room or in natural conditions were genotyped with all 39 SSLP markers that 

had been found polymorphic in the F3 population.  Only plants from different F3 

parents were used in the same pool, to prevent over-representation of alleles due to 

shared grandparents.  If a marker is linked to a growth rate QTL, its alleles are 

expected to be biased in their abundance between the fast and slow pools.  Some 

markers showed a bias between fast and slow pools in both conditions (e.g., CIW4; 
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Figure 19), as expected of markers linked to QTL that controlled growth in both.  

Some were biased in one condition but not in other, like ACM1 (Figure 19b) whereas 

most did not show an obvious bias in either condition, like JV61/62 (Figure 19a).  I 

focused on markers which were linked to potential growth rate QTL detected in the 

F3 population and were also biased in F5 bulk-segregant analysis.  These markers 

were F21M12, CIW1 and F5114-49495 on chromosome 1, CIW11 and CIW4 on 

chromosome 3 and CIW7 on chromosome 4.  
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Biased and unbiased markers in growth room and natural conditions 

Loci name Chrom. number GR(F) GR(S) OS(F) OS(S) 

         CIW12 1 × × × × 

NGA392 1 × × × × 

CIW1 1     (11)    (4)    (4) × 

CIW2 2 × ×    (4) × 

MSAT2.11 2 × × × × 

UBIQUE 2 × × × × 

NGA172 3 × × × × 

NGA162 3 × × × × 

CIW11 3    (4) × × × 

CIW4 3    (11)    (4)    (11)    (4) 

CIW7 4 ×    (11) ×    (11) 

MSAT4.9 4    (11) ×    (4) × 

MSAT4.12 4    (4)    (4)    (11) × 

MSAT4.18 4 × × × × 

MSAT4.19 4 × × × × 

NGA1139 4 ×    (4) ×    (11) 

NGA158 5 × × × × 

NGA151 5 × × × × 

NGA129 5    (4) × × × 

 

Table 28: shows a list of SSLPs markers which are biased and unbiased in one 

or the other conditions.  
Bulk-segregant analysis showed that some markers are unbiased (shown in crosses) and some are 

biased in one or the other condition (shown in red ticks) suggesting linkage with the growth increasing 

or decreasing allele in outside (OS) and growth room (GR) conditions in spring (S) and autumn (A)  

(shown red in brackets as 4 or 11).  
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4.5 Further testing of marker linkage to growth rate QTL 

The markers that showed biased segregation in the F5, suggesting linkage to growth 

rate QTL, were tested for possible associations with growth rate variation in the F3 

populations (Table 29, 30).  Linkage of these markers to growth rate was also studied 

for the F5 population grown in the growth room and natural conditions both in 

autumn and spring, using genotypes from their F3 parents.  No significant 

association between genotype and growth rate was found for any of the markers in 

the F3 population under any of the conditions (Tables 29, 30).  This is consistent 

with the lower heritability estimates for growth rate in this generation and the 

inability to detect significant QTLs for growth rate with genome-wide scans.  In the 

F5 generation, CIW1 (Chromosome 1) was significantly associated to growth rate in 

natural conditions in spring (Table 31) and in growth room in autumn with 11 as 

growth increasing allele (Table 32).  However, CIW4 (Chromosome 3) was 

significantly associated with the growth of F5 families in natural conditions both in 

autumn and spring (Table 31) and also in spring in the growth room (Table 32), with 

the 4 allele increasing growth in all cases.  These results were unexpected because 

conditions in the growth room were expected to be similar regardless of season. 
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Figure 19: Bulk-segregant analysis suggesting linkage of markers to growth 

variation QTL segregating in the F5 generation. 

For each marker, the first two lanes represent pools of fast and slow growing plants from the growth 

room, respectively, and the next two lanes fast and slow pools from natural conditions.  This figure 

has examples of markers showing biased distribution of allele between fast and slow pools in one or 

other condition in F5 generation.  For example CIW11 (c) MSAT 2.36 (d), CIW4 (f) and CIW1 (e) are 

biased under both conditions whereas JV 61/62 only in F (OS), ACM1 is unbiased. 
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Table 29: Markers tested for association to growth rate variation in F3 plants in autumn 

Plants were genotyped with the markers and tested for association with growth rate by comparing the mean areas of the two homozygous classes to obtain and estimate of the 

probability that the genotypes and traits are uncorrelated, p, using a Student’s t-test.  Mean values for rosette area in mm
2
 are given for the three genotypes at each locus, 

measured on the same day for each set of plants. 

  

Marker 
Chromosome 

number 

p value 

(natural 

conditions 

autumn) 

p value-

(greenhouse 

autumn) 

Comparison of  

genotypes (natural 

conditions autumn) 

Comparison of genotypes 

(greenhouse autumn) 

    4/4 4/11 11/11 4  4/11 11 

F21M12 1 0.20 0.41 804 877 923 1045 1057 1275 

CIW1 1 0.19 0.64 843 917 833 1185 1231 1164 

F5114-49495 1 0.44 0.75 919 864 869 1144 1144 1173 

CIW11 3 0.45 0.92 911 864 842 1167 1176 1194 

CIW4 3 0.11 0.87 920 883 819 1182 1168 1167 

CIW7 4 0.95 0.09 875 882 868 1270 1260 1065 
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Table 30: Markers tested for association to growth rate variation in F3 plants in spring 

Plants were genotyped with the markers and tested for association with growth rate by comparing the mean areas of the two homozygous classes to obtain and estimate of the 

probability that the genotypes and traits are uncorrelated, p.  Mean values for rosette area in mm
2
 are given for the three genotypes at each locus, measured on the same day 

for each set of plants. 

 

 

Marker 
Chromosome 

number 

p value (natural 

conditions spring) 

p value (greenhouse 

spring) 

Comparison of  

genotypes (natural 

conditions spring) 

Comparison of  

genotypes (greenhouse 

spring) 

    4/4 4/11 11/11 4/4 4/11 11/11 

F21M12 1 0.12 0.95 1256 704 1369 675 696 669 

CIW1 1 0.46 0.96 1311 1352 1228 695 667 668 

F5114-49495 1 0.13 0.76 1347 1371 1163 670 668 733 

CIW11 3 0.23 0.16 1194 1368 1314 579 744 621 

CIW4 3 0.83 0.48 1304 1271 1231 721 628 745 

CIW7 4 0.85 0.33 1275 1336 1311 584 708 715 
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Marker 
Chromosome 

number 

p value  

(natural conditions 

spring) 

p value  

(natural 

conditions 

autumn) 

Comparison of genotypes 

(natural conditions spring) 

Comparison of genotypes 

(natural conditions 

autumn) 

    4/4 4/11 11/11 4/4 4/11 11/11 

F21M12 1 0.85 0.47 805 718 715 240 228 214 

CIW1 1 0.05 0.09 839 720 993 260 226 214 

F5114-49495 1 0.99 0.08 792 771 776 243 290 213 

CIW11 3 0.19 0.71 878 636 692 233 217 217 

CIW4 3 0.001 0.035 985 712 592 250 188 205 

CIW7 4 0.049 0.53 678 774 976 217 248 229 

 

Table 31: Markers tested for association to growth rate variation in F5 plants under natural conditions in autumn and spring 

Plants were genotyped with the markers and tested for association with growth rate by comparing the mean areas of the two homozygous classes to obtain and estimate of the 

probability that the genotypes and traits are uncorrelated, p.  Mean values for rosette area in mm
2
 are given for the three genotypes at each locus, measured on the same day 

for each set of plants. 
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Marker 
Chromosome 

number 

p value 

(growth room 

spring) 

p value 

(growth room 

autumn) 

Comparison of genotypes 

(growth room spring) 

Comparison of 

genotypes (growth room 

autumn) 

4/4 4/11 11/11 4/4 4/11 11/11 

F21M12 1 0.83 0.33 3553 3512 3738 314 388 316 

CIW1 1 0.95 0.02 3700 3524 3941 286 394 289 

F5114-49495 1 0.54 0.13 3953 3612 3293 278 439 341 

CIW11 3 0.35 0.58 3883 3495 3369 331 267 343 

CIW4 3 0.005 0.53 4181 2868 3079 355 314 310 

CIW7 4 0.06 0.11 3338 3599 4224 308 294 392 

 

Table 32: Markers tested for association to growth rate variation in F5 plants in the growth room in autumn and spring 

Plants were genotyped with the markers and tested for association with growth rate by comparing the mean areas of the two homozygous classes to obtain and estimate of the 

probability that the genotypes and traits are uncorrelated, p.  Mean values for rosette area in mm
2
 are given for the three genotype classes, measured on the same day for each 

set of plants. 
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4.6 Testing QTL in F4 families 

Analysis of F3 and F5 populations suggested that QTLs for growth variation that 

were expressed under different conditions were present in Chromosome 1 and 

Chromosome 3, linked to CIW1 and CIW4, respectively.  To validate these QTLs, I 

randomly selected three F3 families – one that was heterozygous at CIW1 and CIW4 

and two that were heterozygous at either CIW1 or CIW4 (Table 33).  Twenty-four 

plants of each line were grown in the greenhouse and were genotyped at the 

segregating loci.  Rosette areas of the homozygous genotypes were compared with a 

t-test.  However, only family 18 showed an association, where plants homozygous 

for the CIW4 alleles from 4D1 grew significantly faster (p=0.1) (Table 33).  Failure 

to detect significant associations between growth rate and both CIW1 and CIW4 

genotypes in the other F3 families could be because a small number of plants were 

used.  Another explanation is that recombination had occurred between the marker 

and the linked QTL, so that the QTL alleles were no longer segregating in some of 

the families.  Alternatively, the effects of the QTLs could be dependent on other 

genes that were not present in all the families (epistasis). 

4.7 Fine mapping of growth rate QTLs in F5 families 

To further test for linkage between marker genes and growth rate, larger families of 

72 plants were grown in the growth room from F4 parents that were heterozygous at 

CIW1 (three families) or CIW4 (two families).  F5 plants were genotyped at either 

CIW1 or CIW4 and their rosette areas estimated.  To examine whether differences in 

rosette area reflected differences in leaf size, leaf number or both, the number of 

leaves >3 mm in length were also counted at the same time.  Association of markers 
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to trait were examined with a t-test to compare homozygous marker genotypes and 

obtain a p-value (Table 34).  For leaf number the only significant association was 

detected in family 54 in which the CIW4 allele from 4D1 significantly increased leaf 

number (p=0.05) (Table 34).  However, no significant effect on rosette area was 

detected, suggesting that plants that produce more leaves produce smaller leaves.  No 

other significant associations with CIW4 genotype were detected.  Rosette area was 

significantly associated with CIW1 genotype in family 671 (p=0.04).  However in 

this case the allele from 11C1 is linked to increased plant growth, consistent with our 

previous results where the 11C1 allele of CIW1 had been associated with faster 

growth in growth room conditions in autumn.  

CIW1 and CIW4 did not show any association to growth rate variation of F3 plants 

grown in natural or green house conditions in autumn and spring but were 

significantly associated with growth rate in F4 and F5 populations and in some of the 

larger F5 families grown in control conditions of the green house or growth rooms. 

However, these markers were not consistently associated to growth rate in all 

conditions.  For example, CIW1 was significantly associated in natural conditions in 

spring but not in autumn whereas CIW4 was significantly associated to growth rate in 

both seasons in natural conditions.  In the growth room, CIW1 was significantly 

associated to growth rate in autumn but not in spring whereas CIW4 showed 

significant association in spring but not in autumn. 

However, when linkage to growth rate QTL was detected, the QTL were consistent 

in the directions of their effects.  For the QTL linked to CIW1 the allele from 11C1 

increased growth, while for the QTL linked to CIW4 the allele from 11C1 slowed 

growth.  
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F3 family number Genotype at CIW1 
Genotype at 

CIW4 

Association of CIW1 with 

growth rate in F4 progeny 

Association of CIW4 with 

growth rate in F4 progeny 

4/4 4/11 11/11 p 4/4 4/11 11/11 p 

6 4/11 11/11 748 734 816 0.675 -  - - 

13 4/11 4/11 185 213 227 0.604 175 206 220 0.585 

18 4/4 4/11 -  - - 614 602 475 0.1 

 

Table 33: Testing association of CIW1 and CIW4 genotypes to growth rate variations in F4 populations 

The mean areas of the homozygous genotypes (in mm
2
) are shown for F4 families segregating at either CIW1, CIW4 or both loci and compared with a t-test to estimate the 

probability (p) that they are not the same.  Only family 18, segregating for CIW4, showed an association to growth rate, with the 4D1 allele increasing growth.   
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Family 

number 
Marker Trait p-value 

Mean values for 

genotypes  

4/4    4/11       11/11 

54 CIW4 Area in mm
2
 0.54 1037 1105 1083 

  No. of leaves 0.05 11.78 12.4 11.76 

261 CIW4 Area in mm
2
 0.41 909 1026 1012 

  No. of leaves 0.49 13.7 14.2 14.3 

521 CIW1 Area in mm
2
 0.41 277 250 257 

  No. of leaves 0.53 8.13 7.9 8.23 

594 CIW1 Area in mm
2
 0.80 276 271 265 

  No. of leaves 0.29 8.6 8.6 9.0 

671 CIW1 Area in mm
2
 0.04 246 298 289 

  No. of leaves 0.86 9.3 9.0 9.1 

 

Table 34: Testing association of CIW1 and CIW4 genotypes to growth rate and 

leaf production rate in F5 families 

Members of F5 families segregating at either CIW1 or CIW4 were genotyped and the mean number of 

leaves or rosette areas compared for the two homozygous genotypes. 
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4.8 Discussion  

The work described in this chapter aimed to map QTL for variation in growth rate 

between two local accessions of Arabidopsis – an important life-history trait in 

plants.  It also examined the genetic basis for resistance to herbivory and anthocyanin 

production in response to cold. 

Significant QTLs for variation in growth rate were mapped at the bottom and top of 

chromosomes 1 and at the top of chromosome 5.  However, they were not detected 

under all conditions, suggesting that they might be involved in the responses of 

growth to different environments.  Other QTL involved in growth have been detected 

at similar locations in other mapping populations.  The characteristic of QTL at the 

top of chromosome 1 that affects growth rate in greenhouse in autumn might be the 

same as DM10.1 described by (Loudet et al., 2003b) in the Bay × Sha population in 

which the Sha allele has a negative effect.  Probably, the most interesting QTL is 

found at the bottom of chromosome 5.  This is the region where QTLs for flowering 

time, growth rate, and leaf initiation speed, chlorophyll fluorescence and specific leaf 

area were reported (Loudet et al., 2003b).   

Bulk-segregant analysis using F5 families was done with 19 polymorphic markers 

and pools of fast and slow growing plants from either growth room or natural 

conditions in spring.  This suggested the regions containing F21M12, CIW1 and 

F5114-49495 on chromosome 1, CIW11 and CIW4 on chromosome 3 and CIW7 on 

chromosome 4 as candidates for growth rate QTL. 

However, these studies highlighted a number of problems with mapping potential 

growth rate QTL.  Firstly, the effects of putative QTL could not always be detected, 
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even under conditions that were assumed to be consistent in the growth room.  This 

could be because there were differences in the environment or because the effects of 

QTL were dependent on epistatic interactions with other loci.  Secondly, the effects 

of the putative QTL were small, relative to the non-genetic variance in growth rate, 

so it was not possible to assume the QTL genotype of a plant from its growth rate 

with any certainty.  Both these factors would make fine-mapping growth rate QTL 

very difficult.  For example, it would be necessary to reduce variability between 

experiments and measure a number of progeny to estimate a genotype’s mean growth 

rate.  For these reasons, fine-mapping of growth rate QTLs was not pursued. 
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5.0 Flowering time variations, QTL analysis and fine mapping. 

5.1 Introduction 

The aim of this chapter is to assess the genetic basis for flowering time variation in 

the mapping population and how it responds to different environmental conditions 

when grown outside.   

The timing of the transition from the vegetative to reproductive phase of a plant 

(called flowering time) is crucial for reproductive success in any environment.  It has 

also been demonstrated in Arabidopsis and other species that flowering time varies in 

response to environment and within populations (Korves et al., 2007).  Different 

genotypes also flowered at different times in the field and responded differently to 

vernalization (the effects of low temperature on flowering), so could flower later than 

others in one season but before others in another season.   

A number of genes have been found to underlie natural variation in flowering 

behaviour in Arabidopsis, including FRIGIDA (FRI).  fri loss-of-function mutations 

flower early, even without vernalization, because they are unable to maintain high 

levels of the floral repressor FLC (Michaels and Amasino, 1999a; Sheldon et al., 

1999b).  Winter annuals (genotypes with a long life cycle) usually have functional 

alleles of both FRI and FLC whereas summer annuals (rapid cycling accessions) 

have mutations in FRI or FLC or both (Gazzani et al., 2003; Johanson et al., 2000; 

Michaels et al., 2003).  This rapid-cycling behaviour has been suggested to be 

advantageous in disturbed habitats, such as cultivated fields (Keddy, 2007).  

Interestingly, the 11C1 parent of the mapping population had been found to carry a 

fri loss-of-function mutation (McCulloch and Hudson, 2011) but to flower late in the 
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absence of vernalization.  This suggests that it carries other alleles that suppress the 

effects of the fri mutation.  It had also been found to express FLC at relatively high 

levels, suggesting that the suppressor mutations might lead to increased expression of 

FLC independently of FRI.  Therefore an additional aim of this work was to identify 

a potential suppressor of fri that could account for the late flowering of the 11C1 

mapping parent. 

5.2 Mapping flowering time genes 

Flowering time data for F3 families in the growth room and in natural conditions in 

autumn were collected by Hayley McCulloch.  Broad-sense heritability estimates 

were high - 80% in the growth room and 70% in natural conditions.  This flowering 

time data was used in QTLs analysis (McCulloch and Hudson, 2011) and detail is 

given in appendix D .  

F5 plants were also grown in a growth room (control conditions) and outside (natural 

conditions) in autumn and flowering time measured as the number of rosette leaves 

produced.  In each case 89 F5 families were grown with five members of each line.  

Plants were randomised in different trays for observations.  Again heritability 

estimates were high for the F5 – 89% under the controlled conditions of the growth 

room and 71% outside.  The lower value outside is likely to reflect environmental 

variation experienced by the plants. The detail of data is given in appendix D. 

The families showed a nearly normal distribution of leaf numbers at flowering.  

However, both 11C1 and 4D1 flowered sooner than the majority of the F5 lines 

(Figure 20).  This skew in flowering time is not easily explained.  It suggests that 

interactions between genes from both parents delay flowering. 
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In the outside garden, 89 plant lines (OS4) of F5 population with 5 members of each 

line were grown in autumn.  Again a normal distribution of flowering times was 

observed, although in this case, the 4D1 parent was among the earliest flowering and 

the 11C1 among the late flowering genotypes.  This suggests that the parents carry 

mainly alleles that either increase or decrease flowering time under the autumn 

conditions. 

5.3 Flowering time variation within an experiment 

Some F5 lines are early flowering in both conditions, some late in both and some 

early in one but late in the other.  For example, lines like 92 were late flowering in 

both growth room and natural conditions but 194 and 76 are early flowering in one 

condition but late flowering in the other. However, some lines having shared F4 

parents also behave differently.  Lines like 523 and 524 are both offspring of F3 

parent 52. but 523 is early flowering whereas 524 is late flowering in natural 

conditions suggesting the involvement of different genes in different conditions in 

flowering time (Figure 21).  These results suggest that the difference might be due to 

sensitivity to vernalization or to day length, because plants in the field, but not the 

growth room, experience vernalization over winter and seasonal fluctuations in day 

length. 

 

 



146 

  

 

 

 

Figure 20: Flowering time variation in plants of F5 populations grown in (a) a 

growth room (autumn) and (b) natural conditions (autumn).  

These graphs showed the distribution of mean number of leaves to flower (± SEM) for 5 plants of 

each F5 line (blue bars) including parental lines (red bars).   

 

  

Number of 

leaves to 

flower (N) 

F5 lines grown in growth room (autumn)-GR2 

F5 lines grown in natural conditions (autumn)-OS4 

a 

b 

Number of 

leaves to 

flower (N) 



147 

  

 

Figure 21: Relationship between flowering time of F5 families in natural and 

growth room conditions in autumn. 

No significant correlation in flowering time is seen between the two conditions. 
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5.4 QTL mapping for flowering time 

To dissect the genetic basis of flowering time variation, Composite Interval Mapping 

(CIM) analysis (Jansen, 1996a; Zeng, 1994) was performed for plants of F3 

population, using the genotypes for 39 SSLP markers, as for growth rate.  Significant 

QTLs were detected for plants in the growth room but not in natural conditions 

(Figure 22).  The significant QTL were in the lower part of Chromosome 1 and at the 

bottom of Chromosome 5.  A candidate QTL at the bottom of Chromosome 5 had 

already been detected by Hayley McCulloch when testing for association between 

genes that function in the vernalization pathway and sensitivity to vernalization in 

this hybrid family.  This QTL was therefore not investigated further here.  However, 

the potential QTL in Chromosome 1 had not been identified before; therefore this 

locus had been focused further.  Although 11C1 carries a fri loss-of-function 

mutation no QTL was detected in the vicinity of FRI (at the top of Chromosome 4).  

This suggests that either the FRI allele from 4D1 is also not functional, although it is 

transcribed at wild-type levels to produce RNA encoding an apparently wild-type 

FRI protein (McCulloch and Hudson, 2011), or that the effects of the fri mutation 

from 11C1 are not detected because of the segregation of one or more suppressors. 

5.5 Analysis for F5 plants with selected markers on Chromosomes 1 

To further investigate the possibility of a flowering time QTL in chromosome 1, a 

few markers were selected closer to the potential QTL for single marker analysis in 

the F5 population (Table 35).  
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Figure 22: QTL mapping for flowering time in plants for F3 population in 

natural conditions and the growth room. 

Failure to detect significant QTL under natural conditions might reflect lower heritability under field 

conditions.  Alternatively the effects of QTL detected in the growth room might depend on 

environmental factors that varied between field and growth room. The x-axis shows the five 

Arabidopsis chromosomes and the y-axis the LOD score for the likelihood of a QTL.  The trace for 

plants in the growth room is cyan and for plants in the field in pink. 
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Association of these markers to flowering time was tested by comparing the mean 

flowering time of the different homozygous genotypes in the F3 and F5 families with 

t-tests.  All those markers that have significant associations to flowering time showed 

that the 11C1 allele carries an allele that increases time to flower (Table 35).  

Markers CIW1, F5114-49495 and NGA692 were also significantly associated to 

flowering time in F3 plants in the growth room, with the 11C1 allele delaying 

flowering.  None of these markers were significantly linked to flowering time of F3 

plants grown in natural conditions.  CIW1 was also significantly associated 

(p=0.005) with the flowering times of F5 plants in growth room conditions, with the 

11 allele again delaying flowering.  This supported the idea that there is a QTL for 

flowering time variation in Chromosome 1 and that CIW1 is the most closely-linked 

of the markers that were tested.  

5.6 The fine mapping of flowering time QTLs with F5 plants 

Seventy-two F5 offspring from each of three F4 families that segregated at CIW1 

were grown in the growth room.  The number of vegetative leaves produced before 

flowing and numbers of days to flower were recorded for these plants.  Association 

of markers to traits were assessed with t-tests comparing the mean trait values for the 

homozygous genotypes (Table 36).  Both the number of leaves and the number of 

days to flowering were significantly associated with CIW1 genotype in all families 

except family 594, where the difference in the number of leaves was not significantly 

different (p=0.09) (Table 36).  In all cases, the 11C1 allele delayed flowering.  These 

results confirm the presence of a QTL for flowering time variation in this region.  

Because the allele from 11C1 delays flowering, the QTL is also a candidate for the 

suppressor of the fri mutation present in the 11C1 parent. 
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Potential 

candidate 

markers 

F3 (GR)-

autumn 

 p- value 

11/11 11/4 4/4 

F3 (OS)-

autumn  

p-value 

11/1

1 
11/4 4/4 

F5 (GR) 

autumn  

p-value 

11/11 11/4 4/4 

F5 

(OS)-

autumn  

p-value 

11/11 11/4 4/4 

NGA392 0.09 27 37 30 0.35 14 11 16 -- --  -- -- --  -- 

CIW1 0.01 36 37 25 0.78 29.9 29 29.5 0.005 36 33 28 0.25 14.3 15 14.8 

F5114-

49495 
0.01 36 36 27 0.70 29.5 28 29.8 0.13 34 37 30 0.76 14.7 14.3 14.5 

NGA692 0.03 33 37 26 0.79 30 29 28 -- --  -- -- --  -- 

 

Table 35: Testing associations and allelic effects between Chromosome 1 genotypes and flowering time under natural and controlled 

conditions.  

Mean values of leaves produced before flowering are shown for homozygotes and the results of a t-test (probability that the means are the same) are given as the p value. 
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Plant lines Trait 11/11 11/4 4/4 p-value 

521 

(spring) 

Number of leaves 

to flower 
23 19 17 8.5× 10

-9
 

 
Number of days to 

flower 
41 37 35 8.2× 10

-11
 

594 

(spring) 

Number of leaves 

to flower 
26 24 23 0.09 

 
Number of days to 

flower 
40 39 37 0.04 

671 

(spring) 

Number of leaves 

to flower 
28 27 25 0.02 

 
Number of days to 

flower 
48 46 43 0.0006 

 

Table 36: Testing association of CIW1 genotypes to flowering time in F5 families  

Mean values for the three genotypes are given, together with the p value that to homozygous classes 

are the same. 
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5.7 Discussion 

Flowering time variation, an important trait for plants fitness and reproductive success, has 

been studied and mapped in the local accession of Arabidopsis thaliana in this chapter.  A 

wider variation in flowering time was observed in the plants of the F5 population grown in 

growth room conditions than in natural conditions over winter.  The average number of 

leaves produced by the 10 earliest flowering lines in the growth room ranged from 13.4 to 

25.5 and for the 10 latest from 39.2 to 43.8.  This compares with 12.4 to 13.4 leaves for early 

flowering plants and 16.4 to 18 leaves for late flowering plants outside.  Although plants 

grew for longer outside, they spent most of their time in winter with colder conditions, 

shorter days and lower light intensity than in the growth room.  The rate of leaf production of 

these plants is therefore expected to be lower than in the growth room.  The plants outside 

also experienced a prolonged period of cold (vernalization), which advances flowering in 

many genotypes.  These two factors might explain why plants outside produced fewer leaves 

before flowering and showed less variation in flowering time.  A similar phenomenon was 

seen when  flowering times of ~75 local accessions were compared under natural and 

controlled conditions (Lim and Hudson, 2013). 

QTL mapping in F3 hybrids identified two significant QTLs, one in the lower arm of 

Chromosomes 1 and at the bottom of Chromosome 5 (Figure 22).  The Chromosome 1 QTL 

was confirmed in F5 populations and suggested to be closest to CIW1 of the markers that 

were tested for association.  Potential candidate genes for flowering time in this or close to 

this region are FLOWERING LOCUS T (FT) (Huang et al., 2011; Li et al., 2010; Salome et 

al., 2011; Strange et al., 2011), FLOWERING LOCUS M (FLM) (Caicedo et al., 2009; 

Rosloski et al., 2010; Schlappi, 2006; Werner et al., 2005b), LSD1-LIKE 1 (LDL1) (Jiang et 

al., 2007), VERNALIZATION INDEPENDENCE 5 (VIP5) (Oh et al., 2004; Theologis et al., 
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2000; Zhang et al., 2003; Zhang and van Nocker, 2002).  Testing the involvement of two of 

these genes – LDL1 and VIP5 – is the part of next chapter. 
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6.0 Sequence and expression variation analysis of candidate genes 

6.1 Introduction 

A QTL for flowering time, linked to marker CIW1 had been identified at which the allele 

from 11C1 delayed flowering.  Because 11C1 is late flowering, sensitive to vernalization and 

expressed FLC, though it carries a fri loss of function mutation, the QTL allele might allow 

FLC expression (McCulloch and Hudson, 2011).  Two genes known to have an effect on 

FLC expression – LDL1 and VIP5 – map in the region of the QTL, making them candidate 

genes.  The aim of this chapter is to test whether variation in either LDL1 or VIP5 could 

contribute to this phenotypic variation. LDL1 and VIP5 sequences were compared from the 

mapping parents to see whether they are associated with differences in gene expression and 

flowering time behaviour. 

For plants, the timing of flowering initiation has been critical during evolution to maximize 

reproductive success (Amasino and Michaels, 2010).  A key component in regulatory 

network of flowering time in Arabidopsis is FLOWERING LOCUS C (FLC), a MADS box 

transcription factor that blocks the floral transition (Michaels and Amasino, 1999b; Sheldon 

et al., 1999a).  FRIGIDA (FRI) activates FLC expression such that in the absence of 

vernalization, flowering is delayed (Boss et al., 2004; Sung and Amasino, 2005).  Histone 

modifications play a central role in FLC expression level regulation and flowering time 

control (He and Amasino, 2005a; Sung and Amasino, 2005).  Transcriptionally active genes 

are associated with the dimethylation and trimethylation of histone H3 lysine 4 (H3K4) (Cao 

et al., 2008; Pien et al., 2008; Schmid et al., 2003).  These modifications have been reported 

at FLC chromatin and also regulates flowering by FLC expression (He and Amasino, 2005a; 

Kim et al., 2009; Liu et al., 2010).  FLOWERING LOCUS D (FLD), LSD1-LIKE 1 (LDL1), 

and LSD1-LIKE 2 (LDL2), which are homologs of human lysine-specific demethylase 1 
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(LSD1), an amine oxidase that demethylates H3K4me2 and H3K4me1 in humans, act as FLC 

repressors (Jiang et al., 2007; Liu et al., 2007; Schmid et al., 2003).  FLD reduces the 

H3K4me2 level in the central region of FLC chromatin to decrease its expression (Liu et al., 

2007).  

Mutations in genes that encode homologs of the components of yeast RNA polymerase II-

associated factor 1 (Paf1) complex have resulted elevated FLC expression, even in the FRI-

containing winter annual accessions.  EARLY FLOWERING 7 (ELF7, also known as 

VERNALIZATION INDEPENDENCE 2, VIP2), ELF8 (VIP6), VIP4, and VIP5 are 

components of the Paf1-complex, which has been shown to be required for a high level of 

FLC expression (He et al., 2004; Kim et al., 2005; Oh et al., 2004).   In Arabidopsis thaliana, 

the VIP4, VIP5, VIP6 (also called ELF8), and ELF7 genes encode obvious homologs of Leo1, 

Rtf1, Ctr9, and Paf1, respectively, whereas VIP3 encodes a protein closely related to hSki8 

(He et al., 2004; Oh et al., 2004; Zhang et al., 2003; Zhang and van Nocker, 2002).  Strong 

mutations in each of these genes has been shown to cause weak growth, defects in leaf and 

floral development, and acceleration of the natural phase transition from vegetative growth to 

flowering (He et al., 2004; Oh et al., 2004; Zhang et al., 2003; Zhang and van Nocker, 2002). 

6.2 Sequence variation in VERNALIZATION INDEPENDENCE5 (VIP5) 

between 4D1 and 11C1 plants 

To assess the presence of mutations in VIP5, primers (Appendix A) were used in polymerase 

chain reactions (PCR) to amplify the coding region of VIP5 alleles for 4D1 (4) and 11C1 (11) 

accessions used as the mapping parents.  Products were sequenced with three sets of forward 

and reverse primers (Appendix A).  The sequences of VIP5 alleles from the parents are 

represented graphically in figure 23.  Overall, 21 single nucleotide polymorphisms (SNPs) 

were found in the 4 allele, relative to Col-0 including 19 non-synonymous substitutions of 
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VIP5 for 4.  There were four SNPs in the VIP5 11 allele relative to Col-0 including three non-

synonymous substitutions (Fig.24).    

Because the 4 and 11 alleles of VIP5 had the potential to encode similar proteins, I also 

examined the expression level of VIP5 in the two parents, to test whether different levels of 

expression might suggest differences in activity.  RNA was extracted from young plants of 

both parents and used to make cDNA.  The VIP5 coding region was amplified for 20, 25 and 

30 cycles of PCR and compared to amplification of the glutathione-dependent formaldehyde 

dehydrogenase gene, At5g43940, which should be expressed at similar level in all cells.  

There was no obvious difference in VIP5 transcript levels for 4 and 11 alleles after 20 but a 

higher expression level was suggested for 11C1 for 25 and 30 cycles of PCR (Figure 25).  
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Figure 23: Graphical representation of VIP5 gene for 4D1 parent plant.  

This figure shows different parts of genes in different colours. 
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VIP5-Col        AGATGCATCAAAAGGTGGTTCAGGTAGTCGAGATTTCTCATCAACGAAGAGGAAACCGTT 1 

VIP5-11C1       AGATGCATCAAAAGGTGGTTCAGGTAGTCGAGATTTCTCGTCAAAGAGGAGGAAACCATT 1 

VIP5-4D1        -------------------------------------------------------GCGGT 1 

                                                                       a*bc* 

VIP5-Col        AGCTTCCTCCAATTTGAGTAGTTCCAGCCAAAGTGACAGTGATAGTAGGTCTCAGAGTGA 2 

VIP5-11C1       ACCTTCCTCCAATTTGAGTAGTTCCAGCCAAAGTGACAGTGATAGTAGGTCTCAGAGTGA 2 

VIP5-4D1        GGCTTCCTCCAATTTGAGTAGTTCCAGCCAAAGTGACAGTGATAGTAGGTCTCAAAGTGA 2 

                de****************************************************f***** 

VIP5-Col        GTTTGAGGATGTTAAGGAAGTTACCATTAGACGGTCTAAGCTTGCCAAATGGCTAATGGA 4 

VIP5-11C1       GTTTGAGGATGTTAAGGAAGTTACCATCAGACGGTCTAAGCTTGCCAAATGGCTAATGGA 4 

VIP5-4D1        GTTTGAGGATGTTAAGGAAGTTACCATTAGACGGTCTAAGCTTGCCAAATGGCTAATGGA 4 

                ***************************g******************************** 

VIP5-Col        GCCTTTCTTTGAAGAGCTTATAGTTGGGTGCTTTGTGAGGGTTGGGATCGGAAGGTCAAA 5 

VIP5-11C1       GCCTTTCTTTGAAGAGCTTATAGTTGGGTGCTTTGTGAGGGTTGGGATCGGAAGGTCAAA 5 

VIP5-4D1        GCCTTTCTTTGAAGAGCTTATAGTTGGGTGCTTTGTGAGAGTTGGGATCGGAAGGTCAAA 5 

                ***************************************h******************** 

VIP5-Col        GAGTGGTCCAATTTACAGACTCTGCTGGGTGAAGAATGTTGATGCAACCGATCCTGACAA 6 

VIP5-11C1       GAGTGGTCCAATTTACAGACTCTGCTGGGTGAAGAATGTTGATGCAACCGATCCTGACAA 6 

VIP5-4D1        GAGTGGTCCAATTTACAGACTCTGCTGGGTGAAGAATGTAGATGCAACCGATCCTGACAA 6 

                ***************************************i******************** 

VIP5-Col        GACCTACAAGCTAGAGAATAAAACTACACACAAGTACCTTAACGTCGTCTGGGGAAATGA 7 

VIP5-11C1       GACCTACAAGCTAGAGAATAAAACTACACACAAGTACCTTAACGTCGTCTGGGGAAATGA 7 

VIP5-4D1        GACTTACAAGCTAGAGAATAAGACTACACACAAGTATCTTAACGTCGTCTGGGGAAATGA 7 

                ***j*****************k**************l*********************** 

VIP5-Col        AACCTCGGCGGCTCGATGGCAAATGGCTATGATCTCAGATGGTCATCCGCTGGAGGAAGA 8  

VIP5-11C1       AACCTCGGCGGCTCGATGGCAAATGGCTATGATCTCAGATGGTCATCCGCTGGAGGAAGA 8 

VIP5-4D1        AACCTCGGCGGCTCGATGGCAAATGGCTATGATCTCAGATGGTCATCCTCTGGAGGAAGA 8 

                ************************************************m***********  

VIP5-Col        CGAGAAAGATCGGCTTAGAAAAGAATTGGAAATTGCGCAGAGCAAAAACGATGAAGCAGG 12 

VIP5-11C1       CGAGAAAGATCGGCTTAGAAAAGAATTGGAAATTGCGCAGAGCAAAAACGATGAAGCAGG 12 

VIP5-4D1        CGAGAAAGATCGGCTTAGAAAAGAGTTGGAAATTGCGCAGAGCAAAAACGATGAAGCAGG 12 

                ************************n*********************************** 
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VIP5-Col        TGTAGAGAGGATCAAGTCGAAAATCAAACAGCTCGACGCTTCACGGAACAAGAAAGGGGT 13 

VIP5-11C1       TGTAGAGAGGATCAAGTCGAAAATCAAACAGCTCGACGCTTCACGGAACAAGAAAGGGGT 13 

VIP5-4D1        TGTAGAGAGGATCAAATCGAAAATCAAACAGCTCGACGCCTCACGGAACAAGAAAGGAGT 13 

                ***************o***********************p*****************q** 

VIP5-Col        AGATAAAAAAGCGCTTAAACTTGCTGAGATGAACAAGAAGAACAGAGCCGAGAATTTCAA 14 

VIP5-11C1       AGATAAAAAAGCGCTTAAACTTGCTGAGATGAACAAGAAGAACAGAGCCGAGAATTTCAA 14 

VIP5-4D1        CGATAAAAAAGCGCTCAAACTTGCCGAGATGAACAAGAAGAACAGAGCCGAGAATTTCAA 14 

                 **************r********s*********************************** 

VIP5-Col        TCCGTTTTCAAGAAGATGGACCCGATCATCAAACTACTACAACGGGAAAAACAAGGGGAA 16 

VIP5-11C1       TCCGTTTTCAAGAAGATGGACCCGATCATCAAACTACTACAACGGGAAAAACAAGGGGAA 16 

VIP5-4D1        TCCGTTTTCAAGAAGATGGACCCGATCATCGAACTACTACAACGGGAAAAACAAGGGGAA 16 

                ******************************t*****************************  

VIP5-Col        AGATGGAGAAGAGAACGAGGCAGCGGTTGCAGCAGCGGTTGAGACCAATGGAGCAGATGC 17 

VIP5-11C1       AGATGGAGAAGAGAACAAGGCAGCGGTTGCAGCAGCGGTTGAGACCAATGGAGCAGATGC 17 

VIP5-4D1        AGACGGAGAAGAGAACGAGGCAGCGGTTGCAGCAGCGGTTGAGACCAATGGAGCAGATGC 17 

                ***u************v*******************************************  

VIP5-Col        AATAGACACAAGAGCTCCAATAGGTCAAGGAGCAGAACACAATCAGCTTCATAACTTTGA 19 

VIP5-11C1       AATAGACACAAGAGCTCCAATAGGTCAAGGAGCAGAACACAATCAGCTTCATAACTTTGA 19 

VIP5-4D1        AATAGACACAAGAGCTCCAATCGGTCGAGGAGCAGAACACAATCAGCTTCATAACTTTGA 19 

                *********************w****x*********************************  

VIP5-Col        GTTCATGGCGAGGAAGCAACTGACCGAAGCAACTGTGGGATGCAGAGTCGCAGAGAACGA 21 

VIP5-11C1       GTTCATGGCGAGGAAGCAACTGACCGAAGCAACTGTGGGATGCAGAGTCGCAGAGAACGA 21 

VIP5-4D1        GTTCATGGCGAGGAAGCAACTGACCGAAGCAACTGTGGGATGCAGAGTCGTAGAGAACGA 21 

                **************************************************y*********  

Col      CTGA                                                         23 

11C1     CTGA                                                         23 

4D1      CTGA                                                         23 

         **** 

Figure 24: Sequence alignment of 11 and 4 alleles of local accession for VIP5 gene compared to Col.0.  

Non-identical sequences are highlighted in grey, SNPs are shown in brown, start and stop codon in green.  Only 

the parts of the gene which were sequenced are given here.  Full alignment compared to Col.0 is shown 

appendix C.  
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Figure 25: VIP5 expression analysis for 20, 25 and 30 cycles relative to 25 and 30 cycles 

of glutathione-dependent formaldehyde dehydrogenase gene for parental lines, 11C1 

and 4D1. 

Difference in expression for VIP5 between parental lines was suggested for 30 cycles which is not obvious for 

20 and 25 cycles. 

 

 

  

 FDH-4D1   FDH-11C1 VIP5-11C1    VIP5-4D1 

Cycles   25   30    25   30     20 25 30    20     25    30 
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6.3 Sequence variation in LSD1-LIKE 1 (LDL1) gene between 4D1 and 

11C1 parents 

To assess the presence of mutations in LDL1, LDL1 primers (Appendix A) were used in 

polymerase chain reactions (PCR) to amplify the LDL1 locus from 4D1 (4) and 11C1 (11).  

Products were sequenced with different sets of forward and reverse primers (Appendix A).  

LDL1 is represented graphically in Figure 27.  Overall, 28 single nucleotide polymorphisms 

(SNPs) distinguished the LDL1 for 4 from the Col-0 reference sequence.  These include three 

non-synonymous and twenty-five synonymous substitutions (Figure 26).  Comparing the 11 

allele for LDL1 with Col-0 identified 16 differences, including an insertion of 882 bp in the 

promoter region of the 11 allele, and a deletion of 24 bp that included the transcriptional start 

site of the Col-0 allele.  Neither the insertion nor the deletion was shared with the 4 allele. 

This 882bp insertion in 11C1 is Stowaway-like MITEs. These have a TA target site 

duplications and terminal inverted repeats that look somewhat like this. 

5’ TCCTACTATATTATTTGGGAAGTA …………….TACCGCGGGTTAAAATCTAG 3’ 

5’      CTAGATTTTAACCCGCGGTA (inversion of 3’end) 

This inverted repeat begins at base 6 and ends at the end.  BLAST with our sequence gives a 

number of copies elsewhere in the Col-0 reference sequence and quite a few of the hits start 

at base 6.  A list of loci with similar MITE sequence is given in the form of distance tree in 

Figure 28.   

Transposon insertions in promoter regions often disrupt gene expression, which makes the 11 

allele a candidate of loss of function mutation as also 24 bp deletion  was found just before 

ATG in LDL1 for 11C1 (Figure 25).  This deletion might cause a mutation because it leads to 

deletion of part of the reported 5’ UTR.  In contrast, there is no evidence that the 4 allele 

might be non-functional. 
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The expression level was also examined for LDL1 with 20, 25 and 30 cycles of PCR for 

cDNA from both 11C1 and 4D1 parents compared to glutathione-dependent formaldehyde 

dehydrogenase gene (FDH).  There was no detectable difference in expression level for 4 and 

11 alleles of LDL1 (Figure 28).  Therefore the MITE insertion in the 11 allele does not appear 

to affect expression significantly. 
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11C1genomic                                TTGACATAAAGATATAATCACTTATTTGTATAATGATTATGAAATCC ---1 

4D1genomic                                          TTGACATAAAGATATAATCACTTATTTGTATAATGATTATGAAA--- 1 

Col.genomic                                                         ATAAAGATATAATCACTTATTTGTATAATGATTATGAAA--- 1  
                                                                              
11C1genomic      TACTATATTATTTGGGAAGTACATATTAAATGTAACCTTAATTTTTGTAATTAATTACAT  

 

11C1genomic      GACAATGCCATTAGAAAAATTTAATTAAAAACAAAATCCTTTAATGACGTAATTAAGGTT 

 

11C1genomic      ACCAAAATCATTTAACGACAATATTTACTTCTTAATTATAGGGCTTATTAGATCTAAAGA 

 

11C1genomic      CATGTCATCAAAGATTTCCTAAACTGAAGCAAAATATACCGAATATTCAAATATCTATCT 

 

11C1genomic      GTTACCAAATTATAAACAAATAAGTTAATAAGTCAATAACTATTTGGAGGGACGGGTTTT 

 

11C1genomic      TGAATCAACATTAATAAAAAAAGTAAAATATAATTGATCCACCGTTTCAATACGGGTTAA 

 

11C1genomic      ATCTTTAATTTATTATTTTTAAGACCACTGATATTAAACATATCAAATCATCCTAATTTA 

 

11C1genomic      GAAAAGGTTATATAAAACCAAAAATGTTATGTGGTATGTATAATGTTACTATATATAAAA 

 

11C1genomic      TTAAACTATAAAATATAAATGTATTAGAGAATAATACAATTTGTAAAACTTTTATATGTA 

 

11C1genomic      ATAAATAATTCTCAAATTTTAAAAATTACTACTTTAAAAACAAATCACGGGACGGGTAAA 

 

11C1genomic      GAAATTAGAGAACAGATTTTATTTTGGAATTGAGTTATATGGTGGATGTATTTGAATCAA 

 

11C1genomic      TATTTATAAAATTTTAAAATATTATTAATATGCTGTTTTAGTAAGGGTGAAAACTTCAGT 

 

11C1genomic      TTTTTAACAATTGTCTCATGGATTCGTGGTATAGCGTTAGTTAATAACAATTATAAACTG 

 

11C1genomic      TAAAATATAAATATTTTATAAAAATAAAATTTGCAAGTTTTAATATATATTATCTTTAAA 

 

11C1genomic      AATAAATTATAACGCGGTATACCGCGGGTTAAAATCTAGTTTCATTTGTATTGTTTAAGC 2 

4D1genomic                                              TTTCACTTGTATTGTTTAAGC 2 

Colgenomic                                              TTTCACTTGTATTGTTTAAGC 2 

                                                        ***** *************** 

 

11C1genomic      GAAAACACAGAATCAAAACCGATATTGTGCAAGCAATCTTTCAATGCAATAGTCCTAACA 3 

4D1genomic       GAAAACAAAGGATCAAAACTGATATTGT----GCAATCTTTCAATGCAATAGTCCTAACA 3 

Colgenomic       GAAAACAAAGGATCAAAACTGATATTGT----GCAATCTTTCAATGCAATAGTCCTAACA 3  

                 ******* ** ******** ********    **************************** 

 

11C1genomic      GTCCAGAAATCTAACGTTGCCGTATACCTTCCTTTTTTAGCTAAGAAAAGAAGGCTACAC 5 

4D1genomic       GTCCAGAGATCAAAGGTTGCCGTATACCTTCCTTTTGTAGCTAAGAAAAGAAGGCTACAC 5 

Colgenomic       GTGCAGAGATCAAACGTTGCCGTATACCTTCCTTTTTTAGCTAAGAAAAGAAGGCTACAC 5 

                 ** **** *** ** ********************* *********************** 

 

11C1genomic      TTCTT------------------------ACACAGAGCAAGAGCTATGTCAACAGAGAGT 6 

4D1genomic       TTTGGTAGACTCGTCACTCACATCATCACACACAGAGCAAGAGCTATGTCAACAGAGAGT 6 

Colgenomic       TTTGGTAGACTCGTCACTCACATCATCACACACAGAGCTAGAGCTATGTCAACAGAGACT 6 

                 **                           ********* *******************a* 

 

11C1genomic      AAAGAAACCCGACCCGAAACTAAACCCGAAGACCCGGTAACTCATACTACTGTGGATGTA 7 

4D1genomic       AAAGAAACCCGACCCGAAACTAAACCCGAAGACCCGGCAACTCATACTACTGTGGATGTA 7 

Colgenomic       AAAGAAACCCGACCCGAAACTAAACCCGAAGACCTGGGAACTCATACTACTGTGGATGTA 7 

                 **********************************b**c********************** 

 

11C1genomic      CCCGGTGAAGAACCTCTCGGAGAGCTTATCGCCGACGACGTGAACGAAGTCGTTTCTGAT 8 

4D1genomic       CCCGGTGAAGAACCTCTCGGAGAGCTTATTGCCGACGACGTGAACGAAGTCGTTTCTGAT 8 

Colgenomic       CCCGGTGAAGAACCTCTCGGAGAGCTTATCGCCGACGACGTGAACGAAGTCGTTTCTGAT 8 

                 *****************************d****************************** 

 

11C1genomic      GAAGACGGCCAAAACTCACTCGATGACCAATCGCCATTAACGGAGCTTCAGCCTCTTCCT 10 

4D1genomic       GAAGACGGCCACAACTCACTCGATGACCAATCGCCATTAACGGAGCTTCAACCTCTTCCT 10 

Colgenomic       GAAGACGGCCAAAACTCACTCGATGACCAATCGCCATTAACGGAGCTTCAGCCTCTTCCT 10 

                 ***********e**************************************f********* 
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11C1genomic      TCCGATCTGGTAACGGAGCAACAATCACAAAACCCTAATGCGGCGGAGCCTGGTCCTAGA 12 

4D1genomic       TCCGATCTAGTAACGGAGCAACAATCACAAAACCCTAATGCGGCGGAGCCTGGTCCTAGA 12 

Colgenomic       TCCGATCTGGTAACGGAGCAACAATCACAAAACCCTAATGCGGCGGAGCCTGGTCCTAGA 12 

                 ********g*************************************************** 

 

11C1genomic      GCAAGAAAAAGACGCCGTAGGAAACGTTTCTTCACTGAGATTAACGCAAACCCAGCTTTC 13 

4D1genomic       GCAAGAAAACGACGCCGTAGGAAACGTTTCTTCACTGAGATTAACGCAAACCCAGCTTTC 13 

Colgenomic       GCAAGAAAAAGACGCCGTAGGAAACGTTTCTTCACTGAGATTAACGCAAACCCAGCTTTC 13 

                 *********h************************************************** 

 

11C1genomic      TCGGTAGGGTTTCCGGTTTATTCGCTCACGGAGGAAGAAATTGAAGCTAATGTGGTTTCG 15 

4D1genomic       TCCGTAGGGTTTCCGGTTTATTCACTCACGGAGGAAGAAATCGAAGCTAATGTGGTTTCA 15 

Colgenomic       TCGGTAGGGTTTCCGGTTTATTCGCTCACGGAGGAAGAAATTGAAGCTAATGTGGTTTCG 15 

                 **i********************j*****************k*****************l 

 

11C1genomic      TGGCGATCTAATGTATCGAATTGGTTAACGCGAGATCATGCGCTTGAGTCTATACGTGCT 17 

4D1genomic       TGGCGATCTAATGTATCGAATTGGTTAACGCGAGACCATGCGCTTGAGTCTATACGTGCT 17 

Colgenomic       TGGCGATCTAATGTATCGAATTGGTTAACGCGAGATCATGCGCTTGAGTCTATACGTGCT 17 

                 ***********************************m************************ 

 

11C1genomic      GAACACAAAACCTTAGTTGATACTGCTTACAATTTCCTTCTTGAGCATGGTTATATTAAC 18 

4D1genomic       GAACACAAAACCTTAGTTGATACTGCTTACAATTTCCTCCTTGAGCATGGTTATATTAAC 18 

Colgenomic       GAACACAAAACCTTAGTTGATACTGCTTACAATTTCCTTCTTGAGCATGGTTATATTAAC 18 

                 **************************************n********************* 

 

11C1genomic      CCAAATGTTGTCGTTGTAGGGGCGGGTTTAGCTGGATTGGTTGCTGCTAGACAGTTGTTG 20 

4D1genomic       CCTAATGTTGTCGTTGTAGGGGCGGGTTTAGCTGGTTTGGTTGCTGCTAGACAGTTGTTG 20 

Colgenomic       CCAAATGTTGTTGTTGTAGGGGCGGGTTTAGCTGGTTTGGTTGCTGCTAGACAGTTGTTG 20 

                 **o********p***********************q************************ 

 

11C1genomic      ACACGGAAGATGAAAGGTGGTGATGGTGTTGAGGCAATGGCTGATGTTGGTGGAAGCGTT 22 

4D1genomic       ACTCGGAAGATGAAAGGTGGTGATGGTGTTGAGGCAATGGCTGATGTTGGTGGAAGTGTT 22 

Colgenomic       ACACGGAAGATGAAAGGTGGTGATGGTGTTGAGGCAATGGCTGATGTTGGTGGAAGCGTT 22 

                 **r*****************************************************s*** 

 

11C1genomic      CTCACCGGAATTAATGGGAATCCGCTTGGGGTTTTAGCGAGGCAACTTGGTTTGCCTCTT 23 

4D1genomic       CTCACCGGAATCAATGGTAATCCGCTTGGGGTTTTAGCGAGGCAACTTGGTTTGCCTCTT 23 

Colgenomic       CTCACCGGAATTAATGGGAATCCGCTTGGGGTTTTGGCGAGGCAACTTGGTTTGCCTCTT 23 

                 ***********t*****u*****************v************************ 

 

11C1genomic      CATAAGGTTAGAGATATTTGTCCTTTGTATCTTCCCAATGGAGAGCTTGCTGATGCTAGT 24 

4D1genomic       CACAAGGTTAGAGATATTTGTCCTTTGTATCTTCCCAGTGGAGAGCTTGCTGACGCTGGT 24 

Colgenomic       CATAAGGTTAGAGATATTTGTCCTTTGTATCTTCCCAATGGAGAGCTTGCTGATGCTAGT 24 

                 **w**********************************x***************y***z** 

 

11C1genomic      ATATTTGTACATGCGTTAGCGGAAAATCTTCCGATTTTTTACGGGAGTACAGTTGAGAGC 30 

4D1genomic       ATATTTGTACATGCTTTAGCGGAAAATCTTCCAATTTTTTACGGGAGTACAGTTGAGAGC 30 

Colgenomic       ATATTTGTACATGCTTTAGCGGAAAATCTTCCAATTTTTTACGGGAGTACAGTTGAGAGC 30 

                 **************A*****************B*************************** 

 

11C1genomic      ATCAGATATGGAAGTAACGGGGTTCTGGTTTACACAGGTAACAAAGAGTTCCACTGCGAT 31 

4D1genomic       ATCAGATATGGAAGCAACGGGGTTCTGGTTTACACAGGTAACAAAGAGTTCCACTGCGAT 31 

Colgenomic       ATCAGATATGGAAGCAACGGGGTTCTGGTTTACACAGGTAACAAAGAGTTCCACTGCGAT 31 

                 **************C********************************************* 

 

11C1genomic      ATGGCTCTTTGCACGGTTCCATTAGGTGTTCTGAAGAAAGGTTCAATTGAGTTTTATCCC 32 

4D1genomic       ATGGCTCTTTGCACGGTTCCATTAGGTGTTCTGAAGAAAGGTTCGATTGAGTTTTATCCC 32 

Colgenomic       ATGGCTCTTTGCACGGTTCCATTAGGTGTTCTGAAGAAAGGTTCGATTGAGTTTTATCCC 32 

                 ********************************************D*************** 

 

11C1genomic      ACCGAAGATCCGTCCACTAGAGGAGAATTCTTCTTGTTCTACAGCTATTCTTCTGTTTCC 35 

4D1genomic       ACCGAAGATCCGTCCACTAGAGGAGAATTCTTCTTGTTCTACAGCTATTCTTCTGTTTCC 35 

Colgenomic       ACCGAAGATCCGTCCACCAGAGGAGAATTCTTCTTGTTCTACAGCTATTCTTCTGTTTCC 35 

                 *****************E****************************************** 
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11C1genomic      GCCGAGAGTGTCGGTGATGGAAGAGTGTTCTTTGCAGGTGAAGCTACTAACAGACAATAT 40 

4D1genomic       GCCGAGAGTGTCGGTGATGGAAGAGTGTTCTTTGCAGGTGAAGCTACTAACAGACAATAT 40 

Colgenomic       GCCGAGAGTGTTGGTGATGGAAGAGTGTTCTTTGCAGGTGAAGCTACTAACAGACAATAT 40 

                 ***********F************************************************ 

 

11C1genomic      GTTGCTAGAAGAAGAGCGTCATCATCGGCTTTAAATCCTAACCAGACCTGCATCGACAAA 42 

4D1genomic       GTTGCTAGAAGAAGAGCGTCATCATCGGCTTTAAATCCTAACCAGACCTGCATCGACAAA 42 

Colgenomic       GTTGCTAGAAGAAGAGCGTCATCATCGGCTTTAAATCCTAACCAGATCTGCATCGACAAA 42 

                 **********************************************G************* 

 

11C1genomic      GAAGAAGAGGTAGAGGAAGAAGAAGACCGCTGTTTGGATCAGTTATTCGAGACACCCGAT 43 

4D1genomic       GAAGAAGAGGTAGACGAAGAAGAAGACCGCTGTTTGGATCAGTTATTCGAGACACCCGAT 43 

Colgenomic       GAAGAAGAGGTAGACGAAGAAGAAGACCGCTGTTTGGATCAGTTATTCGAGACACCCGAT 43 

                 **************H********************************************* 

 

11C1genomic      TTAGTGACAAGGAAGCAAGCTATTGAGCTTGGTGAAATGGATGGAGATGAGTTGAGAAAT 46 

4D1genomic       TTAGTGGCAAGGAAGCAAGCTATTGAGCTTGGTGAAATGGATGGAGATGAGTTGAGAAAT 46 

Colgenomic       TTAGTGACAAGGAAGCAAGCTATTGAGCTTGGTGAAATGGATGGAGATGAGTTGAGAAAT 46 

                 ******I***************************************************** 

 

11C1genomic      GGGGAATCGATGATCTCTTCACTCAAAGCTGCAAGACTGAATCGACAGATCTTTGATTAG 48 

4D1genomic       GGGGAATCGATGATCTCTTCACTCAAAGCTGCAAGACTGAATCGACAGATCTTTGATTAG 48 

Colgenomic       GGGGAATCGATGATCTCTTCACTCAAAGCTGCAAGACTGAATCGACAGATCTTTGATTAG 48 

                 ************************************************************ 

 

Figure 26: Sequence alignment of 11 and 4 alleles of LDL1 gene compared to Col.0. 

Non-identical sequences are highlighted in grey, SNPs and deletions are shown in brown, start and stop codons 

in green. 
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Figure 27:  Graphical representation of the LDL1 gene for the 11C1 parent.  

This figure shows different parts of genes in different colours. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28: LDL1 expression analysis for 20, 25 and 30 cycles of PCR. 

No difference in expression of LDL1 was found between the parents. 

 
 

            11C1-LDL1               4D1-LDL1 
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Figure 29: MITEs are found in the Arabidopsis genome at different positions. 

Distance tree shows the relationship of the MITE in the LDL1 allele of 11C1 to others found elsewhere in the Col-0 genome sequence. 
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6.4 The 11 allele of LDL1 has a different transcription start site 

No obvious difference had been detected in the level of LDL1 expression in 4D1 and 11C1.  

However, this did not rule out the possibility that the MITE transposon or other 5’ 

polymorphisms in 11C1 affected the sequence of the LDL1.  For example, it is possible that 

transcription initiates in the MITE, leading to production of a transcript that encodes a longer, 

non-functional protein or that is incorrectly spliced.  To test this, I amplified different regions 

of the LDL1 transcript from 11C1.  All had the same length as wild-type, suggesting that 

transcripts were not wrongly spliced.  I therefore examined the transcription start sites using 

5’RACE.  A shorter RACE product was amplified from 11C1 compared to 4D1 (Figure 31).  

PCR products were gel purified and cloned in pJET1.2 and the largest inserts for each 

genotype were sequenced.  This showed that transcription of the 4D1 allele began at the same 

position as Col-0, 31 bp upstream of the ATG (Figure 26).  However, the 11C1 transcript 

extended only as far as the start of the deletion of the 5’UTR, 16 bp upstream of the ATG.  It 

is possible that this affects translation of the LDL1 protein.  

6.5 Association of LDL1 polymorphisms with flowering time variation 

The MITE insertion in the LDL1 allele of 11C1 provided a convenient polymorphism for 

genotyping the F5 generation to compare the allelic effects of 11 and 4 on flowering time.  

LDL1 was significantly associated (p=0.05) to flowering time in F5 plants in growth room 

conditions with the 11 allele causing later flowering (Table 37).  However, this gene did not 

show an association to flowering time of plants grown in natural conditions.  
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6.6 The 11 allele of LDL1 is found in other members of the same local 

population 

To test for the presence of the MITE insertion in other local accessions, primers flanking the 

transposon insertion in the 11C1 allele were used (primers FN4 and RN4 in Appendix A).  

Genotyping results were analysed on agarose gel as described in 4.2.1 and scored as in Figure 

15a.  DNA from ninety-six local accessions were screened (Figure 30) and the insertion was 

only found in other accessions from the same site as 11C1 (site 11).  Searching the 1001 

Genomes database also showed that the 11 LDL1 allele sequence has not been found in any 

other world-wide accession.  These results showed that this polymorphism is not widely 

spread and therefore that it is likely to be a relatively recent insertion.  
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Gene Trait p-value 11/11 11/4 4/4 

LDL1 GR2 0.05 34 0 30 

LDL1 OS4 0.54 14 0 15 

  

 Table 37: Testing associations and allelic effects between Chromosome 1 genotypes and 

flowering time under natural and controlled conditions. 

LDL1 showed significant association to flowering time of F5 plants in growth room but not in natural 

conditions. 

 

 

 

  

 

 

 

Figure 30: Genotyping of local parental accessions of F3 and F5 with LDL1 primers. 

LDL1 primers detected the insertion in 11C1 and in other plants from the same local site.  

 

 

Figure 31: Analysis with 5’ RACE PCR alleles and amplification of the inserts from 

pJET1.2 clones for 4 and 11 bands. 

In first round 5’ RACE PCR, no product was visible but difference was observed for 4 and 11 band in a second 

round of nested amplification (a).  The 4 parent (first lane) produced a larger product than the 11 parent (second 

lane).  The third lane is a no-cDNA control.   

 11B1      11B2      11B3        11C3           13A2          13A3          13A5      13B1         11C1        
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6.7 LDL1 amino acid sequence variation 

Gene specific primers, GSP1 and GSP2 were designed for 5’ RACE PCR and nested PCR, 

respectively, with NUP (Table 17).  RACE PCR products for both 4 and 11 parental alleles 

were sequenced.  This work is done with the help of Paulina Letmankova and Murray Wham, 

undergraduate project students working in the lab. 

For 11C1 LDL1 protein, I found four amino acids substitutions compared to Col-0 LDL1 

(Figure 32). These are threonine (T; polar and hydrophobic) is replaced by serine (S; polar), 

leucine (L; hydrophobic and aliphatic) by proline (P; unique/rare), glycine (G; tiny) by valine 

(V; small and aliphatic) and aspartic acid (D; negatively charged) is replaced by glutamic 

acid (E; negatively charged).  Substitutions by proline and valine are important as they differ 

from leucine and glycine and these might change the properties of LDL1 protein. 

For the 4D1 LDL1 protein, seven amino acids substitutions were also found compared to 

Col-0.  These are threonine (T) is substituted by serine (S), leucine (L) by proline (P), glycine 

(G) by alanine (tiny and aliphatic), glutamine (Q; polar) by histidine (H; aromatic), 

asparagine (N; small) by serine (S; small), serine (S) by glycine (G) and threonine (T) by 

alanine (A) (Figure 29).  However, none of these substituted amino acids are well conserved 

within Arabidopsis or between other LDL1-like genes. 

Searching the 1001 Genomes database of Arabidopsis ecotype sequences revealed that the 

4D1 LDL1 allele sequence was also present in two other accessions – An-1 from Antwerp in 

Belgium and Bg 2 from near Windsor, UK.  The 11C1 LDL1 allele did not appear to be 

present in any of the sequenced accessions.  However, further work is needed to determine 

whether these substitutions might affect protein function. 
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               a          bc                                           

11         MSTESKETRPETKPEDPVTHTTVDVPGEEPLGELIADDVNEVVSDASATETDFSLSPSQS 1 

4          MSTESKETRPETKPEDPATHTTVDVPGEEPLGELIADDVNEVVSDASATETDFSLSPSQS 1 

Col0       MSTETKETRPETKPEDLGTHTTVDVPGEEPLGELIADDVNEVVSDASATETDFSLSPSQS 1 

           ****:***********  ****************************************** 

                   d                                                    

11         EQNIEEDGQNSLDDQSPLTELQPLPLPPPLPVEARISESLGEEESSDLVTEQQSQNPNAA 2 

4          EQNIEEDGHNSLDDQSPLTELQPLPLPPPLPVEARISESLGEEESSDLVTEQQSQNPNAA 2 

Col0       EQNIEEDGQNSLDDQSPLTELQPLPLPPPLPVEARISESLGEEESSDLVTEQQSQNPNAA 2 

           ********:*************************************************** 

 

11         EPGPRARKRRRRKRFFTEINANPAFSRNRRTSVGKEVDSEALIAMSVGFPVYSLTEEEIE 3 

4          EPGPRARKRRRRKRFFTEINANPAFSRNRRTSVGKEVDSEALIAMSVGFPVYSLTEEEIE 3 

Col0       EPGPRARKRRRRKRFFTEINANPAFSRNRRTSVGKEVDSEALIAMSVGFPVYSLTEEEIE 3 

           ************************************************************ 

 

11         ANVVSIIGGKDQANYIVVRNHIIALWRSNVSNWLTRDHALESIRAEHKTLVDTAYNFLLE 4 

4          ANVVSIIGGKDQANYIVVRNHIIALWRSNVSNWLTRDHALESIRAEHKTLVDTAYNFLLE 4 

Col0       ANVVSIIGGKDQANYIVVRNHIIALWRSNVSNWLTRDHALESIRAEHKTLVDTAYNFLLE 4 

           ************************************************************ 

 

11         HGYINFGLAPVIKEAKLRSFDGVEPPNVVVVGAGLAGLVAARQLLSMGFRVLVLEGRDRP 5 

4          HGYINFGLAPVIKEAKLRSFDGVEPPNVVVVGAGLAGLVAARQLLSMGFRVLVLEGRDRP 5 

Col0       HGYINFGLAPVIKEAKLRSFDGVEPPNVVVVGAGLAGLVAARQLLSMGFRVLVLEGRDRP 5 

           ************************************************************ 

                                                                    e   

11         GGRVKTRKMKGGDGVEAMADVGGSVLTGINGNPLGVLARQLGLPLHKVRDICPLYLPNGE 6 

4          GGRVKTRKMKGGDGVEAMADVGGSVLTGINGNPLGVLARQLGLPLHKVRDICPLYLPSGE 6 

Col0       GGRVKTRKMKGGDGVEAMADVGGSVLTGINGNPLGVLARQLGLPLHKVRDICPLYLPNGE 6 

           *********************************************************.** 

               f                                                        

11         LADASVDSKIEASFNKLLDRVCKLRQSMIEENKSVDVPLGEALETFRLVYGVAEDQQERM 7 

4          LADAGVDSKIEASFNKLLDRVCKLRQSMIEENKSVDVPLGEALETFRLVYGVAEDQQERM 7 

Col0       LADASVDSKIEASFNKLLDRVCKLRQSMIEENKSVDVPLGEALETFRLVYGVAEDQQERM 7 

           ****.******************************************************* 

11         LLDWHLANLEYANATLLGNLSMAYWDQDDPYEMGGDHCFIPGGNEIFVHALAENLPIFYG 8 

4          LLDWHLANLEYANATLLGNLSMAYWDQDDPYEMGGDHCFIPGGNEIFVHALAENLPIFYG 8 

Col0       LLDWHLANLEYANATLLGNLSMAYWDQDDPYEMGGDHCFIPGGNEIFVHALAENLPIFYG 8 

           ************************************************************ 

 

11         STVESIRYGSNGVLVYTGNKEFHCDMALCTVPLGVLKKGSIEFYPELPHKKKEAIQRLGF 9 

4          STVESIRYGSNGVLVYTGNKEFHCDMALCTVPLGVLKKGSIEFYPELPHKKKEAIQRLGF 9 

Col0       STVESIRYGSNGVLVYTGNKEFHCDMALCTVPLGVLKKGSIEFYPELPHKKKEAIQRLGF 9 

           ************************************************************ 

11         GLLNKVAMLFPCNFWGEEIDTFGRLTEDPSTRGEFFLFYSYSSVSGGPLLVALVAGDAAE 10 

4          GLLNKVAMLFPCNFWGEEIDTFGRLTEDPSTRGEFFLFYSYSSVSGGPLLVALVAGDAAE 10 

Col0       GLLNKVAMLFPCNFWGEEIDTFGRLTEDPSTRGEFFLFYSYSSVSGGPLLVALVAGDAAE 10 

           ************************************************************ 

 

11         RFETLSPTDSVKRVLQILRGIYHPKGIVVPDPVQALCSRWGQDKFSYGSYSYVAVGSSGD 11 

4          RFETLSPTDSVKRVLQILRGIYHPKGIVVPDPVQALCSRWGQDKFSYGSYSYVAVGSSGD 11 

Col0       RFETLSPTDSVKRVLQILRGIYHPKGIVVPDPVQALCSRWGQDKFSYGSYSYVAVGSSGD 11 

           ************************************************************ 

 

11         DYDILAESVGDGRVFFAGEATNRQYPATMHGAFLSGMREAANILRVARRRASSSALNPNQ 12 

4          DYDILAESVGDGRVFFAGEATNRQYPATMHGAFLSGMREAANILRVARRRASSSALNPNQ 12 

Col0       DYDILAESVGDGRVFFAGEATNRQYPATMHGAFLSGMREAANILRVARRRASSSALNPNQ 12 

           ************************************************************ 
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                    g                                                   

11         TCIDKEEEVEEEEDRCLDQLFETPDLTFGNFSVLFTPNSDEPESMSLLRVRIQMEKPESG 13 

4          TCIDKEEEVDEEEDRCLDQLFETPDLTFGNFSVLFTPNSDEPESMSLLRVRIQMEKPESG 13 

Col0       ICIDKEEEVDEEEDRCLDQLFETPDLTFGNFSVLFTPNSDEPESMSLLRVRIQMEKPESG 13 

            ********:************************************************** 

 

                  h                                                     

11         LWLYGLVTRKQAIELGEMDGDELRNEYLREKLGLVPVERKSLSQEGESMISSLKAARLNR 14 

4          LWLYGLVARKQAIELGEMDGDELRNEYLREKLGLVPVERKSLSQEGESMISSLKAARLNR 14 

Col0       LWLYGLVTRKQAIELGEMDGDELRNEYLREKLGLVPVERKSLSQEGESMISSLKAARLNR 14 

           *******:**************************************************** 

 

11         QIFD 15 

4          QIFD 15 

Col0       QIFD 15 

           **** 

 

Figure 32: Alignment of LDL1 amino acid sequences of 4D1 and 11C1 compared to  

Col-0.  

The protein sequences of the sequenced LDL1 alleles, identical amino acids are in black, the presence of a 

substitution relative to the other sequences is identified in grey.  The letters above the amino acid sequence refer 

to the nucleotide substitutions in Figure 24. 

 



175 

  

6.8 Arabidopsis transformation experiments 

If an ldl1 loss-of-function mutation contributes to the later flowering of 11C1, then 

transformation of 11C1 with a wild-type copy of the LDL1 gene should cause earlier 

flowering.  A T-DNA construct carrying the LDL1 gene of 4D1 was therefore made, 

introduced into Agrobacterium and used to dip flowers of 11C1.  Time did not permit 

selection of transformed plants or testing of their flowering times. 

6.9 Discussion  

Variation in the sequences of LDL1 and VIP5 between the 4D1 and 11C1 mapping parents 

were detected.  Synonymous and non-synonymous single nucleotide substitutions were 

observed in VIP5 for both 11C1 and 4D1 relative to Col-0.  Difference in expression levels 

were also suggested for VIP5 with 4D1 showed lower expression than 11C1.  However, this 

finding needs to be further investigated with quantitative RT-PCR. VERNALIZATION 

INDEPENDENCE 2 (VIP2), ELF8 (VIP6), VIP4, and VIP5 are members of the Paf1-

complex, which has been shown to be required for a high level of FLC expression (He et al., 

2004; Kim et al., 2005; Oh et al., 2004).  The Arabidopsis PAF1-like complex components 

are required for the H3K4me3 enrichment in FLC chromatin and FLC expression, and thus 

for floral repression (He et al., 2004).  Therefore if the VIP5 allele from 11C1 is responsible 

for suppression of the fri mutant phenotype and late flowering, it would have to be more 

active than the 4D1 allele.  11C1 is a fri mutant but is late flowering and expresses FLC at a 

detectable level (McCulloch and Hudson, 2011).  In the absence of a functional FRI allele, 

the autonomous-pathway genes, such as FCA, FPA, FVE, LUMINIDEPENDENS, and 

FLOWERING LOCUS D (FLD) can still repress FLC expression to accelerate flowering 

(Ausin et al., 2004; Lee et al., 1994a; Macknight et al., 1997; Schmid et al., 2003; Schomburg 
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et al., 2001b).  Arabidopsis relatives of the human histone demethylase LSD1 (LDL1, LDL2, 

and FLD) reduce the levels of H3K4 methylation in FWA and FLC chromatin and act to 

repress the expression of these two genes (Jiang et al., 2007).  FLD, LDL1, and LDL2 act in 

partial redundancy to repress FLC expression (Krichevsky et al., 2007).  Importantly, an ldl1 

mutation can delay the early flowering of fri mutants (Jiang et al., 2007).  Therefore an ldl1 

loss-of-function mutation in 11C1 is consistent with suppression of its fri mutant phenotype. 

Polymorphisms were found in LDL1 between 4D1 and 11C1.  Although a number of non-

synonymous substitutions were found in the coding region, most of these were either 

conservative or were found in other world-wide accessions, suggesting that they did not 

affect LDL1 activity.  The 11C1 allele was also found to carry a MITE insertion in its 

promoter.  MITES tend to be found close to expressed genes.  These often affect expression 

of the neighbouring genes, usually reducing expression (Fattash et al., 2013; Santiago et al., 

2002).  However, similar levels of mRNA were detected in 11C1 and 4D1 plants.  A potential 

loss-of-function mutation involving deletion of the normal transcript initiation site of LDL1 

was also found in the 11C1 allele, causing transcription to start 16 bp upstream of the 

assumed ATG.  The CAP-binding complex binds to 5’ end of RNA.  If it is too close to the 

ATG start codon, it could potentially prevent access of ribosomes to ATG to initiate 

translation, either resulting in reduced protein levels or initiation at a more downstream ATG 

and production of a truncated protein.  This could be tested further by studies of protein 

expression, e.g., with Western blots.  Co-segregation of in the F5 population supported the 

idea that LDL1 might be the QTL and for a loss-of -function mutation (ldl1) in 11C1. 

MITE transposons are considered to be not very active in Arabidopsis (Fattash et al., 2013), 

however, the insertion in LDL1 in 11C1 is not found in other accessions (except plants from 

the same population), suggesting that it was active relatively recently.  From evolutionary 

point of view- independent fri mutations have given rise to rapid cycling accessions from 
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winter annuals multiple times.  The suppressor mutation in 11C1 might or not reverse this 

evolutionary trend.   

A further possibility is that a loss-of-function ldl1 mutation might also affect growth rate.  

Since, a growth rate QTL is also linked to CIW1; it is possible that a loss of LDL1 activity in 

11C1 contributes to variation in both flowering time and growth rate.  This is supported by 

the finding that an ldl1 mutation affects root growth rate in Col-0 genetic background (Singh 

et al., 2012). 

7.0 Critical appraisal 

The simplest way to test the involvement of LDL1 further would be to transform the 11C1 

parent with a copy of the LDL1 gene from 4D1.  If 11C1 is an ldl1 mutant, the transgene 

should complement it and advance flowering and reduce growth rate.  If a shorter 5
   

 UTR 

(Figure 31) affects expression of LDL1 
11 

allele, this can be tested by Western blotting with 

antibodies that are specific to LDL1 (11C1 should produce a shorter or less abundant protein 

than 4D1).  However, antibodies are not available for LDL1, therefore an alternative 

approach would be to transform ldl1 mutants with an LDL1 construct in which the protein is 

epitope tagged (e.g., with Myc or GFP). 
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8.0 Concluding remarks 

Extensive genetically determined variation in growth rate and flowering time in local 

accessions of Arabidopsis thaliana in Edinburgh (Scotland) had been observed on a similar 

scale to worldwide (Gazzani et al., 2003; Johanson et al., 2000).   

Variation in plants growth rate was observed both in control and natural conditions and also 

in seasons.  Variation in rosette areas of plants as growth rate has not been studied in 

Arabidopsis accessions compared to hypocotyl growth (Borevitz et al., 2002; Botto and 

Smith, 2002; Maloof et al., 2001).  However, growth rate in different Arabidopsis accessions 

was studied and compared with other parameters like seed weight etc (Li et al., 1998). 

Significant correlation was found between seed weight and rosette area of plants (El-Lithy et 

al., 2004)  High variation was observed in spring and this is consistent with studies that 

spring phenology has strong genetic component (Pellis et al., 2004; Tsarouhas et al., 2003; 

Weih, 2009) and it enables the plants to use favourable conditions of spring and this might 

affect productivity. 

Significant correlations between traits studied in variable conditions suggest that these traits 

are predominantly controlled by same genetic factors.  Two QTLs each for growth rate and 

flowering time were detected in analysis.  However, these QTLs were not found in all 

subsequent experiments.  Previous studies have shown that FRI and FLC are needed for very 

late flowering (Gazzani et al., 2003; Johanson et al., 2000; Michaels et al., 2003) and the 

11C1 parent in our experiment is a fri mutant (McCulloch and Hudson, 2011) but none of 

these loci were detected in our study. 

This analysis suggested that at least part of the late flowering behaviour of 11C1 parent could 

be attributed to the variation in the region of either VERNALIZATION INDEPENDENCE 5 
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(VIP5) or LSD1-LIKE1 (LDL1).  vip5 mutants are known to flower earlier than flc null 

mutants, suggesting that other flowering-time genes are targeted by VIP5.  Strong vip 

mutants also exhibit developmental pleiotropy, suggesting that the VIP genes also target 

mechanisms unrelated to flowering (Zhang et al., 2003), however 4D1 did not show any of 

the other characteristics of vip5 mutants.  Loss of VIP5 function leads to down-regulation of 

not only FLC, but also other members of the FLC/MAF MADS-box gene family, all of which 

have the capacity to act as floral repressors (Ratcliffe et al., 2001; Scortecci et al., 2001).  The 

other potential candidate gene in this locus is LDL1 which is known to repress FLC and 

promotes flowering in Arabidopsis (Krichevsky et al., 2007).  LDL1/SWP1 gene also known 

to regulate lateral root initiation and elongation and mutation in LDL1 increases both the 

density and length of lateral roots in Arabidopsis (Singh et al., 2012) .  Though, 11C1 carries 

a loss-of-function fri mutation (McCulloch and Hudson, 2011) no QTL for flowering time 

was detected in the vicinity of FRI (at the top of chromosome 4).  One explanation is that 

4D1 is also a fri mutation, although no obvious loss of function mutation had been detected in 

the sequence of the FRI coding sequence from 4D1.  Alternatively, the effects of the fri 

mutation from 11C1 might have been masked in the mapping population by segregating 

suppressors.  Polymorphism was found between 11C1 and 4D1 alleles of LDL1.  Besides 

SNPs in both genes, a 24 bp deletion at the start of the LDL1 gene and  882 bp MITE 

insertion upstream of the gene were found for 11 allele in the late flowering parent.  Alleles 

for early (4D1) and late flowering (11C1) parents expressed at same level with semi-

quantitative RT-PCR but a shortened 5’-UTR was observed for 11C1 with 5’ RACE PCR. 

In long days conditions, ldl1 mutants are known to flower later than the wild-type Columbia 

(Col-0) (Jiang et al., 2007).  Transgenic lines have been produced that carry the 4D1 LDL1 

allele in an ldl1 Col-0 background (Jiang et al., 2007), to test whether the 4D1 allele is 

functional, and in the 11C1 background, to test whether an ldl1 loss-of-function mutation 
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contributes to its late flowering.  This work is on-going and will hopefully reveal whether 

LDL1 is relevant to the differences in flowering behaviour seen between 11C1 and 4D1. 
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Appendix A 

Primers used for sequencing VIP5 

Name Sequence Tm (
0
C) 

VIP5-F1 GTGACAGTGAAAACCATTTAAATTC 50 

VIP5-R1 TGACCTGTCATCACCTGTCTAGCA 57 

VIP5-F2 GATTTCTCATCAACGAAGAGGAAAC 54 

VIP5-R2 TTTTACCTCAGATGCGTTCTTGAAA 52 

VIP5-F3 GTAGAGAGGATCAAGTCGAAAATCA 54 

VIP5-R3 AGAGTAGCAAAACTGCAAAAGACTTG 54 

 

Primers used for sequencing LDL1 

Name Sequence Tm (
0
C) 

LDL-F1 ACTCACATCATCACACACAGAGCTA 55 

LDL1-R1 CGCCCACCCGGTCTATCTCTACCTT 60 

LDL-F2 GTCGTTTGATGGCGTAGAGCCGCCA 60 

LDL1-R2 AGCTACAAGTGCTACAAGTAATGGA 54 

LDL-F3 TCCGTGTAACTTCTGGGGCGAAGAG 60 

LDL1-R3 AATAAGAAAAGTAAACTTCACTTCA 47 

FN-1 TCATCGACTGTCTAAGCTTACAAACT 63 

RN-1 TTATTAAAGAGGCGAAATTGAGGTCG 63 

FN-2 TACCTTCAAGAACCAAAACCCTAAAC 63 

RN-2 TCACTGAGATTAACGCAAACCCAGCT 66 

FN-3 TAGCTTCAATTTCTTCCTCCGTGAGC 66 

FN-4 CTTCTTCAATATTTTGCTCCGATTGG 63 
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RN-4 TGACATAAAGATATAATCACTTATTT 55 

NF4-GP-580 TTACTACTTTAAAAACAAATCACGGG 60 

NF4-GP-980 GGTTTGTTATTTGTTAGGACTATTGC 62 

11C1-F-3610 ATCGAC AGATCT TTGATTAGTAGT AA 60 

11-AH-F TGTCGTTAAATGATTTTGGTAACCT 59 

 

Primers for expression analysis of LDL1 

Name Sequence Tm (
0
C) 

F GAGGAGGAGGAAGAGGAAGAGGCTGA 62 

R ACTACTGTGGATGTACCCGGTGAAGA 62 

  

pJET primers 

 

Name Sequence Tm (
0
C) 

pJET1.2-F 5’-CGACTCACTATAGGGAGAGCGGC-3’ 62 

pJET1.2-R 5’-AAGAACATCGATTTTCCATGGCAG-3, 62 
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Appendix B 

                                                                             

 

Col.0           ATGGGTGATTTAGAGAACTTGCTTTTGGAAGCTGCTGGGAGAACAAATTCAGCAGGGAGG  

VIP5-11C1       ------------------------------------------------------------  

VIP5-4D1        ------------------------------------------------------------  

                                                                             

Col.0           AGTCGTCATCCTCCATCATCGAGGAGACGTGAGGGTTCTTACTCTGATGGTAGTAGCGAT  

VIP5-11C1       ------------------------------------------------------------  

VIP5-4D1        ------------------------------------------------------------

                                                                             

Col.0           TCAAGGGATGATTCTGATGAAGATCGTGGCTATGCTAGTAGAAAACCCTCTGGGTCTCAA  

VIP5-11C1       ------------------------------------------------------------  

VIP5-4D1        ------------------------------------------------------------  

                                                                              

Col.0           GTTCCTTTGAAGAAGAGATTGGAGGCAGAGAGAGAAGATCGAGCTGCTCGAGTTGAAGGT  

VIP5-11C1       ------------------------------------------------------------  

VIP5-4D1        ------------------------------------------------------------  

                                                                              

Col.0           GGTTATGGTGATGGACCATCTGATCGTGAAGGTGACAGCAGCGAGGAGTCTGATTTTGGA  

VIP5-11C1       ------------------------------------------------------------  

VIP5-4D1        ------------------------------------------------------------  

                                                                              

 

Col.0           GATGACCTTTACAAGAATGAGGAAGACAGGCAGAAGCTTGCTGGAATGACTGAGTTTCAG  

VIP5-11C1       ------------------------------------------------------------  

VIP5-4D1        ------------------------------------------------------------  

                                                                              

 

Col.0           AGAGAGATGATTCTCTCTGAACGTGCTGATAAGAAAGGTGATAAGAACTTCACTGAGAAA  

VIP5-11C1       ------------------------------------------------------------  

VIP5-4D1        ------------------------------------------------------------  

                                                                              

 

Col.0           CTTAGGTCCAAGAGAGAAAGTGAGAAAACCCCTGTTTCTAAAAAGGAGACTCAGCCTCTT  

VIP5-11C1       ------------------------------------------------------------  

VIP5-4D1        ------------------------------------------------------------  

                                                                              

 

Col.0           CCGGCCTCTCGTGGTGTGCGTTCATCTGCTAGATCTGCAGACAGAGCCGCTGCTAAGGAT  

VIP5-11C1       ------------------------------------------------------------  

VIP5-4D1        ------------------------------------------------------------  

                                                                              

 

Col.0           GATGCCCTGAATGAATTGAGGGCGAAGCGTATGAAGCAGCAGGACCCAGCAGCTCTCAGG  

VIP5-11C1       ------------------------------------------------------------  

VIP5-4D1        ------------------------------------------------------------  

                                                                              

 

Col.0           AAACTGAGAGATGCATCAAAAGGTGGTTCAGGTAGTCGAGATTTCTCATCAACGAAGAGG 1 

VIP5-11C1       ----------ATGCATCAAAAGGTGGTTCAGGTAGTCGAGATTTCTCGTCAAAGAGGAGG 1 

VIP5-4D1        ------------------------------------------------------------ 1 

                                                                              

 

Col.0           AAACCGTTAGCTTCCTCCAATTTGAGTAGTTCCAGCCAAAGTGACAGTGATAGTAGGTCT 2 

VIP5-11C1       AAACCATTACCTTCCTC-AATTTGAGTAGTTCCAGCCAAAGTGACAGTGATAGTAGGTCT 2  

VIP5-4D1        ---GCGGTGGCTTCCTCCAATTTGAGTAGTTCCAGCCAAAGTGACAGTGATAGTAGGTCT 2 

                    *  *  ******* ******************************************  

 

Col.0           CAGAGTGATGATGAAGGCTCGAATGGAGGAATGCTAGACAGTGATGATGACAGGTCAGAT 3 

VIP5-11C1       CAGAGTGATGATGAAGGCTCGAATGGAGGAATGCTAGACAGTGATGATGACAGGTCAGAT 3 

VIP5-4D1        CAAAGTGATGATGAAGGCTCGAATGGAGGAATGCTAGACAGTGATGATGACAGGTCAGAT 3 
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                ** *********************************************************  

 

Col.0           GTGCCTACGTTTGAGGATGTTAAGGAAGTTACCATTAGACGGTCTAAGCTTGCCAAATGG 4 

VIP5-11C1       GTGCCTACGTTTGAGGATGTTAAGGAAGTTACCATCAGACGGTCTAAGCTTGCCAAATGG 4 

VIP5-4D1        GTGCCTACGTTTGAGGATGTTAAGGAAGTTACCATTAGACGGTCTAAGCTTGCCAAATGG 4 

                *********************************** ************************  

 

Col.0           CTAATGGAGCCTTTCTTTGAAGAGCTTATAGTTGGGTGCTTTGTGAGGGTTGGGATCGGA 5 

VIP5-11C1       CTAATGGAGCCTTTCTTTGAAGAGCTTATAGTTGGGTGCTTTGTGAGGGTTGGGATCGGA 5 

VIP5-4D1        CTAATGGAGCCTTTCTTTGAAGAGCTTATAGTTGGGTGCTTTGTGAGAGTTGGGATCGGA 5 

                *********************************************** ************  

 

Col.0           AGGTCAAAGAGTGGTCCAATTTACAGACTCTGCTGGGTGAAGAATGTTGATGCAACCGAT 6 

VIP5-11C1       AGGTCAAAGAGTGGTCCAATTTACAGACTCTGCTGGGTGAAGAATGTTGATGCAACCGAT 6 

VIP5-4D1        AGGTCAAAGAGTGGTCCAATTTACAGACTCTGCTGGGTGAAGAATGTAGATGCAACCGAT 6 

                *********************************************** ************  

 

Col.0           CCTGACAAGACCTACAAGCTAGAGAATAAAACTACACACAAGTACCTTAACGTCGTCTGG 7 

VIP5-11C1       CCTGACAAGACCTACAAGCTAGAGAATAAAACTACACACAAGTACCTTAACGTCGTCTGG 7 

VIP5-4D1        CCTGACAAGACTTACAAGCTAGAGAATAAGACTACACACAAGTATCTTAACGTCGTCTGG 7 

                *********** ***************** ************** ***************  

 

Col.0           GGAAATGAAACCTCGGCGGCTCGATGGCAAATGGCTATGATCTCAGATGGTCATCCGCTG 8 

VIP5-11C1       GGAAATGAAACCTCGGCGGCTCGATGGCAAATGGCTATGATCTCAGATGGTCATCCGCTG 8 

VIP5-4D1        GGAAATGAAACCTCGGCGGCTCGATGGCAAATGGCTATGATCTCAGATGGTCATCCTCTG 8 

                ******************************************************** ***  

 

Col.0           GAGGAAGAGTATAGGCAATGGATCAGAGAGGTTGAGCGAACAAATGGTCGCATGCCCACA 9 

VIP5-11C1       GAGGAAGAGTATAGGCAATGGATCAGAGAGGTTGAGCGAACAAATGGTCGCATGCCCACA 9 

VIP5-4D1        GAGGAAGAGTATAGGCAATGGATCAGAGAGGTTGAGCGAACAAATGGTCGCATGCCCACA 9 

                ************************************************************  

 

Col.0           AAGCAAGATATATCGGAGAAGAAAGAAGCGATACAAAGAACAAACAGTTTTGTTTACTCT 10 

VIP5-11C1       AAGCAAGATATATCGGAGAAGAAAGAAGCGATACAAAGAACAAACAGTTTTGTTTACTCT 10 

VIP5-4D1        AAGCAAGATATATCGGAGAAGAAAGAAGCGATACAAAGAACAAACAGTTTTGTTTACTCT 10 

                ************************************************************  

 

Col.0           GCGGAAACTGTTAAACAGATGCTGCAGGAGAAAAAATCTGCGTCAGTCAGGCCAATGAAT 11 

VIP5-11C1       GCGGAAACTGTTAAACAGATGCTGCAGGAGAAAAAATCTGCGTCAGTCAGGCCAATGAAT 11 

VIP5-4D1        GCGGAAACTGTTAAACAGATGCTGCAGGAGAAAAAATCTGCGTCAGTCAGGCCAATGAAT 11 

                ************************************************************  

 

Col.0           GTTGCGGCCGAGAAAGATCGGCTTAGAAAAGAATTGGAAATTGCGCAGAGCAAAAACGAT 12 

VIP5-11C1       GTTGCGGCCGAGAAAGATCGGCTTAGAAAAGAATTGGAAATTGCGCAGAGCAAAAACGAT 12 

VIP5-4D1        GTTGCGGCCGAGAAAGATCGGCTTAGAAAAGAGTTGGAAATTGCGCAGAGCAAAAACGAT 12 

                ******************************** ***************************  

 

Col.0           GAAGCAGGTGTAGAGAGGATCAAGTCGAAAATCAAACAGCTCGACGCTTCACGGAACAAG 13 

VIP5-11C1       GAAGCAGGTGTAGAGAGGATCAAGTCGAAAATCAAACAGCTCGACGCTTCACGGAACAAG 13 

VIP5-4D1        GAAGCAGGTGTAGAGAGGATCAAATCGAAAATCAAACAGCTCGACGCCTCACGGAACAAG 13 

                *********************** *********************** ************  

 

Col.0           AAAGGGGTAGATAAAAAAGCGCTTAAACTTGCTGAGATGAACAAGAAGAACAGAGCCGAG 14 

VIP5-11C1       AAAGGGGTAGATAAAAAAGCGCTTAAACTTGCTGAGATGAACAAGAAGAACAGAGCCGAG 14 

VIP5-4D1        AAAGGAGTCGATAAAAAAGCGCTCAAACTTGCCGAGATGAACAAGAAGAACAGAGCCGAG 14 

                ***** ** ************** ******** ***************************  

 

Col.0           AATTTCAAGAACGCATCTGAGGTAAAATCAATAACTGCTAGTCTCAAAGCCGGTGAAGCA 15 

VIP5-11C1       AATTTCAAGAACGCATCTGAGGTAAAATCAATAACTGCTAGTCTCAAAGCCGGTGAAGCA 15 

VIP5-4D1        AATTTCAAGAACGCATCTGAGGTARAATCAATAACTGCTAGTCTCAAAGCCGGTGAAGCA 15 

                ************************ ***********************************  

 

Col.0           GGGTATGATCCGTTTTCAAGAAGATGGACCCGATCATCAAACTACTACAACGGGAAAAAC 16 

VIP5-11C1       GGGTATGATCCGTTTTCAAGAAGATGGACCCGATCATCAAACTACTACAACGGGAAAAAC 16 

VIP5-4D1        GGGTATGATCCGTTTTCAAGAAGATGGACCCGATCATCGAACTACTACAACGGGAAAAAC 16 

                ************************************** *********************  
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Col.0           AAGGGGAAAGATGGAGAAGAGAACGAGGCAGCGGTTGCAGCAGCGGTTGAGACCAATGGA 17 

VIP5-11C1       AAGGGGAAAGATGGAGAAGAGAACAAGGCAGCGGTTGCAGCAGCGGTTGAGACCAATGGA 17 

VIP5-4D1        AAGGGGAAAGACGGAGAAGAGAACGAGGCAGCGGTTGCAGCAGCGGTTGAGACCAATGGA 17 

                *********** ************ ***********************************  

 

Col.0           GCAGATGCAGGAGCAGGTGTTGAAGCGACAGAAGCAGCTTTAGAAGCAGCTGCAGAGGCA 18 

VIP5-11C1       GCAGATGCAGGAGCAGGTGTTGAAGCGACAGAAGCAGCTTTAGAAGCAGCTGCAGAGGCA 18 

VIP5-4D1        GCAGATGCAGGAGCAGGTGTTGAAGCGACAGAAGCAGCTTTAGAAGCAGCTGCAGAGGCA 18 

                ************************************************************  

 

Col.0           GGAAAGCTAATAGACACAAGAGCTCCAATAGGTCAAGGAGCAGAACACAATCAGCTTCAT 19 

VIP5-11C1       GGAAAGCTAATAGACACAAGAGCTCCAATAGGTCAAGGAGCAGAACACAATCAGCTTCAT 19 

VIP5-4D1        GGAAAGCTAATAGACACAAGAGCTCCAATCGGTCGAGGAGCAGAACACAATCAGCTTCAT 19 

                ***************************** **** *************************  

 

Col.0           AACTTTGAATTGTCGTTATCGCTAACGGCTTTACAGAAGTACGGAGGACCTCAAGGAGTA 20 

VIP5-11C1       AACTTTGAATTGTCGTTATCGCTAACGGCTTTACAGAAGTACGGAGGACCTCAAGGAGTA 20 

VIP5-4D1        AACTTTGAATTGTCGTTATCGCTAACGGCTTTACAGAAGTACGGAGGACCTCAAGGAGTA 20 

                ************************************************************  

 

Col.0           CAGAAAGCGTTCATGGCGAGGAAGCAACTGACCGAAGCAACTGTGGGATGCAGAGTCGCA 21 

VIP5-11C1       CAGAAAGCGTTCATGGCGAGGAAGCAACTGACCGAAGCAACTGTGGGATGCAGAGTCGCA 21 

VIP5-4D1        CAGAAAGCGTTCATGGCGAGGAAGCAACTGACCGAAGCAACTGTGGGATGCAGAGTCGTA 21 

                ********************************************************** *  

 

Col.0           GAGAACGATGGCAAGAGACATGGCCTTACGTTAACTGTTAGTGATTACAAGAGAAGGAGA 22 

VIP5-11C1       GAGAACGATGGCAAGAGACATGGCCTTACGTTAACTGTTAGTGATTACAAGAGAAGGAGA 22 

VIP5-4D1        GAGAACGATGGCAAGAGACATGGCCTTACGTTAACTGTTAGTGATTACAAGAGAAGGAGA 22 

                ************************************************************  

 

Col.0           GGTCTTCTCTGA 23 

VIP5-11C1       GGTCTTCTCTGA 23 

VIP5-4D1        GGTCTTCTCTGA 23 

                ************ 
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Appendix C 

11C1genomic                   TTGACATAAAGATATAATCACTTATTTGTATAATGATTATGAAATCC 1 

4D1genomic                    TTGACATAAAGATATAATCACTTATTTGTATAATGATTATGAAA--- 1 

Colgenomic                         ATAAAGATATAATCACTTATTTGTATAATGATTATGAAA--- 1  

                                                                              

 

11C1genomic      TACTATATTATTTGGGAAGTACATATTAAATGTAACCTTAATTTTTGTAATTAATTACAT  

 

11C1genomic      GACAATGCCATTAGAAAAATTTAATTAAAAACAAAATCCTTTAATGACGTAATTAAGGTT 

 

11C1genomic      ACCAAAATCATTTAACGACAATATTTACTTCTTAATTATAGGGCTTATTAGATCTAAAGA 

 

11C1genomic      CATGTCATCAAAGATTTCCTAAACTGAAGCAAAATATACCGAATATTCAAATATCTATCT 

 

11C1genomic      GTTACCAAATTATAAACAAATAAGTTAATAAGTCAATAACTATTTGGAGGGACGGGTTTT 

 

11C1genomic      TGAATCAACATTAATAAAAAAAGTAAAATATAATTGATCCACCGTTTCAATACGGGTTAA 

 

11C1genomic      ATCTTTAATTTATTATTTTTAAGACCACTGATATTAAACATATCAAATCATCCTAATTTA 

 

11C1genomic      GAAAAGGTTATATAAAACCAAAAATGTTATGTGGTATGTATAATGTTACTATATATAAAA 

 

11C1genomic      TTAAACTATAAAATATAAATGTATTAGAGAATAATACAATTTGTAAAACTTTTATATGTA 

 

11C1genomic      ATAAATAATTCTCAAATTTTAAAAATTACTACTTTAAAAACAAATCACGGGACGGGTAAA 

 

11C1genomic      GAAATTAGAGAACAGATTTTATTTTGGAATTGAGTTATATGGTGGATGTATTTGAATCAA 

 

11C1genomic      TATTTATAAAATTTTAAAATATTATTAATATGCTGTTTTAGTAAGGGTGAAAACTTCAGT 

 

11C1genomic      TTTTTAACAATTGTCTCATGGATTCGTGGTATAGCGTTAGTTAATAACAATTATAAACTG 

 

11C1genomic      TAAAATATAAATATTTTATAAAAATAAAATTTGCAAGTTTTAATATATATTATCTTTAAA 

 

11C1genomic      AATAAATTATAACGCGGTATACCGCGGGTTAAAATCTAGTTTCATTTGTATTGTTTAAGC  2 

4D1genomic                                              TTTCACTTGTATTGTTTAAGC  2 

Colgenomic                                              TTTCACTTGTATTGTTTAAGC  2 

                                                        ***** *************** 

 

11C1genomic      GAAAACACAGAATCAAAACCGATATTGTGCAAGCAATCTTTCAATGCAATAGTCCTAACA  3 

4D1genomic       GAAAACAAAGGATCAAAACTGATATTGT----GCAATCTTTCAATGCAATAGTCCTAACA  3 

Colgenomic       GAAAACAAAGGATCAAAACTGATATTGT----GCAATCTTTCAATGCAATAGTCCTAACA  3  

                 ******* ** ******** ********    **************************** 

 

11C1genomic      AATAACAAACCGAAGGGGTACTTTTCTAGATGGGTCTGGGCCAAGGCCCATACATTTCGG 4 

4D1genomic       AATAACAAACCGAAGGGGTACTTTTCTAGATGGGTCTGGGCCAAGGCCCATACATTTCGG 4 

Colgenomic       AATAACAAACCGAAGGGGTACTTTTCTAGATGGGTCTGGGCCAAGGCCCATACATTTCGG 4 

                 ************************************************************ 

 

11C1genomic      GTCCAGAAATCTAACGTTGCCGTATACCTTCCTTTTTTAGCTAAGAAAAGAAGGCTACAC 5 

4D1genomic       GTCCAGAGATCAAAGGTTGCCGTATACCTTCCTTTTGTAGCTAAGAAAAGAAGGCTACAC 5 

Colgenomic       GTGCAGAGATCAAACGTTGCCGTATACCTTCCTTTTTTAGCTAAGAAAAGAAGGCTACAC 5 

                 ** **** *** ** ********************* *********************** 

 

11C1genomic      TTCTT------------------------ACACAGAGCAAGAGCTATGTCAACAGAGAGT 6 

4D1genomic       TTTGGTAGACTCGTCACTCACATCATCACACACAGAGCAAGAGCTATGTCAACAGAGAGT 6 

Colgenomic       TTTGGTAGACTCGTCACTCACATCATCACACACAGAGCTAGAGCTATGTCAACAGAGACT 6 

                 **                           ********* *******************a* 
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11C1genomic      AAAGAAACCCGACCCGAAACTAAACCCGAAGACCCGGTAACTCATACTACTGTGGATGTA 7 

4D1genomic       AAAGAAACCCGACCCGAAACTAAACCCGAAGACCCGGCAACTCATACTACTGTGGATGTA 7 

Colgenomic       AAAGAAACCCGACCCGAAACTAAACCCGAAGACCTGGGAACTCATACTACTGTGGATGTA 7 

                 **********************************b**c********************** 

 

 

11C1genomic      CCCGGTGAAGAACCTCTCGGAGAGCTTATCGCCGACGACGTGAACGAAGTCGTTTCTGAT 8 

4D1genomic       CCCGGTGAAGAACCTCTCGGAGAGCTTATTGCCGACGACGTGAACGAAGTCGTTTCTGAT 8 

Colgenomic       CCCGGTGAAGAACCTCTCGGAGAGCTTATCGCCGACGACGTGAACGAAGTCGTTTCTGAT 8 

                 *****************************d****************************** 

 

11C1genomic      GCGTCGGCGACGGAGACAGACTTCTCACTCTCACCGAGCCAATCGGAGCAAAATATTGAA 9 

4D1genomic       GCGTCGGCGACGGAGACAGACTTCTCACTCTCACCGAGCCAATCGGAGCAAAATATTGAA 9 

Colgenomic       GCGTCGGCGACGGAGACAGACTTCTCACTCTCACCGAGCCAATCGGAGCAAAATATTGAA 9 

                 ************************************************************ 

 

11C1genomic      GAAGACGGCCAAAACTCACTCGATGACCAATCGCCATTAACGGAGCTTCAGCCTCTTCCT 10 

4D1genomic       GAAGACGGCCACAACTCACTCGATGACCAATCGCCATTAACGGAGCTTCAACCTCTTCCT 10 

Colgenomic       GAAGACGGCCAAAACTCACTCGATGACCAATCGCCATTAACGGAGCTTCAGCCTCTTCCT 10 

                 ***********e**************************************f********* 

 

11C1genomic      CTTCCTCCTCCTCTTCCAGTCGAAGCACGAATCTCAGAATCGCTCGGTGAAGAAGAATCT 11 

4D1genomic       CTTCCTCCTCCTCTTCCAGTCGAAGCACGAATCTCAGAATCGCTCGGTGAAGAAGAATCT 11 

Colgenomic       CTTCCTCCTCCTCTTCCAGTCGAAGCACGAATCTCAGAATCGCTCGGTGAAGAAGAATCT 11 

                 ************************************************************ 

 

11C1genomic      TCCGATCTGGTAACGGAGCAACAATCACAAAACCCTAATGCGGCGGAGCCTGGTCCTAGA 12 

4D1genomic       TCCGATCTAGTAACGGAGCAACAATCACAAAACCCTAATGCGGCGGAGCCTGGTCCTAGA 12 

Colgenomic       TCCGATCTGGTAACGGAGCAACAATCACAAAACCCTAATGCGGCGGAGCCTGGTCCTAGA 12 

                 ********g*************************************************** 

 

11C1genomic      GCAAGAAAAAGACGCCGTAGGAAACGTTTCTTCACTGAGATTAACGCAAACCCAGCTTTC 13 

4D1genomic       GCAAGAAAACGACGCCGTAGGAAACGTTTCTTCACTGAGATTAACGCAAACCCAGCTTTC 13 

Colgenomic       GCAAGAAAAAGACGCCGTAGGAAACGTTTCTTCACTGAGATTAACGCAAACCCAGCTTTC 13 

                 *********h************************************************** 

 

11C1genomic      TCAAGAAACCGCCGCACTAGCGTCGGCAAAGAGGTGGATTCAGAAGCGCTAATCGCAATG 14 

4D1genomic       TCAAGAAACCGCCGCACTAGCGTCGGCAAAGAGGTGGATTCAGAAGCGCTAATCGCAATG 14 

Colgenomic       TCAAGAAACCGCCGCACTAGCGTCGGCAAAGAGGTGGATTCAGAAGCGCTAATCGCAATG 14 

                 ************************************************************ 

 

11C1genomic      TCGGTAGGGTTTCCGGTTTATTCGCTCACGGAGGAAGAAATTGAAGCTAATGTGGTTTCG 15 

4D1genomic       TCCGTAGGGTTTCCGGTTTATTCACTCACGGAGGAAGAAATCGAAGCTAATGTGGTTTCA 15 

Colgenomic       TCGGTAGGGTTTCCGGTTTATTCGCTCACGGAGGAAGAAATTGAAGCTAATGTGGTTTCG 15 

                 **i********************j*****************k*****************l 

 

11C1genomic      ATCATCGGAGGTAAAGATCAAGCTAATTACATTGTTGTAAGGAATCACATTATTGCTCTG 16 

4D1genomic       ATCATCGGAGGTAAAGATCAAGCTAATTACATTGTTGTAAGGAATCACATTATTGCTCTG 16 

Colgenomic       ATCATCGGAGGTAAAGATCAAGCTAATTACATTGTTGTAAGGAATCACATTATTGCTCTG 16 

                 ************************************************************ 

 

11C1genomic      TGGCGATCTAATGTATCGAATTGGTTAACGCGAGATCATGCGCTTGAGTCTATACGTGCT 17 

4D1genomic       TGGCGATCTAATGTATCGAATTGGTTAACGCGAGACCATGCGCTTGAGTCTATACGTGCT 17 

Colgenomic       TGGCGATCTAATGTATCGAATTGGTTAACGCGAGATCATGCGCTTGAGTCTATACGTGCT 17 

                 ***********************************m************************ 

 

11C1genomic      GAACACAAAACCTTAGTTGATACTGCTTACAATTTCCTTCTTGAGCATGGTTATATTAAC 18 

4D1genomic       GAACACAAAACCTTAGTTGATACTGCTTACAATTTCCTCCTTGAGCATGGTTATATTAAC 18 

Colgenomic       GAACACAAAACCTTAGTTGATACTGCTTACAATTTCCTTCTTGAGCATGGTTATATTAAC 18 

                 **************************************n********************* 

 

11C1genomic      TTCGGGCTTGCTCCGGTTATTAAAGAGGCGAAATTGAGGTCGTTTGATGGCGTAGAGCCG 19 

4D1genomic       TTCGGGCTTGCTCCGGTTATTAAAGAGGCGAAATTGAGGTCGTTTGATGGCGTAGAGCCG 19 

Colgenomic       TTCGGGCTTGCTCCGGTTATTAAAGAGGCGAAATTGAGGTCGTTTGATGGCGTAGAGCCG 19 

                 ************************************************************ 
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11C1genomic      CCAAATGTTGTCGTTGTAGGGGCGGGTTTAGCTGGATTGGTTGCTGCTAGACAGTTGTTG 20 

4D1genomic       CCTAATGTTGTCGTTGTAGGGGCGGGTTTAGCTGGTTTGGTTGCTGCTAGACAGTTGTTG 20 

Colgenomic       CCAAATGTTGTTGTTGTAGGGGCGGGTTTAGCTGGTTTGGTTGCTGCTAGACAGTTGTTG 20 

                 **o********p***********************q************************ 

11C1genomic      TCAATGGGGTTTAGGGTTTTGGTTCTTGAAGGTAGAGATAGACCGGGTGGGCGGGTTAAG 21 

4D1genomic       TCAATGGGGTTTAGGGTTTTGGTTCTTGAAGGTAGAGATAGACCGGGTGGGCGGGTTAAG 21 

Colgenomic       TCAATGGGGTTTAGGGTTTTGGTTCTTGAAGGTAGAGATAGACCGGGTGGGCGGGTTAAG 21 

                 ************************************************************ 

 

11C1genomic      ACACGGAAGATGAAAGGTGGTGATGGTGTTGAGGCAATGGCTGATGTTGGTGGAAGCGTT 22 

4D1genomic       ACTCGGAAGATGAAAGGTGGTGATGGTGTTGAGGCAATGGCTGATGTTGGTGGAAGTGTT 22 

Colgenomic       ACACGGAAGATGAAAGGTGGTGATGGTGTTGAGGCAATGGCTGATGTTGGTGGAAGCGTT 22 

                 **r*****************************************************s*** 

 

11C1genomic      CTCACCGGAATTAATGGGAATCCGCTTGGGGTTTTAGCGAGGCAACTTGGTTTGCCTCTT 23 

4D1genomic       CTCACCGGAATCAATGGTAATCCGCTTGGGGTTTTAGCGAGGCAACTTGGTTTGCCTCTT 23 

Colgenomic       CTCACCGGAATTAATGGGAATCCGCTTGGGGTTTTGGCGAGGCAACTTGGTTTGCCTCTT 23 

                 ***********t*****u*****************v************************ 

 

11C1genomic      CATAAGGTTAGAGATATTTGTCCTTTGTATCTTCCCAATGGAGAGCTTGCTGATGCTAGT 24 

4D1genomic       CACAAGGTTAGAGATATTTGTCCTTTGTATCTTCCCAGTGGAGAGCTTGCTGACGCTGGT 24 

Colgenomic       CATAAGGTTAGAGATATTTGTCCTTTGTATCTTCCCAATGGAGAGCTTGCTGATGCTAGT 24 

                 **w**********************************x***************y***z** 

 

11C1genomic      GTTGATTCTAAGATTGAGGCATCGTTTAATAAGTTGTTGGATAGAGTTTGTAAGCTTAGA 25 

4D1genomic       GTTGATTCTAAGATTGAGGCATCGTTTAATAAGTTGTTGGATAGAGTTTGTAAGCTTAGA 25 

Colgenomic       GTTGATTCTAAGATTGAGGCATCGTTTAATAAGTTGTTGGATAGAGTTTGTAAGCTTAGA 25 

                 ************************************************************ 

 

11C1genomic      CAGTCGATGATAGAGGAGAATAAATCAGTTGATGTGCCTTTGGGAGAAGCGCTTGAAACA 26 

4D1genomic       CAGTCGATGATAGAGGAGAATAAATCAGTTGATGTGCCTTTGGGAGAAGCGCTTGAAACA 26 

Colgenomic       CAGTCGATGATAGAGGAGAATAAATCAGTTGATGTGCCTTTGGGAGAAGCGCTTGAAACA 26 

                 ************************************************************ 

 

11C1genomic      TTTCGATTGGTTTATGGGGTTGCTGAGGATCAGCAAGAGAGAATGCTCTTAGATTGGCAT 27 

4D1genomic       TTTCGATTGGTTTATGGGGTTGCTGAGGATCAGCAAGAGAGAATGCTCTTAGATTGGCAT 27 

Colgenomic       TTTCGATTGGTTTATGGGGTTGCTGAGGATCAGCAAGAGAGAATGCTCTTAGATTGGCAT 27 

                 ************************************************************ 

 

11C1genomic      TTAGCAAACTTGGAATATGCAAATGCTACATTGTTGGGGAATCTGTCAATGGCGTATTGG 28 

4D1genomic       TTAGCAAACTTGGAATATGCAAATGCTACATTGTTGGGGAATCTGTCAATGGCGTATTGG 28 

Colgenomic       TTAGCAAACTTGGAATATGCAAATGCTACATTGTTGGGGAATCTGTCAATGGCGTATTGG 28 

                 ************************************************************ 

 

11C1genomic      GATCAAGATGATCCGTATGAGATGGGTGGTGATCATTGTTTTATCCCAGGTGGGAACGAA 29 

4D1genomic       GATCAAGATGATCCGTATGAGATGGGTGGTGATCATTGTTTTATCCCAGGTGGGAACGAA 29 

Colgenomic       GATCAAGATGATCCGTATGAGATGGGTGGTGATCATTGTTTTATCCCAGGTGGGAACGAA 29 

                 ************************************************************ 

 

11C1genomic      ATATTTGTACATGCGTTAGCGGAAAATCTTCCGATTTTTTACGGGAGTACAGTTGAGAGC 30 

4D1genomic       ATATTTGTACATGCTTTAGCGGAAAATCTTCCAATTTTTTACGGGAGTACAGTTGAGAGC 30 

Colgenomic       ATATTTGTACATGCTTTAGCGGAAAATCTTCCAATTTTTTACGGGAGTACAGTTGAGAGC 30 

                 **************A*****************B*************************** 

 

11C1genomic      ATCAGATATGGAAGTAACGGGGTTCTGGTTTACACAGGTAACAAAGAGTTCCACTGCGAT 31 

4D1genomic       ATCAGATATGGAAGCAACGGGGTTCTGGTTTACACAGGTAACAAAGAGTTCCACTGCGAT 31 

Colgenomic       ATCAGATATGGAAGCAACGGGGTTCTGGTTTACACAGGTAACAAAGAGTTCCACTGCGAT 31 

                 **************C********************************************* 

 

11C1genomic      ATGGCTCTTTGCACGGTTCCATTAGGTGTTCTGAAGAAAGGTTCAATTGAGTTTTATCCC 32 

4D1genomic       ATGGCTCTTTGCACGGTTCCATTAGGTGTTCTGAAGAAAGGTTCGATTGAGTTTTATCCC 32 

Colgenomic       ATGGCTCTTTGCACGGTTCCATTAGGTGTTCTGAAGAAAGGTTCGATTGAGTTTTATCCC 32 

                 ********************************************D*************** 
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11C1genomic      GAACTTCCTCATAAGAAGAAAGAAGCGATTCAGAGACTTGGATTCGGATTGTTGAACAAA 33 

4D1genomic       GAACTTCCTCATAAGAAGAAAGAAGCGATTCAGAGACTTGGATTCGGATTGTTGAACAAA 33 

Colgenomic       GAACTTCCTCATAAGAAGAAAGAAGCGATTCAGAGACTTGGATTCGGATTGTTGAACAAA 33 

                 ************************************************************ 

 

11C1genomic      GTGGCGATGTTGTTTCCGTGTAACTTCTGGGGCGAAGAGATTGATACTTTTGGGCGATTA 34 

4D1genomic       GTGGCGATGTTGTTTCCGTGTAACTTCTGGGGCGAAGAGATTGATACTTTTGGGCGATTA 34 

Colgenomic       GTGGCGATGTTGTTTCCGTGTAACTTCTGGGGCGAAGAGATTGATACTTTTGGGCGATTA 34 

                 ************************************************************ 

 

11C1genomic      ACCGAAGATCCGTCCACTAGAGGAGAATTCTTCTTGTTCTACAGCTATTCTTCTGTTTCC 35 

4D1genomic       ACCGAAGATCCGTCCACTAGAGGAGAATTCTTCTTGTTCTACAGCTATTCTTCTGTTTCC 35 

Colgenomic       ACCGAAGATCCGTCCACCAGAGGAGAATTCTTCTTGTTCTACAGCTATTCTTCTGTTTCC 35 

                 *****************E****************************************** 

 

11C1genomic      GGTGGTCCATTACTTGTAGCACTTGTAGCTGGAGACGCTGCGGAAAGATTCGAGACATTG 36 

4D1genomic       GGTGGTCCATTACTTGTAGCACTTGTAGCTGGAGACGCTGCGGAAAGATTCGAGACATTG 36 

Colgenomic       GGTGGTCCATTACTTGTAGCACTTGTAGCTGGAGACGCTGCGGAAAGATTCGAGACATTG 36 

                 ************************************************************ 

 

11C1genomic      TCGCCTACTGATTCCGTTAAACGGGTCTTGCAGATACTACGCGGAATATATCACCCAAAA 37 

4D1genomic       TCGCCTACTGATTCCGTTAAACGGGTCTTGCAGATACTACGCGGAATATATCACCCAAAA 37 

Colgenomic       TCGCCTACTGATTCCGTTAAACGGGTCTTGCAGATACTACGCGGAATATATCACCCAAAA 37 

                 ************************************************************ 

 

11C1genomic      GGAATTGTTGTTCCTGATCCGGTTCAAGCCCTCTGTTCCAGATGGGGACAAGACAAGTTT 38 

4D1genomic       GGAATTGTTGTTCCTGATCCGGTTCAAGCCCTCTGTTCCAGATGGGGACAAGACAAGTTT 38 

Colgenomic       GGAATTGTTGTTCCTGATCCGGTTCAAGCCCTCTGTTCCAGATGGGGACAAGACAAGTTT 38 

                 ************************************************************ 

 

11C1genomic      TCATACGGTTCTTACTCATATGTTGCGGTCGGATCATCAGGAGATGATTACGATATTTTA 39 

4D1genomic       TCATACGGTTCTTACTCATATGTTGCGGTCGGATCATCAGGAGATGATTACGATATTTTA 39 

Colgenomic       TCATACGGTTCTTACTCATATGTTGCGGTCGGATCATCAGGAGATGATTACGATATTTTA 39 

                 ************************************************************ 

 

11C1genomic      GCCGAGAGTGTCGGTGATGGAAGAGTGTTCTTTGCAGGTGAAGCTACTAACAGACAATAT 40 

4D1genomic       GCCGAGAGTGTCGGTGATGGAAGAGTGTTCTTTGCAGGTGAAGCTACTAACAGACAATAT 40 

Colgenomic       GCCGAGAGTGTTGGTGATGGAAGAGTGTTCTTTGCAGGTGAAGCTACTAACAGACAATAT 40 

                 ***********F************************************************ 

 

11C1genomic      CCAGCTACAATGCACGGAGCCTTCTTAAGTGGAATGAGAGAAGCAGCAAACATACTTAGA 41 

4D1genomic       CCAGCTACAATGCACGGAGCCTTCTTAAGTGGAATGAGAGAAGCAGCAAACATACTTAGA 41 

Colgenomic       CCAGCTACAATGCACGGAGCCTTCTTAAGTGGAATGAGAGAAGCAGCAAACATACTTAGA 41 

                 ************************************************************  

 

11C1genomic      GTTGCTAGAAGAAGAGCGTCATCATCGGCTTTAAATCCTAACCAGACCTGCATCGACAAA 42 

4D1genomic       GTTGCTAGAAGAAGAGCGTCATCATCGGCTTTAAATCCTAACCAGACCTGCATCGACAAA 42 

Colgenomic       GTTGCTAGAAGAAGAGCGTCATCATCGGCTTTAAATCCTAACCAGATCTGCATCGACAAA 42 

                 **********************************************G************* 

 

11C1genomic      GAAGAAGAGGTAGAGGAAGAAGAAGACCGCTGTTTGGATCAGTTATTCGAGACACCCGAT 43 

4D1genomic       GAAGAAGAGGTAGACGAAGAAGAAGACCGCTGTTTGGATCAGTTATTCGAGACACCCGAT 43 

Colgenomic       GAAGAAGAGGTAGACGAAGAAGAAGACCGCTGTTTGGATCAGTTATTCGAGACACCCGAT 43 

                 **************H********************************************* 

 

11C1genomic      TTAACATTCGGGAATTTCTCAGTATTGTTTACTCCAAATTCGGATGAACCTGAATCCATG 44 

4D1genomic       TTAACATTCGGGAATTTCTCAGTATTGTTTACTCCAAATTCGGATGAACCTGAATCCATG 44 

Colgenomic       TTAACATTCGGGAATTTCTCAGTATTGTTTACTCCAAATTCGGATGAACCTGAATCCATG 44 

                 ************************************************************ 

 

11C1genomic      TCATTGTTGAGGGTTAGGATCCAAATGGAGAAACCCGAATCAGGTCTTTGGCTTTACGGT 45 

4D1genomic       TCATTGTTGAGGGTTAGGATCCAAATGGAGAAACCCGAATCAGGTCTTTGGCTTTACGGT 45 

Colgenomic       TCATTGTTGAGGGTTAGGATCCAAATGGAGAAACCCGAATCAGGTCTTTGGCTTTACGGT 45 

                 ************************************************************ 
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11C1genomic      TTAGTGACAAGGAAGCAAGCTATTGAGCTTGGTGAAATGGATGGAGATGAGTTGAGAAAT 46 

4D1genomic       TTAGTGGCAAGGAAGCAAGCTATTGAGCTTGGTGAAATGGATGGAGATGAGTTGAGAAAT 46 

Colgenomic       TTAGTGACAAGGAAGCAAGCTATTGAGCTTGGTGAAATGGATGGAGATGAGTTGAGAAAT 46 

                 ******I***************************************************** 

 

11C1genomic      GAATACTTGCGTGAGAAGTTAGGACTTGTTCCTGTCGAAAGGAAGAGTCTTTCTCAAGAA 47 

4D1genomic       GAATACTTGCGTGAGAAGTTAGGACTTGTTCCTGTCGAAAGGAAGAGTCTTTCTCAAGAA 47 

Colgenomic       GAATACTTGCGTGAGAAGTTAGGACTTGTTCCTGTCGAAAGGAAGAGTCTTTCTCAAGAA 47 

                 ************************************************************ 

 

 

 

11C1genomic      GGGGAATCGATGATCTCTTCACTCAAAGCTGCAAGACTGAATCGACAGATCTTTGATTAG 48 

4D1genomic       GGGGAATCGATGATCTCTTCACTCAAAGCTGCAAGACTGAATCGACAGATCTTTGATTAG 48 

Colgenomic       GGGGAATCGATGATCTCTTCACTCAAAGCTGCAAGACTGAATCGACAGATCTTTGATTAG 48 

                 ************************************************************ 

 

11C1genomic      TAGTAAAATAGATTTAGATTAAAATTGTATTCAGCTGCGTCTACGTTGTAAATTGTTGTT 49 

4D1genomic       TAGTAAAATAGATTTAGATTAAAATTGTATTCAGCTGCGTCTACGTTGTAAATTGTTGTT 49 

Colgenomic       TAGTAAAATAGATTTAGATTAAAATTGTATTCAGCTGCGTCTACGTTGTAAATTGTTGTT 49 

                 ************************************************************  

 

11C1genomic      CTAATCTTTTTTGTACTTAACGCAAAACATTTTGGAAAACAAAGCTTTGTTACTTATTTG 50 

4D1genomic       CTAATCTTTTTTGTACTTAACGCAAAACATTTTGGAAAACAAAGCTTTGTTACTTATTTG 50 

Colgenomic       CTAATCTTTTTTGTACTTAACGCAAAACATTTTGGAAAACAAAGCTTTGTTACTTATTTG 50 

                 ************************************************************ 

 

11C1genomic      ACGTGAAG---------------------------------------------------- 51 

4D1genomic       ACGTGAAG---------------------------------------------------- 51 

Colgenomic       ACGTGAAG---------------------------------------------------- 51 

                 ******** 
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Appendix D (1) 

(Flowering time data of F5) 

 GR2 OS4  GR2 OS4  GR2 OS4 

Family 

No. of 

leaves 

to 

flower 

No. of 

leaves 

to 

flower 

Family 

No. of 

leaves 

to 

flower 

No. of 

leaves 

to 

flower 

Family 

No. of 

leaves 

to 

flower 

No. of 

leaves 

to 

flower 

31 31±5.7 14±0.7 362 36±20 12±1.3 612 28±14 13±0.2 

33 37±8.5 13±0.8 364 37±7.3 13±9.2 613 33±8.7 13±0.3 

51 33±24 14±3.3 366 32±58 13±1.8 614 35±6.7 12±1.7 

52 13±5.3 15±1.7 392 39±4.3 15±2.2 615 28±22 13±0.8 

54 17±11 15±0.7 393 34±28 14±2.3 632 22±2.8 15±1.8 

56 39±1.7 15±1 394 37±5.6 17±1.8 634 33±1.8 14±0.3 

61 35±4.3 14±3.2 395 34±24 17±4 635 25±18 14±1.5 

64 34±9.8 13±5 396 40±30 14±6.8 651 18±19 14±0.9 

65 36±10 14±5.5 421 30±39 14±2.8 652 26±35 15±1.5 

66 29±10 14±3.2 422 33±2.2 15±4.7 656 30±58 14±1.5 

72 30±22 15±1.2 441 31±34 14±0.5 671 31±9.2 15±3.7 

76 20±13 17±1 443 34±15 15±4.3 676 37±11 15±6.2 
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86 37±16 14±0.8 444 31±1.7 12±0.2 683 25±90 14±2.7 

91 35±10 14±1.7 462 30±18 15±2.2 685 35±15 14±1.3 

92 42±10 17±1.7 463 31±20 15±1.3 686 30±14 16±1.3 

93 34±15 15±1.7 464 33±10 14±0.8 691 42±6.5 14±1.8 

94 32±19 13±0.3 466 29±3.7 15±2 694 38±24 15±4.5 

95 36±11 16±1.3 483 30±2.2 14±6.2 695 39±6.8 16±9.7 

101 35±8.3 13±2.2 484 25±43 14±0.8 696 37±11 15±8.2 

104 33±3.7 14±4.8 484b 38±11 14±7 706 33±41 16±1.3 

121 35±0.7 15±2.3 485 32±24 16±4.2 524a 35±20 16±4.3 

124 34±8.5 15±4.7 504 27±43 15±2.8 524b 35±63 14±3.2 

132 37±25 14±1.3 511 39±9.1 14±2.7    

134 34±11 16±3.7 514 27±20 14±3.7    

153 43±10 14±6.7 516 35±17 18±8    

155 43±14 15±2.8 521 31±11. 13±1.2    

156 14±2.7 14±1.7 522 36±9.3 15±0.2    

194 40±17 13±3.2 523 38±20 13±5.3    

241 25±19 14±0.7 526 35±34 14±2    

242 27±11.2 15±0.8 581 35±18.7 14±1.2    
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* ± variance 

243 29±16.7 14±1.2 594 39±42 14±6.3    

261 33±15 14±4.5 601 35±13.8 15±0.5    

341 29±34 14±1.6 605 33±26 17±1.2    

342 19±3.3 15±0.7 611 35±15 13±1.3    
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Appendix D (2) 

(Flowering time data of F3) 

Family Growth room –No. 

of leaves to flower 

Family Growth room –No. 

of leaves to flower 

3 29±3.8 45 28±9.5 

5 27±5.7 46 32±2.7 

6 16±2.1 47 29±5 

7 23±3.5 48 31±10.2 

8 23±6.3 49 31±4.5 

9 26±9.1 51 25±3.5 

10 23±10.2 52 30±2.5 

12 25±21.5 58 29±23.5 

13 29±5.9 60 29±8.9 

15 24±6.9 63 24±5.4 

19 12±8.2 67 32±0.9 

24 29±5.3 68 29±7.2 

26 33±6.8 69 39±3.6 

34 32±12.4 70 28±7.8 

36 24±13 59a 30±7.8 

39 32±1.8 65a 28±0.5 

40 29±7.9   

41 26±0.6   

44 30±4.5   

* ± variance 
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Appendix D (3) 

F3 flowering data (field) 

Family Natural conditions–

No. of leaves to 

flower 

Family Natural conditions –

No. of leaves to 

flower 

9 26±9.1 47 29±5 

10 23±10.2 60 29±8.9 

12 25±21.5 63 24±5.4 

13 29±5.9 67 32±0.9 

15 24±6.9 68 29±7.2 

19 12±8.2 69 39±3.6 

24 29±5.3 70 28±7.8 

26 33±6.8 59a 30±7.8 

34 32±12.4 65a 28±0.5 

36 24±13   

39 32±1.8   

40 29±7.9   

41 26±0.6   

44 30±4.5   

45 28±9.5   

46 32±2.7   

* ± variance 
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Appendix E (1) 

Growth rate variation data of F5 

Family 

OS3 (S) 

(Area in mm
2
) 

OS4 (A) (Area 

in mm
2
) 

GR1(S) (Area 

in mm
2
) 

GR2(A) (Area 

in mm
2
) 

31 548±88 233±17 3558±281 365±38 

33 666±63 218±24 4360±265 247±38 

51 619±36 148±16 4221±445 247±37 

52 520±82 228±11 3499±146 350±68 

54 752±82 168±10 2801±272 308±53 

56 660±46 198±18 4083±377 295±27 

61 -- 218±24 1701±730 308±58 

64 552±88 202±20 2759±571 303±21 

65 874±174 207±24 3172±963 376±31 

66 452±74 249±40 2064±412 140±31 

72 985±246 307±23 4465±245 322±26 

76 1196±44 255±21 3737±247 341±15 

86 828±115 225±17 4390±571 301±35 

91 349±67 241±17 3633±319 413±65 

92 550±78 194. ±7 3666±269 502±42 

93 480 ±52 160±9 3926±435 282±39 

94 474±84 229±24 2964±266 384±37 
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95 714±72 161±9 4542±346 268±25 

101 587±76 185±51 4855±478 130±28 

104 555±73 132±10 3300±226 160±26 

121 1036±135 273±26 3540 ±571 331±105 

124 982±150 218±14 4058±517 409±39 

132 367±31 176±12 3608±115 347±57 

134 1023±78 243±15 4241±338 328±44 

153 491±75 224±32 2609±347 447±59 

155 251±129 229±18 1922±477 514±36 

156 680±196 240±30 1589±512 472±39 

194 294±68 200±22 1388±227 396±56 

241 629±114 229±18 3744±382 375±46 

242 1153±158 259±40 4735±651 474±16 

243 819±98 242±20 3615±357 271±43 

261 687±59 207±23 2935±1103 110±37 

341 508±46 208±19 4912±426 449±83 

342 403±62 157±7 3686±329 386±45 

362 1160±100 114±17 4077±565 217±67 

364 1144±175 147±24 3681±256 327±22 

366 811±97 153±5 2744±136 331±54 

392 874±119 252±20 3542±375 358±26 
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393 538±207 258±41 1836±849 219±84 

394 375±58 279±15 2701±468 275±31 

395 954±116 293±28 4143±309 482±58 

396 823±168 200±31 2885±441 424±34 

421 1049±75 355±47 4614±290 431±42 

422 803±73 181±27 3898±438 549±98 

441 618±76 208±29 3420±374 436±29 

443 1022±164 306±37 4212±444 401±29 

444 638±63 140±35 3151±139 226±62 

462 404±55 218±15 2299±164 315±66 

463 784±85 222±10 3366±208 315±71 

464 849±183 193±31 3024±361 363±47 

466 699±82 219±15 3864±385 355±66 

483 706±79 129±12 4025±761 326±41 

484 881±101 189±15 3817±302 196±53 

484b 471±98 186±6 4170±335 238±13 

485 577±83 180±16 3726±190 261±45 

504 831±74 341±42 4431±503 296±54 

511 639±147 205±12 3424±309 384±40 

514 922±89 230±27 4352±500 476±24 

516 1048±115 249±24 4112±298 572±74 
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521 1097±135 236±8 3544±366 327±57 

522 1279±123 312±19 7320±751 539±84 

523 1216±175 211±13 5987±334 551±100 

526 376±43 232±21 4097±393 456±70 

581 853±131 267±19 3940±386 344±63 

594 849±123 210±11 2998±368 287±52 

601 932±116 217±31 4014±623 389±70 

605 826±130 222±17 3384±249 263±53 

611 840±76 211±4 3645±298 301±34 

612 716±205 150±20 2484±516 185±18 

613 687±118 145±14 3172±310 161±21 

614 674±74 138±16 3246±419 180±23 

615 675±147 149±14 2711±790 296±63 

632 579±96 213±12 3851±268 418±48 

634 898±123 230±18 4572±512 237±63 

635 767±122 212±15 4394±237 475±69 

651 1151±73 238±18 3130±300 322±48 

652 1372±58 185±34 3692±278 259±77 

655 1691±97 203±38 4939±735 352±74 

671 1917±90 305±24 5714±463 525±97 

676 1712±72 296±17 5408±788 389±37 
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683 
888±84 

234±27 3985±141 431±77 

685 531±72 193±24 3831±378 390±40 

686 746±89 233±12 4189±381 491±60 

691 710±56 254±24 3171±189 483±19 

694 619±77 247±22 3518±432 398±16 

695 566±51 223±22 3261±315 392±35 

696 662±70 225±16 3525±401 474±47 

706 537±44 204±17 2690±394 313±40 

524a 939±238 284±37 4852±647 600±35 

524b 1244±86 287±22 4622±225 390±75 

* ± std. error 
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Appendix E (2) 

Growth rate variation data of F3 

Family 
OS1 (A) (Area 

in mm
2
) 

OS2 (S) (Area 

in mm
2
) 

GH1(A) (Area 

in mm
2
) 

GH2(S) (Area 

in mm
2
) 

2 1102±145 895±120 1053±132 1459±181 

3 805±147 524±78 1277±280 1346±284 

5 784±132 658±165 1073±66 1222±189 

6 965±276 - 1516±236 387±95 

7 711±46 - - 315±75 

8 1088±98 581±61 738±5 1119±122 

9 835±138 1517±203 793±85 458±92 

10 721±245 1193±272 - 1067±138 

11 1126±87 1555±304 - 465±87 

12 1164±104 1525±231 2060±682 914±77 

13 854±186 1398±159 1117±129 715±89 

14 678±162 1165±58 - 558±82 

15 948±111 1506±79 992±275 674±156 

16 668±143 978±163 1507±209 477±116 

18 871±120 1507±204 1202±240 384±94 

19 869±69 1224±117 1235±117 887±63 
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20 462±120 925±104 900±204 668±45 

21 807±87 1055±193 373±82 570±104 

22 1141±100 831±45 1083±364 536±79 

23 914±77 1445±249 1431±244 539±125 

24 874±52 1204±258 1268±273 673±58 

25 829±132 1372±255 810±241 645±43 

26 821±62 1253±311 650±95 642±85 

27 1067±100 1433±271 1151±252 943±73 

29 1228±142 1911±234 1221±240 512±77 

30 819±271 1976±166 858±153 1125±134 

31 663±154 1539±356 1107±148 860±79 

32 746±41 978±246 1107±86 737±104 

33 789±51 1311±255 921±85 802±86 

34 864±163 1277±349 1334±213 616±178 

35 1052±221 1791±237 1634±101 1052±71 

36 842±157 1630±225 1168±75 1001±128 

37 1315±196 1550±111 1253±320 1055±127 

39 948±68 1694±248 1086±49 1256±112 

40 896±42 2208±229 - 1328±85 



219 

  

41 793±41 1344±134 - 667±102 

42 633±182 1184±153 1821±154 765±79 

43 675±142 1218±93 
1225±129 

 
662±61 

44 777±100 1097±116 - 595±82 

45 861±226 1453±159 1251±335 804±81 

46 713±73 1252±154 1122±148 454±24 

47 947±77 979±221 1287±224 718±73 

48 623±138 1160±85 877±59 445±80 

49 789±138 1082±102 1271±246 198±42 

50 1116±241 1533±228 -- 199±47 

51 910±127 1459±271 1788±318 857±128 

52 794±22 1631±273 - 870±150 

53 785±259 - 1146±220 - 

54 - 1192±186 - 734±92 

55 686±78 957±76 1555±102 225±77 

56 902±293 1081±183 1342±443 395±95 

57 1310±199 1289±273 1288±309 394±175 

58 730±77 1550±164 1001±190 1149±108 

59a 770±82 1482±294 1575±347 1147±112 
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59b 907±69 1669±63 741±122 768±180 

60 763±167 1467±162 1011±330 944±155 

61 874±120 1236±219 1122±483 826±102 

62 901±184 1249±131 1438±323 817±131 

63 1154±208 1127±101 396±71 402±98 

64 1235±219 1194±83 1391±189 330±63 

65a 844±239 1108±189 
906±195 

 
268±103 

65b 577±171 706±83 1103±187 365±63 

66 1019±108 1021±133 848±494 427±93 

67 951±167 1300±179 - 351±88 

68 968±113 922±326 1296±258 157±58 

69 981±231 1211±270 - 365±128 

70 935±131 1732±322 1355±241 149±43 

71 1010±125 1041±327 1497±253 341±100 

72 1069±110 1343±181 1359±244 510±68 

73 975±104 1146±198 1056±328 458±130 

75 825±61 1920±257 1741±255 212±96 

76 850±131 865±264 294±172 302±91 

78a 939±232 1191±122 
1512±137 

 
330±180 
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78b 930±88 1644±222 1102±186 538±50 

79 996±159 1858±328 1776±164 733±141 

81 978±121 1931±551 1123±497 714±135 

82 483±87 1940±231 1066±154 604±155 

83 887±210 1740±530 1399±289 553±201 

84 975±69 1854±135 1805±112 341±104 

85 856±76 1041±78 1091±68 641±73 

4D1 700±84 1516±94 1575±260 1022±93 

11C1 798±222 1665±73 1636±121 1643±88 

11B1 351± 1328±145 1286±178 895±126 

* ± std. error 
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