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Abstract

Mammalian telomere length is regulated in a dynamic manner through multi-factorial
elements. This project focuses on specific aspects of both extrinsic and intrinsic factors
that govern telomere length.

Expression of the human telomerase reverse transcriptase (hTERT) gene in sheep
fibroblasts reconstitutes telomerase activity and extends their lifespan. Although
stabilization of telomere length is directly correlated to hTERT expression level, this
was not reflected in telomerase activity. Data presented here shows that overexpression
of non-catalytic domains decreased telomerase activity, compromised senescence bypass
status and did not enhance telomere maintenance, which may result from competitive

binding to sheep TR molecules and/or disruption of hTERT homodimeric structure.

These results are consistent with the notion that telomere maintenance requires a

functional telomerase complex which contains an inter-dependent hTERT homodimeric
structure.

The single-stranded 3' G-rich overhang has been implicated as a key feature with a

telomeric end-protection configuration. Data presented here show that the 3' overhang is
eroded during culture of sheep fibroblasts, indicating that the 3' overhang length
shortens prior to replicative senescence in cultured sheep fibroblasts. Furthermore, a

correlation between hTERT expression level, karyotypic stability and 3' overhang length
is observed.

This project also demonstrated the first application of the Quantitative-FISH (Q-FISH)
and Telomere-Oligonucleotide Ligation Assay (T-OLA) techniques in the sheep model

system.
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Chapter 1 - Introduction

1.1 A preface to telomere and telomerase biology

Often in nature things are not how they at first appear: a rock on the seafloor may be

a poisonous fish and a beautiful flower in a garden may be a carnivorous insect lying

in wait for prey. At one time, the DNA at the ends of chromosomes seemed to be

static, yet in most organisms that have been studied, these tips, called telomeres, are

actually ever changing; they shorten and lengthen repeatedly. Modern interest in

telomeres and telomerase has its roots in experiments carried out in the 1930s by two

remarkable geneticists: Barbara McClintock, then at the University of Missouri at

Columbia, and Hermann J. Muller, then at the University of Edinburgh. Working

separately and with different organisms, both investigators realized that

chromosomes bore a special component at their ends that provided stability. Muller

coined the term "telomere," from the Greek for "end" (telos) and "part" (meros).

McClintock noted that without these end caps, chromosomes stick to one another,

undergo structural changes and misbehave in other ways (McClintock 1939). Fast

forward to the present day and we regard telomeres as key genetic elements in the

regulation of the cellular ageing process, with telomere shortening in part, serving as

a 'molecular clock' for replicative lifespan certainly in vitro and plausibly in vivo.

Paradoxically a finite cellular lifespan may represent a primitive eukaryotic tumour

suppression mechanism. In support of this, Mother Nature's counter mechanism to

increase replicative lifespan, an enzyme known as telomerase, is not detected in most

adult somatic tissues, but yet readily activated in the vast majority of tumours studied

to date and is ever present in germline cells. Hence ageing and cancer may be two

sides of the same coin, with telomeres and telomerase being more than mere bit part

players. The net result over the past 25 years is seminal biological observations in the
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Chapter 1 - Introduction

field hinting at the possibility and feasibility of targeting both telomeres and

telomerase components for therapeutic gain. Namely, strategies to target and inhibit

telomerase in cancer settings and conversely to reactivate telomerase in tissues

impacted upon by cellular ageing, have been a recent lure.

1.2 Telomere structure

1.2.1 Eukaryotic telomeres

Telomeres are specialized and essential DNA-protein complexes located at the ends

of linear chromosomes, the nucleotide sequences of which were first revealed in

1978 by Elizabeth Blackburn, who found that the telomeres of the ciliated protozoan,

Tetrahymena thermophila, consisted of a simple sequence of hexameric repeats of

the nucleotides TTGGGG (Blackburn E.H & Gall, J.G 1978). In all vertebrates,

telomere repeats are conserved as TTAGGG (Meyne et al., 1989) and similarly

consist of proteins and reiterated Guanosine-rich repeats. The majority of telomeric

DNA is double helical, with the GT-rich sequence paired with its CA complement,

but in all eukaryotes studied, this G-rich 3'-end of the DNA protrudes as a single-

stranded overhang. In humans, telomeres are comprised of a ~ 3-20kb array of

duplex TTAGGG repeats, ending in a 100-500 nucleotide 3' protrusion (Harley et al.,

1990; reviewed in de Lange 2004; Fig.1.1). Telomeres are essential elements that

protect chromosomal termini from nuclease degradation and interchromosomal

fusion and promote proper portioning of chromosomes during mitosis and meiosis,

thereby contributing to genomic stability, (Counter et al., 1992, Hackett et al., 2001).

3



Chapter 1 - Introduction

I 1 (TTAGGG)n
MM-.I Telomere-associated repeats

G-rich 3' overhang

Figure 1.1 Classical human telomere structure. A typical human telomere (3-20kb)
is depicted showing upstream sub-telomere associated repeats and downstream 3'
protrusion of the G-rich strand.

1.2.2 Telomere structure - the new synthesis

Despite the important role of proper telomere function, it has become increasingly

clear that telomeres do not simply function as a buffer zone that prevents loss of

essential sequences. A large body of evidence dating back to the work of McClintock

(McClintock 1939) is more consistent with the view that the telomeric complex

allows cells to distinguish random chromosome breaks and natural chromosome ends.

The classical view of linear chromosomes did not easily explain how telomeres are

presumably 'protected' from DNA damage repair machinery. A recent seminal study

from Jack Griffith and Titia de Lange revealed how mammalian chromosomes may

overcome this burden: these studies used electron microscopy to demonstrate how

the 3' single-strand telomeric overhang may invade the duplex repeat array thus

4



Chapter 1 - Introduction

forming a Terminal (T)-loop structure at chromosomal termini and a displacement (D)

loop further upstream (Griffith et ah, 1999, commentary in Greider 1999). This

proposed structure would give a mechanistic basis for how telomere ends may be

protected from DNA damage surveillance systems (Fig. 1.2).

Hinfl/Rsal

2-50 kb duplex telomeric repeats
■ [TTAGGGJn
■ [CCCTAAJn
. non-tetomeric
DNA

G-slrand overhang

t-loop
large duplex loo|

75-200 nt ss DNA

Figure 1.2. Mammalian telomeres end in a large duplex loop. (A-B) A telomeric
DNA model containing 3kb of unique sequence DNA followed by ~2kb of
TTAGGG repeating sequence with a 150-200nt 3' G-strand overhang. (DNA
analyzed from HeLa cells). (C) The classical linear view of mammalian telomeres
has been rejected in favour of a proposed T-loop structure whereby the single-
stranded 3' overhang from the G-rich strand invades the telomere double-strand array,
thus forming a telomere end-capping structure (figure adopted from Griffith, J.D et al
1999).
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Chapter 1 - Introduction

1.3 Telomere end-protection

1.3.1 Telomeric-loop (T-loop)

Telomere integrity thus plays a crucial role in the capacity for continuous cell

proliferation. Both extrinsic and intrinsic factors facilitate in maintaining this

integrity of telomeres. Furthermore, chromosome termini must be 'capped' in order

to protect chromosomal ends from nuclease degradation, interchromosomal end

fusions and improper recombination and repair, thereby contributing to genomic

stability. Conversely, telomeres can lose integrity via loss of protection of the end

structure (uncapped telomeres), which triggers immediate telomere instability, or by

gradual attrition of telomeric DNA (loss of telomerase function). At the time of their

switch to linear genomes, eukaryotes must have evolved a mechanism to manage

their chromosome ends, creating two major problems: the first was the 'end

replication' dilemma discussed in section 1.4.2 and the second problem lies in the

ability of cells to distinguish natural chromosomal ends from sites of DNA damage.

The finding that mammalian telomeres terminate in a duplex loop (T-loop), where

most of the 3' overhang is tucked inside the telomere double-stranded array (Griffith

et ah, 1999; Fig. 1.2) hints at the structural basis for this end-protection function.

Indeed T-loop structures are a conserved feature of telomere structure and are found

not only in vertebrates, but also in ciliates (Murti K, G & Prescott D, M 1999) and

trypanosomes (Munoz-Jordan et al., 2001). The size of the T-loop is highly variable

and might not be important for telomere function. More likely the key function of the

T-loop is the sequestration of the 3' overhang. Thus T-loops seem to be a good

strategy to protect chromosome ends from fusion. In support of this, electron
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Chapter 1 - Introduction

microscopy observations on chicken erythrocyte and mouse lymphocytes, revealed

that the T-loop is wrapped in telomere chromatin fibres in the form of closed

terminal loops, which correspond to the T-loop structures adopted by telomere DNA

(Nikitina T. & Woodcock C. 2004). Wrapping the T-loop in chromatin proteins

probably hides the 3'-overhang from agents that detect free ends. However, how T-

loops might allow cells to distinguish chromosome ends from DNA damage is less

clear. We must also infer that the T-loop (or any non-canonical end structure) is to

some extent dynamic at least through S-phase transition, to permit the telomerase

complex (a specialized cellular ribonucleoprotein (RNP) reverse transcriptase

complex consisting of an RNA template unit (TR) and a core catalytic subunit with

reverse transcriptase activty (TERT), that synthesizes TTAGGGn telomeric repeats

onto chromosomal ends (Greider & Blackburn 1987, Lingner et ah, 1997, discussed

in detail in section 1.8) and associated factors access to the telomere substrate

(Mastuomi et ah, 2003). Indeed the Bloom's syndrome helicase (encoded by the

BLM gene that is defective in Bloom's syndrome), homologous to the RecQ

subfamily of helicases, which functions as a 3'-5' DNA helicase in vitro and which

requires a short 3' region of single-stranded DNA to unwind G4 DNA (four-stranded

DNA), has been thus implicated to function at the telomere substrate (Sun et ah,

1998, Huber et ah, 2002). A number of key questions remain to be resolved

regarding telomeric loops: what are the factors regulating T-loop dynamics; what

percentage of mammalian telomeres carries this structure; does T-loop size vary

between and within chromosomes in a chromosome complement; is the T-loop

altered at replicative senescence? The latter hypothesis will be discussed in section

1.5.3. Moreover, a recent observation implicated T-loops as presenting a danger to
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chromosome ends: low levels of telomeric circles were detected in normal human

cells, indicating that telomere deletion by homologous recombination may be a

feature of normal telomere metabolism (Wang et ah, 2004). Hence protective T-

loops may themselves represent a telomeric double-edged sword.

1.3.2 Telomere-associated factors and end capping

The ability of telomeres to evade the DNA-damage response is a consequence of

their association with a set of protein complexes that protect chromosome ends and

maintain telomere homeostasis. Loss of these factors leads to telomere uncapping

and subsequent telomere dysfunction (reviewed in Harrington 2004). Some of these

protecting factors bind along the duplex array of telomeric repeats whereas others

bind to single-stranded telomeric DNA. Among these proteins, Telomere-repeat

binding factor 1 (TRF1) and Telomere-repeat binding factor 2 (TRF2) directly bind

double-stranded telomere DNA and interact with a number of proteins to maintain

telomere structure (de Lange 2002, Iwano et al., 2004, and reviewed in Kim S, H et

al., 2002). These two factors differ in their N-termini, which are rich in either acidic

residues (TRF1) or basic residues (TRF2) and have both been shown to homdimerize

through their Myb-related DNA-binding domains (Chong et al., 1995, Broccoli et al.,

1997).

TRF1 was the first mammalian telomeric protein isolated, based on its in vitro

specificity for double-stranded TTAGGG repeats (Zhong et al., 1992) and it has been

shown that the amount of telomere-bound TRF1 correlates with telomere length.

Overexpression of TRF1 shortened telomeres in human cells, whereas dominant-
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Chapter 1 - Introduction

negative TRF1 led to elongated telomeres (van Steensel et al., 1997, Smith, S. et ah,

2000, Smogorzewska et ah, 2000). Additionally, conditional TRF1 null mutant

mouse embryonic stem (ES) cells showed growth defects and chromosomal

instability (Iwano et al., 2004). Thus TRF1 binding to double-stranded telomere

DNA functions as a negative regulator of telomere length and confers telomere end-

protection.

TRF2 was subsequently identified as a paralog in the mammalian genie database.

Based on in vitro and in vivo studies, TRF2 promotes T-loop formation by binding

near the 3' telomeric overhang and is thus implicated in remodeling telomeres into T-

loops (Griffith et al., 1999, Stansel et al., 2001). Overexpression of dominant-

negative TRF2 activates the ATM/p53 or pl6/RB pathways and induces cellular

senescence or apoptosis (Karlseder et al., 1999, Smogorzewska et al., 2002).

Moreover, inhibition of TRF2 induces end-to-end fusions and chromosomal

instabilities (van Steensel et al., 1998, Karlseder et al., 2002). These data strongly

suggest that TRF2 is a key player in functional telomere structure.

In addition to TRF1 and TRF2, several other associated telomeric proteins have been

shown to be regulators of telomere length, such as POT1, RAP1, TPP1 - previously

called PTOP1 (Liu D et al., 2004) - and TIN2 (de Lange 2002, Kim SH et al., 1999

& 2004, Liu, D. et al., 2004, Ye, J. & de Lange 2004). Both inhibition of endogenous

POT1, RAP1, TPP1 and TIN2 expression through RNAi and expression of

dominant-negative forms of these four proteins have been demonstrated to result in

elongated telomeres in cultured cells (Loayaza et al., 2003, Ye, J. et al., 2004,

9
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O'Connor et al., 2004, Ye J. et al., 2004). These observations suggest that POT1,

RAP1, TPP1 and TIN2 may function in the same pathway and all therefore appear to

facilitate negative regulation of telomere length. All four proteins directly or

indirectly, associate with TRF1 or TRF2 (Ye, J. et al., 2004, Liu, D. et al., 2004, Li,

B et al., 2000). The convergence of this data indicated that the TRF1/2 proteins may

interact with each other and with the POT1, RAP1, TIN2 and TPP1 proteins to form

a multi-subunit complex at mammalian telomeres. Co-immunoprecipitation

experiments validated this hypothesis to show that TRF1 and TRF2 are in fact

subunits of a telomere-associated high molecular weight complex, recently termed

'shelterin', also previously referred to as the mammalian 'telosome', (Liu, D. et al.,

2004 and reviewed in de Lange 2005; discussed in section 1.3.4).

TRF1 has been shown to associate with additional factors called Tankyrase 1 and 2

(Smith S. et al., 2000). These are poly(ADP-ribose) polymerases that target TRF1

and induce progressive telomere lengthening via the dissociation of TRF1 from

telomeric structures in human cells in a reaction that requires the catalytic activity of

the PARP domain (Cook et al., 2002). Thus, Tankyrase 1 and 2 contribute to

telomere homeostasis through its indirect function as a positive regulator of telomere

length.

1.3.3 POTl-RAPl-TIN2-TPPl-mediated telomere regulation

Experiments deciphering the specific roles of POT1, RAP1, TIN2 and TPP1 aid our

understanding of how a multi-subunit protein complex at the telomere substrate may

regulate telomere length.

10
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POT1

As the TRF1 complex binds to the duplex DNA of the telomere, it was unclear how

it can affect telomerase, which acts on the single-stranded 3' overhang. TRF1

mediated-regulation of telomere length implies that this complex functions as a

measuring device to assess telomere length. However, for telomere length

homeostasis to be effective, information about the length of the telomere needs to be

relayed from the TRF1 complex to the single-stranded part of the telomere. Recently

it was shown that the TRF1 complex interacts with the single-stranded telomeric

DNA-binding protein, 'protection of telomeres 1' (POT1) - and that human POT1

controls telomerase-mediated telomere elongation (discussed in section 1.8). hPOTl

was identified based on sequence homology to telomere-end-binding factors in

unicellular eukaryotes (Baumann et al., 2001) and is the most conserved of the

telomere-associated factors. A mutant form of hPOTl lacking the DNA-binding

domain, abrogated TRF1-mediated control of telomere length and induced rapid and

extensive telomere elongation. (Loyaza et al., 2003). That hPOTl binds to single-

stranded telomere DNA exclusively, suggests two possible mechanisms for its role in

telomere regulation: the TRF1 complex may recruit hPOTl to the telomeric

chromatin and facilitate its accumulation on the single-stranded DNA at the nearby

telomere terminus. Once tethered there, hPOTl may sequester the telomere terminus

and thus directly block telomerase from elongating the telomeric DNA; alternatively,

the recruitment hPOTl to the telomeric chromatin could facilitate its binding to the

single-stranded DNA (D-loop) at the base of the T-loop, thus stabilizing telomeres in

the T-loop configuration and thereby inhibiting telomerase by indirect sequestration

of the 3' terminus. Intriguingly, recent evidence has suggested that hPOTl may in
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fact permit telomerase-mediated telomere elongation at the telomere substrate due to

a configuration change of hPOTl (Songyang Z. et al. personal communicaton).

Whether hPOTl functions as both a positive and a negative regulator of telomerase

will have to be validated with additional experiments. POT1 may also highlight a

specific caveat of the mouse as a human model for telomere end capping, plus a

general caveat in extrapolating across species with respect to telomere-associated

proteins. Although POT1 deficiency in the mouse initiated DNA damage checkpoint

activation and erroneous homologous recombination at telomeres, recent reports

have demonstrated that there are two distinct POT1 paralogues (Pot la and Potlb) in

the mouse in contrast to a single POT1 locus in the human genome. Potla knockout

results in embryonic lethality whereas Potlb knockout mice are viable and fertile. In

the absence of both proteins, 70-80% of telomere protection is lost; this proportion

falls to 30% when only Potla is deleted, whereas Potlb does not have any affect on

its own (Wu L. et al., 2006, Hockemeyer et al., 2006). Therefore the relationship

between POT la and POT lb in repressing the DNA damage signal is not simple and

the mechanism remains to be reconciled.

RAP1

'Human Repressor activator protein 1' (hRapl) was discovered in a yeast two-hybrid

screen with TRF2 as bait (Li B. et al., 2000) and shown to interact with multiple

proteins that are involved in DNA damage response pathways, including Rad50,

Mrell, Ku70/86, and Tankyrase 1 PARP. Rad50 and Mrell are members of the

MRN complex which, similar to the Ku70/86 complex, is known to regulate double-

stranded DNA break repair and homologous recombination (Connely et al., 2002,
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reviewed in Hopfner et al., 2002), whereas Tankyrase 1 PARP modulates chromatin

structure in response to stress (Smith S. et al., 2001). Thus, hRapl together with

TRF2 may function to recruit the DNA damage response proteins for telomere

maintenance. The exact role of these DNA-damage-response proteins at mammalian

telomeres remains to be determined. Interestingly, knockdown of endogenous hRapl

expression by small hairpin interference RNA resulted in longer telomeres,

implicating hRAPl as a negative regulator of telomere length (Connely et al., 2002).

TIN2

TIN2 was identified using a two-hybrid screen with TRF1 as bait (Kim S-H et al.,

1999). Truncated TIN2 proteins extended telomeres, thus implicating this factor as a

negative regulator of telomere length (Kim S-H et al., 1999). TRF1 may recruit TIN2

to the telomere, where TIN2 acts to dampen telomere elongation by telomerase. In

support of this notion, TIN2 has been shown to modulate the Tankyrase 1 PARP in

the TRF1 complex, suggesting that TIN2 could facilitate the stable association of

Tankyrase 1 with the TRF1 complex (Ye J. et al., 2004) and conversely the

controlled dismantling of the telomeric complex during S phase. The temporary

removal of the TRF1 complex may be necessary for replication fork progression and

telomerase-mediated telomere elongation.

TPP1

TPP1 previously known as TINT1 (Houghtaling et al., 2004), PTOP (Liu D 2004)

and PIP1 (Ye J. et al., 2004) has been shown (in conjunction with TIN2) to be

required to bridge the TRF1 and TRF2 subcomplexes. Specifically, TPP1 helps to
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stabilize the TRF1-TIN2-TRF2 interaction and promote a six-protein complex

formation. Consistent with this model, overexpression of TPP1 enhanced TIN2-

TRF2 association. Conversely, knocking down TPP1 reduced the ability of

endogenous TRF1 to associate with the TRF2 complex (O' Connor et ah, 2006).

Such coordinated interactions among TPP1, TIN2, TRF1, and TRF2 may ensure

robust assembly of the Shelterin complex, telomere targeting of its subunits, and

ultimately, regulated telomere maintenance.

Collectively, these factors contribute to telomere homeostasis by either positively or

negatively regulating telomere length, mainly through governing the accessibility of

telomerase to the 3' terminus (reviewed in Evans & Lundblad 2000). Further studies

will be required to fully understand how these factors (and others?) and their

homeostatic feedback loops, co-ordinate the regulation of mammalian telomere

length.

1.3.4 The shelterin protein complex

The elucidation of specific roles of telomere-specific proteins aids our understanding

of systemic telomere length regulation - undoubtedly novel factors yet to be

identified may have direct or indirect roles in telomeric regulation. The shelterin

complex was so coined by Titia de Lange (de Lange 2005) with analogy to other

chromosomal protein complexes such as condensin and cohesion. Three shelterin

subunits, TRF1, TRF2 and POT1 directly recognize TTAGGG sequences and are

interconnected by three additional shelterin subunits, TIN2, TPP1 and Rapl. These

factors combine to allow cells to distinguish telomeres from sites of DNA damage.
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Shelterin components are defined by their exclusive functional role at telomeres,

although a number of non-shelterin components (thus categorized due to their

additional non-telomeric functions) directly interact with shelterin and contribute to

telomere function (discussed in section 1.6.2). Shelterin determines the structure of

the telomere terminus, it is implicated in the generation of T-loops and it controls the

synthesis of telomeric DNA by telomerase (Fig. 1.3).

TRF1 TRF2/Rap1

B djij
| TRF1+other factors

c
long telomere/more shelterin short telomere/iess shelterin

Telomerase blocked Telomerase not blocked

Figure 1.3. Proposed modeling of telomeres by shelterin. (A) Schematic of
shelterin on telomeric DNA. For simplicity, POT1 is only shown as binding the
single-strand site closest to the duplex telomeric DNA (D-loop), although it can bind
to the single-strand 3' end. (B) Speculative model for shelterin-mediated T-loop
formation. TRF1 has the ability to loop and pair telomeric DNA and TRF2 can
mediate T-loop formation (both in vitro). (C) Model for telomere length regulation
by shelterin. As the t-loop configuration is unlikely to be a substrate for telomerase,
telomeres are shown in the 'open' state, which could be generated during S phase.
The number of shelterin complexes may be proportional to the amount of telomere.
Long telomeres may have more shelterin bound, increasing the loading of POT 1 onto
the 3' overhang and thus blocking telomerase action (left). Conversely, short
telomeres with less shelterin, reduce the chance that POT1 loads onto the 3'overhang,
leading to a greater chance that telomerase can elongate the telomere (right)
(modified from de Lange 2005).
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Since the TRF1, TRF2 (both homodimers and double-strand binding) and POT1

(single-strand binding) subunits are connected through protein interactions, shelterin

has the capacity to recognize telomeric DNA with at least five DNA-binding

domains. As a consequence, shelterin is uniquely qualified to distinguish telomere

ends from all other DNA ends (de Lange 2005). Evidence for DNA remodeling

activities comes from in vitro studies demonstrating that TRF2 can remodel an

artificial telomeric substrate into loops (Griffith et al., 1999, Stansel et al., 2001). As

this reaction is not efficient, it is likely that TRF2 requires the assistance of other

factors to generate T-loops in vivo. Regarding the proposed function of telomere

synthesis control, it is easy to speculate how the single-strand binding activity of

POT1 could block telomerase from gaining access to the 3' telomeric terminus and in

vitro, such inhibitory activity has been noted (Kelleher et al., 2005, Lei et al., 2005).

Based on these data, the current model predicts that the amount of shelterin on a

telomere determines the likelihood that its POT1 component can position itself on

the 3' terminus and block telomerase, thus providing one mechanistic description of

how telomerase regulation is governed.

1.4 Telomeres and cellular ageing

1.4.1 Cellular ageing and the Hayflick limit

Almost 45 years ago, Leonard Hayflick discovered that cultured human cells have

limited replicative capacity to undergo rounds of DNA replication and divide, after

which cells enter an irreversible non-dividing state termed 'replicative senescence' (a
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cellular growth arrest also now referred to as the Ml stage (Shay & Wright 2005). In

the absence of cell-cycle checkpoint pathways (e.g. p53 and or pl6/Rb), cells bypass

Ml senescence and telomeres continue to shorten, eventually resulting in crisis (also

called the M2 stage). M2 is characterized by many 'uncapped' chromosome ends,

end-fusions, chromosome breakage fusion-bridge cycles, mitotic catastrophe and a

high fraction of apoptotic cells (Shay & Wright 2005). The widespread phenomenon

of cultured diploid cells to undergo a specific number of population doublings has

become known as the 'Hayflick limit' (Hayflick & Moorehead 1961), which

specifically describes the finite capacity of normal cells as opposed to cancerous

cells which usually become immortal. The existence of an intrinsic cellular counting

mechanism was further implied by Hayflick's observation that cryogenically

preserved cells can 'remember' how many times they have divided when they were

frozen (Hayflick 1984). This putative molecular event counter was designated the

'replicometer' by Hayflick and in 1975, Woodring Wright showed that the molecular

replicometer and cellular control of ageing was located in the nucleus (Wright &

Hayflick 1975).

1.4.2 The 'end-replication' problem

Although the presence of telomeres on chromosome tips had been noted previously,

(McClintock 1939), the property and function of these structures was unclear. The

molecular basis of the replicometer was theorized independently by Alexy

Olovnikov (Olovnikov 1973) and James Watson (Watson 1972) in the early 1970s

when DNA replication mechanisms were better understood. It was realized that the

properties of DNA replication prevent the ends of linear DNA to be fully copied and
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thus telomere sequences may be lost during each successive round of cell division.

The first hints that human telomeres might shorten appeared in 1986 when it was

shown that telomere lengths are not the same in all tissues (Cooke et ah, 1986).

These studies culminated in the demonstration that telomeres shorten as normal

human fibroblasts divide in culture (Harley et ah, 1990). That telomere shortening is

indeed a faithful cell division counter was recently demonstrated by results showing

that replicative lifespan and telomere shortening rate in sheep fibroblast strains are

not altered by nuclear transfer and cloning of foetuses, although foetal development

resets the telomere clock (Clark et ah, 2003).

The molecular basis of telomere shortening was referred to as the 'end replication'

problem by James Watson. During DNA replication, the leading strand is

synthesized as a continuous molecule that can potentially replicate through to the

termini of a linear template. DNA polymerase requires an RNA primer to initiate

synthesis in the 5'-3' direction. The lagging strand however, is synthesized as a

discontinuous set of short Okazaki fragments, each requiring a new primer to be laid

down on the template, that are then ligated to form a continuous strand. Without

DNA to serve as template for a new primer, the replication machinery is unable to

synthesize the sequence complementary to the final primal event. The result is the

"end-replication problem" in which a telomere segment is lost at each round ofDNA

replication (Fig. 1.4). The leading strand is subsequently processed after completion

of S phase to generate a 3' overhang.
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Figure 1.4. The end replication problem. Continuous replication of the leading
strand proceeds to chromosomal termini. Discontinuous replication of the lagging
strand through a series of Okazaki fragments results in a gap at the 5' end of the C-
rich strand after removal of the last RNA primer.

The lowest shortening rates in human fibroblasts are around 10-20bp per population

doubling (Lorenz et ah, 2001). This shows that polymerase can position the most

distal primer very close to the physical end of the chromosome. However the length

of the G-rich telomeric overhang in some human cells has been shown to be 100-

500nt in length (Makarov et ah, 1997, Wright et ah, 1997, McElligott et ah, 1997,

Stewart et ah, 2003), suggesting that either the final RNA primer for lagging strand

synthesis is not placed at the very distal end of the G-rich strand or that nucleolytic

processing of the C-rich strand is extensive. Possible roles of oxidative stress and

culture shock upon telomere shortening will be discussed in section 1.5.4.
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1.5 Replicative senescence

The paradigm of cellular replicative senescence currently resides as a circular

argument of cause and consequence - it remains unclear as to what factors are

ultimate causes and what factors are proximate causes of senescence. Conventional

dogma (section 1.4.1) states that telomere shortening provides the counting

mechanism for the cellular 'mitotic clock'. In this regard, replicative senescence

occurs as a consequence of progressive shortening of the TTAGGG repeat tract at

chromosome ends (Hayflick & Moorehaed 1961, Harley et al., 1990, Bodnar et al.,

1998, Wight & Shay 2002), when telomere length falls below a critical threshold to

preserve replicative capacity that is presumably species- and cell-type specific.

Human telomeres are programmed to lose ~100 base pairs per population doubling

(PD), resulting in senescence after -50 PDs (Harley et al., 1990, Counter et al., 1992,

Shay & Wright 2000). This shortening rate is faster than expected from the end-

replication problem (~10-20bp; Watson 1972, Olovnikov 1973, Lundbald et al., 1989,

Singer et al., 1994; section 1.4.2), suggesting active nucleolytic attack on

chromosome ends. Replicative senescence can be induced by either the p53 or the

pl6-retino blastoma (RB) tumour suppressor pathways, the breakdown of which may

be the basis for the escape from in vitro cellular senescence and subsequent

immortalization (Shay et al., 1991, Hara et al., 1991). In mammalian cells, telomeric

foci containing multiple DNA damage response factors are assembled in a subset of

senescent cells and signaled through ATM kinase to p53, upregulating p21 and

causing G1 phase growth arrest (Herbig et al., 2004). But how these pathways are

activated in cells with short telomeres though, is not known. Of what upstream
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molecular trigger of senescence may these associated pathways be subsequently

activated?

1.5.1 'Subset of short telomeres' hypothesis

The understanding that one of the major functions of telomeres is to hide the ends of

the chromosomes from being recognized as double-strand breaks needing repair (de

Lange 2002), has led to the hypothesis that a DNA damage signal from 'too-short'

telomeres causes cellular senescence (Greider 1990, Harley 1991; section 1.7). This

concept is reinforced by demonstrations that at senescence, DNA sequences adjacent

to telomeres co-precipitate with yH2AX antibodies (di Fagagna et al., 2003) and that

induced telomere dysfunction can cause telomere co-localization with DNA damage

foci (Takai et al., 2003). Cell biological approaches have shown that the shortest

telomeres determine the onset of replicative senescence in human cells (Ouelette et

al., 2000, Steinert et al., 2000), an observation confirmed with respect to end-to-end

fusions in murine cells (Hemann et al., 2001). However the pending question was

whether specific telomeres produced this result, as these studies did not distinguish

between one or a few short telomeres and did not identify specific telomeres

involved. This was the rationale for a study to obtain direct evidence about the role

of specific telomeres in senescence. Using quantitative in situ analysis of telomere

lengths in normal human fibroblasts, this pivotal study showed that the shortest

telomeres (as judged by a signal-free end using a telomere-specific probe) co-

localized with yH2AX-positive DNA damage foci in senescent cells. Furthermore, in

normal fibroblasts where cell cycle arrest has been blocked, 10% of telomeres with

the shortest ends are involved in 90% of all end-fusions (Zou Y. et al., 2004). This

finding argues against the existence of a sentinel telomere or random telomeres to
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monitor telomere shortening but rather that a subset of telomeres is being used to

time the onset of replicative senescence in the population of cells. Presumably a short

telomere has to find a partner to form an end-association before growth arrest occurs,

which would invoke more than one short telomere. An interesting side observation to

this latter study indicated that -85% of metaphase spreads from near-senescent

cultures contained more than one signal-free end. This establishes that normal cells

are still able to divide in the presence of telomeres sufficiently short to produce no

hybridization signal (which may not be short enough to initiate a DNA damage

response). This does however underline a caveat - signal-free ends are an arbitrary

assignment due to technical limitations that does not necessarily imply a true absence

of telomere repeats.

1.5.2 The 'altered telomere state' hypothesis

A general counter argument to telomere loss on one or more chromosomes as being

the ultimate trigger of replicative senescence states that the main event heralding the

end of replicative life of cells is a failure in the protective function of critically

shortened telomeres. Clues for this trajectory come from studies manipulating the

duplex binding protein TRF2, known to protect chromosome ends from end-to-end

fusions (Broccoli et al., 1997, Bilaud et al., 1997, van Steensel et al., 1998, Karlseder

et al., 1999, de Lange 2001). Overexpression of TRF2 increased the rate of telomere

shortening in primary human cells without accelerating senescence. Thus TRF2

protected critically short telomeres from fusion by repressing chromosome end-to-

end fusions in pre-senescent cultures (Karlseder et al., 2002). If the senescence signal

were due to one or more chromosome ends lacking telomeric DNA altogether, TRF2

22



Chapter 1 - Introduction

would not be expected to repress this signal and alter the senescence checkpoint. The

implication is that critically shortened telomeres in senescent cells no longer bind

sufficient TRF2 to achieve a protective state such as the T-loop configuration.

Alternatively, binding of TRF2 may facilitate the recruitment of other proteins

required for telomere end-protection and suppression of senescence. Therefore it

follows that replicative senescence may be induced by a change in the protected

status of shortened telomeres rather than a complete loss of telomeric DNA.

1.5.3 The '3' telomeric overhang' hypothesis

With the development of the Telomere-Oligonucleotide Ligation Assay (T-OLA),

the G-rich strand 3' overhang has been subject to measurement (section 2.2.17).

Using this approach, a recent study argued for evidence indicating that the telomeric

3' overhang is eroded at replicative senescence in primary human cells (Stewart et ah,

2003). This data suggested that during senescence, most overhangs drop to below

lOOnt, potentially disrupting the T-loop or another non-canonical telomeric end

structure. The kinetics of overhang loss differed from those of overall telomere

shortening. Telomere shortening rate in the lines studied were in accordance with

shortening rates reported previously (Harley et ah, 1990, Allsopp et ah, 1995,

Huffman et ah, 2000). In contrast telomeric overhang lengths remained constant

during early and mid-point passages of culture and dropped abruptly at senescence

(Stewart et ah, 2003). Thus the authors claimed that overhang length is not a direct

reflection of overall telomere length, but rather that overhang loss is the specific

molecular alteration that occurs at the telomere in association with replicative

senescence. This challenges the paradigm of telomere shortening as the molecular
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clock that limits cellular lifespan. Nevertheless, it is imperative to state that others

have shown using the same cell type as used in this study, that the 3' telomeric

overhang is eroded only at crisis and therefore represents a consequential event to

upstream senescence activation (Chai et ah, 2005). This may represent technical

variations between laboratories or may reflect clonal variations of the particular cell

lines studied. For the role of the 3' overhang in replicative senescence (causal or

consequential) to be fully understood, studies on telomeric overhang will have to

incorporate a number of cell types and be widespread across species. With the

conservation of telomere repeat tract sequences across eukaryotes and the functional

similarity with key associated proteins and telomerase, it is tempting to speculate that

the molecular trigger of replicative senescence is a general one.

1.5.4 The 'physiologic stress' hypothesis

The simple 'mitotic' clock' hypothesis cannot easily accommodate the marked

intrinsic heterogeneity of replicative lifespan that is evident among the individual

cells of a population in culture (Smith J. et ah, 1980, Jones R. et al., 1980, Martn

Ruiz et al., 2004). It is this heterogeneity within a population that indicated that the

correlation between average telomere length and population doubling might not be

sufficient to sustain the notion of telomeres as replication counters at the individual

cell level. There is good evidence to show that the telomere-driven checkpoint is not

the only one, if activated, to induce a senescence-like growth arrest. For example,

human epithelial cells encounter a telomere-independent pl6-dependent growth

arrest that may be triggered due to sub-optimal culture conditions (Stampfer et al.

2003). Overexpression of oncogenes such as activated RAS or RAF, induces a
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senescence-like growth arrest in primary human and mouse cells (Lin A. et al., 1998,

Dirnri et ah, 2002, Ferbeyre et ah, 2002). In addition, DNA-damaging stress induces

cellular growth arrest, which may originate from different types of radiation

(Herskind et ah, 2000), drugs generating DNA double-strand breaks (Robles et al.,

1998) and different means to generate oxidative stress such as increasing ambient

oxygen tension (Balin et al., 1977, von Zglinicki et al., 1995) and treatment with

hydrogen peroxide (Chen Q. et al, 1994, Frippiat et al, 2001). Thereby with

increasing replicative age cells become more sensitive to environmental stress, in

part due to changes in gene expression (Luce et al., 1992, Cristofalo et al., 1989).

Semantics plays a part regarding descriptions of 'senescence'. Telomere-independent

growth arrest, which reflects inadequate culture conditions, has been referred to as

STASIS by Woodring Wright and Jerry Shay to distinguish between true senescence

as determined by the replicometer.

Molecular oxygen plays a pivotal role in cellular respiration and is an absolute

requirement for aerobic life; however, it is also toxic. Oxygen toxicity is believed to

result from changes in the rates of cellular generation of reactive oxygen species

(ROS). Faster telomere shortening rates (than that predicted from the end-replication

problem) have been observed in human cell lines which have high levels of peroxide,

indicating less efficient anti-oxidant defence (Lorenz et al., 2001, von Zgliniicki et

al., 2000). The clear implication is that the contribution to telomere loss caused by

oxidative damage is, in many cases, much greater than the contribution from the end-

replication problem (reviewed in von Zglinicki 2003 and 2003). Ageing and telomere
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shortening in bulk culture may therefore reflect a consequential event of the balance

between oxidative stress and anti-oxidative defence.

Cause and consequence?

Collectively the current evidence regarding the causal and consequential events of

cellular replicative senescence resides in a circular event. My opinion is that a subset

of short telomeres, once a critical minimum length is reached, is the ultimate trigger

of replicative senescence. Deprotection of telomere terminal structures due to

sufficient shortening of the 3' overhang would therefore be viewed as a

consequential epi-phenomenal event of overall telomere shortening in this subset.

Loss of a T-loop configuration would presumably be necessary and sufficient to

allow p53-dependent and associated senescence program pathways to be activated

via signaling stemming from the terminal and exposed telomere substrate. However

the evidence is convincing that telomere shortening counts not only mitotic divisions

but also cumulative mutations that are dependent on culture shock conditions.

Therefore we may consistently observe telomere-driven senescence occurring

prematurely in vitro owing to imperfect protection from damage such as that induced

by oxidative stress. From an evolutionary perspective, telomere-driven senescence

becomes more plausible as a tumour suppressor mechanism if it limits proliferation

not merely as a result of a predetermined number of cell divisions but also in

response to possible damage to the genome.
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1.5.5 Telomere length and cell viability

It is widely regarded that loss of telomere function can lead to genetic instability and

cancer progression - whether short telomeres per se predispose cells to be cancerous

is unclear. Whereas normal cells maintain chromosome stability, cancer cells are

characterized by chromosomal changes (Lengauer et ah, 1997), the sort ofwhich was

elucidated by McClintock, in studies observing the consequence of telomere loss

(McClintock 1939). In a population of cells, there is a distribution of telomere

lengths collectively representing each individual chromosome end, the establishment

and maintenance of which requires telomerase. While the consequences of telomere

dysfunction are well characterized (section 1.6.2), the primary determinant of the

cellular response to global telomere shortening is poorly understood. One hypothesis

is that average telomere length contributes to the cellular responses to telomere

shortening (Blackburn 2000). In support of this idea, average telomere length has

been shown to correlate with the lifespan of human cells in culture (Allsopp et al.,

1992, 1995) and numerous studies have argued that it is the average telomere length

in a cell that determines the proliferative potential of a cell line in the absence of

telomerase (Lansdorp 2000, Martens et al., 2000). These models anticipate that as

telomeres shorten, the probability of all telomeres losing function increases. An

alternative hypothesis is however emerging from more recent studies. Rather than

average telomere length, it is predicted that individual telomeres are recognized as

DNA damage and it is those that elicit a cellular response. Support for this comes

from studies using transgenic mice that are null for the telomerase RNA subunit gene,

mTR, (mTK~) or are heterozygous (mTR+/~). Inter-generational crosses (mTR+l~)

revealed that telomerase-mediated restoration of telomere function occurs without a
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considerable increase in average telomere length (Hemann et ah, 2001). Although a

wild-type telomere length distribution was not restored in the F1 generation,

telomere function was restored. Similarly, studies using mouse embryonic stem (ES)

cells heterozygous for the telomerase reversere transcriptase gene, TERT, (mTERT^'~)

argued for the preferential maintenance of critically short telomeres (Yie L 2002).

Here, although average telomere length in mTERT*1' ES cells declined to a similar

level as mTERT-null ES cells, mTERT*1' ES cells retained a minimal telomeric DNA

signal at all chromosome ends. Consequently no end-to-end fusions and genomic

instability was observed in the latest passages of these lines. This further revealed a

distinct dosage requirement for the maintenance of long and short telomeres -

despite haploinsufficiency for the maintenance of long telomeres, mTERT*' mice

retain minimal telomere DNA at all chromosome termini and did not exhibit the

infertility typical of telomerase-deficient strains (Erdmann et al., 2004). Thus, the

essential role of telomerase may not be the maintenance of an average telomere

length, but rather the maintenance of telomere function at critically shortened

telomeres. In this regard critically short telomeres are both necessary and sufficient

for telomere dysfunction to manifest. Moreover, it has been shown that chromosomes

frequently involved in fusions have the shortest telomeres (Blasco et al., 1997). This

preferential elongation of short telomeres to maintain cell viability and chromosome

stability, may explain previous findings in which limiting amounts of telomerase

maintained telomere lengths at the shortest telomeres, despite decreases in overall

telomere length within the population (Chiu C. et al., 1997, Zhu J. et al., 1999

Ouelette et al., 2000). This process may represent an uncoupling of telomere length

maintenance from the maintenance of telomere function. If distinctions between long
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and short telomeres are to be made, the presumable inference is that telomerase has a

sophisticated mechanism to preferentially elongate short telomeres that are close to a

minimum threshold required for chromosome stability.

1.6 Telomere length and organismal ageing

Although it is well established that telomere length is a crucial factor in cellular

replicative senescence, it will be of greater importance to determine whether

organisms with longer telomeres live longer. An insight regarding this question

comes from studies in C. elegans where overexpression of the telomere single-strand

binding protein HRP-1, by gradually increasing telomere length, resulted in worms

with a longer lifespan. This was confirmed as due to longer telomeres rather than

overexpression of HRP-1 per se as nontransgenic progeny who retained the longer

telomeres, also lived longer (Fiset et ah, 2001, Joeng et ah, 2004). Additionally, it

has been observed that telomeres shorten more slowly in long-lived birds than in

short-lived ones (Hausmann et al., 2003). It will be interesting to determine whether

this holds true for mammals; the mouse may not be a suitable model for such a study

due to their long telomeres, so long-term studies in domesticated animals such as

sheep may be more informative. Recently it was shown that people with long

telomeres, although with independent genetic backgrounds, have lower mortality

rates than those with short telomeres (Cawthon et al., 2003). Furthermore, not only is

there evidence that human chromosome-specific telomere lengths may be inherited

(Londono-Vallejo et al., 2001, Graajkaer et al., 2003 & 2004) but, by directly

comparing telomere lengths in children and their parents, that allele-specific

telomere lengths are transmitted by meiosis (Graajkaer et al., 2006). It will be
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necessary to replicate these sorts of studies in numerous population cohorts of large

population size but the implication is that telomere length may be a predisposition to

certain age-related diseases in organs impacted upon by senescence and may thus

serve as one predictor of longevity. Lengthening telomeres in adult somatic cells by a

means that does not result in deleterious side effects, could in theory help mammals,

including humans, to live longer, or certainly compress the period ofmorbidity in the

elderly.

1.7 Telomeres, genome stability and the DNA damage response

It was long suspected that telomeres remain 'hidden' from DNA damage signaling

pathways. Evidence that dysfunctional telomeres activate the DNA damage response

pathway first emerged from experiments in which the TRF2 shelterin subunit was

inhibited with a dominant-negative allele (van Steensel et al., 1998). The loss of

TRF2 function results in telomeric-end fusions and activates the ATM kinase

(Ataxia-Telangiectasia Mutated) DNA damage response pathway, leading to p53 up-

regulation and p21-mediated Gl/S cell cycle arrest and consequent apoptosis

(Karlseder et ah, 1999). Interestingly activation of the ATM pathway was not due to

the secondary damage that can be generated when cells with dicentric chromosomes

progress through mitosis (formed by end-to-end fusion). Rather, it is the damage at

the telomere itself that appears to activate the ATM pathway. Telomere dysfunction

can lead to either apoptosis or senescence depending on the cell type; upon TRF2

inhibition, human fibroblasts undergo senescence whereas apoptosis is a more

prominent outcome in lymphocytes and epithelial cells (Karlseder et al., 1999).
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The argument that deprotected telomeres activate the DNA damage response has

been strengthened by the direct observation of DNA damage factors at telomeres.

After inhibition of TRF2 or when telomeres become critically short, 53BP1, y-H2AX,

phosphorylated ATM and the Mrel 1/Rad50/Nbsl (MRN) complex, accumulate at

chromosome ends (di Fagagna et ah, 2003, Takai et ah, 2003). The cytological

structures formed by these DNA damage factors are referred to as 'Telomere

dysfunction Induced Foci' (TIFs) (Takai et ah, 2003). TIFs are also formed when

other shelterin components such as TIN2 and POT1 are inhibited (Kim S-H et ah,

2004, Hockemeyer et ah, 2005; Fig. 1.5). Intriguingly, there is current evidence

suggesting that the converse holds true, where telomeric proteins are involved in a

DNA damage response elsewhere in the genome. TRF1, TRF2 and TIN2 appear to

be involved in an early DNA damage response after induction of double-strand

breaks at defined regions within the nuclei of human fibroblasts (Bradshaw.P et al,

personnal communication).
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Figure 1.5. DNA damage response at dysfunctional telomeres. Telomeres lose
end-protection after inhibition of shelterin subunits (e.g. TRF2, TIN2 and POT1) or
due to telomere erosion. Upon loss of protection, telomeres become associated with
DNA damage response factors, forming Telomere dysfunction Induced Foci's (TIFs).
Telomere damage activates the ATM kinase which leads to a p53-dependent Gl/S
cell cycle arrest and can induce either apoptosis or senescence (from de Lange 2005).

Of particular interest is the presence of the MRN complex at the telomere substrate

and indeed the Mrel 1, Rad50 and Nbsl proteins have been shown to co-purify with

TRF2 (Zhu X. et al., 2000). These proteins were previously characterized for their

role in non-homologous end joining (NHEJ), a process that can result in the ends of

two telomeres joining to form a dicentric chromosome (reviewed in Flarrington

2004). In addition, homologous recombination (HR) between telomeres could

generate aberrant telomere length and recombination between telomeres and

interstitial telomeric sequences could result in deletions, inversions and

translocations. Presumably base excision repair, nucleotide excision repair and
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mismatch repair are used to maintain fidelity of the TTAGGG repeat sequence, just

as they function for bulk DNA. In support of this, the recombination/repair protein

RAD51D has shown to be present at mammalian telomeres and required for telomere

maintenance (Tarsounas et ah, 2004). It remains to be established whether

recombination is required for telomere elongation or for protection of the telomeric

single-strand overhang. This leads to the question of how shelterin in conjunction

with DNA repair factors, functions to prevent improper recombination and repair?

The obvious suggestion is that telomeres are protected from these events by the

shelterin-mediated T-loop configuration (Fig. 1.6). In this regard, RAD51 D-mediated

telomere maintenance would be via its role in telomere capping.
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Figure 1.6. Proposed model of how telomere ends may avoid a DNA damage
response. Shelterin DNA-binding factors and the DNA-repair factors they recruit to
mammalian telomeres may function to inhibit, rather than promote a variety of repair
processes, such as Non-homologous End Joining (NHEJ) and aberrant homologous
recombination (HR) (adapted from de Lange 2005 and Wright & Shay 2005).

Collectively the data argue that dysfunctional telomeres are detected by the canonical

DNA damage response and there is no evidence that a telomere-specific checkpoint

or specific signaling pathway is invoked. Hence, damaged telomeres do appear to

share molecular characteristics of a localized DNA damage response. The evidence

indicates that the shelterin complex is not a static structural component of the

telomere, but rather a protein complex with DNA remodeling activity that acts in
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coercion with several associated DNA repair factors to alter the structure of

telomeric DNA, thereby protecting chromosome ends. So, although telomerase is

generally required for the synthesis of telomeric repeats, the enzyme is not required

for telomere protection per se as long as there is enough telomeric DNA (Blasco et

ah, 1997). A recent seminal observation has shown that chromosome ends of normal

human primary fibroblasts are recognized as double-strand breaks at the G2 phase

and recruit the ATM, NBS1 and Mrel 1 DNA damage response factors (Verdun et ah,

2005). This leads to the intriguing hypothesis that a localized DNA damage response

at 'functional' telomeres after replication may be necessary and essential for

recruiting the processing machinery that promotes formation of a chromosome end

protection complex.

1.8 Telomere homeostasis and telomerase

1.8.1 Telomerase holoenzyme structure

If short telomeres limit the rate of cell growth, there had to be a counter-mechanism

to the telomere problem in the germline cells and potentially highly proliferative

tissues (e.g. stem cells, some progenitors,) of higher organisms and in immortal and

cancerous cells. The solution again originated in studies with Tetrahyema by Carol

Greider and Elizabeth Blackburn (Greider & Blackburn 1985), where Greider and

Blackburn discovered the enzyme 'telomerase' that maintains and elongates

telomeres. Telomerase was later found in extracts of immortal human cell lines
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(Morin et al., 1989) and in most human tumours (Kim N-W et al., 1994) and is now

known to be almost universally conserved in eukaryotes.

Telomerase is a specialized cellular ribonucleoprotein (RNP) reverse transcriptase

complex that synthesizes TTAGGGn telomeric repeats onto chromosomal ends

(Greider & Blackburn 1987, Lingner et al., 1997). Telomerase consists minimally of

two main components that are required for core enzymatic activity. These are a

telomerase RNA (TR), used as a template to dictate the addition of de novo telomeric

repeats onto the 3' end and a catalytic protein subunit with reverse transcriptase

activity (TERT). It has recently been shown that human telomerase is a multimer

containing two cooperating hTR molecules (Wenz et al., 2001) and generally thought

to most likely contain two hTERT molecules. The human telomerase holoenzyme is

large (~1000kDa; Schnapp et al., 1998) and mammalian telomerase activity is

associated with a number of proteins that may be implicated in ribonucleprotein

assembly, processing and stability such as: TP1 (Harrington et al., 1997); p23 and

Hsp90 (Holt et al., 1999); Est2 (Lingner et al.,1997 and Mitchell et al., 1999); (see

section 1.8.2). However, human telomerase that is affinity purified under stringent

salt conditions has a molecular mass of 600kDa, consistent with a minimal complex

composed of two hTERTs and two hTRs (Wenz et al., 2001). The secondary

structure of telomerase RNA was proposed based on phylogentic comparative

analysis. Four structural domains were conserved across vertebrates - the pseudoknot

domain, the CR4-CR5 domain, the Box H/ACA domain and the CR7 domain. Each

conserved structural domain in the consensus structure might play a distinctive role

in either the function, stability, processing, or localization of telomerase RNA. These

36



Chapter 1 - Introduction

regions are also good candidates as binding sites for TERT or other telomerase

accessory proteins (Romero & Blackburn 1991, Chen J. et al., 2000, reviewed in

Nugent & Lundblad 1998 and Smogorzewska & de Lange 2004). Indeed some

studies have implicated the pseudoknot and CR4-CR5 domains as essential for

telomerase activity that interact separately with hTERT (Chen J. et al., 2002, 2003

and 2003, Martin-Rivera et al., 2001, Tesmer et al., 1999). Studies from

Tetrahymena have shown that the templating region of the telomerase RNA can be

dissected into two functionally seperable regions (Autexier et al., 1994 and 1995,

Gilley et al., 1996). The hTERT gene is located on the distal arm of chromosome 5p

and is in fact the most distal marker (Meyerson et al., 1997, Bryce et al., 2000, Shay

& Wright 2000). The hTERT promoter contains a number of regulatory sites

including two c-Myc binding sites (Wang J. et al., 1998) and may also contain a site

that negatively regulates its expression in a p53-dependent manner (Kanaya et al.,

2000). In support of the notion that proper hTERT function may also require a

homodimeric structure, studies have shown that two separate catalytically inactive

hTERT proteins can complement each other in trans to reconstitute telomerase

activity (Beattie et al., 2001, Arai et al., 2002). hTERT has been shown to consist of

two physically separable functional domains: a polymerase domain, containing RNA

interaction domain 2 (RID2), reverse transcriptase (RT) and C-terminal sequences,

and a major accessory domain consisting of RNA interaction domain 1 (RID1)

(Moriarty et al., 2004; Fig 1.7). Further support of this notion of an hTERT multimer

was provided by a study using recombinant hTERT which demonstrated that hTERT

monomers oligomerize and that two independent regions are required for its

oligomerization and telomerase activity (Arai et al., 2002). Mutation screens of
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hTERT are permitting a dissection of the functional organization of the subunits of

this unique reverse transcriptase. Both N-terminal and C-terminal subunits of hTERT

contain regions essential for in vitro and in vivo enzymatic activity, and both regions

contain a DAT domain that "dissociates activities of telomerase", mutations in which

render the hTERT enzyme catalytically active but unable to function in vivo

(Armbruster et ah, 2001 and 2004, Bachand et ah, 2001, Banik et ah, 2002, Huard et

ah, 2003). These findings support the notion that hTERT subunits out with the RT

domain are necessary for both enzymatic activity and telomere maintenance.
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Figure 1.7. A schematic depicting conserved hTERT regions. The hTERT N-
terminus can be subdivided into two regions, RNA interaction domains 1 and 2
(RID1 and RID2, respectively), which are separated by a nonconserved linker that is
not required for telomerase activity (Armbruster B 2001, Moriarty T 2002, Xia, J
2000). This forms two physically separable domains of hTERT, the polymerase
domain (RID2, RT, C) and major accessory domain (RID1). Numbers indicate the
amino acid boundaries defined from recent studies. A 'dissociates activities of
telomerase' (DAT) domain is found in both the RID1 motif of the N-terminal domain
and in the C-terminal domain. RID1/2, RNA-interacting domain 1/2; RT, reverse
transcriptase domain; C, Carboxy-terminal (adopted from Moriarty T, J. 2004).

1.8.2 Telomerase complex: associated proteins

A large numebr of telomerase-associated proteins have been identified in ciliates,

yeasts and vetrtebrates. However, only a few are common to all telomerases and

discussion here will be restricted to those. One of the first TERT interacting proteins

identified was the p23 chaperone (Holt et al., 1999), which is required, along with
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Hsp90, for the efficient assembly of active telomerase both in vitro and in vivo.

Contrary to the association of chaperones with most proteins, p23 and Hsp90 remain

stably associated with active telomerase following assembly and may therefore

contribute additional regulatory functions at telomeres (Forsythe et ah, 2001).

A number of additional proteins may regulate TERT activity through direct binding.

Ku is a heterodimer composed of two subunits - Ku70 and Ku80 - that binds to

DNA in a sequence dependent manner. In all systems studied, Ku has been shown to

facillitate the repair of DNA double-strand breaks by non-homologous end joining

(NHEJ) (Downs et ah, 2004). Interestingly, the human heterodimeric Ku complex

was shown to be linked to telomere maintenance through its interaction with

telomeric DNA and TRF1 and TRF2 (Downs et ah, 2004). More recent studies

suggest that the complex can also independently associate with hTERT and hTR. Ku

binds specifically to a stem-loop in the telomerase RNA and may promote the

localization of telomerase to telomere termini (Chai W. et al., 2002, Ting NSY et ah,

2005).

hESTIA and hESTIB are both human homologs of the yeast telomerase subunit

ESTlp. Yeast ESTlp mediates the recruitment of telomerase to telomere ends by

binding to both telomerase RNA and CDC13p, a telomere end-binding protein

(Pennock et ah, 2001). However, direct interaction between Estlp and yeast TERT

has not been detected. In contrast, both hESTIA and hESTIB were shown to bind

hTERT independently of the RNA subunit when expressed in vitro (Snow et ah,

2003) Only hESTIA has been functionally linked to telomere maintenance in vivo;
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overexpression of hESTIA results in telomere uncapping and elevated levels of

chromosomal fusion and, in combination with hTERT overexpression, can provoke

substantial telomere elongation (Snow et ah, 2003).

1.8.3 Telomerase-mediated telomere maintenance

The processive addition of telomeric repeat sequences by telomerase is repetitive,

whereby telomerase undergoes a translocation reaction and repositions the 3' end of

the telomeric DNA in concert with recognition of the 3' template boundary (see Fig.

1.8). In humans, the telomerase holoenzyme is preferentially expressed in germ-line

cells and in early embryonic tissues but is not detected in most somatic cells (Wright

et al., 1996), although it has recently been shown to be present at low levels in

cycling human fibroblasts (Mastuomi et al., 2003). hTERT has been indicated as a

key factor limiting telomerase activity in human somatic cells because the RNA

subunit is constitutively expressed at a low basal level in cells (Feng et al., 1995).

However studies from the mouse have shown that the expression of telomerase RNA

template, but not telomerase reverse transcriptase, is limiting for telomere length

maintenance in vivo. TERT+ ~ heterozygotes had no detectable defect in telomere

elongation compared to wild-type controls, whereas TR+/" heterozygotes were

deficient in telomere elongation, indicating that both TR and TERT are essential for

telomere maintenance and elongation but that gene copy number and transcriptional

regulation of TR, but not TERT, are limiting for telomerase activity in vivo. (Lingner

et al., 1997, Chiang et al., 2005). In addition the telomerase RNA template has been

shown to be a determinant of telomere repeat extension rate in humans (Drosopoulos

et al., 2005). The caveat in this mouse study concerns the fact telomerase is

40



Chapter 1 - Introduction

expressed at high levels in an array of somatic murine tissues (Greenberg et al.,

1998), hence a deficient phenotype in mTERT+" may not be evident.
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Figure 1.8. Model for processive elongation by telomerase. Reiterative extension
of telomeric DNA is postulated to entail (a) binding of telomeric DNA to the TR unit
RNA template and to other domains of the RNP (e.g. the anchor site(s); (b)
successive addition of nucleotides to the 3'end of the DNA; (c) upon reaching the 5'
template boundary, translocation and repositioning of the 3' end of telomeric DNA in
concert with recognition of the 3' template boundary; and (d) subsequent repeat
rounds of elongation. (Figure adopted from Aiitexier & Lue 2006).

When it was demonstrated that human primary fibroblasts could be immortalized by

transfeetion of human TERT (hTERT), the catalytic subunit of telomerase (Bodnar et
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al., 1998), telomere shortening was firmly established as a biological clock for

cellular senescence. However, it has more recently become clear that it is unlikely to

be telomere shortening per se that triggers a senescent arrest, but rather that other

non-canonical structures and a number of extrinsic factors may be key determinants

regarding the onset of senescence (section 1.5). In this respect, telomere shortening

may be a proximate rather than an ultimate cause of cellular senescence.

1.9 Extra-curricular roles of telomerase

The possibility of telomere-independent telomerase function is intriguing. Various

lines of evidence suggest that telomerase may have yet undiscovered roles. As

discussed previously, despite the ample telomere reserve in murine cells, telomerase

is upregulated in a spectrum of tumour types (Blasco 1996, Greenberg et al., 1999,

Cao Y. et al., 2002; reviewed in Chang S. et al., 2002), suggesting that telomerase

may confer enhanced proliferative and survival potential during tumourigenesis,

independent of its role in telomere maintenance. Similarly, telomerase extends the

lifespan of virus-transformed human cells without net telomere lengthening,

indicating a protective function of telomerase that allows cell proliferation (Zhu J et

al., 1999), perhaps by conferring karyotypic stability by 'capping' chromosomes.

Furthermore, descriptive studies have shown hTERT localization not only in the

nucleus, but in the cytosol, reinforcing the notion of telomere-independent functions

(reviewed in Chung H 2005).

On the basis that low levels of hTERT are detected in S phase of normal human

fibroblasts (Mastuomi et al., 2003), a recent study investigated the effects of hTERT
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suppression in these cells. Strikingly, an impaired DNA damage was observed in

response to ionizing radiation, implicating hTERT as a critical regulator of the DNA

damage response (Mastuomi et al., 2005). Moreover the sustained loss of hTERT

expression through several rounds of cell division alters the overall state of

chromatin into a configuration that inhibits the activation of the DNA damage

response (Mastuomi et al., 2005). Hence hTERT may regulate the DNA damage

response through its actions on chromatin structure, in a manner independent from its

role in telomere maintenance.

Two recent seminal studies, through investigating the role of telomerase in stem cell

compartments, showed that conditional transgenic induction of TERT in mouse skin

epithelium causes a rapid transition from telogen (the resting phase of the hair

follicle cycle) to anagen (the active phase), thereby facilitating robust hair growth.

This new function for TERT does not require the telomerase RNA component, and

therefore operates through a mechanism independent of its activity in synthesizing

telomere repeats (Flores et al., 2005, Sarin et al., 2005; reviewed in Flores et al.,

2006). Indeed changes in telomere length were absent from these overexpression

studies. This study has been further exemplified in small intestinal stem cells, corneal

stem cells and brain stem cell compartments (Blasco. M et al, personnal

communication). These data indicate that, in addition to its well established role in

extending telomeres, TERT can promote proliferation and mobilization of resting

stem cells through a non-canonical pathway. This raises the question as to what role

telomerase may have during metastases?
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1.10 Telomerase, telomeres and cancer

Due to the degree of conservation of telomere repeat sequences across phyla

(TTAGGGn in vertebrates and TTTAGGGn in many plants; reviewed in Fajkus et ah,

2005), it is tempting to suggest that telomere-dependent replicative senescence may

be the hallmarks of a primitive tumour suppressor mechanism that may pre-date

sophisticated protein-mediated tumour suppression. A pre-programmed cessation of

proliferation would inevitably protect against uncontrolled cell growth and unwanted

genetic abnormalities. Presumably, the pre-determined replicative capacity of early

multicellular organisms provided a safe buffer zone in which to propagate their

selfish genetic units of inheritance. This window for replicative capacity would thus

be stable and selected for, with this tumour suppressor strategy inadvertently leading

to cellular ageing and possibly contributing to organismal ageing - a cellular double-

edge sword. However, it is important to stress, with respect to our own species that

although replicative senescence may be a potent tumour suppressor mechanism, this

may be an inadvertent phenomena and unlikely to have been an adaptation; we may

simply be observing this phenomenon due to our current longevity compared to our

early Homo sapiens ancestors.

1.10.1 Telomerase reactivation

It is easy to speculate that cell division is potentially a risky strategy and organisms

with renewable tissues have evolved to limit the maximal number of permissible cell

divisions. Presumably the optimal cell turnover for the expected lifespan of humans

has been reduced to a number set in the wild (i.e. Stone Age Homo sapiens). Modern
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medicine has allowed us to live far longer than is necessary for high reproductive

fitness (Selfish Gene theory - Richard Dawkins, 1976) and therefore cancer is a

phenomenon that may have no scope to be selected against.

Cancer is a disease of cellular ageing and impaired genome stability - and several

lines of evidence have confirmed that the maintenance of telomeres and reactivation

of telomerase participate actively in the pathogenesis of cancer (reviewed in Maser et

ah, 2002, Mastuomi & Hahn 2003, Shay & Wright 2005 and Bailey et ah, 2006).

Although telomere shortening appears to limit replicative lifespan of human cells and

suppress cell transformation, telomere shortening also eventually leads to critically

short telomeres and the onset ofM2 stage crisis. Whereas most cells that enter crisis

are eliminated by apoptosis (Shay & Wright 1989, era-Bloch et ah, 2002), sporadic

cells (~ 1 x 10"7) survive crisis and become immortal (Shay & Wright 1989). Such

immortal cells typically exhibit aneuploidy and extensive chromosomal

translocations indicating that telomeres lose their protective function at lengths

associated with crisis (Counter et al. 1992). Crucially, telomeres in -90% of cancers

studied are maintained by the activation of telomerase (Kim N W et ah, 1994,

Counter et ah, 1994). This stabilization of telomere length permits immortalization

and facilitates further malignant progression. Although catalytic activity is necessary,

telomere elongation alones seems insufficient to explain the requirement of

telomerase in a tumour setting, as average stabilized telomere lengths are often

shorter that the corresponding wild-type tissue (Hastie et ah, 1990, Counter et ah,

1994). At present the additional mechanism(s) by which telomerase activation

contributes to tumourigenicity remains undefined. It has been proposed that lines
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with catalytically active hTERT are more resistant to apoptosis (Gorbunova et al.,

2002, Forsythe H. et al., 2002) and/or that catalytically active hTERT may serve as a

physical cap for the (exposed?) telomere (Zhu J et al., 1999, Blackburn 2001). Thus

telomere shortening and telomerase activation can act both to suppress and facilitate

tumour development depending on the timing and context of these related events - a

molecular double-edged sword (Fig. 1.9).

1.10.2 Alternative Lengthening of Telomeres (ALT) pathway

Although most human cancers use telomerase as their telomere maintenance

mechanism, some (~7-10%) use an alternative lengthening of telomeres (ALT)

mechanism (Fig. 1.9). The latter especially include specific subtypes of soft tissue

sarcomas where ALT occurs most often in tumors with complex karyotypes,

astrocytic brain tumors and osteosarcomas (Bryan T. et al., 1997, Muntoni et al.,

2005). Some ALT cells have atypical features, suggesting that there is more than one

ALT mechanism. ALT cells are characterized by high rates of telomeric

recombinational exchange (Dunham et al., 2000). One of the hallmarks of the ALT

mechanism is the presence of ALT-associated PML bodies (APBs), which are

subnuclear structures where PML protein colocalizes with telomeric DNA, telomere-

binding proteins and several proteins involved in DNA synthesis and recombination

(Yeager et al., 1999). The latter include the Mrel 1/Rad50/Nbsl (MRN) complex

which appears to be required for ALT. The existence of ALT raises the possibility

that telomerase-positive tumors undergoing anti-telomerase therapies may escape by

activating the ALT pathway (reviewed in Stewart 2005).
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Figure 1.9. A model for crisis induced by telomere attrition. Shortened telomeres
elicit replicative senescence in vitro, blocking further proliferation unless checkpoint
responses are disrupted. Continued cell division will eventually cause telomere
dysfunction and crisis. The early stage of crisis can be averted by loss of p53.
Eventual emergence from late stage crisis requires not only p53 inactivation but the
acquisition of telomere maintenance mechanisms, be it telomerase-dependent or
telomerase-independent. (Adapted from Maser & de Pinho 2002 and Shay & Wright
2005).

1.10.3 Lessons from the mouse

A telomerase-deficient mouse model was generated by the elimination of the gene

encoding the murine Terc (TR) gene (reviewed in Blasco 2003). Only a limited

number of generations of these mice could be derived before loss of viability due to

telomere exhaustion and increased end-to-end fusions (Blasco et al., 1995 and 1997;

Herrera et al., 1999). Terc mice show telomere dysfunction pathologies in most

tissues and is characterized by decreased cell proliferation and/or increased apoptosis

(Rudolph et al., 1999, Franco et ah, 2002, Samper et ah, 2002). As human telomeres

(~15kb) are much shorter than those of the laboratory mouse (~50kb) and as
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telomerase is absent in most human somatic tissues, telomere shortening in humans

may lead to a similar failure of the organism as that described in the late generation

telomerase-deficient mouse. Importantly, telomerase introduction in these mice is

able to elongate critically short telomeres thus preventing the pathologies associated

with end-to-end fusions (Samper et al., 2001). This hints at the possible use of

telomerase in gene therapy of premature ageing syndromes such as Werner syndrome

(reviewed in Collins et al., 2002) and dyskeratosis congenita (DC) (Vulliamy et al.,

2001 and 2004), the latter of which is a multi-system bone marrow failure syndrome

that may be X-linked (mutation in the DKC1-encoded protein) or autosomal

dominant (mutation in Terc) (Walne et al., 2005), resulting in short telomeres.

Telomerase activity is upregulated during murine tumourigenesis despite mice

having long telomeres (Broccoli et al., 1996, Artandi et al., 2002) suggesting that

telomerase may promote tumourigenesis at two levels: by signaling proliferation and

promoting growth independently of telomere length, and by rescuing tumour cells

with critically short telomeres.

1.10.4 Telomeres and telomerase in cancer stem cells

Recent evidence suggests that only a subset of cells within some tumours, the so-

called cancer stem cells, may drive the growth and metastasis of these tumours. Thus

tumours are regarded as heterogeneous in nature rather than a homogenous

population of rapidly dividing cells. The first evidence of a putative tumour-initiating

cell came from studies of the haematopoietic system and the identification of

leukaemic stem cells (Lapidot et al., 1994, Bonnet et al., 1997; reviewed in
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Harrington 2004 and Huntly & Gilliland 2005). The identification of tumour-

initiating cells in solid tumours such as brain (Singh S et al., 2003, 2004) and breast

(Al-Hajj M. et ah, 2003) shatters much dogma in the field of cancer biology and the

implications of the cancer stem model are profound. A key upstream mutation(s)

causing the breakdown of self-renewal regulation may until now have been

overlooked. If cancer stem cells represent the sole population with tumourigenic

potential then the failure of conventional chemotherapy may be readily explained;

like their normal stem cell counterpart, cancer stem cells most probably exist in a

quiescent state, removed from the cycle of division and thus are not targeted by

chemotherapeutic drugs that target rapidly dividing cells. In this regard, non-

tumourigenic progeny from the cancer stem cell will be killed, but the small

population of cancer-initiating cells will remain, hence relapse. Nevertheless, it is

still a matter of debate whether solid cancers derive from stem cells or their

progenitors that have acquired the ability to self-renew through mutation. It may well

be that the cancer cellular culprit differs in each tumour setting as each is dependent

on a tissue-specific microenvironment.

In light of these findings it appears of great importance to elucidate the role of

telomeres and telomerase in cancer stem cells. In one respect, telomere shortening

might be involved in the development of chromosomal instability and transformation

of stem cells. In another respect, tumour stem cells might require telomerase

activation to achieve immortal self-renewal capacity (reviewed in Ju Z 2006). The

fact that stem cells and tumour cells express similar levels of telomerase indicates

that somatic cells may be target cells for malignant transformation (Morrison et al.,
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1996). The identification of better surface markers on cancer-initiating populations,

that could help unequivocally identify a 'cancer stem cell', could help to characterize

telomerase activity and telomere shortening in these compartments. Since telomere

dynamics represents the mitotic history of highly proliferating organs, analyzing

telomere length, telomerase activity and cytogenetic profiles may be helpful to

exploit the origin of tumour-initiating cells and the history of tumour formation.

Finally from a clinical view, it will be vital to determine whether telomeres and

telomerase represent promising targets to attack cancer stem cells. Two concepts are

promising: (i) telomerase is an attractive target for inhibition strategies that may limit

proliferation and induce apoptosis in cancer stem cells. Preliminary studies of

telomerase inhibition in a variety of tumor cell types have been conducted using the

novel telomerase template antagonist GRN163L (Asai et al., 2003, Djojosubroto et

al., 2005). The caveat of course is that normal tissue stem cells express telomerase,

so a specific targeting method will be required; (ii) stabilization of telomeres in pre-

malignant diseases may inhibit the evolution of chromosome instability and

transformation of cancer stem cells. The obvious paradox here is that this strategy

will require controlled reactivation of telomerase. Thus the telomere and telomerase

model for cancer stem cell initiation may supplement one of the most intriguing areas

of future cancer research.
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1.11 An historical perspective

1.11.1 On the origins of telomeres

It is vital to invoke an evolutionary perspective to understand the role of telomeres in

the evolution of genomes, chromosomes, terminal sequences, genes and proteins.

The current study of telomere biology may be sophisticated, but studies beyond

model organisms are required to give a broader perspective on those features of

telomeres that are organism-specific and those that are conserved. The increasing

interest in telomerase-independent systems might be instrumental in our

understanding of why and how natural selection favoured linear chromosomes over

their circular counterparts in nuclei of eukaryotic cells. One intriguing hypothesis

that has been debated, suggests that the replication strategies of mitochondrial

telomeres represent an evolutionary paradigm for the emergence of linear eukaryotic

chromosomes during a 'pre-telomerase' era. This postulates that a selfish element

replicating via a rolling-circle mechanism could generate terminal arrays of tandem

repeats at chromosomal termini of early eukaryotes (reviewed in Fajkus et ah, 2005,

Nosek et ah, 2006). Why linear chromosomes may have been an adaptation is

unclear. Primordial telomeric structures may then have recruited telomerase, which

provided a more robust method of maintaining chromosomal ends and out-competed

evolutionary ancient mechanisms. The elucidation of the T-loop structure not only at

mammalian chromosomal termini, but that of the ciliate Oxytricha fallax (Murti K. et

ah, 1999) and the flagellate protozoan Trypanosoma brucei (Munoz-Jordan et ah,

2001), raises the tempting suggestion that early eukaryotes could have stabilized

their chromosome ends using the T-loop structure or one similar.
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1.11.2 On the origin of telomerase

The clues to the origins of telomerase come from its structural conservation:

telomerase contains conserved domains with all known reverse transcriptases with

phylogenetic analysis revealing that the major branch in which telomerase resides

contains the eukaryotic retrotransposable elements without long-terminal repeats,

known as the non-LTR retrotransposons (Nakamura T. et ah, 1997 & 1998). As to

which arose first, telomerase or retrotransposons, the debate continues (reviewed in

Eickbush et ah, 1997 and Nakamura T. 1998). Although the origin of telomerase may

thus be traced back to the RNA world (de Lange 2004), this does not necessarily

imply that the enzyme maintained telomeres in ancestral eukaryotes. The

evolutionary success of telomerase in the eukaryotic world might have been due not

only to the efficient synthesis of telomeric arrays but also due to its extracurricular

telomere-independent activities that may have increased cellular viability (section

1.8). A fascinating experiment has been suggested, based on the introduction of

telomerase into natural telomerase-deficient cells, such as D. melanogaster

(representing a lineage in which telomerase was lost) (Nosek J 2006). Would

telomerase out-compete the telomerase-independent mechanisms? Would the

reprogrammed strains differ in their relative fitness? Telomerase is arguably one of

the earliest proteins to have been selected for in the eukaryotic kingdom, probably

due to the array of functions it mediated to ensure cellular viability. Studies of

telomerase in a plethora of extant eukaryotes will further elucidate the exact

historical accounts of both telomerase and telomeres.

52



Chapter 1 - Introduction

1.12 Current Project

1.12.1 Using sheep to study telomere and telomerase biology

Previous work conducted in our laboratory has demonstrated that sheep fibroblasts

are similar to human fibroblasts in respect to replicative senescence and telomere and

telomerase biology. Sheep fibroblasts have a limited proliferative lifespan which

seems to be controlled by the telomere mitotic clock. In addition, hTERT is

compatible with sheep TR and associated machinery, thus providing an alternative

mammalian model system to study telomere/telomerase biology. Introduction of

hTERT into primary foetal sheep fibroblasts, restores telomerase activity, extends

proliferative lifespan and maintains senescence bypass (Cui et ah, 2002). However,

stabilization of telomere length and karyotypic stability was directly proportional to

the levels of hTERT expression. Unexpectedly this was not reflected in an assay for

telomerase repeat addition activity, with all lines analyzed showing comparable

activtity. Therefore it is not clear whether non-catalytic domains of hTERT have a

telomere maintenance function distinguishable from enzymatic activity, or whether

the hTERT catalytic domain alone is the key rate-limiting factor.

A second study on sheep fibroblasts conducted in our laboratory showed that two

lines derived from the same breed (Black Welsh), differed dramatically in their

proliferative lifespan (Cui et ah, 2003). Both lines showed comparable average

telomere length after derivation and also at replicative senescence; however these

lines differed in their proliferative capacities by ~3-fold. The major limitation in this

analysis was inference based on calculation of average telomere length, taking the
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population as a whole. Recent advances in telomere detection have permitted a

quantitative approach to calculate telomere length based upon signals from

individual telomeres. This method allows analysis of telomere length heterogeneity,

manifest as a result of varying shortening rates with respect to subsets of telomeres.

It was therefore imperative to use this strategy to descriptively address telomere

shortening in these two sheep primary lines, taking into consideration shortening of

individual telomeres, and relate this to the previous observation of differences in

proliferative lifespan.

Further recent advances in the telomere biology field have both permitted analysis of

the G-rich single-strand 3' overhang and implicated this structure as a key factor with

respect to telomere capping. However, it is unclear whether the 3' overhang alters

during cellular proliferation or has a causal or consequential role regarding

replicative senescence. To address these issues, the sheep lines in our laboraotory

again provide a valuable tool; 3' overhang length can be measured during

proliferation of normal sheep fibroblasts to assess alterations to the 3' overhang

length. Furthermore, hTERT-immortalized sheep fibroblasts can be used to address if

there is any direct or indirect relationship between hTERT expression and 3'

overhang length.
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1.12.2 Project objectives

Regulation of telomere length in mammalian cells is a multi-factorial process

involving not only a host of telomere- and telomerase-associated factors, but also the

dynamic physical configuration of chromosomal termini. Hence both extrinsic and

intrinsic factors inter-dependently contribute to maintain telomere metabolic

homeostasis. To gain insight into both avenues:

1) The human telomerase catalytic subunit (hTERT) was studied to determine

whether hTERT reverse transcriptase domain is rate-limiting with respect to telomere

maintenance and senescence bypass, or whether there is evidence for a telomere

maintenance function that can be distinguished from enzymatic activity. Furthermore,

the consequences of long-term culture with hTERT-transfected transgenic lines were

considered.

2) A descriptive study of telomere shortening in primary sheep fibroblasts was

conducted, taking into account individual telomere length heterogeneity. This study

demonstrated the application of using Quantitative-FISH (Q-FISH) in the sheep

model system, thus highlighting the technical advantages over previous methods for

telomere length analysis.

3) The 3' telomeric overhang was analyzed during culture of primary sheep

fibroblasts to determine if the 3' overhang erodes throughout replicative lifespan and

if so, whether a relationship between 3' overhang shortening rate and telomere

shortening rate can be deduced. Furthermore, the 3' overhang was studied in the

context of hTERT-immortalized sheep fibroblasts to infer the relationship between

hTERT expression level and 3' overhang length.
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CHAPTER 2

MATERIALS AND METHODS
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Bacterial Transformation and culture

Luria-Bertani (LB) Medium

1% Bacto-trptone (Difco), 0.5% Bacto-yeast extract (Difco), 125nM sodium chloride

(NaCl).

Luria-Bertani (LB)-Agar

LB medium containing 1.5% agar (Difco).

SOC-medium

2% Bacto-tryptone, 0.5% Bacto-yeast extract, lOmM NaCl, 2.5mM potassium chloride

(KCL), 20mM Mg2+ stock (1M MgCl26H20/ 1M MgSC>47H20), 20mM glucose (Fisons).

Ampicillin selection

Stock solution lOOmg/ml, used at lOOpg/ml concentration.

Agarose gel electrophoresis

lOx TAE Buffer

0.4M Tris-HCl pH 8.0, 0.01M EDTA, 0.2M acetic acid.
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5x DNA Gel Loading Buffer (Sigma)

0.05% Bromophenol blue, 40% sucrose, 0.1 M EDTA Ph 8.0 and 0.5% SDS.

DNA Lysis

TNE DNA lysis Buffer

lOOmM Tris-HCl pH 8.5, 5mM EDTA, 0.2% SDS, 200mM NaCl, lOOpg/ml Proteinase

K, 20pg/ml RNase.

Senescence-associated B-gal staining solution

X-gal

lmg/ml X-gal (Promega), 40mM Na^HPO^citrate pH 6.0, 5mM potassium ferricyanide,

5mM potassium ferrocyanide, 150mM NaCl, 2mM MgCl2 and made up to 10ml with

nuclease-free water.

TRAP assay (Chemicon)

lx.CHAPS Lysis Buffer

lOmM Tris-HCl pH 7.5, ImM MgCb, ImM EGTA, O.lmM Benzamidine, 5mM |3-

mercaptoethanol, 0.5% CHAPS, 10% glycerol.

1 Ox TRAP Reaction Buffer

200mM Tris-HCl pH 8.3, 15mM MgCl2, 630mM KCL, 0.5% Tween 20, lOmM EGTA.
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5Ox dNTP Mix

2.5mM each of dATP, dTTP, dGTP and dCTP.

PCR Grade Water

Protease, DNase and RNase-free; deionised.

lOx TBE Buffer

0.89M Tris-HCl pH 8.0, 0.89M borate, 0.02M EDTA.

40% Polvacrvlamide Stock Solution

Pre-mixed, 40% liquid acrylamide (19:1 acrylamide:bis-acrylamide ratio) (Electran)

10% Ammonium Persulfate (APS)

10% (NH4)2S208 (Electran)

TEMED (Tetramethylethylenediamine)

C6H16N2 (Electran)
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TRF Telomere Length assay

HC1 Solution

0.25M HC1

Denaturing Solution

0.5M NaOH, 1.5MNaCl.

Neutralization Solution

0.5M Tris-HCl, 3M NaCl pH 7.5.

20x SSC

3M NaCl, 0.3M sodium citrate pH 7.0.

Miscellaneous Reagents

Sterile PBS

0.16M NaCl, 0.003M KC1, 0.008M disodium hydrogen phosphate, 0.001M potassium

dihydrogen phosphate.

TE Buffer

lOmM Tris-HCl pH 8.5, ImM EDTA.
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2.2 Molecular biology methods

2.2.1 Preparation of genomic DNA from cultured cells

Cells were harvested and lysed overnight in 700pl TNE DNA lysis buffer (see 2.1) and

DNA extracted using the Phase-Lock Gel (PLG) method (Eppendorf). 700pl cell lysis

was transferred to a 2ml PLG tube and an equal volume of phenol added. Tubes were

thoroughly inverted to fonn a transiently homogenous suspension, prior to centrifugation

at 13000rpm for 5 minutes. The aqueous phase was transferred to a fresh PLG tube and

an equal volume of chloroform added. Tubes were again thoroughly inverted prior to

centrifugation at 13000rpm for 5 minutes. The aqueous phase was transferred to a fresh

1.5ml tube and an equal volume of cold isopropanol added. DNA was visible upon

inversion of the tube and transferred to a fresh 1.5ml tube. DNA was resuspended in 50-

150ml of TE buffer (see 2.1) dependent on the size of DNA pellet incubated at 4°C to

ensure complete resuspension.

2.2.2 Restriction endonuclease digestion

Digestion of pGEM-T Easy Sub-cloning Vector

lpg of plasmid pGem-T Easy (Promega) DNA was digested with 10 units EcoRl

restriction enzyme in a microcentrifuge tube using the supplied manufacturer's buffer

(Buffer H). The reaction volume was lOpl and incubation was conducted at 37°C for 1

hour, 30 minutes.
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Linearization Digests of t>WGB25 and pWGB23

Prior to transfection with pWGB25 (mutant hTERT plasmid; section 2.9.1) and

pWGB23 (EGFP-mock control plasmid; section 2.9.1), plasmids were linearized by a

single-cut digestion at a non-essential region as follows: 70 units of Pci (New England

Biolabs) was used to digest 66.5pg pWGB25 DNA in a reaction volume of 70pl, using

7pil of the buffer supplied by the manufacturer (lOx NEBuffer 3). 80 units of Bglll

(Roche) was used to digest 54pg of pWGB23 DNA in a lOOpl reaction volume using

lOpl of the buffer supplied by the manufacturer (lOx Buffer M). Samples were incubated

at 37°C for 2-3 hours until complete digestion was observed by agarose gel

electrophoresis.

2.2.3 Agarose gel electrophoresis

Agarose powder was dissolved in IX TAE (0.8-2.0%) by microwave heating and

allowed to cool. Ethidium bromide was added to a final concentration of 0.5pg/ml, prior

to pouring the gel onto a horizontal electrophoresis set-up. DNA samples were mixed

with 5x DNA loading buffer (see 2.1) prior to loading onto gels; at least one lane was

reserved for 5pl of a molecular weight marker (Hyperladder Type I, Roche). An

electrical current between 85 and 100 volts was applied. Following electrophoresis,

DNA was visualized using a UV transilluminator and images captured using Multi-

Analyst software (BioRad).
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2.2.4 Purification ofDNA fragments from agarose gels

DNA fragments electrophoresed through an agarose gel were excised using a clean

sharp scalpel (visualized under long-wavelength UV light) and transferred to a

microcentrifuge tube. The gel slice was processed using a QIAquick column (Qiagen) in

accordance with the manufacturer's instructions. The weight of agarose was determined

and 3 volumes of Buffer QG were added to 1 volume of gel (e.g. 300pl buffer to lOOmg

gel). This mixture was incubated at 50°C for 10 minutes and vortexed at intervals until

the gel slice had dissolved. 1 gel volume of isopropanol was added to the mixture and

the sample transferred to a QIAquick column held within a 2ml collection tube. The

column was microcentrifuged at lOOOOg for one minute to bind the DNA. This step was

repeated a second time to increase DNA yield, after which the flow-through was

discarded. The column was washed with 750pl Buffer PE for 5 minutes to remove any

residual agarose and excess salts, followed by a third 1 minute microcentrifugation.

Flow-through was discarded and the column re-centrifuged to remove any remaining

buffer. The column was placed in a clean 1.5ml centrifuge tube and 40pl of elution

buffer added. The column was allowed to stand for 1 minute prior to a final

centrifugation for 1 minute to elute the DNA.
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2.2.5 DNA quantification

Spectrophotometric measurements were used to determine both the quantity and the

quality ofDNA preparations. Typically a DNA sample was diluted 1:200 with TE buffer

and the absorbance read at 260nm to give the concentration of nucleic acid in the sample.

An optical density (OD) of 1 corresponds to approximately 50pg/ml of double-stranded

DNA. The ratio between readings at 260nm and 280nm provided an estimation of the

purity and hence quality of the DNA preparation. Pure DNA has an OD26o/OD28o ratio of

1.8-2.0. Spectrophotometric measurements were verified by agarose gel electrophoresis

using l-2pl ofDNA.

2.2.6 Preparation of total RNA from cultured cells

Total RNA was extracted using the RNeasy kit (Qiagen) according to the manufacturer's

guidelines. Cells grown on a monolayer were harvested, washed twice with PBS (see 2.1)

and disrupted by addition of 350pl Buffer RLT (Qiagen). Samples were homogenized by

passing a 0.9mm diameter gauge needle through the lysate 5-7 times. 350pl of 70%

ethanol was added to the homogenized lysate and mixed well by pipetting. 700pl of the

sample was applied to an RNeasy mini column placed in a 2ml collection tube and

centrifuged for 15 seconds at 13000rpm and flow-through discarded. At this stage,

samples were DNase treated: lOpl DNase 1 stock solution was added to 70pi Buffer

RDD (Qiagen RNase-free DNase set) and mixed gently by inverting the tube. The

DNase 1 incubation mix (80pl) was added directly onto the RNeasy silica-gel membrane

and placed on the benchtop for 15 minutes. 350pl Buffer RW1 (Qiagen) was added to
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the column and centrifuged for 15 seconds at 13000rpm and flow-through discarded.

The RNeasy column was transferred to a fresh 2ml collection tube and 500pl of Buffer

RPE (Qiagen) was added to the column and centrifuged for 15 seconds at 13000rpm to

wash the column. After discarding flow-through this wash step was repeated with a 2

minute centrifugation. To elute RNA, the RNeasy column was placed in a fresh 1.5ml

tube and 40pl RNase-free water applied directly onto the silica-gel membrane.

2.2.7 RNA quantification

Spectrophotometry measurements were used to determine both the quantity and the

quality of RNA preparations. Typically an RNA sample was diluted 1:200 with TE

buffer and the absorbance read at 260nm to give the concentration of nucleic acid in the

sample. An optical density (OD) of 1 corresponds to approximately 40pg/ml of single-

stranded DNA. The ratio between readings at 260nm and 280nm provided an estimation

of the purity and hence quality of the DNA preparation. Pure RNA has an OD260/OD280

ratio 1.8-2.0. Spectrophotometry measurements were verified by agarose gel

electrophoresis using l-2pl ofRNA.

2.2.8 First-strand cDNA synthesis

The AMV Reverse Transcriptase (RT) (Roche) was used to catalyze the synthesis of

single-stranded cDNA from total isolated RNA. A total reaction volume was prepared

using the following components: 1.5-2.5pg RNA diluted to a final volume of 9pl using
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RNase-free water (diluted RNA incubated at 65°C for 15 minutes), 4pl 5x RT buffer

(Roche), ljil oligo(dT)i5 random primers (Roche), 4pl 5mM dNTP and lp.1 RNase

Inhibitor (Roche). The 20pl reaction was incubated at 30°C for 8 minutes followed by

42°C for 1 hour and 95°C for 5 minutes. Samples were centrifuged briefly and stored at

-20°C.

2.2.9 Reverse-transcription polymerase chain reaction

Each reverse-transcription polymerase chain reaction (RT-PCR) was conducted in a 50pl

reaction volume using the following components: 100ng-200ng of template cDNA

(typically l-2pl) made up to 38.5pl using PCR grade water, 5pi lOx PCR buffer (Roche),

4pl 2.5mM dNTP, lpl forward primer, lpl reverse primer and 0.5pl Taq Polymerase

(Roche). Thermal cycle conditions to amplify total hTERT transgene levels, mutant

hTERT transgene level alone and endogenous sheep GAPDH were set as follows: 94°C

for 45 seconds, 60°C for 30 seconds (annealing) and 72°C for 45 seconds. Thermal cycle

number used was 30 for hTERT and 26 for GAPDH. An annealing temperature of 61°C

was used to detect hTERT 3'UTR in an amplification reaction using 30 cycles, and an

annealing temperature of 54°C used to detect human GAPDH in an amplification

reaction using 26 cycles. lOpl of RT-PCR product was used for agarose gel

electrophoresis to visualize amplified DNA.

To distinguish between the mutant hTERT transgene and endogenous hTERT transcript

in HEK 293-transfected cells, a set of primers were designed whereby the reverse
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primer amplifies from within the SV40 polyadenylation signal in the mutant hTERT

vector (pWGB25, see Appendix 1), generating an amplified product of ~600bp, the

forward primers amplifying from within the mutant hTERT transgene. Thermal cycle

conditions were set as follows: 94°C for 45 seconds, 55°C for 30 seconds (annealing)

and 72°C for 45 seconds, for 26 cycles.

Primer sequences for RT-PCR:

i) Total hTERT transgene (wild-type and mutant)

hTERT-Wl- 5'-AGCGACTACTCCAGCTATG-3' (Forward)

hTERT -W2- 5'-GTTCTTGGCTTTCAGGATGG-3' (Reverse)

Predicted product size - 325bp

ii) Mutant hTERT transgene alone

Mu-hTERT-F 5'-ACGGTGTGCACCAACATCTA-3' (Forward)

Mu-hTERT-R 5'-TGAAATTTGTGATGCTATTGCT-3' (Reverse)

Predicted product size - 598bp

iii) hTERT 3'UTR

Exl5F 5'-CATTCCTGCTCAAGCTGACTCGAC-3' (Forward)

3'UTR R 5'-CCTCAGACTCCCAGCCGTGCG-3' (Reverse)

Predicted product size - 350bp
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iv) Sheep GAPDH

sGAPDH-F- 5'-TGTCCGTTGTGGATCTGACC-3' (Forward)

sGRAPH-R- 5' -CGTACCAGGAAATGAGCTTGAC-3' (Reverse)

Predicted product size - 224bp

v) Human GAPDH

rGAPDHF 5' -TGAGTATGTCGTGGAGTCTAC-3' (Forward)

rGAPDHR 5' -GGCCATGTAGGCCTAGAGGTC-3' (Reverse)

Predicted product size - 750bp

2.2.10 Polymerase chain reaction

Polymerase chain reaction (PCR) was conducted to amplify the GAPDH locus. A 50pl

reaction volume was used incorporating the following components: lOng-lOOng of

template genomic DNA (typically l-2pl) made up to 38.5pl using PCR grade water, 5pl

lOx PCR buffer (Roche), 4pl 2.5mM dNTP, lpl forward primer, lpl reverse primer and

0.5pl Taq Polymerase. Thermal cycle conditions to amplify the endogenous sheep

GAPDH locus were set as follows: 94°C for 45 seconds, 60°C for 30 seconds (annealing)

and 72°C for 45 seconds. GAPDH primers used as described in section 2.2.9.
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2.2.11 Protein lysis (Western Blot)

Protein lysis was carried out on harvested cells using 300|al RIPA Buffer (Chemicon)

containing 50mM NaCl, 25mM Tris pH 8.2, 0.5% Nonidet P40, 0.5% deoxycholate,

0.1% SDS and 0.1% Azide. Upon addition of RIPA lysis buffer, samples were vortexed

for 1-2 minutes and passed through a 0.6mm needle to homogenize. Samples were

centrifuged at 14000rpm at 4°C for 20 minutes and stored at -80°C.

2.2.12 Protein concentration (Western Blot)

A Bovine Serum Albumin (BSA) standard curve was set up to determine protein

concentration of samples. Typically a BSA standard range of 0-5pg/pl was used where

lOpl of each BSA concentration was mixed with 190pl bicinchoninic acid (BCA)

working reagent (Pierce). RIPA buffer was used to dilute BSA standards to the desired

concentration. To 2pl of each protein lysis sample, 8pl ofwater and 190f.il BCA working

reagent were added. All standards and samples were prepared in a 96-well plate and

incubated at 37°C for 30 minutes. A spectrophotometer plate reader was used to read

absorbance at 562nm. All samples were measured in triplicate and average 562nm

absorbance measurement of the blank standards, subtracted from average measurements

of each particular sample. A standard curve was prepared by plotting the average blank-

corrected 562nm measurement for each BSA standard vs. its concentration in pg/ml.

This standard curve was used to determine the protein concentration of each unknown

sample.
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2.2.13 Western Blot analysis

A total of 40pg protein from each sample was used to prepare a boiling mix containing

3x sample loading buffer (62.5mM Tris-HCl pH 6.8, 2% SDS, 10% glycerol, 50mM

DTT and 0.1% bromophenol blue) and water to give a final volume of 20pl. This mix

was boiled at 100°C for 10 minutes prior to separation on a 7.5% vertical

polyacrylamide separating gel (40% acrylamide mix, 10% SDS, 1.5mM Tris pH 8.8 and

water). A 4% polyacrylamide mixture (40% acrylamide mix, 10% SDS, 0.5mM Tris pH

6.8 and water) was used as the stacking gel. All wells were flushed with isopropanol

after adding gel mixtures and flushed with water twice after gels had set. Polyacrylamide

gel electrophoresis (PAGE) was conducted at 150V for approximately 1 hour using lOx

running buffer (0.25M Tris, 1.92M glycine, 1% SDS). 25pl of the Rainbow molecular

weight marker (Amersham) was run on either side of the sample lanes. Protein was

transferred at 4°C overnight onto a nitrocellulose membrane using lOx blotting buffer

(0.25M Tris, 1.92M glycine pH 8.3). Membranes were blocked for 1 hour in PBS

containing 0.1% Tween (PBST) and 10% milk prior to incubation with rabbit

monoclonal anti-hTERT primary antibody Y182 (Abeam) overnight at 4°C using a

1:100 dilution. Membranes were washed twice with PBST/10% milk, followed by

washing twice with PBST alone and twice again with PBST/10% milk, followed by

incubation with goat anti-IgG HRP-conjugated secondary antibody (Dako) at a dilution

of 1:2500 for 30 minutes at room temperature. Proteins were detected using an ECL

chemiluminescence HRP detection substrate (Millipore). Briefly, 3ml luminol and 3ml

peroxide were mixed and poured onto the nitrocellulose membrane prior to 5 minutes
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incubation at room temperature. Blots were drained, covered with acetate and exposed to

autoradiography film for 30 seconds to 20 minutes. Membranes were stripped for 1 hour

using buffer consisting of 62.5M Tris pH 6.8, 2% SDS and lOOmM (3-mercaptoethanol,

and washed twice with PBST followed by blocking in PBST/10% milk for 2 hours.

Blots were re-probed using mouse monoclonal anti-P-actin antibody (Santa-Cruz) at a

1:10000 dilution to detect P-actin, serving as an internal/loading control. Membranes

were washed once with PBST/10% milk, followed by washing once with PBST alone

and once with PBST/10% milk, followed by incubation with goat anti-mouse HRP-

conjugated secondary antibody (Dako) at a 1:2500 dilution. Membranes were exposed to

autoradiography film as described previously.

2.2.14 Protein lysis and concentration (Telomere Repeat Amplification

Protocol Assay)

Harvested cells were lysed using 40pl lx CHAPS buffer (Chemicon) and divided into

1 OjllI aliquots. Cells were snap frozen on dry ice immediately proceeding lysis to ensure

stability of the telomerase protein/RNA complex. A BSA standard was set up similar to

that described in section 2.2.12. A BSA concentration range of 0.125-2pg/pl was used

using lx CHAPS buffer as the diluent. 10pl of each standard was added to 250pl

Coomassie reagent (Pierce). For each protein sample, lpl was added to 9pl IX CHAPS

buffer and 250pl Coomassie reagent. Protein concentration was determined in a 96-well

plate which was incubated for 15 minutes at room temperature with gentle shaking.

Absorbance at 595nm was calculated using a spectrophotometer plate reader and a
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standard curve prepared by plotting the average blank-corrected 595nm measurement for

each BSA standard vs. its concentration in pg/(ll. This standard curve was used to

determine the protein concentration of each unknown sample.

2.2.15 TRAP assay

TRAP assay (Chemicon) was conducted according to procedures previously described

(Kim et al., 1997). Protein lysate was diluted to a concentration of 0.1-0.5pg/pl and lpl

used to set up a reaction mix consisting of 40.6pl of PCR grade water and 8.4pl of

TRAP PCR mix (5pl lOx TRAP buffer, lpl TS primer, lpl Primer mix, lpl 50x dNTP,

0.4pl Taq polymerase), lpl of cell lysate (0.1-0.5pg) was heated in a 0.5ml tube at 85°C

for 10 minutes to heat inactivate telomerase and thus serve as a control for heat

sensitivity. Telomerase extension was achieved by heating samples at 30°C for 30

minutes. Amplification of the telomerase product was subsequently carried out using a

thermal cycle of 94°C for 30 minutes, followed by 59°C for 30 minutes, repeated 30

times. lOpl of 5x DNA loading buffer (Sigma) was added to each PCR product before

telomerase products (25pl per well), including heat inactivation controls, were resolved

on 10% polyacrylamide vertical gels (0.5x TBE, 10% acrylamide mix, 0.1% APS,

0.01% TEMED, adjusted to 50ml with nuclease-free water) using 0.5x TBE as running

buffer. TRAP gels were run at 240V for approximately 2 hours or until the loading dye

had completely run off the bottom of the gel. 20pl of DNA molecular marker VIII
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(Roche) was loaded onto lanes either side of TRAP products. TRAP gels were washed

briefly in lx TE buffer followed by staining for 30 minutes in the dark with SyBR Green

1 (Roche) solution (lOpl SyBR Green 1, 100ml lx TE buffer). TRAP gels were scanned

using an FX phosphoimager and semi-quantitative analysis conducted using Multi-

analyst software.

2.2.16 Competitive inhibition TRAP assay

TRAP assay was conducted as described in section 2.2.14, incorporating two

independent lysate samples. Initially various ratios of the two competing samples were

used but yet ensuring a final protein concentration of lpg/pl; e.g. 0.5pg:0.5pg or

0.25pg:0.75pg. This strategy was modified to compare samples at 5 to 20-fold excess of

protein; e.g. 0.1pg:5pg or 0.1pg:20pg.

2.2.17 Telomere Restriction Fragment length assay

Genomic DNA from cultured cells was isolated as described in section 2.2.1. Telomere

length was determined by telomere restriction fragment (TRF) Southern blot analysis

with a digoxigenin labelled (TTAGGG)3 probe (Roche) as described previously (Harley

et al., 1990) and using the manufacturer's guidelines. A frequent cutter restriction

enzyme mix consisting of 0.75pl (30U) Rsal (Roche), 0.75pl (30U) Hinfl (Roche),

2.5pi Buffer A (Roche) and 0.5pi RNase A, was added to 2-4pg genomic DNA and

made up to a final volume of 2 5pi for each sample tested. After overnight digestion at

37°C, 3pl Xylene Cyanol dye (Mol. Bio. Laboratories) was added to each sample and
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samples electrophoresed on a 0.8% agarose gel, initially at 100V for 20 minutes, prior

to approximately 16 hours overnight at 30V. A digoxygenin-labelled (DIG) high

molecular weight marker (Roche) was freshly prepared for each gel as follows: 4pl DIG

marker, pre-heated at 65°C for 10 minutes, was added to 4pl Xylene Cyanol dye and

12pl nuclease-free water. lOpl of DIG marker was loaded on either side of samples. At

this stage, DNA was visualized under UV light to determine degree of migration on the

gel. Prior to Southern Blot transfer, gels (DNA side up) were depurinated in 0.25M HC1

(10 minutes), rinsed twice with deionised water, denatured using 1.5M NaCl/0.5M

NaOH (2x 15 minute washes), again rinsed twice with deionised water and neutralised

using 0.5M Tris/1.5M NaCl pH 7.5 (2x 15 minute washes). Southern transfer of DNA

fragments was achieved by inverting the gel onto 3M Whatman blotting paper and

placing a positively charged nylon membrane on top of the gel, followed by 3M

Whatman paper and a heavy weight. 20x SSC buffer was used to facilitate the transfer

and blots allowed to transfer overnight. Prior to hybridization, membranes were X-

linked using a UV cross-linker and washed briefly in 2x SSC. Pre-hybridization was

performed using 15ml DIG Easy Hyb solution (Roche) for 1 hour at 42°C, whilst rolling.

Hybridization was performed using 15ml DIG Easy Hyb solution and 3pl telomere-

specific probe (Roche) overnight at 42°C. Membranes were washed prior to DNA

detection using the following regime: 100ml 2x SSC/0.1% SDS (2x 5 minutes at room

temperature with shaking), 50ml 0.2SSC/0.1% SDS (2x 15 minutes at 50°C and rolling),

100ml lx Washing Buffer (Roche) (5 minutes at room temperature with shaking), 100ml

lx Maleic Acid Buffer/lx Blocking serum (Roche) (30 minutes at room temperature

with shaking). After washes, membranes were incubated with Anti-DIG-Alkaline
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Phosphatase solution (Roche; lOpl Anti-DIG-AP and 100ml lx Maleic Acid Buffer/lx

Blocking serum) followed by washing with 100ml lx Washing Buffer ( 2x 15 minutes at

room temperature with shaking). Membranes were finally washed with 100ml lx

Detection Buffer (Roche) (5 minutes at room temperature with shaking) prior to adding

CDP chemiluminescence substrate (Roche) drop-wise onto membranes. Membranes

were wrapped in Saran Wrap and exposed to X-ray film for 30 seconds to 3 minutes.

TRF telomere length was determined using Multi-Analyst 1.1 software.

2.2.18 Telomere-Oligonucleotide Ligation Assay

Telomere-oligonucleotide ligation assay (T-OLA) was adapted from (Cimino-Reale et

ah, 2001). 1.85MBq of 32P radioisotope (Amersham) was used to label lOpmol of

telomere G-rich strand specific oligonucleotide (CCCTAA)4 or mismatch control

oligonucleotide (CCCTTA)4 (MWG Biotech). The end-labelling reaction was catalyzed

using 10U T4 Polynucleotide Kinase (PNK) (Roche) using lx T4 PNK Buffer (Roche)

in a total reaction volume of 25j.il. Samples were incubated at 37°C and reactions

allowed to proceed for 45 minutes, followed by incubation at 68°C for a further 15

minutes. To remove unincorporated labelled nucleotides, samples were first adjusted to

5Op I with 150mM STE Buffer (NaCl/TE) and passed through a G-50 Micro Column

(Amersham) at 2800rpm for 2 minutes. A similar set up was used to label 750ng of

dephosphorylated DNA Molecular Weight Marker VIII (Roche) with 0.925MBq of 32P,

in a reaction volume of lOpl. For hybridization of oligonucleotides to undenatured
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genomic DNA, lpmol G-rich or mismatch-labelled oligonucleotide was added to 10pg

RNase-treated DNA and lx Taq Ligase Buffer (Roche), adjusted to a final volume of

20pi. Hybridization reactions were incubated at 52°C for 16-20 hours. Samples were

briefly centrifuged prior to a ligation reaction using 30U Taq Ligase (Roche) at 52°C for

5 hours. Ligated products were ethanol precipitated by adding 80pl nuclease-free water,

1 lpl 5M NaCl and 250pl 100% ethanol. Samples were incubated at -80°C overnight and

centrifuged at 13000rpm for 50 minutes to precipitate ligated DNA. Products were

washed with 70% ethanol and re-suspended in lOpl nuclease-free water at 52°C for 2-3

hours. DNA was denatured by adding lOpl of formamide based denaturing buffer

(Ambion) and incubated at 100°C for 5 minutes. A vertical denaturing polyacryamide

gel (6M Urea, 5% acrylamide, lxTBE, 0.3% APS, 0.04% TEMED adjusted to 100ml

with deionised water) was used to resolve ligated DNA products, with 5pl of each

sample loaded per lane and 2pl of marker loaded on lanes either side of samples. 0.5x

TBE was used as running buffer and gels run at 2500V for approximately 2-3 hours.

Gels were transferred to Whatman filter paper, dried using a gel drier (80°C for 30

minutes) and exposed to autoradiography film. To ensure equal DNA loading, lOng of

every T-OLA sample was used as a template for genomic PCR reactions to detect the

GAPDH gene. T-OLA images were analysed by Multi-Analyst software.
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2.3 Histological methods

2.3.1 Detection of p-galactosidase activity

Cells grown on monolayers were prepared by washing x2 with PBS, fixed with 3%

formaldehyde and washed again x2 with PBS. Senescence-associated P-gal staining was

detected by adding 5ml fresh X-gal solution (Promega) (see section 2.1) and incubating

cells for approximately 16 hours at 37°C.

2.4 Bioinformatics methods

2.4.1 BLAST and Multiple Sequence Alignment analysis

A BLASTN nucleotide search was conducted using the NCBI search engine, with the

sequence of ligated inserts (approximately 250bp) as a query sequence. Databases of all

mammalian species available were compared to identify percentage homology with the

prospective sheep gene sequence of interest. A ligated insert of known sequence

(hTERT fragment from the HEK293 line) was also sent to DNASeq for validation and

the nucleotide sequence (~300bp) used to BLAST all eukaryotic databases to determine

percentage of TERT sequence homology across species.
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2.5 Quantitative methods

2.5.1 Quantitative-Fluorescence In-Situ Hybridization (Q-FISH)

analysis

Q-FISH analysis was conducted on metaphase images (section 2.10.2) using TFL-

Telomere TeloQuant Analysis software (Peter Lansdorp laboratory, Vancouver, Canada).

The Open Lab 2D microscope image processing software was used to capture FISH

images using an exposure time of 0.99 seconds. Images of DAPI-stained chromosomes

and Cy3-stained telomere repeats were captured independently. Approximately 350-400

chromosomes were accounted for with respect to each cell line, representing 7-10

metaphase spreads. This permitted valid statistical analyses. A minimum telomere

threshold value of 2 (arbitrary numerical value) was set for TeloQuant analysis. Due to

the denatured appearance of sheep metaphase chromosomes, a paint tool (Photoshop)

was used to define borders of individual chromosomes and thus allow the software to

distinguish chromosomes for telomere quantification. An arbitrary value is assigned to

each telomere end - Telomere Fluorescence Units (TFU) - with TFU being directly

proportional to the size of the individual telomere repeat length. (NB: Zero TFU is not

necessarily regarded as a telomere signal free end (SFE), but rather reflects a telomere

signal below the threshold of this software). TFU values were categorized into 'bins' at

intervals of 50 using Microsoft Excel Software and a 'frequency' command used to
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represent number of telomeres with TFU values within a given category.The data was

plotted either directly or as a percentage of telomere ends per category.

2.5.2 Densitometric analysis (RT-PCR)

For the GRN clones, RNA expression levels were quantified by densitometry using

Multi-Analyst software and normalized to GAPDH. Relative stoichiometry was inferred

by assigning a value of 1 to the GRN23(C1) mock vector control and calculating total

hTERT expression as relative.

To calculate relative inhibition of endogenous hTERT in HEK 293 cells transfected with

a mutant hTERT transgene, endogenous hTERT RNA levels were normalized to

GAPDH and relative inhibition calculated relative to the untransfected control.

2.5.3 Densitometric analysis (TRAP)

Telomerase activity in GRN clones was quantified using Multi-Analyst software, as the

ratio of the intensity of the telomere repeat ladder over the intensity of the 36bp internal

control band. Relative TRAP activity was calculated relative to the GRN23(C1) mock

vector control.

79



Chapter 2 - Materials and Methods

2.5.4 Densitometric analysis (TRF)

Mean TRF telomere length was calculated using Multi-Analyst software according to

the following formula:

TRF = E(ODi)/ £(ODi/L)

where OD, is the chemiluminescent signal and Lj is the length of the TRF fragment at

position i. The calculation takes into account the higher signal intensity from larger TRF

fragments due to multiple hybridization of the telomere-specific hybridization probe. A

power regression standard using the DIG molecular weight marker is used to determine

the actual telomere length, and average background subtracted for each sample.

2.5.5 T-OLA G-rich size distribution analyses

T-OLA images were analysed by Multi-Analyst 1.1 software. The relative frequency of

overhangs of different length was obtained by normalizing the intensity of each single

band to the sum of intensity of all the bands of the ladder. This densitometric analysis

was performed for at least three different experiments for each cell line to calculate

standard deviations of the mean relative frequencies.
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2.6 Cell culture materials

Basic sheep fibroblast medium

Glasgow minimal essential medium (GMEM; Invitrogen) supplemented with 10% foetal

calf serum (FCS; Globepharm), 2mM L-glutamine, ImM sodium pyruvate and lx non¬

essential amino acids (all Gibco).

Basic human fibroblast and HEK 293 medium

Dulbecco's modified eagles medium (DMEM; Invitrogen) supplemented with 10%

foetal calf serum (FCS; Glopepharm), 2mM L-glutamine, ImM sodium pyruvate and lx

non-essential amino acids (all Gibco).

Sterile PBS

As described in section 2.1

Trypsin/EDTA solution (Sigma")

0.5g/l porcine trypsin and 0.2g/l EDTA in Hanks' Balanced Salt solution with phenol

red.

1 x Freeze mix

90% GMEM and 10% dimethyl sulfoxide (DMSO; Sigma).

G418 (Geneticin)

50mg/ml stock solution (Invitrogen) diluted to working concentration of 400-750pg/ml.
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2.7 Cell culture methods

2.7.1 Maintenance of primary cell lines

Sheep fibroblasts, BW6F2 and BWF1, were isolated from a day 35 Black Welsh

eviscerated foetus as described previously (Wilmut et al., 1997). Cells were cultured in

Glasgow minimal essential medium (Sigma), supplemented with 2mM L-glutamine,

ImM sodium pyruvate, lx non-essential amino acids and 10% foetal calf serum

(GlobePharm) in a humidified incubator at 37°C, 5% CO2 and 21% O2 using a 25 or

75cm3 plastic tissue culture flask. Human BJ-hTERT foreskin fibroblasts and HEK 293

cells were cultured in a similar fashion but using DMEM (Invitrogen). Cells were

supplemented with fresh medium every two days and serial passage performed upon

90% confluency as follows: culture media was aspirated and cells washed with PBS to

remove traces of serum. Cells were then incubated with l-3ml of Trypsin-EDTA (Sigma)

for 2-3 minutes at 37°C and further encouraged to detach by gently tapping the side of

the flask. Immediately after detachment, serum-containing medium was added to

inactivate trypsin and cells harvested by centrifugation at lOOOrpm for 4 minutes.

Supernatant was discarded and cells resuspended in fresh serum-containing medium

before transfer to a new flask at the desired ratio, typically 1:6. For an accurate

estimation of cell number, harvested cells were resuspended in 5-10ml of medium,

mixed thoroughly and counted using a haemocytometer. A total of 64 squares were
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counted (4 grids, 16 squares each), averaged and cell number determined using the

following formula:

Cells/ml =

I [(Grid A 1-16) + (Grid B 1-16) + (Grid C 1-16) + (Grid E 1 -16)/4] * 104,

Culture of Black Welsh sheep fibroblasts in hypoxic conditions was achieved using a

specialized air-tight chamber supplemented with 2% O2 regularly.

2.7.2 Freezing and resuscitating cells

Subconfluent monolayer cultures were harvested as previously described (section 2.8.1)

and pellets resuspended in lx freezing mix (section 2.7). 1ml aliquots were frozen

overnight at -80°C before being transferred to N2O) for long-term storage. Cells

recovered from long-term storage were thawed rapidly at 37°C and resuspended in

appropriate basic culture medium. Cells were then pelleted at lOOOrpm for 4 minutes to

remove traces of DMSO, plated on complete growth medium and refreshed after 24

hours.

2.7.3 Growing cells under a selection regime

For GRN sheep fibroblasts clones, cell monolayers were passaged 1:6, 24 hours prior to

adding selection. Cells were cultured with basic culture medium (section 2.7),

supplemented with 400tig/ml Geneticin (Invitrogen) or lpg/ml Puromycin (Invitrogen),
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to select for G418- and puromycin-resistant cells that express mutant (and EGFP mock

control) and wild-type hTERT transgenes respectively. Cells were cultured for 10-14

days, serially passaged when required and supplemented with fresh selection medium.

To isolate E1EK 293 cells transfected with mutant hTERT or mock EGFP vector (section

2.9.1), cells were cultured with basic culture medium (section 2.7) and supplemented

with 400-750pg/ml Geneticin (Invitrogen). After four days culture, cells from each

experimental set-up were pooled and expanded as one population, grown for

approximately four weeks under a selection regime, and protein lysate and RNA

collected at intervals.

2.7.4 Population doubling (PD) rate calculation

Each GRN sheep fibroblast clone was expanded to confluency in a T75 tissue culture

flask, from which 3 x 105 cells were plated into a T25 culture flask and growth curves

commenced at this point. Cells were sub-cultured twice weekly and maintained at log

phase growth. Population doubling rate was calculated according to the following

formula:

PD = log E/S / log 2,
where E = end count and S= start count.
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2.8 Transgene introduction - methods of transfection

2.8.1 Electroporation

The GRN(25), GRN(23) and BW6F2(25) sheep fibroblast lines were generated

previously in our laboratory by Ling Mo. To generate bi-transgenic lines that express

both wild-type and mutant hTERT transgenes, the GRN1-1 line was transfected with

pWGB25. GRN1-1 represents a hTERT-immortalized line that exhibits low levels of

wild-type hTERT and pWGB25 (7.3kb, see Appendix 1; constructed by Dr. Wei Cui)

contains mutant hTERT cDNA driven by the phosphoglycerate kinase (PGK) promoter

and mutated at three bases in three distinct reverse transcriptase (RT) motifs, thus

rendering the hTERT transgene catalytically dysfunctional. RT-domain mutations were

as follows: Arginine was substituted at amino acid position 631 with Alanine (R631A),

Aspartic acid at position 712 with Alanine (D712A) and Aspartic acid at position 868

with Alanine (D868A). (Plasmid GRN380, containing mutant hTERT cDNA was kindly

provided by Geron Corp.) To generate an EGFP mock vector control line, GRN1-1 was

transfected with pWGB23 (4.7kb, see Appendix 1; constructed by Dr. Wei Cui).

pWGB23 contains an EGFP cDNA driven by the phosphoglycerate kinase (PGK)

promoter. To generate a cell line control, the parental sheep fibroblast line, BW6F2, was

transfected with pWGB25 to generate a transgenic line that exhibits mutant hTERT

expression alone. All transfections were conducted using lOpg of plasmid DNA and via

the electroporation method under a condition of 400V, 250uF. The GRN1-1 line was
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transfected at passage 27 and BW6F2 transfected at passage 8. All transfected cells were

placed under a G418 selection regime using 400pg/ml Geneticin and stable clones

showing good morphology were picked and expanded in a T25 flask. Clones were

denoted passage 1 (post-transfection) at this stage.

2.8.2 Lipofectamine 2000-mediated transfection

Lipofectamine 2000 (Invitrogen) was used to transfect HEK 293 cells with either the

pWGB25 mutant hTERT plasmid or pWGB23 EGFP mock vector control.

Lipofectamine 2000 is a cationic lipid formulation that may be used to efficiently

transfect cells on a monolayer or in suspension. All transfections were carried out in a 6-

well format with cells seeded at a density of 5 x 104, 1 x 10s or 2 x 105. DNA to

lipofectamine ratio used was either 1:2.5 (4pg DNA: lOpl lipofectamine) or 1:3 (4pg

DNA: 12pl lipofectamine). The transfection procedure was as follows: 4pg DNA was

diluted in 240pl Opti-MEM 1 reduced serum medium w/o serum (Invitrogen) and mixed

gently. An appropriate volume of Lipofectamine 2000 (10 or 12pl) was diluted in 240pl

Opti-MEM 1 and incubated for 5 minutes at room temperature. Diluted DNA and

Lipofectamine 2000 was combined by gentle pipetting and incubated for 20 minutes at

room temperature. Complexes (500pl) were added carefully in a drop-wise fashion to

each well and mixed gently by rocking the plate. Cells were incubated at 37°C for 5

hours whence fresh medium was applied. 400pg/ml Geneticin was supplemented to

fresh medium 24 hours post-transfection. A Lipofectamine 2000-only transfection was

used as a negative control. Cells were passaged upon confluency and split into 3 x T75
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flasks for each transfection set-up. After 7 days, all HEK 293-mutant hTERT and HEK

293-EGFP- transfected populations were pooled and expanded. Transfection efficiency

was judged by viewing EGFP-transfected clones under UV light. At day 14 post-

transfection, Geneticin concentration was increased to 750pg/ml and cell populations

expanded. RNA and protein was collected at 1 week intervals for a period of 4 weeks.

2.9 Fluorescence-in situ hybridization (FISH)

2.9.1 Preparation of cells in fixative

Cells were cultured to 100% confluency prior to splitting to ensure synchronous release

from contact inhibition. Fixative was applied 26 hours post-transfection, during log-

phase growth. Typically, cells were washed with PBS, trypsinized and harvested by

centrifugation at 1500rpm for 5 minutes. Medium was removed and cells resuspended in

fresh 10ml 0.6% tri-sodium citrate (hypotonic solution), added drop-wise whilst

vortexing. Tubes were incubated for 15 minutes at room temperature to allow cells to

swell. Cells were again centrifuged at 1500rpm for 5 minutes and supernatant discarded.

6ml fresh fixative (3:1 methanol: acetic acid) was added drop-wise whilst vortexing and

tubes centrifuged at 1500rpm for 5 minutes. This fixation step was repeated twice. Cells

were resuspended in 500pi fixative, whereby the suspension appears milky, and stored at

-20°C.
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2.9.2 Preparation of metaphase spreads

Microscopic slides were immersed in 50ml 100% ethanol/lml concentrated HCL, kept

in 50ml Glass Hellendahl jars. Prior to use, slides were immersed in distilled and then

deionised water and then incubated at 37°C for 5 minutes. The surface of slides was

made moist by breathing and 2-3 drops of cell fixative suspension gently dropped onto

slides at a 45°C angle. Slides were moved to a vertical position immediately after drops

had landed to remove excess solution. Slides were allowed to dry at room temperature

for 15 minutes after which metaphase quality and quantity was viewed under a

microscope using a lOx and 20x phase light objective

2.9.3 FISH

Detection of telomeres in metaphase chromosomes was carried out using the Telomere

PNA FISH/Cy3 kit (Dako). This procedure uses a 24-mer Cy3-conjugated peptide

nucleic acid probe (PNA) (a synthetic DNA/RNA analogue) specific to TTAGGG

telomere repeat sequences. (Pre-treatment and all treatment stages were carried out in

50ml glass Hellendahl jars). A pencil was used to mark an area of approximately 20 x

20mm length on metaphase slides, where high quality of spreads was evident. Pre-

treatment was conducted as follows: slides were immersed in TBS (Dako) for 2 minutes

followed by immersion in 3.7% formaldehyde (diluted with TBS) for 2 minutes and

again immersed in TBS (2x 5 minutes). Slides were then immersed in pre-treatment

solution (Dako) for 10 minutes (diluted 1:2000 with TBS) and washed in TBS (2x 5

minutes). Slides were finally immersed in a cold ethanol series (70%, 85% and 100%
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ethanol; 3x 2 minutes) and left to dry vertically at room temperature for 5 minutes.

Denaturation and hybridization were conducted as follows: lOpl Telomere PNA/Cy3-

conjugated probe was applied to the marked area on slides and covered with a plastic

coverslip. Slides were placed in a pre-heated incubator (adjusted to 80°C) for 3 minutes

and placed in a dark box at room temperature for 30 minutes to allow hybridization.

Slides were washed in 50ml Rinse Solution (Dako) for 1 minute to remove coverslips

prior to immersion in 50ml Wash Solution (Dako) at 65°C for 5 minutes. Slides were

washed in a cold ethanol series as before and left to dry vertically at room temperature

for 5 minutes. For mounting and counterstaining, 2x 10pl of O.lpg/ml DAPI

(Vectashield) was applied onto each slide and a glass coverslip placed on top. Slides

were left for 15 minutes to allow counterstain colour to develop before performing

fluorescence microscopy using a lOOx oil objective with a propidium iodide filter

(similar wavelength to a Cy3 filter).
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2.10 Statistical methods

Standard deviation

Standard deviation of the mean was calculated where appropriate using the following

formula:

o = y/L(.x-yf/N
where x = individual scores, y = mean of individual score andN is the total number of

scores.

Q-FISH statistics

The Chi Squared test was used to determine whether or not the two sheep fibroblast lines

used for study (BWF1 and BW6F2) significantly differed with respect to telomere

length - Telomere Fluorescence Units (TFU) - as determined by Q-FISH. In addition,

Chi Squared was performed for telomere length values within each line to show that

telomere shortening significantly differs from early to late passage. The basic formula

used for statistical analysis was as follows:

2
_ v (Observed frequency - Expected frequency)2X — z.

Expected frequency
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TFU values were placed into categories with intervals of 50 TFU (e.g. - 50, 100,

150....900) and percentage of telomere ends per category plotted. However this resulted

in the number of categories exceeding the upper limit of that required for an acceptable

degree of freedom for the Chi Squared analysis. Therefore the TFU categories were

grouped as follows: 50-200; 201-400; 401-600; 601-900. The 50-200 TFU category

represents the shortest telomeres and the 601-900 TFU represents the longest telomeres

in this setting. With this reduced number of grouped categories, Chi Squared was

performed to test significance of telomere lengths within and between the cell lines.
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CHAPTER 3: ANALYSIS OF

CATALYTICALLY DYSFUNCTIONAL HTERT

IN PRIMARY OVINE FIBROBLASTS AND

HEK 293 TUMOUR CELLS
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3.1 Introduction

As previously discussed in section 1.4, TERT has been implicated as a key factor

limiting telomerase activity in human somatic cells, because the RNA subunit is

constitutively expressed at a low basal level in cells (Feng et al., 1995). This hypothesis

is supported by the observation that ectopic expression of human TERT (hTERT) in

primary human fibroblasts restored telomerase activity, extended telomeres and

indefinitely prolonged cellular lifespan (Bodnar et al., 1998, Counter et al., 1998). It has

been accepted generally that telomere length in mammals is regulated by a homeostatic

mechanism that is governed in part by telomerase and a telomere-specific protein

complex recently termed 'Shelterin', which consists of TRF1, TRF2, TIN2, Rapl, TPP1

and POT1 (de Lange 2005). However, telomere length is not always maintained in cells

with reconstituted telomerase, indicating that telomerase activity does not necessarily

imply telomere maintenance (Ouelette et al., 1999, Cui et al., 2002). Similarly the

telomeres ofmany tumour cell lines are shorter than those of corresponding normal cells,

despite the fact that the tumour cells have high levels of telomerase activity (Hastie et al.,

1990, Counter et al., 1994). Telomerase-mediated telomere maintenance rather than

telomerase expressionper se, may be one key normal cellular lifespan-limiting factor. In

the last decade, murine models have been instrumental in demonstrating the impact of

telomerase function in the context of a whole organism. Mice with inactivated TR or

TERT exhibit gradual telomere attrition and long-term viability of the strain is

compromised due to infertility (Blasco et al., 1997, Erdmann et al., 2004). Conversely

mice with ectopic TERT show telomere extension, increased cell proliferation and a
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higher incidence of tumour formation (Oh et ah, 2001, Artandi et ah, 2002). However,

telomerase-deficient mice do not recapitulate the whole spectrum of human pathologies.

For example mTR knockout mice only show a phenotype after 6 or 7 generations,

whereas by contrast, hTR haploinsufficiency in humans is lethal at foetal stage

(Vulliamy et ah, 2001). These discrepancies may be explained by the fact that

laboratory mouse (Mils muscuius) telomeres are long (30kb to more than 200kb) and

hypervariable (Prowse et al., 1995, Starling et al, 1990) compared to human telomeres

(5-15Kb) (Kipling et al., 1990). Moreover in most human tissues, telomerase is not

readily detectable (Kim N-H et al., 1994), whereas telomerase activity is found in most

mouse tissues (Greenberg et al., 1998). Therefore, another animal model other than

mouse is necessarily required. Previous work in our laboratory has shown that sheep

(Ovis dries) fibroblasts share a lot of similarities with human in respect to telomere and

telomerase biology. Sheep fibroblasts have a defined in vitro lifespan, their telomeres

shorten at rates comparable to that reported in humans, and ectopic expression of

hTERT effectively immortalizes the cells (Cui et al., 2002 & 2003, Clark et al., 2003).

The hTERT-immortalised sheep fibroblasts showed that at higher levels of hTERT

expression, full length telomeres are maintained and karyotypic stability is preserved. By

contrast, at lower levels, telomere erosion and genomic instability occur to an extent that

is directly attributable to the level of hTERT expression - however, telomerase activity

was comparable between these lines (Cui et al., 2002). This further highlights the

complex relationship between telomerase function and telomere maintenance. One

question arising is whether non-catalytic domains in hTERT have any function(s) with
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respect to telomere maintenance, be it direct (e.g. proper telomerase assembly; substrate

binding) or indirect (e.g. recruitment of telomerase-associated factors), independent of

reverse transcriptase-mediated telomere maintenance; however it is conceivable that

hTERT catalytic domain expression level solely is rate determining for telomere repeat

processivity. An alternative hypothesis regarding telomerase-mediated telomere

maintenance follows from the postulation of a dimeric model of TERT in order for

proper telomerase function (Prescott & Blackburn 1997). This model of a dimeric

telomerase complex predicts that telomerase function and telomere maintenance may be

compromised if the complex is disrupted, where both TERT molecules may function

inter-dependently.

In order to address both these issues, a catalytically dysfunctional hTERT transgene was

expressed in an hTERT-immortalized primary sheep foetal fibroblast line in which

telomeres stabilize at an average length much shorter than the untransfected parental line.

This system provides an opportunity to study effects of over-expression of hTERT non-

catalytic domains on telomerase activity and telomere maintenance. This strategy

thereby presents a window in which telomere maintenance function may be attributed to

hTERT that can be distinguished from enzymatic activity. Conversely the presence of a

catalytically dysfunctional hTERT should further understanding of whether proper

hTERT function requires an inter-dependent hTERT dimer with two intact reverse

transcriptase motifs. In this regard both mutant/wild-type telomerase heterodimers and

mutant/mutant telomerase homodimers may compete with and compromise wild-

type/wild-type telomerase homodimeric function.
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Additionally, catalytically dysfunctional hTERT was transfected into a telomerase

positive primary human tumour line, in order to assess the effects of mutant hTERT on

endogenous hTERT function. This strategy underlines the anti-telomerase dominant

negative strategies proposed to target telomerase in a tumour setting.

3.1.1 Hypothesis

1) hTERT reverse transcriptase activity is rate-limiting with respect to hTERT-

mediated telomere maintenance.

2) Introduction of mutant hTERT in tumour cells inhibits endogenous telomerase

activity through dominant-negative and/or competitive interactions.

3.1.2 Chapter aims

1) To familiarize with techniques to measure telomere length and telomerase

activity.

2) To determine whether mutant hTERT has the capacity to restore telomerase

activity and affect proliferative lifespan.

3) To determine whether hTERT non-catalytic domains have a role in telomere

maintenance that can be distinguished from enzymatic activity in telomerase

positive cells.
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4) To gain insight into proper telomerase function with respect to hTERT

interacting monomers.

5) To analyze the effects of introducing catalytically dysfunctional hTERT into a

telomerase positive human tumour cell line.
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3.2 Results

3.2.1 Generation of stably transfected clonal lines

A hTERT-immortalized BW6F2 sheep fibroblast clonal line (GRN1-1) and its parental

cells, BW6F2, were transfected with a mutant hTERT construct or a mock vector

construct containing GFP (section 2.9.1). To select for and generate stable clones, the

constructs also contain a neomycin cassette (transfections and generation of lines

conducted by Fing Mo, previously in our laboratory). A 7.3 kb mutant hTERT construct

was used for the study, containing three in vitro induced amino acid substitutions

(R631A, D712A and D868A) and driven by the PGK promoter. For mock controls, a

4.6kb EGFP construct was used using the same vector backbone (Fig. 3.1).

pWGB25

R631A D712A D868A
J

pWGB23
—►
PGK EGFP SV40 pA SV40-Neomvcin

Figure. 3.1: Schematic of pWGB transgenic constructs. (Top) pWGB25 mutant
hTERT (7.3Kb) with amino acid substitutions indicated. (Bottom) pWGB23 EGFP
mock vector (4.6Kb). The PGK promoter, SV40 polyadenylation signal and neomycin
selection cassette are indicated for both constructs.

After selection, multiple clones were picked up from transfected GRN1 -1 cells both with

pWGB25 and 23 constructs. However, a lower number of clones were formed from
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parental BW6F2 cells. Only two clones BW6F2 (25)-7 and -8 were able to be expanded

from pWGB25 transfection, for further analysis.

3.2.2 Mutant hTERT cannot restore telomerase function

To address whether mutant hTERT alone can reconstitute telomerase activity, the effect

of mutant hTERT expression on telomerase activity was first addressed in the parental

sheep fibroblast line, BW6F2, using the Telomere Repeat Amplification Protocol

(TRAP) assay (section 2.215). Telomerase activity is not induced by catalytically

inactive mutant hTERT expression in primary sheep fibroblasts even though mutant

hTERT expression was high in the BW6F2(25)-8 clone (Fig. 3.2).

B BW6F2(2S).8

Heat
(ut) 0.2

hTERT - 324bp
IAPDH • 225bp

Figure 3.2: Telomerase activity in primary sheep fibroblasts transfected with
mutant hTERT. (A) Expression of mutant hTERT in primary sheep fibroblasts. The
BW6F2 parental sheep fibroblast line was transfected with a catalytically dysfunctional
mutant hTERT alone. Two clones, BW6F2(25)-7 and BW6F2(25)-8, showed high levels
of mutant hTERT expression. No DNA contamination was detected in RNA samples
lacking reverse transcriptase. PCR reactions were conducted at 30 cycles. (B) No
telomerase activity is detectable in the parental sheep fibroblast line transfected with the
pWGB25 mutant hTERT transgene alone. 0.2|lg of BW6F2(25).8 total protein extract
was used for TRAP. Heat inactivated and internal standard control is shown.
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This proved that telomerase activity is totally abolished by mutating three amino acids in

three distinct reverse transcriptase motifs of the hTERT catalytic domain and that a

functional hTERT catalytic domain is required for telomerase activity. In addition, the

transfected cells did not proliferate vigorously and senesced after several passages (Fig.

3.7A) similar to EGFP transfected clones. These results confirmed that the three point

mutations in distinct reverse transcriptase motifs of hTERT had abolished its catalytic

function and that the mutant hTERT does not have the ability to reconstitute telomerase

activity.

3.2.3 RNA expression analysis in transfected GRN1-1 clones

The effect of mutant hTERT expression on telomerase activity was next addressed in

hTERT-immortalised sheep fibroblasts using the Telomere Repeat Amplification

Protocol (TRAP) assay (section 2.215). Variable levels of the catalytically dysfunctional

hTERT transgene expression were evident in the pWGB25 stably transfected clones of

the hTERT-immortalized foetal sheep fibroblast line, GRN1-1. Due to only three base

pairs differing between wild-and mutant- hTERT, we were unable to differentiate

between their expression levels with current available techniques. Thus, expression of

total hTERT mRNA was analysed by semi-quantitative Reverse Transcriptase-PCR

(section 2.2.8 and 2.2.9). As all lines were derived from a clonal cell line GRN1-1 and

have similar levels of wild-type hTERT, the excess of TERT above that of the controls

was mainly attributed to mutant hTERT levels.
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The results showed that five clones (GRN25-1, GRN25-5, GRN25-6, GRN25-7 and

GRN25-9) expressed high levels of mutant hTERT expression (Fig.3.3, lanes 1-5)

relative to the wild-type hTERT expression level of mock vector controls, GRN23-C1

and GRN23-C4 (Fig.3.3 lanes 7-8). In the GRN25-10 line, steady-state mRNA level of

hTERT was too low to be detected under these conditions.

1 2. 3--4--J5 .6 7. 8

Figure 3.3: Analysis of mutant hTERT mRNA expression levels. (B) Expression of
mutant hTERT in hTERT-immortalized (GRN) sheep fibroblasts. Five mutant hTERT-
transfected clones show high levels of mutant hTERT mRNA with GRN25-6 and
GRN25-7 exhibiting the highest levels. All PCR reactions were conducted at 30 cycles
and GAPDH serves as the loading control. No DNA contamination was detected in
RNA samples lacking reverse transcriptase. Passage number post-transfection is
indicated.

Relative stoichiometry ofmutant to wild-type hTERT was inferred by calculating band

intensity using Multi-Analyst software with a relative value of 1 assigned to the

normalized mean intensity of the mock controls. On this basis, we grouped the GRN
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clones into two classes according to the level of total TERT expression: medium (7.7,

9.0 and 9.4 fold excess in lines GRN25-1, GRN25-5 and GRN25-9 respectively) and

high (12.6 and 14.1 fold excess in lines GRN25-6 and GRN25-7 respectively). Relative

expression of the GRN25-10 was below the mock control level (0.6).

In summary, by transfecting a 7.3kb mutant hTERT construct, we generated GRN(25)

lines that over-express hTERT relative to immortalized BW6F2 sheep fibroblasts.

Crucially these lines over-express intact non-catalytic domains but express a catalytic

domain mutated at three distinct reverse transcriptase motifs. These lines provide an

opportunity to investigate a putative role for hTERT non-catalytic domains with respect

to telomere maintenance, distinguishable from enzymatic activity.

3.2.4 Protein expression analysis

Western Blot analysis was conducted as described in section 2.2.13. Protein expression

levels revealed a more complex pattern. GRN23-C1 exhibits wild-type hTERT

expression alone, whereas GRN25 lines show total hTERT expression (wild-type and

mutant). GRN25-1, GRN25-6 and GRN25-9 have the highest levels of total hTERT

expression (3.3-fold higher than mock control). GRN25-5 and GRN25-7 had lower

levels of total hTERT expression (2.6-fold and 2.0-fold higher then control) (Fig 3.4).

Clones GRN25-1 and GRN25-9 show higher protein levels relative to the other clones

than would be predicted by RNA expression analysis. Conversely GRN25-7 has much

lower levels ofprotein than expected.
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Figure 3.4: Protein expression analysis in GRN clones. Western blot showing hTERT
protein expression. Protein (40ug) was separated on 7.5% SDS-PAGE and blotted onto
nitrocellulose membrane. The blot was incubated with anti-hTERT antibody Y182
(Abeam) followed by incubation with HRP-conjugated secondary antibody. The signals
were visualized using an ECL detection kit. The hTERT protein is shown as 122kDa.
Relative expression to GRN23-C1 mock control is shown in panel below. Beta-actin is
shown as an internal control to verify equal amounts of protein loaded.

Superficially, this may appear to reflect differences in translation efficiency, but the

effect of mutant hTERT is likely to be a factor. If mutant hTERT compromises cellular

proliferation and senescence bypass status, then the existence of a heterogeneous

population rather than the presumed clonogenic population may result in subsets of cells

with low or no levels ofmutant hTERT, having a growth advantage. This scenario will

be discussed in section 3.2.3 and Chapter 4.

103



Chapter 3 - Analysis of catalvticallv dysfunctional hTERT

3.2.5 Telomere Repeat Amplification Protocol (TRAP) analysis on

hTERT-immortalized lines

Telomere Repeat Amplification Protocol (TRAP) assay was next carried out on the

mutant hTERT stable-transfected GRN clonogenic lines. The analysis showed that the

four lines (GRN25-1, GRN25-5, GRN25-9 and GRN25-10) which exhibited low to

medium levels of mutant hTERT expression, showed comparable telomerase activity to

the GRN23-C1 mock vector control (Fig. 3.5, lanes 1-2 and 5-6). By contrast, in the

lines exhibiting higher levels of mutant hTERT, (GRN25-6 and GRN25-7), telomerase

activity was almost undetectable (Fig.3.5, lanes 3-4).These results indicate that the

catalytically dysfunctional mutant hTERT may function to inhibit telomerase activity.

This abrogation of telomerase catalytic activity appears a direct function of mutant

hTERT expression levels, with only the two lines with highest levels of the mutant

transgene expression, showing compromised telomerase activity.
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Figure 3.5: Telomerase activity in hTERT-immortalized sheep fibroblasts. (A)
Reconstituted telomerase activity in hTERT-immortalized GRN25 clones. Telomerase
activity was measured by TRAP assay with 0.1 pg of total protein of each cell extract.
Telomerase activity in four lines (GRN25-1, GRN25-5, GRN25-9 and GRN25-10) is
comparable to that of the mock control (GRN23-C1). Telomerase activity is inhibited in
the GRN25-6 and GRN25-7 lines, which have the highest levels of mutant hTERT
expression relative to the other clones. Heat inactivated and internal standard controls
are indicated. (B) TRAP activity relative to the G23-C1 mock vector control.
Densitometric analysis was used to compare relative levels of TRAP activity based on
the intensity and length of the TRAP product, nonnalized to the internal control. TRAP
activity is completely inhibited in the GRN25-6 and GRN25-7 clones, whereas relative
activity is 50 - 100% in all other clones. (NB: TRAP was conducted at the same passage
number as for RT-PCR analysis; Fig.3.3).
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Low levels of telomerase activity was however detected in the GRN25-6 and GRN25-7

lines when total protein extract was increased 5-fold from 0.1 |lg to 0.5|lg (Fig. 3.6).

Nevertheless, telomerase inhibition through dominant-negative and/or competitive

inhibition effects, are still noticeable; the 36-bp internal standard is present in these

samples whereas they are absent in all other GRN clones, including the GRN23 mock

controls, except GRN25-1. This indicates sufficiently high levels of telomerase activity

in the majority ofGRN clones, to out-compete the shared forward primer used in TRAP

to amplify both the TRAP product and the internal standard. Of note is the telomerase

inhibition evident in GRN25-1, not detected in the previous TRAP (Fig. 3.5). The

discrepancy may be accounted for by this initial TRAP assay being conducted ~6PDs

prior to TRAP assay conducted using 0.1 |ig. This hints at high levels of mutant hTERT

post-transfection in the GRN25-1 line, resulting in early telomerase inhibition, followed

by restoration of telomerase activity to levels comparable to mock controls in a short

period of serial culturing.
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Figure 3.6: TRAP analysis on hTERT-immortalized clones using a 5-fold increase
(0.5|lg) of protein lysate. Trace telomerase activity is evident in GRN25-1, GRN25-6
and GRN25-7, whereas very high levels of activity are present in all other GRN clones.
This is inferred by the TRAP product and also the presence/absence of the 36-bp internal
standard. The HI human ES line and HEK293 tumour line are included as positive
controls for the assay. Heat inactivated controls are indicated.

This indicates the complexity of telomere and telomerase dynamics per population

doubling and highlights a caveat of studying this dynamic interplay via molecular

snapshots of time.

3.2.6 Analysis of extensive culture period

3.2.6.1 Calculation ofproliferation rate

Since the TRAP assay results showed that telomerase activity in the mutant clones was

inhibited, the effects of mutant hTERT on cell growth and proliferation was next

examined by recording their growth curves. The BW6F2(25)-7 and BW6F2(25-8 sheep
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fibroblast clones, transfected with mutant hTERT alone did not proliferate vigorously

and senesced after several passages at around day 50-60 of the culture regime (Fig. 3.7a).

All GRN clones, except GRN25-7, grew uncompromised with a steady rate of

proliferation during the 160 days of the growth curve recording period, with about one

population doubling every 19 hours. There is no significant difference to the overall

proliferation profile between these clones and control GRN23 clones which only

expressed wild-type hTERT (Fig. 3.7a). The reconstituted telomerase activities were

sufficient to bypass senescence in all clones in spite of the GRN25-6 and GRN25-7

clones exhibiting telomerase inhibition. This indicates that trace telomerase expression

may be sufficient to maintain a senescence bypass status, presumably due to telomerase

maintaining telomere length in the subset of shortest telomeres, thus avoiding activation

of a p53-mediated growth arrest.

3.2.6.2 Senescence-associated p-galactosidase staining

In the GRN25-7 clone however, a period of slower proliferation was evident at around 3

weeks of continuous culture, in which population doubling rate slowed to over 40 hours

(Fig. 3.7b).Concurrent with this, a subset of cells within the population adopted a

morphology of bigger and flat appearance with clearly visible microtubules, a

characteristic of the senescent phenotype. This subset of cells represented around 30% of

the total population. To further confirm that these cells were senescent, the senescence-

associated P-galactosidase (SA-|3-gal) staining assay was applied to the GRN25-7 cells
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and the results indicated positive staining as expected (Fig. 3.7c). Approximately 50% of

cells within the population showing a senescent-like phenotype, stained positive for SA-

p-gal, i.e. half the population. This may reflect the fact that only senescent cells stain

positive, whereas pre-senescent cells, although displaying a similar phenotype, did not

express the particular stress marker(s) to result in a positive histochemical stain. This

raises the question of whether (3-galactosidase is a truly accurate marker for cellular

replicative senescence?
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Figure 3.7: Effects of mutant hTERT expression on cellular proliferation and
senescence. (A) General proliferation profile of GRN clones. GRN25 and GRN23
clones maintained a steady population doubling rate throughout the 160-day culture
period and accumulated 138-160 population doublings. The overall profile of the growth
curves does not differ significantly. All clones underwent 150-160 population doublings
except GRN25-7, for which the total population doubling was 138. The BW6F2(25)-7
and BW6F2(25)-8 control clones express mutant hTERT alone and accumulated 28 and
12 population doublings respectively. Both lines ceased proliferating by -50-60 days
post-commencement of the growth curve. (B) GRN25-7 lag phase. Proliferation rate of
GRN25-7 slowed dramatically during a 14-day period during which the cell population
doubled only five times. Arrows denote lag phase. (C) SA-(3-Gal staining in the GRN25-
7 clone. Senescent morphology was evident during early stages (7 population doublings)
of extended culture (.A-B). Incubation with fresh senescence-associated (3-Gal (SA-(3-Gal)
resulted in positive histochemical staining at pH 6.0 (C-D) Photos were taken 16 hours
post-incubation. Arrows indicate senescent cells. As a negative control GRN25-5 from a
late stage of culture (140 population doublings) was also incubated with SA-(3-Gal, (E-
F). Magnifications: A, B and D, xlO; C, E and F x4. Scale bar for A, B and D denotes
100 pM and 500pM for C, E and F. (Growth profiles of the BW6F2(25) clones were
generated by Ling Mo).
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3.2.7 Telomere Restriction Fragment (TRF) length analysis

The most obvious function of active telomerase is to add telomeric repeats to telomere

ends to prevent telomere attrition each time a cell divides. However, it is unclear if it is

exclusively the catalytic domain of hTERT that is rate-limiting in this aspect or whether

non-catalytic motifs may play functional roles, be it directly or indirectly, in repeat

addition processivity. Previous studies have indicated that forced expression of hTERT,

although extending proliferative lifespan, did not maintain telomere length (Zhu J. et ah,

1999, Ouelette et ah, 2000). In particular, a prior study in sheep primary fibroblasts

showed that stabilization of telomere length and karyotypic stability are directly

correlated with the level of hTERT gene expression, even though telomerase activity

was comparable within these lines (Cui et ah, 2002). This led to the hypothesis that

hTERT non-catalytic motifs may play a role in telomere maintenance that may be

distinguished from enzymatic activity.

To assess the effect of over-expressing non-catalytic hTERT domains on telomere

maintenance, we cultured mutant TERT-transfected immortalized GRN clones for an

extensive period of-160 days. Telomere length was measured by Southern Blot (section

2.2.16) with a (TTAGGG)3 probe, and the mean TRF was calculated at multiple time

points (0, 70 & 130 days) during long term culture for each cell line. The results showed

that after -70 days in culture, telomere lengths shortened in all cell lines (Fig.3.8A and

Table 3.1). However, GRN25-1 and GRN25-7 exhibited significantly shorter mean

telomere length (6.7 kb and 7.7 kb, respectively) in comparison with GRN23 control
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cells (9.2kb and 10.1 kb, p=0.02). The remaining GRN25 clones (GRN25-5, 9.5kb;

GRN25-6, 10.6kb; GRN25-9, 9.1kb and GRN25-10, 9.2kb) showed similar telomere

shortening as the GRN23 controls (p = 0.95). This pattern of telomere shortening

persisted throughout the culture period and mean TRF lengths in all GRN clones were

stabilized after approximately 100 population doublings post-transfection. Stabilized

mean TRF length in clones GRN25-5, GRN25-6 and GRN25-9 were within the range of

6.6-7. lkb, and did not differ significantly to the 7.0 and 7.2kb of GRN23 mock controls

(p = 0.29), whereas the mean TRF lengths in GRN25-1 and GRN25-7 were eventually

stable at 5.2 kb and 6.3kb, significantly shorter than that in the mock controls (p =

0.0002) (Fig. 3.8B and Table 3.1).
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Figure 3.8: Telomere restriction fragment length in mutant hTERT-expressing
clones after period of extensive culture. Telomere length was measured using
Telomere Restriction Fragment (TRF) Southern Blot analysis with a TTAGGG3 probe.
Samples were analysed at intervals throughout a 160-day culture period. (A) TRF
analysis from early and middle passage. No significant enhanced telomere maintenance
is evident at this stage with GRN25-5 (9.5Kb), GRN25-6 (10.6kb), GRN25-9 (9.1kb)
and GRN25-10 (9.2kb) showing comparable mean TRF length to GRN23-C1 (9.2kb)
and GRN23-C4 (10.1 kb) mock vector controls. Aggravated telomere attrition is evident
in the GRN25-1 (6.7kb) and GRN25-7 (7.7Kb) clones. (B) TRF analysis from late
passage. Mean TRF length in all GRN clones are maintained at a stabilized length after
approximately 100 population doublings. GRN25-1 and GRN25-7 show significantly
shorter stabilized mean telomere lengths (5.2 kb and 6.3kb respectively) compared to the
GRN23-C1 (7.0kb) and GRN23-C4 (7.2kb) mock transfected controls, whereas GRN25-
5 (7.1kb), GRN25-6 (6.9kb), GRN25-9 (6.6kb) and GRN25-10 (7.1kb) show
comparable mean stabilized lengths. Calculated mean telomere lengths are depicted by
white lines and are stated in Table 1. PD, Population Doublings.
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G&VCelt Line Population Doubling Dayi in Qilture Mean TRf
(PD) (Kbp)

025-1 2 4 11.0
67 79 6.7
130 133 5.2 &

G25-5 0 0 14.0
70 81 95
127 135 7.1 *

025-6 0 0 135
64 79 10.6
125 134 6 9a

G25-7 0 0 11.6
50 81 7.7
no 135 6.3 a

G25-9 0 0 9.2
74 81 9.1
131 133 6.6 a

G25-10 0 0 13.7
70 81 9.2
128 134 7.1 a

G23-C1 0 0 12.2
74 81 92
131 134 7.2 a

G23C4 0 0 11.0
76 81 10.1
132 133 7.0 a

Table 3.1: Summary of mean TRF length in hTERT-immortalized sheep
fibroblasts. a Represents mean TRF length at which telomeres stabilize.

From the analysis of telomere length after long term culture of hTERT-immortalized

clones with varying levels of catalytically dysfunctional mutant hTERT expression, no

enhanced telomere maintenance function is evident. For the majority of lines, there is no

significant difference in mean telomere restriction fragment length after culture, when

compared to mock controls. Thus we do not find evidence to support the notion that

hTERT non-catalytic motifs have a role in telomere maintenance that can be readily

distinguishable from hTERT enzymatic activity.
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These results indicate that high levels ofmutant hTERT expression might accelerate the

telomere shortening in GRN25-1 and GRN25-7 cells probably as a consequence of

inhibited telomerase activity. Aggravated telomere attrition in GRN25-1 reveals a more

complex pattern whereby telomerase inhibition was evident at PD 0 but relieved at PD 6.

The possibility of transgene silencing and selection upon a heterogeneous population

will be discussed in Chapter 4. Furthermore, the other high expressing mutant hTERT

clone GRN25-6, did not appear to have accelerated telomere shortening in spite of the

clear inhibition of telomerase activity. These results indicate that telomere length

regulation is more complicated and consideration has to be given to the multiple

extrinsic and intrinsic factors involved.

3.2.8 Competitive inhibition TRAP

To address the molar stochiometry of mutant hTERT and wild-type hTERT in this

context, a TRAP assay was designed (section 2.2.15) to analyze the particular threshold

upon which the mutant hTERT exerts an inhibition effect on the hTERT-immortalized

line chosen for study here. This assay was referred to as a 'competitive inhibition TRAP'

although the term will be used to include inhibition and/or dominant-negative effects. As

the GRN25 clones express both wild-type and mutant hTERT, the GRN23-C1 line was

chosen to monitor hTERT inhibition as this line exhibits wild-type hTERT expression

alone. The BW6F2(25)-8 line was used as the source of high level mutant hTERT, as

this line does not express wild-type hTERT which would confound results. A

presumption in this approach states that the expression level of mutant hTERT in the
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BW6F2(25)-8 line is similar to that of the GRN25-6 and GRN25-7 line in which the

dominant-negative/competitive inhibition effect was evident. Although this may not be

the case, the rationale for the competitive inhibition TRAP was to obtain an approximate

threshold at which mutant hTERT excess conferred an inhibitory effect on wild-type

hTERT expression levels and hence on wild-type hTERT function.

Initially, the assay was conducted using a maximum 5-fold excess of mutant hTERT to

wild-type hTERT protein lysate, thereby constituting the upper limit of recommended

total protein lysate amount for the TRAP assay (0.5pg). As no inhibition was evident

within this molar ratio imbalance (Fig 3.9a), mutant hTERT to wild-type molar ratio was

increased up to 200-fold. Although complete inhibition was evident when mutant

hTERT was in excess by between 150-200-fold (Fig. 3.9b), the internal control standard

was not amplified in the PCR reaction indicating saturating levels of mutant hTERT

levels in the total lysate. Although mutant hTERT levels at such an excess would be

expected to promote an inhibitory effect, the competitive inhibition TRAP does not give

an accurate level of the mutant hTERT:wild-type hTERT relative stoichiometry due to

the absence of the internal control.
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Figure 3.9: Competitive inhibition TRAP assay. A 5-fold Excess of mutant hTERT
does not result in inhibition of wild-type hTERT telomerase activity (A). A molar ratio
of between 150-200-fold excess results in complete inhibition of telomerase activity (B),
but with the failure of the 36-bp internal standard to be amplified.

3.2.9 Transfection ofmutant hTERT into HEK 293 cells

Due to the observed effect of a catalytically dysfunctional mutant hTERT exerting a

dominant-negative/competitive inhibition effect on wild-type hTERT, thus

compromising telomerase activity and function, the natural progression was to try and

abrogate telomerase activity in a tumour setting. The HEK 293 tumour line was chosen

for this study as this line exhibits high levels of telomerase activity (Fig. 3.6). The

working hypothesis states that introduction of the mutant hTERT transgene will inhibit

endogenous hTERT protein monomers from acting at the telomere substrate through a
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dominant-negative/competitive inhibition mechanism. If endogenous telomerase activity

is inhibited, HEK 293 cells may be forced into replicative senescence or to an apoptotic

fate, plausibly due to lack of telomere maintenance in the subset of the shortest

telomeres in the population. This would support the many documented strategies to

inhibit telomerase in a tumour setting using a dominant-negative approach.

3.2.9.1 Selection of293 transfected cells

HEK 293 cells were transfected with the pWGB25 vector containing mutant hTERT

cDNA and the PWGB23 EGFP-containing mock vector and selected for as described in

section 2.9.2. Upon 7 days of selection, populations were pooled and expanded as one

mixed population. Transfection efficiency was judged by monitoring EGFP expression

in the mock controls. (NB: This is an approximation of transfection efficiency regarding

the mutant hTERT construct as the vector size is much larger compared to the mock

EGFP construct). At this stage, heterogeneous EGFP expression was evident in the

mock controls with EGFP expression absent in many cells. Approximately 40% of cells

were EGFP positive. A similar number of cell death/survival was evident in the mutant

hTERT-transfected cells. At 14 days post-transfection the pooled populations were

placed under a more stringent selection regime (section 2.9.2) and expanded for four

weeks with RNA expression analyzed throughout this period (see section 3.2.7.2).

During this stage, EGFP positive cells represented -75% of the total population in the

mock-transfected line and analysis at this stage clearly showed that even in the 75%

GFP positive cells the levels of GFP expression were variable (Fig. 3.9 A-C). Cell
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survival rate under this selection regime was comparable for the mutant hTERT-

transfected lines (Fig. 3.10 D-E).

Figure 3.10: HEK 293 cells transfected with mutant hTERT or EGFP mock control.
Images were taken 21 days post-transfection and represent pooled populations under a
stringent selection regime. (A-C) HEK 293 cells transfected with EGFP: A, phase-light;
B, EGFP; C, merged. (D-E) HEK 293 cells transfected with mutant hTERT. Scale bar
represents 100pM.

3.2.9.2 RNA expression and telomerase activity analysis of transfected HEK

293 cells

RT-PCR analysis was conducted as described in section 2.2.9. Primers to detect the

mutant hTERT transgene were designed whereby a portion of the SV40 polyadenylation

signal was amplified in addition to a portion of the mutant hTERT transgene. As the

SV40 polyadenylation signal is not present endogenously, this strategy allowed the

mutant hTERT transgene to be distinguished from the endogenous hTERT in 293-
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transfected cells. RNA was collected at the beginning of the stringent selection regime

and each week for a period of four weeks thereafter. The primers chosen to conduct

analysis on endogenous hTERT were located in the hTERT 3'UTR region, therefore

allowing the endogenous hTERT to be distinguished form the transgenic hTERT. A

clear reduction in the endogenous hTERT expression levels in HEK 293 cells

transfected with the mutant hTERT construct, is evident after 7 days and persists

through to the 14-day stage (Fig. 3.11a). This is concurrent with high levels of mutant

hTERT transgene levels evident at the 7 day-stage (Fig. 3.11c). However by day 28,

endogenous hTERT levels are restored to that of the untransfected HEK 293 cells (Fig.

3.11a), consistent with a reduction in mutant hTERT levels by this stage (Fig. 3.11c)
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Figure 3.11: Endogenous and mutant hTERT RNA expression levels in HEK 293
cells transfected with a mutant hTERT transgene. (A) Endogenous hTERT gene
expression. mRNA expression is considerably reduced by day 7 of a stringent selection
regime, with levels being restored to that comparable to the untransfected control by day
28. (B) GAPDH RNA expression levels. GAPDH levels at the same stage showing equal
loading for RT-PCR analysis. (C) mutant hTERT RNA expression levels. Consistent
with the endogenous hTERT RNA expression profde, mutant hTERT RNA expression
levels are high after day 7, followed by a considerable reduction by day 14 that persists
throughout the remaining period monitored.
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As endogenous hTERT levels were not completely abrogated, telomerase activity is not

compromised in the mutant hTERT transfected lines. Telomerase activity is comparable

to the untransfected HEK 293 cells at all stages analyzed (Fig. 3.12). This is consistent

with the data presented in section 3.2.5.
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Figure 3.12: Telomerase activity in 293 cells transfected with mutant hTERT.
Telomerase activity was measured at various stages during a 35 day period after
expanding populations that survived the selection regimes. No difference between
telomerase activity in the untransfected 293 cells and those transfected with mutant
hTERT is evident. Mock transfected EGFP populations are shown. TRAP was
conducted using 0.1 pg.

These results reflect the heterogeneous nature of these transfected populations similar to

the GFP tranfectants. Although endogenous hTERT levels are reduced after introduction

of the mutant hTERT transgene, a subset cells within the population may have mutant
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hTERT levels that are insufficient to confer a dominant-negative effect upon translation

of the mutant protein. Therefore these cells may have a growth advantage over a subset

of cells which suffer a dominant-negative effect, presuming that this effect results in

cells proliferating more slowly relatively. This notion is supported by the observation

that there was almost no cell death during this culture period under stringent selection,

indicating that cells that exhibited high levels of mutant hTERT expression did not die

but rather may have been selected against during serial passaging.
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3.3 Discussion

The relationship between telomerase enzymatic activity and telomere maintenance has

been poorly understood in the field of telomere biology. It has consistently been reported

that telomerase activity per se does not lead to the maintenance of telomeres, both in

normal and abnormal cellular contexts (Ouelette et ah, 1999, Hastie et ah, 1990, Counter

et ah, 1994). Our laboratory have previously used primary sheep (Ovis aries) fibroblasts

to study hTERT function with respect to telomere maintenance, in order to provide an

alternative mammalian model to the laboratory mouse. In this setting, stabilization of

telomere length and karyotypic stability are directly correlated to the level of hTERT

gene expression. However this was not reflected in telomerase activity as detected by the

in vitro-based TRAP assay (Cui et ah, 2002). This led to the speculation as to whether

the hTERT reverse transcriptase catalytic domain was the key rate-determining subunit

within the telomerase complex with respect to telomere maintenance, or whether non-

catalytic hTERT domains play a role in telomere maintenance that can be distinguished

from enzymatic activity. To address these questions, a strategy was devised to

ectopically express a catalytically dysfunctional hTERT transcript in a primary sheep

fibroblast line that exhibits low levels of hTERT expression, insufficient to prevent

telomere erosion and the onset of karyotypic instability. This provides a system in which

to descriptively study both the dimeric function of hTERT and the effects of hTERT

non-catalytic domain over-expression.

123



Chapter 3 - Analysis of catalvticallv dysfunctional hTERT

RNA expression analysis showed that two clones exhibited high levels of mutant

hTERT and three clones exhibited moderate levels. This was readily translated to the

analysis of TRAP activity as lines with moderate levels of mutant hTERT showed

comparable levels of telomerase activity to the mock control, whereas lines with high

levels ofmutant hTERT showed inhibition of telomerase activity likely due to possible

dominant-negative and/or competitive inhibition effects between the wild-type and

mutant hTERT protein. Thus mutant hTERT expression compromised wild-type

telomerase activity in a manner directly attributable to mutant hTERT expression level.

When TRAP assay was conducted using a 5-fold increase in protein lysate however, low

levels of telomerase activity was evident in lines with high levels of mutant hTERT

transcript, thus highlighting a critical caveat when considering dominant-negative

strategies to target hTERT in tumours. It was striking to note that when TRAP analysis,

conducted at stages that differed by ~6 PDs was compared, one line (GRN25-1) showed

a dominant-negative affect at the earlier time-point but which was not evident 6PDs later.

This indicates that wild-type telomerase activity was inhibited in a subset of cells within

this population but due to a heterogeneous population, this subset was rapidly selected

against, whereby a subset(s) with levels of mutant hTERT insufficient to confer

inhibitory effects were selected for. This observation is consistent with the idea that high

levels of mutant hTERT may have adverse effects on cellular proliferation and may

indeed inhibit cell growth.

An extensive culture period of 160 days allowed the effects of mutant hTERT

expression to be studied in a cellular context. No significant change in the general
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proliferation profile was evident between mutant hTERT-transfected and mock-

transfected clones. Proliferation rate throughout culture was similar for all clones and

calculated to be on average one population doubling per 19 hours, except GRN25-7

which exhibited a period of slower proliferation between days 14-28 of the culture

period. Population doubling rate during this period slowed dramatically in this clone, to

one population doubling per 3-4 days. This was concurrent with a senescent morphology

within a subset of cells (30%) within the population. Approximately half of this

population stained positively for the senescence-associated histochemical marker (3-

galactosidase. This data indicates that sufficiently high expression of catalytically

dysfunctional hTERT inhibits proper telomerase function, presumably due to restriction

of functional homodimers at the telomere substrate. However, this was only reflected in

a subset of cells within the GRN25-7 population, with the bulk of the population

exhibiting a selective advantage thereafter, resulting in a comparable proliferation rate to

all other clones. Only in this context is it possible to attempt to reconcile protein

expression data. Protein levels of mutant hTERT within the GRN25-7 line were much

lower than expected from the RNA expression analysis and TRAP activity. However as

protein analysis was conducted ~9 PDs later than RNA and TRAP analysis, the lower

levels of mutant hTERT protein may reflect selection within this 'mixed' population,

with a subset of cells exhibiting high levels of mutant hTERT initially, being selected

against.
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It has been reported that stochastic variation of this nature may account for

heterogeneous populations in vitro that are inaccurately termed 'clonal' (Martin-ruiz et

ah, 2004). In this context, a subpopulation of cells with compromised telomerase

function would be selected against during long-term culture. It has been documented that

TERT may regulate cellular survival and proliferation independent of enzymatic activity

in tumour cells (Cao Y. et ah, 2002). This data however, indicates that in primary

fibroblasts, pro-survival functions of hTERT are a direct function of catalytic activity.

Consistent with this, the parental sheep fibroblast line used for this study, transfected

with catalytically dysfunctional hTERT alone, ceased to proliferate and entered

replicative senescence after ~50 days culture.

Mean TRF length calculation at mid point and late stage of the extended culture period

revealed comparable mean telomere length during culture and also comparable

stabilized mean telomere length between the majority of clones and mock controls.

Maintenance at a stabilized mean telomere length and the persistent check on entry to

replicative senescence, is therefore most likely due to wild type expression level in these

clones, as in mock controls. Significant telomere attrition however, was evident in two

of three clones with high levels of mutant hTERT expression (GRN25-1 & GRN25-7).

Telomeres in these clones eventually reached mean stabilized lengths much shorter than

those in mock controls. These results seem to be directly attributable to mutant hTERT

expression. Mutant hTERT/mutant hTERT and mutant hTERT/wild-type hTERT

dimeric complexes are likely to be in much greater abundance than wild-type/wild-type

dimers within these lines (Fig. 3.13). Inhibition of telomerase activity and increased
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telomere attrition are therefore likely to be due to the compromising of wild-type

homodimeric function at the telomere substrate due to the molar ratio imbalance of

hTERT complexes. This is consistent with the notion that hTERT homodimers are

necessary to form a functional telomerase complex at the telomere substrate, where

catalytic domains of both hTERT molecules may function inter-dependently. On this

basis, the GRN25-1 clone which showed telomerase inhibition at the beginning of the

growth curve but restoration of telomerase levels after ~6 PDs, may have experienced

aggravated telomere attrition at an early stage. However, there is no evidence for any

lengthening of telomeres (with respect to average telomere length) after restoration of

telomerase activity. Surprisingly one clone with high mutant hTERT expression level

and subsequent abrogation of telomerase activity, showed comparable stabilized mean

telomere length to mock controls. This highlights the limitation of in vitro based

telomerase activity assays to assess proper telomerase function; as telomere length is not

controlled by telomerase (TERT and TR) alone but requires other telomerase associated

proteins and telomere binding proteins, such as POT1, TRF1 and TRF2, differences in

expression level of these factors may account for this discrepancy. For example, TRF1 is

known to negatively regulate telomere length (Ohki et al., 2004) and therefore

differences in expression level of TRF1 may be one factor that accounts for this

discrepancy. Generally the heterogeneous nature of the lines used in this study may

exhibit varied expression levels of telomere-associated proteins that contribute to

telomere homeostasis.
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Figure 3.13: Functional dimerization model of hTERT. hTERT-mediated interactions
in the GRN sheep fibroblast clones favour the homodimeric model of hTERT first
postulated by Prescott, J. and Blackburn, E. in 1997. On this premise, only wild-type
hTERT homodimeric interactions can contribute to a functional telomerase complex
(left). Catalytically defective mutant hTERT homodimers (middle) and wild-type/mutant
hTERT heterodimers (right) result in a non-functional telomerase complex with respect
to telomere repeat addition processivity, suggesting that the hTERT catalytic domain is
the rate-limiting factor. Blue, hTERT non-catalytic domains; Brown, wild-type reverse
transcriptase domain; Red, mutant reverse transcriptase domain; Green box, sheep TR.

Collectively there is no evidence to indicate that non-catalytic hTERT domains

contribute to telomere maintenance in a manner distinguishable from catalytic domain

mediated telomerase activity. Rather, these data support the notion that telomere

maintenance requires a functional telomerase complex with hTERT monomers likely

interacting in an inter-dependent manner. Furthermore the result demonstrates that

although hTERT non-catalytic domains may be necessary for telomerase assembly and

processivity at the telomere substrate, they are not rate-determining. The catalytic

domain of hTERT appears to be a crucial rate-determining factor regarding processivity

(Rahman et al., 2006); however a more thorough understanding of telomerase- and

telomere-associated factors will be required to understand fully the interplay that

governs telomere homeostasis in vitro and in vivo. Consistent with the work from other
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laboratories, these results also show a potential interest of using dominant-negative

mediated anti-telomerase gene therapy to treat cancer but consideration has to be taken

on how to ensure sufficiently high levels of mutant hTERT expression in a tumour line,

that is also persistent throughout treatment. Data presented here show that even trace

telomerase activity may be sufficient to maintain a check on replicative senescence

and/or apoptotic pathways. Furthermore, the heterogeneous nature ofpopulations ex vivo

will have to be realized during conceptual models of anti-telomerase therapy.
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CHAPTER 4

TRANSGENE SILENCINGAND

FUNCTIONAL CONSEQUENCE OF LONG-

TERM CULTURE

130



Chapter 4 - Consequences of long-term culture

4.1 Introduction

Data presented in Chapter 3 suggest that 'clonogenic' sheep fibroblast lines used for

this analysis, are not exactly homogenous regarding transgene expression, as was

initially regarded, particularly after long-term culture. These cells became

heterogeneous in nature within the particular population. This is a theme that is

recurrent within studies of clonally-derived cell lines as an in vitro tool. Many

authors have stated reservations regarding in vitro artifacts that are hoped will reflect

in vivo settings. The difficulties in recreating a proper biochemical and physiological

niche in vitro is a severe obstacle at present and we cannot profess to be culturing

cells in an accurate tissue and cellular microenvironment.

Transgenic technology in vitro presents an additional caveat whereby the monitoring

of long-term consequences of transgene expression is vital, especially with respect to

the potential of gene therapy. Can we presume that transgene expression levels are

sustained throughout a long culture period incorporating over lOOPDs? Can we

presume that transgene expression is constant in every cell in the population?

Therefore as the GRN sheep fibroblasts used for this analyses were cultured for ~160

days, the natural follow-up was to analyze the functional consequences of transgene

expression during long-term culture. This not only provides an opportunity to gain

further insight into this concept from a technical point of view but also presents

additional information regarding alterations to total hTERT transgene expression and

to telomerase activity, furthering understanding of the effects of mutant hTERT in

hTERT-immortalized sheep fibroblasts.
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A distinct limitation in studying the sheep as a mammalian model for telomerase and

telomere biology and function is the absence of the gene sequences for sheep TERT

as well as telomere binding proteins. Therefore it is difficult at present to provide

direct evidence for possible activation or up-regulation of the endogenous sheep

TERT transcript. Rather the convergence of various lines of data relating to the

consequences of long-term culture may be used to provide indirect evidence of the

functional presence or absence of sheep TERT. As the transgenic constructs used for

this study were transfected into the GRN1-1 line, previously shown to express levels

of hTERT insufficient to maintain full-length telomeres and prevent the onset of

karyotypic instability (Cui et ah, 2002), it is plausible to hypothesize that endogenous

TERT may be switched on during long-term culture of the GRN25 fibroblasts. In this

regard, sheep TERT activation may be concurrent with the functional

immortalization of these lines and may facilitate the maintenance of a senescence-

bypass status. This concept does not necessarily imply that these lines are

transformed; it is accepted that telomerase itself does not cause growth deregulation,

unlike classical oncogenes, therefore additional alterations in the genome are

required to transform a cell that is telomerase positive (reviewed in Harley et ah,

2002).
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4.1.1 Hypothesis

1) GRN sheep fibroblast lines consist of a heterogeneous population upon

which selection pressures bias a particular subset(s) upon serial culture. Cells with

compromised telomerase activity therefore would be selected against.

2) Endogenous sheep TERT is activated as a consequence of long-term

culture, reflected by an increase in telomerase activity.

4.1.2 Aims

1) To gain a thorough understanding of the consequences of mutant and

wild-type hTERT transgene expression levels during an extensive culture period;

verify whether transgene expression persists, varies or is lost.
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4.2 Results

4.2.1 RNA expression analysis after long-term culture

Semi-quantitative RT-PCR analysis was carried out on GRN clones at -day100 to

determine total hTERT transgene expression levels at this stage (section 2.2.8 and

2.2.9). The null hypothesis states that there is no difference in total hTERT transgene

levels at this stage when compared to the initial stage of RNA analysis, prior to

commencement of the extensive culture period. Surprisingly, RT-PCR analysis

revealed almost complete absence of any hTERT transcript, indicating that the

mutant hTERT transcript is completely silenced by this stage (Fig. 4.1). Trace

hTERT message was detectable in three clones, including one of the mock controls.

It is unclear whether this reflects the wild-type hTERT or mutant hTERT transgene

(or both).

Figure 4.1: hTERT RNA expression analysis in hTERT-immortalized
fibroblasts after -100 days culture. RT-PCR analysis showing total hTERT
expression levels in GRN hTERT-immortalized sheep fibroblasts. Total hTERT
transcript is completely absent in the majority of lines, with trace expression evident
in GRN25-7, GRN25-9 and the GRN23-C1 mock control. GRN1-1 represents the
hTERT-immortalized parental line, into which either mutant hTERT or EGFP was
transfected. GAPDH internal controls and no reverse transcriptase controls are
shown. PCR was conducted at 30 cycles.
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As this analysis was conducted at the -100 day stage, in comparison to day 0

previously (Fig. 3.1), it is unclear as to how early or late the mutant hTERT

transgene has been silenced. Therefore RNA collected from an earlier stage (-day

80) was retrospectively analyzed for hTERT RNA expression levels. At this stage,

the GRN clones exhibited readily detectable levels of total hTERT message, but

which was much lower than that evident at the initial stage of analysis (Fig. 4.2).

Levels of total hTERT were comparable across all the GRN lines, although the

GRN23-C4 mock control showed slightly higher expression.

hTERT 325bi>

sGAPDH 224bp

Figure 4.2: hTERT RNA expression analysis in hTERT-immortalized
fibroblasts after - 80 days culture. RT-PCR analysis showing total hTERT
expression levels in GRN hTERT-immortalized sheep fibroblasts. Total hTERT
expression levels are comparable across all the GRN25 clones, but slightly higher in
the GRN23-C4 mock control. GAPDH internal controls and no reverse transcriptase
controls are shown. PCR was conducted at 30 cycles.

This observation suggests that the mutant hTERT transgene may be silenced by this

stage in a proportion of cells within each population, but that mutant hTERT

expression persists in another subset(s) of cells within the same population. Of note

is the level of hTERT expression in the GRN23 mock controls relative to the GRN25

lines. GRN23-C1 shows comparable hTERT expression to the GRN25 lines, whereas

GRN23-C4 shows a slightly higher level. This difference may be accounted for by
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differences in cDNA loading as GAPDH levels appear higher in the mock controls.

Therefore total hTERT levels may in fact be comparable across all lines. As the

mock controls express wild-type hTERT alone, the comparable hTERT levels across

the GRN25 lines, may thus reflect wild-type hTERT levels, suggesting that mutant

hTERT may have been already lost by this stage of the culture period. To better

illustrate hTERT transgene silencing, semi-quantitative analysis was conducted by

calculating densitometry of normalized hTERT expression bands. Analysis from day

80 and day 100 of the culture period were compared to the initial expression levels at

day 0 (section 3.2.1.2), prior to the start of long-term culture. Densitometric analysis

illustrates complete hTERT silencing by day 100. At day 80 most lines show a clear

reduction in hTERT expression most probably due to silencing in a subset of cells.

Unexpectedly, wild-type hTERT expression in the mock controls appears to increase

at the day 80 stage, prior to complete silencing by day 100 (Fig. 4.3).

^ 160.00
<0

GRN25-1 GRN25-5 GRN25-6 GRM25-7 GRN25-9 GRN25-10 GRN23-C1 GRN23-C4

Figure 4.3: Semi-quantitative analysis of hTERT expression. At day 0, the vast
majority of hTERT expression is due to mutant hTERT in the GRN25 clones. By day
80, mutant hTERT transgene silencing is evident in a proportion of cells in each line.
By day 100 complete transgene silencing ofmutant hTERT is evident in all GRN25
clones. Wild-type hTERT expression appears to increase by day 80 in the GRN23
mock controls prior to complete silencing in day 100.
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4.2.2 Selection regime for mutant hTERT transcript

To infer whether the mutant hTERT transcript was completely absent, representative

GRN clones at late passage were placed under a neomycin selection regime (as

described in section 2.8.3), set at the initial concentration (400pg/ml) at which these

clones were selected post-transfection. The presumption here states that the if the

neomycin selection cassette is silent/absent, then due to the close proximity of the

mutant hTERT transgene, it too will be silenced/absent. No cell death was evident

until cells were passaged 48 hours after applying Geneticin selection. By -day 6 of

the selection regime, all lines exhibited widespread cell death with no cells surviving

by -day 14 in the GRN25-1 line and the GRN 1-1 and GRN23-C1 controls (Fig.

4.4a). GRN1-1 serves as a negative control for the selection regime as this line has

no neomycin transgene. A minority of cells survived selection in the GRN25-6 and

GRN25-7 lines and this selected subset repopulated the population, with confluency

reached by -day 13 (Fig. 4.4b).
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Figure 4.4: GRN culture under neomycin selection. Late passage hTERT-
immortalized GRN clones were cultured under a 400pg/ml neomycin selection
regime for ~2 weeks. No cells survived neomycin selection by day 14 in the GRN25-
1 line and GRN1-1 and GRN23-C1 controls (Top panel). After an initial period of
gross cell death in the GRN25-6 and GRN25-7 lines, a subset of cells were selected
for and repopulated the population to confluence by -day 13 (Bottom panel). Scale
bar represents 500pM.

This observation suggests that the neomycin cassette has been silenced during long-

term culture, with cells where this phenomenon has occurred being selected for. The

obvious inference is that mutant hTERT and EGFP transgenes have therefore also

been silenced in the GRN25-1 and GRN23-C1 clones respectively. This suggests that

in GRN25-1 cells in which silencing of the neomycin (and hence mutant hTERT)
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transgene has occurred, this has thus resulted in a growth advantage in that particular

subset of cells. The resistance in a minority of cells within the GRN25-6 and

GRN25-7 populations, indicate that a subset of cells expressed sufficient levels of

neomycin to confer resistance and most probably low levels ofmutant hTERT.

RT-PCR analysis was conducted on the neomycin-selected GRN25-6 and GRN25-7

lines and compared to an earlier stage where mutant hTERT silencing was evident, to

determine ifmutant hTERT had been selected for. RNA expression of hTERT shows

a slight increase in mutant hTERT transcript in the neomycin-selected lines (Fig.

4.5). The neomycin cassette was only detected in the GRN25-6 line at this stage,

indicating that only trace neomycin is sufficient to confer the resistance in GRN25-7

as no transcript was detected in the GRN25-7 line.

sGAPDH

Figure 4.5: Total hTERT RNA expression analysis on neomycin-selected lines.
Total hTERT levels are slightly higher in the neomycin-selected lines compared to
an earlier passage where no transcript is evident. The GRN25-7 line at the beginning
of the extensive culture period is shown as a positive control.
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4.2.3 Monitoring of EGFP expression in mock-transfected clones

The GRN23 EGFP mock-transfected controls were monitored for EGFP expression

under UV light. The GRN23-C1 control line, exhibited no EGFP expression after the

extended culture period. This line was shown previously to exhibit EGFP expression

prior to long-term culture (Fig. 4.6b). In contrast, the GRN23-C4 control line,

exhibited a mosaic pattern of EGFP expression, ranging from high levels in some

cells, to complete absence in others (Fig. 4.6a). However, silencing of the EGFP

transgene in the GRN23-C1 line is not expected to have conferred a growth

advantage upon those cells as such, as EGFP is expected to exert a negligible effect

on cellular viability and proliferation. Rather it is likely that silencing has occurred in

all cells within the population. The EGFP cassette is still present in the GRN23-C4

line, although expression is mosaic. Excluding variation in these lines due to a

stochastic manner, the key variable is the site of integration of the EGFP and

neomycin-resistant transgenic loci. This observation, taken together with those of

section 4.2.2, is consistent with the notion that the GRN lines are heterogeneous in

nature, rather than homogenous/truly clonal.
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Figure 4.6: EGFP expression in GRN23 mock-transfected clones after extensive
culture period. (A) EGFP expression is completely absent in the GRN23-C1 clone
at this stage, whereas a mosaic pattern of EGFP expression is present in the GRN23-
C4 clone, ranging from high expression to no expression in subsets of cells within
the population. The GRN25-5 line at a similar stage of the culture period is shown as
a negative control. Scale bar represents 500pM. (B) EGFP expression evident in the
GRN23-C1 clone prior to the extensive culture period. (EGFP image for (B) taken by
Ling Mo).

4.2.4 Selection regime for wild-type hTERT transcript

As a puromycin-resistant cassette was present in the transgenic loci containing wild-

type hTERT, a puromycin selection regime using the same concentration used to

initially select for the hTERT-immortalized GRN1-1 clone (0.75pg/ml), was used to

determine indirectly if the wild-type hTERT transcript was still present after long-

term culture. By day 5, no cells survived this regime in any of the representative lines

analyzed, indicating that the puromycin cassette and through inference, the wild-type

hTERT transcript, had been silenced in a subset(s) of cells (Fig. 4.7).
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Figure 4.7: GRN culture under puromycin selection. Late passage hTERT-
immortalized GRN clones were cultured under a 0.75pg/ml puromycin selection
regime. No cells survived the selection regime after a period of 5 days. Scale bar
represents 500pM.

Although wild-type hTERT is lost through serial culturing by this stage, the GRN

lines still maintain a consistent proliferation profile and thus maintain a senescence

bypass status. Furthermore, telomerase is active and telomeres are stabilized and

maintained at this stage. This would not be expected if hTERT was not expressed

and telomerase did not function to maintain telomeres, at least at the subset of the

shortest telomeric substrates, unless endogenous sheep TERT is activated. This data

indirectly implicates endogenous sheep TERT as being activated and functioning as a

pro-survival factor, acting at the telomere termini to maintain telomere length and to

keep senescence checkpoint pathways at check.

4.2.5 TRAP analysis after long-term culture

To investigate whether telomerase activity altered during this period of extensive

culture, TRAP analysis was conducted on the GRN clones at late-passage using the

same concentration of protein lysate (0.1pg/pl) used for the initial TRAP analyses
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prior to the culture period. This ensures a direct comparison of TRAP activity at the

different stages of analysis.

TRAP analysis at -day 100 shows that telomerase activity has considerably

increased by this stage. This is indicated by the loss of the 36-bp internal standard in

the reaction due to primer competition; i.e. high levels of telomerase results in a

telomeric substrate product that utilizes, most if not all, of the forward primer (Fig.

4.8a). Of note is the high level of telomerase activity detected in lines GRN25-6 and

GRN25-7, previously shown to be effected by a dominant-negative/competitive

inhibition interaction. This is consistent with the data indicating silencing of the

mutant hTERT transgene. However as the previous data also indicated that the wild-

type hTERT transgene has been silenced, telomerase activity would not be expected

in this context, at least not telomerase activity due to hTERT. This result therefore

indirectly supports the notion that endogenous sheep TERT is activated in the GRN

lines by this stage, and is therefore the source of TRAP activity in the assay. (NB:

Due to the conservation of the telomeric repeat sequence in mammalia, TERT from

any mammal would be expected to elongate the telomeric substrate used for TRAP

assay).

However, to confirm that telomerase activity had indeed increased after the period of

long-term culture, a systemic TRAP assay was conducted by preparing protein lysate

and measuring concentration of samples systemically from both the early and late

stage. On the basis of this analysis it is difficult to state whether telomerase activity

has increased at the later stage, as telomerase activity and the internal standard are
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comparable across the lines. The analysis confirms the alleviation of telomerase

inhibition conferred by mutant hTERT in the GRN25-6 and GRN25-7 lines (Fig.

4.8b). Taken together, TRAP analysis demonstrates that telomerase activity is high in

all GRN lines after ~ 100 days in culture, suggesting that the source of this activity

may be the endogenous TERT protein, rather than the hTERT transgenic protein.
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Figure 4.8: TRAP assay on GRN lines after period of extensive culture. (A)
TRAP analysis on GRN lines at -day 100 of the extensive culture period and using
O.lpg/pl. Telomerase activity is high and comparable in all lines, adjudged by the
TRAP product ladder and the loss of the 36-bp internal standard. Heat inactivated
controls are shown. (B) Systemic TRAP analysis. Protein measurement and TRAP
analysis was conducted in a systemic fashion using lysate from an early stage of
culture and after -100 days. Telomerase activity is comparable in all GRN lines at
late passage and this activity level is similar to the majority of lines at the early stage.
Release of telomerase inhibition in the GRN25-6 and GRN25-7 lines is evident.
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The lack of the sheep TERT sequence hampers any study attempting to identify its

activation and subsequent biological role. The data presented here indirectly

implicates endogenous sheep TERT as being activated after a sustained period of

culture.

4.3 Discussion

The heterogenic nature of the hTERT-immortalized lines (GRN) used for this study

was presented in Chapter 3, with particular regard to the GRN25-7 line which

exhibited the highest levels of mutant hTERT at the particular molecular snapshot

analyzed. The obvious implication was that mutant hTERT compromised active

hTERT in this line through competitive binding to the wild-type hTERT or the

telomere substrate. This would then have lead to an adverse affect on cellular

proliferation as observed with a subset of cells within the population entering a

senescence-induced growth arrest. However the majority of cells within the

population maintained a normal fibroblastic morphology and maintained an

uncompromised growth rate, thus eventually being selected for due to the growth

advantage conferred. This led to speculation as to whether heterogeneity evident in

GRN25-7 is initially directly attributable to the effects ofmutant hTERT expression,

followed by selection upon serial passage as a consequence of long-term culture, in

excess of lOOPDs.

Initially, total hTERT transgene expression was monitored, with the null hypothesis

stating that hTERT transgene expression will be comparable to levels evident prior to
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the extended culture period. Strikingly by day -100, almost no hTERT message is

evident in any of the GRN lines, including mock controls. Expression analysis at

-day 80 showed comparable levels of hTERT expression across all lines, although

this was much lower than levels detected in the five lines adjudged to express

medium to high mutant hTERT expression prior to the extensive culture period

(section 3.2.1). This hints at the heterogeneous nature of these lines, whereby mutant

hTERT may have been silenced in a subset of cells within a population, a subset unto

which a growth advantage is conferred thereafter. Mutant hTERT expression may

then still be evident by day -80 as a subset of cells within the population still retains

mutant hTERT expression; however, by day -100, it appears the subset with

'silenced' mutant hTERT has overwhelmed the population. That the mutant hTERT

transgene was indeed silenced, was indirectly confirmed by culturing GRN cells at

this late stage under a neomycin selection regime, as the mutant hTERT cDNA will

be in close proximity to the neomycin resistant cassette upon integration. Only cells

from the GRN25-6 and GRN25-7 populations survived this regime - nevertheless

only a very sparse subset of cells survived selection and eventually repopulated the

population. Therefore even in these lines, it appears the mutant hTERT transgene is

silenced in the majority of cells. The subset conferring neomycin resistance may

truly reflect a subset of cells where mutant hTERT is still active, although the caveat

of only a few neomycin molecules conferring resistance to Geneticin, must be

considered.

Surprisingly, when the mock controls were monitored at this stage for expression of

the EGFP transgene, one clone showed a mosaic pattern of expression (GRN23-C4)
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whilst the other clone showed complete abrogation of expression (GRN23-C1). This

indicates complete silencing of the transgene in GRN23-C1 as high EGFP expression

was evident prior to the extensive culture period. This silencing phenomenon appears

to be an inherent consequence of serial passaging during an extensive period, as

EGFP expression per se would not be expected to have any compromising effects on

cellular growth and viability, regardless of whether expression was heterogeneous

within a given population. Therefore this implicates that although mutant hTERT

may have adverse affects on cellular growth, this is confounded by the possibility

that transgene silencing may have occurred in these lines purely as a result of culture

and selection bias as a result. If this were the case then the wild-type hTERT

transgene would also be expected to be silenced in the GRN lines. When grown

under a puromycin selection regime to infer presence of wild-type hTERT, no cells

from any representative line survived. Thus wild-type hTERT is also silenced in

these lines. However, senescence bypass has been shown to be uncompromised in

these lines during this stage (section 3.2.4), raising the question of whether the

endogenous sheep TERT is activated and functioning to check senescence pathways

and maintain telomere length in the subset of shortest telomeres. Indirect evidence

for this is presented through TRAP analysis after the extensive culture period;

telomerase activity is high and comparable across all the GRN lines, with restoration

of telomerase activity in GRN25-6 and GRN25-7 after the initial period of

telomerase inhibition. If the wild-type hTERT transgene were indeed silenced in

these lines, telomerase activity would be expected to be absent. Therefore activation

of endogenous sheep TERT is implicated here, as the sheep telomerase complex

would be expected to elongate the telomeric substrate used in the TRAP assay. Any
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study attempting to address this issue is hampered by the lack of the sheep TERT

coding sequence.

In light of evidence presented here that demonstrates silencing of the hTERT

transgenes, results discussed in chapter 3 may be viewed within this context. In

particular, telomerase inhibition in GRN25-1 at the earliest stage TRAP (section

3.2.3), followed by restoration of activity to levels similar to mock controls after ~6

PDs, may be explained due to transgene silencing. It is likely that mutant hTERT

expression levels were sufficiently high (most likely comparable to levels in GRN25-

6 and GRN25-7) so as to exert a dominant-negative/competitive inhibition effect at

the early stage. However due to silencing ofmutant hTERT in a subset of cells (or at

least reduced expression levels), these cells were endowed with a growth advantage

within the population. This may then explain the restoration of telomerase activity

due to uncompromised function ofwild-type hTERT, albeit after only ~6 PDs.

This study highlights the precarious nature of a sustained period of in vitro culture

using transgenic lines and underlines the importance of maintaining stringent

selection throughout the extensive culture period as well as frequent monitoring of

whether transgene expression is persistent.
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CHAPTER 5

QUANTITATIVE-FISH (Q-FISH) ANALYSIS

TO DETERMINE TELOMERE LENGTH

HETEROGENEITY IN NORMAL OVINE

FIBROBLASTS
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5.1 Introduction

Telomere length regulation is controlled by a complex homeostatic mechanism that

invokes both extrinsic factors such as telomerase and other telomere-associated

factors, but also key intrinsic manifestations based on telomeric configuration

structure and telomere length heterogeneity. Classical telomere length measurement

has relied on a calculation of average telomere length based upon telomere restriction

fragments (see section 2.2.16). Such analysis reflects the span of telomere lengths

from a population as a whole; however our current understanding of telomere

dynamics reveals a considerable degree of telomere length heterogeneity within any

given karyotype, which importantly is of functional significance (see section 1.6.1).

To address this technical issue, Peter Lansdorp and co-workers refined the

fluorescence in situ hybridization (FISH) technique and established a method to

robustly quantify individual telomere lengths on chromosome arms, providing a

powerful tool to resolve telomere length at the individual chromosomal level

(Lansdorp 1996). The method utilizes a fluorescence-tagged telomere repeat probe

that is administered to metaphase spreads and fluorescence units from individual

telomeres measured by dedicated software.

A descriptive study conducted in our laboratory previously reported considerable

differences in proliferative lifespan of two normal sheep fibroblast lines -BWF1 and

BW6F2- (Clark et ah, 2003). Both these foetal fibroblast lines were independently

isolated from the same genetic breed, Black Welsh (sheep breeds are essentially

outbred and exhibit less than 1% co-ancestry within a breed). Both derived lines

exhibited similar mean telomere restriction fragment lengths after isolation (BWF1,
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18kb; BW6F2, 20kb) and at replicative senescence (BWF1, llkb; BW6F2, llkb).

Intriguingly proliferative lifespan differed 3-fold between these two lines, with

BW6F2 entering replicative senescence at ~112PD, whereas senescence in BWF1

was reached after ~34PD. This is directly correlated to the average telomere

shortening rate in these lines, with BWF1 exhibiting an average shortening rate of

301bp/PD, whereas BW6F2 exhibited a shortening rate of 91bp/PD (Clark et ah,

2003). What are the intrinsic factors that account for such a significant difference in

average telomere shortening rate? Is this causal or consequential of proliferative

lifespan? These issues are difficult to address mechanistically at present, reflected by

the lack of reports documenting intrinsic or extrinsic determinants of telomere

shortening rate. However with advances in the methods to quantitatively measure

individual telomere lengths, descriptive studies may be undertaken to help begin to

understand this process further. The key limitation of the previous study in our

laboratory was that true telomere length heterogeneity was not accounted for and

therefore only average shortening rate had been calculated. It is likely that average

telomere shortening rate only indirectly indicates the functional consequence of

telomere attrition. For example, telomere shortening rate within only a subset of

telomeres may be directly correlated to the onset of replicative senescence rather

than average telomere length in the karyotype per se. Therefore it was of interest to

optimize Q-FISH methodology in the sheep system to attain a description of

telomere shortening in the Black Welsh fibroblasts that takes into account true

telomere heterogeneity and to calculate telomere shortening rate on this basis.
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5.2.1 Hypothesis

1) Telomere shortening rates differ considerably between the BWF1 and BW6F2

lines; within each line telomere shortening rates are constant throughout (null

hypothesis).

2) A subset of telomeres in both the BWF1 and BW6F2 lines exhibit a

significantly faster telomere shortening rate than all other telomeres, but there are a

greater proportion of telomeres representing this category ('short' telomeres) in the

BWF1 line compared to the BW6F2. Thus it follows, that entry into replicative

senescence is earlier in the BWF1 line due to the rapid shortening of telomeres

within this subset

5.2.2 Chapter aims

1) To present the first demonstration ofQ-FISFI methodology in ovine cells

2) To provide descriptive analysis of telomere length heterogeneity within two

primary ovine fibroblast lines derived from the same genetic background.
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5.2 Results

5.2.1 Fluorescence In-Situ Hybridization (FISH)

FISH was conducted on metaphase spreads as described in section 2.10 and

constitutes a key rate-determining step regarding Q-FISH analysis. Sheep

chromosomes by their very nature are not as compact/condensed as mouse and

human chromosomes and appear somewhat denatured in their appearance. Telomere-

FISH can only serve to approximately judge individual telomere lengths by

estimating the brightness of signals, for example a long telomere length showing

brighter signal than a short one. It is evident that telomere FISH clearly shows

telomere shortening in the BW6F2 and BWF1 sheep fibroblasts during in vitro

culture from early through to late, pre-senescent passage (Fig. 5.1a and b).

Fluorescent intensity is high and comparable between the lines at the early passage

stage as expected. However, telomere FISH signals in BWF1 became invisible by

passage 18 (PD29). In contrast, the signals in BW6F2 were still detectable until

passage 37 (PD103). Therefore, the differences in telomere shortening rate become

evident between the two lines. This is consistent with the results reported previously

documenting differing proliferative capacities regarding these two lines (Clark et al.,

2003).

153



Chapter 5 - O-FISH analysis: Descriptive study of telomere heterogeneity
BW6F2 P4

*£ , j
BW6F2 p4
AHk

BW6F2 p7 BW6F2 p7

BW6F2 p20 BW6F2 p20

'

BW6F2p37 BW6F2 p37

A

BWF1 p5 BWF1 p 13 BWF1 p 18

Figure 5.1: Telomere Fluorescence In-Situ Hybridization on metaphase spreads
from BW6F2 and BWF1 ovine fibroblasts. Telomeric fluorescent signals
progressively diminish in both the BW6F2 and BWF1 lines during culture, with the
earliest passage generating the strongest telomere fluorescent signal. However,
telomere length below the minimum length required to generate a signal under the
conditions for image capture used here is reached by passage 37 (PD103) in BW6F2
(A), whereas a similar minimal telomere length is reached by passage 18 (PD29) in
BWF1 (B), thus reflecting the intrinsic difference in telomere shortening rate
between the two lines.

Observation ofmetaphase also provided scope to determine if the Black Welsh lines

displayed a normal karyotype throughout culture. Sheep have 26 autosomes and two

sex chromosomes (diploid chromosome number of 54), including six distinct large

metrocentric chromosomes. Diploid chromosome number was -54 (give or take 1-2

chromosomes that can be attributed to the preparation of the spread) in each
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metaphase analyzed and neither variation in metrocentric chromosome number nor

obvious abnormal chromosomes (such as dicentric), were evident within any

metaphase. Therefore there are no gross abnormal chromosomal changes evident

within the BW6F2 and BWF1 lines to confound analysis.

5.2.2 Metaphase manipulation using TFL-TELO software

It is difficult to distinguish between subtle differences in telomere length and more

accurately quantify them with FISH alone. To allow for an accurate comparison on

telomere length within each line and between lines, dedicated software called TFL-

TELO Q-FISH, was applied. However, due to the rather 'puffy' denatured

morphology of sheep chromosomes, Q-FISH software currently available cannot

distinguish individual chromosomes from one another and therefore, upon the

superimposing ofDAPI stained chromosomes and Cy3-conjugated telomeres, cannot

assign numerical values to fluorescent-tagged telomere repeat sequences (Fig. 5.2a).

This problem can be overcome by 'drawing' around the edges of each chromosome

using an appropriate drawing tool in Photoshop. This allows each chromosome edge

to be defined, enabling the software to recognize individual chromosomes within

each metaphase spread (Fig. 5.1b). It is difficult practically to obtain fluorescent

values for every telomere end, particularly the very weak signals, but using this

modified approach, it is possible to record values for the vast majority of ends.

Therefore, if a sufficient number of chromosomes from a number of metaphase

spreads are counted, then Q-FISH analysis using this approach can be valid. Thus, it

is possible to quantitatively analyze telomere-FISH fluorescent signal intensities

using ovine metaphase spreads.
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Figure 5.2: Manipulation of ovine metaphase spreads. Due to the denatured
morphology, characteristic of sheep chromosomes (A, left), current Q-FISH software
cannot distinguish between individual chromosomes (B, left). Therefore each
chromosome image must be defined using an appropriate drawing tool, (A, right,
indicated by arrows). Q-FISH software can then be used to analyze the manipulated
metaphase spread and calculate telomere length based on arbitrary fluorescence units
(B, right). Chromosome number assignment denoted is also arbitrary. Coloured
circles represent individual telomeres on each chromosomal arm; fluorescent signal
intensities (proportional to telomere length) that are above the minimum detection
level, are categorized into five subgroups (high to low) and assigned one of five
different coloured circles.

5.2.3 Quantitative-FISH analysis

Approximately 8-10 metaphase spreads were analyzed for every cell line/passage

studied. The latest passage for both the BWF1 and BW6F2 cell line, provided the

fewest high quality spreads suitable for Q-FISH analysis, owing to the low signal

intensities due to very short telomeres at this stage. The number of chromosomes

counted for each line analyzed is shown in Table 5.1. As the number of quality

metaphase spreads with sufficient signal intensities was low for the BW6F2 p37 line,

156



Chapter 5 - O-FISH analysis: Descriptive study of telomere heterogeneity

only 95 chromosomes could be counted. Therefore this line will be excluded for the

overall Q-FISH profile analysis (see Appendix 3 for profile that includes this line).

Cell line Number of chromosomes counted
BW6F2 P4 (PD8) 329
BW6F2 P7 (PD15) 323
BW6F2P20 (PD52) 321

BW6F2P37 (PD 103) 95

BWF1 P5(PD4) 380
BWF1 P13 (PD 19) 337
BWF1 P18 (PD29) 286

Table 5.1: Number of chromosomes analyzed by Q-FISH for each cell line.

Due to the quality of sheep metaphase spreads, a number of telomere end signals are

not detected due to overlapping arms, therefore accounting for all signal free ends

(SFE) would result in an overestimation as many of these telomeres would be

expected to have signal intensities detected by the Q-FISH software. Therefore the

category of SFE will be excluded for the general descriptive analysis of the Q-FISH

profile, (see Appendix 4 for profiles including the SFE category). Furthermore,

rather than directly plot crude signal intensities, a better representation will be

deployed here, one which plots the percentage of telomere ends per category.

Category here refers to the Telomere Fluorescence Units (TFU) that is arbitrarily

assigned by the software, which is directly proportional to telomere length. (The

absolute values ofTFU recorded, are presented in the Appendix 2 section).

The general pattern of telomere shortening as determined by the Q-FISH method is

comparable between the two Black Welsh lines (Fig. 5.3). However the specific

profiles differ in a manner that may be interpreted to give a descriptive account of the

rate of shortening and the percentage of telomere ends at particular lengths at each
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molecular snapshot. At the early stage of analysis, BW6F2 (p4; PD8) (Fig. 5.3a and

c) shows a wider and hence more heterogeneous distribution than BWF1 (p5; PD4)

(Fig. 5.3b and d). BWF1 has a higher percentage of telomere ends at the low

intensity categories than BW6F2. This pattern persists as cells from these lines

proliferate, with BW6F2 maintaining a more heterogeneous distribution of telomere

length than BWF1. This analysis also shows that telomere shortening rate is more

pronounced at an early stage in BW6F2 as shortening rate between p4 (PD8) and p7

(PD15) was more dramatic than the rate between p7 (PD15) to p20 (PD52).

Although telomere length profiles are similar between these two stages, results are

confounded somewhat by the lack of 'true' SFE data. Nevertheless, using SFE data

generated from this analysis, BW6F2 p20 shows a much greater degree of telomere

ends at the <50 TFU category, approximately 2-fold higher (see Appendix 3). This is

suggestive of a subset of telomeres shortening at a faster rate than the rest of the

telomeres in a given cell at this stage. Conversely, the data suggests that telomere

shortening rate in BWF1 is more homogenous, which is reflected by only a slight

increase in the proportion of SFE detected at each stage (see Appendix 4).
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Figure 5.3: Q-FISH profiles of Black Welsh sheep fibroblasts. Histograms and
line graphs showing percentage of telomere ends per category, with category
reflecting arbitrary telomere fluorescence units as measured by the Telo-TFL Q-
FISH quantitative software. A more heterogeneous telomere length profile is evident
in BW6F2 (A and C), compared to a relatively more homogenous distribution in the
BWF1 line (B and D). A greater proportion of telomeres correspond to low telomere
fluorescent unit categories in BWF1 throughout the culture period.

5.2.4 Gated Q-FISH analysis

To better present telomere length determined by Q-FISH analysis, categories were

gated to show percentage of telomere ends per gated category (Table 5.2). This

approach shows clearly that BWF1 has a greater percentage of telomere ends of the

shortest telomere length category (category 50-200) and conversely a much lower

percentage of telomere ends of the longest telomere length categories (category 450-

600 and 650-900). Interestingly, both the BWF1 and BW6F2 lines show a

comparable percentage of telomere ends representing the 250-400 TFU categories, a

category that reflects the highest proportion of telomere ends at the early passage.
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50 1.3 4.4 26.0
100 4.6 12.5 13.7 34.9
150 7.4 11.7 12.7 21.3 !
200 10.4 9.6 12.4 10.1 |
250 12.7 10.4 13.2 4.7

300 12.1 9.6 9.5 1.2
350 112 7.8 8.0 0.6
400 11.3 7.3 7.1 0.6
450 8.0 6.6 5.3 0.0
500 6.5 5.3 4.5 0.6

550 5.0 3.7 3.1 0.0
600 2.9 2.3 1.5 0.0
650 2.3 3.1 1.8 0.0
700 1.4 1.8 1.3 0.0

750 0.9 1.4 0.6 0.0
800 0.7 0.7 0.6 0.0

850 0.4 I.I 0.2 0.0

900 0.7 0.6 0.0 0.0

% Telomere Ends per category

Gate I (Category 50-200)
Gate 2 (Category 250-400)
Gate 3 (Category 450-600)
Gate 4 (Category 650-000)

B

50 6.7 5.6 III

100 15.9 14.6 22.8

150 18.7 16.1 21.4

200 14.5 16.5 19.8

250 12.3 13.7 11.9

300 9.6 9.9 6.9
350 5.3 9.1 3.4
400 4.4 5.9 1.8

450 3.4 3.8 0.6

500 2.3 2.7 0.2

550 1.9 1.0 0.0
600 1.6 0.5 0.0

650 1.3 0.3 0.0

700 0.8 0.1 0.0

750 0.5 0.0 0.0
800 0.1 0.0 0.0

850 0.1 0.0 0.0

900 0.4 0.0 0.0

% Telomere Ends per category

Gate I (Category 50-200)
Gate 2 (Category 250-400)
Gate 3 (Category 450-600)
Gate 4 (Category 650-900)

Ciltegui r Cafc-guiy CalegoM Category CZHOTH
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BW6F2 p4 23./ 47.3 22.4 | 6.4 71.0 [ 28.8
BW6F2 p7 38.2 35.1 17.0 8.7 73.3 j 26.6
BW6F2p20 42.8 37.8 14.4 | 4.5 80.6 | !M
BW6F2p37 92.3 L 7.1 0.6 1 0.0 1 99.4 0.6

mm
BWFIp5 41.3 46.1 9.2 3.2 87.4 12.4 ]
BWFlpl3 52.8 38.6 8.0 0.4 91.4 8.4 1
BWFIpIS 75.1 24.0 0.8 0.0 I 99.1 0.8

% Telomere Ends per gated category

% Telomere Ends per gated category

Table 5.2: Percentage of telomere ends per gated category. BW6F2 exhibits a
greater proportion of telomere ends at the 450-600 and 650-900 TFU categories.
Conversely, BWF1 exhibits a greater proportion of telomere ends at the 50-200 TFU
category throughout the culture period analyzed. Both lines have a comparable
proportion of telomere ends representing the 250-400 TFU categories.

The heterogenic dynamics of telomere shortening rate can be inferred on the basis of

this analysis. Whereas a comparable proportion of telomeres at early passage

(BW6F2 p4, 47%; BWF1 p5, 46%) are of lengths calculated as 250-400 TFU,

telomere shortening is more pronounced in a subset of telomeres in BWF1 and

BW6F2. This accounts for telomeres that correspond to 50-200 TFU even at this

early passage. But crucially, there is approximately twice the percentage of telomere

ends at this 'short' telomere category in BWF1 (-41%) compared to BW6F2

(-24%). This suggests that although both lines consist of a subset of telomeres within
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the population that have a more pronounced telomere shortening rate relative to the

rest of the population, the proportion of telomeres exhibiting such a rate is

substantially higher in BWF1 compared to BW6F2.

The initial descriptive gated categories reveal a subset of telomeres within the BWF1

line that exhibited more pronounced telomere shortening If only two TFU categories

are regarded, representing simply 'long' and 'short' telomeres (category 50-400 TFU

and category 450-900 TFU respectively), the comparative distribution of telomere

length heterogeneity can be more readily appreciated. (NB: This categorization is

simply the two categories either side of the median TFU calculated for these lines.)

Although 'long' and 'short' telomeres are a subjective measure in this context, the

relative distribution is what matters. This analysis shows that at an early stage,

similar for both lines (BWF1 p5; BW6F2 p4), -87% of telomeric ends are 'short'

within the BWF1 line, whereas -71% of telomeric ends fall within this category for

BW6F2. This conversely results in more than twice the number of 'long' telomere

ends within the BW6F2 (-29%) line compared to BWF1 (-13%). This pattern

persists throughout the proliferative lifespan of these lines, with -99% of telomeric

ends exhibiting 'short' telomeres in the BWF1 pi 8 line, whereas -81% of telomeres

are 'short' in the BW6F2 p20 line (Table. 5.3).
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Category 50-400 TFU Category 450 900 TFU
BWFlpS 87.4% 12.6%

BWFlpl3 91.4% 8.6%
BWF p 18 99.1% 0.9%

BW6F2 p 4 71.0% 29.0%

EW6F2 p7 73.3% 26.7%
BW6F2 p20 80 6% 19 4%

Table 5.3: Percentage of telomere ends within gated categories representing
'short' and 'long' telomeres. A greater proportion of telomere ends represent the
'short' telomere category in the BWF1 line compared to BW6F2 at the initial stage
of analysis. This pattern of distribution persists throughout the culture period
analyzed.

To confirm that the differences in telomere length within passages of each line and

between the two lines are significant, a Chi Squared test (see section 2.11) was

conducted on the values representing the percentage of telomere ends per TFU

category. For the telomere length distribution within the BWF1 line, a Chi Squared

value of 20.1 was calculated using 6 degrees of freedom. This reflects a p value of

less than or equal to 0.01 (99% confidence level), hence the telomere lengths are

significantly different. Similarly for the BW6F2 line, a Chi Squared value of 54.5

was obtained (p value less than or equal to 0.001; 99.9% confidence level). When

comparing telomere lengths between the two lines, a Chi Squared value of 65.1 was

obtained ((p value less than or equal to 0.001; 99.9% confidence level). Therefore

telomere lengths within each line measured from early to pre-senescent passage, are

significantly different, as is telomere length distribution between the two lines.
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5.2.5 Calculation of telomere shortening rate

To accurately determine telomere shortening rate, absolute TFU and population

doublings incurred has to be considered. This allows for a calculation of overall

mean telomere shortening rate (Total TFU/PD) as well as shortening rate between

each particular stage of analysis (e.g. early to middle passage). It must be stated that

calculation of telomere shortening rate deployed here, excludes the category of SFE

due to the limitations previously noted. Due to the low sample size of the BW6F2

p37 pre-senescent passage, that line will be omitted from this calculation. Regardless

of these limitations, calculation of telomere shortening rate based on a quantitative

assessment of telomere signals, can further our understanding of intrinsic telomere

dynamics when comparing the BW6F2 and BWF1 lines. An objective description of

telomere shortening rate, regarding individual telomere ends is a more robust method

of analysis than a rather subjective calculation of mean telomere length within a

population across particular snapshots in time. To determine mean TFU for each

passage based on the Q-FISH output, the total number of telomere ends (frequency

of events) for each TFU value (category) was calculated to give the weighted

frequencies for each telomere end. The sum of weighted frequencies divided by the

sum of frequencies gave the mean TFU for each passage. The total PDs were taken

from a previous report from our laboratory (Clark 2003).
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Cell line Mean TFU
TFU Shortening

Cumulative
FD

Total FD Shortening
rate

(TFU/FD)

Mean
shortening
rate (T otal
TFU/Iotal

PD)
BWF1

p5
255 4

BWF1

P13
236 19 19 15 1.3

BWl'l

pl8
173 63 (Total = 82) 29 10 (Total = 25) 6.3 3.3

HW6F2
p4

351 8 -

BW6F2

p7
331 20 15 7 2.9

EW6F2

p20
292 39 (Total = 59) 52 37 (Total =44

PD)
1.1 1.3

TFU = Arbitrary Telomere Fluorescence Units
NB: Data excludes SFE category and also omits the BW6F2 p37 line (low sample size)

Mean shortening rate BWF1 3.3
= - 2.5-fold difference

Mean shortening rate BW6F2 1.3

Table 5.4: Calculation of mean telomere shortening rate based upon TFU.
Mean telomere shortening rate based upon TFU shortening, is approximately 2.5-
fold greater in the BWF1 line. However, there is a wide distribution of telomere
shortening rate from the overall mean shortening rate, when different stages of the
culture period are considered. BWF1 incurs a shortening rate of 1.3TFU/PD between
p5 and pi3 and increases dramatically to 6.3TFU/PD between pi3 and pi 8.
Conversely, mean shortening rate for BW6F2 is 2.9TFU/PD between p4 and p7 and
slows to 1.1TFU/PD between p7 and p20.

The analysis shows that telomere length, based upon mean TFU, is substantially

higher in the BW6F2 line; e.g.- mean TFU is 351 for BW6F2 p4, whereas mean TFU

is 255 for BWF1 p5 (Table 5.4). Total telomere shortening (TFU shortening or more

accurately, signal decrease of telomere fluorescence units) is greater in BWF1 than

BW6F2 (TFU shortening of 82 and 59 respectively) over the culture period analyzed

(Table 5.4). Taking into account the PDs accumulated within each line, telomere

shortening rate based upon TFU shortening rate can be calculated between each stage

(early, middle and late passage). The result shows that the two Black Welsh lines

differ not only regarding overall telomere shortening rate, but also at which stage
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telomere shortening rate is more pronounced or less pronounced relatively. BWF1

incurs a mean telomere shortening rate of 3.3 TFU/PD, whereas BW6F2 incurs 1.3

TFU/PD (Table 5.4). This amounts to a ~2.5fold difference in overall mean telomere

shortening rate. This is close to the ~3-fold difference in mean telomere shortening

rate reported previously, based on telomere restriction fragment length analysis

(~91bp/PD for BW6F2; ~300bp/PD for BWF1) (Clark 2003). However the mean

telomere shortening rate within these lines is not homogenous throughout the culture

period; rather shortening rate dramatically alters at different stages, depending on the

line in question. Between p5 (PD4) and pi3 (PD19), BWF1 exhibits a mean telomere

shortening rate of 1.3TFU/PD, whereas between pi3 and pi8 (PD29), mean telomere

shortening rate is substantially more pronounced - 6.3TFU/PD (Table 5.4).

Surprisingly, although there is a clear alteration in rate of telomere shortening in the

BW6F2 line, the shortening rate is more pronounced at an early stage. Between p4

(PD8) and p7 (PD15), BW6F2 exhibits a shortening rate of 2.9 TFU/PD, whereas

this rate decreases to 1.1 TFU/PD at p20 (52PD) (Table 5.4) Thus TFU calculations

based upon Q-FISH profiles, suggest heterogeneous telomere shortening rates within

the Black Welsh lines, with a more pronounced shortening rate being incurred much

later in BWF1 than BW6F2. It is interesting to observe the degree by which telomere

shortening rate alters within the BWF1 line. Telomere attrition is more pronounced

by approximately ~5-fold between the two stages analyzed, (1.3TFU/PD to 6.3

TFU/PD). Conversely, telomere attrition rate slows by ~3-fold between the two

stages analyzed within the BW6F2 line.
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5.3 Discussion

This analysis is the first demonstration of the Q-FISH technique in ovine metaphase

spreads and shows how individual telomere repeats may be quantitatively assessed.

Thus it is possible to present a highly specific description of telomere shortening

dynamics using the Q-FISH method. This study, regards alterations in overall

telomere length profiles and ofmean telomere shortening rate dynamics, taking into

account quantitative values form individual telomeres. It may be more informative to

directly monitor telomere shortening rate within individual telomere ends, but to do

so would require labeling sheep chromosomes in a manner that allows them to be

distinct from one another. This would include the ability to identify sheep

chromosomes by eye prior to overlaying images using the Q-FISH software, thus

accounting for telomere shortening in say sheep chromosome 6 during proliferative

lifespan.

There are however a number of limitations using the TFL-TELO Q-FISH software.

Firstly, sheep chromosomes cannot be treated with colcemid, which is the

conventional method for treating mouse and human cells prior to metaphase

preparation. Treatment with colcemid on sheep cells results in chromosomes

fragmenting, the reason being unclear. Instead, sheep cells are released from contact

inhibition due to 100% confluency, 24 hours prior to metaphase preparation. As

colcemid acts to inhibit spindle formation, the absence of colcemid possibly results

in many sheep cells not at the metaphase stage when cells are prepared for FISH

analysis. This reduces the number of quality spreads. Secondly, sheep chromosomes

are required to be manipulated prior to overlaying chromosome and telomere repeat
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images. And finally, the minimum threshold for the software to detect telomere

signals is set too high - this results in a read-out of SFE that do not necessarily

reflect telomeres with no signal. The subsequent problem regarding this issue is that

it is difficult to consider chromosome termini with very short telomeres, as they will

all be categorized under SFE in combination with chromosomes that genuinely have

no signal. Therefore at present, it is difficult to assess telomere lengths of the

'shortest' telomeres at replicative senescence. Nevertheless, a descriptive study of

telomere length heterogeneity, within the permissible threshold of the software, is

still informative, quantitative and gives a greater degree of resolution than TRF

analysis on an entire population.

Generally, the Q-FISH profiles when plotted as the percentage of telomere ends per

TFU category, shows BW6F2 to display a more heterogeneous profile than BWF1.

Both lines show a reasonably normal distribution of telomere lengths; i.e. - a

minority subset of telomeres with very long or very short telomeres, with the

majority of telomeres representing an intermediate length. Therefore we can infer

that average telomere length does not differ dramatically between these lines.

However, the skew of this distribution is more biased towards shorter telomeres in

BWF1, relative to BW6F2. Thus, BWF1 exhibits a Q-FISH profile that is relatively

more homogenous than BW6F2. This distribution is better represented by gating

TFU categories. Comparison of telomere ends per TFU category at the initial stage

of analysis is revealing. Both BWF1 and BW6F2 have a comparable percentage of

telomere ends at category 200-400 (46.1% and 47.3% respectively), a category that

represents a relatively intermediate telomere length in this study. However, BWF1 at
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this early stage exhibits 41.3% of telomeres in the 'shortest' TFU category (50-150

TFU), whereas only 23.7% of BW6F2 telomeric ends represent this category at a

similar stage of analysis. This is a recurring pattern at each stage analyzed - BWF1

exhibits a greater proportion of 'short' telomeres. Therefore although the proportion

of telomeres with average telomere length is inferred to be comparable, BWF1

exhibits a greater proportion of very short telomeres. This suggests rather

superficially, that although replicative senescence may be triggered at a comparable

'mean' telomere length, the telomere shortening rate in a subset of telomeres within

the BWF1 population may be a key determinant of the much earlier onset of

senescence activation in this line. This pattern is descriptive evidence of intrinsic

differences of telomere shortening rate between individual telomere ends within the

BWF1 and BW6F2 lines, thereby rendering a rejection of the null hypothesis.

Taking into consideration the previously reported PD rate for these lines (Clark

2003), a more accurate description of telomere shortening rate can be deduced. As

expected, this reveals that BWF1 exhibits a more aggravated mean telomere

shortening rate (based upon TFU shortening) relative to BW6F2. Mean telomere

shortening rate is approximately 2.5-fold more pronounced in BWF1. However, the

rate of BWF1 telomere shortening (6.3TFU/PD) is dramatically more pronounced at

a later stage of culture (pl3 to pi8) than at an early stage (1.3TFU/PD; p5 to pi3).

The pattern is reversed in BW6F2 with telomere shortening rate more pronounced at

an earlier stage (2.9TFU/PD; p4 to p7) than at a later stage (1.1TFU/PD; p7 to p20).

It is important to note that even this more pronounced telomere shortening rate in

BW6F2, is still only half the attrition rate of BWF1 at the later stage of culture.

Interestingly, if absolute TFU is taken into consideration for each line, there are more
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telomeres (relatively) with a high TFU (600 TFU or more) for BW6F2 than for

BWF1, notably at the earliest stage analyzed (see Appendix 2 for absolute TFU

values). This was not shown in previous methods to analyze telomere length based

on TRF studies (Clark et ah, 2003). This may reflect a limitation in using TRF

analysis to measure telomere length compared to the quantitative approach as

provided by Q-FISH.

These results hint at the functional consequence of BWF1 exhibiting a greater

proportion of 'short' telomeres at similar stages of culture (i.e. - passage number).

There is a suggestion that aggravated telomere attrition within the BWF1 line is

directly attributable to the earlier onset of senescence and hence the reduced

proliferative lifespan evident in this line. However using a descriptive approach such

as this makes it difficult to infer a conclusion of causal or consequential

relationships. Is the more pronounced telomere shortening rate in BWF1 a key

determinant of a shorter proliferative lifespan relative to BW6F2? Or is telomere

shortening rate in this context, consequential of alternative intrinsic and extrinsic

factors that determine proliferative lifespan? Both these lines are derived from the

same breed and therefore constitute similar genetic backgrounds. This probably

accounts for the comparable average telomere lengths after derivation of the lines

and upon onset of replicative senescence. However the intrinsic differences in

telomere shortening rate may be due to more subtle differences in genetic profiles of

these lines, such as gene expression levels and timing of expression. Although the

very nature of in vitro culture systems confers various sources of stress upon cellular

populations, these lines repeatedly show this intrinsic difference in telomere
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shortening rate, implying that the cause of this difference is likely due to the inherent

genetic make-up of the lines, rather than due to a stochastic variable.

Overall, Q-FISH provides a robust, reproducible and quantitative method to analyze

individual telomere length to a high resolution. Moreover, it is likely that telomeres

that are detected as 'short', i.e.- corresponding to -50 TFU, may not have been

readily detected by the TRF assays deployed previously, and so obscured results.

Factors regulating telomere shortening rate remain one of the most elusive avenues

in telomere biology research. One of the key limitations is that analysis is usually

conducted at molecular snapshots in time rather than as a smooth temporal

continuum. It will be important to determine telomere shortening at each round of

cell division and for each telomere. Q-FISH profiles of telomere dynamics have

showed that heterogeneity is apparent within telomere ends as proliferation

progresses, therefore although average telomere shortening rate at any given point

can be informative, individual telomere shortening rates will be crucial to our

understanding of issues such as proliferative lifespan capacity and onset of

replicative senescence.
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CHAPTER 6

TELOMERE-OLIGONUCLEOTIDE

LIGATION ASSAYAND LOW OXYGEN

CULTURE IN OVINE FIBROBLASTS
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6.1 Introduction

Two main mechanisms have been postulated to restrict lifespan of primary mammalian

cells. The first suggests that cultured cells suffer from extrinsic physiologic stress and

cumulative damage that ultimately trigger senescence (von Zglinicki et ah, 2001 &

2003). The second proposes that an intrinsic counting mechanism triggers senescence

after a predetermined number of cell generations (Hayflick 1961) that may be cell-type

and species-specific. The 'telomere-length as a mitotic clock' hypothesis is based on the

latter model whereby progressive telomere shortening induces senescence once one or

more telomeres erode to a critical length (Harley et al., 1990, Zou Y. et al., 2004).

Consistent with this hypothesis, expression of telomerase, which halts telomere erosion,

prevents senescence (Bodnar et ah, 1998). Critically, some important findings are not

easily explained by the telomere length hypothesis; many normal cells enter senescence

with relatively long telomeres and there are many examples of cells that have much

shorter telomeres than those found in senescent cells, yet retain the ability to divide

(Allsopp et ah, 1995, Blackburn 2000). Thus, short telomeres per se are not

incompatible with continued cellular division. In human chromosomes, the long terminal

protrusions of single-stranded G-rich sequence have been reported to vary from 50nt to

more than 500nt (Makarov et ah, 1997, Stewart et ah, 2003). It has been suggested that

long TTAGGG single-strand protrusions, besides being an effective substrate for

telomerase, may form several non-canonical structures. Seminal work involving electron

microscope observation revealed that up to 42% of telomere ends form a large loop in a

reaction that depends on the presence of a 3'-overhang (3'-OH) on the G-rich strand and
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the telomeric double-stranded binding protein TRF2 (Van Steensel et al., 1998, Griffith

et al., 1999). The free 3'end was shown to invade the duplex telomere array at the loop

junction. This terminal structure, termed the T-loop, may explain how the extreme

termini of chromosomes are distinguished from a DNA break, preventing an appropriate

DNA damage response and avoiding G-rich strand degradation or end-to-end fusions of

chromosomes. The elucidation of the T-loop poses several key questions: how does

telomerase access the hidden chromosomal ends and what is the relationship between

telomerase expression and 3'-OH length; is the t-loop structure altered at replicative

senescence and if so, is this event a trigger of senescence or consequential? Regarding

the latter hypothesis, it has been reported in normal human fibroblasts that the 3'-OH is

eroded at replicative senescence and that this may be a molecular trigger of senescence

(Stewart et al., 2003). However others have shown, using the same cell type, that 3'-OH

is eroded only at crisis and therefore represents a consequential event to upstream

senescence activation (Chai et al., 2005).

An intriguing hypothesis was furhter postulated by Jerry Shay and Woodring Wright,

which states that telomere shortening rate is directly determined by 3'-OH length. In

this respect, telomere erosion would be predicted to be directly proportional to 3'-OH

loss after each round of cell division. The potential ability to manipulate this rate of

shortening has profound implications both for slowing the rate of replicative ageing in

normal cells and accelerating the rate of telomere loss in cancer cells in combination

with anti-telomerase therapies. Further independent studies using a variety of human cell

types and those from different mammalian species, will be required to fully understand
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the molecular alteration of the 3'-OH during culture and to determine whether telomere

shortening rate is detemined by the 3'-OH length.

The study presented here utilizes an alternative mammalian model, the sheep (Ovis

aries), to study the relationship between G-rich 3'OH length and population doubling

and also of the relationship of 3'-OH to telomere length and hTERT gene expression. As

discussed in Chapter 5, the sheep breed studied here, exhibits similar in vitro telomere

lengths after isolation of foetal fibroblast cell lines (~18kb and ~21kb), to that reported

for somatic human cells (~5-15kb) (Kipling 1990). Moreover previous experiments in

our laboratory have shown that ectopic expression of hTERT in sheep fibroblasts

reconstitutes telomerase activity, extends lifespan and maintains senescence bypass (Cui

et al., 2002). This study will use the Telomere-Oligonucleotide Ligation Assay (T-OLA)

to investigate whether the G-rich 3'-OH alters during in vitro culture of normal sheep

fibroblasts and if so, whether this is a direct correlate to telomere shortening rate. In

addition, T-OLA will be conducted on hTERT-immortalized sheep fibroblasts to

determine if there exists a relationship between 3'-OH length and hTERT gene

expression level. A possible relationship between oxidative stress response capacity and

telomere and 3'-OH shortening rate will also be addressed.
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6.1.1 Hypothesis

1) Telomere shortening rate is determined by 3'-OH length in primary sheep

fibroblasts.

2) 3'-OH length correlates to both hTERT expression level and to telomere length;

lines with high levels of hTERT expression maintain longer telomeres and longer 3 '-OH

than lines with lower levels of hTERT expression.

3) Telomere shortening rate can be slowed when sheep fibroblast lines are grown

under low oxygen (2%) conditions due to decreased oxidative stress.

6.1.2 Chapter aims

1) To provide the first demonstration of the T-OLA technique in primary ovine

cells.

2) To investigate the relationship between 3'-OH length and telomere length in

primary ovine cells. If telomere shortening rate is determined by 3'-OH

length, the BWF1 line would be predicted to have longer 3'-OH.

3) To investigate the relationship between 3'-OH length and hTERT

expression level.
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6.2 Results

6.2.1 T-OLA Optimisation

To assess the length of the telomeric overhang, the T-OLA assay was conducted as

described in section 2.2.17 (Cimino-Reale et al., 2001). Specifically, radiolabeled

oligonucleotides complementary to the telomeric overhang are annealed to genomic

DNA, ligated and then electrophoretically separated. The length of ligation products and

their signal intensity then reflect the length of overhangs in the sample. Firstly, T-OLA

conditions were optimized in our laboratory using the BJ-hTERT immortalized primary

human fibroblast line, previously reported by others. In our laboratory settings, the

optimised amount of genomic DNA used for T-OLA was lOpg rather than 5pg

previously documented. In addition, annealing temperature for hybridization of

radiolabeled oligonucleotide to telomeric overhang was set at 52°C, rather than the

previously documented 50°C. For ligation of hybridized products, 30U of Taq ligase

was required for efficient ligation, rather than the 20U documented by others. A

maximal 3'-OH signal of 324nt was detected for the BJhTERT line (Fig. 6.1), shorter

than a previous recent report with respect to this line (Stewart et al., 2003). This may

reflect intrinsic differences in these clonal lines across laboratory settings.
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Figure 6.1: T-OLA optimization. T-OLA analysis of genomic DNA from human BJ
fibroblasts immortalized with hTERT using radioactively labeled oligonucleotide of the
sequence (CCCTAA)4or mismatch control (CCCTTA)4 A maximal product of 324nt is
detected.

6.2.2 T-OLA analysis of primary sheep fibroblasts

We sought to address whether the G-rich 3' telomeric overhang is altered during in vitro

culture and whether this correlates to telomere shortening rate, in an alternative higher

order mammalian species, the sheep (Ovis aries). Our laboratory previously reported

two sheep fibroblast lines (BWF1 and BW6F2) which showed comparable telomere

lengths after isolation and at replicative senescence, but which differed dramatically in

replicative lifespan, due to intrinsic differences in telomere shortening rate (BWF1

exhibited a 3-fold shorter replicative lifespan) (Clark et al., 2003). T-OLA analysis was

conducted to measure whether the 3' telomeric overhang is altered during in vitro

culture of BWF1 and BW6F2 normal primary sheep fibroblasts and the experiment
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repeated twice. Both lines showed progressive 3'-OH shortening of 72nt, from a

maximal T-OLA signal of 456nt at early passage to 384nt at late pre-senescent passage,

(Fig. 6.2a, and Table 6.1). However, this lower value of overhang length was detected

after 48 population doublings (PD) in BWF1 and 103 PD in BW6F2 (Fig 6.2b).
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Figure 6.2: G-rich 3'-OH analysis of DNA from Black Welsh sheep fibroblasts
(BWF1 and BW6F2). (A) T-OLA analysis of DNA at increasing PDs up till pre-
senescence. A maximal T-OLA signal of 456nt at early passage and 384nt at late
passage, is detected for each line. Genomic PCR of the GAPDH locus using lOng
template conducted on each sample is displayed on the lower panel. (B) However, 3'-
OH shortening is more pronounced in BWF1 with the lower 3'-OH value of 384nt
reached after 48PD in this line compared to 103PD in theBW6F2 line.

In order to determine the length distribution of the G-rich 3'-OH, repeated experiments

were performed on BWF1 and BW6F2 fibroblasts. For BWF1, 27 % of the G-rich tail

was in the class ranging from 240nt to 456nt at an early culture stage (PD7), falling to
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22% at PD28 and 16% at PD48 (Fig. 6.3b). Comparably for BW6F2, 32% of the G-rich

tail ranged from 240nt to 456nt at PD15, 23% at PD64 and 17% at PD103 (Figure 6.3a).
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Figure 6.3: Distribution of G-rich 3' overhangs in cultured primary sheep
fibroblasts. The band intensity of ligated products was calculated using Multi-Analyst
1.1 software. The frequency of overhangs of different length for (A) BW6F2 and (B)
BWF1, was obtained by normalizing the intensity of each single band to the sum of
intensity of all bands in the ladder at the PDs indicated. On the x-axis the numbers of
oligonucleotides ligated by the T-OLA are reported.

Thus the data supports the conclusion that 3'-OFI shortens during in vitro culture of

normal sheep fibroblasts.
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6.2.3 TRF analysis of normal sheep fibroblasts

To establish whether 3'-OH shortening correlates to telomere length, telomere restriction

fragment length analysis was conducted on Black Welsh lines at the same stages as that

of T-OLA analysis and directly compared. Telomeric overhang shortening paralleled

mean telomere length shortening in both lines (Fig. 6.4a) and was found to be a

significant correlate (r = 0.79) in this setting (Fig 6.4b and Table 6.1).
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Figure 6.4: 3'-OH length correlates to telomere length in primary sheep fibroblasts.
(A) Denaturing TRF Southern-blot analysis of genomic DNA from Black Welsh lines at
the indicated PDs. (B) Direct correlation between 3'-OH length and mean TRF length.

The rate of 3'-OH shortening was next calculated and compared to the rate of telomere

shortening. Mean telomere shortening rate was calculated as 51.1bp/PD for BW6F2 and

128.0bp/PD for BWF1, approximately a 2.5-fold difference. This is similar to the

shortening rate reported previously (Clark et al., 2003). Comparably, mean 3'-OH
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shortening rate was calculated as 0.8nt/PD for BWF6F2 and 2.88nt/PD for BWF1- a

3.5-fold difference. Of the total 72nt of 3'-OH eroded during the culture period analyzed,

1.11% on average is lost per PD in BWF6F2, whereas 4.0% is lost per PD in BWF1

(Table 6.1). Strikingly, of the total 4.5kb telomere erosion in BW6F2 during this culture

period, 1.13% is lost on average per PD, and of the 3.2Kb telomere erosion incurred in

BWF1, 4.0% is lost per PD. Although the percentage loss of mean telomere length and

telomeric overhang length is identical, it is difficult to determine if this is coincidental or

of functional importance. However, the findings indicate that mean telomere shortening

rate is related to mean telomeric overhang shortening rate in primary sheep fibroblasts in

this context. The data supports the conclusion that 3'-OH shortens during in vitro culture

of normal sheep fibroblasts and that 3'-OH shortening parallels telomere shortening.

However there is no evidence that this is a direct correlate; telomere shortening per PD

is significantly more pronounced than 3'-OH shortening per PD, thus the data does not

provide evidence for telomere shortening rate being directly proportional to the size of

the 3'-OH. It is important to state that maximal 3'-OH length reported here simply

reflects the maximal T-OLA signal obtained from the assay under these settings and

does not exclude the possibility of true 3'-OH length being longer.
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Cell
line

PDa Mean
TRF

length
(Kb)

3-OH

length
(nt)

Mean TRF

shortening rate
(bp/PD)

Mean 3-OH

shortening
rate (nt/PD)

% Mean TRF % Mean 3'-

shortening/PD OH
shortening/PD

(kb/PD)/total
telomere (nt/PD)/total 3'-
shortening OH shortening

BW6F2 15 18.1 456
64 15.8 408

103 13.6 384 51.1 0.8 1.13 1.11

BWF1 4 16.1 456
14 - 408

29 12.9 384 128.0 2.88 4.0 4.0

''Population doubling rate calculated from growth curve reported in (Clark 2003).

Table 6.1: Summary of TRF and T-OLA analysis on sheep fibroblast clones.

6.2.4 Culture of sheep fibroblasts under low oxidative stress

It has been suggested that telomeres measure stress and damage accumulation more

readily than simple mitotic time and that telomere shortening may be stress-dependent

due to a telomere-specific damage repair deficiency (von Zglinicki et al., 2002 & 2003).

Previously a laboratory in Newcastle, UK, (von Zglinicki lab) have investigated whether

response to oxidative stress may be a determinant of differences in telomere shortening

and 3'-OH shortening rate evident in the BWF1 and BW6F2 normal sheep fibroblasts.

Anti-oxidative defence capabilities was investigated in these lines by measuring

peroxide levels under normal and hyperoxic culture conditions. Actual units of peroxide

levels were similar for BWF1 and BW6F2 under normoxic conditions. However, under

hyperoxic culture shock conditions, although peroxide levels rose significantly for both

lines, levels were 3-fold more pronounced in BWF1 than for BW6F2 (see Appendix 5).

This suggests that stochastic variations ofmild oxidative stress may be one factor for the
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shorter proliferative lifespan of BWF1. Therefore it was of interest to investigate

whether culture in 2% low oxygen rather than 21% oxygen may overcome a possible

stress-induced premature senescence in BWF1. BWF1 cells at PD20 were cultured in

each oxygenated setting and PD calculated. Although proliferation rate of cells in 2%

oxygen increased moderately after -28PD, cells reached replicative senescence at the

same proliferative age (-35PD) under both conditions (Fig 6.5). The outcome was

similar for BW6F2, where cells under both oxygenated conditions reached senescence at

-100PD (data not shown). Therefore, culture in 2% oxygen failed to reduce the rate of

telomere shortening in this setting.

Figure 6.5: Culture in low percentage oxygen in BWF1 primary sheep fibroblasts.
Senescent morphology was evident after -35 PD for BWF1 cells cultured in 21% and
2% oxygen from -20PD.
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6.2.5 T-OLA analysis of hTERT-immortalized sheep fibroblasts

A recent reported has documented how the 3'-OH is found to be significantly shorter in

samples derived from endometrial cancers compared to those derived from normal

endometria (Hashimoto et ah, 2005). This was the first report examining the 3'-OH of

telomeric repeats in clinical cancer samples. Unexpectedly perhaps, this study failed to

observe any correlation between the levels of telomerase activity and 3'-OH or telomere

length. Furthermore it remains elusive as to whether there is a correlation between

telomerase activity and 3'-OH in a normal cellular context. Previously our laboratory

reported the generation and characterization of hTERT-immortalized primary sheep

fibroblasts (GRN). In this scenario, telomere length stabilization and karyotypic stability

were directly correlated to levels of hTERT expression as measured by absolute real

time qRT-PCR (Cui et al., 2002, Table 6.2). To investigate the relationship between

hTERT gene expression and telomeric overhang length, T-OLA analysis was conducted

to measure the 3'-OH length in GRN hTERT-immortalized fibroblasts that had incurred

in excess of 400PD; at this stage, telomeres were shown to be stabilized and lines with

low levels of hTERT displayed 90-100% karyotypic abnormalities (Table 6.2). T-OLA

indicates a strong relationship between hTERT expression and 3'-OH length: lines with

>300 copies of hTERT mRNA per cell (GRN2-1 and GRN2-7) exhibited the longest

maximal 3'-OH length at 504nt; lines with 0.5-87.5 copies of hTERT per cell (GRN2-5

and GRN2-8) had a shorter 3'-OH length of 432nt and lines with <0.5 copies of hTERT

per cell (GRN1-1 and GRN2-13) exhibited the shortest 3'-OH length at 312nt (Fig.6.6a
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and b; Table 6.2). In support of this, we found a significant correlation (r = 0.70)

between hTERT expression and 3'-OH length (Fig 6.6c).
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Figure 6.6 : Telomeric 3'-OH analysis from hTERT-immortalized sheep fibroblasts.
(A) T-OLA analysis on GRN hTERT-immortalized sheep fibroblasts at culture stage in
excess of 400PDs. GRN2-1 and GRN2-7 exhibited the longest maximal T-OLA signal
(504nt). GRN 1-1 and GRN2-13 exhibited the shortest signal (312nt).Genomic PCR of
the GAPDH locus using lOng template conducted on each sample is displayed on the
lower panel.

GRN 1-1 and GRN2-13 had considerably shorter stabilized telomere lengths (6.5 and

6.0kb) than all other lines investigated and correspondingly showed the shortest

telomeric overhang length (312nt). Conversely, GRN2-1 and GRN2-7 showed the

longest stabilized mean telomere lengths (17.2 and 18.0kb) and longest 3'-OH (504nt).

GRN2-5 and GRN2-8 had telomere lengths (17.0 and 15.8kb) and 3'-OH lengths (432nt)

at an intermediate length between these two classes (Fig. 6.7a and Table 6.2).
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Furthermore, 3'-OH length correlated significantly (r = 0.92) to calculated stabilized

telomere length in hTERT-immortalized lines (Fig. 6.7b and Table 6.2).
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Figure 6.7: TRF analysis from GRN hTERT-immortalized sheep fibroblast lines.
All telomere restriction fragments shown represent stabilized telomere lengths with the
mean telomere length indicated. GRN1-1 and GRN2-13 have substantially shorter
telomere lengths (6.5 and 6.0kb respectively) than all other GRN clones, which exhibit a
mean telomere length range of ~16-18kb.

The frequency distribution of G-rich tails was calculated for the GRN clonal lines.

GRN2-1 and GRN2-7 exhibited 32% and 36% G-rich tails respectively for the overhang

class ranging from 312 to 504nt; conversely, GRN1-1 and GRN2-13 exhibited 4% and

6% of G-rich tails respectively within this range with GRN-5 and GRN2-8 exhibiting a

frequency between these two groups (24% and 25% respectively) (Fig 6.8).
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Figure 6.8: Frequency distribution of G-rich tails in hTERT-immortalized
fibroblasts. Maximal T-OLA product at PDs indicated for each line is denoted by an
asterisk. GRN2-1 and GRN2-7 exhibit the longest maximal telomeric overhang length
and approximately one third of overhangs are within a size of 312-504nt. Conversely,
GRN1-1 and GRN2-13 have the shortest maximal telomeric overhang length and
approximately 5% of overhangs are within a size range of 312-504nt. GRN2-5 and
GRN2-8 exhibit a maximal overhang length intermediate to these outliers.

Thus the data provide strong evidence for a relationship between hTERT expression

level and 3'-OH length. However, whether this is a direct causal relationship or

indirectly as a result of hTERT-dependent stabilized telomere length is unclear.

6.2.6 Relationship between 3'-OH and karyotypic stability

3' telomeric overhang length was further shown to be related to abnormal karyotype

levels previously reported (Cui et al., 2002). GRN1-1 and GRN2-13 which showed the
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shortest 3'-OH length, also displayed the highest degree of karyotypic instability at the

PDs indicated - 93% and 100% abnormal karyotype respectively. GRN2-1 and GRN2-7,

with the longest 3'-OH length, showed a more stable genome at similar PDs - 0% and

3% karyotypic abnormalities respectively. GRN2-5 and GRN2-8, with 3'-OH in

between these two groups, showed 3% and 50% of abnormal karyotypes at similar PDs.

This is a strong indication that 3'-OH length and not telomere length per se may

contribute to chromosomal instability. In support of this notion, dicentric chromosomes,

characteristic of end-to-end telomere fusions, were only apparent in GRN1-1 and

GRN2-13, lines which had significantly the shortest 3'-OH length (Table 6.2) (Cui et al.,

2002). The data suggests that a minimal length of 3'-OH may be necessary to confer

genomic stability, likely due to the formation of a proper telomere end-capping structure

such as the T-loop. In this regard, 3'-OH length below this threshold may be a

determinant of the onset of karyotypic instability.

Cell line PD* Mean 3'-OH Relative hTERT %

TRF (nt) hTERT mRNA abnormal

<W»" rnRNA

expression1
per celld karytype6

GRN1-1 427 6.5 312 2.6 0.34 93

GRN2-1 408 17.2 504 5873.5 375.08 0

GRN2-5 416 17.0 432 1278.3 87.24 3
GRIV2-7 421 18.0 504 5752.6 345.14 3

GRN2-8 408 15.8 432 8.1 0.58 50

GRN2-13 413 6.0 312 1.0 0.08 100

Table 6.2: Summary of TRF and T-OLA analysis on hTERT-immortalized sheep
fibroblast clones; (c>dande taken from Cui W. et al 2002).
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6.3 Discussion

6.3.1 Analysis of primary sheep fibroblasts

This is the first report of 3' telomeric overhang analysis in primary sheep fibroblast lines

and thus represents an alternative mammalian model in which to study function of the

3'-OH and its interplay with telomere-related factors. These observations demonstrate

that 3'-OH length erodes during in vitro culture of normal primary sheep fibroblasts and

that 3'-OH length correlates significantly (r = 0.798) to telomere (TRF) length. Previous

reports using cultured human fibroblasts have argued for 3'-OH being eroded only at

replicative senescence (Stewart et al., 2003) or at crisis (Chai et al., 2005). The gradual

shortening of 3'-OH in sheep fibroblasts may reflect intrinsic cross-species differences.

Both the BWF1 and BW6F2 sheep fibroblast lines studied here exhibit similar 3'-OH

length at an early stage of culture (456nt) and at a pre-senescent stage (384nt). Therefore

the telomere shortening does not seem to corrrelate directly with the size of 3'-OH.

However, the rate of 3'-OH loss is more pronounced in BWF1 compared to BW6F2.

This parallels telomere shortening rate and relates to a 2.5-fold shorter replicative

lifespan in BWF1 compared to BW6F2. We further compared percentage of mean 3'-

OH loss per PD between the two lines and show that 4.0% of total overhang erosion

occurs per PD in BWF1 whereas the figure is 1.1% for BW6F2- approximately a 4-fold

difference. Similarly, regarding percentage ofmean telomere shortening per PD, 4.0% of

total telomere loss, occurs per PD in BWF1 and 1.1% per PD in BW6F2 - again

approximately a 4-fold difference. Thus, mean 3'-OH shortening rate per PD directly

parallels mean telomere shortening rate in this setting. Although we find a correlation
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between relative 3'-OH shortening and relative telomere shortening, there is a

substantial discrepancy between actual mean telomere and 3'-OH shortening rate. Mean

telomere shortening rate in BWF1 is ~128bp/PD, whereas mean 3'-OH shortening rate is

~2.9nt/PD. Similarly, the respective values are ~51bp/PD and 0.8nt/PD for BW6F2.

Therefore although the 3'-OH and telomere duplex array both shorten during in vitro

culture, the data shows that telomere shortening rate is not directly determined by 3'-OH

erosion. One explanation of this apparent discrepancy is that 3'-OH shortening may

reflect the end-replication problem, whereas overall telomere shortening better reflects

other nucleolytic processing events as well as a function of (external) oxidative stress

and (internal) anti-oxidant defence. In support of the latter argument, BW6F2 showed a

substantially better response to hyperoxic culture conditions than BWF1. Therefore anti-

oxidative capacity may be a key determinant of replicative lifespan and may transpire to

overall telomere shortening rate. The dramatically shorter lifespan and more pronounced

telomere shortening rate in BWF1 may hence be related to response to mild-stress in

culture. On this basis it was reasoned that culture in low oxygen may slow BWF1

telomere shortening rate to levels comparable with BW6F2. However culture in a 2%

low oxygen chamber, failed to increase replicative lifespan of BWF1 and BW6F2

fibroblasts. This may reflect the fact that these lines have adapted, genetically and

epigenetically, to culture conditions of 21% oxygen and thus gene expression profiles

may not be readily reversible. A definitive experiment would require culture in low

oxygen directly after derivation of primary cells. It is also imortant to note that Black

Welsh fibroblasts used in this study were isolated from the foetal carcass which is

composed mainly of skin fibroblasts and was reported to be less sensitive to room

190



Chapter 6 - T-OLA analysis and low oxygen culture

temperature oxygen levels. This may explain why there is no difference in anti-oxidative

response between BWF1 and BW6F2 under normoxic conditions (see Appendix 5) and

subsequently why there was no difference in proliferative lifespan observed under low

oxygen conditions. Therefore it may not be surprising that both lines show reduced anti-

oxidative capabilites under hyperoxic conditions (although BW6F2 fared better under

hyperoxin conditions, peroxide levels still rose substantially).

6.3.2 Analysis of hTERT-immortalized sheep fibroblasts

The relationship between hTERT gene expression and 3'-OH length was next addressed.

A recent previous report failed to find any significant correlation between levels of

telomerase activity and 3'-OH in a tumour setting (Hashimoto et al., 2005), but no report

has been documented regarding any relationship in hTERT-immortalized cells both in

vitro and in vivo. Our laboratory previously analyzed Black Welsh sheep fibroblasts

immortalized with ectopic hTERT and reported that telomere maintenance and

karyotypic stability are directly correlated to levels of hTERT expression (Cui et ah,

2002). The current analysis of 3'-OH in this setting revealed a significant correlation (r

= 0.702) between maximal 3'-OH length and copies of hTERT mRNA per cell. The

longest 3'-OH length, concurrent with near maximal mean telomere length and stable

karyotype, was evident in lines exhibiting >300 copies of hTERT mRNA per cell.

Conversely, shortest 3'-OH length, concurrent with shortest mean telomere length and

grossly abnormal karyotype, was evident in lines exhibiting <0.5 copies of hTERT

mRNA per cell. This is in accordance of RT-PCR data from others which indicate that
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most cancer cells contain only a very few (<2 copies per cell) molecules of hTERT full-

length mRNA (Yi X. et ah, 2001). Thus, 3'-OH length in cells with low levels of forced

hTERT mRNA expression may mimic the biological situation in most tumours.

Stabilized mean telomere (TRF) length also showed a strong correlation (r = 0.924) to

3'-OH length in these cell lines. Thereby lines with high levels of hTERT expression

exhibited near full length mean telomere length, more or less normal karyotype (0%

abnormal in GRN2-1 and 3% abnormal in GRN2-7) and a maximal T-OLA product of

504nt after -400PD. Conversely, lines with low levels of hTERT exhibited a mean

stabilized telomere length shorter than the senescent length of the parental lines, grossly

abnormal karyotype (93% in GRN1-1 and 100% in GRN2-13) and correspondingly a

maximal T-OLA product of 312nt. Therefore telomeric overhang length appears to be

related to the stability of the genome and attributable to levels of hTERT expression.

Whether this is a direct relationship or indirectly as a function of hTERT-mediated

telomere duplex repeat maintenance is unclear. The data presented here regarding 3'-OH

shortening in normal sheep fibroblasts suggests that 3'-OEl length in hTERT-

immortalized fibroblasts is an indirect function of hTERT expression level and is

determined by telomerase-mediated telomere maintenance.

Viewed together, the data indicates that the telomeric 3'-OH length of 504nt in

fibroblasts immortalized with high levels of hTERT, may represent full length maximal

3'-OHs in Black Welsh fibroblasts in vitro. The 3'-OH length of 456nt at early stage

BWF1 and BW6F2 fibroblasts presumably reflects 3'-OH erosion with PDs incurred up

to that stage. Conversely, the 3'-OH length of 384nt evident at late pre-senescent stage
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BWF1 and BW6F2 fibroblasts, may reflect a length close to a minimal length of 3'-OH

required to maintain a T-loop structure and hence chromosomal stability and cell

viability. In support of this, the GRN1-1 and GRN2-13 hTERT-immortalized lines, with

a 3'-OH length of 312nt show a hugely abnormal karyotype. 3'-OH in these lines may

have been permitted to shorten beyond the minimal 3'-OH length necessary for genomic

stability, due to the forced expression of hTERT, ensuring bypass of replicative

senescence activation pathways. It is plausible that 3'-OH length in these lines may be

insufficient to allow the G-rich strand overhang to invade the duplex array to form a T-

loop or any other non-canonical structure. In support of this, previous experiments in our

laboratory showed these lines to exhibit a high degree of dicentric chromosomes (Cui et

al., 2002), not apparent in any of the other lines, which indicates telomere end-to-end

fusions, the likelihood of which may be increased by loss of a 3' telomere capping

structure (Fig. 6.9). This scenario may represent a tumourigenic setting where 3'-OH

length (and stabilized mean telomere length) is shorter than the corresponding wild-type

tissue, thus resulting in loss of end-protection and facilitating chromosomal dysfunction

that augments the tumour cells.
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Figure 6.9: Relative 3-OH length in normal and hTERT-immortalized sheep
fibroblasts. Maximal telomeric overhang is presented relative to the GRN2-1 and
GRN2-7 lines (denoted by an asterisk), which showed the longest T-OLA product
(504nt). G-rich strand shortening in normal fibroblasts is shown on the right of chart,
denoted by arrows. 3'-OH length was calculated as 384nt for both BWF1 and BW6F2 at
a pre-senescent stage. The shortest 3'-OH length was calculated for GRN1-1 and GRN2-
13 (312nt) and is denoted by a cross and may represent 3'-OH lengths insufficient to
permit a telomere end-capping structure such as the T-loop.

In summary, the data presented shows that 3'-OH length in primary sheep fibroblasts,

rather than be maintained during culture, gradually erodes and that maximal 3'-OH

length correlates to mean telomere length. More informatively, the relative rate of 3'-OH

loss was found to directly correlate to the relative rate of overall telomere loss. In

addition, the correlation of 3'-OH length to telomere length is a function of hTERT

gene expression in hTERT-immortalized sheep fibroblasts. A high degree of karyotypic

instability is prevalent in hTERT-immortalized cell lines with a 3'-OH length below that

of late stage normal fibroblasts, thus implying that the 3'-OH-governed telomere end-
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protection structure is required for maintenance of genomic stability. This raises the

interesting question of whether telomerase mediated telomere repeat addition results in

3'-OH length, sufficient to form a T-loop structure in any cells at all within the context

of a tumour? And if not, how does the pro-survival role of telomerase override the

seemingly compromised state of cell viability, conferred due to loss of telomere end-

protection and consequent karyotypic abnormalities?
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CHAPTER 7

DISCUSSION

Regulation of telomere length in mammalian cells is a complex multi-factorial process

involving not only a dynamic interplay of telomere- and telomerase-associated factors,

but also the physical configuration of telomeric structure at chromosomal termini. Hence

both extrinsic and intrinsic factors inter-dependently contribute to maintain telomere

metabolic homeostasis. The project presented here has used an alternative mammalian

model, the sheep (Ovis aries), to gain valuable insight into telomere length regulation,

with respect to aspects of both extrinsic and intrinsic factors regulating mammalian

telomere length. The justification of this model was provided by previous research in our

laboratory which showed that sheep fibroblasts have a defined in vitro lifespan, sheep

telomeres have been reported to shorten at rates comparable to that reported in humans,

and ectopic expression of hTERT effectively reconstitutes telomerase activity and

immortalizes the cells (Cui et al., 2002 & 2003, Clark et al., 2003). This presents some

considerable advantages of using the sheep system, when compared to the classical

model, mouse. In general telomere and telomerase biology may be more reflective of

human in the sheep.
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7.1 Extrinsic regulation of telomere length

A previous study in our laboratory monitoring sheep fibroblasts immortalized with

ectopic hTERT, showed that telomere erosion and genomic instability occur to an extent

that is directly attributable to the level of hTERT expression; at higher levels of hTERT

expression, full length telomeres are maintained and karyotypic stability is preserved. By

contrast, at lower levels of hTERT expression, telomeres erode and karyotypic

abnormalities manifest. Surprisingly, telomerase activity was comparable between these

lines (Cui et al., 2002). This highlights the complex relationship between telomerase

function and telomere maintenance. Based on this evidence, two general hypotheses

were formulated: i) do non-catalytic motifs of hTERT mediate regulation of telomere

length in a manner that can be distinguished from hTERT catalytic activity? ii) or is the

hTERT catalytic domain solely rate-determining with respect to telomerase-mediated

telomere maintenance? In order to address both these issues, a catalytically

dysfunctional hTERT transgene was expressed in an hTERT-immortalized primary

sheep foetal fibroblast line in which telomeres stabilize at an average length much

shorter than the untransfected parental line. This strategy thereby permitted both a

window in which telomere maintenance function may be attributed to hTERT that can

be distinguished from enzymatic activity, but also a system to test the effects of

catalytically inactive hTERT on active telomerase activity.
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The data presented showed that clones exhibiting high levels of mutant hTERT

expression inhibited telomerase activity, whereas clones exhibiting lower levels did not.

These results indicated that the inhibition effect of mutant hTERT has a threshold and

that this is likely due to a dominant-negative and/or competitive inhibition effect

between the wild-type and mutant hTERT proteins. Thus mutant hTERT expression

compromised wild-type telomerase activity in a manner directly attributable to mutant

hTERT expression level. When mutant hTERT expression is sufficiently higher than the

wild-type, it competitively inhibits the binding of wild-type hTERT to telomerase RNA

or the formation of TERT homodimers, hence inhibition of telomerase activity.

However, when TRAP assay was conducted using 0.5pg rather than 0.1 pg protein

lysate, low levels of telomerase activity was detectable in cells with high expressing

mutant hTERT. This low level of telomerase activity could be due to a small number of

cells in which mutant hTERT was silenced or expressed at low levels and highlights a

caveat of considering dominant-negative anti-telomerase intervention in tumour cells.

Furthermore, sufficiently high levels of mutant hTERT expression were found not only

to inhibit telomerase activity but also to affect cellular proliferation and telomere length,

which may be a consequence of telomerase inhibition. Although the general

proliferation rate throughout culture was similar for all clones, one clone, shown to

exhibit the highest relative levels of mutant hTERT, exhibited a period of slower

proliferation after only a short period in culture, concurrent with a senescent morphology

and positive senescence-associated [Tgalactosidase staining within a subset of cells

within the population. However, the remaining cells in the population where telomerase
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inhibition was presumably not effected, thereafter incurred a growth advantage and were

thus selected for. This highlights the difficulty in regarding lines derived from a single

colony as truly 'clonal'. Stochastic variation of this nature may account for

heterogeneous populations in vitro that are inaccurately termed 'clonal' (Martin-ruiz et

al., 2004).

Significant telomere attrition was evident in two of three clones with high levels of

mutant hTERT expression. Telomeres in these clones eventually reached mean

stabilized lengths much shorter than those in mock controls. These results seem to be

directly attributable to mutant hTERT expression. Mutant hTERT/mutant hTERT and

mutant hTERT/wild-type hTERT dimeric complexes are likely to be in much greater

abundance than wild-type/wild-type dimers within these lines. Inhibition of telomerase

activity and increased telomere attrition are therefore likely to be due to the

compromising of wild-type homodimeric function at the telomere substrate due to the

molar ratio imbalance of hTERT complexes. This is consistent with the notion that

hTERT homodimers are necessary to form a functional telomerase complex at the

telomere substrate (Prescott & Blackburn 1997) where catalytic domains of both hTERT

molecules may function inter-dependently.

The long-term monitoring of these hTERT-immortalized lines revealed a critical caveat

regarding the precarious nature of a sustained period of in vitro culture using transgenic

lines. After ~ 3 months of continuous propagation, almost no hTERT message (wild-

type and mutant) was evident in any of the lines, including mock controls. This hints at
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the heterogeneous nature of these lines, whereby mutant hTERT may have been silenced

in a subset of cells within a population, a subset unto which a growth advantage is

conferred thereafter. As proliferation rates were nevertheless maintained

uncompromised at the same rate throughout this period and as telomerase activity was

high in all lines at late passage, the indirect inference was that endogenous sheep TERT

may be activated in these lines. This event may plausibly occur as a consequence of a

transformation event in these lines during long-term culture. It is interesting to note that

in spite of the loss of mutant hTERT expression in the late passage of those two clones

which exhibited relatively aggravated telomere attrition, the telomere length in these two

clones did not recover to the length comparable to the mock controls after long-term

culture, rather they stabilized at the short telomere length. This indicates that in sheep

cells, telomerase may maintain but cannot elongate shortened telomeres, at least in this

setting. This contrasts with human cells (Delhommeau et al., 2002) and may reflect

intrinsic differences between hTERT expression in human cells and hTERT expression

in sheep cells.

In summary, these results support the notion that telomere maintenance requires a

functional telomerase complex with hTERT monomers likely interacting in an inter¬

dependent manner. Furthermore the result demonstrates that although hTERT non-

catalytic domains may be necessary for telomerase assembly and processivity at the

telomere substrate, they are not rate-determining. Catalytic hTERT domains appear to be

a crucial rate-determining factor regarding processivity. In addition the study highlights

the complexity of telomerase and telomere interplay; a discrepancy arose regarding one
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clone, which demonstrated high levels of mutant hTERT expression that resulted in

telomerase inhibition. Rather than aggravated telomere attrition as may have been

predicted, average telomere length was maintained at a length comparable to mock

controls. This emphasizes the limitations of using telomerase assays that incorporate a

single-strand telomeric substrate. Double-strand telomeric binding proteins cannot exert

a regulatory role at the telomere substrate as a result. As telomere length homeostasis is

regulated by a number of associated factors such as those that constitute the Shelterin

Complex, differences in expression level of these factors may account for discrepancies

such as these. A more systemic approach, which regards a composite of data with

respect to all these factors, will prove more beneficial in furthering our understanding of

telomere length regulation. The data presented here is consistent with many lines of

recent direct and indirect evidence which implicates hTERT to be functional as an inter¬

dependent homodimeric complex at the telomere substrate. It will be important to

elucidate the minimal number of hTERT complexes that act to maintain senescence

bypass, particularly in a tumour setting. Correspondingly it will be crucial to determine

how many molecules of a dominant-negative hTERT protein are sufficient to inhibit

active telomerase in tumour cells. Real time qPCR may provide an accurate picture of

the minimal threshold below which telomerase is compromised, by providing molar

stochiometries with respect to mutant and wild-type hTERT monomers. This will be of

interest in determining the efficacy and targeting strategy of hTERT dominant-negative

approaches using gene therapy. Data presented here highlights the requirement of

sufficiently high levels ofmutant hTERT that will persist throughout treatment of cancer

patients. At present telomerase assays are not highly sensitive and therefore more subtle
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differences in telomerase activity are not detected. A recent development (Quantitative

Telomerase Detection Kit, Allied Biotech.) that is specifically designed for Real-time

PCR detection of telomerase activity, may prove an invaluable tool in future

measurement of telomerase activity.

7.2 Intrinsic regulation of telomere length

Seminal work in our laboratory has shown that the proliferative lifespan and telomere

shortening rate of primary sheep cells is conserved after nuclear transfer. Donor cell

lines at different ages and different proliferative capacities were used to clone fetuses

and animals, from which new primary lines were generated; these lines exhibited the

same proliferative capacities and rates of telomere shortening as the donor lines (Clark

A. J. et al, 2003). This work demonstrated the fact that at least certain aspects of

telomere length regulation are intrinsically determined. The classical view of telomeric

termini as passive structures subject to extrinsic regulation has been dismissed with

recent advances in telomere biology research. Advances in techniques such as Q-FISH

that allow measurement of telomere length at the chromosomal level have revealed that

individual telomeres shorten at different rates. This heterogeneity is now believed to be

crucial in determining the onset of replicative senescence, where telomere lengths of a

subset of the shortest telomeres most probably serve as an indicator of senescence

activation rather than average telomere length in the population as a whole. Furthermore

the 3'-OH of telomeric termini has been shown to form an end-capping T-loop

configuration which may be crucial in maintaining genome stability. Some groups have
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suggested that it is loss of this structure that is the causal trigger of replicative

senescence, but compelling evidence for this is lacking. Others have postulated the idea

of telomere shortening rate being determined by 3'-OH length; i.e. telomeres shorten by

an amount proportional to the size of the 3'-OH.

The current venture again uses primary sheep fibroblasts as an alternative mammalian

model system in which to descriptively analyze both telomere length heterogeneity and

alterations to the 3'-OH in a temporal manner as a consequence of replicative ageing.

Foetal fibroblast lines derived from the Black Welsh breed (BW6F2 and BWF1) were

previously shown to differ in their replicative lifespan by ~3-fold, although average

telomere length was similar both after derivation and at replicative senescence (Clark et

al., 2003). The considerable difference in replicative lifespan was directly attributed to a

~3-fold difference in average telomere shortening rate. The key limitation of the

previous study in our laboratory was that true telomere length heterogeneity was not

accounted for, taking into account telomere shortening at individual telomeres. It is

likely that average telomere shortening rate only indirectly indicates the functional

consequence of telomere attrition. For example, telomere shortening rate within only a

subset of telomeres may be directly correlated to the onset of replicative senescence

rather than average telomere length in the karyotype per se. Therefore it was of interest

to optimize Q-FISH methodology in the sheep system to attain a description of telomere

shortening in the Black Welsh fibroblasts that takes into account true telomere

heterogeneity and to calculate telomere shortening rate on this basis. The Q-FISH

methodology had previously been optimized for mouse and human chromosomes,
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conditions which were required to be modified prior to analysis on sheep metaphase

spreads. Nevertheless to our knowledge, this is the first documented demonstration ofQ-

FISH in ovine cells. Generally, both lines show a reasonably normal distribution of

telomere lengths; i.e. - a minority subset of telomeres with very long or very short

telomeres, with the majority of telomeres representing an intermediate length. Therefore

we can infer that average telomere length does not differ dramatically between these

lines. However, BWF1 exhibits a greater proportion of very short telomeres at each

snapshot of analysis. This suggests rather superficially that although replicative

senescence may be triggered at a comparable 'mean' telomere length, the telomere

shortening rate in a subset of telomeres within the BWF1 population may be a key

determinant of the much earlier onset of senescence activation in this line and provides

direct evidence of intrinsic differences in telomere shortening rate between the two lines.

This is certainly in accordance with the 'subset of shortest telomeres' hypothesis which

postulates that the mitotic clock is determined by a subset of telomeres with aggravated

telomere attrition rates relative to the whole population of telomeres (postulated by Shay

& Wright). This is an intriguing observation as these two lines were derived from the

same genetic breed; what is the molecular basis that determines telomere shortening

rate? how is this regulated? Using solely a descriptive study renders it difficult to

ascertain whether the more pronounced telomere shortening rate in BWF1 is a key

determinant of a shorter proliferative lifespan relative to BW6F2 or whether telomere

shortening rate in this context is consequential of alternative intrinsic and extrinsic

factors that determine proliferative lifespan? Some technical caveats regarding Q-FISH

will be required to be overcome before a more thorough understanding of telomere
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shortening that is of direct consequence, is permitted. Namely the method at present

cannot distinguish between very short telomeres and true signal free ends. If this issue is

resolved, the subset of individual telomeres which are true determinants of replicative

senescence could be observed. It will be interesting to determine whether it is telomeres

on the same subset of chromosomes that always correlate to senescence onset within a

particular cell type or even species. It may be possible to therefore predict replicative

lifespan of a cell line using a Q-FISH profile, thus providing a valuable tool to determine

a window of opportunity for approaches such as gene targeting via retroviral

transduction.

One determinant of telomere shortening rate that has been postulated (Wright & Shay)

states that telomere shortening rate is directly determined by 3'-OH length. In this

respect, telomere erosion would be predicted to be directly proportional to the amount

3'-OH loss after each round of cell division. However evidence to indicate that the 3'-

OH varies in length during successive rounds of cell division is not as yet compelling;

some have argued for erosion of 3-OH only at Ml stage senescence (Stewart et al.,

2003), whilst others have argued that this occurs as a consequence of M2 stage crisis

(Chai et ah, 2005). We again used the Black Welsh sheep fibroblasts to attempt to

resolve these issues. The Telomere-Oligonucleotide Ligation Assay (T-OLA) was

modified to investigate whether the G-rich 3'-OH alters during in vitro culture of normal

sheep fibroblasts and if so, whether this is a direct correlate to telomere shortening rate.

Telomeric overhang shortening paralleled mean telomere length shortening in both lines

and was found to be a significant correlate (r = 0.79). This indicated that the 3'-OH

alters during replicative ageing in these lines and may thus reflect species differences
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between sheep and human. However there was no evidence that there is a direct

correlation between telomere and 3'-OH shortening; telomere shortening per PD is

significantly more pronounced than 3'-OH shortening per PD, thus the data does not

provide evidence for telomere shortening rate being directly proportional to the size of

the 3'-OH. However 3'-OH length at the initial and late stage pre-senescent stage of

analysis is similar for both lines, although 3'-OH shortening rate is more pronounced in

BWF1. This is consistent with a more pronounced average telomere shortening rate in

BWF1. Therefore although telomeres in these lines do not shorten by the size of the 3'-

OH, both the 3'-OH and overall telomere length, shorten as a consequence of cellular

division. It is unclear as to the functional significance of 3'-OH length with respect to

replicative lifespan and senescence onset in these sheep fibroblast lines. One factor that

may determine intrinsic differences in telomere and 3'-OH shortening rate is response to

oxidative stress incurred during culture conditions. The von Zglinicki lab (Newcastle,

UK) have shown that peroxide levels rose significantly for both lines under conditions of

hyperoxia, where levels were 3-fold more pronounced in BWF1 than for BW6F2. This

indicates that BWF1 has much reduced anti-oxidative defence capabilities. We this

reasoned that culture of early passage BWF1 fibroblasts in a 2% oxygen chamber would

increase replicative lifespan to a duration comparable to BW6F2 due to a much lower

level of oxidative stress. Although culture in 2% oxygen failed to reduce the rate of

telomere shortening in this setting, this may be due to the BWF1 line being already

adapted to previous conditions of culture in our laboratory and so the result does not

exclude an important role of oxidative stress with respect to determining telomere and
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3'-OH shortening rates. A definitive experiment will require exposing mammalian cells

to various levels of oxidative stress immediately upon derivation of the lines.

We further investigated whether it there is a correlation between telomerase activity and

3'-OH in a normal cellular context. hTERT-immortalized Black Welsh sheep fibroblasts

were generated in our laboratory previously and it was reported that telomere

maintenance and karyotypic stability are directly correlated to levels of hTERT

expression (Cui et al., 2002). The current analysis of 3'-OH in this setting revealed a

significant correlation (r = 0.702) between maximal 3'-OH length and copies of hTERT

mRNA per cell. The longest 3'-OH length, concurrent with near maximal mean telomere

length and stable karyotype, was evident in lines exhibiting >300 copies of hTERT

mRNA per cell. Conversely, shortest 3'-OH length, concurrent with shortest mean

telomere length and grossly abnormal karyotype, was evident in lines exhibiting <0.5

copies of hTERT mRNA per cell. In particular, the lines that exhibited the lowest levels

of hTERT and shortest mean telomere length also exhibited the shortest 3'-OH length

and were the only lines to exhibit dicentric chromosomes. As the 3'-OH length is these

lines were shorter than the 3'-OH in the late pre-senescent stage of the parental

unmodified lines, this raises the question as to whether 3'-OH length in these lines is in

fact sufficient to form a telomere end-capping structure such as the T-loop. Dicentric

chromosomes provide evidence of end to end fusions presumably permitted by sufficient

loss of 3'-OH.

207



Chapter 7 - Discussion

The data presented on the basis of 3'-OH length in primary sheep fibroblasts suggests

that 3'-OH shortens and parallels telomere shortening. In the setting of hTERT-

immortalized fibroblasts, 3'-OH may correlate to hTERT expression-determined

telomere length, rather than hTERT expression per se. Although a correlation is

observed between 3'-OH shortening and overall average telomere shortening, length of

shortening in the latter is not directly proportional to the size of the overhang. Therefore

the precise determinant of telomere shortening rate in this setting remains unclear. The

correlation between 3'-OH shortening and average telomere length shortening leads us

to speculate whether the same or similar machinery (with respect to the plethora of

telomere-associated factors known to function at the telomere substrate) controls both

telomere length and 3'-OH length in mammalian cells.
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Concluding remarks

The experimental approaches and data presented in this project underline the complexity

of telomere length regulation in mammalian cells. Telomere length homeostasis is

governed by a plethora of inter-dependent factors, which act both intrinsically and

extrinsically at chromosomal termini. Data presented here indirectly supports the

concept of the telomerase complex functioning as an inter-dependent dimer at the

telomere substrate, where the reverse transcriptase domain of hTERT appears the key

rate-determining factor with respect to telomere maintenance. However certain

discrepancies within this study highlight the requirement to invoke studies of a multitude

of telomere- and telomerase-associated factors at telomeres. Expression levels of all

these factors may be crucial to determine both telomere shortening rates and telomere

maintenance capabilities at particular stages of analysis. A consilient approach from

groups investigating these factors will further our understanding of the complex

interplay at telomeres.

Advances in techniques to analyze telomere length heterogeneity and to measure the 3'-

OH, provide powerful tools to descriptively study the intrinsic factors that determine

and/or are determined by telomere length. Data presented here demonstrates that

telomere shortening rate and replicative lifespan are at least in part determined by

telomere shortening rates within a subset of short telomeres within a population, rather

than average telomere length. Moreover, the data provides evidence that the 3'-OH

shortens as a consequence of cellular division, but that telomere shortening rate is not

directly proportional to the size of the 3'-OH. However at present, measurement of the
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3'-OH is based on analysis on a population as a whole and does not resolve 3'-OH on

individual telomeres. Therefore further advances in the method of 3'-OH measurement

that permits the resolution of overhangs of individual telomeres will be crucial in

determining whether replicative senescence is triggered by the loss of an end-capping

structure in a subset of cells, once the 3'-OH has fallen below a critical minimum length

for that particular cell line. In this setting it will be important to visualize telomere ends

using EM technology to verify absence/presence of an end-capping structure. The

milestone for this avenue of research will be the conclusive understanding of the causal

and consequential progression from senescence activation at the Ml stage, through to

events at M2 crisis. At present, much of the argument is circular.

Current advances in telomere and telomerase biology will supplement novel ideas

regarding cancer cell biology. What is the complete spectrum regarding the role of

telomerase in tumour cells? Why are telomeres permitted to be shorter in many tumour

cells than corresponding wild-type cells? Do tumour cells have sufficient 3'-OH lengths

to enable a telomere-capping structure to exist? These questions will have to be regarded

with respect to the hierarchical model of tumour cells. It will be crucial to ask what the

key differences are in telomere length, 3'-OH length, and telomerase activity in tumour-

initiating populations when compared to their non-tumourigenic progeny. These factors

may be vital to maintain the unique status of a prospective cancer stem cell and therefore

may provide a means for a more targeted approach for cancer therapy, such as targeting

anti-telomerase drugs specifically to cancer stem cell populations.
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APPENDIX

Kan/Neo Resistance

SV40 promoter/enhancer

PGK promoter

Sail (565)

/ mu-hTERT

SV40 poly A
Wofi (4032)

B
EeoRI (48)

pWGB23
4658 bp
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EGFP
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Appendix 1: Transgenic constructs used to transfect the GRN1-1 hTERT-
immortalized line. The ~4.6Kb EGFP mock vector control construct was initially sub-
cloned and placed under the control of a PGK promoter (B). The ~7.3Kb pWGB25
construct (A) was then created by replacing the EGFP transgene sequence with the
mutant hTERT transgene sequence under the control of a PGK promoter. Mutant
hTERT contains three independent amino acid substitutions ((R631A, D712A and
D868A) in the reverse transcriptase motif of hTERT. (Constructs were developed by Dr.
Wei Cui).
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TFU F1pS F1p13 F1p18 F2p4 F2p7
Category (rp380) (n=337) (n=286) (n=329) (n=323) ■SSSn

0 222 205 267 106 194 350 211

50 36 64 95 16 47 37 44

100 204 168 195 56 135 127 59
150 240 184 183 89 126 118 36
200 136 188 169 126 104 115 17

250 157 157 102 154 112 122 8
300 123 113 59 146 104 88 2
350 68 104 29 135 84 74 1

400 57 68 15 137 79 66 1

450 43 44 5 97 71 49 0
500 29 31 2 76 57 42 1

550 24 12 0 60 40 29 0

600 20 6 0 35 25 14 0
650 17 3 0 28 33 17 0
J0D 10 1 0 17 19 12 0
250 7 0 0 12 15 6 0
BOO 1 0 0 8 8 6 0
B5D 1 0 0 5 12 2 €
900 5 0 0 8 7 0 0
950 3 0 0 2 8 2 0
1000 2 0 0 3 2 5 0
1050 3 0 0 0 4 1 0
1100 3 0 0 0 1 1 0
1150 3 0 0 0 -

J 0 0
1200 1 0 0 0 0 1 □

1250 0 0 0 0 0 0 0
1300 1 0 0 0 0 0 0
1350 1 0 0 0 0 0 0
1400 1 o 0 0 0 0 0

Appendix 2: Absolute Telomere Fluorescence Units (TFU) for the BWF1 and
BW6F2 sheep fibroblast lines as measured by Q-FISH analysis. TFU categories
represent arbitrary TFU which correspond to actual telomere length, n denotes the
number of individual chromosomes analyzed for each line.
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Appendix 3: Q-FISH profile for BW6F2. Q-FISH profiles showing percentage of
telomere ends per TFU category for the BW6F2 line, including the pre-senescent
passage 37 stage. This passage was excluded from the main body of analysis due to the
low number of quality metaphase spreads obtained from this line. Profiles are shown as
a histogram (above) and line graph (below).
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Appendix 4: Q-FISH histogram profiles showing Signal Free Ends (SFE). The SFE
category was excluded from the main body of analysis so as not too confound data
regarding telomere shortening rate. This represents a limitation to the Q-FISH method
applied to the sheep model system; SFE detected by the Q-FISH software do not
necessarily reflect true telomere SFE, but moreover, due to the quality of sheep
metaphase spreads, many telomere ends remain hidden due to overlapping chromosome
arms. Therefore a measure of SFE in this setting will be a substantial overestimate.
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Appendix 5: Response to oxidative Black Welsh normal primary sheep fibroblasts.
Actual units of peroxide released in normoxic and hyperoxic in vitro culture conditions.
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Abstract

Telomerase catalytic subunit (TERT) seems a key factor controlling telomerase activity, telomere length, and cell growth. To further
address this issue, we forced expression of a catalytically inactive mutant human TERT (hTERT) in hTERT-immortalised sheep fibro¬
blasts to examine its effects. Expression ofmutant hTERT compromised telomerase activity reconstituted by wild-type hTERT in a man¬
ner directly attributable to mutant hTERT expression level. High levels ofmutant hTERT expression inhibited cell growth with a subset
of cells entering replicative senescence. Furthermore, significant telomere attrition was evident in two of three clones with high levels of
mutant hTERT expression. Our findings are consistent with the notion that hTERT homodimers are necessarily required to form a func¬
tional telomerase complex at the telomere substrate. We also highlight the requirement of a more thorough understanding of telomerase-
and telomere-associated factors to understand fully the interplay that governs telomere homeostasis in vitro and in vivo.
© 2006 Elsevier Inc. All rights reserved.

Keywords: hTERT; Telomerase; Telomere; Senescence; Dominant-negative telomerase

Eukaryotic telomeres are specialised structures located
at the ends of linear chromosomes, consisting of proteins
and reiterated G-rich repeats that are conserved in all
vertebrae as TTAGGG [1], Telomeres function to protect
chromosomal termini from degradation and fusion,
thereby contributing to genomic stability [2,3], In most
eukaryotes, telomeric DNA is replenished by the action
of telomerase—a specialised cellular ribonucleoprotein
reverse transcriptase that synthesizes telomeric repeats
onto chromosomal ends [4-6], Telomerase consists of
two main components that are required for core enzy¬
matic activity, a telomerase RNA (TR) as a template
for the addition of de novo telomeric repeats, and a cat¬
alytic protein subunit with reverse transcriptase activity
(TERT). It has been reported that human telomerase
structure is that of a multimer containing two cooperat¬
ing hTR molecules [7,8] and most likely two hTERT

Corresponding author. Fax: +44 20 759 42192.
E-mail address: wei.cui@imperial.ac.uk (W. Cui).

molecules [9]. hTERT has been shown to consist of
two physically separable functional domains: a polymer¬
ase domain, containing RNA interaction domain 2
(RID2), reverse transcriptase (RT) motifs, and C-termi-
nal sequences, and a major accessory domain, RNA
interaction domain 1 (RID1) [10]. In humans, telomerase
is preferentially expressed in germ-line cells and early
embryonic tissues, but is not detected in most somatic
cells [11], Therefore, somatic cells progressively lose their
telomere repeats after each round of cell division. Even¬
tually when the telomeres on one or more chromosomes
become critically short, cells stop dividing and enter an
irreversible state termed replicative senescence [12-14],
However, telomerase is active in the majority of cancer
cells; thereby inhibition of active telomerase could be a
way to treat cancer.
TERT has been implicated as a key factor limiting telo¬

merase activity as the RNA subunit is constitutively
expressed at a low basal level [15] and ectopic expression
of hTERT restored telomerase activity, extended

0006-291X/S - see front matter © 2006 Elsevier Inc. All rights reserved,
doi: 10.1016/j.bbrc.2006.09.125
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telomeres, and indefinitely prolonged cellular lifespan
[16,17], It has been hypothesised that dimeric TERT mole¬
cules are required to form a functional telomerase complex
[8], However, telomere length is not always maintained in
cells with active telomerase and many tumour cell lines
are shorter than those of corresponding normal cells, indi¬
cating that telomerase activity does not necessarily imply
telomere maintenance [18,19], It has been accepted general¬
ly that telomere length in mammalian telomeres is regulat¬
ed by a homeostatic mechanism that is governed in part by
telomerase and a telomere-specific protein complex recent¬
ly termed 'Shelterin', which consists of TRF1, TRF2,
TIN2, Rapl, TPP1, and POT1 [20],
To further address the function of telomerase catalytic

subunit TERT in relation to telomerase activity, telomere
length, and cell growth, we expressed a catalytically dys¬
functional hTERT in an hTERT-immortalised primary
sheep foetal fibroblast line in which telomeres stabilise at
an average length shorter than that of the untransfected
parental line. This system enables us to study if hTERT
non-catalytic domains have any effect on telomerase activ¬
ity and telomere maintenance. Conversely the presence of a
catalytically dysfunctional hTERT most likely results in
both mutant/wild-type telomerase heterodimers and
mutant/mutant telomerase homodimers, both of which
may compete with and compromise wild-type/wild-type
telomerase homodimers.

Our results showed that overexpression of non-catalytic
domain decreased telomerase activity, inhibited cell prolif¬
eration, and did not enhance telomere maintenance, which
may result from competitive binding to sheep TR mole¬
cules and/or disruption of hTERT homodimeric structure.
Therefore, our results suggest that telomere maintenance
requires a functional telomerase complex which contains
hTERT homodimeric structure.

Materials and methods

Cell culture, plasmids, and transfection. Sheep fibroblasts, BW6F2, and
their hTERT immortalised clonal line, GRN1-1, were prepared and cul¬
tured as described previously [19],

The mock plasmid (pWGB23) was constructed by inserting a mouse
phosphoglycerate kinase (PGK) promoter into EcoRl/Pstl site of the
pEGFP-1 vector (Clontech). The mutant hTERT construct (pWGB25)
was then generated by replacing the EGFP fragment in pWGB23 with a
mutant hTERT cDNA which was kindly provided by Geron Corporation,
which contains three point mutations at reverse transcriptase motifs,
resulting in three amino acid substitutions from Arginine (631) and
Aspartic acid (712 and 868) to Alanine (Fig. 1A). Both vectors were lin¬
earised with Bgtll and transfection was performed as previously described
[19] with 800 pg/ml G418 for selection.

RNA extraction and RT-PCR. Total RNA was extracted using the
RNeasy kit (Qiagen) according to the manufacturer's guidelines and
digested with DNase I. RT-PCR was performed as previously described
[19], The expression levels were quantified by densitometry and normalised
to GAPDH. Relative stoichiometry was inferred by assigning a value of 1
to the parental GRN1-1 and GRN23(C1) mock vector control.

Telomerase activity and telomere length assays. Telomerase activity was

analysed by telomeric repeat amplification protocol (TRAP) assay with a
TRAPeze Telomerase Detection kit (Chemicon). The product was

A PWGB25

R631A D7I2A D86SA

pWGB23

BW6F2
25-7 25-8

RT - + - +

hTERT
GAPDH

Fig. 1. Expression of mutant hTERT in primary sheep fibroblast. (A)
Schematic map of transgenic constructs. pWGB25: mutant hTERT cDNA
(7.3 kb) with three amino acid substitutions as indicated; pWGB23: mock
EGFP vector. The PGK promoter, SV40 polyadenylation signal, and
neomycin selection cassette are indicated. (B) BW6F2(25)-7 and -8 are two
clones derived from parental BW6F2 sheep fibroblasts transfected with
mutant hTERT, showing high levels of mutant hTERT expression (left)
but no detectable telomerase activity (right).

resolved on a 10% polyacrylamide gel and visualised with a Phospholm-
ager (Amersham Biosciences). Telomere length was determined by telo¬
mere restriction fragment (TRF) Southern blot analysis and mean
telomere length was calculated [21] and statistics done by Student's r-tesl.

Senescence-associated fl-galactosidase staining. Cells were fixed in 3%
formaldehyde for 5 min, then incubated for 16 h with freshly prepared
senescence-associated P-gal solution after washing with PBS [22],

Results

Expression ofmutant hTERT in sheep fibroblasts does not
reconstitute telomerase activity

Primary cultures of sheep foetal fibroblasts show similar
characteristics to those of human fibroblasts in that no tel¬
omerase activity is detectable and cells undergo a limited
number of cell divisions. Forced expression of human telo¬
merase catalytic subunit hTERT in sheep fibroblasts,
BW6F2, reconstituted telomerase activity and extended
their proliferative lifespan [6]. However, telomere lengths
were not maintained in all hTERT-immortalised lines,
rather they stabilised at various lengths dependent on
hTERT expression levels [19], To further address the effects
of telomerase function on telomere maintenance, we con¬

structed a mutant hTERT expression vector (pWGB25,
Fig. 1A) in which hTERT was mutated with three point
mutations at distinct reverse transcriptase motifs and its
expression was under the control of a mouse PGK
promoter.

To verify the functionality of this mutant hTERT, we
first transfected it into the BW6F2 cells. Several colonies
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Fig. 2. Effects ofmutant hTERT expression on telomerase activity and cell growth. (A) RNA expression analysis in mutant hTERT-transfected GRN1-1
clones. Passage number post-transfection is indicated. Parental BW6F2 and GRN1-1 were used as controls. (B) Histogram of densitometric analysis
showing expression levels of the hTERT transgenes. (C) TRAP analysis on selected mutant hTERT positive clones shows that telomerase activity is
inhibited in all three mutant hTERT positive lines in comparison to the GRN23-C1 mock vector control clone, with GRN25-1 exhibiting the highest
inhibition and GRN25-9 the least. (D) Growth curve ofmutant hTERT clone GRN25-7 showed a period of significant slower proliferation with PD time
of 40 h. In contrast, hTERT control cells (GRN1-1 and 23-C1) exhibited steady proliferation throughout with approximately 19 h PD time. Expression of
mutant hTERT alone did not bypass senescence (BW6F2 25-8). (E) Senescence-associated P-galactosidase staining on GRN25-7 cells. Scale bar represents
250 and 100 pm, respectively.

formed after selection but only two clones (BW6F2 25-7
and 25-8) were able to be expanded to obtain enough cells
for transgene analysis. RT-PCR confirmed that the mutant
hTERT transgene was expressed and TRAP assay showed
no detectable telomerase activity (Fig. IB). The cells did
not proliferate vigorously and senesced after several pas¬
sages (Fig. 2D). These results confirmed that the three
point mutations in reverse transcriptase motifs of hTERT
have abolished its catalytic function so that the mutant
hTERT does not have the ability to reconstitute telomerase
activity.

High levels ofmutant hTERT expression compromise
telomerase repeat addition processivity

Mutant hTERT does not reconstitute telomerase activi¬

ty in sheep fibroblasts. However, what effect does it have on
active telomerase activity? To test this, we transfected
mutant hTERT into the hTERT-immortalized foetal sheep
fibroblast line GRN1-1, in which the hTERT expression
level is sufficient to immortalise the cells but not to main¬
tain the full telomere length [19]. Ten clones were isolated
after selection. We also transfected GRN1-1 with a mock
vector in which mutant hTERT was replaced by EGFP.

All the colonies were expanded up to T25 flasks and 2/3
cells were frozen down and the rest further expanded for
expression analysis.

The transgene expression was validated by RT-PCR.
Due to only three base pairs differing between wild- and
mutant-hTERT, we were unable to differentiate between
their expression levels. Thus, expression of total hTERT
mRNA was analysed by semi-quantitative RT-PCR. As
they were all derived from clonal cell line GRN1-1 and
have similar levels of wild-type hTERT, the excess of
TERT above that of the controls was mainly attributed
to mutant hTERT levels. The results showed that eight
of 10 clones (GRN25-1, -2, -3, -4, -5, -6, -7, and -9)
expressed higher levels of hTERT (Fig. 2A, lanes 2-11)
than the original GRN1-1 (Fig. 2A, lane 1) and that
hTERT expression in mock controls, GRN23-C1, and
GRN23-C4 was similar to that in GRN1-1 (data not
shown). We calculated that clone GRN25-1, -6, and -7
exhibited over 3-fold higher mutant hTERT expression
than the wild-type (Fig. 2B) and clone 25-3, -5, and -9 over
2-fold. Therefore, they were grouped as the high and medi¬
um expression, respectively.

To test effects ofmutant hTERT expression on telome¬
rase activity, we carried out TRAP assay on some of these
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clones, GRN25-1, 25-7, and 25-9. The results showed that
telomerase activity was inhibited in all three lines in com¬

parison to GRN23-C1 mock vector control clones
(Fig. 2C). The levels of inhibition seemed related to mutant
hTERT expression levels, with GRN25-1 exhibiting the
highest inhibition and GRN25-9 the least, indicating that
the mutant hTERT functions dominant-negatively to
inhibit telomerase activity.

Effects of high mutant hTERT-expression on cell
proliferation and senescence

Since the TRAP assay results showed that telomerase
activity in the mutant clones was inhibited, we next exam¬
ined the effect ofmutant hTERT on cell growth and prolif¬
eration. We resuscitated clones exhibiting medium and
high levels of mutant hTERT expression (GRN25-1, 25-
5, 25-6, 25-7, and 25-9) and monitored their proliferation
by recording their growth curves. All the clones, except
clone GRN25-1 and GRN25-7, grew uncompromised with
a steady rate of proliferation during the 160 days of cul¬
ture, with about one population doubling every 19 h. There
is no significant difference to the overall proliferation pro¬
file between these clones and control GRN23 clones which

only expressed wild-type hTERT.
In clones GRN25-1 and GRN25-7 (particularly clone

GRN25-7), however, a period of slower proliferation was
evident at around 3 weeks of continuous culture, in which
population doubling rate slowed to over 40 h (Fig. 2D).
Concurrent with this, a subset of cells within the popula¬
tion adopted morphology of bigger and flat appearance
with clearly visible microtubules, a characteristic of the
senescent phenotype. This subset of cells represented
around 30% of the total population. To further confirm
that these cells were senescent, we applied the senescence-
associated -galactosidase (SA-P-gal) staining assay to the
GRN25-7 cells and the results indicated positive staining
as expected (Fig. 2E). No such phenomenon was found

in GRN23 control cells. Since these phenomena only
appeared in high expressing mutant hTERT clones, it is
suggested that the high expression ofmutant hTERT might
play a critical role leading to cellular senescence.

However, it is interesting why not all the cells were
affected as they came from a clonal population. We noticed
that after a period of time of in vitro culture, even a clonal
cell population will exhibit heterogeneity, particularly with
regard to transgene expression. In some cells, the transgene
expression was silenced. This occurred in both GRN23
clonal GFP clones and GRN25 mutant hTERT clones.
In the former case, some cells lost GFP expression, result¬
ing in a mosaic GFP expression pattern in the cell popula¬
tion even though they all expressed GFP at the beginning
of in vitro culture. Nevertheless, GFP expression does not
affect cell growth and both silenced and expressing cell
types probably proliferate at a similar rate, thus maintain¬
ing the mosaic pattern for a long time. By contrast, in the
latter case, the silenced mutant hTERT transgene relieved
inhibition pressure in the cells, giving them a growth
advantage over the cells expressing mutant hTERT. There¬
fore, after long-term culture and propagation, the silenced
mutant hTERT cells would have been selected for and thus
overwhelm the whole population. This was confirmed by
RT-PCR and TRAP assay to test mutant hTERT expres¬
sion and telomerase activity at early and late passage cells.
The results showed a dramatic downregulation of total
hTERT expression, to levels similar to wild-type hTERT
levels in GRN1-1, indicating almost complete silencing of
mutant hTERT (Fig. 3A). Correspondingly, the telomerase
activity was restored to similar levels as in control cells
(Fig. 3B).

The relationship between telomerase expression, telomerase
activity, and telomere maintenance is complex

We also examined the effects of mutant hTERT expres¬
sion on telomere length in these cells. Telomere lengths

GRN clones
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Fig. 3. Loss of mutant hTERT expression upon long-term culture. (A) Histogram of RT-PCR densitometric analysis of hTERT in early and late passage
transfected clones showed a dramatic reduction in levels of total hTERT expression in mutant hTERT clones (GRN25-1 and -7) at late passage, indicating
almost complete silencing of the mutant hTERT transgene. (B) Inhibition of telomerase activity in GRN25-1 and 25-7 was also lost after long-term culture
(100 days), showing all GRN clones exhibiting comparable telomerase activity.
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Fig. 4. Telomere length analysis in mutant hTERT clones. (A) All clones showed telomere erosion after 70 population doublings with clones GRN25-1
and -7 exhibiting the most telomere attrition. All other clones (GRN25-5, 6, 9, and 10) had similar telomere shortening in comparison to the mock controls
(GRN23-C1 and C4). (B) Telomere length stabilised at a length in each clone after long-term culture. GRN25-1 and -7 still showed significantly shorter
mean telomere lengths compared to the others. PD, population doublings.

were measured at multiple time points (0, 70, and 130 days)
during long-term culture. The results showed that after
~70 days in culture, telomere lengths shortened in all cell
lines (Fig. 4A). However, GRN25-1 and GRN25-7 exhibit¬
ed significantly shorter mean telomere length (6.7 and
7.7 kb, respectively) in comparison with GRN23 control
cells (9.2 and 10.1 kb, p < 0.05). The remaining GRN25
clones showed similar telomere shortening as GRN23 con¬
trols (p > 0.1).

This pattern of telomere shortening persisted through¬
out the culture period and mean TRF lengths in all GRN
clones were stabilised after approximately 100 population
doublings post-transfection. Stabilised mean TRF length
in clones GRN25-5, -6, and -9 were within the range of
6.6-7.1 kb and did not differ significantly to the 7.0 and
7.2 kb of GRN23 mock controls (/? > 0.1), whereas the
mean TRF lengths in GRN25-1 and -7 were eventually sta¬
ble at 5.2 and 6.3 kb, significantly shorter than that in the
mock controls (p < 0.0005) (Fig. 4B). These results indicate
that high levels of mutant hTERT expression might have
accelerated the telomere shortening, probably as a conse¬
quence of inhibited telomerase activity. However, the other
high expressing mutant hTERT clone GRN25-6 did not
exhibit this faster telomere shortening in spite of the clear
inhibition of telomerase activity. And, although telomerase
activity was restored to levels comparable to the control
GRN23 cells at late passage due to transgene silencing,
we did not observe telomere lengthening in the GRN25-1
and 25-7 cells. These results suggest that telomere length
regulation is more complicated and consideration has to
be given to the plethora of factors involved.

Discussion

In this report, we forced expression of a catalytically
inactive mutant hTERT in hTERT-immortalised primary

sheep fibroblasts to examine its effects on telomerase activ¬
ity, telomere length, and cell proliferation. We showed that
clones exhibiting high levels of mutant hTERT expression
inhibited telomerase activity, whereas, clones exhibiting
lower levels did not. These results indicate that the inhibi¬
tion effect of mutant hTERT has a threshold and this is

likely due to a dominant-negative and/or competitive inhi¬
bition effect between the wild-type and mutant hTERT
proteins. Thus mutant hTERT expression compromised
wild-type telomerase activity in a manner directly attribut¬
able to mutant hTERT expression level. When mutant
hTERT expression is sufficiently higher than the wild-type,
it competitively inhibits the binding of wild-type hTERT to
telomerase RNA or the formation of TERT homodimers,
hence inhibition of telomerase activity. However, we
noticed that when TRAP assay was conducted using
0.5 pig rather than 0.1 pg protein lysate, low levels of telo¬
merase activity were detectable in cells with high expressing
mutant hTERT. This low level of telomerase activity could
be due to a small number of cells in which mutant hTERT
was silenced or expressed at low levels.

We also found that high levels of mutant hTERT
expression in these immortalised cells not only inhibited
telomerase activity but also affected cell proliferation and
telomere length, which could be the consequence of telome¬
rase inhibition. After a short-term in culture, a subset of
cells in the high mutant hTERT expressing clones exhibited
a senescent phenotype and expressed SA-|3-gal. This is
reflected in the growth curves, as these cells went through
a period of slower growth. Unfortunately, a small number
of cells lost mutant hTERT expression shortly after cultur-
ing and these cells therefore had a growth advantage over
the high mutant hTERT expressing cells. Therefore, during
cell propagation, they gradually took over the population.
After long-term culture, hardly anymutant hTERT expres¬
sion was detected.
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Significant telomere attrition was evident in two of three
clones with high levels of mutant hTERT expression
(GRN25-1 and GRN25-7). Telomeres in these clones even¬
tually reached mean stabilised lengths much shorter than
those in mock controls. These results seem to be directly
attributable to mutant hTERT expression. Mutant
hTERT/mutant hTERT and mutant hTERT/wild-type
hTERT dimeric complexes are likely to be in much greater
abundance than wild-type/wild-type dimers within these
lines. Inhibition of telomerase activity and increased telo¬
mere attrition are therefore likely to be due to the compro¬

mising of wild-type homodimeric function at the telomere
substrate due to the molar ratio imbalance of hTERT com¬

plexes. This is consistent with the notion that hTERT
homodimers are necessary to form a functional telomerase
complex at the telomere substrate [9], where catalytic
domains of both hTERT molecules may function inter-de-
pendently. Surprisingly one clone with high mutant
hTERT expression level and subsequent abrogation of tel¬
omerase activity showed comparable stabilised mean telo¬
mere length to mock controls. We believe this highlights
the limitation of in vitro based telomerase activity assays
to assess proper telomerase function on telomere regula¬
tion; Telomere length is not controlled by telomerase
(TERT and TR) alone but requires other telomerase asso¬
ciated proteins and telomere binding proteins, such as
POT1, TRF1, and TRF2 [20]. Therefore differences in
expression level of these factors may account for this
discrepancy.
It is interesting to note that in spite of the loss ofmutant

hTERT expression in the late passage of GRN25-1 and
GRN25-7, the telomere length in these two clones did
not recover to the length comparable to the mock controls
after long-term culture, rather they stabilised at the short
telomere length. The mechanism behind it is not clear. It
was reported that loss of dominant-negative hTERT trans-
gene expression in human leukaemia cells resulted in telo¬
mere lengthening in human leukaemia cells [23]. This
discrepancy could be due to the species differences between
hTERT in human cells and hTERT in sheep cells.

In summary, our results support the notion that telo¬
mere maintenance requires a functional telomerase com¬
plex with hTERT monomers likely interacting in an
inter-dependent manner. Furthermore the result demon¬
strates that although hTERT non-catalytic domains may
be necessary for telomerase assembly and processivity at
the telomere substrate, they are not rate-determining. Cat¬
alytic hTERT domains appear to be a crucial rate-deter¬
mining factor regarding processivity; however, a more
thorough understanding of telomerase- and telomere-asso-
ciated factors will be required to understand fully the inter¬
play that governs telomere homeostasis in vitro and in vivo.
Consistent with the work from other laboratories, our
results also showed a potential interest of using anti-telo-
merase gene therapy to treat cancer but consideration has
to be taken on how to overcome the transgene silencing
in a small number of cells.
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