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Abstract 

Matthew-Wood syndrome is a rare human birth defect condition defined by the 

phenotypic constellation of clinical anophthalmia, diaphragmatic hernia, pulmonary 

hypoplasia and cardiac defects. Matthew-Wood syndrome has a high mortality rate, 

with most patients dying due to respiratory insufficiency as a consequence of 

pulmonary hypoplasia, within the first year of life. Mutations within STRA6 are 

causative for Matthew-Wood syndrome. STRA6 acts as a retinol transporter for 

retinol bound to its physiological carrier RBP4 allowing regulated entry of retinol 

into the cell. A mammalian model for Matthew-Wood syndrome was not found 

within the literature; however a morpholino knockdown of stra6 in the zebrafish did 

show phenotypic features consistent with those observed in human patients. The 

desire to create a mammalian model of Matthew-Wood syndrome drove the work 

contained within this thesis. 

Stra6-/- mice do not represent a model for Matthew-Wood syndrome with 

homozygous animals being viable, found in the expected ratio and demonstrating 

none of the developmental abnormalities observed in human patients. Retinal 

defects, cataracts and persistent hyperplastic primary vitereous affect the 

microphthalmic eye of Stra6-/- offspring of Stra6-/- mothers fed a retinoid-free diet 

from plug to birth indicating that Stra6 is required for normal eye development under 

low-retinoid stress. 

The disparity in phenotype between human Matthew-Wood patients and Stra6-/- 

mice may be the result of functional redundancy in the mouse between Stra6 and its 

paralogue, Stra6.2. Stra6.2 is well conserved through evolution and is found in 

diverse species, including the basal eumetazoan Trichoplax. STRA6.2 has become 

split across its resident chromosome with an associated break in gene synteny, in 

humans and great apes, causing most of the gene to no longer be transcribed. 

However a small portion of the gene, representing the final transmembrane domain 

and the C-terminal intracellular tail of the protein, remains expressed in human.  

stra6.2 is required for normal development in the zebrafish with stra6.2 morphants 

being phenotypically distinguishable from control injected embryos from the 10-
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somite stage by a larger head-tail distance indicating an axial extension defect. 

stra6.2 morphants also display microphthalmia, jaw malformation, shortened and 

curved body axis and retinal lamination defects. stra6.2 was found to be required to 

prevent an excess of retinoic acid resulting in an upregulation of retinoic acid-

dependent gene expression through an increase in RA synthesis by Raldh enzymes in 

morphants. Stra6.2-/- mice are viable and fertile and phenotypically normal, even 

under retinoid-stress, supporting the notion of functional redundancy. In compound 

knockouts, normal development and postnatal survival can be maintained by a single 

copy of Stra6 in Stra6+/-;Stra6.2-/- animals. Stra6.2 is less able to support normal 

development and survival with ~50% of Stra6-/-;Stra6.2+/- animals dying before 

weaning or showing reduced growth although the remaining animals are 

indistinguishable from their littermates. Stra6 and Stra6.2 are functionally redundant 

for development under normal dietary conditions in the mouse and a single copy of 

either is able to support development in at least 50% of animals. 

Stra6-/-;Stra6.2-/- mice were therefore hypothesised to be the logical mouse model 

of Matthew-Wood syndrome, however these mice die early in gestation between 

E7.5-E9.5. The early embryonic lethality in Stra6-/-;Stra6.2-/- mouse embryos 

compared to postnatal survival in human Matthew-Wood patients, to which they are 

the comparable genetic model, could be attributed to the shortened STRA6.2 

remaining within the human genome. The equivalent portion of Stra6 has validated 

signalling motifs, which may still be active in STRA6.2, allowing development to 

proceed in human ‘STRA6-/-’ embryos. 
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1.0 In the beginning..... 

Vitamin A was formally discovered in 1914 by E.V. McCollum as a factor required 

for the normal growth of rats. His work, inspired by the work of E.B. Hart into the 

effects of feeding single cereal diets to heifers, noted that rats fed on purified diets of 

casein, lard, starch and salts would not grow unless these diets were supplemented 

with ether extracts of butter or egg yolk. These ether extracts he concluded must 

contain an ‘organic complex without which the animals cannot make further increase 

in body weight’ and that it was not a lack of fats responsible for this growth 

restriction as lard or olive oil were not able to promote growth in the same fashion 

(McCollum 1913). He later named the ‘lipoid’ or fat-like substance discovered as fat 

soluble A in order to distinguish it from the newly discovered vitamin or water 

soluble B. This discovery has led to the now wide and varied field of research into 

vitamin A-like molecules or retinoids. 

1.1 Retinoids 

1.1.1 Chemistry 

Retinoids can be defined by three characteristic domains: a β-ionone ring, 

polyunsaturated chain and polar end group (Figure 1.1), although some synthetic 

retinoids differ from this blueprint with changes made to the β-ionone ring or chain 

to create ‘designer’ retinoids for pharmaceutical purposes. The type of polar end 

group defines the ‘natural’ retinoids and can exist in several oxidation states from 

reduced (retinol) to oxidised (retinoic acid) (Figure 1.2). Retinoids can also be found 

in two ‘storage’ forms which can be enzymatically converted (Figure 1.2). Retinoids 

are hydrophobic in nature and poorly soluble in water although some solubility is 

achieved due to self-aggregation into micelles. The double bonds of the chain region 

result in retinoids being highly labile and susceptible to photodegradation, oxidation 

and isomerisation. Due to their unstable nature, retinoids are in vivo generally 

protected within hydrophobic pockets of binding proteins (Noy 1999). 
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Figure 1.1 Characteristic retinoid domains 

Retinoids contain three chemical domains; a β-ionone ring (blue box), a 

polyunsaturated chain (red box) and a polar end group (green box). 
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Figure 1.2 Retinoid structure 

The chemical structure of the physiologically relevant retinoids is shown. Purple box 

indicates storage retinoids. Arrows indicate enzymatic conversions of retinoids. 
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1.1.2 Dietary procurement 

Thomas Moore reported in 1930 that carotene fed to vitamin A deficient rats could 

be taken up by and then detected in the liver of these rats (Moore 1930). This shed 

light on the observations made by H. Steenbock 10 years earlier that, although most 

lipid extracts able to maintain growth in rats were generally yellow in colour, 

colourless ether extracts of liver were also active, providing a paradox to his 

hypothesis that vitamin A was a yellow pigment (Wolf 2001).  Moore concluded 

that, although it was clear carotene and vitamin A were distinct molecules, carotene 

was a precursor for vitamin A (Moore 1930).  

Retinoids are generally acquired from the diet as either retinyl esters or as provitamin 

A carotenoids from animal and plant sources respectively (Fig 2). Carotenoids may 

be absorbed intact, although the extent to which this occurs is species dependent (Lee 

1999), alternatively carotenoids can be cleaved to form retinol. Retinyl esters (RE), 

the main form of vitamin A of animal origin, are converted through the action of 

various retinyl ester hydrolases to retinol. Retinol within the intestine is taken in by 

the enterocyte and subject to esterification by lecithin:retinol acyltransferase 

(LRAT). Carotenoids can be taken up by mucosal cells and cleaved by beta-carotene 

mono-oxygenase 1 (BCMO1) or beta-carotene mono-oxygenase 2 (BCMO2) 

(Ambrosio 2011) to form one or two molecules of retinaldehyde respectively, which 

can then be converted to retinol. Retinol acquired from either carotenoids or retinyl 

esters is then esterified by LRAT and packaged in chylomicrons which travel in the 

lymph. These are taken up mainly by the hepatocytes where it can either be 

hydrolysed to retinol and bound to its specific transporter, retinol binding protein, or 

transferred to the hepatic stellate cells for storage mainly as retinyl esters (Fig 3) 

(Gottesman 2001; Harrison 2005). 
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Figure 1.3 Retinoid dietary procurement 

Animals procure retinoids from their diet and these must be absorbed, transported 

and stored to allow appropriate steady levels of retinoids in the body. Beta-carotene 

(β-C ) is absorbed by mucosal cells of the intestine where it is cleaved to form retinal 

(RAL) which is converted to retinol (ROH) and then to retinyl esters (RE). Retinyl 

esters are converted into retinol in the intestinal lumen by retinyl ester hydrolase 

(REH) and then absorbed into the enterocytes where they are esterified back to 

retinyl esters. Retinyl esters formed from dietary procured retinoids are then 

packaged into chylomicrons (dark blue circles) and travel in the lymph. Heptocytes 

within the liver take up these chylomicrons and convert the retinyl esters to retinol 

which is bound to RBP (RBP-ROH). RBP-ROH (light blue circles) can then be 
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secreted into the blood for use or transported to stellate cells where it is stored as 

retinyl esters. 
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1.1.3 Cellular metabolism 

Retinoids, defined as 20 carbon isoprenoids with a beta-ionylidene ring, conjugated 

double bonded side chain and a terminal functional group, differ in their chemical 

and biological properties. The metabolism of retinol can be considered as a pathway 

to the formation of retinoic acid, the most potent retinoid in terms of embryological 

teratology; however the retinoids have distinct biological roles in addition to their 

action as intermediates for retinoic acid production.  

Retinol can either be esterified by LRAT for storage or oxidised to form 

retinaldehyde (Figure 1.4). Cytosolic medium-chain alcohol dehydrogenases (ADH) 

and membrane-bound short-chain dehydrogenase/reductases (SDR) are able to 

catalyse the oxidation of retinol to retinal. ADHs convert free retinol not bound to 

cellular retinol binding protein (CRBP-I) and ADH1, 3 & 4 have been shown to be 

catalytically active in vitro. SDRs in contrast only catalyse oxidation when retinol is 

bound by the chaperone CRBP-I and retinol dehydrogenases (RDH) 1, 5 & 11 have 

been highlighted as active in this process. SDRs are also able to convert retinal to 

retinol, specifically within the photoreceptors in order to recycle retinol to the RPE 

cells. The conversion of retinol to retinal is the rate limiting step in the formation of 

retinoic acid.  

Retinal can function both as an intermediate for retinoic acid production and, in its 

11-cis conformation, as a prosthetic group bound to opsins to form the visual 

pigments. 11-cis retinal is formed within the retinal pigmented epithelium and is 

transported to the photoreceptor cell. 11-cis retinal is covalently linked to an opsin, a 

G protein-coupled trasnmembrane receptor, to form the visual pigments. Light 

induces a photochemical reaction, in which 11-cis retinal is isomerised to all-trans 

retinal, causing a conformational change in the opsin. The 11-cis retinal must then be 

replaced from the retinoid cycle and the all-trans retinal formed can be converted to 

retinol for recycling as described above (Figure 1.5). 
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Figure 1.4 Intracellular retinol metabolism 

Retinol is bound to cellular retinol binding protein (CRBP) intracellularly and this 

CRBP-ROH can then either be a substrate for either lecithin:retinol actyletransferase 

(LRAT) or retinol dehydrogenase (RDH). LRAT converts retinol to retinyl esters for 

storage and these retinyl esters can then be converted to retinol by retinyl ester 

hydrolase (REH) when required.  CRBP-ROH can also act as a substrate for RDH 

enzymes and is converted to retinal. Retinal can then become retinoic acid by 

RALDH. Retinal can also be recycled back to retinol by short chain 

dehydroganse/reductase (SDR) RDH enzymes. Retinoic acid (RA) is a ligand for 

RARs. Retinoic acid is metabolised to 4-OH retinoic acid by CYP26 (Cytochrome 

P450-family 26) enzymes and is then removed from the cell. Enzymatic steps are 

indicated by open blue arrows. 
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Figure 1.5 Retinoid visual cycle 

Within the retinal pigmented epithelium (RPE) cell, all-trans retinyl esters are 

converted by RPE65 (Retinal pigment epithelium-specific 65 kDa protein) to 11-cis-

retinol. 11-cis retinol is converted to 11-cis retinal by a specific 11-cis-retinol 

dehydroganse (RDH). 11-cis retinal is then transported to the photoreceptor and 

bound to opsins to form functional photoreceptor pigments. Upon exposure to light 

the 11-cis-retinal is converted to all-trans-retinal causing a conformational change in 

the opsin resulting in electrical impulses which are interpreted by the brain. The all-

trans-retinal is recycled to the RPE where it is converted to all-trans-retinyl esters by 

lecithin: retinol acetyltransferase (LRAT) to form substrates for formation of new 11-

cis-retinal.  
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Retinal is also an intermediate for the formation of retinoic acid (Figure 1.4). 

RALDH1, 2 & 3 are all known to function in the synthesis of retinoic acid from 

retinal in the embryo with developmental defects arising upon knockout of the 

corresponding genes. RALDH2 has the most widespread expression during 

development and is the main enzyme responsible for oxidation in vivo.  RALDH1 

and RALDH3 have more tissue specific functions inferred by the limited 

developmental perturbation upon gene knockout. 

Retinoic acid has important functions in the control of gene expression and acts as a 

morphogen during development as will be discussed below. Catabolism of retinoic 

acid is of paramount importance to maintaining proper levels of retinoic acid (Figure 

1.4). Retinoic acid can be catabolised by members of the cytochrome P450 family: 

CYP26A1, CYP26B1 and CYP26C1. Some evidence has been presented to suggest 

an independent role for the polar metabolites of retinoic acid; however it is unclear to 

what extent these are active in vitro.   

The mechanism of action of retinoic acid was unknown until the identification of 

retinoic acid receptor alpha (RARα) in 1987 (Petkovich 1987). Retinoic acid receptor 

(RAR) α is a member of the steroid/thyroid hormone receptor family which activate 

transcription in a ligand dependent fashion through the binding of short DNA 

sequences (Giguere 1987). Identification of two additional RARs, β (Brand 1988) 

and γ (Krust 1989), and three retinoid-X receptors, RXRα, β and γ (Mangelsdorf 

1992), were subsequently identified. These receptors function as heterodimers of an 

RAR and an RXR binding in cis to retinoic acid response elements (RAREs). 

RAREs are short DNA sequences consisting of direct repeats of consensus half sites, 

(a/g)g (g/t)tca, separated by two or five nucleotides and are commonly located 

upstream with no strand bias (Figure 1.6). RARs are regulated by RA through 

RAREs. RXRs in addition to binding to RARs are able to bind other nuclear 

receptors such as PPARγ (Iipenberg 1997) and TR (Yu 1991). The retinoid binding 

potential of RXRs is unclear and some evidence suggests that the RA isomer, 9-cis 

RA, acts as a ligand for the RXRs  (Mangelsdorf 1992) although if this ligand 

binding is physiologically relevant in vivo is still unclear.  
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Figure 1.6 Transcriptional regulation by retinoic acid 

Retinoic acid response elements (RARE) are found localised to promoters and 

enhancers of genes. These elements bind heterodimers of retinoic acid (RAR) and 

retinoid-X (RXR) receptors. In the absence of the retinoic acid (RA) ligand, these 

heterodimers allow the binding of nuclear receptor co-repressor protein (NCoR) 

which can act to recruit other repressive proteins in order to surpress gene expression 

in the absence of RA. In the presence of RA, RAR bind RA and this allows the 

binding of nuclear receptor co-activator protein (NCoA) resulting in gene activation 

and transcription. 9-cis-retinoic acid (9c-RA) is able to bind RXR but the 

significance of this for gene activation is unclear.
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1.2 Vitamin A deficiency  

1.2.1 In the adult 

The symptoms of vitamin A deficiency have been described throughout history 

despite vitamin A only being discovered in 1914. Historical texts described common 

symptoms of vitamin A deficiency affecting the eye; night blindness and 

xerophthalmia. Night blindness was described by Hippocrates and is typified by 

normal bright-light vision but an inability to see in dim light. Hippocrates also 

prescribed an appropriate cure for this affliction in raw beef liver. Xerophthalmia is a 

drying of the cornea and conjunctiva which can result in corneal ulceration and was 

described by physicians of the nineteenth century. The corneal lesions that occur 

upon vitamin A deficiency in rats were described by Wason (Wason 1921), in which 

edema, infiltration of capillaries and immune cells into the cornea and thickening of 

the cornea were noted. Folk remedies for such conditions included liver, liver 

extracts and cod liver oil and these were shown to be effective in the work of C. E. 

Bloch on institutionalised children from Denmark. In which he cured, with cod liver 

oil, the symptoms of vitamin A deficiency due to a diet consisting only of fat-free 

milk, oatmeal and barley soup. His knowledge of the animal work of Mc Collum and 

others allowed him to identify and treat human disease. Vitamin A deficiency, 

although now rare in the developed world, is still a major public health concern in 

the developing world (Figure 1.7). Maternal mortality is increased (West 1999) and 

there is an increased risk of disease (Hussey 1990; Semba 1994) and death 

(Humphrey 1992) in those children who are vitamin A deficient or who are born to 

vitamin A deficient mothers.  
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Figure 1.7 World map of vitamin-A deficiency 

Vitamin A deficiency is uncommon in the developed world however VAD is 

observed in variable severity across many developing countries of the world. 
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1.2.2 During development 

The effects of vitamin A deficiency on the foetus have been described in both 

rodents and farm animals since 1933. There is also some evidence to suggest that 

human development may also be effected by maternal vitamin A deficiency. A study 

by Hornby et al (Hornby 2000) highlighted the link between areas with high 

percentage of vitamin A deficiency and those with a great incidence of congenital 

eye malformation. The possible relationship between low serum retinol levels and 

developmental eye defects such as coloboma, anophthalmia and microphthalmia in 

South Indian populations was also investigated with 16% of mothers recalling night 

blindness, and were therefore likely vitamin A deficient, during pregnancy (Hornby 

2002).  Newborns with congenital diaphragmatic hernia (CDH) were also found to be 

more likely to have low serum retinol levels than control newborns, although no 

association was found to maternal serum retinol levels in this study (Beurskens 

2010). Bilateral microphthalmia with ventricular asymmetry of the heart was 

observed in a child born to a mother who was deficient for vitamin A and also had a 

history of previous preterm births and a miscarriage since a gastric bypass operation 

(Smets 2006).   

The vitamin A deficiency experiments were carried out first in pigs by Hale et al. 

Sows, who were fed a deficient diet during pregnancy, gave birth to offspring with 

micro- or anophthalmos, accessory ears, harelip, cleft palate, subcutaneous cysts and 

kidney misplacement (Hale 1935). Further work in vitamin A deficiency then moved 

into the more convenient model system of the rat and quail. Vitamin A deficiency 

during pregnancy in the rat resulted in 75% of the offspring exhibiting one or more 

defects of various organs. The eye was most sensitive to deficiency being most 

commonly affected organ and the only organ affected in some animals. Defects of 

the genito-urinary tract, diaphragm (diaphragmatic hernia), heart and lung were also 

observed. The defects observed could be rescued by dosing the females once with 

retinol, between day 10-13 for the eye and day 10 or 11 for other affected organs, 

except the heart which could not be fully rescued using this window of treatment 

(Wilson 1953).  
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Vitamin A deficiency (VAD) in the quail results in death of the embryo by day 4. 

The heart, although able to contract, is dilated and thin walled with no chambers. 

Treatment with RA at various stages has pinpointed a role for vitamin A in providing 

the proper environment for heart asymmetry specification by other genes. The early 

lethality seen in VAD quails is likely to be due to a lack of cardiac inflow tract to 

allow entrance of the vitelline veins to deliver blood to the embryonic heart possibly 

due to changes in the expression of GATA4. The central nervous system is also 

affected with vitamin A required for hindbrain specification and neural crest survival 

(Zile 2001). 
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1.3 Vitamin A (& retinoic acid) excess 

1.3.1 In the adult 

Hypervitaminosis A is caused by ingestion of either a single high dose, acute, or long 

term excessive intake, chronic, of vitamin A. Acute hypervitaminosis A occurs 

approximately  4 hours after ingestion of a toxic dose causing abdominal pain, 

nausea and vomiting with additional headache, dizziness, fatigue and irritability. 

Intracranial pressure is often raised and pain in the long bones is also experienced. 

Chronic hypervitaminosis A also resulted in the same symptoms as for acute toxity 

along with drying and thinning of the skin, anorexia, dry eyes, abnormal liver 

function and cirrhosis, disregulation of calcium balance and splenomegaly 

(Silverman 1987).  

1.3.2 During development 

Human pregnancies in which the mother has been undertaking isotretinoin treatment 

have a high risk of developmental abnormalities and spontaneous abortion. 

Isotretinoin is a synthetic retinoic acid analogue developed for pharmaceutical 

treatment for severe recalcitrant cystic acne.  In a group of 154 pregnancies with 

exposure to isotretinoin resulted in 95 elective abortions and the remaining 

pregnancies resulted in 12 spontaneous abortions, 26 infants with no malformations 

and 21 infants with developmental malformations. These malformations generally 

affected the craniofacial region, cardiac system, thymus and CNS.  Craniofacial 

abnormalities included small jaw, small or missing external ears and cleft palate. The 

retina and optic nerve were abnormal consistent with the eye’s sensitivity to retinoid 

levels. The involvement of the cardiac, craniofacial and thymic structures possibly 

indicate a defect neural crest cells from the cephalic region which are known to be 

regulated by RA (Lammer 1985). 

Maternal treatment of mice with a single vitamin A dose of 10,000 I.U. during 

pregnancy causes perturbations of the development of mouse embryos. Treatment 

early in pregnancy at ~E7 caused most embryos to be reabsorbed by the time of 

sacrifice at E17.5. Treatment between E8-12 caused the reabsorption of some 

embryos with almost all surviving offspring malformed and the ratio of surviving 
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offspring increasing the later in pregnancy the treatment was given.  Treatment at 

any period during pregnancy caused defects in thymus position and in some cases an 

accessory thymus was noted. In embryos from E8 or E9 treatment group resulted in 

many cases in spina bifida, exencephaly, cardiac defects (transposition of the great 

vessels, ventricular septal defect and overriding aorta) and kidney defects-including 

horseshoe kidney. The eye was affected with exophthalmous frequently observed 

with no eyelids also associated with this defect which appears to be due to a 

reduction in orbit size.  The external ear was often absent or reduced in size and 

becomes low set in relation to untreated animals. Treatment at E10-12 resulted in 

malformation of ~60% of the surviving offspring with cleft palate and small 

mandible common defects observed in this group. Limb defects were also observed 

in this group with micromelia and oligodactyly common. Skeletal analysis of these 

animals showed shortening or loss of a number of the limb long bones and 

malformations of the skull (Kalter 1961). 

Defects observed in both mouse and human upon gestational exposure to excessive 

retinoid doses show a similar constellation of defects affecting the thymus, 

craniofacial region, eye, heart and the pinnea showing a conservation of the role of 

RA in the morphogenic processes of development across the mammals 
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1.4 Genes of the RA pathway 

1.4.1 Retinol Binding Protein 4  

Retinol binding protein 4 (RBP4) is the physiological carrier for retinol in the plasma 

with at least 90% of the plasma retinol associated with RBP4. RBP4 has a molecular 

weight of 21kDa and has a binding site for one retinol molecule (Figure 1.8 A). 

RBP4-retinol is associated with TTR which prevents the removal of RBP4-retinol by 

the kidney filtration system (Kanai 1968). Rbp4-/- mice are viable and fertile (Figure 

1.8 B). The only phenotype in these animals is a non-developmental vision 

impairment of the retina in which a dark-adapted electroretinogram showed an 

increase in b-wave threshold level indicating a 100-fold decrease in light sensitivity. 

The visual impairment was resolved by 24 weeks on a retinoid sufficient diet 

(Quandro 1999).  The eye has a requirement for retinol supplied by RBP but can 

accumulate retinol to support vision from the low circulating levels found in complex 

with LDL or albumin (Vogel 2002). The visual defect was accompanied by low 

levels of 11-cis retinal within the eye consistent with the visual impairment. The 

plasma retinol levels of Rbp4-/- mice was 12.5% that of wild type animals. Rbp4-/- 

animals are able to create hepatic stores of retinoids but they cannot mobilise these 

stores under conditions of low-retinoid dietary provision and in fact accumulate 

hepatic retinoids resulting in higher hepatic retinol concentrations in Rbp4-/- than 

wild type animals (Quandro 1999). 

Rbp4-/- embryos do however have a developmental phenotype when dams are 

maintained on a retinoid-deficient diet from plug discovery (E0.5) till E14.5 when 

the embryos were analysed. Rbp4-/- embryos had small eyes compared to wildtype 

or Rbp4+/- embryos and showed signs of cardiac insufficiency in peripheral edema 

(Figure 1.8 C&D). Increasing the time on retinoid-deficient diet before pregnancy 

increased the severity of the phenotype from extreme reduction in eye size, abnormal 

midfacial region and limb defects from dams on retinoid-deficient diets for 5 weeks 

pre-plug to a complete lack of axial rotation in those embryos from those dams that 

had been maintained on a retinoid-deficient diet for three months (Figure 1.8 E-

G)(Quandro 2005). Retinoid deficient diet also affects the testes of adult male Rbp-/- 

animals, although under normal dietary conditions the morphology of the testis is not 
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affected. When Rbp-/- males are maintained on a retinoid-deficient diet histological 

changes to the testis are observed after 5 weeks and increase in severity with further 

time under retinoid deficiency. Retinoid deficiency in a Rbp-/- males causes a 

spermatogonia differentiation arrest but does not affect the transition to meiotic 

spermatocytes and spermiogenesis. Spermatogonia differentiation is affected by 

VAD in Rbp-/- animals and spermatid adhesion to the sertoli cells resulting in the 

observed loss of germ cell layers in testis histological sections (Figure 1.8 H-I) 

(Ghyselinck 2006). 
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Figure 1.8 RBP4 is not essential for development or testis maintenance under normal 

dietary conditions. 

The protein structure of RBP4 indicating the binding site for retinol within the 

protein (A). The hydrophobic pocket where retinol binds allows hydrophobic retinol 

to be transported within the blood. RBP4-/ animals are viable and fertile when dams 

are maintained on a retinoid-sufficient diet throughout pregnancy (B). RBP4-/- (C) 

embryos show reduction in eye size and peripheral edema (black arrows) when dams 

were maintained on a vitamin A deficient from plug till analysis at E14.5. RBP4+/- 

embryos are unaffected by this dietary regime (D). Increasing the time spent on 

vitamin A deficient diet before plug increases the severity of phenotype from 

extreme eye-size reduction, and midfacial and limb abnormalities (black arrows, E) 

to a complete lack of axial rotation (F&G).  Embryos B-E at E14.5 and embryos 

F&G at E11.5. Testis of RBP4/- males maintained on a vitamin- A deficient diet 

degenerate (I) with a loss of germ cell layers as can be observed by the large empty 

spaces in the centre of the tubules (‘T’ in H compared to ‘T1’ in I) however wild 

type testes are unaffected (H). B-G adapted from Quandro, L.H. et al (2005) and H-I 

adapted from Ghyselinck, N.B. et al (2006). 
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1.4.2 Cellular Retinol Binding Protein  

Many genes within the retinoid pathway form part of families with similar functions; 

this is true for the Cellular retinol binding proteins (CRBP) in which three members 

have been identified.  

1.4.2.1 Cellular retinol binding protein 1 

CRBP1 is expressed during development in both neural tissues; motor neurons and 

spinal cord, and organs; lung, liver and placenta. In the adult the expression is also 

found in the lung and liver additionally it is also observed in the RPE, kidney, brain 

and genital tract, all organs/tissues known to be sensitive to retinoids. Crbp1-/- 

animals are morphological normal and growth postnatal proceeded normally on a 

retinoid sufficient diet (Ghyselinck 1999). Developmental levels of retinol and 

retinyl esters were reduced significantly in Crbp1-/- but levels of RA were not 

significantly affected (Figure 1.9 A). Consistent with these observations pattern of 

RA responsive genes was unaffected (Matt 2005). Crbp1-/- animals maintained on a 

retinoid deficient diet became VAD within 5 months and upon this treatment retina 

morphology was disrupted with RPE and outer segment  association looser than WT 

and the outer segments became distorted and myelinated (Figure 1.9 B&C) 

(Ghyselinck 1999). Crbp1-/- had a two-fold delay in dark adaptation of the retina 

(Figure 1.9 D) but rhodopsin regeneration during flash recovery, and therefore visual 

cycle function, were not significantly affected (Saari 2002).  

 

1.4.2.2 Cellular retinol binding protein 2 

Crbp2 is highly expressed in the adult small intestine, specifically higher in the 

absorptive cells compared to both the proliferating and goblet cells (Crow 1985), and 

transiently in the perinatal liver and lung. Developmental expression is detected in 

the decidua and trophoblastic cells and then later in the yolk sac indicating a possible 

role for maternal-fetal transfer of retinoids. Under normal maternal dietary conditions 

Crbp2-/- animals are viable and no defects were observed either perinatally or in the 

adult. Dams fed a marginal retinoid diet from E10 gave birth to Crbp2-/- pups that all 
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died within 24hrs of birth and this effect seemed partially due to maternal genotype 

as when Crbp2+/- pup mortality was compared between those with a +/+ dam (27%) 

and those with a -/- dam (79%) some of the mortality rate was diminished; WT pups 

from WT to WT matings on the same diet regime showed no mortality. Death of 

these heterozygous pups appeared to be due to heart defects, right-sided engorgement 

and enlargement, and lung defects, decreased airspaces and haemorrhage (Figure 1.9 

E-H)(Xueping 2002). 

1.4.2.3 Cellular retinol binding protein 3 

Crbp3 was identified on the conditions of being expressed highly in heart and 

skeletal muscle; which take up retinol but have low expression levels of CRBP1 and 

2. It is able to bind all retinol isomers: trans-, 9-cis- and 13-cis-, but not other 

retinoids or fatty acids (Vogel 2000). Despite the high expression levels of CRBP3 

compared to CRBP1 and 2 in the heart and skeletal muscle, Crbp3-/- animals do not 

show any defects in the development or adult maintenance of these tissues. CRBP3 

is, along with CRBP1, highly expressed within the mammary gland but the relative 

levels of these proteins differ during pregnancy and lacatation. CRBP1 is more 

highly expressed in the mammary tissue during pregnancy and CRBP3 during 

lactation; consistent with this observation Crbp3-/- animals produce milk with low 

levels of retinyl esters, specifically retinyl palmitate (Figure 1.9 I). CRBP3 appears to 

normally provide substrates to LRAT in the mammary gland allowing the formation 

of retinyl esters for incorporation into the milk. CRBP1 is also upregulated in 

CRBP3 mice in the tissues where the two proteins are co-expressed, such as the 

adipose, but not in tissues where they are not co-expressed, such as testis (Figure 1.9 

J). The levels of CRBP1 also increase in the lactating Crbp3-/- animals but this is 

obviously not sufficient to rescue retinyl ester provision to the milk (Piantedosi 

2005). 
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Figure 1.9: Members of the CRBP family are required for normal vision and 

development under vitamin-A deificient conditions and to provide retinoids for 

lactation.  

Crbp1-/- embryos have reduced levels of retinyl esters but during development (A). 

Crbp1-/- animals become VAD after 5 months and this affects retinal morphology 

however WT animals under a similar regime are unaffected (B). The outer segment 

(OS) and the retinal pigmented epithelium (RPE) in Crbp1-/- separate (bracket) and 

the RPE no longer intercalates amongst the OS (C). Microvilli are present within this 

space (arrows) and the OS is disrupted (arrowhead) and replaced by lamellar bodies 

(LB) in some areas. Dark adapted ERG function in Crbp1-/- animals (green line) is 

comparable to WT (black line) when fed vitamin-sufficient diet (D- left panel) but 

under vitamin-A deficiency Crbp1-/- animals show delayed dark adaption (D-right 

panel).  Crbp2-/- animals die within 24 hours of birth when their dams are fed on a 

VAD diet from E10 till birth. Wildtype animals are unaffected by this dietary 

modification and have normal hearts (E) and lungs (G). Crbp2-/- animals appear to 

die due to heart defects (F) such as enlargement of the right atrium (RA) and a 

diminished number of air spaces within the lungs (H) compared to WT (G).  Crbp3-

/- lactating females have reduced retinyl ester levels in their milk with this reduction 

being made up mainly be a significant reduction in the level of retinyl palmitate (I). 

CRBP3 function is likely to be compensated by CRBP1 in Crbp3-/- animals as 

CRBP1 expression is increased in those tissues which they are co-expressed 

(adipose) but not in tissues where they are not (testis) (J).  A-D adapted from 

Ghyselinck, N.B. et al (1999), E-H adapted from Xueping, E. et al (2002) and I-J 

adapted from Piantedosi, R. et al (2005). 



Introduction 

27 

 

1.4.3 Lecithin Retinol Acyltransferase (LRAT) 

Lrat is widely expressed within the adult; with a high level of expression observed 

within the eye, adrenal gland, small intestine and testis. LRAT is located sub-

cellularly in microsomes and appears to be a membrane protein with at least two 

hydrophobic domains. LRAT is able to catalyse the transfer of the sn-1 fatty acid of 

phosphatidylcholine to retinol bound to a cellular retinol binding protein thereby 

creating retinyl esters. Expression of LRAT is RA responsive being rapidly induced 

in response to RA treatment (Figure 1.10 A). In vitamin-A deficient animals, the 

levels of LRAT are undetectable (Figure 1.10 A). These observations therefore 

constitutes a regulatory loop in which, in excess RA conditions, further retinol 

supplies are channelled to storage and in retinol deficient conditions storage ceases 

with all available retinol allowed to enter the synthesis pathway (Zolfaghari 2000).  

 

Lrat-/- mice develop normally, with females displaying normal fertility and all 

animals reaching a similar weight to wild type animals. However male animals are 

frequently infertile, consistent with both the known role of retinoids in reproduction 

(by vitamin A deficiency studies) and the known expression pattern of LRAT, in 

which expression is high in testis but undetected in ovary. Some changes to the retina 

are observed in Lrat-/- animals at 6-8 weeks-old, with the rod outer segment showing 

a ~35% reduction in length with this increasing to ~50% reduction by 4.5-months-

old (Figure 1.10 B). A small reduction in photoreceptor nuclei was also seen and the 

synaptic terminal of the photoreceptors also showed less well-developed synaptic 

ribbons. Eye levels of retinoids were very low in Lrat-/- compared with WT and 

Lrat+/- animals, low levels of retinol were observed (possibly from the blood within 

the eye), trace amounts of retinyl esters and no other retinoids were detected, 

including 11-cis-retinal- a major retinoid within the eye required for visual function 

(Figure 1.10 C). Consistent with this lack of 11-cis-retinal, ERG data indicates that 

rod and cone function is greatly diminished (Figure 1.10 D). Human mutations in 

LRAT result in retinal dystrophy (Thompson 2001) and Leber congenital amaurosis 

(Senechal 2006), probably due to the lack of retinyl ester provision to RPE65 for the 

formation of 11-cis-retinal. Retinyl ester levels in the liver, blood and lung were also 

found at trace amounts with a slight reduction in blood retinol levels also noted 
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(Batten 2004). Abnormalities of the testes were further analysed in a second 

knockout line in which diffuse testicular hypoplasia and atrophy was noted (Figure 

1.10 E-H). Mature sperm were found to be absent in Lrat-/- males but expression of a 

panel of testis-specific genes were un-changed between WT and Lrat-/- testis (Figure 

1.10 I) (Liu 2005). 
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Figure 1.10 LRAT is RA responsive and maintains testis and retinal function in 

adults. 

Lrat expression is dependent of retinoid levels being lost upon VAD, to allow 

available retinol be metabolised, and induce by RA treatment, in order to maintain an 

equilibrium between storage and metabolism (A). Lrat-/- animals (triangles) have a 

reduction in the rod outer segment length compared to WT (filled circles) and Lrat+/- 

animal (open circles) (B). Lrat-/- eyes have very low levels of retinoids (C). Retinyl 

esters (2) are not detected in Lrat-/- eyes and a minimal level of retinol is observed 

(6). 13-/11-cis retinyl oximes (1), syn-/anti-11-cis-retinyl esters (3, 3’), syn-/anti-all-

trans retinal oximes (4, 4’) and 11-cis retinol (5) are also absent in Lrat-/- eyes. ERG 

analysis of Lrat-/- animals shows dysfunction of the photoreceptors with both a-wave 

(D-left panel) and b-wave (D-right panel) being significantly reduced in Lrat-/- (open 

circles) compared to WT (filled circles). The testes of 4-week WT (E) and Lrat-/- (F) 

show marked differences with hypoplasia evident in Lrat-/- animals. Testes 

morphology deteriorated with age and Lrat-/- (H) animals showed stark 

morphological differences compared to WT (G) males at 3 months.  Despite 

morphological changes to the testes, gene expression of testes-specific genes was 

unchanged between WT (#1, #3) and Lrat-/- (#2, #4). A adapted from Zolfaghari, R. 

et al (2000), B-D adapted from Batten, M.L. et al (2004) and E-I adapted from Liu, 

L. et al (2005).   
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1.4.4 Retinol Dehydrogenase  

Retinol dehydrogenase (RDH) enzymes function to catalyse the oxidation of retinol 

to retinal. Many RDH enzymes have been indentified and most show redundant 

functions in development. Knockout of many RDH enzymes results in retinal 

degeneration and human mutations in two RDH genes results in visual phenotypes: 

RDH5 in mild night blindness (Yamamoto 1999) and RDH12 in a childhood-onset 

retinal dystrophy (Thompson 2005).  

 

1.4.4.1 Retinol dehydrogenase 5, 8, 11 & 12 

RDH 5, 8, 11 and 12 all contribute to the visual cycle allowing reduction and 

oxidation of retinoids in order to maintain photoreceptor function. RDH8 acts to 

reduce all-trans retinal within the photoreceptor outer segments (Parker 2010) and 

knockouts show no retinal morphology defects but rod recovery was slow (Figure 

1.11 A) and under bright light all-trans retinal accumulated within the eye (Maeda 

2005). RDH12, like RDH8, also functions to reduce all-trans retinal. RDH8 is the 

major functional enzyme in vivo as little difference in RDH activity is observed 

between Rdh8-/- and Rdh8-/-; Rdh12-/- animals (Maeda 2007). Dark adaptation of 

Rdh12-/- animals is slower (Figure 1.11 A) and, as for Rdh8-/- animals, all-trans 

retinal accumulates after exposure to extended periods of bright light. Retina 

morphology is normal in young animals but the outer segment is reduced in animals 

of 10 months (Figure 1.11 B&C) and the central retina photoreceptors are lost in 

animals exposed to continuous bright light. RDH12 is important for maintaining the 

photoreceptor under excessive illumination but does not play a major role in normal 

retinal reduction in vivo (Maeda 2005). RDH5 and RDH11, in contrast to RDH8 and 

RDH12, function mainly to oxidise retinol. RDH5 is highly expressed in the RPE 

and recognises cis-isomer retinoids as substrates. RDH11 can catalyse both cis- and 

trans-retinoids and is also thought to be important for removing toxic aldehydes 

created as byproducts of the visual cycle. Both Rdh5 and Rdh11 mutants show no 

changes to retina morphology and both show delayed dark adaptation (Figure 1.11 

D-F). Bleaching of the Rdh5-/- retina causes an accumulation of 11-cis-retinal 
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precursors, 11-cis-retinol and retinyl esters and a reduction in 11-cis-retinal 

production. In contrast the Rdh11-/- retina shows no such accumulation of these 

retinoids (Kasus-Jocobi 2005). Double knockouts suggest that RDH5 and RDH11 

function cooperatively to produce 11-cis-retinal but RDH5 is likely to be the major 

enzymatic partner (Parker 2010).   

1.4.4.2 Retinol dehydrogenase 1 

Rdh1 knockout is not reported to effect eye morphology or function and does not 

give a developmental phenotype. Rdh1 knockout results in no changes to retinoid 

levels under normal diet and increases RE and retinol under a retinol-minimal diet 

(Figure 1.11 G&H). The reduction in the provision of retinoic acid precursors is 

compensated by a reduction in CYP26A1 levels and thereby maintaining sufficient 

levels to facilitate normal development. Rdh1-/- animals maintained on a vitamin A 

copious diet were indistinguishable from WT animals in terms of growth and weight 

however when animals were born to dams on a vitamin-A minimal or deficient diets 

and weaned onto the same diets they weighed more than their WT counterparts 

despite food consumption not being significantly different between the two groups 

(Figure 1.11 I&J). The extra weight was derived only from the extra fat mass of 

Rdh1-/- animals which also showed a reduction in both water and body mass (Figure 

1.11 K) (Zhang 2007). 

 

1.4.4.3 Retinol dehydrogenase 10 

In contrast to other RDHs, Rdh10 loss from the embryo results in a developmental 

phenotype (Figure 1.11 L&M). RDH10 responsible for the majority of retinal 

synthesis in the embryo and this synthesis occurs on the intracellular membrane in a 

CRBP independent manner (Farjo 2011). Rdh10
trex

 mutants were created through an 

unbiased ENU approach and this mutation results in an unstable protein with no 

detectable RDH10 activity and therefore probably represents an Rdh10 knockout 

(Sandell 2007; Cunningham 2011). The Rdh10
trex

 mutant was named after the limb 

phenotype in which the forelimbs show massive reduction in size however the 

hindlimbs appear unaffected analogous to a Tyrannosaurus rex, therefore Rdh10
trex 
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(Figure 1.11 N&O). Rdh10
trex

 mutants also show malformation of the optic and otic 

vesicles, lung bud agenesis and a neural crest patterning defect associated 

abnormalities of the cranial ganglia. Rdh10
trex

 mutants die at around E13.0 perhaps 

due to vascular defects as extensive haemorrhaging and blood pooling is observed 

(Figure 1.11 M). Organogenesis is generally affected with liver, lung, stomach, 

pancreas and gonads hypoplastic at E13.0 in Rdh10
trex

 mutants. Maternal RA 

supplementation between E7.5 and E10.5 resulted in Rdh10
trex

 embryos were 

morphologically indistinguishable from WT embryos at E13.0 (Figure 1.11 P-R). 

The Rdh10
trex

 phenotype can be attributed to a deficiency of RA which can be 

rescued by increased maternal RA contribution (Sandell 2007).  
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Figure 1.11 Members of RDH family are required for normal vision, regulation of fat 

mass percentage and normal development. 

Rdh8-/- (filled circles) and Rdh12-/- (grey filled circles) animals show reduced a-

wave amplitude compared to WT range (gray) (A). Rdh8-/-; Rdh12-/- (open circles) 

are similar in a-wave profile to Rdh8-/- (A).  Retinal outer segment (OS) length is 

reduced in older Rdh12-/- (B) compared to WT of the same age (C). Rdh5-/- animals 

(E) show delayed dark adaptation after bleaching as seen by the minimal b-wave (b-

W) on ERG compared to WT (D). Rdh11-/- show slow recovery from 

photobleaching compared to WT animals (F). Retinol (G) and retinyl esters (H) 

levels are normal in Rdh1-/- animals (light grey bars) under vitamin-A excess diet 

(30) and retinol levels only are increased in Rdh1-/- fed a vitamin-A minimal diet (4) 

compared to WT (dark grey bars). Vitamin-A deficient diet (0.4) caused a significant 

increase in retinyl esters (RE) in the liver and a significant increase in retinol in the 

liver and kidney. WT (blue) males (circles) and females (triangles) and Rdh1-/- (red) 

when fed vitamin-A copious diets were indistinguishable in weight and growth (I). 

When fed on a vitamin-A deficient diet Rdh1-/- animals are significantly larger than 

WT animals (J). The extra weight in Rdh1-/- mice (light grey bars) is derived from 

an increase in fat mass with water and lean mass decreased compared to WT (dark 

grey bars) (K). Rdh10-/- are the only Rdh KO to display a developmental phenotype. 

Rdh10
trex

 (M) die at around E13.0 with extensive haemorrhaging across the embryo 

surface and small eyes. Rdh10
trex 

mutants (O)
 
are so named due to reduction in 

forelimb size compared to WT (N) with normal hindlimb size. Maternal RA 

supplementation from E7 to E10.5 rescued the Rdh10
trex 

mutants (P) and resulted in 

Rdh10
trex

 embryos (R) indistinguishable from WT (Q). A-C adapted from Maeda, A. 

et al (2007), D-E adapted from Driessen, C.A. et al (2000), Kasus-Jacobi, A. et al 

(2005), G-K adapted from Zhang, M. et al (2007) and L-R adapted from Sandell, 

L.L. et al (2007). 
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1.4.5 Retinaldehyde Dehydrogenase  

Three retinaldehyde dehydrogenases (RALDH) enzymes have been identified in 

mammals; RALDH1-3, and of these RALDH2 appears to be the most important for 

provision of developmental RA requirement. Raldh2 was identified by cloning of 

cDNA from rat testis (Wang 1996) and shown to be RA-inducible in p19 carcinoma 

cells (Zhao 1996). RALDH acts on retinal to synthesise retinoic acid, both in its free 

state and also complexed with CRBP (Wang 1996), and its expression level is related 

to the RA synthesis potential of the tissue (Zhao 1996).  

 

1.4.5.1 Retinaldehyde dehydrogenase 2 

RALDH2 is essential for normal development with Raldh2-/- animals dying around 

E10.5.  Morphologically E10.5 Raldh2-/- embryos more closely resemble WT E8.5, 

as Raldh2-/- do not undergo axial rotation (Figure 12A-H). In addition to a lack of 

axial rotation, the embryos were also smaller, had an open neural tube and dilated 

heart (Figure 1.12 D, F&H) (Niederreither 1999). Heart defects in Raldh2-/- embryos 

result not from defects in heart tube formation but a failure of rightward heart 

looping. The formation of the myocardium is impaired resulting in a loosely 

associated layer of prematurely differentiated cardiomyocytes and undifferentiated 

cells. Heart formation, other than the formation of the neural crest derived outflow 

tract, can be rescued by maternal RA supplementation (Figure 1.12 I&J) indicating 

that specific areas of RA synthesis are not essentially required for non-neural crest 

derived heart morphogenesis (Niederreither 2001). Gene expression of the looping 

associated genes Nodal/Lefty/Pitx2 is not affected in Raldh2 mutants but expression 

of secondary heart field associated genes Tbx1/Fgf8/Islet1 are expanded posteriorly 

and this additional specified tissue cannot differentiate correctly (Figure 1.12 K&L) 

(Ryckebusch 2008). Fgf3 expression was very weak in Raldh2-/- embryos (Figure 

1.12 M&N) and consistent with its role in otocyst development Raldh2-/- embryos 

show a hypoplastic and abnormally position otocysts (Niederreither 1999). Fgf8 and 

Fgf10 expression is undetectable in Raldh2-/- embryo which is concomitant with 

limb bud development failure in Raldh2-/- embryos as Fgf8/10 are required for limb 
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bud specification (Niederreither 1999). This interaction between FGF and RA is 

repeated throughout the embryo and during development with both genes sharing 

many developmental regulatory networks (Shiotsuga 2004). Maternal RA 

supplementation, in addition to rescuing some aspects of heart development, is also 

able to rescue embryo turning, somite and trunk development but only partially 

rescues forelimb development with small forelimbs observed in rescued Raldh2-/- 

and some embryos also show tail defects and shortening of the trunk region (Figure 

1.12 I&J) (Niederreither 1999). Therefore many of the actions of RALDH2 can be 

maintained by ubiquitous flooding of the embryo with RA however some functions, 

i.e. limb development/cardiac outflow tract formation, require either the specific 

expression of Raldh2 or perhaps a higher level of RA than is provided by maternal 

supplementation.  
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Figure 1.12 RALDH2 is essential for normal heart and embryonic development. 

Unlike WT embryos (A) Raldh2-/- embryos show a lack of axial rotation at E10.5 

(C) and are equivalent to an E8.5 embryo (B).  Raldh2-/- embryos (D&F) also exhibt 

an enlarged heart (h), reduction in the number of branchial arches (b1-3), hypoplastic 

frontonasal region (fn), somite defects (s) and in some embryos a failure of neural 

tube closure (nt*) compared to WT E9.5 embryo (E). Similarly at E10.5, compared 

to WT (G), the heart remains distended, the neural tube remains open and axial 

rotation is not complete and the forelimb (fl) buds are hypoplastic although hindlimb 

(hl) buds are still visable. Maternal RA treatment was able to almost completely 

rescue development to E10.5. WT embryos exposed to the same treatment were 

normal (I) and Raldh2-/- embryos had completed axial rotation (J). Secondary heart 

defects in Raldh2-/- embryos (L) are caused by an expansion of Fgf8 expression 

domain at the 3-4 somite stage compared to WT (K). Fgf3 expression at E8.5 is also 

lower compared to WT (M) in Raldh2-/- embryos (N) especially in the hindbrain 

(hb) but not affected in the posterior mesoderm (ps). A-J and M-N are adapted from 

Niederreither, K. et al (1999) and K-L are adapted from Ryckebusch, L. et al (2008). 
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1.4.5.2 Retinaldehyde dehydrogenase 1 

RALDH1 is able to act on both trans- and 9-cis retinal at similar conversion 

efficiencies (Gagon 2003). RALDH1 is expressed in the lungs, liver and testis in 

addition to its expression within the eye. Raldh1-/- mice show no developmental 

defects or defects in postnatal viability or growth. Retina morphology is normal in 

knockout animals (Figure 1.13 A&B) and visual function is not affected with 

electroretinography (ERG) showing no signs of retinal degeneration or delayed dark 

adaptation (Figure 1.13 C). Retinol metabolism is affected in Raldh1-/- livers with an 

increase in retinol and retinyl esters, but no change to the level of RA (Figure 1.13 

D). When Raldh1-/- animals are given a large oral dose of trans-retinol, however, 

they show a reduced accumulation of RA compared to WT animals (Figure 1.13 D) 

(Fan 2003). RALDH1 is therefore normally redundant to RALDH2 and 3 and not 

essential in the embryo or the adult.  

 

1.4.5.3 Retinaldehyde dehydrogenase 3 

Raldh3-/- animals die soon after birth due to respiratory distress from a persistence, 

rather than timely rupture, of the nasal fins resulting in choanal atresia (Figure 1.13 

H-K). This lack of passage between the nasal and oral cavaties causes respiratory 

distress as newborn animals are unable to breathe through their mouths. Raldh3-/- 

embryos also show defects of other components of the nasal region, namely the 

absence of maxillary sinuses and nasolacrimal ducts and hypoplasia of the 

ethmoturbinates (Figure 1.13 L&M). These defects have also been described in 

various RAR compound knockouts highlighting a role for RALDH3 in directly 

providing RA ligand for RARs (Dupe 2003). The defects in nasal development 

coincide with the expression of Raldh3 within the olfactory pit and maxillary process 

(Figure 1.13 E&F). Eye development is also affected in Raldh3-/- (Figure 1.13 N-Q) 

consistent with the expression of Raldh3 widely in the optic vesicle during early 

development but later restricted to the ventral retina and future RPE (Figure 1.13 E-

G) (Mic 2000; Suzuki 2000). Raldh3-/- animals, as for Raldh2-/-, can be rescued by 

maternal RA supplementation however supplementation of Raldh3-/- results in 
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healthy pups born which survive to adulthood and are indistinguishable from WT 

animals (Dupe 2003). 
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Figure 1.13 Raldh1 is dispensable in the embryo and adult but loss of Raldh3 results 

in neonatal mortality. 

Retinal morphology is normal in Raldh1-/- animals with WT (A) and Raldh-/- (B) 

retinas being indistinguishable. ERG investigation of Raldh1-/- (grey) compared to 

WT (black) could not distinguish any differences in b-wave response (C). Raldh1-/- 

animals do show defective metabolism of retinoids (D) in the normal state, with a 

significant increase in retinol (
b
 P<0.05) and retinyl ester (

c  
P<0.01) amounts in the 

liver. Upon oral dosing with retinol, significantly less RA is produced by Raldh1-/- 

along with a significant increase in retinol and retinyl ester level. Raldh3 is expressed 

highly within the surface ectoderm in the head region, specifically the lens and nasal 

placodes at E9.5 (E). Expression is further restricted to the ventral retina, nasal pit 

(arrow) and the mandibular arch (arrowheads) at E11.5 (F). Expression within the 

ventral retina was maintained at E14.5 (G). Raldh3-/- neonates die due to respitatory 

distress due defects in nasal development. Morphological defects in nasal 

development can be noted from E11.5 between the nasomedial process (NM) and 

nasolateral process (NL). The nasal cavity (N) is large in WT embryos (H) compared 

to Raldh3-/- embryos (I) and the nasal fins (F) have regressed. Nasal fins in WT 

embryos (J) have formed the oropharyngeal membrane (OM) while in Raldh3-/- the 

nasal fins remain fused (K). Multiple defects of the nasal region are noted including 

hypoplastic ethmoturbinates (E1-3) and fusion of the second and third (E2/E3) in 

Raldh3-/- (N) compared to WT (M). The nasalacrimal groove (NG) persists in 

Raldh3-/- at E12.5 (O) compared to WT (N) and the ventral (V) retina is also un-

pigmented in Raldh3-/- compared to WT although the dorsal (D) is unaffected.  Eye 

development is also affected in Raldh3-/- embryos with the retrolenticular membrane 

persisting at E14.5 in Raldh3-/- animals (Q) compared to WT (P). A-D adapted from 

Fan, X. et al (2003), E-G adapted from Suzuki, R. et al (2000) and H-Q adapted from 

Dupe, V. et al (2003). 
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1.4.6 Retinoic Acid receptors  

Retinoic acid receptors (RAR) are part of the superfamily of ligand activated 

transcriptional regulators and function in heterodimers with RXRs (discussed below) 

to bind and effect gene expression of those genes with cis acting response elements 

known as RAREs. Commonly RAREs are direct repeats with a 5bp spacer although 

considerable heterogeneity has been observed in seemingly functional RAREs. In the 

absence of ligand, i.e all-trans- or 9-cis-RA for RARs and 9-cis-RA for RXRs, these 

heterodimers function as co-repressors until the availability of ligand allows them to 

function as co-activators (Chambon 1996). Three RAR genes are found in mammals 

with alternative transcripts derived from many of the genes due to the use of 

alternative promoters and alternative splicing.  

 

1.4.6.1 Retinoic acid receptor alpha 

RARα is found in two isoforms; α1 which is widely expressed under the control of a 

‘housekeeping-like’ promoter and α2 which is under the influence of a RARE. 

RARα1-/- mice, a specific knockout of the α1 isoform, are viable and fertile with no 

skeletal or histological abnormalities identified. RARα-/-, a knockout for all RARα 

isoforms, represented the expected 25% proportion of the litter when analysed during 

gestation. After 12-24hours over half of the RARα-/- pups were lost and were found 

to be preferentially cannibalised by their dams. RARα-/- animals had a higher 

mortality rate representing only 3%, rather than the expected 25%, of the population 

at 2 months (Figure 1.14 A). These animals showed a slower growth rate 1-2 weeks 

after birth and, despite no obvious malformations other than interdigital webbing in 

60% of the animals, died shortly after showing signs of emaciation and lethargy. 

Male RARα-/- animals that survived sired no pups with WT females and at 4-5 

months showed degeneration of the germinal epithelium. Most of the tubules were 

atrophied and showed loss of the spermatogenic cells resulting in the low number of 

sperm observed in the epididymal duct therefore resulting in the observed infertility 

of RARα-/- males (Figure 1.14 B-D)  (Lufkin 1993).  
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1.4.6.2 Retinoic acid receptor beta 

RARβ-/- (loss of all isoforms β1-4) are found in the expected frequency and have 

normal life expectancy as WT littermates. They do however show a postnatal growth 

deficiency despite weighing the same as WT littermates at birth. Males show a 25% 

and females a 20% reduction in body weight at P20 (Figure 1.14 E) and this was also 

accompanied by a 10% decrease in the length of various bones indicating a systemic 

growth defect. RARβ-/- also show congenital defects of the eye with bilateral 

persistent hypoplastic primary vitreous (PHPV) bilaterally observed in 83% of 

knockouts and cataracts in 8% of animals compared to 0% in WT or +/- littermates 

(Figure 1.14 F&G). Folds of the neural retina due to the mechanical stress of the 

PHPV were also observed at E18.5 in 40% of the embryos analysed. A homeotic 

posteriorising transformation of the C7 cervical vertebra observed, in general 

unilaterally, in 11% of the knockouts resulting in an extra rib on the C7 vertebrate 

converting it to a more thoracic T1-like identity (Ghyselinck 1997).  

 

1.4.6.3 RARE-LacZ 

RARβ is also RA-responsive with a RARE within its promoter sequence and this 

RARE has been used in order to produce a transgenic reporter of RA signalling 

under normal conditions and perturbations of RA signalling including maternal RA 

treatment and gene knockout. Three copies of the 34bp RARE from RARβ have been 

placed in front of the Hsp68 promoter linked to the lacZ gene (Figure 1.14 H&I) 

which results in lacZ staining in regions of active RA signalling. Using this transgene 

expression was seen early in E3.5 blastocysts in both cells of the ICM and the 

trophoblast but this expression was variable indicating RA signalling may be 

activated stochastically in individual cells of the blastocyst. Expression was not seen 

again until after E7.5, when expression was observed throughout the primitive streak, 

and the posterior of the embryo in all three germ layers (Figure 1.14 J). Expression 

was restricted to the optic eminence and in a region in the middle of the embryo from 

the first somite to behind the last formed somite at E8.5 (Figure 1.14 K). By E10.5 

expression although superficially restricted to the region from the start of the spinal 
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cord to the base of the tail, internally expression was higher in the spinal cord and the 

endoderm of the developing gut. The eye was stained both in the future lens and 

retina consistent with the known role for RA in eye development (Figure 1.14 L). 

After maternal treatment with RA, the transgene became activated across the whole 

embryo and was activated earlier than untreated embryos at E6.5-7.5 (Figure 1.14 M) 

(Rossant 1991). 

 

1.4.6.4 Retinoic acid receptor gamma 

RARγ has two isoforms (γ1 and 2) and knockouts of γ2 alone result in no 

developmental or adult defects, however knockouts of both isoforms results in 

growth deficiency (as for RARβ-/-), early lethality and male sterility (as for RARα-/-). 

Loss of RARγ did not affect the expression of the RAR genes or the staining pattern 

of the RARE-lacZ reporter of RA signalling at E9.5 or 13.5. The expected number of 

RARγ-/- embryos (25%) was observed at E18.5 but half of the expected RARγ-/- 

animals were found at 1-3 weeks of age and this reduced to 20% of the number 

expected by 3 months (Figure 1.14 N). The growth deficiency in RARγ-/- animals 

occurred by P4 with null animals weighing 40-80% of WT littermates although these 

smaller animals experienced a higher degree of mortality such that there was little 

difference in body weight compared to WT littermates by 3 months. RARγ loss 

results in anteriorizing homeotic transformation of the cervical vertebra (Figure 1.14 

O&P). Harderian gland epithelium was absence in some null animals and caused the 

eyelids to be closed and crusted in these animals. Male RARγ-/- animals were, as for 

RARα-/- males, found to be sterile but female fertility was normal consistent with the 

high expression of RARγ in the male but not female reproductive system. The 

seminal vesicles and prostate are hypertrophic and the normal glandular epithelia 

have undergone a transition to squamous epithelia with some keratinised cells 

(Figure 1.14 Q&R) (Lohnes 1993).  
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Figure 1.14 Individual members of RAR family are not essential for normal 

development but do play a role in postnatal survival, fertility and eye morphology. 

RARα-/- are found in the expected ratio in embryonic stages but over half are lost 

within the first 24 hours after birth and this increased mortality is constant through 

the first months of life (A). Surviving RARα-/- males were infertile and exhibited 

testicular degeneration with normal tubules (B) containing spermatozoa (T) rarely 

observed in RARα-/- (T1, C). Most tubules in RARα-/- animals were atrophic (T3, D) 

and devoid of spermatogenic cells (T2, C-D) and contained vacuoles (V). RARβ-/- 

females (E, left panel) and males (E, right panel) are postnatal growth deficient 

despite weighing the same as WT pups at birth. RARβ-/- also show congenital eye 

defects with a persistence of the rentrolenticular membrane (R, G) which is lost in 

WT animals (F). RARβ contains a characterised RARE within its promoter (H) and 

three copies of this RARE have been linked to a hsp68 promoter and the LacZ 

reporter gene (I) in order to create a reporter of active RA signalling. Expression, and 

therefore RA signalling, is observed at E7.5 throughout all the germ layers within the 

posterior of the embryo and primitive streak (J). RA signalling is active in the optic 

eminence and in the middle portion of the embryo between the first and last somite at 

E8.5 (K). Expression at E10.5 was superficially observed across the embryo from the 

start of spinal cord through the tail excepting the limb buds and within the eye (L). 

Maternal RA supplementation highly activated the transgene across the entire 

embryo indicating that the transgene provides and accurate readout of RA signalling 

(M). The expected number of RARƴ-/- embryos was observed at E18.5 but these 

were progressively lost during the postnatal period leaving only 20% of the expected 

number by 3 months (N). Loss of RARƴ results in anteriosing homeotic 

transformation of the cervical vertebrae. WT animals (O) have 7 cervical vertebrae 

(C1-7) however in RARƴ-/- (P) animals two C1-like vertebrae are observed. RARƴ-/-  

males are also sterile and, compared to WT (Q), the seminal vesicles (SV) and 

prostate (CV) show marked atrophy. A-D adapted from Luftkin, T. et al (1997), E-G 

adapted from Ghyselinck, N.B. et al (1997), H-N adapted from Rossant, J. et al 

(1991) and N-R adapted from Lohnes, E. et al (1993).  
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1.4.6.5 Retinoic acid receptor compound knockouts 

The RARs show considerable redundancy of expression and function with individual 

mutants showing minimal phenotypes mainly restricted to defects in adult tissue 

maintenance and postnatal growth. Double mutants have been studied in order to 

determine the roles of each gene in the absence of the compensatory effects of the 

other genes of the pathway. The table shows the combination of defects observed in 

various compound mutants and shows the necessity of RARs for the development of 

the eye, heart, thymus, thyroid, kidney, male and female genitals and respiratory tract 

(Table 1.1). RARs are also important for the transduction of the RA gradient to 

signalling cues for Hox code activation within the developing spinal column as seen 

by the homeotic transformations of the vertebrae. RARα and RARγ are required to 

specify correct digit number and are compensatory for each other in single knockout 

animals. RARα has a role in normal respiratory tract formation as seen on compound 

αβ2 mutants but this function is compensated in single knockout animals. RARγ is 

required for Hardarian gland formation with agenesis of this structure observed in all 

compound mutants including RARγ loss (Lohnes 1994; Mendelsohn 1994).  

RARs are required to control gene expression in a RA dependent fashion and show 

significant functional redundancy as expected for an important class of 

developmental regulators. 
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Table 1.1 Loss of multiple RAR genes results in a range of developmental defects. 

Loss of multiple RAR family genes results in developmental defects in a percentage 

of embryos. +: 25-50%, ++: 51-75%, +++: 76-100%, -: 0%/ same frequency as WT, 

NS: not studied. Viability (V) of multiple RAR mutants is reduced and in some 

mutants developmental defects resulted in embryonic lethality (EL). Table complied 

from Lohnes, D. et al (1994) and Mendelsohn, C. et al (1994). 
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1.4.7 Retinoid X Receptor (RXR) 

RXRs also form a family of three isotypes; α, β and γ and are a distinct family of 

genes with divergent structure and ligand binding compared to the RARs. RXRs 

binds all-trans-RA but 9-cis-RA elicits a 40-fold greater activation when bound 

(Mangelsdorf 1992). Despite the ability of 9-cis-RA to trigger RXR activation, this 

RA isoform is not abundantly detected in vivo.  RXRs are also able to a range of 

unsaturated fatty acids however, which may also act as ligands in vivo (Wolf 2006). 

RXR is also able to heterodimerise with thyroid hormone and vitamin D receptors in 

order increase DNA binding and transcriptional activity at their response elements, 

although RAR/RXR heterodimers are not able to interact with either thyroid or 

vitamin D response elements (Yu 1991).  

 

1.4.7.1 Retinoid X receptor alpha 

RXRα-/- animals die in the second half of gestation between E13.5 to E16.5 and the 

first defect observed is at E12.5 when liver volume was reduced to ~30% that of WT 

but this is increased to 60% by E14.5 (Figure 1.15 A-D). At E14.5 the embryos 

appear normal, apart from the smaller liver and a widespread edema under the 

dermal skin layer (Figure 1.15 C&D). Edema is a common sign of heart defects 

resulting in heart failure and RXRα-/- show defects of the ventricle with ventricular 

septal defects and thinning of the ventricle walls (Figure 1.15 E&F) (Sucov 1994). 

The cardiac defects in RXRα-/- animals are similar to those in VAD animals and 

therefore the main function of RXRα in development is likely to be in the RA 

signalling pathway. RXRα-/- have bilateral eye defects from E13.5 which could be 

observed externally as a reduction in paperpal fissure size and a lack of pigment in 

the ventral portion of the eye (Figure 1.15 G&H). Lens position was rotated (Figure 

1.15 I&J) and the cornea thickened with a persistence of the primary vitreous at 

E14.5 (Figure 1.15 K&L) (Kastner 1994). The eye is known to be specifically 

sensitive to changes in RA signalling further highlighting RXRα’s role in the RA 

pathway.  
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1.4.7.2 Retinoid X receptor beta 

RXRβ is dispensable for development in around 50% of animals suggesting a 

stochastic effect of this mutation which results in loss of some RXRβ-/- animals in 

utero or perinatally and the survival of others to adulthood (Figure 1.15 M). 

Surviving adult males are sterile with an epididymis sparsely populated by 

differentiated spermatozoa which upon extraction were mostly immobile with tail 

coiling (Figure 1.15 N-P). Acrosomes and mitochondrial sheaths were abnormal 

through the period of spermatogenesis and probably contributed to the lack of sperm 

motility observed. RXRβ is expressed within the Sertoli cells and, consistent with 

this, Sertoli cells of RXRβ-/- males degenerate (Figure 1.15 Q-S) and accumulate 

unsaturated triglycerides (Figure 1.15 T&U) which progress in older males to form 

lipid-filled tubules (Kastner 1996). RXRβ is therefore not essential for development 

of all embryos but influences developmental success of the embryo and is required 

for spermatogenesis and Sertoli cell maintenance.  

 

1.4.7.3 Retinoid X receptor gamma 

RXRγ is entirely dispensable for normal development, postnatal growth, longevity 

and fertility and its knockout does not result in a compensatory up-regulation of the 

other RXRs (Krezel 1996). RXRγ does; however, seem to have a function within the 

brain and null animals have working memory defects. RXRγ is expressed within the 

frontal and perirhinal cortex both regions known to be important for the working 

memory process (Wietyrch 2005). RXRγ also controls affective behaviours and null 

animals show an increase in despair (Figure 1.15 V) and loss of pleasure responses 

indicating a depression-like state. RXRγ appears to function through the dopamine 

D2 receptor and in its absence expression of the dopamine D2 receptor (Figure 1.15 

W) and serotonin are reduced causing depressive-like behaviourally responses 

(Krzyzosiak 2010). RXRγ may also play a role in brain regeneration after injury 

specifically in the remyelination by oligodendrocytes. RXRγ is highly expressed in 

spontaneous remyelination of the CNS (Figure 1.15 X&Y) and in RXRγ-/- animals 

oligodendrocyte differentiation was delayed despite normal repopulation of the 
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lesion by oligodendrocyte precursors. Addition of the RXR ligand 9-cis-RA 

increased the number of remyelinated neurons (Figure 1.15 Z) (Huang 2011) 

indicating the action of RXRγ in this process is through a ligand dependent action 

perhaps upon gene regulation of oligodendrocyte differentiation or myelin 

production.  

1.4.7.4 Retinoid X receptor compound knockout 

RXRs show significant functional redundancy in development and such it was found 

that RXRα+/-;RXRβ-/-; RXRγ-/- animals were found to be viable. RXRα+/-;RXRβ-/-; 

RXRγ-/- animals showed only a defect in spermatogenesis as for RXRβ-/- and a 

growth deficiency of around 20% (Krezel 1996). A single copy of RXRα seems to be 

sufficient to support both development and most postnatal RXR functions consistent 

with its severe single knockout phenotype when compared to single knockouts of the 

other RXR genes.  
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Figure 1.15 Members of the RXR family are required for normal development, testis 

maintenance and for memory and oligodendrocyte regeneration.  

RXRα-/- embryos (B) show a reduction in liver (white arrow) volume compared to 

WT (A) at E12.5 although this reduction is not as marked between WT (C) and 

RXRα-/- (D) by E14.5. Edema is also noted at E14.5 in RXRα-/- embryos (arrowhead, 

D) and this is consistent with heart failure caused by a ventricular septal defect 

(arrow, F) and thinning of the ventricular wall compared to WT (E). WT embryos at 

E13.5 (G) have pigment in both dorsal and ventral regions of the eye however RXRα-

/- embryos (H) show a lack of ventral pigment. The cornea (C) is also thickened in 

RXRα-/- (J) compared to WT (I) and the lens (L) is rotated in respect to the retina. 

The primary vitreous of the RXRα-/- eye (arrow, F) has also not receded as 

extensively as in WT (V). The primary vitreous of the WT eye (K) at E14.5 has 

further receded (V) but in RXRα-/- embryos (L) have persistent hyperplastic primary 

vitreous (arrow, F) and fused eyelids (FE).  RXRβ-/- is variably required for 

embryonic development with loss of some RXRβ-/- embryos before E18.5 and an 

increase in perinatal lethality compared to WT and RXRβ+/- (M).  Surviving male 

RXRβ-/- animals were infertile and have a reduction in sperm count (O) compared to 

WT (N) as counted by spermheads (H) and those mature sperm observed have tail 

coiling (arrowhead, P). RXRβ-/- testes degenerate with age and demonstrate focal 

hyperplasia of the Leydig cells (R, Y) compared to WT (Q) at 8 months. By 12 

months, the testes are filled with lipid-filled vacuoles (S). Oil-red staining of 6-

month WT (T) and RXRβ-/- (U) testes highlighted the accumulated triglycerides (red 

staining on the periphery of the testes, T) exclusively in RXRβ-/- testes. RXRƴ-/- 

animals show an increase in despair behaviours including an increase in immobility 

time (V) during the forced swim test. Expression of the dopamine Dr2 receptor is 

significantly reduced in the RXRƴ-/- nucleus accumbens (NAc) compared to WT, but 

not in the caudate putamen (CPu) (W). RXRƴ is upregulated upon re-myelination (Y) 

of a lesion within the caudal cerebellar penduncle compared to unlesioned tissue (X). 

Treatment with the proposed RXR ligand 9-cis-RA increased remyelination of 

lesioned axons compared to saline treated mice (Y).  A-F adapted from Sucov, H.M. 

et al (1994), G-L adapted from Kastner, P. et al (1994), M-U adapted from Kastner, 
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P. et al (1996), V-W adapted from Kyzkzosiak, A. et al (2010) and X-Z adapted from 

Huang, J.K. et al (2011). 

 

1.4.8 Cytochrome P450 family 26  

CYP26A1 was identified as the first member of a new cytochrome P450 family due 

to its up-regulation in ES cells directed towards neuronal differentiation by RA-

induction (Ray 1997). By homology it was found to be the mammalian homologue of 

the zebrafish P450RAI, known to be capable of oxidising RA predominately to 4-

oxo-RA and 4-OH-RA(White 1996). CYP26A1 expression was induced by RA in 

both ES cells, including those that are not being induced to neuronal fates, and in the 

adult mouse liver upon RA injection. CYP26A1 appears to be expressed within the 

adult mouse liver, brain and at low levels within the spinal cord. The expression in 

human is similar with expression observed in the liver, the brain and the placenta 

(Ray 1997). Cyp26a1 is observed early in mouse development from E6 in both the 

embryonic endoderm and extra-embryonic tissue and these same regions express at 

E7 with the mesoderm beginning to express. The mesoderm expression increases and 

the primitive streak becomes positive at E7.25, with the anterior region of all the 

germ layers becoming positive at E7.5. This pattern is erased at E8 and by E8.5 the 

posterior region of the embryo becomes positive including the neural plate, tailbud 

and hindgut. Some expression is observed within the anterior region in the cranial 

neural crest cells. These regions of expression are maintained until E10.5 by which 

time the posterior expression region has become restricted to the tail end. Expression 

across the whole limb bud is weakly detected from E9.5 and then becomes restricted 

to the interdigital space at E11.5. The developing eye also shows expression in the 

dorsoventral boundary of the neural retina.  In the later stages of development (E12-

16), expression of Cyp26a1 decreased (Fujii 1997).  

The phenotype of Cyp26a1-/- embryos is consistent with the expression pattern of 

the gene during development with sirenomelia (Figure 1.16 A&B), caudal 

truncations (Figure 1.16 C), spina bifida (Figure 1.16 D) and hindgut blind 

termination but the anterior of the embryo was generally spared but some embryos 
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did develop exencephaly (Figure 1.16 E). Defects could be first seen from E9.5 with 

posterior truncations noted with some embryos failing to close the neural tube. 

Severely affected embryos showed heart defects, incomplete axial rotation, irregular 

somites and neural tube (Figure 1.16 F). The defects of the posterior region also 

included horseshoe kidney and incomplete development of the urogenital system 

(Abu-Abed 2001; Sakai 2001).  

CYP26A1 is required to maintain specific regions of RA signalling. Regions of 

active RA signalling, as defined by lacZ expression from the RARE-LacZ reporter, 

are expanded in the absence of CYP26A1 (Rossant 1991). Regions which would 

express normally express Cyp26a1 and therefore would not have active RA 

signalling become positive for Lacz indicating inappropriate RA signalling in 

Cyp26a1-/- embryos (Figure 1.16 G&H) (Sakai 2001).  Hox genes are known to be 

highly regulated by RA through a RARE at the 3’ of the cluster (Marshall 1996) and 

therefore, unsurprisingly, homeotic transformations of both the hindbrain and the 

skeletal system are observed in Cyp26a1-/- animals. Cyp26a1-/- show an increase in 

the number of thoracic vertebrae associated with a rib,  fusions of many of the 

cervical vertebrae and an anterior transformation of the first lumbar vertebrate to a 

thoracic fate (Figure 1.16 I). This posterior transformation of the caudal vertebrae is 

consistent with anterior expansion of the expression domain of Hoxb1, a marker of 

rhombmere 4  (Sakai 2001). Cyp26a1-/- embryos showed an increase in the size 

rhombomere 4 and, in addition, ectopic stripes and patches of Hoxb1 positive cells 

were noted rostrally of their normal position within rhombomere 3 (Figure 1.16 J-L). 

CYP26A1 is not required to segment the hindbrain as rhombomere number and 

location were not disrupted in Cyp26a1-/- embryos. CYP26A1 is, however, required 

to determine rhobomere identity, as r2-3 are partially posteriorly transformed in 

Cyp26a1-/- (Abu-Abed 2001).  

In addition to regulating RA synthesised by RALDH in the embryo, CYP26 enzymes 

are required before embryonic retinoic acid synthesis in order to restrict the effects of 

the maternal RA supply. In the absence of all the Cyp26 genes, body axis duplication 

(Figure 1.16 M-S) is observed due to the activation of nodal, a RA responsive gene 

with a RARE within intron 1, across the entire epiblast before gastrulation (Figure 
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1.16 T&U) (Uehara 2009). RA must therefore be controlled spatially by catabolism 

from the very earliest stages of development due to its potent gene activation 

potential. 
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Figure 1.16 Cyp26a1 is required for caudal development and all Cyp26 genes are 

required to restrict the effects of maternal RA supply in early development.  

Cyp26a1-/- embryos show sirenomelia and loss of the urogential opening 

(arrowheads) (A&B), complete caudal truncations (C) and spina bifida (*nt, D). 

Exencephaly was observed in some Cyp26a1-/- embryos (br*, E). Some Cyp26a1-/- 

embryos are severly affected at E9.5 with no axial rotation and heart defects (F). 

LacZ RA reporter expression is increased in the posterior of the embryo (arrowhead) 

of Cyp26a1-/- (H) compared to WT (G). Homeotic transformation of the vertebrae is 

observed in Cyp26a1-/- mutants compared to WT vertebrae arrangement (I). Loss of 

Cyp26a1 causes an anterior expansion of the Hoxb1 expression domain. Hoxb1 

expression is found exclusively in rhombomere 4 (r4) in WT embryos (J) but 

Cyp26a1-/- embryos show expansion of the expression domain (arrows, K) and 

expression within a stripe rostral to r4 (arrows, M). Loss of all Cyp26 genes results in 

axial duplication (N&O) compared to WT (M) at E9.5 and staining for Shh 

highlighted the duplication of the embryo by staining the duplicate neural tube in 

Cyp26-/- embryos (Q&R) compared to WT (P).  Nodal expression is restricted to the 

anterior portion of the WT embryo (S) but is expressed throughout the Cyp26-/- 

embryo (T). A-C adapted from Sakai, Y. et al (2001), D-F adapted from Abu-Abed, 

S. et al (2001), G-H adapted from Sakai, Y. et al (2001) and M-T adapted from 

Uehara, M. et al (2009). 
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1.5 Stimulated by Retinoic Acid 6 (Stra6) 

1.5.1 Identification 

Stra6 was first identified in a screen to find genes whose expression was up-

regulated by RA. P19 embryonic carcinoma cells were treated with retinoic acid and 

up-regulated cDNAs identified by subtractive hybridisation. This method 

characterised 12 genes named Stra1-12 respectively which could be divided into four 

classes according to their kinetics of RNA accumulation. Stra6 fits into class III with 

Stra6 RNA accumulating after 2 hours of RA treatment and not reaching plateau 

after 12 hours (Figure 1.17 A) (Bouillet 1995). Upon its identification as a retinoic 

acid inducible gene, a role for Stra6 was unknown with the protein sequence giving 

limited clues to function as no conserved domains or motifs were found using 

multiple databases. STRA6 was found to have more than 50% hydrophobic residues 

(Figure 1.17 B) and predicted to contain nine trans-membrane domains (Bouillet 

1997). 

1.5.2 Expression – Adult 

Expression analysis by RT-PCR in the adult mouse detected expression in the testis, 

spleen, kidney, brain and female genital tract, whereas little or no expression could 

be detected in the heart, lungs and liver (Figure 1.17 C). The areas of Stra6 

expression were enriched for those organs which have blood-organ barriers, such as 

brain, eye and testis (Bouillet 1997). Expression in the testis was restricted to the 

basal layer of the seminiferous epithelium in a tubule-stage dependent manner. Stra6 

positive tubules were also found to be Stra8 positive, linking Stra6 expression to 

premeiotic tubule stages VI and VII for which Stra8 is a marker. In RARα-/- testis, 

Stra6 and Stra8 were expressed in all tubules (Bouillet 1997) suggesting that 

normally they are transcriptionally repressed by the binding of RARα in the absence 

of RA and activated in the presence of RA. Stra6 expression in the adult eye is 

detected only within the RPE and the meninges surrounding the optic nerve (Bouillet 

1997). Stra6 expression within the RPE is concurrent with its role in the uptake of 

retinol ‘waste’ from photoreceptor-retinal isomerisation (Marmorstein 2001).  Stra6 

was also expressed within the meninges of the brain, in addition to expression within 
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the choroid plexus and brain microvessels. The distribution of Stra6 expression was 

not uniform amongst all capillaries but was not found in any other microvasculature 

of other adult organs. The endometrium and granulosa cells of the ovarian follicles 

are areas of strong Stra6 expression within the female genital tract (Bouillet 1997). 

Retinoids are known to be important for the function of both of the endometrium 

(Kamelle 2002) and granulosa cells (Bagavandoss 1987) in vitro.  

 

1.5.3 Expression – Embryo 

1.5.3.1 Mouse 

Developmental expression of Stra6 is detected from E7.5 in the posterior mesoderm 

but excluded from the headfold mesoderm and the primitive streak (Figure 1.17 D). 

Mesoderm and its derivatives continue to express Stra6 at E8.5 with expression 

observed in the neural plate, presomitic mesoderm and intermediate mesoderm at the 

level of the pronephric duct (which will later become kidney and genital tissue - sites 

of adult Stra6 expression ) (Figure 1.17 E). At E9.5, Stra6 is expressed in the 

somites, gut, otocyst, pharyngeal pouch epithelium and parts of the developing brain 

– specifically the mid-hindbrain boundary and the forebrain (Figure 1.17 F). 

Expression within the developing brain and eye is consistent with later adult 

expression in derivatives of these tissues. 

Sensory organ expression of Stra6 increased from E11.25-12.5 in the nasal cavities, 

from E11.5 in the inner ear mesenchyme and by E15.5-16.5 the expression becomes 

restricted to the olfactory and respiratory mesenchymes and the respiratory 

epithelium. Expression in the eye was restricted to the retinal pigmented epithelium, 

inner nuclear layer, lens and the periocular mesenchyme from E9.5 to adulthood 

(Figure 1.17 F-I). 

Embryonic gut from E11.5 onwards expressed Stra6 and expression was also seen in 

the submandibular salivary glands and tooth bud mesenchyme. Embryonic foregut 

derivatives, the lungs, have Stra6 expression within the mesenchyme surrounding the 

bronchi.  
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Stra6 was found to be expressed in myogenic cells from around E11.5 and later 

within the skeletal muscle. Stra6 is also expressed in the mesenchyme surrounding 

various chondrogenic condensations, being later restricted to the perichondrium and 

further restricted within this region to ossification centres by E16.5 (Figure 1.17 I). 

Expression of Stra6 in the genital tract of both the female and male embryo was 

observed from E16.5, specifically the epithelia and mesenchyme of the oviduct and 

uterus and the vas deferens and seminiferous tubules of the fetal testes. Expression 

was observed from the mesonephric mesenchyme to the definitive kidney stages, 

within renal cortex and metanephric collecting tubules, of kidney development 

(Figure 1.17 H&I) (Bouillet 1997). 

 

1.5.3.2 Chick 

Expression of STRA6 was detected in Hensen’s node at stage 4 (Figure 1.17 J) in the 

chick and was maintained in the mesoderm of the node at stage 5 (Figure 1.17 K), 

but was absent from the primitive streak. Mesodermal cells migrating away from the 

node lost expression as they moved further away (Figure 1.17 L-N) and a cup shaped 

domain of expression is formed around the node at stage 7 and 8 (Figure 1.17 O&P). 

The newly formed somites at stage 8 (Figure 1.17 P) also express STRA6, with this 

expression in the somites a constant feature throughout development (Figure 1.17 P-

U). The newly formed somites are stained throughout with older somites adopting a 

higher level of expression along their medial edge at stage 10 onwards (Figure 1.17 

R-U). At later stages, stage 16 for rostral somites (Figure 1.17 T) and stage 20 for 

more posterior somites (Figure 1.17 U), the expression becomes further restricted to 

only the posterior medial region. Expression within the node is re-activated from 

stage 9 (Figure 1.17 Q) onwards and from stage 11 this expression is specifically in 

the anterior part of the node. At stage 16, expression within the mesenchyme 

surrounding the hindbrain at the level of rhombomere 3-7 is detected (Figure 1.17 T). 

As in mouse expression was detected within the developing eye, specifically the 

retinal pigmented epithelium from stage 16 (Figure 1.17 T&U), and within the 

mesonephros, a precursor to the kidney (Reijinjes 2010).  
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Figure 1.17 Stra6 is retinoic acid-inducible and expressed in both the adult and 

embryo. 

Stra6 expression is up-regulated by RA (A) in a concentration dependent manner 

(filled triangle: 10nM RA, open square: 1µM) in P19 cells compared to control 

treated cells (open circles: ethanol) over 24 hours. Hydrophobicity plotted across the 

protein (B) highlights over 50% of the protein is hydrophobic. Stra6 expression was 

detected in adult mouse tissues using RT-PCR (C). Stra6 expression was detected by 

in situ hybridisation in the E7.5 embryo (D) in the posterior (P) mesoderm, but 

excluded from the headfold mesoderm (hf), and in the E8.5 embryo (E) in the neural 

plate (np) and the somites (s). Stra6 is expressed in various tissues at E9.5 (F), 

including mid-hindbrain barrier (mhb), forebrain (fb), pharyngeal pouches (pp), 

somites (so) and gut (g). Expression is further observed at E11.5 (G), E12.5 (H) and 

E13.5 (I) in various tissues. Brain microvasculature, bm; Ear, ear; Eye, e; genital 

bud, gb; hindlimb cartilages, hlc; kidney, k; lung, l; meninges, m; muscles, mu; nasal 

cavaties, nc; otocyst, o; prevertebrae, pv; somite, so; stomach, s. Stra6 expression in 

the chick is observed from stage 4 (J) and at stage 5 (K) is maintained in the 

mesoderm of the node. Position of the figures L, M and N is indicated on K. L-N 

show loss of Stra6 expression by migratory cells away from the node. Expression 

around the regressing node is seen at stage 7 (O) and the first formed somites (red 

arrows) are Stra6 positive at stage8 (P). The node re-expresses at stage 9 (Q) and 

expression within the somites is restricted to the medial end by stage 10 (R). The 

hindbrain mesenchyme is positive at stage 13 (red arrow, S), stage 16 (red arrow, T) 

and stage 21 (U) and the developing eye at stage16 (black arrow, T) and stage 21 

(black arrow, U). A-I adapted from Bouillet, P. et al (1997) and J-U adapted from 

Reijntjes, S. et al (2010).  
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1.5.4 Function 

The function of STRA6 has been known for some time, although not attributed to the 

Stra6 gene itself. The existence of a membrane protein capable of binding RBP4 and 

transporting retinol intracellularly to be met by CRBP had been known since 1975. 

The transient nature of RBP-STRA6 binding made identification of the RBP4 

receptor technically challenging; however in depth information about the kinetics of 

the binding interaction and the location of the receptor were known. Retinol-RBP 

(holo-RBP) was found to bind in a linear function with the number of binding sites, 

in this case number of retinal pigmented epithelium cells, being directly proportional 

to the amount of labelled-RBP specifically bound (Figure 1.18 A). Bound RBP-

retinol could be displaced easily by other retinol-RBP complexes; however, apo-RBP 

(RBP without retinol) was less effective at displacing holo-RBP from the receptor 

(Figure 1.18 B). Even this early work defined some important features of the RBP-

receptor, such that one RBP-retinol binds to a single binding site within the STRA6 

protein and the internalisation of retinol-RBP is not dependent on endocytosis (Heller 

1975). The membrane localised retinol-RBP receptor (Figure 1.18 C, upper panel) 

was also known to transfer retinol to CRBP in a specific manner, with other proteins 

capable of binding retinol not interacting with the receptor (Figure 1.18 C, lower 

panel) (Sundaram 1998).  

Identification of Stra6 as the retinol-RBP receptor used a bi-functional crosslinker to 

link His-tagged RBP to its receptor. The crosslinker, sulfosuccinimidyl-6-[4´-azido-

2´-nitrophenylamino]hexanoate, was first linked to his-RBP by reaction with a 

primary amine group and then combined with RPE membranes to allow binding. 

Interactions were stabilised by UV crosslinking, which activated the nitrophenyl 

azide group, covalently linking RBP with its receptor allowing purification through 

the His tag on RBP (Figure 1.18 D). This method isolated an 80kDa complex, which 

was identified by mass spec as containing STRA6 (Figure 1.18 E) (Kawaguchi 

2007).  

Mutational analysis of a region of the protein from the intracellular loop between 

transmembrane domains V and VI to the end of the extracellular loop before 

transmembrane domain VII revealed three amino acids which appear required for 
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RBP binding; namely Y336A, G340L, and G342L (Figure 1.18 F). Interestingly the 

human polymorphism G399S (equivalent to G340) significantly reduces RBP4 

binding to around 10% of WT (Kawaguchi 2008).  

 

STRA6 also functions to catalyze the release of retinol from RBP and this action is 

inhibited by free intracellular retinol thereby regulating free retinol levels 

intracellularly. STRA6 is also able to catalyze retinol loading to apo-RBP when 

intracellular free retinol concentrations are high and the actions of LRAT to convert 

retinol to retinyl esters prevents this loading action (Figure 1.18 G) (Kawaguchi 

2011). This mechanism therefore ensures retinol transported by STRA6 is effectively 

stored as RE by LRAT and prevents high concentrations of intracellular free retinol 

which could be metabolised to RA causing non-specific gene activation.  

STRA6, in addition to its role in retinol transport, has a role in signalling through the 

JAK-STAT pathway in an RBP4-retinol dependent manner. STRA6 contains, within 

the long intracellular C-terminal tail, a Src Homology 2 (SH2) domain in the 

sequence YTLL (Figure 1.19 A). SH2 domains recognise phosphorylated tyrosine 

residues on other proteins allowing recognition and specific interaction between 

proteins (Russell 1992). Exposure of cells over-expressing Stra6 to RBP-ROH 

increases the level of tyrosine phosphorylation within the protein (Figure 1.19 B) and 

this effect was abrogated when cells over-expressed mutant Stra6 in which either the 

tyrosine or theonine residue of the YTLL binding motif were substituted for 

alternative amino acids (Figure 1.19 C). In the presence of RBP-ROH, the 

association between STRA6 and STAT5 increased (Figure 1.19 D). JAK2 was also 

found to associate and become phosphorylated in response to RBP-ROH (Figure 

1.19 E&F). RBP-ROH therefore activates a STRA6 dependent STAT5/JAK2 

signalling cascade. This signalling cascade has functional consequences with the 

transcriptional activity of STAT5 being increased in response to RBP-ROH (Berry 

2011). STAT5 forms dimers which act as transcription factors. STAT5 must be 

activated by tyrosine phosphorylation before it is able to translocate to the nucleus 

and bind to STAT5 response elements. RBP-ROH increases the transcriptional 

output of a luciferase reporter driven by STAT5 response elements (Figure 1.19 G) 
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and also increased transcription of known STAT5 target genes SOCS3 and PPARγ 

(Figure 1.19 H). The effects of RBP-ROH on the phosphorylation and association of 

STAT5, JAK2 or STRA6 and the increase in STAT5 dependent transcription was 

specific. Treatment with RA, RAL or ROH and apo-RBP was unable to elicit the 

same response (Figure 1.19 I&J) and shows a specific role of RBP bound ROH 

separate from its action as a precursor for RA (Berry 2011). The ability of Stra6 to 

act as mediator for RBP-ROH on STAT5 dependent transcription of SOCS3 and 

PPARγ may explain the suggested link between Stra6 and diabetes, which will be 

discussed further below. 
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Figure 1.18 Stra6 acts as an RBP4 receptor and transporter for retinol bound to 

RBP4. 

Specific RBP4 binding is a linear function of RPE cell number (A) and bound-RBP4 

could be removed by other RBP-retinol (circles, crosses) complexes but not as 

effectively by apo-RBP (squares, B). STRA6 is a membrane protein (C, upper panel) 

and transfers retinol specifically to CRBP (C, lower panel) and not to other proteins 

able to bind retinol. STRA6 was identified as the RBP4 receptor/retinol transporter 

via a novel UV activated crosslinker method (D) which allowed STRA6 to be 

identified via mass spectrometry (E). Mutational analysis of STRA6 identified the 

three amino acids essential for RBP4 binding and consistent with this these residues 

were evolutionarily conserved (F).  Further investigation of STRA6 highlights a 

complex regulatory loop to prevent intracellular build-up of free retinol (G).  A-B 

adapted from Heller, J. (1975), C adapted from Sundaram, M. et al (1998), D-E 

adapted from Kawaguchi, R. et al (2007), F adapted from Kawaguchi, R. et al (2008) 

and G adapted from Kawaguchi, R. et al (2011).  
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Figure 1.19 STRA6 facilitates RBP-retinol dependent signalling through the JAK-

STAT pathway. 

The predicted structure of STRA6 features a C-terminal intracellular tail which 

contains a SH2 domain (A). The tyrosine within this domain becomes 

phosphorylated upon exposure to RBP-retinol (B) and this is dependent upon the 

SH2 domain with STRA6 proteins mutated in this motif (T644M, Y643F) not being 

phosphorylated in response to RBP- retinol (C). RBP-retinol also causes an increase 

in STAT5 association with STRA6 and this association is also dependent on the SH2 

domain (D). JAK2 also associates with STRA6 (E) and becomes phosphorylated in 

response to RBP-retinol (F).  RBP-retinol activates a luciferase reporter driven by 

STAT response elements and this activation requires the functional SH2 domain (G). 

STAT target genes SOCS3 and PPARƴ are also activated by RBP-retinol but not 

RBP or retinol alone (H). The transcriptional response to RBP-retinol is not due an 

increase in RA- responsive gene expression (I) and only RBP-retinol, and not any 

other RBP-bound retinoid, is able to elicit this transcriptional response (J). A adapted 

from Kawaguchi, R. et al (2008) and B-J adapted from Berry, D.C. et al (2011). 
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1.5.5 Matthew-Wood syndrome 

Anophthalmia is seen in around 30 people per 100,000 population (Verma 2007) and 

pulmonary hypoplasia at an incidence of 14 per 10,000 births (Laudy 2000); however 

the combination of these developmental disorders is rare and is generally described 

as Matthew-Wood syndrome. The first case reported was in 1978, in which a 

premature stillborn infant was described with bilateral anophthalmia and pulmonary 

agenesis (Ostor 1978). The syndrome was named in 1996, at the request of the 

parents of a sib pair with pulmonary hypoplasia and bilateral anophthalmia. The first 

child was born at 38 weeks upon induction and survived only one hour presumably 

due to the malformations of the lungs observed upon autopsy (bilateral unipolar 

lung). The orbits were recessed, the palpebral fissures were barely opened and upon 

autopsy the orbits were found to contain mostly fat tissue although the optic nerve 

was intact (Figure 1.20 A). After a second normal birth, a second affected foetus was 

terminated due to the discovery of bilateral anophthalmia and hypoplastic lungs upon 

a scan. In addition to the eye and lung defects; micrognathia, a midline cleft of the 

secondary palate, low-set ears, hypoplastic spleen and the heart had a single ventricle 

with a hypoplastic left atrium were noted (Seller 1996). Further cases were reported 

in 2006 (Li 2006) and two separate reports in 2007 of two terminated foetuses 

(Martinovic-Bourial 2007) and eight cases, including three sibs and a surviving 

patient of 9.5 years (Chitayat 2007). The report of eight cases also suggested a new 

name for the condition to be PDAC syndrome (Pulmonary hypoplasia, 

Diaphragmatic hernia, Anophthalmia, Cardiac defects) which highlights the main 

features of the condition (Figure 1.20 B-E). 

 

Homozygosity mapping of probands and parents highlighted a single locus on 

chromosome 15 with a LOD score of 4.8 (Figure 1.20 F). Sequencing of candidate 

genes within this region discovered homozygous mutations within STRA6 (Figure 

1.20 G&H). Thirteen further patients with clinical similarities to the mapped 

probands were assessed for mutations within STRA6; four new mutations were 

identified in three of these patients (Pasutto 2007). Sequence analysis of STRA6 in 

another two probands highlighted an insertion and a deletion respectively resulting in 



Introduction 

75 

 

a premature stop codon in both cases (Golzio 2007). Further mutations were 

identified in a third sequencing study, which included two living patients. The living 

patients may represent a milder presentation of the syndrome perhaps due to their 

compound heterozygous mutation status. However a sister died within the first few 

days of life with cardiac defects and anophthalmia (Chassainq 2009), it is therefore 

also possible that variation in the condition can exist even between patients with the 

same mutation profile within STRA6.  
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Figure 1.20 Matthew-Wood syndrome is caused by homozygous mutations in 

STRA6. 

Matthew-Wood patients present with anophthalmia, deeply recessed orbits and very 

short palpebral fissures (A). Dissection of the cardiopulmonary block indicated the 

presence of only the upper lung lobes on both the right and left side with dilation of 

the right ventricle, atrium and superior vena cava of the heart (B). Diaphragmatic 

hernia is observed in Matthew-Wood patients, probe indicates location of 

diaphragmatic eventration (C). Lung size is greatly reduced in some Matthew-Wood 

patients with small right lung and rudimentary left lung observed in this patient (D) 

and pulmonary hypoplasia can be noted on sectioning of lung tissue (E). 

Homozygosity mapping of two affected families resulted in a significant peak in 

chromosome 15 (F). Sequencing of candidate genes, within this region of 

homozygosity, in two families revealed mutations in STRA6 (G&H).  A adapted 

from Seller, M.J. et al (1996), B adapted from Li, L., & Wei, J. (2006), C adapted 

from Martinovic-Bouriel, J. et al (2007), D adapted from Chitayat, D. et al (2007) 

and E-H adapted from Pasutto, F. et al (2007).  
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1.5.6 Diabetes 

A case-control study of type 2 diabetes identified a significant association of SNPs 

within Stra6 with type 2 diabetes in a Dravidian ethnicity group from Kerala, South 

India. Three SNPs, namely rs974456, rs736118 and rs4886578, were all found to be 

significantly associated with type-2 diabetes (Figure 1.21 A). The minor alleles of all 

the SNPs were associated with a decreased risk of type 2 diabetes. Haplotype 

analysis revealed that haplotype 1 (GGC), consisting of the major alleles, was more 

often observed in cases (61.8% vs. 56.9%) whereas haplotype 2 (AAT), consisting of 

the minor alleles, was more often observed in controls (12.5% vs. 9.4%) (Nair 2010).  

Identification of a possible role for STRA6 in susceptibility to type-2 diabetes 

provides a biological link between observations of changes to RBP4 level in diabetic 

patients. In both human diabetics and a mouse model of type 2 diabetes, serum RBP4 

level was found to be elevated (Figure 1.21 B). Over-expression of RBP4 in normal 

mice also resulted in insulin resistance (Figure 1.21 C) and deletion of RBP4 

enhanced insulin sensitivity (Figure 1.21 D) (Yang 2005). 

The role of Stra6 in JAK-STAT signalling provides explanation to the link between 

STRA6, RBP4 and diabetes. In an adipocyte cell model, RBP-ROH was also able to 

trigger phosphorylation of STAT5 and up-regulate SOCS3 and PPARγ expression in 

a STRA6 dependent manner. PPARγ is known to regulate lipid storage and as such 

RBP-ROH, in the presence of STRA6, increases triglyceride accumulation (Figure 

1.21 E). RBP-ROH also influences insulin receptor function through SOCS3. Both 

direct, insulin receptor autophosphorylation (Figure 1.21 F), and downstream, 

phosphorylation of insulin receptor effector AKT1 (Figure 1.21 G), actions of the 

insulin receptor were inhibited by RBP-ROH. GLUT4 translocation to plasma 

membranes in response to insulin activity was also decreased in adipocytes pre-

treated with RBP-ROH (Figure 1.21 H). Phosphorylation of STRA6, STAT5 and 

JAK2 and increased expression of SOCS3 and PPARγ were also seen in an in vivo 

mouse model injected with RBP (Figure 1.21 I) (Berry 2011). These observations of 

ability of STRA6 to act a facilitator for the effect of RBP-ROH on transcription 

provide a mechanism for the long reported link between RBP expression levels and 

diabetes.  
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Figure 1.21 A link between STRA6 and diabetes? 

SNPs within STRA6 are significantly associated (bold type) with diabetes in a South 

Indian population (A). RBP4 is known to overexpressed in various mouse models of 

insulin-resistant diabetes (B): Adip/mus-Glut4
-/- 

, Glut4 knockout in either adipose or 

muscle respectively; Hsd11b1-Tg, overexpression of hydroxysteroid 11-β 

dehydrogenase-1; Mcr4r
-/- 

, melanocortin 4 receptor knockout. Increased RBP4 

expression in RBP4 transgenic mice (RBP4-Tg) resulted in insulin-resistance(C) and 

reduction in RBP4 through gene knockout (Rbp4+/-, Rbp4-/-) caused an increase in 

insulin sensitivity (D). STRA6 regulates RBP-retinol dependent triglyceride 

accumulation (E). RBP-retinol inhibits insulin signalling in both the direct 

phosphorylation of the insulin receptor (F) and downstream activation of the effector 

Akt1 (G). GLUT4 translocation to the plasma membrane was also inhibited upon 

treatment with RBP-retinol (H). RBP injection into the mouse also results in an 

increase in JAK2 phosphorylation and an up-regulation in PPARƴ and SOCS3 

expression (I). A adapted from Nair, A.K. et al (2010), B-D adapted from Yang, Q. 

et al (2005) and E-I adapted from Berry, D.C. et al (2011).  
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1.6 Development of the eye 

The importance of retinoids to development of the eye is unmistakable in the 

phenotypes observed in various retinoid pathways mutants. One of the defining 

characteristics of Matthew-Wood syndrome is clinical anophthalmia and therefore an 

understanding of eye development and the mechanism of actions of retinoids in this 

process is pertinent to the understanding of this developmental disorder.  

Vertebrate eye development begins with the specification of part of the anterior 

neuroectoderm as the retinal anlage at the end of gastrulation. Otx2 is required to 

specify the anterior neuroectoderm, from which the retinal anlage will be form, but 

down-regulation of Otx2 is required at the end of gastrulation in the medial region of 

its expression domain in order to allow eye field specification. Rx1 is then expressed 

solely within the eye field and in complete isolation from the surrounding Otx2 

positive tissue. ET, Pax6, Six3 and Lhx2 are also expressed in the eye field at this 

inductive phase (Chow 2001). The eye field divides into two symmetrical retinal 

primordial and, although, the eye field is specified physiologically at the cellular 

level during gastrulation it remains morphologically indistinguishable until the early 

neurula (Graw 1996).  

In the early neurula stage, the bilateral evagination of the diencephalon forms the 

optic pit in mammals and can be divided into the presumptive neural retina and RPE 

in the dorso-distal region and the presumptive ventral optic stalk in the proximo-

ventral region. The fate of these opposing domains is specified by mutually exclusive 

expression of Pax2 and Pax6 by reciprocal repression. This results in Pax2 

expression within the ventral future optic stalk region and Pax6 expression within the 

dorsal future neural retina (Chow 2001). The optic pit, through further evagination of 

the optic primordia, forms the optic vesicle and the morphological changes required 

for the formation of this structure bring it into contact with the non-neural surface 

ectoderm. The mesenchyme between these structures becomes displaced and the 

inductive signals passed between the optic vesicle and the surface ectoderm are 

facilitated by a network of cytoplasmic processes and collagenous fibrils. The 

interaction of the optic vesicle with the surface ectoderm initiates the thickening of 

the surface ectoderm to form the lens placode, the first morphological sign of lens 
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formation. Crystallin expression is also initiated concordantly with these 

morphological changes and specifies the future lens molecularly, as well as 

morphologically (Chow 2001).  

The lens vesicle and the optic cup form upon co-invagination of both the lens 

placode and the optic vesicle (Jean 1998). The optic cup at this stage can be divided 

into the neural retina, positioned interiorly closest to the lens vesicle, and the RPE, 

forming the outer region. In the ventral region of the optic vesicle, a groove forms 

which passes through the neural retina and optic stalk to its junction with the neural 

tube. This groove is known as the choroidal fissure at the point in which it fuses 

within the optic cup and provides a channel for the growing blood vessels and 

projecting axons from the eye (Chow 2001).  

The empty cavity within the newly formed lens vesicle is filled with the primary lens 

fibres formed from an elongation of the epithelia cells in the posterior of the lens 

vesicle. These cells lose their nuclei as they elongate and begin to synthesise 

crystallin. The anterior region of the lens remains epithelial in nature and becomes 

quiescent, whereas those cells in the equatorial region continue to proliferate (Graw 

1996). These cells arising in the equatorial region become secondary lens fibres 

through elongation, crystallin expression and loss of cellular organelles (Chow 

2001). This process occurs throughout life, albeit at a slower rate, with new 

secondary lens fibres produced on the outer regions to replace those lost in the 

central region of the lens (Graw 1996).  

The cornea is induced via interaction between the surface ectoderm and the lens 

vesicle which specifies the corneal epithelium. The expression of collagen-rich 

extracellular matrix by the corneal epithelium creates a primary stroma, which 

attracts neural crest-derived mesenchymal cells, in turn leading to the hydration of 

the region resulting in the attraction of a second wave of neural crest-derived 

mesenchymal migration into the region. The hard, transparent cornea of the adult is 

formed upon the increase in thyroxine levels, which results in dehydration and 

compaction of the immature corneal structure (Graw 1996; Chow 2001).   
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The neural retina requires both the RPE and the developing lens for correct 

development. The developing lens secretes FGF1 and BMP7 and these are required 

for, and can support, neural retina development. The RPE secretes various 

neurotrophic factors, such as BDNF, PEDF and NT-3, which support neural retina 

development and in the absence of the RPE development of the neural retina arrests 

(Jean 1998). The mature neural retina cell contains many cell types and these can be 

divided into neuronal or Müller glial cells, with neuronal cells divided into the light-

sensitive photoreceptor neurons, interneurons and the retinal ganglion cells. Retinal 

ganglion cells are the first to differentiate from the Otx2-positive postmitotic 

neuroblasts in the germinative zone and the photoreceptors the last to be formed 

(Bovolenta 1997; Jean 1998). The differentiation into each cell type is controlled by 

a range of factors which narrow the differentiation potential of the emerging 

postmitotic neuroblasts with time in order to produce the characteristic differentiated, 

layered structure of the mature retina. Secreted ligands are responsible for promoting 

this differentiation, with BRN3 promoting RGCs, Chx-10 promoting bipolar cells and 

Crx stimulating photoreceptor production, for example. The only cell type not to be 

produced from this differentiation process is the astrocytes, which migrate into the 

retina guided by the chemoattractant PDGF secreted by the retinal ganglion cells and 

retinal capillaries (Jean 1998).  

Vascularisation of the eye begins with the entry of the hyoid artery through the 

choroidal fissure and migration of the vessel continues until it reaches the posterior 

of the developing lens. Branching of this vessel over the lens surface forms the tunica 

vasculosa lentis and this expands to reach the anterior region of the lens forming the 

pupillary membrane (Saint-Geniez 2004). VEGF is important in the formation of 

these vessels, particularly in the branching process (Shastry 2009). The hyoid vessel 

system nourishes the developing eye until the formation of the retinal vasculature 

which will support the mature eye, at which point the embryonic support network of 

hyoid vessels regress (Saint-Geniez 2004). Regression of the hyoid vasculature is 

dependent upon the p53 apoptosis pathway (Shastry 2009).  
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1.7 Aims and hypotheses 

Matthew-Wood syndrome is a rare human birth defect condition caused, in some, 

cases by mutations in the retinol transporter gene STRA6. STRA6 is therefore known 

to have a developmental function and in order to understand the etiology of the 

developmental abnormalities observed in Matthew-Wood patients an animal model 

was desired.  

1.7.1 Stra6-/- mouse 

Stra6-/- mice were hypothesised to be an appropriate animal model of Matthew-

Wood syndrome and may also provide an important insight into the role of retinol in 

development as STRA6 provides the only known import route for RBP4-bound 

retinol. The original aim of the work was therefore to investigate the phenotype of 

Stra6-/- mice in the expectation that they would demonstrate a phenotypic 

constellation similar to that seen in human Matthew-Wood patients, namely ano- or 

micro-phthalmia, cardiac defects, diaphragmatic hernia and pulmonary hypoplasia. 

This constellation of phenotypes would be predicted to be perinatal lethal in most 

cases and therefore minimal or no Stra6-/- animals would be hypothesised to be 

observed from Stra6+/- matings, resulting in changes to be expected versus the 

observed genetic ratios.  

1.7.2 Stra6.2 and zebrafish 

Previous work within the laboratory had preliminarily identified a possible paralogue 

of Stra6, Stra6.2, and I hypothesised that this paralogue may function similarly to 

Stra6 in development and within the retinoid pathway. Investigation of the 

evolutionary conservation of Stra6.2 would be hypothesised to provide hints as to its 

functionality; with its presence or absence against the background of retinoid 

pathway genes in the genome through evolution highlighting possible functional 

modules of protein or retinoid-substrate interaction.  

A zebrafish morpholino knockdown approach was selected in order to investigate the 

function of stra6.2 as this approach had previously been used to investigate stra6 

function in the fish in work previously published by Isken et al (2008). The 
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availability of chemical inhibitors of the retinoid pathway and the rapid 

developmental progression in the fish also made this an attractive methodology to 

understand the function of this gene. The use of morpholino knockdown also allows 

investigation of the hypothesised cooperative roles between stra6 and stra6.2 

through co-knockdown of both genes with the developing fish.  

The developmental phenotypes observed in stra6.2 knockdown fish led to the 

development of a Stra6.2-/- mouse in order to investigate the requirement for Stra6.2 

in the mammalian system. The function of Stra6.2 within the mouse was unknown 

and knockout of Stra6.2 was hypothesised to result in either no or minimal 

phenotypic consequences due to functional redundancy or, extrapolating from the 

zebrafish results, result in greater phenotypic consequences to those observed in 

Stra6-/- animals.  

1.7.3 Further hypotheses 

Further hypotheses were formed during the course of the project; when it became 

clear that Stra6-/- mice did not represent a model for Matthew-Wood syndrome 

perhaps due to the presence of Stra6.2 within the mouse compared to human. Stra6 

and Stra6.2 were therefore hypothesised to function redundantly in the mouse and 

therefore, it was hypothesised that, both genes may need to be lost in order to 

recapitulate Matthew-Wood syndrome in the mouse.  
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2.1 General methods 

2.1.1 Sectioning for histology 

Histological sections were taken from paraffin-embedded tissue using a microtome 

to cut 5µM slices. These sections were then orientated and floated in a 40°C water 

bath onto Superfrost slides. Slides were then dried on a heated slide drier to remove 

excess water before transferral in metal racks to a 50°C oven overnight. 

2.1.2 Haematoxylin and eosin 

Haematoxylin and eosin staining was performed on histological sections in order to 

investigate tissue and cellular morphology. Sections on glass slides were de-waxed 

by 3x 5-minute changes in xylene and then 3 x 5-minutes in 100% ethanol. Slides 

were then re-hydrated through an ethanol series (90%, 70%, 50% and 30%) over 10 

minutes and into water for 5-minutes. Slides were stained in haematoxylin for up to 

5-minutes (depending on the freshness of the stain) and rinsed in water to remove 

excess stain. Slides were differentiated in acid:alcohol for a few seconds, rinsed in 

water and transferred to saturated lithium choride (LiCl) for a few seconds. After 

rinsing in water, slides were stained with eosin for up to 2-minutes and washed in 

water and 100% ethanol. Slides were then dehydrated through 3 x 5-minutes in 100% 

ethanol and 2x 5-minutes in xylene before being mounted in DePeX (VWR, 

Leicestershire) under coverslips. 

2.1.3 Bioinformatic analysis 

The sequences were usually compared using Blast web servers 

(http://www.ncbi.nlm.nih.gov/blast/; (Tatusova 1999)) and databases were searched 

using the blast software (version 2.1.1 with default settings; (Altschul 1997)), as well 

as the “in house” Ensembl blast and blat servers. Sequences were manipulated using 

programs from the EMBOSS package (Rice 2000).Gene predictions were done using 

genewise (Birney 2004), using various published protein as model. In an attempt to 

look harder for the exons 16-19, we used genewise with a Hidden Markov Model 

(HMM) as model. The model was constructed using the HMMER package. The 

multiple protein alignment was performed using Clustalw (Higgins 1996) and 

visualised using Genedoc (Nicholas 1997). Positions in alignments containing gaps 

http://www.ncbi.nlm.nih.gov/blast/
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were omitted from subsequent analyses. The phylogenetic tree was constructed by 

the neighbour-joining method (Saitou 1987) based on the proportion of amino acid 

sites at which sequences compared were different. The reliability of each interior 

branch of a given topology was assessed using the bootstrap interior branch test with 

1000 bootstrap. Phylogenetic trees were constructed using MEGA (version 3.1; 

http://www.megasoftware.net/; (Kumar 1994)). Tree structure was verified by 

Bayesian phylogeny using BEAST v1.6.1 (Drummond 2007). 

2.1.4 KOD Hot Start PCR 

Each reaction contains 1x KOD Hot Start buffer, 1.5mM MgSO4, 0.3µM forward 

and 0.3µM reverse primer, 0.2mM dNTPs (each), 1 unit KOD Hot Start DNA 

polymerase (Novagen, Merck, Germany) and 5 µl cDNA per 50µl reaction. PCR 

cycling conditions were 95°C for 2-minutes, followed by 30 cycles of 95°C for 20-

seconds, lowest primer Tm (generally ~60°C) for 10-seconds and 70°C for 20-

seconds. Blank controls were identical with the exception of cDNA which was 

substituted with water.  

2.1.5 Culture of KOMP Stra6.2 ES-Cells 

1300002K09Rik
tm1a(KOMP)Wtsi

 ES-cells were obtained from KOMP on dry-ice and 

cultured prior to micro-injection in DMEM media (1X KO DMEM (Gibco, 

Invitrogen), 15% FBS, 2mM GlutaMax (Gibco, Invitrogen), 1mM NE amino acids 

(Gibco, Invitrigen), 1000U/ml LIF (Gibco, Invitrogen), 1µM β-mecaptoethanol 

(Sigma-Aldrich, Dorset)). 

2.2 Mouse methods 

2.2.1 Stra6 knockout  

Stra6-/- mice were created via homologous recombination between homologous 

arms identical to the Stra6 gene surrounding a selection cassette containing a 

neomycin-resistance gene. A vector containing a 2.7kb 5’ homology arm containing 

exons 3 and 4 with surrounding intronic sequence and a 1.3kb 3’ homology arm 

containing exon 7 with surrounding intronic sequence flanking a PGK-neo cassette 

for positive selection was created (Fig 3.1). This vector was linearized and 

http://www.megasoftware.net/
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electroporated into E14 ES cells. Targeted ES cells were then grown in the presence 

of G418 in order to select for those clones which contained the targeting construct 

conferring resistance to G418 through the Neo gene. Surviving cell clones were 

picked and cultured in duplicate; one culture for freezing-down for further use and 

another for DNA extraction. DNA was extracted from surviving cell clones and 

analysed via southern blotting in order to identify recombinant clones with the 

targeting construct present at the targeted location within the Stra6 gene. The cassette 

was targeted to remove exon-5 and 6 of the Stra6 gene and this is predicted to cause 

a frame-shift in the resulting transcript and loss of STRA6 protein. 

A correctly targeted recombinant clone was expanded and Stra6+/- ES cells injected 

into C57Bl/6J blastocysts. Male coat colour chimeras were selected and mated to 

C57Bl/6J females in order to create Stra6+/- animals which were then further bred to 

C57Bl/6J animals for colony maintenance, expansion and backcrossing or inter-

crossed to create Stra6-/- offspring. Stra6 knockout mice were genotyped via PCR 

targeted to the neomycin-cassette and against exon 5 which has been removed during 

the insertion of the selection cassette using the following primers;  

Exon-5 forward 5’-TGAAGGCTCAGGGACTGACT,  

Exon-5 reverse 5’-TTGATGCTGCAGTGAGGTTC,  

Neo forward 5’-TGAATGAACTGCAGGACGAG,  

Neo reverse 5’-ATACTTTCTCGGCAGGAGCA. 

The Stra6 knockout vector was created by Carlo DeAngelis, ES cell electroporation 

and culture was performed by Fiona Kilanowski and blastocyst injections and 

embryo transfer were undertaken by Paul Devenney.  
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Figure 2.1: Stra6 targeted knockout via homologous recombination. 

Stra6 knockout mice were created through the removal of the exon-5 and 6 by 

homologous recombination with a vector comprising of a selection cassette 

containing the neomycin resistance gene (PGK-Neo, red box) with a pair of 

homology arms encompassing exons 3 and 4 (5’ arm) and exon 7 (3’ arm) 

respectively.  
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2.2.2 Mouse Strains 

Stra6 knockout mice were a mixture of 129Sv and C57Bl/6J created from the 

injection of E14 ES cells derived from the 129Sv strain injected into C57Bl/6J 

blastocysts. Chimeras produced were crossed onto C57Bl/6J and further generations 

were backcrossed to C57Bl/6J in order to increase the genetic homogeneity for 

clearer analysis of any resulting phenotypes.  

Stra6.2 knockout mice are C57Bl/6J being derived from C57Bl/6J ES cells injected 

into C57Bl/6J blastocysts. All further breeding for colony expansion was to 

C57Bl/6J animals. Stra6.2 animals analysed for β-galactosidase activity from 

expression of the integrated lacZ sequence were the offspring of C57Bl/6J Stra6.2+/- 

males to CD1 females, in order to achieve large litter sizes for analysis.  

2.2.3 Dietary provision for Stra6  and Stra6.2 mice. 

Mice were normally provided with Rat and Mouse No.3 breeding chow (801700, 

Special Diets Services, UK) and water ad libitum within the cage. During the 

retinoid-free diet study, normal chow was removed and dams were fed a retinoid-free 

modified AIN-93G diet (#119135, Dyets Inc, PA, USA) ad libitum. 

2.2.4 DNA preparation for mouse genotyping 

Mice were identified by ear-notching and this tissue was used to extract DNA for 

genotyping. Ear notches were collected in 0.5ml tubes and 75µl of alkaline lysis 

solution (25mM NaOH, 0.2mM EDTA) was added. These tubes were transferred to a 

PCR machine and heated to 95°C for 1-hour. The solution was then neutralised with 

75µl of neutralisation solution (40mM Tris-HCl) and 5µl of the DNA sample used 

per PCR reaction. DNA solutions were stored at 4°C. 

2.2.5 Genotyping PCR 

Each reaction contains 1x PCR buffer, 2.5mM MgCl2, 25µmol forward, 25µmol 

reverse primer, 4.2µM dNTPs, 1 unit of Platinium Taq (Invitrogen/Life 

Technologies, Paisley) and 5 µl earclip DNA per 25µl reaction. PCR cycling 

conditions were 96°C for 10-minutes, followed by 30 cycles of 96°C for 30-seconds, 

60°C for 30-seconds and 72°C for 1-minute and a final extension of 72°C for 5-
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minutes. 5µl of loading buffer were added per 25µl sample and 12µl run out on a 2% 

agarose gel containing ethidium bromide. Positive and negative control samples were 

run with all genotyping reactions to ensure PCR functionality. Blank controls were 

identical with the exception of DNA which was substituted with water.  

2.2.6 Dissection and pathology of adult mice 

Mice older than 6-weeks old were sacrificed via cervical dislocation. Mice were 

weighed and measured from nose-to-tail base and nose-to-tail end. Thoracic and 

abdominal organs and the brain were then dissected, their general external 

appearance noted, and weighed. Control and experimental animals were examined 

concomitantly and where possible littermates were used, in situations where this was 

not possible, animals of a similar age were examined. 

2.2.7 Fixation and embedding of mouse organs 

Organs were dissected from the mouse and fixed rocking, overnight in 4% PFA in 

50ml falcon tubes at 4°C. Organs were then washed in PBS and taken through 30% 

and 50% ethanol for 1-hour in each and then stored at 4°C in 70% ethanol. Organs 

were then transferred to a processing machine in plastic cassettes. The samples were 

then processed through 70% ethanol, 1 x 80% ethanol, 1 x 90% ethanol and 100% 

ethanol at 30 minutes per cycle. The samples were then incubated through two 

changes of 100% xylene again for 30 minutes per cycle and through 4 changes of 

molten wax at 60°C again at 30-minutes per cycle. The samples were then embedded 

in the appropriate orientation and allowed to set before sectioning. 

2.2.8 Fixation and embedding of mouse eyes 

Mouse eyes were removed from the sockets by pulling the eyelids open and 

extracting the eye from the orbit with forceps. The eyes were then fixed individually 

in epindorfs in 4% PFA overnight at 4°C rocking. The eyes were then washed 2 X 15 

minutes in PBS followed by 15 minutes in 0.9% saline. The eyes were then 

dehydrated through 15 minutes in 50% ethanol in saline, 2 X 15 minutes in 70% 

ethanol and 1 hour in 70% ethanol. This was followed by 15 minutes each in 85% 

and 95% ethanol and finally 2 x 30 minutes then 1 hour in 100% ethanol. The eyes 



Materials and Methods 

93 

 

were then transferred to glass vials and washed in xylene for 2 X 5 minutes before 

overnight incubation in xylene at room temperature. Xylene was removed, molten 

wax added for 1 hour at 60°C and transferred to fresh wax for 2-3 hours at 60°C. The 

eye were then embedded in wax and orientated horizontal to the block surface with 

the optic nerve visible. Histological sections were taken from paraffin-embedded 

eyes using a microtome to cut 7µM slices. In order to preserve the morphology of the 

lens, a small drop of water was applied to the embedded lens before each section was 

taken. The slides were dried overnight at room temperature in a metal slide-rack. 

2.2.9 Immunohistochemistry 

Sections from the centre of the eye at the level of the pupil opening were selected for 

immunohistochemistry and were dried overnight in metal racks at 50°C to ensure the 

sections are fully bonded to the slide prior to antigen retrieval. Sections were 

deparaffinised in xylene for 2 X 5-minutes and 2 X 5-minutes in 100% ethanol. 

Sections were hydrated through 90%, 70%, 50% and 30% ethanol series at 3-minutes 

in each solution. The slides were then rinsed 3 x 3-minutes in distilled water. The 

slides were then put into a plastic slide rack and then into a beaker containing 10mM 

citrate buffer, 0.1% tween, 1mM EDTA. The solution was then heated in a 

microwave for 15-minutes boiling. The slides were then equilibrated to room 

temperature and the slides are rinsed 3 X 5-minutes in PBS. The slides were then 

blocked in 1% BSA, 0.5% triton-X100 in PBS for 1-hour at room temperature. The 

slides were then incubated with primary antibody diluted in blocking solution (BRN3 

– 1/100, GFAP, Col IV & Rhopdopsin - 1/500) under cover-slips for 1-hour at room 

temperature or at 4°C overnight. The slides were then washed 3 X 5-minutes in PBS. 

The slides were then incubated with florescent secondary antibody diluted 1:1000 in 

blocking buffer for 1-hour and washed 2 X 5-minutes in PBS. The slides were then 

mounted with Vectashield (Vector Laboratories, Peterborough) containing DAPI 

under cover-slips sealed with nail varnish. Control slides were subjected to the same 

process without the addition of primary antibody. 

 

 



Materials and Methods 

94 

 

2.2.10 Embryo collection 

Embryos were collected from timed matings with E0.5 defined as the morning of 

plug discovery. Dams were sacrificed via cervical dislocation and the uterus removed 

into ice cold PBS. Deciduae were removed from the uterus in ice cold PBS with size 

5 forceps and embryos were dissected from their decidua with any extraembryonic 

membranes and the placenta removed. Yolk sacs were removed for genotyping and 

prepared as described in 2.1.1 and 2.1.2. 

2.2.11 FACS 

FACs analysis was performed on both spleen and bone marrow from Stra6+/- and 

Stra6+/- diet study mice. The spleen was dissected from the mouse and separated 

into two pieces to allow histological and FACS analysis of the same tissue. The 

spleen sample was homogenized using a hand held homogenizer. Bone marrow was 

collected from the all the long bones of the legs by dissecting out the bones and 

removing all associated muscle tissue. The joints at either end were then removed 

using small scissors and the bone marrow forced from the cavity by irrigation with 

FACS PBS through a 25-gauge needle. Cells were homogenised into FACS PBS 

using a 21-gauge needle. Final concentration of bone marrow and spleen cells was 

approximately 1 x 10
7
/ml in 5mls FACS PBS. The cell samples were then sieved 

through a 70µm cell sieve (VWR, England) to remove and lumps or extraneous 

tissue. The 3µl each of the appropriate antibodies were aliquoted into 5ml FACS 

tubes (BD Biosciences, Oxford) along with 100µl of cell suspension. The tubes were 

covered in tin-foil and incubated at room temperature for 30-minutes shaking. The 

cells were then washed in 3mls of FACS-PBS and centrifuged for 5-minutes at 

1600rpm to pellet the cells. The supernatant was discarded and the pellet re-

suspended in the residual supernatant. Samples were run using a FACSAriaII sorter 

(BD Biosciences, Oxford) and analysed using FloJo (Celeza, Switzerland). Analysis 

was performed only on live cells selected based on side vs. forward scatter profiles. 

The boundary between cells that stained positive and negative was determined 

according to the fluorescence distribution of positively stained relative to unstained 

samples. CD45 FITC, Thy-1 PE, CD8 PE, CD4 APC, TER119 PE, B220 APC and 
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CD71 FITC (Abcam, Cambridge, UK) were used in combination to identify cell 

populations and singularly to allow signal compensation.  

 2.2.12 Visual testing of mice 

Visual competency was tested using drum mounted on a motorized base lined with 

panels consisting of black and white vertical stripes inside at either 0.25 cycles per 

degree (2°), 0.125 cycles per degree (4°) or 0.0625 cycles per degree (8°) (Thaung 

2002). Mice were placed on a stationary circular platform in the centre of the drum 

and allowed to habituate for 30-seconds (Figure 2.1). The drum was rotated 

clockwise for 1-minute and then rotated clockwise for 1-minute at a speed of 2 

revolutions per minute. Animals were initially tested at 4° and if head-tracking was 

noted animals were further tested at 2°. Mice which lacked a head-tracking response 

at 4° were then tested at 8°. 

 

 

Figure 2.1: Mouse visual testing equipment 

Schematic drawing (not to scale) of the visual testing drum used for visual 

assessment in mice. Figure from Thaung et al (2002).  
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2.2.13 Mouse wholemount in situ hybridisation 

Probes for in situ were designed to hybridise to ~500bp of the 3’-UTR of the gene of 

interest with T3 and T7 promoter sequences added to the 5’-end of the forward and 

reverse primer respectively. DNA templates for in vitro transcription were created 

using KOD polymerase (Novagen, Merck, Germany), as described in 2.1.4, to reduce 

PCR-introduced errors in the template obtained. The following primers were used to 

create PCR templates for Stra6.2 probe production; Forward 5’-

AATTAACCCTCATAAAGGCCCTTGGCACAAAAGAAAAA, Reverse 5’- 

TAATACGACTCACTATAGGTCTGCTTGGCTTTGCTAGGT; T3/T7 promoter 

sequences underlined. These primers contain a region complementary to Stra6.2 and 

an additional region encoding either T3 or T7 promoter creating fusion PCR 

products. PCR products were cleaned using a PCR purification kit (Qiagen, West 

Sussex) following the standard protocol. The purified PCR product (10µl) was 

transcribed in 1X transcription buffer, 20 units RNasin (Promega, Southampton), 1 X 

DIG labelled NTPs (Roche, UK) and 10 units T7 RNA polymerase (Promega, 

Southampton). The transcription reaction was incubated at 37°C for 2-hours and the 

template DNA removed by the addition of 2 units of DNase (NEB, Hitchin, UK) for 

15-minutes at 37°C. Probes were precipitated by adding 80µl distilled water, 25µl 

NH4OAc and 312.5µl 100% ethanol and incubating on dry ice for 1-hour. Probe was 

pelleted by centrifugation at 13,000rpm for 15-minutes, the pellet washed in 70% 

ethanol and re-pelleted at 7000rpm for 5-minutes. The supernatant was discarded and 

the pellet air-dried before resuspension in 50µl 0.1% DEPC (Sigma-Aldrich, Dorset) 

water. Products of in vitro transcription were run on a 2% agarose gel to confirm 

successful transcription. Embryos were collected from CD1 females from timed 

matings at E9.5, E10.5 and E11.5 then fixed overnight in 4% PFA, 0.1% DEPC at 

4°C. Embryos were then dehydrated and stored in 100% methanol at -20°C until 

required. Embryos were rehydrated through a methanol: PBS-0.1% triton-X100 

(PBST) series of 75%, 50% and 25% with the embryos allowed to sink in each 

solution before transferral to the next. Embryos were then washed 3 X 5-minutes in 

PBS-triton, 0.1% DEPC (dPBST) before proteinase-K treatment (10µg/ml) in dPBST 

for a time dependent on stage (E9.5 – 15-minutes, E10.5 – 20-minutes, E11.5 – 25-

minutes). Embryos were then re-fixed for 45-minutes in 4% PFA on ice. Embryos 
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were then washed twice in pre-hybridisation solution (50% formamide, 5X SSC, 2% 

(w/v) blocking powder, 0.1% triton-X100, 0.5% CHAPS, 50mg yeast RNA, 2.5mg 

heparin) and then incubated for 1-hour at 65°C and an additional 2-hours at 65°C in 

fresh pre-hybridisation solution. Probe was then diluted 250ng/ml in hybridisation 

buffer and embryos incubated overnight at 65°C in the hybridisation buffer. Embryos 

were subsequently washed for 10-minutes in 100% hybridisation buffer and then 10-

minutes each in 75:25%, 50:50% and 25:75% hybridisation buffer:2X SSC. Embryos 

were then transferred to 2X SSC, 0.1% CHAPS for 2 X 30-minutes at 65°C followed 

by 2 X 30-minutes in 0.2X SSC, 0.1% CHAPS at 65°C. Embryos were then 

transferred to room temperature and washed for 10-minutes in PBST before staining 

in BM purple (Roche, UK) until stain developed. The embryos were then post-fixed 

in 4% PFA overnight at 4°C. Sense probes were used as controls and subjected to the 

same methodology and timings as their anti-sense counterparts.  

 

 

2.2.14 Detection of β-galactosidase activity in mouse embryos. 

Embryos were dissected as described in chapter 2.3 and fixed in 4% PFA at 4°C 

dependent on their stage; E7.5 – 20 minutes, E8.5 – 30 minutes, E9.5 – 1 hour, E11.5 

& 12.5 – 2 hours. The embryos were then washed 3 X 20-minutes in detergent wash 

(100mM sodium phosphate, 2mM magnesium chloride, 0.01% sodium deoxycholate, 

0.02% Nonidet P-40) at room temperature on a shaker. 300µg/ml X-gal was added to 

stain solution (35 mM potassium ferrocyanide, 35 mM potassium ferricyanide, 2 mM 

MgCl2, 0.02% Nonidet P-40 (NP-40), 0.01% Na deoxycholate in detergent wash) 

and the embryos were stained overnight at 37°C in the dark. Embryos were then 

washed in PBS and post-fixed in 4% PFA overnight at 4°C. Matings to obtain 

embryos for detection of β-galactosidase activity were set-up to ensure that a 

proportion of the embryos would be negative for β-galactosidase activity providing 

controls for any non-specific β-galactosidase activity. Embryos were also 

additionally genotyped to ensure correlation between genotype and β-galactosidase 

activity.  
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2.3 Zebrafish methods 

2.3.1 Zebrafish husbandry 

Wild type adults of AB and TL strains, mutant line p53-/- and transgenic reporter 

line shha-GFP were maintained in aquaria at 28°C under a 13:12 hour light:dark 

cycle according to standard husbandry techniques. Embryos were collected from 

natural matings with three hours of the commencement of the light period. Embryos 

were cultured in the dark in 28°C incubators in 1x E3 media (5mM NaCl, 0.17mM 

KCl, 0.33mM CaCl2, 0.33mM MgSO4, 0.00001% methylene blue). Dead embryos 

were removed and E3 media replenished daily. Embryos were sacrificed at the end of 

the experimental period, before 5 dpf, by emersion in tricaine. 

2.3.2 Morpholino injection 

Zebrafish embryos collected from natural matings were injected with morpholino 

into the yolk generally at the 1-cell stage, but no later than the 4-cell stage, to allow 

sufficient distribution of the morpholino to all embryo cells during the period of 

cytoplasmic streaming from the yolk. Sequences of the morpholinos are as follows: 

stra6, 5’-GTTATTCACAGTTTCAGCACTCATG ; stra6.2 translation blocking 

morpholino 1, 5’- GCTGCACTAATGAGAGCAGAAACAT; stra6.2 translation 

blocking morpholino 2, 5’- ACATAATGAAGACCTGAAACACAGA;  stra6.2 

splice morpholino, 5’-CAATGGCTGAAAGAGACAAATTCAG  and rbp4 

translation blocking morpholino, 5’-ACACTGCTATACAGAGCCTTAACAT. 

Morpholinos were dissolved in sterile water to a stock concentration of 1mM. stra6 

MO was injected at 0.5mM, stra6.2 MO1 injected at 0.25mM, stra6.2 MO2 injected 

at 0.5mM, stra6.2 spliceMO injected at 0.5mM and rbp4 MO injected at 0.0125mM 

unless otherwise stated. A standard control morpholino, 5’- 

CCTCTTACCTCAGTTACAATTTATA was also used as a control for the non-

specific effects of morpholino injection, such as developmental delay. 

2.3.3 Phenotypic scoring system 

The morphology of live morphant embryos was assessed via light microscopy at 

48hpf. stra6.2 morphants were assigned to the phenotypic class if they showed two 
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or more of the following features; microphthalmia, ventral curving of the body axis, 

flattened somites, reduced startle response and stationary movement about the yolk, 

edema surrounding the heart region and abnormal yolk extension morphology.  

2.3.4 Alcian blue staining for jaw cartilage 

Zebrafish embryos were collected at 5dpf, over-anethesised in tricaine and fixed 

overnight in 4% PFA at 4°C. Embryos were washed in 1x PBS-tween for 3 x 5 

minutes. Embryos were then stained in filter-sterilised 0.1% alcian blue stain for ~6 

hours until cartilage was apparent. The embryos were washed 2 x 5minutes in 100% 

ethanol and rehydrated through an ethanol:PBS-Tween series of 70%:30%, 

50%:50% and 30%:70% for 5 minutes each before overnight storage in PBS-Tween 

at 4°C. The tissue was cleared with 0.05% trypsin in PBS for 3 hours and then 

bleached with 3% hydrogen peroxide: 1% potassium hydroxide in PBS for ~15 

minutes until the pigment was removed and the cartilages could be clearly visualised. 

Embryos were washed 3 x 5 minutes in PBS-Tween and then taken through a 

glycerol series of 30% and 50% for 5 minutes each and then stored at 4°C in 70% 

glycerol prior to imaging. 

2.3.5 Zebrafish whole-mount in situ hybridisation 

Probes were produced as described for mouse wholemount in situ (2.2.11) using the 

primers listed in Table 2.1. T7- transcribed anti-sense experimental probes were 

compared to T3 transcribed sense control probes in order to asses for any non-

specific staining patterns associated with the probe sequence.   

Zebrafish embryos were collected at the appropriate stage and over-anesthetised in 

tricaine (Sigma-Aldrich, Dorset) before fixing overnight in 4% PFA, 0.1% DEPC 

(Sigma-Aldrich, Dorset) at 4°C. Embryos were then dehydrated and stored in 100% 

methanol at -20°C. Embryos were re-hydrated through a methanol:PBS-0.1% tween 

series of 75%, 50% and 25% and then washed 5 X 5-minutes in PBS-tween. 

Embryos were then incubated with Proteinase-K at 10µg/ml in PBS-tween for 3-

minutes for 24hpf and 5-minutes for 48hpf for 48hpf embryos. The embryos were 

then re-fixed in 4% PFA, 0.1% DEPC for 1-hour at room temperature and washed 5 

X 5-minutes in PBS-0.1% tween. Embryos were incubated in pre-hybridisation 
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buffer (50% formamide, 5 X SSC, 50µg/ml heparin, 500µg/ml tRNA, 0.1% tween, 

0.0092M citric acid, pH 6.0) for 1 hour at 65°C rotating before an overnight 

incubation at 65°C in hybridisation buffer containing 1:200 dilution of the probe. 

Hybridisation buffer was removed and the embryos transferred into SSC through a 

66% hybridisation buffer then 33% hybridisation buffer in 2% SSC for 5-minutes per 

solution at 65°C and then for 5-minutes in 2 X SCC at 65°C.  Embryos were then 

incubated at 65°C 1 X 20-minutes in 0.2% SSC, 0.1% tween and 2 X 0.1% SSC, 

0.1% tween before transfer to room temperature for 5-minutes each in 66% 0.2% 

SSC: 33% PBS-tween, 33% 0.2% SSC: 66% PBS-tween and PBS-tween. Embryos 

were then blocked in 2% sheep serum, 2mg/ml BSA in PBS-tween for 1 hour at 

room temperature. Embryos were incubated overnight with anti-digoxigenin-AP, fab 

fragments from sheep (Roche, UK) diluted 1:1000 in blocking buffer rocking at 4°C. 

Embryos were washed 5 X 15-minutes in PBS-tween and incubated in BM purple 

reagent (Roche, UK) until specific staining was observed. BM purple was removed 

once the desired staining intensity was achieved and the embryos washed twice in 

0.1% DEPC water. The embryos were then transferred through a glycerol series of 

30% and 50% in PBS up to 70% glycerol. Embryos were stored in the dark at 4°C 

prior to imaging.  
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Table 2.1: Primer sequences for zebrafish WISH probe synthesis. 

Primer sequences used to produce in situ probes for wholemount in situ hybridisation 

in the zebrafish.  
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2.3.6 Zebrafish fixation and embedding 

Zebrafish embryos were collected at the appropriate stage and over-anesthetised in 

tricaine (Sigma-Aldrich, Dorset) before fixing overnight in 4% PFA at 4°C. Embryos 

were then washed in PBS and stored in 100% methanol at -20°C. Methanol was 

removed and 100% ethanol added for 3 X 20-minutes. Embryos were then 

transferred to xylene for 2 X 20-minutes with the first incubation at room 

temperature and the second at 60°C. The embryos were then incubated in molten 

wax at 60°C for 3 X 20-minutes with the wax aspirated and replaced with fresh wax 

in-between. Embryos were then appropriately orientated and embedded. Histological 

sections were taken as described in section 2.2.2. 

2.3.7 qRT-PCR 

RNA was extracted via standard TRIzol (Invitrogen) protocol. First strand cDNA 

was reverse transcribed using oligo-dT primers and AMV reverse transcriptase 

(Roche, West Sussex). For amplification the following PCR primers were used: β-

actin, 5’-TCACTCCCCTTGTTCACAATAA and 5’-GGCAGCGATTTCCTCATC; 

shha, 5’-AAAGCCCACATTCATTGCTC and 5’-CCTTCTGTCCTCCGTCCTG; 

raraa, 5’-GCCTGCCTCGACATACTGAT and 5’-GTGCATCTGTGTTCGGTTGA. 

These primers were tested using standard PCR and shown to amplify a single band of 

the correct size with no primer dimer. cDNA reaction was diluted 1:20 and 8μl added 

to each 20μl QPCR reaction. Reaction also contained 1x SYBR green master mix 

(Brilliant II SYBR Green QPCR Master Mix; Agilent Technologies) and primers at a 

final concentration of 200nmol. Reactions were initially heated to 94 ºC for 15 

minutes followed by 40 cycles of 95ºC for 15 seconds, 60ºC for 30 seconds and 72ºC 

for 30 seconds. Cycling and fluorescence quantification was performed on 7900HT 

Fast Real-Time PCR System (Applied Biosystems). The PCR products created were 

checked on a 2% agarose gel to confirm single-band amplification of the expected 

size. Gene expression was normalised to β-actin expression and relative values to 

expression in standard control MO injected embryos was calculated using the 2(-

ΔΔC (T)) method (Livak & Schmittgen, 2001). 
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2.3.8 Chemical rescue of zebrafish morphants. 

Embryos treated with 1-phenyl-2-thiourea (PTU) were transferred to 200µM PTU in 

E3 medium at the end of gastrulation. Embryos treated with 4-

Diethylaminobenzaldehyde (DEAB; Sigma-Aldrich) were transferred to fresh E3 

medium at 5 hpf. DEAB dissolved in DMSO was added to the E3 medium to a final 

concentration of 10
-7

M. Control embryos were treated with the same volume of 

DMSO. 
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Chapter Three 

 

Stra6 knockout mice as a model for Matthew-

Wood syndrome
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3.0 Introduction 

Homozygous and compound heterozygous mutations in STRA6 are causative for 

some cases of Matthew-Wood syndrome in humans. Matthew-Wood syndrome is 

typified by clinical anophthalmia, pulmonary hypoplasia, diaphragmatic hernia and 

various cardiac defects. STRA6 is known to be a transporter for retinol when bound 

to RBP4 and also acts as an affecter for the role of RBP-retinol in insulin receptor 

phosphorylation. A mammalian model for Matthew-Wood syndrome was not in 

existence, although a zebrafish morpholino knockdown model has been previously 

described (Isken 2008). A mammalian model of Matthew-Wood syndrome was 

desired in order to understand the role of STRA6 in development and how in its 

absence the various developmental defects observed in human patients occur. Due to 

the role of STRA6 in retinol transport (Kawaguchi 2007), a mouse knockout model 

may also provide a useful tool in understanding the role of retinol in development as 

much previous work in the retinoid field has been concentrated on retinoic acid, the 

terminal metabolite of the retinoid pathway.  

3.1 Stra6 knockout mice 

Stra6-/- mice were created via homologous recombination between homologous 

arms identical to the Stra6 gene surrounding a selection cassette containing a 

neomycin-resistance gene. The cassette was targeted to remove exon-5 and 6 of the 

Stra6 gene and this is predicted to cause a frame-shift in the resulting transcript 

leading to changes to the protein produced.   

Stra6 knockout mice were genotyped via PCR targeted to the neomycin-cassette and 

against exon 5 which has been removed during the insertion of the selection cassette 

(Figure 3.1).  

3.1.1 Stra6-/- mice have no defects in eye, heart or lung development. 

Stra6 knockout mice have no gross developmental phenotypes. Genetic mutations of 

STRA6 in human result in the multisystem developmental disorder Matthew-Wood 

syndrome. Stra6 knockout animals did not represent an animal model of the human 

condition with no developmental defects of the eyes, heart, lung or diaphragm.  
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Stra6-/-, Stra6+/- and wild-type littermates had comparable eye size and shape when 

viewed in the cage and were indistinguishable before genotyping. The human 

condition is typified by clinical anophthalmia, a loss of most eye tissue anterior to the 

optic nerve, a feature not seen in Stra6-/- animals. Histological sections were taken 

through the eye of both Stra6-/- and Stra6+/- littermates. Eye morphology was 

normal with no defects of the retina, lens or cornea (Figure 3.2 A-B). 
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Figure 3.1: Stra6 knockout mice were created through the removal of exon-5. 

Stra6 knockout mice were created through the removal of the exon-5 and 6 by 

homologous recombination with a selection cassette containing the neomycin 

resistance gene. Stra6 animals could then be genotyped using primers targeted to 

exon-5 to identify the wildtype allele (A, blue rectangle) and neomycin to identify 

the knockout allele (A, orange rectangle).  PCR generated reliable bands which could 

be identified via gel electrophoresis (B). Stra6 genotype is designated above the 

appropriate lane. Blank lanes containing all reaction components except DNA are 

designated B. 

A 

+/- +/+     -/- B

Stra6 Exon-5

+/- -/- +/+       B

Neomycin

+/- +/+     -/- B

Stra6 Exon-5

+/- -/- +/+       B

Neomycin

B 



Chapter Three 

108 

 

 

 

 

 

 

 



Chapter Three 

109 

 

 

Figure 3.2: Stra6+/- and Stra6-/- animals show none of the defects associated with 

Matthew-Wood syndrome. 

Eye morphology is normal in Stra6-/- animals (A) with lens, cornea and retina intact 

and correctly arranged. The retina is made up of the expected layers (B); namely the 

ganglion cell layer (GCL), inner plexiform layer (IPL), Inner nuclear layer (INL), 

outer plexiform layer (OPL), outer nuclear layer (ONL), photoreceptor layer (PRL) 

and retinal pigmented epithelium (RPE). Histological sections of the lung show no 

major morphological differences in alveoli size or shape between a Stra6+/- (C) and 

a Stra6-/- (D) animal. Histological sections through the ventricular region of the 

heart show no major defects in the right- (RV) or left ventricle (LV) between a 

Stra6+/- (E) or a Stra6-/- (F) animal.  
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Human Matthew-Woods patients commonly have severe developmental lung defects 

which often result in death due to respiratory insufficiency. However, survival of 

Stra6-/- animals and the lack of respiratory distress in these animals at birth indicate 

that severe lung defects were not a feature of Stra6-/- animals. Pathological 

investigations of adult mice showed normal lung morphology with the expected 

number of lobes noted appropriate for laterality. Histological sectioning of adult 

lungs from a Stra6-/- and a Stra6+/- animal showed normal alveoli size and shape 

(Figure 3.2 C-D).  

Heart defects in Matthew-Wood patients are variable but some malformations are 

more commonly seen. Patent ductus arteriosus and ventricular septal defects were 

seen in a number of patients. Stra6-/- animals showed no signs of congenital heart 

defects; they fed and grew normally and showed normal activity levels in the cage. 

Histology sections from a Stra6-/- and a Stra6+/- animal showed no gross defects in 

heart morphology with normal ventricular walls and intact ventricular septum 

(Figure 3.2 E-F).  

 Congenital diaphragmatic hernia is commonly noted in Matthew-Wood patients; 

being, along with clinical anophthalmia, a defining diagnostic characteristic. Stra6-/- 

animals had intact diaphragms and showed no eventration of the liver into the 

thoracic cavity.  

3.1.2 Stra6-/- animals are observed in the expected genetic ratio. 

Stra6-/- animals were observed in the expected ratio when routinely genotyped at 2-3 

weeks of age indicating that Stra6 is not required for survival through the embryonic 

or neonatal period (Table 3.1). Depression of the number of homozygotes would be 

expected if loss of Stra6 affected the survival threshold. 

3.1.3 Stra6-/- animals have normal visual function. 

The expression of Stra6 within the RPE of the adult mouse eye and the gross eye 

defects in Matthew-Woods patients highlighted a role for Stra6 in visual function. 

Adult animals older than 6 weeks were tested for visual function by monitoring head 

tracking in response to moving grating in a visual tracking drum. Consistent with the 
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normal eye size and histological appearance, Stra6-/- animals were able to see a well 

as wild-type animals of a similar genetic background (Table 3.2). Stra6-/- animals 

tracked the moving grating when set at both 4° and at 2° for approximately 3-5 

seconds at a time consistent with the normal visual response of a C57BL6. This 

response was consistent with all Stra6-/- animals tested tracking for a similar length 

of time and in response to the same grating range.  
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Table 3.1: Stra6-/- are observed at the expected genetic ratio. 

No significant difference in the number of Stra6+/+, Stra6+/- and Stra6-/- animals 

between the expected and observed values (P= 0.8217, Chi-square test, n=56).  

 

 

 

Table 3.2: Stra6+/- and Stra6-/- animals demonstrate a normal visual response. 

Stra6+/- (n=2) and Stra6-/- (n=4) animals showing normal head tracking (response) 

to both 4° and 2° grating. No animals failed to head track (no response).  

 

 

 

Stra6

+/+ +/- -/-

Observed 12 29 15

Expected 14 28 14

Stra6

+/+ +/- -/-

Observed 12 29 15

Expected 14 28 14

Stra6

+/- -/-

Sight at 2°

response 2 4

no response 0 0

Sight at 4°

response 2 4

no response 0 0

Stra6

+/- -/-

Sight at 2°

response 2 4

no response 0 0

Sight at 4°

response 2 4

no response 0 0
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3.2 Stra6 diet study mice 

3.2.1 Stra6-/- dams were transferred to a retinoid-free diet during pregnancy. 

Stra6-/- animals do not display the expected developmental phenotypes for a model 

of Matthew-Wood syndrome. Certain mutants in some retinoid pathway genes also 

do not have any developmental phenotypes which would be expected due to the 

known importance of the retinoid pathway for normal development. Rbp4, Crbp and 

Lrat knockouts all show no developmental phenotypes until the maternal retinoid 

supply is challenged during embryonic development.   

Matings were designed with Stra6-/- females to Stra6+/- males in order to produce 

Stra6-/- experimental animals and Stra6+/- littermates as controls for any non-

specific retinoid deficiency effects. Maternal retinoid supply was altered through 

provision of retinoid-free chow for various periods during pregnancy. Initially 

maternal diet was modified to a retinoid-free diet from the discovery of vaginal plug 

to the birth of pups. Further experiments were undertaken subsequent to this in order 

to define a window of action by transferring the females to the retinoid-deficient diet 

for 10-day windows during pregnancy: 0-10dpc, 5-15dpc and 10dpc-birth (Figure 

3.4).  

3.2.2 A retinoid-free diet during pregnancy does not alter the expected ratio of 

Stra6-/- to Stra6+/- offspring. 

Transfer of Stra6-/- dams from normal mouse chow to a retinoid-free diet during 

pregnancy neither caused embryonic lethality nor increased mortality in the neonatal 

period. The ratio between Stra6+/- and Stra6-/- animals was as expected at 1:1 

indicating that even under low-retinoid stress these animals were viable (Table 3.3). 

The diet study did not reveal an increased risk of mortality in the Stra6-/- animals in 

the neonatal period. The expected number of animals was observed at ~2weeks and 

the Stra6-/- diet study animals were not lost preferentially at weaning or in 

adulthood.  
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Figure 3.4: Stra6-/- dams were fed a retinoid-free diet for various portions of their 

pregnancy. 

Stra6-/- dams were fed a retinoid-free diet (blue) instead of the normal mouse chow 

(orange) for various time periods between plug discovery (E0.5) and birth. Timing of 

dietary changes was calculated according to embryonic days counted from plug 

discovery. 

 

Table 3.3: Stra6-/- animals born to dams under dietary retinoid stress are observed at 

the expected genetic ratio. 

No significant difference in the expected and observed number of Stra6+/- and 

Stra6-/- animals born to dams fed a retinoid-free diet between E0.5-birth was seen 

(P= 0.6394, Chi-square test, n=41).  
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3.2.3 Stra6-/- animals from dams fed a retinoid-free diet during pregnancy 

affects some aspects of development. 

3.2.3.1 Stra6-/- 
E0.5-Birth 

diet study offspring have defects in eye development. 

The reduction in eye-size in Stra6-/- animals versus Stra6+/- control littermates was 

evident in the live animal and Stra6-/- animals could easily be distinguished in the 

cage. The eye does not have the normal convex appearance and rather than 

protruding from the socket sits deeper in the orbits (Figure 3.5).  

Eyes from Stra6-/- animals weighed significantly less than those from Stra6+/- 

control animals in both grams and as a percentage of body weight (Table 3.4, Figure 

3.6 A-B). The difference in eye weight between Stra6-/- and Stra6+/- male (Table 

3.5, Figure 3.6 C-D) and female (Table 3.6, Figure 3.6 E-F) animals was roughly 

similar; however the weight of the eye represented a greater percentage of body 

weight in female mice, probably due to the greater body mass of male animals. 

In addition to reduction in eye size, lens size was also reduced in Stra6-/- compared 

to Stra6+/- controls. Clouding of the eye was seen in some Stra6-/- animals (6/22 

eyes, 27%) but was not seen in any Stra6+/- animals (0/14, 0%). Histological 

investigation of those clouded eyes revealed cataracts of the lens containing large 

vacuoles within the lens tissue. Cataractous lens were also found to be incorrectly 

shaped being ovoid compared within the spherical appearance of the Stra6+/- lens 

(Figure 3.7 A-B). The ovoid appearance and the cataractous nature of some Stra6-/- 

lens may be associated with other aspects of the eye phenotype in Stra6-/- diet study 

mice, such as PHPV, discussed below. 

Microphthalmia is often associated with other morphological eye defects therefore 

histological sections were taken of Stra6-/- and Stra6+/- eyes. Bilateral persistent 

hyperplastic primary vitreous or PHPV was observed in all Stra6-/- eyes (22/22) and 

was pigmented in all cases (Figure 3.7 B-C). PHPV was not observed in any 

Stra6+/- control animals (0/14). In Stra6-/- animals with abnormal lens structure and 

shape, the PHPV was often intimately associated with the extruded lens tissue (black 

arrow, Figure 3.7 B). Pigmentation of the persistent vessels is a common feature 
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observed in cases of PHPV as mobilized retinal pigmented epithelial cells migrate 

along the vessel (Ikeda 1999). The pigmented mass at the rear of the eye is positive 

for a marker of blood vessels, collagen IV, definitively identifying it as blood vessel 

in origin (Figure 3.7 D). The persistence of the hyloid vascultature and its continued 

association with the posterior lens capsule may result in the cataract formation 

observed. PHPV and cataract formation are linked in humans (Khaliq 2001) and 

animal models of PHPV (Boeve 1988) and is thought to be due to the formation of a 

fibrolenticular plaque at the site in which the association between the vasculature and 

the lens capsule persists (Reichel 1998). 
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Figure 3.5: Stra6-/- from dams fed a retinoid-deficient diet during pregnancy have 

small eyes compared to Stra6+/- littermates. 

Frontal view of Stra6-/- (-/-) and there Stra6+/- (+/-) littermates could be identified 

in the cage based on their eye size and shape. Eyes (white arrow) of Stra6-/- animals 

were smaller and sat deeply within the orbits with short palpebral fissures compared 

to Stra6+/- littermates. 

+/- -/-+/- -/-
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Table 3.4: Stra6-/- eyes weigh significantly less than the eyes of their Stra6+/- 

littermates. 

g: eye weight in grams, %: eye weight as a percentage of body weight. Values shown 

are averages. P< 0.0001, Student t-test. Stra6+/- n=7, Stra6-/-n=11 

 

Table 3.5: Stra6-/- eyes weigh significantly less in males. 

g: eye weight in grams, %: eye weight as a percentage of body weight. Values shown 

are averages. P< 0.0001, Student t-test. Stra6+/- n=6, Stra6-/-n=6 

 

 

Table 3.6: Stra6-/- eyes weigh significantly less in females. 

g: eye weight in grams, %: eye weight as a percentage of body weight. Values shown 

are average. P=0.0316, Student t-test. Stra6+/- n=2, Stra6-/-n=5 

Eye Weight

% g

Stra6
+/- 0.083% 0.0258

-/- 0.067% 0.0190

Eye Weight

% g

Stra6
+/- 0.083% 0.0258

-/- 0.067% 0.0190

Male Eye Weight

% g

Stra6
+/- 0.082% 0.0256

-/- 0.065% 0.0188

Male Eye Weight

% g

Stra6
+/- 0.082% 0.0256

-/- 0.065% 0.0188

Female Eye Weight

% g

Stra6
+/- 0.090% 0.0267

-/- 0.070% 0.0194

Female Eye Weight

% g

Stra6
+/- 0.090% 0.0267

-/- 0.070% 0.0194
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Figure 3.6: Stra6-/- eyes weigh significantly less than their Stra6+/- littermates. 

Eye weight was significantly reduced in Stra6-/- (green) animals compared to Stra6-

/- littermates (blue) both in grams (A) and as percentage of body weight (B). The 

reduction in eye size is observed in both in male (C & D) and female animals (E & 

F).
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Figure 3.7: Eye morphology is disrupted in Stra6-/- animals from dams fed a 

retinoid-free diet. 

Eye morphology of Stra6+/- animals from dams fed a retinoid-free diet is normal 

(A), however the morphology of Stra6-/- animals is disrupted in several regions (B). 

Lens morphology is affected with large vacuoles observed (black arrowhead) and the 

retina is folded (white arrowhead). A pigmented PHPV (black arrow) was also 

observed associated with the posterior of the lens. A high magnification view of the 

pigmented mass at the rear of the eye highlighted the vessel structure of the PHPV 

(C) with the blood cells visible. The pigmented PHPV also expresses a marker of 

blood vessels, collagen IV (red). 
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The structure of the retina is well defined with cells arranged into layers easily 

identified on histological sections (Figure 3.8 A). Formation of the typical layered 

structure of the retina appears unaffected in homozygous animals with the expected 

layers observed as for heterozygous littermates. The photoreceptor layer is often 

dissociated from the RPE in histological sections of the homozygous eye but it is 

unclear if this is representative of the intact eye or an artefact of the histological 

process (Figure 3.8 B). The interaction between the RPE and the photoreceptor layer 

may be more fragile in Stra6-/- animals compared to their littermates and therefore 

more easily dissociated during processing. Stra6-/- animals do however show folds 

of the retinal layers visible on sections indicating folding of the entire retinal sheet in 

the eye (Figure 3.8 C).  

In contrast to heterozygous littermates, in which the ganglion cell layer is smooth 

and generally around one cell thick (Figure 3.8 A), Stra6-/- animals show an increase 

in the number of cells within, and therefore an increase in the thickness of, the 

ganglion cell layer with an uneven thickness of cells in this layer across the retina 

(Figure 3.8 C & D). The ganglion cell layer was found on average to be 4-times 

thicker in Stra6-/- animals (n=4) compared to Stra6+/- (n=3) controls (P= 0.0206, 

Student t-test). Expression of BRN3 is a useful marker for retinal ganglion cells. An 

anti-BRN3 antibody appears to stain positively in the ganglion cell layer in Stra6+/- 

and Stra6-/- animals (Figure 3.9 A-B), although further control experiments are 

required to confirm this.  Despite the increase in the number of cells within the 

ganglion cell layer of Stra6-/- animals, the cells present were have the correct 

identity for their position as they were positive for BRN3 (Figure 3.9 C-D)  and 

therefore ganglion cell proliferation is likely to be increased or apoptosis reduced in 

these animals.  

Astrocyte cell bodies are also present within the ganglion cell layer and using an 

antibody for GFAP marks astrocytes and their projections. Stra6+/- animals seem to 

show a low level of staining only within the ganglion cell layer and the vertical 

projections from the astrocytes into the inner nuclear layer (Figure 3.10 A & C) 

although further control experiments are required to confirm this. Stra6-/- animals 

show a higher density of GFAP positive cells and this therefore indicates that 
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multiple cell types of the GCL are increased in number in homozygous animals 

(Figure 3.10 B). The projections from GFAP positive cells in Stra6-/- animals are not 

single stained lengths but have a rather more branched and ‘feathered’ appearance 

(white arrow, Figure 3.10 D).  The Müller cell layer is also positive for GFAP in 

Stra6-/- animals (white arrow head, Figure 3.9 B). Expression of GFAP in the Müller 

cell layer is a marker of retinal stress (Wu 2003) therefore indicating the Stra6-/- 

retina appears to be experiencing stress possibly induced by the presence of PHPV 

and folds within the retina.  
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Figure 3.8: Stra6-/- retina morphology is disrupted.  

The Stra6+/- retina (A)  is made up of the expected layers (B); namely the ganglion 

cell layer (GCL), inner plexiform layer (IPL), Inner nuclear layer (INL), outer 

plexiform layer (OPL), outer nuclear layer (ONL), photoreceptor layer (PRL) and 

retinal pigmented epithelium (RPE). The Stra6-/- photoreceptor layer is dissociated 

from the RPE (double-headed arrow, B) and the entire retinal layer is folded, 

however all of the retinal layers can be identified in histological sections (C). The 

ganglion cell layer in Stra6-/- animals, compared to the even generally single cell 

thick layer in Stra6+/-, is un-even across its length with many regions with a 

ganglion cell layer many cells thick (D). 
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Figure 3.9: BRN3 positive cells are increased in the Stra6-/- retina. 

Low magnification images of Stra6+/- (A) and Stra6-/- (B) retinas highlight increase 

in the thickness of the BRN3 positive layer (white bracket) in Stra6-/- animals (n=2) 

compared to Stra6+/- littermates (n=2). High magnification images show the 

increase in the number of BRN3 positive cells (white arrowhead) in Stra6-/- (D) 

compared to Stra6+/- (C) ganglion cell layer. 
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Figure 3.10: Stra6-/- retinas show sign of stress and changes to astrocyte projections. 

Low magnification images indicate the location of GFAP positive (red) cells within 

the Stra6+/- (A) and Stra6-/- (B) retina. GFAP positive cells are found throughout 

the ganglion cell layer (GCL) in both Stra6+/- (n=2) and Stra6-/-(n=2) animals, but 

the Muller cell layer (white arrowhead) is only positive in Stra6-/- retinas. High 

magnification images focus on the astrocyte projections (white arrow) in the Stra6+/- 

(C) and Stra6-/- (D) retina highlighting the difference in projection morphology from 

smooth lengths to more feathered and disorganised lengths respectively.  
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Astrocytes are known to be associated with the vasculature of the retina and they 

induce vessel formation during development. Blood vessels within the retina are 

positive for Collagen IV and staining for Collagen IV appears to highlight changes to 

retinal vascularisation in homozygous mutant animals although further control 

experiments are required to confirm this. Stra6+/- controls showed staining of end-

profile cross-sectional vessels within both the inner and outer plexiform-nuclear 

layer boundary and in the GCL (white arrowhead, Figure 3.11 A & C). In contrast, 

staining of Stra6-/- retinas for Collagen IV mainly highlights vessels with a 

longitudinal cross-section between the inner and outer plexiform layers. This type of 

vessel morphology not observed in Stra6+/- littermates. This indicates that vessels in 

Stra6-/- animals do not have the normal horizontal position within the retina and 

instead often form vertical paths across the plexiform layers (white arrowhead, 

Figure 3.11 B & D).  

Light sensing within the eye is performed by the photoreceptors – specialised cells 

which contain light sensitive pigments containing retinal. Rhopdopsin was used as a 

marker of photoreceptor cells and to investigate retinal degeneration in Stra6-/- 

animals. Rhodopsin appeared to be observed only within the photoreceptor layer of 

the retina in Stra6+/- (Figure 3.12 A) and Stra6-/- (Figure 3.12 B) animals, although 

further control experiments are required to confirm this. Rhodopsin specifically 

stained the outer segment of the photoreceptor layer in Stra6+/- animals (white 

bracket, Figure 3.12 C) but not the inner segment (white double arrow, Figure 3.12 

C). Rhopdopsin levels may be reduced in Stra6-/- animals with less intense staining 

seen (Figure 3.12 B) compared to Stra6+/- littermates (Figure 3.12 A) although this 

difference was not quantified. Photoreceptor integrity was good and rhodopsin did 

not appear to be mis-localised to the inner segment; a known marker of 

photoreceptor degeneration (white double arrow, Figure 3.12 D). Photoreceptor 

degeneration does not seem to be a feature of the Stra6-/- diet study phenotype, at 

least in younger Stra6-/- mice. 
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Figure 3.11: Vessel morphology and arrangement in the Stra6-/- retina is abnormal. 

Low magnification images indicate the location and arrangement of Collagen IV 

(Col IV) positive (red) blood vessels (white arrowhead) within the retina of Stra6+/- 

(A) and Stra6-/- (B). High miagnification images reveal the location and direction of 

blood vessels within the retina in relation to the layers of the retina;  the ganglion cell 

layer (GCL), inner plexiform layer (IPL), Inner nuclear layer (INL), outer plexiform 

layer (OPL), outer nuclear layer (ONL) and the photoreceptor layer (PRL). Vessels 

within Stra6+/- animals (C) are found at the intersection of both the inner and outer 

plexiform and nuclear layers. However, in Stra6-/- retinas (D), the vessels span the 

plexiform layers and can be seen in their longitudinal cross-section. Stra6+/- n=2, 

Stra6-/-n=2. 
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Figure 3.12: Stra6 is not required for photoreceptor integrity or development. 

Low magnification images show that Rhodopsin (Rho) is localised only to the 

photoreceptor layer (PRL) of the retina in Stra6+/- (A) and Stra6-/- (B) animals. 

High magnification images indicate that Rhodopsin (green) is localised only to the 

outer segment (white bracket) and not the inner segment (white double arrow) of the 

photoreceptor layer of the retina in both Stra6+/- (C) and Stra6-/- (D) animals. 

Stra6+/- n=2, Stra6-/-n=2. 
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3.2.3.2 The susceptibility of the developing eye to changes in maternal dietary 

retinoid provision appears to be temporally variable. 

The critical period for the requirement of maternal retinoid provision in order to 

maintain eye development in the absence of Stra6 was investigated via provision of a 

retinoid-free diet for 10-day windows during pregnancy (Figure 3.4). The temporal 

requirement for Stra6 in eye development may therefore be further defined. The data 

collected in order to investigate the critical period is preliminary and further animals 

need to be collected and investigated in order to solidify the initial conclusions 

drawn. 

3.2.3.2.1 A Stra6-/- 
E0.5-10.5 

diet study animal has no defects in eye development. 

Eye weight was not significantly different between Stra6-/- diet study animals from 

dams fed a retinoid free diet from plug discovery until E10.5 (Stra6-/- 
E0.5-10.5

) to the 

average eye size of Stra6+/- animals from dams fed a retinoid-free diet for 10-day 

windows during pregnancy (Table 3.7). Only one animal was obtained for this time 

point and this required the comparison to the average eye size of animals from 

different dietary windows, therefore data presented is only preliminary observations.  

Eye morphology of the Stra6-/- 
E0.5-10.5

 diet study animal was normal. The lens was 

the normal spherical shape expected with no indication of cataract formation. The 

posterior of the eye was free from PHPV (Figure 3.13 A); a histological finding 

noted in all eyes from   Stra6-/-
E0.5-birth

 diet study animals (Figure 3.7 B-C). The 

retina was well structured and the photoreceptor layer was associated with the RPE. 

The retina did not contain any folds or ‘waves’ and the ganglion cell layer was 

uniform across its length (Figure 3.13 B).  

3.2.3.2.2 A Stra6-/- 
E5.5-15.5 

diet study animal has defects in eye development. 

The eye weight was notably reduced in a Stra6-/- diet study pup from a dam fed a 

retinoid-free diet from day E5.5-15.5 compared to a control Stra6+/- littermate 

(Table 3.8).  

Stra6-/- 
E5.5-15.5

 eye morphology differed from the Stra6+/- 
E5.5-15.5

 littermate eye with 

defects observed in the retina. The retina formed ‘waves’ indicating folding of the 



Chapter Three 

131 

 

retinal sheet as observed for Stra6-/- 
E0.5-birth

. The photoreceptor layer was also 

dissociated from the RPE layer. The ganglion cell layer was, however, fairly even 

along the length of the section (Figure 3.13 C & E). The lens was normal in 

appearance and shape indicating no formation of cataract in Stra6-/- 
E5.5-15.5

 eyes 

(Figure 3.13 C). Cataract was not observed in all Stra6-/- 
E0.5-birth

 animals and 

therefore the absence of cataract in this animal is not conclusive to the lack of 

cataract in all Stra6-/- 
E5.5-15.5

 animals. PHPV was observed bilaterally as a small 

vascular prominence from the back of the eye in the region of the optic nerve 

entrance in Stra6-/- 
E5.5-15.5

 eyes. The vascular tissue is, however, not pigmented and 

was less extensive compared to Stra6-/- 
E0.5-Birth

 eyes (Figure 3.13 D). 

3.2.3.2.3 A Stra6-/- 
E10.5-Birth 

diet study animal has defects in eye development. 

Eyes from the Stra6-/- 
E10.5-birth

 animal weighed notably less than their Stra6+/- 
E10.5-

birth 
counterpart (Table 3.9).  

The lens of the Stra6-/- 
E10.5-birth

 animal was normal and spherical in appearance with 

no vacuoles indicative of cataract formation (Figure 3.13 F). The retina of the Stra6-

/- 
E10.5-birth

 animal showed some defects with the photoreceptor layer separated from 

the RPE and the size of the inner and outer nuclear layers was not even across the 

length of the section. The ganglion cell layer also varied in thickness slightly across 

the length of the section (Figure 3.13 G). PHPV was also observed bilaterally in the 

Stra6-/- 
E10.5-birth 

animal as a region of vascular tissue in the posterior of the eye 

(Figure 3.13 F). As for the Stra6-/- 
E5.5-10.5 

animal and in contrast to Stra6-/- 
E0.5-birth

 

animals, the PHPV in these eyes is small and is not pigmented. 
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Table 3.7: Stra6-/-
E0.510.5 

do not show a reduction in eye size compared to diet study 

Stra6+/-. 

g: eye weight in grams, %: eye weight as a percentage of body weight. * indicates 

that these values are an average of Stra6+/- eyes from animals from dams fed a 

retinoid deficient diet for 10-day windows during pregnancy. Stra6+/- n=2, Stra6-/-

n=1. 

 

 

Table 3.8: Stra6-/-
E5.5-15.5

 show a reduction in eye size compared to a Stra6+/- 

littermate. 

g: eye weight in grams, %: eye weight as a percentage of body weight. Stra6+/- n=1, 

Stra6-/-n=1. 

 

E0.5-10.5 Eye Weight

% g

Stra6
+/- * 0.084% 0.0198

-/- 0.078% 0.0217

E0.5-10.5 Eye Weight

% g

Stra6
+/- * 0.084% 0.0198

-/- 0.078% 0.0217

E5.5-15.5 Eye Weight

% g

Stra6
+/- 0.101% 0.0223

-/- 0.075% 0.0200

E5.5-15.5 Eye Weight

% g

Stra6
+/- 0.101% 0.0223

-/- 0.075% 0.0200
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Table 3.9: Stra6-/-
E10.5-Birth

 show a reduction in eye size compared to a Stra6+/- 

littermate. 

g: eye weight in grams, %: eye weight as a percentage of body weight. Stra6+/- n=1, 

Stra6-/-n=1. 

 

E10.5-Birth Eye Weight

% g

Stra6
+/- 0.109% 0.0226

-/- 0.094% 0.0196

E10.5-Birth Eye Weight

% g

Stra6
+/- 0.109% 0.0226

-/- 0.094% 0.0196
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Figure 3.13: The requirement for Stra6 in eye development is temporally dependent. 

The Stra6-/-
E0.510.5 

eye (A) is normal with no folds of the retina observed and normal 

lens size and shape noted. The retina of Stra6-/-
E0.510.5 

(B) consists of the expected 

layers (inner plexiform layer -IPL, Inner nuclear layer - INL, outer plexiform layer - 

OPL, outer nuclear layer - ONL), the photoreceptor layer is associated with the 

retinal pigmented epithelium (RPE) and the ganglion cell layer (GCL) is consistent 

throughout the section. The Stra6-/-
E5.5-15.5 

eye (C) has a normal lens in both 

morphology and size; however a small remnant of vascular tissue (black arrow) 

remains to the posterior of the eye (D). The Stra6-/-
E5.5-15.5

 retina contains ‘waves’ 

and folds and the photoreceptor layer (PRL) is dissociated from the retinal pigmented 

epithelium (RPE, E). The ganglion cell layer (GCL) is, however, consistent along the 

length of the retina. The Stra6-/-
E10.5-Birth 

eye has a normal lens structure and shape 

(F). PHPV (black arrow) is observed to the posterior of the eye and the retina was 

found to be folded in some regions (G). The phoreceptor layer (PRL) is dissociated 

from the retinal pigmented epithelium (RPE) and the ganglion cell layer (GCL) is 

uneven.  
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3.2.3.3 Stra6-/- diet study animals have defects in visual acuity. 

Visual capacity of Stra6-/- and Stra6+/- Stra6-diet study animals from dams fed a 

retinoid-free diet from plug discovery to birth was tested by detecting head tracking 

movements in response to a moving grating, as for non-diet study animals.  

Visual acuity was reduced in Stra6-/- animals but vision in Stra6+/- animals was 

identical to wild type. The moving grating in the visual testing drum can be varied to 

different degrees with the lower degrees indicating finer visual ability. Animals were 

initially tested at 4° at which all Stra6+/- animals and most Stra6-/- animals (2/3) 

were noted to head track in response to the drum. The one Stra6-/- animal that 

showed no head tracking response was also un-responsive at 8° and the eye surface 

appeared bilaterally cloudy indicating that this animal was probably blind. Animals 

were then tested at 2°, a spacing that wild type animals were comfortably able to 

distinguish and track. Stra6+/- animals tracked movement at 2° but Stra6-/- animals 

showed no head tracking responses to grating at this spacing. Stra6-/-  diet study 

animals have vision, as head tracking is seen at 4°, but fine visual acuity is 

compromised in Stra6-/- diet study animals, indicated by a lack of head tracking 

response at 2° (Table 3.10).    

 

Table 3.10: Stra6-/- 
E0.5-Birth 

animals have an altered visual response. 

Stra6+/-
E0.5-Birth 

animals show normal head tracking (response) in response to both 4° 

and 2° grating. Stra6-/-
E0.5-Birth 

failed to head track (no response) in response to 2° 

and response to 4° was variable between animals. Stra6+/- n=4, Stra6-/-n=3. 

Stra6 DS

+/- -/-

Sight at 
2°

response 4 0

no reponse 0 3

Sight at 
4°

response 4 2

no reponse 0 1

Stra6 DS

+/- -/-

Sight at 
2°

response 4 0

no reponse 0 3

Sight at 
4°

response 4 2

no reponse 0 1
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3.2.3.4 Male Stra6-/- animals show changes to spleen morphology compared to 

Stra6+/- control littermates. 

During comparative pathology of homozygous/heterozygous same-sex littermate 

pairs, the visceral organs were weighed in order to highlight organs which may be 

affected in Stra6-/- diet study animals. In addition to the reduction in eye size 

observed in Stra6-/- animals, the spleen was also found to be significantly smaller in 

Stra6-/- animals compared to their control littermates in terms of total weight but not 

as a percentage of body weight (Figure 3.14 A & B, Table 3.11). Analysis was then 

split by sex and the spleen in male Stra6-/- was significantly smaller in grams than in 

male Stra6+/- littermates but was not significantly smaller as a percentage of body 

weight (Table 3.8, Figure 3.14 C & D). No difference in spleen weight was observed 

between female diet study Stra6+/- and Stra6-/- animals (Table 3.12, Figure 3.14 E 

& F). The shape of the spleen was markedly different between male Stra6-/- and 

Stra6+/- animals, with the Stra6-/- spleen being shorter in length and more 

‘triangular’ compared to the Stra6+/- spleen which had a more elongated 

‘rectangular’ appearance (Figure 3.15 A & B). Histological sectioning of the spleen 

showed a reduction in the size of the white pulp regions in the Stra6-/- animals 

compared to Stra6+/-animals (white asterisk, Figure 3.15 C & D); although 

histology of the white and red pulp appeared normal (Figure 3.15 E & F).  

Due to the changes in spleen morphology, immune cell distribution was investigated 

using FACS. Both spleen and bone marrow were analysed for changes in erythrocyte 

maturation, B-cell/T-cell ratio or T-cell type between Stra6-/- and Stra6+/- 

littermates.  

B-cell/T-cell ratio was analysed by investigating the distribution of cells positive for 

Thy-1, a marker of T-cells and B220, a marker of B-cells. There was a trend to a 

greater number of B-cells in the Stra6-/- spleen and a reduction in T-cell number, 

compared to the Stra6+/- spleen (Figure 3.16, Table 3.13). No difference was 

observed between T-/B-cell number in the Stra6-/- bone marrow (Figure 3.16, Table 

3.13).  
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Erthrocyte differentiation was assessed by comparing the relative levels of CD71 and 

Ter119 in order to follow the differentiation to mature erythrocytes (Figure 3.17). 

Erthrocyte maturation profile did not differ significantly between Stra6-/- and 

Stra6+/- spleen and bone marrow although the number of mature erythrocytes 

showed a trend towards reduction in Stra6-/- animals in both spleen and bone 

marrow (Figure 3.18, Table 3.14). The percentage of mature erythrocytes was highly 

variable between biological replicates however, and therefore it is difficult to 

definitively make a conclusion on the effect of Stra6 on mature erythrocyte number.  

The distribution of CD45+ T-cells into CD4+ and CD8+ was analysed in order to 

understand any requirement for Stra6 in T-cell lineage choice and differentiation. 

The distribution of CD-45+ T-cells between CD4+ and CD8+ lineages did not 

significantly differ between Stra6-/- and Stra6+/- bone marrow or in the spleen 

(Figure 3.19, Table 3.15). No physiological significant changes were seen to any of 

the cell populations tested and therefore the histological changes observed in Stra6-/- 

spleens cannot be explained by changes in the cell populations investigated.  
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Figure 3.14: Spleen size is reduced in male Stra6-/-
E0.5-Birth

. 

Spleen weight was not significantly reduced in Stra6-/- (green) animals compared to 

Stra6-/- littermates (blue) either in terms of grams (A) or as a percentage of body 

weight (B). The reduction in spleen size is observed only in male animals (C & D) 

and only in terms of grams (C).  Female animals (E & F) show no significant 

difference in spleen size. Significant differences in weight highlighted by an asterisk. 
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Table 3.11: Stra6-/-
E0.5-Birth

 spleens do not weigh significantly less than Stra6-/-
E0.5-

Birth
. 

g: spleen weight in grams, %: spleen weight as a percentage of body weight. Values 

shown are averages. P= 0.1059, Student t-test. Stra6+/- n=7, Stra6-/-n=8. 

 

 

Table 3.12: Stra6-/-
E0.5-Birth

 male spleens weigh significantly less than Stra6-/-
E0.5-Birth

. 

g: spleen weight in grams, %: spleen weight as a percentage of body weight. Values 

shown are averages. P= 0.0024, Student t-test. Stra6+/- n=6, Stra6-/-n=6. 

 

 

Table 3.13: Stra6-/-
E0.5-Birth

 female spleens do not weigh significantly less than Stra6-

/-
E0.5-Birth

. 

g: spleen weight in grams, %: spleen weight as a percentage of body weight. Values 

shown are averages. P= 0.5798, Student t-test. Stra6+/- n=1, Stra6-/-n=2. 

Spleen Weight

% g

Stra6
+/- 0.291% 0.0894

-/- 0.281% 0.0805

Spleen Weight

% g

Stra6
+/- 0.291% 0.0894

-/- 0.281% 0.0805

Male Spleen Weight

% g

Stra6
+/- 0.287% 0.0888

-/- 0.256% 0.0733

Male Spleen Weight

% g

Stra6
+/- 0.287% 0.0888

-/- 0.256% 0.0733

Female Spleen Weight

% g

Stra6
+/- 0.314% 0.0928

-/- 0.329% 0.0950

Female Spleen Weight

% g

Stra6
+/- 0.314% 0.0928

-/- 0.329% 0.0950
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Figure 3.15: Spleen morphology and histology differs between male Stra6-/-
E0.5-Birth 

and Stra6+/-
E0.5-Birth

. 

The spleen in Stra6+/-
E0.5-Birth

 (A) is rectangular and elongated whereas the spleen in 

Stra6-/-
E0.5-Birth

 (B) is more triangular and shorter in length (Stra6+/- n=6, Stra6-/-

n=6). Histological sections of the spleen highlights the normal morphology of the 

spleen in Stra6+/-
E0.5-Birth 

males
 
(C) with white pulp regions (white asterix) located 

within the red pulp (Stra6+/- n=2, Stra6-/-n=2). The regions of white pulp are 

reduced in size and number in Stra6-/-
E0.5-Birth 

males (D). High magnification images 

of the white and red pulp regions in Stra6+/-
E0.5-Birth

 (E) and Stra6-/-
E0.5-Birth

 (F) 

revealed no difference in the morphology of these regions of their borders. 
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Figure 3.16: T-cell/ B-cell ratio determination is not dependent on Stra6. 

Representative FACS plots of Thy-1 positive vs. B220 positive spleen and bone 

marrow cells from Stra6+/- and Stra6-/- animals. Stra6+/- n=2, Stra6-/-n=2. 
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Table 3.14: T-cell/ B-cell ratio determination is not dependent on Stra6. 

Average percentage of Thy-1 negative, B220 positive B-cells (Thy-1 -, B220+) and 

Thy-1 positive, B220 negative T-cells (Thy-1+, B220-) in spleen and bone marrow 

samples analysed by FACS. Stra6+/- n=2, Stra6-/-n=2. 

 

 

 

 

 

 

 

 

 

Thy1 +, B220 - Thy1 -, B220 +

Spleen
Stra6 +/- 25.8 58.9

Stra6 -/- 22.6 63.2

Bone 
marrow

Stra6 +/- 3.0 35.4

Stra6 -/- 3.0 34.9

Thy1 +, B220 - Thy1 -, B220 +

Spleen
Stra6 +/- 25.8 58.9

Stra6 -/- 22.6 63.2

Bone 
marrow

Stra6 +/- 3.0 35.4

Stra6 -/- 3.0 34.9
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Figure 3.17: Erythrocyte maturation is independent of Stra6.  

Representative FACS plots of CD71 positive vs. Ter119 positive spleen and bone 

marrow cells from Stra6+/- and Stra6-/- animals. Stages of erythrocyte maturation 

are represented by the ratio between CD71 and Ter119 expression and each gated 

stage is labelled I, II, III or IV for the most immature to mature erythrocytes 

respectively. Stra6+/- n=2, Stra6-/-n=2. 
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Table 3.15: Erythrocyte maturation is independent of Stra6.The average percentage 

of cells at erythrocyte differentiation stage I-IV in spleen and bone marrow samples 

from Stra6+/- and Stra6-/- animals analysed by FACS. Stra6+/- n=2, Stra6-/-n=2. 

 

 

 

 

 

 

 

 

 

 

I II III IV

Spleen
Stra6 +/- 0.0 2.8 0.2 24.5

Stra6 -/- 0.0 2.2 0.1 11.0

Bone 
marrow

Stra6 +/- 2.4 27.3 4.5 14.4

Stra6 -/- 1.8 25.9 3.5 1.4

I II III IV

Spleen
Stra6 +/- 0.0 2.8 0.2 24.5

Stra6 -/- 0.0 2.2 0.1 11.0

Bone 
marrow

Stra6 +/- 2.4 27.3 4.5 14.4

Stra6 -/- 1.8 25.9 3.5 1.4
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Figure 3.18: Erythrocyte differentiation profile of Stra6+/- and Stra6-/- animals is 

undistinguishable. 

Average percentage of spleen and bone marrow cells at each stage of erythrocyte 

differentiation from I (A), II (B), III (C) to IV (D). Stra6+/- n=2, Stra6-/-n=2. 
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Figure 3.19: The ratio between CD8+ and CD4+ CD45+ T-cells is unaffected by -

Stra6 loss. 

Representative FACS plots of CD8 positive vs. CD4 positive spleen and bone 

marrow cells from Stra6+/- and Stra6-/- animals. Only cells positive for CD45 have 

been represented on this plot in order to examine only the CD4/CD8 profile of T-

cells. Stra6+/- n=2, Stra6-/-n=2. 
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Table 3.16: The ratio between CD8+ and CD4+ CD45+ T-cells is unaffected by -

Stra6 loss. 

Average percentage of CD4 negative, CD8 positive (CD4 -, CD8+), CD4 positive, 

CD8 negative (CD4+, CD8-), double negative (CD4-, CD8-) and double positive 

(CD4+, CD8+) in spleen and bone marrow samples analysed by FACS. Only cells 

positive for CD45 have been represented in this table in order to examine only the 

CD4/CD8 profile of T-cells. Stra6+/- n=2, Stra6-/-n=2. 

 

 

 

 

 

 

 

 

 

 

 

 

CD8-, CD4- CD8+, CD4+ CD8+, CD4- CD8-, CD4+

Spleen
Stra6 +/- 72.4 0.2 10.5 16.8

Stra6 -/- 74.9 0.2 9.5 15.4

Bone 
marrow

Stra6 +/- 96.3 0.3 1.6 1.9

Stra6 -/- 96.3 0.2 1.7 1.8

CD8-, CD4- CD8+, CD4+ CD8+, CD4- CD8-, CD4+

Spleen
Stra6 +/- 72.4 0.2 10.5 16.8

Stra6 -/- 74.9 0.2 9.5 15.4

Bone 
marrow

Stra6 +/- 96.3 0.3 1.6 1.9

Stra6 -/- 96.3 0.2 1.7 1.8
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3.3 Discussion 

Stra6-/- mice do not represent the expected model of Matthew-Wood syndrome. 

Stra6-/- animals are not anophthalmic, nor do they have any heart, lung or 

diaphragmatic defects consistent with the human condition. The knockout animal, 

produced by removal of two exons by homologous recombination, should result in 

the production of a truncated transcript due to the production of a premature stop 

codon and therefore a truncated protein. The removal of the exons was confirmed 

during production of this knockout allele prior to the commencement of the work 

described in this thesis and animals were genotyped on the basis of the absence of an 

exon removed by the targeting construct; however the loss of protein production was 

not confirmed via western blotting. The lack of phenotype in Stra6-/- animals may 

therefore be the result of production of wildtype protein from the targeted knockout 

allele, although this scenario is unlikely.  The lack of correlation between the human 

and mouse phenotypes could be explained, assuming the lack of STRA6 protein in 

Stra6-/- animals, by two scenarios; a) complete loss of the protein is less deleterious 

than the production of a mutant protein, b) a second gene in mouse is able to 

compensate for the function of STRA6, but this gene is not functional in the human 

thereby resulting the severe developmental phenotype observed. The first scenario is 

supported by the continued survival of a human Matthew-Wood patient into late 

childhood, who is effectively STRA6-null, compared to the normal prognosis of 

Matthew-Wood patients who typically die within the first year of life (Pasutto 2007). 

The mutant protein produced in other Matthew-Wood patients could, in addition to 

minimal retinol transport potential, result in either novel functions which are 

deleterious to normal development or act in a dominant negative manner in 

interaction with other genes or pathways in order to cause the observed 

developmental defects and mortality. The second scenario is further discussed in the 

subsequent chapter (See 4.0) as a second gene is present in mouse, and other 

mammals, but is disrupted in humans and other great apes and this may provide a 

mechanism by which STRA6 mutations in human result in Matthew-Wood syndrome, 

but Stra6-/- mice are normal.  
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The retinoid pathway has many inbuilt ‘checks and balances’ in order to ensure that 

this most important developmental pathway is functional. Study of various genes of 

the retinoid pathway have shown that most either form part of functionally redundant 

families able to compensate for each other’s function or are not required unless the 

animal or embryo is subject to low-retinoid conditions. Due to the lack of any 

developmental or adult phenotype in Stra6-/- mice, Stra6-/- dams were fed a low-

retinoid diet during pregnancy in order to discern if STRA6 is required under 

conditions of low-retinoid supply. This has previously been undertaken for Crbp, 

Rbp4 and Lrat knockout mice and resulted in developmental phenotypes under the 

dietary regime when none were observed under normal dietary retinoid supply. 

Stra6-/- offspring of Stra6-/- dams fed a retinoid-free diet during pregnancy had 

significantly smaller eyes than Stra6+/- littermates and also demonstrated various 

defects in the retina, lens and the vasculature of the eye.  

Stra6-/- animals are microphthalmic rather than clinically anophthalmic as observed 

in Matthew-Wood patients and therefore even with a retinoid-free diet Stra6-/- 

animals are not a model of the eye defects in the Matthew-Wood syndrome. Vitamin-

A depleted females, whose growth and fertility was maintained by provision of  RA, 

gave birth to microphthalmic offspring when a rapid and temporally controlled 

vitamin-A deficiency was induced by removal of the supportive RA during 

pregnancy (Dickman 1997). The microphthalmia observed in all Stra6-/- animals is 

therefore likely to be the result of a lack of retinoid provision to the developing eye 

to ensure normal growth.  

Persistent hyperplastic primary vitreous (PHPV) was observed bilaterally in all 

Stra6-/- diet study animals and has been described as a feature of other retinoid gene 

knockouts, such as Rarβ (Kastner 1997) and Raldh3 (Dupe 2003), and also of RA-

excess treatment during development between E7-E11 in mouse (Ozeki 1999). The 

mechanism for this defect in diet study Stra6-/- animals is likely to be due to a lack 

of retinoids, perhaps retinoic-acid. Retinoic acid appears to be required for correct 

control of apoptosis within the eye possibly through the regulation of apoptosis-

effector gene Eya2 (Matt 2005), which is up-regulated in response to retinol (Ali-

Khan 2006). Apoptosis is required for the correct regression of the hyoid vasculature, 
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which provides nutrients to support the developing eye, before regressing upon the 

formation of the retinal vasculature which supports the adult eye. In the case of 

Stra6-/-, the lack of retinoids may result in a persistence of the primary vitreous due 

defects in the normal apoptosis process which would cause regression of the primary 

vitreous at the appropriate time during development (McKeller 2002). PHPV is 

known to be associated with an increased occurrence of cataracts in both humans  

(Silbert 2000) and mice (Reichel 1998). The increased occurrence of cataract with 

PHPV is possibly due to the connection of the persistent vasculature to the posterior 

lens surface via a fibrous membrane resulting in the formation of a fibrovascular 

plaque which in turn leads to cataract (Reichel 1998).   

The retina of Stra6-/- diet study animal is also disrupted with ‘waves’ and folds 

observed in histological sections. Expression of Stra6 during development was not 

observed in the developing retina but rather in the RPE and the periocular 

mesenchyme. The RPE is known to function in the correct specification of the neural 

retina through expression of various neurotrophic factors. Stra6 may therefore have a 

role in the expression of these neurotrophic factors and in its absence the formation 

of the neural retina becomes disrupted. The retina has a specific pattern of RA 

activity during development but the retina does not require the RA to be 

autonomously provided as seen by the lack of retinal layering or folding defects in 

Raldh1-/- and Raldh3-/- animals (Matt 2005). STRA6 may therefore have a role in 

providing RA for retina formation through paracrine signalling from the neural crest-

derived periocular mesenchyme. Rarα/β/γ triple knockout specifically in the neural 

crest cells recapitulates the eye defects observed in complete Rarα/β/γ knockout and 

therefore the neural crest cells are the only source of RA required during eye 

development (Matt 2008).  

Stra6-/- diet study retinas have an increase in the number cells in the retinal ganglion 

cell layer and these additional cells are positive for markers of this cell layer, GFAP 

and BRN3. GFAP marks astrocytes and, in addition to staining the extra cells, also 

stains the axons which in Stra6-/- are ‘feathered’ in appearance and some seem to 

have not made the correct contacts with the inner nuclear layer. Vax2 controls 

intraretinal RA metabolism and Vax2 loss in mouse results in an expansion of the 
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RA-free zone in the developing retina. Vax2-/- animals show an increase in the 

thickness of the nerve fibre layer, i.e. the astrocytes of the ganglion cell layer, and a 

disorganisation of the nerve fibre bundles (Alfano 2011). Therefore in Stra6-/- 

animals, an increase in the RA-free region of the developing eye could result in 

expansion of the astrocytes of the ganglion cell layer resulting in the observed 

increase in thickness of the GCL. Astrocytes migrate into the eye guided by the 

secreted chemoattractant PDGF. PDGF and its receptor are negatively regulated by 

RA in the developing branchial arch (Han 2006), although the relationship between 

RA and PDGF expression is not clear with both positive and negative regulatory 

mechanisms reported. Disruption of RA signalling via the loss of Stra6 may 

therefore cause an increase in PDGF levels resulting in greater migration of 

astrocytes into the developing retina.  

Embryos from the Stra6-/- diet study, as for those Stra6-/- born to dams on a 

retinoid-sufficient diet, do not represent a model for Matthew-Wood syndrome. No 

defects were observed in the diaphragm, heart or lungs and in the eye only 

microphthalmia occurred rather than anophthalmia. A recent report has however 

described homozygous STRA6 mutations in a consanguineous Irish Traveller family 

with autosomal recessive non-syndromic colobomatous micro-anophthalmia. Stra6-/- 

diet study animals may in fact be a good model for a subset of human STRA6 

mutants which affect only the development of the eye and spare the other organs 

affected in Matthew-Wood patients. One of the patients with isolated eye defects had 

a sibling with a typical Matthew-Wood presentation and therefore the penetrance of 

STRA6 mutations may be dependent on genetic background or environmental factors 

in humans (Casey 2011). Stra6-/- offspring of dams exposed to a retinoid-free diet 

for longer periods before pregnancy or on other inbred mouse backgrounds therefore 

may result in a Matthew-Woods model. The ‘waves’ and folds of the retina observed 

in diet study Stra6-/- animals could be interpreted as signs of coloboma in the mouse; 

being similar in appearance to the defects observed in the colobomatous Vax2-

inactivated mouse (Barbieri 2002), further adding to the possibility of using these 

animals as a model for isolated STRA6-related eye defects. This overlap of phenotype 

between Vax2-/- and Stra6-/- diet study animals, in the observation of coloboma and 
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nerve fibre expansion, indicates that Stra6 loss causes a reduction in RA signalling in 

the eye incompatible with normal eye development (Alfano 2011).  

Stra6-/- dams were transferred to a retinoid-free diet for 10-day windows, E0.5-

E10.5, E5.5-15.5 and E10.5-birth, during pregnancy in order to pinpoint the temporal 

requirement for STRA6 in eye development by studying their Stra6-/- offspring. 

Stra6-/- animals from dams transferred between E0.5-E10.5 had normal eye 

development and consistent with this observation eye development during this period 

is minimal. Specification of the retinal anlage occurs at the end of gastrulation and at 

E9.5 the specified eye field splits into symmetrical retinal primordium which 

evaginate from the forbrain to form optic vesicles (Donner 2004). STRA6 is 

therefore not likely to be required for the specification of the retinal analage or the 

later specification of the optic vesicles from the eye field. Development of the eye is 

rapid and complex between E10-15 with lens formation from the surface ectoderm, 

optic cup formation, vessel invasion and orientation, and eyelid formation and 

eventual fusion. Consistent with this intense period of eye development, Stra6-/- 

animals from dams transferred between E5.5-E15.5 and E10.5-birth both show 

microphthalmia and PHPV consistent with, although not identical to, the phenotype 

of Stra6-/- animals from E0.5-birth dams. This therefore highlights the period 

between E10.5-E15.5 as a period of eye development with a critical requirement for 

STRA6. During this period the optic cup closes and the lens vesicle is budded from 

the surface ectoderm. The hyaloid artery also enters the developing eye at E11-13 

and then proceeds to form the posterior region of the vascular tunic surrounding the 

lens. The vessels of the eye, which surround the optic cup at E10-11, orientate 

themselves between E12-13 and then begin to regress at E14-15 (Pei 1970). The 

observation of PHPV in Stra6-/- animals from dams transferred between E5.5-E15.5 

and E10.5-birth is consistent with the vessel development, morphogenic movement 

and regression of the embryonic vessels during the defined critical STRA6-

requirement period of E10.5-E15.5. The critical window of STRA6 requirement that 

has been defined suggests that STRA6 is required either to suppress excess vessel 

formation during early eye development or to stimulate apoptosis aiding vessel 

regression or possibly a combination these.  
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3.4 Further Work 

The conclusions drawn within this chapter as to the phenotype of Stra6-/- animals are 

based on the assumption that the knockout allele produces an out-of-frame transcript 

and therefore no STRA6 protein. In order to confirm these observations the presence 

or absence of STRA6 protein in knockout animals should be investigated via western 

blotting with a STRA6 specific antibody in protein extracts from Stra6-/- animals 

compared to controls.  

Immunohistochemistry performed for markers of various components of the eye, in 

order to investigate the phenotype of Stra6-/- offspring from dams fed a retinoid-

deficient diet during pregnancy (Figures 3.7, 3.9, 3.10, 3.11 3.12) requires further 

controls to be included in order to confirm the observations made. Absorption 

controls, in which the primary antibody is pre-absorbed with the specific antigen 

before incubation with the tissue, would allow non-specific staining to be identified 

as specific staining should be greatly reduced or abolished as they antibody has been 

bound to the pre-incubated antigen. Isotype controls could also be utilised in order to 

eliminate the possibility of non-specific interactions between immunoglobulins and 

the sample.  

 Stra6-/- dams fed on a retinoid-free diet through pregnancy give birth to Stra6-/- 

offspring with microphthalmia and defects of the retina, lens and vasculature. In 

order to understand the contribution of maternal genotype of this phenotype it would 

be interesting to look at Stra6-/- offspring from Stra6+/- dams, mated to Stra6-/- 

males, fed the retinoid-free diet throughout pregnancy. The contribution of maternal 

genotype to the phenotype of the pups from dams fed retinoid-free diet depends on 

the gene; Rbp4+/- females have no malformed Rbp4-/- pups compared to all of the 

Rbp4-/- pups from a Rbp4-/- females (Quandro 2005), Neonatal mortality rate of 

Crbp2+/- pups was dependent on maternal genotype with 79% of pups from Crbp2-

/- dams versus 29% of pups from Crbp+/+ dams dying in the neonatal period 

(Xueping 2002). Stra6-/- dams could be normal in terms of retinol storage and the 

ability to make RBP-ROH for provision of retinol to the embryo. STRA6 would only 

be required on the part of the embryo in order to access the maternal provision of 

retinoids provided as RBP-ROH. In this case, Stra6+/- embryos will be able to 
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utilise this RBP-ROH by uptake through the placenta, however Stra6-/- embryos will 

be unable to access this supply but would support development by obtaining retinol 

from chylomicrons or albumin-bound retinol. This supply of retinoids would 

maintain normal development of the Stra6-/- embryos during normal maternal 

dietary provision of retinoids, but maternal transfer to a retinoid-free diet would 

result in minimal non-specifically bound retinoid provision to Stra6-/- embryos but 

relatively normal RBP-ROH provision to Stra6+/- littermates. In this case, Stra6+/- 

dams fed retinoid-free diet during pregnancy would also result in the same Stra6-/- 

phenotype as chylomicron or albumin-bound retinoids are provided directly from 

dietary retinoids. If STRA6 is required in the dam to store retinoids, Stra6-/- dams 

fed a retinoid-free diet would become rapidly VAD. Stra6+/- embryos may be able 

to access the minimal retinoids available more successfully than Stra6-/- embryos. In 

this case Stra6+/- dams fed retinoid-free diet during pregnancy would have normal 

Stra6-/- offspring as they would have retinoid stores and therefore not become VAD 

upon eating the retinoid-free diet.  

Stra6-/- dams fed on a retinoid-free diet for various 10-day ‘windows’ during 

pregnancy has allowed an initial survey of the likely timing of the occurrence of the 

developmental defects observed in Stra6-/-  diet study eyes. In order to fully 

appreciate the difference, it would be useful to investigate further litters from the diet 

study windows at E0.5-10.5 E5.5-E15.5 and E10.5-birth compared with the 

phenotype of the E0.5-birth diet study animals. If the observations previously made 

hold, investigation of both vessel proliferation and apoptosis between E10.5-15.5 

may highlight the cause of PHPV in Stra6-/- animals from retinoid-free diet fed 

dams.  

Male and female animals from the Stra6-/- diet study have been bred to a C57BL6 

female and male, respectively, in order to determine if these animals are fertile and 

able to produce offspring. Due to time constraints only one breeding was observed. 

The Stra6-/- diet study male was able to plug a female and one surviving pup was 

observed. The female Stra6-/- diet study animal became pregnant but no live pups 

were observed. Further breeding of Stra6-/- diet study males and females is required 

to gain a full picture of the fertility of Stra6-/- diet study animals. At present it seems 
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likely that Stra6-/- males are fertile but may be less so than a non-diet study Stra6-/- 

animal and Stra6-/- females are able to become pregnant but it is unknown if they are 

able to give birth to live pups.  

HPLC analysis of the levels of various retinoids within the liver, eye and plasma of 

Stra6-/- animals fed either a retinoid-sufficient or a retinoid-free diet would allow a 

better understanding of the mechanism of STRA6 action and the effect STRA6 loss 

has on retinoid equilibrium. Liver and, perhaps, adipose retinoid levels will address 

questions of the ability of Stra6-/- to store retinoids or utilise stored retinoids. If 

STRA6 is required for retinoid storage, the liver level of retinyl esters will be low 

and if STRA6 is required to utilise stored retinoids then the liver retinyl ester levels 

will be likely be higher compared to WT and will not decrease upon transferral to 

retinoid-free diet.  
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A role in zebrafish development for stra6.2: a 

paralogue of stra6. 
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4.0 Introduction 

Matthew-Wood syndrome is a human birth defect caused by mutations in STRA6 and 

it would be predicted that the Stra6 knockout mouse would be the ideal candidate for 

a mouse model of this condition. However, as shown in the previous chapter, this is 

not the case and Stra6-knockout mice are viable and healthy. Modification of the 

retinoid content of the dams diet during pregnancy did produce offspring with 

microphthalmia and defective eye development but this was not an accurate model of 

Matthew-Wood syndrome, although it may be a good model of isolated 

anophthalmia/ microphthalmia associated with STRA6 mutations (Casey 2011). The 

identification of a paralogue of Stra6, discussed in this chapter, may explain the 

developmental disparity between Stra6-knockout mice and Matthew-Wood patients.  

The morpholino knockdown technique in zebrafish has been previously used in order 

to study the role in development of stra6 and attempt to create a model of Matthew-

Wood syndrome in the zebrafish (Isken 2008). The morpholino knockdown 

technique was therefore used to investigate stra6.2 function as discussed below. 

Morpholinos are 20-25 base pair single stranded anti-sense oligonucleotides with 

modified backbones. The deoxyribose rings are replaced with 6-membered 

morpholine rings and non-ionic phosphorodiamidate linkages replace the anionic 

phophodiester linkages resulting in un-charged morpholino molecules (Wikipedia 

2011). The modified backbone is not recognised by nucleases and they are therefore 

not degraded. Morpholinos also do not activate the innate immune response or toll-

like receptors, a common problem encountered with ‘natural’ antisense 

oligonucleotides used previously to knockdown gene expression in the zebrafish. The 

morpholinos are designed to bind either at the translation intiation codon preventing 

protein translation from the target mRNA (Summerton 1999) or to a splice-acceptor 

or –donator site causing defective splicing resulting in modified and/or prematurely 

terminated protein (Draper 2001).  

stra6 is expressed within the developing zebrafish embryo, being observed in the 

pineal gland, eye, anterior somites and the yolk syncetium at the 12-somite stage 

(Isken 2008). By 24hpf, expression is still observed in the pineal gland, eye and 

anterior somites with expression also observed in the anterior hindbrain. Later in 
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development expression is still observed in the eye and pineal gland and becomes 

restricted to the RPE of the eye by 4dpf. stra6 morphants had developmental defects 

reflective of those observed in human patients, namely microphthalmia, heart edema 

and jaw defects (Isken 2008). The eyes of stra6 morphants, despite being 

microphthalmic, were histologically normal with all the cell types specified correctly 

and retinal lamination indistinguishable from controls (Isken 2008). RA signalling 

within stra6 morphants was increased, with the expression of cyp26a1 increased in 

morphants compared to controls (Isken 2008). Reduction of Rbp4 levels within the 

morphant embryos rescued their developmental phenotypes indicating that Rbp4, in 

the absence of stra6, is toxic to normal development (Isken 2008). stra6 in the 

zebrafish appears to function in an Rbp4-dependent manner in order to regulate 

vitamin A homeostasis during development. Loss of stra6 during development 

causes an excess of RA signalling due to a non-specific increase in vitamin A caused 

by holo-Rbp4 in several embryonic tissues, with the exception of the eye which 

shows a decrease in retinoid content. stra6 may therefore function differentially with 

some tissues requiring stra6 to provide retinoids, i.e. the eye, and other tissues 

requiring its function in order to regulate the effects of circulating holo-Rbp4.   

Many thanks to Philippe Gautier for assistance with the work described in section 

4.1.  

4.1 Stra6.2 is a paralogue of Stra6 

4.1.1 Identification of Stra6.2 

Stra6.2 was identified as a paralogue of Stra6 within the mouse genome by Blast. 

Protein identity between STRA6 and STRA6.2 is relatively low at around 18%; 

however the conserved residues do appear to be those important to STRA6 function. 

By mapping the STRA6 residues mutated in Matthew-Wood syndrome onto to the 

mouse protein and then comparing these to the equivalent residues in mouse 

STRA6.2 revealed that over half of these were conserved with almost all of the 

residues affected by missense mutation identical between the proteins (Figure 4.1 A). 

The binding site for RBP4 previously identified within STRA6 was, however, not 
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conserved between the proteins with only one of the three essential residues being 

conserved (Figure 4.1 A).  

4.1.2 Evolutionary conservation of Stra6.2 

The origin of Stra6.2 and the relationship between Stra6 and Stra6.2 was 

investigated by identifying Stra6-like homologues in diverse species. Stra6-like 

homologues appear to have arisen before the proposed appearance of retinoic acid 

signalling in the deuterosomes (Albalat 2009). A Stra6-like homologue was 

identified in the simple eumetazoan Trichoplax adhaerens, but retinoic acid 

signalling is thought to have arisen in the deuterostomes (Marletaz 2006). Stra6-like 

homologues could not be identified in all bilaterians, however, and was absent in 

Caenorhabditis elegans and Drosophila melanogaster. These species are known to 

be missing other members of the RA pathway and do not use RA as a signalling 

molecule (Albalat 2009). In contrast, the Trichoplax genome also contains 

orthologues of Rdh, Raldh2 and RXR orthologues suggesting a functional RA 

signalling pathway in this primative organism.  

 

Comparison of STRA6-like homologues identified in invertebrates and basal 

vertebrates were found to sit between the STRA6 and STRA6.2 branches within a 

phylogenetic tree of STRA6-like homologues (Figure 4.1 B). Sequence comparison 

and their branching position within the tree revealed that they shared a greater 

similarity with STRA6.2.  In the vertebrates proper, as represented by lamprey 

(Petromyzon marinus), definitive Stra6 and Stra6.2 homologues are observed (Figure 

4.1 B). The observation of both a Stra6 and Stra6.2 homologue is the vertebrate 

norm with both genes observed in all, but two, groups. In all sequenced birds 

investigated, chicken (Gallus gallus) and zebrafinch (Taeniopygia guttata), no 

Stra6.2 homologue was observed and this loss was specific to the bird lineage with a 

Stra6.2 homologue observed in a representative from the reptile lineage, Anolis 

carolinensis. The second deviation from the vertebrate norm is discussed below. 
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Figure 4.1 Identification of Stra6.2.  

Protein sequence alignment between mouse STRA6 and STRA6.2 highlights the low 

degree of conservation (A). Residues labelled black are identical between the 

proteins and grey-labelled residues indicate similar but not identical residues. 

Residues mutated in PDAC conserved between the proteins are labelled in green and 

those non-conserved are labelled red. The RBP4 binding site (underlined in blue) is 

not conserved between the two proteins. A phylogenetic tree indicates the 

relationship between Stra6-like homologues (B). Green box highlights Stra6-like 

homologues. Blue box indicates Stra6.2-like homologues. Red box highlights non-

vertebrate sequences. * indicates homologues in which the disrupted gene has been 

artificially joined for tree construction.  Bootstrap values are indicated for each 

branch. Branches which have been independently verified by Bayesian tree method 

are marked with a red dot. 
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4.1.3 Disruption to STRA6.2 in humans and great apes 

Stra6.2 forms part of a recognisable syntenic unit through a portion of mammalian 

evolution. In great apes, including humans, the STRA6.2 coding region has become 

split across its resident chromosome with an associated break in synteny (Figure 4.2 

A). The 5’ region of the gene is found within the P-arm of chromosome 9 in humans 

with the genes normally 5’ to Stra6.2 residing in their normal position in relation to 

STRA6.2 (Figure 4.2 B). The 5’ region of the gene is not found in EST databases and 

appears not to be transcribed; however, its exonic structure does appear to be 

conserved. Analysis of evolutionary conserved regions, in addition to identifying the 

remains of exonic structure in the 5’ region, also highlighted the likely split in the 

gene to have occurred within the intron between exons 7 and 8 (Figure 4.2 C). The 3’ 

region resides within the Q-arm of chromosome 9 and maintains the synteny 

normally associated with the 3’ of Stra6.2. The 3’ region of the gene, representing 

the final transmembrane domain and the C-terminal tail of the protein, is transcribed 

and represented in EST databases from human. The EST databases do show the 

addition of a non Stra6.2-homologous portion to the 5’ of the transcript and many of 

the ESTs also show additional transcribed regions 3’ to the Stra6.2-homologous 

region. In non-human great apes in which STRA6.2 is split, this 3’ transcript appears 

to contain a premature stop codon although this codon is not observed in the human 

transcript.  

4.1.4 Summary of Stra6.2 in mouse, human and zebrafish 

The paralogue of Stra6, Stra6.2, has an interesting evolutionary history in the species 

pertinent to the work discussed within this thesis. The paralogue was identified 

initially in the mouse genome and shows relatively low conservation overall, 

although the conservation of important amino acids within the protein appears to be 

good. The mouse genome contains both a Stra6 and a Stra6.2 gene and this situation 

is also replicated in the zebrafish with a single copy of both stra6 and stra6.2 also 

present within the zebrafish genome. A common feature of the zebrafish genome is 

the duplication of many genes, however stra6 and stra6.2 are present as single copies 

with no evidence of additional copies of either. The genomic situation in the human 

is somewhat different to that in the mouse and the zebrafish. The human genome 
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contains a ‘normal’ copy of STRA6, however STRA6.2 has become disrupted 

compared to the mouse. The gene has become split, with the 5’ region of the gene 

appearing to be non-transcribed and non-functional, although enough conservation 

remains to allow the region to be identified. The 3’ region of the gene, however, does 

appear to be transcribed although the functional significance of this shorter transcript 

and protein is not clear at present. The conservation of the syntenic context of the 

split gene, with the 5’ genes associated with the 5’ portion and the 3’ genes 

associated with the 3’ portion, suggests that this disruption of the STRA6.2 gene may 

be due to an evolutionary large scale genomic rearrangement.  
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Figure 4.2 STRA6.2 is disrupted in great apes. 

The chromosomal location and arrangement of the Stra6.2 gene in mouse, human 

and macaque (Macaca mulatta) highlights the disruption to the STRA6.2 gene in 

humans (A). Blue indicates the N-terminal and green the C-terminal regions which 

highlight the chromosomal disruption of the gene that occurred in the hominids. 

Synteny 5’ and 3’ to STRA6.2 is maintained despite the split across chromosome 9 

(B). 5’ genes (green boxes) and 3’ genes (purple boxes) in their relative position 

compared to Stra6.2 (red box) in mouse. The 5’ and 3’ syntenic region is found 

correctly located with respect to the 5’ and 3’ portions of STRA6.2 in human. (C) All 

exons (blue) of STRA6.2 are maintained despite the split and can be identified by 

using the ECR browser comparing human to mouse. The mouse reference gene is 

shown at the top and bottom of the panel and a graphical representation highlights 

conservation to human across the region. The split in the gene is indicated by the 

black arrow.  
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4.2 stra6.2 and zebrafish 

4.2.1  stra6.2 expression during zebrafish development. 

4.2.1.1 RT-PCR 

Temporal expression of stra6.2 during zebrafish development was assessed using 

RT-PCR on RNA extracts from various developmental time-points between the 

fertilised egg and 48hpf (Figure 4.3). Expression of stra6.2 by RT-PCR was detected 

in the fertilised egg indicating that stra6.2 mRNA is deposited by the female into the 

egg as zygotic transcription does not begin until the mid-blastual transition at 

approximately 6hpf. stra6 was also observed in the fertilised egg by RT-PCR. 

Expression was observed for both stra6 and stra6.2 at all the developmental time 

points assessed. 

4.2.1.2 WISH 

The spatial expression pattern of stra6.2 was investigated using wholemount in situ 

hybridisation (WISH). Expression before 14hpf could not be definitively detected 

using WISH with diffuse staining observed across the embryo (Figure 4.4 A). The 

eye was consistently positive for stra6.2 throughout development and was often the 

strongest region of expression observed across the embryo. Expression at the 10-

somite stage (approximately 14hpf) is seen within the horizontal crease of the 

developing eye (Figure 4.4 B). At 18hpf, in addition to expression within the 

developing eye (Figure 4.4 C), expression was also observed faintly within the 

notochord and in the tail bud (Figure 4.4 D). Expression at 24hpf was restricted only 

to the anterior of the embryo (Figure 4.4 E) within the eye, brain and the endoderm 

above the yolk (Figure 4.4 E, G-H). The anterior region, specifically the tail, was 

devoid of staining. Staining at 48hpf was observed in the anterior somites (Figure 4.4 

I), in RPE of the eye (Figure 4.4 K) and in the posterior notochord (Figure 4.4 L). 
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Figure 4.3 stra6.2 is expressed from the earliest stage of zebrafish development. 

Expression of stra6.2 can be detected by RT-PCR at various developmental stages 

from the fertilised (0hpf) to 48hpf as shown by gel electrophoresis.  
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Figure 4.4 stra6.2 is expressed in a tissue specific manner during zebrafish 

development. 

Expression of stra6.2 (purple) was assessed by WISH from gastrulation at 50% 

epiboly (A) where expression was diffusely observed throughout the embryonic 

tissue (bracket). stra6.2 expression was observed in the eye (black arrow) throughout 

development from the 10 somite stage (B). At 18hpf (C), expression is additional 

observed in the notochord (red arrows) and within the tailbud (white arrowhead, D). 

The anterior of the embryo is positive at 24hpf (E) specifically within the endoderm 

above the yolk (e) and within the brain (G&H), namely the midbrain (mb) and 

hindbrain (hb). The somites (blue arrows) at 48hpf (I) are positive for stra6.2 

expression and expression within the eye has become restricted to the RPE (K, white 

arrow). The posterior notochord (black arrowhead) is also positive for stra6.2 at 

48hpf (L). The yolk in B-D and I appears dark as embryos are flatmounted and 

illuminated from below. Sense control embryos at 24hpf (F) and 48hpf (J) are shown 

for comparison. 
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4.2.2 stra6.2 is required for normal zebrafish development. 

4.2.2.1 stra6.2 targeting morpholinos 

The developmental requirement for stra6.2 was investigated using the morpholino 

knockdown approach. stra6.2 expression was knocked-down and depleted using 

three morpholinos; two translation blocking morpholinos which prevent the 

translation of the target mRNA and one splice-blocking morpholino which targets a 

splice-junction resulting in aberrant splicing leading to exon-skipping and intron-

inclusion (Figure 4.5). The translation blocking morpholinos overlap only at the 

initiation codon ATG and target up-stream and down-stream of this in MO1 and 

MO2 respectively. The splice blocking morpholino targets the junction between 

intron 4-5 and exon 5. RT-PCR of RNA from phenotypic morphants injected with 

this morpholino identified both exon skipping and intron inclusion of single or 

multiple introns downstream of the target region (Figure 4.6).  
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Figure 4.5 Morpholinos targeted to both the translational start and a splice junction 

of stra6.2. 

Morpholinos (MO1, 2 & 3) were directed towards the stra6.2 gene at the indicated 

positions (A). Splice blocking morpholino (MO3) can alter pre-mRNA splicing by 

causing exon skipping (B) and intron inclusion (C). 
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Figure 4.6 Splice blocking morpholino (MO3) causes both intron-inclusion and 

exon-skipping. 

RT-PCR identifies both exon skipping (-Ex) and intron inclusion (+In) in mRNA 

collected from splice morpholino injected stra6.2 morphants (s6.2) at both 24hpf and 

48hpf. The expected normal size band (WT) was the only product observed in 

standard control (sc) mRNA but was also observed in the morphant lane. 
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4.2.2.2 stra6.2 morphant phenotype 

stra6.2 knockdown using any of the three described morpholinos resulted in an 

identical phenotype (Figure 4.7 E-F) and further experiments were performed using 

morpholino one (MO1). stra6.2 MO1 was also injected into p53-null zebrafish in 

order to control for off-target effects caused by activation of the p53 apoptosis 

pathway, which has been reported for some other morphants (Robu 2007). A 

comparable level of phenotype was observed between those morphants on a WT or 

p53-null background. 

 Defects observed in stra6.2 morphants later in development (discussed below) 

resemble those observed in mutants with defects in convergent-extension and early 

axis elongation, such as the frizzled-2 morphant (Sumanas 2001). In order to 

ascertain if the stra6.2 morphant phenotype was due to defects in convergent-

extension or axis elongation and identify the earliest aberrations in development in 

these morphants, early development of stra6.2 morphants (n=10) compared to 

standard control morphants (n=10) was monitored. stra6.2 morphants could be 

distinguished from standard control injected embryos at the 10-somite stage, at 

which stage the distance between the head and tail across the yolk was increased in 

stra6.2 morphants compared to standard control injected embryos (P=0.0006, Figure 

4.8 C-D). stra6.2 morphants were also slower to develop at this time with embryos 

reaching the 10-somite stage later temporally than the equivalent standard control 

injected embryos (Figure 4.8 A-B). stra6.2 morphants could also be distinguished 

later in development at 18hpf, at which point development of the stra6.2 morphants 

appeared to be of an equivalent stage to the development of standard control injected 

embryos of the same age (Figure 4.8 A-B). The developing tail of stra6.2 morphants 

has not disengaged from the yolk extension as for standard control morphants, 

although this detachment does occur later in development (Figure 4.8 E-F). stra6.2 

morphants can be readily distinguished at both 24hpf (Figure 4.7 A-B) and  48hpf 

from standard control injected embryos. stra6.2 morphants at 48hpf are significantly 

shorter along their anterior-posterior axis and also curved ventrally in respect to 

standard control embryos (Figure 4.7 C-D). Many stra6.2 morphants also fail to 

spontaneously dechorinate and require manual dechorination. Upon dechorination 

movement of the stra6.2 morphants is impaired with reduced startle response to 
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stimuli and movement restricted to stationary rotation about the yolk. stra6.2 

morphants at 48hpf are also microphthalmic with a significant reduction in eye size 

as a ratio of body length compared to standard control embryos (P<0.0001, Figure 

4.7 C-D). Somite morphology in stra6.2 morphants, as analysed by histological 

sections (Figure 4.9 A-B) and in intact embryos (Figure 4.9 C-D), is disrupted with 

an increase in somite angle resulting in a flattened somite appearance compared to 

standard control embryos. Somite size and number is however comparable between 

stra6.2 and standard control morphants.  
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Figure 4.7 stra6.2 morphants have defects in axis elongation and tail formation. 

Development of standard control injected embryos (A, n=10) and stra6.2 morphants 

(B, n=10) was observed at 1-hourly intervals (each image is plus 1 hour compared to 

the previous image) in order to investigate axis elongation and tail formation 

between 13-18hpf. Head-tail distance (double-headed arrow) is a measure of axis 

elongation and was smaller in standard control embryos (C) compared to stra6.2 

morphants (D). Tail formation is also defective compared to standard control 

embryos (E) at 18hpf. Disengagement of the tailbud (black arrow) from the yolk 

extension has not occurred in stra6.2 morphants (F). 
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Figure 4.8 stra6.2 morphants are also distinguishable at 24hpf and 48hpf. 

Standard control embryos (A) are longer along their body axis and have yolk 

extensions (black arrowhead) which are relatively even in width along their length 

compared to stra6.2 morphants (B) at 24hpf. At 48hpf, compared to standard control 

embryos (C), stra6.2 morphants of each of MO1 (D), MO2 (E) and MO3 (F) are 

shorter along their body axis, microphthalmic (white arrow) and have shorter, uneven 

yolk extensions (black arrowhead). The yolk in A-D appears dark as embryos are 

flatmounted and illuminated from below. Multiple images of the same embryo have 

been used in C and D in order to maintain focus across the embryo. 
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Figure 4.9 Somite angle is increased in stra6.2 morphants. 

Somite angle, compared to standard control (A&C), is larger in stra6.2 morphant 

(B&D) at 48hpf. Black lines outline the edge of one somite on H&E section (A-B) 

and in the intact embryo (C-D). 
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4.2.2.3 Eye defects in stra6.2 morphants 

Due to the microphthalmia observed in stra6.2 morphants, eye morphology was 

histologically investigated. The eye in standard control embryos at 3dpf was fully 

laminated with the cells of the retina arranged into the stereotypical pattern of cell 

type and position required for normal vision. The stra6.2 morphant eye was more 

akin to a control eye at 48hpf with no lamination observed within the retina in stark 

contrast to the control histological findings. The stra6.2 eye does appear to be 

delayed in development between 2-3dpf with some stra6.2 morphant eyes 

demonstrating a degree of lamination by 4dpf. The retinal level of lamination in 

stra6.2 morphants was variable however, with some morphant eyes still 

histologically equivalent to 48hpf control eyes (Figure 4.10 A-B&F). In contrast, 

some stra6.2 eyes were completely normal with the retina fully and correctly 

laminated but a percentage of these still had nuclei present within the lens, a 

histological finding not observed past 48hpf in control eyes (Figure 4.10 C).  In 

between these extremes, various levels of lamination were observed in the stra6.2 

morphant eye with specification of cell types but minimal layering (Figure 4.10 E) to 

a specification of all the cells arranged into layers but a lack of nuclei-free plexiform 

layers (Figure 4.10 D).  

4.2.2.4 Cartilage defects in stra6.2 morphants 

The head of stra6.2 embryos is smaller and defective in shape compared to standard 

control embryos and therefore cartilage morphology was assessed by alcian blue 

staining at 5dpf (Figure 4.11). Standard control morphants had well developed head 

and jaw cartilages at this stage (Figure 4.11 A-B). The lower jaw consisted of 

Meckel’s cartilage, extending anterior to the eyes, and the ceratohyates meeting at an 

approximately 90° angle with the point facing towards the anterior of the embryo. 

The 6 ceratobranchials, which will later form the gill arches, were also similarly 

angled as the ceratohyates. stra6.2 morphants, however, had defective jaw 

morphology (Figure 4.11 C-D). Meckel’s cartilage did not extend anterior to the eyes 

as for the control embryo and the ceratohyates were not angled and lay either flat or 

in some cases angled posteriorly. The ceratobranchials were reduced in number and 

those which remained were malformed. In contrast the cartilages of the head were 
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not affected by the knockdown of stra6.2 indicating that this was not a generalised 

affect upon all cartilages. Alcian blue staining also highlighted a change to the shape 

of the pectoral fins, in which rather than forming a gentle curve to be held in 

proximity to the body as for control embryos, are held at right angles to the body 

with the distal half then bent back into plane with the body axis (Figure 4.11).  
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Figure 4.10 stra6.2 morphants have defects in retinal cell specification and 

lamination. 

By 4dpf, standard control embryos (A) show specification of the various cell types of 

the retina and lamination into the stereotypical layered structure of the retina. 

Standard control eyes at 2dpf (B) do not have any specification of retinal cell type or 

lamination of the retina. stra6.2 morphants at 4dpf (C-F) show a range of defects in 

lamination and retinal cell specification from full specification and lamination but the 

persistence of lens nuclei (white arrow, C), to specification and some lamination (D), 

to no lamination and some specification (E) and in some cases complete lack of 

retinal specification or lamination (F) resulting in an eye akin to a control at 2dpf 

(B). 
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Figure 4.11 stra6.2 morphants have defects in the jaw and fin cartilage. 

The jaw of standard control embryos (A-B) consists of Meckel’s (m), ceratohyalate 

(ch) and ceratobranchial (cb) cartilage elements. stra6.2 morphants (C-D) show 

defects in all of the these jaw elements. The fin (black arrow) shape is also 

malformed compared to standard control. 
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4.2.2.5 Gene expression within the zebrafish pronephros is not affected in stra6.2 

morphants. 

The zebrafish pronephros contains discrete segments, akin to the tubule segments of 

the metanephric nephrons of mammalian kidneys, which have a unique gene 

expression profile. The specification of these segments is affected by RA, such that 

RA treatment inhibits the formation of distal fates and inhibition of RA-signalling 

will rescue distal fate formation in a mutant which lacks them (Wingert 2007). The 

expression of several genes, known to be expressed in discrete regions of the 

developing pronephros were investigated in stra6.2 morphants, namely, cdh17 for 

the neck, tubule and pronephretic duct (Figure 4.12 A-B); slc12a3 for the distal late 

region (Figure 4.12 C-D); gata3 for the pronephretic duct (Figure 4.12 E-F). All 

markers stained the expected regions in standard control embryos as previously 

reported for WT and staining was also observed in stra6.2 morphants. Upon initial 

inspection, the expression domain of several of these genes appeared to be shortened. 

However, the length of the expression domain as a ratio of the embryo length was 

calculated and this revealed that no significant difference was observed between 

pronephros of control and stra6.2 morphants (slc12a3 p= 0.3440, cdh17 P= 0.1931).  

4.2.2.6 Tail bud and notochord morphology is affected in stra6.2 morphants. 

The notochord of stra6.2 morphants was observed to be undulated in its dorsal 

ventral axis. Markers for notochord were investigated in order to confirm this 

observation. ntl, the zebrafish homologue of brachyury, is expressed in the notochord 

during development. The ntl expression domain in stra6.2 morphants is increased 

compared to control morphants and the staining within the tail-bud is more intense. 

The undulation of the notochord can be visualised by the ntl expression domain and 

the notochord appears thicker in its dorsal-ventral plane (Figure 4.13 A-B). 

Notochord morphology was also investigated using the shha-GFP transgenic line. 

The undulated morphology and notochord thickening was again highlighted and the 

staining within the brain was not as intense in stra6.2 morphants compared to 

controls (Figure 4.13 C-E). Tail development in stra6.2 morphants is disrupted with 

failure of the tailbud to disengagae from the yolk extension in the early stages. 

Staining with ntla marks the tailbud and is increased in expression within the tail bud 
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compared to a standard control injected embryo. eve1 expression, a marker of 

tailbud, is more intense and observed further round the tailbud in stra6.2 morphants 

at 15hpf compared to standard control embryos (Figure 4.13 F-G).  
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Figure 4.12 Markers of the pronephros are unaffected in stra6.2 morphants. 

Standard control embryos (A,C & E) are indistinguishable from stra6.2 morphants 

(B, D & F) in respect to the expression of various markers of the pronephros 

(purple). cdh17 (A-B) is a marker for the neck, tubule and pronephretic duct (white 

arrows), slc12a3 is a marker for the distal late region (black bracket) and gata3 is a 

marker for pronephetic duct (black arrowhead). 
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Figure 4.13 Expression of marker genes for the notochord and tail are altered in 

stra6.2 morphants. 

ntla is a marker for notochord and the tailbud (black arrow) in standard control (A) 

and stra6.2 morphant embryos (B) and highlights the undulation of the notochord in 

stra6.2 morphants. The expression of ntla (purple) extends further into the notochord 

in stra6.2 morphants and stains a larger region of the tailbud. Undulation of the 

notochord is also highlighted by GFP signal (white) from the shha-GFP reporter line 

in stra6.2 morphants in both the lateral (D) and dorsal view (E) compared to standard 

control embryos (C). eve1 is a marker for the tailbud (black arrowhead) in standard 

control (F) and stra6.2 morphants (G) and the domain of expression is expanded in 

stra6.2 morphants.  
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4.2.2.7 The pancreas is correctly specified in stra6.2 morphants. 

Pancreas development in the zebrafish requires RA in order to specify pancreatic cell 

types at the end of gastrulation. Neither embryos treated with a Raldh inhibitor, 

BMS493, or neckless (nls) mutants, which harbour a mutation in raldh2, showed any 

pancreatic tissue positive for endocrine markers. Exocrine markers were also missing 

or greatly reduced (Stafford 2002). islet1 marks the pancreas in addition to regions of 

the telencephalon, pharyngeal arches and dorsal spinal chord neurons (Thisse 2005) 

and is undetected in the pancreas of the absence of raldh2 (Alexa 2009). islet1 

expression in the developing pancreas, as assayed by WISH, is unaffected by stra6.2 

knockdown and specification of the pancreas appears not to be perturbed by loss of 

stra6.2. Analysis of islet1 expression within the dorsal spinal chord neurons indicate 

that this region is also unaffected in stra6.2 morphants indicating that innervation of 

the dorsal region by the spinal chord nerves does not require stra6.2. islet1 

expression also marks several regions of the brain, namely the dorsal-rostral cluster 

of the telecephalon, ventral-rostral cluster of the diencephalon, the dorsal 

diencephalon and the epiphysis (Thisse 2005). These regions are not positive for 

islet1 in stra6.2 morphants indicating that these regions of the brain may be 

malformed or absent in stra6.2 morphants (Figure 4.14 A-B).  

4.2.3  stra6 and stra6.2 morpholinos act synergistically. 

stra6 and stra6.2 morphants share a similar phenotypic constellation and the STRA6 

and STRA6.2 proteins conserve a number of residues likely to be important for 

functionality therefore they may have similar functions and interact in development. 

In order to understand interactions between stra6.2 and stra6, the morpholinos were 

co-injected into the same embryo. stra6;stra6.2 double morphants were more 

severely affected (Figure 4.15 A) than either single morphant injected individually 

and within a group of injected embryos those exhibiting phenotype formed a larger 

proportion of the group. In addition to co-injecting at a similar dose per morpholino 

as when injected singularly, embryos were also co-injected with morpholinos which 

when injected singularly gave a low percentage of mildly affected morphants. This 

revealed an interaction between the morpholinos with the percentage of morphants in 

the co-injected group being more than additive for the single morpholino injected 
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embryo (Figure 4.15 C). The severity of these co-injected morphants was also greater 

than the phenotype of single injected embryos (Figure 4.15 B). Synergistic action of 

stra6 and stra6.2 morpholinos indicates that stra6 and stra6.2 function co-

operatively within the same pathway; in this case this is likely to be the retinoid 

pathway. The knockdown of both genes results in a knockdown of the function of the 

same pathway thereby resulting in a larger number of more severely affected 

embryos. If the genes had independent functions the number of affected embryos 

would be at maximum the total of both of the individually injected group and the 

severity of the phenotype would not be increased. Stra6.2 is therefore likely to also 

function as a retinoid transporter. 
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Figure 4.14 islet1expression is unaffected in the pancreas but highlights defects in 

the brain of stra6.2 morphants. 

islet1 is a marker for spinal chord neurons (white arrows), pancreas (black 

arrowhead) and within the brain, namely the ventral-rostral cluster (vrc), dorsal-

rostral cluster (drc), epiphysis (e) and the dorsal diencephalon (dd), in standard 

control embryos (A). stra6.2  morphants show no changes to the expression of islet1 

in the spinal neurons or the pancreas but do not show staining within the brain. 
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Figure 4.15 stra6 and stra6.2 morpholinos function synergistically. 

Co-injection of stra6 and stra6.2 morpholinos at the normal injection concentration 

results in a severely phenotypic embryo (A) with microphthalmia (white arrow) and 

brain edema (black arrowhead). Co-injection at a concentration which, when injected 

singularly gives a low degree of mild phenotype, results in a more severely affected 

morphant (B). The low percentage of mildly-phenotypic morphants in low-dose 

single morpholino injected groups can be seen in the graph (C) as stra6/SC and 

stra6.2/SC. The percentage of co-injected (stra6/stra6.2) morphants with phenotype 

is more than additive of the percentages of singularly injected morphants (P<0.0001). 

stra6/SC n=205, stra6.2/SC n= 188, stra6/stra6.2 n=247. 
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4.2.4 Reduction of Rbp4 rescues morphants. 

Previously published work on stra6 morphants revealed that reduction in Rbp4 level 

through either morpholino co-injection or chemical treatment with PTU was able to 

rescue the stra6 morphant phenotype (Isken 2008). The stra6 morphant phenotype 

was hypothesised to be  caused by a nonspecific vitamin A excess within the embryo,  

provoked by holo-Rbp4 (Isken 2008). Reduction of Rbp4 level within stra6.2 

morphants using both an rbp4 morpholino co-injected and the drug PTU was able to 

rescue 52% and 42% of morphants respectively and resulted in a significant increase 

in the percentage of normal embryos (Figure 4.16). PTU was also able to rescue 

stra6; stra6.2 double morphants and decreased the percentage of phenotypic 

embryos (Figure 4.16).  

4.2.5 Increase in RA-responsive gene expression in morphants compared to 

controls. 

stra6 morphants have an increase in the expression of the RA-inducible cyp26a1 

(Isken 2008). The indication that stra6.2 may have a similar function to stra6 within 

the retinoid pathway led to the investigation of the possible changes in retinoid 

signalling in stra6.2 and stra6; stra6.2 double morphants.  

4.2.5.1 cyp26a1 expression is increased in morphants compared to controls. 

cyp26a1 expression is regulated by RA through two RAREs within 2.5kb of the 

promoter (Hu 2008). WISH for cyp26a1 in stra6, stra6.2 and stra6; stra6.2 

morphants revealed an up-regulation in gene expression in stra6, stra6.2 and stra6; 

stra6.2 morphants compared to control morphants. The upregulation of cyp26a1 in 

stra6 morphants was previously reported (Isken 2008) and the current study 

replicated those results showing an increase in the length of the expression domain 

within the posterior notochord (Figure 4.17 A-B). The upregulation of cyp26a1 in 

stra6.2 morphants (Figure 4.17 C) was greater than in stra6 morphants (Figure 4.17 

B) with a larger expansion in the posterior notochord and an increase in the intensity 

of expression within the tailbud. stra6; stra6.2 morphants have a generalised increase 

in cyp26a1 expression across the embryo and the intensity of the normal expression 

domains is again increased (Figure 4.17 D) compared to stra6.2 morphants.  
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Figure 4.16 Reduction of Rbp4 level rescues stra6.2 and stra6; stra6.2 double 

morphants. 

The percentage of embryos with phenotype from a stra6.2 (stra6.2) or stra6; stra6.2 

(stra6 & stra6.2, P<0.0001) co-injected group is shown. When treated with PTU 

(+PTU, P<0.0001) or co-injected with rbp4 morpholino (& rbp4, P<0.0001) this 

reduced the percentage of phenotypic embryos within the injected group. Error bars 

represent ±S.E.M. Asterisk highlight significant rescue of phenotypic embryos. 

stra6.2 n=79, stra6.2 + PTU n=68, stra6.2 & SC n= 92, stra6.2 & rbp4 n= 101, stra6 

& stra6.2 n=69, stra6 & stra6.2 +PTU n=60. 
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Figure 4.17 stra6.2 morphants have excessive RA signalling.  

Expression of the RA responsive genes cyp26a1 (A-D), shha (E) and raraa (F) were 

analysed.  In situ hybridisation analysis of cyp26a1 expression (purple) in 30hpf 

flatmounted embryos was analysed in control injected (A), stra6 morphant (B), 

stra6.2 morphant (C) and the double stra6/stra6.2 morphant (D). The yolk in A-D 

appears dark as embryos are flatmounted and illuminated from below. qRT-PCR for 

shha (E) and raraa (F) expression levels is shown (standard control (SC), stra6 (S6), 

stra6.2 (S6.2)  and double morphant (S6/62) embryos).  Error bars show ±SEM. 
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4.2.5.2 shha and raraa expression is increased in stra6.2 and double morphants. 

In order to gain a quantitative measure of the RA-responsive gene upregulation and 

to understand if this observation was applicable to other RA-responsive genes, qRT-

PCR for the mRNA levels of raraa and shha was performed. shha (Figure 4.17 E) 

(Chang 1997) and raraa (Figure 4.17 F) (Wentworth 1999) both contain RAREs 

upstream of their promoters and are responsive to RA in vivo. Both genes showed 

upregulation in both stra6.2 and stra6; stra6.2 morphants compared to control 

morphants. The level of the housekeeping gene, beta-actin, was used as a standard. 

stra6 morphants do not show a significant increase in the expression of either of 

these genes compared to control embryos.  

4.2.6 raldh2 expression is increased in the eye of stra6.2 morphants. 

raldh2 expression was assessed in order to investigate if stra6.2 may be involved in 

the regulation of expression of raldh2. Expression of raldh2 at 24hpf in stra6.2 

morphants is similar to that in standard control embryos being observed in the 

temporal retina of the developing eye and within the somites (Figure 4.18 A-B). 

However, raldh2 expression within the dorsal portion of the eye at 48hpf is expanded 

in stra6.2 morphants both within the dorsal-ventral and anterior-posterior axis. The 

intensity of the staining also seems increased in this region bordering the lens (Figure 

4.18 C-D). raldh2 expression within the 48hpf eye is affected in stra6.2 morphants 

indicating that stra6.2 either directly regulates raldh2 expression or the perturbations 

in RA-signalling in stra6.2 morphants affect the expression of raldh2 within the eye. 

4.2.7 Inhibition of RA synthesis rescues stra6.2 morphants. 

In order to investigate the mechanism behind the upregulation of RA-responsive 

gene expression in stra6.2 morphants, Raldh-dependent RA synthesis was inhibited 

using DEAB (Begemann 2004). Treatment of stra6.2 morphants with DEAB from 

the end of gastrulation until analysis at 48hpf rescued a significant number of 

morphants increasing the percentage of normal embryos (Figure 4.19).  
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Figure 4.18 raldh2 domain is expanded within the eye at 48hpf but not at 24hpf. 

raldh2 expression (purple) was analysed by WISH at 24hpf (A-B) and in the eye at 

48hpf (C-D). Expression levels and domains, namely the eye (black arrow) and the 

somites, were identical between standard control (A) and stra6.2 morphants (B) at 

24hpf. raldh2 marks the dorsal retina (white arrowhead) of the eye at 48hpf in 

standard control embryos (C) but this domain of expression is expanded in both the 

dorsal-ventral and anterior-posterior axis in stra6.2  morphants (D). 
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Figure 4.19 Inhibition of Raldh enzymes rescues stra6.2 morphants. 

stra6.2 morphants treated with the Raldh-inhibitor DEAB decreases the percentage 

of phenotypic embryos compared to stra6.2 moprhants treated with only the solvent, 

DMSO. P<0.0001, Chi-square test. +DMSO n=282, +DEAB n=224. 
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4.3 Discussion  

Stra6-like homologues are represented through evolution, from the simple 

eumetazoan Trichoplax, and are likely to have an ancient origin previous to the 

cnidarians and the bilaterians. The presence of a Stra6-like homologue in Trichoplax, 

in addition to homologues of other members of the retinoid pathway; Rdh, Raldh and 

RXR, indicate an ancient requirement for retinoid signalling in even morphologically 

simple organisms. The requirement for a functional retinoid signalling is not 

universal, with Drosophila and C.elegans both lacking any Stra6-like homologues 

and most of the components of the retinoid signalling pathway. Drosophila, 

however, require retinoids only for the visual cycle (Giovannucci 1999) with the 

developmental function of the retinoids replaced by edycosone (Garen 1977; Hall 

1998). The lack of Stra6-like homologues in these species is, therefore, unsurprising 

as the retinoid signalling pathway is replaced with an alternative, which does not 

require the regulated provision of retinoids.  

 

The appearance of two Stra6-like genes in vertebrates appears to have occurred early 

in their evolutionary history and may have occurred during the duplication events 

proposed to pre-date the fish-tetrapod split. The known duplication and divergence of 

many genes in the basal vertebrate (Dehal 2005) indicate that Stra6 could possibly 

have originated from the duplication and divergence of Stra6.2. The vertebrate 

genome-norm for a single copy of both Stra6 and Stra6.2 is broken in the bird 

lineage and in the great apes, including humans. The bird lineage have only a copy of 

Stra6 and no remnant of Stra6.2 and in the great apes, Stra6.2 has become split 

across the chromosome with only part of the gene still actively transcribed. The loss 

of Stra6.2 in birds and great apes may be tolerated due to functional redundancy 

between Stra6 and Stra6.2, a common feature of genes within the retinoid pathway. 

Differences in retinoid metabolism or signalling between species with and without an 

intact Stra6.2 are also a possible explanation for the tolerated loss of this gene. 

Dietary provision of retinoids may also account for the loss of Stra6.2; however, it is 

difficult to identify the dietary differences which would allow tolerance of Stra6.2 

loss.  
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Stra6.2 was identified as a paralogue of Stra6, however, the conservation of the 

proposed RBP4 binding site was low with only one of the three residues required 

conserved. The proposed site was identified by mutational analysis of STRA6 and 

changes to these residues individually resulted in a dramatic reduction in intracellular 

retinol accumulation. However, a human polymorphism within this domain, which in 

vitro abolishes transport function, was found within the general population. There is 

no evidence that those people with this polymorphism had any gross developmental 

defects or overt retinoid deficiencies postnatally. Co-injection of stra6 and stra6.2 

morpholinos into zebrafish embryos indicates that stra6 and stra6.2 interact 

synergistically and are likely to function in the same pathway. Furthermore, 

reduction of Rbp4 level in stra6.2 morphants rescues their phenotype as has been 

previously shown for stra6 morphants (Isken 2008). These observations lead to the 

conclusion that STRA6.2 is also likely to function as a RBP4-dependent retinoid 

transporter. The lack of conservation of the RBP4 binding domain in STRA6.2, 

however, makes it likely that either STRA6.2 has an RBP4 binding site made up of 

alternative amino acids or binds RBP4 through an alternative protein interaction 

mechanism. STRA6.2 may also function to transport retinol, although RBP4 is 

known to be promiscuous in its retinoid binding potential making it possible that it 

may function to transport other retinoids bound to RBP4.  

Morpholino knockdown of stra6.2 results in defects affecting the eye, notochord, 

somites, jaw and fin. A transgenic zebrafish reporter line, which links three copies of 

the RARE from mouse RARβ to GFP or YFP, highlights regions of the embryo in 

which RA signalling is active. Fluorescence is detected in the neural tube, notochord, 

somites, retina, pronephric duct, heart, branchial arches and forebrain indicating that 

these areas of the embryo have active retinoic acid signalling. Upon treatment with 

RA, more regions of the embryo become fluorescent including the fin and the 

fluorescence within the retina becomes more extensive. These regions of RA 

signalling significantly overlap with the defects observed in stra6.2 morphants. 

stra6.2 morphants are likely to have an increase in RA levels within the embryo due 

to an increase in RA synthesis. Regions, which normally have active RA signalling, 

contain the necessary components for RA synthesis. These regions are therefore 

likely to be more sensitive to excessively synthesising RA, due to the ready 
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availability of RA pathway enzymes, thereby resulting in the stra6.2 morphant 

phenotype preferentially affecting these regions.  

 

stra6.2 morphants are microphthalmic and, in addition, also have defects in 

lamination which are observed from 3dpf with no lamination or cellular specification 

observed in morphant retina. This progresses to a variable degree of lamination and 

cellular specification in the retina by 4dpf. The phenotype has some morphological 

overlap with young mutants who show no lamination of the retina due to a non-cell 

autonomous defect in differentiation, but not molecular specification, of the retinal 

cell types (Link 2000). The young mutant harbours a mutation in brahma related 

gene 1, brg1, a member of the chromatin remodelling complex SWI/SNF (Gregg 

2003). Brg1 is known to function as transcriptional co-activators with retinoic acid 

receptors (Chiba 1994) and conversely also form part of the nuclear receptor 

corepressor complex, NCoR (Underhill 2000). stra6.2 morphant eye defects may be 

the result of changes in RAR/RXR-dependent RA signalling causing a defect in the 

differentiation of some retinal cell types.  

 

Development of the jaw in stra6.2 morphants is severely affected with all the major 

cartilage elements showing some degree of aberration from the WT norm. The jaw 

cartilages develop from cranial neural crest cells which migrate into the visceral arch 

primordial, namely the mandibular arch, hyoid arch and branchial arches. Each arch 

forms a defined set of cartilage elements which make up the jaw. The mandibular 

arch forms the palatoquadrate and Meckel’s cartilages. The hyoid arch forms the 

ceratohyal, basihyal and hyosymplectic cartilages. The branchial arch forms the 

ceratobranchial and basibranchial cartilages (Ellies 1997). Retinoic acid treatment of 

zebrafish embryos is known to disrupt jaw cartilage development; with Meckel’s 

cartilage positioned behind the eyes, the ceratohyals flattened and the 

ceratobranchials malformed and reduced in number. The jaw defects seen in stra6.2 

morphants significantly overlap with the defects observed in retinoic acid treated 

embryos (Alexandre 1996). Retinoic acid treatment is known to reduce the 

expression of dlx genes in cranial neural crest (Ellies 1997), where they are required 

to specify jaw cartilage elements (Depew 2002). Several dlx genes in zebrafish have 
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possible RAREs within their regulatory regions. Retinoic acid treatment is also 

known to cause ectopic accumulation of hoxa1 in the head region and injection of 

hoxa1 RNA into zebrafish embryos results in similar jaw cartilage defects as 

treatment with RA (Alexandre 1996). stra6.2 morphants may therefore accumulate 

excess RA, which affects the expression of genes required for jaw specification, 

resulting in the developmental jaw defects observed.  

 

Notochord and tail morphology are disrupted in stra6.2 morphants and this is 

consistent with the expression of stra6.2 in these tissues at various developmental 

stages. The notochord is undulated in respect to the dorsal ventral axis and this, along 

with the increase in head-tail distance and shorter embryos, indicates a defect in body 

axis elongation. The notochord, in addition to being undulated, also appears thicker 

which is a feature observed in body axis elongation-defective morphants, such as 

frizzled-2 (Sumanas 2001). Tail morphology is also disrupted at 18hpf when the 

tailbud fails to disengage from the yolk extension. The tailbud marker eve1 is 

upregulated along with an increase in the expression of ntla. eve1 is known to be 

positively regulated by ntla (Joly 1993) and it is therefore likely that the excess ntla 

expression increases eve1 expression within the tailbud. eve1 expression within the 

tailbud reduced with age and it is therefore possible the tailbud remains immature for 

longer due to the increase in eve1 expression.  

 

The expression pattern of stra6.2 at 24hpf, restricted only to the anterior of the 

embryo within the eye, brain and endoderm above the yolk, is broadly similar to that 

of lrat and significantly different to raldh2. Lrat is required to esterify retinol for 

storage as retinyl esters and Raldh2 to convert retinol to form retinal in the synthetic 

pathway to retinoic acid. stra6.2 and lrat morphants are morphologically similar with 

a wavy notochord, defects in the eye and flattening of the somites observed in both 

(Isken 2007). The overlap between the expression pattern and morphant phenotype 

of stra6.2 and lrat indicates that stra6.2 may be required to direct retinoids to the 

storage pathway instead of retinoic acid synthesis. The upregulation of RA-

dependent gene expression and the rescue of the stra6.2 morphant phenotype with 

the Raldh-inhibitor DEAB add further weight to this conclusion. It can therefore be 
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postulated that in the absence of stra6.2, retinoids are no longer directed to the 

storage pathway but instead become metabolised to form RA which changes the 

levels of RA-responsive genes thereby resulting in the morphant phenotype 

observed. stra6.2 is therefore likely to function to regulate the retinoid pathway 

through storage of retinoids in order to regulate intracellular free retinoid levels to 

prevent excess synthesis of RA.   
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4.4 Further work 

 

In order to truly define the role of Stra6.2, a cellular based investigation of its 

function is required. The function of STRA6 has previously been defined by 

transfecting Stra6 into COS cells, in addition to Lrat in order to ‘trap’ the transported 

retinoids intracellularly in a measurable form. The cells are then treated with RBP4-

bound retinoids, in the case of STRA6 – retinol, for a defined period and the cells 

were then washed to remove any retinoids associated with the extracellular surface. 

The cells were lysed and the retinoid profile of the contents analysed by HPLC. 

Transfection with Stra6 and Lrat results in an accumulation of retinyl esters 

compared to un-transfected cells (Kawaguchi 2007; Kawaguchi 2008). Lrat is 

required for significant accumulation of retinoids by STRA6 due to the newly 

proposed mechanism for STRA6 action. This mechanism proposes that any 

transported retinol will be re-loaded onto RBP4 if the retinol is not met by LRAT or 

CRBP, in order to regulate the level of free retinol within the cell (Kawaguchi 2011). 

Defining the retinoid transport potential of STRA6.2 would require transfection of 

Stra6.2 alone and in conjunction with other genes, such as Lrat, Crbp and Crabp, to 

process the transported retinoids into cells. Unbound and RBP4-bound retinol, retinal 

and retinoic acid need to be applied to these transfected cells in order to define the 

preferred transport ligand of STRA6.2. The retinoid-treated transfected cells, after 

washing to remove extracelluarly associated retinoids, would then be analysed by 

HPLC in order to detect any changes to the retinoid profile compared to un-

transfected cells. Hopefully this methodology would successfully identify the 

transport actions of STRA6.2. 

 

The role of STRA6 in signalling through the JAK-STAT pathway in an RBP4-retinol 

dependent manner has been recently defined (Berry 2011). The YTLL domain within 

the C-terminal tail of STRA6 become phosphorylated in response to RBP-bound 

retinol and in turn recruits STAT5 and JAK2. The association between these proteins 

phosphorylates STAT5 allowing its translocation to the nucleus and activation of the 

transcription of STAT5 dependent gene expression (Berry 2011). The conservation 

of part of this YTLL phosphorylation domain in STRA6.2 indicates that STRA6.2 
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may also act as part of the JAK/STAT signalling pathway. Upon identification of the 

preferred transport ligand of STRA6.2, the level of tyrosine phosphorylation within 

STRA6.2 could be measured upon exposure to the transportable retinoid. The 

activation of known STAT5 target genes, such as SOCS3 and PPARƴ, or a STAT5-

activated luciferase reporter could also be quantified in the presence of the preferred 

transportable retinoid. Microarray analysis between retinoid treated and un-treated 

cells may also help define possible signalling pathways activated. 

 

The phenotypes observed in stra6.2 morphants are unlikely to be the result of off-

target effects of morpholinos due to the rescue of the phenotype by both co-injection 

with a rbp4 morpholino and chemical reduction of Rbp level with PTU. The 

morpholinos also result in intron-inculsion and exon-skipping within the target 

transcript, as shown in figure 4.6. However, the level of wild-type transcript 

observed by this method does not seem to be reduced despite the appearance of the 

additional bands indicative of changes to the transcript produced. This is possible due 

to saturation of the PCR reaction which does not allow the reduction in wild-type 

transcript to be observed and therefore qRT-PCR may be an appropriate method in 

order to investigate and quantify any reduction in wild-type transcript level. The use 

of primers specific to the ‘skipped’ exon would allow quantification of any reduction 

in morphant compare to wild-type embryos. In order to quantify intron-inclusion, 

primers directed towards the intron would be used, in conjunction with no-RT 

controls in order to distinguish any genomic contamination from the presence of 

intronic sequences within the mRNA transcripts.  
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In search of a mouse model of Matthew-Wood 

syndrome.
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5.0 Introduction 

Matthew-Wood syndrome results from homozygous and compound heterozygous 

mutations in STRA6, however, Stra6-/- mice do not represent a model of Matthew-

Wood syndrome. This disparity between the phenotype of Matthew-Wood patients 

and Stra6-/- mice could be due to the presence of second gene in mice compared to 

humans, Stra6.2. Investigations in the previous chapter highlight a developmental 

role for stra6.2 in zebrafish development and therefore Stra6.2-/- mice or loss of both 

Stra6 and Stra6.2 in mice may result in a similar genetic and phenotypic situation to 

that of human Matthew-Wood patients. 

5.1 Stra6.2 knockout-first mice 

KOMP knockout-first ES-cells were obtained in order to create Stra6.2-/- animals. 

The Stra6.2 locus has been manipulated in order to maintain all of the coding 

material but has been altered to include a lacZ insertion followed by a strong stop 

codon in order to tag expression of the Stra6.2 gene. This construct also introduces 

loxP sites surrounding one exon allowing, after removal of the lacZ by the integrated 

Flp sites, the creation of a conditional allele for further investigation of the function 

of Stra6.2 (Figure 5.1). The position of the construct was confirmed with long-range 

PCR between construct and gene specific primers.  
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Figure 5.1: Diagram of the Stra6.2 knockout-first allele within the Stra6.2 gene. 

The knockout first construct is located within intron 6-7 and consists of a promoter 

driven lacZ gene (lacZ, blue rectangle) with a strong stop (pA, white rectangle) and a 

neomycin-resistance gene (neo, turquoise rectangle) to enable cell selection. The 

construct also surrounds exon-7 with loxP sites (red triangles) in order to create a 

cre-sensitive conditional allele after removal of the expression tagging and selection 

cassette through activation of the FRT sites (green triangles). The position of the 

vector within the genome was confirmed via long range PCR with a primer pair 

directed to regions in- and outside the targeting construct (blue arrows). The targeted 

locus is genotyped using primers directed to the inserted lacZ gene (green arrows). 

The wildtype locus is genotyped using a pair of primers in which the forward 

sequence is present in both the wildtype and targeted loci with a reverse primer 

located in a small portion of sequence lost during the targeting event (red arrows).  
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5.2 Stra6.2 is expressed during mouse development. 

Expression of Stra6.2 in the developing embryo was investigated by staining for β-

galactosidase function of the integrated lacZ construct within the Stra6.2 gene. The 

expression of Stra6.2 was investigated through the expression of the integrated lacZ 

construct due to the failure of whole mount in situ hybridisation (WISH) to identify a 

specific expression pattern in embryos between E9.5-E12.5.  

Expression of Stra6.2 via the activity of the integrated lacZ construct could not be 

detected until E9.5 with no expression observed at E7.5. Embryos at E7.5 showed no 

blue staining in either the embryonic or extra-embryonic compartment (Figure 5.2 A 

& B) despite additional staining time compared to other stages. The small size and 

tissue volume of E7.5 embryos may make visualising the stain difficult and therefore 

these stages may express Stra6.2 at low levels undetectable under this protocol.  

Expression at E9.5 is restricted only to the tail region of the embryo (Figure 5.2 A, 

Figure 5.3 A) within the open neural tube mesenchyme and the epithelial edge 

adjacent to this (Figure 5.3 B). Expression also extends further into the neural tube 

restricted only to the internal edge of the epithelium (Figure 5.2 D, Figure 5.3 B). 

Stra6.2 expression is also restricted to the tail region later in development (Figure 5.2 

E, F & J). Expression within the tail region at E10.5 is restricted to the circular tail-

bud (Figure 5.2 E) and into the posterior neural tube (Figure 5.3 C). Neural tube 

expression is found only within the ventral portion close to the edge (Figure 5.3 D). 

In addition to the consistent expression within the tail (Figure 5.2 F, H & I), 

expression is also observed within the somites posterior to the hind-limb bud at 

E11.5 (Figure 5.2 G). Somite expression at E11.5 is restricted mainly to the ventral 

edge only, although at E12.5 expression is observed punctately throughout the somite 

(Figure 5.2 K). Expression in addition to being observed within the neural tube 

(Figure 5.2 J) and tail-bud (Figure 5.2 L) is also noted within the umbilicus (Figure 

5.2 M).  
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Figure 5.2: Stra6.2 is expressed during embryonic development from E9.5. 

Expression of Stra6.2 marked by staining for the activity of the lacZ marker 

integrated into the Stra6.2 locus. Expression could not be observed at E7.5 in either 

early (A) or late streak (B) embryos. Stra6.2 expression (blue) was restricted to the 

tail region (black arrowhead) of the embryo at E9.5 (C). The expression within the 

tail was restricted to the open neural tube of the posterior region of the embryo (D). 

At E10.5, expression is also restricted to the tail region (E) specifically the tail bud 

(black arrowhead) and this is consistent at E11.5 (F). The ventral edge of the somite 

(G, black arrows), the tailbud(H) and neural tube (I). Expression is broadly similar at 

E12.5 (J) and is observed throughout the somites (K) and the tailbud (black 

arrowhead, L). In addition expression is also observed in the umbilicus (M). 
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Figure 5.3: Histological sections reveal specific regions of Stra6.2 expression. 

Sagittal sections of embryos have been counterstained with nuclear fast red (pink) 

after β-gal staining for Stra6.2 expression (blue). At E9.5, expression is found only 

in the tail region (black arrowhead, A) within the mesenchyme of the open neural 

tube of the tail and along the epithelial edge of this region (B). Expression at E10.5 is 

also observed further into the neural tube (black arrow, C) and is restricted to a 

subset of cells on the ventral border (D). 
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5.2.1 Stra6.2-/- animals are not a model of Matthew-Wood syndrome. 

Stra6.2 knockout mice have no gross developmental defects. Stra6.2 knockout mice 

were indistinguishable for their heterozygous and wildtype littermates when viewed 

in the cage. Stra6.2 knockout animals also have normal eye size and appearance 

compared to their littermates in the cage. Stra6.2-/- animals did not have an increased 

mortality rate compared to heterozygous and wild type littermate. Stra6.2 is a 

paralogue of Stra6 and mutations in STRA6 in humans result in Matthew-Wood 

syndrome. Stra6-/- mice do not represent a model of Matthew-Wood syndrome 

showing no detectable defects in the heart, lungs, eyes or the diaphragm (See Chapter 

3). Stra6.2 knockout mice, also, do not represent a model of Matthew-Wood 

syndrome with no reduction in eye size or increase in mortality. 

Stra6.2-/- animals were observed in the expected ratio when routinely genotyped at 

2-3 weeks of age indicating that Stra6.2 is not required for survival through the 

embryonic or neonatal period (Table 5.1). Depression of the number of homozygotes 

would be expected if Stra6.2 affected the survival threshold. 

5.2.2 Stra6.2-/- animals have normal visual function and acuity. 

Stra6.2 knockout animals had normal sized eyes with eye shape and position 

indistinguishable from littermates. Vision was tested using a moving grating in a 

visual testing drum and head tracking was monitored in response to this. The vision 

of Stra6.2 knockout animals was normal with head tracking observed in response to 

moving grating at both 4° and 2° indicating visual acuity was normal (Table 5.2) and 

comparable to wildtype animals. 
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Table 5.1: Stra6.2-/- are observed at the expected genetic ratio. 

No significant difference in the number of Stra6.2+/+, Stra6.2+/- and Stra6.2-/- 

animals between the expected and observed values was seen. P=0.4453, Chi-square 

test. 

 

 

 

Table 5.2: Stra6.2+/- and Stra6.2-/- animals demonstrate a normal visual response. 

Stra6.2+/- and Stra6.2-/- animals showing normal head tracking (response) to both 

4° and 2° grating. No animals failed to head track (no response).  
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5.3 Stra6.2 diet study 

Stra6.2 knockout animals have no developmental or postnatal phenotypes. Stra6 

knockout animals also have no developmental defects under normal dietary 

conditions, but when Stra6-/- dams are fed a retinoid-free diet during pregnancy the 

Stra6-/- offspring are microphthalmic and have defects in the retina, lens and 

vasculature of the eye (See Chapter 3). Stra6.2 dams were therefore transferred to a 

retinoid-free diet during pregnancy in order to understand the contribution of diet to 

the requirement for Stra6.2. Stra6.2-/- females were mated to Stra6+/- males in order 

to produce litters with a mixture of homozygous experimental (Stra6.2-/-
E0.5-Birth) 

and 

heterozygous (Stra6.2+/-
E0.5-Birth) 

control animals. Dams were transferred to the 

retinoid-free diet from plug discovery, at approximately E0.5, till birth of the pups.  

5.3.1 Stra6.2-/-
 
diet study animals 

 
are also not a model of Matthew-Wood 

syndrome. 

Stra6.2 knockout mice have no gross developmental phenotypes and do not represent 

the multisystem developmental disorder Matthew-Wood syndrome. Stra6.2-/- 

animals born to dams fed a retinoid-free diet from plug discovery to birth did not 

represent an animal model of the human condition with no discernable 

developmental defects of the eyes, heart, lung or diaphragm.  

Stra6.2-/-
 E0.5-Birth

 animals have normal eye morphology when viewed in the cage and 

upon weighing of the eyes were found not to differ substantially in weight compared 

to other animals from dams maintained on a retinoid-free diet for the same 

gestational period (Table 5.4). Histological sections were taken through the eye of 

Stra6.2-/-
E0.5-Birth

 and eye morphology was normal with no defects of the lens, cornea 

(Figure 5.4 A) or retina (Figure 5.4 B). Stra6.2 is therefore not required, even under 

conditions of low-retinoid stress, for the development or maintenance of the eye. 

Heart defects are commonly observed in Matthew-Wood patients and form part of 

the constellation of symptoms diagnostic for the condition. Stra6.2-/-
 E0.5-Birth

 animals 

were active in the cage. No gross defects in heart morphology were observed (Figure 

5.4 C) and upon histological analysis normal ventricular walls and intact ventricular 

septum were noted (Figure 5.4 D).  
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Stra6.2-/-
 E0.5-Birth

 animals did not experience respiratory distress at birth indicating 

that the severe lung hypoplasia associated with Matthew-Wood syndrome are not 

replicated in Stra6.2-/-
 E0.5-Birth

 animals. Normal lung morphology, with the expected 

number of lobes noted appropriate for laterality, was found upon pathological 

analysis of Stra6.2-/-
 E0.5-Birth

 animals (Figure 5.4 E). Histological sectioning of adult 

lungs from Stra6.2-/-
 E0.5-Birth

 animals showed no major defects in alveoli size or 

shape (Figure 5.4 F).  

Pathological investigation of Stra6.2-/-
E0.5-Birth

 animals did not find any signs of 

diaphragmatic hernia, another defining morphological finding of Matthew-Wood 

syndrome. The diaphragm was intact with no signs of eventration of the liver or any 

other thoracic organs.  

Stra6.2-/- offspring of Stra6.2-/- dams fed a retinoid-free diet were found in the 

expected ratio (Table 5.3). Although the numbers are still low, the requirement for 

Stra6.2 is therefore likely to not be dependent on dietary retinoid supply.  

5.3.2 Stra6.2-/- diet study animals have normal visual function and acuity. 

Stra6.2-/-
E0.5-Birth

 animals showed no reduction in eye size nor were any 

morphological defects observed upon histological sectioning. Consistent with this 

observation no defects in vision were noted in Stra6.2-/-
 E0.5-Birth

 animals when tested 

for a head-tracking response to a moving grating. Stra6.2-/-
 E0.5-Birth

 animals 

responded to both 4° and 2° grating indicating no defects in vision or visual acuity 

are detectable in these animals (Table 5.4).  
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Table 5.3: Stra6.2-/- animals born to dams under dietary retinoid stress are observed 

at the expected genetic ratio. 

No significant difference in the number of Stra6.2+/- and Stra6.2-/- animals between 

the expected and observed values was seen. P= 0.4142, Chi-square test. 

 

 

Table 5.4: Stra6.2-/-
E0.5-Birth 

animals demonstrate a normal visual response. 

Stra6.2-/- 
E0.5-Birth 

animals showing normal head tracking (response) to both 4° and 2° 

grating. No animals failed to head track (no response).  
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Figure 5.4: Stra6.2-/- animals show none of the defects associated with Matthew-

Wood syndrome. 

Eye morphology is normal in Stra6.2-/- animals (A) with lens, cornea and retina 

intact and correctly arranged. The retina is made up of the expected layers (B); 

namely the ganglion cell layer (GCL), inner plexiform layer (IPL), Inner nuclear 

layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), photoreceptor 

layer (PRL) and retinal pigmented epithelium (RPE). The heart of Stra6.2-/-
 E0.5-Birth 

is morphologically normal (C). Histological sections through the ventricular region 

of the heart show normal thickness of both the right- (RV) or left ventricle (LV)with 

no sign of ventricular septal defects (D). Gross morphology of the lung is normal 

with the expected lobes observed (E) and histological sections of the lung show 

normal alveoli size or shape (F). 
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5.4 Stra6; Stra6.2: the key to a mouse model of Matthew-Wood syndrome? 

Stra6 and Stra6.2 appear, in mouse, to be functionally redundant and able to 

compensate for each other’s function, such that individual knockouts for either gene 

are unable to recapitulate Matthew-Wood syndrome. Matthew-Wood syndrome is 

caused, in humans, by mutations within STRA6, however loss STRA6.2 gene function 

in humans may account for the differences between mouse and human in 

developmental phenotype. In order to create a possible mouse model for Matthew-

Wood syndrome, Stra6 and Stra6.2 knockout animals were bred together in order to 

produce Stra6+/-; Stra6.2-/-, Stra6-/-; Stra6.2+/- and Stra6-/-; Stra6.2-/- animals as 

possible models. 

5.4.1 Stra6+/-; Stra6.2-/- do not represent a model of Matthew-Wood syndrome. 

Stra6+/-; Stra6.2-/- animals are viable and fertile. Eye size is normal with no 

discernable difference in size of shape of the eye when viewed in the cage. These 

animals were found in excess of the expected genetic ratio with no suppression of 

this genotype in multiple litters (Table 5.5). Visual testing of the animals with the 

head tracking response to moving grating highlighted no visual defects or reduction 

in visual acuity (Table 5.6). Stra6+/-; Stra6.2-/- animals therefore do not represent a 

model for Matthew-Wood syndrome. The viability, normal vision and fertility of 

these animals indicate that a single copy of Stra6 is sufficient to support embryonic 

development and maintenance of the retinoid-dependent visual and reproductive 

systems.  
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Table 5.5: Stra6+/-;Stra6.2-/-, Stra6-/-;Stra6.2+/- and Stra6-/-;Stra6.2-/- are not 

observed in the expected genetic ratio. 

A significant increase in the number of Stra6+/-;Stra6.2-/- animals observed was 

noted compared to a loss of all Stra6-/-;Stra6.2-/- and a slight reduction in the 

number of Stra6-/-;Stra6.2+/- animals compared to the expected values predicted 

(P<0.0001, Chi-square test). 

 

 

 

Table 5.6: Stra6+/-;Stra6.2-/- and Stra6-/-;Stra6.2+/- animals demonstrate a normal 

visual response. 

Stra6.2-/- 
E0.5-Birth 

animals showing normal head tracking (response) to both 4° and 2° 

grating. No animals failed to head track (no response).  
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5.4.2 A single copy of Stra6.2 is able to support normal development and 

postnatal survival in some cases. 

Stra6-/-; Stra6.2+/- animals are variable in their phenotype and survival. Stra6-/-; 

Stra6.2+/- animals are observed less than expected at 2-3 weeks (Table 5.5) and 

appear to have a higher mortality rate with 2 of 4 Stra6-/-;Stra6.2+/- animals lost 

around weaning. One such animal which died around the time of weaning was found 

to have fused eyelids (Figure 5.5 A), however, ocular tissue was noted within the 

orbits and histological sections of this tissue showed mass disorganisation of the 

retina but a reasonably well developed lens bilaterally (Figure 5.5 B & C). Those 

Stra6-/-;Stra6.2+/- animals which died at weaning were runted compared to 

littermates, however a surviving Stra6-/-; Stra6.2+/- animals also appeared runted at 

weaning (1/2). In this Stra6-/-; Stra6.2+/-animal, eye size was reduced when 

compared to Stra6+/-; Stra6.2-/- littermates. One Stra6-/-; Stra6.2+/- animal was, 

however, normal and indistinguishable from littermates in terms of body and eye 

size.  

Despite the small eye size observed in 1 of the 2 surviving Stra6-/-; Stra6.2+/- 

animals, visual function is normal with a normal head tracking response to moving 

grating (Table 5.6) in both surviving animals.  Initial experiments suggest that both 

male and female Stra6-/-; Stra6.2+/- animals are fertile and able to produce viable 

pups when bred to C57Bl6 animals. A single copy of Stra6.2 is therefore sufficient 

for survival and will support normal development in some animals, but in others 

development appears to fail or is affected. Stra6.2 appears to be stochastically 

sufficient for normal development in some animals but not all and is therefore likely 

to have a lower functional capacity than Stra6. 
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Figure 5.5: Stra6-/-;Stra6.2+/- animal died around weaning with fused eyelids and 

under-developed eyes. 

A Stra6-/-;Stra6.2+/- animal died around weaning with fused eyelids (white 

arrowhead, A). Histological sectioning of the small volume of eye tissue present 

within the orbits upon dissection revealed mass disorganisation of the retinal tissue 

but relatively normal lens morphology (B & C).  
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5.4.3 Stra6-/-; Stra6.2-/-: a model for Matthew-Woods? 

Stra6-/-; Stra6.2-/- pups were not observed in any litters born to either Stra6+/-; 

Stra6.2-/- or Stra6+/-; Stra6.2+/- dams indicating that regardless of maternal 

genotype Stra6-/-; Stra6.2-/- pups are not viable postnatally. No Stra6-/-; Stra6.2-/- 

pups were observed for all matings compared to the expected 11.68 Stra6-/-; Stra6.2-

/- pups which should be observed in accordance with expected genetic ratios 

calculated from parental genotype. 

Plugs from were taken from Stra6+/-; Stra6.2-/- or Stra6+/-; Stra6.2+/- dams at 

various embryonic stages in order to investigate the loss of Stra6-/-; Stra6.2-/- 

embryos during gestation. At E7.5, the expected number of Stra6-/-; Stra6.2-/- 

embryos was observed in a single plug from a Stra6-/-; Stra6.2-/- dam (Table 5.7, 

Figure 5.7 A). The Stra6-/-; Stra6.2-/- embryos appeared morphologically normal 

with development of the ectoderm appearing normal within the embryo and no gross 

morphological differences observed between Stra6+/-; Stra6.2-/- (Figure 5.6 A) and 

Stra6-/-; Stra6.2-/-embryos (Figure 5.6 B). Sections of the embryos were not taken in 

this initial investigation as the whole  embryo (with any extra-embryonic tissue 

removed) was used for DNA extraction for genotyping to ensure an accurate 

assessment of Stra6-/-; Stra6.2-/- embryo survival. 

Stra6-/-; Stra6.2-/- embryos were not observed in their expected ratio at E8.5 from 

plugs from either Stra6 +/-; Stra6.2-/- or Stra6+/-; Stra6.2+/- dams (Table 5.8). An 

individual Stra6-/-; Stra6.2-/- embryo was also observed at E8.5 (Figure 5.6 E) and 

the development of this embryo appeared consistent with the development of other 

E8.5 embryos from the same litter with no gross morphological defects observed 

externally (Figure 5.6 C & D). The number of reabsorptions observed at this stage 

accounts for the loss of Stra6-/-; Stra6.2-/- embryos (Table 5.7) and it is therefore 

reasonable to assume that these reabsorptions represent the fate of most Stra6-/-; 

Stra6.2-/- embryos by E8.5. 

A single Stra6-/-; Stra6.2-/- embryo was observed at E9.5, significantly less than the 

expected number of Stra6-/-; Stra6.2-/- embryos from these matings (Table 5.7). The 

genotype of the dam, either Stra6 +/-; Stra6.2-/- or Stra6+/-; Stra6.2+/-, had no 

affect on the presence or absence of Stra6-/-; Stra6.2-/- indicating that maternal 
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genotype did not contribute to the survival of these embryos. The Stra6-/-; Stra6.2-/- 

embryo observed at E9.5 was not fully turned (Figure 5.6 G & H) and was more akin 

to a wildtype E8.5-9.0 embryo (Figure 5.6 D). The head and therefore brain appear 

under-developed compared to a Stra6+/-; Stra6.2-/- embryo of the same gestational 

age (Figure 5.6 F) and although the heart was present (Figure 5.6 G & H) it was also 

more consistent with an embryo of E8.5-9.0. The optic pit appears to be specified 

and present (Figure 5.6 G & H) although its development appears similar to that at 

E8.5-9.0. The Stra6-/-; Stra6.2-/- E9.5 embryos was also considerably smaller than 

other embryos (Figure 5.6 G & H) from the same litter consistent with a stalling in 

development between E8.5-9.0. 

Stra6-/-; Stra6.2-/- embryos were never observed at E12.5 (Figure 5.7 B) and the 

number of reabsorbed embryos did not account for the missing Stra6-/-; Stra6.2-/- 

embryos (Table 5.7). Stra6-/-; Stra6.2-/- embryos appear to be promptly reabsorbed 

upon death between E7.5-E8.5 and most are completely removed from the uterus by 

E12.5. The presence of Stra6-/-; Stra6.2-/- embryos at E7.5 (Figure 5.7 A) and the 

number of reabsorptions noted at E8.5 indicate that loss of Stra6 and Stra6.2 severely 

limits viability at some point between E7.5 and E8.5 resulting in death of these 

embryos. Survival of a few embryos indicates that some embryos are able to 

overcome this block to development after E7.5 and continue development until 

approximately E8.5 and to survive until E9.5 but subsequently these embryos are 

also lost (Figure 5.7 C).  
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Table 5.7: Stra6-/-;Stra6.2-/- embryos are observed in the expected genetic ratio at 

E7.5 but are lost progressively through development before E12.5. 

No significant difference in the number of Stra6-/-;Stra6.2-/- embryos between the 

expected and observed values was seen at E7.5 (P=0.4066, Chi-square test). A 

significant difference in the number of Stra6-/-;Stra6.2-/- embryos between the 

expected and observed values was observed at E8.5 and E9.5. The number of 

reabsorptions at E8.5 (P=0.0038, Chi-square test) and E9.5 (P=0.0471, Chi-square 

test) may account for the lost Stra6-/-;Stra6.2-/- embryos. No Stra6-/-;Stra6.2-/- 

embryos were observed by E12.5 (P=0.0360, Chi-square test). Star indicates 

significant deviations from the expected ratio.  
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Figure 5.6: Stra6-/-;Stra6.2-/- embryos show defects in embryonic development. 

Stra6+/-;Stra6.2-/- (A) and Stra6-/-;Stra6.2-/- (B) are indistinguishable at E7.5. 

Dorsal view of Stra6+/-;Stra6.2-/- embryo at E8.5 (C) and a lateral view of an E8.5 

embryo from EMAP (D) compared to a Stra6-/-;Stra6.2-/- E8.5 embryo (E) does not 

highlight any major difference in morphology at this stage. EMAP image included to 

show a lateral view due to lack of images of the lateral view of an E8.5 Stra6+/-

;Stra6.2-/- embryo. Stra6+/-;Stra6.2-/- embryo at E9.5 (F) is fully turned; however 

Stra6-/-;Stra6.2-/- embryo (G & H) is unturned and appears developmentally 

retarded. G & H show the same embryo under differential illumination in order to 

highlight aspects of morphology.  
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Figure 5.7: Stra6-/-;Stra6.2-/- animals are lost after E7.5. 

The observed (blue) and expected (red) number of embryos for each genotype is 

graphical represented at E7.5 (A) and E12.5 (B). The observed (blue) and expected 

(red) number of Stra6-/-;Stra6.2-/- embryos is graphically represented at E7.5, E8.5, 

E9.5 and E12.5 (C) to highlight the loss of these embryos after E7.5. Asterisk 

indicates significant loss of Stra6-/-;Stra6.2-/- embryos. 
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5.5 Discussion 

The recessive Matthew-Wood syndrome is the result of mutations within STRA6 in 

humans (Pasutto 2007). The Stra6-/- mouse, however, does not represent a model of 

the human condition with no overt defects observed in the eye, heart, lung or 

diaphragm. In mouse, and other mammals, a paralogue of Stra6 was noted and 

named Stra6.2. However, this paralogue in human has become split across its 

resident chromosome (as discussed in Chapter 4) and is therefore no likely to be 

entirely functional.  

The differences in gene complement between mouse (and other mammals) and 

human may explain the disparity in phenotype. Stra6.2-/- animals were therefore 

investigated in order to assess possible interaction between Stra6 and Stra6.2 in 

supporting development in the mouse or the possibility that Stra6.2-/- may represent 

a model of Matthew-Wood syndrome. Stra6.2-/- animals having no developmental 

phenotypes even when born to Stra6.2-/- dams fed a retinoid-free diet during 

pregnancy and are therefore not a model of Matthew-Wood syndrome. Stra6+/-

;Stra6.2-/- animals which are viable, fertile and have normal vision indicating 

development and adult visual and reproductive function can be maintained by only 

one copy of Stra6. However, Stra6.2 in addition appearing dispensable for normal 

development to a degree in the presence of Stra6, also appears to be less able to 

support development in the absence of Stra6. Stra6-/-;Stra6.2+/- animals are 

variable in their viability and development, with a reduced number of these animals 

observed at genotyping and an increased incidence of death around weaning in these 

animals. Some animals were runted compared to littermates and appeared to have 

smaller eyes when compared to them, although vision and fertility were normal. 

Therefore it can be concluded that Stra6.2, although able in some cases to support 

normal development, is not equal to Stra6 and may perform a similar or 

complementary role not as effectively as Stra6. Stra6-/-; Stra6.2-/- animals, 

however, not viable and are lost early in development between E7.5 and E8.5 in most 

cases with no Stra6-/-; Stra6.2-/- embryos surviving to E12.5. Stra6 and Stra6.2 are 

therefore likely to be redundant with loss of both genes incompatible with normal 

development and life but with a single copy of either able to support normal 

development. If Stra6 and Stra6.2 were to be functionally independently, the Stra6-/-
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; Stra6.2-/- animal should be viable as Stra6-/- and Stra6.2-/- animals are 

individually viable.  

Stra6-/-; Stra6.2-/- mice could be considered to be the most appropriate model for 

Matthew-Wood syndrome with a loss of all Stra6-like genes in both organisms. 

However, Matthew-Wood patients survive until birth (Pasutto 2007), and in some 

cases into adulthood (Chassainq 2009), in contrast to the early embryonic lethality 

observed in Stra6-/-; Stra6.2-/- embryos. The disruption of the STRA6.2 gene in 

humans may not result in complete loss of STRA6.2 function and it may be able to 

support development to the postnatal stages. Stra6-/-; Stra6.2+/- animals may 

therefore hold the key to a model for Matthew-Wood syndrome with complete loss 

of Stra6 in a background of reduced Stra6.2 function.  Stra6-/-; Stra6.2+/- animals 

appear to have a high mortality rate (2/4 died at weaning) and eye defects observed 

in one animal. The dietary provision of retinoids from standard mouse chow is high 

and therefore this may be supporting development and masking the possible 

Matthew-Wood type phenotype in Stra6-/-; Stra6.2+/- animals born to dams fed this 

retinoid-rich diet. The variability of the Matthew-Wood phenotype severity in 

patients could also be attributed to a similar mechanism by which sufficient maternal 

dietary retinoid provision may affect the phenotype of offspring. Evidence for this 

can be found in the family described by Chassainq et al (2009) in which the same 

mutational profile resulted in two surviving adult males with Matthew-Wood 

syndrome and a female infant who died within hours of birth. The apparent 

difference in phenotypic penetrance, even in the same mutational profile, suggests 

interaction with environmental factors, such as dietary retinoid content.  

The interaction between Stra6 and Stra6.2 can be considered surprising due to the 

seeming lack of overlap between the expression domains of both genes during 

development. Stra6 is expressed from E7.5 in the headfold mesoderm and is later 

observed in the prospective brain, eye, gut and the somites. In contrast, expression of 

Stra6.2 cannot be observed before E9.5 and is primarily restricted to the posterior 

tail-region with later expression further observed within the somite, where it 

presumably overlaps with Stra6 expression, and within the umbilicus. Stra6.2 may 

be expressed at low levels within various tissues which also express Stra6 as 
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published expression data of Stra6 was collected through the use of radioactive in 

situ hybridisation with probes labelled with [
35

S]-CTP and therefore is more sensitive 

than the methods used in this thesis. Stra6.2 may also be able to compensate Stra6, 

despite being expressed in exclusive domains, through a non-cell autonomous effect 

perhaps relating to retinoid production.  

The expression domains of Stra6.2 appear to be greatly restricted compared to those 

of Stra6 during development of the mouse, with only the posterior tail region, 

somites and umbilicus appearing to express Stra6.2. These differences in expression 

domains correlate with the phenotypes observed in knockout animals for each gene. 

Stra6-/- and Stra6.2-/- animals both show no discernible phenotypes under normal 

dietary retinoid provision. Stra6.2-/- offspring of Stra6.2-/- dams fed a retinoid-

deficient diet during pregnancy also show no developmental or postnatal phenotypes. 

However, Stra6-/- offspring of Stra6-/- dams fed a retinoid-free diet during 

pregnancy demonstrate developmental eye defects correlating with the known 

expression of Stra6 in the RPE and periocular mesenchyme of the developing eye. 

The expression of Stra6.2 in later development and postnatally is not known and 

therefore the function of Stra6.2 may be in these periods, perhaps in the provision of 

retinoids for the maintenance of adult tissues. Investigation of the expression of 

Stra6.2 in late development and in adult organs, especially the eye and reproductive 

organs known to require retinoid provision for function and maintenance, may be 

enlightening.  

Stra6-/-; Stra6.2-/- embryos are lost early in post-implantation development between 

E7.5 and E8.5. Some Stra6-/-; Stra6.2-/- embryos survive until E8.5-9.5 with some 

defects observed in the embryo at E9.5, such that the embryo had not turned. This is 

consistent with the phenotype of Raldh2-/- embryos, in which embryos never turn 

and are curved dorsally with an enlarged heart (Niederreither 1999). Raldh2-/- 

embryos die by E10.5 due to heart defects associated with defects in the development 

of the secondary heart field (Niederreither 2001). The rare Stra6-/-; Stra6.2-/- 

embryo observed at E9.5 appeared to be similar to Raldh2-/- embryos indicating that 

Stra6 and Stra6.2 are required to provide retinoids for the synthesis of RA later in 

development. However, an additional earlier role for the Stra6 and Stra6.2 seems 
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likely due the loss of Stra6-/-; Stra6.2-/- embryos prior to E8.5 in most cases 

compared to the survival of many Raldh2-/- embryos to E10.5.  

The death of most Stra6-/-; Stra6.2-/- embryos between E7.5-8.5 highlights either 

heart or placental defects as the likely cause as this time in development is important 

in the development of both of these essential and interdependent organs. The 

placenta at this time (E8.0-8.5) undergoes chorioallantoic fusion in which the 

choronic epithelium contacts the allantois, arising from the mesoderm of the 

posterior of the embryo. This fusion results in the formation of folds in the chorion 

which mark the site of formation of the feto-placental blood vessels from the 

allantois (Rossant 2001).  The formation of the trophoblast giant cells has been 

shown to be stimulated by retinoic acid (Yan 2001) and the formation of the chorion 

is linked to the development of the trophoblast giant cells (Rossant 2001). Stra6-/-; 

Stra6.2-/- embryos could be lost due to defects in the formation of the blood supply 

of the placenta resulting in death of the embryo as it is starved of oxygen and 

nutrients required for viability and development. 

Heart defects could also be the cause of the early loss of Stra6-/-; Stra6.2-/- embryos 

as the heart is essential for normal development and in sustaining the embryo with 

other organs and tissues are generally dispensable until the later embryonic or the 

early post-natal period. The timing of embryonic death in Stra6-/-; Stra6.2-/- 

embryos could indicate a defect in heart specification (Conway 2003) and this is 

contemporary with the formation of the primordial heart and vascular system at E7.5 

(Kaufman 1981) and the initiation of RA-synthesis within the embryo (Rossant 

1991). Defects within the heart are also observed in Matthew-Wood patients 

although these defects allow the continued development of the embryo to birth.  
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5.6 Further work 

Stra6-/-;Stra6.2+/- animals may hold the key to a model for Matthew-Wood 

syndrome. Stra6-/-;Stra6.2+/- animals are not observed in the expected number and 

some animals also died at weaning or were runted compared to littermates. One 

Stra6-/-;Stra6.2+/- animal which died around the time of weaning was found to have 

fused eyelids and a small volume of disorganised ocular tissue within the orbits. The 

variability of the developmental outcome in these animals may be resolved by 

feeding their dams a retinoid-free diet during pregnancy, initially from plug through 

to birth. The loss of retinoids throughout the whole pregnancy may result in the loss 

of all Stra6-/-;Stra6.2+/- pups and therefore smaller windows of treatment could be 

used if this proved to be the case. The birth of pups from such an experiment would 

need to be closely monitored as the pups would be likely to experience respiratory 

distress at birth if they did prove to be a model of Matthew-Wood syndrome. A 

model of Matthew-Wood would allow investigation of the development of the 

affected organ systems both anatomically through serial sectioning and also through 

marker analysis for important genes in the development of these organs. This 

approach may elicit the mechanism whereby the loss of Stra6 in human results in 

Mathew-Wood syndrome and if this is solely due to a reduction in retinoid provision 

for the synthesis of RA in the embryo. 

Stra6-/-;Stra6.2-/- embryos are lost early in post-implantation development between 

approximately E7.5 and E8.5, although a few embryos survive to E9.5. The timing of 

this embryonic lethality suggests a defect in heart or placental development and 

therefore it would be fortuitous to investigate via in situ hybridisation the expression 

of markers of placental and heart development in order to discern a possible reason 

and mechanism behind the early embryonic lethality in these animals.  

The possibility of heart specification defects could be investigated in E7.5 Stra6-/-; 

Stra6.2-/- embryos by histological serial sectioning through entire embryos to 

highlight any anatomical abnormalities in the development of the heart (Conway 

2003). Investigation of the expression of early markers of heart development via in 

situ hybridisation may also highlight the possible mechanism for any anatomical 

changes observed. Nkx2.5 is a master regulator of cardiac specification (Tanaka 
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1999) and one of the earliest markers of the cardiac lineage therefore investigation of 

its expression in Stra6-/-; Stra6.2-/- embryos may highlights any defects. Other 

useful markers may be dHAND (Yamagishi 2001) and eHAND (Biben 1997) which 

interact with Nkx2.5, and FGF4 and Bmp2 both genes able to induce cardiac 

formation (Conway 2003). Inhibitory signals to cardiac development, such as Wnt1 

and Wnt3a, are also received from the neural tube therefore, the expression of these 

genes in Stra6-/-; Stra6.2-/- embryos should also be investigated (Conway 2003).  

Defects in placental formation are another possibility for the loss of Stra6-/-; Stra6.2-

/- embryos and therefore as for the investigation of heart defects serial sections 

through the embryo and the extra-embryonic tissues may provide insight as to the 

cause of the reduced viability of Stra6-/-; Stra6.2-/- embryos. Retinoic acid has been 

implicated in the differentiation of the trophoblast giant cells and therefore 

investigation of markers of this cell type may be fortuitous in understanding the role 

for Stra6 and Stra6.2 in this process. The investigation of the expression of Hand1 

and Mdfi may be enlightening for this purpose (Rossant 2001). The timing of the 

death of Stra6-/-; Stra6.2-/- embryos is contemporary with the initiation of 

chorioallantoic fusion and therefore investigation of markers of this process, such as 

Bmp5, Bmp7 and Dmnt1, may indicate if any defects in this process are observed 

(Rossant 2001).  

The early loss of Stra6-/-; Stra6.2-/- embryos, perhaps due to heart or placental 

defects, may mask the later roles and functions of Stra6 and Stra6.2. Treatment of 

the mother with RA during early pregnancy may allow development of the Stra6-/-; 

Stra6.2-/- embryos to overcome the early block and continue past E8.5. A similar 

approach has been reported in order to investigate later roles for Raldh2 (Mic 2002) 

and may allow more Stra6-/-; Stra6.2-/- embryos to make it to E9.5 in order to 

investigate the later developmental requirement for Stra6 and Stra6.2. Additionally 

this approach would investigate if the only requirement for Stra6 and Stra6.2 is to 

facilitate the provision of retinoids for the synthesis of RA. The nature of the Stra6.2 

knockout construct also allows for creation of conditional Stra6.2 alleles. These 

could be combined with either cell-type specific or Tamoxifen-inducible Cre-

expressing alleles in order to cell-type specifically or temporally remove Stra6.2 in a 
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Stra6-null background. This would allow early development to proceed normally 

before removal of Stra6.2 at the appropriate time or place.  
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Summary and final conclusions. 
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Matthew-Wood syndrome is a severe human birth defect condition resulting in death 

within the first months of life in most cases. Homozygous and compound 

heterozygous mutations in STRA6 cause clinical anophthalmia, pulmonary 

hypoplasia, diaphragmatic hernia and cardiac defects in Matthew-Wood patients. 

STRA6 is known to function both as a transporter for retinol bound to RBP4, thereby 

forming part of the retinoid pathway, and as a transducer of signalling resulting in the 

phosphorylation of the insulin receptor in response to RBP-bound retinol. The 

mechanism by which mutations in STRA6 result in Matthew-Wood syndrome is 

unknown, although the defects observed and the known functions of STRA6 suggest 

defects in the retinoid pathway, and therefore an animal model of Matthew-Wood 

syndrome was desired.  

Stra6-/- mice, although being the logical genetic model of Matthew-Wood syndrome, 

do not replicate any of the phenotypic signs of the condition and are normal, viable 

and fertile. Published knockouts for some retinoid pathway genes are also normal 

when born to dams fed a retinoid-sufficient diet, however, when born to dams fed a 

retinoid-free diet during pregnancy develop abnormally. Stra6-/- dams were 

therefore fed a retinoid-free diet during pregnancy from plug discovery (E0.5) till 

birth. The Stra6-/- offspring of these dams was microphthalmic and their visual 

acuity was diminished compared to their Stra6+/- littermates. Persistent hyperplastic 

primary vitreous (PHPV) was observed in all Stra6-/- eyes and cataract was also 

observed in 27% of Stra6-/- eyes. Although Stra6-/- mice born to dams fed a 

retinoid-free diet do not represent a model of Matthew-Wood syndrome, they 

represent a model of isolated microphthalmia caused by mutations in STRA6 in a 

consanguineous Irish-traveller family. The spleen of male Stra6-/- animals was 

abnormal in terms of shape and weighed less than that of male Stra6+/- littermates. 

Despite some changes histologically to the distribution of white and red pulp in the 

spleen, no significant defects could be observed by FACS analysis in the distribution 

of B-cells and T-cells, erythrocyte differentiation or CD8+/CD4+ T-cell profile.  

The disparity between Stra6-/- mice and Matthew-Wood patients could be the result 

of functional redundancy in the mouse between Stra6 and its paralogue, Stra6.2. 

Stra6.2 was identified through a Blast search against the mouse genome and was 
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found to share 18% identity with Stra6. Although both Stra6 and Stra6.2 are present 

within the mouse, and most other vertebrate, genomes; the great apes, including 

humans, differ in this respect. The human orthologue of Stra6.2 has become split 

across its native chromosome resulting in a both a pseudogene, representing the 5’ 

region and a functional, yet significantly shorter, 3’ region. 

stra6.2 was found to have a developmental function in the zebrafish with stra6.2 

morphants having defects in axial extension, eye development, somite formation and 

jaw morphology. These defects were found to be caused by an increase in retinoic 

acid synthesis resulting in an increase in RA-responsive gene expression and this 

mechanism was Rbp4-dependent. Morpholinos to stra6 and stra6.2 were found to act 

synergistically suggesting that stra6.2 was also likely to function within the retinoid-

pathway, perhaps also as an Rbp4-dependent retinoid transporter. Morpholino 

knockdown of either stra6 or stra6.2  in the zebrafish results in developmental 

defects, although this is not the case in mouse with both Stra6-/- and Stra6.2-/- 

animals developing normally when born to dams fed a retinoid-rich diet during 

pregnancy. Nutrient provision to the developing embryo is significantly divergent 

between fish and mammals, with the fish provided with a nutrient store in the 

contents of its yolk and regulated only by the embryo itself, whereas the mammalian 

female regulates the provision of nutrients to her developing offspring through the 

placenta. The control of provision of retinoids by the maternal bloodstream across 

the placenta may allow greater compensation for fluctuations and defects in the 

retinoid metabolism of the developing mammalian embryo allowing normal 

development despite the loss of important gene functions.  

Stra6.2-/- mice show no developmental defects even when born to Stra6.2-/- dams 

fed a retinoid-free diet throughout pregnancy. Stra6 appears to be ‘dominant’ in 

developmental function compared to Stra6.2 in the mouse. The lack of any 

phenotype associated with the loss of Stra6.2, even under conditions of retinoid-

stress, and the higher mortality rate observed in Stra6-/-;Stra6.2+/- compared to 

Stra6+/-;Stra6.2-/- indicate that the requirement for Stra6 is probably greater and 

this also supported by the loss of a part of STRA6.2 in humans to no detrimental 

effect in the presence of STRA6. However, Stra6.2 seems likely to have a 
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contributory role to play in the mouse and this redundancy is typical of the retinoid 

pathway with many functional steps in the pathway controlled by gene families with 

overlapping functions, such as Raldh1, 2 & 3 and RARα, β & γ.  

Stra6-/-;Stra6.2-/- animals could be thought of to be the ideal animal model of 

Matthew-Wood syndrome as these replicate the perceived total loss of STRA6-like 

gene function observed in human patients. Stra6-/-;Stra6.2-/- animals, however, 

represent an earlier and much more severe developmental phenotype resulting in 

death in most cases by E8.5 and survival of no Stra6-/-;Stra6.2-/- by E12.5. 

Matthew-Wood patients may reserve minimal functionality of STRA6 allowing 

development to proceed, although previous work suggests that all mutations resulting 

in Matthew-Woods result in severe compromisation of the retinol-transport function 

of STRA6. The remaining transcribed portion of STRA6.2 in human may also 

function to allow development to the post-natal stages in most cases.  

The loss of Stra6-/-;Stra6.2-/- embryos early in development, between E7.5 and E8.5 

in most cases, highlights a fundamental requirement for retinol provision very early 

in development most likely in the formation of either the heart or placenta. Stra6-/-

;Stra6.2-/- embryos die earlier than Raldh2-/- embryos, which survive to E10.5, 

indicating that retinol may have early developmental roles independent of being a 

precursor for retinoic acid synthesis. This observation may be interesting to 

investigate further in the future as the field is generally focussed on retinoic acid as 

the orchestrator of the developmental function of retinoids. Investigation into the role 

of retinol as an effector of development and the other future work avenues discussed 

in each of the chapters will hopefully be pursued by a future PhD student. 
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