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Abstract

Recently graph theory has been successfully applied to magnetic resonance 

imaging data. However, it remains unclear as to what the nodes and edges in a 

network should represent. This problem is particularly difficult when extracting 

morphological networks (i.e., from grey matter segmentations). Existing 

morphological network studies have used anatomical regions as nodes that are 

connected by edges when these regions covary in thickness or volume across a 

sample of subjects. Covariance in cortical thickness or volume has been 

hypothesised to be caused by anatomical connectivity, experience driven plasticity 

and/or mutual trophic influences. A limitation of this approach is that it requires 

magnetic resonance imaging (MRI) scans to be warped into a standard template. 

These warping processes could filter out subtle structural differences that are of 

most interest in, for example, clinical studies.

	

 The focus of the work in this thesis was to address these limitations by 

contributing a new method to extract morphological networks from individual 

cortices. Briefly, this method divides the cortex into small regions of interest that 

keep the three-dimensional structure intact, and edges are placed between any two 

regions that have a statistically similar grey matter structure. The method was 

developed in a sample of 14 healthy individuals, who were scanned at two 

different time points. For the first time individual grey matter networks based on 

intracortical similarity were studied. The topological organisation of intracortical 

similarities was significantly different from random topology. Additionally, the 

graph theoretical properties were reproducible over time supporting the robustness 

of the method. All network properties closely resembled those reported in other 

imaging studies.

	

 The second study in this thesis focussed on the question whether 

extracting networks from individual scans would be more sensitive than 

traditional methods (that use warping procedures) to subtle grey matter 

differences in MRI data. In order to investigate this question, the method was 

applied to the first round of scans from the Edinburgh High Risk study of 

Schizophrenia (EHRS), before any of the subjects was diagnosed with (symptoms 

of) the disease. Where traditional methods failed to find differences at the whole 
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brain level between the high risk group and healthy controls, the new method did 

find subtle disruptions of global network topology between the groups. Finally, 

the diagnostic value of the networks was studied with exploratory analyses that 

found that, in comparison to healthy controls, people at high risk of schizophrenia 

showed more intracortical similarities in the left angular gyrus. Furthermore 

within the high risk group an increase of intracortical similarities could predict 

disease outcome up to 74% accuracy.

	

 The main conclusion of this thesis was that the new method provides a 

robust and concise statistical description of the grey matter structure in individual 

cortices, that is of particular importance for the study of clinical populations when 

structural disruptions are subtle.

3



Acknowledgments

I would like to thank my supervisors Stephen Lawrie, Peggy Seriès and David 

Willshaw for their support and advise during my project. Thank you Peggy for 

your critical views, even after reading my methods paper for the thousandth time. 

Thanks to my so-called ‘shadow’ supervisors, of which Emma Sprooten has been 

the principle one. Thank you for listening and helping me when I’ve been stuck 

on a silly detail for weeks. Also, of course Jess Sussmann, you are invaluable for 

the emotional well being of everyone in the lab, including me. And then my last 

‘shadow supervisor’ Andrew McIntosh, for helping out with technical advise. 

Also I would like to thank Pat Ferguson and Teresa Ironside for their practical 

help. And, of course, thanks to all the other people in the lab for the good and fun 

times (and especially Duncan as master typo-detector and Liana)! Furthermore, 

I’d like to thank Dom Job and Danielle Bassett for their advise during the start of 

my project. And then finally my family, my mum and my sisters Marieke and 

Roosje: a lot has happened during the time I was away and I’m happy that 

somehow we managed to get through it together even though we were in separate 

countries. And then my second mum, Gerda, thank you for all your support and 

mostly our email conversations and advise. Thank you Floor en Thijs, I’m really 

happy that you are not only family, but also dear friends. And finally, Marijn: most 

of our years together we have spend apart. It has not been easy for the both of us, 

but we’ve made it! It is time for our next adventure.

4



Declaration

I declare that this thesis was composed by myself, that the work contained herein 

is my own except where explicitly stated otherwise in the text, and that this work 

has not been submitted for any other degree or professional qualification except as 

specified.

(Betty Tijms)

5



Table of AbbreviationsTable of Abbreviations

2D two dimensional
3D three dimensional
AAL automated anatomical labelling atlas
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HO Harvard Oxford atlas
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n number of subjects
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SD standard deviation
sMRI structural magnetic resonance imaging
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SPM Statistical Parameter Mapping
SVM support vector machine
TE echo time
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USA United States of America
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1. Introduction

An important issue in neuroscience is the quantification of the morphology of 

individual cortices. This issue is of particular importance when studying 

connectivity patterns in neuropsychiatric disorders that show subtle disruptions in 

brain structure. Such subtle disruptions could be present in so-called ‘high risk’ 

studies, where healthy people with an increased risk for a certain disease are 

compared to healthy people lacking such risk. Differences between such 

populations might provide insight into developmental disruptions associated with 

that disease. Finding subtle differences in grey matter magnetic resonance 

imaging (MRI) data with traditional methods is difficult because these methods 

require the warping of the individual scans onto an average template. Such 

warping procedures have the potential to filter out subtle differences between 

individuals. This means that traditional methods might lose information that could 

be of importance for the development of diagnostic tools. Currently methods exist 

to quantify whole brain complexity in individual brains (e.g., Bullmore et al., 

1994; Thompson et al., 1996), but these methods suffer from limitations such as 

how to map individuals to each other and how to map these quantifications with 

functional MRI.

	

 In this thesis a new method to statistically quantify the morphology of 

individual cortices using tools from graph theory is presented. Briefly, any form of 

data can be represented as a graph (i.e., network), which can be described with  

graph theoretical properties. Nodes represent the data and edges are placed 

between nodes when a relationship between them exists. Recently graph theory 

has been successfully applied to describe MRI data in grey matter, white matter 

and functional MRI. An additional attractive feature of this framework is that it 

has the potential to map networks from different modalities in individual cortices. 

More background about graph theory is provided in the first Section of Chapter 2.

	

 Methods exist to extract individual networks from functional and white 

matter MRI data. In functional networks, nodes are connected where a correlation 

between their time-series exist. In white matter MRI (involving diffusion tensor or 

diffusion spectrum imaging techniques), nodes are connected where a white 

matter tract exist. Until now, such methods do not exist for grey matter MRI data 

11



(in this thesis also referred to as ‘morphological’ data, as a general term for 

several types of grey matter that can be extracted from structural MRI and that 

contribute to a description of cortical structure, such as for example cortical 

thickness and volume). Current methods that extract morphological networks 

usually divide the cortex into a number of anatomical regions and then connect 

these regions when they covary in either thickness (e.g., He, Chen et al., 2007) or 

volume across a group of subjects (e.g., Bassett et al., 2008). A drawback of these 

methods is that they require the registration of individual cortices into a standard 

space, potentially missing features that are of importance between groups. Also, 

no study has explored the relationship between morphological networks and 

functional networks, possibly because individual descriptions of morphological 

networks are lacking (but see Gong et al., 2011 for a recent study that investigated 

the relationship between group averaged white matter networks and cortical 

thickness networks).

	

 The work in this thesis contributes to these important issues with the 

proposal of a new method to extract individual morphological networks. For the 

first time, the network properties of individual morphological networks from a 

sample of healthy people were studied and compared to random networks. 

Furthermore the biological meaning was investigated by extracting individual 

morphological networks from a sample at high risk of schizophrenia for the first 

time.

	

 This thesis will be divided into two parts. In the first part relevant 

background material regarding graph theory and its application in MRI research 

so far will be discussed in Chapter 2, followed by a detailed presentation of the 

proposed method and a discussion of its results in Chapter 3. Briefly, this method 

extracts morphological networks from individual grey matter MRI data, where the 

nodes represent small cortical regions with their three-dimensional structure intact 

and edges connecting nodes that show a statistically similar structure. The main 

conclusions after extracting these networks from a healthy sample were that: I. 

networks based on intracortical similarities provide a robust and concise statistical 

description of the grey matter structure of individual cortices. II the resulting 

network properties were comparable with those from other imaging network 

studies.
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 The second part investigated whether the new method was more sensitive 

to subtle structural differences than traditional methods. In order to answer this 

question the new method was applied to the Edinburgh High Risk study of 

Schizophrenia (EHRS), where people were recruited with and without a family 

background of schizophrenia. People who have direct family members with 

schizophrenia have an increased risk of developing the disease themselves when 

compared to people without such a family background (McGue and Gottesman, 

1989). Traditional methods to analyse cortical morphology have not found 

differences in this sample between people with and without an increased risk of 

schizophrenia in scans that were acquired when all subjects were clinically 

healthy. Chapter 4 will provide more background about schizophrenia and high 

risk studies of schizophrenia. In Chapter 5 the new method was applied to the 

EHRS. The main finding of this part was that while groups with and without a 

family history of schizophrenia did not differ in their global network organisation, 

only the high risk group showed subtle disruptions that were suggestive of a less 

efficient network organisation. Within the high risk group it was found that the 

group who later became ill demonstrated more disruptions of network topology 

than those who remained well. These results indicate that the proposed method is 

indeed more sensitive than traditional approaches to subtle morphological 

differences between groups. In addition, they validate the method and give it 

biological relevance. Finally, exploratory analyses suggested that the degree (i.e., 

number of connections) of the networks could be of important diagnostic value, 

because up to 74% of the subjects could be correctly classified using both the 

average network degree and the degree of the right angular gyrus.

	

 The last Chapter of this thesis will discuss the implications and limitations 

of this work and will also present suggestions for future research.
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2. Quantifying cortical morphology in 
individual MRI scans

This Chapter provides the background necessary to understand the new method 

that was developed for this thesis. The first Section will introduce why it is an 

important, but also a difficult issue to describe the connectivity architecture of the 

human brain and the role of graph theory in this type of research (2.1). Section 2.2 

will discuss the importance of studying individual cortical morphology, followed 

by a review of existing methods to quantify individual cortical morphology in 

Section 2.3. Then Section 2.4 will introduce the new method to quantify 

individual cortical morphology that was developed for this thesis. Finally, Section 

2.5 provides a general introduction to graph theory and a detailed explanation of 

the graph theoretical measurements that were used throughout this thesis.

2.1 Networks extracted from cortical morphological data

The precise connectivity architecture of the human brain remains unknown, 

because it is complex and difficult to extract (e.g., Rykhlevskaia, 1998; Sporns 
and Zwi, 2004; Sporns et al., 2004; Sporns, Tononi and Kötter 2005; Bassett and 

Bullmore, 2006; Sporns, Honey and Kötter, 2007; Sporns, 2006, 2009, 2010, 
2011; Bullmore, Barnes, et al., 2009; Bullmore and Sporns, 2009; Honey, 

Thivierge and Sporns, 2010; Bullmore and Basset, 2011). The size of the skull 
imposes an important constraint on the morphology of the brain. However, brain 

size does not necessarily scale with the complexity of the cortical surface (e.g., 
Murre and Sturdy, 1995). Additionally, evidence has been found that the 

arrangement of cortical areas present in the brain minimises the volume of axons 
required to connect them (Murre and Sturdy, 1995; Klyachko and Stevens, 2003; 

Chklovskii, 2004; Chkovskii et al., 2004; Chklovskii, 2004; Stepanyants and 
Chklovskii; 2005; Jehee and Murre, 2008; Stepanyants et al., 2009). Furthermore, 

the anatomical structure of the brain poses physical constraints on the function of 
the brain: neurons can only communicate (either electrically or chemically) when 

they are physically near each other. It is possible to describe the connectivity 
architecture of the brain in terms of a network where nodes (e.g., neurons or 

groups of neurons) can transfer information when a link exists between them 
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(Rykhlevskaia et al., 2008). Graph theory offers simple tools to quantify the 

human brain in a concise manner, providing summary measures that indicate how 

efficient the topological organisation of networks is in terms of wiring length, 

while at the same time also providing local measures for each node in the 

network. These characteristics make networks an attractive tool to study the 

organisation of the human brain. Since 2005 many studies have tried to quantify 

imaging data with the tools of graph theory and many reviews have been 

published in a brief period of time speculating about the meaning of the ‘small 

world’ organisation of the brain (Chialvo, 2004; Reijneveld et al., 2007; Evans et 

al., 2008; McIntosh et al., 2008; Sporns, 2009; Bullmore and Sporns, 2009; 

Bullmore et al., 2009; Bassett et al., 2009; He et al., 2009; Cho et al., 2010; Stam, 

2010; Gerloff et al., 2010, Wang, 2010; He and Evans, 2010; Rubinov et al., 2010; 

Power et al., 2010; Wen et al., 2011; Wig et al., 2011; Sporns, 2011; Kaiser, 2011; 

Gong et al., 2011; Bullmore et al., 2011; Bassett et al., 2011; Petrella, 2011; 

Prettejohn et al., 2011; see Table 1 for a selection of neuroimaging studies that 

have used graph theory and Section 2.6 for a detailed explanation).

	

 Given that graph theory can be applied to many types of data, it offers a 

framework that is particularly suited for multi-modality research, because 

potentially nodes of grey matter could be mapped to corresponding nodes 

containing functional MRI (fMRI) data. Just a few studies have addressed this 

attractive characteristic of graph theory (Zemanova et al., 2006; Honey et al., 

2007; 2008; Alstott et al., 2009; Binzegger et al., 2009; Honey et al., 2009; 

Rubinov et al., 2009). Another appealing feature of graph theory is its diagnostic 

potential, because in principle networks can be described for individuals. While 

methods exist to extract networks from individual white matter and functional 

MRI data (e.g., Eguíluz et al., 2005; Hagmann et al., 2007; den Heuvel et al., 

2008), such methods do not exist for grey matter MRI. To bridge this gap, it was 

my idea to develop a new method that describes the morphology of an individual 

cortex as a network. The next Section will discuss why it is important to have a 

network description of grey matter.

	

 In MRI studies nodes usually represent anatomical areas or individual 

voxels. In functional MRI, the nodes are connected where a temporal correlation 

in their functional signal exists, and in white matter MRI nodes are connected 
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where a white matter tract exists. However, the choice of connectivity for grey 

matter (or morphological) MRI is less straightforward. Studies have demonstrated 

that it  is possible to construct morphological networks by assessing covariation of 

cortical thickness of volume between cortical areas across people (He, Chen et al., 

2007; Bassett et al., 2008; Chen et  al., 2008; He et al., 2008). Such covariances 

have been reported to be sensitive enough to distinguish between (clinical) groups 

of people (e.g., Wright et  al., 1999; McAlonan et al., 2005; Mechelli et al., 2005; 

Mitelman et al., 2005; Lerch et al., 2006; He, Chen et al., 2007; Bassett  et al., 

2008; Colibazzi et al., 2008; He et al., 2008; Bernhardt  et al., 2009; Modinos et 

al., 2009; Lv et al., 2010; Yao et al., 2010; Zhu et al., 2010; Bernhardt et al., 2011; 

Fan et al., 2011; Hänggi et al., 2011; Wu et al., 2011).

	

 Interregional covariation in cortical volume or thickness has been 

suggested to be caused by mutual trophic information (Pezawas et al., 2004), by 

genetic influences (Schmitt et al., 2008), or mutual experience dependent 

plasticity (Draganski et al., 2004; Mechelli et al., 2004). Mechelli et al. (2005) 

proposed that if brain areas would develop independently, one would not be able 

to find covariation between them. Usually studies using interregional covariation 

in cortical thickness or volume across people imply that these correlations have a 

neuronal basis. In other words, if two regions covary in thickness or volume 

across people, they must be connected by axons. Lerch et al. (2006) showed 

qualitatively that structures known to be connected by the arcuate fasciculus (a 

white matter structure that connects prefrontal areas with posterior parietal and 

temporal areas) correlate in thickness. Recently Gong et al. (2011) have 

demonstrated that about  40% white matter connections correspond to cortical 

thickness covariation. However, it remains unknown how such morphological 

covariation translates to individual cortices.

 Furthermore, caution must be taken when comparing the different studies, 

as prior models must be used to parcellate the brain into regions of interest, while 

no standard method or model to achieve this exists. This is mainly caused by the 

difficulty to ensure a concise mapping of individual brains on atlases and 

templates. Extraction of exactly the same anatomical region from every individual 

brain is extremely difficult due to the high degree of variability  between people in 
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their cortical morphology. Even so, procedures to achieve an approximate 

mapping of an individual brain into a standard space exist and these are usually 

referred to as ‘warping procedures’. A disadvantage of these procedures is that 

they  can potentially filter out subtle structural differences that are of particular 

interest in clinical populations. Therefore it  is important to study grey matter 

networks derived from individual cortices, however such methods did not exist at 

the start of this thesis.

 To summarise this Section: graph theory has been successfully applied to 

functional, white matter and grey matter MRI data from in vivo human cortices. 

While functional and white matter networks can be described for individual 

cortices, such approaches do not exist in grey matter MRI. Furthermore, although 

no justification exists to interpret morphological covariation over people as 

indicative of connectivity within a brain, such implications have been suggested 

by current morphological studies. It remains unclear as to what the causes of 

morphological covariation are. In addition, methods that require warping of 

anatomical data onto a standard space lose morphological information. This 

becomes more important when differences between groups are subtle. The next 

Section will describe the extent of individual variability in cortical morphology to 

further emphasise the need for an individual-based network description of cortical 

morphology.

2.2 Morphology of individual cortices

The importance of neuronal morphology for function has been acknowledged 
since the pioneering work of Ramon-Y-Cajal and Brodmann around the start of 

the 20th century. Later in 1981, Wässle and his colleagues found that the on/off 
alpha cells in the cat retina correlated with the specific morphology of their 

dendrites. However, the study of neuronal morphology and cognitive function is a 
hard problem, and has only recently been more thoroughly explored with 

computational neuroscience (e.g., Murre and Sturdy, 1995; Mainen and 
Sejnowski, 1996; Fernandez and Jelinek, 2001; van Ooyen et al., 2002; da 

Fontoura Costa and Manoel, 2003; da Fontoura Costa et al., 2003; Chklovskii, 
2004; Muir and Douglas, 2010). For example, van Mainen and Sejnowski (1996) 
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demonstrated with a simulation model that the firing pattern of a neuron, when it 

is stimulated in the soma, varies widely according to the specific morphology of 

its dendrites (when keeping all other morphological properties constant). This 

illustrates that the study of structure-function relationships in the brain is already 

difficult at the cell level, and it remains largely unknown how interconnectedness 

between neurons of similar or different morphology gives rise to cortical structure 

at a macro-scale that is measured with MRI.

	

 At the macro level of MRI, great inter-subject variability in cortical 

morphology exists (e.g., Brodman, 1909 (Translated version of 1994); Zilles et al., 

1988; Kennedy et al., 1998; Thompson et al., 2002). For example, Kennedy et al. 

(1998) investigated inter-individual cortical variation by measuring topographic 

variations in grey matter volume at three different levels of the cortex: total 

volume, the gyri and of subdivision of the gyri. They concluded that variability of  

most cortical regions is not a simple function of overall brain size: about 70% of 

cortical variability could be accounted for by grey matter volume from smaller 

regions of interest and only 10% could be accounted for by the total volume of the 

cortex. Based on these findings, Kennedy et al. (1998) concluded that the 

anatomical representation of function probably gets lost when a standard template 

is used to parcellate the cortex into anatomical regions. These findings were 

supported by Geyer et al. (1999), who used postmortem brains to demonstrate that 

cytoarchitectonic areas 3a, 3b and 1 of the human primary somatosensory cortex 

cannot be delineated with just macrostructural landmarks, suggesting that 

individual analyses of these areas would be better.

	

 To explain how cortical gyrification patterns (and thus morphological 

variability) develop, van Essen (1997) has proposed the axonal tension 

hypothesis. Briefly, this hypothesis states that cortical areas that are connected by 

axons are pulled together forming gyri, whereas areas that are not connected drift 

apart and form sulci. Individual variation in cortical morphological patterns might 

be the result of variations in the interconnectedness of the areas. Van Essen 

hypothesised that environmental factors must play a role in establishing individual 

variation in morphological patterns. Indeed it has been shown that while some 

gyri have a genetic component, that are present in every individual (and even 

across species) such as the precentral gyrus, variability of the so called ‘tertiary’ 
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gyri can mostly be explained by environmental factors (Bartley et al., 1997; Baare 

et al., 2001). This means that gyri and/or sulci can exist in some people while they 

are absent in others. For example, Paus et al. (1996) studied the variability of the 

central and paracingulate sulcus, and showed in a sample of 247 subjects that a 

small percentage of them did not have a paracingulate sulcus in either the left 

(8%) or right (15%) hemisphere. In addition, he found that the central sulcus, 

present in all subjects, showed considerable variability in its branching 

morphology.

	

 The fact that neuronal morphology affects signal processing, combined 

with the high degree of inter-individual variability in cortical morphology, poses 

the question whether the variability in cortical morphology is  related to cognitive 

function. The recent rise of plasticity studies using MRI has been an important 

first step toward understanding the relationship between cortical morphology and 

cognitive function in humans. These studies investigate whether changes in 

behaviour due to learning a certain task correlate to changes in cortical structure 

in areas known to be involved in such a task (Draganski et al., 2004; Bohbot et al., 

2007). In a natural setting it was shown that the posterior part of the hippocampus 

of London taxi-drivers was larger than non-experienced taxi-drivers (Maguire et 

al., 2000), and this difference was associated with spatial memory. Experienced 

pianists showed different correlations in right and left grey matter volume of 

sensorimotor areas than healthy controls (Lv et al., 2008). Such studies have 

suggested that these differences between experienced and amateur groups are 

caused by the difference in training in that particular subject.

	

 Draganski et al. (2004) were the first to show such an effect in a controlled 

experiment, where one group was trained in juggling, while a second group did 

not receive such training. Brain scans before and after the training period showed 

a difference in grey matter volume that was correlated to learning task. Since then, 

other studies have shown similar effects (Draganski et al., 2004; Mechelli et al., 

2004; Pan et al., 2007; Hyde et al., 2009). Pan et al., (2007) demonstrated in a 

sample of people who were blind from an early age that grey matter atrophy 

occurred in regions that lost functional connections. Such studies raise questions 

that are important for clinical groups as well, because they might provide a basis 

for non pharmacological treatment- and prevention programmes (e.g., 
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improvement of cognition in minor cognitive impairment (MCI) patients by 

training, see: Belleville et al., 2011). Another study directly measured the 

relationship between cognitive function and grey matter volume, where they 

found that people who had less grey matter in their primary visual cortex had a 

stronger experience of two visual illusions (Schwarzkopf et al., 2010). These 

results all illustrate that function seems to be directly related to cortical 

morphology.

	

 Nevertheless, in contradiction to the above studies, Thomas et al. (2009) 

failed to find structural changes while they did find functional changes after 

training in a mirror task (following a randomly moving white dot with a joystick 

where the left-right axis was reversed). This could be due to the simpleness of the 

task, however it cannot be ruled out that subtle changes did occur. When using a 

group based analysis technique, such as voxel-based morphometry to test effects 

of a certain task (as all these studies have used), such subtle effects could be 

filtered out when warping procedures are applied to compare averaged group 

brains in a standard space. When an effect is strong enough (i.e. it occurs in most 

subjects at approximately the same location that is less variable between subjects), 

this will be stronger due to filtering the noise. However, when an effect is more 

subtle, it will become weaker when warped. When studying function-structure 

relationships in patient data, this is of even more importance, since focal structural 

abnormalities could be of the most interest (e.g. for finding baseline differences in 

high risk studies), and these have the highest risk to be filtered out in group-based 

analyses. From these studies, it is clear that a method is needed to quantify 

individual variation. The next Section will discuss two of such approaches: the 

gyrification index and the fractal dimension (FD).

2.3 Existing methods to quantify morphology in individual cortices

At the start of this project, just a few methods existed to quantify morphology in 

individual cortices, among which were the gyrification index and the fractal 
dimension. The gyrification index gives an indication of the complexity of the 

cortical surface by comparing the contour of the total brain (a line that traces all 
the gyri and sulci) with the contour of the outer-surface of the brain (Zilles et al., 

1988). A higher gyrification index indicates a more complex surface, as the total 
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contour is longer, indicating the presence of more gyri and sulci in comparison 

with a shorter total contour. Traditionally the gyrification index was measured 

manually (e.g., Armstrong et al., 1995; Harris et al., 2004), but automated 

procedures exist as well (Moorhead et al., 2006; Bonnici et al., 2007). However, a 

disadvantage of the gyrification index is that it is measured in a coronal plane, 

which dismisses the three-dimensional information in cortical morphology 

(however some global (Thompson et al., 2003), or region of interest approaches 

including three-dimensional (3D) information exist as well (Rettmann et al., 

2005)). In addition, the gyrification index has no local specificity, it only gives one 

number for a cortical slice. To overcome these problems, Schaer et al. (2008) 

proposed a method to quantify local gyrification, based on extracted cortical 

surfaces. Briefly, the method determines for each vertex the ratio of the surface of 

the grey/white matter boundary in a sphere centring around this vertex and the 

pail surface. How the local gyrification method relates to traditional two-

dimensional (2D) measurements of gyrification remains to be investigated. Also, 

although this method provides locally specific measurements of gyrification, it 

fails to address the issue of how to map individual cortices for comparison. 

Thompson et al. (2003) proposed a method to generate maps where the individual 

convolutions are mapped in reference to each other, but, this method cannot be 

applied in a single individual.

	

 Another measurement which does not require warping procedures and that 

can be assessed in an individual brain is the fractal dimension. The fractal 

dimension describes the relationship of a quantity of an object over different 

spatial resolutions, giving an indication of self-similarity (Mandlebrot, 1967; 

1985). Many objects in nature, including the morphology of the cortex, can be 

described as a fractal (Chuang et al., 1991; Bullmore et al., 1994; Cook et al., 

1995; Free et al., 1996; Kiselev et al., 2003; Im et al., 2006; Zhang et al., 2008; 

Esteban et al., 2009). Kiselev et al. (2003) pointed out that self-similarity of the 

cortex would mean that the statistical properties of the folding pattern of small 

cortical structures would be similar to those of larger cortical structures. As the 

cortex becomes more complex, for example, due to an additional gyrus or sulcus, 

the fractal dimension changes (Jiang et al., 2008). Since the fractal dimension 

captures the complexity of the brain with one number, it is considered to be a 
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compact measure. Despite its compactness, the fractal dimension is sensitive 

enough to show differences between clinical groups and healthy controls 

(Bullmore et al., 1994; Cook et al., 1995; Ha et al., 2005; Pan et al., 2006; Sandu 

et al., 2008; Esteban et al., 2009; King et al., 2009). Variability in the fractal 

dimension between individuals has been related to cortical thickness and folding 

(Im et al., 2006). Further, Im et al. (2006) speculated that folding patterns and the 

frequency of folding are related to each other in many cortical areas. Since 

cortical thickness is measured at the finest spatial scale, and can account for much 

of the variance found in the fractal dimension together with folding area, perhaps 

similarities of cortical thickness and folding within the cortex could be found 

within a spatial scale.

	

 These findings raise the question as to what causes the fractal dimension of 

the brain. The fractal dimension might result from complex processes according to 

which the cortical surface develops that comprises a specific architecture 

including processes like: cell-migration, neuronal differentiation and 

dendrogenesis, cortical lamination and development of thalamo-cortical and 

cortico-cortical connections. The axonal tension theory of van Essen discussed 

earlier could also explain the fractal dimension. Similarly, da Fontoura-Costa 

(2005) proposed that morphologically complex networks, such as the brain, might 

be determined by connectivity patterns of individual morphological structures. 

Such connectivity patterns of individual morphological structures can be 

described as graphs or networks (Da Fontoura-Costa, 2005).

	

 Barbas (1986) studied cortical covariation within an individual cortex 

using axonal tracers in Rhesus monkeys and found that cortico-cortical 

connectivity patterns could be predicted by cortical structure: axons of lower-level 

areas terminated in the lower layers of higher level areas, whereas axons of 

higher-level areas terminated in the upper layers of lower-level areas (Barbas, 

1986; Barbas & Rempel-Clower, 1997). In a follow-up study in 2001, 

Drombowski et al. could relate neuronal density and cortical thickness of the 

individual areas to the different architectonic types for each area. This study and a 

later study (Hilgetag and Barbas, 2005) imply that cortical areas that are 

connected can be described by a similarity in thickness and folding. These studies 

support the idea that areas that project to each other have a similar structure.
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 Finally, during the development and publication of the method presented 

in Chapter 3 three other methods were proposed to describe individual 

morphological networks that were all based on the distance between average 

cortical thickness of any two anatomical areas (Raj et al., 2010; Dai et al., 2011; 

Zhou et al., 2011; note the last two studies were published around the same time 

as the work from Chapter 3). These developments support the need for individual 

network descriptions for morphological data. However these methods differ from 

the current work and also suffer from limitations that the present work tried to 

solve. The method proposed by Raj et al. (2010) is still dependent on group 

averaged data. Also, all these methods depended on anatomical parcellation 

schemes, thus these methods could still suffer from warping procedures (Raj et 

al., 2010; Dai et al., 2011; Zhou et al., 2011). Furthermore, these studies did not 

quantify network properties (Dai et al., 2011; Zhou et al., 2011) or did not 

quantify whole brain structural networks (Raj et al., 2010). Because it is not clear 

whether these descriptions differ from random networks, it is difficult to 

understand the biological meaning of these networks.

	

 To summarise this Section, both the gyrification index and the fractal 

dimension measure the complexity of cortical morphology. While the gyrification 

index can be measured locally, problems associated with matching individual 

cortices remain. In addition, these methods do not quantify complex 

morphological interrelationships between anatomical areas. The fractal dimension 

can be computed within individual brains, but because it is just one number it 

lacks specificity. The work in this thesis further extends these studies with the 

development of a new method that uses graph theory to quantify these complex 

morphological interrelations within individual cortices. The advantage of the new 

method (Chapter 3) is that it does not require warping procedures to match 

individual cortices, and also includes local and global quantifications of networks. 

By describing cortical morphology as a graph it is possible to compare the 

network properties of individuals, but also the distribution of such property values 

between groups. The following Section provides an introduction to the new 

method (more details will be described in Chapter 3).
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2.4 Graph theory and cortical morphology: a new method

The main work in this thesis focussed on resolving the issues posed by current 

methods that extract morphological networks by proposing a new method to 
construct networks from individual cortices, based on intracortical similarities in 

grey matter morphology. The nodes of the networks extracted by the new method 
represent small regions of grey matter, with their three-dimensional structure 

intact, and edges are placed between regions that show statistical similarity. 
Intracortical similarities could be caused by mutually trophic influences (Pezawas 

et al., 2004) or experience driven plasticity (e.g., Andrews et al., 1997; Draganski 
et al., 2004; Mechelli et al., 2004). As discussed above, animal tracer studies have 

found that cortical thickness, folding and neuronal density can predict anatomical 
connectivity (Barbas, 1986; Barbas and Rempel-Clower, 1997; Dombrowski et 

al., 2001). These studies suggest that similarity in thickness and folding might be 
an indication of connectivity between cortical areas.

	

 Only a few studies have tried to quantify patterns of intracortical similarity 
in specific parts of the human brain (Andrews et al., 1997; Kennedy et al., 1998). 

For example, Andrews et al. (1997) found within individual brains that the grey 
matter of the lateral geniculate nucleus, the optical tract and the primary visual 

cortex covary in volume.
	

 The work in this thesis extends these studies. In two different studies, the 

graph theoretical properties of the derived networks were investigated and 
mapped for the first time. The study discussed in Chapter 3 extracted networks 

from a healthy sample, which was scanned at two different time points. Here it 
was hypothesised that if connectivity can be assessed by measuring statistical 

similarity of structure within the cortex, then the associative areas are expected to 
have more connections than, for example, primary sensory areas, resulting in a 

spatially non-uniform connectivity distribution. Such spatially non-uniform 
connectivity distributions have been found in studies that derived morphological 

networks from group data (Lerch et al., 2006; He, Chen et al., 2007; Bassett et al., 
2008). Furthermore, this study compared the results with previous research that 

reported network property values from group morphological, functional and white 
matter magnetic resonance imaging (MRI) data. Finally, the robustness of the 
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method was assessed by measuring the stability of the network statistics between 

two scanning sessions.

	

 The study in Chapter 5 compared the extracted network property values 

between different clinical groups, in order to investigate whether the new method 

would be more sensitive to subtle structural disruptions between groups than 

traditional group based methods. Before, we proceed to those studies, first graph 

theory will be explained and an overview of its measurements is given. 

2.5 Graph theory

Graph theory is a field of mathematics that is used to describe relationships 

between objects from a certain collection (see e.g., Watts and Strogatz, 1998; 
Albert and Barabási, 2002; Newman, 2003). Once it has been established what the 

nodes in a graph (i.e. network) represent they are connected according to rules 
that determine their relationships. For example, social relationships can be 

described as a graph where the nodes represent people and an edge is placed 
between people who are acquainted with each other. How nodes are connected 

impacts the amount of edges (i.e. wiring length) needed, and when wiring length 
is expensive this naturally imposes restrictions on the organisation (i.e. topology) 

of a network. Returning to the social network example, it would be expensive to 
provide a separate and direct physical telephone line connection between every 

individual. Apart from costs that wiring length brings, wiring can also take up 
space. However, the time and/or effort needed to exchange information between 

any two nodes in a graph can dramatically increase when connections are missing. 
These examples illustrate that the wiring scheme of a network gives information 

about its efficiency. A continuum can be defined to categorise networks, based on 
the structure of their wiring scheme, with at one end a regular wiring scheme in 

which nodes are fully connected (e.g., a lattice) and on the other end of the 
continuum a random wiring scheme (i.e., there is no apparent rule to connect one 

node with another; Erdős and Rényi, 1960). It has been shown that a regular 
network uses the most wiring in this continuum to connect every node, but can 

process information in great detail because nodes operate in a cluster (e.g., 
Chklovskii et al, 2004). A random network on the other hand uses minimal wiring 

to connect all nodes, but due to lack of structure in the wiring scheme information 
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exchange might not be optimal (e.g., Chklovskii et al., 2004). However, many 

networks have a wiring scheme that is somewhere in between regular and random 

networks. Such networks are said to be ‘small world’, a term coined by Millgram 

(1967) who estimated that across the world everyone is connected to each other 

through six people (‘six degrees of separation’). Watts and Strogatz (1998) 

suggested that many social and biological networks (such as axonal wiring in C. 

elegans, but also relationships between film actors) are ‘small world’ and 

proposed to quantify this property by comparing network properties of wiring 

length and clustering (i.e., the amount of connections that exist between 

neighbours of a given node) with those of randomised networks.

	

 The (human) brain has been thought to consist of separate modules that 

process specific information (e.g., the occipital lobe is mostly concerned with 

visual information), and these modules can rapidly exchange information via long 

range connections (e.g., the parietal lobe is also known as the ‘associative’ cortex, 

in other words, it associates information from different brain regions), suggestive 

of a small world organisation. The following Sections will give a detailed 

overview of the basic network properties in graph theory, which were used for the 

work in this thesis.

2.5.1 Graph metrics

A network can be described with local properties, that are assessed for every node 
in a network (e.g., the number of connections it has with other nodes), but also 

with global properties (e.g., its size). This Section describes in detail the following 
properties: nodes, edges, size, sparsity, degree, minimum path length, clustering 

coefficient, the small world property and the betweenness centrality.

Node (v)
A node (v) is the fundamental building block of a network. It represents a unit of 

data and is sometimes also called a ‘vertex’ (physics; Newman, 2003).

Edge
An edge can connect any two nodes, signifying a relationship between them such 

as, for example, whether two people are acquainted to each other (Millgram, 
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1967) or whether two neurons are physically connected (C. elegans, Watts and 

Strogatz, 1998). An edge can be weighted or unweighted. A graph containing 

unweighted edges is said to be ‘binary’, and from such a graph only basic network 

properties can be assessed. When a graph is ‘weighted’ more information is 

present in the network. For example in white matter MRI the weight of a 

connection could represent the number of white matter tracts found between two 

nodes, corresponding to the probability whether two nodes are actually connected. 

Furthermore, edges can be ‘directed’ or ‘undirected’, referring to the direction of 

the relationship between two nodes. When this direction is unknown, undirected 

edges are used. However, for example in transportation, directed edges could be 

used to indicate a one-way street. In this thesis ‘connection’ and ‘edge’ were used 

interchangeably, and only undirected and unweighted edges were used in the 

studies described in Chapter 3 and 5.

Size (V)

The size (V) of the network is equal to the number of nodes.

Sparsity (S)

Sparsity (S) is the connectivity density in an unweighted network, which is the 

proportion of connections that are present to the total number of connections 

possible between all nodes in the network (V * (V - 1)). Both size and sparsity 

have a strong influence on other network properties (e.g., van Wijk et al., 2010).

Degree (k)

The degree (k) is simply the number of connections each node vi has with any 

other node vj in the network. Some nodes have many connections and these are 

regarded as hubs. The distribution of the degree over all the nodes in a network 

depends on the type of network: in a regular network this distribution would be a 

delta-function, as all nodes have exactly the same amount of connections (Albert 

and Barabási, 2002). Such a network does not contain hubs. However, in other 

wiring configurations the degree distribution might change its shape, because the 

nodes do not have the same chance of being connected. This is the case in, for 

example, scale-free networks that are characterised by a skewed distribution that 
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follows a power-law (i.e., if one would take the logarithm of the distribution one 

could draw a straight line through it; Albert and Barabási, 2002). Such networks 

have many nodes with a low degree and a few hub nodes with a high degree. The 

internet is an example of a scale-free network, and this property has been related 

to resiliency to random attacks (i.e., random removal of nodes, Cohen et al., 

2000).

Minimum and average path length

The shortest (or minimum) path length Li,j between two nodes vi and vj is the 

minimum number of edges that needs to be travelled to go from a node vi to node 

vj. The average shortest path length of a node vi is the average of its shortest path 

lengths to all other nodes V (Dijkstra et al., 1959; Watts and Strogatz, 1998):

Li =
�V

j=1,j �=i Li,j

V
. (1)

When wiring length is expensive (e.g., in the brain longer and more axons take up 

more space and also bring costs in terms of energy needed for signal transmission) 

then a network that tries to minimise the number of edges to be traversed between 

any two nodes will be more optimal in terms of wiring cost. It has been shown 

(e.g., Watts and Strogatz, 1998) that a regular network can reduce its average path 

length by adding or rewiring random long range connections, because these 

introduce shortcuts in a network, connecting nodes or clusters of a network that 

were previously far apart from each other.

	

 The average minimum path length L of a network is the average of Li over 

all V nodes (Dijkstra et al., 1959; Watts and Strogatz, 1998):

L =
�V

i=1 Li

V
. (2)
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Clustering C: the clustering coefficient ci of a node vi is defined as the number of 

edges kj between its direct neighbours (denoted by subgraph gi) divided by the 

total number of all possible edges in gi (Luce and Perry, 1949; Watts and 

Strogatz, 1998):

ci =
�

kj∈gi
kj

kgi (kgi−1)/2
. (3)

When the clustering coefficient is 1, all the neighbours of node vi are connected 

with each other and form a fully connected cluster. When the clustering 

coefficient is 0, the node vi is not part of a cluster. Nodes in random networks 

usually show zero to little clustering, because the nodes are wired randomly. 

Nodes in regular networks show high clustering because nodes and their 

neighbours are all connected to each other. Clusters can efficiently exchange 

information between nodes, and are therefore regarded as specialised units in a 

network. This property is desirable when information needs to be processed in 

detail. The clustering coefficient Cnetwork of the network is the average clustering 

coefficient ci over all N nodes:

Cnetwork =
�V

i=1 ci
V

. (4)

Small world (σ) 

A network is defined as having the small world property (σ) when it shows more 

clustering than a random network, its average minimum path length remaining 

similar to that of a random graph (Watts and Strogatz, 1998; Humphries et al., 

2006). There are several ways to randomise a network. Networks can be 

compared to fully random graphs (Erdős and Rényi, 1960). However fully random 

networks might show a dependence between clustering coefficient and size and/or 

degree of the network (van Wijk et al., 2010). This relationship is avoided when 

the degree distribution is kept intact during random reorganisation of the network

(Maslov and Sneppen, 2002). Finally, networks can also be compared to regular 

networks (e.g., a lattice). A network can be compared to just one or several 
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random versions of itself to compute the small world property. The advantage of 

computing several h random networks is that the resulting network property will 

be more stable. The small world property is then computed with the average of the 

clustering coefficient and average minimum path length over all the random 

networks (  and  computed as: Crandom = 1/h
�h

i=1 Crandomi  and 

Lrandom = 1/h
�h

i=1 Lrandomi). Some studies recommend generating a hundred 

random networks, because different randomised networks might give different 

network property values. However, this depends on the size of the network under 

investigation: larger networks have less fluctuating graph property values than 

smaller graphs. For the study in Chapter 3, which studied large graphs (i.e. > 1000 

nodes), it was found that 20 random graphs provide stable results as indicated by 

the low variation of the mean clustering coefficient over the random networks 

(measured in 20 random networks from 14 healthy people (280 random networks  

in total, mean size = 6977 nodes) with method proposed in Chapter 3: average  

random clustering coefficient mean = 0.39; min sd = 5.63 x 10-5; max SD = 

0.0001; average random minimum path length: mean = 1.77; min sd = 1.79 x 10-6; 

max SD = 2.44 x 10-5).

	

 The ratio of Cnetwork to Crandom is denoted by γ (Watts and Strogatz, 1998; 

Humphries et al., 2006):

γ = Cnetwork

Crandom
. (5)

For a network to contain the small world property it is required that γ is larger 

than 1, which indicates that the network has more clustering than a random 

network.

	

 The ratio of Lnetwork to Lrandom is denoted by λ (Watts and Strogatz, 1998; 

Humphries et al., 2006):

λ = Lnetwork

Lrandom
. (6)
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For a network to contain the small world property it is required that λ is 

approximately equal to 1. This indicates that the average minimum path length of 

a network is comparable to that of a random network, and therefore it is easier for 

two nodes that are separated by other nodes to exchange information than in a 

regular network. The small world property (σ) is defined as the ratio of γ to λ 

(Humphries et al., 2006):

σ = γ
λ . (7)

When the small world property (σ) of a network is larger than 1, it indicates that 

its topology lies between that of a completely regular (i.e., a lattice) and a 

completely random network. Such architecture is efficient because clusters can be 

highly specialised units of nodes that are densely connected and information can 

be exchanged between clusters via their long range connections (Milgram, 1967; 

Watts and Strogatz, 1998; Albert and Barabási, 2002; Newman, 2003; Sporns et 

al., 2004; 2005). Several studies have shown that networks extracted from 

imaging data contain the small world property (e.g., Achard et al., 2006; Bassett 

and Bullmore, 2006; He et al., 2007; van den Heuvel et al., 2008; Gong et al., 

2009). The anatomical architecture of the macaque and cat cortex based on tracer 

studies is also small world (Sporns and Zwi, 2004). Table 1 summarises all 

neuroimaging studies that have found a small world architecture in the human 

brain (see Section 2.6 for a detailed explanation of this Table).

Betweenness centrality (BC)

The betweenness centrality (BCi) of a node vi quantifies the fraction of shortest 

paths sj,m between nodes vj and vm that run through node vi in the total network G 

(Freeman, 1997):

BCi =
�

i �=j �=minG
sj,m(i)
sj,m

. (8)

The betweenness centrality (BC) of a graph is the average over all nodes:
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BC = 1/V
�

i BCi. (9)

A node through which many shortest paths run has a high betweenness centrality. 

Besides the number of connections a node has, it can also be defined as a hub 

when it has a high betweenness centrality.

	

 The network properties described in this Section are the most basic 

properties to characterise a network. Many more (and more complicated) 

properties exist (see e.g., Albert and Barabási, 2002; Newman, 2005; Rubinov et 

al., 2010) that all describe some topological aspect. Furthermore, some studies 

chose to report the local and global efficiency instead of, or in addition to, the 

properties described in this Section (Latora and Marchiori, 2001). These 

properties are inversely related to the average minimum path length of a network. 

These measures are recently being used more often, because they are also 

applicable in the case of weighted networks. However, because most studies have 

reported the original network measures and because the work in this thesis focuses 

on unweighted networks, this measure was not investigated in the present work.

2.6 Graph theory applied to neuroimaging data

Since 2005, many studies have used graph theory to investigate the topology of 
the human brain in neuroimaging data. Most of these studies have demonstrated in 

healthy samples a non-trivial topology that was significantly different from 
random networks. Because the next Chapter discusses a new method to extract 

single subject grey matter networks, a literature search was performed to 
investigate the range of small world values that have been reported previously in 

healthy subjects.
	

 The literature search was carried out in Pubmed, Web of Science and 

Google Scholar using (combinations of) the following key words: MRI, network, 
graph theory, small world, functional, structural, morphological, white matter, 

grey matter, DTI (i.e., diffusion tensor imaging), DSI (i.e., diffusion spectrum 
imaging). 
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 To facilitate comparability, studies were selected according to the 

following criteria: networks were constructed based on whole brain data from 

healthy subjects, were unweighted and undirected. Furthermore, the size and 

connectivity density (sparsity level) needed to be reported. Finally, the small 

world coefficient must be reported. These criteria excluded the following studies: 

Wang. Li et al., 2010; Wang, Yu et al., 2010; Liao et al., 2011; Iturria-Medina et 

al., 2008; Gong et al., 2009; Lo et al., 2010; Iturria-Medina et al., 2011; Schwarz 

and McGonigle 2011 (note this is the only paper that investigated networks build 

from negative correlations); Yan et al., 2011; Dosenbach et al., 2007; Astolfi et al., 

2007; Deshpande et al., 2009; Fair et al., 2009; Zhang, Cai, et al., 2010; Zhang, 

Wang, et al., 2011; Yu et al., 2011 ; van den Heuvel, Stam, Kahn et al., 2009; van 

den Heuvel et al., 2010 Raj et al., 2010; Yuan et al., 2010; Fransson et al., 2011; 

Archard and Bullmore, 2007; Cecchi et al., 2007; Hagmann et al., 2008; Gong, 

Rosa-Neto et al., 2009; He, Wang, Wang et al., 2009; Ferrarini et al., 2009; 

Valencia et al., 2009; Wang et al., 2009; Sepulcre et al., 2010; Wang, Metzak et 

al., 2010; Ginestet and Simmons 2010; Burdette et al., 2010; Chanraud et al., 

2010; Sheppard et al., 2011; Shu et al., 2011; He et al., 2009; Lv et al., 2010; 

Telesford et al. 2010; Fan et al., 2011; Wu, Taki, Sato, Kinomura et al., 2011; Wu, 

Taki, Sato, Sassa et al, 2011).

	

 The details of the healthy samples from the selected studies are 

summarised in Table 1. The studies were further categorised based on the imaging 

modality as functional (using fMRI), white matter (using data from DTI or DSI) 

and grey matter (using either cortical thickness or volume from grey matter 

segmentations of structural MRI).

	

 Figure 1 gives an overview of the sparsity levels that the studies have 

investigated, with the corresponding maximum and minimum small world values. 

The largest variation of small world values (between 1.90 and 111.38) can be seen 

at sparsity levels between 0 and 10% existing connections. This might be due to 

differences in network size across studies. On the other hand the variability might 

reflect that network topologies become more unstable when more edges are 

removed (e.g., because nodes get disconnected).

	

 For sparsity levels > 40% connections, small world values converge to 1. 

For intermediate sparsity levels between about 10% and 40% connections, the 
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small world value varies between 3 and 1.10. This Figure suggests that for these 

intermediate sparsity levels the small world property is stable across studies of 

different modalities and different sizes, suggesting that network topologies are 

most robust in this sparsity range.

34



Table 1
Overview of neuroimaging network studies, categorised in functional, white and grey matter MRI.
Table 1
Overview of neuroimaging network studies, categorised in functional, white and grey matter MRI.
Table 1
Overview of neuroimaging network studies, categorised in functional, white and grey matter MRI.
Table 1
Overview of neuroimaging network studies, categorised in functional, white and grey matter MRI.
Table 1
Overview of neuroimaging network studies, categorised in functional, white and grey matter MRI.
Table 1
Overview of neuroimaging network studies, categorised in functional, white and grey matter MRI.

Study Subjects (F)
age +/- SD or 
[range] Network Size Atlas additional info

functional MRIfunctional MRIfunctional MRIfunctional MRIfunctional MRIfunctional MRI

1. Eguíluz et al., 
2005.

7 (nr) nr 4891 - 31503 Voxel wise 3 x 
3.5 x 3.5 mm3

Finger tapping 
task

2. Salvador et al., 
2005.

12 (5) 30 ([23 - 48]) 45 AAL Resting state

3. Achard et al., 
2006.

5 (3) nr [25-35] 90 AAL Resting state

4. Liu et al., 2008. 31 (15) 26+/-4 90 AAL Resting state

5. Supekar et al., 
2008.

18 (11) 62.84 [37 - 77] 90 AAL Resting state

6. van den Heuvel 
et al., 2008.

28 (14) 25.1 +/-7.1 ≈ 10000 Voxel wise 4 
mm3

Resting state

7. Nakamura et al., 
2009.

8 (3) [19 - 51] 56 nr Resting state

8. Zhang et al., 
2009.

1 (nr) nr 1397 Voxel wise 6 
mm3

Finger tapping 
task

9. Wang, Wang, 
Zang et al., 2009.

18 (9) [21 - 25] 20 - 90 AAL, ANIMAL Resting state

10. Supekar et al., 
2009.

22 (11) 20.4 [19 - 22] 90 AAL Resting state

11. Sanz-A. et al., 
2010.

21 (13) 70.7 +/- 6 90 AAL Resting state

12. Zhang et al., 
2010.

4 (nr) nr 2255 Voxel wise, 6 
mm3

Finger tapping 
task

13. Liao et al., 
2010.

27 (8) 24.1 (17- 51) 90 AAL Resting state

14. Fornito, 2010. 30 (11) 26.77 +/- 10.30 84 - 4329 AAL and custom 
ROI

Resting state

15. Spoormaker et 
al., 2010.

25 (12) 24.7 +/- 3 90 AAL Resting state

16. Lynall et al., 
2010.

15 (1) 33.3 +/- 9.2 90 AAL Resting state

17. Alexander-Block 
et al., 2010.

19 (10) 19 +/- 4 100 HO Resting state

18. Hayasaka et al.,  
2010.

10 (5) 27.7 +/- 4.7 90 &16000 AAL & voxel 
wise, 4x4x5 mm3

Resting state

19. Tian et al., 
2011.

86 (48) 20.8 +/- 1.7 45 AAL Resting state

20. Ferrarini et al., 
2011.

20 (0) 23.95 +/- 2.52 21954 Voxel wise , 
4mm3

Resting state

21. Whitlow et al., 
2011.

30 (15) 21.3 ([18 - 25]) 116 AAL Resting state

White matter
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Study Subjects (F)
age +/- SD or 
[range] Network Size Atlas additional info

22. Hagmann et al., 
2007.

2 (nr) nr 956 & 1013 Custom DSI

23. Gong, He, et al., 
2009.

80 (42) nr [18 - 31] 78 AAL DTI

24. Li et al., 2009. 79 (35) 23.8 [17 -33] 90 AAL DTI

25. Shu et al., 2009. 17 (7) 23 -19 - 28] 90 AAL DTI

26. Vaessen et al., 
2010.

6 (1) nr [23 -28] 111 WFUpickatlas DTI

27. Zalesky, et al., 
2010.

3 (1) 26.67 +/- 4.73 82 - 4000 AAL and custom 
ROI

DTI & HARDI

28. Li et al., 2011. 5 (nr) nr 68 MNI atlas DTI

29. Wen et al., 
2011.

342 (184) 79.7 +/- 4.55 68 Freesurfer atlas DTI

30. Bassett et al., 
2011.

7 (nr) nr 54 - 880 AAL, HO, 
LPBA40

DSI & DTI

31. Zalesky, et al., 
2011.

32 (17) 33 +/- 13 82 AAL DTI

Morphological networksMorphological networksMorphological networksMorphological networksMorphological networksMorphological networks

32. He, Chen and 
Evans, 2007.

124 (53) 24.38 +/- 4.25 45 ANIMAL Cortical 
thickness

33. He et al., 2008. 97 (71) 75.93 +/- 9.03 54 ANIMAL Cortical 
thickness

34. Schmitt et al., 
2008.

600 (268) 11.08 +/- 3.43 54 ANIMAL Cortical 
thickness

35. Bassett et al., 
2008

259 (nr) nr 104 BA with 
WFUPickatlas

Cortical 
volume

36. Sanabria-Diaz 
et al., 2010.

186 (66) 32.58 +/- 9.50 82 & 56 AAL & Jacob 
surface

Cortical surfce 
descriptors & 
thickness

37. Zhu et al., 2010. 428 (231) & 
374 (170)

46.7 +/- 1.4 & 
66.6 +/- 1.4

90 AAL Cortical 
volume

38. Yao et al., 2010. 98 (49) 77.27 +/- 4.66 90 AAL Cortical 
volume

39. Bernhardt et al., 
2011.

47 (24) 32 +/- 12 52 ANIMAL Cortical 
thickness

40. Hänggi et al., 
2011.

24 (healthy) 27.3 +/- 10.1 154 & 2366 Freesurfer & 
custom

Cortical 
thickness

41. Tijms et al., 
2011.

14 (5) 34.80 +/- 8.32 6982 Custom Intracortical 
similarity
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F is female, SD is standard deviation, fMRI is functional magnetic resonance imaging, DSI is 

diffusion spectrum imaging, DTI is diffusion tensor imaging;  HARDI is  high angular resolution 

diffusion tensor imaging; AAL is Automated Anatomical Labeling atlas (Tzourio-Mazoyer et al., 

2002), HO is Harvard-Oxford atlas, LPBA40 is LONI probabilistic atlas (Shattuck et al., 2008).

F is female, SD is standard deviation, fMRI is functional magnetic resonance imaging, DSI is 

diffusion spectrum imaging, DTI is diffusion tensor imaging;  HARDI is  high angular resolution 

diffusion tensor imaging; AAL is Automated Anatomical Labeling atlas (Tzourio-Mazoyer et al., 

2002), HO is Harvard-Oxford atlas, LPBA40 is LONI probabilistic atlas (Shattuck et al., 2008).

F is female, SD is standard deviation, fMRI is functional magnetic resonance imaging, DSI is 

diffusion spectrum imaging, DTI is diffusion tensor imaging;  HARDI is  high angular resolution 

diffusion tensor imaging; AAL is Automated Anatomical Labeling atlas (Tzourio-Mazoyer et al., 

2002), HO is Harvard-Oxford atlas, LPBA40 is LONI probabilistic atlas (Shattuck et al., 2008).

F is female, SD is standard deviation, fMRI is functional magnetic resonance imaging, DSI is 

diffusion spectrum imaging, DTI is diffusion tensor imaging;  HARDI is  high angular resolution 

diffusion tensor imaging; AAL is Automated Anatomical Labeling atlas (Tzourio-Mazoyer et al., 

2002), HO is Harvard-Oxford atlas, LPBA40 is LONI probabilistic atlas (Shattuck et al., 2008).

F is female, SD is standard deviation, fMRI is functional magnetic resonance imaging, DSI is 

diffusion spectrum imaging, DTI is diffusion tensor imaging;  HARDI is  high angular resolution 

diffusion tensor imaging; AAL is Automated Anatomical Labeling atlas (Tzourio-Mazoyer et al., 

2002), HO is Harvard-Oxford atlas, LPBA40 is LONI probabilistic atlas (Shattuck et al., 2008).

F is female, SD is standard deviation, fMRI is functional magnetic resonance imaging, DSI is 

diffusion spectrum imaging, DTI is diffusion tensor imaging;  HARDI is  high angular resolution 

diffusion tensor imaging; AAL is Automated Anatomical Labeling atlas (Tzourio-Mazoyer et al., 

2002), HO is Harvard-Oxford atlas, LPBA40 is LONI probabilistic atlas (Shattuck et al., 2008).
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Figure 1. An overview of the sparsity levels  that studies have used to investigate small world 

values in binarised networks of functional,  white and grey matter MRI. White matter involves 

diffusion techniques such as DTI and DSI, while grey matter refers to grey matter segmentations of 

structural MRI. For each minimum and maximum sparsity  value the corresponding small world 

value is indicated. The grey dotted line indicates the 23% sparsity  level,  that was investigated in 

the study in Chapter 3. The grey values along this line were reported by the corresponding  studies 

for a sparsity level of 23%. * this study only reported the average small world value over the 

explored sparsity range.
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3. Study I: Extracting networks based on 
intracortical similarities from individual grey 
matter segmentations in a healthy population

This Section presents a contribution to the important issue of characterising 

cortical morphology in individual grey matter scans. The main question under 

investigation was whether a statistical description of grey matter structure of 

individual cortices could be derived from intracortical similarities. Here the 

method will be introduced and explained in detail. Then results will be discussed, 

after application of the method to a healthy sample. The work in this Chapter has 

been published in Tijms et al. (2011).

3.1 Introduction

The work in this Chapter investigated whether graph theory could be used to 

quantify the morphology in individual brains, based on intracortical similarities.  
Up to now, morphological networks describe covariation between anatomical 

areas across people, representing group averaged data (e.g., He, Chen et al., 2007; 
Bassett et al., 2008). As described in the previous Chapter, animal tracer studies 

have found that morphological measures such as cortical thickness, folding and 
neuronal density can predict anatomical connectivity (Barbas, 1986; Barbas and 

Rempel-Clower, 1997; Dombrowski et al., 2001). These studies suggest that 
similarity in thickness and folding might be an indication of connectivity between 

cortical areas. Furthermore, the study from Andrews et al. (1997) was one of the 
few that have quantified the relationship between covariation of cortical 

morphology and anatomical connectivity in individual brains. Investigating the  
the lateral geniculate nucleus, the optical tract and the primary visual cortex, they 

found that all these structures covaried in grey matter volume.
	

 Here the current work further extended these studies by proposing a new 

method that extracts networks from individual grey matter MRI segmentations. In 
these networks the nodes represent small cortical regions with their three-

dimensional structure intact, that are connected when they show structural 
similarity. The method was applied to a sample of 14 healthy subjects, who where 

scanned at two different time points in previous work (Moorhead et al., 2009; 
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Gountouna et al., 2010). For the first time, the graph theoretical properties of these 

networks were studied and compared to the results from previous studies that 

constructed networks from group morphological, functional and white matter 

magnetic resonance imaging (MRI) data. It was proposed that if intracortical 

similarities are related to anatomical connectivity, then the associative areas were 

expected to show more intracortical similarities than, for example, primary 

sensory areas, resulting in a spatially non-uniform connectivity distribution. Such 

spatially non-uniform connectivity distributions have been found in studies that 

derived morphological networks from group data (Lerch et al., 2006; He, Chen et 

al., 2007; Bassett et al., 2008). Finally the robustness of the method was assessed 

by measuring the stability of the network statistics between two scanning 

sessions.

3.2 Method description

Figure 2 shows a schematic overview of the method that is completely automated 
and data-driven, and thus requires no a priori hypotheses about the regions of 

interest. Here a detailed description of the method in its final form is given. 
Details about scan acquisition and preprocessing can be found in Section 3.3. The 

current Section will conclude with an overview of methodological considerations 
during the development of the method.

	

 The method starts with dividing the grey matter segmentation of an 
individual brain into 3 x 3 x 3 voxel cubes commencing from the first non-empty 

voxel, in a manner similar to methods that match scans from different modalities 
(Borgefors et al., 1997; Ourselin et al., 2000). Using cubes kept the three-

dimensional structure of the cortex intact thereby spatial information from the 
MRI scan is used in combination with the grey matter partial volume values in the 

voxels. By keeping the spatial information intact, the cubes contain a quantity that 
reflects the local thickness and folding structure of the cortex. In contrast, cortical 

volume measures only the number of voxels at a location and thus does not 
include information concerning the spatial relationship between voxels. Similarly, 

cortical thickness measures do not contain information about the three-
dimensional folding structure of the cortex. The size of the cubes was constrained 

by two factors: (i) The minimum spatial resolution that still captures cortical 
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folding has been shown to be 3 mm (Kiselev et al., 2003); (ii) Practical 

computational limitations exist with large matrices. Therefore we used a cube size 

of 3 x 3 x 3 voxels, corresponding to 6 x 6 x 6 mm3. Each cube is represented by a 

different node v in the network. A network contained on average 6977 nodes (std 

= 783.92, over both subjects and runs). The next Section will explain in detail 

how the networks were constructed.
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Figure 2.  General pipeline of the extraction of individual networks. After preprocessing the grey 

matter was divided into 3 x 3  x 3 voxel cubes, visualised by a white voxel in the centre of each 

cube (1). The red arrows point to two example cubes vj and vm (note that the cubes were magnified 

for illustration purposes). The similarity between all V cubes within a scan was computed with the 

correlation coefficient, storing  the result in a matrix with 1 to V rows and columns (2).  In 3) the 

similarity matrix was binarised,  with a threshold that ensured a 5% chance of spurious 

connections for all individuals (corresponding to a significance level of p = 0.05 corrected for 

multiple comparisons by the false discovery rate technique using an empirical null distribution). 

Twenty random matrices that kept intact the spatial degree distribution were generated for each 

binarised similarity matrix (4). Finally the networks were constructed and the degree, betweenness 

centrality, the path length, clustering coefficient and small world property were calculated from the 

extracted and randomised networks (6).
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3.2.1 Intracortical similarity

To construct a network, two nodes vj and vm were connected when their similarity 

metric exceeded a certain threshold. After explorations of several similarity 
metrics (see Section 3.2.4), the correlation coefficient was chosen to quantify the 

structural similarity between two cubes because it is simple to understand and 
implement, while at the same time fast to compute (Lewis, 1995; Nikou et al., 

1999; Weese et al., 1999; van Court et al., 2005; Penney et al., 2008). 
Additionally, the correlation coefficient does not require centering of the data, 

because it is normalised by the standard deviation of the cubes. The numerator of 
the correlation coefficient rjm between cubes vj and vm calculates the sum over the 

product of the differences between the cubes’ values at each voxel location i = 1, 

2, ... n for n voxels (after subtraction of the cubes’ average values, respectivelyvj 

and vm ). The denominator of the correlation coefficient is the product of the 

cubes’ standard deviations:

rjm =
�n

i=1(vji−vj)(vmi−vm)√�n
i=1(vji−vj)2

√�n
i=1(vmi−vm)2

. (10)

Cubes with zero variance were excluded (average < 0.01%). Given that the cortex 
is a curved object, two similar cubes could be located at an angle from each other, 

which could decrease their similarity value. As the cubes were constructed from 
discrete MRI data, each seed cube vj was rotated by an angle θ with multiples of 

45° and reflections over all axes to find the maximum correlation value with target 
cube vm:

rmax
jm = argmax

θ

� �n
i=1(vji(θ)−vj)(vmi−vm)√�n

i=1(vji(θ)−vj)2
√�n

i=1(vmi−vm)2

�
. (11)

In theory, other angles could be chosen as well. However, then interpolation 

between voxels would be necessary, which adds noise to the data and entails 

computational difficulties. In the next Section the influence of rotation on the 

value of the similarity metric was investigated by means of a simulation study, 

using a simplified model for the structural MRI data. Briefly, it was found that 
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using angles with multiples of 45° recovered 99% of the similarities, suggesting 

that these angles are sufficient to correct for rotation.

	

 Using a simpler metric of similarity, namely the mean absolute difference, 

it further investigated whether the correlation coefficient could adequately detect 

structural similarity between two cubes. Figure 3 contains a plot of the mean 

absolute difference in voxel intensities between a thousand randomly selected 

cubes and all other cubes of a randomly selected network, confirming that the 

more similar two cubes were (as measured by the absolute difference in their 

voxel intensities) the higher the similarity coefficient. Because the correlation 

coefficient normalises the data in each cube, it was preferred over the simpler 

absolute difference metric.
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Figure 3. Structural similarity between cubes (measured as the mean absolute difference between 

corresponding voxel values of two cubes) as a function of the correlation coefficient. The more 

similar two cubes are, the lower the mean absolute difference between them and the higher the 

correlation coefficient. The vertical grey line indicates the threshold value for this specific network 

(edges were only placed between cubes when their correlation value exceeded this threshold).
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3.2.2 Influence of rotation on the similarity metric: a simulation.

The correlation coefficient was computed for different rotation angles to extract 

similarities between cortical patterns that might be located at an angle from each 

other due to the curved nature of the cortex. Here a simulation study was 

performed to investigate the effect of such rotations on the correlation coefficient 

and the minimum number of angles that need to be taken into account to correct 

for these effects. Squares with simulated data were used instead of cubes, because 

squares need to be rotated around only one axis and therefore require less 

computational resources. A simple model was constructed by  filling squares with 

random grey scale values between 0 and 1, where the value represents grey matter 

intensity at  the centre of the pixel. Then the data was smoothed to add spatial 

relationships to the squares as follows: the pixel values were averaged with those 

from neighbouring pixel values. To ensure variation, interpolation started at 

randomly chosen pixels and with randomly chosen direct neighbours. The linear 

interpolation between neighbouring pixels was intended to mimic spatial 

relationships between observed voxels in MRI. It must be noted that this is an 

oversimplification of the cortical geometry that is observed in structural MRI and 

is merely intended to investigate the influence of rotation on cube matching. More 

sophisticated MRI simulations models exist such as Brainweb (http://

mouldy.bic.mni.mcgill.ca/brainweb), and in the future such models should be used 

to further investigate the influence of rotation on the value of the similarity metric.

 The influence of rotation on the correlation coefficient was assessed by 

comparing each of a 1000 different squares while rotating them for every  degree 

between 0° and 360°. Two squares were considered to be similar when their 

correlation coefficient value exceeded the significance level of pcorrected < 0.05 

(threshold determined with an empirical null distribution to correct for multiple 

comparisons as in the main Section). Figure 4a shows how, for a thousand squares 

and their copies, the correlation coefficient decreased with increasing angles up to 

180° and that only  33% of all tests reached significance, which confirmed the 

necessity to correct for rotation.

The minimum number of angles necessary to correct for rotation was determined 

by computing the correlation coefficient  after rotating the stationary cube by 
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multiples of either 90° (0°, 90°, 180° and 270°) or 45° (0°, 45°, 90°, 135°, 180°, 

225°, 270°, 315°). In theory, other angles could be chosen as well. However, for 

other angles interpolation between voxels would be necessary, which brings 

computational difficulties and also adds noise to the original data. Figure 4b 

shows that correcting for rotation with angles at multiples of 90° recovered of 

66% of the similarities, but missed all the rotations in the range with multiples of 

30° to 60°. Adding angles with multiples of 45° recovered 99% of the similarities. 

Just 1% of the patterns, only occurring in the range with multiples of 25° to 35°, 

did not reach the significance threshold, suggesting that  using angles with 

multiples of 45° is sufficient to correct for rotation. To explore the influence of 

these two different sets of angles to correct  for rotation on the network property 

values, both extractions were compared to each other and these results will be 

discussed in Section 3.4.2.
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Figure 4.  Simulation of the influence of rotation on the similarity measure without correction (a), 

correcting with multiples of 90° angles (b) and with multiples of 45° angles (c). All plots show for 

the average correlation value and the corresponding 95% confidence interval for a thousand 

randomly generated squares and their rotated identical copies for 0° to 360° degrees with steps of 

1°.  As in the main text, two patterns were considered to be identical when their correlation 

coefficient reached p < 0.05 significance, corresponding to the following thresholds with 

correlation values higher than 0.58 (a), 0.73  (b) and 0.78 (c; all thresholds determined with false 

discovery rate using  an empirical null distribution). When not corrected for rotation only 33% of the 

similarities were found. This percentage increased to 66% when corrected with multiples of 90° 

angles and 99% when corrected with multiples of 45° angles.
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3.2.3 Binarisation of the networks

The similarity matrices were binarised to construct undirected and unweighted 

graphs. The graphs were undirected because it is not feasible to infer causality 

from correlations. Although continuous weights would contain the most 

information (Barrat et  al., 2004), the present study assessed only  the basic 

network topology and therefore the networks were binarised.

 To binarise the networks, a threshold was determined for each individual 

based on the significance of the correlations. Because correlations were computed 

between on average (over subjects in the first run) 6982 nodes and maximised for 

rotation and reflection, it was necessary  to correct for multiple comparisons when 

determining the threshold. The false discovery rate (FDR) technique with the use 

of an empirical null model was employed to correct for multiple comparisons 

(Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 2001; Noble, 2009). 

The false discovery  rate is the proportion of false positives within a set of 

significant scores. This proportion corresponds to the area greater than a threshold 

value in the null model score distribution. An advantage of this approach is that all 

individuals will have the same 5% chance of spurious correlations. In the current 

study, similarities between small regions of grey matter were determined by  the 

spatial organisation of grey matter voxels. Therefore, empirical null models were 

constructed by  randomly permuting the locations of all voxels from the original 

data, and so removing the spatial information from the original scan while 

keeping all other information constant (mean and standard deviation of the 

intensity value distribution). A score distribution was compiled by computing the 

similarities between all cubes extracted from the randomised scan. Next, the 

threshold was set such that the area to the right of that score represented the 

probability  that this score was observed with a p-value of 0.05. After the threshold 

was determined, it was used to binarise the networks where the presence of an 

edge was indicated by  1 (a correlation greater than the threshold) and absence of 

an edge indicated by 0 (a correlation lower than the threshold). In this study the 

word ‘connection’ refers to these edges, as they connect the nodes in our 

networks. These connections should not be confused with anatomical connections 

and indicate whether any two cubes have statistically similar grey matter 
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morphology. The sparsity  of the networks was defined as the connectivity density 

within a matrix. This is simply the percentage number of existing edges compared 

to the maximum number of edges possible (V * (V-1),where V is the number of 

nodes). The binarised networks had an average sparsity of 23% (SD = 1%, over 

both subject and runs).

3.2.4 Methodological considerations during method development

During the early stages of the method development, a great amount of time was 

invested to investigate the most optimal way of extracting the cubes from the grey 

matter segmentations. Previous versions of the method used a fixed template 

approach, in which all the indices where hand-coded. Briefly, the indices for each 

cube in a voxel were coded for the first ‘slice’ of cubes, and these were copied for 

the complete brain volume. This approach corresponds to a rigid grid, which can 

start at an arbitrary point in the MRI volume, and could not be easily adapted to 

change, for example, the size of the cubes. Also, depending on the start of the 

cube extraction (the first non-empty voxel), the total number of cubes extracted 

can vary slightly when moving the grid one or two voxels over any axis. 

Comparison of the properties from differently extracted networks within the same 

individual showed that these were highly stable for different extractions, but not 

identical (all properties correlated with r > 0.9). Therefore, the final version of the 

method was fully automated to easily change the dimensions of the cubes and also 

to extract the minimum number of cubes to make sure that the extracted network 

was maximally comparable between scans of the same subject.

	

 Furthermore, during the development of the method computational 

resource issues were encountered, due to the large size of the similarity matrices. 

One solution was to sample the voxel resolution to 2mm isotropic voxels, because 

the use of smaller voxel resolutions led to matrices that were too large for matrix 

computations. Another solution was to optimise the code: first runs of the code 

took about 9 hours per scan to construct the similarity matrix and an additional 10 

hours to compute the graph properties. The final version of the method takes just a 

few minutes to compute the similarity matrix, and in total 15 minutes to compute 

the graph theoretical properties (including those from the twenty random 

networks). Solutions to speed up computations included changes to data types that 
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take less memory than the standard double precision numbers in Matlab, but also 

precomputing parts of equations that remain constant. For example, the 

computation time of the correlation coefficient between all cubes within a scan 

was dramatically reduced by using a fast procedure as described by Lewis (1995).

	

 Another issue that took time was the investigation of the most suitable 

metric to quantify the structural similarity between two cubes. Although the 

correlation coefficient is simple to compute, it might not be ideal for grey matter 

data as its values are bounded between 0 - 1 and therefore violate the assumption 

of normality. Future research is aimed at investigating the use of non-parametric 

tests of association like Spearman’s ρ. Other, simpler metrics than the correlation 

coefficient such as the absolute difference between corresponding voxels in cubes, 

the Dice coefficient (Dice, 1945) and variations on the Dice coefficient 

(e.g.,Jaccard index, Hamming distance) have also been studied and it was found 

that these suffer from limitations. For example, the mean absolute difference 

underestimates structural similarity between cubes that differ only slightly in 

intensity value as a result of spatial inhomogeneities in the data (i.e., a smooth 

spatial distortion in MRI data). The Dice coefficient (and similar measures) on the 

other hand give an index of the binary overlap in structure between cubes, not 

taking into account information about their voxel values. During this study, 

attempts were made to adjust the Dice coefficient to include voxel intensity 

values, however, this resulted in a less elegant measure than the correlation 

coefficient. A more complicated metric than correlation was also explored, namely 

mutual information (based on Russakoff et al., 2004). However, this measure 

proved to be too computationally expensive for the number of cubes that needed 

to be compared. From these tests the results from the mean absolute difference 

comparisons between cubes were used to assess the performance of the 

correlation coefficient in Chapter 3.

	

 Another complex issue concerned the correction for rotation. Because 

MRI data is discrete it is not straightforward to rotate the cubes for arbitrary 

degrees, because doing so would entail interpolation of the voxels within the 

cubes. First attempts of implementing rotation demonstrated that interpolation 

dramatically changed the voxel intensities from their original values. Additionally, 

it became unclear how to match corresponding voxels between two cubes, 
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because rotation at some angles shifts voxel values outside the boundary of the 

cube. Therefore it was decided to rotate cubes with multiples of 90°. It was 

complicated and not straightforward to determine whether this approach of 

correcting for rotation with only four angles over all axes would be sufficient to 

recover existing similarities. To study whether correcting for multiples of 90° 

would be sufficient, attempts were made to generate MRI data with a known the 

spatial structure. However, these attempts did not led to convincing models of 

brain structure and it was decided to simulate the structure in cubes as described 

in Section 3.2.2. The simulation study showed that angle multiples 45° recovered 

more similarities than angle multiples of 90°, and these rotations could be 

achieved by nearest neighbour interpolation (that did not distort the voxel values).

	

 All routines to extract graph theoretical properties were implemented in 

Matlab and optimised to run as fast as possible. The outcome of these 

measurements were compared to those extracted with the publicly available ‘brain 

connectivity toolbox’ (Rubinov et al., 2010). After adjusting the scripts from the 

brain connectivity toolbox, to enable it to run with the large matrices from the 

current work, the network property values were found to give identical results 

supporting that the graph theoretical properties were correctly implemented.

	

 This Section has summarised just a selection of issues encountered, and it 

serves to illustrate the variety of problems that need to be solved when a new 

method is developed. The next Sections will describe the details of the subjects 

and scans that were used for this specific project.

3.3 Subjects and scan information

In this Section details are given about the sample to which method was applied, as 
well as details concerning the acquisition and preprocessing of the scans and a 

summary of the measures that were assessed in the networks.

3.3.1 Subjects

The data used here was previously collected for the CaliBrain study (Moorhead et 

al., 2009; Gountouna et al., 2010). Fourteen healthy volunteers (nine male, mean 

age at first scan 34.80 years, std = 8.23) participated in CaliBrain. All participants 

were native English speakers, right handed (self reported), had no history of 
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substance abuse, nor a history of diagnosed neurological disorder, major 

psychiatric disorder or treatment with psychotropic medication. All participants 

provided written informed consent and the study was approved by the appropriate 

research ethics committee.

3.3.2 Data acquisition

The scans were acquired at the University of Edinburgh (The Division of 
Psychiatry and the Scottish Funding Council Brain Imaging Research Centre 

within the Centre for Clinical Brain Sciences). The scanner was manufactured by 
General Electric (GE Healthcare, Milwaukee, Wisconsin) with a field strength of 

1.5T and standard quadrature head coil (for more details see Moorhead et al., 
2009). The subjects were scanned twice within a six month period. At each visit a 

high resolution T1-weighted scan was acquired using a 3D inversion recovery-
prepared fast gradient echo volume sequence with a coronal orientation and the 

following parameters: repetition time (TR) of 8.2 ms; echo time (TE) of 3.3 ms; 
inversion time (TI) of 600 ms; flip angle of 15°; matrix size of 256 x 256; field of 

view (FOV) of 220 mm2; 128 slices with 1.7 mm thickness without a gap, 
resulting in voxels with size 0.86 x 1.7 x 0.86 mm3.

3.3.3 Preprocessing and segmentation

Twenty-eight T1-weighted scans were preprocessed using Statistical Parametric 

Mapping version 5 (SPM5, Wellcome Department of Cognitive Neurology and 

collaborators, Institute of Neurology, London, UK: http://www.fil.ion.ucl.ac.uk/

spm/software/spm5) with Matlab version 7.3.0.298 R2006b (Mathworks, Natick, 

MA, USA), on a Dell Precision 690 workstation with RedHat Enterprise Linux 

workstation WS version 4. First, the origin of all scans was manually set to the 

anterior commissure. Next, the scans were segmented with the Voxel Based 

Morphometry toolbox version 5 (VBM5, University of Jena, Department of 

Cognitive Neurology, C. Gaser: http://dbm.neuro.uni-jena.de/vbm) using a Hidden 

Markov Random Field (HMRF), without SPM priors, including bias correction 

and the option ‘lightly cleaned’ (as defined by VBM5) into grey matter, white 

matter and cerebrospinal fluid in native space. The HMRF used spatial constraints 

based on neighbouring voxels in a 3 x 3 x 3 voxel cube, increasing the accuracy of 
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segmentation. Note that this also introduces smoothing of the data. No further 

smoothing was applied during segmentation. After segmentation the data was 

resliced to 2 x 2 x 2 mm3 voxels. All further data analyses were implemented in 

Matlab version 7.3.0.298 R2006b (unless specified otherwise).

3.3.4. Statistical analyses

In all networks the clustering coefficient, the shortest path length, the betweenness 
coefficient were determined for all nodes in each network, as well as their network 

averages. The small world coefficient was also measured, using the average 
clustering coefficient and average shortest path length from 20 randomised 

versions per network and averaging over these networks. These metrics were 
described in detail in Section 2.3.2, and were implemented in Matlab. Correlations 

between the metrics were assessed in Matlab. Anderson-Darling tests supported 
that all graph properties were approximately normally distributed (all p > 0.05), 

and therefore parametric tests were used in subsequent analyses. One sided paired 
t tests were performed in R version 2.10 (http://cran.r-project.org), to test whether 

the clustering coefficient of the individual networks was larger than the average 
clustering coefficient from 20 randomised versions of the networks. Two sided 

paired t tests were performed to test the difference between the extracted and 
random average minimum path lengths. Furthermore, the intraclass correlation 

coefficient (ICC) was used to estimate the reproducibility of all graph theoretic 
measures over two time points. McGraw and Wong (1996) defined the ICC as the 

ratio of the variance between subjects ( ) to the total variance in test scores 

( ):

. (12)

The within-subject variance ( ) gives an indication of measurement error 

between repeated measurements. The ICC is close to 1 if the measurements of two 

repeated scans are consistent for each subject in the sample. Computation of the 
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ICC was performed in R version 2.10 (http://cran.r-project.org, using the ‘irr’ 

package).

3.4 Results

3.4.1 Influence of rotation on the network property values

The values of the properties were compared between networks that were extracted 

with a rotation correction with angle multiples of 90° and 45°, to investigate the 

influence of different correction schemes on network topology.

Using the same threshold of pcorrected < 0.05 to binarise the networks (determined 

with an empirical null model that was explained in Section 3.2.3), the new 

networks were more densely connected (23% connections) in comparison with the 

original networks (21% connections). This means that more connections were 

added to the networks when correcting the correlation coefficient with multiples 

of 45°. Note that although the amount of comparisons was doubled in comparison 

with the rotation correction with 90° the number of additional similarities only 

increased with 2%. This increase in number of connections was accompanied by a 

slight increase of the clustering coefficient from 0.50 to 0.53 and a decrease of the 

small world coefficient from 1.34 to 1.28. The average minimum path length was 

similar (Lold = 1.85 vs. Lnew = 1.86).

	

 The increased number of connections in the networks extracted with angle 

multiples of 45° appeared to be uniformly distributed over the network and not 

specific to certain nodes, as > 90% of the hubs (i.e., nodes with a degree higher 

than one standard deviation above the mean degree) remained stable in the 

individual networks. This was further supported by the finding of a highly stable 

spatial distribution of the clustering coefficient and degree values of the nodes 

(measured with the correlation coefficient within individuals, respective average r 

= 0.94, p < 0.01 and r = 0.91, p < 0.01). The stability of the spatial distribution of 

the nodal values suggests that the network property values are stable with regard 

to correction of rotation. All the following results discussed were extracted using 

angle multiples of 45°, because the rotation simulation study in Section 3.2.2. 

showed these angles recovered 99% of the similarities.
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3.4.3 Graph properties of the individual networks

For the first time, this method permitted the investigation of morphological 

networks extracted from individual brains. Initially, to assess whether the 
extracted networks were small world, their average clustering coefficient and 

average minimum path length were compared to those from random networks. 
Figure 5a shows that the individual clustering coefficients of the extracted 

networks were higher than those from the randomised networks (one-sided paired 
t-tests, range of t values: min = 55.78; max = 147.92; all p < 2.2 x 10-16). Figure 

5b shows that the individual average minimum path lengths were significantly 
higher than those from the random networks (two-sided paired t test, t values 

range: min = 56.11; max = 88.57; all p < 2.2 x 10-16). In addition, because the ratio 
of the average path lengths of the extracted and random networks was close to 1 

(range λ: min = 1.04; max = 1.06) all networks had the small world property. To 
demonstrate that individual measures can be combined into a single group 

measure, the clustering coefficient and minimum path length averaged over all 
individuals are shown in Figure 5c and 5d. Similar to the individual cases, the 

clustering coefficient averaged over subjects was higher than the random 
clustering coefficients (one-sided paired t test: t(13) = 15.73, p = 3.83 x 10-10). The 

minimum path length averaged over subjects was also higher than the random 
path length (two-sided paired t test: t(13) = 30.73, p = 1.60 x 10-13). However the 

ratio was close to 1 (mean λ = 1.05, SD = 0.01) thus demonstrating that the 
networks were small world.
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Figure 5.  A network contains the small world property when its clustering coefficient is higher than 

random networks, while its path length is similar.  Here plots are shown for the average clustering 

coefficient (a) and minimum path length (b) of the individually extracted networks (grey) and their 

randomised versions (black). The stars indicate a significant difference of p < 0.05 tested with a 

paired t-test between a network and the average nodal values of its corresponding random 

network. Next, we plotted the average clustering coefficient and minimum path length averaged 

over all networks (c) and their randomised versions (d). All networks had the small world property. 

The stars indicate a significant difference with p < 0.001 tested with paired t-tests between the 

average network values and their random networks.
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3.4.2 Correlations between the network property values

Because the current analysis was performed in native space, all networks differed 

in size. Previous studies have shown that network properties can be dependent on 
the number of nodes, the degree and the sparsity of a network (e.g., He, Chen et 

al., 2007; Bassett et al., 2008; He et al., 2008; Bassett et al., 2010; Fornito et al., 
2010; van Wijk et al., 2010; Zalesky et al., 2010). To investigate such 

relationships, pairwise correlations were computed between all network measures. 
The interrelationships were complex and are summarised in Table 2. The number 

of nodes had a strong positive relationship with the degree (r = 0.96, p = 4.12 x 
10-8). This correlation is in disagreement with diffusion tensor imaging (DTI) 

studies that have found a negative relationship between the number of nodes and 
the average degree (Bassett et al., 2010; Zalesky et al., 2010). For connectivity 

studies in DTI it is evident that increasing the parcellation resolution of grey 
matter leads to a decrease in the number of tracts that end in any given node. 

However, the current method computed similarities in grey matter that can exist 
without a direct white matter tract between them. The average minimum path 

length negatively correlated with the degree (r = -0.64, p = 0.01) and the number 
of nodes (r = -0.59, p = 0.03). This means that networks that had more nodes, had 

a higher average degree (i.e. more connections per node) and a shorter average 
minimum path length. The average betweenness coefficient showed a positive 

relationship with the degree (r = 0.95, p = 1.95 x 10-6) and the number of nodes (r 
≈ 1, p = 2.37 x 10-14). However, no significant correlation was found between the 

betweenness coefficient and the minimum path length. The number of nodes did 
not show any significant associations with the other network properties.

	

 Sparsity was strongly related to the clustering coefficient (r = 0.91, p = 
5.75 x 10-6) and to the small world coefficient σ (r = 0.61, p = 0.02). Furthermore, 

the clustering coefficient had a positive association with σ (r = 0.82, p = 0.0003) 
confirming that the small world coefficient depends on the extent of clustering in 

the original network. Similarly as with the number of nodes and the average 
degree, this means that when a network had more connections, it showed higher 

average clustering with a decreased average path length (also demonstrated in 
previous studies, see e.g.: He et al. 2008). No relationship was found between 

sparsity and network size.
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Pairwise correlations between the values of all computed graph properties over subjects at 
baseline.
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baseline.

degree nodes L C σ BC S

degree 1 0.96*** -0.64* 0.40 0.30 0.95*** 0.43

nodes 1 -0.59* 0.17 0.14 ≈1*** 0.17

L 1 -0.09 0.14 -0.52 -0.31

C 1 0.87*** 0.17 0.91***

σ 1 0.17 0.61*

BC 1 0.14

S 1

Significance levels: *** p<0.001,** p<0.01, * p<0.05.
L is the average minimum path length, C  the average clustering coefficient, σ the small world 
coefficient, BC the average betweenness coefficient and S the sparsity.

Significance levels: *** p<0.001,** p<0.01, * p<0.05.
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Significance levels: *** p<0.001,** p<0.01, * p<0.05.
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coefficient, BC the average betweenness coefficient and S the sparsity.
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3.4.4 Comparison with other networks extracted from MRI data

Table 3 summarises morphological studies that reported network properties in 

healthy individuals (He, Chen et al., 2007; He et al., 2008; Bassett et al., 2008; 
Sanabria-Diaz et al., 2010; Yao et al., 2010; Zhu et al., 2010; Hänggi et al., 2011) 

for a sparsity similar to that found in the current study (23%), for comparison with 
the present networks. As all morphological studies (apart from Hänggi et al., 

2011) reported smaller network sizes than the present study, only the clustering 
and small world coefficients can be compared directly with the present networks 

since these measures were significantly related to the sparsity and not to the size 
of the networks. In addition, studies were included that extracted networks of a 

comparable size to the present study from functional (Eguluíz et al., 2005; van 
den Heuvel et al., 2008; Zhang et al., 2009; Fornito et al., 2010; Hayasaka and 

Laurienti, 2010; Zhang et al., 2010) and white matter MRI (Hagmann et al., 2007; 
Zalesky et al., 2010). Their network properties were summarised for a sparsity of 

approximately 23% when this level was available and otherwise for the maximum 
sparsity.

	

 In Table 3 one morphological network (Hänggi et al., 2011) and two 
resting state functional MRI networks were comparable to the present study in 

both size and sparsity (van den Heuvel et al., 2008; Fornito et al., 2010). All 
reported network property values were highly similar to the present study. The 

correspondence of network property values between the current study and the 
high resolution morphological network study suggest that possibly intracortical 

similarities within individuals contribute to covariance found in a group between 
anatomical regions. Furthermore, intracortical morphological correlations might 

reflect the organisation of correlations in resting state fMRI.
	

 When comparing the present study with other morphometric studies, its 

clustering coefficient (0.53) was slightly higher than previously reported values 
(min = 0.25; max = 0.49). The value of the small world property of the present 

networks (1.28) fell within a small range of previously reported values (min = 
1.17; max = 1.47), again suggesting that intracortical similarities might be 

organised similarly to correlations in thickness or volume between cortical areas 
assessed over subjects.
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The present small world property was strikingly lower than the remaining 

functional studies (Eguíluz et al., 2005; Zhang et al., 2009; Hayasaka and 

Laurienti, 2010; Zhang et al., 2010) and two white matter studies (Hagmann et al., 

2007; Zalesky et al., 2010). Finally, Table 3 shows that the property values of 

morphological networks varied within a narrow range, while those from 

functional and white matter MRI varied over a wider range (e.g., the small world 

values ranged between 1.28 and 168.54). In particular, the value of γ in those 

studies was one to a hundred times higher than in the present study (min = 1.28; 

max = 168.54), resulting in higher values for σ. This variation might be explained 

by differences in procedures used to construct random networks, but also by the 

low sparsity of these networks (min = 0.08%, max = 0.79%) in comparison with 

the present study (23%). Since the functional and white matter networks are 

comparable in size, this leaves an interesting question as to whether keeping 

sparsity constant would give rise to more similar networks across different 

scanning modalities. 

	

 Finally, Figure 1 shows the small world value at the 23% sparsity level of 

other fMRI, DTI and DSI studies that investigated networks of smaller size than 

the current study. Interestingly, these values vary within a narrow range of at most 

2.85 and 1.1 with a mean of 1.62 and standard deviation of 0.51. The value of the 

present study of 1.28 is less than a standard deviation away of the mean value 

from the studies of Figure 1.
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Graph measures of our study and other morphological,  functional and white matter MRI network 
studies for comparison.
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Study V C L γ λ σ S

MorphologicalMorphologicalMorphologicalMorphologicalMorphologicalMorphologicalMorphologicalMorphological

Present Study (n = 14) 6982 0.53 1.86 1.35 1.05 1.28 23%

He, Chen et al. 2007 (n = 124)
cortical thickness 52 nr nr ≈ 1.5 ≈ 1.15 ≈ 1.3 ≈ 23%

He et al. 2008 (n = 97)
cortical thickness 54 ≈ 0.3 ≈ 1.6 ≈1.35 ≈ 1 ≈ 1.35 23%

Bassett et al. 2008 (n = 259)
grey matter volume 104 ≈ 0.25 nr nr nr ≈ 1.18 23%

Sanabria-Diaz et al. 2010 
(n = 186) comparison of 
cortical thickness and cortical 
surface descriptor networks.

82 AAL- Area ≈ 0.3 ≈ 1.81 nr nr ≈ 1.28 22%

Sanabria-Diaz et al. 2010 
(n = 186) comparison of 
cortical thickness and cortical 
surface descriptor networks.

56 Jacob - 
Area ≈ 0.28 ≈ 1.84 nr nr ≈ 1.23 22%

Sanabria-Diaz et al. 2010 
(n = 186) comparison of 
cortical thickness and cortical 
surface descriptor networks.

82 AAL - 
Thickness ≈ 0.29 ≈ 1.81 nr nr ≈ 1.23 22%Sanabria-Diaz et al. 2010 

(n = 186) comparison of 
cortical thickness and cortical 
surface descriptor networks.

56 Jacob - 
Thickness ≈ 0.27 ≈ 1.84 nr nr ≈ 1.18 22%

Yao et al. 2010 (n = 98)
grey matter volume 90 ≈ 0.49 ≈ 1.89 ≈ 1.62 ≈ 1.1 ≈ 1.47 23%

Zhu et al. 2010 (n = 428)       
grey matter volume 90 (AAL) ≈ 0.26 nr ≈1.20 ≈ 1.03 ≈ 1.17 23%

Bernhardt et al. 2011 (n = 47)       
cortical thickness 52 (ANIMAL) nr nr ≈ 1.3 ≈ 1.01 ≈ 1.29 ≈ 23%

Hänggi et al. 2011 (n = 24)
cortical thickness 2366 ≈ 0.49 ≈ 1.15 ≈ 1.3 ≈ 1.13 ≈ 1.15 ≈ 33%

MRI studies that analysed networks with N > 1000MRI studies that analysed networks with N > 1000MRI studies that analysed networks with N > 1000MRI studies that analysed networks with N > 1000MRI studies that analysed networks with N > 1000MRI studies that analysed networks with N > 1000MRI studies that analysed networks with N > 1000MRI studies that analysed networks with N > 1000

FunctionalFunctionalFunctionalFunctionalFunctionalFunctionalFunctionalFunctional
Eguíluz 2005 (n = 7)
averaged values over 2 tasks
finger tapping task
listening to music 4891 0.15 6.0 168.54 1 168.54 0.08%

van den Heuvel et al. 2008
(n = 28), resting state fMRI
0.01-0.09 Hz 10 000 ≈ 0.52 ≈ 1.75 ≈ 1.9 ≈ 1.03 ≈ 1.85 20%
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Study V C L γ λ σ S

Zhang et al. 2009 (n= 1),      
finger movement task 1397 0.54 2.59 11.25 1.3 8.65 4.80%

Fornito et al. 2010 (n = 30)
resting state fMRI
0.04-0.08 Hz 4320 ≈ 0.62 ≈ 1.9 ≈ 1.35 ≈ 1.06 ≈ 1.28 20%

Hayasaka & Laurienti 2010       
(n = 10), resting state fMRI
0.009-0.08 Hz 16 000 0.24 3 ≈ 7 ≈ 1.22 6 0.79%

Zhang et al. 2010 (n = 4),    
finger movement task 2255 0.46 5.39 26.74 2.14 12.50 1.44%

White matter

Hagmann et al. 2007, (n = 1)
DSI 4052 ≈ 0.30 ≈ 3 ≈ 20 ≈ 1 ≈ 20 ≈ 0.61%

Zalesky et al. 2010, (n = 3) 
comparison of DTI and HARDI.

4000 DTI ≈ 0.28 ≈ 8.85 111.7 1.8 62.05 ≈ 0.13%

Zalesky et al. 2010, (n = 3) 
comparison of DTI and HARDI. 4000 HARDI ≈ 0.24 ≈ 6.15 77.5 1.4 55.36 ≈ 0.16%

V is the number of nodes in the networks, C  the average cluster coefficient, L the average 
minimum path length,  γ the ratio of the networks cluster coefficient and that of its  randomised 
version, λ the ratio of the average minimum path length of the network and that of its  randomised 
version, σ is the small world coefficient (γ / λ)  and finally s  denotes the sparsity of the network in 
percentage connections. nr is  ‘not reported’.  Network property values were measured for a 
sparsity level that corresponded to that of the present study (23%), but if this was not possible 
they were measured for the maximum sparsity available. The studies by van den Heuvel et al. 
(2009), Telesford et al.  (2010) and Fransson et al.,  (2011),  which also investigated network sizes of 
>1000, were not included because they did not report network sparsity or network property 
values.
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percentage connections. nr is  ‘not reported’.  Network property values were measured for a 
sparsity level that corresponded to that of the present study (23%), but if this was not possible 
they were measured for the maximum sparsity available. The studies by van den Heuvel et al. 
(2009), Telesford et al.  (2010) and Fransson et al.,  (2011),  which also investigated network sizes of 
>1000, were not included because they did not report network sparsity or network property 
values.

V is the number of nodes in the networks, C  the average cluster coefficient, L the average 
minimum path length,  γ the ratio of the networks cluster coefficient and that of its  randomised 
version, λ the ratio of the average minimum path length of the network and that of its  randomised 
version, σ is the small world coefficient (γ / λ)  and finally s  denotes the sparsity of the network in 
percentage connections. nr is  ‘not reported’.  Network property values were measured for a 
sparsity level that corresponded to that of the present study (23%), but if this was not possible 
they were measured for the maximum sparsity available. The studies by van den Heuvel et al. 
(2009), Telesford et al.  (2010) and Fransson et al.,  (2011),  which also investigated network sizes of 
>1000, were not included because they did not report network sparsity or network property 
values.

63



3.4.5 Spatial distribution of the degrees in the networks

Next it was tested how the spatial distribution of the number of connections (i.e. 

degree) of the nodes in a network compared to the distribution reported in a 
previous study that derived cortical thickness correlations between anatomical 

areas in groups (Lerch et al., 2006). In that study the associative cortices were 
found to have the highest correlations in thickness with other regions of the brain. 

Figure 6a shows for each of the 14 subjects a slice from the medial right 
hemisphere with the standardised degree for all cubes resulting in a spatial 

distribution of the degree values. Each square is a side of a cube, with warmer 
colours indicating a higher degree. The figure shows that all individuals had a 

unique spatial distribution of the degree values. To demonstrate that it is possible 
to combine these networks into a single group network, the average of the 

individual patterns was plotted after warping these to a standard space and 
averaging standardised degree values over subjects (Figure 6b). Finally, with the 

use of the SPM tool SurfRend the group result was plotted on an inflated surface 
(Figure 6c, thresholded for computational reasons to include just the hubs, i.e. 

nodes with a degree higher than one standard deviation above the mean). 
Furthermore the individual spatial degree patterns were quantified by assessing 

the spatial distribution of hubs over 26 distinct anatomical areas per hemisphere 
extracted with an anatomical mask (constructed with the Wake Forest University 

(WFU) Pick-Atlas, http://www.fmri.wfubmc.edu, Advanced Neuroscience 
Imaging Research Core. See Table 4 for list of the anatomical areas, their 

abbreviations and sizes). The anatomical mask incorporated approximately the 
same regions as used in previous studies that extracted morphological networks 

using cortical thickness (He, Chen et al., 2007; Chen et al., 2008; He et al., 2008). 
The mask was warped to the individual native spaces, using the inverted 

parameter matrices from normalisation of the scans to standard space. Next for 
each subject the degree hubs (nodes with a degree higher than one standard 

deviation above the mean, within a subject) were identified and the percentage of 
hubs was calculated for each anatomical area. The bar plot in Figure 6d confirms 

that on average 77% of the hubs were located in the prefrontal (superior, medial, 
middle and inferior frontal gyri, precentral gyrus), the cingulate, posterior regions 

(postcentral gyrus, precuneus) the insula and temporal areas (superior, transverse 
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and middle temporal gyri). For comparison with other studies, the spatial 

distribution of the hubs for betweenness centrality were also plotted in Figure 6e 

(hubs defined as having a betweenness centrality value that is higher than one 

standard deviation above the mean betweenness centrality) which resulted in a 

similar spatial distribution with 77% of the hubs in the same areas as Figure 6d. In 

Table 5 these areas are summarised with their corresponding average degree and 

betweenness centrality. Table 5 also indicates other studies that found the same 

areas with structural MRI using cortical volume (Bassett et al., 2008) or cortical 

thickness (He, Chen et al., 2007; Chen et al., 2008), white matter (Iturria-Medina 

et al., 2008; Gong et al., 2009) and functional MRI (Achard et al., 2006; Buckner 

et al., 2009). The current hub areas have all been reported by at least one of the 

studies above. However, a strong relationship existed between the percentage of 

hubs and the region size in both hemispheres (left hemisphere: Spearman’s ϱ = 

0.96, p = 5.84 x 10-7; and right hemisphere: Spearman’s ϱ = 0.97, p = 4.57 x 

10-07), that might explain why these areas were also reported as hubs in other 

studies (also see: Bassett et al., 2010).
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Figure 6.  a)  A plot of the degree of all cubes for one slice (right medial hemisphere) from each 

individual subject. The degrees were standardised by their maximal value. Warmer colours indicate 

that a cube has more structural similarities with other cubes in the brain than cubes with cooler 

colours. b) Shows the group average of the degree patterns after warping to standard MNI space, 

which supports the fact that most subjects have hubs along the right medial surface of the brain. 

c) Shows the spatial distribution of hubs (nodes with a degree higher than one standard deviation 

above the mean)  averaged over all 14 subjects and plotted on a surface. To quantify the spatial 

degree distribution, we plotted the average percentage of hubs for both hemispheres based on the 

degree (d), and on the betweenness centrality (e) for 26  anatomical areas. Each symbol and colour 

combination in all bar plots represents an individual percentage of hubs in that area.
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Table 4
The abbreviations (Abbrev.) of the cortical areas used in this study and the mean number of 
nodes it covers (standard deviation, SD, in brackets).
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The abbreviations (Abbrev.) of the cortical areas used in this study and the mean number of 
nodes it covers (standard deviation, SD, in brackets).

Mean number of nodes 
(SD)

Mean number of nodes 
(SD)

Mean number of nodes 
(SD)

Mean number of nodes 
(SD)

Abbrev.
Cortical 
area Left Right Abbrev.

Cortical 
area Left Right

SFG Superior 
frontal 
gyrus

155.71 
(22.68)

165.79 
(20.29)

stTG superior 
and 
transverse 
temporal 
gyrus

137.86 
(17.66)

137.36 
(19.61)

MFG Middle 
frontal 
gyrus

182.50 
(28.57)

182.14 
(26.56)

MTG Middle 
temporal 
gyrus

126 (17.07) 126.29 
(18.45)

IFG Inferior 
frontal 
gyrus

119 (17.10) 123.36 
(16.54)

ITG Inferior 
temporal 
gyrus

29.21 
(4.81)

30.21 
(4.85)

MedFG Medial 
frontal 
gyrus

123.21 
(21.45)

127.64 
(21.87)

UNC Uncus 16.21 
(2.86)

13.93 
(2.23)

PARACg Paracentral 
lobule

19.36 
(4.58)

24.50 
(4.55)

MOTG Medial 
occipito-
temporal 
gyrus

41 (5.78) 40.93 
(2.23)

PRCG Precentral 
gyrus

109.64 
(15.51)

110.71 
(16.07)

PHG Para-
hippocamp
al gyrus

54.93 
(8.19)

54.14 
(7.76)

lmOFG lateral and 
medial 
Orbital 
frontal 
gyrus

8.93 (1.64) 10.97 
(2.70)

SOG Suprior 
occipital 
gyrus

5.21 (1.25) 5.29 (1.27)

SPL Superior 
parietal 
lobule

21.36 
(4.56)

21.29 
(4.45)

MOG Middle 
occipital 
gyrus

66.14 
(11.15)

67.36 
(12.67)

IPL Inferior 
parietal 
lobule

77.86 
(11.31)

77.43 
(13.51)

IOG Inferior 
occipital 
gyrus

18.71 
(2.61)

18.07 
(3.32)

SMG Supramargi
nal gyrus

20.64 
(3.24)

22.21 
(3.09)

CUN Cuneus 79.93 
(14.40)

81 (14.63)

ANG Angular 
gyrus

9.57 (3.25) 11 (20.04) LG Lingual 
gyrus

59.79 
(10.91)

58.57 
(7.76)

PCU Precuneus 104.43 
(16.56)

102.71 
(18.18)

CING Cingulate 
areas

159.36 
(26.02)

175.07 
(22.42)

POCG Postcentral 
gyrus

90.93 
(11.54)

92.29 
(14.90)

INS Insula 59.29 
(9.55)

60.14 
(8.39)
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Table 5
Hub regions found based on betweenness centrality and comparison to previous studies.
Table 5
Hub regions found based on betweenness centrality and comparison to previous studies.
Table 5
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Table 5
Hub regions found based on betweenness centrality and comparison to previous studies.

Area av. % hubs av.BC x10-4 av. deg x10-3 Other studies

CINGr 11.98 1.99 2.76 b2, c2

SFGr 11.76 1.8 2.75 a1, b1, b2, c1,c2, 
c3

SFGl 11.23 1.77 2.74 a1, b1, b2, c3

MFGl 10.41 2.19 2.74 a1, a2, b2

MFGr 9.89 1.84 2.73 a1, a2, b1, b2, c2

stTGl 9.18 2.05 2.74 a1, b2

CINGl 8.49 1.96 2.73 a2, c2

MidFGr 8.1 2.14 2.74 a1, a2, c2, c3

stTGr 7.7 1.93 2.74 a1, c1,b3

MidFGl 7.28 1.74 2.75 a1, a2, b2, c2, c3

IFGl 7.06 1.55 2.73 a1, a2, c1, c2, c3

IFGr 6.96 1.59 2.74 a1, c2, c3

MTGl 6.84 1.9 2.72 a1, a2, b2, c3

MTGr 6.5 1.94 2.75 a1, a2, b2, c1, c2, 
c3

PRcGl 4.78 1.48 2.74 a1, b2, c1, c2, c3

PRcGr 4.16 1.51 2.75 a1, b2, c1, c2, c3

INSl 4.06 1.75 2.73 b1

POcGl 3.9 2.42 2.73 a1, b2, c3

PCUr 3.81 1.52 2.75 a1, a2, b1, b2

PCUl 3.77 1.59 2.74 a1, a2, b1, b2

Av.  denotes average, BC the betweenness centrality and deg. the degree. We compared our 
results to: a1 Functional study: Achard et al.  (2006),  a2 Functional study: Buckner et al. (2009), b1 
DTI study: Gong et al.  (2009), b2 DTI study: Iturria-Medina et al. (2008), c1 Morphological study: 
Chen et al. (2008),  c2  Morphological study: Bassett et al. (2008),  c3  Morphological study: He, 
Chen et al. (2007).

Av.  denotes average, BC the betweenness centrality and deg. the degree. We compared our 
results to: a1 Functional study: Achard et al.  (2006),  a2 Functional study: Buckner et al. (2009), b1 
DTI study: Gong et al.  (2009), b2 DTI study: Iturria-Medina et al. (2008), c1 Morphological study: 
Chen et al. (2008),  c2  Morphological study: Bassett et al. (2008),  c3  Morphological study: He, 
Chen et al. (2007).

Av.  denotes average, BC the betweenness centrality and deg. the degree. We compared our 
results to: a1 Functional study: Achard et al.  (2006),  a2 Functional study: Buckner et al. (2009), b1 
DTI study: Gong et al.  (2009), b2 DTI study: Iturria-Medina et al. (2008), c1 Morphological study: 
Chen et al. (2008),  c2  Morphological study: Bassett et al. (2008),  c3  Morphological study: He, 
Chen et al. (2007).

Av.  denotes average, BC the betweenness centrality and deg. the degree. We compared our 
results to: a1 Functional study: Achard et al.  (2006),  a2 Functional study: Buckner et al. (2009), b1 
DTI study: Gong et al.  (2009), b2 DTI study: Iturria-Medina et al. (2008), c1 Morphological study: 
Chen et al. (2008),  c2  Morphological study: Bassett et al. (2008),  c3  Morphological study: He, 
Chen et al. (2007).

Av.  denotes average, BC the betweenness centrality and deg. the degree. We compared our 
results to: a1 Functional study: Achard et al.  (2006),  a2 Functional study: Buckner et al. (2009), b1 
DTI study: Gong et al.  (2009), b2 DTI study: Iturria-Medina et al. (2008), c1 Morphological study: 
Chen et al. (2008),  c2  Morphological study: Bassett et al. (2008),  c3  Morphological study: He, 
Chen et al. (2007).
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3.4.6 Reproducibility of the measures

Finally, the robustness of the method was assessed by comparing the network 

metrics within individuals at two time points (plotted in Figure 7). The number of 
nodes was highly stable (ICC = 0.98, p = 3.48 x 10-11, Figure 7a), as was the mean 

degree (ICC = 0.92, p = 2.11 x 10-7, Figure 7b) and the betweenness centrality 
(ICC = 0.98, p = 4.97 x 10-9, Figure 7f). The mean path length (ICC = 0.77, p = 

2.47 x 10-4, Figure 7c), mean clustering coefficient (ICC = 0.59, p = 8.33 x 10-3, 
Figure 7d) and the small world property (ICC = 0.60, p = 0.007, Figure 7e) were 

also reproducible, supporting the robustness of the method for the number of 
nodes, the mean degree and the betweenness centrality and demonstrating 

moderate reliability for the mean path length, mean clustering coefficient and the 
small world property. The reproducibility of the degree, average minimum path 

length and the betweenness coefficient might reflect their relationship with the 
number of nodes.
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Figure 7. Reproducibility plotted for two scans of each subject, represented by an unique symbol 

and grey shade combination, for all the measures: a) the number of nodes, b)  the mean degree, c) 

mean shortest path length, d)  mean clustering coefficient, e) the small world property (sigma) and 

f)  the betweenness centrality. The black line is fitted on the data, the grey line is the identity line 

which represent a perfect fit. The value of the intraclass correlation coefficient is indicated above 

each plot, with its corresponding  p-value. All the measures were reproducible for a p < 0.05, 

indicating that the method is robust.
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3.5 Conclusions

This Chapter presented a new method to statistically describe grey matter from 

individual T1-weighted MRI scans. The method was used to construct networks 
for individual cortices, where the nodes represented small three-dimensional areas 

that were connected by computing intracortical similarities in grey matter 
morphology. With the use of simple statistics from graph theory all networks were 

characterised as being ‘small world’, because they had a higher clustering 
coefficient and a similar minimum path length in comparison with random 

networks. All individual networks showed inter-subject variability that was most 
evident in the spatial distributions of the degree values. All network property 

values were highly similar to a group derived morphological network (Hänggi et 
al., 2011) and two resting-state functional MRI networks that were of comparable 

size and sparsity (van den Heuvel et al., 2008; Fornito et al., 2010). The values of 
the clustering and small world coefficients were also similar to other 

morphological networks measured at a comparable sparsity level (He et al., 2007; 
2008; Bassett et al., 2008; Sanabria-Diaz et al., 2010; Yao et al. 2010). However, 

in comparison with the other functional (Eguíluz et al., 2005; Zhang et al., 2009; 
Hayasaka and Laurienti, 2010; Zhang et al., 2010) and white matter MRI studies 

(Hagmann et al., 2007; Zalesky et al., 2010), all the property values (apart from 
the clustering coefficient) were lower in the present networks. Finally, the graph 

theoretical properties were reproducible, supporting the robustness of the method. 
This Section will briefly discuss explanations for the spatial distribution of the 

hubs that was found, followed by methodological issues concerning this specific 
project. A general discussion about the mechanisms underlying intracortical 

similarities and issues that apply to other work in this thesis can be found in 
Chapter 6.

3.5.1 Spatial distribution of hubs

The spatial distribution of hubs (nodes with a high degree) in the current networks 

showed a striking similarity with the spatial distribution of correlations in cortical 

thickness (Lerch et al., 2006). It is important to note that the pattern reported here 

reveals the spatial distribution of the degree values for each node within 

individuals, while the cortical thickness study computed correlations between 
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areas using observations from different people. Possibly, the similarity of grey 

matter morphology within an individual brain could contribute to cortical 

thickness covariances found in group data. In the present study, the hubs were 

mostly located along the cortical midline. This spatial distribution has a 

remarkable overlap with the default mode network of brain function (Raichle et 

al., 2001; Greicius et al., 2003; Franco et al., 2009), that includes dorsal medial 

frontal regions (BAs 8, 9, 10, and 32), superior and middle frontal gyri (BAs 8, 9, 

and 10), medial posterior cingulate (BAs 30 and 31), the precuneus (BA 7), 

paracentral lobule (BA 5), inferior parietal regions (BAs 40, 39, and 7), the 

angular gyri (BAs 19 and 39) and the inferior frontal cortices (BAs 10, 47). These 

regions have shown decreased activation during attention related tasks, but show 

tonic activation during rest. Recently, Greicius et al. (2009) found structural 

connections between some of these regions using diffusion tensor imaging, which 

also supports the idea that functional connectivity might reflect structural 

connectivity (see also Honey et al., 2009). The present networks showed similar 

network properties compared to two resting-state functional MRI network studies 

of similar size and sparsity (van den Heuvel et al., 2008; Fornito et al., 2010), 

further supporting the idea that there might be overlap between the organisation of 

intracortical similarities and functional correlations in the brain. It would be 

interesting to investigate how similarities in grey matter morphology might be 

related to functional coactivation within individuals.

3.5.2 Methodological issues specific for this study

The subjects were scanned twice within a six month period and the results 

indicated that network property values were stable over that period. This result 
was interpreted as an indication of the robustness of the method, since it was 

assumed that the structure of subjects’ brains would be stable over such a period. 
However, some studies have shown that grey matter volume can change over time 

as a result of training or experience (Andrews et al., 1997; Draganski et al., 2004; 
Mechelli et al., 2004; Hyde et al., 2009; but also see Thomas et al., 2009). Even 

though the present study did not include any learning or training tasks, such 
effects still might have influenced the results. It would be interesting to investigate 
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whether the proposed method could find such subtle differences with a controlled 

experiment.

	

 To conclude, networks based on intracortical similarities contain 

interesting information that shows a significantly different topological 

organisation than random networks. Furthermore, the network property values 

were comparable with those reported by previous network studies of structural 

and functional MRI. Therefore, even if intracortical similarities do not have a 

clear direct relationship with anatomical connectivity, the new method does 

provide a concise statistical description of the grey matter structure of individual 

cortices.

	

 The main question of the second project of this thesis was whether this 

method will be more sensitive to subtle structural disruptions than traditional 

group based methods. This question was investigated by examining individual 

graphs extracted from a sample of people at high genetic risk for schizophrenia. 

The next Chapter will give an introduction to schizophrenia and an overview of 

results from structural high risk of schizophrenia studies, followed by Chapter 5 

were networks from people at high genetic risk of schizophrenia were studied for 

the first time.
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4. Cortical morphology and high risk of 
schizophrenia

This Chapter provides a literature review about schizophrenia and high risk of 

schizophrenia studies, to provide relevant background for the work that will be 

presented in the next Chapter, where structural MRI scans were analysed with the 

new method to compare people at high genetic risk for schizophrenia with people 

lacking such risk.

4.1 Introduction

"The visions are extremely vivid. Paving stones transform into demonic faces, 
shattering in front of my petrified eyes. When I am in contact with people, they 

can become grotesquely deformed, their skin peeling away to reveal decomposing 
inner muscles and organs. Buildings and rooms spin and weave and their walls 

close in as I look on, paralysed by fear. ... The voices either ramble in alien 
tongues or scream orders to carry out violent acts. They also persecute me by way 

of unwavering commentary and ridicule to deceive, derange, and force me into a 
world of crippling paranoia."

--Robert Bayley, a schizophrenia sufferer (Schizophrenia Bulletin, 1996).

Robert Bayley is one of the many sufferers of schizophrenia, a disorder that 
disrupts the lives of about 1% of the population (Jablensky et al., 1995). Patients 

can experience visual and auditory hallucinations (positive symptoms) or lack of 
emotion, speech or motivation (negative symptoms) (Harrison, 1999). Given the 

disabling nature of schizophrenia, it is important to understand its causes in order 
to develop interventions. Schizophrenia is regarded as a developmental disorder, 

as its onset often occurs during adolescence (Häfner et al., 1993). Also, as early as 
1911, Rosanoff and Orr reported that schizophrenia contains a strong genetic 

component: depending on the degree of familial relationship (from first cousin to 
both parents affected with schizophrenia) people with relatives suffering from 

schizophrenia have a 1.6% to 36.6% increased risk of developing the illness 
themselves than people without family history of schizophrenia (McGue and 

Gottesman, 1989). However, monozygotic twin studies have signified the 
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importance of environmental influences, because even though monozygotic twins 

share a 100% of their DNA, the risk that twins of patients with schizophrenia 

develops the disease themselves is ‘just’ 44% (McGue and Gottesman, 1989; 

Vogeley et al., 2001; Cannon et al., 2002). The complex interaction of genes and 

environment seems to set up a subtle disturbance in the usual balance of 

functional activation patterns and structural connections, that might only require 

normal maturational events to lead on to psychosis during adolescence.

4.2. Theories of schizophrenia

The precise causes of schizophrenia are still unknown, but are thought to involve 

complex interactions of different factors. A hundred years ago, Bleuler coined the 
term ‘schizophrenia’, which is derived from ancient Greek and roughly translates 

as ‘split-mind’, referring to the fragmented thinking of patients with schizophrenia 
(see Moskowitz and Heim (2011) for an overview of the impact of Bleuler work 

over the last 100 years:). The idea of a split in the faculties of the mind formed the 
basis for subsequent theories of ‘disconnectivity’ that try to explain schizophrenia 

by a disruption of connectivity between brain areas. How this disconnectivity 
arises is at the core of many theories of schizophrenia. Two popular theories that 

focus on disconnectivity are the abnormal pruning theory (Feinberg, 1983) and the 
disconnectivity theory (Friston & Frith, 1995; Friston, 1998). Feinberg proposed 

in 1983 that disconnectivity between brain areas in schizophrenia might arise 
from abnormal synaptic pruning, when either too many, too few or the wrong 

synapses are deleted during adolescence. He thought that the prefrontal cortex 
(PFC) should be affected in particular, since this cortical region develops well into 

adolescence (Martin & Rubenstein, 2003; Sur et al., 2005; Dumontheil, Burgess 
& Blakemore, 2008; Sowell et al., 2003, 2004). Feinberg hypothesised that 

abnormal pruning leads to the development of abnormal connections between 
brain areas that subsequently give rise to schizophrenia. 

	

 This concept was further examined in the disconnectivity theory, which 
focuses on disturbed connectivity between the PFC and the rest of the brain. 

Friston and Frith (1995) emphasised that disturbances in connectivity mostly 
occur locally, as opposed to long-range connections. They posited that subtle 

abnormalities at the synapse level can lead to erroneous integration of functional 
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signals from other brain areas. For example, auditory hallucinations that some 

patients experience might be explained by a disruption between the frontal and the 

temporal cortices. This has led to most research focussing on such connections, 

although the parietal lobe has also been suggested to play an important part in 

schizophrenia (Torrey, 1997). It is important to note that the disconnectivity 

theory in schizophrenia is based on disruptions of functional MRI correlations that 

can occur without morphological disruptions.

	

 Research focussing on the disconnectivity theory in schizophrenia has 

mostly studied functional and structural MRI separately. Whether and how 

disturbances in the morphology of the brain interact with disturbed function in 

schizophrenia is largely unknown and important to study. The new method 

proposed in Chapter 3 could contribute to this kind of research by studying 

morphological and functional methods within the same individuals. However, it is 

important to first study individual morphological networks in schizophrenia. 

Therefore the following Sections will give on overview abnormalities found in 

grey matter MRI in relation to high genetic risk of schizophrenia and established 

schizophrenia.

4.3 Grey matter findings in established schizophrenia

Since Johnstone et al. (1976) found that schizophrenia patients had enlarged 

lateral and third ventricles in computerised tomography (CT) scans, it was clear 
that schizophrenia has a strong biological component. This finding triggered an 

enormous cascade of brain imaging research on schizophrenia. The theories of 
schizophrenia discussed in the previous Section emphasise the local nature of 

neuronal network disturbances, that might be manifest in regional grey matter 
volume differences between patients and healthy controls. But before discussing 

what can go wrong, it is important to understand how the cortex usually develops.
	

 During healthy development, grey matter volume follows an inverted U-

shape of growth and decline. Prefrontal cortical volume peaks at approximately 
11-12 years, after which grey matter volume decreases (Jernigan et al., 1991; 

Giedd et al., 1999; Sowell et al., 2003; Paus et al., 2005). Synaptic density follows 
the grey matter course of development. It has been hypothesised that during 

adolescence synaptic pruning peaks, possibly due to synaptic competition 
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(Weinberger et al., 1992; Sowell et al., 2003). The most replicated finding in 

imaging research, but also in post-mortem studies is the enlargement of third and 

lateral ventricles in schizophrenia patients (e.g., Johnstone et al., 1976; 

Weinberger 1979; Keshavan et al., 1997; Staal et al., 2000; but see also: DeLisi et 

al., 2006). Enlargement of ventricles could indicate loss of surrounding grey and/

or white matter. It is clear that grey matter volume is reduced in schizophrenia 

(e.g., Wright et al., 2000; Wood et al., 2001; Ho, 2007; for reviews and meta-

analyses see for example: Shenton et al., 2001; Lawrie et al., 2007; Correll et al., 

2010; Fusar-Poli et al., 2010; Jung et al., 2010), but it remains unclear whether 

these reductions are generalised or (multi-)focal. The precise locations where grey 

matter volume differs between healthy controls and schizophrenia patients is hard 

to establish, due to inconsistencies between studies in methods and subject 

samples (Lawrie & Abukmeil, 1998; DeLisi, 2008; Shenton et al., 2001).

	

 Besides grey matter volume, differences between people with and without 

schizophrenia have also been reported in other grey matter descriptors such as 

cortical folding patterns and cortical thickness. Some studies measure cortical 

folding patterns with the gyrification index, which is the ratio of the entire contour 

of the brain to the superficially exposed contour of the brain (Zilles et al., 1988). 

A higher gyrification index signifies a more complex cortical folding pattern. 

Findings of gyrification patterns vary, as some studies include only first episode 

schizophrenia patients while other studies have more mixed samples. Some 

studies have reported an overall lower gyrification index (Kulynych et al., 1997; 

Penttila et al., 2008), while others have found an overall higher gyrification index 

(White et al., 2003; Falkai et al., 2007). Gender differences have also been 

reported with male first episode schizophrenia patients showing a higher 

gyrification index in the right superior frontal cortex than female patients (Narr et 

al., 2004). Other studies have reported a lower gyrification index in the left 

hemisphere in schizophrenia (Sallet et al., 2003 ;Harris, Yates et al., 2004 (first 

episode study); Jou et al., 2005). And one study by Wiegand et al. (2005) failed to 

find differences using a measure related to gyrification (cortical complexity).

	

 Finally, cortical thickness also seems to be affected in established 

schizophrenia. Sowell et al. (2004) studied how cortical thickness changes over a 

time span of two years in healthy children aged 7-11 years. They found that 
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cortical thickness varies between 1.5 to 5.5 mm. Grey matter thinning is most 

prominent in prefrontal and parietal areas in children around 12-13 years old. 

These areas may be subject to the greatest change in brains of people at high risk 

that developed schizophrenia. Sowell et al. (2004) also found that left prefrontal 

cortical thinning was related to a better general verbal intellectual performance. 

Kuperberg et al. (2003) were the first to apply Fischl and Dale's (2000) method to 

measure cortical thickness in schizophrenia patients. Patients had on average a 

thinner prefrontal cortex than healthy controls. This finding was replicated in later 

studies (White et al., 2003; Nesvag et al., 2008). However, Narr et al. (2004) only 

found a thinner prefrontal cortex in patients after covarying for sex. A subsequent 

study by Narr et al. (2005) showed that female patients showed thinner cortex in 

the prefrontal poles. Venkatasubramanian et al. (2008) found that only the 

orbitofrontal cortex of schizophrenia patients was thinner. However, some studies 

failed to find differences in prefrontal cortical thickness between patients and 

healthy controls (Goghari et al., 2006, 2007).

	

 To conclude, some findings in established schizophrenia are widely 

replicated (such as enlarged third ventricle, globally decreased grey matter and 

some focal structural differences), while other findings show inconsistencies. The 

search for morphological factors associated with schizophrenia is even harder in 

studies that investigate people who have an increased risk to developing 

schizophrenia because they have a first degree relative with the disease (also 

called ‘genetic high risk’). Longitudinal studies to assess the developmental 

trajectory of schizophrenia, are difficult to do and therefore fewer in number. 

However, this type of research is crucial to gain more understanding of a 

developmental disorder like schizophrenia. The next Sections will review grey 

matter findings in genetic high risk studies so far, starting with an overview of 

grey matter findings in the Edinburgh High Risk study of Schizophrenia (EHRS, 

that will further analysed in the next Chapter).

4.5 The Edinburgh High Risk study of Schizophrenia

Schizophrenia is usually triggered during adolescence, when people are between 
16-25 years of age (Häfner et al., 1993). During the earliest stages of the disease 

some structural abnormalities found in people with established schizophrenia are 
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not present, and this led to the neurodevelopmental hypothesis of schizophrenia 

(Murray and Lewis; 1987; Weinberger, 1987). In order to investigate the 

neurodevelopmental hypothesis, studies have been developed that focus on people 

at high genetic risk for the disease because they have relatives diagnosed with 

schizophrenia (McGue and Gottesman, 1989). When following these subjects for 

a period of time it is possible to map their development and compare individuals 

who remain well with those who become ill. Differences in imaging data between 

people at high risk who are healthy at the time of study and healthy controls are 

indicative of the genetic component for schizophrenia. Understanding the 

developmental course of schizophrenia is of importance to improve existing 

treatments, but also to establish intervention programs. With this objective, the 

Edinburgh High Risk study of Schizophrenia was initiated (Hodges et al., 1999). 

For this study, people were recruited who had two or more first degree relatives 

with schizophrenia (Hodges et al., 1999). They were at an age typical for onset of 

the disease (16 - 25 years, Häfner et al., 1993), and at the start of the study none of 

the high risk subjects was diagnosed with either psychotic symptoms or 

schizophrenia. In total 146 subjects and 36 healthy control subjects (without a 

family history of psychiatric disease) were followed for a period of 10 years, 

during which 17 individuals who had a baseline structural scan developed 

schizophrenia (Johnstone et al., 2005; Lawrie et al., 2007). During these 10 years, 

5 structural MRI scans were taken at 2 year intervals. At baseline (i.e., the first 

round of scans) various differences between the high risk group and the healthy 

control group have been reported using region of interest analysis. People at high 

risk had smaller thalami and amygdala-hippocampal complex than healthy 

controls (Lawrie et al., 1999; 2001), an increased prefrontal gyrification index 

(i.e., an increase of folding complexity; Harris, et al., 2004) and less prefrontal 

grey matter volume (McIntosh et al., 2011). However, using voxel-based 

morphometry (VBM) differences between the healthy control group and the high 

risk group in the baseline scans have only been found after a small volume 

correction (Job et al., 2005) or after using additional information (McIntosh et al., 

2006; 2007). Within individuals, VBM showed changes of grey matter volume 

between two time points (Lawrie et al., 2001; Lawrie et al., 2002; Job et al., 2006; 

McIntosh et al., 2011).
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The differences that have been found in the EHRS between healthy controls and 

high risk subjects with region of interest approaches and with small volume 

corrections, suggest that structural differences at whole brain level are subtle. 

Additionally, in the EHRS, differences have been found at whole brain level when 

change of grey matter over two time points was studied. Possibly, these subtle 

structural disruptions might have been filtered out during warping procedures used 

by VBM. To further investigate structural differences associated with high genetic 

risk of schizophrenia, the next Section gives on overview of other such studies.

4.6 Other studies about genetic high risk of schizophrenia

Studies, other than the EHRS, that have investigated familial high risk of 
schizophrenia can be categorised into twin studies, including twins that are 

discordant for schizophrenia (Suddath et al., 1990; Baare et al., 2001; Cannon et 
al., 2002; van Haren et al., 2004; Hulshoff Pol, Schnack, Mandl et al., 2006; 

Borgwardt et al., 2010), studies that investigated offspring from patients with 
schizophrenia (Rajarethinam et al., 2004; Bhojraj et al., 2010), studies that 

investigated healthy parents from patients with schizophrenia (Lui et al., 2009) 
and finally people at high risk because they have first degree relatives (Vogeley et 

al., 2001; Keshavan et al., 2007; Cannon et al., 1998; Staal et al., 2000; Marcelis 
et al., 2003; Boos et al., 2007; Ho, 2007; Gogtay et al., 2003; Jou et al., 2005; 

DeLisi et al., 2006; Diwadkar et al., 2006; Goghari et al., 2006; McDonald et al., 
2006; Falkai et al., 2007; Goghari et al., 2007; Honea et al., 2008; Chan et al., 

2011). Here only the differences between unaffected relatives of schizophrenia 
patients and healthy controls are discussed because these are of most interest in 

high risk studies. None of these studies included longitudinal data and therefore 
no information exists about differences between people at high risk who later 

developed the illness. Although longitudinal studies do exist that focus on people 
at high clinical risk, these studies will not be discussed here because these people 

are considered to be in a ‘prodromal’ phase just before onset of the disease, and 
therefore they are not comparable to familial high risk studies where subjects at 

high risk are clinically healthy at baseline (clinical high risk refers to people who 
are experiencing symptoms of psychosis, not necessarily with a familial 

background of schizophrenia, see for example: Pantelis et al., 2003; Borgwardt et 
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al., 2008; Fusar-Poli, Broome et al., 2011; Fusar-Poli, Crossley et al., 2011. For 

reviews and meta-analyses see: Jung et al., 2009; Correll et al., 2010; Fusar-Poli, 

Borgwardt et al., 2010).

	

 Using region of interest analysis, twin studies have reported that the twin 

discordant for schizophrenia has on average lower overall grey matter volume 

than the healthy co-twin (Baare et al., 2001; Haren et al., 2004), and also less grey 

matter volume in the frontal lobe (Baare et al., 2001). Voxel-Based morphometry 

twin studies have found that discordant twins have on average less grey matter 

volume than the unaffected twins in the left medial orbitofrontal gyrus (Hulshoff 

Pol et al., 2006), dorsolateral and polar prefrontal cortex, Broca’s area, 

supplementary motor areas, inferior sensorimotor strip, Wernicke’s area and 

temporal pole (surface based automated whole brain analyses: Cannon et al., 

2002). Some studies have found that patients from dizygotic twins were more 

similar to discordant monozygotic twins while their unaffected sibling was more 

similar to healthy control twins (Hulshoff Pol et al., 2006). Borgwardt et al. 

(2010) found that both concordant and discordant twins had less grey matter 

volume than healthy control twins in medial and inferior frontal cortex, anterior 

cingulate, precentral gyrus, caudate, lingual gyrus and cerebellar regions. They 

also found in discordant twins that the patients had less grey matter volume in the 

insula, superior temporal gyrus, precentral gyrus, posterior cingulate and 

paracentral lobule than their healthy siblings. In addition, they did not find any 

differences in grey matter volume between unaffected co-twins and healthy 

control twins.

	

 Two studies have performed region of interest analysis to investigate 

differences between the children of patients with schizophrenia and healthy 

controls (Rajarethinam et al., 2004; Bhojraj et al., 2010). Rajarethinam et al. 

(2004) found that the risk subjects had less grey matter in the superior temporal 

gyrus than healthy controls. Bhojraj et al. (2010) investigated regions that are 

involved in the default mode network (a functional network in which the regions 

involved show less activation during tasks and more activation during rest, see: 

Raichle et al., 2001) and found that offspring of parents with schizophrenia had 

less grey matter than healthy controls in the lateral temporal nuclei, right 

precuneus, right inferior parietal lobule and left posterior cingulate cortex. 
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Furthermore they found a correlation in grey matter volume within the offspring 

group between the right dorso-lateral prefrontal cortex and the right anterior 

cingulate cortex that was stronger than in the healthy control group.

	

 One study that compared parents of schizophrenic patients with healthy 

controls found that the parents had less grey matter volume in the right insula 

extending to the right temporal lobe and the right parietal lobule (Lui et al., 2009). 

However, strictly speaking, these parents were unlikely to develop schizophrenia 

themselves, since they were past the onset age of the disease.

	

 In studies that involved unaffected siblings of schizophrenic patients, some 

reported less overall grey matter volume in siblings when compared to controls 

(Cannon et al., 1998), but other studies failed to find such a difference (Staal et al., 

2000; McDonald et al., 2006; Ho, 2007). Most studies have reported less grey 

matter volume in unaffected siblings when compared to healthy controls in the 

parietal (Gogtay et al., 2003; Ho, 2007), frontal and temporal lobes (Ho, 2007), 

right cingulate (Goghari et al. 2006), and the ventromedial and frontal pole (Rosso 

et al., 2010). However, a thicker cortex, increased grey matter volume and surface 

area in unaffected siblings has also been reported in the total left hemisphere, 

parahippocampal gyri and middle temporal gyri (Goghari et al., 2006). 

Furthermore, gyrification patterns have been found to be more complex in 

unaffected siblings in comparison with healthy controls in the first coronal slice 

anterior to the corpus callosum (Jou et al., 2005; Falkai et al., 2007). On the other 

hand, a decrease in gyrification complexity has been reported in a parietal-

occipital slice in people who had more than one family member with 

schizophrenia when compared to subjects who had just one family member with 

the disease (Falkai et al., 2007). In addition, sulcal thickness of unaffected 

relatives was thinner than healthy controls in the inferior and superior temporal 

sulci, and a reversed asymmetry in the cingulate sulcus (Goghari et al., 2007).

	

 Voxel-based morphometry studies have found differences at whole brain 

level in the dorsolateral prefrontal cortex, anterior cingulate, insula, superior and 

middle and inferior temporal gyri, the inferior frontal gyrus, precuneus (Diwadkar 

et al., 2006), the right fusiform gyrus (Marcelis et al., 2003) and cerebellum 

(Diwadkar et al., 2006; Marcelis et al., 2003). Furthermore, Marcelis et al. (2003) 

reported that unaffected relatives had more grey matter in the left superior frontal 
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gyrus than healthy controls. However, Honea et al. (2008) failed to find 

differences between unaffected siblings and healthy controls.

	

 To conclude, differences in grey matter structure have been found in 

relatives of schizophrenia patients when compared to healthy controls, however, 

some studies did not find such differences. Furthermore, a variety of regions has 

been reported to be involved, and of all studies just three have compared groups 

using analysis that did not involve a priori defined region of interest. Two of these 

studies failed to find differences at whole brain level (Job et al., 2003; Honea et 

al., 2008). Therefore it can be concluded that grey matter disturbances in healthy 

people at high genetic risk for schizophrenia are subtle.

	

 The work in the next Chapter investigated whether the method presented 

in Chapter 3 was more sensitive to such subtle disruptions than traditional voxel-

based methods in the EHRS sample. Also, the next Chapter will be the first study 

to describe network properties in people at high genetic risk of schizophrenia.
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5. Study II: Investigating network properties of 
networks based on intracortical similarities 
extracted from individuals at high genetic risk 
of schizophrenia

The work in this Chapter is the first study to investigate individual morphological 

networks in a sample of people at high genetic risk of schizophrenia before 

manifestation of the illness.

5.1 Introduction

The disconnectivity theory of schizophrenia (e.g., Friston and Frith, 1995) has 

recently been investigated in MRI data with tools from graph theory (Basset al., 

2008; Liu et al., 2008; Alexander-Bloch et al., 2010; Lynall et al., 2010; van den 

Heuvel et  al., 2010; Wang et al., 2010; Zalesky et al., 2010; Lord et al., 2011; Yu 

et al., 2011). These studies have found topological disturbances in networks of 

people with schizophrenia when compared to healthy subjects in grey matter 

(Basset al., 2008), white matter (van den Heuvel et al., 2010; Zalesky  et al., 2010) 

and functional MRI (Liu et al., 2008; Alexander-Bloch et al., 2010; Wang et al., 

2010; Lynall et al., 2010; Lord et al., 2011; Yu et al., 2011). None of these studies 

included people at high genetic risk of the disease, and therefore it remains 

unknown whether topological disturbances are present before illness onset.

 In this Chapter the topology of individual morphological networks from 

the Edinburgh High Risk study  of Schizophrenia (EHRS) was investigated for the 

first time. Previously, focal differences have been reported in the EHRS using 

region of interest approaches and small volume corrections (Lawrie et al., 2001; 

Lawrie et al., 2002; Harris, Whalley et al., 2004; Job et al., 2005; Job et al., 2006; 

McIntosh et al., 2011), however, differences at whole brain level in the first round 

of scans when all subjects were clinically healthy have not been found. Therefore 

it was investigated here whether the new method would be more sensitive to 

subtle disruptions in brain structure than traditional group based methods.

Before this important question was studied, the method was first further validated 

by comparing the graph property values from the current healthy control group 
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with those from the Calibrain study (Chapter 3). Furthermore, network property 

values were studied within the high risk sample in relation to disease outcome.

5.2 Methods

Individual grey matter networks were extracted from the first round of scans of 
the EHRS using the same cube-size as discussed in Chapter 3 (i.e., 3 x 3 x 3 

voxels of 2 x 2 x 2 mm3). For details concerning this method the reader is referred 
to Chapter 3 (Section 3.2). In the following Sections methodological details 

specific to the current sample will be explained.

5.2.1 Subjects

The data used here was previously collected for the Edinburgh High Risk study of 

Schizophrenia (Hodges et al., 1999; Johnstone et al., 2000; 2005), in which 181 

participants had undergone a structural scan at baseline. This sample consisted of 

36 healthy controls (19 female, mean age = 21.17, SD = 2.37), who had no family 

history of psychiatric illness and 146 participants who had an increased genetic 

risk to develop schizophrenia and without a personal history of psychiatric illness. 

The high risk participants were identified throughout Scotland on the basis that 

they had at least two first- or second-degree relatives affected with schizophrenia 

(Hodges et al., 1999). At the start of the study all participants were clinically 

healthy. Seventeen of the high risk subjects developed schizophrenia during the 

study (6 female, mean age = 20.22, SD = 2.66). Of the people who remained well 

57 subjects experienced psychotic symptoms at some point during the study (32 

female, mean age = 21.20, SD = 3.05), and 72 participants never experienced 

psychotic symptoms (34 female, mean age = 21.52, SD = 2.88). Three participants 

were excluded because their segmentations did not contain enough anatomical 

detail due to failure of segmentation (n = 1), overestimation (n = 2) or 

underestimation (n = 1) of grey matter, rendering them unsuitable for 

morphological network extraction (all males, three from the high risk with 

symptoms and one from the healthy controls). The groups did not differ in their 

gender distribution (χ2(3) =3.69, p = 0.16).
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5.2.2 Acquisition and preprocessing of the images

The current study used structural T1 weighted MRI scans that were previously 

described in Job et al. (2003). Briefly, scanning was performed in a 1 Tesla 42 
SPE Siemens (Erlangen, Germany) Magneton scanner. T1 weighted scans were 

acquired using a 3D magnetisation prepared rapid acquisition gradient echo 
(MPRAGE) sequence consisting of a 180° inversion pulse followed by a fast low 

angle shot (FLASH) collection (flip angle 12°, TR = 10 ms, TE = 4 ms, TI = 200 
ms and relaxation delay time 500 ms, field of view 250 mm x 250 mm) to give 

128 contiguous ‘slices’ of 1.88 mm thickness. Next the scans were preprocessed 
with Statistical Parameter Mapping software version 99 (SPM99, http://

www.fil.ion.ucl.ac.uk/spm/spm99.html) running in MATLAB version 5.3 (The 
Mathworks, Natick, MA, USA) and using a study specific template as described 

in Job et al. (2003). The resulting grey matter segmentations in native space were 
used in this study to extract individual networks.

5.2.3 Statistical analyses

Networks were extracted as described in detail in Chapter 3. The binarised 

networks contained on average 6901 nodes (SD = 667). For each network, 20 

random networks were created, and the following metrics were computed in 

Matlab: the sparsity, the average degree, the clustering coefficient and its ratio 

with an average clustering coefficient from 20 random networks (γ), the average 

minimum path length and its ratio with an average minimum path length from 20 

random networks (λ), and the small world coefficient. The betweenness 

coefficient was omitted from the current analysis, because it was strongly 

correlated with the average degree (r = 0.95) in Chapter 3. Nodes were identified 

as hubs when they had a degree value higher than one standard deviation above 

the networks mean degree.

	

 In Table 6 it can be seen that the network property values were 

significantly different from a normal distribution and therefore for all subsequent 

comparisons, non-parametric tests were used. The network property values of the 

healthy control group were compared using two-sample Mann-Whitney U tests 

with those from the Calibrain study (Chapter 3) to further validate the new 

method. Next, it was investigated whether the high risk and healthy groups 
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differed in the distribution of the network property values using two sample t-

tests, with a Welch modification to the degrees of freedom when the variance was 

not equal between the groups. These analyses were repeated to compare 

subgroups within the high risk group (people who remained well throughout the 

study, people who experienced symptoms at some point during the study and 

people who later became ill) with ANOVAs instead of t-tests. The 

intercorrelations between the network property values were compared between the 

groups with Z tests, after performing a Fisher transformation on the correlation 

coefficients (Z = 1
2 ln

1+r
1−r

, Z is the transformed variable and r the correlation 

coefficient to be compared, see: Fisher, 1921). Because at multiple statistical tests 

were performed for all group comparisons, the p-value was corrected for multiple 

comparisons with the false discovery rate (Benjamini and Hochberg, 1995). All 

statistical analyses were implemented and performed in R version 2.12.1.
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Table 6

Anderson-Darling test for normality of the distribution of graph property valuesAnderson-Darling test for normality of the distribution of graph property valuesAnderson-Darling test for normality of the distribution of graph property valuesAnderson-Darling test for normality of the distribution of graph property valuesAnderson-Darling test for normality of the distribution of graph property values

GroupGroupGroupGroup

Property HC HR well HR symp HR ill

size 0.86* 1.10** 0.52 0.66

degree 0.86* 0.62 0.67 0.26

L 0.97* 1.25** 0.30 1.02**

C 0.59 1.15** 0.71 0.32

σ 0.27 0.87* 0.995* 0.60

BC - - - -

S 0.53 1.46*** 0.83* 0.60

Significance levels Anderson-Darling test: *** = p < 0.001,** = p < 0.01, * = p < 0.05
HC is the healthy control group, HR well is subgroup from the EHRS that remained well, 
HR symp is subgroup from the EHRS that acquired symptoms, HR ill is subgroup of 
EHRS that became ill, L is average path length, C is the average clustering coefficient, 
σ is the small world coefficient, BC is the betweenness coefficient, S is sparsity level.

Significance levels Anderson-Darling test: *** = p < 0.001,** = p < 0.01, * = p < 0.05
HC is the healthy control group, HR well is subgroup from the EHRS that remained well, 
HR symp is subgroup from the EHRS that acquired symptoms, HR ill is subgroup of 
EHRS that became ill, L is average path length, C is the average clustering coefficient, 
σ is the small world coefficient, BC is the betweenness coefficient, S is sparsity level.

Significance levels Anderson-Darling test: *** = p < 0.001,** = p < 0.01, * = p < 0.05
HC is the healthy control group, HR well is subgroup from the EHRS that remained well, 
HR symp is subgroup from the EHRS that acquired symptoms, HR ill is subgroup of 
EHRS that became ill, L is average path length, C is the average clustering coefficient, 
σ is the small world coefficient, BC is the betweenness coefficient, S is sparsity level.

Significance levels Anderson-Darling test: *** = p < 0.001,** = p < 0.01, * = p < 0.05
HC is the healthy control group, HR well is subgroup from the EHRS that remained well, 
HR symp is subgroup from the EHRS that acquired symptoms, HR ill is subgroup of 
EHRS that became ill, L is average path length, C is the average clustering coefficient, 
σ is the small world coefficient, BC is the betweenness coefficient, S is sparsity level.

Significance levels Anderson-Darling test: *** = p < 0.001,** = p < 0.01, * = p < 0.05
HC is the healthy control group, HR well is subgroup from the EHRS that remained well, 
HR symp is subgroup from the EHRS that acquired symptoms, HR ill is subgroup of 
EHRS that became ill, L is average path length, C is the average clustering coefficient, 
σ is the small world coefficient, BC is the betweenness coefficient, S is sparsity level.
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5.3 Results

In this Section the results from the planned comparisons are discussed first, 

followed by exploratory analyses that were performed to study the clinical value 
of the network properties. The exploratory analyses investigated whether 

differences in the spatial distribution of the network hubs (i.e, nodes with a degree 
value higher than one standard deviation above the networks mean) could be 

predictive of group membership.

5.3.1 Comparing graph properties of the current healthy sample and 

the Calibrain sample

Figure 8 displays the distributions of the graph property values that were 

compared between the Calibrain sample from the study of Chapter 3 and the 
current healthy control sample. The networks from the Calibrain sample were of 

similar size as the current sample (U = 217, Z = -0.62, pFDR = 0.54; Figure 7a), 
and so any other differences between these groups cannot be explained in terms of 

network size.
	

 Using the same approach to determine the threshold of the networks led to 

significantly sparser networks in the current healthy sample (15%) than in the 
Calibrain sample (23%, U = 0, Z = -5.42, pFDR = 1.07 x 10-7; Figure 7b). Possibly 

the decrease in intracortical similarities in the current sample might be caused by 
additional noise to the data caused by the lower scanner strength that was used to 

acquire the MRI scans (1T instead of the 1.5T in the Calibrain sample). Scanner 
noise was quantified by calculating the signal-to-noise ratio (SNR. Computed for 

each slice containing grey matter as: = 0.66 * mean(grey matter) / standard 
deviation (background); Kaufman et al., 1989; Dietrich et al., 1997). However, 

possibly due to the use of a phantom to increase segmentation accuracy in the 

EHRS sample, the SNR was better for the EHRS sample (U = 466, pFDR = 1.15 

x10-6; Figure 8h). Alternatively, the addition of edges in the Calibrain sample 

might be explained by a difference in variability in the cubes: If cubes vary less in 

their grey matter structure, then they might show more similarities. This was 

confirmed with a Mann Witney U test (U = 490, Z = 5.42, pFDR= 1.07 x 10-7; see 

Figure 8g), and might explain other differences between the groups in graph 

property values.
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 The average degree and clustering coefficient were also significantly 

higher in the Calibrain sample than the current healthy sample (respectively: U = 

8, Z = -5.25, pFDR = 2.08 x 10-7; U = 1, Z = -5.40, pFDR = 1.07 x 10-7; Figure 7c 

and 7d), this might be explained by the high positive correlation between these 

properties and sparsity (see: Table 2 and Table 6). The average minimum path 

length was significantly lower in the Calibrain sample than in the current healthy 

control sample (U = 490, Z = 5.42, pFDR = 1.07 x 10-7; Figure 7e). Finally the 

Calibrain sample showed a significantly lower small world coefficient than the 

current healthy control sample (U = 490, Z = 5.42, pFDR = 1.07 x 10-7; Figure 7f).

	

 Figure 9 shows the distribution of the degrees from 14 randomly sampled 

individual subjects of the EHRS healthy controls, and the group average. The 

spatial degree distribution shows a higher contrast than can be seen in Figure 6 of 

Chapter 3, because the EHRS networks were sparser than the Calibrain networks. 

Interestingly, the spatial distributions of nodes that show a relatively high degree, 

the hubs, are qualitatively similar to in those in Figure 6. This was confirmed by a 

strong correlation of the number of hubs in anatomical areas between the two 

studies (left hemisphere: ρ = 0.97, p = 4.39 x 10-7; right hemisphere: ρ = 0.97, p = 

3.42 x 10-7). In addition, the interrelationships between the network property 

values were similar between the groups (see Table 7 and Table 2. Range of 

absolute Z values: 0.06 - 2.02; range of pFDR-values: 0.53 - 0.95), suggesting that 

these interrelationships are a stable property of morphological networks based on 

intracortical similarities.
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Figure 8. Comparison between the Calibrain sample of Chapter 3 and the current healthy control 

sample (HC) of a) size, b) sparsity, c) degree, d) average clustering  coefficient, e) average minimum 

path length, f)  small world coefficient,  g)  variability in the ROIs and h) the SNR of the scans. The 

middle horizontal line in the boxes indicates the median value, the cross the mean value, the 

bottom and top of the boxes indicate the 25th and 75th percentiles, the circles outside the 

whiskers indicate outliers and the asterisk indicates a significant difference between the means of 

these distributions (pFDR < 0.01).
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Table 7
Pairwise Spearman’s rank correlations between the values of the graph properties computed 
across the healthy subjects (HC) at baseline compared to correlations in the high risk sample 
(HR)
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Table 7
Pairwise Spearman’s rank correlations between the values of the graph properties computed 
across the healthy subjects (HC) at baseline compared to correlations in the high risk sample 
(HR)

VV LL CC σσ SS

HC HR HC HR HC HR HC HR HC HR
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Figure 9.  a) A plot of the degree of all cubes for one slice (right medial hemisphere)  from 14 

randomly chosen individual subjects of the healthy EHRS sample. The degrees were standardised 

by their maximal value. Warmer colours indicate that a cube has more structural similarities with 

other cubes in the brain than cubes with cooler colours. b) Shows the group average across 35 

subjects of the degree patterns after warping  to standard MNI space, which supports that most 

subjects have hubs along the right medial surface of the brain. c) Shows the spatial distribution of 

hubs (nodes with a degree higher than one standard deviation above the mean)  averaged over all 

35 subjects and plotted on a surface. To quantify the spatial degree distribution, the average 

percentage of hubs was plotted for both hemispheres based on the degree (d). (e) shows the high 

correspondence of the % of hubs for all anatomical areas in the left and right hemisphere between 

the EHRS and the Calibrain sample from Chapter 3.
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5.3.2 Comparing graph properties between people with and without 

increased risk of schizophrenia

No differences were found between the healthy and high risk group in any of the 

network properties, suggesting that the overall organisation of the intracortical 

similarities is not disrupted in people at high generic risk of schizophrenia (Figure 

10).
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Figure 10. The distributions of a) size, b) sparsity, c) degree,d)  clustering coefficient, e) minimum 

path length and f) the small world coefficient in the healthy control (HC) and high risk (HR) 

samples. The middle horizontal line in the boxes indicates the median value, the cross the mean 

value, the bottom and top of the boxes indicate the 25th and 75th percentiles, and the circles 

outside the whiskers are outliers. None of the distributions showed significant differences between 

the two groups.
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5.3.3 Comparing correlation patterns of graph theoretical properties 

between people with and without increased risk of schizophrenia

Network properties have been reported to be interrelated (e.g., He, Chen, et al. 

2007; Bassett et al. 2008, 2010; He et al. 2008; Fornito et al. 2010; van Wijk et al. 

2010; Zalesky et al. 2010; Tijms et al., 2011). Here it was studied with separate Z 

tests whether the correlations summarised in Table 7 would differ between the 

high risk and healthy control groups (after a Fisher transformation of the 

correlation values). As can be seen in Figure 11, the high risk group showed a 

significant positive relationship between the average minimum path length and the 

small world property (ρ = 0.45, p = 2.19 x 10-8) that was significantly different 

from the healthy control group (ρ = -0.11, p = 0.54); Z = 3..03, pFDR = 0.04). This 

correlation was unexpected, because the small world coefficient requires the 

division of the average minimum path length by the random path length to be 

around one and therefore should not be related to the small world coefficient. On 

the other hand, the small world property by itself does not give detailed 

information about the connectivity topology, and therefore it is possible that in the 

high risk group a larger path length is needed to achieve a similar small world 

property as the healthy control group. However, the difference in correlation 

might also be explained by the difference in sample size.
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Figure 11. Scatterplot of the small world coefficient values and the average minimum path length. 

The high risk group (EHRS) showed a positive relationship between these two variables 

(diamonds, dashed regression line)  but the healthy control group did not (circle, solid regression 

line).
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5.3.4 Comparing graph properties within the high risk sample

Here, it was investigated whether there were any differences in network properties 

within the high risk sample that were related to disease outcome: people who 
never experienced symptoms (n = 72), people who at some point during the study 

experienced symptoms (n = 54) and people who were later diagnosed with 
schizophrenia (n =17). The groups were compared using non-parametric Kruskal 

Wallis tests, which do not require normality of the data and are robust to outliers.
	

 Figure 12 contains box plots of the network property distributions in the 

three subgroups. The groups showed significant differences in the median network 
sparsity (Kruskal-Wallis χ2(2) = 8.95, pFDR = 0.03; Figure 12b), median degree 

(Kruskal-Wallis χ2(2) = 10.94, pFDR = 0.03; Figure 12c) and median clustering 
coefficient (Kruskal-Wallis χ2(2) = 7.43, pFDR = 0.048; Figure 12d).

	

 Post-hoc tests indicated that only the no-symptom and ill subgroups 
differed significantly: (median sparsity of the ill group: 15.15%; 95% confidence 

interval: 14.77% - 15.32%; median sparsity of the no symptom group:14.51%; 
95% confidence interval: 14.06% - 14.89%; difference in degree means = 78.92, 

95% family-wise confidence interval = 9.50 - 148.34, pFDR = 0.02; difference in 
clustering coefficient means = 0.01, 95% family-wise confidence interval = 

0.0012 - 0.03, pFDR = 0.03). Even though each individual network in each group 
had the same chance to include 5% spurious connections in their networks, the 

high risk group who later became ill showed more intracortical similarities, a 
higher degree and more clustering than the high risk without symptoms group. 

	

 To explore the origin of the increase of similarities, it was tested whether 
the groups differed in the variability of the grey matter values in the cubes 

(computed as the standard deviation in the cubes, Figure 12g) and the signal-to-
noise ratio (SNR) of the scans (SNR was computed for each slice containing grey 

matter as: = 0.66 * mean(grey matter) / standard deviation (background)), and 
then averaged over slices). The groups did not differ in either variability of grey 

matter in the cubes, nor in the SNR of the scans.
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Figure 12. The distributions of a) size, b) sparsity, c) degree,d)  clustering coefficient, e) minimum 

path length, f) the small world coefficient, g)  variability in the ROIs and h) the SNR in the no-

symptom (NS),  symptom (S) and ill (I)  high risk subgroups. The middle horizontal line in the boxes 

indicates the median value, the cross the mean value, the bottom and top of the boxes indicates 

the 25th and 75th percentiles, and the circles outside the whiskers indicate outliers. The asterisk 

indicates significant differences between the ill and no-symptom groups with pFDR < 0.05.
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5.3.5 Differences in graph theoretical property interrelationships 

between the high risk subgroups

Here it was investigated whether the high risk subgroups differed in their network 

property correlation patterns (see Table 8). No differences were found in 

correlation values between the symptom group and the other two groups. Possibly 

this might reflect that the symptom group represents a transient group between 

being well and becoming ill. 

	

 The well and ill subgroups showed differences in three correlation values: 

between the average path length and sparsity (Z = -3.06, pFDR = 0.01), average 

path length and clustering (Z = -3.39, pFDR = 0.005), and between the network size 

and the small world value (Z = 3.45, pFDR = 0.005).

	

 The ill subgroup showed a positive correlation between sparsity and the 

average minimum path length (ρ = 0.59, p = 0.01), that was absent in the well 

group (ρ = -0.22, p = 0.07). Such a relationship might occur when networks 

contain smaller clusters, that are densely interconnected but show less dense 

connectivity between the clusters. When clusters are less efficiently connected, 

this would lead to an increase in average minimum path length. This explanation 

was supported by the positive relationship between average path length and 

clustering coefficient that was only found in the ill group (Figure 13b; ρ = 0.74, p 

= 0.001). Furthermore, only the well group showed a positive relationship 

between the small world coefficient and network size (ρ = 0.52, p = 2.5 x 10-6).

	

 Finally, the positive relationship between the average minimum path 

length and the small world coefficient was found in all high risk subgroups.
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Figure 13. Scatterplots of a) average minimum path length and sparsity, b) average minimum path 

length and the clustering coefficient for the no-symptom (open circles and a solid line), symptom 

(open diamonds and a dashed line) and ill subgroups (asterisks with a dot-dashed line).
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5.3.6 Exploratory analyses: classification of group membership

The diagnostic value of the method was explored by testing whether group 

membership could be predicted from differences in the spatial distribution of 
degree hubs. The exploratory analyses will be explained first, followed by the 

results.
	

 Because each node of the individual networks can be characterised with a 

degree value, it was necessary to reduce the dimensionality of the data set (i.e., 
‘large p, small n’-problem; see: Green, 1991; Peduzzi et al., 1995; 1996; Babyak, 

2004). This was done by computing the number of degree hubs for specific 
anatomical areas, reducing an average of 6901 variables to 52. The anatomical 

areas were extracted from the networks with an anatomical mask, that was 
constructed using the WFU Pickatlas tool within SPM5 as described in Chapter 3 

(see: Table 4). The number of hubs from every anatomical area was used as a 
predictor variable in a logistic regression model to predict group membership for 

each hemisphere separately (26 variables per hemisphere). Three global network 
properties (sparsity, average degree and average clustering coefficient) were 

included as covariates. Because the smallest group contained 17 subjects, it was 
necessary to further reduce the dimensionality of the dataset to avoid overfitting. 

This was achieved with automatic variable selection with random forests for 
logistic regression (Prinzie and van den Poel, 2008). A random forest is a classifier 

model that is built from randomly constructed prediction models (in this case 
logistic regression models). A random forest is robust to overfitting because it 

estimates models from different bootstrap samples of the data, using randomly 
sampled predictor variables (Breiman, 2001). A random forest can be used as a 

classifier for new observations by aggregating information from all the models 
combined by using e.g., majority voting (Breiman, 2001; Liaw and Wiener, 2002). 

It also gives a generalisation error, that is computed from the observations that 
were not used to estimate the regression models (i.e. the out-of-bag (OOB) data, 

see: Efron and Tibshirani, 1997). Furthermore, a random forest can also be used 
for automated variable selection, by randomly permuting the corresponding 

column in the OOB data for each variable and comparing the correctly classified 
percentage with that from the intact OOB data, resulting in an importance score. 

An importance score > 0 means that the variable is important, because the 
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percentage of correctly classified instances decreases in the randomised situation. 

An importance score of equal or lower than zero means that randomising the 

observations of this variable does not alter the classification accuracy and 

therefore is not important. Random forests have been widely and successfully 

used in classification research were there are many more predictor variables than 

observations (the so-called ‘small n, large p problem’. See, e.g., in gene 

association studies: Braga-Neto et al., 2004; Huang et al., 2005; Diaz-Uriarte and 

Alvarez de Andres, 2006). Classification accuracy was further improved by 

sampling the same number of observations from every group (i.e., undersampling: 

see e.g., Burez and van den Poel, 2009). In a random forest two parameters need 

to be set: 1. the number of trees (i.e., logistic regression models, here set to 1000) 

and 2. the number of predictor variables to be sampled for each regression model. 

Here the rule of thumb was used of 10 ~ 15 observations per predictor variable in 

the regression model (Green, 1991; Peduzzi et al., 1995; 1996; Babyak, 2004), 

resulting in 3 variables per model when comparing the high risk group to the 

healthy controls, and in 1 variable per model for the high risk subgroup 

comparisons. All statistical analyses were implemented and performed in R 

version 2.12.1 using the mlogitBMA package.

5.3.6.1 Healthy control versus high risk: left hemisphere

When all the predictor variables and degree, clustering and sparsity were used to 
construct a random forest, the average generalisation error of the resulting 

classifier was 51% (95% confidence interval = 46% - 55%), which was at chance 
level. The top three variables from Table 9, which lists the variables with an 

importance score higher than 0, were: the angular gyrus, sparsity and the superior 
parietal lobule. These variables were selected to construct a logistic regression 

model and the generalisation error was estimated using bootstrap validation (using 
a thousand random bootstrap samples). The average generalisation error improved 

to 41% (95% confidence interval: 37% - 45%), suggesting that sparsity in 
combination with a higher number of hubs in the left angular gyrus and superior 

parietal lobule is related to an increased genetic risk of schizophrenia.
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5.3.6.2 Healthy control versus high risk: right hemisphere

The random forest classifier using all predictor variables from the right 

hemisphere performed around chance level (average generalisation error = 0.52%; 
95% confidence interval = 47% - 57%). Including only the top three variables 

from Table 8 (middle temporal gyrus, precuneus and the postcentral gyrus) 
improved the performance of the classifier slightly to 46%, but the 95% 

confidence interval still included chance level (41% - 50%), indicating that there 
were no reliable differences between the groups in the spatial distribution of the 

hubs in the right hemisphere.
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Table 9
The standardised importance score of the predictor variables for the left and right hemisphere, 
when comparing people with and without an increased risk for schizophrenia.

Table 9
The standardised importance score of the predictor variables for the left and right hemisphere, 
when comparing people with and without an increased risk for schizophrenia.

Table 9
The standardised importance score of the predictor variables for the left and right hemisphere, 
when comparing people with and without an increased risk for schizophrenia.

Table 9
The standardised importance score of the predictor variables for the left and right hemisphere, 
when comparing people with and without an increased risk for schizophrenia.

Table 9
The standardised importance score of the predictor variables for the left and right hemisphere, 
when comparing people with and without an increased risk for schizophrenia.

Left Z scoreZ score Right Z score

Angular gyrus 7.35 Middle temporal gyrus 2.75

sparsity 3.82 Precuneus 1.84

Superior Parietal Lobule 3.44 Postcentral gyrus 0.63

Uncus 3.19 Medial occipitotemporal gyrus 0.61

Cingulate areas 2.13 sparsity 0.44

Inferior occipital gyrus 1.88 Cingulate areas 0.30

Precentral gyrus 1.30 Cuneus 0.17

Medial occipito-temporal gyrus 0.93 Superior/transverse temp gyrus 0.14

Cuneus 0.73 Middle occipital gyrus 0.07
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5.3.6.3 Comparisons between the high risk subgroups

Here the results of three comparisons within the high risk group are presented.

5.3.6.3.1.1 Global network properties of the non-ill and ill high risk 

subgroups

Because within the subgroups significant differences were found in the average 

degree, clustering coefficient and sparsity, it was first explored whether these 
variables could reliably distinguish people who later became ill from those who 

did not. Bootstrap validation showed that models including only sparsity, degree 
or the average clustering coefficient had an average generalisation error above 

chance level. However, none of these models could reliably classify the ill sub 
group from the non-ill subgroup, because the generalisation error of these models 

included chance level. Models with a combination of these three variables also did 
not improve classification of the ill subgroup. In the next Section it was explored 

whether adding information about the number of hubs from anatomical areas 
improved classification.

5.3.6.3.1.2 Differences in the hub distribution over the left hemisphere 

of the non-ill and ill high risk subgroups

The average generalisation error of a random forest classifier that included all the 
available predictor variables, sparsity, degree and clustering coefficient as 

covariates, was worse than chance level (53%). As can be seen in Table 10, none 
of the anatomical areas had an importance score higher than sparsity, degree or 

clustering, suggesting the increase of average degree in the ill subgroup was not 
specific to any anatomical area in the left hemisphere.

5.3.6.3.1.3 Differences in the hub distribution over the right 

hemisphere of the non-ill and ill high risk subgroups

The average generalisation error of a random forest classifier that included all the 

available predictor variables, sparsity, degree and clustering coefficient as 
covariates, was 44%, but the 95% confidence interval included chance level (36% 

- 51%). Table 10 shows that the degree and the angular gyrus had the highest 
importance score and therefore bootstrap validation with a thousand random 

107



samples was performed for a logistic regression model using just these two 

variables. This model had an average generalisation error of 30% (95% 

confidence interval: 23% - 35%) which was better than chance. People who 

remained well were classified with an accuracy of 70% (95% confidence interval: 

64% - 75%) and people who later became ill were classified with an accuracy of 

71% correct (95% confidence interval 60% - 83%). These exploratory results 

suggest that the number of hubs in the right angular gyrus in combination with the 

degree could reliably predict whether people at high risk of schizophrenia become 

ill or not.
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Table 10
The standardised importance score of the predictor variables for the left and right hemisphere 
when comparing non-ill (i.e., no-symptom and symptom combined) and ill subgroups.

Table 10
The standardised importance score of the predictor variables for the left and right hemisphere 
when comparing non-ill (i.e., no-symptom and symptom combined) and ill subgroups.

Table 10
The standardised importance score of the predictor variables for the left and right hemisphere 
when comparing non-ill (i.e., no-symptom and symptom combined) and ill subgroups.

Table 10
The standardised importance score of the predictor variables for the left and right hemisphere 
when comparing non-ill (i.e., no-symptom and symptom combined) and ill subgroups.

Table 10
The standardised importance score of the predictor variables for the left and right hemisphere 
when comparing non-ill (i.e., no-symptom and symptom combined) and ill subgroups.

Left Z score Right Z score

Degree 6.68 Degree 5.57

Clustering 5.82 Angular gyrus 5.46

Sparsity 4.71 Postcentral gyrus 5.33

Insula 2.57 Precuneus 3.88

Medial occipito-temporal gyrus 2.51 Clustering 3.81

Inferior parietal gyrus 2.18 Sparsity 3.61

Superior occipital gyrus 1.88 Paracentral lobule 2.46

Superior/transverse temporal gyrus 1.85 Parahippocampal gyrus 2.38

Middle frontal gyrus 1.79 Inferior parietal gyrus 2.28

Uncus 1.68 Superior/transverse temporal gyrus 1.97

Precuneus 0.97 Middle temporal gyrus 1.92

Precentral gyrus 0.71 Medial frontal gyrus 1.84

Postcentral gyrus 0.67 Uncus 1.58

Angular gyrus 0.60 Precentral gyrus 1.32

Superior frontal gyrus 0.23 Superior occipital gyrus 0.87

Cingulate areas 0.81

Middle frontal gyrus 0.73

Superior parietal lobule 0.55

109



5.3.6.3.2.1 Global network properties of the no-symptom and ill high 

risk subgroups 

Because the no-symptom and ill subgroups had significantly different average 

and/or median values for the sparsity, degree and clustering coefficient, it was first 

explored whether these properties could predict group membership. Bootstrap 

validation with a thousand random samples suggested that the average degree was 

sufficient to distinguish the no-symptom from the ill group with an average 

generalisation error better than chance 31% (95% confidence interval: 25% - 

36%). Both groups were classified higher than chance (well: mean = 71% (64% - 

78%); ill: mean = 67%, 57% - 80%). A model including just sparsity also 

performed better than chance with an average generalisation error of 32% (26% - 

37%). Using only the clustering coefficient was insufficient to reliably classify 

group membership, because the confidence interval of the ill group included 

chance level. Including both sparsity and the degree did not improve the 

performance of the degree-only model, (average mean = 31%, 95% confidence 

interval: 23%-37%).

	

 The next Section explores whether adding information of the hub areas 

improves classification of the degree-only or sparsity-only models.

5.3.6.3.2.2 Differences in the hub distribution over the left hemisphere 

between the no-symptom and ill high risk subgroups

The average generalisation error of a random forest classifier that included all the 

available predictor variables, sparsity and degree as covariates, was 48%, which 

was worse than using just the degree. None of the anatomical areas had an 

importance score higher than sparsity or degree (Table 11), suggesting the 

increase in average degree was not specific to any anatomical area in the left 

hemisphere in the ill subgroup.

5.3.6.3.2.3 Differences in the hub distribution over the right 

hemisphere between the no-symptom and ill high risk subgroups

The random forest classifier that randomly sampled one variable from all the right 

hemispheric anatomical areas, sparsity and degree had generalisation error of 

44%, but the 95% confidence interval included chance level (35% - 52%). Table 
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11 lists the predictor variables with the highest importance scores of which the top 

two were the angular gyrus and the average degree. The angular gyrus contained 

on average more hubs in the ill group (3.23) than the no-symptom group (2.28). 

Bootstrap validation of a logistic model including just the angular gyrus and the 

degree performed better than the full random forest, and also better than the 

degree only model with an average error rate of 27% (95% confidence interval = 

26% - 33%). Also the classification of the groups improved (well mean = 72%, 

95% confidence interval =65%-79%; ill mean = 74%, 95% confidence interval = 

60% - 79%). These results suggest that people at high genetic risk of 

schizophrenia who later become ill have a higher average degree than people who 

remain well, and that this increase is specific to the angular gyrus. Furthermore 

this results suggests that this method could potentially be used as a diagnostic 

tool.
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Table 11
The standardised importance score of the predictor variables for the left and right hemisphere 
when comparing high risk no-symptom and ill subgroups.

Table 11
The standardised importance score of the predictor variables for the left and right hemisphere 
when comparing high risk no-symptom and ill subgroups.

Table 11
The standardised importance score of the predictor variables for the left and right hemisphere 
when comparing high risk no-symptom and ill subgroups.

Table 11
The standardised importance score of the predictor variables for the left and right hemisphere 
when comparing high risk no-symptom and ill subgroups.

Table 11
The standardised importance score of the predictor variables for the left and right hemisphere 
when comparing high risk no-symptom and ill subgroups.

Left Z score Right Z score

Degree 8.34 Angular gyrus 6.20

Sparsity 7.85 Degree 5.89

Insula 5.54 Postcentral gyrus 5.48

Precentral gyrus 5.15 Sparsity 5.30

Middle temporal gyrus 3.26 Paracentral gyrus 5.09

Superior occipital gyrus 2.62 Precuneus 5.06

Middle frontal gyrus 1.18 Inferior frontal gyrus 3.26

Cuneus 1.12 Medial frontal gyrus 3.21

Medial occipitotemporal gyrus 1.12 Cingulate areas 2.83

Lingual gyrus 0.72 Superior temporal gyrus 2.29

Supramarginal gyrus 0.64 Paracentral gyrus 2.07

Angular gyrus 0.31 Inferior parietal gyrus 2.01

Middle occipital gyrus 1.79

Superior frontal gyrus 1.69

Precentral gyrus 1.55

Uncus 0.79
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5.3.6.3.3.1 Differences in the global network properties between the 

symptom and ill high risk subgroups

First it was explored whether sparsity, degree and the clustering coefficient could 

predict group membership. Bootstrap validation with a thousand random 

bootstrap samples suggested that although the average generalisation error of the 

degree (35%, 95% confidence interval = 28% - 35%), clustering coefficient (39%, 

95% confidence interval = 31% - 45) and the sparsity (37%, 95% confidence 

interval: 31% - 42%) was better than chance level (50%), the 95% confidence 

interval of the classification of the ill group included for all models chance level, 

suggesting that the groups cannot be reliably classified using just one of these 

variables. Combining these variables did not improve classification.

5.3.6.3.3.2 Differences in the hub distribution over the left hemisphere 

between the symptom and ill high risk subgroups 

The random forest classifier that randomly sampled one variable from all the right 

hemispheric anatomical areas and sparsity, clustering and degree had 

generalisation error of 45%, its 95% confidence interval included chance level 

(38% - 54%) indicating that it did not perform better than chance level. Sparsity 

had the highest importance score in Table 12, indicating that information from the 

left anatomical areas could not be used to improve the classification of the groups.

5.3.6.3.3.3 Differences in the hub distribution over the right 

hemisphere between the symptom and ill high risk subgroups

The generalisation error of the random forest classifier that randomly sampled one 

variable from all the right anatomical areas, sparsity and degree had generalisation  

error of 45% and its 95% confidence interval included chance level (38% - 54%). 

The most important variable in Table 12 was the paracentral lobule that contained 

more hubs in the ill group than the symptom group. A logistic regression model 

that included just the paracentral lobule, performed better than chance with a 

generalisation error of just 35% (95% confidence interval: 27% - 41%). However, 

the confidence interval of the generalisation error specific for the ill group still 

included chance level (mean 34%, 95% confidence interval: 29% - 50%). Adding 

the second highest predictor variable (i.e., the degree) to the logistic regression 
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model improved the generalisation error to 34%, and also both classes were 

correctly classified (symptom class: mean = 64%, 95% confidence interval: 59% - 

71%; ill class: mean = 67%, 95% confidence interval: 57% - 83%).
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Table 12
The standardised importance score of the predictor variables for the left and right hemisphere 
within the high risk group: symptoms versus ill.

Table 12
The standardised importance score of the predictor variables for the left and right hemisphere 
within the high risk group: symptoms versus ill.
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Table 12
The standardised importance score of the predictor variables for the left and right hemisphere 
within the high risk group: symptoms versus ill.

Table 12
The standardised importance score of the predictor variables for the left and right hemisphere 
within the high risk group: symptoms versus ill.

Left Z score Right Z score

Sparsity 4.41 Paracentral lobule 5.60

Middle temporal gyrus 4.25 Degree 5.34

Degree 3.04 Precuneus 4.80

Inferior parietal lobule 2.34 Postcentral gyrus 3.78

Insula 1.80 Sparsity 3.37

Superior occipital gyrus 1.78 Cuneus 3.27

Supramarginal gyrus 1.30 Superior occipital gyrus 2.53

Lat and med orbitofrontal gyrus 0.68 Angular gyrus 2.20

Angular gyrus 0.46 Medial frontal gyrus 2.04

Inferior frontal gyrus 0.24 Cingulate areas 1.59

Precentral gyrus 0.19 Superior frontal gyrus 1.32

Cuneus 0.10 Superior parietal lobule 0.65

Inferior parietal lobule 0.46

Uncus 0.44
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5.4 Relationship of hubs and symptoms within the high risk group

Here it was further explored whether the differences found between the groups 

were correlated to symptom severity at the start of the study and genetic liability.
	

 Earlier symptom severity of schizotypal cognitions as measured with the 

RISC (Rust Inventory of Schizotypal Cognitions; Rust, 1988) has been reported to 
be significantly different between all three subgroups of the EHRS (Johnstone, 

2005). However, at whole brain level, no significant correlations have been found 
with grey matter density at baseline within the EHRS subgroups (Lymer et al., 

2006). Only after applying a small volume correction, Lymer et al. (2006) found a 
strong positive relationship between symptom severity and grey matter density of 

the left superior temporal gyrus was found in the ill subgroup.
	

 Table 13 lists the anatomical areas that showed a significant rank 

correlation with the RISC across all subjects in the EHRS and for each subgroup 
separately. All these correlations were of moderate strength, and none survived 

correction for multiple hypothesis testing with false discovery rate. No significant 
correlations were found for the left superior frontal gyrus, however, correlations 

were found for the left inferior and middle frontal gyri.
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Table 13
Significant rank correlations rho (p-value) of the Rust Inventory of Schizotypal Cognitions (RISC) 
with number of hubs in the EHRS groups
Significant rank correlations rho (p-value) of the Rust Inventory of Schizotypal Cognitions (RISC) 
with number of hubs in the EHRS groups
Significant rank correlations rho (p-value) of the Rust Inventory of Schizotypal Cognitions (RISC) 
with number of hubs in the EHRS groups
Significant rank correlations rho (p-value) of the Rust Inventory of Schizotypal Cognitions (RISC) 
with number of hubs in the EHRS groups
Significant rank correlations rho (p-value) of the Rust Inventory of Schizotypal Cognitions (RISC) 
with number of hubs in the EHRS groups

Group
Anatomical area All well symptom ill

left inferior frontal gyrus -0.16 (0.05) -0.32 (0.006) ns ns
left middle frontal gyrus ns ns ns 0.56 (0.02)
left insula ns ns -0.33 (0.02) ns
left middle occipital gyrus -0.18 (0.03) ns ns ns
left inferior occipital gyrus ns ns 0.32 (0.02) ns
right cingulate gyrus 0.19 (0.02) ns ns ns
right middle temporal gyrus ns -0.36 (0.002) ns ns
right middle occipital gyrus ns ns ns 0.50 (0.04)
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5.5 Discussion

In the present study, the properties of grey matter networks were studied for the 

first time in a sample of people at high genetic risk for schizophrenia (from the 
Edinburgh High Risk study of Schizophrenia). In addition, the new method was 

further validated by comparing the healthy control sample with the study of 
Chapter 3. It was found that only the size of the networks was similar for both 

groups, but all other network properties were different. Possibly these differences 
were related noise arising from scanners of different strength, because the groups 

showed differences in the variability of grey matter intensity values in the cubes. 
Interestingly, the spatial distribution of the degree over anatomical areas was 

highly stable and also the interrelationships between the network property values 
were similar in both groups.

	

 In the EHRS study, global network properties were similar between the 
high risk and healthy control groups, but the only the high risk group showed a 

positive correlation between the average minimum path length and the small 
world coefficient. Within the high risk group, networks from people who later 

became ill contained more intracortical similarities, an increased average degree 
and average clustering coefficient in comparison to networks from people who did 

not had any symptoms. Network property values of people who experienced 
symptoms during the study were intermediate between the two other high risk 

groups. Furthermore, the diagnostic potential of the new method was supported by  
exploratory results, where people who later became ill could be classified up to an 

accuracy of 74%. The number of hubs in the left angular gyrus and superior 
parietal lobule could predict whether someone had an increased risk of 

schizophrenia or not (an average prediction accuracy of 59%). The number of 
hubs in the right angular lobe differentiated people at risk who later became ill 

from those who did not (an average prediction accuracy of 73%). People at high 
risk who experienced symptoms had less hubs in the right paracentral lobule than 

people who later became ill (an average prediction accuracy of 65.5%).
	

 These results suggest that the new method offers a more sensitive 

approach than traditional methods to analyse grey matter data. The remainder of 
this Section will discuss the issues specific to the current study. For a discussion 

of general issues regarding the new method the reader is referred to Chapter 6.
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5.5.1 Validation of the method

The networks from the EHRS healthy sample showed less intracortical similarities 

than those from the Calibrain study. This discrepancy might be explained by the 
difference in scanner strength, because scans from a 1T scanner (in the EHRS 

study) contained more noise in their cubes than the scans from a 1.5T scanner (in 
the Calibrain study). Because the groups did not differ in network size, it is likely 

that the differences in all other network property values are related to the 
difference in network sparsity. However, these differences did not affect the 

spatial distribution of local degree values across the anatomical areas, because this 
was highly stable between studies. The interrelationships between the network 

property values were also stable. These findings suggest that comparisons 
between scans acquired with different scanner strengths should be limited to 

stable network properties.

5.5.2 Differences in network properties: healthy versus high risk 

groups

The high risk group showed a positive relationship between average minimum 

path length and the small world property, which is suggestive of a disrupted 
network topology because such a correlation did not exist in the healthy control 

group. Alternatively, this difference in correlation is caused by the difference in 
group size. Furthermore, the groups did not show differences in their global 

network properties, suggesting that the global level of organisation was not 
affected in people with a genetic risk of schizophrenia. This result is in line with 

previous anatomical network studies in established schizophrenia that also found 
global network property values were comparable with those from healthy controls 

(Bassett et al., 2008; van den Heuvel et al., 2010; Lord et al., 2011; but also see 
Zalesky et al., 2010).

5.5.3 Differences in network properties related to disease outcome

Within the high risk group it was found that people who later became ill had more 

intracortical similarities (i.e., the networks more densely connected), resulting in a 

higher average degree and clustering coefficient. The difference in sparsity could 

not be related to differences in noise in the scans, suggesting that this findings is 
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specific to disease outcome. At this point it is unclear what underlies the increase 

in intracortical similarities. An important next step is to investigate how these 

differences are related to other anatomical measures that have been reported to be 

involved in schizophrenia such as, for example, cortical thickness (e.g., White et 

al. 2003; Kuperberg et al., 2003; Narr et al., 2004; Jung et al., 2009) or change of 

grey matter volume over time (e.g., Pantelis et al., 2003; Job et al., 2005; 

Borgwardt et al., 2008; Sun et al., 2009).

	

 Furthermore, only the ill subgroup showed two positive correlations of the 

average minimum path length with network sparsity and the clustering coefficient. 

These correlations could be caused by the increase in intracortical similarities. 

These finding suggests that an imbalance in clustering and minimum path length 

exists in people at high risk who later become ill, and this explanation should be 

further tested in future research.

5.5.4 Increase of hubs in the parietal regions of the high risk group

In exploratory analysis it was found with automated variable selection that the left 

angular gyrus and superior parietal lobule in combination with sparsity could 
predict whether an individual was at increased risk for schizophrenia or not. More 

specifically, these regions contained more hubs in people with an increased risk 
for schizophrenia than in people without such risk. Furthermore, within the high 

risk group, the right angular gyrus contained more hubs in people who later 
became ill than in people who remained well. Lastly, the right paracentral lobule 

contained more hubs in people who became ill than people who later experienced 
symptoms.

	

 Surprisingly, while previous studies mostly have reported differences in 
temporal and frontal lobes in people at high genetic risk for schizophrenia (at 

either whole brain level or with region of interest analysis), none of these regions 
were found to be significantly different between group. However, the number of 

hubs in temporal, frontal, cingulate and occipital regions did show weak to 
moderately strong correlations with symptom severity as measured with the RISC 

(Rust, 1988). The number of hubs in the parietal regions, that predicted group 
membership, however did not not correlate with symptom severity. The rest of 

this Section will further speculate about the role of parietal regions in a network.
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 The number of hubs in the parietal regions, that predicted group 

membership, however did not not correlate with symptom severity. The rest of 

this Section will further speculate about the role of parietal regions in a network

	

 The angular gyrus is part of the inferior parietal lobule, which is 

implicated in language and thought processing and has been hypothesised to be 

disrupted in schizophrenia (Pearlson, 1997; Shenton, 2001; for a review of the 

involvement of the parietal cortex in schizophrenia see: Torrey, 2007). It receives 

reciprocal connections from the prefrontal cortex, hippocampus, amygdala, 

septum and temporal lobe regions (Cavada and Goldman-Rakic 1989; Seltzer and 

Pandya, 1984). In functional, white and grey matter MRI studies disruptions 

involving the parietal regions in schizophrenia have been reported (e.g., 

Schlaepfer et al., 1994; Wright et al., 1995; Frederikse et al., 2000; Wilke et al., 

2001; Hulshoff Poll et al., 2001; Buchanan et al., 2004; Whalley et al., 2004; 

Nierenberg et al., 2005; Whalley et al., 2005; Whalley et al., 2006; Zhou et al., 

2007; Liu et al., 2008; Whitfield et al., 2009; Alexander-Bloch et al., 2010; Lynall 

et al., 2010; Nenadic et al., 2010; van den Heuvel et al., 2010; Wang et al. 2010).

	

 Reductions of grey matter in the left angular gyrus and inferior parietal 

regions have been reported in established schizophrenia (Schlaepfer et al., 1994; 

Frederikse et al., 2000; Wilke et al., 2001; Hulshoff Poll et al., 2001; Nierenberg 

et al., 2005; Zhou et al., 2007). Studies have found negative correlations between 

inferior parietal grey matter volume and symptom severity (Wright et al., 1995; 

Wilke et al., 2001; Nenadic et al., 2010) and with deficits in sustained attention 

(Salgado-Pineda et al., 2003). Furthermore, Buchanan et al., (2004) found a grey 

matter volume correlation between the left angular gyrus and left inferior gyrus in 

people with schizophrenia, but not in healthy controls (however, also see: Zhou et 

al., 2007), providing more evidence that the morphological properties of these 

areas play a role in schizophrenia.

	

 Further evidence for a hub role of the left inferior parietal cortex in 

schizophrenia has been provided by a DTI network study (van den Heuvel et al., 

2010). This study also found a decrease of clustering and the average minimum 

path length in the right paracentral lobule in patients with schizophrenia when 

compared to healthy controls.
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 Functional MRI studies involving the EHRS have also found disruptions 

of the parietal cortex during a sentence completion task (Whalley et al., 2004). 
Furthermore, people at high risk for schizophrenia showed increased fronto-

parietal functional connectivity when seeded from the inferior parietal cortex 

(Whalley et al., 2005), which was predictive of illness (Whalley et al., 2006).

	

 Other functional MRI studies also reported differences in parietal 

activation in people at high clinical risk of schizophrenia (Gogtay et al. 2003; 

Borgwardt et al., 2007; Jung et al., 2009; Lui et al., 2009; Jacobson et al., 2010; 

Dazzan et al., 2011; Lord et al., 2011; and for established schizophrenia see e.g., 

Thompson et al., 2001; Voets et al., 2008). Only one graph theoretical study exists 

that studied fMRI networks in people at clinical high risk of the disease, and they 

reported that people at high clinical risk had an increased betweenness centrality 

in the superior parietal regions (among other regions) in comparison with healthy 

controls (Lord et al., 2011), again indicating a hub role of this region in 

schizophrenia.

	

 In established schizophrenia the inferior parietal lobe has also been 

identified as a hub region (Wang et al., 2010), based on increased of functional 

connectivity (also see Yu et al., 2011b). Another study found that left inferior 

parietal regions showed less clustering and a larger average path length (in resting 

state data: Liu et al., 2008; note however, other studies only found differences in 

the right parietal regions: Alexander-Bloch et al., 2010; Lynall et al., 2010). 

Additionally, the default mode network of patients with schizophrenia showed 

stronger fMRI correlations between prefrontal and parietal regions than healthy 

first degree relatives of patients with schizophrenia, who in turn showed 

moderately stronger correlations than healthy controls (Whitfield et al., 2009).

	

 All these studies in different modalities have found that parietal regions 

are involved in schizophrenia. This leads to the question as to why these regions 

have not been indicated in previous group based analyses in the grey matter data. 

Parietal regions show high variability between individuals (e.g., Kennedy et al., 

1998), which might be the reason why traditional VBM did not find differences at 

whole brain level in the EHRS. The new method did find differences, possibly 

because patterns of intracortical similarities were examined within an individual 

cortex without the need of warping scans into a standard space. These results 
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support the hypothesis that networks based on intracortical similarity provide a 

concise, statistical description that is more sensitive to subtle structural 

disturbances than traditional group based methods. However, it remains to be 

established, why these regions show an increase in intracortical similarities. 

Possibly, the increased risk of schizophrenia is related to differences in cortical 

development. During healthy development, grey matter volume in the parietal and 

prefrontal regions peaks at around 11-12 years of age, after which it decreases 

during adolescence (Jernigan et al., 1991; Giedd et al., 1999; Sowell et al., 2003; 

Paus et al., 2005). Because onset of schizophrenia usually occurs during 

adolescence, it has been hypothesised that these regions lag behind in 

development in people at high genetic risk of disease (e.g., Douaud et al., 2009). 

This question needs to be further investigated, for example, by mapping changes 

over time in the individual morphological networks and possibly in combination 

with functional networks.

5.5.5 Methodological limitations

Exploratory analyses were performed to investigate whether the spatial 

distribution of the hubs could be used to classify the subjects in different groups. 

An automated procedure, random forest, was used to select anatomical regions 

that were predictive of group membership. Although the classification rates were 

higher than chance level, it should be investigated whether they can be improved. 

Recently two other studies using information from morphological networks, have 

shown high classification accuracy ( > 80%) when distinguishing healthy elderly 

people from people with minor cognitive impairment (Zhou et al., 2011) and 

Alzheimer’s disease (Dai et al., 2011) using support vector machines (SVM). 

SVM were tried in the present study as well, but they did not work as well as the 

logistic regression models. Logistic regression has been reported to perform 

comparable to support vector machines, therefore future research should 

investigate whether variable selection could be improved (Bray et al., 2009). 

Possibly other network properties could be added to achieve a lower 

generalisation error (e.g., the clustering coefficient, see Bassett et al., 2008). 

However it must be noted that although the smallest group contained just 17 

individuals, group membership could be predicted with a generalisation error as 
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low as 26%. It might also be possible, that the higher classification accuracy in 

ageing studies can be explained by the fact that structural differences between 

healthy and demented elderly are more pronounced than in the present high risk 

study, where all people were healthy.

	

 This is the first study that provides evidence of differences the structure of 

grey matter using graph theory in a sample of healthy people at high genetic risk 

for schizophrenia. The findings were in line with previously reported findings in 

genetic and clinical high risk studies. This implies that patterns of intracortical 

similarity within individual cortices contain important information relevant to 

function. Future research should focus on studying the mechanisms that underly 

intracortical similarities.
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6. Overview, conclusions and future research

In this thesis it was examined whether it was possible to extract morphological 

networks from individual grey matter segmentations from magnetic resonance 

imaging scans (MRI).

	

 In Chapter 2 it was discussed that the morphology of the human cortex is 

complex and not well understood. Graph theory has been used to study human 

cortical morphology, but a limitation of existing methods is that they extract a 

single morphological network from group averaged data. Averaging cortical 

morphology across subjects can be problematic and subtle structural differences 

that are of most interest for clinical studies can be filtered out. Moreover, inter-

individual cortical variation has been suggested to determine individual 

differences in cognitive function (e.g., Schwarzkopf et al., 2010) and therefore it 

is important to have a concise description of individual cortices.

	

 The major contribution of this thesis was the development of a new 

method to extract individual grey matter from MRI scans in Chapter 3. This 

method divided the cortex into small three-dimensional regions of interest, which 

served as the nodes of the network that were connected based on their structural 

similarity. The method was tested on data from a sample of healthy people who 

were scanned at two different time points. The most important finding was that the 

topological organisation of the resulting networks was significantly different from 

random networks. The network property values that were found were comparable 

with those reported in group derived morphological networks of similar sparsity 

and two fMRI networks, and they were consistent over two time points. The main 

conclusion in this Chapter was that patterns of intracortical similarities give a 

concise statistical description of individual cortical morphology.

	

 Chapter 4 presented an overview of schizophrenia and mainly discussed 

studies that investigated grey matter MRI in people at high genetic risk of 

schizophrenia. Findings reported in healthy subjects who were at increased risk to 

develop schizophrenia show inconsistencies: while some studies found structural 

differences at whole brain level using traditional voxel-based morphometry 

methods, most studies did not. In spite of the inconsistent findings at whole brain 

level analyses, many region of interest analysis studies have reported differences 
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in grey matter at baseline that might be predictive of the disease. The main 

conclusion of Chapter 4 was that differences in cortical structure related to high 

genetic risk of schizophrenia must be subtle and for that reason might remain 

undetected by traditional automated whole brain analyses.

	

 In Chapter 5 it was investigated whether the new method presented in this 

thesis would more sensitive than traditional methods when studying cortical 

morphological differences between people with and without an increased genetic 

risk for schizophrenia from the EHRS (i.e., the Edinburgh High Risk study of 

Schizophrenia). Several subtle differences were found between the high risk and 

healthy control sample. For example, a correlation between minimum path length 

and the small world coefficient, which was suggestive of a disturbed network 

topology, only occurred in the high risk group. Also, differences in network 

topology within the high risk sample could be related to disease outcome. The 

results from Chapter 5 supported that the new method is more sensitive than 

traditional VBM methods to subtle cortical disruptions and is therefore of 

importance for the study of cortical structure in clinical populations.

	

 The remainder of the current Chapter will discuss potential explanations 

for the results found in this thesis, followed by a discussion of how the method 

could be improved and other suggestions for future research, followed by the final 

conclusions.

6.1 Intracortical similarities

At this point it is only possible to speculate about the mechanisms that underlie 
intracortical similarities and their relationship to connectivity. One possible 

explanation comes from the axon tension theory that was proposed by van Essen 
(1997). He posited that axons between connected cortical areas cause a 

mechanical force, resulting in a tension that pulls connected areas together 
whereas unconnected areas simply drift apart. Furthermore this hypothesis also 

explains how differences in cortical areas arise, when, for example, more tension 
applied to a cortical region results in thinner cortex. This prediction was later 

verified by Hilgetag and Barbas (2005; 2006), who showed with a series of tracer 
studies in monkey that tension from axons shifts cortical layers resulting in either 

thinner (heavily pulled on) or thicker cortex. Removing parts of cortex during 
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embryonic development can result in a disturbed cortical morphology, which also 

supports the axonal tension hypothesis (Goldman et al., 1978; Kolb et al., 1994; 

but for an alternative explanation also see Toro and Burnod, 2005). In the human 

brain using structural MRI, Im et al. (2006) found that about fifty percent of the 

variance in the fractal dimension of the cerebral cortex could be explained by 

cortical thickness and folding area. They suggested that a high fractal dimension, 

is related to a thinner and more convoluted cortex, and that this relationship is in 

keeping with the axon tension theory. Finally, Casanova et al. (2009) reported that 

in comparison to healthy controls, people with autism had a reduced gyral 

window, which is measured by the depth of gyral white matter and gives an 

indication of the space available for connections to and from the cortex. This 

measure was correlated with abnormalities in micro-columnar arrangement of 

neurons. These findings suggest that similarity in cortical structure might arise as 

a consequence of axonal tension between two connected areas.

	

 Alternatively, intracortical similarities might be related to functional 

connectivity. In Chapter 3 it was found that the anatomical areas that contained 

the highest percentage of hubs (i.e., regions that show more similarities with all 

other nodes in the network than average) showed a striking correspondence with 

the functional default mode network (i.e., regions that show increased activation 

during rest and decreased activation during tasks see e.g., Raichle et al., 2001). In 

addition, experience driven activity and/or plasticity could cause regions to be 

more morphologically similar. For example, Andrews et al. (1997) demonstrated 

that experience driven plasticity can lead to coordinated morphological changes 

within an individual brain. Also, parietal regions, which are part of the default 

mode network, were shown to be different in people at increased genetic risk of 

schizophrenia in Chapter 5 and in other MRI studies, further suggesting an 

overlap between functional connectivity and patterns of intracortical similarities.

	

 The above research indicates that anatomical and/or functional 

connectivity of the brain can have an effect on its morphology and this should be 

further investigated. The new method contributes to this issues by providing a 

way to study these important questions within individual cortices.
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6.1.2 Disruptions of intracortical similarity patterns in high risk of 

schizophrenia

The new method provides the opportunity to describe the morphology of grey 

matter for an individual cortex. So instead of warping individual scans to a 

standard space to compare groups, cortices can be compared by averaging the 

descriptive statistics from the scans’ native space without the need to use a prior 

model to define anatomical areas. Because the scans can be described in their 

native space, the sensitivity to detect subtle differences between clinical groups is 

increased and this was demonstrated in Chapter 5: people at high risk of 

schizophrenia showed a different correlation between the average minimum path 

length and the small world coefficient than people without such risk. Also, it was 

found that the angular gyrus showed the most differences between groups, where 

it contained the least hubs in healthy people, and the most hubs in people at high 

risk who later became ill. The results of Chapter 5 support the 

neurodevelopmental hypothesis discussed in Chapter 4, because they indicate that 

subtle morphological differences exist that are related to an increased risk of 

schizophrenia and subsequent disease outcome.

	

 The differences found in the exploratory analyses were subtle and could 

predict group membership up to an accuracy of 74%. However it must be noted, 

that the smallest group contained just 17 people and therefore need to be validated 

with a different (larger) sample. It must be mentioned that the EHRS is an unique 

dataset and it would be difficult to create a similar or larger dataset. Possibly the 

areas found to be predictive of schizophrenia could also be predictive in other 

high risk groups, for example, in people who are at high risk of schizophrenia for 

cognitive reasons (e.g., the Edinburgh Study of Comorbidity could be used, see: 

Johnstone et al., 2007). In addition, it could be further investigated whether 

adding topological information can increase the classification accuracy.

	

 Because this study found subtle topological disruptions that could be 

related to the genetic risk of schizophrenia and the consequent development of the 

disease, more research should aim to understand the underlying causes of these 

disruptions. A next step should be to study changes of network topologies during 

the development of schizophrenia. Specifically, it would be interesting to 

investigate whether dysfunctional connectivity arises at a specific point. The new 
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method could contribute to further understanding of cortical structure and function 

interactions by combining individual anatomical networks with individual 

functional imaging data at different time points during the development of the 

illness in the Edinburgh High Risk study of Schizophrenia.

6.2 Unresolved issues and future research

6.2.1 Methodological issues

The nodes of the networks had a fixed resolution that was based on the lowest 

possible scale that can measure both folding and thickness (Kiselev et al., 2003), 

combined with a voxel size that is generally used in functional MRI studies. For 

future research it needs to be tested how different spatial resolutions will influence 

the results. For example, a single node could be used to slide over all dimensions 

of the grey matter volume to better match the convolution of the brain. However, 

this would introduce more (redundant) correlations due to overlap of the cubes 

and would also produce networks with a very large size. An alternative for the use 

of a rigid template to define ROIs, could be the use of ‘scale-space’. Scale-space 

is a theoretical framework to represent signals (including images) across multiple 

spatial scales. With this framework features of an image can be detected that are 

invariant for the change of scale in an image, without a priori information about 

what type of object is being studied (Witkin, 1983; Florack et al, 1992; 

Koenderink, 1994; Lindeberg, 1994). In other words, such a framework would be 

able to extract interesting features from an image that are independent of scale, in 

contrast to the use of a rigid template. Briefly, a multi-scale representation of a 

feature in an image can extracted by convoluting the image with Gaussians of 

varying widths, and the feature is then constructed as the ordered set of signals 

that represent structures at coarser spatial scales. Lowe (2004) described a method 

that uses scale space to extract features from 3D structures in multiple images that 

are scale and rotation invariant. The present method could use such features as 

nodes in individual grey matter networks, which can be connected when the 

feature vectors are similar.

	

 The present method is not rotation invariant. Addition of noise due to 

maximisation of the similarity coefficient for rotation was limited by only using 

angles that did not require interpolation to correct for rotation when computing the 
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correlation coefficient. A simulation study (with the use of a simplified model to 

represent structural MRI) demonstrated that approximately 1% of the similarities 

could have been missed using just these angles. The distribution of the degree and 

clustering coefficient over the nodes of a network was highly stable for networks 

extracted with angle multiples of 90° and 45°. These results in combination with 

those from the simulation study strongly suggest that using angle multiples of 45° 

to maximise the correlation coefficient is sufficient to describe morphological 

network topology. However future research could study whether network property 

values would change if the spheres were to be used as nodes, since spheres can be 

rotated for arbitrary degrees more easily than cubes. Alternatively, as mentioned 

above, the use of scale space could make similarity measurements between grey 

matter structures independent of scaling and rotation (e.g., Lowe, 1994; Toews et 

al., 2010). Related to scale-space, specific methods to quantify shape exist that use 

operators that are invariant for rotation, among which a techniques that uses 

spherical harmonics (SPHARM: Uthama et al., 2007;McKeown et al., 2007) or 

wavelet-based attribute vectors (Xue et al., 2004). SPHARM has been used to 

characterise the shape of predefined regions of interest, resulting in feature 

vectors. For the present work, the cubes could be represented with such feature 

vectors. Alternatively, wavelet attribute vectors can be defined for individual 

voxels (Xue et al., 2004), eliminating the need for rigidly extracted ROIs. Future 

research should aim to investigate how these types of operators can improve the 

current method.

	

 Addition of noise to the data was limited by keeping the MRI scans in 

their native space, but voxels might still have been assigned to the incorrect tissue 

class during segmentation (e.g., due to partial volume effects). However, as the 

method mostly concerns the spatial relationship between voxels within small 

cortical areas, these errors should not have a prominent effect on the results. This 

issue was explored by comparing network properties of networks using different 

grey matter intensity levels to classify voxels as being grey matter, and no 

differences in the network properties were found, suggesting that the method is 

robust to such misclassification. Nevertheless, in Chapter 4 it was found that 

different scanners were related to differences network property values. The 

Calibrain study that used a 1.5T scanner resulted in more densely connected 
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networks than the EHRS study (1T), even though both studies had the same 5% 

chance of including spurious connections. The scans from both studies differed in 

how they were corrected for bias field signal (i.e., intensity inhomogeneities 

resulting from a low-frequency, smooth signal produced by the scanner). The 

EHRS scans were bias corrected with help of a phantom, which provides a 

physical estimate of the bias field. The Calibrain scans were corrected in SPM5, 

which estimates the bias field retrospectively with a mathematical model that is 

based on surface fitting. The main difference is that the retrospective method does 

not use a priori information about the bias field, which has been used in the EHRS 

scans by means of a phantom. Both methods have limitations. While the use of a 

phantom could still leave as much as 30% of the inhomogeneity in the scans 

(Vovk et al., 2007), the mathematical model could be unstable, introducing a 

spurious solution (Hou et al., 2006). The differences methods used for bias field 

correction could therefore have caused a the difference in the number of 

similarities found between the two studies. In addition, the lower scanner strength 

was related to more noise in the EHRS data (measured as an increase in standard 

deviation in the distribution of grey matter intensity values), which might have 

caused the decrease of similarities found in this sample. However, the spatial 

distribution of the degree over the nodes in the networks was not affected, 

suggesting that this network characteristic is robust to different scanners. Related 

to this issue, the method was also applied to a cohort of elderly individuals 

(healthy, with mild cognitive impairment and Alzheimer’s disease). Structural 

templates needed to be constructed for this elderly population, because standard 

segmentation with SPM5 led to grey matter segmentations of poor quality. This 

preliminary study showed that the network properties were dramatically lower 

than those from the young and healthy Calibrain cohort, and that this effect could 

also be related to more noise in the data.

	

 The spatial distributions in a network of hubs based on the degree or 

betweenness centrality showed a strong positive correlation with the size of an 

anatomical region. This relationship might explain why those regions have been 

indicated as hubs in other studies as well, illustrating how a priori anatomical 

templates can influence results and that it is important to develop alternative 

anatomical parcellation schemes that lead to similarly sized anatomical regions 
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(for examples see: Hagman et al., 2007; Meunier et al., 2009; Zalesky et al., 

2010). The current method does not require a priori parcellation schemes and 

therefore the results can be easily projected on any other alternative.

6.2.2 Network comparison

It is important to note the comparison of individual networks is an important 

problem, because the number of nodes and the average degree influence the 
network property values, as shown here and in recent studies (He, Chen et al., 

2007; Bassett et al., 2008; He et al., 2008; Bassett et al., 2010; Fornito et al., 
2010; Zalesky et al., 2010; van Wijk et al., 2010). As a consequence, the highly 

stable number of nodes in the networks from Chapter 3 might have caused the 
stability of the degree, average minimum path length and the betweenness 

coefficient.

 Such intricate relationships between different topological properties 

greatly complicate the comparison of networks, when everything but the property 

of interest should be held constant. Unfortunately, this is not always possible. 

With the current approach the number of nodes could not be kept constant because 

the subjects were analysed in native space to keep their individual variability 

intact. But, when individual brains are warped into a standard space where the 

same number of nodes are defined for all individual subjects, some nodes might 

not be present in their native space (or might consist of a slightly different 

combination of gyri: e.g., Paus et al. (1996) showed in a sample of 247 subjects 

that small percentage of them did not have a paracingulate sulcus in either the left 

(8%) or right (15%) hemisphere). In addition to the number of nodes, the number 

of edges in a network could be kept constant. However, such a procedure will 

introduce spurious connections, because edges might not exist in some 

individuals. In this thesis all individual networks had the same 5% chance of 

spurious connections. A disadvantage of this approach is that it can result in 

different spatial degree distributions for all individuals. As discussed in the 

previous Section, the non-uniform distribution of the degree and clustering 

coefficient values of the nodes seems to be stable for different sparsity levels of 

the networks, implying that this might not be a problem when comparing the 

spatial distribution of local network property values. The work in this thesis also 
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suggests that sparsity might have a more important influence on other network 

properties than network size. For example, network from the Calibrain study and 

the EHRS healthy sample were comparable in size, but differed significantly in all 

other network properties. In addition, a preliminary correlation analysis across the 

studies summarised in Table 1, demonstrates that the small world property was 

unrelated to the size of the networks (r = 0.12), and (weakly) negatively correlated 

to sparsity (r = -0.30, p = 4.63 x 10-5). Also, two other fMRI studies qualitatively 

showed more variability between sparsity levels than between different network 

sizes in network property values (Fornito et al., 2010; Hayasaka et al., 2010). 

However, the size of white matter networks directly determines the sparsity: 

anatomical regions that have a smaller size will have a lower probability to 

contain a white matter tract (Zalesky et al., 2010).

	

 How to compare different networks raises important methodological issues 

that deserve more attention (Sporns et al. 2005; Rubinov and Sporns, 2010; van 

Wijk et al., 2010), but lie outside the scope of this thesis. The present method 

contributes to these issues, by offering an approach that can be applied to different 

modalities to extract networks in a similar manner per individual or group.

6.2.3 Networks and structural MRI

One interesting finding in this thesis was that most hubs were located along the 

medial surface of the cortex. This means that cubes covering this area show more 
similarities with other cubes in the brain than average. At this point it is not clear 

why this region has more intracortical similarities than other regions and this 
should be further investigated in future research.

	

 Only the basic network properties of individual morphological networks 
were studied in the current work to facilitate the interpretation of the results. In 

the future more complex issues should be studied, such as, for example, whether 
hubs show similarities with nodes in a specific area (suggesting increased local 

connectivity, nodes closer together are more similar) or whether these patterns are 
more widespread (then the cubes would represent a feature that characterises 

some general aspect of cortical morphology).
	

 In Chapter 3 it was found that the property values of morphological 

networks tend to remain in a small range (assessed for similar network sparsity), 
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for example, the small world coefficient varied between 1.15 and 1.47. Also, the 

distribution of hubs was highly similar over individuals, suggesting that 

intracortical similarities might underly the covariance of cortical volume and 

thickness between regions over subjects. It would be interesting to extract both 

types of networks from the same sample to further investigate how these networks 

overlap.

	

 The new method shows some resemblance to methods that compute the 

fractal dimension. Those methods result in one value, the fractal dimension, which 

indicates whether structures are repeated at different spatial resolutions. By 

assessing morphological similarities within a fixed spatial resolution that keep 

intact the spatial information present in the cortex, the new method demonstrated 

that it is possible to represent the morphology of the cortex as a network. It would 

be interesting to study how intracortical similarities contribute to the fractal 

dimension, by using different spatial resolutions for the cubes. Preliminary studies 

have been performed during the development of the new method, to investigate 

this relationship. The fractal dimension could easily be computed with the use of 

the ‘box-counting’ method, that overlays a grid of cubes over the grey matter 

segmentation and then the number of non-empty cubes is counted separately for 

different resolutions of the cubes (first implementation for 3D MRI scans: Chuang 

et al., 1991). The log of the resulting counts can then be plotted against the log of 

the resolution of the cubes (i.e., the number of voxels in one dimension) and the 

slope of the line that fits through the points is an indication of the fractal 

dimension. Next, it was explored whether graph theoretical properties of the 

network would change for different resolutions of the cubes, to understand how 

patterns of intracortical similarities would contribute to the fractal dimension. 

However, it was not straightforward how to further investigate the relationship of 

the networks with the fractal dimension, because the method to binarise the 

networks identified all correlations higher than what would be expected at 

random. A solution for this thresholding problem at coarser spatial scales could be 

to correlate every cube in the scan with their spatial information intact, with all 

other cubes of the scan of which their spatial information is removed. Preliminary 

attempts have been made to implement this alternative way of generating an 

empirical null-distribution to correct for multiple testing, but these attempts failed 
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because it is not straightforward as to how to combine this information into a 

single model to derive a threshold. These preliminary findings might indicate that 

the topology of individual morphological networks is specific to the spatial scale 

used to extract the network, but this needs to be further explored.

	

 Around the same time when the present method was published, Zhou et al. 

(2011) proposed a method to extract hierarchical anatomical networks at an 

individual basis by combining all structural information at different spatial 

resolutions in a single network, which potentially could also be used in 

combination with the present method to further examine the relationship of 

anatomical networks and the fractal dimension. It must be noted that they did not 

report the resulting graph properties.

	

 The network properties of the individually extracted morphological 

networks were different from DTI networks of similar size. Not a single study 

could be found that investigated DTI networks of similar size and sparsity to the 

present networks, leaving the question whether the network properties would 

become more similar if investigated at similar sparsity level. However, some 

white matter studies reported in Table 1 (Chapter 2) of smaller size but similar 

sparsity as the networks from this thesis, demonstrated similar small world values, 

again supporting the important role of sparsity for determining network property 

values.

	

 Recently, Gong et al. (2011) systematically studied the properties of group 

derived cortical thickness networks and DTI and found evidence for a similar 

organisation in network topology in both modalities. However, 60% of the cortical 

thickness correlations did not converge with DTI connectivity suggesting that 

these correlations are caused by other factors (e.g., functional connectivity). With 

the new method, the direct relationship between morphological and white matter 

networks can be further investigated by, for example, combining the current 

method with that of Hagmann et al. (2007) that extracts large scale white matter 

networks from individual cortices. Such work would also provide more insight 

into the axonal tension hypothesis (van Essen, 1997).

	

 Other studies have shown that functional signals can also arise in the 

absence of DTI traced tracts (e.g., Honey et al., 2009). The robustness of the 

current network analysis should be further investigated within a multimodal 
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approach combing structural MRI, DTI and functional MRI. The present method 

allows for the direct comparison within an individual of connectivity matrices 

derived from different imaging modalities, such as functional MRI and DTI. Such 

a general multimodal approach should be used in future research to further test the 

biological validity of intra-cortical similarities. Because matrices across different 

imaging modalities can be derived within the same subject, converging and 

diverging patterns of connectivity across modalities can be determined at the 

single subject level. For example, it can be directly tested whether in the absence 

of a DTI traced tract structural similarities overlap with temporal correlations. 

Furthermore, inter-individual variability in the connectivity matrices across 

modalities can then be established. By combing sMRI and fMRI it would also be 

possible to test the hypothesis that similarities in cortical structure might be 

caused by experience driven plasticity.

6.3 The structure-function relationship

So what do intracortical similarities actually mean in relation to brain function? 

Recently a few studies have began to explore the structure function relationship of 
the brain using tools from graph theory in cat (Zemanova et al., 2006; Binzegger 

et al., 2009), macaque (Honey et al., 2007; 2008) and human brain (Alstott et al., 
2009; Honey et al., 2009; Rubinov et al., 2009). In these studies fMRI signals in 

nodes were simulated using computational neuronal population models, that were 
connected according to a connectivity matrix (usually derived from axon tracing 

in animals or DTI data in the human case). Interestingly, Honey et al. (2007; 
2009) found that functional correlations can arise from these networks in the 

absence of a direct anatomical connection. However, these studies did not validate 
their functional models with real (resting-state) fMRI data. It is important to 

investigate this further because actual fMRI signals might only weakly correspond 
to simulated hemodynamic signals (Horwitz et al., 2005).

	

 This framework is excellent to further investigate whether regions that 
have a cortically similar structure have a correlated fMRI signal and whether the 

functional patterns would follow those from the default mode network as well.
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6.4 Final conclusion

The major contribution of this work was a new method to investigate 

morphological network properties in individual cortices. Every study including 
the current work has its limitations. For now the new method offers a concise, 

statistical description of the morphology of individual cortices to contribute to 
study subtle morphological differences between groups. Finally, the new method 

has been demonstrated to be of importance for studies involving clinical 
populations.
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