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P R E F A C E . 

The first chapter contains an account of the extension of 

Dirac's equation to general relativity while the second one gives 

a summary of the generalised two - component spinor theory and its 

application to the wave equation. Spinors are used extensively 

in Chapter III to deal with the invariant theory of Dirac's 

equation. Here certain results of Prof. E.T. Whittaker are 

directly extended to general relativity and the complete scheme 

of the simpler tensorial quantities including all those with 

physical interpretations is developed, all the expressions and 

the relations they obey being derived in a perfectly general 

manner. A number of these relations are already known but now 

all of them are proved without the necessity of referring to a 

special coordinate system or of utilising a special set of mat - 

:rices. The vector form of the wave equation valid in all 

space -times is derived from the spinor theory, agreeing in form 

with the vector obtained by Prof. Whittaker from the special 

relativity equation. In this formulation the wave equation 

is expressible in terms of four null world -vectors which can re- 

:place the 'k -functions, and all the tensorig quantities are 

restated in terms of these vectors alone. The tensors and vec- 

:tor wave equation are written out in detail in the case of a 

Galilean system and these are expressed in matrix notation by 

means of a special set of pc-matrices. It is shown that the 

matrix with imaginary elements is distinguished from the ones 

with real elements in this form of the wave equation and the 

effect/ 



effect of similarity transformations is considered. 

In Chapter IV it is shown that the criticism directed by 

T. Levi -Civita against the Dirac system in that it depended for 

its generalisation on specially distinguished directions in 

space time, does not hold. In the first place his considera 

:tions were really applied to an equation where the )v-function 

was a world vector and so was not the usual wave equation and 

secondly, the argument does not hold when one deals with the 

actual Dirac equation which, because of the possibility of spin 

transformations is shown to distinguish no special directions. 

The eigen functions for the hydrogen electron in momentum 

space are found in Chapter IV, these are a finite series of 

hypergeometric functions which do to elementary 

functions. A form of the wave equation in momentum space is 

used to derive the fine structure formula. 



0 HAP TER I. 

THE GENERAL RELATIVITY NAVE EQUATION. 

The relativity wave- equation of the electron as discovered 

by Dirac has the usual form: 

( `2 
+o 

x pl+ d p2+ o( p3+ o mc) - = 0 (1.1) 
c 1 2 

where W, pl, p2, p3 are operators representing the energy and 

the three components of momentum expressed by 

h a , h a (i = 1, 2, 3) respectively. 
2Tri ót + 2 ri 771 

The four 0(1. are matrices which obey the conditions 

ai aj + o ai = 2 
Sij 

1 (i, j = 1, 2, 

and these are assumed to be hermitian, that is 

3 N + 
°( i 

` 

= ° i or cg = °t 

The star * will be used to denote the conjugate complex 

while ^' will denote the transposed matrix, 

and t the hermitian adjoint. 

From the wave equation and its conjugate complex which are 

respectively 

( - h a + g i 3 á 30 K 4 
i c et i 1 1 a xi 4 

(1.3) 

( ki a 
7 

o(. a + °C mc) "= 0 ) 

i cDt i 1 i ? xi 4 

1{.) (1.2) 

and 

we obtain a more symmetrical form. The first when multiplied 

by 0(4 gives us the equation. 

(P/ 



(. ev t ) _ 0 
ax 

where summation is to be taken over the repeated index between 

0 and 3 Here r -ell which is hermitian ) 

) (1.5) 
and e _ d4d11. (i - 1,223) which area) 

skew- hermitian. The imaginary constant p- 2ni. me 
h 

As xo ct, we are dealing with real co- ordinates 

If we write cp = cot 

then y* = - a: f - - áy cp 

and from the conjugate complex equation we at once obtain 

(1.6) 

( e° áx ) 40. = 0 (1.7) 

From the definition of the ey (1.5) and the properties of 

the oft., we have the relations 
v 

eye`te`eY = z3 , 

where in the space of special relativity we have 

(1.8) 

with eo a 1 el - e2 - e3 = -1 

When there is an external electro- magnetic field specified 

by the four potential Awe add to the operator 
the quantity - 2rCi e A when it operates on 

a h c 

a V - function, 

and +2 (l e . Al when it operates in the conjugate - 
h c 

complex of a V- function. 

In/ 



In this notation the well known current vector is 

ft- = e, e°`T (1.9) 

Its time component is Jo = - tpttp which is the density of 

distribution of electrical charges according to quantum mechanics. 

That JJP is a non -divergent vector is at once seen if we pre - 

:multiply (1.4) by 4+ and (1.7) by 
N 

axed add, 
x 

That is f el) 
t l / 

or á - ,) Ty - div T _ 

by transposition, 

Now all this relates to an electron referred to pseudo - orthogonal 

axes in the space of special relativity. The extension of the 

wave equation to general relativity has been effected by a number 

of investigators, who using various methods have ultimately 

reached similar results. The wave equation differed from other 

physical equations in that it was not completely tensorial in 

form so that an immediate generalisation was not possible. 

There were the 0C.- matrices and a four component wave- function 

which transformed as a so- called semi -vector. 

Fock (1) used an orthogonal ennuple as a system of refer - 

:ence in general space -time so was able to retain the d;-matrices 

in the formulation. Tensors then have two different type of 

components, those referred to the co- ordinate axes and those 

referred to the orthogonal ennuple. From the idea of parallel 

transfer/ 



transfer of a semivector which introduces four coefficients 

Ci , he defined the covariant derivative of the spinor 

to be 0. C,) which is directly comparable 
(re ) 

with the terms ° _ ( a - e , Ai) occurring in the original 
(ate h c 1) 

wave equation. This held when one differentiated along the 

directions of the orthogonal ennuple, and the wave equation was 

expressed in terms of these covariant derivatives of f and 

the Dirac ot- matrices. 

Finally transitionsfrom ennuple components to general co- 

ordinates componen-tswere accomplished by frequent use of the 

Ricci co- efficients of rotation. In this way the four compon- 

:ents of the potential were absorbed into the geometrical scheme, 

the ennuple component Ci being regarded as equivalent to them. 

The work is rather complicated on account of the retention of 

the two types of reference systems. 

Other investigators started from a slightly modified form 

of Dirac's equation such as (1.4). In this way Tetrode (2) 

used matrices like the Q" and treated them as vectors in 

space -time in so far as their index was concerned. Finally 

Schrödinger (3) in a similar way formalised the theory and pre- 

:sented a full development while Bergmann (4) added some modi- 

:fications and simplifications to the former's method of approach. 

In their treatment undue reference to orthogonal ennuples is 

eliminated/ 
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eliminated, in fact they appear only in the initial stages of the 

development. In essence, however, their generalisation is 

equivalent to Pock's, the presentation is different, but the 

same results evolve. The account of the general relativity 

wave equation which we now give, follows the line of Bargmann 

and Schrödinger. 

Still keeping to special relativity, letus examine the 

transformation of the wave equation in its symmetrical form. 

Lake a linear substitution to introduce new co- ordinates 

y ` = a r x" 

or reciprocally x'` 

where ate,, b,. 
ti 

-- S 

The wave equation (e "" t r` ) 1 

then becomes in this new system 

(P" + w ) ` = O 

which is ( -rte á + - ) tr = 0 

if we write nrw = a~ e 
" 

or bp- P. 

0 

and leave unaltered. That is, the form of the wave- equation 

is preserved if we treat the ( matrices as an ordinary vector 

in space time when we are dealing with linear substitutions and 

at the same time leave the wave function unchanged. 

In the new system we have 

= 

and if we treat i` and y as ordinary tensor indices we 

can/ 
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can lower them by mean of the fundamental g'"v tensor and obtain 

At the same time the new current vector is 

J y 
= E. 

C. 

a,"" y e 
v 

,j, 
= Y' T ` . 

We observe that is still equal to e°,1) , which we shall 

write hereafter as e , but now e is not one of the four r- 
matrices. The hermiticity of the matrix eT P- is preserved for 

this is 

and in this linear aggregate, we have real coefficients a.% 

because we are dealing with real coordinates and real trans - 

:formations and the matrix eea in each term is hermitian 

so that the sum is also hermitian. Thereby is a real current 

vector obtained. It will be noted that the 1 are expressed 

as the sum of three skew and one hermitian matrix so that in- 

dividually these matrices are neither skew nor hermitian. The 

employment of the special e matrix simplifies the reality con- 

siderations. 

The conditions (1.8) are not sufficient to define e 

uniquely and we have now the possibility of applying "spin" - 

transformations to these quantities for each component ev is 

not a simple number but a matrix. A spin or similarity trans - 

:formation such as 

S' S (1.12) 

where/ 
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where S is a square matrix of the same type as r w will 

produce new matrices which still satisfy the condition, and 

the wave equation will remain invariant in form provided that we 

simultaneously vary ' according to the rule:- 

= S"' 
4) 

. (1.13) 

Transformation of this second type must not affect quantities 

which have direct physical interpretation; we see that the 

current vector may be kept constant if we admit the law of varia- 

:tion of the matrix e to be 

= Sfi C S 
(1.14) 

whence it follows that 
4> 

- é = St 4 (1.15) 

Moreover we observe that 

t = (StesY- = 
Ste+ S = St e S = e (1.16) 

that is, a similarity transformation does not change the pro- 

perty of hermiticity of e . Likewise the matrix e ry 

has its hermiticity preserved for, in the new system 

(é (4- v)+ éD _ (S -' ry S)1. st e S) 

st } (ST . st s 

s(st 1 ")t S 

C mod. 

Another simple relation 

= }e (1.17) 

which follows from the previous result as e is always hermitic n, 

is also invariant under S - transformation. Similarly 

e b 
is/ 



is an invariant relation. 

Now define the commutator, introduced by Schrödinger 

C â'.` Tv - (1.18) 

Then as a consequence of (1.17) we have invariantly 

C s t s "t- - o (1.19) 

From the commutation rules for the "ir -matrices follows the 

relation 

Sµy- S`° z(sW y - y 0. 
(1.20) 

which is very useful as it expresses a single T -matrix as a 

commutator. 

G Di- L RELATIVITY.. 

At this stage it becomes possible to consider the genera- 

:lisation of this work to any space -time. The natural genera - 

:lisation of (1.10) is of course 

T' 7-) r = a 
g, " (x) (1.21) 

where iµ-(x) is the metric tensor of the general space -time 

as is a function of the co- ordinates. To find a solution of 

this equation we choose an orthogonal ennuple as reference 

system and use Latin indices for components referred to it, 

while we continue to use Greek indices for components with re- 

:spect to the co- ordinates x`- Then, if Va is any 

vector, the relation between the co- ordinate components V., 

and the ennuple components V, is 

ez VL ,.c =o 
with/ 



with e0 = 1 el e2 = e3 - -1, 

and as the components of the ennuple. 

Conversely V. Vd a 1 ds 

the summation convention still applying to repeated Greek 

indices. 

Here 
ti 

, aj 
I = e :. 

ti = 4. (1 

If we take = z e;, e 

where the are the same as those defined in (1.8), then 

we find that 

= G ( e;. A:.,.c l., e >v Ip \ i3 t c ( e,ej XZ(.t Xj1(3 Ce ej 
) 
l 

= G \ ei, ei %. io jl(s 2.. ej 

= z ádß 

In this way we have obtained one possible solution for the 

at a definite point P (x"). We must see how it would hold 

if we proceeded to a neighbouring point Tv g xw) 

By differentiating the relation (1.21) we have at once 

(s ßw0 ó' t aw s r,,) .y- (ä -r,) `r t -r, 

= z Iiitta, S' x°". (1.22) 

a x°' 
But/ 
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But the covariant derivation of the fundamental tensor is zero, 

that is 

Also 

(( l { 
L 

d q 
\Ów / V - PoF O av - r Ord _ O (1.23) 

d' _ S CTzrr) et: 

áx 
which is of the form 

r 
{ 

x°' 1tI ód 

E ,a Cd x 
) (1.24) 

the coefficients C%, not necessarily being tensorial. 

When the results of (1.23) and (1.24) are substituted in (1.22) 

we find that 

f 
r A 1 

r;`,-) t 
a-) ya - \C c -. 1 v{ c) q Wa `) 

x. O 

Now our results must be independent of the directions of the 

displacement, all directions at P must be treated equally. 

Therefore we demand that the coefficients of X should 

vanish separately. 

Thus 
¡ ° ° ( d + 

kv,) - r ) yv,c t \ C vc - 1 5r.,c - o 

Let A',, - C' ris - rh, (1.25) 

and = 9..kp Ai' 

Then the condition is expressible as 

A -t 

where the A,,,,, are now tensor components. 

Expressed in terms of these, the result (1.24) is 

- 
f r4 = A { r ä _ A { r 

4 xfs 

Multiply/ 

(1.26) 

(1.27) 



Multiply (1.20) by A and sum over ,- and v 

v 
Aµ d a, ( a ry ` S äw A,, sr.,, - s-- d 

which by (1.26) leads to 

r s-v 
4 

1) Y{ - rt ÇAs& 
where 1 is the unit matrix and a, / with all We.. 

It is introduced arbitrarily. If we write 

Ap ', r e- s ï 
v 

fi a-r i = 4 

equation (1.27) takes the forni 

= r;", t r,- rr,wr. 
a x°- 

It is now a question of finding the conditions under which this 

equation is integrable. We require, therefore, that 

á ( o 

This very quickly reduces to the condition that 

" P" .c t C17T 1^ Iw i-c. o (1.30} 

where as usual the Riemannian curvature -tensor is defined as 
t 

` R. wt _ á rr - á r t rrr - 
> xT é z 1` 

and where for brevity we write 

1°T, ^ t v r? , C r Z - rT r,, 
a xT a n 

(1.31) 

(1.32) 

Another application of (1.20) to the equation (1.30) gives us 

the following explicit expression for L 
cy 

TQ = j_ 
l lpT. $ i- dß .1 . 

4 

where/ 

(1.33) 



where fT, is, as yet, an arbitrary tensor. 

We can connect up these arbitrary quantities by considering the 

spurs of some of the matrices. The spur of because s" 

is a commutator of the r matrices and therefore possesses zero 

spur, is from its definition (1.28) equal to 4 a0.. From 

(1.32) we find the spur of 4 -zP 

spur cl) - - áx 
while from (1.33) we have an alternative impression 

spur ti = 4 -f 

Hence we see that the eL, and ft_ are not completely arbi- 

:trary but are connected by the relation, 

- a z (1.34) zo axr 2 x° 

Therefore the a- completely determine the -r tensor corms 

:ponents and the a_ themselves are quite independent of the 

- matrices. 

The a, are identified with the components of the four- potential 

(apart from a constant factor) so that the six- vector f 
gives us the electro magnetic field strengths. We just 

summarise the previous line of work: a solution ' of the 

matrix equation = f.,, 

was found for a certain point. The conditions that this de- 

finition of ^6- would hold at a near -by point independent 

of its direction, led to a differential condition which in its 

most general form contained an arbitrary quantity a,. 

The/ 
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The integrability conditions arising from the differential 

equation brought in the arbitrary six- vector ci, of which 

the spur however was derivable as the curl of our former 

quantity a-. 

Vectors and pure physical quantities will not be influenced 

by S -transformations. Quantities such as -, and r, 

have a dual nature in that their tensor character, in so far as 

we are dealing with transformations of the co- ordinates, is 

correctly indicated by their indices, and that moreover they 

are affected by a spin - transformation. Let us now admit 

S- transformation 

and find how equation (1.29) will be affected. It is at once 

seen that this equation will remain valid also in the accented 

system if at the same time the T undergo the transformation, 

Ç S - S "' ás (1.35) 
ax 

As S -' S = S S-' = 1 differentiation gives 

s s -' as = o 
axe axw 

and spur s-' ,S Ì = á (log det I S I ) . 

?De- 

Therefore, 

J 

on taking the spurs in equation (1.35) we have 

_ It spur r, = a - 
2x' 

(log det I S I) (1.36) 

As a, , therefore, is not invariant under an 3- transformation 

but is altered to the extent of an additional term which is the 

gradient of a scalar quantity, it is not a simple vector. But 

this/ 
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this is precisely the type of variation permitted the four - 

potential by the principle of gauge invariance. On the other 

hand the quantities behave like the µ as we see 

from (1.32) and (1.35), 

= S -' qtr S 

and its spur, which is proportional to the field strength re- 

mains unaltered as is necessary for a definite physical 

quantity. Thus we have further justification for our 

interpretation of aS.- and 4 . 

As the A wYr are all real, it follows from (1.19) and 

(1.28) that 

e r. e + a.) P . 

As a, is proportional to the potentials it would first appear 

very satisfactory to take 

a, + a,. = o 

that is, take the factor of proportionality to be pure imaginary 

and thereby obtain real values of the potential. However such 

an equation is obviously not invariant under S_ transformations 

except when det /3/ is independent of the ae". For general 

coordinate systems the equation 

C = 
ae * era- t r. 

fi 

e = 0 (1.37) 

is found to be invariant. Under coordinate transforma- 

: Lions ("01 behaves as a covariant vector, while after a 

similarity transformation we have 

Pc.) 
S) ' rd. S -sa5 t t(s1+ aS+ (s 

-'tJ 

Ste5 

3x,°' ry J ax C 

+er -rr: e) s = S+ e,e, S = 
òx°. 

Thus/ 

o . 
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Thus equation possesses the required invariance property. 

Two more solutions of a similar type are obtainable: 

from (1.32) and (1.37) it follows that 

á e _ - áe = o . (1.38) rc o C \ c axz ?r-AF 

using this -:'esult in (1.33) we have, on noting (1.19) 

-- 
o 

so that the -f.z are always imaginary yielding real field 

strengths. 

So far attention has been concentrated on the -matrices 

and our considerations have brought in the quantities associated 

with the field. Now we must consider the ' -functions and 

similar quantities and investigate their covariant derivatives. 

It has been seen that T behaves like a tensor, but because 

each component is not a simple number but a matrix, spin- trans- 

:formations can be applied to it. A system of matrix operators 

denoted by T;, :. is said to constitute a tensor - operator or 

Schrddinger tensor of degree m } n when T, for point sub - 

:stitutions behaves like an ordinary tensor with m contravariant 

and n covariant indices, and transforms into S-1 T S as 

as result of a similarity transformation upon the . Ob- 

:viously -r" itself is such a tensor- operator, while the work 

above shows that s'" and 

Also 
t..,,_. r- 

/- /", or e 

as/ 

supply further examples. 

and are called 

- tensors, if T R transform 
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as tensors for point substitutions and into 

S -r 

S} 

-K S 

respectively for the similarity transformation, 

e and 4) are clearly "E- , - and -. tensors 

of zero rank, and ' and 4 are often described as spin -tensors 

or spinors. 

Products of these various types of tensors behave as ordinary 

tensors for coordinate transformations but the type may be al- 

:tered. 

For example: T NE is a y,- tensor 

T is a f- tensor 

Pd = e T is a e - tensor 

TVI m Tte is a e - tensor 

A tensor equation is invariant under transformation of coordinates 

and further, if all the terms are tensors of the same type, the 

invariance will hold for spin -transformations. For example 

M Mt ® o, 

is a simple P tensor equation, invariant for both kinns of 

transformation. Cases of such equations are afforded by (1.17), 

(1,19) and 1.38) . 

The various combinations of all these different tensors 

together with their reciprocals and herrnitien adjoints lead to 

quantities/ 
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quantities G which, under s- transformations, change according 

to P y 

where P may be one of the set of operators 1, S' -, a5+ 

and. Q 1, 3, (S}) -1, 

COVARIANT DERIVATIVES. 

The covariant derivative of ( is symbolised by V,G or (G)P 

Before a suitable meaning is sought, the task is simplified by 

admitting the two following postulates. 

1. If G is of ordinary tensorial rank m + n, then (G)a, is of 

rank m$ n- i 
2. Under an S- transformation (G),, should become P .(G). Q 

that is we demand that the original tensor and its covariant de- 

:rivative should be of the same type with regard to S -trans- 

:formations. 

The operator ®,. thus depends on the nature (i.e. its tensor 

rank and type) of its operand, but it will be of the form: 

V, _ 
0'0_ t F ( G, ro- ) 

where 0', denotes the ordinary covariant derivation of 

Riemannian geometry and F is a linear function of G, P- and 

r :. The presence of this additional term is necessitated by 

the second postulate. Finally we wish to preserve the product 

rule so that if G is a product of two other tensors i.e. 

G = G1 G2 which is possible if Q1 P2 1 then it is required 

that 
P G = ( ) GZ t G,(KA.) 

These/ 
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These requirements are suitably satisfied by the following 

definitions, - 

(a) Tensor - operators. 

17ieT : fit + T - Tr T (1.39) 

in particular. 

- r":`, r., t r,.. r - p.- a-,k 
a- 'X51- 

= o by equation (1.29), 

Hence, as ®r = ®,_ for ordinary (c) tensors 

P0- óY ° t7r( - (') - o by the product rule. 

(b) it - tensors, 

(1.40) 

V:r1 tir - r,- f (1.41) 

Thus for the p- spinor 

®r - - re- 
x, 

( V, ) is another f- tensor, and so differentiation may be 

repeated following the same rule. So we find that 

(1.42) 

V7l Pr7/ - lvi fcz 

(c) R-tensors 

R= I7P R * rot- t rt R, 

and Vd- P = 

By the product rule 

(d) 1-tensors. 

by (1.32) 

by (1.37) 

P Cr ) - o 

t r: 
so that R. 9° ' + } 
and Pa- ¢ - _ _ _. t 

ax- 
-r- cr. Í' . 

The/ 

(1.46) 

(1.47) 
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The consistency of these definitions is easily verified. As an 

example, consider the current vector which should be an ordinary 

c - tensor, 

= ( 95 t 7f"- i') by the product rule 

_ (170_ fit) a-'--9J pi- a- "Ü ì) noting that = o 

I rt' 
1 t 4,1- 1+ v- ti' - t . 

aft er h-, 45+ ,a-r_ 
It + t 

' 

r' . f r 1 -rd) p by (1.29) 
ax- 

r 

o- `P+ ) t r!: ( 

J' as required. 

In fact, it is clearly seen that any quantity of the form 

(1)t T T 

where T is a tensor operator of any rank, is a ordinary c- tensor 

of the same rank as T. This will be real if e T is an 

hermitian matrix, as is the case when T = T'- or 

for example. The advantage of Bargmann's treatment lies largely 

in the use of this special matrix e by means of which the 

hermiticity of certain other matrices leading to real physical 

quantities is the more easily assured. This direct method 

obviates the long and tedious investigations applied to each 

type of nature separately as in Schrödinger's paper. 

TEE GENERAL RELATIVITY EQUATIONS. 

The Dirac equation in its symmetrical form is 

(-rw /60 r o t axr 

This/ 
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This is now generalised to 

Or' Pr,. t M `/' = o (1.48) 

an equation which is a '-tensor one (each term is a p- scalar) 

and so it is invariant both for point substitutions and for 

spin -transformations. Moreover the general definition of the 

operator P_ introduces quantities which have been identified 

with the componentsof the electro- magnetic potential so that 

this equation can be applied to an electron in any external 

electro- magnetic field. In special relativity, the effect of 

the field was accounted for when the operator 

was replaced by á - ax" A. 
_ 

a x-°- 

Now we have appearing the operator 

( Po-} ( } 
which reduces to the former when the general space -time reduces 

to that of special relativity if we take 

d _ r e A (1.49) 

This comparison has revealed the factor of proportionality that 

exists between a6 and the four -potential Ar. , and between 4 

and electromagnetic six- vector F. 

This has been the chief purpose of the theory, to obtain 

this generalisation of the operator which occurs in the original 

Dirac equation and to describe and treat it geometrically, as 

an operator of covariant differentiation when it is applied to 

a -function. 

The/ 
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The adjoint of the equation can be deduced from the new form, 

41 = M' `r -C = (r V,'r )t e oy the equation (1.)f) 

as µ- is an imaginary constant, 

Hence 

(vp- Y/1-)ea-P.+-0 

= e 

op + 7r. 

40- 
l 

p,.. -zr ~ 6,0 = v (1.50) 

is the generalised form of the hermitie;n adjoint of Dirac's 

equation. (The arrow denotes that the covariant differential 

operator acts upon 1t on the left). 

This generalisation is perfectly satisfactory, in special 
it reduces 

relativity /to the required form, and it preserves the non- diver- 

:gence of the current vector. The latter fact is readily 

proved for 

J' = (ifi -'.- 

_ (e- r e- "0-`'( Y) 

0 

GAUGE/ 
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GAUGE INVARIANCE. 

This is demonstrated by means of the special spin- trans- 

:formation obtained by taking 

S 

whence log. det. IS ( _ - '- ti X 

Then by (1.36) 

so that 

while 

a, w= a.µ + ti á 
i a-x ,` 
At, = A,,,, + 1, c a . ) 

z Tr e a oc.'"" ) 
, ) 

kl) 
= S-'9) e`>' ,r ) 

(1.51) 

Thus under this particular transformation the four-potential is 

changed to the extent of an added gradient (of a scalar function), 

while the phase of the wave function y' is altered, the form of 

the wave equation remaining the same. This is Weyl's (5) 

principle of gauge-invariance. 

THE SECOND -ORDER WAVE EQUATION. 

From the first order equation 

by operating on both sides with r' p 
qr v Pr, r =- 17 ' _ - ,w T" p 

Since 

Now 

and/ 

7w 

V P;._ 1";72 r 
this becomes 

we obtain 

so that we have 
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and (r- vy vrr f s-- dr R ,) Y' = N`)1/ by 

interchange of dummy indices. Average the two equations, 

noting that Ste" is skew and that 

- 

Hence 
(1"-- P,, Vr - S 

?6,-- 

After introducing the implicit expression for 

one obtains the equation 

I 

^vlw 
Vy V - 1 $ fµJ t. sµv .S {5 `°(%%`v - 1"12) 

This fourfold sum s 
SAP 

R.4. (1w, can be 

evaluated leading to a simple result. R is skew 

in (d,) and in so that form (1.18) term considered is 

(1.33), 

(1.52) 

equivalent to 

Y "YA 

400 ' T (.1(v r + fa-°c- -ar" - T R okß wy which by (1.11) s 

8 Ir,'"- T¡3 (a- 0"4) ocpr,.v - g fa- A.- 74 ó" ô'ß R dwy 

Pr- - z 
`'`a^" é" ara ( RrSr,, w fi Rd + v) 

is the contracted Riemann or Ricci tensor; it 

is symmetric and when it is contracted it gives the curvature 

scalar R 

where R - 1" K r, _ 

Therefore the term is now 

4 
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4 
zr-Yi 7.vrß ¡¿Apv 

+ r r l - r~rw 1 7 R a/swv 
(` 

-w'r ( Av - fl 2(y/ R / d V f( 

. R- 24 rr7d 7~Th R°Prv +% óáR 4 N- 
_ ,rwIry 

(9-2-.`11- q,aVO R 

= R _ 
4 zy R xßwY t R P"r °` t R N a l`-(d 

when the dummy suffixes are changed. 

The last bracket by the symmetry properties is 

which by a well known identity is zero. 

Hence finally the second order Dirac equation is 

- o---) p,.. -s``"Yvt4R _ I,`' 
L 

o 
(1.53) 

The first and last terms are but a generalised form of the 

Klein -Gordon wave -equation while the second term represents an 

interaction of the éxternal field and the electronic spin, and 

the other term introduces the curvature scalar which vanishes 

in special relativity. 
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CHAPTER II. 

MO COMPONENT SPINORS in GENERAL R'LATIVITY. 

Van der Waerden (6) introduced a theory of spinor analysis 

applicable to the space -time of special relativity, the Dirac 

- functions forming two pairs of two- component spinors. This 

theory has been extended to general relativity by Infeld and 

van der Waerden (7, 8) and also, in a more geometrical form by 

Veblen (9). Essentially equivalent to this is the theory of 

semi- vectors of Einstein and Mayer (10), the connection between 

the two theories having been expounded by Bargmann (11). The 

spinor theory will give results similar to those obtained from 

the principles of Schrödinger's generalisation of Dirac's equa- 

tion, but for many purposes its notation is extremely convenient. 

As we shall be making full use of its notation and results in 

considering the general universal theory of Dirac's equation, the 

properties of spinors will now be given here. 

Instead of using matrix notation, we express all row and 

column indices in full and these will be treated as tensor in- 

:dices in the spin -space, so that the new process will be a 

more formal one of tensor analysis with two types of tensors: 

world- tensors and spin- tensors (or spinors). Fundamentally 

however this theory is closely comparable with Schrödinger's 

extension. 

At each point of the Riemannian space, V, of special re- 

:lativity for which we have the usual metrical tensor g41t 

with/ 
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with g11, g22, g33 < o and g44 > o, we associate a complex 

two dimensional spin -space S, the vectors and tensors of which 

being referred to as spinors. The components of world tensors 

are always denoted by Latin indices (generally we write such 

tensors as Latin capitals) ranging from 1 to 4 while those of 

spinors are indicated by Greek indices, range 1 and 2. For 

both types of indices the summation convention for repeated 

indices is to be adopted. 

Transformations in the spaces V and S are to be considered 

as being completely independent. If a" (N _ 1,2) are the 

components of a contrariant spinor, then under a general co -or- 

:dinate transformation in the spin -space they transform according 

to (2.1) 

Both the Ne. and ae are in general complex functions of the 

world point with which the spin space is associated. It is 

assumed that the /fie are differentiable and that their deter - 

:minant is different from zero. The spinor which is the complex 

conjugate to ax undergoing the conjugate transformation to 

(2.1), is denoted by a dotted index 

(2.2) 

Bars are used to denote the complex conjugate; and so a,' - « 
Spinors of order greater than one transfoi-m like a product of 

appropriate spin- vectors, e.g. 

/3"' transforms like 

In/ 
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In the theory of van der Waerden, one dealt only with unimodular 

transformationsin the spin -space. 

and had the invariant, 

There, two spinors a r 

£,- aÀfl( where £,z = -ems, = 

and covariants were formed by the rule aw 

(2.3) 

Here in the general theory of van der Waerden and Infe 1d 

transformations are not restricted to be unimodular and for 

raising and lowering indices a skew spinor TT, = - Ewa replaces 

Er to play the part of the fundamental spinor of the 

S- space. The only non zero components are -1".. 

which is an arbitra Ty function of the world point. w is 

its conjugate complex and w' is its inverse 

where rr's _ - TZ' 
".. 

We can write 1-,1 = i ' 

ei,e 

T!i = 
i E e 

where T= T12- r'j 
Transitions from contravariant to covariant forms and vice - 

versa can be effected as follows : - 

°`w ae 'ew a' ' 
,rwe 

°(e ) 

r- 

(2.5) 
rl 

c(e Ir. . oC 
,ire o(. ) 

( - e w - ° e 

) 

The scalar product - ae 
0e 

= de 
(3( 

sec m 3e 
P e 

is invariant, while in particular for = 

Spin/ 
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Spin -space transformationsand co- ordinate transformations 

for world tensors are distinct and do not affect each other. 

There are however "mixed" quantities with both Latin and Greek 

indices such as c. ; which for world transformations 

behaves like a contravariant vector and for spin transformations 

like a spin tensor of the form 

By means of the ` ,;, a relation is set up between 

world vectors and Hermitian spin - tensors (i,e. a = ate,; ). 

We obtain a real world vector a as a linear function of 

the arr by means of the relation 

aA r' r 
oc . 

= Q,k a °w it., (2.6) 

a;, 

when ` ar 
is Hermitian, i.e. TA _ 

i?' (2.7) 
In special relativity, there was a correspondence between 

Lorentz transformations and the unimodular transformations of 

the spinors. Both T. "?' and g were constants. Now in 

general relativity both of those are functions of position. 

The invariant from the vector a4` is 5.1.1A8! while 

that from the spinor °`à,, is 7r` oCT/,,, der 

O ( - o(/L °i!). (2.8) 

As we are dealing with an Hermitian a,;,. , that is «;, 

Ail real and = Az; , we can express these components 

as a b, a - b, c id, c - id, respectively where a, b, e and d 

are real. Thus in terms of these quantities, the invariant .8 

is ó (a: - bz - cz- dz) which has the same signature as the 

metricE 
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metric of our space -time. Therefore a direct correspondence 

between the two invariants can be set up. 

In fact we write 

A .1 e a a = m r oc OS 

identically for all a,; 

By (2.6) : u-4`w .ea o a _ Acr° 
. a ceu- . +t. e r w 

As this is to be independent of ocr 
.rcp l`P C 

ó,L 

or Sr SÌ' c e 

From this result we have 

Multiply by 

(2.9) 

this means that 

arr, a o- 4rr 
T4 and then from (2.6) for all a 

(2.11) 

dL 
= 

6.G aw 
C- 

a;¢ 
40; 

so that a' _ Si (2.12) 

The two relations also soon obtained: 

2 i c4 t 0-4)t' 
fix, _ 

9 â ) (2.13) 
á ) 

G 40- , {,¡ fi 
rip, T4 

- 0At 
x 

) r 
The formulae (2.10) (2.12) and (2.13) find frequent application 

throughout the work. 

COVARIANT DIFF"LRENTIATION. 

As usual we define the covariant derivative of a spin 

vector by the following forms:- 

e 

A 

where/ 

c 
z a reA, 

(2.14) 



where = ax 
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The difference in sign is necessary 

so that the covariant derivation of the scalar ( ) as 

determined by the product rule reduces to the ordinary derivative. 

is to transform, under the transformation (2.1), 

as a spinor with respect to the index a 

rem transforming according to the law 

so that we must have 

r 
, 

= n r t a n . (2.15) e K 

e At ß c A 

The relation between a spinor `Yd and its conjugate T4 is 

preserved after covariant differentiation if 

Y _ rd4,e `Ye (2.16) 

CI 1 A ' aót 1 á I ai .k e 

with r = 

Thus any spin - tensor can be differentiated as we have the rules 

for each undotted and dotted, covariant or contravariant index. 

If , >L are the complex spin variables in terms of --from 

real parameters 

space is 

s the volume element of the spin 

D ( Iv` ,r,wL) 4, ell 014- ot0. 

a ( , `L, r,$) 

For this element to remain unaltered we require 

have zero covariant derivative. 

(T)14s 
24, - r r 'r1í - r r,a 

Finally/ 

_ _r<At + r: a! 

o 

t rá = "kk(/1r). 

T=_ 7, 

1-14 :( 
á¡i - I ri 2, Tai ' rra 

(2.17) 

to 
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Finally the covariant derivative of 

zero. Then 

By (2.12) 

w 

óII ° 
¡Q,Tr 

arwb 
aAwiC 

*,( 
Û 

w .L r v 
rT r ,i . 

Therefore by the rules we have made 

0 IA = o 

is made 

(2.18) 

(2.19) 

Thus as far as the world space is concerned, the connections 

are the Chrstoffel symbols { 
` ) So the covariant deriva- 

:tive of 6-A"'- is 

o a «:r 
= a cáw rw é *et- + ~6s `c (2 20 

( s trs t r . > 

There are included in this statement 64 equations, which on 

account of the symmetry of 1,s supply 24 linear conditions for 

the components of P s. There are actually 32 real parameters 

in the Iris , and these 24 conditions together with the 4 

supplied by (2.17), leave four parameters undetermined. Indeed, 

if in (2.17) we replace 
w r r 

f 
es 

and Ï' " by re5 t z is s e and rue; = ̀ ts e 

respectively, the relation still is satisfied. Thus there are 

four arbitrary real parameters (I)S defined by 

r:, -¡KS = "cPs (2.21) 

For world transformations $s behaves as a covariant world vector. 

Under the spin - transformation (2.1), the new fi.,( is given 

by (2.15). If this equation is multiplied by the cofactor 

of n; in 1/G I = A and summing for and 

we/ 
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we immediately see that 

A, i a r.. = 
` 4, n 

or A t . r,*`4, - a4, Ley a 

Similarly r 
,;( 

(' 
à 

- ), 

Therefore 
44z 

_ + t x (e, p 
dl 

1 

If _ 81 e.' 9 

then 4) = Gfrk - 4 y 

In the special case /\ = s e.`y /z 

and /;. 
= e `9'z c:{ ) 

_ ) -+? 

(2.22) 

(2.23) 

corresponding to the principle of gauge invariance with the f 

as the electro- potential. Thus 0A is not a pure 

vector as it is affected by the spin transformation. 

Let us examine the effect of a spin transformation 

on r, = \Fir 
s 

, +`e_ ?f,Z A-1 _ `riz i 0r` e `f 

\Fir' _ 1,-21 A `r,z J L1I c 

8 2. B _Lz! 

Divide e = e . e 

B = fr - f 

Therefore k B transforms like (Ph and 

= 95,4 - ?A is an actual vector 

upon which spin transformations have no influence. 

Now/ 

(2.24) 
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Now from (2.17) and (2.21) 

(' = ++. * 
a,t ) 

) (2.25) . + a tel = - (N, t 2 291. 6- 2 
09 

) 

whence we obtain the covariant derivatives of the '"a- 

spinors as 

e r- 
IA = i, ,. Xt.- 

i,k 
x 

T. 1. 1r, 
k 

r` - w ,{,* t .(t = ik 

`1 , ) 
(2.2i6) 

GEODESIC COORDINATES. 

If the space considered is the pseudo- euclidean one of 

special relativity, then it is immediately seen that all our 

equations would be satisfied if we chose 

(1) +a. = 1-At . _ 
S,kc, eie 

(2) 

(3) 

T w 

.k:r crp 

(4) r ,oz,t, 

(5) F, 
= 

s: 

G Tw r 
= 

j_ 

_ (- - - -t-) I 

o Zaw - - z 
G 

(2.27) 

`these values would hold after an arbitrary Lorentz- transformation 

followed by a suitable spin - transformation with determinent 

unity. For 2'40. = 2 .,L and 'r 
ar 0- the values of 

ow are not unique, an arbitrary Lorentz - transformation 

could be applied to the index 4 and an arbitrary spin trans- 

:formation to a 1 

In/ 
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In general Riemannian spaces we can take a point To 

and choose coordinate for which (1) is true. In the associated 

spin space we can make Tr', 0- by a suitable choice of 

spin coordinates. This allows us then to take 1' as above. 

In this perfectly geodesic coordinate system 

have 

( I .)p = 

/ 

. 

I ,.TI~) = ETI- 
ll pu 

(a_A;.r/ 

P 
o Jt r w 
G 

and the only solution for is 

d 
l'ßA)po . 

! 

and we 

- (2.28) 

TH%, CUEVATIVF 'I'E v SORS . 

In the Riemannian space we have the usual curvative tensor 

R{ c = -aS r* a,- ris - rA*r = t rks r rfr 
Similarly for the spin space a mixed curvative can be formed 

Taf.s = -s r; t äf. Vas - far e + rC re (2.29) 
. s s f.. 

and similarly for rra r,s by dotting all Greek indices. 

By contraction and application of (2.25) we have 

P /1- is - ` (ar 4s - as 4 -) = Ft, 

P ,4S - CIh +s's /0 _ -i Frs 

Ás 
= -Fsp being (apart from a real constant) the electro- magnetic 

(2.30) 

six vector. The usual results making use of the curvative tensor, 

give/ 
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pt ¡ 
V i .+l i - T iuC - T r e `: aS . 

I.4a, - = . 

(2.31) 

Also 40f 
s _ is = G'Itir T,i. *it ri.r. c . s t c 

e g1` t v R -esp.. 

= O (2.32) 

because i a p- 
14, °o 

Solving (2.30) and (2.32) we obtain the unique results 
a -ka,, 

SA P e s, = x R 4g -rs e e;, e+~ s 

Pi _, kày G.r F 
C;, 

) (2.33) 
rii si- _ R,Ys'. 

..4,k,., 

. 
Ve -- sL v e ) 7 

By thus fully exploiting the application of geometrical ideas 

to the spin -space one obtains the mixed curvature tensor ex- 

pression equivalent to the /sr. matrix which appears in 

Schrödinger's treatment. The contracting of its pair of spinor 

indices is the same as forming the spur of the matrix. 

TIE DIRAC EQUATIONS. 

We first assume that there is a current vector 

which has zero divergence. 

J :---- ,i o. 

Assume also that J correspondends to some spinor co,:,-- 

where JA` 6_4'21,- w. k 
- xr, 

win 

Take the divergence : J c10,1" 0- = o 

For Jk to be real c,.. must be hermitian; this condition and 

the condition that the time component of J* is positive are 

satisfied/ 
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satisfied by giving wow the form 

(.0 
r- 

where x and V are two spin -vectors. Substituting in the 

expression ( ) for div J we have 

(AAr ? ( t 0' Xá ltP l = o 

which when expanded is 

14- 6-4 it, le 141, xr rr 
Ti (5`14`, 4.4 trl.k +xr rk"-- 

This is satisfied if we put 

Q À x 
T A = a w 

4c x _ôc ,, 4r, = Y' 
w 

(2.34) 

where at is some constant. 

In the geodesic system, from equations and their we 

derive the equation 

á x ;à 
0(1_1_1. 

zti 
A) + °c 'n t. = o - 

where - 

- at = 

- a4 

The vector 

and 

The/ 

(r- 

- a2 = 

IPTe A, 
7: t 

0( = ?r ,,c 

T_ 

- 0(3 

(2.35) 

a pure imaginary constant. 



- 37 - 

The °(,; here are set of hermitian anticommuting matrices and so 

the spinor equations have reduced to the well known form to 

Dirac's equation. The actual set of spinor equations used 

here is ^µ °-/AtTw 

Tr 
rr 

xa.sk - a = o 

ì. 
1) f ai - ° r^- = o 

(r'.36) . 

and these are regarded as wave equation in general relatively 

expressed in spinor notation. 

TIE SECOND ORDER WAVE EQUATION. 

From 2.34 we halve 
1 - . ( eE+r x5.'14,) 

= 
0-47;r (0-Ixe Y,eat. 

Therefore _ l c t 
aP Te l bk 

cáw cA 

after interchange of dummy suffixes. 

By (2.31),(2.13) and (2.33) we have in succession 

( r,,:r rtite 4 6'61'. Te ru( w` 

I ó 
Lk 

1 I.üt t i GAr 04 
,,,e P 1 r rLh 

2 Q I 1 Lk t 4- 0.5 L 4: G 6- y c } 6 y i ¡"{ 

By a reduction very similar to that for (1.52), the middle term 

here simplifies to s -K e- so that the final form of the equa- 

:tion is 

2 -L 

Similarly for X,:- we have the equation 

z 

_ o (2.37) 

o (2.38) 
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CHAPTER III. 

TEE INVARIANT THEORY of DIRAC'S EQUATIONS. 

In the spinor formulation of Dirac's equation we have two 

spinors J' and x both having two dotted and two undotted 

components besides the spinor expressions it and 7T the van- 

ishing of which being the spinor form of the wave equation. 

We now wish to consider all the invariants and tensors derivable 

from these quantities. For this, the mathematical theory, 

we obtain forms which are not equivalent to the bilinear pro - 

:ducts of a s'- function with its complex con47ugate, so that some 

of the tensors found have no direct physical interpretation, 

although these have a mathematical importance. 

A spinor has zero length ¢ = d From two diff- 

:erent spinors the inner product by contraction can be formed to 

produce a scalar. In this way we find the two fundamental 

scalars in the theory, these being 

_ 
,{ X ) (3.1) 

K = 4,` xq 

where K and K are complex conjugate quantities. 

The vector formed from any two spinors whatever, say i6 

and w by means of the relation 

Orr 
X 

is always a null vector, for its length is 

X4X = 
Q-krw 6: w 4' we 

= d; ;, Se t v wt w` by (2.12) 

o as the contracted spinors are always zero. 

From/ 
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From all possible combinations of and X to replace ¢ and 

w we obtain four distinct vectors of this type, the first two 

are real since kA~ 
is hermitian in its spinor indices while 

the other pair are complex conjugates. These null vectors are 

AA s c'r` a r x,, xr ) 

) 
B = c,; r vie ( W 

) 
k ) (3.2) 

C = r xi, it' r ) 
à 

A 
,; 

The inner products of these vectors lead to scalars, all of 

which are expressible in terms of K and K as a consequence of 

the properties of the correspondence between world vectors and 

spinors. 

For example, again using (2.12) and from (3.1) we have 

A B xA Xr 5kcip f;t e 
KK, 

The complete scheme is quickly found to be 

AA B = Q A Ba = KK A: C *= 0 A Ck = 0 ) 

Bat B4, = 0 B4CC = 0 Br( Ca = 0 ) (3.3) 
) 

CA4= 0 C 
A 
C4 = -KK 

) -A- 
C C,,,, - 0 ) 

Each of these four vectors is perpendicular to itself (i.e. it 

is null) and to two others but not to the fourth. 

SECOND ORDER TENSORS. 

There are three distinct tensors, together with their com- 

plex conjugate, quadratic in the wave functions and not 

involving/ 
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involving covariant derivatives. Under these conditions, the 

two tensor indices must be introduced by means of the tensor in- 

:dices in the T quantities and as there are no free spinor 

indices, it is seen that the following are the only possibilities 

for this class: - 

Xy 
/l", G'k 

r 
N13/4 = T, c( ro 

Now 17" = xy 0--kw) 

Xy fi`Ls 

c` `Y c 

- a- A \ 0- 

by (2.13) 

Therefore we see that the symmetrical part of the tensor P`4 

is proportional to the metric tensor and is of no new in- 

:teres* so that it will be quite sufficient to study the skew 

part which we now denote by 

lLA 

- X (G it 
v 

A 
_ A 

I 

,° (3.5) 
z v 

Also Mkt r 

f4L x° Xr_ M 
cry 

In this way we find that both e and N m are skew tensors. 

These are very simply related to the vectors A B and C for we 

find/ 
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A C - A` C 

But 1,d X - X fi r 

because when à 
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Xw/ (c-k Xß) - X xa) ( 
0_Lar 

y'r 

° { Y{ X; - x" 1,;.1 

s R 

each term is K, while when oc A the 

lowering of the index á makes it X so that both terms are 

identical except for the sign and so the expression is zero. 

Therefore A e - A* m'A ) 

) 
) 

Similarly B Ci` - B` C NJA ) 
(3.6) 

These null vectors and skew tensors were discovered in their 

special relativity form by E.T. Whittaker. 

Whereas M and N are each expressed in terms of two of the small 

vectors, Q requires all four when it is written in a compar- 

:able form. 

Let us form 

t k c c -c k 
= GrL ,: 0-'"P x13 0-4 "ß Xp 

yY yyr akdP (fµ - /te `Y)( xT, íxn `rN) - 1W tex fi x ted 

c.A`°[ Sö K (TpxT-t- 2cp4/k)] -BA+ pß`` 

= Z R QK` t Ap - AA B . 

Hence we have e in the desired form: 

2 K _ (CL G.k CA C -- Al g*_ 
glAk) (3.7) 

Various contractions can be made and we quickly have the 

length/ 
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length ,k, 
M M = 1 ( A ` C 

t 
- A 

.c 
C ) ( A C - A t C 

K 
= o 

) 

also N AN = 0 ) (3.8) 
while lv N = -2K2 u _ 

) and M = N 0 ) 

) 

It follows at once that 
M `A = 0 , r7L` B = -KC/ , M ` C = 0 , P 

Et_ 
= -KÁ 

) 
t 

N 
u 

=. -IC ̀ , N""` B = 0 N C = -KB 
I 

NA C = 0 ) (3.9) ' ) 

Either from the definition of Q in terms of spinors or its 
expression in terms of A, B, C and C we have the following 
relations 

k , , u ; 
L 

QA Ian xP Q = -t-i 
2 2 ) 

Ct QA _ -2CA C,t Qom= 
2 

--O- A ) (3.10 

the length of Q is then found to be 

Q -vk 
Q _ K2 

Also the inner product with its conjugate complex is zero 

Q Q, = 

The inner products of Q- with the tensors M and N lead to 

the results 
Ivies Q= 0 NA Qv, 0 (3.12) 

=0 Fry' = 0 ) tit 
By contracting one pair of indices only, we obtain the following 

3.11a) 

(3.11b) 

set Lk 
Irl Q = 

I;I = 

The/ 

-K la -`,w N Q.á,»= K NL._ 
) (3.13) 

A 
t 

C,w+ A ..r C Nil 74,.= = - B 6...,+ B._C 
) 

2 2 
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The remainder of the results of these types are obtained by 

taking the complex conjugates of the relations given here. 

All the results so far are consequences of the general 

theory of spinors. For these relations to be true r-' and 7 

can be any spinors whatever, for we have not, as yet, made use 

of the wave equation. When we deal with covariant derivative 

then we can use the connection between f and / as 

expressed by the wave equation. 
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GEOLL1ihICAL INTER PhETATIONS. 

As these results have simple geometrical interpretations, 

the geometrical aspect of this vwork will now be considered before 

we continue our list of tensors. The geometrical method of 

the following is very similar to Ruse's (12) treatment of the 

geometry of the electro- magnetic field. 

We have the four dimensional space -time with coordinates 

xl to x4, to which we shall refer as the underlying V4. At 

each point of V4 the metric tensor components y.,.4. have definite 

values. The totality of contravariant vectors at any point P 

in V4 constitute the tangent space T4 for which the quadratic 

form is ¿s`_ [ p....] ` ° where C the value of 

at P, is fixed by the position of P and so is constant throughout T4 

Let Xa denote the coordinate system in T4, it being understood 

that the origin Xa a (o, o, o, o, ) is the point P whose coordin- 

:ates are xa with respect to the system in V4. 

Thus any contravariant Xa in space -time (4) can be geometri- 

:cally interpreted as the coordinates of a point in T4. 

The equation tab Xa Xb = o (3.14) 

is that of a quadratic cone in T4 with its vertex at the origin. 

If we introduce a fifth variable X5 and make the coordinates 

homogeneous by replacing Xa by Xa then (3.14) is still the 3 
equation of the null cone and X5 = o is the hyperplane at 

infinity, S3 (say). Now the cone intersects S3 in a quadric, 

so/ 



- 45 - 

so that if we confine our attention to the hyperplane S3 we may 

consider equation (3.3) as the homogeneous equation of an 

ordinary quadric. The cone is generated by lines through 

the origin and each of these lines determines a point on the 

quadric in S3, and a plane in the cone determines a line 

(a generator) on the quadric. Similarly lines and planes in T4 

which do not lie in the cone meet S3 in points and lines not on 

the quadric. Instead of considering configurationsin T4, we can 

study their representations in S3. 

Spinor theory is essentially a parameterisation of the null 

cone or equally of this quaú..-ic. Ail null vectors of the under - 

:lying space at P lie on the null cone and they each determine 

a point on the quadric We have four null vectors 

e , B 
M 

, C -k and 7'k which we now consider as the homo - 

:geneous coordinates of points on the quadric. 

Call these points A B C and 

ff 

Now the coordinates of the polar place of the point Xa with 

respect to the quadric are given by 

Xa = Xb 5a b 

and in fact, raising and lowering indices by means of 1..6 

corresponds geometrically to reciprocation with respect to the 

quadric 

Thus/ 
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Thus the polar plane of A* has coordinates AA and hence it has 

the point equation, 

A X4Z = 0 

But A C ' = 0 A C = 0 while AA B& = KZ 0 so that 

both C* and C*lie on the polar plane of A* , while B* does not. 

As C* and C+' both lie on the quadric this means that ACC is 

the tangent plane at A with AC and AC as generators. Similarly 

it is clear that BCC is the polar plane of B 

CAB C 

CBA C 

A* B* -C A C ̀  o so that B does not lie on ACC and we 

obtain a skew quadrilateral ABCC on the quadric with the diagon- 

als CC and AB non intersecting. 

The Plücker coordinate of the line joining two points, 

Xs- and ya are given by 

X = X Y - Xa Y (3.1$) 

and those of the line of intersection of two planes with coordin- 

:ates Oa and L. 

are Y,,= %- - w (3.16) 

Duals are denoted by the 
" 

sign where _- 1 2 

1 
2 

£ 
e 

ak d 
Xc_, 

C.d. 

) 
) 
) 

with C-6-4. skew in all pairs of indices and 

£l2.3,1 , 

The/ 
E 123q. - 

0 
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The lines X Y are the same if 
ni AL. N A.I ah-c-4 
X =eY = e Y 

where P is a factor of proportionality. The coordinates of 

a line satisfy identically the equation. 

X X = 0 . (3.18) 

A skew tensor not satisfying this identity determines a linear 

complex - if Z is such a tensor, the complex consists of 

all lines wh6ß Plücker coordinates satisfy the relation 

Z X = 0 
oak- 

or dually Z X = O. 

Through any point Xa, the lines which belong to the complex 

all lie in a plane which is called the "polar plane" of Xa 

with respect to the complex. Its coordinates are given 

by = Z,t X4- . 

A point lies in its own polar plane with respect to a linear 

complex. 

The tensor Mab = (Aa Cb - Ab Ca) is represented in S, 

by the line A C, its six components being the (dual) Plucker 

coordinates of this line. 

In this way we have the four skew tensors 

M, M, N and N 

represented by the lines, AC, AC, BC and BC respectively 

The meaning of some of the relations involving 
these tensors 

becomes evident. For example (3.9) mlk AK - 0 expresses 

the fact that the plane A, namely ACC contains the line M. 

SB = - KCB means that the plane 
B,_ , that is BCC 

intersects/ 
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intersects the line M at the point C. 

Now Ivi = g M g4t are the coordinates of the 

polar line of M with respect to the quadric g and the equa- 

:tion M = 0 

means that these two lines M and its polar intersect. However 

as M actually lies on the quadric it and its polar not merely 

intersect but coincide. 

N _ -2 K2 shows us that M and the polar line 

of N with respect to the null quadric, i.e. the line N again, 

do not intersect. 

As Q Q 0 we cannot represent 

Q as a line but as a linear complex. The polar plane of the 

point f with respect to this linear complex is 
+/- = A" Q,,,,- 

but A Q44.= - K by (3.10) so that the polar 

2 
plane of Aa with respect to both the complex and the quadric 

is the same plane ACC. Similarly the two polar planes at each 

of the four points A B C and C are the same so that the 

skew quadrilateral is common to the quadric gam,, and the 

linear complex Q,. 

From a repetition of the relation (3.12) 

we have 

The/ 

M Q = - K 

2 
Q ivï Q 1,, = K2 
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The left hand side gives the coordinate of the polar of the 

line M with respect to the complex Q and as we obviously 

expect it is the line M. itself. 

Clearly the linear complex, conjugate to Q namely Q 

intersects the quadric g again in the same skew -quadrilateral. 

The six- vector of the electric and megnetic moments we shall 

later find to be 

Jt k` 
oc Q Q ` and it too determines a 

linear complex also containing the skew -quadrilateral A B C C. 

We may note that the line CC is the join of CC and also 

the intersections of the planes A, and Ba, Therefore, 

for its Plucker coordinates we have either 

= C0. 6 CSC°" 

or Y.., = A _Bb- A,, By . 

As these are the coordinates and the same line,Xy` must be the 

dual of Y, , apart from a factor of proportionality. Hence 

we set 
=f Y 

° 

Now from the relations between the ;null vectors we immediately 

find that ..- 
- 2( K K )2 

and again Y"' Ya,_ - 2 ( K K )2 

Also, as the inner product of a pair of skew - tensors is minus 

the inner product of the dual pair we are now enabled to determine 

the factor P 
e` Y Y = 

But w ó a just noted that X X4, = Y 
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We take the sign for reasons that will be revealed later. 

Thus we have 
e 

C 
.. 

= ( A B,_ - AL Bc) (3.19) 

As 2 K - Cb C`) t (Aw B - A- ) 

= - Y 

we can take the duals of both sides and obtain the relation 

-- N A Ír 
2 K Q = -iY - Y 

= 2 K i Q. 
Therefore we have the simple result that 

(3.20) 

This relations means that the polars of the lines of the Linear 

complex Q with respect to the quadric form the same complex. 

For the lines x _ belonging to Q .,. satisfy the linear 

equation 
N .J, 
Q X = O or 

/' 
Q X 0 

The polar of any line X of the linear complex has coordinates 

' iv 

X .,t- = g X g .iu = X ,.y. 

But as Q 

Q 
X = 

= 0 also 

Thus the polars constitute a linear complex which is the same 

as the original one if r' = e Q 

and as we have seen such a relation is possible only if tL = -1- 

From/ 
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From the form of the tensor Q *4- namely 

2 K Q = ( CC - c, C,b,) - ( 1 B - ALB.) 

we at once see that the linear complex Q contains the 

congruence having the lines AB and CC (which are the intersec- 

:tions of the polar plane of Cap Cb and of Aa and Bb respec- 

:tively) as directrices. The directrices are polar lines with 

respect to the quadric and from this fact we have just shown 

that the polar complex is the same as the original and it again 

contains the same congruences. 

The tensors Mab and Nab are proportional to their duals. 

These represent the coordinates of self -polar lines. Let Xab 

be the PlUcker coordinate of a line and X, be their duals, so 

that the polar of this line is the line with coordinates 

n. a4 a a d. 4- 
Y = g Xdg = X 

The conditions for the coincidence of the line and its polar, 

that is, the conditions that the line should be a generator of 

the quadric is Y = X = k X 

The value of the constant again follows by considering the length 

of the six -vectors 

X X 
.1, ni 

X _ - k2 X.t- X,a,_ 

Hence the line Xab is self polar if 

Xab = 
± 

i Xab 

In/ 
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In this way we obtain simple relations connecting the tensors 

Mab 
and 

Nab with their duals. These are 

Mab _ i TvIab 

Nab _ - 
lab 

and previously we had Qab 

) 
) (3.21) 
) 

= 
i 
dab ) 

) 

Here as before we have shown the sign of i which is immed- 

iately obtained when the vectors and tensors are expressed in 

the special coordinate system. 

Thus, given two different spinors, one can form three skew 

tensors which are quadratic in the spinor components each being 

( -i) times its own dual. The only symmetric tensor which can 

be obtained is the symmetric part o!" P. which however 

proves to be merely an invariant times the fundamental tensor 

namely g These tensors together with their 

complex conjugates are the only types of second order tensors 

quadratic in the spinors which we can derive from the given 

pair of spinors. 

Finally it should be noted that the skew quadrilateral on 

the null quadric is in general non -degenerate. To produce the 

Coincidence of any two vertices one had to have f.. = x 
and this makes all four vertices collapse into a single point. 

This case, 'Y= is the only degeneration that might possibly 

occur, but we shall see later that from the physical point of 

view this state is never reached by an ordinary electron. 
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TEE DIVERGENCES of the NULL VECTORS. 

Now we leave the geometry and consider the consequences of 

the Dirac equations which have not been used as yet. By 

appealing to the wave equation (2.35) we can evoluate the diver - 

:gences of the vectors Ak , B-', C `and 

Thus dims AA 
E (e)4, c"r (X.i hk Xß + X.; X ark.) 

(- 
c 1 

p ) X t ,r" xd ) 

- d ( K-K) 

while 
(34)4, 

_ + d ( K - K 

Again (GA}*, = o--4"`P wal.icp) 

i- (3-4 d!' (`i); led-4 ),k /`'(j 

(remembering that raising and lowering of a spinor index is not 

in general commutative with covariant differentiation) so that 

from (2.26) we have 

. (C4)At _ C4` (3.23a) 

Henceforth we shall omit the star on the vector TA, which is 

proportional to the sum of the electro- magnetic four -potential 

and the gradient of a scalar (2.24). For the complex conjugate 

we have 

(3.23b) 

We may note here that (A .. B ) is a non divergent vector 

which is the current vector of Irnfeld and van der Waerden. 

The/ 
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The other vector (A A`- B) has for its divergence the non 

vanishing scalar - A a ( r - R) 

VECTORS INVOLVING the FIRST COVARIANT DERIVATIVE of ONE SPINOR. 

Vectors of this type are 

GA = K` X.04, 

H A - t,, Xd 

E = /4. W 

F& = r X d 1Ai 

) 

) 

) 

) 

) 

(3.24) 

together with their complex conjugates. 

From the identity 'r 'I _ ° 

so that 

Similarly 

I I-k 'Yd -h trk I h 

d 
tr.,, S[ - EL. 

x " . - F x{ _ 4, 

by differentiation we have 

These complete the list of the type under consideration. 

Differentiation of the relation 

the relations 

T.( = K leads to 

K 7,k (3.25) 

The divergences of the second order tensors M N and Q can be 

expressed in terms of these new vectors. Thus for Q -"` we have 

the divergence 1G J k which from (1.5) and 

the wave equations (2.36) 

w 
, y "rii" ` K 

/` v 1.h. G : e `Y r c I R 0 
K )42., 

= !`vl { 
q.L.k. rc - Q-jlt`y vL l` c ) `r.t /`,v 0-21" cí / / -(qtf HL) 

= G - d Ai - d B1 - - > k1 

=i(4 - Ht) - ac (Al + 134 ) . 

For/ 

(3.26) 
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we have 

= (ri ```')4,. 

i-J n r-' t = Xvi AL c 0- w t X.. ,. Xe,..+ x 
6 

4'k,) 

( L ~ - ) ~- s X tt y) 
r.s r ( cc ` t r,. (t 

= 
F- zd Ci + fr r". (3.27) 

Likewise for Nt`` 

N 14 _ (ti),n, k ,'/ . *F LI, y .c f 
.c oA Y 

f 

fd1k, 11.4 - `Y ii^, 6^w.c cr"P lß 
l .cG-,rdG-+rP(-t 

Tß+,k+ 
e( eoJ 

= E t G - `.k 1\1 
.Lk (3.28) 

As 1I N and Q have been expressed in terms of A B and C we 

see that E F G and H must also be simply connected with these 

vectors. In fact we have 

r 'A/ / I .`1, 6 `T .y1'/ 
J 

= G.,I{ `Y¡sx VJ llv" t l 1 

J 
( `Y t 'Y~ 14k `Y 

_ K EA . 

(3.29) 

while C.,,, A 
ri 

i,f, = c^ ; 

(S 
`Y;, 2(i5 

G-- 
w. 

t"--, ( Xi- 
Y J' 

/k 
.} ')1- JI 1) 

= K F,k . (3.30) 

' G2ß Xy d 
y 
'(S j:.. (Tt.- e/ÁL + IIt J 

X.i /YB ( TPl.h + elk i'°) 
Also A,13' .t 

and s imi lar ly 

BY/ 

K HA- KH-a 

flx = K Gk + K 44N. 

(3.31) 
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By additions we have A,,, 8-,4 -t 8_ R' _ 

= K (HAI K (Ñ41 

KK,Mt K,kK 

_ (K K ) as we should expect. 

Again E,,. Ghls, 

_ /', ( trir.4 t xalli) 

_ - K hl + K 
fP 

`Y `r Xe t " 7( `/'+0 

_- K H4t - K G - y K 

From (3.25) , (3.31) and (3.32) we can find H.*, 

(3.32) 

att.( G, 

terms of the null vectors and the scalars. For we have 

i Ri-14k 

and x 
TA. (IA 

which, as 

and 

= a° IQ t c c n,4, + t( ( ) ( 3 .33) 

a. K ( K 14, - H,) 

A í - C» C m. `r K ( K tib,t 

t ,+t = - Aw14 B t 
C C` 

K) 

can also be written, 

x K y A,., t B's t C,,_ I A, Cs t R (K,1 - i 4 K) 

The divergences of these vectors will now be found 

T..,,,, El = Ei 

Now from the second order wave equation (2.37) we have 

-rot( IA ire I tit) _ Td 1°` - 

= N 
The/ 

Ft4k ctt" cA 'P i'R t:- 

in 

(3.34) 
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The other term cA``' `1,'rß 41 

z t T~I.Á TAIL (e4 4 IL dIAC 

ciuC lQlAt4f/\ ~laih lla) t`kIl 7a141.1 

L la ci9+t Te - Á Tk r PI.0 4),Q, 'e el 

- e . 

Therefore combining the two terms we have 

(El)t -ti 954 E t FcE N+t 

Similarly (F-qt ybt F - F it M 
) (3.35) 

For the divergence of q'C we find after using (2.38) 

(41 ).( 0 4IL (Y'4 Xdl AL)i 'At T d/ G /`dlfi. + `id a- 421- /LI AL 

2 it It. + L ( f c - 
5, 

x. t ; F,G,t c ; 

,k c . 
I{ xi*r -t lt` )K + F,c Q (by 3.5) (3.36) 

Also 

As 

and hence 

SECOND/ 

/ 1/a 
l /.! d T 1 .(Á'C 

LL y yy yy f I 1, 
. 

O ! 4 /`dl:l + /.0 L\2°l_ R ) 1 - 6 Ia. PA 

4' z 
ALL "i .c X- Ik t (14.-- ) fut 

Gc H 
K 

Gc,,44 i Hz k° K,trk 

(ci 
` ) = z 4Á< 

by (3.25) 

(3.37) 
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SECOND ORDER TENSORS WITH ONE COVARIANT DERIVATIVE. 

Tn this class we have four distinct 

X Cr 
111 14 

11.4 At" 
4g. A G 

/A 

L ¿ , = X a i 
IA 

-A 

tensors defined as 

(3.38) 

We require the divergences of these taken with respect to both 

of the tensor inci ces. 

First consider 

Y, 
r- 

o ,Az 

Therefore OF - 

-where!' 

G 
Ar- 

1' = 
r rat uc 

r u\ 1 , 1 k C G v, 

(+cXa),k 

U T 

T Cz J./w V/µ ,.«..c 

/ 
P G 

7^'r~ 
T T 7 v 

- d 14,4 ta-94 - í Fick $1 , R BI 
x Rt i *I - Y{C 

of the fact that 

A si ií lflr result holds for 

Rr..cAN.. 

U 

(3.39) 

and use has been made 

r,C 1 ,. t R 
-C q.. ti.t 

á a 114c - iR,, +; p (3.40} 
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If the divergence is taken with respect to the other index we 

have 

A Q r`' f I L p I-s 

t': 
I( )r ir (m 

.c 
} ,¡, 

T ` Q' ar` I, ) 

1 r r 1 / y 1 
1 C(2 d=- / 1 

t Z t!6/` 

a c -1,:' . " t z-t`-RB + F Y' ; y 
y z 

The imaginary part of this is 

ti F > cA rirr r` .G' i rp, v r 
4 

1;7. v 

which by interchange of dummy suffixes in the second term 

f T - /Af%'s 0- NI:. 4- C,;C t G TjGLrrGx 1 
I} Y 

l 
11' P;' P;' E 

G f` 

AJ d 
c 

z 1 

z 
F44,, B4' 

(3.41) 

A similar calculation for the imaginary part of (U )t, gives 

u'id ){ - lu At`)L, 
- 

The divergences of V and W are as follows 

= xtc Cpaj l,p, t / (r- 1 ¡ irlAA_ 

(,. 1 ( + xel.c re) G>..r. `YIk 

= V! - 

. t ti { 

Similarly/ 

(3.42) 

" I+s ' C R w, `` z 

d fr: I.fS fi !`A\° 7+) 4t - 

a 

c 

Ct (ti F t ,) (3.43) 
2 
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Similarly 
(W)_ -w14, - E.h F-kt + ß aA 

). (3.44) 

From 0.43) and (3;44) it follows that 

V t W 40 = 954 (r! + w k ) - C F,* - c 1 R c,,Z 

The divergences with respect to the other indices may also be 

determined 

(vit') 
C 

__ 14j" (v*- ( XX It GAk)r i YjCtApt t1/1/1.t,) 

1,.p1 xTi< ` 
i 

xA cAkTr [(._ i F 
6 MY-e c e 

- 714 xi,e (rjk Tr.Yr+ (zd=- c)4+ 
z 

r/xr c`~e G yr°1 (3.45) 

= (w4`, xfLif /-pt ) 

' 

- a ` ̀ Ìa ld 
a r 

x,.11. + 
Wa T` c- ) xr - Fi.t- er P °XP1 

t T 

r µ `,,i.c írw +(z.cL-R )_ 
F,`c,CY'a CA Ar. pw (3,46) 

4 1 

These expressions (3.45) and 3.46) introduces new tensors which 

do not reduce to very simple relations 
11 11 (V" + W A ) = 2 / z,`- R ) c t 7 ±( X 5A 

t / p) * 2(Plt ckrrr U) J. 

x 

A)p y. Ai v 
X P /` 

° 
é o X l [ c Ç ér P 7a °- cr t 

after raising, lowering and chaxging dummy suffixes. 

Now 
cArw G,h ci . cr P F 

l r ér f 
(',.+cirµ 4, ré (áPSI`_G(awNCris+cir`h +i'F 
L ér J 

z c1 A since F/k is skew. 

Hence for the third term we have 

ci FA t 

The/ 
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The first term 'ryfirh.ich is ),4411:X2 r 4 A r: f r rt + X rr ¡. ir 
kit- 

IL 1 

!¡ rr t kat/ 
Ì { hit +.ï {! x / P af- 1":11. + eYf¡rL r l 'Pi it ¢` t t Y. 

i ; pit ̀ v Ñr 4.1 
- Z t Ixe Q 4.6-4( t r- fee . 

We shall just note the result of reducing the last term here, it 

is 
A'Eyt Ti - 

xK 
C. Pit c4 E j í 

or from foi alulas (3.50) and (3.52) below, this is 

( n4 ̀  ú x) 

Hence f inpz ly we have 
.c 

Y 
,c 

{. W , ;- / .c 
C F, it d 

! 
C - ( 

E} U FJt 
v;/ ) 

l z K 

The expressions for these divergences are not so simple as 

those for T and. U. 

The contracted products of these tensors are easily found 

from these one can express the tensors in terms of the 

null vectors. We have 

eA = erh Çt. ̀ p x.; 1C13 

s r xtX¢ 

_ K E, 
p4A Bi = 

TA t = e `r X A = K 

Ti ê, _ _ e ea. xi- ,va 

a 

o 

(3.47) 
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This corresponds to a resolution along the directions of a set 

of orthogonal vectors only here the orthogonality is different 

from the usual type for the vectors are self perpendicular. 

These results suggest then that 

B1 H - C = K T j (3.48) 

This is easily verified, for by (3.2) and 3.24) 
( B 

if-AL 
- c; 

) 

_ ¡- f' ` Y' Pi X -lr,: 1"A 

A c1, yI;,,it 

a á; a S':;" 

Likewise for the tensor U.`, we have the contracted products 

U A A - 0 
) 

U4, B1 = K 
) 

(3.49) 

Ux CA = 0 ) 
) 

= K F ) 

whence it follows directly that 

K U .ß ,4 = Al GA - C 
t F.k 

In the same way 

V, A= 0 W. Ai -- K F > 

) 

V B4 = - K É,k W IA ; = O ) 
) 

V:444. CI = O i'dk C4 _ - K GA ) 
) 

V. 1A C4 = - K H,, t"I14 Cc = 0 ) 

with/ 

(3.50) 

(3.51) 
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_ - A 
ÉA 

+ 
HA 

) 

(3.52) 

_ - B F,, + G 

For the contracted tensors or spurs, by appealing to the wave 

equation we find 

T, = 

Therefore 

Similarly 

T, : _ 

lilt 

VII 

W 

' T ° 

= 

= 

= 

= 

a r.. '11) 

r a 

a K 

-a K 

0 

0 

= e (°t- x ), ) 

) 

) 

) 

(3.53) 

Although there is no limit to the number of types of tensors we 

could form, this list contains all the important fundamental 

types including all those which combine to form tensorial quan- 

:tities for which there are special physical interpretations. 

We have not concerned ourselves with tensors above the second 

order and of those of that order we have studied two classes. 

There are others of this order such as iri.A Ç and r/ ?'d J 

involving covariant derivatives twice over, but these are of no 

special interest and are not studied further. However the 

contracted scalar derived from the latter appeared in (a36) and 

by equation (3.37) it can be linked up with the given tensorial 

quantities. 

At this stage we may conveniently reproduce the list of quantities 

considered in the special relativity case. The component of 

the vectors and tensors will be written out in terms of the 

original/ 

LAG 
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original Dirac notation, that is by the four component 

function and the oc- matrices. As we have already noted, for 
the transition to pseudo orthogenal axes in special relativity 
we have 

with 

and 

XZ 

,UL 
7 

irti ¢ Ah1 .Zi _ 1 ax . / 
a j 

;,cf, ;,cf, 

AAt) ti4K) i ' 

The Dirac equations when written in full are 

- fin 

t 

fa, 

(3.54) 

The various quantities will now be expressed in detail and 

also in matrix form where 

Then 

represents the column vector 

is its complex conjugate 

is the transposed vector (i.e. a row vector) 

is the adjoint or row - vector with complex conjugate 
components. 



- 65 - 

Then by using the values of Prr (2.27) and notir the 

rules of lowering spinor indices we can write out the quantities 

in terms of spinor components and then rewrite these as -com- 

:ponents. These bilinear forms are expressed in a matrix 

product by means of the cc- matrices (which are written out 

in (2.35) . 

A-` = w, qi, 

z ;134 11, 

f2A3 = W `11, 

( ;Li" t YÌ.- 

= - 13 r 74i 3 

= ,3 It 3 

3 

Tr) ( 
B ¡ 3 f3 + 

( 
12B+ 

B+ TF3 

+ 
) 1) (- , ) t . ( 1 a, c d3 .Y : 

ft (_40 ( t ¿ a, 

( -a3)I t "CI 

i T 

w+ /...( t t d i a =A,)1). 
i 

`U4 (-"4) ( .- ) 

y+ (-dr. ) ( d3) 
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/ 
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fl `YJ 
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F 
( 

N 
((4 - 2 7y 11« t 1 11+c - ! 3°1) - ~di / 

`) 

G4, - 4'3 11/11.44. 
_ (-dµ)(It w..tl-t1d3) q;I 

I* f T yl tI.IC( -d t°l3 ) 

2Q" = -,.. /3 / t ti ,T, y'I i ¡if ` 
444 .(1 - *(5. °I. Z 41 ) f 

2Q31 
ZE1 

`rL 
3:"y Y'l ° 

Yi+ 
( Z 

44 dt - dy 4,1 °I; ) Ì 
2QIZ _ + 

11 

= ` 3 / ! ( ty .1; - Av °11 L/ i 
2Q'' = 

41; li 4. 'Pv'l 1 fit. ( - t 4yd.d3 {- °IV 4.1) 1/ 
1 

2Q=' = - ti 
f., yL F 

A k7iy f/ ! t ( _,-.. dy 0(.5 dI + .y °L) y 
a 

yt / .. .ty °IIdk 4 °t_v °IS)`i , i ` 

= Y (.. d3 d1 + °tL) 011 4' 

- i ii, ( ` 4,-e, +dL) dL ,Y 

= I 1.; ( A: K, a1 -1.- a,) d, 4) 

I 

2Q)Y = 

23 
2M = 2 

.p 
/d r 
p 

x 14I = 

// / - TY7 
a - 

- L L a :. 2 I z 

2M31 = 2 1 1VIz" = 
t1 + t1 

2IiI" = 2 i II'l= z:. 'FI y'L 

2Ñ= 2 i Ñy, 4 w,` -` Tv` 

2Ñ 
31 

= 2 1 N"-=..- - V'i - t 
2N'L = 2 i Nyj -:i p',yy 

=_1 `Y (i dldj +aLJ °1 i 
, (' ( .1, d, -I- a,) oc, `i 
3- 

=_, X. (zdl dJ +- a,) `43I 

I 
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te. t (-°I,)(1-4 dl 4,_ 43) TR 

7 

,k Ì3 Y 1 at 4 t 11 Í( 

( / 11G`.L2A _ L 
Y'3 f411t ° Y'4 1131h : ! t} `-dL) (I ' i dl d°d-3) Tl/l L 

2 T' = - y W3 Tv + 
1 

/ 
W /04 f+ `43 ( ( - 01.3 / 1It 

í 

VC _ 
3 / 31 

1 ) ds°l)I . 

it.w r*/+t I- i' 
.Y % 71 .0 ,/ tyt (-dI ) ( I + i, d1 °I, aj) 

I 
V/-2 V. = I i il IC t -ft. i í.h i 1 Ik 
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V1r^11Vt-x 

`i' 1112-i 4a - `Ì i.h 
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ÌI % IAl L i¡ k ' (-0'4 \ 1 i a. .I/ d. 

IÏ2V, - iIil I (li dlA.d3/ 
k V'1 1 1 + L 'P:1 k 
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1fI 7 sl l *i 114 1 iC = , 
cr 

+ =iy °( + dv °c t oCi ) L- d 
I# 

r 4 L t dy dz + aty á, 

- `Y `Y41-k -4z`131+z = Ï ( °ly °IZ + dl "I.1) i I tt 
- ty' 

¡4Ut t .rz 1It 3 ` t ) q KL 4 ay {, d, ( 1 ) 

- r3 I II.1( - ly r ,,,,,t 
,V' _ - 4, 

. 
'el fi I k - ̀  

w 
il i 

r-U3 _ y, J 
Á 

,4,-- .0 
I q 1 

F - 3 T 2.1 .% 

YGVI = - W J- t ^ il l y 
1 

/ 
l lJt s 11.(< 

r 
.Y (-dl ; .cy.L dydd 

1 

_ . 
.r+ L-.,1 (l y .t - dy dd1 ) 14 

= 2 
I 

+ `-43)(ì.ecy-Fz-dydfafl / It%t 

,1) lt y 11)lQddydjtl)7,t 
, 

(3.56) 

From geometrical considerations we found the relation (3.19) 

c U. - C Co- = (A B, - A.4Bc,) 
z 

By substituting the above values in one of these equations we can 

determine the value of e- For example 

C' Ci - Ci Ui = e( A3 B,F A Bj 
) 

This gives ; _ ì, tw, `/, - wzwy)( - w +51- ) i; 5r-; -%_1y 

_ (.4'i`/3+WvWy) +el4 Yi..+L9Ì-Y,Y3+vYr) 
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This equation is true when 
l' 
=+ i ; this enables us to 

make a suitable cnoiee of the sign of !ï to be taken 

so that all our results will be consistent. 

The list of quantities shows us immediately that there are 

two types, those which involve the f -function and its complex 

conjugate and those which involve two -functions (or two 

i -functions). For the former some physical interpretations 

may be possible, but, as far as the theory of quantum mechanics 

is concerned at least, no interpretation can be given to the 

latter. To the former class belong the vectors, e BA GA 

and H* 

the scalar K 

AA 
and the tensors Q Tom` and U4`` 

all with their complex conjugates. 

The latter class contains the remainder, namely 

the vectors C4 EA and FA 

the tensors M 
,a` 

V 
" 

and Ti r" 

together with the complex conjugates. 

In the relations among the quantities in the first class the 

potential vector 4* does not occur, but in the other class, 

where ever a covariant derivative appears there is always a 

term with f4t replacing the covariant operator. 

FF-rYaICAL/ 
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PHYSICAL INTERPRETATIONS. 

The vector J4 = -ec / (A + 

reduces in special relativity to 

when /3 (/' "71 '733(3' J: (-d 
- £G ifi /3*- 

-- - ̀ t3 / J 

(3.57) 

which is the well known form of the vector which gives the 

density distribution of electric current and it was introduced 

by Dirac (13). As already noted, the vector is non -divergent in 

the most general case. 

The vector SA = h if-- ( AA' - BA ) 
(3.58) 

ri7r1- 

reduces to A, *' 
TA 

4-11E" 

when ( G'' 
O} ca 1 ( ,i- QZ d - .t o( Of, - Z Q, cYL o[, °ls °t3 ) 

, / 

This is interpreted as the density distribution of the angular 

(spin) momentum of the electron. This vector was first mention- 

:ed by van Neumann. (14) 

The scalars: 
- (.K + K ) = V1 reduces to e °i+ 4' ) (3.59) 

-i (K - k ) = V2 reduces to yt a,4 .(,d ..9i) 

which are the well known pair of scalars in the Dirac theory. 

From (3.22) we have the divergence of the spin vector 

div 3 
A 

_ -rnc V2 

There is the real six -vector J'2 (Q /k- e (3.60) 

to 

which in the coordinate system considered becomes 

M / 
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t cA y. a, o( 
L4 ',r-+.. c. 

c il. e 1)+ c °(, .(q 

4 7r 1...t 

etc 

etc. 

31 3l7 X12) are interpreted as the density of the component 

of the magnetic moment of the electron which 

(114, 1424, J34) give the electric moment density. 

This six- vector and the two vectors V1 and V2 were discovered by 

Darwin (15). 

This transition to special relativity has enabled us to 

recognise immediately the fundamental interpretation of our 

quantities and to supply the appropriate numerical factors. As 

defined here the new vectors J" and SA` the scalars V1 and 

V2 and the six vector J4.ß` are perfectly general and the rela- 

:tionships we shall derive will be worked out using only the 

general relativity results we have already given. 

The resolution of the electric current into its polarisation 

and convection components according to Gordon's (16) method can 

be effected c (Je ) _ -1- ( Q - Q( ) 

44 d 
which from (3.26) 

becomes 
= ca ( G - H a A -at B - G+ H -0( AL - 

1 L L 2 4W1 

_ ( G - G - 
ak 

or J = c (fi 4Ae 
) + 
-k 

The/ 

t 

"polarisation current" + "convection current ". 

-c(B1 ) 
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The convection current vector is 

_ ( G _ d 
- G H + H ) (3.61) 

Ak 
from ii form has zero divergence 

non -divergent VL must be so as well. 

from the result (3.37) that (e ) = (NL)z 

shows that 

and as J is also 

This fact also follows 

which immediately 

Certain relations between the vectors and tensors have been 

demonstrated at various times by using a special set of matrices. 

These relations are perfectly general and they follow 

from our previous results. 

For example the length of the current vector is 

J = 2(ec)2 ( AA + 

_ 4(ec )2 

_ (ec)2 

B ) ( 

4- V2 ) . 

a relation given by Darwin (15). 

The length of the spin vector S1 is 

S 
a 

S _ 2 ( 

( 

( 

h )2. ( 

77r) 
2 

r)2 . 

Aj 

( 
V12 

B 

+ 

) ( 

V22 

Az - 

The contracted product of these two vectors is 

J S 

so/ 

= 2 ec ( Ad * B) ( A - B! ) 
-rz 

o . 

B ) 

directly 

(3.62) 

(3.63) 

(3.64) 
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so that the current and spin momentum vectors are perpendicular. 

These two relations (3.63) and (3.64) are given by Uhlenbeck 

and Laporte (17) . 

In his quaternion notation Lanczos (18) found four perpendi- 

:cular vectors all of equal length. These are essentially the 

same as the four vectors 

(A2 + B2 ) 

(A2 - B1 ) 

i( C' jr-- 

(c1.- CI) 

where the last pair are imaginary, having no direct physical 

meaning. These vectors are perpendicular to each other while 

each is of length t K K The first has zero divergence and 

the values of the divergences for the last two are, by equations 

(3.23) respectively; 

( c{`- c'4) 

e tp (G* t C*) 

These vanish only when the four potential is zero which was the 

case considered by Lanczos. 

For the length of the six- vector of the electric and magnetic 

moments we have 
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= 2 d ( Q*- Q`'`) ( Q- Q.44) 

= -e2 `K2 + K d by equations (-31;],) 
2 a: 

= h 2 e2 
87r`m2c2 

- V22 ) 

cf. Darwin (15) . 

(3.65) 

The other invsrian"t derived from this six vector is its inner 

product with its dual. This is 
Y( Jyt 

4.4c 
1 = e ( Q - Q( Q lk - Qt 

2 a` 

But Qom` = i Qom` equation (3.20) 

Q4k Q = - K2 (3.11) 
Lk 

so that an avitit 

= h2e2 Vl V2 
1} fi mi c 

= 22at ( Q``+ Q`4) ( Q- Q) 
= e2i (-K2 + K2) 

2707 

(Proca (19)) (3.66) 

This six- vector can be contracted with the current and spin 

vectors leading to the following vectors 

J4, ,v = e2 c ( A + ; ) ( Q - Qej) a 
= e2 e ( K (1C41..1t) - I ( Ate- B) ) 

. ( 2 2 ) 

_ - e2 V2 3* 
m 

Also/ 

(3.67) 
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'( = e h2 ( A - B ) ( Q - ) 
8712-mc 

= - e h2ffi" K (A B) - K ( A+ B` 
Sirs-mc 2 2 

_ _ h2 V2 J* 
lbn mc2 (3.68) 

Cf. Uhlenbeck and Laporte (17) 

Similarly for the dual six vector we have 

J rl, t4 = e2 Vl S* 

= h2 
16 Rzmc2 

Vi J 
42 

From U and T one can build up the energy tensor possessing the 

correct reality and symmetrical properties. This was found in 

generalised spinor form by Infeld and van der Waerden (7) . 

In terms of U and T the reáuired tensor is 

= chi 1/2" ( T*1-4t - T 
.* + 11.0,1 - T'1- uf.,, + II{ U41 + 

-it 
8 

(3.69) 

because, if we form its divergence using the results of 

(3.35), (3.40), (3.41) and (3.44) we have 

(,71k) = chi 2i F ( ) 

c 8n ,'I 

= i 4t J4 

after/ 

(3.70) 

4 
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after the constants of proportionality between F and 

Axt 
BL and JÀ have been introduced. Thus y 

satisfies the usual requirements for the energy tensor. 

Its spur leads to the scalar 

filin v . 1- 0( (K + 
87r 

K ) by (3.53) 

A 

- - mc2 Vi by (3.59) (3.71) 

which in ordinary dynamics is -L times the invariant mass 

density. We may note that in special relativity the energy 

tensor takes the matrix form 

_ -/ cñ i - `ii4, PAT + 
'v 

'Pt4,. \w*%r L I r4)J kn" 

With ß't - a(, -á,., 1 

The energy tensor in this form was first derived by Tetrode (20) 

Also the scalar .7 reduces to 
L yt - -r..G ° W 

This lends support to the suggestion of de Broglie (21) that the 

proper mass of classical theory should be represented in quantum 

mechanics by the operator 

of which the eigen values are Then, assuming this 

idea is correct, we have the mass density distribution 

in agreement with the usual interpretation of the spur 
of the 

energy/ 
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energy tensor for a particle. Therefore, in general, the 

scalar -m may possibly be interpreted as the invariant 

mass density of the electron. 

We may have to make one or two remarks upon the origin of 

this speculation of de Broglie. By comparing the second order 

wave equation in his theory with the Klein- Gordon equation, Dirac 

showed that two additional terms appeared which corresponded to 

the interaction of the electro- magnetic field upon an electron 

with magnetic and electric moments represented by the operators 

--3' 

a{ 7f wL 
ke 
t7. H"ro c 

a 

Although the comparison was admittedly artificial it was never- 

:theless unsatisfactory to obtain a skew -hermitian operator (for 

which the eigen values are pure imaginary) to describe a 

physical quantity such as the electric moment of an electron. 

This operator for the electric moment arises from the commutator 

where P° , P"` are the general energy, momentum operators. 

Through neglect of the fact that F° and °: P" do not 

commute, Lees (22) by directly squaring each side of an equation 

containing these operators, one on each side, naturally found 

no electric moment. 

De Broglie made the suggestion that the proper mass should 

be replaced by in quantum mechanics, so that when 

the two tivav equations are compared an operator -d is 

finally/ 
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finally attached to the representatives of the electric and 

magnetic moments. This then gives real densities for both 

these moments which are 

f and - tt a,, 4, a tY respectively 

and three together form a six -vector. From classical relativity 

considerations Frenkel (23) showed that the magnetic moment must 

necessarily be accompanied by an electric moment and that the 

two constitute a six -vector. In this way we obtain the same 

six vector di."' in agreement with Darwin's work and with 

Gordon's resolution of the current so that seems to be 

quite correctly interpreted. These two successful applications 

of - -s 4. as the operator representing proper mass give con - 

:siderable value to de Broglie's suggestion. 

There is also the dual to 1.4* to be considered. This 

tensor is 

J/'Z tk _ (wk_ atit) 
d f (c Qr) 
ar 

If we form its divergence we find 

c(Je9 _ zo tCk , ) which by (3.26) 
a [ ,( < 

= 2_04: ( C1 _ H _ a A _ B t C H 
-t 

oc A + at 3 

ck fZ Z 2 2 

_ .c,c.L ( I - y1 - H- (71'9 
d, fl 

or 
qt/n.uk)AC t A,,e, ( H - yt + K t ) s o 

Here/ 
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Here the first term which is the divergence of the six vector 

dual to the tensor of the electric and magnetic moment 

can be interpreted by the principle of duality as the polarisa- 

tion magnetic current, while the second term, or an analogy 

with the electric convection current J may be taken as re- 

:presenting a magnetic convection current. That is, the total 

magnetic current vanishes, the two neutralising components 

being 

the magnetic polarisation current JC4 ° c- L'Z"`)« (3.72) 

and the magnetic convection current 

H2 -G, H- y 
This interpretation is due to Zaleoff (24), our 

special relativity reducing to his vector 

é e.4; ( 

(3.i3) 

in 

.cE 
d= « aw y" dr. y _ ° a= c, l,r, 2 . 

The electric convection current has a corresponding form 

(VItbk a4 .44` )1/** ) 7 

which shows how 9' and G 
are similarly derived from 

the two invariants V,. y'+ dµ f and i = i,t -(,.<,43 °` 

respectively. 

Jehle's Equation. 

From the second order wave equation, Jehle 
(25) has deduced 

a linear equation involvdrng only two -rowed matrices and 
a two -com- 

:ponent 1- function, his equation being valid 
in general re- 

lativity and for all spin transformations. 
In the wave 

equation/ 
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equation appears not only ' but also its conjugate s1. 

His equation runs 

y17 f =cfv (0- _ -1. (3.74) 

The theory of covariant differentiation and of spin transforma - 

:tions besides the properties of the r -matrices (2 w 2) are 

developed along the lines of Bergmann's treatment of the exten- 

sion of the four component wave equations to general relativity. 

There is also a matrix a which makes 

and leads to a real vector; 

= 
fr 

a '7c'y hermitian 

which, as it is non -divergent, was taken as the current vector. 

As this equation is based upon relativity principles and 

is invariant for spin -transformations it should be contained in 

the spinor theory. In fact we can straightforwardly express 

Jehle's equation in spinor form, for if it is multiplied 

by we have 

(c(1') g.,1) = 0-(0(TO 

This is equivalent to the spinor equation 

0- 
7 /A 

= -d (3.75) 0- 

(this á is now the old imaginary constant). The agreement 

of these two forms is easily tested by taking the values of 

the ct- lrA- matrices and of (T-4/1 in the special 

relativity cases. So in Jehle's theory instead of two spinor 

equations/ 
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equations to represent the wave equation we have only one, and 

only the one spinor appears in the invariant theory. For the 

second order equation we differentiate the first order equation 

with respect to 
eLae cue ¡/p 

/kC. 

multiply by c 

_ Ld e - o( tdt Yalt - ° ( ,¢( 

d de L P i 
q' i Q 

[tee 

and sum. 

By changing the dummy suffixes -6 , 
1 on the left hand side 

and then adding we :obtain the second order equation 

e e( - .2 ai yi 
e 

-f- ac h. 0- KP 

= 

rIL) 

(3.76) 

This equivalent to the Klein-Gordon equation in the two 

terms but the third term expresses some additional reaction 

between the electro- magnetic field and the particle. We note 

that it is the potential four -vector which occurs here instead 

of the field six -vector. 

As we have only one spinor, the only scalar which is its 

length,is identically zero. The sole vector we can form is 

At. G ' aP t,P 
(3.77) 

which is null. From the wave equation and its conjugate we 

deduce 

This/ 

= (d 7 
) 

I P * ` .G et ) 7 

v 



- 81 - 

This null, non - divergent vector is in fact the same as Jehle's 

current vector which can easily be shewn to be of zero length 

by using the special values of the matrices. 

There is one quadratic second order tensor 

N 
4* 

but as this contains two * -functions we cannot, in accordance 

with accepted quantum mechanical principles form an electro- 

magnetic moment six- vector, although, of course, both wave 

equations introducing the conjugate function ? as well 

as y do not conform to the accepted principles. There 

is the tensor T /,h = ` as before 

from which we might form an energy tensor. In fact we soon 

find that (T! - VA) = ti F s" 

But the divergence with respect to the other index does not lead 

to a similar expression because the field strengths do not appear 

in the second order equation. Instead we have the result 

(T _T:44, l4 = 0(19t (N,-A t Fit-.4%) 

For real and symmetric tensor /-1 

( -rt*. - T h + 7-4:1 - T, z ; r 
has its divergence 

' L At (Nc t N! 

Although 7 has the correct symmetry, the extra term in this 

divergence relation makes it impossible to interprete /-ft 

is energy tensor. Also the scalar Y would be zero. 

This/ 
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This wave equation does not therefore, appear to contain much 

of physical significance. We can examine its connection with 

the Dirac theory. Normally Jehie's equation is to be con - 

:sidered as perfectly distinct from Dirac's equations, this one 

equation is supposed to represent the state of affairs complete- 

ly. However in one special case both may be considered to- 

:gether, this being the case when there is degeneracy in the 

four component theory. It may happen that the two Dirac sys- 

:tems are equivalent, that is 

A.0 y may imply that 

The conjugate of the second equation when remodelled is 

de 

This is the same as the first equation when we have both 

(a) 

and (b) 

lick ?Col 

CPA, ` o 

The condition (a) supplies us with the case where the skew 

quadrilateral is degenerate, the four vectors A,B,C and C being 

all coincident, but such a case is permitted by the Dirac 

equations only when the four -potential is everywhere zero. It 

means that the last two components of the Dirac p- functions 

are the conjugate of the first pair. Hence if there is no 

external electro- magnetic field, the degenerate Dirac equations 

coincide with Jehie's equation for that case. We at once see 

that we have a null current vector, 

_ A 

while/ 
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while the spin vector vanishes. 

The tensors Q M and -N ̀A, are identical while 

E = H." _ _ 

For the electro- magnetic moments we have the null six -vector 

with 

Jn 
`` a .` ) 

r/L.enk%/ z c - E7 - 2 gc f} + E - -Z d Ai/ 
A, V1. 

so that the convection current is 

j- _ -e- (E `- z--61 which is also a null vector. 

As r _ v !4 the energy tensor .7.,"(, becomes identi- 

cally zero. Hence we see that this degeneracy is a highly 

specialised case and it seems of little physical importance. 

Certainly it will not apply to any ordinary electron phenomenon. 
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THE .I.L-4,NSORISRD DIRAC EQUATION. 

The world vectors and tensors we have considered are derived 

from wave equations which are spinor equations, namely 

(3.78) 

These spinors can be used together with the spinors I/ and x 

to form world vectors. The vector 

/-ft, p, ) (3.79) 

is the expression in general relativity of the vector due to 

E. T. Whittaker who snowed that the vanishing of the vector was 

equivalent to the four (spinor) Dirac equations. 

t = o (3.30) 

supplies four homogeneous linear equations in -ff; 1Ti A; ni. 

and the determinant of the system is 

where 

ÀA 
Ac iy hzv , Giy x x y l y 

= 1, 2, 3, 4 supplies the four rows. Iith the 

summations expressed this is 

I 

aartZ f L sr cr#Z 0-x I tQ.x.1x 
1 

To evaluate this, first 

multiply column 1 by x= and add to it 

2 x, 

so/ 

tedtiiN a.kii/`3 
, 

- rx) times column 3 

- 4 
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so that 

I G'*i/tylxt- 7`Lx/) P*j'Í°i a- ,- 6+í;tX L 

7t 1 'X ,) L 

0' 
k LI 

G- 'it" X 0-46Z 2C2. 'ÁtLI IIL 
Xi t er 

From column 3 take ,Yl column 1 

n rt 4 rt rt 2 

and after the central columns are interchanged we have this 

simple expression 

1 0-41" 
Air 

Thus we find that A is never zero, for TL is the now zero 

component of the fundamental spinor of the spin space, 

yiy Ny ' K = v, i is a complex scalar which never 
A 

vanishes, (except in the degenerate case which is physically 

unattainable) and the determinant 

0.Áj 11 G.il/L 11 r iL 
I 

is the one which occurs in the correspondence between world 

vectors X and spin tensors war 

the whole theory to be not singular. 

Therefore the vector equation 

1:k o ( 

necessarily implies 

_ o (t... _ i, A. ) 

n o 

These give us the four Dirac equations, and to obtain them in a 

form/ 

and is assumed throughout 

,n= lto4) 
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form which reduces to the usual one where the space -time becomes 

that of special relativity, we form the conjugate complex of the 

first of these, and the contravariant spinor form of the second. 

Let us now consider the vector J/* and evaluate it in 

terms of the tensors and vectors we have collected. In doing 

so, we wish to use spinor relations which do not involve the 

application of Dirac's equations in their proof. Thus we 

shall write 

P41)'r- 7Ih - At- 

6-1( 'v -r 
rl" l ![ J,r` 

and we shall not put A or TF equal to zero. If we do this 

in the expression for the divergences (M % and (N )A we 

find that 

c r 

)k r x ,,,'z í - 0-4"`"' x,,, c 

+ $ M 

e x 

x' 1.4 _ (/11`-+ w) crC x 15k M 

Therefore z n c 6 043. t F - 2 d C + 

At the same time 

l N Ik = -14% drk ,r` I.c GAt 
a 

C1. ~ 'pp - S44 
Y`k 

< E 
2 - R yiy ~ -f- 2 d - ,- ,12 N 

Therefore/ 
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Z /A i- E t R aC 

So finally 

JL1 _ 

(77-+wxp) 
.1[ (M /At r 

t 4,4z ( N4".- (1 4tt) ELi- F.* zx( G- C-91 

C --iy 

(3.81) 

But as we have already expressed all the quantities appearing 

here by means of the four null vectors and the invariant K, we 

can write this vector in the form 

when we use 

z 
[ i1.( Kit ct- A't c) (BA 

K 

4 .i. 04t 
c 

A ci + H 4 ;1-4 4)4(3& 

1 K 

['c An;t cxa ;n] 
TT 

(3.6), (3.29) and (3.30). 

Thus we have found an expression for Jl 

spinors, only the vectors A 

K and K are present. 

The quantity 04, 

B C and 

L 

together with scalars 

(3.82) 

without reference to 

e, x four -potential (gauge 
c invariant) 

OC _ - . 

-. 

The whole of the invariant theory can be derived from the funaa- 

:mental statement that Lt 

instead of - functions. 

= o when we use the null vectors 

We must, however, assume the 

perpendicularity relations and the reality properties of these 

vectors - namely that 4 and B are real while CA and 7 
k 

are/ 
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are complex conjugates and that each vector is perpendicular 

to itself and to two others with A B = -C CA +K 

These relations supply us with ten conditions. The equation 

JCI = o together with its conjugate jf,z _ o yield 

eight simultaneous differential equations involving the vectors 

and scalars. As A and B are real we have essentially eighteen 

real quantities (sixteen from the vector components and two 
from the complex K ) which is just the number of conditions 

and equations. 

If we form the expression (ct 
t Et ) (f1:(4- dtl) which is 

zero as - _ o then the supplementary conditions reduce 

this to the result that 

(A* t 
B "),k 

= o 

while the equation (kC+c) jut l{ o 

(AA - Bk ) A 
_ 2_ ( FC -K)0( 

so that we have div A . a (c - rd 

dir B 

Again from the statement At 
At 

J? _ ° 

div C = 

of which the conjugate is div C . 

'1'44 

c 

b -*cf/ C 

yields 

we derive 

Similarly all the relations we have found are deductible 

from the null-vector expression of the wave equations. 

The vectors and tensors appearing in the physical theory are 

now/ 
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now collected and restated in terms of the null vectors. 

As we have already seen the density of the four - current 

is expressed by 

--cc 6. (A`tß4 ). 

The density of the open angular momentum is 

f (A4 - 84). 
4n 

For the density of the electric and magnetic moments of the 

electron we have the six -vector which from (3.7) and v.60) is 

Ifittk-z .!_t / i 

) 
(C` c - C C 4) +. 

I/ 
t _ 1 1 (AA B Z - A't ß4')1 

4.n a.ú \ K K l \K r? 

An alternative form in which the CA' do not appear by (3.19) is 

At. 
4TTme, ( K 

fi 
K 

£.k.c,.. 
3 - A 

/) z 
- ) (AA` - Fl 

[ 8k ] 
K R 

The convection current J (3.61) is given as 

k =4 i( Kt K `p + _I) A., Bn. t C,, C 4'1 k 

y- +... K K K rf 

to which is clearly related the magnetic convection current/A 

(3.73) 

L L 

(K-in tie 
( 

A Brtk + ' k t 
K 

The last important tensor of physical interest is the energy 

tensor Its Its éxpression in terms of the small vectors 

follows from (3.69), (3.48) and (3.50), is 

Juc 
L 

i (B H - Cc Ek - Ac 7k ct -F-14t + 13 t - EC Ak çf 4_ 
C t. ) 

rn 

(8t Ha - Ct E _ At Gq i it Fa 15 4 He Et - )1 

which/ 
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which by (3.29), (3.30), (3.33) and (3.34), take the form 

L % 

c.,: r ß f L,. G ik + K 
} K / fi 73.1( C,., Crt + K Kr ) T K ÿ( 

t(C.G. -LGiA+8") ta 

C,,Gr + KKC ) fi $,dC(CkG/.[ tKKiC) 

- C CkJ ( Axt ß"e ' 
(3.83) 

AN ALTERNATIVi; IvETHOD of GENIRALISING DIRAC S :.',QUATION. 

The vector .11 has been derived on the basis of general 

relativity with a suitably generalised theory of spinors. From 

the theory of the Dirac equation in restricted relativity as 

expressed by van der Waerden's spinors, '-lhittaker found this 

vector which when expressed in terms of the null -vector gives 

exactly the same form as we have here, save for the potential 

terms. However the potential is easily introduced in the special 

relativity case at the end of the process for we replace 

. + Z tk according as the operand is 

a I' - function or a complex conjugate of one. The tensor M 

is a bilinear form of the 1,- functions 

7/ A i 

(M 
).1 

so that instead of 

we now have E(ók- ¡OA) tnA/' + 1 244k f 
t R( -i' 

a j R 'f) A ) 

) MjA` _ 41j- 

Similarly/ 
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Similarly Nom` is a tensor which is a bilinear form arising 

from conjugate wave functions so that 

is replaced by 

ad, (N4v-) 

c),,,(N"44) tiO4 N" 

Hence to allow for the electro- magnetic potential we add to the 

divergences of the tensors N and &I an extra term which 

has a different sign for each (3.81). Thus in this case in 

special relativity one obtains the vector expression for Dirac's 

equation which is identical with (3.81). In this way we have 

an interesting alternative method of generalising the wave 

equation. Firstly working with the simpler spinor theory in 

special relativity we can derive the vectorial form of the wave 

equation, inserting the additional terms involving the potential 

at the end. This potential vector must be regarded as a simple 

vector, that is, it is the vector denoted originally by TA 

which is the ordinary potential vector to which a gradient has 

been added so that the whole is purely tensorial in character and 

unaffected by any spin transformation, the gauge transformation 

being a special case. This equation is based on a Lorentz -in- 

variant theory so that it holds in all co- ordinate systems in 

special relativity, but as it is entirely tensorial in form we 

can iIrnediately assume that this equation can be taken directly 

over into the wider scheme of general relativity. Thereby we 

avoid-the necessity of developing the fairly elaborate theory of 

parallel transfer of spinors, the mixed curvative tensors etc. 

in/ 
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in the general case. All reference to these is entirely omitted, 

and as we have already noted, both methods lead to identical 

results. There is one minor point which for the sake of com- 

:pleteness must not be overlooked. The simpler spinor theory 

is applied to the Dirac equation with a definite set (the van 

der Waerden set) of matrices in which case the " - components 

are also spinor components. Provision must be made for spin - 

transformations, but this is a simple matter and we soon find that 

the expression for 0 in terms of world tensors is invariant 

for such transformations. All this of course is contained in 

the generalised theory which in the particular case of special 

relativity gives the simple two - component spinor theory together 

with a theory of spin-transformations. 

In this way a simple and direct generalisation of Dirac's 

equation is made possible. All the calculations and formation 

of tensors are performed in the pseudo - euclidean space of special' 

relativity leading to a pure vector equation, the generalisation 

of which is automatically performed. Then from this new vector 

equation the invariant properties can all be derived. 

However, if one desires an equation in spinor form compar- 

:able with the original form of Dirac's equation then the general 

spinor theory in all its detail would have to be established. 

When this was done the null vectors could be related to two 

spin -vectors. The supplementary conditions amore, the null 

vectors lead at once to our earlier geometrical configuration. 

?Jhen/ 
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When the mull quadric is parameterised in terms of the spinors t, 

and we have the necessary correspondence between world 

tensors and spinors. Then the reverse process is carried out 

wherein the tensors and vectors appearing in AA are split up 

and expressed by means of spinors leading at Iut to the spinor 

wave equation which formed the commencement of this study 

on invariant properties. 
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THE MATRIX FORM OF JL``, 

In the geodesic coordinate system and in special relativity 

let us write the Dirac equations as 

L LL _ á .f 

C at 
y i 

L 

Then as L in this case is 

the vector 

«,:p. 
97.c 

Jlk (,-,i- 
)'i) * ¡. x ) 

has components 
, r,R r Ir; f.. 'I , + A; X, +n;.x, _ 

y + 4 3 // f f z, t4 

J1-1 
717 LWi + A¡X,-AL x 

f z c l l s ̀ I', t i r i W + ni X, -/ I{ 

= o 

Lr j" - y 1- L, 

-,Lall'a . tiv3fi,L,; +Lifi 
- Ll Y'y - L, - - 

_ - LJ Y'w t L4/3 - L,. 

In matrix notation these components are expressible as 

+ 
LJL .R1 _ L i i dt d,d) d, t L(d,';, ( 

_tidL+d, d, ) 

zz at- (< 
`1' r L* (.0( 

LJ, Lr L i d t d, dj ) (,tj) f f Lt. 043 ( - t dL * a, d3 ) 7F 

+ d!/ (-1) 4- L (1) ( - t °! t + d, -i) 

(3.84) 

(3.85) 

The a.- matrices have the values stated in (2.35) 

Here « is distinguished from «, and 
L«.3 

; it will be noted that 

is/ 
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is the only matrix of the set a, d; ,d3 d4 that has imagin- 

:ary elements. When the Dirac set of matrices is used, the 

i 
-functions are not themselves spinors, but linear sums of 

pairs of the y/ - components form spinors. The vector 

that is finally obtained is expressible in the same way as the 

results above with the a; distinguished from a, and a, 

but with the Dirac matrices as with the van der Waerden set (we 

are using them with reversed sign), aZ has imaginary elements. 

We shall seek the reason for this distinction. 

Results of Temple (26) and E dington (27) relating to the 

group and other properties of the mac- matrices are here assumed. 

In a complete perpendicular set, that is five hermitian anti - 

:commuting matrices with unit square such as 0(1 aZ , °(3 7°14 

and ds it will be recalled that three of the mat- 

:rices must have real elements while the other two have imaginary 

ones so long as we are restricted solely to those matrices 
which 

have their elements all real or all imaginary. 

Still referring to the ordinary relativity equation, 
we now 

briefly consider the effect of changing from one set 
of anti - 

commuting hermitian matrices o to another set d.- This 

corresponds to a similarity transformation 

d = S S- 

where S is a unitary matrix if both 
«. and K: are hermitian. 

At the same time the wave formations would be 
transformed and 

likewise/ 
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likewise the left hand sides of the equation by the law, 

str 

= sc. 

Then the sixteen quantities 

where aV is any member of the fundamental set of operaters, 
can be written f,+ (St S) (s-'s) ?), 

because s+ s _ s = 

But this is 
so that these quantities which give us the two scalars Vi, V2, 

the two vectors J4 and S and the six -vector Jt"` are in- 

:variant in form as far as a special choice of oc- matrix is 
concerned. 

Moreover as S is independent of the coordinates quantities of 

the type íi.44 d; f and °Cj `VIA 

are also invariant. 
However the vector JI* is not necessarily in invariant form 

for we have 
N 

r L ( ~d =+ d,o(3) (o ) 
+ t (°($)í oc r .c,6(3) 1 

(where for brevity °(. (cc,, a,., °43 , ) «: _ ,L, 3, 1 ) 

L S -'S (. Coed,: ) 
S -4 S t S +s°(gl, aZ +d,c,)s S 

= L S S-`(d; + ,^) (°) ? + L(dB)(-dt-,3ss-' . 

This will have the original form if S 5 -' = 1 and s3-1=-1. 

As/ 
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As S is unitary both conditions are the same, namely 

S = S (3.86) 

that is, S has real elements. 

Now when the two perpendicular sets «.: and 4 (i - i to 5) 

are so arranged that matrices with the same numerical suffix 

have either all real or all imaginary elements, the same will hold 

throughout the sixteen matrices. The S- transformation connect- 

:ing such sets will be either purely real or imaginary. This 

follows quickly, for 

Therefore mac, = 

But d,: according as dz 

so that f, S at S -' = S K: s-' 

or 

As the matrix -S 
s commutes with all sixteen « it is 

proportional to the unit matrix, whence we have 

S 
<<e 

where e is a number with unit modulus. 

In the general case when S ` A E ° AL (that is, when this 

sum is non vanishing) S is real, for each telni of this sum is 

a product of two real or two imaginary matrices and hence is 

real, so that P 1. 

From Dirac's set and van der Waerden's (we have used his 

matrices with °g, dZ «, ay with reversed sign) «L and «- 

have imaginary element in both, while «,, ^Ca and °es, are real. 

The/ 
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The S- matrix connecting them is real 

s = s-' _ s* = s = s 

-/ 

In terms of either system this is 

/ 

-/ 

S c ! ( i K, d, c3 t -c ). 
sr" 

Thus the matrix expressions of Z'E and similarly of all the other 

quantities such as C a are the same in both schemse. 

It is possible to have the following cases, with the matrices 

with real and imaginary elements disposed as follows 

oS, (= 3 

(1) 3R I I 

(2) 2R} I R I 

(3) 2R I I R 

(4) 1R 21 R R 

We have just had example of case (2) when -IZ is the imaginary 

matrix. If these conditions are preserved in a new set Ss-' 

will be equal e 1 so that the same preference given to 

will continue. 

If we reshuffle the matrices to make the first the imaginary one 

e.g. f, = d (I) i. = d, fis _ .c /4q, d fir = -ds (I) 

then 

Then/ 

dsd - asKL s-i 

(f¡s, - fijp.) 
I I 

5 = _ ,i (/34.1;, + ils/32.) 
-Z 
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s s"` 

f c, .c ) 

we now have (+ /3/ t73s AL) in the matrix form of 

/3,- now being the imaginary matrix of the first trio occupies 
place. 

the special/ Similarly for the vectors such as C4. 

Consider case (1) by takirg for an example 

: +: Ci 
! 

: d t 4 /33 ". J 

From it is easily seen that S = - (cra., - °Ir°1) =5-/ 

or = yirpy r 

S ° 
,r( l3s (lt + l3S (32- ) z 

and s s' 
13, 13. 

IIence in place of (A: aZ -t aj ) 

now appears 
(473Y .t /b//32-/;3 /3 ) 

so that the vector 
L 

= L (y + i3r) (p4,.!) (pa» '/3s) ' 
This illustrates how by making the three matrices associated 

with the space -like coordinates all real, we find no distinction 

among them. For similar dispositions the form of this vector 

holds apart from a possible introduction of a numerical factor 

of unit modulus 

For case (3) by taking 

/ -/ 0(1 pL. ai (r) /33 

we/ 

dJ 
/3y c 

ds 
( I ) 73,-- at 



we soon find that 

is to be replaced by 

- 1.00 - 

(-I. or, ¢dJ 

As an example of case (4) 

/3Z _ dx ! I9 AJ d3. CI % 

l-/3/ 4 / =z3., /735, 

appears in the formula. 

- 

Thus it is now evident that the imaginary nature of our 

original 0(2 was the sole reason for its being distinguished 

from a and g, If a set of matrices with the first trio 

real had been used, no distinction in the vector form of ce 

would have occurred. Of course the special value of the set 

we used is that the resulting wave function has its components 

as they stand also components of spinors.e note that no more 

than three real matrices are possible, a fact to which Eddington 

points as a reason for the difference of the fourth (time) 

coordinate from the other three (space -like) coordinates. 
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CHAPTER IV. 

AN Ex4TINATION OF A PAPER by T. Levi-Civita. 

In this paper Levi -Civitá (28) states that in order to gen- 

:eralise Dirac's equation to any otsL it is necessary to intro - 

:duce an orthogonal ennuple into space -time. In the completed 

generalisation additive terms would appear, depending in an 

essential way upon the choice of this ennuple As, he says, 

no directions nor examples of special importance exist there 

must be something at fault with the equation. He proposed to 

remove the ennuple from the work right from the beginnings and 

in so doing he suggests a modification of Dirac's equation. 

It appears that there is some confusion about the role played 

by certain indices. As is well known the four components of the 

wave function 
y' 

do not form a world tensor and its indices have 

no tensorial character. In the usual special relativity formu- 

:lation, the Dirac a -matrices operate upon these complex )P- 

quantities, 

which in detail means that 

(4.1) 

° 1,2,3,4. (4.1a) 

where haw is the component of the matrix cp in the row 

and i column. The nature of i and j has not been directly 

discussed in the extension to general relativity, but at no time 

have these been given a tensor meaning as far as space -time has 

been concerned. In fact most of the proposed generalisations of 

the Dirac equation have treated i and j quite differently from 

tensor/ 
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tensor indices but rather as "spinor" indices as in Infelds and 

van der Waerden's theory (7). Indeed when one discusses the 

Lorentz - invariance of Dirac's equations one can arrange that 

the y'-function be left unaffected while the aw are treated as 

world vector components under the transformation or alternatively, 

the ar can be retained unaltered while the are varied, their 

law of transformation being quite different from that of a world 

vector. 

Levi -Civita, however, commences his considerations with the 

transformation 

which is interpreted as 

where 'v- is a world vector and ;¡w are tensor indices while c 

is a Dirac matrix. 

We shall follow out his calculation, only in certain places 

corrections have been made in the use of the e 

which are eo = e, ez = e, = - . 

Define the matrices á by the relations 

that is 

,h. ,{Z = o 2. 3 

o o v v 
a-%,. f i I t °IR I °I. = el. 

(4.2) 

Regard h and k and all Latin indices as referring to an ortho- 

:gonal lattice and r-,",e and all Greek indices as tensor ones. 

In the general space time manifold with signature C-1- - 
_ -) 

we have chosen quite arbitrarily at each point an orthogonal 

lattice/ 
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order linear partial differential equation, 

oc cv e r i'J + qrn.0 (4.10) 

In the special case when the metric is pseudo- euclidian, we take 

cartesian coordinates with 
9 r- 

and we can choose r ,, = s . 

Then the equation (4.10) becomes 

e S °a c : ̀i',. 

that is - 
7 d,i ÿ °{%1C 

:0i t Sé `J;o ,=. 
If we operate upon this with 

( c'.(.0/e/,1% - P- í 
D - r ) the result by (4.2) 

is 
L 

Dol - D.L- i - - ej ,(T/ d-t Ì o 

To obtain the Schrodinger equation when there is no field we 

require the condition 

2:2f eae,; w `á )4, = ° (4.11) 

which in tensor notation i s 

o(`¡r Ca e )s = o . (4.12) 

Thus if we expect (4.10) to be a generalisation of Dirac's 

equation we must have the tensor condition (4.12) fulfilled. 

This point seems to have been neglected by Levi- Civita, but 

appears in a work by Temple (29) in which the Dirac equation is 

given a tensor form. 

Neglecting this condition for a moment, we have the second 

degree equation from (4.10) as 

(a c, - 
et' 

17.1 -c, -1 s 
e 

ti"` ,, _ o 

that/ 
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lattice whose components are given by the Ricci coefficients 

or kh i 

À.. A4,, = 
ÀI 

= = k (4.3) 

2 eA AA-1w (4.4) 

As usual, summation is automatically extended over the range o -3 

for all repeated Greek indices while the sign of summation will 

be always inserted for the Latin indices. 

According to the usual rule, the third order tensor corres- 

:ponding to the quantity hi is 

e ° ac 
I r - e.i.. °(.e, I p. ñ a 1 c- 

Hence a"w oc 4 n e eR °(alr °Ik1 ?'w16 .>A,r 

so that by interchange of c and e and adding we get 

(4.5) 

e - oC°.) ocrle + 
w 

oCo1e = Z ec e+z ( 2 es r-- 1h1 1AC, 

(4.6) 

The first index is raised with the fundamental tensor and written 

°( st- = 3 at 
I w - by (4.2 )and (4.10 (4.7) 

Therefore (4.6) is equivalent to 

TQ s v c2 V 
a ,I., a ,e + 'X ,r C''t ár. (4.8) 

THE DIRAÇUATION. 

Let Ar- or Ar represent the vector potential at each point, 

-e be the eiectroni.c charge. The operator D is introduced 

= (4.9) 
xn 

when /r. denotes ordinary covariant differentiation. 

Finally let and f,- be the components of a world vector 

which are defined by the solutions of the following first 

order/ 
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and 
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( °( °er, 7>(r o(= re D,z. - ) 
_ a 

D° ,c= á 
... .ñ (ect (T C f1v- 

z7ro 

a,-D7. -Pr,- (At°,-r- A_) 7 
_ 

'4 
e Fz6. 

17rc t 
where F,,Z = E , the electric force 

(F32 F13 F21) _ (Hi, 112, H3) the magnetic force. 

Therefore a`ew "D,, °C=re 

--Dt 
6AT D(i- yT 

/ ( o(7 " e -F 0.r! ov 
_ s w e ,- z /w e 

r. 
+ C 

c e ° , (a e o- z 
27th. 

me 1 r. a l°` 

a-c o D: i x °40"` .. .. Q F ° d ̀ re (°L é ), D= - 
17rt 

Thus the second order equation is expressible as 

S 11w t 
T 

D - N `ry 

where S _ °r -- Z= eAr)(= -sR<< F= f = t 
A 

7r - e .- 
g aertw aTVe F (4.13) 

XX ,Zt 

Ñ 17t1 oe' 
( ` 

rr j 
_ w e /r 

This is the equation derived in this paper, but the term i;_ 

must be zero by (4.12) 

Furthermore it is necessary that a non - divergent current vector 

should be obtainable from our equation, and this vector must 

be real. It is evident froixi (4.2) that Z can be taken as 

hermitian while ó(1 ó(2 
0(3 

will be skew. Then from (4.5) we 

see that 

vector/ 

e 
°C°i r is not hermitian nor skew but that 

is hermitian. This suggests that the 
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e `i w ao,w ac e 
IV 

might serve as current vector. Let us find its divergence 
xw . e r x, o P 

(je) 04.4i r< a . ,, + a, 
, , ) 

Now from (4.9) and (4.10) 
. a e ), 

Multiply (4.10) by 

that is 

J/ st` t 
i 

( Lit 
4 

y¡ 

- 

o i oco 

/ o lt)t ll °(PJ e + 

because 

At) 

e 

of 
J 
e(sr,) r . 

+ irtí a A,r) 

and take the hermitian adjoint 

t ; 

te . e 

.. 
aol 

CO P. 
e 

KQ o(°, P = o 

11) 

4ce 

ae 
é = 

" a,e - srr:, e, 
{. G 

0 

,cw o 
e 

c 
A, 

e 

Substitute this result in the expression for (J)P 

% r. ) 
,e 

40i; 
xr P, 

J, 
, . 

l ` / ' `{.r Z %i.í. »+_G _ 1 /T i. C fi C e ° ( T t x i 
I 

a 
Ar ¡ .I/ 7- 1 1 

e 
J ( #r 

a0 , F" Q 
2.7a 4 w. .} Z.-L r oC /" °P P ] 

/ 
( pp( O4 

which is zero only if 

v r a,. 
o r +. 

a- 

Ì = o , (4.14) 

Thus for a satisfactory theory based upon -- quantities which 

are world vectors we require 

T q LV- oC` of r + o( o(` = 2 

(Aa 
nmi_ttinF/ 

oc°, (oc= o- 

° c 

o 

0 

(a) 

(b) 

(c) 
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omitting the row and column tensor indices. 

In general it would be impossible to satisfy all these con - 

:ditions. A solution satisfying (a) would satisfy (b) and (c) 

only along special directions unless the space was flat. The 

conditions of integrability in a general d= impost limita- 

:tions upon the oc's and thereby certain directions would be 

singled out. This would make physical laws dependant in some ways 

on special directions in space -time, and as there are no such 

directions of physical importance this theory is quite unsatis- 

:factory. 

The conclusion is not the Dirac's equation is at fault as 

Levi -Civita suspects - but that it is impossible to formulate a 

wave equation in general relativity in a form similar to Dirac's 

but involving no quantities other than world tensors, the four 

component ' - function being a vector. 

Levi -Civita proposed a new wave equation 

= v 

with S as before 

and C 1,e 
e"r 

f . 

An equation of this form with a coupling between the different 

- components effected by the X-; term would be satisfactory 

for explaining the Zeeman effect in a way similar to the Dirac 

theory. This equation, however, has this grave objection, it 

is more or less empirical and has no theoretical foundation in 

quantum theory. On the other hand Dirac's equation evolves from 

general/ 



- 108 - 

general principles of present quantum theory and the spin effects, 

which provide the coupling just mentioned, are automatically ob- 

:tained when the demands of relativity are met. 

While Levi -Civita's criticism is valid for a wave equation in 

Dirac form, but with a world -vector as wave -function, it fails for 

the usual Dirac equation where the f -function is a spinor. In 

the former,the -matrices had three tensor indices, which in the 

latter they possess only one such index for the other two are to be 

considered as spinor indices. Therefore in the latter can we 

have two kinds of transformations: point substitutions and spin 

or similarity transformations which are independant of each other. 

We shall now illustrate how the results of Chapter I where 6kn 

account of the generalisation of the Dirac equation to general re- 

:lativity was given, do not distinguish any special directions. 

To begin with, we took a set of matrices P; related to an 

orthogonal ennuple = 0:. e;, is the signature of the 

metric. Then 

f. fi fie. P. 
0^3) (4.15) 

The indices of the e; matrices referring to rows and columns 

are suppressed - these spinor indices are not concerned in trans- 

:formations :formations of coordinates. If é: is another set of matrices 

obeying (4.15) then the P, and are are related by a similarity 

transformation. We shall assume that the P; are hermitian 

when e _ +1 and skew hermitian when -t. We can 

take, for example, the a, chosen by Dirac and obtain the PL by 

the/ 
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the relation p;, = v-Zz o The set e, need not however be 

limited by such hermiticity restrictions. `_Then if 

s = e (4.16) 

where the summation is extended over the whole 32- termed group 

generated by the Pz and the cross again denotes the hermitian 

adj oint, (.1k Pt Pt 

r P.: e. (Pz ekÌ 

f z Pk forms a term P; of the group and as -A assumes 

all 32 values, Pd repeats the group in a new order. If the 

group P} is numbered in the same way, 

P 
, t 

S P.: = s 

Postmultiply by fit and note that fir = 

and also that (P +) = (ez ) _ 

Therefore S P; S'' (4.17) 

From the P. we obtained the vector matrices by the 

usual rule for forming vector components from the components re- 

:ferred to an orthogonal example namely 

err z X e;, A;,4 Q (4.18) 

and as we are using real coordinates the coefficients AZ,r. 

are real. 

From (4.4) and (4.15) we find 

-r t r _ -,, (4.19) 

Thus (4.18) gives us a solution of (4.19) , the Pz being in 

their/ 
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their turn solutions of (4.15). Thus as the 

unique neither are the rw 

are two sets of solutions 

' L. ez Az /1- P 

f,.. Z ec j: 

e. a r 
$ (z ez a :.,., Q:,) S r 

- S rr s 

P.: 

However if 

are not 

and 7, 

Therefore different solutions of the relations (4.19) are con- 

:netted by means of a similarity transformation. 

C00RDINATE TRANSFOPS'ITATIONS. 

The transformation of coordinates 

x r` =.0 rJ x (4.20) 

which leaves the 
?.-, unaltered in the invariant expression 

dis ̀ = 

will now be considered. The conditions imposed upon the 

coefficients 

or 

are that 

q 
iv .i 

z 
.i ,, _ r. r oC 

r z 

Under the transformation (4.20) 

- c r,l. y 

Then/ 

v 

(4.21) 



Then ,"vs "1r rT lrr 7ra./ 

. 1'"0..C.,Z -VPr by (4.19) 

by (4.21) 

Similarly -ir,,, 

and ßár, both satisfy the relations (4.19) . But we 

have seen that two such sets of matrices are connected by a 

similarity transformation, 

ie ,-) r S ' r S _ ,G" ' 
w 

or G,, ó,. _ .e S S 

(4.22) 

This means that a coordinate transformation produces a 

change in the -re- but this change could also be effected by a 

similarity transformation. The S matrix is uniquely deter - 

:mined apart from an arbitrary numerical factor. 

Again in the general theory there were given then rules for 

the general spin -transformations which leave the formulation 

invariant. Now suppose 7µ,, given, and that we have found a 

set of suitable matrices. Does this infer that we have 

distinguished special directions in space -time? Clearly not, 

for we can transform from our coordinate system to any other 

one with the result that 

- 

Let us at the same time, however, admit a similarity transforma- 

:tion so chosen that we restore our original T .-- This of 

course/ 
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course is the reciprocal of the S - transformation which pro- 

:duces the same change in as the coordinate transforma- 

:tion. Thus with the same matrix S we have 

r _ 5 "' ( ) 5 

Therefore to be given 9,,, and does not indicate any pre- 

ferred coordinate system, all are equivalent, and no special 

directions in space time are selected thereby. In this way, 

the argument raised by Levi -Civita proves to be without founda- 

tion when it is applied to the usual form of Dirac's equation 

and its generalisation by the method of Schrodinger and others. 

This necessary result could not be obtained from Levi-Civita's 

form of the wave equation as his a - matrices, being thiid rank 

tensors, left no provision for spin or similarity transformations, 

Or the difference may be expressed in this way: it was possible 

to displace the ,r- matrices along any direction because the 

quantities r were introduced into the law of covariant differ- 

entiation and these were given the necessary properties to make 

the equation integrable, but the third order oc-- tensors are 

purely tensorial and no such quantities can be introduced so 

that parallel displacement in general is not possible along all 

directions. 

LEVI/ 
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LEVI- CIVITA'S EQUATION. 

We shall briefly examine the wave equation which Levi -Civita 

has proposed as a substitute for Dirac's relativity wave equa- 

tion. The new equation is 

ig'sc 
. G 

Write 

and 

It will be 

may write 

á 

4`)( Pz - = A e rC 
e z 

= v 
T. ck 

eJ 
= F 

e A = t` 

sufficient to keep to special relativity so that we 

á 
ax 

for P.- Then the equation is now 

[! Pt - a,aF (4t4. td") 

The conjugate complex is 

c dr - ( 9 5 6 - " 6 ) zw, fbc 

aG. 7 

a,t 
w 

e 

.f. 
t 9r f ; = o 

G t.. 

(4.23) 

t g F ` _ o 

where the denotes the complex conjugate_ (4.24) 

Premultiply these equations by and y- respectively, 

summing with respect to - 
tr ë` a - c c - : ° a 4 =i`1 + 

eJ 
= o E 

y ` J 
h GÍi 

7 
_ 

]v r' r a - * z Iv- a, t ` 1 irr r : j } F 
e-1 

= o 

Subtract and then we have 

i y'~ a é. jr, -r a°° - 2; q` `V 
fJ 

t 1-° J F 

or/ 
o 

o 
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/r / y 
/ Yj ro- > i` l. ,-_] jNQ 

..i y 
}vy = 

G * 

Hence the vector 

f,-le - K r / - Oir i'r (4.25) 

has its divergence equal to the scalar 
N 

e 

Now S appears to be the only reasonable vector that one can 

use to form the charge current density - corresponding to the 

expression in the Klein - Gordon relativity equation where the 

function ' is a scalar. As, however, s` is not of zero diver - 

:gence it follows that there is no satisfactory current vector 

derivable from the present equation which has all the disadvan- 

:tages inherent in second degree wave equations, one of the chief of 

these being that can no longer represent the electric 

charge density. 

However it is at once noticed that if the imaginary factor i 

is introduced into the term in , then after the above cal - 

:culation is carried out, the contributions from this terni to 

s cancel each other leavin. g us with 

S` _ o 

so that it would be all right to interprete S`_ as the current 

vector. In the case of this modification we find that the 

equation is derivable: from the Lagrangian 

L ( )1" , w/ r Fr ir $r. 11.,1 r ) 

the/ 

r_ 
" 

) -- F f (4.26) = i lv ` r / ri.- Sbs 7`r- f - w - e y 
G 
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the wave equation in fact being 

2 (4 l _ aL o (4.27) 

ë x-6. l a Yi-ia 

This is closely parallel to Schrödinger's (30) derivation of 

the Klein - Gordon equation from a Lagrangian only now the 

functions are vectors to which one tensor index is attached, and 

there is the additional term in the field strength. The current 

vector is expressible in the form 

s' _ áL 
a 

If there is an energy tensor, we should have 

a,. (TP ) = r . s' 

(4.28) 

(4.29) 

Neglecting all the numerical constants, we have for the right 

hand side 

( 

a,Lc / a 4, 

since 

Now a4., 

= 

C / 
v - 2 (5be a 

a x a 

C a ¢.) 

S a 

dL f f á L aL w ¡ + á 
7 rI\ rcf + 

a¢ C a9'ria a7`r` . 
+ 2_1= 1 + á 

d . r, 
d, " a L 

_ L 7s/¡ ,,.. ,AL 
e 

-- ( áL ,t. i'ri 
J 

at- l.i s 
7 asP io- 

after using the wave equation and the fact that the order of 

differentiation is immaterial. On subtracting on two results 

we/ 



we have 

- 116 - 

= 2 
l 

rr,P aL + r,e áL f P aL 1 aL . áL (4.30) 

` ̀ l r ar,a a`fc áa`e ar, 
But 

a.L 

-I o-- 

G 
etib 

- 
ß 

T ( r a, 
a`pr,6-- 

so that the final term of (4.30) 

`) - i u e 
a L = 1),, ('F' ti 
°1 4', -Ir ` 

The presence of this term prevents us from takiìig the tensor 

T 
t r _ ,v-, Lt.= ÿrß ,f ác + e 

á lei L 
\ 

(4.31) 
ir t 

as the material energy tensor except in the special case where 

the electro- magnetic field strength is constant. The difficulty 

lies in the fact that the Lagrangian contains a term depending on 

the derivatives of the electro- magnetic potential. As we have 

no satisfactory energy tensor, this wave equation will not give 

us the usual Lorentzian equations of motion for the electron, 

so that even with our modification it is hardly acceptable. 

Although it has no definite physical foundation it has eanperically 

added to it extra terms to give the linkage between the wave 

function components to explain the Zeeman effect. 

If one is willing to forego the theoretical advantage of a 

first order equation then a second order equation such as the one 

recently proposed by Proca (31) is much more satisfactory than 

the one of Levi -Civita. In Proca's work the Lagrangian depends 

on/ 
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on the potentials but not on the field strength with the result 

a proper energy tensor is readily obtainable and the equation is 

such that a definite electromagnetic moment six- vector evolves 

from the theory. This equation, in the notation we have been 

using is 

,: 96,)( az -`Pz) + ``` `ir - Car- w)( - ¢) ` + i á Fr `_ ° 
ak 

where the last two terms which provide the linkage between the 

different y-functions are added to the Klein -Gordon expression. 

When and F, are zero the equation which reduces to 

fr 
a, ar + `i` y _ a av = 

implies 

(a) ó 
cr 

a, t 
kL r` 

(b) aa. 11/` = o 

so that in the case of no field each '- component obeys the 

Schrödinger equation (a) and together they satisfy the 

relation (b). 

dj 
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CHAPTER V. 

THE ATOMIC WAVE FUNCTIONS OF HYDROGEN IN MOMENTUM SPACE. 

The wave equation of the orbital electron in a hydrogen :atom 

\ 

/ 
t 
e d , i Z 
-7" 

1 = o 
c- r (5.1) 

In ordinary coordinate space (x. x',x3) the p- quantities are 

functions of the x while the momenta . are represented by 

differential operators -ti- ? Alternatively, we may 
2TC .a. ó7[:m 

interprete the equation as one in momentum space (P-'4,--1,-.5) 

with yi a function of the fi-; while the ordinary coordinates 

x` are now represented by the operators a 

The moment of momentum which is defined classically as the vector 

product 
L = C x x , ] 

is interpreted in coordinate space as the operator, 

X 
xrri a), 

or in momentum space as 

L-- -. á 7 = C X ] 
2rfn al,, 

x J ¡ 2/t ak, 

since 4., 4.,. 4., are independent variables. 

Therefore, the L - operators are exactly the same functions of 

the coordinates whether these are those of coordinate - or of 

momentum space. From the properties of the L - operator the 

eigen function dependence upon the angular coordinates (0 0 ) 

have/ 
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have been determined and are well known. The same analysis can 

be used to determine the (0'0') part of the eigen- function in 

momentum space with polar coordinates (1,- 6' i ") leading to 

exactly the same function as is obtained for coordinate space. 

Let the state represented by '(_`) in coordinate space be 

represented by -:) in momentum spaces. Then these two 

functions are related by a Fourier integral 

ilf 
+4"U .L 4,i 

6`) _ e ` } C x.) dz3 (5.2 ) 

and a differential operator F(xz á ) becomes F( _4. á 
27ít ûx.í. In 

t a%ls 

The wave equation as it stands contains the terni r -' (1)(10 which 

is represented as 

00 

r-' = ' fj-f (-w ) h , S 

1rrZ,J 
1_ 1_ op !'r- *~ i a-t ̀  + ("!3_.r1.3).- 

so that the wave equation is an integral one. However after 

preliminary modifications it is possible to obtain an equation 

in which ,^s and no negative nor odd powers of r occur. As 

a j - j j a1 
? 

we obtain a rational differential equation (of the second degree) 

When it is transformed to polar coordinates we can introduce the 

angular solutions and so have four simultaneous differential 

equations for the four cP,: (p) . 

But, as the - functions in x- space have already been de- 

:termined those in the p - space can be found from the Fourier 

transform/ 
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transform the same way as Elsasser (32) has used to find the 

corresponding functions for the Schrödinger wave equation. If 
we take spherical coordinates in both spaces (/'&. ct) and (' °:q 

and denote the angle between the two radius vectors by U% 

:Co, Co - Co, 9 Co, s' + o. ;, o- a..: s' c."O (0 - ¢' ) 
- (5.3) 

The integral transform in terms of these coordinates is 
OS rr 2.71" 

r¡f +n` Yr'cic+w (,y'B',) : //J e ~ s ')-Y'a.o..:..8- d.d- a.79, 

0 0 
(5.4) 

Now we must recall the full solution y' (rs-') of the eigen value 

problem (5.1) for the hydrogen atom. (Cf Darwin (33) Gordon (34) 

Pauli (35),. The four components, when the Dirac set of matrices 

are used, are 

stn ' F( r) ( -.k- ") % 

Z n F(Y) r 

,.+, 
P 
-t-0 

3 a () ( -fi ) Pi:. 

Y'y ° j(Y) P,r 

(erg) e 

(5.5) 

where the radial parts are 
¡ 

F ( 'r) _ 
r /. (Z 

/a / 
-t 

et 
F(i -+.' ¿se', ti.) fic,_F ses,t ,z)l j) 

.f.`f ï` + .f., 
C 

+' /a. lr/ ls-t 1 / 
c.z. F(- x' 2Si 1 7Y )1( 5. 6 ) 

a 

Here F ( , p, z ) denotes the 'Laguerre function which at 

the origin has the expansion 

F ( d /z ) = I 

The/ 

ó[ .F .l ( 41 1 ) z + d ( at t / ) (.t.+ Z) . . 

(3 (ni) z 3( )(/Sfs) J.' 
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The constants cl and c2 are connected by the relation 

J = 
,t+ i, *i.) 

Ak is the quantum number assuming one of the values 

±1 ± 17 . . 

-III- is one of the series 

and S = where 

structure constant 

¡ 
y2. 

a = 1^``c - w c` z7r 

w ' 
` W,, t w 

where n is the total quantum number 

v ± I * : - Vid -i -i10tl 
, . I J 

= tr e` is the fine 

(5.7) 

s +.. c L- - i _ ---.1! and when W - as in the case 

of the energy levels considered in line spectra n' must be a 

positive integer. 

P .'t 3 and as s is not an integer neither is p, 

but it differs only slightly from the total quantum number n. 

Finally we may note that the energy levels are given by 

w= neS1- 

( t a`` )'L 

Now we can return to our integral and proceed to integrate 

with respect to 0 and The angular part of P will 

be denoted by Pe"- (xzs 0) e"-# which is the form of the 

functions for the Y- yL , z7t 

4t.-3/4. f / f 
0 0 

is the required integval. 

The/ 

Then g 
¡w, i, . r ( ee, 6-) e do d 9b 
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23C .;.. 
e 

(-.)x (2.n+i) ( Tr 

and the addition -- :theorer a is 

P w) 

in terms of F-("') is 

¡ 
-. 1 f 1 2rr r ,r') 

\ 

= P P (cn, a'ì 

P 

(Frank-Mises Vol.11 IX _§ 2:3, 

n 
+ z 

(n--,VL) 

/1.1 er" ̂ nj 
Pwcs, 

ßV) 

The non zero term in the integration with respect to is 

that for which 

properties of the 

integration is 

4'i( 
`),17, 

re-," 

-w. 

>.. 

On account of the orthogonality 

the sole surviving term :after the 

1 f9 / 27ryr, l I z7C 
l` 

This means that the angular part of the solution is the same 

spherical harmonic as in coordinate space - which has already 

been proved. 

The radial part is now 

) 
1 

/1 

rS_ y(-v.i) c/ / ri/ l i Z Y// r` e (2Q 
/ x a power `y 

series in ascending powers of r f 

Consider the integral arising from the term r in the series: 

s+-;, 
(+9 mi A 

Write/ 
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(_4)L 
(-÷:r 

1u+L+ J 
a. 

;q-' 

s-1 
¡¡ 
`1 ) 
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and expand the Bessel function 

I 

ao 
r/4, \ 

/444- 
( (- ) 4 5 +,,.+1 

J J 
II 1 t o r 12+ 3/; +t) x/ 

_Y/y l+st+t+Lt+ 
¡¡z ` Z 

J 
e (r) d.r lk ,t=o c` 

_ 1,41.4 

( 

y S-3/L i n- r 
-i.. ) .t = o 

r (,c.3t 

(- 
. 

z, ) : r(c+ s/i+,t) 

, 

(-174' J 

As 5 is not an integer, this series does not reduce to a set 

of simple binomial expansions. The Gamma -functions in the 

numerator may be expressed as follows 

r (J +1"2 +i,t) _ (i+s +k+( +'.f)U. s +3.t),.... d- rs +x. +JR .ttstttZ) rt. .c +s, -Xfiz) 

Divide each of the it factors by 2 and group even and odd 

terms so that we have 

z 

Zx 
I .L-tst,.+i t )(:-4 

.(,+ 5+ it. 

2- 

1 

( .-+5+ +3 

Il 2 

r(.1.5+,43 
` 1 

Substitute/ 

Ole 

tx ) r =tA.t2. 

S +x{ I 

1 
+ 1) 

(.c{s+n+z) 
z / 

+ 
r (.4St.+z) . r 

1 1 
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Substitute this in our expression and obtain 

od iirni3 +Sfn-+z ¡ _ .( ,wr Ct 3 ,, S-s/ ^ 1.1/ t (' ( t 1 r (% ; 1 Q L 1 (Sitt2 j 
J (.1 f 34z) -t=o r a- x+}s3 ISJxti 

) r(,t43r+ ) ! 

The sum in the bcacket is the hypergeometric function 

FC-C-rs 3 /+S+.at t .C+3 - 
., 

For and y the co &fPicient of rw in the expansion of 

the two Laguerre functions (5.6) is 

c r(ZS+, r ,- 1--) w , r ZS,) (-n+) ¡ 
, w r (.s+ ( , -4- ma) 

r (z5 +I) 

r(zs+ ,f..) 04. .r, 

C, (.7L,- f) 

(1e- N --( ) 

t c: )1.., 

( n-) ! 

These are terms which are non vanishing for "-_ 0,1, 

only for the last value the term in ci is zero. 

Similarly for 13 and the coefficient is 

C 
) (25+) R 

i ` , I 
' 

, r(:sf,..,.) l x ,,_R-, )' (n-n) 

For the first pair of functions -1 is 

second 2 is A. 

Denoting the factor 

(-n i k +L _ fer 

C 

Air 

I 
- " r(zs +r) by 

I P k 4 , 

(4 -, ), while for the 

e 

we obtain the following values for the eigensolutions of the 

orbital electron:- 

( 
g g/ Ì P 

g , rk+S,. (x- ` ' ;C a 
"4" Í' (2S+++tl ) m! C, n--1)! 

- (ceo a') 

For/ 

Flkrs++aia- {3+++i-I_- tia) , 
1 i 1 L 



- 125 - 

For t (L e' y0) replace the last line by 

z<,-. 
I. p*_, (,-,0') e 

,..' 
+3`UBt1) 

= P L* 4- ( g+<`+.1) 
2d (4t.4 i/L) 

x 
F 

l ) 

For 15y (4' ') 

K = e 

k s{xt2. 
i. 

z 

r/ fR + S 4 
_ 

1- 

,.,- Z 

i 3 
a 

the last factor is 

i' 

,..., , . , ) 
/ / r. ( e') 

ea,~ 

z 

C lw-)' 
1 

( V i4 
Ar1. 

As normalisation is preserved after the Fourier 

I' 
. z 1 

`1.'_ - l 1 1 

6 

) 

(5.8) 

transformation 

is carried out, the functions possess the same normalising 

factor as the - functions. 

POLAR/ 
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POLAR WAVE EQUATION and FINE STRUCTURE. 

The fine structure formula can be derived by considering 

the wave equation in momentum space. This time we use the 

wave equation in its polar form which is 

( W t e` w 
1 

+ ° _k. ) a o 
I\ G { 

1.11-1" t 'r 
(5.9) 

Where 11,,, is the radial component of momentum, i.e. the com- 

:ponent acting in the direction of r, and pr and r are conjugate 

quantities. Therefore there is a representation in which 

the:s are 

1"i- and 4. A respectively 
;WI ate. 

After a certain spin transformation the operator w can be made 

equal to 

s 
4 

a = 
4 

but the I,- functions are changed so that their components are 

not identical with those in the original Dirac equation but 

are combinations of those depending on the directions of r. 

After operating on the above equation by r we obtain 

the differential equations for the components of the wave func- 

:tion. These, in detail after the matrices have been intro - 

:duced, are 

1)i ti \ 1y d/ t i+ k j y'3 = o 

N - v»L 1 t . d 4,3 ,t - iC ) I c 
o t` t 
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a being the fine structure constant. 

With, written as ., 

and .G- as before (5.7) 

with A = 8 = 

277 

T I _ 

4- 

ti l l _ 
41/ 

Make the substitution 

and using the constants 

we now obtain 

1 t4t 
/ / 

/ 3 = O 

y 
) t 1- 1 I = o 

f 1 = (0+ x. ) 1 -B 

= ) , 

} 

/>v 

so that the equations 

1 

X ' 0 } (4:,.1- # .6.0( _ 7, g _ -ft- , ) 1 , ( _4, w # ,6-4. # f!Lt -,.- A */ 

(4-1 F 1 i- tj 4 _ -* t /) f (_.:.5,t_ _ á -t- V Z _ -k -# /) = 0 

After adding the two equations, and again after subtraction we 

derive the new equations 

Cz(.4 4`] 

C. L) -ki 

Let us write 

so/ 

+ E ( ) t ot -') 
x 

t- "- - / ) 
L 4- 

= 0 

_ O 
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so that the simultaneous equations become 

) 26 f it, o 

(R +AL) % E - d 
42, 

} 

Solving for and x by substitution we find the second 

order differential equation for these functions to be 

where 

If one puts 

7 / ) d L 

f (3L _ z.i P -- d t /-s` t _ d L 41, 

(.3 r -z..: rté) d I /-s` X = O 
/ 

/ 

s = + -k ̀ - . ̀ 

one soon finds that the solution is 

expressible as a Riemann P- function. 

or 

¡ -r ao 

o o I+s 

p -P- r-s 

-I O 

O u 1+5 

-P-1 

x } 

This is now expressible in terms of a hypergeometric function 

/+s ,_ P. 

,fs s-P i-P 

- 
x +/ 

.! - 
J 

J 
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Similarly 

X i ) C i 

i+s f ( e+s /s -P 
;le ,- 

When , is real, the argument of the hypergeometric function 

tends to unity as y increases to infinity. As 

which here is -2S is negative the series will not be conver- 

gent at infinity nor will OA +- Hence the series must 

terminate for the probability amplitude to remain finite, and 

this can happen only if a or i is a negative integer. 

As s by definition is non integral, our only choice is to make 

where ri is an integer 

or = 5+ ) 

so that one finds directly the fine structure formula as before 

on solving the equation 

is given by equation (5.7) 

d cw- ) _ -.F,. where 4- 

When á is imaginary, that is W > , y, will have only 

imaginary values so that X = - is always real. We see 

that the argument 
x- 
X + I 

lies between -i and + i as x 

ranges from o to co . In this case the hypergeometric 

function is convergent and no restriction is required. 

As an alternative form of the solution of the p- function is 

[ 1"5 ! i-x ` 
.1 14s r+ s+ 1_1-7 9C+, ) 

we can apply this in the range x to o to - co in which 

case/ 
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case the argument is again within the limits of -1 and 4.1. 

Hence for all values of q we obtain a convergent function for 

x f so that all values of w> are possible giving a 

continuous spectrum. 

The factor C is found by substitution in the first order 

equation and it is 

Y - 
For the Schrödinger mechanics, Rumer (36) found the eigenfunc- 

:tions in momentum space. His solution in atomic units for a 

state with total quantum number is 

In our notation 

tAl..a -ra.r. 

-r,,` t.. + f 

= i,-,- n/,4 
_ K+I 

¡ w 

which when we neglect fine structure gives us 

in atomic units where I 

Therefore, the Schrödinger equation gives us the functions - 
(1, ,i % 

-c ) + 

Similarly/ 
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Similarly for the Dirac equation, when we neglect a compared 

with unity, taking s an integer and r. n- the 

functions T and x can be expressed as 

respectively 

where f and g are polynominals of degree n -s and n -s -1 

respectively. These functions depend not only on the total 

quantum number but also on another quantum number s- k 
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