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PREFACE.

The first chapter contains an account of the extension of
Dirac's equation to general relativity while the second one gives
a summary of the generalised two-component spinor theory and its
application to the wave equation. Spinors are used extensively
in Chapter III to deal with the invariant theory of Dirac's
equation. Here certain results of Prof. E.T. Whittaker are
directly extended to general relativity and the complete scheme
of the simpler tensorial quantities including all those with
physical interpretations is developed, all the expressions and
the relations they obey being derived in a perfectly general
manner, A mumber of these relations are already known but now
all of them are proved without the necessity of referring to a
special coordinate system or of utilising a special set of mat-
trices, The vector form of the wave equation valid in all
space-timesis derived from the spinor theory, agreeing in form
with the vector obtained by Prof. Whittaker from the special
relativity equation. In this formulation the wave equation
is expressible in terms of four null world-vectors which can re-
:place the v -functions, and all the tensorid quantities are
restated in terms of these vectors alone. The tensors and vec-
:tor wave equation are written out in detail in the case of a
Galilean system and these are expressed in matrix notation by
means of a special set of «-matrices. It is shown that the
matrix with imaginary elements is distinguished from the ones
with real elements in this form of the wave equation and the

effect/



effect of similarity transformations is considered.

In Chapter IV it is shown that the criticism directed by
T. Levi-Civita against the Dirac system in that it depended for
its generalisation on specially distinguished directions in
space time, does not hold. In the first place his considera-
:tions were really applied to an equation where the Y- function
was a world vector and so was not the usual wave equation and
secondly, the argument does not hold when one deals with the
actual Dirac equation which, because of the possibility of spin
transformations is shown to distinguish no special directions.

The eigen functions for the hydrogen electron in momentum
space are found in Chapter IV, these are a finite series of
hypergeometric functions which do not reduce to elementary
functions. A form of the wave equation in momentum space is

used to derive the fine structure formula.
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THE GENERAL RELATIVITY WAVE EQUATION.

The relativity wave-equation of the electron as discovered

by Dirac has the usual form:

A l; o Pe+ 5+ & me =0 (1:1)
(c L P 5 P 5p )y )

where W, pl, pg, p5 are operators representing the ehergy and

the three components of momentum expressed by

28 n 2 (i =1, 2, 3) respectively.
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The four «; are matrices which obey the conditlons

oy o + 0(‘-041 = 2Sij 1 Vdy 1 = 152, 3 LI') (1.2)

J y
and these are assumed to be hermitian, that is
£ ~
oy = o3 or X4 = °<.+
The star * wlll be used to denote the conjugate complex
while "~ will denote the transposed matrix,
and T the hermitian adjoint.,

From the wave equation and its conjugate complex which are

respectively
=k 2 +E£ AT + X me kY =0 ]
s R - e E i T g 3
- *
and ( B 2 _ﬁg X AT M SR mc)\]/"O)
: 1 e3¢t e T 1 > x- L

we obtain a more symmetrical form. The first when multiplied
by qh gives us the equation.
(p/
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¢ a%?—"- P =0 |
where summation is to be teaken over the repeated index between
O and 3 Here ¢° = =04 which is hermitian )
and p° = dyay (i = 1,2,3) which areag e
skew-hermitian. The imaginary constant p = _zﬁn:_L me

As x0 _ ct, we are dealing with real co-ordinstes .

If i I=hc8
If we write ¢ g e’y

. L, k (1.6)
then Yom = ey q‘.‘) - _ g\l* q)
and from the conjugete complex equation we at once obtain :
vg_ — - = lo
(e 2, o ) PETI=e (1.7)

From the definition of the Qw (1.5) and the properties of
the &, we have the relations _
e +ee =29 , (1.8)
where in the space of special relativity we have
o e, Sva—

with e = 1 €] = €o = €3 = -1

When there is an éxternal electro-magnetic field specified
by the four potential A, .we add to the operator

2 the quantity - 20l | e AP when it operates on
I et h [
a Y-function,

and 4+ 2Hi e . Ap when it operates in the conjugate-
h ¢

complex of a Y- function.

In/
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In this notation the well known current vector is .

g =eAFf”w = eyte’ey. ' (1.9)
Its time component is J° = -e ¢’y which is the density of .
distribution of electrical charges according to quantum mechanics.,
That J* is a non-divergent vector is at once seen if we pre-
:multiply (1.4) by $* and (1.7) by ¥ and add,

(2 )+ T (2 ) +r(ey- T¢)= o
met e el ) (2 €Y
i 2 (¢ey) = 2,057

Now all this relates to an electron referred to pseudo-orthogonal

1]

o by transposition,

v

divJ = o,

axes in the space of special relativity. The extension of the
wave equation to general relativity has been effected by a number
of investigators, who using various methods have ultimately
reached similar results. The wave equation differed from other
physical equations in that it was not completely tensorisl in
form so that an immediate generalisation was not possible.

There were the o - matrices and a four component wave-function
which transformed as a so-called semi-vector.

Fock (1) used an orthogonal ennuple as a system of refer-.
tence in general space-time so was able to retain the dmatrices
in the formulation. Tensors then have two different type of
components, those referred to the co-ordinate axes and those
referred to the orthogonal enmuple. From the idea of parallel'
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transfer of a semivector which introduces four coefficients
C; , he defined the covariant derivative of the spinor

to be g%%' fh Cagf' which is directly comparable

with the terms: : - 2/ e ,Ai%ff occurring in the original
c

ot =

wave equation. This held when one differentiated along the
directions of the orthogonal ennuple, and the wave equation was
expressed in terms of these covariant derivatives of ¥  and
the Dirac o-matrices.

Finally transitionsfrom ennuple components to general co-
ordinates components were accomplished by frequent use of the
Ricci co-efficients of rotation. In this way the four compon-
tents of the potential were absorbed into the geometrical scheme,
the ennuple component C; being regarded as equivalent to them.
The work is rather complicated on account of the retention of
the two types of reference systems.

Other investigators started from a slightly modifiied form
of Dirac's equation such as (1.4). In this way Tetrode (2)
used matrices like the e and treated them as vectors in
space-time in so far as their index was concerned. Finally
Schrodinger (3) in a similar way formalised the theory and pre-
:sented a full development while Bargmann (4) added some modi-
:fications and simplifications to the former's method of approach.
In their treatment undue reference to orthogonal ennuples is

eliminated/
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eliminated, in fact they appear only in the initial stages of the
development. In essence, however, their generalisation is
equivalent to Fock's,-the presentation is different, but the
same results evolve, The account of the general relativity
wave equation which we now give, follows the line of Bargmann
and Schrodinger.

Still keeping to special relativity, letus examine the
transformation of the wave equation in its symmetrical form.

liake a linear substitution to introduce new co-ordinates

or reciprocally x* = b ,"y”

where a” b, O = 8

-

I
]

The wave equation.(e“i; + ~ )Y
then becomes in this new system

Gt M e
Ay

which is ( ~" 2 + M )Y = 0
b-a.-""
if we write = H
or e = b.” €.

>

and leave ¥ unaltered. That is, the form of the wave-equation
is preserved if we treat the (’matriees as an ordinary vector
in space time when we are dealing with linear substitutions and
at the same time leave the wave function unchanged.

In the new system we have

Yy et e SN g g
and if we treat p» and » as ordinary tensor indices we

can/
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can lower them by means of the fundamental g”~ tensor and obtain
?'PTV+TVTP_= 25,_,,

At the same time the new current vector is

-

FECENN VT 1= walr, T evy
= e q,*' T Y.

We observe that ¢ is still equal to e’y , which we shall
write hereafter as@ Y , but now ¢ is not one of the four o
matrices. The hermiticity of the matrix e¥"” is preserved for
this is A Pe
and in this linear aggregate, we have real coefficients a”,
because we are dealing with real coordinates and real trans-
:formations and the matrix ee” in each term is hermitian
so that the sum is also hermitian. Thereby is a real current
vector obtained. It will be noted that the ¥ are expressed
as the sum of three skew and one hermitian matrix so that in-
:dividually these matrices are neither skew nor hermitian. The
employment of the special ¢ matrix simplifies the reality con-
:siderations.

The conditions (1.8) are not sufficient to define ¢°
uniquely and we have now the possibility of applying "spin" -
transformations to these quantities for each component ¢ is
not a simple number but a matrix., A spin or similarity trans-
sformetion such as- _

TS ey (1.12)

where/
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where S is a square matrix of the same type as »” will
produce new matrices which still satisfy the condition, and
the wave equation will remain invariant in form provided that we

simultaneously vary ¢ according to the rule:-

/g

Ji= G (1.13)
Transformation of this second type must not affect quantities
which have direct physical interpretation; we see that the
current vector may be kept constant if we admit the law of varia-

stion of the matrix e to be

' 4

£ = " STeS (1.14)
whence it follows that $=¢€¢y¢ = S"9¢ (1.15)
Moreover we observe that =
£t l5hes) oWsTenS - st e S (1.16)
that is, a similarity transformation does not change the pro-
:perty of hermiticity of e . Likewise the matrix e v’
has its hermiticity preserved for, in the new sYstem
E52) = i @ - dsear i
e (Sﬂ)+. st¥esS
= St (eS8
. p o

Another simple relation

ey’ = e (1.17)
which follows from the previous result as ¢ is always hermitian,
is also invariant under S - transformation. Similarly

ex, = v,

is/
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is en invariant relation.
Now define the commu tator, introduced by Schrodinger
ok el ("J-""r" - ¥ -rf“J (1.18)
2+

Then as a consequence of (1.17) we have invariantly

e "V + s”"f'e = 0. (1.19)
From the commutation rules for the ¥ -matrices follows the
relation
A e T (1.20)

which is very useful ss it expresses a single ¥ -matrix as a

commutator.

GENERAL RELATIVITY.

At this stage it becomes possible to consider the genera-
s:lisation of this work to any space-time. The natural genera-
:lisation of (1.10) is of course

A e A Qg‘”(x) (1.21)
where 9“7(x) is the metric tensor of the general space-time
as is a function of the co-ordinates. To find a solution of
this equation we choose an orthogonal ennuple as reference
system and use Latin indices for components referred to it,
while we continue to use Greek indices for components with re-
:spect to the co-ordinates x™ . - Smheppide NV is any
vector, the relation between the co-ordinate components V.

and the ennuple components V. is

v

Va‘ = i e; \{"' >\

S vl

with/
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with e =1 8p w B3 = 83 = =l
and Aepiva as the components of the ennuple.
Conversely Vot = Vo 2t

1]
the summation convention still applying to repeated Greek

indices.
Here Aun s Difie = 2 e, 5y
Ze‘i. >"-‘.I¢,¢ >‘\.,1I5 e 9AP
f\»ll"Q = g""(-" >\¢l{-l..
If we take 7 S e

where the ¢. are the same as those defined in (1.8), then
we find that
Tuc T:’} +T[’5—b’e{ < E( A&p.; e-c: GJ' AJ'PE# e e_j AJIPQJ QI‘;>\;_|U‘E_‘:)

=2 (ece; Xgw Njip [0 + €3 €] )

]

='2J eze; XNoy, )\J,ﬁ % eJ-SLj)

% Jac
In this way we have obtained one possible solution for the

at a definite point P (xM). We must see how it would hold

if we proceeded to a neighbouring point P~ = (x™+ &x").

By differentiating the relation (1.21) we have at once
(81}_) v, + 1:',_(31‘,,) + @ 7)) 7T + T,(S-a;._)
= 2 SL 3.«-9)
= 2 2 Gev § 7. (1.22)

2 x
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But the covariant derivation of the fundamental tensor is zero,
that is
Bim) ebigy Sy — Pl %es - 0 (1.23)
3 T

Also
dv - 2 &8 S ) e

= e }>\;l, LS')L’-) '/\;,-,* ey

DT

which is of the form

Sl e G B S (1.24)
the coefficients C~,. not necessarily being tensorial.
When the results of (1.23) and (1.24) are substituted in (1.22)
we find that

I i) a3 e, S RO
Now our results must be independent of the directions of the
displacement, all directions at P must be treated equally.
Therefore we demand that the coefficients of § =7 should

vanish separately.

Thus ™ =W sy s el P g, LR
Let At il (1.25)
and A wm i Bup B s
Then the condition is expressible as _
A " Ppge @ B (1.26)
where the A,, . are now tensor components.
Expressed in terms of these, the result (1.24) is
3T = PUoa e N RO = e R e (1.27)

T

Multiply/
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Multiply (1.20) by A and Sui  over s~ and v

pw

Agcsannibei a=nis x~) = A B pacle s*”aA)

[ PV T

which by (1.26) leads to

A'I'iﬂ" Tv = = —‘- Ar.-vtr L’rﬂ s‘h"__, shv T-l.)
4
W v
= 1‘(-# A.puvr SP' T d"fl) Ya\ T Td k.’_ A’.vf SP - a;,.i)
4

where 1 is the unit matrix and a, commutes with all ¥ .
It is introduced arbitrarily. If we write

Ao S odt = b (1.28)

1

L2

equation (1.27) takes the form

?;?j:” % r‘:r TA + rr oo =1 T r‘f . (1'29)
X

It is now a question of finding the conditions under which this
equation is integrable. We require, therefore, that
2 ( pirs ) ) ( 3;5;) = 0,
o ol 227 " 2
This very quickly reduces to the condition that
-
Rerre L & e T = 75 = © (1,30}

where as usual the Riemannian curvature-tensor is defined as

o - - o PR 3 o
R s meTE 3—-{ rhf - ;a-rr.pﬂ' + rp.cr‘p‘r = F’n F,P 3 (1.31)
and where for brevity we write
(P = :‘:)..L" - 3_.["" ot Pr PT - r"l.‘ ’"o—. -
g 2 %F 2 a7 (1.32)

Another application of (1.20) to the equation (1.30) gives us
the following explicit expression for ¢ __

G -1 R 5y e (1.33)

where/
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where f._ =~ is, as yet, an arbitrary tensor.
We can connect up these arbitrary quantities by considering the
spurs of some of the matrices. The spur of T. because s™7

is a commutator of the T matrices and therefore possesses zero

spur, is from its definition (1.28) equal to 4 ag. From
(1.32) we find the spur of ¢-.
= Dt DR
spur ¢, =all 4 L'a—w}' -g;}) >

while from (1.33) we have an alternative impression
spur &, =R
Hence we see that the a. and f{.. are not completely arbi-

strary but are connected by the relation,

. © TPl o (1.34)

Therefore the &. completely determine the f., tensor com-
:ponents and the a. themselves are quite independent of the
T - matrices.

The a_, are identified with the components of the four-potential
(apart from a constant factor) so that the six-vector f..
gives us the electro magnetic field strengths. We Just
summarise the previous line of work: a solution =, of the
matrix equation Ve T % 2 2 2 G

was found for a certain point. The conditions that this de-
:finition of ¥. would hold at a near-by point independent

of its direction, led to a differential condition which in its

most general form contained an arbitrary quantity a..

The/
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The integrability conditions arising from the differential
equation brought in the arbitrary six-vector ¢.. of which
the spur however was derivable as the curl of our former
quantity a..

Vectors and pure physical quantities will not be influenced
by S ~-transformations. Quantities such as =7, and [.
have a dual nature in that their tensor character, in so far as
we are dealing with transformations of the co-ordinates, is
correctly indicated by their indices, and that moreover they
are affected by a spin-transformation. Let us now admit
S-transformation

é

T =B S
and find how equation (1.29) will be affected. It is at once
seen that this equation will remsin valid also in the accented

system if at the same time the T, undergo the transformation,

I

o R R (1.35)
27
B S S0 = 58Tl differentiation gives
IS By SELOS
ant 2
and spur 35t 8 " 3 (log det | S| ).
x L

Therefore, on taking the spurs in equation (1.35) we have

/

& =+ L P » 8y a2 ‘ (1.36

y Spur p o (log detl|S]). )
As a, , therefore, is not invariant under an S-transformation
but is altered to the extent of an additional term which is the
gradient of a scalar quantity, it is not a simple vector. But

this/



- 14 -

this is precisely the type of variation permitted the four-
potential by the principle of gauge inveriance. On the other
hand the quantities &, behave like the ¥, as we see
from (1.32) and (1.35),
Goge s ST NS

and its spur, which is proportional to the field strength re-
itmains unaltered as is necessary for a definite physical
quantity. Thus we have further justification for our
interpretation of 4., and f,_.

As the A
(1.28) that

are all real, it follows from (1.19) and

o~y =

el L'e = (s 5a)p

As a_ is proportional to the potentials it would first appear

very satisfactory to take

a_+ a, =0
that is, take the factor of proportionality to be pure imaginary
and thereby obtain real values of the potential. However such

an equation is obviously not invariant under S-transformations

except when det /S/ is independent of the . For general
coordingte systems the equation

Qo = a_ff + E’Fc- + P:E‘ = 0 (1.37)
is found to be invagiant. Under coordinate transforma-

:tions €., Dbehaves as a covariant vector, while after a

similarity transformation we have

bo » 2 (57eS) L (ST (s S-57a8 )y feTrtisT 3_§+(5")+J s'e¢ S
7 o T
S+k3—e +Qr‘d"\"r1:e)s = S+ etr)s = o .
ax.'

Thus/
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Thus equation possesses the required invariance property.
Two more solutions of a similar type are obtainable:
from (1.32) and (1.37) it follows that
+ S Al o 3. B 2 : .
B Boe. T ol px oL S o (1.38)
using this result in (1.33) we have, on noting (1.19)

0 few madaie sue

so that the f,., are always imaginary yielding real field
strengths,

So far attention has been concentrated on the 7. -matrices
and our considerations have brought in the quantities associated
with the field. Now we must consider the y -functions and
similar quantities and investigate their covariant derivatives.
It has been seen that 7. behaves like a tensor, but because
each component is not a simple number but a matriz, spin-trans-
:formations can be applied to it. A system of matrix operators
denoted by T ... is said to comstitute a tensor-operator or
Schrédinger tensor of degreem 4 n when T, for point sub-
:stitutions behaves like an ordinary tensor with m contravariant
and n covariant indices, and transforms into S~ T S as
as result of a similarity transformation upon the ¥*”~. Ob-
sviously 7T itself is such a tensor-operator, while the work
above shows that $§"° and Po supply further examples.
AdpoRedi e q):: and R7 are called
T 4, or € - temsors, if ¢ ¢ N transform

as/
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as tensors for point substitutions and into
S ¥
st 9

S¢ K S
respectively for the similarity transformation,
Y,e and ¢ are clearly V¥- , e- and ¢- tensors

of zero rank, and ¥ and ¢ are often described as spin-tensors
or spinors.
Products of these various types of tensors behave as ordinary

tensors for coordinate transformations but the type mgy be al-

stered.
For example: T ¥ is a ¥ - tensor
T ¢ is a ¢ - tensor
M = e T is a ¢ - tensor
MY - T e is a p- tensor .

A tensor equation is invariant under transformation of coordinates
and further, if all the terms are tensors of the same type, the
invariance will hold for spin-transformations. For example
ME ¥k .o,
is a simple p - tensor equation, invariant for both kinds of
transformation. Cases of such equations are afforded by (1.17),
(1,19) and 1.38),
The various combinations of all these different tensors
together with their reciprocals and hermitian adjoints lead to

quantities/
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quantities G which, under 8-transformations, change according

to G > PG Q
where P may be one of the set of operators 1, S°%, &t
and @ Ly Sy (sty "'1_

COVARIANT DERIVATIVES,

The covariant derivative of G is symbolised by V. G or (@),
Before a suitable meaning is sought, the task is simplified by
admitting the two following postulates.

1. If G is of Qrdinary tensorial rank m + n, then (G). is of
rank m ¢ n - 1
2. Under an S-transformation (G),. should become P .(G).. Q ,
that is we demand that the original tensor and its covariant de-
trivative should be of the same type with regard to S-trans-
:formations.
The operator V, thus depends on the nature (i.e. its tensor
rank and type) of its operand, but it will be of the form:

v, - ﬁ‘_ + F (Q)F,)
where ﬁ} denotes the ordinary covariant derivation of
Riemannian geometry and F is a linear function of G, o and
F:. The presence of this additional term is necessitated by
the second postulate. Finally we wish to preserve the product
rule so that if G is a product of two other tensors i.e.
G = Gy 62 which is possible if Qq P2 = l’ then it is required

that
Z G = (Va-§!)qx_ + Gf(VfG:_).

These/
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These requirements are suitably satisfied by the following
definitions, -

(a) Tensor - operators.

VL2 =L 72" 3" 420 ~ L T (1.39)
in particular.
vrest 25 e (1.40)
it

= 0 by equation (1.29).
Hence, as UV = ﬁ:— for ordinary (c) tensors

.ot Wl ?,w) = 0 by the product rule.

(b) V¥ - tensors,

“y- V¥ -T.7F. (1.41)
Thus for the ¢ - spinor
7.y = %{,-—f’.-y'- (1.42)
(V- ¢ ) 4is another ¢- tensor, and so differentiation may be
repeated following the same rule. So we find that
v, (v?) - UG-Gy = ¢.¢ by (1.32). (1.43)

(¢) R-tensors %

V.R= V.R+ R + IR, (1.44)
and Vewbio O by (1.37) (1.45
By the product rule v {p7s) =0

(d4) & - tensors.

V. - V¢ +~ rtg (1.46)
so that V.¢ - %fo_ e g (1.47)
and Mop = a9’ o - E
A

The/
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The consistency of these definitions is easily verified. As an
example, consider the current vector which should be an ordinary
¢ - tensor,
.o i=ln Ut miip) by the product rule
- (V.— qb*) r el 2 o*(V.) noting that Vorti=0,
2 247 e ety sy ot gmp - bt Y

23T >
= E_fr y"".;y F (P“f“ Y <",>+(3__'!_'F + P‘_’; 'I""') M by (1129)
A T P

-2 (T 0) 4 TE ()

= . J* as required.
In fact, it is clearly seen that any quantity of the form

iy

where T is a tensor operator of any rank, is a ordinary c-tensor
of the same rank as T. This will be real if ¢ T is an
hermitian matrix, as is the case when T= ¥ or « i s*”
for example. The advantage of Bargmann's treatment lies largely
in the use of this special matrix ¢ by means of which the
hermiticity of certain other matrices leading to real physical
quantities is the more easily assured. This direct method
obviates the long and tedious investigations applied to each
type of nature separately as in Schrodinger's paper.

TEE GENERAL RELATIVITY EQUATIONS.

The Dirac equation in its symmetrical form is
T 2 =0
( A m) ¥

This/
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This is now generalised to

GV .+ m)y= o (1.48)
an equation which is a y-tensor one (each term is a p-scalar)
and so it is invariant both for point substitutions and for
spin-transformations. Moreover the general definition of the
operator I introduces quantities which have been identified
with the componentsof the electro-magnetic potential so that
this equation can be applied to an electron in any external
electro-magnetic field, In special relativity, the effect of
the field was accounted for when the operator

2 was replaced by 2 ~ ama e AL

p v I ok 0l h C

Now we have appearing the operator
Vel =g = Teh 1)

which reduces to the former when the general space-time reduces

to that of specilal relativiby 1f we take

d = AT L 1~ h,— (1049)
h L o

This comparison has revealed the factor of proportiemality that
exists between a, and the four-potential A_ , and between f_,
and electromagnetic six=-vector F,__.

This has been the chief purpose of the theory, to obtain
this generalisation of the operator which occurs in the original
Dirac equation and to describe and treat it geometrically, as

an operator of covariant differentiation when it is applied to

By -function.

The/
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The adjoint of the equation can be deduced from the new form,
wo = ¥ = (wm V.y)" ¢ by the equation (1.J+8)I
as p is an imaginary constant,

= (FL Yf)(?’rf)
@. v¥) (e =%)
= 7

’IM

A

Hence ¢t (fi ¥ @) = o© (1.50)
is the generalised form of the hermitien adjoint of Dirac's
equation. (The arrow denotes that the covariant differential
operator acts upon ¢+ on the left).

This generalisation is perfectly satisfactory, in special

it reduces

relativity /to the required form, and it preserves the non-diver-
:gence of the current vector. The latter fact is readily
proved for

Yo% 7. (¢* v~ ¢)

G.¢9) v ¢ + ¢+ (0
(«¢”) v ¢ + ¢ 75 (-py)

= o .

1

GAUGE/
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GAUGE INVARIANCE.

This is demonstrated by means of the special spin-trans-

:formation obtained by taking

S = e:i)\ 1
whence log. detealSi| = 2K
Then by (1.36) dp = & ¢ @ e
>t

so that Ap = Ag = ke 3 )

e i )

> ‘ ) (1451)

while N = S"'\p = y )

Thus under this particular transformation the four-potential is
changed to the extent of an added gradient (of a scalar function),
while the phase of the wave function y is-altered, the form of
the wave equation remaining the same. This is Weyl's (5)

principle of gauge-invariance.

THE SECOND-ORDER WAVE EQUATION.

From the first order equation

sl AR G
by operating on both sides with a2 we obtain
v Vv el P;&- (’{/ = - rY Vv tfu
SN
Since V. rE ® this becomes

Now R A S e so that we have

2R 2R )y -y
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and (9" Wl + s~ GR)y = w7y by
interchange of dummy indices. Average the two equations,
noting that 8“7 is skew and that

(VVV,P_"Z..VV)Y/ = ?é#")y
Hence g s .
" B ) e Y
After introducing the implicit éxpression for ¢,.. (1.33),

one obtains the equation

[?vrv Vv VP A i St e .é. e SAF qu#u m f“‘}) ?V:: 0_. (1.52)
This fourfold sum % 5% 3% Rupiv can be
evaluated leading to a simple result. R ppv 1s skew

in («x,#) and in (»v), so that form (1.18) term considered is

equivalent to

-% Firay? T‘Tﬁ R,n.-va((z.

-
El

wd wrat ) Regay =R v i v wt R o

= 71; (g.i""P-f- 5"“‘) RP!‘"‘ — i;p Tt Y s ( R*PP‘" + R‘*P#‘-"’-F R"Ph")

R is the contracted Riemann or Ricci tensor; it

is symmetric and when it is contracted it gives the curvature
scalar R
where R = }PP RP“'P = ‘j"“'ﬁ (R,ﬂ’.v)

Therefore the term is now

R
%l

Yf"h"'r*...'r‘-r" azr“'ar") 7 Rd.{.!,u-v which by (G ke
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L R » »
% "2{'4{‘,{777 B = v 27 — ¢ TR g
3 ot aeh ¥ Ex) Ruppv j
= .43 - z‘.@i o e e R'LMW, 2 ‘lTrﬁ?ﬁRFP = ‘3'”’5'""(9.3."'"'-"3'”7‘) R
[ R - I v A
Y :E.Lq. a A o g R“Mw-l- var-d"" R“"*M”l
when the dummy suffizes are changed.
The last bracket by the symmetry properties is
R.{_{‘L‘uu + R,,g_},.._vﬁ. + R-ﬂ.v.ﬂfv
which by a well known identity is zero.
Hence finally the second order Dirac equation is
el Gt e B 5 Pt (1.53)

The first and last terms are but a generalised form of the
Klein-Gordon wave-equation while the second term represents an
interaction of the éxternal field and the electronic spin, and

the other term introduces the curvature scalar which vanishes

in special relativity.

ap p
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CHAPTER II,

TWO COMPONENT SPINORS in GENERAL RELATIVITY,

Van der Waerden (6) introduced a theory of spinor analysis
applicable to the space-time of special relativity, the Dirac
Y - functions forming two pairs of two-component spinors. This
theory has been extended to general relativity by Infeld and
van der Waerden (7, 8) and also, in a more geometrical form by
Veblen (9). Essentially equivalent to this is the theory of
semi-vectors of Einstein and Mayer (10), the commection between
the two theories having been expounded by Bargmamn (11). The
spinor theory will give results similar to those obtained from
the principles of Schrodinger's generalisation of Dirac's equa-
:tion, but for many purposes its notation is extremely convenient.
As we shall be making full use of its notation and results in
considering the general universal theory of Dirac's equation, the
properties of spinors will now be given here,

Instead of using matrix notation, we express all row and
column indices in full and these will be treated as tensor in-
:dices in the spin-space, so that the new process will be a
more formal one of tensor analysis with two types of tensors:
world-tensors and spin-tensors (or spinors). Fundamentally
however this theory is closely comparable with Schrédinger's
extension.

At each point of the Riemannian space, V, of special re-
:lativity for which we have the usual metrical tensor gi,,

with/
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with g749, 829y 833 < 0o and ggq > 0, We associate a complex
two dimensional spin-space S, the vectors and tensors of which
being referred to as spinors. The components of world tensors
are always denoted by Latin indices (generally we write such
tensors as Latin capitals) ranging from 1 to 4 while those of
spinors are indicated by Greek indices, range 1 and 2. For
both types of indices the summation convention for repeated
indices is to be adopted.

Transformations in the spaces V and S are to be considered
as being completely independent. If X e 1,2) are the
components of a contrariant spinor, then under a general co-or-
:dinate transformation in the spin-space they trensform according
to & = /\AE o (2,1)
Both the /\1 and «' are in general complex functions of the
world point with which the spin space is associated. It is
assumed that the /\he are differentizble and that their deter-
iminant is different from zero. The spinor which is the complex
conjugate to «* undergoing the conjugate transformation to
(2.1), is denoted by a dotted index

o = 7\-; ¢ (2s2)

Bars are used to denote the complex conjugate; and so « = o

Spinors of order greater than one transform like a product of
appropriate spin-vectors, e.g.

AT transforms like o{k/s "
In/
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In the theory of van der Weerden, one dealt only with unimodular

transformationsin the spin-space. There, two spinors o’
-~ . .
and /3 had the inveriant,
£, A& where Eia, 2 — By 2 1 5 By oGm0 (2.3)
and covariantswere formed by the rule SIS e

Here in the general theory of van der Waerden and Infeld
transformations are not restricted to be unimodular and for
raising and lowering indices a skew spinor 7, = -7.. replaces
to play the part of the fundamental spinor of the

Bxpe

S-space. The only non zero components are Tia= = "y

which is an arbitrary function of the world point. Vo d8
its conjugate complex and frefas is its inverse
where s et .
- TFJ.
We can write T, = v e )
) (2.4)
Ty Ve where T Tw T )

Transitions from contravariant to covarisnt forms and vice-

versa can be effected as follows:-

.. ¢ il re )
o« = «ta L L
¢
3 = , : ) (2.8)
. = é . °(r|' = /a"ht of . )
U(,... <% r{érv ¢
The lar product = e b o = ¥t ; v al
e g ¢ f NI T el
is invariant, while in particular for [Basaes
.S
&, & = 0
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Spin-space transformationsand co-ordinate transformations
for world tensors are distinct and do not affect each other.

There are however "mixed" quantities with both Latin and Greek

indices such as c* B which for world transformations

behaves like a contravariant vector and for spin transformations

like a spin tensor of the form K °

By means of the 0‘*,;,_, a relation is set up between

world vectors and Hermitian spin-tensors (i,e. R = Kiia Y

We obtain a real world vector a’ as a linear function of

the %5~ by means of the relation

& RAM & Ape
a = aT O(ir" = T ‘if" o (2.6)

A s 4 s . A2
when s is Hermitian, i.e. ¢**" - o**'" | (2%

In specisl relativity, there was a correspondence between

Lorentz transformstions and the unimodular transformstions of
b A p

the spinors. Both @ and gﬂ were constants. Now in

general relativity both of those are functions of position.
. ! ;

The invariant from the vector & is 3,4&*& while

that from the spinor ;. is 7™ 777 «;. ;.

a T ( Ko K = K5 Ayl (208)
As we are dealing with an Hermitian X 7 that is «;
%«;, rTeal and «,; - %.; , We can express these components

iz
as a + b, a-Db, ¢ $ id, ¢ - id, respectively where a, b, ¢ and 4
are real. Thus in terms of these quantities, the invariant .8

is T (8" = b* - ¢*- @) which has the same signature as the

metricEk
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metric of our space-time. Therefore a direct correspondence
between the two invariants can be set up.

In fact we write

£ s
Gui afa s Tt ey, (2.9)
identically for all 4;,..
By (2.6) . }% u._*.ir- G_.(c'd" d‘,\',.. "‘e‘,. - ’rht',r.rr "‘Xﬁ ol
As this is to be independent of &l this means that
kAP df@ X e )
a = T
der T° " ¥ st ) (2.10)
or minm o_‘”“e : s.‘» é_r ‘ )
L3 r r
From this result we have
; . *
Multiply by [l and then from (2.6) for all g
At o A Xp R
SRt T sim &
so that i =past (2412)
tA'p- &
The two relations also soon obtained:
0_4‘.‘-{"' d_‘.xr % r&)'/" fl,k'r - 9&1 d-l:-' ) (2.13)
+ » t.
e O ebt* ‘r&rr 2 ;M e - )

The formulae (2.10) (2.12) and (2.13) find frequent application

throughout the work.
COVARIANT DIFFERENTIATION.

As usual we define the covariant derivative of a spin

vector by the following forms:-
4
Y"f“\ = 9« {fﬁ. = r:u\ ‘F{’ (2.14)

¢

“«

LS
T R WA SR

where/
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where J, = fx* : The difference in sign is necessary
so that the covariant derivation of the scalar ( ¢* X, ) as
determined by the product rule reduces to the ordinary derivative.
Y.« is to transform, under the transformation (2ad)y

as a spinor with respect to the index « , so that we must have
P;;transforming according to the law

Aﬂe r:a . Nﬁ ,:h. v 2 Np (2.15)
The relation between a spinor y* and its conjugate y¢* 1is

preserved after covariant differentiation if

'i’é e T e ‘Pi * P;k ‘IVc (2.16)
Yaix = dpes e r:k ‘.yg'
with rfk = e

Thus any spin-tensor can be differentiated as we have the rules
for each undotted and dotted, covariant or contravarisnt index.
If ,,p. are the complex spin variables in terms of-f?&ﬁl

real parameters 1,9.v. S the volume element of the spin

space is
mm.ﬂhhh@#%h@_
U, s

For this element to remain unaltered we require ¥ = 7. ¥y to

have zero covariant derivative.

& «
(T)Lh = 34!- o= r‘l"-k ¥ia Tiz - F:t Yia Tz = r'l»‘l Yie Pai T ruf“- Tid
o o
= 0
« o
r'-m. 2 rak i g”l(b? T)‘ (2,17)

Finally/
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Finally the covariant derivative of  ¢**” is made
Zero. Then
d’ku c (cr*);"" ocw)b = AE it (2,18)
By (2.12)
g;d . a_.tu.u a_g e a""""" Lev i o
Therefore by the rules we have made
3MM =R (2,19)
Thus as far as the world space is concerned, the connections
are the Chrstoffel symbols {;,).  So the covariant deriva-
stive of ¢ ig
B G B L R Bl

There are included in this statement 64 equations, which on
account of the symmetry of rﬁs supply 24 linear conditions for
the components of [ps. There are actually 32 real parameters
in the [, , and these 24 conditions together with the 4
supplied by (2.17), leave four parameters undetermined. Indeed,

if in (2,17) we replace _ ,;

% ana’ Ff . by Poo+es 835 apng TG -2%8.9%
respectively, the relation still is satisfied. Thus there are
four arbitrary real parameters ¢, defined Dby

o=l s (2.21)
For world transformations ¢ behaves as a covariant world vector.

Under the spin-transformation (2.1), the new I";K is given

by (2.15). If this equation is multiplied by the cofactor

of /\"‘6 in FAal =& and summing for « and p

we/
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we immediately see that

A =ar‘ S

or r:k = I":k - 24 ‘Loa,ﬂ ; )
b g (2.22)
Similarly Mia= Tin - 2% AogB. )
Therefore Y= Pats 9&(1.3_%_)
If B = JAfet?
then ¢,:\ SRR (2.23)
In the special case A2 de e
and o(/;\ = e‘:ﬂ" ok}\

)
)
fﬁ Pr— %9 )

corresponding to the principle of gauge invariance with the ¢

as the electro-magnetic potential. Thus ¢, is not a pure
vector as it is affected by the spin transformation.

Let us examine the effect of a spin transformation

e
on g = Ve
Ve o) < m. A = w WnleE
_i6 5 i e ?
mre = s = A e a6
2.1‘-&, 2 & -2 9
Divide e 24 B g
8/ = &=y .
‘Therefore 3.0 transforms like Pu and o
cp: = Pu = 0 is an actual vector

upon which spin transformations have no influence.

Now/
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Now from (2.17) and (2.21)
CPp + A Lo e )

Cin = e, t 3 gV
: k x ) (2.25)
B A N L AN
whence we obtain the covariant derivatives of the 7.
spinors as

N e o
T k= LT by Tk =t P,

)
g (2.28)

5 -~ k.3
RSt v Vg = © 0y

GEODESIC COORDINATES.

If the space considered is the pseudo-euclidean one of
special relativity, then it is immediately seen that all our

equations would be satisfied if we chose

(l) ?A.L« = ?D'ki = iu = S%@l e’L:(_ b +)|
(2) FAE L A
(3) G‘Jk}:r’ = 5—"5‘-’“_ Gire _.-f;_‘ : ! } 5_:..\1“-: ‘,L;_ ({‘ —'.“* ) (2.27)

4y Fow = o
(5) rfg = "_:“ %sf .

These values would hold after an arbitrary Lorentz-transformation
followed by a suitable spin-transformation with determinent
unity, For 9am ° fa and T - the values of

¢t are not unique, an arbitrary Lorentz-transformation
could be applied to the index &  and an arbitrary spin trens-
:formation to X -

In/
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In general Riemamnian spaces we can take a point T

and choose coordinate for which (1) is true. In the associated

. Apa . .
spin space we can make ¥ - ¢ by a suitable choice of

spin coordinates. This allows us then to take ¢** as above.
In this perfectly geodesic coordinate system [lsx-°  and we

have
( ?-CL)P- i %‘d’ (as et )?o =
( Ta»)rﬂ L (Js "I"M‘) 2w o
) : : (2.28)
(a.ll.xr-)r N Gﬂ,khh (35 c_-khrjrg C s

o

and the only solution for [, is

(r:“)ra = 2 4 ST; Pu .

THE CURVATIVE TENSORS.

In the Riemamnian space we have the usual curvative tensor

4 L L n»ed n L
R Aps ==, r“f‘ +3+_ T‘b - I}FFM + I‘M F,P
Similarly for the spin space a mixed curvative can be formed
» Eeas
-Pa-)'\’ e r}.{» & N P:s - P:l" r:; + P:; r:'r. ( )

and similarly for FP%ji.s by dotting all Greek indices.
By contraction and epplication of (2.25) we have
Bk = 5 ot )i e B

i i

(2.30)
e = (¥ - Pp) = = Frs .

Mops
I;S = -Fgp being (apart from a real constant) the electro-magnetic
8ix wvector. The usual results making use of the curvative tensorn

give/
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give at once

‘l’c:.u. e 'Pflux= ¢~ P¢

SR (2.31)
Voiay = Yeuns ¥z P o
Also G,J‘J'\r-'f-s o u_,uxp-'s‘h . TkirP%é‘r < b_&ig ]y'*cor_‘_a_riru R-‘;ﬂf‘_
e (2.32)
because R i) = o0

Solving (2,30) and (2.32) we obtain the unique results

A x AV o :
Plesp =% R.ﬁvs[s. i Tiioel gt Fsr SJ;

i 5 . )(2.33)
I €sp z ﬁ*rsf._ ‘r‘k}.‘ ‘rrve' e 22 F"i‘ 5% ; )

By thus fully exploiting the application of geometricsl ideas

to the spin-gpace one obtains the mixed curvature tensor ex-

:pression equivalent to the P matrix which appears in
Schrodinger's treatment. The contracting of its pair of spinor

indices is the same as forming the spur of the matrix.

THE DIRAC EQUATIONS.,

X A
We first assume that there is a current vector J

which has zero divergence.

e Sl IS 0

4 .
Assume also that J correspondends to some SplNOr Wi,

S it A
where gh e e a, v
: R A
Take the divergence ;: J* T8AE Wy G =0
& T . Sy
For J  to be real &g, must be hermitisn; this condition and

the condition that the time component of J * 33 positive are
satisfied/
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satisfied by giving w*  the form
w?(r“ = x’i T q,ﬁ yh
where X and ¥ are two spin-vectors. Substituting in the

expression () for div J we have

(U'A,;,.. ‘Fﬂlrr + l:i""ui""L xix’»)‘ﬁ. = 0

which when expanded is

‘Pr& “'Ax m ‘r‘m + Xp o B2 Kipe + ‘FK “‘“x;« ‘l’hla + X3 f&ﬂ”)(,‘m :
This is satisfied if we put
ﬂ-‘h . A = oL x’ )
.\r. Y ix r;- ) (2.34)
ITAAP z‘“k = - ?) )

where « is some constant.
In the geodesic system, from equations and their conjugates we

derive the equation

3 .
IR SR 1.2 D("(_& 3____95!‘\;)4.0(41“.('. izo.
ame et Eant 1=1 ami rxt &
where : red ' 1
I : A R
— oy = A =B g 3 = r
Pl D E ok - Lo g
1 ¥ X,
U o 4. o
= &g = T e e L ?‘ @ " | ¢
\
The vector 9. = 4Te A,
‘L 5 = . .
and & = . ams me a pure imeginary constant.
4 VZ

The/
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The X; here are set of hermitisn anticommuting matrices and so
the spinor equations have reduced to the well known form to
Dirac's equation. The actual set of spinor equations used

here is - K :
/\PE « #xma" “‘YP =0 2.36)

'y A .
.H—PE a Al ‘F (R — < K)“' =HoE
and these are regarded as wave equation in general relstively

expressed in spinor notation.

THE SECOND ORDER WAVE EGQUATION,

From 2.34 we have
. A AP £ e _ gl

( G&.i.‘“ 4

e AXP kR
= Xe 5\ g T G

xgle ¢
Therefore L A se Y Ml)

after interchange of dummy suffixes.

By (2.31),(2.,13) and (2.33) we have in succession
d:.q):“ =1 (rhl\'.\" "tif st el 6\)\5\( [\Ptlb& P P(fu]>

Lk P LAy~ r Dt
R T e fk;‘.P ¢* Pt ea
N7 LAr & pev 5 o Adve &
=-§.% LF FM-\-{;O- T xt R'\-Sl*.(r q’vc,'i-.ﬁ:ﬂ' r ‘_’e F“-
By a reduction very similar to that for (1.52), the middle term

here simplifies to % Ry" so that the final form of the equa-

ttion is
%

?u: v +(Jq2 R'“’-"‘k) A Fex Al O (2.37)

Similarly for  Xux we have the equation
Xy

(-l

{
jfu'?[r'“‘”ﬂ _I_(_;_K = .zp('-)x’; *éi Fu © Spo € = 0. (2.28)
I
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CHAPTER III,

THE INVARIANT THEORY of DIRAC'S EQUATIONS.

In the spinor formulation of Dirac's equation we have two
spinors ¢ and X  both having two dotted and two undotted
components besides the spinor expressions A and 7  the van-
:ishing of which being the spinor form of the wave equation.

We now wish to consider all the invariants and tensors derivable
from these quantities. For this, the mathematical theory,

we obtain forms which are not equivalent to the bilinear pro-
sducts of a ¢ -function with its complex conjugate, so that some
of the tensors found have no direct physical interpretation,
although these have a mathematical importance.

A spinor has zero length . P =0 From two diff-
terent spinors the inner product by contraction can be formed to

produce a scalar. In this way we find the two fundamental

scalars in the theory, these being

£ = L (3.1)

N A NS

K = ~I"1La

where X and K are complex conjugate quantities.
The vector formed from any two spinors whatever, say ¢
and «@ Dby means of the relation
_)_{,A o or Pi Wn

is always a null vector, for its length 1is

3 v e
X‘Xﬁ ghg S Ty ot $i W ¢ W
> >
= 9 S':' $, ¢ wa( by (2.12)
= 0 28 the contracted spinors are always zero.

From/
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From all possible combinations of ¢y and ¥ to replsce ¢ and
«@ we obtain four distinct vectors of this type, the first two

are real since o**"

is hermitian in its spinor indices while
the other pair are complex conjugates. These '‘null vectors are
A% e gRAE S
5" = e e (3.2)
C = ""*‘xp. g xe
C* oA X x y

The inner products of these vectors lead to scalars, all of

e S L N LN L

which are expressible in terms of K and K as a consequence of
the properties of the correspondence between world vectors and
spinors.

For example, again using (2.12) and from (3.,1) we have

A* Bh-G"“rxixr- G-"*""P ‘]"&‘f'#
= 5Ky LAy = KK,
The complete scheme is quickly found to be
A = 4 = — Ko s
AT By,=.0., ATB = KE. AC=0 4AC = 0 ;
= = R o Kee
BB, = 0 B'¢,=0 BGC,= 0 g (3.3)
A — —
¢cc,=0 CC =-KK 3
CC.= 0 )

Each of these four vectors is perpendicular to itself (i.e. it

is mull) and to two others but not to the fourth.

SECOND ORDER_TENSORS.

There are three distinct tensors, together with their com-

:plex conjugate, quadratic in the wave functions and not

involving/
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involving coverisnt derivatives. Under these conditions, the
two tensor indices must be introduced by means of the tensor in-

:dices in the o™’  quantities and as there are no free spinor
indices, it is seen that the following are the only possibilities

for this class:-

-PE“! = xw Ci'b;v G'kr;r kra— g
M e Kl S ot st d g (3.4)
N a gl Eakias i )

Now -Plkl = X el G_.f s .f/""

=K [3“«5:- 2 arl”“"cr’ﬂ;r'\ v by (2:13)

-‘Kg,kb el .PJ;‘Q

Ltk
Therefore we see that the symmetrical part of the tensor P
is proportional to the metric tensor ¢  and is of no new in-

:terest so that it will be quite sufficient to study the skew

part which we now denote by

Q&L o B Q’—“t A .Pf—k_' 4:_'}!.& l'\
Lot R S S L  R(S e
Also Mu : /(' (j;d. é\:_ » ﬁ_f.ﬁ-r G_.h;-.v) ;ta-
- Lk Lk
S kR =

In this way we find that both M“ and N** are skew tensors. |
These are very simply related to the vectors A B and C for we

find/
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AT T - BT bt ) et ) - R e )
- 2 gthE a* e g L g Xt “}

Bubs. K L o 37 R

because when =2 each term is K, while when « # A the

lowering of the index « makes it X so that both terms are

identical except for the sign and so the éxpression is zero.

L -]
1 R I K Lk

Therefore A C - A C = i

)
)) (3.6)
—— = e ’k [ ]
Similarly - R R L R )

These 'null vectors and skew tensors were discovered in their

special relativity form by E.T. Whittaker.

Whereas M and N are each expressed in terms of two of the small
vectors, Q requires all four when it is written in a compar-
sable form.
Let us form
ECt e ehet = "'lf-» T AR Ys - TF e X fi»‘-i\ ?"Ax’;
ST Ll (70 PR D G Lot P oA )

5 ot e [H”; Xi = XA Xpy?) - PEV XLt K Y 'f’aj
L s U_J‘ip[ S.i ) (\I’Px)\+ x, ‘Yk)] - Biak, pegk

ST ATBE - ANBY
by .
Hence we have Q in the desired form:
2R Q@Y - (ctik - c*th) - (a'sh- BhA). (3.7)
Various contractions can be made and we quickly have the

length/
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ML M= E I S e )(AA,C‘£ - A_zqh )
K’\.
’ )
also N“N_= o ) (3.8)
)
: Lk = L == =
while N“N, = -2K° and M §oi= g )
It follows at once that
e — Lk — T 1 i 24 — r'tL —_ ire A
W5k = 00 5 BB ot M, =0, K= -mg
~-& e {_—.l Ak, = i A e = ) (3.9)
NU4 = KB, ¥%B = o NJ‘OA = -KB, N C, o

u - - -
Either from the definition of @ in terms of spinors or its

expression in terms of A, B, C and C we have the following

relations
A @ = g B, Q"= %4 %
2
— Lk — k& )
6, @ = ko™ C,Q = KC ) (3.10) |}
2 2
the length of Q is then found to be
(3.112a)
Q%L = - ¥
Also the inmer product with its conjugate complex is zero
0k e (3.11b)

@R = 0
The inner products of @ with the tensors M and N lead to

the results

)
M%“Qu‘= 0 N'm o=l _ g (3.12)
H*%q, = 0 ¥%.= o

By contracting one pair of indices only, we obtain the following

set Lk Lk :
B Q,.= -k M. A e i ) (s.13)
2
L8 — 4 L 2k, A —2
M Q = A" gkl N §.= - B G.+ B.C
R _....—2 At --—-—-—2_...__...
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The remainder of the results of these types are obtained by
teking the complex conjugates of the relations given here.
All the results so far are consequences of the general
theory of spinors. For these relations to be true ¢y and X
can be any spinors whatever, for we have not, as yet, made use
of the wave equation. When we deal with covariant derivative
then we can use the connection between ¥ and X as

expressed by the wave equation.
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GEOMETRICAL __ INTERPRETATIONS.

As these results have simple geometrical interpretations,
the geometrical aspect of this work will now be considered before
we continue our list of tensors. The geometrical method of
the following is very similar to Ruse's (12) trestment of the
geometry of the electro-magnetic field,
We have the four dimensional space-time with coordinates
x1 to %%, to which we shall refer as the underlying V4. At
each point of V4 the metric tensor components 9., have definite
values. The totality of contravariant vectors at any point P
in V4 constitute the tangent space T4 for which the quadratic
form is ds*- [#.] =" 42"  yhere [ $..], the value of 3..
at P, is fixed by the position of P and so is constant throughout T,
Let X2 denote the coordinate system in T4, it being understood
that the origin X2 = (o, 0, 0, 0, ) is the point P whose coordin- i
tates are X2 with respect to the system in V4.
Thus any contravariant X& in space-time (4) can be geometri-
ically interpreted as the coordinates of a point in T4.
The equation 9, X2 XP = o (3.14)
is that of a quadratic cone in T4 with its vertex at the origin.

If we introduce a fifth variable X° and make the coordinates

1 a X& then (3.14) is still the |
homogeneous by replacing X2 by e

equation of the null. cone and X° = o is the hyperplane at

infinity, Sq (say).  Now the cone intersects Sz in a quadric,

so/
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so that if we confine our attention to the hyperplane S3 we may
consider equation (3.1;) as the homogeneous equation of an
ordinary quadric. The cone is generated by lines through
the origin and each of these lines determines a point on the
quadric in S5, and a plane in the cone determines a line .
(a’ generator) on the quadric. Similarly lines and planes in T4

which do not lie in the cone meet Sg in points and lines not on
the quadric. Instead of considering configurationsin T4y we can
study their representations in Sge

Spinor theory is essentially a parameterisation of the null
cone or equally of this quawrice ALl null vectors of the under-
:lying space at P  lie on the null cone and they each determine
a point on the quadric 9., - We have four null vectors
A*, B*, " and T* which we now consider as the homo-
:geneous coordinates of points on the quadric. |

Call these points A B C and C

Fotr

Now the coordinates of the polar place of the point X® with
respect to the quadric are given by

X, = XP g,
and in fact, raising and lowering indices by means of .
corresponds geometrically to reciprocation with respect to the
quadric T
Thus/
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Thus the polar plane of A* has coordinates A, and hence it has
the point equation,

" + oA

A X = 0

&

But A, C =0 A, T"= o while A, B* = x¥ £ o so that
both C* and E:Iie on the polar plane of A* , while B* does not.
As C* and CT* Dboth lie on the quadric this means that ACC is
the tangent plane at A with AC and AC as generators. Similarly
it is clear that BCC is the polar plane of B
CAB - e
CBA c
A, B* a-C, Tt o so that B does not lie on ACC and we
obtain a skew quadrilateral ABCC on the quadric with the diagon-
tals CC and AB non intersecting.
The Pliicker coordinate of the line joining two points,
X2 and Y& are given by
S S O (3.15)
and those of the line of intersection of two planes with coordin-

sates ‘?a and f.c.

are Y, = $ % - 45, (3.16)
Duals are denoted by the ~  sign where
o~ ke adred
Yiis =S e X )
iy 4 £ ) (3.17)
Xw = _ a4 fared Xti )
2

with €% gkew in all pairs of indices and

234

E =

I

v
¥

1
el

g

h
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The lines X Yo are the same if
al-

b
atrcel
€

= ¢

FR

N..‘p‘_
X = - Y o

where ¢ is a factor of proportionality. The coordinates of
a line satisfy identically the equation.
SUiR, e (3.18)
A skew tensor not satisfying this identity determines a linear |
complex - if Z.. is such a tensor, the complex consists of
all lines whégk Pliucker coordinates satisfy the relation | |
AR i ) | |
or dually E"'X.;,= 0-
Through any point X2, the lines which belong to the complex
all lie in a plane which is called the "polar plane" of 6
with respect to the complex. Itscoordinates are given
by L. = iR |
A point lies in its own polar plane with respect to a linear
complex.
The tensor MZP = (a2 cP - AP C2) is represented in S,

by the line A C, its six components being the (dual) Plucker

coordinates of this line.
In this way we have the four skew tensors
M, M, N and XN
represented by the lines, AC, AC, BC and EC respectively

The meaning of some of the relations involving these tensors |

1k
becomes evident. For example (3,9) M A = O expresses
the fact that the plane A, namely ACC contains the line M.
that is BCC

b the plane B..
e means that

I |
intersects/ ﬁ |
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intersects the line M at the point C.

al-

Now M, = Nk are the coordinates of the

& g
polar line of M with respect to the quadric g, and the equa-
stion M* M, =0

means that these two lines M and its polar intersect. However
as M actually lies on the quadric it and its polar not merely

intersect but coincide,

M* N, - 2% shows us that M and the polar line |

Lie

of N with respect to the mull quadric, i.e. the line N again,

do not intersect.
As g% Q. ¥ O we cannot represent
@ as a line but as a linear complex. The polar plane of the

point A" with respect to this linear complex is

P =0 AT Qg |
but A* . Q, = - K A, by (3.10) so that the polar 1

2 -
plane of A2 with respect to both the complex and the quadric

is the same plane ACC. Similarly the two polar planes at each
of the four points A B C and C are the same so that the
skew quadrilateral is common to the quadric g, and the
linear complex Q,, «

From a repetition of the relation (3.12)
= < KN

e,

ed
we have Q.. ¥ Ru = K2 e

The/
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The left hand side gives the coordinate of the polar of the
line M with respect to the complex Q.. and as we obviously
expect it is the line M_, itself,

Clearly the linear complex, conjugate to q  namely @Q
intersects the quadric g.. again in the same skew-quadrilateral.
The six-vector of the electric and megnetic moments we shall
later find to be

™ e gt o TEY and it too determines a
linear complex also containing the skew-quadrilateral A B C C.

We may mnote that the line CC is the join of CC and also

the intersections of the planes A, and B, - Therefore,

for its Plucker coordinates we have either

ol O e
O ¥ =N B Ae Bl

As these are the coordinates and the same line X*° must be the

dual of Y, , apart from a factor of proportionality. Hence

we set =
I =p v
Now from the relations between the :null vectors we immediately

find that 5
=2( R K)

B (X E )2

X 50
and again Y** o

!l I!

Also, as the inner product of a pair of skew-tensors is minus

the immer product of the dual pair we are now ensbled to determine

the factor ¢- e,

have just noted that

%%er\g%ore | | ' |




Therefore

We take the <+ sign for reasons that will be revealed later.

Thus we have

a =4 R  adtecd
C¥ C"= ¢” CT"= i€t (A, By = 4, B,_) (3.19)
S =ineg '
A -~ @ =4 R p 4 a
S 2 EQ == BT e 670N e (A5 B S
=4 ¥h = g
we can take the duals of both sides and obtain the relation
— s al- ar
2R Q. = ey Ui
=iy By g

Therefore we have the simple result that

6 = 4 g (3.20)

This relations means that the polars of the lines of the ignear

complex ¢ , with respect to the quadric form the same complex.
For the lines x _, belonging to Q . satisfy the linear

equation & X = 0. wor Q%"= o0
The polar of any line X .. of the linear complex has coordinates

[ el ~
alr

But as Q
an‘

P P}
1l

al—
a0 also .
Thus the polars constitute a linear complex which is the same

as the original one if Q‘b =0 Q"

and as we have seen such a relation is possible only if ¢

From/
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From the form of the tensor Q“b namely

26K Qul =108 e 0. G A,B -~ A,B )
we at once see that the linear complex q contains the
congruence having the lines AB and CC (which are the intersec-
:tions of the polar plane of C2, CP and of A2 and BP respec-
ttively) as directrices. The directrices are polar lines with
respect to the quadric and from this fact we have just shown
that the polar complex is the same as the original and it again

contains the same congruences.

The tensors M2P and NP are proportional to their duals.
These represent the coordinates of self-polar lines. Let Xzb
be the Plucker coordinate of a line and X, be their duals, so
that the polar of this line is the line with coordinates

o s ac

The conditions for the coincidence of the line and its polar,
that is, the conditions that the line should be a generator of

el ~ ad~
¥

the quadric is £ e XE wn W X

The value of the constant again follows by considering the length

of the six-vectors

b~ " ad- ' =
X T K 1;22 PR TR il
- = - 1
Hence the line Xab is self polar if
xab g 'iab .

In/
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In this way we obtain simple relations comnnecting the tensors

2P and N8P  with their duals. These are

meb - _ 4 §EP )
) (3.21)
Neb . . i f[eb g
and previously we'had_ @ik =4 yigab )

Here as before we have shown the sign of i which is immed-
:iately obtained when the vectors and tensors are expressed in
the special coordinate system.

Thus, given two different spinors, one can form three skew
tensors which are quadratic in the spinor components each being
(-i) times its own dual. The only symmetric tensor which can
be obtained is the symmetric part ol P*"  which however
proves to be merely an invariant times the fundamental tensor
namely g T These tensors together with their
complex conjugates are the only types of second order tensors
quadratic in the spinors which we can derive from the given
pair of spinors.

Finally it should be noted that the skew quadrilateral on
the null quadric is in general non-degenerate. To produce the
Coincidence of amy two vertices one had to have Yo = A
and this makes all four vertices collapse into a single point.
This case, Y% X is the only degeneration that might possibly
occur, but we shall see later that from the physical point of

view this state is never reached by an ordinary electron.

THE/
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THE DIVERGENCES of the NULL VECTORS.

Now we leave the geometry and consider the consequences of
the Dirac equations which have not been used as yet. By
appealing to the wave equation (2.35) we can evoluate the diver-
:gences of the vectors A* , B*, C*and T*

Thus div A* = (A*), - **P(Ranlo+ Xi Xorx)
= Kﬁafﬁ) Aot L’*'i";/'t;)

-« (K-K) (3.22)

while (Bk)« = o (K-K)
Agadin (g, = o0 (Ao ta ¢ Yiix Ko)
= (&) Yo+ cRAP (‘f’;’ Ta:.a)k Xa
(remembering that raising and lowering of a spinor index is not
in general commutative with covariant differentiation) so that

from (2.26) we have

(et =t a, (3.233)
Henceforth we shall omit the star on the vector cP: which is
proportional to the sum of the electro-magnetic four-potential
and the gradient of a scalar (2.24). For the complex conjugate
we have

(c2 ] o Sl (3.23p)

which is the current vector of Infeld and ven der Waerden,

The/
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The other vector (A’ﬁ- Bé) has for its divergence the non

vanishing scalar - ax(K-K).

VECTORS INVOLVING the FIRST COVARTIANT DERIVATIVE of ON& SPINOR.,

Vectors of this type are

Q-lt = W* qu-&. g
H g Y‘Mb Xy g (3.24)
E*‘ = ‘f"{fA ¥ g
Bl = A° Kups )
together with their complex conjugates.
From the identity (B Al by differentiation we have

f.‘l& Yo + ‘Y* ‘Y‘.“‘ =0
so that v Yue = — E .
Similarly o G
These complete the list of the type under consideration.

Differentiation of the relation ¢y~ X« = K leads to

the relations

Gu ¢ HL =g (3.25)
The divergences of the second order tensors M N and Q can be

A A h

expressed in terms of these new vectors. Thus for @ we have

the divergence (Q“‘)k - —(q“‘) which from (1.5) and

L8
the wave equations (2.36)
. - Lk
= Aok i fAj.o'f’o'f' xvq’tﬁ ""*,;r ¥ vhk = K,,,v
- - [ (i
I L}“‘ g‘:_ﬁ R GLM)‘F«* o eAr (*d_xi‘)__l[qi:‘_ H )
4

sl et Bl et al
_;__(q‘ = H‘)ﬁ < e B (3.26)
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e
For the wvector M we have
. L
= L jpv a A o
ST G R L

s R;hb‘(gbk ‘bv = q”"."dg—t_‘();',_ zv‘rt’;ll(‘.“y};-f L?& dﬁr‘-rf)

- FYoaaete day Mt (3.27)

Likewise for N*'*

4 Lk A4 : oo s
dwr N = (N ]Ax = 'f'duz. G‘i;l--a U'kﬂs Yp*"l” e L PLﬂ‘-[’r‘\m,

L e R e e
+ ‘1"0-“.;.,_ 6“’;9(';‘1’94’4‘* ‘l’eu\. 'reg.)
= ELT A <L ‘C-'L" Lq’k NM' (3028)
A B and C we

As M N and Q have been expressed in terms of
see that B F G and H must also be simply connected with these

vectors. In fact we have
e BNH\ = ¢ﬂip "]"fs?(é o ey (" 'fvt«k TR A ‘\’v)
= Y. Xy ( '1”; ¥Yia + ‘«P’;f.k ‘Pv)
= K E,. (3.29)
while B AT e = “‘nép Yo Xe Twév fx Xine ™ Xin)
SRRl (3.30)
w s oo P o (e q)
Also A.B 1x ° G, Xa 'tp coll s (7S
e Xl 9 ptics AR te)
(3.31)

RH,&"I’ K_H‘,h_’ )
)

and similarly B R ik = K Go + KQa.

By/



- 56 =

By additions we have A, B . + Boa%, = (. 6")*

n

K (H**ﬁﬁ)f K fﬁh *Eu]

SR e T
- (%), as we should expect.
Again Cn €7\ a = Rl Bt ¥a % s (f'r‘u s ‘F"' /{"l“)

Yo X2 | ‘i’iu T ‘l’ifcﬂﬂ\)

“H, K 9 (5 e i x% e )

KW, Ry - cp kR, (D)

From (3.,25), (3.31) and (3.32) we can find H, and G, in

terms of the nmull vectors and the scalars. For we have

2 K H, = A BT A Ta Ch b KK+ gy I) (3.33)
and 22X G, = AR (Kie = Ha)
G A, Bk = Culin ﬁ“‘:& '*"4’13.")
WhiCh, as t A,._ Bwh.‘ = = n-u].h. B‘ t (.K ﬁ)“t
and Cw Sy & e s U\'f‘)&

can also be written,

2.|_(C1~ = nﬁlt B‘ + ‘E'h-ltk c” = T( tx)k'— "-'4)*\ K) - (3.34)

The divergences of these vectors will now be found
Dl B = B s 4 W e Yo v vhs ‘I’-M.)-

Now from the second order wave equation (2.37) we have
@ * ] P & (3
‘&[Ju‘f'“‘) = ‘V«[(“*%)‘f‘t—gﬁa‘ & f:p‘l’.-l
e B W
2

The/
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The other term g“‘ Yok Yay

E.L‘Zu( ‘P*M. Yarr x ¥ 50 Ll’a.ljg)

k[, .
%9 [( "Y«CPA"' Yein "’"){' L‘qu’&"‘t"lt Tn-.) L Yo\lh]
= Lk, 4 . o

I A R A T TR e PRI S PR

SR BN,

Therefore combining the two terms we have

7 1 : £ . )
(4], = =gt e SR A )) (3.35)
Similarly (F{)z ST W E £ Fu MM, )

For the divergence of 6* we find after using (2.38)

(6* ){ = }“ (!’"“ th&.)t = 3’“ VY Xaja +9° }M Axiry

I

3‘&1‘?‘!4 Kaa+ 97 [(1"""%) Kot 2. F vty U.-"nia-:xr:,

kL

3 K 24 LN (by 3.5) (3.36)

h

Also (H()( = ju('“fqu x«tuo.)* X 3'“ *F“lbﬂ.
= }M Y90 Xaim + X [las- %) g f P e |
:.}M..r““?{_ﬂk-r(z-a"_%)ﬁ.._é;ma&
= (Qr{)y_
As Gox Hg = K by (3.25)
Gu,e + Hiaw = K, x4
and hence [q‘)t = 4 }u‘ lK}_(& = (H")x (3.37)
SECOND/
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SECOND ORDER TENSORS WITH ONE COVARTIANT DERIVATIVE,

In this class we have four distinct tensors defined as

: )

T T )
= , 4 ) (3.38)

e = K maier g

Vi = f’;m 3

)

Wi = h o g
We require the divergences of these taken with respect to both

of the tensor indices.
. z . 4 - 1 E o .
First consider (T .A)L 2 207 B AR eV A

: : ¢ ph
Now Y = Y im+r ¥ T o
= .*;!"' 1k T ‘f‘; (. Ji K.r-r).)k

a"’bfw " -"—“;_ Fuus

¥ o

x- - A :

Therefore \T. ,k),' = (“ ‘*7‘9) ?’”.; SR ("‘x“)a“ =
L T

+ -'—:_ Rf.,.f.r.,k .2 hf;aw T e ‘lu "l',

- ~49AH%*{F¢B‘-§KMBI (3.39)
whepe: Rer = 3" Bigen and use has been made
of the fact that Ricia * Bocpa® Bipow = ¢
A similar result holds for e

5 AL (3.40%

(L2), = «Ba- «Ha- Batifu

Z
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If the divergence is taken with respect to the other index we
AL . ~L
have (T )4. 3 LTJ} - % )4

Tt SR X : & :
= (‘!uﬂ‘a,; ¢t e t ¢ . -p”,,_,_,)

_ A & ; R A . , £, v
= 3-’"? L v ,\"., "P”p.-\ + ¢ A ¥ f(?""_%)"rr* & FL’.Q"" d"’:,‘-’ 'f’.]

L

mb : A A& Lie v
T iy @ R)BR R ¥ T ey
5 x
The imaginary part of this is
£ F'L‘f" [¢* ¢* A e e yo o+ 92 T ]

4

which by interchange of dummy suffixes in the second term

Lie 6_'" 4 6__,,.. ) G',Crpa'.-h, l

v Ap v

v &
P ¥y [o%s @

£lr.

. . A 2 Ly
= :'-Fqu ‘rh‘l’v["j%s‘: "_1;.-1‘ "'_*Ju,‘-"" e “J‘A,'-G-P'G*&¢1
[

o 1 r . KL QP
ﬁ;F,tfh ‘f’}‘i’) [.__3‘*4‘5' s a o g_ Spl

IS

+ 3.41
Ey 515 BE (3.41)

AL ’
A similar calculation for the imaginary part of (U J,, gives

e Mac ), = -5 Fagne ALy (3.42)

The divergences of V and W are as follows

s

n

A ! - N r
Ku @it v X7 T o Via

(<4 X

™

"

A b §
+ Koo ¥ ) s R

£ : e AT ; 4
+ /-(>'(T AP(‘]"PI-‘K']‘\P[JZ—RMJ*G.'*P d"a,,,.-A._; F‘LAS":]

. - ; . b
= ‘-‘*{ V!,g = ey 'f‘,- ‘)UPM!. "'FA(O\X’\),& = _"_,MJ&— ¢

Z
iy Wl - wE et - R TR) | (3.48)

Similarly/




- B0 =

similarly

(Whilg = -iq Wiy + 2 Fu-a, -

i G‘ Fao + Rex ) (3.44)

b el

From (3.43) and (3.44) it follows that

(Vier Wha), = d (W +®iu) - 2 ¢t P - ¢ Ran

The divergences with respect to the other indices may also be

determined
[\/M)L= ‘3M(V“-f)g z 3#(7(*!! "—kl\ﬁ " it XAGJ"-“; 'f‘h"”")
=gt Wl Pt T D‘“’%”’"* L P ettt e v 1
. . . e £ - =
__j,.L Xyg ok A i (22 -%)cﬁ iFM(X)\ “’Aa,{- SHEE ie ¥ ) (3.45)

e o, ) _
W );= b (“’kf ){ 5 }M (7»4 ""‘Ar/t;’-lfb‘* ‘f’h"_kw?‘,;,ﬂ)

»f")‘f" x .

j# Pau o Aip T "‘*AF[(M‘—_ 7 & B 9 ek ﬂ"ieé‘xé:}

A
&
Ap = ‘ oe
™ far " PX!'*H& *(2"1"% )CAdf' ﬁa(?"x g "'Pml o't ),t‘;) . (3.46)

These expressions (3.45) and 3.46) introduces new tensors which

do not reduce to very simple relations
(V'u-r ﬁ'w‘){ =2 (24‘-—1; ) ey }Mﬂx’\u ‘Ax,-i 7"’;,-';-.)*(7(;-;,; o2 ‘;”)(M)_I

AXP g djeo dAp _# af T
-r-.;:."';l‘[‘f’.i“- rt"r‘-‘x"’%\‘rwt"}‘""'tx"'},

after raising, lowering and changing dummy suffixes.
) e
L

T, Aiiﬂ' /(’I" lﬁf’ -
Now (6' G‘)‘c‘r S5 e 0'4} 2
®AF L L e 5_ AP om0 _ARr p Aér Lap - Air)
:([‘ }H'Sr_“} ot rc-r(r" 9 S!“' (O ¢ i +6 ﬂl;rq- F
fhn : ,
Z by oo F4 since F,, 1is skew.

Hence for the third term we have
S T e R
_ . ct FA‘ :

The/
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The first term which is §™[ %' e'aorf iy vk, 7 o]

= ,f"‘ [( 1“( z’ﬂt L {t Fl) futar; 1"‘"" + Xl‘fp rkif“( f’i"{ Té}i +£¢t f';\- )J

e W ﬁ;#(vﬁfﬁr W ‘."*') = z}"" (Koo %2 .y”,e] 5
We shall just note the result of reducing the last term here, it
is

--*:{akff»c’f* BYH, Ff_ c*y ot -~ “:va*}
KK

or from formulas (3.50) and (3.52) below, this is

RS
(B W _E, a**).

=| v

Hence finally we have
lvﬂ+w )-L = i‘ﬂ&/‘“«tﬁl“‘) + “"CIF-*-L'

L%
- e T ne A
f(""’"f)‘:*—' (Eru = Hg W )

PRt

The expressions for these divergences are not so simple as

those for T and M.
The contracted products of these tensors are easily found

and from these one can express the tensors in terms of the

mill veciors. Tie have
T‘.r"’ix = ¢l w Vit e
= 9 kLXK
= K H, g
3t B = A ¥ =0 g (3.47)
Pl g7 e A% - KEe, g
W, . Br= ¥ T X 52 2 )

This/
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This corresponds to a resolution along the directions of a set
of orthogonal vectors only here the orthogonality is different
from the usual type for the vectors are self perpendicular.

These results suggest then that
1 = =4 = L e 1
B"H, - G E sl (3.48)
This is easily verified, for by (3.2) and 3.24)
(BJEA B E‘E‘_J
= "-Jafs 'V)'VF '}V':ue. Xi — “"l,\,;, f“?f"" f"‘:hr. o
ot ot e (e B )

Y ehe e at F

s

S b
Likewise for the tensor Bl we have the contracted products
Uiy A, = © ;
UL, B, = B g (3.49)
Uy 6, = 0 ;
Wy B =KX )
whence it follows directly that
Bl gl ver 0 Eye (3.50)
In the same way
Vi, A, = © W, = SED g
vi B, =-KE, W, B = 0 g (3.51)
V.G = © W' c, = - K G, %
V.0, . ~-KH, W6, = 0 )

with/



with & v = - A'E, + 'c‘ﬁ‘E g (3.52)
E oW, = - B'F, + TG, )

For the contracted tensors or spurs, by appealing to the wave

equation we find

™, = mt - ¢t ef vt = P (%)
Therefore pii B % E ;
Similarly Ui e g (3+58)
Vi = g g
WL = 0 %

Although there is no limit to the number of types of tensors we
could form, this list contains all the important fundamental
types including all those which combine to form tensorial quan-
:tities for which there are special physical interpretations.
We have not concerned ourselves with tensors above the second
order and of those of that order we have studied two classes.
There are others of this order such as ¥” .« X. and ¢77¢ ¥~ =
involving covarisnt derivatives twice over, but these are of no
special interest and are not studied further. However the
contracted scalar derived from the latter appeared in @36) and
by equation (38.37) it can be linked up with the given tensorial
quantities.

At this stage we may conveniently reproduce the list of quantities
considered in the special relativity case. The component of
the vectors and tensors will be written out in terms of the

original/
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original Dirac notation, that is by the four component
function and the «-matrices. As we have already noted, for

the transition to pseudo orthogenal axes in special relativity

we have : (5 £ T
X,
¥ = YoRI S R
% y'
| 4 | _“’iJ
with
ga R R
and T O I
i:& "'(-f_:';& -+ 1—“‘7‘: %ﬁa)f 2(%:;"’“ *"i;_ ?A)T

The Dirac equations when written in full are

Tr, 2 -y Fae ‘*’w,. = f!h + ?Jl'w At g \3 55)

To® ~hin 2, gty ~ Ry =0

A .
A — + ""” - I‘V._“- + "/”’ b 'f/”,' — M_\F, =0

A S P

A.‘: Yius 4‘:4}""-—?]’_“4—{”4_-—0{*’4:0.

The various quantities will now be expressed in detail and

also in matrix form where

v represents the column vector

e is its complex conjugate

¥ is the transposed vector (i.e. a row vector)

-fj' is the adjoint or row-vector with complex conjugate
components.

Then



Then by using the values of  #%** (2.27) and noting the
rules of lowering spinor indices we can write out the quantities
in terms of spinor components and then rewrite these as ¥ -com-
:ponents. These bilinear forms are expressed in a matrix
product by means of the x-matrices (which are written out

in (2.35).

-

ﬁJ\
=
n

o |
&
+
;(—i

=<
U]

L W) (1 L ey ) Y

( 5,
(
E \1"2A =n?; g+ <Pt PR R [ R x2 %) Y
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From geometrical considerations we found the relation (3.19)
o =g bt Lo A
g T o et ¢ =0 €7 (Ch By = BB
2

By substituting the above values in one of these equations we can

determine the value of ¢ - For example
GG ™ g T DR PSR S TETE E)
This gives : _ il - wwll&Fh+nw) -4l vt vt )R —Fty)

= & r L, = ?Lf'y)t-‘iff"g + Wty ) = L.'_{;I ‘f’,,._"‘?;ﬂ_st-?‘ fat ‘th'ﬁ;—)
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This equation is true when  f=+ ; this enables us to
make a suitable cnoice of the sign of V=1 to be taken

so that all our results will be consistent.

The list of quantities shows us immediately that there are
two types, those which involve the ¢ -function and its complex
conjugete and those which involve twe ¢ -functions (or two
y -functions). For the former some physicel interpretations
may be possible, but, as far as the theory of quantum mechanics
is concerned at least, no interpretation can be given to the
latter. To the former class belong the vectors, A B @*
and H™®

the scalar K

ok Ak

and the tensors Q™ T® anda U
all with their complex conjugates.
The latter class contains the remasinder, namely
the vectors C* E* ana F*
the tensors M“* N* v* ana w*
together with the complex conjugates.
In the relations among the quantities in the first class the

potential wvector ¢* does not occur, but in the other class,

where ever a covariant derivative appears there is always a

term with =+ ¢ ¢ ~ replacing the covariant operator.

PHYSICAL/
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PHYSICAL INTERPRETATIONS.

The vector J* = -ec e s % BT j (B3.57)
reduces in special relativity to -ee ¢ gty
when A% ’98%;654): (-, ,~=c == 1)
which is the well known form of the vector which gives the
density distribution of electric current and it was introduced

by Dirac (13). As already noted, the vector is non-divergent in

the most general case.

The vector g% = 4 J2 e e ) (8.58)
L
reduces to A ¢ vty
41T
when (o' o~ ¢ o) 0 (i ML B R T Lo ey )

This is interpreted as the density distribution of the angular
(spin) momentum of the electron. This vector was first mention-

ted by van Neumann (14)

The scalars. )
"~ (K + K ) = V; reduces to ¢ oL ¥ 3(3.59)

-1 (K - ¥ ) = V, reduces to ¢ «utatdel)

which are the well known pair of scalars in the Dirac theory.

From (3.22) we have the divergence of the spin vector

. 1'“ P
diwv 3 = ~mC V2 )

3% )

7 (3.60)

- L te tqm_
There is the real six-vector JS1 - Ae

LW mce

which in the coordinate system considered becomes

M /




M2 R L A O O ete
[0 [ N

Ml - e gt 4 <y ¥ etc.
G T ™

(M=3, 3@13.M92) are interpreted as the density of the component
of the magnetic moment of the electron which
M2, M24, M34) give the electric moment density.
This six-vector and the two wectors V; and Vo, were discovered by
Darwin (15).

This transition to special relativity has enabled us to
recognise immediately the fundamental interpretation of our

quantities and to supply the appropriate numerical factors. As

A

defined here the new vectors J* and S the scalars Vi and

Vo and the six vector M  are perfectly general and the rela-
:tionships we shall derive will be worked out using only the
general relativity results we have already given.

The resolution of the electric current into its polarisation

and convetion components according to Gordon's (16) method can

be effected c(™) =2 (¢¥*- T*) which from (3.26)
A Vz A
becomes 1z T —
S el fud 2 oBT =t kot e B o B S
2 2 Es 2z
i A —d 1 ‘“Bi)
o (gt = EY e b EOE T
A VZ
A
or J'l =rc (ﬂ""& J* + J

= ""polarisation current" <+ 'convection current'.

The/
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The convection current vector is

7 8, 3
JE = aiea, B = H - 0% E

) (3.61)
/22 «
Ak) : ; o
c@ﬂl « from it form has zero divergence and as J“ is also
: A
non-divergent J must be so as well, This fact gleo follows
from the result (3.37) that (6%), = (H¥), which immediately

shows that (F), =

Certain reletions between the vectors and tensors have been
demonstrated at various times by using a special set of matrices,
These relations are perfectly general and they follow directly
from our previous results.

For example the length of the current vector is

5
I° 7 = 2{ec)” (A = B j (4, + B )
Vi < v
= J(ec)® & K
2 2
= (ec)® (V] + V5 ).
(3.€2)
a relation given by Darwin (15).
: = LR
The length of the spin vector S is
= § = 2 Y
S : Ekﬁ = B ) ( &, - B, ]
S (3.63)
( L) = S 3
The contracted product of these two vectors is
' V]
5's, = 2ec B ( & % B)(4,- B)
[
(3.64)

=0

so/
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so that the current end spin momentum vectors are perpendicular.
These two relations (3.63) and (3.64) are given by Uhlenbeck
and Laporte (17).

In his quaternion notation Lanczos (18) found four perpendi-
tcular vectors zll of equal length. These are essentially the
same as the four vectors

(24
7

~

@] W
~ -
~— N — —r

e
(¢’ -

Ql
~

where the last pair are imeginary, having mno direct physical
meaning. These vectors are perpendicular to each other while
each is of length z2KK. The first has zero divergence and
the values of the divergences for the last two are, by equations

(3.23) respectively.

These venish only when the four potential is zero which was the

case considered by Lanczos.

For the length of the six-vector of the electric and magnetic
moments we have

M/
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i = 2 A — Lk P~
M 52 (Q -_2@1 ) ( Q- Q)
= %22 (KQ + K ) by equations (30.1)
qt
o slend 2 e
= hS% e (Vv - Vv
s 02 . 1, 2 )

cf. Darwin (15).

(3.65)

The other ‘invédriant derived from this six vector is its inner

product with its dual. This is
M, =82 (G TN g - T
2at
But Q“*= 1 Q% equation (3.20)

g*q = - ¥ (3.11)

~ ik -_ 2 A = ¢k —~
so that M o, -—S_.TL_‘_(Q,+Q)(Q“- Q)

P g
= 621 (- K + F°)
2 o

=022 Uy Vs . (Proca. (19)) (3.66)

This six-vector can be contracted with the current and spin

vectors leading to the following vectors
LR =

J;,-”lm =82ac (A{+B{)(Q-Q)
= &% ¢ (_Kﬂ(ﬂ*«ﬁ‘)-f_f(ﬂ«'g))
% [ 2 )

= _22 V2 S&_

m

Also/
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Also § M = en® vi(a
a*ne

= -erax (+ B - K (A*+ E)
2

Err‘“mc 2

¢ B )@ erng )

= o v T
167" mee (3.68)

Cf. Uhlenbeck esnd Laporte (17)

Similarly for the dual six vector we have

~ Lk
— 2 r n’“‘
m
s, A% = 2 v 4°
16 T7mee

FromU and T one can build up the energy tensor possessing the
correct reality and symmetrical properties. This was found in
generalised spinor form by Infeld and van der Waerden (7).

In terms of U and T the required tensor is
1 — : = - = £, =
‘7: T £ ( Lo = Tf& % Thl = Tg ‘- U"l % Ufi' Ub.("' U.ut)
3 (3.69)

because, if we form its divergence using the results of

(3.35), (3.40), (3.41) and (3.44) we have

o= . Vi
(JJ‘L" g_li__i_@— ) 24 P (A" % B)

s a (3.70)

after/
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after the constants of proportionality between Fg, and Ay

A and J' have been introduced. Thus Jj

A B
satisfies the usual requirements for the energy tensor.

Its spur leads to the scalar

J-Ji= 666 2. b (E + E) by (3.53)
= - me® Vi - by (3.59) (3.71)

z

which in ordinary dynemics is «<° times the invariant mass
density. We may note that in special relativity the energy

tensor takes the matrix form

Ji ) [ ‘f’f/s't"yu‘, _\F*M‘ /5,11, 4 ,Lvmky+/’r .y“b- \rr.v /,rny)}

F7C

with B ety Sty

The energy tensor in this form was first derived by Tetrode (20)

Also the scalar J reduces to - e ¥ =Y.
This lends support to the suggestion of de Broglie (21) that the

proper mass of classical theory should be represented in quantum

mechanics by the operator

= Wu(.f_

of which the eigen values are =™ Then, assuming this

idea is correct, we have the mass density distribution
AR CR IO R ¢

in agreement with the usual interpretation of the spur of the

energy/
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energy tensor for a particle. Therefore, in general, the
scalar -mV may possibly be interpreted as the invariant
mass density of the electron.

We may have to make one or itwo remarks upon the origin of
this speculation of de Broglie. By comparing the second order
wave equation in his theory with the Klein-Gordon equation, Dirac
showed that two additional terms appeared which corresponded to
the interaction of the electro-magnetic field upon an electron

with magnetic and electric moments represented by the operators

Sy
“h e ';’.: +he % o
o4 T P G Tmee

Although the comparison was admittedly artificial it was never-
:theless unsatisfactory to obtain a skew-hermitian operator (for
which the eigen values are pure imaginary) to describe a
physical quantity such as the electric moment of an electron.

This operator for the electric moment arises from the commutator

2, z=pl

=21

where P’ » PL are the general energy, momentum operators.

Through neglect of the fact that P and =z«  do met

commute, Lees (22) by directly squaring each side of an equation

containing these operators, one on each side, naturally found

no electric moment.
De Broglie made the suggestion that the proper mass should
be replaced by - % in quantum mechanics, so that when

the two ysve equations are compared an operator -~ <+« is

finally/
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finally attached to the representatives of the electric and

magnetic moments, This then gives real densities for both
these moments which are

+

-y Ty and - ¢ iy respectively
and three together form a six-vector. From classical relativity
considerations Frenkel (23) showed that the magnetic moment must
necessarily be accompanied by an electric moment and that the

two constitute a six-vector. In this way we obtain the same

six vector ¥ " in agreement with Darwin's work and with
Gordon's resolution of the current so that M*  geems to be
quite correctly interpreted. These two successful applications

of - -« as the operator representing proper mass give con-

:siderable value to de Broglie's suggestion.

There is also the dual to % to be considered. This

tensor is
~ et
e e (Qutﬁ Qu‘) :
A V. i)
S (Qm + C{u‘)
V2

If we form its divergence we find

(™), = coi (&%, «@%,) which by (3.26)
= - — A
=,:\A‘.:L’- (‘_:11_ H-e._, DQAZ__ "{Bl{q._(i!‘__‘jz_‘_atﬂ _+={B‘)
A vz S 2 7 — 2 2z
saedie gt &gt nds )
ot Jz
or ) e
G(Jﬂ&)k_{_ __/iv_e._ (H—C-}L-i-H-*GI )._."0
G
Here/
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Here the first term which is the divergence of the six vector
dual to the tensor <, of the electric and magnetic moment
can be interpreted by the principle of duality as the polarisa-
:tion magnetic current, while the second term, or an analogy
with the electric convection current J/“ may be taken as re-
i:presenting a magnetic convection current. That is, the total
magnetic current vanishes, the two neutralising components
being

the magnetic polarisation curremt X~ - o () (3.72)

and the magnetic convection current
10 §¢+rH- 5% ) (3.73)

T e

This interpretation is due to Zaieoff (24), our }'( in

special relativity reducing to his vector

A + + ) Lk
j = el ( i o kol Xy P — ey el oty Ay Yk } 5

GTT P

The electric convection current has a corresponding form

: 24
g ke (R Y ¢ tin) 3
\ ST T
which shows how 1 and j’{ are similarly derived from
f
the two inveriants V= gy and V- Yt udste

respectively.
Jehle's Equation.

From the second order wave equation, Jehle (25) has deduced

a linear equation involving only two-rowed matrices and a two-com-

:ponent y- function, his equation being valid in general re-

:lativity and for all spin transformations. In the wave

equation/
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equation appears not only Yy but also its conjugate ¥.
His equation runs

vy =¥ (r= AL ). (3.74)

The theory of covariant differentiation and of spin transforma-
:tions besides the properties of the 7 -matrices (2 = 2) are
developed along the lines of Bargmann's treatment of the exten-
tslon of the four component wave equations to general relativity.
There is also a matrix « which makes x Y hermitian

and leads to a real vector.

which, as it is non-divergent, was taken as the current vector.
As this equation is based upon relativity principles and
is invarisnt for spin-transformations it should be contained in
the spinor theory. In fact we can straightforwardly express
Jehle's equation in spinor form, for if it is multiplied

by o we have

(« ) Vo = o (xp)

This is equivalent to the spinor equation

The agreement

(-’_Aaqs ‘f/ﬁ“‘
(this o ig now the old imaginary constant).

of these two forms is easily tested by teking the values of

A

the «- , »* matrices and of 7 ip in the special

relativity cases. So in Jehle's theory instead of two spinor

equations/
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equations to represent the wave equation we have only one, and
only the one spinor appears in the invariant theory. For the

second order equation we differentiate the first order equation

with respect to 4 multiply by — «¢<¢ and sum.
4 - 24 2 . :
e ap 'Iyﬁ-’&f. = = egtE Yare ri‘t( i o e g 'f"'u)
- « oA Ya P + r"&? ‘Pirﬁ

S TR T R A

By changing the dummy suffixes 4 , £ on the left hand side

and then adding we obtain the second order equation
a AL o

7 o= 2y g, Ty (3.76)
This is equivalent to the Kléin-Gordon equation in the first two
terms but the third térm expresses some additional reaction
between the electro-magnetic field and the particle. We note
that it is the potential four-vector which occurs here instead
of the field six-vector.

As we have only one spinor, the only scalar which is its

length,is identically zero. The sole vector we can form is
== et gt (3.77)
which is null. From the wave equation and its conjugate we

deduce
der 8 = EA’“ = (.'.'fk‘;“ﬂ '-P;"*)if’ﬁ + fr&iﬂ ‘f’prk’f’é

: (.Lty")-fp P L

This/




- 8] =

This mull, non-divergent vector is in fact the same as Jehle's
current vector which can easily be shewn to be of zero length
by using the special values of the matrices.

There is one quadratic second order tensor

e TR S 2

but as this contains two Yy =-functions we cannot, in accordance
with accepted quantum mechanical principles form an electro-
magnetic moment six-vector, although, of course, both wave
equations introducing the conjugate function ¥ as well
as y do not conform to the accepted principles. There
is the tensor Thp =i 0 Gy W e  as before
from which we might form an energy tensor. In fact we soon

find 't‘:h-a-t (.T{J( T T{*)‘L Sl FX.& Sk

But the divergence with respect to the other index does not lead
to a similar expression because the field strengths do not appear

in the second order equation. Instead we have the result

P 2 Nt
(Taﬁl*‘ih" dﬂ(”‘*"'N"‘)
For real and gymmetric tensor Ji
4 . e 1 = A F.A
JL e s Lt SO O et

has its divergence

= A A
(7ﬁ_){= ErHMJ-l*' L e A‘L(N-_é-fN.‘ﬂ_)

Although 5i hag the correct symmetry, the extra term in this

: - £
divergence relation mekes it impossible to interprete T

is energy tensor. Also the scalar J would be zero.

This/
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This wave equation does not therefore, appear to contain much
of physical significance., We can examine its connection with
the Dirac theory. Normally Jehle's equation is to be con-
:sidered as perfectly distinct from Dirac's equations, this one
equation is supposed to represent the state of affairs complete-
:ly. However in one special case both may be considered to-
:gether, this being the case when there is degeneracy in the
four component theory. It may happen that the two Dirac sys-
:tems are equivalent, that is

OJ‘.&;: ‘Pim = ale

may imply that gik<e 7({‘“‘ = duy:“

The conjugate of the second equation when remodelled is

% : & o
a* Kiw + A T apl = =t

“p
This is the same as the first equation when we have both
(a) ‘Vu; = Ku
and (Db) ¢, = o

The condition (a) supplies us with the case where the skew
quadrilateral is degenerate, the four vectors A,B,C and C being
all coincident, but such a case is permitted by the Dirac
equations only when the four-potential is everywhere zero. It
means that the last two components of the Dirac  V-functions
are the conjugate of the first pair. Hence if there is no
external electro-magnetic field, the degenerate Dirac equations
coincide with Jehle's equation for that case. We at once see

that we have a mull current vector,

&
TR e Al A

while/
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while the spin vector vanishes.

Ak
The tensors ks M and -N‘“ are identical while

B 3 = HA = "'Gl""t = -FA

For the electro-magnetic moments we have the mull six-vector

Ve e T (el )
o Va
with (ﬂa)&, = .E,Tri (—Ee—,?,a(ﬂ{-* .{::'I— &a{ﬂ'{)
a Ve

so that the convection current is

il -
$% = el Eemt) which is also a mull vector.
vz -
A . .
As TE. = Uy the energy tensor Jx becomes identi-

:cally zero. Hence we see that this degeneracy is a highly
specialised case and it seems of little physical importance.

Certainly it will not apply to any ordinary electron phenomenon.
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THE TENSORISED DIRAC EQUATION.

The world vectors and tensors we have congidered are derived

from wave equations which are spinor equations, namely

(3.78)

hi
i S

These spinors can be used together with the spinors ¢ and X
to form world vectors. The vector

._/Z/‘t PR o (T;’:_-_, w0 Mg }lf,,) (3.79)
is the expression in general relativity of the vector due to
E, T, Whittaker who showed that the vanishing of the vector was

equivalent to the four (spinor) Dirac equations .

JL- = 0 (3.80)
supplies four homogeneous linear equations in T . T A; A\,

and the determinant of the system is

) ; : kv
A = l Q‘*‘v\‘)v {T‘hav v, G‘A'v x-/ e "* x«]

where £ = 1, 2, 3, 4 supplies the four rows. With the

summations expressed this is

& > l d_lit % Ia u_.}.i:. ‘(’- “_-tin% +ﬂ_1ki¢. ¥ s ki Z, + rk'nl- F 48 u""‘;x, + ,Ai.a.?(_a \

To evaluate this, first

multiply column 1 by X, and add to it (=) times column 3

[ - ¥
o 1, ) 4

so/
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so that
A = il l G"*h[ﬂz&“ f":.z,) r*" (ﬁ 2,;- Y’,_;(’) a““'}l, _r_cr&i:.,'(& a_é’n::ﬂ'r +‘.ﬁ:'a.’r'-!
(x.)*
= (7;2, Y#Kv).‘] d"'“;' &_“ e ﬁ- *.”K. + ghiz X ‘J_,Jti.lx’ Rt l |
(x,_)" :
From column 3 take X; column 1
] 1 4 1 x 1 2

and after the central columns are interchanged we have this

simple expression

A= =l wrRdE et a** ot i

Thus we find that A is never zero, for 7, is the now zero

component of the fundamental spinor of the spin space, -

¥ X, =K = Y<K is a complex scalar which never
vanishes, (exce;t in the degenerate case which is physically
unattainable) and the determinant

AQ R FhE u-*i“ l

| @
is the one which occurs in the correspondence between world

vectors X  and spin tensors w;,. and is assumed throughout

the whole theory to be non singular.

Therefore the vector equation

e Ly (a= 1to4)
necessarily implies
T, 0 (= s 2 )
s S

o
These give us the four Dirac equations, and to obtain them in a

form/
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form which reduces to the usual one where the space-time becomes
that of special relativity, we form the conjugate complex of the
first of these, and the contravariant spinor form of the second.

Let us now consider the vector JU* and evaluate it in
terms of the tensors and vectors we have collected. In doing
so, we wigh to use spinor relations which do not involve the
application of Dirac's equations in their proof. Thus we
shall write ‘

Ll Xan = A" "“‘f’f“

: = e

A
Goixe Yk

and we shall not put A or T equal to zero. If we do this
Ak K
in the expression for the divergences (M ), emd (N ) we

find that

[MM‘ )"‘ = Kk x 31*' e Kan ‘Tt;iﬂ'xw 32 /'(,,‘T'Uw ‘Tk,;r’rre Lerg
+4 Pp M4

B },_agm % (A"~ u}u"“) c"{',;r e £ 9 &

“x

: - 7 i A L
Therefore 2A” vf , % - S R e C i )

At the same time
(N&}-b £ 3’0‘ ‘f’“m e 29 1k G a.-{"“/’% -~ Lo, N

,,n—ﬂ\

- L g 7L V. 23
A ~p C e
E - -3 f"" ?/pa-- -+ a2 e ?* N =

Lk

Therefore/
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Therefore
: 3 i
zTr,;-fde"z"”/zz -—(/V’m_)‘k'f-' E + 2ax C7 _ < g, N‘“‘"

So finally
2 .
a0 = g',LJ"‘P (]Tf-'-'fVP +AA;(‘P)
kL AL . 2L e L A =4 L
' N ¥ ot F (C —C)J |
_.i[[m )Rr( )-R 4'4’«.( ol )+E+ Fp s : (3.81) _
But as we have already expressed all the quantities appearing
here by means of the four null vectors and the invariant K, we

cen write this wvector in the form

ke ol ,KA&C}_‘HLCA)T(BAax_B(E&iH
2 _; i 2R
¥ b SEASES o ak ey (BrTl —ateh)}
JWM 4 o ‘l_c,CJ
+ ?- Ec"'-ﬁx»il+ C“'B'RJ “+ "'J_c = (3.82)
At

when we use (3.6), (3.29) and (3.30).

Ly
Thus we have found an expression for Jl  without reference to

spinors, only the vectors A B C and C together with scalars

K and K are present.

x four-potential (gauge

The i
e = invariant)

n
|

Sl

oL

;o

The whole of the invariant theory can be derived from the funda-

L
imental statement that JL = o when we use the mull vectors

instead of ¢ — functions. We must, however, assume the

Perpendicularity relations and the reality properties of these
. A &

vectors - namely that # & and B* are real while C° and T

are/




- B8

are complex conjugates and that each vector is perpendicular

to itself and to two others with A*‘ BA= ~-C C.&. a +K K

These relations supply us with ten conditions. The equation
gt =0 together with its conjugate AL =0 yield
eight simultaneous differential equations involving the vectors
and scalars. As A and B aré real we have essentially eighteen
real quantities (sixteen from the vector components and two

from the complex K ) which is just the mumber of conditions

and equations.
If we form the expression (C,+ C, ) (nt« ) which is

zero as Y = e  then the supplementary conditions reduce

this to the result that
(A* it B«)»k E2%,
while the equation (C, -T,)(A" - Jit) = o yields
(Ar_B" ), = 2tk -K) &
so that we have div A = & (K-K)
div B = -« (K-K).
Again from the statement A, ¢ -8, Lt = © we derive

kL A
div C = “’ﬂgc

— . — &
of which the conjugate is div C = —< ¢, C .

Similarly all the relations we have found are deductible

from the null-vector expression of the wave equations.

The vectors and tensors appearing in the physical theory are

now,/
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now collected and restated in terms of the mull vectors.
As we have already seen the density of the four-current

is expressed by
T -JLGVZ(AA-I-.B“).
|

The density of the open angular momentum is

i e at= 83 ),
¢

For the density of the electric and magnetic moments of the

electron we have the six-vector which from (3.7) and 3.60) is
){A‘B‘ A s’*)l

do not appear by (3.19) is

A )lﬁ“ B")]

) [e*ct-ctek) | (& -3

s e

GTT Pt
An glternative form in which the C

M”‘(A B F\..B.,_,) ¥ (_L
141

I

YTTme < "

The convection current J . (3.61) is given as

fp o Hes [““*”"ﬁ w2 -2] ATm 4 ST T
K 4

e
to which is clearly related the magnetic convection current ;
(3.73)

} =ﬁ*-_.[*{'("_‘)‘h T (L __L']ﬁuB”)A R e _&,,_EZ::J
G w W R =

The last important tensor of physical interest is the energy
Its expression in terms of the small vectors

tensor T - ]
follows from (3.,69), (3.48) and (3.50), is
(B, H, . CE. N, G, O Bl CiEs A dr e O F )

E - A,tq“@_&)l

) a{..;f;‘[
P+ Bty - G &

W = s
£7C K

(BeHy —Ce € - At +C

X\~

which/



which by (3.29), (3.30), (3.33) and (3.34), take the form

Jyp = b V2 = [ Ay (Cn CTin 4+ KKL) + Bl ©p + k5, )
P "R

t (c. c. - C.C ) A+ 3“)1‘
PR N ’?“;A'.) + B*(C,\,E‘";_‘ "'“’E:.{)

+ (C.Q En-ch-c‘k)(ﬂ"‘-rs"')‘ji . (3.83)

AN ALTERNATIVE METHOD of GENFRALISING DIRAC'S HQUATION.

The wvector .JlJl has been derived on the basis of general
relativity with a suitably generalised theory of spinors. From
the theory of the Dirac equation in restricted relativity as
expressed by van der Waerden's spinors, Whittaker found this
vector which when expressed in terms of the mull-vector gives
exactly the same form as we have here, save for the potential
terms, However the potential is easily introduced in the special

relativity case at the end of the process for we replace

94'» % a& F f t.. according as the operand is
24
a ¥ - function or a complex conjugate of one. The tensor M

is a bilinear form of the y- functions
PAY
So that instead of % (m )‘
we now have [(J*_ E’ﬂ) ?]Af o Lk a0y A% -;"h)y"
= 5 lFny) - <4 Ly AY)
I et ¢ P

Similarly/
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Similarly N is a tensor which is a bilinear form arising

from conjugate wave functions so that
Al
(™)

is replaced by J(Nﬁq ) é%(NLL
Py o

Hence to allow for the electro-magnetic potential we add to the
divergences of the tensors N o and MA¢ an extra term which
has a different sign for each (3.81). Thus in this case in
special relativity one obtains the vector expression for Dirac's
equation which is identical with (3.81). In this way we have

an interesting alternative method of generalising the wave
equation, Firstly working with the simpler spinor theory in
special relativity we can derive the vectorial form of the wave
equation, inserting the additional terms involving the potential
at the end. This potential vector must be regarded as a simple
vector, that is, it is the vector denoted originally by ¢«
which is the ordinsry potential vector to which a gradient has
been added so that the whole is purely tensorial in character and
unaffected by any spin transformation, the gauge transformation
being a special case. This equation is based on a Lorentz-in-
ivariant theory so that it holds in all co-ordinate systems in
Special relativity, but as it is entirely tensorial in form we
can immediately assume that this equation can be taken directly
over into the wider scheme of general relativity. Thereby we
avoid the necessity of developing the fairly elaborate theory of

parallel transfer of spinors, the mixed curvative tensors etc.

in/
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in the general case. All reference to these is entirely omitted,
and as we have already noted, both methods lead to identical
results. There is one minor point which for the sake of com-
ipleteness must not be overlooked. The simpler spinor theory

is applied to the Dirac equation with a definite set (the van

~ der Waerden set) of matrices in which case the v =-components

are also spinor components. Provision must be made for spin-
transformations, but this is a simple matter and we soon find that
the expression for YU in terms of world tensors is invariant
for such transformations. All this of course is contained in
the generalised theory which in the particular case of special
relativity gives the simple two-component spinor theory together
with a theory of spin-transformations.

In this way a simple and direct generalisation of Dirac's

equation is made possible., All the calculations and formation

of tensors are performed in the pseudo-euclidean space of special’

relativity leading to a pure vector equation, the generalisation

of which is automatically performed., Then from this new vector

equation the invariant properties can all be derived.

However, if one desires an equation in spinor form compar-
table with the original form of Dirac's equation then the general
spinor theory in all its detail would have to be established.

When this was done the null vectors could be related to two

Spin-vectors. The supplementary conditions among the null

vectors lead at once to our earlier geometrical configuration.

Yﬂ'}_en/
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When the mull quadric is parameterised in terms of the spinors Yx
and X« we have the necessary correspondence between world
tensors and spinors. Then the reverse process is carried out
wherein the tensors and vectors appearing in A are split up
and expressed by means of spinors leading gt last to the spinor
wave equation which formed the commencement of this study

on invariant properties.
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THE MATRIX FORM OF J1°

In the geodesic coordinate system and in special relativity

let us write the Dirac equations as

£ %"
3
LE LL = .._é fﬁ:ﬁg"‘z d'-.(’é"‘,f':‘#t‘)f "(gs-"( "P:.‘ = 0
cat  * ' =z /
g #s |
|
“¢ L L ¥ |
Then as L in this case is [A" [ﬂz i
A - =N X, (3.84)
T, T, Yi
m, | . wdl
o Rpp
the vector AN Rt e Aot

has components

R =T+ Ty + Ac¥, whep, = L ~LEehy = Gi.
A 5 L
A e i Mg riTp o ihihy ik, = b i Bl T il +ibite

|

~

il T~ T¥e v Ai K —A K 2V~ Ly~ b Vu T Y

Ell's T v My AE- Anky = = falet Lypy + b o — L2 By

In matrix notation these components are expressible as

~ & i
L{‘:"'&"’ did_l) ("r)'f' T L{“;"("‘-dl_-i-d.‘dj}‘}’

143 J},I =

- - (3.85)
W AT = L (.{x,_.;.(,gg)(d.,]lf' 1 [_f'(o(,_)(—:.'m_-a mog;) 'f’
Wi & s L lar wg) o)y ¢ L) (cimtons) ¥

i (a) (-<<. tay)y

A

14 UQq = Z[-t:d., + -(J) ['ijf)

The «, -matrices have the values stated in (2.35)

«. + it will be noted that

Here «, is distinguished from <« and < j

is/
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is the only matrix of the set «, 6 «, ,«, , «, that has imagin-
sary elements., When the Dirac set of matrices is used, the

y -functions are not themselves spinors, but linear sums of
pairs of the ¢ -components form spimors. The <l vector
that is finally obtained is éxpressible in the same way as the
results above with the <«. distinguished from «, and «; ,
but with the Dirac matrices as with the van der Waerden set (we
are using them with reversed sign), <. has imaginary elements.
We shall seek the reason for this distinction.

Results of Temple (26) and Eddington (27) relating to the
group and other properties of the «-matrices are here assumed.,
In a complete perpendicular set, that is five hermitian anti-
scommiting matrices with unit square such as i, %,
and Ay = AL Ay it will be recalled that three of the mat-
:rices must have real elements while the other two have imaginary
ones so long as we are restricted solely to those matrices which
have their elements all real or all imaginary.

Still referring to the ordinary relativity equation, we Tow
briefly consider the effect of changing from one set of anti-
commiting hermitian matrices «  to another set . This
corresponds to a similarity transformation
-1

oi-: S «x; S

£

i T
where S is a unitary matrix if both «. and < are hermitian.

At the same time the wave formations would be tpansformed and

likewise/
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likewise the lef't hand sides of the equation by the law,
y o= Sy
s
L

Then the sixteen quantities
A Y

where <; is any member of the fundamental set of operaters,

can be written gt Ts) « 675y,
because SES e 4 o S
But this is AR

so that these quantities which give us the two scalars Vi, Vg,
the two vectors J* and 5* and the six-vector o1 are in-
ivariant in form as far as a special choice of x-matrix is
concerned.,

lMoreover as S is independent of the coordinates quantities of
the type ¥, « ¢ ad ¥ i

are also invariant.

However the vector -JLJt is not necessarily in invariant form
for we have

A e T Garany) @8] + L5 B)idr 4) ¥

(where for brevity < - () ey -1 ) «3 = (K, %, =y t1) )
R Ysolis:
_ T s's (< Gf’-fq’ldj)td':) SR SR L"‘(S"’S)("(gh’ ﬂ';_-fd.l'ﬂ‘a) : i
L o ’ s ~ [t 4 -“ /1_ , '{ SFS_-I-"; '
" L K3 S-l(‘:d&-fﬂ{ﬁdj)(ﬂ(/i) y. g L (’(,){ A; 1o, _j)

. ] ) a S g_“ :i .
This will have the original form if S5 5 =1 and

As/
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As S is unitary both conditions are the same, namely

S=8S (3.86)
that is, S has real elements.
Now when the two perpendicular sets 'ﬂt.' and o« (iw 1 to 5)
are so arranged that matrices with the same numerical suffix
have either all real or all imaginary elements, the game will hold
throughout the sixteen matrices. The S~ transformation connect-
:ing such sets will be either purely real or imaginary. This

follows quickly, for

Hh =S xestt
Therefore S
But 35’,; = oA according as a:=1 o
so that Gr e S B o st
or R S e e (RS

As the matrix ik 2 commites with all sixteen «, it is

proportional to the unit matrix, whence we have

= o
S e =er where ¢ is a number with unit modulus.
In the general case when S= 4 Z <7 a; (that is, when this

sum is non vanishing) S is real, for each term of this sum is
a product of two real or two imaginary matrices and hence is
real, so that ¢ = 1.

From Dirac's set and ven der Waerden's (we have used his
matrices with =, &, o3 <4 with reversed sign) «, and <
«, =3 and < are real,

have imaginary element in both, while
The/
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The S-matrix connecting them is real

§ie gt 2 ishi o8 o % =

M-
1

<t .

In terms of either system this is
S5, .'_;: (< % dany + <y ).

Thus the matrix expressions of A* and similarly of all the other
quantities such as ¢*® are the same in both schemse.
It is possible to have the following cases, with the matrices

with real and imaginary elements disposed as follows

T P A o o
(1) 3R I I
(2) OR ¥ T R I
(3) 2R 4 I i R
(4) 1R 4 2I R R

We have just had example of case (2) when =, is the imaginary
matrix. If these conditions are preserved in a new set ss”
will be equal ¢ 1 so that the same preference given to

will continue.

If we reshuffle the matrices to make the first the imaginary one

eog' f’f = "(& (I) /"-‘ ol ﬁs: n{d /Jq: ﬂf,,_ /gri —‘(: (I)

then ! s =

w
\
®
=
Py
>
+
>
S
"

Then/
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Then 557 = s,
so that in place of (<<% + %« )
we now have (<p, +/5 3, ) in the matrix form of

A:; now being the imaginary matrix of the first trio occupies
place.
the special/ Similarly for the vectors such as Cf

Consider case (1) by taking for an example

Pt meae S SRl e e
From it is easily seen that C ‘%: (g ety ) =5
or £ ey - prpa)

w|
L]
\l
*
—~
A
=0
3
Tos
[
&

and s s-! = /J' P"‘
Hence in place of (£ oz + %yet5)
%, Eppeaze G Py + P 21

so that the vector

thstun (< py+ ps) (P‘:) g * LE(p2) (- <Py - s ) ¢

This illustrates how by making the three matrices associated
with the space-like coordinates all real, we find no distinction
among them. For similar dispositions the form of this vector
holds apart from a possible introduction of a mumericsl factor
of unit modulus

For case (3) by teking
L= % pfus (r) Ay & P s A (1) frs ~ Hy

vie/
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we soon find thet
(Cayro4)

is to be replaced by (= 2pups)

As an example of case (4)
/5,: ol /5":4’,_ (1) /31: -f;.(.-’.") /3‘!:4'9 /4.'__-._0(3

("’.ﬂf +/3‘/8:> )/31'

appears in the formula.

Thus it is now evident that the imsginary nature of our
original «, was the sole reason for its being distinguished
from <« and « If a set of matrices with the first trio
real had been used, no distinction in the vector form of A%
would have occurred. Of course the special value of the set
we used is that the resulting wave function has its components
as they stand also components of spinors. Ve note that no more
than three real matrices are possible, a fact to which Eddington
points as a reason for the difference of the fourth (time)

coordinate from the other three (space-like) coordinates.
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CHAPTER _IV.

AN EXAUINATION OF A PAPER by T. Levi-Civita.

In this paper Levi-Civita (28) states that in order to gen-
seralise Dirac's equation to any s it is necessary to intro-
:duce an orthogonal ennuple into space-time. In the completed
generalisation additive terms would appear, depending in an
essential way upon the choice of this ennuple. As, he says,
no directions nor examples of special importance exist there
muist be éomething at fault with the equation. He proposed to
remove the ennuple from the work right from the beginnings and
in so doing he suggests a modification of Dirac's equation.

It appears that there is some confusion about the role played
by certein indices. As is well known the four components of the
wave function y do not form a world tensor and its indices have
no tensorial character. In the usual special relativity formu-
:lation, the Dirac « -matrices opera&e upon these complex ¢

quantities,

which in detail means that
, & .
-,7{/;' :J%r (q‘“)(-,] YJ "")J = 1’2,3’4- (4.1&)

where (% );; is the component of the matrix %. in the ¢* row
and | * column. The nature of i and j has not been directly
discussed in the extension to general relativity, but at no time
have these been given a tensor meaning as far as space-time has

been concerned, In fact most of the proposed generalisations of
the Dirac equation have treated i and j quite differently from

tensor/
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tensor indices but rather as "spinor'" indices as in Infelds and
van der Waerden's theory (7). Indeed when one discusses the
Lorentz-invariance of Dirac's equations one can arrange that

the Y- function be left unaffected while the o  are treated as
world vector components under the transformation or alternatively,
the «. can be retained unaltered while the ¥ are varied, their
law of transformation being quite different from that of a world
vector, |

Levi-Civita, however, commences his considerations with the

transformation ’
- = g A
which is interpreted as AES s gf; olr A
~ - [

where ~ is a world vector and » m~ are tensor indices while
is a Dirac matrix.

We shall follow out his calculation, only in certain places
corrections have been made in the use of the e:
s vl =i s

which are e, = 1 e, = e,

Define the matrices <, Dby the relations

o & N T T ) A R=0123
h T L9 e
7 ® TR (4.2)
° € o v ° ¢ ° v v -
that is RKplp Lale T Api,e Care = TS $om Op

Regard h and k and all Latin indices as referring to an ortho-
:gonal lattice and wv,e and all Greek indices as tensor ones.
In the general space time manifold with signature (+ — — — )

we have chosen quite arbitrarily at each point an orthogonal

lattice/
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order linear partial differential equation,
e Dr ¢y + me Yo = 0 (4.10)
In the special case when the metric is pseudo-euclidian, we take

cartesian coordinates with g,..= 3"Y. e 5.v P, =

Yo
ki

and we can choose A% = ap -

Then the equation (4.10) becomes

2 €, :‘-J\l ; : g:".‘_ D 9, = W "Pc_ O
that is 1%, 0D 2 EE o S5
’ Fagr s = a2y Se e S S0

If we operate upon this with
3
=

. z ; ?
( daﬂ.l% G «;,i‘b‘ e HEE Sr.) the result by (4.2)

is { '_D: = I),h-— _'_'D: —:b; —mte 4 S = ece; &‘,L(é :(;,: )] A

To obtain the Schrodinger equation when there is no field we
require the condition
== eger &Ar{:& Lb*i,\,‘:)h = 0 (4..11)

which in tensor notation is
el it R (4,12)

Thus if we expect (4.10) to be a generalisation of Dirac's
equation we must have the tensor condition (4,12) fulfilled. .
This point seems to have been neglected by Levi-Civita, but
appears in a work by Temple (29) in which the Dirac equation 1is
given a tensor form.

Neglecting this condition for a moment, we have the second
degree equation from (4.10) as

(D(‘}f.. D - 35-’“")( *tae Dp & Sd( "“‘“—) Yy =0

that/
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lattice whose components are given by the Riceci coefficients

>\: or AJ‘.;C«.
A=A A SR g
g s S afpe An = 24% = 18k (4.3)
Z € Aujp Xaiy = Qv (4.4)

As usual, summation is automatically extended over the range o0-3
for all repeated Greek indices while the sign of summation will
be always inserted for the Latin indices.

According to the usual rule, the third order tensor corres-

iponding to the quantity &ﬁJL is

e o L 2. e
D<|r e . 'ﬁ: e‘u. q-h | g hhl@ (4. 5)
e ° o Y
Hence o(..[',__ Q{’I’l: = %% €, eﬂ_ dhf:— dhl? Akld" >\:‘-|1"'

so that by interchange of ¢ and ¢ and adding we get

Vv 7 2
O'(C'IE— Heres ot o("t'l'!E' Xore = %{ eae&( 2'34.:; &% Sf"] Ahte At

v

Bl e (4.6)
The first index is raised with the fundamental tensor and written
o¢ T
2§ ani . oby (Lhe2)and (L.h)  (4e7)
Therefore (4.6) is equivalent to
e & [ Y]

D('t e C‘?UIQ + qT 1~ 3 IE = EN 3 (S\r_. (4‘..8)

THE DIRAC EQUATION,

Let A" or A, represent the vector potential at each point,

-e be the glectronic charge. The operator D is introduced

e conh el e A, (4.9)

am- e

when ii denotes ordinary covariant differentiation.

~

Finally let * and #  be the components of a world vector

v  which are defined by the solutions of the following first

order/
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that i (&0 Do «™ Dy —sredl) ¢ = o
By (4'9) D, ""?Je 5 zén' (‘xh’?)r % ("‘rwt):bd"'
and Prbr ‘yr)d"z 4 e (AB“T- A"’:")
AT © 2
=, ’.é . & F';:‘f'
27« e
where F, = E_ the electric force

(F32 Fi3 Foy) = (Hy, K, Hy) the magnetic force.

W

Therefore A Dy ot e D

£ o(Teh c&_rv?'])r Dy + (‘(d‘fr)“r‘})g— -Di-' IAT_:: ;

o 2 4 TV Te v o
-i(“ % e DeDp + &yt E‘I')-r- “me#(drvf)ﬂ'ﬁr A .

2«

¢ TV aoe v
e o 8% (”!—‘-,.‘:F;,—f- < f"(d’ C)rp-ﬁ__-'
AN« & 17e

S ?ﬂ 2.0,

}.\‘\

Thus the second order equation is expressible as

Sﬁ»*R:—‘h + N Dy, =0

where S = }QT(VC_-— f_i:;fﬂ‘_)(g — am< e 41:) - GTEmie”
~ c i

‘.&
W . f -
R : #d e o p ¢ Fo (4,13)
r AT Le
TV " oe TV
N r: &:L-‘-‘—- X |,--L°(' { 4 )r

This is the equation derived in this paper, but the term i:
NZ e mist be zero by (4.12)
Furthermore it is necessary that a non-divergent current vector
should be obtainable from our equation, and this vector must
be real. It is evident from (4.2) that &b can be taken as

hermitian while &; #&; ®&; will be skew. Then from (4.5) we
¢

see that  Xqp is not hermitian nor skew but that
S e is hermitian. This suggests that the
vector/
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-

e 0 [
o‘olrv A e 'fv,

vector Jo v ¥y
Let us find ite divergence

might serve as current vector.
(Jo)r = P-F.IG' o’{\olfp\- qallr,re- .f}v + ']U‘VL&‘“i' o £ )d' \y-y

ot
i ‘Pﬂl& a(vi‘; ﬁreg l'}vv)r

Now from (4,9) and (4.10)
ogoh; ("P“’)V = p"; [."—7‘;—:}- ;‘b‘_ e m_:_: Aa) q/‘/
e (- mefe s 2 <Te Aey)
and teke the hermitian adjoint

2
-]
C

Multiply (4.10) by
(@ew) (il 5™ ) e v 9™ 2% = o
because b =
5, o
e e )T AL KT e ¥ RLE - o
('f’*ﬁ)q- ... L °"H( Z ”;\‘ et 'F*t o"t: s %’A' ‘ff’h‘:\ofi ‘*wf
Substitute this result in the expression for & Lo
(o o R pogiims s Sia AT SuD T it W Xl
LT A e i ALY RE Sy
e -t kel BT ) p
which is zero only if
) mon (4.14)

Z—(‘;ﬂolf;dfv

Thus for a satisfactory theory based upon {-quantities which

are world vectors we reqguire
R N l;lu" (a)
S s ) =9 (b)
(e)

(;(a a(r ) o« =0 ”
%

rmitting/
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omitting the row and column tensor indices.

In general it would be impossible to satisfy all these con-
:ditions. A solution satisfying (a) would satisfy (b) and (c)
only along special directions unless the space was flat. The
conditions of integrability in a general dos* impost limita-
:tions upon the x's and thereby certain directions would be
singled out. This would make physical laws dependant in some ways
on special directions in space-time, and as there are no such
directions of physical importance this theory is quite unsatis-
sfactory.

The conclusion is not the Dirac's equation is at fault as
Levi-Civita suspects - but that it is impossible to formulate a
wave equation in general relativity in a form similar to Dirac's
but involving no quantities other than world tensors, the four

component ¥ — function being a vector.

Levi-Civita proposed a new wave equation

S I’Tv e 38

with S as before

vaT
[

and Ee 2aiC gogse
An equation of this form with a coupling between the differen£
¢ - components effected by the X, term would be satisfactory
for explaining the Zeeman effect in a way similar to the Dirac
theory. This equation, however, has this grave objection, it
is more or less empirical and has no theoretical foundation in

quantum theory. On the other hand Dirac's equation evolves from

general/
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general principles of present quantum theory and the spin effects,
which provide the coupling just mentioned, are automatically ob-
:tained when the demands of relativity are met.

While Levi-Civita's criticism is valid for a wave equation in
Dirac form, but with a world-vector as wave-function, it fails for
the usual Dirac equation where the y ~function is a spinor. In
the former;the A =matrices had three tensor indices, which in the
latter they possess only one such index for the other two are to be
congsidered as spinor indices. Therefore in the latter can we
have two kinds of transformations: point substitutions and spin
or similarity transformations which are independant of each other.
We shall now illustrate how the results of Chapter I where @n
account of the generalisation of the Dirac equation to general re-
tlativity was given, do not distinguish any special directions.

To begin with, we took a set of matrices ¢, related to an
orthogonal enmuple §:; = e: 8:; 5 e.is the signature of the
metric. Then

P.f; + € P - 2exdud (55=0-3) (4,15)
The indices of the ¢; matrices referring to rows and columns
are suppressed - these spinor indices are not concerned in trang-
:formations of coordinates. If é; is another set of matrices
obeying (4.15) then the f; and 0. are related by a similariby
transformation. We éhall assume that the ¢ are hermitian
when e = #i and skew-hermitian when ec< -!. We can
take, for example, the «; chosen by Dirac and obtain the €; by
the/
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the relation p; = Ve; The set é; need not however be

R

“ .

limited by such hermiticity restrictions. Then if
S - Z f"« 9: (4.1‘6)
where the summation is extended over the whole 32-termed group

generated by the f; and the cross again denotes the hermitian

adjoint, TR
r r +

= ?—: ot (Cztu)

G forms a term f; of the group and as A assumes

J

all 32 values, £; repeats the group in a new order, If the

group fj is numbered in the same way,
, +

e Sf'.c = JZ f’l,‘ th = 5

Postmultiply by ¢.° and note that p: = e:e:

and also that pet) = (e )= e
g Sles = S s €. Sp
Therefore praie Seo s (4.17)
From the ¢f: we obtained the vector matrices 7. by the

usual rule for forming vector components from the components re-
:ferred to an orthogonal example namely

’r'... S % e. Ar‘l,‘lﬂ- f’.‘ (4.18)

and as we are using real coordinates the coefficients ;.
are real.
From (4.4) and (4.15) we find
T T, T M - 2t (4.19)
Thus (4.18) gives us a solution of (4.19), the ¢ Dbeing in

their/
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their turn solutions of (4.15). Thus as the p  are not
unique neither are the 7, . However if 7L and 7.
are two sets of solutions
T 7 ;e; X P
T N e
s Zes Ay Sl 87

S (2 e Avnp e ) ST

Therefore different solutions of the relations (4.19) are con-

tnected by means of a similarity transformation.

COOEDINATE TRANSFORMATIONS .

The transformation of coordinates
N (4,20)
which leaves the g9.. unaltered in the invarisnt expression
ds” - Goinr: ™ s

will now be considered, The conditions imposed upon the

coefficients 4", are that
g"‘r /C‘:-‘Lr“ g .;f"‘"
or A ed L g BT (4.21)

Under the transformation (4.20)
' i S

P o x

¥ ¥

Then/
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Then el ST C i L5 L e e ?’)

e L0 A, .1;1” by (4.19)
& .L?.Pv by (4021)

. . Lt - o, -
Similarly VLI da e g

L and 4; both satisfy the relations (4.19). But we

have seen that two such sets of matrices are connected by a
similarity transformation,

i.e. re = S " S" - &
& s W (4,22)

R

or A, o X S8 = W

This means that a coordinate transformation produces a
change in the a# but this change could also be effected by a
similarity transformation. The S matrix is uniquely deter-
:mined apart from an arbitrary numerical factor.

Again in the general theory there were given then rules for
the general spin-trensformations which leave the formulation
invariant. Now suppose 9,. given, and that we have found a
set of suitable 7r* matrices. Does this infer that we have
distinguished special directions in space-time? Clearly not;
for we can transform from our coordinate system to any other
one with the result that

o o wT e S g
Let us at the same time, however, admit a similarity transforma-

:tion so chosen that we restore our original »°. This of

course/
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course is the reciprocal of the S - transformation which pro-
:duces the same change in = ~ as the coordinate transforma-
:tion. Thus with the same matrix S we have

7l e S ) 5 . BtS TS =
Therefore to be given 9.. and ¥“ does not indicate any pre-
:ferred coordinate system, all are equivalent, and no special
directions in space time are selected thereby. In this way,
the argument raised by Levi-Civita proves to be without founda-
:tion when it is applied to the usual form of Dirac's equation
and its generalisation by the method of Schrodinger and others.
This necessary result could not be obtained from Levi-Civita's
form of the wave equation as his o - matrices, being thrid rank
tensors, left no provision for spin or similarity transformations,
Or the difference may be expressed in this way: it was possible
to displace the ¥* matrices along any direction because the
quantities [/, were introduced into the law of covariant differ-
tentiation and these were given the necessary properties to make
the equation integrable, but the third order «".-tensors are
purely tensorial and no such guantities can be introduced so
that parallel displacement in general is not possible along all

directions.

LEVI/
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LEVI-CIVITA'S EQUATION.

Vie shall briefly examine the wave equation which Levi-Civita
has proposed as a substitute for Dirac's relativity wave equa-

stion. The new equation is

Eﬂn(ﬁm— ifﬁr)(@_if At)} "V,a o o8 ¢ veT

2E T
1y o t\-‘ oT 4 ) f“'
Write = 4 P
and f} Ao = @

It will be sufficient to keep to special relativity so that we
may write

2 a2 2. for L. Then the equation is now

[?9” 3,00 = (47 #) -2l 0 4+ w LT e g ?(v] TS
£ [ 5

(4.23)
The conjugate complex is

et - > ¢ T v re T
[i? dedT (¢ ‘?a-) b i POy e }Sr-' ""i ?'r-(F Jlf’u—

where the = denotes the complex conjugate . (4.24)
Premultiply these equations by ¥~ and ¢+" respectively,
summing with respect to e~ :

VT 4T 4, - et B s g Rl s g e

x s
?‘,P'ZQ"—;'. —¢a—¢‘_ + a< .},‘-3‘.— +ﬂ'h1?; 1_!;_; ?pe-fz;Fc el
ez e

Subtract and then we have

(™ 250, Vo — ¢7 272, _ﬁ.,) Shad g CPT o e gl ?_'....,.-—)

-

—_ ev

g i g =0,
ek
or/
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or
L (9 e = 17 Fore) <2 g T vl o se Tor B

c =

Hence the vector
Se :(_?)a“" fr-lr = fﬁ ?’r-ff‘) FakA Pe ;P f»‘"’ (4‘25)
has its divergence equal to the scalar

-
- T i
it: ff 'r-v F .
c A

Now S° appears to be the only reasonable vector that one can
use to form the charge current density - corresponding to the
expression in the Klein-Gordon relativity equation where the
function y is a scalar. As, however, $° is not of zero diver-
igence it follows that there is no satisfactory current vector
derivable from the present equation which has all the disadvan-
:tages inherent in second degree wave equations, one of the chief of
these being that ?”?P can no longer represent the electric
charge density.

However it is at once noticed that if the imaginary factor i
is introduced into the term in F% , then after the above cal-
iculation is carried out, the contributions from this term to

dwr S cancel each other leaving us with

so that it would be all right to interprete S° as the current
vector, In the case of this modification we find that the
equation is derivable from the Lagrangian

E e, e P, Tai L0 e )

S (P T N Frre v F) R b T, F‘: (4.26)
the/ 3 ch
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the wave equation in fact being

2 (_s__é — e o (4.27)
=7 TR 2.

This is closely parallel to Schrodinger's (30) derivation of

the Klein-Gordon equation from a Lagrangian only now the ¥
functions are vectors to which one tensor index is attached, and
there is the additional term in the field strength. The current

vector is expressible in the form

$E o @ Ik

o (4.28)
If there is an energy tensor, we should have
el e s (4.29)

Neglecting all the numerical constants, we have for the right

hand side

(3_‘?'» = :’J’c)?_é

p AL axT/ ¢,
= aL - 205] aL
a2l el ( e
since 2 2L = S B
»” 2¢,
Now >k
Fal
3 oL 2L EYA & 3L ¢"ie
e fﬂ'( e ?b;-te( & 2L ptre 2 e ¢
2¢, 2F pro agr CL AT
+ 'i‘;: ?plf + % -E—ff(
‘;w{- 3"’,-:-'-
~ L .., 2L
= 2L ?q( + 2L ?"’“"f + ’-—1‘( ¥ e == + Free 3_:
’?f' 2 ?f’ld" 3 o ¥ ete

after using the wave equation and the fact that the order of

differentiation is immaterial. On subtracting on two results

we/



we have N el ST
o~ =
2 ‘;ffﬁ!r 3?7‘,_,,.. 3?“‘ o€ a?br-:v‘
But
2L s Wame 2SR
Q?P»"r a‘#fwf‘
S 7‘% 'f’...- ie#r*“" ;

so that the final term of (4.30)

il Sl 6 P re
Prroe 2k 7y ( )t,
The presence of this term prevents us from taking the tensor
T-f.-— = (7””:( L -+ "7",-:{ X -+ ‘P‘. B :go L-) (4'31)
2" 3.';}--6'- 876"__

as the material energy tensor except in the special case where
the electro-magnetic field strength is constant. The difficulty
lies in the fact that the lagrangian contains a term depending on
the derivatives of the electro-magnetic potential, As we have
no satisfactory energy tensor, this wave equation will not give
us the usual Lorentzian equations of motion for the electron,
so that even with our modification it is hardly acceptable,
Although it has no definite physical foundation it has eamperically
added to it extra terms to give the linkage between the wave
function components to explain the Zeeman effect.

If one is willing to forego the theoretical advantage of a
first order equation then a second order equation such as the one
recently proposed by Proca (31) is much more satisfactory than

the one of Levi-Civita. In Proca's work the Lagrangian depends

on/

A
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on the potentials but not on the field strength with the result
a proper energy tensor is readily obtainsble and the equation is
such that a definite electromagnetic moment six-vector evolves
from the theory. This equation, in the notation we have been
using is

} ¥ Com i) it) e me Uy _(5,- 2 4 ) (20 -c4.) 7 o Frets o,
where the last two terms which provide the linkage between the
different y -functions are added to the Klein-Gordon expression.

When ¢, and F.. are zero the equation which reduces to

[? PO ’%:-j ol 9’,3;},," - o
implies

so that in the case of no field each y- component obeys the
Schrodinger equation (a) and together they satisfy the

relation (b).
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CHAPTER V.

THE ATOMIC WAVE FUNCTIONS OF HYDROGHEN TN MOMIENTUM SPACE,

The wave equation of the orbital electron in a hydrogen atom

(

In ordinary coordinate space (! 2~ >*) the ¢ —quantities are

is

e g G g raeme) Y- o (5.1)

eI

functions of the x* , While the momenta . +° are represented by

differential operators i . Alternatively, we may
2T

interprete the equation as one in momentum space (#+ fefs )

with y a function of the : while the ordinary coordinates
x* are now represented by the operators _ 4 2
Afie p;

The moment of momentum which is defined classically as the vector

product i et e e

is interpreted in coordinate space as the operator,

A
L-x 4 -; ";“3:.]

am

or in momentum space as

G
|
1=
i
b3
=
|2
]
ﬁ
.*
*
L
'y

v 2h

since 4. 4. 4, are independent variables.

Therefore, the L - operators are exactly the same functions of
the coordinates whether these are those of coordinate - or of
momentum space, From the properties of the L - operator the
eigen function dependence upon the angular coordinates (¢ ¢)

have/
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have been determined and are well known. The same analysis can
be used to determine the (8’ ¢) part of the eigen-function in
momentum space with polar coordinates (7 ¢ ¢') leading to

exactly the same function as is obtained for coordingte space.

Let the state represented by ¥(*) in coordinate space be
represented by ¢&.) in momentum spaces. Then these two

functions are related by a Fourier integral

_.mtn(,f.,,x‘-.t,{.hz,_ 4,;.,:9)
P = 4.”~ f// Vix) da, da, da, (5.2)

and a dlfferentlal operator F(x: | ) becomes F (—ﬁ ;2 5 4»;)_
A

:,na.

The wave equation as it stands contains the term v~ ¢(p) which

is represented as

e g LR fﬂ PR FF) A dfe 4
27 A = = (e o N
i 0)™ 4 (Fomtr)" + (- 1y)*
so that the wave equation is an integral one. However after
preliminary modifications it is possible to obtain an equation

in which ~* and no negative nor odd powers of ~ occur, As

o (ah. S )

we obtain a rational differential equation (of the second degree)
When it is transformed to polar coordinates we can introduce the
angular solutions and so have four simultaneous differential
equations for the four $:.(p).

But, as the .- functions in x-space have already been de-

:termined those in the p - space can be found from the Fourier

transform/

e e T T R ——
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transform +the same way as Elsasser (32) has used to find the
corresponding functions for the Schrédinger wave equation. If
we take spherical coordinates in both spaces (& 4) and (p *"1")
and denote the angle between the two radius vectors by w:

[Cntd = Cob c® , i baud” coos(p-p7 ). (543)
The integral transform in terms of these coordinates is

! “Fm_w_.‘qfr'mw
¢ ro’s’) - 4-%// e = P8 P70l At db oLy, (5.4)

o 20

Now we must recall the full solution y (#¢) of the eigen value

problem (5.,1) for the hydrogen atom. (Cf Darwin (33) Gordon (34)

Pauli (35)]. The four components, when the Dirac set of matrices

are used, are
Vo 2 By s (s P, Co8) "

LlmEn g

"Vr_ = Fl¥) ! a-‘ ("-09') € (5.5)
< h-f
i(h-n)jb

»

v, = G (A=) ?: (en8) e

v, * 4 ! P ews) e

where the radial parts are
. e:.f/" (;Z--)s g‘l F(l-“t) .?.51-', 117“') < ‘I-F(-n’, At ,tz)j

Flv) = T
i . 5 : (5.6)
C.’ (+) - bR - € = (1%'-)’ l e F (- n” 2341, 1"’«”-*) “‘"}..F(""’)""” ,”’/x)} ‘
e

Here F ( «, p, x ) denotes the 'Laguerr;'e 1 function which at

the origin has the expansion

3

l:[d., f.\,x) a Il 1‘:_’ e wldar) = 4 X (@9))@x+2) %

™R

plpar) 2! p(Ae J@Bez) 3!

The/




R is the quantum number assuming one of the values

2f R A s Elns0on where n is the total quantum number
m is one of the series g e S LR ) =R
and S = +/AR -« where o = amer is the fine

structure constant

a = A (7&6 ey ) e S

L W ";_
met + W
5 +a (b -1 ) = —mf and when W < me” as in the case
z o

(5.7)
b

of the energy levels considered in line spectra = must be a
positive integer.

P = »'+ s and as s is not an integer neither is p,
but it differs only slightly from the total guantum number =.
Finally we may note that the energy levels are given by

w = 'vv\.‘.'.."

(1+ <)

Now we can return to our integral and proceed to integrate
with respect to ¢ and <. The angular part of ¢ will
be denoted by 'f:&asa )ef“¢ which is the form of the
functions for the 4+ y. .

Th 4‘:-3-"1. /I![ ‘%‘:ff‘ ?“‘ 0‘) BI':'".f /a...-»ﬂ' A& df
en e ¢ (e
o o
ig the required integral.

The/




The expansion of € * in terms of [ (cee) ia
A el
e e
Y,

:22(-9“ (uw)(zr. A )‘ T | 20 2r) Pfem )

L4y
2 gwre’ S %

(Frank-Mises Vol.1l, IX 82:3,
and the addition theorem is

i ! ™ -
Blmo) 5 = B et B E) oa f:‘—-ﬁ;'—,m c00) P70 6") com(g-F)

= i P: t) T lwb') ¢ r e,_‘"vf’,

= — e

The non zero term in the integration with respect to ¢ is
that for which ™= —%- On account of the orthogonality
properties of the P the sole surviving term .after the
integration is

¥ y i g , ‘:“’f!

A (-« J |2y’ (7 e

)1}}; 1*&(—%‘:—)'1x'7’c( &)

This means that the angular part of the solution is the same
spherical harmonic as in coordinate space = which has already
been proved.

The radial part is now

Vo

7 m ) E9ar () T (2] [ ) S

vt ey +
series in ascending powers of v }) dor

Consider the integral arising from the term *" in the series:

3 » 2y +17
2t ax f e “ T (__:_:[-g_-') (3-_)" TR
*‘f"‘- o ‘t"’:ﬁ- s L

write/
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Write ¢ = v and expand the Bessel function J,,

= @

2.
SHHCle R BT e i S e L

tz0 [ (L+y, +1) i

: nod+3 v S = P v, Leseneatad = 2
:(':_‘[/)Ia, (-?_-E') 2 = {J; e /({L) %‘”J %;t (%f_") PB ht)

=L'._,L;?/) a (-3-_'?)'& 2.!‘_3’.- R (f.+s+n+ A“I’.‘L..t) (—t"a.")'t
2 + t=o0
rU+s+e) % "y
As s 1is not an integer, this series does not reduce to a set
of simple binomisl expansions. The Gamma-functions in the

nunerator may be expressed as follows

M (Les+mi2+2£) - Urtssn+ 1426)( Las+m+at) ... (L5t #+3)( A+s+n+2) [ L4s+n+2)

Divide each of the 2% factors by 2 and group even and odd

terms so that we have

lu:(.l-ts-&n-u +;(;) ,l-iS-thl' L‘—|) i K,{.;sln-;! & l)
2 2.
,‘(____.{-&S-tm -!Ht)( Aesan -I-)é-l')..- \A-I-S--I-"L +|)Fli+5+"‘f")
2 LS 2

= 2.1-' r(@ -r)c} F( '—s*:ﬂ‘-*ﬁ ) r'(,{.,s.”,_.f:_)-

]'l L,t-rs-m-ts ) It L_Jfﬂ::‘l'."_‘-)

S

Substitute/
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Substitute this in ourexpression and obtain

)1 Mua(ﬂr)m S -p(,(qﬂu,ﬁ}i (F(JL;“}_t) r 4‘”—’:\3-4-& i—b) Fa'*#,_)_t_ v__._}tf
'y

Gt b
T UL+3) t=o [[‘(i-fs:-n*’ ) r El-|s::|.-|-:. {:1 P(Ai%_+,t-) £
The sum in the tmacket is the hypergeometric function
F(zf-fs-l-n..-i-j 5 d+sen+ 2 3 L+s % ...t"-u"')
R S

For ¢ and ¢,  the coefficient of ™ in the expansion of

the two Laguerre functions (5.6) is
1 g cl [T (125+¢) f’(—u‘“..) (i) -‘—:"f

= {_c, Plazeg) . (=w! vw) (é)‘,
7 (2s+ien) 7 Ce=nr) b Flessr+n) [ (—n')
= = Tlaser) Q_ a )... o e nei)! -} n !
b “' 7 # L]
i (w'= n—-t ! ini—n)'

M (zs+ 14m)

r

Thege are terms which are non vanishing for m=0,1,... n
only for the last wvalue the term in cj is zero.
Similarly for ¥, and ¥, the coefficient is
Jaaas + . [las+1) _(_: )"_!_ i € [w=in)! el WY
a » ! (n'-n-1)! (n-n)!

oL f’(gs+:+u.)

For the first pair of functions 4 is (k-/) while for the

second 4 is 4.
Denoting the factor

{-.{a.)‘k*’- ls‘-_dt—'/; (1,'_‘_ )-;__ F(;.H:) . (,
T _— ot
P okag

we obtein the following values for the eigensolutions of the

orbital electron:-
% ( ?/8;?:) - P %"'- .‘2 MlR+s +net) [_—z)-' [ e, (n-1) ! s s } F‘kf-s-eu-h.’ 44:41.1:;*,5-5“")

O P (2se it ) ~n! '-n-1)! (-m )l

= s s B( L
SRR S (o O .

For/
——————————
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For ¢ (06'¢) replace the last line by
L e el

8(,64") . ¢ P (VFrEep) S P lkasena) L—z)“{c, ror ) ey WL }

2oL (14:;‘_) mnz=o [l (2s+n+1) ! {.,,.,:_.,‘_-|)g (""’""‘-)f

< [ [Jt-rs-th-'f3 , hsewmer o g ’._ifaf) < (A=), T:(mb') L‘:-‘—-{’_’
For ¢, (g% ¢') the last factor is
x U Ph”(cooﬂ') v pr (5.8)
A
(pet)
As normalisation is preserved after the Fourier transformation

is carried out, the functions possess the same mormalising

factor as the ¥ - functions.

POLAR/
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POLAR WAVE EQUATION and FINE STRUCTURE.

The fine structure formula can be derived by considering
the wave equation in momentum space. This time we use the

wave equation in its polar form which is

(ﬂf%“+“’(‘f”..+4:°‘qj-_/fg).,_qqm)\y=o (5.9)

c
2T

Where 4, dis the radial component of momentum, i.e. the com-
iponent acting in the direction of r, and p,. and r are conjugate
quantities. Therefore there is a representation in which

thess are

ot “ana 4 2 respectively
AT < ""1-

After a certain spin transformation the operator w can be made

-i

equal to
Xgy =
but the ¢- functions are changed so tﬂat their components are
not identical with those in the original Dirac equation but
are combinations of those depending on the directions of .
After operating on the above equation by » we obtain
the differential equations for the components of the wave func-

s tion. These, in detail after the matrices have been intro-

sduced, are

(% - 7)) 2t eiatai g oi-k)y -

-
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o being the fine structure constant.

With 4, written as + g and using the constants a

2T o

and A4 as before (5.7)

with A= Voo B .= x/%: we now obtain
a < f - d o = o
(?:‘J— d) ¥ (‘bz‘v + ! k)‘f‘j
e AT IS PR =) ¥ = °
(BL,,* AR Vi = :

Make the substitution Y= (e x)/ /B
Beold =)
so that the equations become
(_;i rbu -y 4 —wcn g, [~ « o= F7d rans )Z -0
(2% 2= Twpd = s+ (ro2 oL e i o
After adding the two equations, and again after subtraction we

derive the new equations

[:s[/"--r.'_]_/k] ¢ +[(3"—)f®+"f“"i)*’1x=°

. [

[$00t) e A] R o[-0 patet) -9 o

Let us write :

jj

BIR

=y

{-6-..,.1 e R
i

Lt 8

so/ ' i
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so that the simultaneous equations become
(R-%) ¢ + L@-c)t +-P1 L= o
4
v

(R-rak),( _ [ (3+<) 4 ‘;_‘_?’]f:c
iy,

Solving for ¢ and X by substitution we find the second

order differential equation for these functions to be

[(2,'“-#()‘%;1 ralis Bt 0 s ] oo

[t bt L et ] xe

where S =+ )R-

If one puts x= -ig one soon finds that the solution is

expressible as a Riemann P-function.

I =1 0
"P = P 0 0 t+s 2C
P ~P-1 i-s
or
1 -1 o
= F AL
F o o 1+5 *:

7 Pt

This is now expressible in terms of a hypergeometric function

? =i ( : )H-s F ( e SF-P 7 Fis i G x—=7
x > » B —_—
4+

x4y
St s

(f-“'; g~
Similarly/
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Similarly

K . C(!:L',)ws ‘-E (,+s) r-*s—?’-’ .:—P,- % )

When ¢ 1is real, the argument of the hypergeometric function
tends to unity as ¢ increases to infinity. As (- a-p)
which here is =28 is negative the series will not be conver-
igent at infinity nor will ¢ ¢ - Hence the series must
terminate for the probability amplitude to remain finite, and
this can happen only if <« or £ 1s a negative integer.
As s by definition is non integral, our only choice is to make
s-F = -= where ™ is an integer

or T = s+n' :1\,)

so that one finds directly the fine structure formula as before
on solving the equation & lhea ) = where 4

is given by equation (5.7)

When & is imaginary,that is W > ™7, q will have only

imaginary values so that x= -3, is always real. Vie see
that the argument ‘ﬁiﬁ lies between -1 and =+ I as x
ranges from o to oo . In this case the hypergeometric

function is convergent and no restriction is required.

As an alternstive form of the solution of the T{'function is

f )Hs F (1-}5} i+s+ TooatP o 2t
(l-x- E e

we can apply this in the range % to © to-<0 in which

case/
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case the argument is again within the limits of -1 and +1.
Hence for all values of g we obtain a convergent function for
$*¢ so that all values of W > me™ are possible giving a

continuous spectrum.

The factor C is found by substitution in the first order
equation and it is

C - VP + u* o
it

For the Schrodinger mechanics, Rumer (36) found the eigenfunc-
:tions in momentum space. His solution in atomic units for a
state with total quantum number =~ ig

Lan t‘-u._"n.’\-

1’“( '\-} = e
n"f\."‘ +
= (1+ Lnfu)‘_“
('- : "')n /

In our notation
11,—_- %_& = % o, el
e Vpe + =

which when we neglect fine structure gives us

=il

b P

in atomic units where m =] = aAcC

Therefore, the Schrodinger equetion gives us the functions

(1t ,)“hl
(- )™

Similarly/
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Similarly for the Dirac equation, when we neglect « compared
with unity, taking s- &« an integer and P=n  the

functions ¢ and A  can be expressed as

f (q,)

(_f h ‘:1‘ ) 4/
gt %)
(=82 respectively

where f and g are polynominals of degree n-s and n-s-1
respectively. These functions depend not only on the total

quantum number = but also on another quantum number S$= .
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