
 
 
 
 
 
 
 
 
 
 
 

 
 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

 

This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429728353?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Quantitative propagation of chaos of
McKean-Vlasov equations via the

master equation

Alvin Tse

Doctor of Philosophy
University of Edinburgh

2019



Declaration

I declare that this thesis was composed by myself and that the work contained therein is my
own, except where explicitly stated otherwise in the text. The work has not been submitted for
any other degree or professional qualification except as specified.

(Alvin Tse)

2



To anyone passionate in mathematics

3



Lay Summary

Large systems of interacting agents occur in many different areas of science. The agents may
be people, computers, flocks of animals, or particles in moving fluid. Mean-field theory aims
to study particle systems by considering the asymptotic behaviour of the agents or particles,
as their number goes to infinity. This thesis concerns the theoretical numerical analysis and
properties of mean-field models, through various tools in PDE theory and stochastic analysis.
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Abstract

McKean-Vlasov stochastic differential equations (MVSDEs) are ubiquitous in kinetic theory
and in controlled games with a large number of players. They have been intensively studied
since McKean, as they pave a way to probabilistic representations for many important non-
linear/nonlocal PDEs. Classically, their simulation involves using standard particle systems,
which replace the evolving law in MVSDEs by the evolving empirical measure of the particles.
However, this type of simulation is costly in terms of computational complexity, due to the
interaction between the particles.

Apart from classical techniques in stochastic analysis, the approach in this thesis relies
heavily on the calculus on Wasserstein space, presented by P. Lions in his course at Collège de
France. An important object in our study, is a PDE written on the product space of the space
of time horizon and the Wasserstein space, which is a generalisation of the classical Feynman-
Kac PDE. This PDE, namely the master equation, provides a new insight into the study of
mean-field limits of particles and consequently allows us to solve many problems on MVSDEs
that are very difficult/impossible to solve by classical techniques.

The layout of the thesis is as follows. We start by a recap on classical results of MVSDEs
(Chapter 2), followed by a full exposition of Wasserstein calculus on the results that we need
(Chapter 3). Chapters 4 and 5 propose approximating systems to MVSDEs (as alternatives to
the classical particle system) via Romberg extrapolation and Antithetic Multi-level Monte-Carlo
estimation respectively, which are less costly in terms of computational complexity. Finally, in
Chapter 6, we explore the converse: given a standard particle system, we hope to find an
alternative mean-field limit that gives a better approximation to the standard particle system.
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Convention of notations

• For any x, y ∈ Rd, we denote their inner product by xy. Since different measure derivatives
lie in different tensor product spaces, we use | · | to denote the Euclidean norm for any
tensor product space in the form Rd1 ⊗ . . .⊗ Rd` .

• The law of any random variable Z is denoted by L(Z). For any function f : P2(Rd)→ R,
its lift f̃ : L2(Ω,F ,P;Rd)→ R is defined by f̃(ξ) = f(L(ξ)).

• (Ω̂, F̂ , P̂) stands for a copy of (Ω,F ,P), which is useful to represent the L-derivative of
a function of w.r.t. the probability measure (to be defined in Chapter 3). Any random
variable η defined on (Ω,F ,P) is represented by η̂ as a pointwise copy on (Ω̂, F̂ , P̂).
Whenever necessary, we shall introduce a sequence of copies of (Ω,F ,P), denoted by
{(Ω(n),F (n),P(n))}n. Any random variable η defined on (Ω,F ,P) is represented by η(n)

as a pointwise copy on (Ω(n),F (n),P(n)).

• L2 := L2(Ω,F ,P;Rd) denotes the set of square integrable random variables. For any
sub-σ-algebra G, L2(G) denotes the set of all random variables in L2(Ω,G,P;Rd).

• H2 denotes the set of square-integrable progressively measurable processes θ such that(∫ T
0
|θs|2 ds

) 1
2 ∈ L2.

• N represents the number of particles and h represents the discretisation step in an Euler
scheme. For a, b ∈ R, we write a . b if a ≤ Cb, for some constant C that does not depend
on N or h. Unless otherwise specified, C denotes a constant independent of N and h,
whose value varies from line to line.

• For any t ≥ 0, Ct stands for the space C
(
[0, t],Rd

)
equipped with the supremum norm.

• Ck0 ((Rd)`) denotes the set of all functions from (Rd)` to R that are in Ck with compact
support.

• Ckb,Lip((Rd)`) denotes the set of all functions from (Rd)` to R that are in Ck with bounded
and Lipschitz partial derivatives up to and including order k.

• For any metric space E, Cb(E) denotes the set of all bounded functions from E to R.

• For any metric space E, P(E) denotes the set of probability measures on E.

• For any measure µ ∈ P(Ct), µt denotes the marginal of µ at time t.
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Chapter 1

Introduction

Large systems of interacting individuals/agents occur in many different areas of science; the
individuals/agents may be people, computers, flocks of animals, or particles in moving fluid. In
theoretical physics, the microscopic interaction between fluid or gas particles can be described
by a system of nonlinear PDEs. Inspired by the Hilbert’s sixth problem, the first systematic
study regarding this was pioneered by H.McKean. The study of systems of particles undergoing
collision processes, including many-particle jump processes formulated by Kac and McKean
(which also give rise to the Boltzmann equation), was further developed in the Kac’s program
[55]. Mean-field theory was subsequently developed to study particle systems by considering
the asymptotic behaviour of the agents or particles, as their number goes to infinity. Instead
of considering a system with a huge dimension, one can effectively approximate macroscopic
and statistical features of the system as well as the average behaviour of particles. Despite
originating from theoretical physics, applications of techniques of mean-field theory go well
beyond physical particle systems into mathematical biology and economics.

The problem of interacting particles can also be viewed from a stochastic point of view, as
the weak solutions for the associated PDEs are density functions of SDEs (if they exist) with
interactions in the drift and diffusion terms. This approach was adopted in [61] by A. Sznitman
in the context of Boltzmann equations. In a probabilistic setting, the coefficients of the type of
SDEs describing this limiting behaviour typically depend on the probability distribution of the
process itself. These SDEs are called McKean-Vlasov SDEs.

Example 1: Individual-Based Models in mathematical biology

We consider Individual-Based Models (IBM) in mathematical biology, which are investigated
in detail in [5]. They give a particle-like description of a large set of individuals, by describing
the interactions between individuals (which depend on the type of species), and the precise
mechanism of the interactions through coefficients of a system of SDEs. To be concrete, let us
consider a system of N individuals of some biological species, living in the space of Rd. Denoting
the displacement and velocity processes for each individual i respectively by (Si,N ) and (V i,N ),
1 ≤ i ≤ N , the general IBM model can be described by

dSi,Nt = V i,Nt dt,

dV i,Nt = −F (Si,Nt , V i,Nt ) dt− 1
N

∑N
j=1H(Si,Nt − Sj,Nt , V i,Nt − V j,Nt ) dt+ dW i

t ,

where F,H : R2d → Rd are suitable functions and (W i), 1 ≤ i ≤ N , areN independent standard
Brownian motions in Rd. Some special cases of this model are of interest amongst mathematical
biologists. For example, in the Cucker-Smale model, we set F = 0 and H(x, v) = w(x)v, where
w is a matrix function given by

wij(x) =
1

(1 + |xi − xj |2)γ
,
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for some γ ≥ 0. If we define f̂Nt as the empirical measure

f̂Nt =
1

N

N∑
i=1

δ(Si,Nt ,V i,Nt ),

then the general IBM model can be rewritten as dSi,Nt = V i,Nt dt,

dV i,Nt = −F (Si,Nt , V i,Nt ) dt− (H ∗ f̂Nt )(Si,Nt , V i,Nt ) dt+ dW i
t .

Since the pairwise action between any two individuals i and j is of order 1
N , it is reasonable

to predict that their mutual interaction diminishes as N gets large. Under a certain set of
regularity assumptions imposed on F and H, each of the N interacting individuals (Si,N , V i,N )

behaves like the process (S
i
, V

i
) as N →∞, with dynamics satisfying the system of SDEs

dS
i

t = V
i

t dt,

dV
i

t = −F (S
i

t, V
i

t) dt− (H ∗ ft)(S
i

t, V
i

t) dt+ dW i
t ,

(S
i

0, V
i

0) = (Si0, V
i
0 ), ft = Law

(
S
i

t, V
i

t

)
.

This is an example of McKean-Vlasov SDEs, for which the coefficients depend on the law of
the process itself.

Example 2: Mean-field games

The theory of mean-field games (MFG) was proposed by J. Lasry and P. Lions ([47, 48]).
It models the behaviour of multiple agents, in the situation where each individually tries to
optimise one’s position in space and time, but with the preference being partly determined
by the choices of all the other agents. Each individual optimises according to some criterion,
known as the objective function. Because equilibria of large competitive systems tend to suffer
from the curse of dimensionality, MFG theory analyses infinite-population limits that are more
tractable, which nonetheless provide approximations to the game.

Let P i,N be the state process of player i. Player i chooses a control process αi = {αit}t∈[0,T ]

from a set of admissible strategies, which influences the evolution of the state process according
to the following dynamics:

dP i,Nt = b(P i,Nt , µNt , α
i
t) dt+ σ(P i,Nt , µNt , α

i
t) dW

i
t ,

µNt := 1
N

∑N
i=1 δP i,Nt

.

The strategy αi is chosen to maximise the objective function

JN,i(αi, . . . , αN ) := E
[ ∫ T

0

f(P i,Nt , µNt , α
i
t) dt+ g(P i,NT , µNT )

]
,

where f is called the running cost and g is called the terminal cost. The optimal strategy
of player i depends through µN on which controls the other agents choose. Typically, the
optimisation is done in the sense of Nash equilibrium, which is defined as a vector of controls
(α1, . . . , αN ) such that

JN,i(αi, . . . , αN ) ≥ JN,i(αi, . . . , αi−1, α̃, αi+1, αN ),

for any alternative choice of control α̃. There are of course other more refined concepts of Nash
equilibrium, such as ε-Nash equilibrium (see [46]). It is well-known in the literature ([14, 21])
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that the Nash equilbrium can be characterised in terms of the Hamiltonian function and the
solution of an N -player PDE system (a system of Hamilton-Jacobi-Bellman (HJB) equations).
Under certain conditions, the Nash equilibrium exists, although it is often not unique.

There are advantages of considering the mean-field limit for finding the Nash equilibrium.
Whilst there exist existence theorems for N -player games by PDE methods [4] and BSDE
methods [33, 34], the notion of mean-field equilibria in mean-field theory allows us to construct
ε-Nash equilibria (approximate equilibria) for large-population games, for which existence of
equilibria may be hard to prove directly. (See Theorem 8.3 in [46].)

Secondly, N -player PDE systems are hard to solve, especially when N is large. Closed-form
solutions of N -player games are almost never available, apart from sufficiently simple linear-
quadratic models. One could solve the N -dimensional system of HJB equations numerically via
finite-difference schemes, but these schemes do suffer from the curse of dimensionality, as the
estimates depend on the dimension. In this respect, the mean-field limit is much more tractable.

What happens as N →∞? When N is large, each player has little influence on the empirical
measure flow (µNt )t∈[0,T ]. If there were a continuum of players, then each player’s influence on
this empirical measure would be nearly zero and the optimization problems of the players
would be decoupled and identically distributed. Since each player among the continuum acts
identically, the law of large numbers suggests that the statistical distribution (i.e. µNt ) of the
player’s optimally controlled state process at time t must agree with its law at time t. More
precisely, the mean-field limit {P t}t∈[0,T ] satisfies the dynamics dP t = b(P t, µt, αt) dt+ σ(P t, µt, αt) dWt,

µt := Law(P t),

where strategy α is chosen to maximise the objective function

J∞(α) := E
[ ∫ T

0

f(P t, µt, αt) dt+ g(PT , µT )

]
.

Results regarding approximation of N -player games by their mean-field limits are abundant in
the literature and can be found in [1, 46, 14, 21].

Central theme of the thesis: Interacting diffusion models

Our central object of study is the interacting particle system (Y 1,N , . . . , Y N,N ) defined by
dY i,Nt = b(Y i,Nt , µY,Nt ) dt+ σ(Y i,Nt , µY,Nt ) dW i

t ,

µY,Nt := 1
N

∑N
i=1 δY i,Nt

.
(1.0.1)

This is essentially the same model as that for N -player games, except that the controls αi are no
longer present. Indeed, this also corresponds to the case in which the optimal controls are closed-
loop (i.e. αt = α̂(t,Xt), for some Borel-measurable function α̂ : [0, T ]×Rd → R). The functions
b and σ satisfy appropriate regularity conditions (e.g. Lipschitz continuity) so that the solution
exists. We require the driving noises W 1, . . . ,WN to be independent Wiener processes and the
initial positions Y 1,N

0 , . . . , Y N,N0 to be i.i.d.. We also note that the particles are exchangeable,
i.e. the joint distribution of (Y 1,N , . . . , Y N,N ) is the same as (Y π(1),N , . . . , Y π(N),N ), for any
permutation π of {1, . . . , N}.

A typical example of this model is when σ is constant and b is of the form

b(x, µ) =

∫
B(x, y)µ(dy),

for some function B taking two spatial variables as arguments. This model, which serves as an
approximation to the Boltzmann equation in physics, was first introduced by McKean in [51]
and was then further developed by Sznitman in [61] and by Mouhot et al. more recently in the
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Kac’s program [55].
As in the previous two examples, as N →∞, we expect that Y i,N should converge in some

sense to independent copies of the solution of the McKean-Vlasov equation

dXt = b(Xt, µ
X
t ) dt+ σ(Xt, µ

X
t ) dWt, (1.0.2)

where µXt := Law(Xt). We heuristically observe why this is indeed the case through a PDE
argument in the one-dimensional case. (A thorough analysis will be done in Section 2.2.) Let
φ : R→ R be a smooth function. By Itô’s formula, we have the following Fokker-Planck PDE:

d

(∫
φdµXt

)
=

(∫
(LµXt φ) dµXt

)
dt, (1.0.3)

where Lµt is defined by

(Lµtφ)(x) = b(x, µt)φ
′(x) +

1

2
σ(x, µt)

2φ′′(x).

Equation (1.0.3) is also called the McKean-Vlasov PDE. Moreover, applying the Itô’s formula
to (1.0.1) gives

d

(∫
φdµY,Nt

)
=

(∫
(LµY,Nt

φ) dµY,Nt

)
dt+

1

N

N∑
i=1

φ′(Y i,Nt )σ(Y i,Nt , µY,Nt ) dW i
t . (1.0.4)

Since the Brownian motions W 1, . . . ,WN are independent, the stochastic integral term con-
verges to zero in the L2 as N →∞. Therefore, PDE (1.0.4) becomes PDE (1.0.3) as N →∞.

In fact, for fixed k ∈ N, it can be shown rigorously in many settings that the sequence
(Y 1,N , . . . , Y k,N ) converges in law. More precisely, we have

Law(Y 1,N , . . . , Y k,N ) =⇒
(
µX
)⊗k

,

where =⇒ denotes weak convergence. This type of result is known as propagation of chaos, a
term coined by Mark Kac. (This property will be discussed in detail in Section 2.3.)

The McKean-Vlasov limit and many of its variations (e.g., with jumps or with common noise)
have been studied thoroughly in the past several decades, using a wide range of techniques. One
of them is the analysis of the Fokker-Planck PDEs associated to the McKean-Vlasov limit and
the particle system. This approach was adopted in various works by P-E. Jabin and Z. Wang
[38, 39], as well as [55].

Another widely applicable technique is weak convergence arguments. By placing the empir-
ical measures (µY,Nt )t∈[0,T ] in a good topological space, we can establish relative compactness
of this sequence by generally requiring modest assumptions on the regularity of b and σ. The
above heuristic argument may then be made rigorous as a means to find the limit points. This
method is employed frequently to investigate the fluctuation between the particle system and
its mean-field limit over the path space on [0, T ]. (See Chapter 6.) Implementations of this
strategy can be found in [21, 37, 53].

On the other hand, the results on quantitative propagation of chaos are few and far in
between. One approach, called trajectorial propagation of chaos (which focuses on quantitative
estimates of measures on the path space), tends to yield stronger convergence results but only
under accordingly stronger assumptions (e.g. Lipschitz continuity). The main idea is to con-
struct an explicit coupling between the limiting process and the particle system, by building
independent copies of the unique solution of the McKean-Vlasov equation on the same prob-
ability space as the particle system and driven by the same Brownian motions. An advantage
of this approach is that it permits good estimates of the rate of convergence to the limit. In
the case where b and σ are linear in measure and globally Lipschitz continuous, [61] showed
that W2(Law(Y i,Nt ),Law(Xt)) = O(N−1/2). We refer to Sznitman’s result as strong propaga-
tion of chaos (See Theorem 2.2.6.) Nonetheless, for more general b and σ, the rate of strong
convergence generally deteriorates with the dimension. Estimates regarding weak propagation
of chaos (i.e. concerning the weak error between the particle system and its mean-field limit)
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have been proposed very recently by two independent works [44, Ch. 9] and [56, Th. 2.1].
Why are quantitative estimates important? The simulation of standard particle systems is

costly in terms of computational complexity, due to the interaction between particles. Indeed,
for general first-degree interactions, one should expect the order of interactions to be O(N2)
(see Definition 4.1.1). Therefore, one of the main objectives of this thesis is to propose numerical
algorithms to effectively simulate McKean-Vlasov SDEs by using alternatives to the standard
particle systems. To prove that these algorithms indeed reduce the complexity, one would need
to use various estimates of quantitative strong and weak propagation of chaos, which are estab-
lished in Chapters 4 and 5.

Framework of analysis in the thesis

In stochastic numerical analysis, one typically considers two types of error of the forms

sup
t∈[0,T ]

E
∣∣Y i,Nt −Xi

t

∣∣
and

sup
t∈[0,T ]

∣∣∣E[φ(Y i,Nt )]− E[φ(Xi
t)]
∣∣∣,

where Xi is the coupling of (1.0.2) driven by Brownian motion W i and φ : Rd → R is some
smooth test function. The former is called the strong error and the latter is called the weak
error.

Results regarding the strong error are well-known in the literature. In particular, as men-
tioned above, by [61] (see Theorem 2.2.6), the order of convergence is known to be O(1/

√
N) if

the drift and diffusion functions are Lipschitz and linear in measure. More generally, for general
Lipschitz drift and diffusion functions, the order of convergence is known to be O(1/N

1
d+8 )

(see [11]). In Theorem 5.2.5 of this thesis, the order of convergence is shown to be O(1/
√
N)

for general drift and diffusion functions that are sufficiently smooth in the space of probability
measures in a certain sense (to be defined below).

Results concerning the weak error are sparse in the literature and have been recently pro-
posed by independent works [3], [44, Ch. 9] and [56, Th. 2.1]. These results all show the rate of
convergence of the weak error of O(1/N) under various conditions. The methodology behind the
weak error analysis is crucial in this thesis and leads us to the machinery of optimal transport
and calculus in the space of probability measures.

A natural thing to do in the analysis of weak error is to proceed by the Feynman-Kac formula.
We perform the calculations under the assumption of dimension one and constant diffusion
σ > 0, for simplicity of notations. We fix t ∈ [0, T ] and define the flow v(s, x) = E

[
φ
(
Xs,x
t

)]
,

where Xs,x satisfies (1.0.2) and starts at x ∈ R at time s. Suppose that X0, Y
1,N
0 , . . . , Y N,N0 are

all distributed as µ. Note that

Eφ(Xt) =

∫
R
Eφ
(
Xs,x
t

)
µ(dx) =

∫
R
v(0, x)µ(dx) = Ev(0, Y i,N0 ).

Moreover, v satisfies the Feynman-Kac formula
∂v
∂s (s, x) + 1

2σ
2 ∂2v
∂x2 (s, x) + b(x, µXs ) ∂v∂x (s, x) = 0, s ∈ (0, t), x ∈ R,

v(t, x) = φ(x).

(1.0.5)

By Itô’s formula and (1.0.5), we have

Eφ(Y i,Nt )− Eφ(Xt)

= Ev(t, Y i,Nt )− Ev(0, Y i,N0 )

= E

[∫ t

0

∂v

∂s
(s, Y i,Ns ) ds+

∫ t

0

∂v

∂x
(s, Y i,Ns )b(Y i,Ns , µY,Ns ) ds+ σ

∫ t

0

∂v

∂x
(s, Y i,Ns ) dWs
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+
1

2
σ2

∫ t

0

∂2v

∂x2
(s, Y i,Ns )ds

]

= E
[ ∫ t

0

∂v

∂x
(s, Y i,Ns )

(
b(Y i,Ns , µY,Ns )− b(Y i,Ns , µXs )

)
ds

]
. (1.0.6)

In general, one would have to resort to strong error bounds to show convergence, which only
yields the order ofO(1/

√
N). For non-interacting drifts of the form b(x, µ) = F1(x,

∫
F2(z) µ(dz)),

it is shown in [3] via an argument of Gronwall’s inequality that the rate can be improved to
O(1/N).

Another approach involves the application of Feynman-Kac formula to the particle system.
As before, we maintain the assumption of dimension one and constant diffusion σ > 0. Suppose
that the drift takes the form b(x, µ) :=

∫
B(x, y)µ(dy), for some function B : R×R→ R that is

twice-differentiable with all its derivatives bounded up to and including the second order partial
derivatives. We define a corresponding test function F : RN → R by

F (x) =
1

N

N∑
i=1

φ(xi).

Fix t ∈ [0, T ]. As before, let Xi be the coupling of (1.0.2) driven by Brownian motion W i.
Define YN = (Y 1,N , . . . , Y N,N ), XN = (X1, . . . , XN ) and a function vN : [0, t]×RN → R such
that

vN (s,x) = E
[
F
((

YN
t

)s,x)]
.

Clearly, Eφ(Xi
t) = EF (XN

t ) = EvN (t,XN
t ). We can also see that

Eφ(Y i,Nt ) = EF (YN
t )

=

∫
RN

E
[
F
((

YN
t

)0,x)]
ν⊗N (dx)

=

∫
RN

vN (0,x) ν⊗N (dx)

= EvN (0,XN
0 ),

where ν is the initial law of X,Y 1,N , . . . , Y N,N . By the Feynman-Kac formula, vN satisfies the
PDE

∂vN

∂s (s,x) + 1
2σ

2
∑N
p=1

∂2vN

∂x2
p

(s,x) +
∑N
p=1

[
1
N

∑N
q=1B(xp, xq)

]
∂vN

∂xp
(s,x) = 0, s ∈ (0, t),

vN (t,x) = φ(x).
(1.0.7)

Note that it is possible to show by direct differentiation of (1.0.7) that for any distinct i, j ∈
{1, . . . , N},

sup
s∈[0,t]

sup
x∈RN

∣∣∣∣∂vN∂xi (s,x)

∣∣∣∣ ≤ C

N
, sup

s∈[0,t]

sup
x∈RN

∣∣∣∣ ∂2vN

∂xi∂xj
(s,x)

∣∣∣∣ ≤ C

N2
, (1.0.8)

where C is a constant depending on T and the functions b and φ, but not on the number of
particles N . Therefore, by (1.0.7) and (1.0.8), we have

Eφ(Xi
t)− Eφ(Y i,Nt )

= EvN (t,XN
t )− EvN (0,XN

0 )

= E
[ ∫ t

0

∂vN

∂s
(s,XN

s ) ds+

N∑
p=1

∫ t

0

∂vN

∂xp
(s,XN

s ) dXp
s +

σ2

2

N∑
p=1

∫ t

0

∂2vN

∂x2
p

(s,XN
s ) ds

]
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= E

[
N∑
p=1

∫ t

0

∂vN

∂xp
(s,XN

s )

[
b(Xp

s , µ
X
s )− 1

N − 1

∑
q 6=p

B(Xp
s , X

q
s )

]
ds

]
+O(

1

N
)

=
1

N − 1

N∑
p=1

∑
q 6=p

E

[∫ t

0

∂vN

∂xp
(s,XN

s )

[
b(Xp

s , µ
X
s )−B(Xp

s , X
q
s )

]
ds

]
+O(

1

N
)

=
1

N − 1

N∑
p=1

∑
q 6=p

E

[∫ t

0

(
∂vN

(
s,X1

s , . . . , X
q−1
s , 0, Xq+1

s , . . . , XN
s

)
∂xp

+

∫ Xqs

0

∂2vN
(
s,X1

s , . . . , X
q−1
s , u,Xq+1

s , . . . , XN
s

)
∂xq∂xp

du

)
·

(
b(Xp

s , µ
X
s )−B(Xp

s , X
q
s )
)
ds

]
+O(

1

N
)

=
1

N − 1

N∑
p=1

∑
q 6=p

E

[∫ t

0

(∫ Xqs

0

∂2vN
(
s,X1

s , . . . , X
q−1
s , u,Xq+1

s , . . . , XN
s

)
∂xq∂xp

du

)
·

(
b(Xp

s , µ
X
s )−B(Xp

s , X
q
s )
)
ds

]
+O(

1

N
), (1.0.9)

where we have used the independence of the coupled processes Xi, 1 ≤ i ≤ N, in the final step,
since

E

[
∂vN

(
s,X1

s , . . . , X
q−1
s , 0, Xq+1

s , . . . , XN
s

)
∂xp

(
b(Xp

s , µ
X
s )−B(Xp

s , X
q
s )
)]

= E

[
E

[
∂vN

(
s, x1

s, . . . , x
q−1
s , 0, xq+1

s , . . . , xNs
)

∂xp
·
(
b(Xp

s , µ
X
s )

−B(Xp
s , X

q
s )
)]∣∣∣∣∣(

x1
s,...,x

q−1
s ,xq+1

s ,...,xNs

)
=
(
X1
s ,...,X

q−1
s ,Xq+1

s ,...,XNs

)
]

= 0.

Therefore, (1.0.9) and (1.0.8) show that

sup
t∈[0,T ]

∣∣∣E[φ(Y i,Nt )]− E[φ(Xi
t)]
∣∣∣ ≤ C

N
,

for some constant C > 0.
We now analyse the pros and cons of these two approaches. Indeed, the second approach

fully exploits the structure of the particle system and the mean-field coupling, which enables us
to obtain the desired rate. However, suppose that we wish to obtain a higher order estimator
for the limiting equation through Romberg extrapolation. Then one has to write the weak error
as

sup
t∈[0,T ]

(
E[φ(Y i,Nt )]− E[φ(Xi

t)]

)
=
C

N
+ higher order terms, (1.0.10)

where C does not depend on N . In this respect, the second approach does not seem plausible,
since it is clear from (1.0.9) that the dependence on N is intrinsic in this method, as vN depends
on the particle system in its definition.

The main idea in the thesis is to apply the first approach, but along the flow of measures
{ 1
N

∑N
i=1 δY i,Nt

}t∈[0,T ], instead of applying Itô’s formula to each particle {Y i,Nt }t∈[0,T ]. To this
end, one would need a version of Feynman-Kac formula (1.0.5) and Itô’s formula in the space
of probability measures.

Many works in mean-field games (e.g. [9, 10, 14]) make use of an idea introduced by P. Lions
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in [49]. It consists in working in a sufficiently large probability space and considering the lift

Ũ(θ) := U(L(θ)),

for any function U : P2(Rd) → R, where P2(Rd) is the set of probability measures with finite
second moments. Suppose that Ũ is Fréchet differentiable with Fréchet derivative DŨ . Then, by
the Riesz representation theorem, there exists a (P-a.s.) unique random variable Lθ0 ∈ L2(F ;Rd)
such that

DŨ(θ0)(η) = E[Lθ0η], ∀η ∈ L2(F ;Rd).

Moreover, it is possible to show that there exists a (deterministic) Borel-measurable function
h : Rd → Rd such that h(θ) = Lθ, where h only depends on the law of θ. (The proof can be
found in many sources in the literature, e.g. [10] and [14]. There is also an alternative compact
proof in the appendix of [35] due to A. Davie.) The L-derivative ∂µU(µ) of U is defined to be
∂µU(µ) := h. We also define the corresponding joint map ∂µU : P2(Rd)× Rd → Rd by

∂µU(µ, y) := [∂µU(µ)](y).

Similarly, we can define the second-order L-derivatives by

∂v∂µU(µ, y) := ∂y[∂µU(µ, y)] and ∂2
µU(µ, y1, y2) := ∂µ[∂µU(·, y1)](µ, y2).

We remark that the concept of L-derivative is closely related to the notion introduced by
Ambrosio, Gigli and Savaré in a more general setting [2].

An alternative notion of derivatives in probability measures is the linear functional deriva-
tive. More precisely, for any function U : P2(Rd) → R, the linear functional derivative δU

δm :
P2(Rd)× Rd → R is a continuous function such that

d

dε

∣∣∣∣
ε=0+

U
(
µ+ ε(ν − µ)

)
=

∫
Rd

δU

δm
(µ, y) (ν − µ)(dy),

for any µ, ν ∈ P2(Rd). It is clear that this definition is just a straightforward extension of the
notion of functional derivatives in the theory of calculus of variations. In fact, this notion can
be found in many works in the literature, such as [44]. It is easy to compute that, for any
m,m′ ∈ P2(Rd),

U(m′)− U(m) =

∫ 1

0

d

ds
U(m+ s(m′ −m)) ds

=

∫ 1

0

d

dh

∣∣∣∣
h=0+

U
(
(1− s)m+ sm′ + h(m′ −m)

)
ds

=

∫ 1

0

∫
Rd

δU

δm

(
(1− s)m+ sm′, y

)
(m′ −m)(dy) ds.

We shall work with either of these two notions in this thesis whenever it is convenient.
Moreover, under mild conditions of regularity of U : P2(Rd)→ R, if one of the two derivatives
exists, then the other also exists and both of them are related by the connection

∂µU(µ, y) = ∂y
δU

δm
(µ, y).

For any Φ : P2(Rd)→ R, our main PDE of interest in this thesis is AV(t, µ) = 0, t ∈ (0, T ),

V(T, µ) = Φ(µ),
(1.0.11)
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where the operator A is defined by

AV(t, µ) := ∂tV(t, µ) +

∫
Rd

[
∂µV(t, µ)(y)b(y, µ) +

1

2
Tr
(
∂v∂µV(t, µ)(y)a(y, µ)

)]
µ(dy)

and a := σσT . This type of PDE has been well-studied in the literature and is called the master
equation in the context of mean-field games ([11, 21]). Despite not working in a framework of
stochastic controls, we shall abuse the terminology slightly and call (1.0.11) the master equation.
It is well-known that (1.0.11) admits a classical solution when the coefficients are sufficiently
smooth ([15]). Moreover, by [9], its solution has a stochastic representation of

V(t, µ) = Φ(L(Xt,µ
T )), t ∈ [0, T ].

Let us recall the first approach of weak error analysis. As before, we perform the following
two steps:

(i) Application of Feynman-Kac formula to the flow of {L(Xt,µ
T )}t∈[0,T ];

(ii) Application of standard Itô’s formula to the particle system {(Y 1,N
t , . . . , Y N,Nt )}t∈[0,T ].

For simplicity, suppose that X,Y 1,N , . . . , Y N,N all start at a deterministic point c ∈ Rd. Let
Φ(µ) :=

∫
Rd φ(x)µ(dx). Then we have

E
[
V(T, µY,NT )

]
= E

[
Φ(µY,NT )

]
= E

[
φ(Y i,NT )

]
and

V(0, µY,N0 ) = Φ(L(XT )) = E
[
φ(XT )

]
.

Define a function uN : [0, T ]× (Rd)N → R by

uN (t, x1, . . . , xN ) = V
(
t,

1

N

N∑
j=1

δxj

)
.

By Theorem 3.2.5 (also found in Proposition 3.1 of [16]),

∂xiu
N (t, x1, . . . , xN ) =

1

N
∂µV

(
t,

1

N

N∑
`=1

δx`

)
(xi)

and

∂2
xjxiu

N (t, x1, . . . , xN ) =
1

N
∂v

[
∂µV

(
t,

1

N

N∑
`=1

δx`

)]
(xi)δi,j +

1

N2
∂2
µV
(
t,

1

N

N∑
`=1

δx`

)
(xi, xj).

Therefore, by Itô’s formula, we obtain that

E[φ(Y i,NT )]− E[φ(XT )]

= E[uN (T, Y 1,N
T , . . . , Y N,NT )− uN (0, Y 1,N

0 , . . . , Y N,N0 )]

= E
[ ∫ T

0

∂uN

∂s
(s, Y 1,N

s , . . . , Y N,Ns ) +

N∑
i=1

∂uN

∂xi
(s, Y 1,N

s , . . . , Y N,Ns )b
(
Y i,Ns ,

1

N

N∑
j=1

δY j,Ns

)

+
1

2
Tr
(
a
(
Y i,Ns ,

1

N

N∑
j=1

δY j,Ns

) N∑
i=1

∂2uN

∂x2
i

(s, Y 1,N
s , . . . , Y N,Ns )

)
ds

]

= E

[∫ T

0

∂sV
(
s,

1

N

N∑
j=1

δY j,Ns

)
+

N∑
i=1

[
1

N
∂µV

(
s,

1

N

N∑
j=1

δY j,Ns

)
(Y i,Ns )b

(
Y i,Ns ,

1

N

N∑
j=1

δY j,Ns

)
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+
1

2
Tr

(
a
(
Y i,Ns ,

1

N

N∑
j=1

δY j,Ns

)( 1

N
∂v

[
∂µV

(
s,

1

N

N∑
j=1

δY j,Ns

)]
(Y i,Ns )

+
1

N2
∂2
µV
(
s,

1

N

N∑
j=1

δY j,Ns

)
(Y i,Ns , Y i,Ns )

))]
ds

]
.

Therefore, by (1.0.11), the first three terms are cancelled and we are left with

E[φ(Y i,NT )]− E[φ(XT )]

=
1

2N2

N∑
i=1

∫ T

0

E

[
Tr
(
a
(
Y i,Ns ,

1

N

N∑
j=1

δY j,Ns

)
∂2
µV
(
s,

1

N

N∑
j=1

δY j,Ns

)
(Y i,Ns , Y i,Ns )

)]
ds.

(1.0.12)

Equation (1.0.12) is one of the most important formulae in this thesis. It allows us to capture
the weak error between a particle system and its mean-field limit by a single term, as opposed to
(1.0.6) and (1.0.9), with multiple terms. Note that this compact representation of the weak error
is due to the fact that V already encodes all the information of the dynamics of the mean-field
limit. Most of the theory of this thesis is based on this formula.

If we can show that ∂2
µV is uniformly bounded (or of a polynomial growth), then (1.0.12)

shows that the weak error converges with the order of O(1/N). Nonetheless, as we shall see
in Section 3.5, it is in general highly nontrivial to establish regularity properties of the L-
derivatives of V. As the matter of fact, in most cases (other than a few trivial examples), there
are no explicit formulae for the L-derivatives of V. Therefore, (1.0.12) does not really give us
much information, apart from its theoretical value in numerical analysis.

Layout of the thesis

We start by a recap on classical results of MVSDEs (Chapter 2), followed by a full exposition
of Wasserstein calculus on the results that we need (Chapter 3). Chapters 4 and 5 propose ap-
proximating systems to MVSDEs (as alternatives to the classical particle system) via Romberg
extrapolation and Antithetic Multi-level Monte-Carlo estimation respectively, which are less
costly in terms of computational complexity. Finally, in Chapter 6, we explore the converse:
given a standard particle system {Y i,N}, we hope to find an alternative mean-field limit that
gives a better approximation to the standard particle system.
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Chapter 2

Preliminaries: An overview of the
theory of McKean-Vlasov SDEs

2.1 Set-up of the mean-field model
We continue the discussion on the mean-field model through a probabilistic approach. The

particles interact with one another through smooth drift and diffusion functions (also called
interacting kernels) of the empirical measure of the particles, both in drift and diffusion com-
ponents.

For the rest of the thesis, unless otherwise specified, we always work with a probability space
(Ω,F ,P) endowed with a d-dimensional Brownian motion W .

To define the framework for McKean-Vlasov SDEs, we need the notion of Wasserstein metric.
It is a very important notion in the theory of optimal transport. (See [65] for further details.) Let
(M,ρ) be a separable metric space. For p ≥ 1, let Pp(M) denote the collection of all probability
measures µ on M with finite pth moment, i.e. for some x0 ∈M ,∫

M

ρ(x, x0)pµ(dx) < +∞.

Then the pth Wasserstein distance between two probability measures µ and ν in Pp(M) is
defined as

WM,p(µ, ν) :=

(
inf

γ∈Γ(µ,ν)

∫
M×M

ρ(x, y)pdγ(x, y)

) 1
p

,

where Γ(µ, ν) denotes the collection of all measures on M ×M with marginals µ and ν on the
first and second factors respectively. (The set Γ(µ, ν) is also called the set of all couplings of µ
and ν.) Whenever there is no ambiguity from context, we shall denote WM,p by Wp. Note that
ifM is a Polish space (i.e. a complete and separable metric space), then the space (Pp(M),Wp)
is also Polish. Furthermore, it is immediate from the definition of the Wasserstein metric that
for random variables R1 and R2 taking values in M and for probability measures µ and ν on
M , we have

Wp(µ, ν)p = inf
{
Eρ(R1, R2)p

∣∣∣ (R1, R2) has a joint law with marginals µ

and ν respectively
}
.

Proposition 2.1.1 (Kantorovich-Rubinstein duality theorem). Let (M,ρ) be a Polish space
and let µ, ν ∈ P1(M). Then

W1(µ, ν) = sup
φ∈Lip1(M)

[ ∫
M

φdµ−
∫
M

φdν

]
,
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where Lip1(M) denotes the set of all functions f : M → R such that

sup

{
|f(x)− f(y)|

ρ(x, y)

∣∣∣∣ x, y ∈M,x 6= y

}
≤ 1.

Moreover, if µ, ν ∈ P2(M), then

W2(µ, ν)2 = sup
φ1,φ2 Lipschitz

φ1(x)+φ2(y)≤ρ(x,y)2

[ ∫
M

φ1 dµ+

∫
M

φ2 dν

]
.

The first statement onW1 can be found in Remark 6.5 in [65], whereas the second statement
on W2 can be found in (8.3.5) in [66].

Let b : Rd ×P2(Rd)→ Rd and σ : Rd ×P2(Rd)→ Rd ⊗Rd be interacting kernels. As usual,
let {Ft}t∈[0,T ] be the filtration generated by the Brownian motion W . We are interested in the
McKean-Vlasov process {Xs,ξ

t }t∈[s,T ] with interacting kernels b and σ, starting from a random
variable ξ ∈ L2(Fs), defined by the SDE1

Xs,ξ
t = ξ +

∫ t
s
b(Xs,ξ

r ,L(Xs,ξ
r )) dr +

∫ t
s
σ(Xs,ξ

r ,L(Xs,ξ
r )) dWr, t ∈ [s, T ],

L(Xs,ξ
r ) := Law(Xs,ξ

r ).

(2.1.1)

Existence and uniqueness to (2.1.1) are known under various assumptions on b and σ. In par-
ticular, throughout this work, we assume the condition

Assumption 2.1.2.

b and σ are Lipschitz continuous with respect to the Euclidean norm and the W2 norm,
(Lip)

which guarantees existence and uniqueness by [61]. (See Theorem 2.1.5 below.) On the other
hand, weak existence is guaranteed by [57] under the assumption of continuous interacting
kernels with linear growth, along with a non-degeneracy assumption on the diffusion. Suffi-
cient conditions for weak existence and pathwise uniqueness in terms of Lyapunov functions of
measures are proposed in [35].

The first property to be proven is the uniqueness in law of (2.1.1), which is stated in Lemma
3.1 of [9].

Proposition 2.1.3. Assume (Lip). Then for any random variables η, η′ such that L(η) =

L(η′) = µ, we have L(Xs,η
t ) = L(Xs,η′

t ).

Proof. The main idea of the proof relies on the decoupled process of (2.1.1), defined by

Xs,x,ξ
t = x+

∫ t

s

b(Xs,x,ξ
r ,L(Xs,ξ

r )) dr +

∫ t

s

σ(Xs,x,ξ
r ,L(Xs,ξ

r )) dWr, t ∈ [s, T ], x ∈ Rd.

By uniqueness of the solution of (2.1.1) (see Theorem 2.1.5), we have

Xs,ξ
t = Xs,x,ξ

t

∣∣∣∣
x=ξ

. (2.1.2)

Denoting W s := {Wu −Ws}s≤u≤T , by Yamada-Watanabe theorem, for each ξ ∈ L2(Fs), there
exists a (B(Rd)⊗B(C([s, T ],Rd)))/B(C([s, T ],Rd))-measurable function hξ : Rd×C([s, T ],Rd)→
C([s, T ],Rd) such that

Xs,x,ξ = hξ(x,W
s) almost surely. (2.1.3)

1We assume without loss of generality that the dimensions of X and W are the same because we will not
make any non-degeneracy assumption on the diffusion coefficient σ in our work. In particular, one dimension of
X could be time itself.
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Let (ξ′1, ξ
′
2) have the same joint law as (ξ1, ξ2), where ξ1, ξ2 ∈ L2(Fs). Then, by (2.1.2) and

(2.1.3), for every t′ ∈ [s, T ],

sup
t∈[s,t′]

[
W2

(
L(Xs,ξ1

t ),L(Xs,ξ2
t )

)]
≤ sup

t∈[s,t′]

E
∣∣∣Xs,ξ1

t −Xs,ξ2
t

∣∣∣2
= sup

t∈[s,t′]

E
[∣∣∣hξ1(ξ1,W

s)− hξ2(ξ2,W
s)
∣∣∣2]

= sup
t∈[s,t′]

E
[
E
[∣∣∣hξ1(x1,W

s)− hξ2(x2,W
s)
∣∣∣2]∣∣∣∣

(x1,x2)=(ξ1,ξ2)

]
= sup

t∈[s,t′]

E
[
E
[∣∣Xs,x1,ξ1

t −Xs,x2,ξ2
t

∣∣2]∣∣∣∣
(x1,x2)=(ξ′1,ξ

′
2)

]

≤ CE
[
|ξ′1 − ξ′2|2 +

∫ t′

s

W2

(
L(Xs,ξ1

t ),L(Xs,ξ2
t )

)
dt

]
,

(2.1.4)

for some constant C > 0 depending only on the Lipschitz constants of b and σ. Gronwall’s
inequality gives

sup
t∈[s,T ]

[
W2

(
L(Xs,ξ1

t ),L(Xs,ξ2
t )

)]
≤ CE|ξ′1 − ξ′2|2,

which concludes the proof by the definition of the W2 metric.

Remark 2.1.4. Since we work exclusively under assumption (Lip), for any η with L(η) = µ, we
adopt the notation Xs,µ

t := Xs,η
t if only the law of the process is concerned. Similarly, we adopt

the notation Xs,x,µ
t := Xs,x,η

t , since any two processes Xs,x,η1
t and Xs,x,η2

t are indistinguishable,
provided that η1 and η2 have the same law.

Since the initial condition of the process (2.1.1) is fixed to be ξ ∼ ν ∈ P2(Rd), we denote X
to be the process {X0,ξ

t }t∈[0,T ] with marginal laws µXt := L(X0,ξ
t ) :

Xt = ξ +

∫ t

0

b(Xr, µ
X
r ) dr +

∫ t

0

σ(Xr, µ
X
r ) dWr, t ∈ [0, T ]. (2.1.5)

Theorem 2.1.5 (Existence and uniqueness of solutions to McKean-Vlasov SDEs, [61]). Assume
(Lip). Then (2.1.5) admits a strong solution X ∈ H2 which satisfies the property of pathwise
uniqueness.

Proof. For every t ∈ [0, T ], let C
(
[0, t],Rd

)
be the set of continuous functions from [0, t] to Rd.

We define the metric dt(f, g) = supu∈[0,t] |f(u)− g(u)|. Then Ct :=
(
C
(
[0, t],Rd

)
, dt
)
is a Polish

space, for each t ∈ [0, T ].
We consider a mapping Φ : P2(CT )→ P2(CT ), which maps any measure µ ∈ P2(CT ) to the

law of Xµ defined by

dXµ
t = b

(
Xµ
t , µt

)
dt+ σ

(
Xµ
t , µt

)
dWt, Xµ

0 = ξ, t ∈ [0, T ], (2.1.6)

with µt being the t−marginal of µ. We first show that Φ is well-defined. By (Lip), it is clear
that the functions

b(t, x) := b(x, µt); σ(t, x) := σ(x, µt)

are Lipschitz continuous and have linear growth, uniform in time. Hence, it follows from stan-
dard results of SDE theory (e.g. Theorem 3.1 in [50]) that (2.1.6) has a strong solution in
H2 which also satisfies the property of pathwise uniqueness, for each probability measure
µ ∈ P2(CT ). By the Yamada-Watanabe theorem, the solution also satisfies uniqueness in law.
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Finally, since Xµ ∈ H2,∫
CT

sup
0≤t≤T

|y(t)|2 L(Xµ)(dy) = E
[

sup
0≤t≤T

∣∣∣Xµ
t

∣∣∣2] < +∞,

which shows that L(Xµ) ∈ P2(CT ).
We now observe that the process Xµ is a strong solution to (2.1.6) if and only if µ is a fixed

point of Φ.
For µ1, µ2 ∈ P2(CT ), we denote δXs = Xµ1

s −Xµ2
s , δbs = b

(
Xµ1
s , (µ1)s

)
− b
(
Xµ2
s , (µ2)s

)
and

δσs = σ
(
Xµ1
s , (µ1)s

)
− σ

(
Xµ2
s , (µ2)s

)
. By the Cauchy-Schwarz inequality,

|δXs|2 ≤ 2

(∣∣∣∣ ∫ s

0

δbu du

∣∣∣∣2 +

∣∣∣∣ ∫ s

0

δσu dWu

∣∣∣∣2) ≤ 2

(
s

∫ s

0

∣∣δbu∣∣2 du+

∣∣∣∣ ∫ s

0

δσu dWu

∣∣∣∣2).
By the Burkholder-Davis-Gundy inequality, for each t ∈ [0, T ],

E
[

sup
s∈[0,t]

∣∣∣δXs

∣∣∣2] .
∫ t

0

E
[∣∣δbu∣∣2] du+

∫ t

0

E
[∣∣δσu∣∣2] du

.
∫ t

0

E
[∣∣δXu

∣∣2] du+

∫ t

0

W 2
Rd,2((µ1)u, (µ2)u) du

.
∫ t

0

E
[

sup
r∈[0,u]

∣∣∣δXr

∣∣∣2] du+

∫ t

0

W 2
Rd,2((µ1)u, (µ2)u) du.

Gronwall’s lemma implies that for each t ∈ [0, T ],

E
[

sup
s∈[0,t]

∣∣∣δXs

∣∣∣2] ≤ C ∫ t

0

W 2
Rd,2((µ1)u, (µ2)u) du. (2.1.7)

For any µ ∈ P2(CT ), we define the restriction µ
∣∣
[0,t]
∈ P2(Ct) by

µ
∣∣
[0,t]

(A) := µ
{
γ ∈ CT

∣∣∣ γ∣∣
[0,t]
∈ A

}
, A ∈ B(Ct).

Next, we notice that W 2
Ct,2
(
Φ(µ1)

∣∣
[0,t]

,Φ(µ2)
∣∣
[0,t]

)
≤ E

[
sups∈[0,t]

∣∣δXs

∣∣2] and that

WRd,2((µ1)u, (µ2)u) ≤WCu,2(µ1

∣∣
[0,u]

, µ2

∣∣
[0,u]

). Inequality (2.1.7) then gives

W 2
Ct,2
(
Φ(µ1)

∣∣
[0,t]

,Φ(µ2)
∣∣
[0,t]

)
≤ C

∫ t

0

W 2
Cu,2(µ1

∣∣
[0,u]

, µ2

∣∣
[0,u]

) du.

By iterating this inequality, we obtain that for any N ∈ N,

W 2
CT ,2

(
ΦN (µ1),ΦN (µ2)

)
≤ C

∫ T

0

W 2
Cu,2

(
ΦN−1(µ1)

∣∣
[0,u]

,ΦN−1(µ2)
∣∣
[0,u]

)
du

≤ C2

∫ T

0

(T − u)W 2
Cu,2

(
ΦN−2(µ1)

∣∣
[0,u]

,ΦN−2(µ2)
∣∣
[0,u]

)
du

...

≤ CN
∫ T

0

(T − u)N−1

(N − 1)!
W 2
Cu,2

(
µ1

∣∣
[0,u]

, µ2

∣∣
[0,u]

)
du

≤ CN
TN

N !
W 2
CT ,2

(
µ1, µ2

)
.

For sufficiently large N , ΦN is a contraction, so Φ admits a fixed point.
It remains to show strong uniqueness. Suppose that X1 and X2 are both strong solutions
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of (2.1.5), with laws µ1 and µ2 respectively. Then, by inequality (2.1.7),

E
[

sup
s∈[0,t]

∣∣X1
s −X2

s

∣∣2] = E
[

sup
s∈[0,t]

∣∣∣Xµ1
s −Xµ2

s

∣∣∣2]
≤ C

∫ t

0

W 2
Rd,2((µ1)u, (µ2)u) du

≤ C

∫ t

0

E
∣∣X1

u −X2
u

∣∣2 du
≤ C

∫ t

0

E
[

sup
s∈[0,u]

∣∣X1
s −X2

s

∣∣2] du.
Gronwall’s lemma concludes that X1 and X2 are indistinguishable processes.

2.2 Fokker-Planck PDE and the standard interacting par-
ticle system

With the issue of existence of solutions to the McKean-Vlasov SDE out of the way, we can
be able to perform formal computations and obtain its corresponding Fokker-Planck PDE.

Suppose, for convenience, that the McKean-Vlasov SDE admits a probability density func-
tion p(t, x). Assume that b and σ satisfy (Lip). Let a : Rd × P2(Rd) → Rd ⊗ Rd be a function
defined as

a(x, µ) = σ(x, µ)σT (x, µ). (2.2.1)

By Itô’s formula, for f ∈ C∞b (Rd),

f(Xt) = f(X0) +

∫ t

0

d∑
i=1

d∑
l=1

∂f

∂xi
(Xs)σil(Xs, µ

X
s ) dW l

s +

∫ t

0

( d∑
i,j=1

1

2
aij(Xs, µ

X
s )

∂2f

∂xi∂xj
(Xs)

+

d∑
i=1

bi(Xs, µ
X
s )

∂f

∂xi
(Xs)

)
ds.

By (Lip), it is clear that the expectation of the stochastic integral vanishes. Taking the expec-
tation and differentiating both sides with respect to t, we have

∂

∂t

∫
Rd
f(x)p(t, x) dx =

∫
Rd

(
1

2

d∑
i,j=1

aij(x, µ
X
t )

∂2f

∂xi∂xj
(x) +

d∑
i=1

bi(x, µ
X
t )

∂f

∂xi
(x)

)
p(t, x) dx.

(2.2.2)
Integrating by parts yields the weak form

∂p

∂t
(t, x) =

1

2

d∑
i,j=1

∂2

∂xi∂xj

(
aij(x, µ

X
t )p(t, x)

)
−

d∑
i=1

∂

∂xi

(
bi(x, µ

X
t )p(t, x)

)
,

keeping in mind that it is to be interpreted as in (2.2.2).
To fully understand the relationship with PDEs, we consider the following one-dimensional

McKean-Vlasov SDE:

dXt = A′
(∫

R
H(Xt − y)µXt (dy)

)
dt+ σ dWt, 0 ≤ t ≤ T, (2.2.3)

where A : R → R is a C3 function and σ > 0 and H(x) = 1{x≥0} is the Heaviside function.
By the Girsanov’s theorem, it is easy to show that the process {Xt}t∈[0,T ] has a probability
density function p(t, x). (See Proposition 1.1 in [54].) The corresponding weak formulation is
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thus given by

∂p

∂t
(t, x) = − ∂

∂x

{
A′
(∫

R
H(Xt − y)µXt (dy)

)
p(t, x)

}
+
σ2

2

∂2

∂x2
p(t, x).

Let V (t, x) be the cumulative distribution of {Xt}t∈[0,T ]. Noting that
∫
RH(x − y)µXt (dy) =

V (t, x) and that p(t, x) = ∂V
∂x (t, x), we obtain the following equivalent form.

Example 2.2.1 (1D viscous scalar conservation law).
∂V
∂t (t, x) = σ2

2
∂2V
∂x2 (t, x)− ∂

∂xA
(
V (t, x)

)
, ∀(t, x) ∈ (0, T ]× R,

V (0, x) = V0(x), ∀x ∈ R.

In the special case when A(v) = v2

2 , the conversation law is the viscous Burgers equation.

Example 2.2.2 (Burgers equation).
∂V
∂t (t, x) = σ2

2
∂2V
∂x2 (t, x)− V (t, x)∂V∂x (t, x), ∀(t, x) ∈ (0, T ]× R,

V (0, x) = V0(x), ∀x ∈ R.

This approach is one of the probabilistic interpretations of PDEs. We interpret the solution
of a PDE as the cumulative distribution function (or probability density function) of a stochastic
nonlinear process. This approach from a probabilistic point of view has been studied by several
authors. (See the works of Sznitman [61] and Bossy, Jourdain [6], for example.) Theorem 2.1.5
merely gives us an existence result via a fixed-point argument. It does not tell us about the
nature of the solution. Thanks to the propagation of chaos result for systems of interacting
particles, many numerical algorithms can be formulated. Note that (2.2.3) involves the Heaviside
function, which is not a smooth function. Therefore, its properties and approximation are not
covered in this work.

The stochastic simulation of the McKean-Vlasov SDE is very natural. It consists of replacing
the law µXt , which appears explicitly in the drift and diffusion coefficients, by its approximation
given by the empirical distribution of the particle system (Y 1,N , . . . , Y N,N ), which is defined
by the

(
Rd
)N -dimensional classical SDE

Y i,Nt = ξi +
∫ t

0
b(Y i,Ns , µY,Ns ) ds+

∫ t
0
σ(Y i,Ns , µY,Ns ) dW i

s , 1 ≤ i ≤ N, t ∈ [0, T ],

µY,Ns := 1
N

∑N
i=1 δY i,Ns ,

(2.2.4)
where (W i)i∈N are independent Rd-valued Brownian motions and (ξi)i∈N are i.i.d. random
variables with the same law as ξ ∼ ν, independent of (W i)i∈N. Equation (2.2.4) exhibits the
essence of interaction between particles. For any particle i, the knowledge of Y i,Nt is not sufficient
to approximate Y i,Nt+∆t: the knowledge of the positions of the other particles Y j,N , j 6= i, is also
required. We also observe that, by standard results of SDE theory (e.g. Theorem 3.1 in [50]),
(2.2.4) has a unique strong solution if (Lip) holds.

To compare this particle system with the original McKean-Vlasov SDE, we can introduce a
coupling between the system (Y i,N ) and a system (Xi) of independent processes with the same
law as X and being defined on the same probability space as (Y i,N ):

Xi
t = ξi +

∫ t

0

b(Xi
s, µ

X
s ) ds+

∫ t

0

σ(Xi
s, µ

X
s ) dW i

s , 1 ≤ i ≤ N, t ∈ [0, T ]. (2.2.5)

The next theorem is stated for b and σ having first-order interaction.

Assumption 2.2.3.

b(x, µ) :=

∫
Rd
B(x, y)µ(dy) and σ(x, µ) :=

∫
Rd

Σ(x, y)µ(dy). (First order)

24



Assumption 2.2.4.

B : Rd × Rd → Rd and Σ : Rd × Rd → Rd ⊗ Rd are Lipschitz continuous. (B and Σ-Lip)

Note that (First order) and (B and Σ-Lip) imply (Lip), since∣∣b(x, µ1)− b(y, µ2)
∣∣

=

∣∣∣∣ ∫
Rd
B(x, z)µ1(dz)−

∫
Rd
B(y, z)µ2(dz)

∣∣∣∣
≤

∣∣∣∣ ∫
Rd
B(x, z)µ1(dz)−

∫
Rd
B(x, z)µ2(dz)

∣∣∣∣+

∣∣∣∣ ∫
Rd
B(x, z)µ2(dz)−

∫
Rd
B(y, z)µ2(dz)

∣∣∣∣
≤ ‖B‖Lip

(
W1(µ1, µ2) + |x− y|

)
≤ ‖B‖Lip

(
W2(µ1, µ2) + |x− y|

)
,

where the second inequality comes from Proposition 2.1.1 and the final inequality comes from
Jensen’s inequality. The argument for σ is identical.

Note that if the initial law ν satisfies

Assumption 2.2.5. ∫
Rd
|x|2p ν(dx) < +∞, (p-Int)

for some p > 1, then it follows by a standard Gronwall-type argument that

sup
u∈[0,T ]

E
[
|Xu|2p

]
< +∞, sup

N∈N
sup

u∈[0,T ]

E
[
|Y 1,N
u |2p

]
< +∞, sup

N∈N
E
[
‖Y 1,N

t −Y 1,N
s ‖2p

]
≤ C|t−s|p,

(2.2.6)
for each 0 ≤ s, t ≤ T, for some C > 0. The following theorem ([61]) gives a bound on the strong
error of the particle approximation.

Theorem 2.2.6. Assume (First order), (B and Σ-Lip) and (p-Int), for p = 2. Then

sup
t∈[0,T ]

E
[∣∣∣Y i,Nt −Xi

t

∣∣∣2] ≤ C

N
,

where C is a constant independent of N .

Proof. By Itô’s formula,

E
[
(Y i,Nt −Xi

t)
2
]

= 2E
[ ∫ t

0

(Y i,Ns −Xi
s)

(
1

N

N∑
j=1

Σ(Y i,Ns , Y j,Ns )−
∫
Rd

Σ(Xi
s, y)µXs (dy)

)
dW i

s

]

+

∫ t

0

E
[(

1

N

N∑
j=1

Σ(Y i,Ns , Y j,Ns )−
∫
Rd

Σ(Xi
s, y)µXs (dy)

)2]
ds

+ 2

∫ t

0

E
[
(Y i,Ns −Xi

s)

(
1

N

N∑
j=1

B(Y i,Ns , Y j,Ns )−
∫
Rd
B(Xi

s, y)µXs (dy)

)]
ds.

By the Cauchy-Schwarz inequality and (2.2.6), the first term vanishes. Using the simple in-
equality that (a+ b+ c)2 ≤ 3(a2 + b2 + c2), we decompose the second term as(

1

N

N∑
j=1

Σ(Y i,Ns , Y j,Ns )−
∫
Rd

Σ(Xi
s, y)µXs (dy)

)2

≤ 3

(
1

N

N∑
j=1

(
Σ(Y i,Ns , Y j,Ns )− Σ(Y i,Ns , Xj

s )
))2

+ 3

(
1

N

N∑
j=1

(
Σ(Y i,Ns , Xj

s )− Σ(Xi
s, X

j
s )
))2

+ 3As(Σ),
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where As(h) =
(

1
N

∑N
j=1 h(Xi

s, X
j
s ) −

∫
Rd h(Xi

s, y)µXs (dy)
)2

, for h ∈ {B,Σ}. By the Cauchy-
Schwarz inequality and the Lipschitz property of Σ, we obtain that

E
[(

1

N

N∑
j=1

Σ(Y i,Ns , Y j,Ns )−
∫
Rd

Σ(Xi
s, y)µXs (dy)

)2]
≤ 6‖Σ‖2LipE

[∣∣Y i,Ns −Xi
s

∣∣2]+ 3E
[
As(Σ)

]
.

Similarly,

E
[(

1

N

N∑
j=1

B(Y i,Ns , Y j,Ns )−
∫
Rd
B(Xi

s, y)µXs (dy)

)2]
≤ 6‖B‖2LipE

[∣∣Y i,Ns −Xi
s

∣∣2]+ 3E
[
As(B)

]
.

For the third term, we have

E
[
2(Y i,Ns −Xi

s)

(
1

N

N∑
j=1

B(Y i,Ns , Y j,Ns )−
∫
Rd
B(Xi

s, y)µXs (dy)

)]
≤

(
6‖B‖2Lip + 1

)
E
[∣∣Y i,Ns −Xi

s

∣∣2]+ 3E
[
As(B)

]
.

We therefore get the inequality

E
[
(Y i,Nt −Xi

t)
2
]
≤
(

6‖Σ‖2Lip+6‖B‖2Lip+1
)∫ t

0

E
[
(Y i,Ns −Xi

s)
2
]
ds+3

∫ t

0

E
[
As(Σ)+As(B)

]
ds.

Gronwall’s lemma implies that

E
[
(Y i,Nt −Xi

t)
2
]
≤ 3 exp

{(
6‖Σ‖2Lip + 6‖B‖2Lip + 1

)
t
}∫ t

0

E
[
As(Σ) +As(B)

]
ds.

Fix h ∈ {B,Σ}. Then

E[As(h)] = E
[( 1

N

N∑
j=1

h(Xi
s, X

j
s )−

∫
Rd
h(Xi

s, y)µXs (dy)
)2
]

≤ 3

(
E
[

1

N2
h(Xi

s, X
i
s)

2

]
+ E

[(
1

N

∑
j 6=i

h(Xi
s, X

j
s )− 1

N − 1

∑
j 6=i

h(Xi
s, X

j
s )

)2]

+E
[(

1

N − 1

∑
j 6=i

h(Xi
s, X

j
s )−

∫
Rd
h(Xi

s, y)µXs (dy)

)2])

.
1

N2
+ E

[
Var
[

1

N − 1

∑
j 6=i

(
h(x,Xj

s )−
∫
Rd
h(x, y)µXs (dy)

)]∣∣∣∣
x=Xis

]

=
1

N2
+ E

[[
1

(N − 1)2

∑
j 6=i

Var
(
h(x,Xj

s )−
∫
Rd
h(x, y)µXs (dy)

)]∣∣∣∣
x=Xis

]
.

1

N
, (2.2.7)

where the final estimate uses the fact that B and Σ are Lipschitz and therefore have linear
growth as well. This completes the proof.

2.3 Propagation of Chaos
In this section, we explore the phenomenon in which interacting particles become asymptot-

ically independent as their number goes to infinity, known as propagation of chaos. The goal of
this section is to establish the result that the interacting particle system (2.2.4) indeed satisfies
this property, by following closely the works of [61] and [53].
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Definition 2.3.1. In a Polish space E, let (Qn)n be a sequence of symmetric probability
measures on En. Moreover, let Q be a probability measure on E. We say that (Qn)n is Q-
chaotic if for all k ≥ 1, φ1, . . . , φk ∈ Cb(E),∫

En
φ1(x1) . . . φk(xk)Qn

(
d(x1, . . . , xn)

) n→∞−−−−→
(∫

E

φ1 dQ

)
. . .

(∫
E

φk dQ

)
.

We start by giving equivalent conditions to chaotic sequences of measures.
Let us first recall the notion of a convergence determining class. Suppose that {Xn} is

a sequence of random variables taking values in (E, d). To show that Xn converges to X in
distribution, we need to prove that

E[f(Xn)]→ E[f(X)],

for all bounded continuous f : E → R. However, this is usually not practical because the class
of bounded continuous functions is too large. Instead, we typically find a special class U of
functions which are easier to evaluate, such that E[f(Xn)]→ E[f(X)], for all f ∈ U still implies
Xn =⇒ X. Such a class U is called a convergence determining class. The following result gives
a sufficient condition for convergence determining classes in a Polish space. (See, for example,
Chapter 3 in [24], for details of the proof.)

Lemma 2.3.2. Let (E, d) be a Polish space. Let M ⊆ Cb(E) be an algebra (i.e. a vector space
closed under pointwise multiplication). If M strongly separates points, i.e. for every x ∈ E and
δ > 0, there exists a finite set {h1, . . . , hk} ⊆M such that

inf
y:d(y,x)≥δ

max
1≤i≤k

|hi(y)− hi(x)| > 0,

then M is convergence determining.

Theorem 2.3.3. Let E be a Polish space. Let (Qn)n be a sequence of symmetric probability
measures on En and Q be a probability measure on E. Moreover, let X1,n, . . . , Xn,n be E-valued
random variables such that L((X1,n, . . . , Xn,n)) = Qn. We define their empirical measure as
µn = 1

n

∑n
i=1 δXi,n . Then, the following statements are equivalent.

(i) (Qn)n is Q-chaotic,

(ii) E
[
|
∫
E
f dµn −

∫
E
f dQ|

] n→∞−−−−→ 0, ∀f ∈ Cb(E),

(iii) µn converges weakly to Q (as P(E)-valued random variables).

Proof. (i) =⇒ (ii). By definition, for each n, (X1,n, . . . , Xn,n) is exchangeable. Hence, for each
f ∈ Cb(E),

E

[(∫
E

f dµn −
∫
E

f dQ

)2
]

= E

[(
1

n

n∑
i=1

f(Xi,n)−
∫
E

f dQ

)2
]

= E

[
1

n2

n∑
i,j=1

f(Xi,n)f(Xj,n)− 2

n

∫
E

f dQ

n∑
i=1

f(Xi,n)

+

(∫
E

f dQ

)2
]

=
1

n
E
[(
f(X1,n)

)2]
+
n− 1

n
E
[
f(X1,n)f(X2,n)

]
−2

(∫
E

f dQ

)
E
[
f(X1,n)

]
+

(∫
E

f dQ

)2

n→∞−−−−→
(∫

E

f dQ

)2

− 2

(∫
E

f dQ

)2

+

(∫
E

f dQ

)2

= 0.

This establishes L1 convergence.
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(ii) =⇒ (i). Let k ≥ 1 and f1, . . . , fk ∈ Cb(E). Then, by assumption,
∫
E
fjdµ

n →
∫
E
fj dQ in

L1, for j ∈ {1, . . . , k}. Therefore,
∫
E
fjdµ

n →
∫
E
fj dQ in probability, for j ∈ {1, . . . , k}.

By a standard result concerning convergence in probability, we deduce that∫
E

f1 dµ
n . . .

∫
E

fk dµ
n →

∫
E

f1 dQ . . .

∫
E

fk dQ in probability.

Since the sequence of random variables {
∫
E
f1 dµ

n . . .
∫
E
fk dµ

n} is uniformly bounded by
‖f1‖∞ . . . ‖fk‖∞, we also have∫

E

f1 dµ
n . . .

∫
E

fk dµ
n →

∫
E

f1 dQ . . .

∫
E

fk dQ in L1.

By the triangle inequality,∣∣∣∣E[f1(X1,n) . . . fk(Xk,n)
]
−
∫
E

f1 dQ . . .

∫
E

fk dQ

∣∣∣∣
=

∣∣∣∣E[f1(X1,n) . . . fk(Xk,n)
]
− E

[ ∫
E

f1 dµ
n . . .

∫
E

fk dµ
n

]∣∣∣∣
+

∣∣∣∣E[ ∫
E

f1 dµ
n . . .

∫
E

fk dµ
n

]
−
∫
E

f1 dQ . . .

∫
E

fk dQ

∣∣∣∣.
By above, the second term on the right converges to zero. The first term can be rewritten
as ∣∣∣∣E[f1(X1,n) . . . fk(Xk,n)

]
− 1

nk

n∑
i1,...,ik=1

E
[
f1(Xi1,n) . . . fk(Xik,n)

]∣∣∣∣
≤

∣∣∣∣E[f1(X1,n) . . . fk(Xk,n)
]
− 1

nk

n∑
i1,...,ik=1

i1,...,ik all different

E
[
f1(Xi1,n) . . . fk(Xik,n)

]∣∣∣∣
+

1

nk

n∑
i1,...,ik=1

some of i1,...,ik are the same

∣∣∣∣E[f1(Xi1,n) . . . fk(Xik,n)
]∣∣∣∣

≤ E
[
f1(X1,n) . . . fk(Xk,n)

][
1− 1

nk
n!

(n− k)!

]
+

1

nk

[ k∑
j=1

‖fj‖∞
]k[

nk − n!

(n− k)!

]

=

(
1− 1

nk
n!

(n− k)!

)[
E
[
f1(X1,n) . . . fk(Xk,n)

]
+

(
k∑
j=1

‖fj‖∞

)k]

≤ 2

(
k∑
j=1

‖fj‖∞

)k(
1− 1

nk
n!

(n− k)!

)
n→∞−−−−→ 0.

(iii) =⇒ (ii). Suppose that µn converges weakly to Q. As a P(E)-valued random variable, Q
is constant. Hence, µn → Q in probability. Take any f ∈ Cb(E). We define a continuous
map

Φ : P(E)→ R; ν 7→
∫
E

f dν.

It follows by standard properties of convergence in probability that Φ(µn) → Φ(Q) in
probability, i.e. ∫

E

f dµn →
∫
E

f dQ in probability.

Note that
{∫

E
f dµn

}
is uniformly bounded by ‖f‖∞ and is hence uniformly integrable.
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This implies that ∫
E

f dµn →
∫
E

f dQ in L1.

(ii) =⇒ (iii). Since E is Polish, it is a standard result that P(E) (equipped with the weak
topology) is also a Polish space. Let M ⊆ Cb(P(E)) be defined by

M =

{
Φ : P(E)→ R

∣∣∣∣∣ Φ(ν) =

n∑
i=1

ci

∫
E

f
(i)
1 dν . . .

∫
E

f
(i)
`i
dν, where n, `1, . . . , `n ∈ N,

c1, . . . , cn ∈ R, f
(1)
1 , . . . , f

(1)
`1
, . . . , f

(n)
1 , . . . , f

(n)
`n
∈ Cb(E)

}
.

We can argue in the same way as in the implication of (ii) =⇒ (i) to show that

E
[
Φ(µn)

]
→ E

[
Φ(Q)

]
, ∀Φ ∈M.

By the definition of M , it is an algebra. Moreover, by the seminorm characterisation of
the weak topology, it is easy to see that M is strongly separating. Thus, by Lemma 2.3.2,
M is a convergence determining set, i.e.

E
[
Φ(µn)

]
→ E

[
Φ(Q)

]
, ∀Φ ∈ Cb

(
P(E)

)
.

Let (E, d) be a Polish space, equipped with its Borel sigma-algebra and let M ⊆ P(E) be a
collection of probability measures defined on E. Recall that the collection M is called tight if,
for any ε > 0, there is a compact subset Kε of S such that

sup
µ∈M

µ(E \Kε) < ε.

If we equip P(E) with the topology of weak convergence (which is metrisable), then the
Prokhorov’s theorem states that for any collection of probability measures M ⊆ P(E),

M is tight ⇐⇒ M is precompact.

We consider the system of interacting particles as described in (2.2.4) for the remaining of this
section. In this situation, Y 1,N , . . . , Y N,N are CT -valued random variables. To apply Theorem
2.3.3, we set E = CT . Our goal is to prove condition (iii) in Theorem 2.3.3 in order to establish
chaoticity. The Prokhorov’s theorem therefore leads to the classical trilogy of arguments:

(I) Tightness of
(
L(µY,N )

)
N∈N in P

(
P
(
CT
))
.

(II) Identification of the limiting value of a subsequence of
(
L(µY,N )

)
N∈N (by Prokhorov’s

theorem).

(III) The use of a uniqueness argument to conclude that the limit is equal to δQ, where Q is
defined to be the solution to some martingale problem.

Since the space P
(
P
(
CT
))

is very complicated to analyse, the following result transfers the
analysis of tightness in P

(
P
(
CT
))

to a more “manageable” space.

Lemma 2.3.4. Let E be a Polish space and (mn) be a sequence of probability measures in the
space P

(
P(E)

)
. Then

(mn)n is tight ⇐⇒
(
I(mn)

)
n
⊆ P(E) is tight,

where ∫
E

f dI(m) :=

∫
P(E)

[∫
E

f dµ

]
m(dµ), ∀f ∈ Cb(E), ∀m ∈ P(P(E)).
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Proof. ( =⇒ ). Clearly, the map P(P(E)) → P(E); m 7→ I(m) is continuous w.r.t. the weak
topologies. Let an = I(mn). Since

{
mn

∣∣n ∈ N
}

is tight, Prokhorov’s theorem implies
that there exists a subsequence

(
mnk

)
k
such that mnk → m in the weak topology, for

some m ∈ P
(
P(E)

)
. By the continuity of I, ank → I(m). Therefore,

I(m) ∈
{
ank

∣∣ k ∈ N
}
⊆
{
I(mp)

∣∣ p ∈ N
}
,

which shows that
{
I(mp)

∣∣ p ∈ N
}
is precompact. Prokhorov’s theorem finally concludes

that
(
I(mn)

)
n
is tight.

(⇐= ). Suppose that
(
I(mn)

)
n
is tight. Take any ε > 0. There exists a compact subset Kε of

E such that
I(mn)

(
Kc
ε

)
< ε, ∀n ∈ N.

By approximating the indicator function of an open set with a sequence of increasing
continuous functions,

I(mn)
(
Kc
εη

)
=

∫
E

1Kc
εη
dI(mn) =

∫
P(E)

µ
(
Kc
εη

)
mn(dµ) ≥ ηmn

({
µ
∣∣µ(Kc

εη

)
≥ η

})
,

which implies that
mn
({
µ
∣∣µ(Kc

εη

)
≥ η

})
< ε.

Therefore,

mn

( ⋃
k≥1

{
µ

∣∣∣∣µ(Kc
ε 2−k
k

)
>

1

k

})
≤
∑
k≥1

ε2−k = ε.

Note that
⋂
k≥1

{
µ
∣∣∣µ(Kc

ε 2−k
k

)
≤ 1

k

}
is closed, by Portmanteau’s lemma. Thus, it is

compact as well, by Prokhorov’s theorem.

We now observe that by the exchangeability of (Y 1,N , . . . , Y N,N ), for any function f ∈
Cb
(
CT
)
, we have ∫

CT

f dL(Y 1,N ) = E
[
f(Y 1,N )

]
= E

[
1

N

N∑
i=1

f(Y i,N )

]
= E

[ ∫
CT

f dµY,N
]

=

∫
P(CT )

(∫
CT

f dµ

)
L(µY,N )(dµ).

We state this result formally in the following corollary.

Corollary 2.3.5. The tightness of
(
L(µY,N )

)
N∈N in P

(
P(CT )

)
is equivalent to the tightness

of
(
L(Y 1,N )

)
N∈N in P

(
CT
)
.

To show the tightness of
(
L(Y 1,N )

)
N∈N in P

(
CT
)
, we first recall from Section 2.4 of [42] a

general sufficient condition for tightness of measures on CT .

Theorem 2.3.6. Let
{
Q

(m)
t

}
t∈[0,T ]

be a sequence of continuous processes on (Ω,F ,P), taking
values in Rd, satisfying the following conditions:

(i) supm≥1 E
[∣∣Q(m)

0

∣∣ν] = M < +∞, for some ν > 0,
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(ii) supm≥1 E
[∣∣Q(m)

t −Q(m)
s

∣∣α] ≤ C|t−s|1+β, for each 0 ≤ s, t ≤ T , for some positive constants
α, β and C (depending on T ).

Then the laws of Q(m) form a tight sequence of measures on
(
CT ,B

(
CT
))
.

A combination of (2.2.6), Corollary 2.3.5 and Theorem 2.3.6 gives the following result.

Theorem 2.3.7. Assume (Lip) and (p-Int), for some p > 1. Then the sequence of measures(
L(µY,N )

)
N∈N is tight in P

(
P(CT )

)
.

We now briefly introduce the martingale problem formulation for SDEs, introduced by
Stroock and Varadhan.

Let b1 : [0, T ] × Rd → Rd and b2 : [0, T ] × Rd → Rd ⊗ Rd be continuous functions with at
most quadratic growth. We consider the SDE

dΠt = b1(t,Πt) dt+ b2(t,Πt) dWt, t ∈ [0, T ], (2.3.1)

where W is a d-dimensional Brownian motion and Π is a suitable stochastic process with
continuous sample paths on [0, T ]. A probability measure on

(
CT ,B

(
CT
))
, under which

Mf
t (y)

:= f(y(t))− f(y(0))−
∫ t

0

1

2

d∑
i,j=1

(b2b
T
2 )ij(s, y(s))

∂2f(y(s))

∂xi∂xj
+

d∑
i=1

(b1)i(s, y(s))
∂f(y(s))

∂xi
ds,

is a continuous martingale w.r.t. the filtration
{
B
(
Ct
)
}t∈[0,T ], for every f ∈ C2

0 (Rd), is called a
solution to the martingale problem associated to (2.3.1). The following result is well-known (see
Proposition 4.11 and Corollary 4.9 in Section 5.4 of [42]).

Theorem 2.3.8. The existence of a solution Q to the martingale problem associated to (2.3.1)
is equivalent to the existence of a weak solution (Π,W ), (Ω,F ,P), {Ft} to (2.3.1). The two solu-
tions are related by Q = P ◦Π−1. Moreover, the uniqueness of the solution Q to the martingale
problem with fixed but arbitrary initial distribution

Q0(Γ) := Q
{
y ∈ CT

∣∣∣ y(0) ∈ Γ
}

= µ(Γ), Γ ∈ B(Rd),

is equivalent to uniqueness in law in (2.3.1).

Note that it is not necessary to verify the martingale problem for each function in C2
0 (Rd).

Only a countable class of functions has to be considered. The following fact (Remark 4.12 in
Section 5.4 of [42]) is crucial in subsequent discussions.

Theorem 2.3.9. Let D :=
⋃

1≤i,j≤d

[
{g(k)
i | k ∈ N}∪{g(k)

ij | k ∈ N}
]
, where for each 1 ≤ i, j ≤ d

and k ∈ N, g(k)
i and g(k)

ij are functions in C2
0 (Rd) such that

g
(k)
i (x) = xi, g

(k)
ij = xixj , for each ‖x‖ ≤ k.

Then Q is the solution to the martingale problem associated to (2.3.1) if {Mf
t }t∈[0,T ] is a Q-

continuous martingale for every f ∈ D.

We now state the main result of this section. Note that it is possible to relax the assumptions,
e.g, to include jumps. See Theorem 4.4 in [53] and Proposition 1.10 in [40] for further details.
Note that the following theorem gives a qualitative result on propagation of chaos based on
the definition of chaoticity given in Definition 2.3.1, whereas Theorem 2.2.6 gives a quantitative
result of propagation of chaos by analysing the strong error.

Theorem 2.3.10. Assume (First order) and (p-Int), for some p > 1. Moreover, suppose
that the functions B and Σ in (First order) are bounded and satisfy (B and Σ-Lip). Then
{L((Y 1,N , . . . , Y N,N ))}N∈N is µX-chaotic (up to a subsequence).
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We first state and prove a fact that gives a sufficient condition for an adapted integrable
process to be a martingale.

Lemma 2.3.11. Suppose that {Mt}t∈[0,T ] is a bounded continuous adapted process defined on
the filtered probability space

(
CT ,B

(
CT
)
,
{
Ft := B

(
Ct
)}
t∈[0,T ]

, µ
)
. Then there exists a count-

able subset Λ (independent of the measure µ and the process M) of{(
(q1, . . . , qn, s, t), (f1, . . . , fn)

) ∣∣∣∣ n ∈ N, 0 ≤ q1 < . . . < qn ≤ s < t ≤ T, f1, . . . , fn ∈ Cb(Rd)
}

such that if for each
(
(q1, . . . , qn, s, t), (f1, . . . , fn)

)
∈ Λ,∫

CT

(
Mt(y)−Ms(y)

)
f1(y(q1)) . . . fn(y(qn)) µ(dy) = 0,

then M is a µ-martingale.

Proof. Fix 0 ≤ s < t ≤ T . Note that Fs = B
(
Cs
)
is generated by a countable collection C of

sets of the form
F =

{
z ∈ Cs

∣∣∣∣ (z(q(F )
1

)
, . . . , z

(
q(F )
nF

))
∈ A(F )

}
,

where nF ≥ 1, q(F )
i ∈ [0, s]∩Q, A(F ) ∈ B

(
RnF d

)
is a product of open sets I(F )

1 ×. . .×I(F )
nF , where

each I(F )
k ∈ Rd, k = 1 . . . , nF . Since I

(F )
1 , . . . , I

(F )
nF are open, there exist sequences of functions{

f
(F )
1m

}
m∈N, . . . ,

{
f

(F )
nFm

}
m∈N in Cb(Rd) such that f (F )

km ↑ 1I(F )
k

, as m→∞, for k ∈ {1, . . . , nF }.
By Dynkin’s lemma and the dominated convergence theorem, it is easy to see that if for each(

(q1, . . . , qn, s, t), (f1, . . . , fn)
)
∈ As,t :=

⋃
F∈C

⋃
m∈N

{(
(q

(F )
1 , . . . , q(F )

nF
, s, t), (f

(F )
1m , . . . , f (F )

nFm
)
)}

,

∫
CT

(
Mt(y)−Ms(y)

)
f1(y(q1)) . . . fn(y(qn)) µ(dy) = 0,

then Eµ[Mt|Fs] = Ms almost surely. Since M is continuous, we finish the proof by defining

Λ =
⋃

0≤s<t≤T
s,t∈Q

As,t,

which is clearly a countable set.

Proof of Theorem 2.3.10. For each φ ∈ C2
0 (Rd) and R ∈ P

(
CT
)
, we define the process

Mφ,R
t (y) = φ(y(t))−φ(y(0))−

∫ t

0

1

2

d∑
i,j=1

aij
(
y(s), Rs

)∂2φ(y(s))

∂xi∂xj
+

d∑
i=1

bi
(
y(s), Rs

)∂φ(y(s))

∂xi
ds.

(2.3.2)
Subsequently, we fix λ =

(
(q1, . . . , qj , s, t), (f1, . . . , fj)

)
∈ Λ. We define a function Fφ,λ :

P
(
CT
)
→ R such that

Fφ,λ(R) =

∫
CT

(
Mφ,R
t (y)−Mφ,R

s (y)
)
f1(y(q1)) . . . fj(y(qj)) R(dy).

Lemma 2.3.12. Fφ,λ is a continuous function with respect to the weak topology and Euclidean
topology.

Proof. By Theorem 1.12.4 from [64], we recall that the weak topology on any separable metric
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space (E, ρ) is metrisable by the bounded Lipschitz metric dBL,E given by

dBL,E(ν1, ν2) := sup
f∈BLE

∣∣∣∣ ∫
E

f dν1 −
∫
E

f dν2

∣∣∣∣,
where

BLE :=
{
f ∈ Cb(E)

∣∣∣∣ sup
x∈E
|f(x)| ≤ 1, sup

x 6=y

|f(x)− f(y)|
ρ(x, y)

≤ 1
}
.

Let {Rn}n be a sequence in P(CT ) converging to R. Then we obtain

∣∣aij(y(s), Rns )− aij(y(s), Rs)
∣∣ =

∣∣∣∣ ∫
Rd
Aij(y(s), z)Rns (dz)−

∫
Rd
Aij(y(s), z)R(dz)

∣∣∣∣
≤

(
‖Aij‖∞ + ‖Aij‖Lip

)
dBL,Rd(Rns , Rs)

and a similar result for bi, 1 ≤ i ≤ d. Therefore, since φ ∈ C2
0 (Rd), by (2.3.2), we have

sup
y∈CT

∣∣Mφ,Rn

t (y)−Mφ,R
t (y)

∣∣ ≤ C sup
s∈[0,T ]

dBL,Rd(Rns , Rs).

We further note that

sup
s∈[0,T ]

dBL,Rd(Rns , Rs) = sup
s∈[0,T ]

sup
f∈BLRd

∣∣∣∣ ∫
Rd
f(x)Rns (dx)−

∫
Rd
f(x)Rs(dx)

∣∣∣∣
= sup

s∈[0,T ]

sup
f∈BLRd

∣∣∣∣ ∫
CT

f(ω(s))Rn(dω)−
∫
CT

f(ω(s))R(dω)

∣∣∣∣
≤ dBL,CT (Rn, R),

which implies that
sup
y∈CT

∣∣Mφ,Rn

t (y)−Mφ,R
t (y)

∣∣ ≤ CdBL,CT (Rn, R).

Finally, we conclude the result by considering the decomposition

|Fφ,λ(Rn)− Fφ,λ(R)|

≤
∣∣∣∣ ∫
CT

(
Mφ,Rn
t (y)−Mφ,Rn

s (y)
)
f1(y(q1)) . . . fj(y(qj)) Rn(dy)

−
∫
CT

(
Mφ,R
t (y)−Mφ,R

s (y)
)
f1(y(q1)) . . . fj(y(qj)) Rn(dy)

∣∣∣∣
+

∣∣∣∣ ∫
CT

(
Mφ,R
t (y)−Mφ,R

s (y)
)
f1(y(q1)) . . . fj(y(qj)) Rn(dy)

−
∫
CT

(
Mφ,R
t (y)−Mφ,R

s (y)
)
f1(y(q1)) . . . fj(y(qj)) R(dy)

∣∣∣∣
≤ CdBL,CT (Rn, R) +

∣∣∣∣ ∫
CT

(
Mφ,R
t (y)−Mφ,R

s (y)
)
f1(y(q1)) . . . fj(y(qj)) Rn(dy)

−
∫
CT

(
Mφ,R
t (y)−Mφ,R

s (y)
)
f1(y(q1)) . . . fj(y(qj)) R(dy)

∣∣∣∣ n→∞−−−−→ 0.

By the definition of Mφ,R,

Fφ,λ(R) =

∫
CT

[
φ(y(t))− φ(y(s))−

∫ t

s

1

2

d∑
i,j=1

aij
(
y(u), Ru

)∂2φ(y(u))

∂xi∂xj
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+

d∑
i=1

bi
(
y(u), Ru

)∂φ(y(u))

∂xi
du

]
f1(y(q1)) . . . fj(y(qj)) R(dy).

We then notice that

E
[(
Fφ,λ(µY,N )

)2]
= E

[(
1

N

N∑
i=1

(
Zφ,i,Nt − Zφ,i,Ns

)
f1

(
Y 1,N
q1

)
. . . fj

(
Y i,Nqj

))2]
,

where

Zφ,i,Nt

:= φ
(
Y i,Nt

)
− φ

(
ξi
)
−
∫ t

0

1

2

d∑
`,j=1

a`j
(
Y i,Ns , µY,Ns

) ∂2φ

∂x`∂xj
(Y i,Ns ) +

d∑
`=1

b`
(
Y i,Ns , µY,Ns

) ∂φ
∂x`

(Y i,Ns ) ds.

By the exchangeability of the particle system (Y 1,N , . . . , Y N,N ),

E
[(
Fφ,λ(µY,N )

)2]
=

1

N
E

[((
Zφ,1,Nt − Zφ,1,Ns

)
f1

(
Y 1,N
q1

)
. . . fj

(
Y 1,N
qj

))2
]

+
N − 1

N
E
[(
Zφ,1,Nt − Zφ,1,Ns

)(
Zφ,2,Nt − Zφ,2,Ns

)
f1

(
Y 1,N
q1

)
. . . fj

(
Y 1,N
qj

)
f1

(
Y 2,N
q1

)
. . . fj

(
Y 2,N
qj

)]
.

Since Zφ,1,N and the functions f1, . . . , fj are all bounded, the first term converges to zero, as
N →∞. By Itô’s formula, for i ∈ {1, . . . , N},

Zφ,i,Nt =

∫ t

0

∂xφ(Y i,Ns )Tσ
(
Y i,Ns , µY,Ns

)
dW i

s .

By the assumption of the boundedness of σ and the partial derivatives of φ, we can see that
{Zφ,1,Nt }t∈[0,T ] and {Zφ,2,Nt }t∈[0,T ] are square-integrable martingales. Moreover, since W 1 and
W 2 are independent Rd-valued Brownian motions, 〈Zφ,1,N , Zφ,2,N 〉 = 0. Thus,

{
Zφ,1,Nt Zφ,2,Nt

}
t∈[0,T ]

is a uniformly integrable martingale. This shows that

E
[(
Zφ,1,Nt − Zφ,1,Ns

)(
Zφ,2,Nt − Zφ,2,Ns

)
f1

(
Y 1,N
q1

)
. . . fj

(
Y 1,N
qj

)
f1

(
Y 2,N
q1

)
. . . fj

(
Y 2,N
qj

)]
= E

[
f1

(
Y 1,N
q1

)
. . . fj

(
Y 1,N
qj

)
f1

(
Y 2,N
q1

)
. . . fj

(
Y 2,N
qj

)
E
[(
Zφ,1,Nt − Zφ,1,Ns

)(
Zφ,2,Nt − Zφ,2,Ns

)∣∣∣∣Fs]
]

= E

[
f1

(
Y 1,N
q1

)
. . . fj

(
Y 1,N
qj

)
f1

(
Y 2,N
q1

)
. . . fj

(
Y 2,N
qj

)
E
[
Zφ,1,Nt Zφ,2,Nt − Zφ,1,Ns Zφ,2,Ns

∣∣∣∣Fs]
]

= 0,

which implies that Fφ,λ(µY,N ) converges to 0 in L1. Recall that by Theorem 2.3.7 , {L(µY,N )}N
is tight. Hence, by Prokhorov’s theorem, it converges through a subsequence of indices {nk}k∈N
to a measure π∞ ∈ P(P(CT )). By the definition of weak convergence,∫

P(CT )

∣∣Fφ,λ∣∣ dπ∞ = lim
k→∞

∫
P(CT )

∣∣Fφ,λ∣∣ d(L(µY,Nk)
)

= lim
k→∞

E
[∣∣Fφ,λ(µY,Nk)∣∣] = 0.

Consequently,
π∞
{
R ∈ P

(
CT
) ∣∣Fφ,λ(R) = 0

}
= 1.
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Since φ and λ are arbitrary, we have

π∞
( ⋂
φ∈D

⋂
λ∈Λ

{
R ∈ P

(
CT
) ∣∣Fφ,λ(R) = 0

})
= 1,

where the sets D and Λ are defined in Theorem 2.3.9 and Lemma 2.3.11.
We now recall that the initial law of (2.1.5) is ν ∈ P2(Rd). Moreover, we recall that the

particles in (2.2.4) are i.i.d. at time t = 0 with law ν. For every θ ∈ Rd, we define the map

ϕθ : P(CT )→ R; µ 7→
∫
Rd
eiθxµ0(dx).

As before, by the weak law of large numbers (along with uniform integrability), we deduce that∫
P(CT )

∣∣∣∣ ∫
Rd
eiθxν(dx)− ϕθ

∣∣∣∣ dπ∞ = lim
k→∞

E
∣∣∣∣ ∫

Rd
eiθxν(dx)− ϕθ

(
µY,Nk

)∣∣∣∣
= lim

k→∞
E
∣∣∣∣ ∫

Rd
eiθxν(dx)− 1

Nk

Nk∑
j=1

eiθξj
∣∣∣∣ = 0,

which implies that

π∞
{
R ∈ P

(
CT
) ∣∣∣∣ ∫

Rd
eiθxν(dx) =

∫
Rd
eiθxR0(dx)

}
= 1.

Since θ ∈ Rd is arbitrary, by the fact that characteristic functions uniquely determine distribu-
tions, we have

π∞
{
R ∈ P

(
CT
)∣∣L(R0) = ν

}
= π∞

( ⋂
θ∈Qd

{
R ∈ P

(
CT
) ∣∣∣∣ ∫

Rd
eiθxν(dx) =

∫
Rd
eiθxR0(dx)

})
= 1.

Therefore,

π∞
( ⋂
φ∈D

⋂
λ∈Λ

{
R ∈ P

(
CT
) ∣∣Fφ,λ(R) = 0

}
∩
{
R ∈ P

(
CT
)∣∣L(R0) = ν

})
= 1.

By Theorem 2.3.9 and Lemma 2.3.11,⋂
φ∈D

⋂
λ∈Λ

{
R ∈ P

(
CT
) ∣∣Fφ,λ(R) = 0

}
∩
{
R ∈ P

(
CT
)∣∣L(R0) = ν

}
=

{
R ∈ P

(
CT
)∣∣∣∣ R is the solution of the martingale problem associated to the SDE

dXt = b(Xt, Rt) dt+ σ(Xt, Rt) dWt, with initial law ν

}
,

which implies, by Theorem 2.1.5 and Theorem 2.3.8, that⋂
φ∈D

⋂
λ∈Λ

{
R ∈ P

(
CT
) ∣∣Fφ,λ(R) = 0

}
∩
{
R ∈ P

(
CT
)∣∣L(R0) = ν

}
= {µX}.

Finally, π∞ = δµX . We conclude the result by applying Theorem 2.3.3.
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Chapter 3

The theory of differentiation of
measures

We start this chapter by considering a classical one-dimensional SDE:

Zs,ξt = ξ +

∫ t

0

f1(Zs,ξu ) du+

∫ t

0

f2(Zs,ξu ) dWu, 0 ≤ s ≤ t ≤ T,

where f1, f2 : R→ R are Lipschitz functions. By the Yamada-Watanabe theorem (see Corollary
3.23 in Section 5.3 of [42]) , we know that there exists a (B(R) ⊗ B(CT ))/B(CT )-measurable
function h : R× CT → CT such that

Z0,ξ = h(ξ,W ) almost surely.

Therefore, we have the relation Z0,ξ = Z0,x
∣∣
x=ξ

. The behaviour of Z0,ξ can hence be investi-
gated through Z0,x, at any fixed point x ∈ R.

On the other hand, we consider the following McKean-Vlasov SDE:

X s,ξt = ξ +

∫ t

0

E(X s,ξu ) du+ (Wt −Ws), 0 ≤ s ≤ t ≤ T. (3.0.1)

Taking expectation on both sides of (3.0.1) gives

E[X 0,ξ
t ] = E[ξ]et, t ∈ [0, T ],

which gives the solution

X 0,ξ
t = ξ + E[ξ](et − 1) +Wt, t ∈ [0, T ].

Let ξ̂ be a centered random variable. Then

X 0,ξ̂
t = ξ̂ +Wt.

However,

X 0,x
t = xet +Wt =⇒ X 0,x

t

∣∣
x=ξ̂

= ξ̂et +Wt 6= X 0,ξ̂
t , t > 0. (3.0.2)

Equation (3.0.2) tells us that the behaviour of Z0,ξ can no longer be investigated through Z0,x,
by fixing x ∈ R. Since the path of Z0,ξ is determined by the law of ξ, this suggests that we need
a machinery that enables us to deal with perturbation of probability measures, i.e. calculus on
the space of probability measures.

It follows from classical theory (e.g., see Section 11 from [28]) that for smooth functions
f : R → R, the function [0, t] × R 3 (s, x) 7→ E[f(Zs,xt )] satisfies a PDE. We shall see later
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that the function [0, t] × P2(R) 3 (s,L(ξ)) 7→ E[f(X s,ξt )] also satisfies a PDE in the sense of
L-derivatives.

The work in subsequent chapters relies heavily on the calculus on (P2(Rd),W2). There are
many notions of differentiability for functions defined on the space of probability measures and
much of the work in the literature is based on the theory of optimal transport. We shall focus
on the notions of linear functional derivatives and L-derivatives. We shall also introduce higher-
order versions of these derivatives (in the same spirit as [19]), as they are needed in later parts
of the work.

In this chapter, we follow the approach presented by P. Lions in his course at Collège de
France [49] (redacted by Cardaliaguet [10]) and the book, [14], by R. Carmona and F. Delarue,
as well as the papers [9] and [11].

Sections 3.3 and 3.5 are extracted from [17].

3.1 Linear functional derivatives
A continuous function δU

δm : P2(Rd) × Rd → R is said to be the linear functional derivative
of U : P2(Rd)→ R, if

• for any bounded 1 set K ⊂ P2(Rd), y 7→ δU
δm (m, y) has at most quadratic growth in y

uniformly in m ∈ K,

• for any m,m′ ∈ P2(Rd),

U(m′)− U(m) =

∫ 1

0

∫
Rd

δU

δm
((1− s)m+ sm′, y) (m′ −m)(dy) ds. (3.1.1)

For the purpose of our work, we need to introduce derivatives at any order p ≥ 1.

Definition 3.1.1. For any p ≥ 1, the p-th order linear functional derivative of the function U
is a continuous function from δpU

δmp : P2(Rd)× (Rd)p−1 × Rd → R satisfying

• for any bounded set K ⊂ P2(Rd), the map (Rd)p−1 ×Rd 3 (y, y′) 7→ δpU
δmp (m,y, y′) has at

most quadratic growth in (y, y′) uniformly in m ∈ K,

• for any m,m′ ∈ P2(Rd), y ∈ (Rd)p−1,

δp−1U

δmp−1
(m′,y)− δp−1U

δmp−1
(m,y) =

∫ 1

0

∫
Rd

δpU

δmp
((1− s)m+ sm′,y, y′) (m′ −m)(dy′) ds,

provided that the (p− 1)-th order derivative is well defined.

Note that δU
δm is defined up to an additive constant via (3.1.1). Iteratively, we normalise the

higher order derivatives via the convention that

δpU

δmp
(m, y1, . . . , yp) = 0, if yi = 0 for some i ∈ {1, . . . , p}. (3.1.2)

We consider an example to illustrate the theory.

Example 3.1.2. Let G : Rd → R be a continuous function such that∫
Rd
|G(x)|µ(dx) < +∞, ∀µ ∈ P2(Rd).

Let F : R→ R be a C1 function. Then the function U : P2(Rd)→ R defined by

U(µ) := F

(∫
Rd
G(x)µ(dx)

)
1A subset K of P2(Rd) is said to be bounded if there exists a > 0 such that for each µ ∈ K,

∫
Rd |x|

2µ(dx) ≤ a.
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admits a linear functional derivative given by

δU

δm
(µ, y) = F ′

(∫
Rd
G(x)µ(dx)

)
(G(y)−G(0)).

Proof. Clearly, the normalisation convention (3.1.2) holds. Let ϕ(µ) :=
∫
Rd G(x)µ(dx). Then,

by the fundamental theorem of calculus,

U(m′)− u(m) = F (ϕ(m′))− F (ϕ(m))

=

∫ 1

0

F ′
(
(1− s)ϕ(m) + sϕ(m′)

)
(ϕ(m′)− ϕ(m)) ds

=

∫ 1

0

F ′
(
(1− s)ϕ(m) + sϕ(m′)

)(∫
Rd
G(y) (m′ −m)(dy)

)
ds

=

∫ 1

0

∫
Rd
F ′
(∫

Rd
G(x) ((1− s)m+ sm′)(dx)

)
G(y) (m′ −m)(dy) ds

=

∫ 1

0

∫
Rd
F ′
(∫

Rd
G(x) ((1− s)m+ sm′)(dx)

)
(G(y)−G(0)) (m′ −m)(dy) ds.

We now state the Taylor formula for measures in terms of linear functional derivatives, which
will be useful in later parts of the work.

Lemma 3.1.3. If U admits linear functional derivatives up to order q, then the following
expansion holds:

U(m′)− U(m) =

q−1∑
p=1

1

p!

∫
Rpd

δpU

δmp
(m,y) {m′ −m}⊗p(dy)

+
1

(q − 1)!

∫ 1

0

(1− t)q−1

∫
Rqd

δqU

δmq
((1− t)m+ tm′,y) {m′ −m}⊗q(dy) dt.

Proof. We define

[0, 1] 3 t 7→ f(t) = U
(
(1− t)m+ tm′

)
= U

(
m+ t(m′ −m)

)
∈ R (3.1.3)

and apply Taylor-Lagrange formula to f up to order q, namely

f(1)− f(0) =

q−1∑
p=1

1

p!
f (p)(0) +

1

(q − 1)!

∫ 1

0

(1− t)(q−1)f (q)(t)dt.

It remains to show that

f (p)(t) =

∫
Rpd

δpU

δmp
(m+ t(m′ −m),y) {m′ −m}⊗p(dy), ∀p ∈ {0, . . . , q}. (3.1.4)

by induction. Since (3.1.4) holds trivially for p = 0, we suppose that (3.1.4) holds for p ∈
{0, . . . , q − 1}. Then

f (p)(t+ h)− f (p)(t)

h

=
1

h

[ ∫
Rpd

δpU

δmp
(m+ (t+ h)(m′ −m),y) {m′ −m}⊗p(dy)

−
∫
Rpd

δpU

δmp
(m+ t(m′ −m),y) {m′ −m}⊗p(dy)

]
=

∫
Rpd

∫ 1

0

∫
Rd

δp+1U

δmp+1
(m+ (t+ sh)(m′ −m),y, y′) (m′ −m)(dy′) ds {m′ −m}⊗p(dy).
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Taking h→ 0 gives (3.1.4) for p+ 1. This completes the proof.

3.2 L-derivatives
The notion of linear functional derivatives is proven to be insufficient for the analysis of the

MVSDEs. In this section, we introduce the notion proposed by P. Lions, which was expounded
in other works in the literature (e.g. [9, 10, 14, 19]).

Suppose that the probability space (Ω,F ,P) is atomless (i.e. there does not exist a measur-
able set which has positive measure and contains no set of smaller positive measure). Then for
any µ ∈ P(Rd), we can always construct an Rd-valued random variable on Ω with law µ (see
page 376 from [14]).

Let L2(F ;Rd) := L2(Ω,F ,P;Rd) be the Hilbert space of L2 random variables, equipped
with the inner product 〈ξ, η〉 = E[ξη]. For any function U : P2(Rd) → R, we define the lift
Ũ : L2(F ,Rd)→ R by

Ũ(θ) := U(L(θ)).

Recall that Ũ is said to the Fréchet differentiable at θ0 if there exists a linear continuous map
DŨ(θ0) : L2(F ;Rd)→ R such that

Ũ(θ0 + η)− Ũ(θ0) = DŨ(θ0)(η) + o(‖η‖L2),

as ‖η‖L2 → 0. By the Riesz representation theorem, there exists a (P-a.s.) unique random
variable Lθ0 ∈ L2(F ;Rd) such that

DŨ(θ0)(η) = E[Lθ0η], ∀η ∈ L2(F ;Rd).

The following theorem follows from Theorem 6.2 and Theorem 6.5 from [10] (or equivalently,
Proposition 5.24 and Proposition 5.25 from [14]).

Theorem 3.2.1. Suppose that Ũ is Fréchet differentiable at θ0 and θ̂0. Suppose that L(θ0) =

L(θ̂0) = µ ∈ P2(Rd). Then

(i) The joint law (θ0, Lθ0) is equal to the joint law of (θ̂0, Lθ̂0).

(ii) There exists a Borel-measurable function h : Rd → Rd (uniquely determined µ-a.e.) such
that

∫
Rd |h(x)|2 µ(dx) < +∞ and

h(θ0) = Lθ0 , h(θ̂0) = Lθ̂0 , a.s.

We are now in a position to define L-derivatives. The previous theorem tells us that the
following definition is well-defined.

Definition 3.2.2. (i) A function U : P2(Rd)→ R is said to be L-differentiable at µ ∈ P2(Rd)
if there exists a random variable θ0 with law µ such that Ũ is Fréchet differentiable at θ0.

(ii) If U : P2(Rd) → R is L-differentiable at µ ∈ P2(Rd), then its L-derivative 2 ∂µU(µ) is
defined to be ∂µU(µ) := h, where h : Rd → Rd is the Borel-measurable function in (ii) of
Theorem 3.2.1. Moreover, we define the joint map ∂µU : P2(Rd)× Rd → Rd by

∂µU(µ, y) := [∂µU(µ)](y).

Since we perform different computations with L-derivatives in later parts, it is helpful to
notice some basic properties regarding arithmetic on L-derivatives.

Theorem 3.2.3. Suppose that U,U1, U2 : P2(Rd) → R are L-differentiable at µ ∈ P2(Rd).
Suppose that g : R→ R is a differentiable function. Then the following properties hold for any
y ∈ Rd.

2For brevity, in this work, we say the L-derivative, rather than a µ-version of L-derivative. Any property
imposed on the L-derivatives in later parts means that it is applicable to at least one µ-version.
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(i) ∂µ[U1 + U2](µ)(y) = ∂µU1(µ)(y) + ∂µU2(µ)(y).

(ii) ∂µ[U1U2](µ)(y) = U2(µ)∂µU1(µ)(y) + U1(µ)∂µU2(µ)(y).

(iii) ∂µ[g ◦ U ](µ)(y) = g′(U(µ))∂µU(µ)(y).

Proof. These statements can be verified easily by using basic properties of Fréchet differen-
tiation. We provide a proof for (iii). Let Φ = g ◦ U and let Φ̃, Ũ denote the lifts of Φ and U
respectively. Let θ0 be a random variable with law µ. By the chain rule of Fréchet differentiation,
we have

DΦ̃(θ0) = Dg(Ũ(θ0)) ◦DŨ(θ0) = g′(Ũ(θ0))DŨ(θ0).

Therefore,

DΦ̃(θ0)(η) = g′(Ũ(θ0))DŨ(θ0)(η) = g′(U(µ))E[∂µU(µ)(θ0)η] = E
[(
g′(U(µ))∂µU(µ)(θ0)

)
η
]
,

which completes the proof by the definition of L-derivatives.

The following theorem (taken from Example 5.2.2.3 from [14]) gives the formula of the L-
derivative for functions in which the measure appears both in the integrand and in the measure
of the integral.

Theorem 3.2.4. Let v : Rd ×P2(Rd)→ R be a continuous function (w.r.t. the Euclidean and
Wasserstein metrics) satisfying the following conditions.

(i) For fixed µ ∈ P2(Rd), v is differentiable w.r.t. x ∈ Rd, with the spatial derivative being
jointly continuous in (x, µ), with linear growth in x, uniformly in µ for bounded subsets
of P2(Rd).

(ii) For fixed x ∈ Rd, v is L-differentiable w.r.t. µ with ∂µv(x, µ)(y) being jointly continuous
in (x, µ, y). The map (x, y) 7→ ∂µv(x, µ)(y) has linear growth, uniformly in µ for bounded
subsets of P2(Rd).

Let U : P2(Rd)→ R be defined by

U(µ) =

∫
Rd
v(x, µ)µ(dx).

Then for every fixed µ ∈ P2(Rd), v has quadratic growth in x (which shows that U is well-
defined). Also, U is L-differentiable with

∂µU(µ)(y) = ∂xv(y, µ) +

∫
Rd
∂µv(x, µ)(y)µ(dx).

Proof. We begin by deriving the fundamental theorem of calculus for L-derivatives. Let Φ =
v(0, ·). Then, by the definition of L-derivatives, for any θ1, θ2 ∈ L2(F ;Rd) with η = θ1 − θ2,

Φ(L(θ1))− Φ(L(θ2)) =

∫ 1

0

d

dλ
Φ(L(θ2 + λη)) dλ

=

∫ 1

0

lim
h→0

Φ̃
(
θ2 + (λ+ h)(η)

)
− Φ̃

(
θ2 + λη

)
h

dλ

=

∫ 1

0

lim
h→0

E
[
∂µΦ

(
L(θ2 + λη)

)
(θ2 + λη) · (hη)

]
+ o‖hη‖L2

h
dλ

=

∫ 1

0

E
[
∂µΦ

(
L(θ2 + λη)

)
(θ2 + λη) · η

]
dλ

=

∫ 1

0

E
[
∂µΦ

(
L((1− λ)θ2 + λθ1)

)
((1− λ)θ2 + λθ1) · (θ1 − θ2)

]
dλ.

(3.2.1)
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By (3.2.1) and the standard fundamental theorem of calculus, for θ ∈ L2(F ;Rd) with L(θ) = µ,
we have

v(z, µ) = v(0, µ) +

∫ 1

0

∂xv(λz, µ)z dλ

= v(0, δ0) +

∫ 1

0

E
[
∂µv

(
0,L(λθ)

)
(λθ) · (θ)

]
dλ+

∫ 1

0

∂xv(λz, µ)z dλ,

which implies that
|v(z, µ)| ≤ Cµ(1 + |z|2),

for every z ∈ Rd and µ ∈ P2(Rd), where Cµ depends on µ. This shows that U is well-defined.
To prove the second statement, we pick any θ, η ∈ L2(F ;Rd) with L(θ) = µ and ‖η‖L2 ≤ 1.

Then, by (3.2.1) and the standard fundamental theorem of calculus,

Ũ(θ + η)− Ũ(θ) = E
[
v
(
θ + η,L(θ + η)

)
− v
(
θ,L(θ + η)

)]
+ E

[
v
(
θ,L(θ + η)

)
− v
(
θ,L(θ)

)]
= E

[
∂xv(θ,L(θ))η

]
+ EÊ

[
∂µv(θ,L(θ))(θ̂)η̂

]
+ E1 + E2

= Ê
[(
∂xv(θ̂,L(θ)) + E

(
∂µv(θ,L(θ))(θ̂)

))
η̂
]

+ E1 + E2, (3.2.2)

where

E1 :=

∫ 1

0

E
[(
∂xv(θ + λη,L(θ + η))− ∂xv(θ,L(θ))

)
η

]
dλ

and

E2 :=

∫ 1

0

EÊ
[(
∂µv(θ,L(θ + λη))(θ̂ + λη̂)− ∂µv(θ,L(θ))(θ̂)

)
η̂

]
dλ.

We first estimate E1. We rewrite

|E1| ≤
∫ 1

0

E
∣∣∣∣(∂xv(θ + λη,L(θ + η))− ∂xv(θ,L(θ))

)
η

∣∣∣∣ dλ
≤

∫ 1

0

E
∣∣∣∣(∂xv(θ + λη,L(θ + η))− ∂xv(θ,L(θ))

)
η1{

|η|≤‖η‖1/2
L2

}∣∣∣∣ dλ
+

∫ 1

0

E
∣∣∣∣(∂xv(θ + λη,L(θ + η))− ∂xv(θ,L(θ))

)
η1{

|η|>‖η‖1/2
L2

}∣∣∣∣ dλ =: E11 + E12. (3.2.3)

By the Cauchy-Schwarz inequality,

E11 ≤
(

sup
λ∈[0,1]

E
∣∣∣∣(∂xv(θ + λη,L(θ + η))− ∂xv(θ,L(θ))

)
1{
|η|≤‖η‖1/2

L2

}∣∣∣∣2)1/2

‖η‖L2

≤
(
E
∣∣∣∣ sup
|y|≤‖η‖1/2

L2

sup
m∈{m∈P2(Rd) |W2(µ,m)≤‖η‖L2}

(
∂xv(θ + y,m)− ∂xv(θ, µ)

)∣∣∣∣2)1/2

‖η‖L2 .

By the joint continuity of ∂xv, it is clear that

lim
‖η‖L2↓0

[∣∣∣∣ sup
|y|≤‖η‖1/2

L2

sup
m∈{m∈P2(Rd) |W2(µ,m)≤‖η‖L2}

(
∂xv(θ + y,m)− ∂xv(θ, µ)

)∣∣∣∣2] = 0.

Since ‖η‖L2 ≤ 1 by assumption, the set {m ∈ P2(Rd) |W2(µ,m) ≤ ‖η‖L2} is bounded in
P2(Rd). Therefore, by assumption, ∂xv has linear growth that is uniform inm. By the dominated
convergence theorem,

E11

‖η‖L2

≤
(
E
∣∣∣∣ sup
|y|≤‖η‖1/2

L2

sup
m∈{m∈P2(Rd) |W2(µ,m)≤‖η‖L2}

(
∂xv(θ+y,m)−∂xv(θ, µ)

)∣∣∣∣2)1/2
‖η‖L2↓0−−−−−→ 0.

(3.2.4)
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Using again the fact that ∂xv has linear growth that is uniform in m belonging to the set
{m ∈ P2(Rd) |W2(µ,m) ≤ 1}, we estimate E12 as

E12 ≤ E
∣∣∣∣[ sup
λ∈[0,1]

sup
m∈{m∈P2(Rd) |W2(µ,m)≤1}

∣∣∣∂xv(θ + λη,m)− ∂xv(θ, µ)
∣∣∣]|η|1{|η|>‖η‖1/2

L2

}∣∣∣∣
≤ CE

∣∣∣(1 + |θ|+ |η|)|η|1{
|η|>‖η‖1/2

L2

}∣∣∣ = CE
∣∣∣(|η|+ |θ||η|+ |η|2)1{

|η|>‖η‖1/2
L2

}∣∣∣.
By Chebychev’s inequality,

P
{
|η| > ‖η‖1/2L2

}
≤ ‖η‖L2 .

Therefore, we obtain that

E
[
|η|1{

|η|>‖η‖1/2
L2

}] ≤ ‖η‖L2

(
‖η‖L2

)1/2
,

E
[
|η|21{

|η|>‖η‖1/2
L2

}] ≤ E
[
|η|2
]

= ‖η‖2L2 ,

E
[
|θ||η|1{

|η|>‖η‖1/2
L2

}] ≤ (
E
[
|θ|21{

|η|>‖η‖1/2
L2

}])1/2(
E
[
|η|2
])1/2

≤ ‖η‖L2

(
sup

A∈F : P(A)≤‖η‖L2

E
[
|θ|21A

])1/2

.

This shows that

E12

‖η‖L2

≤ C
((
‖η‖L2

)1/2
+ ‖η‖L2 +

(
sup

A∈F : P(A)≤‖η‖L2

E
[
|θ|21A

])1/2
)
‖η‖L2↓0−−−−−→ 0. (3.2.5)

Finally, we bound E2 by

|E2| ≤ ‖η‖L2

(
E
[

sup
Z∈L2(F ;Rd):‖Z‖L2≤‖η‖L2

Ê
∣∣∣∣∂µv(θ,L(θ + Z))(θ̂ + Ẑ)− ∂µv(θ,L(θ))(θ̂)

∣∣∣∣2])1/2

.

For every x ∈ Rd, we define the function ϕx : L2(F ;Rd) → L2(F ;Rd) given by ϕx(Z) :=
∂µv(x,L(Z))(Z). We claim that ϕx is continuous. To observe this fact, we take a sequence of
random variables {Zn}n converging to Z in L2. Then W2(L(Zn),L(Z))→ 0 and there exists a
subsequence {Znk}k such that Znk converges to Z almost surely as k →∞. Therefore,∣∣∣∣∂µv(x,L(Znk))(Znk)− ∂µv(x,L(Z))(Z)

∣∣∣∣2 k→∞−−−−→ 0 a.s.

Since W2(L(Zn),L(Z)) → 0, the set {L(Zn) |n ∈ N} is bounded in P2(Rd). Therefore, by the
dominated convergence theorem and the fact that ∂µv(·,m)(·) has linear growth that is uniform
in m ∈ {L(Zn) |n ∈ N}, we have

E
∣∣∣∣∂µv(x,L(Znk))(Znk)− ∂µv(x,L(Z))(Z)

∣∣∣∣2 k→∞−−−−→ 0,

which shows that ϕx is continuous. Therefore,

sup
Z∈L2(F ;Rd):‖Z‖L2≤‖η‖L2

Ê
∣∣∣∣∂µv(θ,L(θ + Z))(θ̂ + Ẑ)− ∂µv(θ,L(θ))(θ̂)

∣∣∣∣2
= sup

Z∈L2(F ;Rd):‖Z‖L2≤‖η‖L2

Ê
∣∣ϕθ(θ̂ + Ẑ)− ϕθ(θ̂)

∣∣2 ‖η‖L2↓0−−−−−→ 0.

Finally, since ‖η‖L2 ≤ 1, we note that the set {L(θ + Z) |Z ∈ L2(F ;Rd), ‖Z‖L2 ≤ ‖η‖L2}
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is bounded in P2(Rd). Therefore, by the dominated convergence theorem and the fact that
∂µv(·,m)(·) has linear growth that is uniform in m ∈ {L(θ + Z) |Z ∈ L2(F ;Rd), ‖Z‖L2 ≤
‖η‖L2}, we have

|E2|
‖η‖L2

‖η‖L2↓0−−−−−→ 0. (3.2.6)

The proof is complete by combining (3.2.2), (3.2.3), (3.2.4), (3.2.5) and (3.2.6).

The next theorem (see Proposition 3.1 from [13]) connects L-derivatives with real derivatives
through empirical measures. It is crucial to many subsequent results. To state the theorem, we
introduce second order L-derivatives

P2(Rd)× Rd 3 (m, y) 7→ ∂v∂µU(m, y) ∈ Rd ⊗ Rd

and
P2(Rd)× Rd × Rd 3 (m, y, y′) 7→ ∂2

µU(m, y, y′) ∈ Rd ⊗ Rd

defined by
∂v∂µU(m, y) :=

(
∂y(∂µU(m, y))i

)
1≤i≤d (3.2.7)

and
∂2
µU(m, y, y′) :=

(
∂µ(∂µU(·, y))i(y

′)
)

1≤i≤d . (3.2.8)

Theorem 3.2.5. Let U : P2(Rd) → R be L-differentiable on P2(Rd). We define a function
uN :

(
Rd
)N → R by

uN (x1, . . . , xN ) = U

(
1

N

N∑
`=1

δx`

)
.

Then, for any N ≥ 1, the function uN is differentiable on
(
Rd
)N and

Rd 3 ∂xiuN (x1, . . . , xN ) =
1

N
∂µU

(
1

N

N∑
`=1

δx`

)
(xi). (3.2.9)

If ∂v∂µU and ∂2
µU exist and are jointly continuous, then uN is twice-differentiable on

(
Rd
)N

and

Rd⊗Rd 3 ∂2
xjxiu

N (x1, . . . , xN ) =
1

N
∂v

[
∂µU

(
1

N

N∑
`=1

δx`

)]
(xi)δi,j+

1

N2
∂2
µU

(
1

N

N∑
`=1

δx`

)
(xi, xj).

(3.2.10)

Proof. Let θ be a uniform random variable taking values on {1, . . . , N}. Then the random
variable xθ has law 1

N

∑N
`=1 δx` . Let Ũ be the lift of U . Then

U

(
1

N

N∑
`=1

δx`

)
= Ũ(xθ).

By Fréchet differentiation, we have

Ũ(xθ + η) = Ũ(xθ) +
(
DŨ(xθ)

)
(η) + o(‖η‖L2),

where, by the definition of L-derivatives,

(
DŨ(xθ)

)
(η) = E

[(
∂µU

(
1

N

N∑
`=1

δx`

))
(xθ) · η

]
.
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For any x ∈ (Rd)N , define a linear function ϕ(x) : (Rd)N → R given by

ϕ(x)(h) =

N∑
j=1

1

N
∂µU

(
1

N

N∑
`=1

δx`

)
(xi) · hj .

Note that
(
DŨ(xθ)

)
(hθ) = ϕ(x)(h) and ‖hθ‖2L2 = 1

N

∑N
i=1 |hi|2 ≤ |h|2. Therefore,

1

|h|

[
uN (x+ h)− uN (x)− ϕ(x)(h)

]
=

1

|h|

[
Ũ(xθ + hθ)− Ũ(xθ)−

(
DŨ(xθ)

)
(hθ)

]
≤ 1

‖hθ‖L2

[
Ũ(xθ + hθ)− Ũ(xθ)−

(
DŨ(xθ)

)
(hθ)

] |h|↓0−−−→ 0.

This shows that uN is differentiable at x ∈ (Rd)N with Fréchet derivative given by

DuN (x) = ϕ(x).

Since DuN (x)(h) = ∇uN (x) · h, for every x, h ∈ (Rd)N , we conclude that

∂xiu
N (x1, . . . , xN ) =

1

N
∂µU

(
1

N

N∑
`=1

δx`

)
(xi).

This completes the first part of the proof. For the second part, we define a function

φ : (Rd)N+1 → R; (x1, . . . , xN , y) 7→ 1

N
∂µU

(
1

N

N∑
`=1

δx`

)
(y).

Since ∂v∂µU and ∂2
µU exist, we know that the partial derivatives of φ exist and are given by

∂yφ(x1, . . . , xN , y) =
1

N
∂v∂µU

(
1

N

N∑
`=1

δx`

)
(y)

and

∂xjφ(x1, . . . , xN , y) =
1

N2
∂2
µU

(
1

N

N∑
`=1

δx`

)
(y, xj).

For j 6= i, it is clear that

∂2
xjxiu

N (x1, . . . , xN ) = ∂xjφ(x1, . . . , xN , xi) =
1

N2
∂2
µU

(
1

N

N∑
`=1

δx`

)
(xi, xj).

Since ∂v∂µU and ∂2
µU are jointly continuous, we observe that the partial derivatives of φ are

also continuous. Hence, we can apply the standard chain rule of differentiation to φ, which gives

∂2
xixiu

N (x1, . . . , xN ) = ∂xiφ(x1, . . . , xi, . . . , xN , xi)

= ∂xiφ(x1, . . . , y, . . . , xN , xi)
∣∣
y=xi

+ ∂xiφ(x1, . . . , xi, . . . , xN , y)
∣∣
y=xi

=
1

N
∂v∂µU

(
1

N

N∑
`=1

δx`

)
(xi) +

1

N2
∂2
µU

(
1

N

N∑
`=1

δx`

)
(xi, xi).

For the theory in subsequent chapters, we define higher order derivatives of measure function-
als by iterating the definitions of second order L-derivatives in (3.2.7) and (3.2.8). Inspired by
the work [19], for any k ∈ N, we formally define higher order derivatives in measures through the
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following iteration (provided that they actually exist): for any k ≥ 2, (i1, . . . , ik) ∈ {1, . . . , d}k
and x1, . . . , xk ∈ Rd, the function ∂kµf : P2(Rd)× (Rd)k → (Rd)⊗k is defined by(

∂kµf(µ, x1, . . . , xk)

)
(i1,...,ik)

:=

(
∂µ

((
∂k−1
µ f(·, x1, . . . , xk−1)

)
(i1,...,ik−1)

)
(µ, xk)

)
ik

,

(3.2.11)
and its corresponding mixed derivatives in space ∂`kvk . . . ∂

`1
v1∂

k
µf : P2(Rd)×(Rd)k → (Rd)⊗(k+`1+...`k)

are defined by(
∂`kvk . . . ∂

`1
v1∂

k
µf(µ, x1, . . . , xk)

)
(i1,...,ik)

:=
∂`k

∂x`kk
. . .

∂`1

∂x`11

[(
∂kµf(µ, x1, . . . , xk)

)
(i1,...,ik)

]
,

(3.2.12)
for `1 . . . `k ∈ N ∪ {0}. Since this notation for higher order derivatives in measure is quite
cumbersome, we introduce the following multi-index notation for brevity. This notation was
first proposed in [19].

Definition 3.2.6 (Multi-index notation). Let n, ` be non-negative integers. Also, let β =
(β1, . . . , βn) be an n-dimensional vector of non-negative integers. Then we call any ordered
tuple of the form (n, `,β) or (n,β) a multi-index. For any function f : Rd × P2(Rd) → R, the
derivative D(n,`,β)f(x, µ, v1, . . . , vn) is defined as

D(n,`,β)f(x, µ, v1, . . . , vn) := ∂βnvn . . . ∂
β1
v1 ∂

`
x∂

n
µf(x, µ, v1, . . . , vn),

if this derivative is well-defined. For any function Φ : P2(Rd)→ R, we define

D(n,β)Φ(µ, v1, . . . , vn) := ∂βnvn . . . ∂
β1
v1 ∂

n
µΦ(µ, v1, . . . , vn),

if this derivative is well-defined. Finally, we also define the order 3 |(n, `,β)| (resp. |(n,β)| ) by

|(n, `,β)| := n+ β1 + . . .+ βn + `, |(n,β)| := n+ β1 + . . .+ βn. (3.2.13)

3.3 Connection between linear functional derivatives and
L-derivatives

Recall the function U defined in Example 3.1.2. A combination of Theorem 3.2.3 and The-
orem 3.2.4 gives

∂µU(µ, y) = F ′
(∫

Rd
G(x)µ(dx)

)
G′(y),

which implies that

∂µU(µ, y) = ∂y
δU

δm
(µ, y).

It turns out that this is in fact a special case of a more general result, by which we can even
deduce the existence of the corresponding linear functional derivative, given the existence of
the L-derivative. The following theorem comes from Proposition 5.51 in [14].

Theorem 3.3.1. Suppose that U : P2(Rd) → R is L-differentiable on P2(Rd). Moreover,
suppose that the L-derivative of U is Lipschitz continuous, i.e. there exists a constant C > 0
such that ∣∣∣∂µU(µ1, x1)− ∂µU(µ2, x2)

∣∣∣ ≤ C(W2(µ1, µ2) + |x1 − x2|
)
,

for each µ1, µ2 ∈ P2(Rd), x1, x2 ∈ Rd, for some C > 0. Then the linear functional derivative of
U exists and satisfies the relation

∂µU(µ, y) = ∂y
δU

δm
(µ, y).

3We do not consider ‘zeroth’ order derivatives in our definition, i.e. at least one of n, β1, . . . , βn and ` must
be non-zero, for every multi-index

(
n, `, (β1, . . . , βn)

)
.
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The following theorem is a straightforward generalisation of Theorem 3.3.1.

Theorem 3.3.2. Consider U : P2(Rd)→ R. Suppose that, for every j ∈ {1, . . . , k}, ∂jµU exists
and is Lipschitz continuous. Then the kth order linear functional derivative of U exists and
satisfies the relation

∂kµU(µ, y1, . . . , yk) = ∂y1 . . . ∂yk
δkU

δmk
(µ, y1, . . . , yk).

Proof. The proof is presented in dimension one, for simplicity of notations. We proceed by
induction in k. The case corresponding to k = 1 is established in Theorem 3.3.1. Suppose that
the theorem holds for k − 1. Then, by induction hypothesis, we know that

∂y1 . . . ∂yk−1

δk−1U

δmk−1
(·, y1, . . . , yk−1) = ∂k−1

µ U(·, y1, . . . , yk−1) (3.3.1)

is L-differentiable with Lipschitz continuous L-derivative. Therefore, by Theorem 3.3.1,
δ
δm

(
∂y1 . . . ∂yk−1

δk−1U
δmk−1 (·, y1, . . . , yk−1)

)
exists and satisfies[

∂y1 . . . ∂yk−1

δk−1U

δmk−1
(m′, y1, . . . , yk−1)

]
−
[
∂y1 . . . ∂yk−1

δk−1U

δmk−1
(m, y1, . . . , yk−1)

]
=

∫ 1

0

∫
R

[
δ

δm

(
∂y1 . . . ∂yk−1

δk−1U

δmk−1
(·, y1, . . . , yk−1)

)(
(1− s)m+ sm′, yk

)]
(m′ −m)(dyk) ds.

By integrating each of y1, . . . , yk−1 from 0 to x1, . . . , xk−1 respectively and applying the nor-
malisation convention (3.1.2), we obtain that[

δk−1U

δmk−1
(m′, x1, . . . , xk−1)

]
−
[
δk−1U

δmk−1
(m,x1, . . . , xk−1)

]
=

∫ xk−1

0

. . .

∫ x1

0

[
∂y1 . . . ∂yk−1

δk−1U

δmk−1
(m′, y1, . . . , yk−1)

]
−
[
∂y1 . . . ∂yk−1

δk−1U

δmk−1
(m, y1, . . . , yk−1)

]
dy1 . . . dyk−1

=

∫ 1

0

∫
R

[ ∫ xk−1

0

. . .

∫ x1

0

δ

δm

(
∂y1 . . . ∂yk−1

δk−1U

δmk−1
(·, y1, . . . , yk−1)

)(
(1− s)m+ sm′, yk

)
dy1 . . . dyk−1

]
(m′ −m)(dyk) ds.

This shows that δkU
δmk

exists and is given by

δkU

δmk
(µ, x1, . . . , xk−1, yk)

=

∫ xk−1

0

. . .

∫ x1

0

[
δ

δm

(
∂y1 . . . ∂yk−1

δk−1U

δmk−1
(·, y1, . . . , yk−1)

)
(µ, yk)

]
dy1 . . . dyk−1,

which implies that

δ

δm

(
∂x1

. . . ∂xk−1

δk−1U

δmk−1
(·, x1, . . . , xk−1)

)
(µ, yk) = ∂x1

. . . ∂xk−1

δkU

δmk
(µ, x1, . . . , xk−1, yk).

(3.3.2)
Finally,

∂kµU(µ, y1, . . . , yk) = ∂µ

[
∂k−1
µ U(·, y1, . . . , yk−1)

]
(µ, yk)

= ∂yk

[
δ

δm

(
∂k−1
µ U(·, y1, . . . , yk−1)

)
(µ, yk)

]
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= ∂yk

[
δ

δm

(
∂y1 . . . ∂yk−1

δk−1U

δmk−1
(·, y1, . . . , yk−1)

)
(µ, yk)

]
= ∂y1 . . . ∂yk

δkU

δmk
(µ, y1, . . . , yk),

where the second equality follows from Theorem 3.3.1 and the third and final equalities follow
from (3.3.1) and (3.3.2) respectively.

Theorem 3.3.2 is crucial, as it follows us to only work with L-derivatives as conditions
(the main strategy), whilst obtaining existential results on the corresponding linear functional
derivatives.

By imposing the additional assumption that the pth order L-derivative is uniformly bounded,
we can in fact conclude that the pth order linear functional derivative has pth order polynomial
growth in space, uniform in measure. Before introducing this result, we first introduce a con-
venient class of functionals of measure that will serve as a hypothesis in many results of this
work.

Definition 3.3.3. A function f : Rd × P2(Rd)→ R belongs to classMk(Rd × P2(Rd)), if the
derivativesD(n,`,β)f(x, µ, v1, . . . , vn) exist for every multi-index (n, `,β) such that |(n, `,β)| ≤ k
and satisfy

(i) ∣∣D(n,`,β)f(x, µ, v1, . . . , vn)
∣∣ ≤ C, (3.3.3)

(ii) ∣∣∣D(n,`,β)f(x, µ, v1, . . . , vn)−D(n,`,β)f(x′, µ′, v′1, . . . , v
′
n)
∣∣∣

≤ C

(
|x− x′|+

n∑
i=1

|vi − v′i|+W2(µ, µ′)

)
, (3.3.4)

for any x, x′, v1, v
′
1, . . . , vn, v

′
n ∈ Rd and µ, µ′ ∈ P2(Rd), for some constant C > 0.

Remark 3.3.4. By the mean-value theorem and equality (3.2.1), assumption (3.3.4) automat-
ically holds for any |(n, `,β)| < k, by assumption (3.3.3).

For the time-dependent case, we extend the previous definition as follows.

Definition 3.3.5. Let t ∈ [0, T ]. A function V : [0, t] × Rd × P2(Rd) → R is said to be in
Mk([0, t]× Rd × P2(Rd)), if

(i) s 7→ V(s, x, µ) is continuously differentiable on [0, t].

(ii) V(s, ·, ·) ∈ Mk(Rd × P2(Rd)), for each s ∈ [0, t], where the constant C in (3.3.3) and
(3.3.4) is uniform in s ∈ [0, t].

(iii) All derivatives in measure (including the zeroth order derivative) of V(·, ·, ·) up to the kth
order are jointly continuous in time, measure and space.

By convention, any function f defined only on P2(Rd) will be extended to Rd × P2(Rd)
naturally by (x, µ) 7→ f(µ), for all x ∈ Rd. Similarly, any function V defined only on [0, t] ×
P2(Rd) will be extended to [0, t]×Rd ×P2(Rd) naturally by (s, x, µ) 7→ V(s, µ), for all x ∈ Rd.
For any function with a codomain in a higher dimensional space, these definitions are applied
to each component. When it is clear from context, we will just use the notationMk for the two
definitions above.

Note that, by (3.2.1), any function inM1(Rd×P2(Rd)) is automatically (jointly) Lipschitz
in space and measure.

It is worth noting that these definitions are extensions of the framework in [9] to higher-order
derivatives corresponding to k ≥ 3. Since we mainly work with functions in the classMk, here
we give some examples of functions inMk(Rd × P2(Rd)), taken from [19].
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Example 3.3.6. The following functions F : Rd × P2(Rd) → R belong toMk(Rd × P2(Rd)).
This is a direct consequence of Theorem 3.2.3 and Theorem 3.2.4.

(i) pth-degree interaction:

F (x, µ) =

∫
Rd
. . .

∫
Rd
ϕ(x, y1, . . . , yp)µ(dy1) . . . µ(dyp),

where ϕ ∈ Ckb,Lip((Rd)p+1).

(ii) pth-degree polynomial on the Wasserstein space:

F (x, µ) =

p∏
i=1

∫
Rd
ϕi(x, y)µ(dy),

where ϕi ∈ Ckb,Lip((Rd)2) is uniformly bounded, for each i ∈ {1, . . . , p}. Note that the
requirement of uniform boundedness comes from an application of Theorem 3.2.3 (ii).

Theorem 3.3.7. Let p ≥ 1 and assume that U ∈Mp(P2(Rd)). Then∣∣∣∣ δpUδmp
(m, y1, . . . , yp)

∣∣∣∣ ≤ (
√
d)p

p
‖∂pµU‖∞(|y1|p + · · ·+ |yp|p) .

Proof. We present the main argument of the proof by induction in dimension one, for ease of
notation. First, we compute that

δpU

δmp
(m, y1, . . . , yp) =

δpU

δmp
(m, y1, . . . , yp−1, 0) +

∫ 1

0

∂tp

[
δpU

δmp
(m, y1, . . . , tpyp)

]
dtp .

Let ∂xp denote the derivative w.r.t. the pth component of the spatial variables. From the con-
vention of normalisation (3.1.2), we simply obtain that

δpU

δmp
(m, y1, . . . , yp) = yp

∫ 1

0

∂xp

[
δpU

δmp
(m, y1, . . . , tpyp)

]
dtp .

We now show that, for every k < p, we have

δpU

δmp
(m, y1, . . . , yp) =

yp−k . . . yp

∫
[0,1]k+1

∂xp−k . . . ∂xp

[
δpU

δmp
(m, y1, . . . , yp−k−1, tp−kyp−k, . . . , tpyp)

]
dtp−k . . . dtp.

(3.3.5)

Suppose that this holds for some k ≤ p− 2. Then, observing that

∂xp−k . . . ∂xp

[
δpU

δmp
(m, y1, . . . , yp−k−2, 0, tp−kyp−k, . . . , tpyp)

]
= 0,

we recover

δpU

δmp
(m, y1, . . . , yp) =

yp−k−1 . . . yp

∫
[0,1]k+2

∂xp−k−1
. . . ∂xp

[
δpU

δmp
(m, y1, . . . , yp−k−2, tp−k−1yp−k−1, . . . , tpyp)

]
dtp−k−1 . . . dtp.

Setting k = p− 1 in (3.3.5), we then obtain

δpU

δmp
(m, y1, . . . , yp) = y1 . . . yp

∫
[0,1]p

∂pµU(m, t1y1, . . . , tpyp) dt1 . . . dtp.

The proof is concluded for dimension one by invoking the boundedness assumption of ∂pµU along
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with Young’s inequality. For higher dimensional cases where d > 1, we simply note that

δpU

δmp
(m, y1, . . . , yp) =

d∑
k1=1

. . .

d∑
kp=1

y
(k1)
1 . . . y(kp)

p

∫
[0,1]p

(
∂pµU(m, t1y1, . . . , tpyp)

)
(k1,...,kp)

dt1 . . . dtp.

Therefore, by Hölder and Young’s inequalities,∣∣∣∣ δpUδmp
(m, y1, . . . , yp)

∣∣∣∣ ≤ ‖∂pµU‖∞
( d∑
k1=1

|y(k1)
1 |

)
. . .

( d∑
kp=1

|y(kp)
p |

)
≤ (

√
d)p‖∂pµU‖∞|y1| . . . |yp|

≤ (
√
d)p

p
‖∂pµU‖∞(|y1|p + · · ·+ |yp|p).

3.4 Itô’s formula along flows of marginals and the master
equation on the space of measures

We start by defining the class D0([0, t]), which gives a minimal set of assumptions required
for the Itô’s formula in measure to hold.

Definition 3.4.1. Let t ∈ [0, T ]. A function U : [0, t]× P2(Rd)→ R is of class D0([0, t]) if the
following conditions hold:

i) U is jointly continuous on [0, t]× P2(Rd).

ii) For all s ∈ [0, t], the mappings P2(Rd)×Rd 3 (m, y) 7→ ∂µU(s,m)(y) and P2(Rd)×Rd 3
(m, y) 7→ ∂v∂µU(s,m)(y) are well-defined and continuous in the product topologies.

iii) There exists L > 0 such that for all s ∈ [0, t] and ξ ∈ L2(Rd),

E
[
|∂µU(s,L(ξ))(ξ)|2 + |∂υ∂µU(s,L(ξ))(ξ)|2

]
≤ L.

iv) There exists C > 0 such that for all s ∈ [0, t] and ξ1, ξ2 ∈ L2(Rd),

|U(s,L(ξ1))− U(s,L(ξ2))| ≤ CW2(L(ξ1),L(ξ2)),(
E
[
|∂µU(s,L(ξ1))(ξ1)− ∂µU(s,L(ξ2))(ξ2)|2

] )1/2

≤ CW2(L(ξ1),L(ξ2)),(
E
[
|∂υ∂µU(s,L(ξ1))(ξ1)− ∂υ∂µU(s,L(ξ2))(ξ2)|2

] )1/2

≤ CW2(L(ξ1),L(ξ2)).

v) The map s 7→ U(s, µ) is continuously differentiable on [0, t].

vi) The functions

[0, t]× L2(Rd) 3 (s, ξ) 7→ ∂tU(s,L(ξ))(ξ) ∈ L2(Rd)
[0, t]× L2(Rd) 3 (s, ξ) 7→ ∂µU(s,L(ξ))(ξ) ∈ L2(Rd)
[0, t]× L2(Rd) 3 (s, ξ) 7→ ∂υ∂µU(s,L(ξ))(ξ) ∈ L2(Rd ⊗ Rd)

are continuous.

Note that for any U ∈ D0([0, t]), ∂2
µU might not necessarily be well-defined. In Chapter 4,

we will define a more restrictive class D that includes regularity properties of ∂2
µU . Also, note

that any element ofM2 also belongs to D0.
The following comes from Proposition 3.9 in [16].
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Theorem 3.4.2. Suppose that Γ = (Γs)s∈[0,t] is an Itô process defined by

Γs = Γ0 +

∫ s

0

bu du+

∫ s

0

σu dWu, s ∈ [0, t],

where (bs)s∈[0,t] and (σs)s∈[0,t] are progressively-measurable processes with values in Rd and
Rd ⊗ Rd respectively, with respect to the filtration generated by W , such that

E
[ ∫ t

0

|bs|2 + |σs|4 ds
]
< +∞. (3.4.1)

Let U ∈ D0([0, t]) and µs := L(Γs). Then

U(t, µt) = U(0, µ0) +

∫ t

0

∂tU(s, µs) + E
[
∂µU(s, µs,Γs)bs +

1

2
Tr
(
∂v∂µU(s, µs,Γs)σsσ

T
s

)]
ds.

(3.4.2)

Note that the more general version that is stated in Proposition 3.9 of [16] involves a
space variable in the function U as well. However, we only work with time-dependent measure
functionals our subsequent analysis. Furthermore, the definition of D0 becomes tedious when
the space variable is included. Therefore, we restrict ourselves to the special case without the
space variable.

The main argument in the proof of Theorem 3.4.2 in [16] is done by first restricting our
consideration to functions U : P2(Rd) → R with bounded and uniformly continuous ∂µU ,
∂v∂µU and ∂2

µU , along with bounded bt and σt. Then, for i.i.d. copies {Γis} of {Γs}, we
compute E[U( 1

N

∑N
i=1 δΓis)], which is just the expectation of a twice-differentiable function of

(Γ1
s, . . . ,Γ

N
s ). Hence, we can apply the standard Itô’s formula to compute E[U( 1

N

∑N
i=1 δΓis)],

and subsequently converting real derivatives into L-derivatives via the projection formula (The-
orem 3.2.5). The argument is complete for this special case by taking N to ∞, via the result
that

lim
N→∞

E
[

sup
0≤s≤t

W 2
2

(
1

N

N∑
i=1

δΓis ,L(Γs)

)]
= 0,

by Theorem 10.2.7 of [58]. The general case of U ∈ D0([0, t]) is done via smoothing and approx-
imation arguments.

An alternative proof is presented in [9], for the Mckean-Vlasov flow (2.1.1), under the as-
sumption that b, σ ∈M2(Rd×P2(Rd)) and U ∈M2([0, t]×P2(Rd)). We first consider functions
U : P2(Rd)→ R inM2(P2(Rd)). The key idea involves rewriting the difference
U(L(Xs,ξ

t ))− U(L(ξ)) as

U(L(Xs,ξ
t ))− U(L(ξ)) =

2n−1∑
i=0

[
U(L(Xs,ξ

ti+1
n

))− U(L(Xs,ξ
tin

))

]
,

where tin := s + i(t − s)2−n, 0 ≤ i ≤ 2n, i ∈ N. Each difference is expanded up to second-
order L-derivatives (by re-expanding (3.2.1) once more). This yields the Itô’s formula for U ∈
M2(P2(Rd)) upon taking n to ∞. The general case for U ∈M2([0, t]×P2(Rd)) is obtained by
applying the multivariate chain rule in time.

The next theorem is the Feynman-Kac formula in the space of probability measures.

Theorem 3.4.3. Let t ∈ [0, T ]. Let Φ : P2(Rd) → R be a measurable function. Define V :
[0, t]× P2(Rd)→ R by

V(s,L(ξ)) = Φ(L(Xs,ξ
t )).

Suppose that (Lip) holds and that one of the following holds:

(i) σ is uniformly bounded.

(ii) The initial law ν is in P4(Rd).
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Also, suppose that V ∈ D0([0, t]), then V satisfies on (0, t) × P2(Rd) the PDE (also called the
master equation)

∂sV(s, µ) +

∫
Rd

[
∂µV(s, µ)(y)b(y, µ) +

1

2
Tr
(
∂v∂µV(s, µ)(y)a(y, µ)

)]
µ(dy) = 0, (3.4.3)

with terminal condition V(t, ·) = Φ(·), where a = (ai,k)1≤i,k≤d : Rd × P2(Rd) → Rd ⊗ Rd is
defined as in (2.2.1).

Proof. It is clear that (3.4.1) is satisfied under the assumption. By the flow property, we ob-
serve that the function [0, t] 3 s 7→ V(s,L(X0,ξ

s )) ∈ R is constant. Indeed, V(s,L(X0,ξ
s )) =

Φ(L(X
s,X0,ξ

s
t )) = Φ(L(X0,ξ

t )). By Theorem 3.4.2, we have

0 =

∫ h

0

∂tV(s,L(X0,ξ
s )) + E

[
∂µV(s,L(X0,ξ

s ))(X0,ξ
s )b(X0,ξ

s ,L(X0,ξ
s ))

+
1

2
Tr
[
a(X0,ξ

s ,L(X0,ξ
s ))∂υ∂µV(s,L(X0,ξ

s ))(X0,ξ
s )
] ]
ds.

Dividing by h and letting h→ 0, fundamental theorem of calculus gives

0 = ∂tV(s,L(X0,ξ
0 )) + E

[
∂µV(s,L(X0,ξ

0 ))(X0,ξ
0 )b(X0,ξ

0 ,L(X0,ξ
0 ))

+
1

2
Tr
[
a(X0,ξ

0 ,L(X0,ξ
0 ))∂υ∂µV(s,L(X0,ξ

0 ))(X0,ξ
0 )
] ]

= ∂tV(s,L(ξ)) + E
[
∂µV(s,L(ξ))(ξ)b(ξ,L(ξ)) +

1

2
Tr[a(ξ,L(ξ))∂υ∂µV(s,L(ξ))(ξ)]

]
.

The theorem is extremely useful, but with a clear drawback: it requires V to be in D0([0, t]),
a condition that is not easy to verify. The next section is thus dedicated to the regularity of V.

3.5 Smoothness of the map (s,L(ξ)) 7→ Φ(L(Xs,ξ
t ))

Let Φ : P2(Rd)→ R be a Borel-measurable function. In this section, we study the smooth-
ness of the function V : [0, t]× P2(Rd)→ R defined by

V(s, µ) = Φ(L(Xs,µ
t )). (3.5.1)

There are various methods of establishing smoothness of functions of this form in the literature.
One way involves considering PDE (3.4.3) and proving regularity properties of the solution

to this PDE ([11]).
The method of Malliavin calculus is adopted in [19]. This paper proves smoothness of V, for

Φ being in the form

Φ(µ) =

∫
Rd
ζ(y)µ(dy),

where ζ : Rd → R is infinitely differentiable with bounded partial derivatives.
Article [20] considers the method of parametrix. We represent V in terms of the transition

density p(s, µ; t′, y′; t, y) of Xs,x,µ
t (defined below in (3.5.3)). This method is applied to the case

in which b and σ are of the form

b(x, µ) =

∫
Rd
B(x, y)µ(dy), σ(x, µ) =

∫
Rd

Σ(x, y)µ(dy),

for some functions B : Rd × Rd → Rd and Σ : Rd × Rd → Rd ⊗ Rd. Nonetheless, it is not clear
whether this method can be applied to b and σ with more general forms.

We follow here a different route.
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Framework of analysis. We adopt the ‘variational’ approach employed in [9]. The core idea
is to prove smoothness of V by viewing the lift of V as a composition of the map ξ 7→ Xs,ξ

t and
the lift of Φ.

Theorem 7.2 of [9] already proves smoothness of derivatives in measure up to the second
order:

Theorem 3.5.1. Let V be defined by (3.5.1). Suppose that b, σ ∈ M2(Rd × P2(Rd)) and Φ ∈
M2(P2(Rd)). Then V ∈ M2([0, t]× P2(Rd)) and satisfies PDE (3.4.3).

Note that the conclusion that V ∈ M2([0, t] × P2(Rd)) implies that V ∈ D0([0, t]), which
automatically implies PDE (3.4.3). However, for the analysis in subsequent chapters, we need
to generalise that result to an arbitrary order as follows.

Theorem 3.5.2. Let V be defined by (3.5.1) and k ≥ 2. Suppose that b, σ ∈Mk(Rd×P2(Rd))
and Φ ∈Mk(P2(Rd)). Then V ∈ Mk([0, t]× P2(Rd)).

The proof of Theorem 3.5.2 would be the main goal of this section. We follow closely the
techniques in the proof of Theorem 7.2 in [9].

The analysis of variational derivatives of solutions to classical SDEs is rather well-understood
in the literature ([27], [45]). As differentiation in the direction of measure leads to rather com-
plicated expressions, we restrict ourselves to the following special case in this section. This
captures the key difficulty of this approach. The general case can be handled in an analogous
way.

We consider the forward system
(
{Xs,ξ

t }t∈[s,T ], {Xs,x,µ
t }t∈[s,T ]

)
, ξ ∼ µ, which takes the form

Xs,ξ
t = ξ +

∫ t
s
σ(L(Xs,ξ

r )) dWr, t ∈ [s, T ], (3.5.2)

Xs,x,µ
t = x+

∫ t
s
σ(L(Xs,µ

r )) dWr, t ∈ [s, T ], x ∈ R, (3.5.3)

for some Borel-measurable function σ : P2(R)→ R and one-dimensional Brownian motion W .
{Xs,x,µ

t }t∈[s,T ] is also called the decoupled process, as it no longer depends on the law of itself.
Let {Ft}t∈[0,T ] (resp. {F (n)

t }t∈[0,T ]) denote the filtration generated by Brownian motion
W = {Wt}t∈[0,T ] (resp. {W

(n)
t }t∈[0,T ]). Let ξ be a random variable in L2(Fs).

For brevity, in the following calculations of this section, we shall denote the law L(ξ) by [ξ].

First order derivative of [ξ] 7→ Xs,x,[ξ]. We start our analysis by analysing the smoothness
of the map [ξ] 7→ X

s,x,[ξ]
t . Suppose that the lift of [ξ] 7→ X

s,x,[ξ]
t with values in L2

L2(Fs)→ L2(Ft); ξ 7→ X
s,x,[ξ]
t

is Fréchet differentiable with its Fréchet derivative given by

L2(Fs)→ L(L2(Fs), L2(Ft)); ξ 7→
(
η 7→ Ê

[
U
s,x,[ξ]
t (ξ̂)η̂

])
,

for some real-valued process {Us,x,[ξ]t (y)}t∈[s,T ] that is adapted to {Ft}t∈[s,T ]. Then we define
the derivative of Xs,x,[ξ]

t with respect to the measure component by

∂µX
s,x,[ξ]
t (y) := U

s,x,[ξ]
t (y), t ∈ [s, T ], x, y ∈ R. (3.5.4)

The next theorem computes ∂µX
s,x,[ξ]
t (y) explicitly.

Theorem 3.5.3. Suppose that σ ∈ M1(P2(R)). Then ∂µX
s,x,[ξ]
t (y) exists and is the unique

solution of the SDE

∂µX
s,x,[ξ]
t (y) =

∫ t

s

E(1)

[
(∂µσ)

(
[Xs,ξ

r ],
(
X(1)

)s,y,[ξ]
r

)
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+ (∂µσ)
(

[Xs,ξ
r ],

(
X(1)

)s,ξ(1)
r

)
∂µ
(
X(1)

)s,x,[ξ]
r

(y)

]
dWr.

Proof. The proof is done in [9], but is included for completeness. We first define the L2-
directional derivative Dξ

(
X
s,x,[ξ]
t

)
(η) of Xs,x,[ξ]

t in direction η ∈ L2(Fs), given by

Dξ

(
X
s,x,[ξ]
t

)
(η) := lim

h→0

1

h

(
X
s,x,[ξ+hη]
t −Xs,x,[ξ]

t

)
, (3.5.5)

where the limit is interpreted in the L2 sense, i.e.

lim
h→0

E
[(

1

h

(
X
s,x,[ξ+hη]
t −Xs,x,[ξ]

t

)
−Dξ

(
X
s,x,[ξ]
t

)
(η)

)2]
= 0.

Similarly, the L2-directional derivative of Xs,ξ
t in direction η ∈ L2(Fs) is given by

lim
h→0

1

h

(
Xs,ξ+hη
t −Xs,ξ

t

)
= ∂hX

s,ξ+hη
t

∣∣∣∣
h=0

, (3.5.6)

where both the limit and the derivative are interpreted in the L2 sense. We proceed by formal
differentiation and obtain that

∂hX
s,ξ+hη
t = ∂h

(
X
s,x,[ξ+hη]
t

∣∣∣∣
x=ξ+hη

)
=

(
∂xX

s,x,[ξ+hη]
t

∣∣∣∣
x=ξ+hη

)
η +

(
lim
ν→0

1

ν

(
X
s,x,[ξ+(h+ν)η]
t −Xs,x,[ξ+hη]

t

))∣∣∣∣
x=ξ+hη

.

Hence,

Dξ

(
Xs,ξ
t

)
(η) = ∂hX

s,ξ+hη
t

∣∣∣∣
h=0

= η +Dξ

(
X
s,x,[ξ]
t

)
(η)

∣∣∣∣
x=ξ

. (3.5.7)

Recall that the lift of σ, i.e. σ̃ : L2(F) → R, is defined by σ̃(θ) := σ([θ]). By (3.5.5), (3.5.6),
and (3.5.7), formal differentiation of (3.5.3) with respect to ξ in the direction η gives

Dξ

(
X
s,x,[ξ]
t

)
(η) =

∫ t

s

(Dθσ̃)(Xs,ξ
r )
(
η +Dξ

(
Xs,x,[ξ]
r

)
(η)

∣∣∣∣
x=ξ

)
dWr. (3.5.8)

By the definition of derivative in measure of σ, we can further rewrite (3.5.8) as

Dξ

(
X
s,x,[ξ]
t

)
(η) =

∫ t

s

E(1)

[
(∂µσ)

(
[Xs,ξ

r ],
(
X(1)

)s,ξ(1)
r

)(
η(1)+Dξ

((
X(1)

)s,x,[ξ]
r

)
(η(1))

∣∣∣∣
x=ξ(1)

)]
dWr.

(3.5.9)
It is then verified rigorously in Lemma 4.2 of [9] that Dξ

(
X
s,x,[ξ]
t

)
(η) is indeed the directional

derivative of Xs,x,[ξ]
t in direction η ∈ L2(Fs), by using the fact that σ is inM1.

The next step involves the consideration of a process {Us,x,[ξ]t }t∈[s,T ] satisfying the SDE

U
s,x,[ξ]
t (y) =

∫ t

s

E(1)
[
(∂µσ)

(
[Xs,ξ

r ],
(
X(1)

)s,y,[ξ]
r

)
+(∂µσ)

(
[Xs,ξ

r ],
(
X(1)

)s,ξ(1)
r

)(
U (1)

)s,x,[ξ]
r

(y)
∣∣∣
x=ξ(1)

]
dWr. (3.5.10)

We write

Ê
[
U
s,x,[ξ]
t (ξ̂)η̂

]
=

∫ t

s

Ê
[
E(1)

[
(∂µσ)

(
[Xs,ξ

r ],
(
X(1)

)s,y,[ξ]
r

)]∣∣∣∣
y=ξ̂

η̂

]
dWr
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+

∫ t

s

Ê
[
E(1)

[
(∂µσ)

(
[Xs,ξ

r ],
(
X(1)

)s,ξ(1)
r

)(
U (1)

)s,x,[ξ]
r

(y)

∣∣∣∣
x=ξ(1)

]∣∣∣∣
y=ξ̂

η̂

]
dWr

and notice that

Ê
[
E(1)

[
(∂µσ)

(
[Xs,ξ

r ],
(
X(1)

)s,y,[ξ]
r

)]∣∣∣∣
y=ξ̂

η̂

]
= E(1)

[
E(1)

[
(∂µσ)

(
[Xs,ξ

r ],
(
X(1)

)s,y,[ξ]
r

)]∣∣∣∣
y=ξ(1)

η(1)

]
= E(1)

[
E(1)

[
(∂µσ)

(
[Xs,ξ

r ],
(
X(1)

)s,y,[ξ]
r

)∣∣∣∣
y=ξ(1)

η(1)

∣∣∣∣F (1)
s

]]
= E(1)

[
(∂µσ)

(
[Xs,ξ

r ],
(
X(1)

)s,ξ(1)
r

)
η(1)

]
, (3.5.11)

where the second equality uses the fact that
(
X(1)

)s,y,[ξ] is σ{W (1)
r −W (1)

s | r ∈ [s, t]}-adapted
and is therefore independent of F (1)

s , whereas ξ(1) and η(1) are both F (1)
s -measurable. The final

equality uses the fact that
(
X(1)

)s,y,[ξ]
r

∣∣
y=ξ(1)

=
(
X(1)

)s,ξ(1)
r

. We also notice by the Fubini’s
theorem that

Ê
[
E(1)

[
(∂µσ)

(
[Xs,ξ

r ],
(
X(1)

)s,ξ(1)
r

)(
U (1)

)s,x,[ξ]
r

(y)

∣∣∣∣
x=ξ(1)

]∣∣∣∣
y=ξ̂

η̂

]
= E(1)

[
(∂µσ)

(
[Xs,ξ

r ],
(
X(1)

)s,ξ(1)
r

)
Ê
[(
U (1)

)s,x,[ξ]
r

(ξ̂)η̂
]∣∣∣
x=ξ(1)

]
. (3.5.12)

Therefore, by (3.5.11) and (3.5.12), we observe that Dξ

(
Xs,x,[ξ]

)
(η) and Ê

[
Us,x,[ξ](ξ̂)η̂

]
satisfy

the same SDE and hence

Dξ

(
X
s,x,[ξ]
t

)
(η) = Ê

[
U
s,x,[ξ]
t (ξ̂)η̂

]
, t ∈ [s, T ], η ∈ L2(Fs). (3.5.13)

We then observe that Us,x,[ξ]t (y) satisfies the same SDE for any x ∈ R. Therefore, there is no
dependence on x and hence (3.5.10) can be rewritten as

U
s,x,[ξ]
t (y) =

∫ t

s

E(1)

[
(∂µσ)

(
[Xs,ξ

r ],
(
X(1)

)s,y,[ξ]
r

)
+(∂µσ)

(
[Xs,ξ

r ],
(
X(1)

)s,ξ(1)
r

)(
U (1)

)s,x,[ξ]
r

(y)

]
dWr.

(3.5.14)
Moreover, by the fact that σ is inM1, we establish that

(i)

E
[

sup
t∈[s,T ]

∣∣Us,x,[ξ]t (y)
∣∣2] ≤ C, (3.5.15)

(ii)

E
[

sup
t∈[s,T ]

∣∣Us,x,[ξ]t (y)− Us,x,[ξ
′]

t (y′)
∣∣2] ≤ C(|y − y′|2 +W2([ξ], [ξ′])2

)
, (3.5.16)

for any s ∈ [0, T ], x, y, y′ ∈ R and ξ, ξ′ ∈ L2(Fs), for some constant C > 0. Indeed, (3.5.15) fol-
lows from the boundedness of ∂µσ and Gronwall’s inequality. (3.5.16) follows from the Lipschitz
property of ∂µσ and Gronwall’s inequality, along with the bounds

E
[

supt∈[s,T ]

∣∣Xs,ξ
t −X

s,ξ′

t

∣∣2] ≤ CE|ξ − ξ′|2,
supt∈[s,T ]W2([Xs,ξ

t ], [Xs,ξ′

t ])2 ≤ CW2([ξ], [ξ′])2,

E
[

supt∈[s,T ]

∣∣Xs,x,[ξ]
t −Xs,x′,[ξ′]

t

∣∣2] ≤ C(|x− x′|2 +W2([ξ], [ξ′])2
)
,

for some constant C > 0. Finally, the bounds (3.5.15), (3.5.16) and connection (3.5.13) allow
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us to establish that the Gâteaux derivative

L2(Fs)→ L(L2(Fs), L2(Ft)); ξ 7→
(
η 7→ Dξ

(
X
s,x,[ξ]
t

)
(η)

)
(3.5.17)

is continuous (where the space L(L2(Fs), L2(Ft)) is equipped with the corresponding operator
norm), which proves that (3.5.17) is indeed the Fréchet derivative of Xs,x,[ξ]

t with respect to ξ.
By (3.5.13), it follows from the definition of ∂µX

s,x,[ξ]
t (y) that

∂µX
s,x,[ξ]
t (y) = U

s,x,[ξ]
t (y), t ∈ [s, T ]. (3.5.18)

Higher order derivatives of [ξ] 7→ Xs,x,[ξ]. We recall that ∂µX
s,x,[ξ]
t (y) does not depend on

x and hence we define
∂µX

s,[ξ]
t (y) := ∂µX

s,x,[ξ]
t (y). (3.5.19)

Subsequently, we define inductively as in (3.2.11) and (3.2.12), the nth order derivative in
measure of Xs,x,[ξ]

t by

∂nµX
s,[ξ]
t (v1, . . . , vn) := ∂µ

(
∂n−1
µ X

s,[ξ]
t (v1, . . . , vn−1)

)
(vn), t ∈ [s, T ], v1, . . . , vn ∈ R,

and its corresponding mixed derivatives by

∂βnvn . . . ∂
β1
v1 ∂

n
µX

s,[ξ]
t (v1, . . . , vn), `, β1, . . . , βn ∈ N ∪ {0},

provided that these derivatives actually exist, where each derivative in vi is interpreted in the
L2 sense. (See Lemma 4.1 in [9] for its precise meaning.)

Next, we generalise the multi-index notation and the class Mk to include derivatives of
X
s,x,[ξ]
t .

Definition 3.5.4 (Multi-index notation for derivatives of Xs,x,[ξ]
t ). Let (n,β) be a multi-index.

Then D(n,β)X
s,[ξ]
t (v1, . . . , vn) is defined by

D(n,β)X
s,[ξ]
t (v1, . . . , vn) := ∂βnvn . . . ∂

β1
v1 ∂

n
µX

s,[ξ]
t (v1, . . . , vn),

if this derivative is well-defined.

Definition 3.5.5 (ClassMX
k of kth order differentiable functions).

The process Xs,x,[ξ] = {Xs,x,[ξ]
t }t∈[s,T ] belongs to class MX

k , if D(n,β)X
s,[ξ]
t (v1, . . . , vn) exists

for every multi-index (n,β) such that |(n,β)| ≤ k and

(a)

E
[

sup
t∈[s,T ]

∣∣D(n,β)X
s,[ξ]
t (v1, . . . , vn)

∣∣2] ≤ C, (3.5.20)

(b)

E
[

sup
t∈[s,T ]

∣∣D(n,β)X
s,[ξ]
t (v1, . . . , vn)−D(n,β)X

s,[ξ′]
t (v′1, . . . , v

′
n)
∣∣2]

≤ C

( n∑
i=1

|vi − v′i|2 +W2([ξ], [ξ′])2

)
, (3.5.21)

for any s ∈ [0, T ], v1, v
′
1, . . . , vn, v

′
n ∈ Rd and ξ, ξ′ ∈ L2(Fs), for some constant C > 0.
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The following theorem extends Theorem 3.5.3 to higher order derivatives. It uses the nota-
tions

Λi,k :=
{
θ : {1, . . . , i} → {1, . . . , k}

∣∣∣ θ is a strictly increasing function
}
, i ∈ {1, . . . , k},

and

Rk :=
{
y =

(
y(j,`)

)
1≤j,`≤k

∣∣∣ y(j,`) ∈ R
}
, Tk :=

{
z =

(
z(j,i,θ)

)
1≤j,i≤k
θ∈Λi,k

∣∣∣ z(j,i,θ) ∈ R
}
.

For any function Fk : P2(R) × Rk × Rk × Tk → R, ∂xjFk denotes the corresponding partial
derivative with respect to the second component of Fk. ∂y(j,`)Fk denotes the corresponding par-
tial derivative with respect to the third component of Fk. ∂z(j,i,θ)Fk denotes the corresponding
partial derivative with respect to the fourth component of Fk.

Theorem 3.5.6. Suppose that σ is MK(P2(R)). Then, for any k ∈ {1, . . . ,K}, t ∈ [s, T ], the
kth order derivative in measure ∂kµX

s,[ξ]
t (v1, . . . , vk) exists and satisfies (3.5.20) and (3.5.21).

In particular, it is the unique solution of an SDE given by

∂kµX
s,[ξ]
t (v1, . . . , vk)

=

∫ t

s

E(1)E(2) . . .E(k)

[
Fk

(
[Xs,ξ

r ],
((
X(j)

)s,ξ(j)
r

)
1≤j≤k

,
((
X(j)

)s,v`,[ξ]
r

)
1≤j,`≤k

,(
∂iµ
(
X(j)

)s,[ξ]
r

(vθ(1), . . . , vθ(i))
)

1≤j,i≤k
θ∈Λi,k

)]
dWr, (3.5.22)

where Fk : P2(R)×Rk×Rk×Tk → R is defined by the recurrence relation, k ∈ {1, . . . ,K − 1},

Fk+1

(
µ, (xj)1≤j≤k+1, (y(j,`))1≤j,`≤k+1,

(
z(j,i,θ)

)
1≤j,i≤k+1
θ∈Λi,k+1

)
= ∂µFk

(
µ, (xj)1≤j≤k, (y(j,`))1≤j,`≤k,

(
z(j,i,θ)

)
1≤j,i≤k
θ∈Λi,k

, y(k+1,k+1)

)
+∂µFk

(
µ, (xj)1≤j≤k, (y(j,`))1≤j,`≤k,

(
z(j,i,θ)

)
1≤j,i≤k
θ∈Λi,k

, xk+1

)
z(k+1,1,Pk+1)

+

k∑
j=1

∂xjFk

(
µ,
(
x1, . . . , xj−1, y(j,k+1), xj+1, . . . , xk

)
, (y(j,`))1≤j,`≤k,

(
z(j,i,θ)

)
1≤j,i≤k
θ∈Λi,k

)

+

k∑
j=1

∂xjFk

(
µ, (xj)1≤j≤k, (y(j,`))1≤j,`≤k,

(
z(j,i,θ)

)
1≤j,i≤k
θ∈Λi,k

)
z(j,1,Pk+1)

+

k∑
j,`=1

∂y(j,`)Fk

(
µ, (xj)1≤j≤k, (y(j,`))1≤j,`≤k,

(
z(j,i,θ)

)
1≤j,i≤k
θ∈Λi,k

)
z(j,1,Pk+1)

+

k∑
j,i=1

∑
θ∈Λi,k

∂z(j,i,θ)Fk

(
µ, (xj)1≤j≤k, (y(j,`))1≤j,`≤k,

(
z(j,i,θ)

)
1≤j,i≤k
θ∈Λi,k

)
z(j,i+1,θi+1,k+1) ,

(3.5.23)

where Pk+1 ∈ Λ1,k+1 is defined by Pk+1(1) = k+1 and for each θ ∈ Λi,k, the function θi+1,k+1 ∈
Λi+1,k+1 is defined such that θi+1,k+1

∣∣
{1,...,i} = θ and θi+1,k+1(i+ 1) = k + 1. Moreover, F1 is

given by
F1(µ, x, y, z) = ∂µσ(µ, y) + ∂µσ(µ, x)z. (3.5.24)

Proof. We remark that the functions Fk, k ∈ {1, . . . ,K}, are well-defined, since σ ∈ MK .
We proceed by strong induction on k ∈ {1, . . . ,K}. The base step k = 1 is done in Theorem
3.5.3. In particular, (3.5.14) verifies (3.5.24). The main arguments in the induction step are
the same as the base step. Suppose that the statement holds for all k ∈ {1, . . . , k∗}, where
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k∗ ∈ {1, . . . ,K − 1}. Then, in particular, ∂k
∗

µ X
s,[ξ]
t (v1, . . . , vk∗) satisfies the SDE

∂k
∗

µ X
s,[ξ]
t (v1, . . . , vk∗)

=

∫ t

s

E(1)E(2) . . .E(k∗)

[
Fk∗

(
[Xs,ξ

r ],
((
X(j)

)s,ξ(j)
r

)
1≤j≤k∗

,
((
X(j)

)s,v`,[ξ]
r

)
1≤j,`≤k∗

,(
∂iµ
(
X(j)

)s,[ξ]
r

(vθ(1), . . . , vθ(i))
)

1≤j,i≤k∗
θ∈Λi,k∗

)]
dWr. (3.5.25)

Let F̃k∗ be the lift of Fk∗ . In the following expression, ∂xF̃k∗ denotes the partial derivative
with respect to the lifted component of F̃k. As in (3.5.7) and (3.5.8), we formally differentiate
(3.5.25) with respect to ξ in the direction η to obtain the directional derivative

Dξ

(
∂k
∗

µ X
s,[ξ]
t (v1, . . . , vk∗)

)
(η)

=

∫ t

s

E(1)E(2) . . .E(k∗)

[
∂xF̃k∗

(
[Xs,ξ

r ],
((
X(j)

)s,ξ(j)
r

)
j
,
((
X(j)

)s,v`,[ξ]
r

)
j,`
,(

∂iµ
(
X(j)

)s,[ξ]
r

(vθ(1), . . . , vθ(i))
)
j,i,θ

)(
η +Dξ(X

s,x,[ξ]
r )(η)

∣∣∣
x=ξ

)]
dWr

+

k∗∑
j=1

∫ t

s

E(1)E(2) . . .E(k∗)

[
∂xj F̃k∗

(
[Xs,ξ

r ],
((
X(j)

)s,ξ(j)
r

)
j
,
((
X(j)

)s,v`,[ξ]
r

)
j,`
,

(
∂iµ
(
X(j)

)s,[ξ]
r

(vθ(1), . . . , vθ(i))
)
j,i,θ

)(
η(j) +Dξ

((
X(j)

)s,x,[ξ]
r

)
(η(j))

∣∣∣
x=ξ(j)

)]
dWr

+

k∗∑
j,`=1

∫ t

s

E(1)E(2) . . .E(k∗)

[
∂y(j,`) F̃k∗

(
[Xs,ξ

r ],
((
X(j)

)s,ξ(j)
r

)
j
,
((
X(j)

)s,v`,[ξ]
r

)
j,`
,

(
∂iµ
(
X(j)

)s,[ξ]
r

(vθ(1), . . . , vθ(i))
)
j,i,θ

)
Dξ

((
X(j)

)s,v`,[ξ]
r

)
(η(j))

]
dWr

+

k∗∑
j,i=1

∑
θ∈Λi,k∗

∫ t

s

E(1)E(2) . . .E(k∗)

[
∂z(j,i,θ) F̃k∗

(
[Xs,ξ

r ],
((
X(j)

)s,ξ(j)
r

)
j
,
((
X(j)

)s,v`,[ξ]
r

)
j,`
,

(
∂iµ
(
X(j)

)s,[ξ]
r

(vθ(1), . . . , vθ(i))
)
j,i,θ

)
Dξ

(
∂iµ
(
X(j)

)s,[ξ]
r

(vθ(1), . . . , vθ(i))
)
(η(j))

]
dWr.

We then recall that the following directional derivatives can be represented as

Dξ(X
s,x,[ξ]
r )(η)

∣∣∣
x=ξ

= Ê
[
∂µX

s,[ξ]
r (ξ̂)η̂

]
, Dξ

((
X(j)

)s,v`,[ξ]
r

)
(η(j)) = Ê

[
∂µ
(
X(j)

)s,[ξ]
r

(ξ̂)η̂
]
,

Dξ

((
X(j)

)s,x,[ξ]
r

)
(η(j))

∣∣∣
x=ξ(j)

= Ê
[
∂µ
(
X(j)

)s,[ξ]
r

(ξ̂)η̂
]

and

Dξ

(
∂iµ
(
X(j)

)s,[ξ]
r

(vθ(1), . . . , vθ(i))
)
(η(j)) = Ê

[
∂i+1
µ

(
X(j)

)s,[ξ]
r

(vθ(1), . . . , vθ(i), ξ̂)η̂
]
, i ∈ {1, . . . , k∗−1}.

We can therefore rewrite (3.5.26) as

Dξ

(
∂k
∗

µ X
s,[ξ]
t (v1, . . . , vk∗)

)
(η)

=

∫ t

s

E(1)E(2) . . .E(k∗)E(k∗+1)

[
∂µFk∗

(
[Xs,ξ

r ],
((
X(j)

)s,ξ(j)
r

)
j
,
((
X(j)

)s,v`,[ξ]
r

)
j,`
,(

∂iµ
(
X(j)

)s,[ξ]
r

(vθ(1), . . . , vθ(i))
)
j,i,θ

,
(
X(k∗+1)

)s,ξ(k∗+1)

r

)
×
(
η(k∗+1) + Ê

[
∂µ
(
X(k∗+1)

)s,[ξ]
r

(ξ̂)η̂
])]

dWr
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+

k∗∑
j=1

∫ t

s

E(1)E(2) . . .E(k∗)

[
∂xjFk∗

(
[Xs,ξ

r ],
((
X(j)

)s,ξ(j)
r

)
j
,
((
X(j)

)s,v`,[ξ]
r

)
j,`
,

(
∂iµ
(
X(j)

)s,[ξ]
r

(vθ(1), . . . , vθ(i))
)
j,i,θ

)(
η(j) + Ê

[
∂µ
(
X(j)

)s,[ξ]
r

(ξ̂)η̂
])]

dWr

+

k∗∑
j,`=1

∫ t

s

E(1)E(2) . . .E(k∗)

[
∂y(j,`)Fk∗

(
[Xs,ξ

r ],
((
X(j)

)s,ξ(j)
r

)
j
,
((
X(j)

)s,v`,[ξ]
r

)
j,`
,

(
∂iµ
(
X(j)

)s,[ξ]
r

(vθ(1), . . . , vθ(i))
)
j,i,θ

)
Ê
[
∂µ
(
X(j)

)s,[ξ]
r

(ξ̂)η̂
]]
dWr

+

k∗∑
j=1

k∗−1∑
i=1

∑
θ∈Λi,k∗

∫ t

s

E(1)E(2) . . .E(k∗)

[
∂z(j,i,θ)Fk∗

(
[Xs,ξ

r ],
((
X(j)

)s,ξ(j)
r

)
j
,
((
X(j)

)s,v`,[ξ]
r

)
j,`
,

(
∂iµ
(
X(j)

)s,[ξ]
r

(vθ(1), . . . , vθ(i))
)
j,i,θ

)
Ê
[
∂i+1
µ

(
X(j)

)s,[ξ]
r

(vθ(1), . . . , vθ(i), ξ̂)η̂
]]
dWr

+

k∗∑
j=1

∫ t

s

E(1)E(2) . . .E(k∗)

[
∂z(j,k∗,Ik∗ )Fk

∗

(
[Xs,ξ

r ],
((
X(j)

)s,ξ(j)
r

)
j
,
((
X(j)

)s,v`,[ξ]
r

)
j,`
,

(
∂iµ
(
X(j)

)s,[ξ]
r

(vθ(1), . . . , vθ(i))
)
j,i,θ

)
Dξ

(
∂k
∗

µ

(
X(j)

)s,[ξ]
t

(v1, . . . , vk∗)
)

(η)

]
dWr,

(3.5.26)

where, on the second last line, Ik∗ denotes the identity function from {1, . . . , k∗} to itself. We
now define a process

{(
Uk∗+1

)s,[ξ]
t

(v1, . . . , vk∗+1)
}
t∈[s,T ]

that satisfies the SDE

(
Uk∗+1

)s,[ξ]
t

(v1, . . . , vk∗+1)

=

∫ t

s

E(1)E(2) . . .E(k∗)E(k∗+1)

[
∂µFk∗

(
[Xs,ξ

r ],
((
X(j)

)s,ξ(j)
r

)
j
,
((
X(j)

)s,v`,[ξ]
r

)
j,`
,(

∂iµ
(
X(j)

)s,[ξ]
r

(vθ(1), . . . , vθ(i))
)
j,i,θ

,
(
X(k∗+1)

)s,vk∗+1,[ξ]

r

)]
dWr

+

∫ t

s

E(1)E(2) . . .E(k∗)E(k∗+1)

[
∂µFk∗

(
[Xs,ξ

r ],
((
X(j)

)s,ξ(j)
r

)
j
,
((
X(j)

)s,v`,[ξ]
r

)
j,`
,(

∂iµ
(
X(j)

)s,[ξ]
r

(vθ(1), . . . , vθ(i))
)
j,i,θ

,
(
X(k∗+1)

)s,ξ(k∗+1)

r

)
∂µ
(
X(k∗+1)

)s,[ξ]
r

(vk∗+1)

]
dWr

+

k∗∑
j=1

∫ t

s

E(1)E(2) . . .E(k∗)

[
∂xjFk∗

(
[Xt,ξ

r ],
((
X(1)

)s,ξ(1)
r

, . . . ,
(
X(j−1)

)s,ξ(j−1)

r
,
(
X(j)

)s,vk∗+1,[ξ]

r
,

(
X(j+1)

)s,ξ(j+1)

r
, . . . ,

(
X(k∗)

)s,ξ(k∗)
r

)
,
((
X(j)

)s,v`,[ξ]
r

)
j,`
,(

∂iµ
(
X(j)

)s,[ξ]
r

(vθ(1), . . . , vθ(i))
)
j,i,θ

)]
dWr

+

k∗∑
j=1

∫ t

s

E(1)E(2) . . .E(k∗)

[
∂xjFk∗

(
[Xs,ξ

r ],
((
X(j)

)s,ξ(j)
r

)
j
,
((
X(j)

)s,v`,[ξ]
r

)
j,`
,

(
∂iµ
(
X(j)

)s,[ξ]
r

(vθ(1), . . . , vθ(i))
)
j,i,θ

)
∂µ
(
X(j)

)s,[ξ]
r

(vk∗+1)

]
dWr

+

k∗∑
j,`=1

∫ t

s

E(1)E(2) . . .E(k∗)

[
∂y(j,`)Fk∗

(
[Xs,ξ

r ],
((
X(j)

)s,ξ(j)
r

)
j
,
((
X(j)

)s,v`,[ξ]
r

)
j,`
,

(
∂iµ
(
X(j)

)s,[ξ]
r

(vθ(1), . . . , vθ(i))
)
j,i,θ

)
∂µ
(
X(j)

)s,[ξ]
r

(vk∗+1)

]
dWr
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+

k∗∑
j=1

k∗−1∑
i=1

∑
θ∈Λi,k∗

∫ t

s

E(1)E(2) . . .E(k∗)

[
∂z(j,i,θ)Fk∗

(
[Xs,ξ

r ],
((
X(j)

)s,ξ(j)
r

)
j
,
((
X(j)

)s,v`,[ξ]
r

)
j,`
,

(
∂iµ
(
X(j)

)s,[ξ]
r

(vθ(1), . . . , vθ(i))
)
j,i,θ

)
∂i+1
µ

(
X(j)

)s,[ξ]
r

(vθ(1), . . . , vθ(i), vk∗+1)

]
dWr

+

k∗∑
j=1

∫ t

s

E(1)E(2) . . .E(k∗)

[
∂z(j,k∗,Ik∗ )Fk

∗

(
[Xs,ξ

r ],
((
X(j)

)s,ξ(j)
r

)
j
,
((
X(j)

)s,v`,[ξ]
r

)
j,`
,

(
∂iµ
(
X(j)

)s,[ξ]
r

(vθ(1), . . . , vθ(i))
)
j,i,θ

)(
U

(j)
k∗+1

)s,[ξ]
t

(v1, . . . , vk∗+1)

]
dWr. (3.5.27)

Then we write

Ê
[(
Uk∗+1

)s,[ξ]
t

(v1, . . . , vk∗ , ξ̂)η̂
]

=

∫ t

s

Ê
[
E(1)E(2) . . .E(k∗)E(k∗+1)

[
∂µFk∗

(
[Xs,ξ

r ],
((
X(j)

)s,ξ(j)
r

)
j
,
((
X(j)

)s,v`,[ξ]
r

)
j,`
,(

∂iµ
(
X(j)

)s,[ξ]
r

(vθ(1), . . . , vθ(i))
)
j,i,θ

,
(
X(k∗+1)

)s,vk∗+1,[ξ]

r

)]∣∣∣∣
vk∗+1=ξ̂

η̂

]
dWr

+

∫ t

s

Ê
[
E(1)E(2) . . .E(k∗)E(k∗+1)

[
∂µFk∗

(
[Xs,ξ

r ],
((
X(j)

)s,ξ(j)
r

)
j
,
((
X(j)

)s,v`,[ξ]
r

)
j,`
,(

∂iµ
(
X(j)

)s,[ξ]
r

(vθ(1), . . . , vθ(i))
)
j,i,θ

,
(
X(k∗+1)

)s,ξ(k∗+1)

r

)
×∂µ

(
X(k∗+1)

)s,[ξ]
r

(vk∗+1)

]∣∣∣∣
vk∗+1=ξ̂

η̂

]
dWr

+

k∗∑
j=1

∫ t

s

Ê
[
E(1)E(2) . . .E(k∗)

[
∂xjFk∗

(
[Xt,ξ

r ],

((
X(1)

)s,ξ(1)
r

, . . . ,
(
X(j−1)

)s,ξ(j−1)

r
,
(
X(j)

)s,vk∗+1,[ξ]

r
,
(
X(j+1)

)s,ξ(j+1)

r
, . . . ,

(
X(k∗)

)s,ξ(k∗)
r

)
,((

X(j)
)s,v`,[ξ]
r

)
j,`
,
(
∂iµ
(
X(j)

)s,[ξ]
r

(vθ(1), . . . , vθ(i))
)
j,i,θ

)]∣∣∣∣
vk∗+1=ξ̂

η̂

]
dWr

+

k∗∑
j=1

∫ t

s

Ê
[
E(1)E(2) . . .E(k∗)

[
∂xjFk∗

(
[Xs,ξ

r ],
((
X(j)

)s,ξ(j)
r

)
j
,
((
X(j)

)s,v`,[ξ]
r

)
j,`
,

(
∂iµ
(
X(j)

)s,[ξ]
r

(vθ(1), . . . , vθ(i))
)
j,i,θ

)
∂µ
(
X(j)

)s,[ξ]
r

(vk∗+1)

]∣∣∣∣
vk∗+1=ξ̂

η̂

]
dWr

+

k∗∑
j,`=1

∫ t

s

Ê
[
E(1)E(2) . . .E(k∗)

[
∂y(j,`)Fk∗

(
[Xs,ξ

r ],
((
X(j)

)s,ξ(j)
r

)
j
,
((
X(j)

)s,v`,[ξ]
r

)
j,`
,

(
∂iµ
(
X(j)

)s,[ξ]
r

(vθ(1), . . . , vθ(i))
)
j,i,θ

)
∂µ
(
X(j)

)s,[ξ]
r

(vk∗+1)

]∣∣∣∣
vk∗+1=ξ̂

η̂

]
dWr

+

k∗∑
j=1

k∗−1∑
i=1

∑
θ∈Λi,k∗

∫ t

s

Ê
[
E(1)E(2) . . .E(k∗)

[
∂z(j,i,θ)Fk∗

(
[Xs,ξ

r ],
((
X(j)

)s,ξ(j)
r

)
j
,
((
X(j)

)s,v`,[ξ]
r

)
j,`
,

(
∂iµ
(
X(j)

)s,[ξ]
r

(vθ(1), . . . , vθ(i))
)
j,i,θ

)
∂i+1
µ

(
X(j)

)s,[ξ]
r

(vθ(1), . . . , vθ(i), vk∗+1)

]∣∣∣∣
vk∗+1=ξ̂

η̂

]
dWr

+

k∗∑
j=1

∫ t

s

Ê
[
E(1)E(2) . . .E(k∗)

[
∂z(j,k∗,Ik∗ )Fk

∗

(
[Xs,ξ

r ],
((
X(j)

)s,ξ(j)
r

)
j
,
((
X(j)

)s,v`,[ξ]
r

)
j,`
,

(
∂iµ
(
X(j)

)s,[ξ]
r

(vθ(1), . . . , vθ(i))
)
j,i,θ

)(
U

(j)
k∗+1

)s,[ξ]
t

(v1, . . . , vk∗+1)

]∣∣∣∣
vk∗+1=ξ̂

η̂

]
dWr.
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As in the proof of Theorem 3.5.3, we deduce that Dξ

(
∂k
∗

µ Xs,[ξ](v1, . . . , vk∗)
)
(η) satisfies the

same SDE as Ê
[(
Uk∗+1

)s,[ξ]
(v1, . . . , vk∗ , ξ̂)η̂

]
. (Note that equality of the first and third terms

follows from the same argument as (3.5.11) and equality of the other terms follows from the
same argument as (3.5.12).) Consequently,

Dξ

(
∂k
∗

µ X
s,[ξ]
t (v1, . . . , vk∗)

)
(η) = Ê

[(
Uk∗+1

)s,[ξ]
t

(v1, . . . , vk∗ , ξ̂)η̂
]
. (3.5.28)

By the induction hypothesis, we can again establish that (as in the proof of Theorem 3.5.3)

(i)

E
[

sup
t∈[s,T ]

∣∣(Uk∗+1

)s,[ξ]
t

(v1, . . . , vk∗+1)
∣∣2] ≤ C,

(ii)

E
[

sup
t∈[s,T ]

∣∣(Uk∗+1

)s,[ξ]
t

(v1, . . . , vk∗+1)−
(
Uk∗+1

)s,[ξ′]
t

(v′1, . . . , v
′
k∗+1)

∣∣2]

≤ C

( k∗+1∑
i=1

|vi − v′i|2 +W2([ξ], [ξ′])2

)
,

for any s ∈ [0, T ], v1, . . . , vk∗+1, v
′
1, . . . , v

′
k∗+1 ∈ R and ξ, ξ′ ∈ L2(Fs), for some constant C > 0.

Subsequently, it follows from the same reasoning as in the proof of Theorem 3.5.3 and (3.5.28)
that

∂k
∗+1
µ X

s,[ξ]
t (v1, . . . , vk∗+1) =

(
Uk∗+1

)s,[ξ]
t

(v1, . . . , vk∗+1).

Finally, by the recurrence relation (3.5.23) and the expression of
(
Uk∗+1

)s,[ξ]
t

in (3.5.27), it is
clear that ∂k

∗+1
µ X

s,[ξ]
t (v1, . . . , vk∗+1) satisfies the SDE

∂k
∗+1
µ X

s,[ξ]
t (v1, . . . , vk∗+1)

=

∫ t

s

E(1)E(2) . . .E(k∗+1)

[
Fk∗+1

(
[Xs,ξ

r ],
((
X(j)

)s,ξ(j)
r

)
1≤j≤k∗+1

,
((
X(j)

)s,v`,[ξ]
r

)
1≤j,`≤k∗+1

,(
∂iµ
(
X(j)

)s,[ξ]
r

(vθ(1), . . . , vθ(i))
)

1≤j,i≤k∗+1
θ∈Λi,k∗+1

)]
dWr.

Corollary 3.5.7. Suppose that σ is inMk(P2(R)). Then Xs,x,[ξ] ∈MX
k .

Proof. For any multi-index (n,β) such that
∣∣(n,β)

∣∣ ≤ k, we have an SDE representation of
∂nµX

s,[ξ]
t (v1, . . . , vn), by (3.5.22) in Theorem 3.5.6. By (3.5.23) and (3.5.24), we know that the

function Fn in (3.5.22) is differentiable in the spatial components for at most k−n times. This
is exactly what we need, since |β| = β1 + . . .+ βn ≤ k − n. Hence, we formally differentiate βi
times with respect to each variable vi, 1 ≤ i ≤ n, and then use a standard Gronwall argument
to establish bounds (3.5.20) and (3.5.21). (See Theorem 5.5.3 in [27] or Proposition 4.10 in [45]
for details.)

We are now in a position to prove Theorem 3.5.2, via the smoothness of σ and Xs,x,[ξ].

Proof of Theorem 3.5.2. By combining (3.5.7), (3.5.13), (3.5.18) and (3.5.19), we deduce that

χ : L2(Fs)→ L2(Ft); ξ 7→ Xs,ξ
t

is Fréchet differentiable with Fréchet derivative given by

Dχ(ξ)(η) = η + Ê
[
∂µX

s,[ξ]
t (ξ̂)η̂

]
.
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Next, for any fixed s ∈ [0, t], we define the lifts Φ̃ : L2(Ft) → R and Ṽ(s, ·) : L2(Fs) → R for
functions Φ and V(s, ·) respectively, given by

Φ̃(θ1) = Φ([θ1]), Ṽ(s, θ2) = V(s, [θ2]), for θ1 ∈ L2(Ft), θ2 ∈ L2(Fs).

Then, we notice from equation (3.5.1) that

Ṽ(s, ·) = Φ̃ ◦ χ.

By the chain rule of Fréchet differentiation, we obtain that

DṼ(s, ξ) = DΦ̃(χ(ξ)) ◦Dχ(ξ),

which implies that

DṼ(s, ξ)(η) = DΦ̃(χ(ξ))
(
Dχ(ξ)(η)

)
= E

[
∂µΦ

(
[Xs,ξ

t ], Xs,ξ
t

)
Dχ(ξ)(η)

]
= E

[
∂µΦ

(
[Xs,ξ

t ], Xs,ξ
t

)(
η + Ê

[
∂µX

s,[ξ]
t (ξ̂)η̂

])]
, (3.5.29)

for any ξ, η ∈ Fs. Note that the first term can be rewritten as

E
[
∂µΦ

(
[Xs,ξ

t ], Xs,ξ
t

)
η
]

= E
[
E(∂µΦ

(
[Xs,ξ

t ], X
s,x,[ξ]
t

))∣∣
x=ξ

η
]

(3.5.30)

and the second term can be rewritten by the Fubini’s theorem as

E
[
∂µΦ

(
[Xs,ξ

t ], Xs,ξ
t

)
Ê
[(
∂µX

s,[ξ]
t (ξ̂)

)
η̂
]]

= Ê
[
E
[
∂µΦ

(
[Xs,ξ

t ], Xs,ξ
t

)
∂µX

s,[ξ]
t (ξ̂)

]
η̂
]
. (3.5.31)

Consequently, by combining (3.5.30) and (3.5.31), equation (3.5.29) becomes

DṼ(s, ξ)(η) = E
[
E(∂µΦ

(
[Xs,ξ

t ], X
s,x,[ξ]
t

))∣∣
x=ξ

η
]

+ Ê
[
E
[
∂µΦ

(
[Xs,ξ

t ], Xs,ξ
t

)
∂µX

s,[ξ]
t (ξ̂)

]
η̂
]
,

which implies that

∂µV(s, [ξ])(y) = E
[
∂µΦ

(
[Xs,ξ

t ], X
s,y,[ξ]
t

)
+ ∂µΦ

(
[Xs,ξ

t ], Xs,ξ
t

)
∂µX

s,[ξ]
t (y)

]
, y ∈ R.

By our assumption, we know that ∂µΦ satisfies (3.3.3) and (3.3.4), and the process ∂µX
s,[ξ]
t (v1)

satisfies (3.5.20) and (3.5.21). It follows that ∂µV also satisfies (3.3.3) and (3.3.4), with the
constant bound C uniform in time.

By iterating this procedure, we can show that for any n ≤ k,

∂nµV(s, [ξ])(v1, . . . , vn)

= E(1)E(2) . . .E(n)

[
Fn

(
[Xs,ξ

t ],
((
X(j)

)s,ξ(j)
t

)
1≤j≤n

,
((
X(j)

)s,v`,[ξ]
t

)
1≤j,`≤n

,(
∂iµ
(
X(j)

)s,[ξ]
t

(vθ(1), . . . , vθ(i))
)

1≤j,i≤n
θ∈Λi,n

)]
, (3.5.32)

where Fn satisfies the same recurrence relation as (3.5.23) and F1 is defined by

F1(µ, x, y, z) = ∂µΦ(µ, y) + ∂µΦ(µ, x)z.

The computation is almost identical to the proof of Theorem 3.5.6.
Next, we proceed with the same argument as the proof of Corollary 3.5.7. Take any multi-

index (n,β) such that
∣∣(n,β)

∣∣ ≤ k.We know that the function Fn is differentiable in the spatial
components for at most k−n times. This is exactly what we need, since |β| = β1+. . .+βn ≤ k−n.
Hence, we formally differentiate (3.5.32) βi times with respect to each variable vi, 1 ≤ i ≤ n,
which, along with recurrence relation (3.5.23), allows us to establish bounds (3.3.3) and (3.3.4)
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for D(n,β)V(s, µ)(v1, . . . , vn), uniform in s. This shows that V(s, ·) is in Mk(P2(R)) and that
all derivatives D(n,β)V(s, µ)(v1, . . . , vn) with

∣∣(n,β)
∣∣ ≤ k are jointly continuous in time, space

and measure.
Finally, we know from Theorem 3.5.1 (i.e. Theorem 7.2 in [9]) that V(·, µ) ∈ C1([0, t]), for

every µ ∈ P2(R). This concludes that V ∈ Mk.
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Chapter 4

Weak error expansion

The content of this chapter is extracted from [17].
In this chapter, we provide an exact weak error expansion between a (nonlinear) functional

Φ : P2(Rd) → R of the empirical measure µN ∈ P2(Rd) and its deterministic limit Φ(µ),
µ ∈ P2(Rd). We investigate the following two cases:

(a) µN is the empirical measure of a sample of N i.i.d. random variables from µ;

(b) µ is the marginal law of the McKean-Vlasov process X at some time and µN is the
empirical measure of the marginal laws of the corresponding particle system {Y i,N}1≤i≤N
at the same time.

In the first case where µN is the empirical measure of N -samples from µ, the only inter-
esting case is when the functional Φ is non-linear. Assume that Φ is Lipschitz continuous with
respect to theW2-Wasserstein distance, then one could bound |Φ(µ)−EΦ(µN )| by EW2(µ, µN ).
Consequently, following [26] or [23], the rate of convergence in the number of samples N de-
teriorates as the dimension d increases. On the other hand, recently, authors from [21] made
a remarkable observation (Lemma 5.10 of [21]) that if the functional Φ is twice-differentiable
with respect to the linear functional derivative with uniformly bounded δΦ

δm and δ2Φ
δm2 , along

with W1-Lipschitz continuous δ2Φ
δm2 , then one can obtain a dimension-independent bound for

the strong error E|Φ(µ)−Φ(µN )|4, which is of order O(N−1/2) (as expected by CLT). A slight
generalisation of this result is presented in Lemma 5.2.2. Here, we study the weak error and
show that (see Theorem 4.2.10), if µ ∈ P2k+1(Rd) and Φ is (2k + 1)-times differentiable with
respect to the linear functional derivative, then indeed we have

|Φ(µ)− EΦ(µN )| =
k−1∑
j=1

Cj
N j

+O(
1

Nk
),

for some real constants C1, . . . , Ck−1 that do not depend on N . The result is of independent in-
terest, but is also needed to obtain a complete expansion for the error in particle approximations
of McKean-Vlasov SDEs.

The second case concerns estimates of propagation-of-chaos type between X and Y i,N .
We saw in Theorem 2.3.3 that the property of propagation of chaos is equivalent to weak
convergence of measure-valued random variables µY,Nt to µX , which in turns allows us to show
that {(Y 1,N , . . . , Y N,N )}N is µX -chaotic. However, this approach does not reveal quantitative
bounds. A new direction of research has been put forward very recently by independent works
[3], [44, Ch. 9] and [56, Th. 2.1]. The authors presented novel weak estimates of propagation
of chaos for linear functions in measure, i.e. Φ(µ) :=

∫
Rd F (x)µ(dx) with F : Rd → R being

smooth. This gives the rate of convergence O(1/N), plus the error due to approximation of
the functional of the initial law (see [56, Lem. 4.6] for a discussion of a dimensional-dependent
case). While the aim of [56] is to establish quantitative propagation of chaos for the Boltzmann’s
equation, in a spirit of Kac’s programme [41, 52], Theorem 6.1 in [56, Th. 6.1] specialises
their result to McKV-SDEs studied here, but only for elliptic diffusion coefficients that do not
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depend on measure and symmetric Lipschitz drifts with linear measure dependence. The key
idea behind both results is to work with the semigroup that acts on the space of functions of
measure, sometimes called the lifted semigroup, which can be viewed a dual space of probability
measures on P(Rd) as presented in [55]. In [3], the weak error

∣∣EΦ(L(X0,ξ
T ))−EΦ(µY,NT )

∣∣ is also
shown to converge to zero in the rate O(1/N), under the assumption of linearity in measure
(i.e. Φ(µ) :=

∫
Rd F (x)µ(dx)), as well as non-interacting diffusion, i.e. for b and σ of the form

b(x, µ) = B

(
x,

∫
Rd
α(y)µ(dy)

)
, σ(x, µ) = Σ

(
x,

∫
Rd
α(y)µ(dy)

)
,

where B : Rd×R→ Rd, Σ : Rd×R→ Rd⊗Rd and α : Rd → R are functions satisfying certain
regularity assumptions on the smoothness. The proof is based on the more classical approach
by using the Feynman-Kac PDE on [0, T ]× Rd.

Our method of expansion, on the other hand, relies heavily on the calculus on (P2(Rd),W2)
and, in particular, the Feynman-Kac PDE on [0, T ]×P2(Rd). We first identify minimal assump-
tions for the expansion in number of particles N to hold. This is presented in terms of class D
(see Definition 4.2.2). Next, we verify these assumptions for McKean-Vlasov SDEs with general
drift and (possibly non-elliptic) diffusion coefficients, along with non-linear functionals of mea-
sure. This is presented in terms of class Mk (see Definition 3.3.3). In order for the expansion
to work, we need certain smoothness properties on the functions V(m) (see Definition 4.2.3),
which are defined in a recursive manner. Nonetheless, Theorem 3.5.2 gives us information about
higher-order smoothness, which in turns allows us to show the smoothness properties on the
functions V(m) (see Theorems 4.3.2 and 4.3.3). The main theorem in this chapter, Theorem
4.3.3, states that given sufficient regularity of b, σ and Φ, we have

E
[
Φ(µY,NT )

]
− Φ(L(X0,ξ

T )) =

k−1∑
j=1

Cj
N j

+O(
1

Nk
),

where C1, . . . , Ck−1 are constants that do not depend on N .
The immediate consequence of the weak expansion is that it allows us to use Romberg

extrapolation to obtain an estimator of X with weak error being in the order of O( 1
Nk

), for each
k ∈ N. For sufficiently smooth McKean-Vlasov SDEs, the order of interactions (see Definition
4.1.1) in estimating E[F (XT )] can be reduced to the order O(ε−2−p/k), for a mean-square error
of O(ε2), where k corresponds to the degree of smoothness and p corresponds to the degree of
interactions. This is the theme of the first section.

4.1 Romberg extrapolation, ensembles of particles and com-
plexity analysis

In this section, we construct an ensemble particle system in the spirit of Richardson’s ex-
trapolation method [59] that has been studied in the context of time-discretisation of SDEs in
[63] and in the context of discretisation of SPDEs in [31].

Let F : Rd → R satisfy F ∈ C2k+1
b,Lip (Rd) and define Φ(µ) :=

∫
Rd F (x)µ(dx) ∈M2k+1(P2(Rd)).

Assume that b and σ satisfy the relevant regularity requirements of Theorem 4.3.3. Observe
that

E[Φ(µY,NT )] = E
[

1

N

N∑
i=1

F (Y i,NT )

]
= E[F (Y 1,N

T )].

Hence, the weak error reads |E[F (X0,ξ
T )]−E[F (Y 1,N

T )]|. By the result of Theorem 4.3.3, we can
apply the technique of Romberg extrapolation to construct an estimator which approximates
E[F (X0,ξ

T )] such that the weak error is of the order of O(1/Nk). More precisely, for k = 2, since
C1 is independent of N ,

EF (Y i,NT )− E[F (X0,ξ
T )] =

C1

N
+O

(
1

N2

)
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and
EF (Y i,2NT )− E[F (X0,ξ

T )] =
C1

2N
+O

(
1

N2

)
.

Hence, ∣∣∣(2EF (Y i,2NT )− EF (Y i,NT )
)
− E[F (X0,ξ

T )]
∣∣∣ = O

( 1

N2

)
.

For general k, we can use a similar method to show that∣∣∣∣ k∑
m=1

αmEF (Y i,mNT )− E[F (X0,ξ
T )]

∣∣∣∣ = O
( 1

Nk

)
,

where

αm = (−1)k−m
mk

m!(k −m)!
, 1 ≤ m ≤ k.

To motivate the study of weak error expansion, we first define the notions of order of
interactions and computational complexity.

Definition 4.1.1 (Order of interactions and complexity for pth-degree interactions). Suppose
that b and σ take the forms

bi(x, µ) =

∫
Rd
. . .

∫
Rd
I1,i(x, y1, . . . , yp)µ(dy1) . . . µ(dyp), (4.1.1)

σi,j(x, µ) =

∫
Rd
. . .

∫
Rd
I2,i,j(x, y1, . . . , yp)µ(dy1) . . . µ(dyp), (4.1.2)

where I1,i, I2,i,j : (Rd)p+1 → R are continuous functions, for each i, j ∈ {1, . . . , d}. Then the
order of interactions 1 of the standard particle system (with N particles) with b and σ given by
(4.1.1) and (4.1.2) is defined to be a quantity that satisfies

Order of interactions of the particle system = O(Np+1).

The order of interactions of an estimator composed of particle systems S1, S2, . . . , Si is defined
by

Order of interactions of estimator :=

i∑
i′=1

[
Order of interactions of particle system Si′

]
.

For an estimator involving an Euler numerical scheme with discretisation step h, its computa-
tional complexity is defined by

Computational complexity := h−1
(
Order of interactions of estimator

)
.

The goal of this section is to construct an estimator that uses M ensembles of particles,
which achieves a reduction in the order of interactions. Suppose that

I1,i, I2,i,j ∈ C2k+1
b,Lip

(
(Rd)p+1

)
and I2,i,j is uniformly bounded.

Then, clearly, b and σ satisfy the relevant regularity requirements of Theorem 4.3.3. FixM ≥ 1.
The ensembles are indexed by θ. For θ ∈ {1, . . . ,M}, consider

Y
i,N,(θ)
t = ξ(i,θ) +

∫ t

0

b
(
Y i,N,(θ)r , µY,N,(θ)r

)
dr +

∫ t

0

σ
(
Y i,N,(θ)r , µY,N,(θ)r

)
dW (i,θ)

r , (4.1.3)

1This is a reasonable assumption, as the replacement of µ by the empirical measure gives rise to p averages
for each particle. Note that each average is taken over N particles. Hence, the number of interactions required
to simulate each particle should have the order O(Np). Since there are N particles in total, it is reasonable to
define the order of interactions for the entire system to be O(Np+1).
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1 ≤ i ≤ N , where µY,N,(θ)r := 1
N

∑N
j=1 δY j,N,(θ)r

denotes the empirical measure for each θ;
{W (i,θ) : 1 ≤ i ≤ N}1≤θ≤M are M independent ensembles each consisting of N d-dimensional
Brownian motions; and {ξ(i,θ) : 1 ≤ i ≤ N}1≤θ≤M areM independent ensembles each consisting
of N i.i.d. random variables with the same distribution as ξ. We consider the following estimator

1

M

M∑
θ=1

k∑
m=1

αmΦ
(
µ
Y,mN,(θ)
T

)
=

1

M

M∑
θ=1

k∑
m=1

αm
1

mN

mN∑
i=1

F (Y
i,mN,(θ)
T ). (4.1.4)

Next, we analyse the mean-square error of this estimator:

E
[(

E[F (XT )]− 1

M

M∑
θ=1

k∑
m=1

αm
1

mN

mN∑
i=1

F (Y
i,mN,(θ)
T )

)2]

≤2

[(
E[F (XT )]−

k∑
m=1

αmEF (Y 1,mN
T )

)2]

+ 2E
[(

E
[ k∑
m=1

αm
1

mN

mN∑
i=1

F (Y i,mNT )

]
− 1

M

M∑
θ=1

k∑
m=1

αm
1

mN

mN∑
i=1

F (Y
i,mN,(θ)
T )

)2]
.

The first term on the right-hand side is studied in Theorem 4.3.3 and, provided that the coeffi-
cients of (2.1.1) are sufficiently smooth, it converges with order O(N−2k). Control of the second
term follows from strong propagation of chaos. Indeed, we write

Var
[

1

M

M∑
θ=1

k∑
m=1

αm
1

mN

mN∑
i=1

F (Y
i,mN,(θ)
T )

]

≤ 2Var
[

1

M

M∑
θ=1

k∑
m=1

αm
1

mN

mN∑
i=1

F (X
(i,θ)
T )

]

+2Var
[

1

M

M∑
θ=1

k∑
m=1

αm
1

mN

mN∑
i=1

(
F (Y

i,mN,(θ)
T )− F (X

(i,θ)
T )

)]
,

where X(i,θ) denotes the solution of (2.1.1) driven byW (i,θ) with initial data ξ(i,θ) (an analogue
of the coupling defined in (2.2.5)). Hence, independence implies that

Var
[

1

M

M∑
θ=1

k∑
m=1

αm
1

mN

mN∑
i=1

F (X
(i,θ)
T )

]
≤ 2k−1

M

k∑
m=1

α2
m

1

mN
E|F (X

(1,1)
T )|2,

where we used the fact that

Var
[ k∑
i=1

ζi

]
≤ 2k−1

k∑
i=1

Var[ζi], (4.1.5)

for square-integrable random variables ζ1, . . . , ζN . On the other hand, by (4.1.5),

Var
[

1

M

M∑
θ=1

k∑
m=1

αm
1

mN

mN∑
i=1

(
F (Y

i,mN,(θ)
T )− F (X

(i,θ)
T )

)]

≤ 2k−1

M

k∑
m=1

α2
mE
[∣∣∣∣ 1

mN

mN∑
i=1

F (Y
i,mN,(1)
T )− F (X

(i,1)
T )

∣∣∣∣2]

≤ 2k−1

M

k∑
m=1

α2
m

1

mN

mN∑
i=1

E
[∣∣F (Y

i,mN,(1)
T )− F (X

(i,1)
T )

∣∣2],
where Jensen’s inequality is used in the final inequality. Using the fact we have a dimension-free
bound for strong propagation of chaos, established in Theorem 5.2.5, there exists a constant
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C > 0 with no dependence on N such that

E[|F (Y
i,mN,(1)
T )− F (X

(i,1)
T )|2] ≤ C

mN
.

Consequently, we have

E
[(

E[F (XT )]− 1

M

M∑
θ=1

k∑
m=1

αm
1

mN

mN∑
i=1

F (Y
i,mN,(θ)
T )

)2]
≤ C(N−2k +

1

M

k∑
m=1

α2
m

1

mN
).

Since there are M ensembles corresponding to the estimator and each ensemble has k sub-
particle systems withmN particles each,m ∈ {1, . . . , k}, it follows from Definition 4.1.1 that the
order of interactions is O(M

∑k
m=1 (mN)

p+1
). When we take N = ε−1/k andM = ε−2+1/k, the

mean-square error is of the order O(ε2) (since
∑k
m=1 α

2
mm

−1 is a constant). The corresponding
order of interactions is O(ε−2−p/k). The message here is that as the smoothness increases, less
interactions among particles are needed when approximating the law of McKean-Vlasov SDE
(2.1.1). We would like to stress out again that the dimension of the system does not deteriorate
the rate of convergence, in contrast to results presented in the literature [14, 26, 55].

For ensembles of particles without Romberg extrapolation, the estimator becomes

1

M

M∑
θ=1

Φ
(
µ
Y,N,(θ)
T

)
=

1

M

M∑
θ=1

1

N

N∑
i=1

F (Y
i,N,(θ)
T ). (4.1.6)

This corresponds to the case k = 1. Therefore, by the above calculations, the order of interac-
tions is O(ε−2−p).

It is instructive to compare the above computation with a usual mean-square analysis to
the Monte-Carlo estimator (without ensembles of particles)

E
[(

E[F (XT )]− 1

N

N∑
i=1

F (Y i,NT )

)2]

=

(
E[F (XT )]− E[F (Y 1,N

T )]

)2

+ E
[(

E[F (Y 1,N
T )]− 1

N

N∑
i=1

F (Y i,NT )

)2]
.

As above, invoking strong propagation of chaos, one can show that the second term is of order
O(N−1). This means that there would be no gain to go beyond what we can obtain from the
strong propagation of chaos analysis to control the first term. Taking N = ε−2 results in mean-
square error being of the order O(ε2) and order of interactions being O(N−2(p+1)). This clearly
demonstrates that working with ensembles of particles leads to an improvement in quantitative
properties of propagation of chaos, which is interesting on its own but can also be explored
when simulating particle systems on the computer.

4.2 Method of weak error expansion
In this chapter, we adopt the assumption of uniform boundedness on σ.

Assumption 4.2.1.

There exists L > 0 such that |σ(x, µ)| ≤ L, for every x ∈ Rd and µ ∈ P2(Rd). (UB)

It will become apparent from the proofs that when working only with (Lip), higher or-
der integrability conditions (i.e. fourth order moments) would need to be stated in Definition
4.2.2 (see below). We refrain from this extension and assume (UB) to improve readability, but
encourage a curious reader to perform this simple extension.
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4.2.1 Weak error expansion along dynamics
We work over a simplex in time in our expansion. For every m ∈ N, we define

∆m
T := {(t1, . . . , tm) ∈ [0, T ]m | 0 ≤ tm ≤ tm−1 ≤ · · · ≤ t1 ≤ T}, m ≥ 1. (4.2.1)

We often denote (t1, . . . , tm) = t and (t1, . . . , tm−1) = τ .
We first perform the weak error expansion under minimal assumptions. Since the Feynman-

Kac PDE is used at each step of the expansion, it is natural to require the functions at each step
of the expansion to be in the class D0 (see Definition 3.4.1). However, in order for the recursive
definitions (see Definition 4.2.3) in this section to be well-defined, we require the second-order
L-derivative to be well-defined and to satisfy certain regularity properties. This leads to the
definition of a sub-class D of D0, whose time-variable is defined over ∆m

T .

Definition 4.2.2. Let m be a positive integer. A function U : ∆m
T × P2(Rd) → R is of class

D(∆m
T ) if the following conditions hold:

i) U is jointly continuous on ∆m
T × P2(Rd).

ii) For all t ∈ ∆m
T , the mappings P2(Rd) × Rd 3 (m, y) 7→ ∂µU(t,m)(y), P2(Rd) × Rd 3

(m, y) 7→ ∂v∂µU(t,m)(y) and P2(Rd) × Rd × Rd 3 (m, y1, y2) 7→ ∂2
µU(t,m)(y1, y2) are

well-defined and continuous in the product topologies.

iii) There exists L > 0 such that for all t ∈ ∆m
T and ξ ∈ L2(Rd),

E
[
|∂µU(t,L(ξ))(ξ)|2 + |∂υ∂µU(t,L(ξ))(ξ)|2 + |∂2

µU(t,L(ξ))(ξ, ξ)|2
]
≤ L.

iv) There exists C > 0 such that for all t ∈ ∆m
T and ξ1, ξ2 ∈ L2(Rd),

|U(t,L(ξ1))− U(t,L(ξ2))| ≤ CW2(L(ξ1),L(ξ2)),(
E
[
|∂µU(t,L(ξ1))(ξ1)− ∂µU(t,L(ξ2))(ξ2)|2

] )1/2

≤ CW2(L(ξ1),L(ξ2)),(
E
[
|∂υ∂µU(t,L(ξ1))(ξ1)− ∂υ∂µU(t,L(ξ2))(ξ2)|2

] )1/2

≤ CW2(L(ξ1),L(ξ2)).

v) • m = 1: s 7→ U(s, µ) is continuously differentiable on [0, T ].

• m > 1: for all (τ1, . . . , τm−1) ∈ ∆m−1
T with τm−1 > 0 and for all µ ∈ P2(Rd), the

function
[0, τm−1] 3 s 7→ U((τ1, . . . , τm−1, s), µ) ∈ R

is continuously differentiable on [0, τm−1].

vi) The functions

∆m
T × L2(Rd) 3 (t, ξ) 7→ ∂tU(t,L(ξ))(ξ) ∈ L2(Rd)

∆m
T × L2(Rd) 3 (t, ξ) 7→ ∂µU(t,L(ξ))(ξ) ∈ L2(Rd)

∆m
T × L2(Rd) 3 (t, ξ) 7→ ∂υ∂µU(t,L(ξ))(ξ) ∈ L2(Rd ⊗ Rd)

∆m
T × L2(Rd) 3 (t, ξ) 7→ ∂2

µU(t,L(ξ))(ξ, ξ) ∈ L2(Rd ⊗ Rd)

are continuous.

We define recursively the functions Φ(m), V(m), 1 ≤ m ≤ k, that are used to prove the
expansion.

Definition 4.2.3. i) For m = 1, we set Φ(0) = Φ and define V(1) : [0, T ]× P2(Rd)→ R by

V(1)(t, µ) := V(t, µ) = Φ(0)(L(Xt,µ
T )) = Φ(L(Xt,µ

T )) .
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Assuming that V(1) belongs to the class D(∆1
T ), we set Φ(1) : [0, T ]× P2(Rd)→ R as

Φ(1)(t, µ) :=

∫
Rd

Tr
[
∂2
µV(1)(t, µ)(x, x)a(x, µ)

]
µ(dx). (4.2.2)

ii) For 1 < m ≤ k, we define V(m) : ∆m
T × P2(Rd)→ R by

V(m)((τ, t), µ) := Φ(m−1)(τ,L(Xt,µ
τm−1

)), τ ∈ ∆m−1
T .

Assuming that V(m) belongs to the class D(∆m
T ), we set Φ(m) : ∆m

T × P2(Rd)→ R as

Φ(m)(t, µ) :=

∫
Rd

Tr
[
∂2
µV(m)(t, µ)(x, x)a(x, µ)

]
µ(dx).

A key point in our work is to show that the previous definition is licit under some assumptions
on the coefficient functions b, σ and Φ (Theorem 4.3.2 and Theorem 4.3.3).

We begin with the following technical lemma for our expansion.

Lemma 4.2.4. Assume (Lip) and (UB). Let m be a positive integer and f : P2(Rd) → R be
a continuous function. For any τ ∈ ∆m−1

T , we define a function Uτ : [0, τm−1] × P2(Rd) → R
such that Uτ (t, µ) := f([Xt,µ

τm−1
]). We also define a function U : ∆m

T × P2(Rd) → R such that
U((τ, t), µ) := Uτ (t, µ). Suppose that τm−1 > 0. If U is of class D(∆m

T ), then Uτ can be expanded
along the flow of empirical measure associated to the particle system (2.2.4) as follows, for all
0 ≤ t ≤ τm−1,

Uτ (t, µY,Nt ) = Uτ (0, µY,N0 ) +
1

2N

∫ t

0

∫
Rd

Tr
[
a(υ, µY,Ns )∂2

µUτ (s, µY,Ns )(υ, υ)
]
µY,Ns (dυ) ds

+
1

N

N∑
i=0

∫ t

0

σ(Y is , µ
Y,N
s )T∂µUτ (s, µY,Ns )(Y is ) · dW i

s . (4.2.3)

Proof. The proof relies on the strategy of considering the finite dimensional projection of Uτ .
For a fixed number of particles N , we define

u(t, x1, . . . , xN ) := Uτ

(
t,

1

N

N∑
i=1

δxi

)
.

From Definition 4.2.2(ii), (v) and (vi), along with Theorem 3.2.5, we observe that u ∈ C1,2([0, τm−1]×
(Rd)N ). Applying the classical Itô’s formula to Uτ (t, µY,Nt ) = u(t, Y 1,N

t , . . . , Y N,Nt ), along with
formulae (3.2.9) and (3.2.10) in Theorem 3.2.5, we obtain that

Uτ (t, µY,Nt ) = Uτ (0, µY,N0 ) +
1

N

N∑
i=0

∫ t

0

σ(Y is , µ
Y,N
s )T∂µUτ (s, µY,Ns )(Y is ) · dW i

s +At

+
1

2N

∫ t

0

∫
Rd

Tr
[
a(υ, µY,Ns )∂2

µUτ (s, µY,Ns )(υ, υ)
]
µY,Ns (dυ) ds , (4.2.4)

where

At :=

∫ t

0

[
∂tUτ (s, µY,Ns ) +

∫
Rd

(
∂µUτ (s, µY,Ns )(υ)b(υ, µY,Ns )

+
1

2
Tr
[
a(υ, µY,Ns )∂υ∂µUτ (s, µY,Ns )(υ)

])
µY,Ns (dυ)

]
ds. (4.2.5)

By the definitions of the classes D0 and D, since U belongs to D(∆m
T ), it follows that Uτ belongs

to D0([0, τm−1]). Therefore, by Theorem 3.4.3, Uτ satisfies PDE (3.4.3) on (0, τm−1). Evaluating
PDE (3.4.3) at (s, µY,Ns ) allows us to conclude that At is equal to zero, which completes the
proof.
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A special case of Lemma 4.2.4 is useful for subsequent chapters.

Lemma 4.2.5. Let V be defined by (3.5.1). Suppose that b, σ ∈ M2(Rd × P2(Rd)) and Φ ∈
M2(P2(Rd)). Then V can be expanded along the flow of empirical measure associated to the
particle system (2.2.4) as follows,

V(t, µY,Nt ) = V(0, µY,N0 ) +
1

2N

∫ t

0

∫
Rd

Tr
[
a(υ, µY,Ns )∂2

µV(s, µY,Ns )(υ, υ)
]
µY,Ns (dυ) ds

+
1

N

N∑
i=0

∫ t

0

σ(Y is , µ
Y,N
s )T∂µV(s, µY,Ns )(Y is ) · dW i

s . (4.2.6)

Proof. The proof is basically identical to that of Lemma 4.2.4: we apply the standard Itô’s
formula to the finite dimensional projection of V, followed by a cancellation in terms, due to
the fact that V satisfies PDE (3.4.3), by Theorem 3.5.1.

Theorem 4.2.6 (Weak error expansion: dynamic case). Assume (Lip) and (UB). Suppose
that Definition 4.2.3 is well-posed for m ∈ {1, . . . , k}. Then the weak error in the particle
approximation can be expressed as

E
[
Φ(µY,NT )

]
− Φ(L(X0,ξ

T )) =

k−1∑
j=0

1

N j

(
Cj + INj+1

)
+O(

1

Nk
), (4.2.7)

where C0 := 0 and

Cm :=
1

2m

∫
∆m
T

Φ(m)(t,L(X0,ξ
tm ))dt , m ∈ {1, . . . , k − 1},

IN1 := E
[
V(0, µY,N0 )

]
− V(0,L(ξ)) and

INm :=

∫
∆m−1
T

(
E
[
V(m)((τ, 0), µY,N0 )

]
− V(m)((τ, 0),L(ξ))

)
dτ, m ∈ {2, . . . , k}.

Proof. Part 1: We first check that the constants (Cm, INm+1)0≤m≤k−1 are well defined.
For 1 ≤ m ≤ k − 1, we first show that the function

∆m
T × P2(Rd) 3 (t, µ) 7→ Φ(m)(t, µ) ∈ R

is continuous. Indeed, let (tn, µn)n be a sequence converging to (t, µ) in the product topology.
Then there exists a sequence (ξn) of random variable such that L(ξn) = µn converging to ξ
with law µ in L2. By continuity of σ, Definition 4.2.3 and Definition 4.2.2(vi),

Γn := Tr
[
∂2
µV(m)(tn,L(ξn))(ξn, ξn)a(ξn,L(ξn))

]
→ Tr

[
∂2
µV(m)(t,L(ξ))(ξ, ξ)a(ξ,L(ξ))

]
=: Γ

in probability. Next, since σ is bounded,

E
[∣∣∣Tr

[
∂2
µV(m)(tn,L(ξn))(ξn, ξn)a(ξn,L(ξn))

] ∣∣∣2] ≤ CE[∣∣∣∂2
µV(m)(tn,L(ξn))(ξn, ξn)

∣∣∣2] ≤ C,
where the last inequality follows from the fact that V(m) is of class D(∆m

T ), by Definition
4.2.2(iii). By de La Vallée Poussin Theorem, the previous computation shows that (Γn) is
uniformly integrable and thus Φ(m)(tn, µn) = E[Γn]→ E[Γ] = Φ(m)(t, µ). Observing that ∆m

T 3
t 7→ (t,L(X0,ξ

tm )) ∈ ∆m
T ×P2(Rd) is continuous, we conclude that ∆m

T 3 t 7→ Φ(m)(t,L(X0,ξ
tm )) ∈

R is also continuous (hence measurable) and therefore Cm is well-defined.
Hence, by the definition of V(m), for each µ ∈ P2(Rd), the function

∆m−1
T 3 τ 7→ V(m)((τ, 0), µ) ∈ R

is continuous. Also, by the previous argument along with Definition 4.2.2(iii), we can see that
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Φ(m) is uniformly bounded. Therefore, the function

(τ, µ) 7→ V(m)((τ, 0), µ) ∈ R

is also uniformly bounded. By the dominated convergence theorem, the function

∆m−1
T 3 τ 7→ E

[
V(m)((τ, 0), µY,N0 )

]
∈ R

is continuous. This shows that INm is well-defined.

Part 2: We now proceed with the proof of the expansion, which is done by induction on m.
Base step: We decompose the weak error as

E
[
Φ(µY,NT )

]
− Φ(L(X0,ξ

T )) = E
[
V(T, µY,NT )− V(0, µY,N0 )

]
+
(
E
[
V(0, µY,N0 )

]
− V(0,L(ξ))

)
.

(4.2.8)

Applying Lemma 4.2.4 to the first term in the right-hand side and taking expectation on both
side, we obtain that

E
[
Φ(µY,NT )

]
− Φ(L(X0,ξ

T )) = E
[
V(0, µY,N0 )− V(0,L(ξ))

+
1

2N

∫ T

0

∫
Rd

Tr
[
a(υ, µY,Ns )∂2

µV(s, µY,Ns )(υ, υ)
]
µY,Ns (dυ) ds

]
.

Recalling the definition of Φ(1) in (4.2.2), we get

E
[
Φ(µY,NT )− Φ(L(X0,ξ

T ))
]

= E
[
V(0, µY,N0 )− V(0,L(ξ))

]
+

1

2N

∫ T

0

E
[
Φ(1)(t1, µ

Y,N
t1 )

]
dt1 .

From Part 1, we know that Φ(1) is uniformly bounded and thus
∫ T

0
E
[
Φ(1)(t1, µ

Y,N
t1 )

]
dt1 < C,

where C > 0 does not depend on N . This proves the induction for the base step.
Induction step: Assume that for 1 ≤ m < k,

E
[
Φ(µY,NT )− Φ(L(X0,ξ

T ))
]

=

m−1∑
j=0

1

N j

(
INj+1 + Cj

)
+

1

(2N)m

∫
∆m
T

E
[
Φ(m)(t, µY,Ntm )

]
dt.

Then, we observe that

E
[
Φ(m)(t, µY,Ntm )− Φ(m)(t,L(X0,ξ

tm ))
]

= E
[
V(m+1)((t, tm), µY,Ntm )− V(m+1)((t, 0), µY,N0 ) + V(m+1)((t, 0), µY,N0 )− V(m+1)((t, 0),L(ξ))

]
,

which leads to

E
[
Φ(µY,NT )− Φ(L(X0,ξ

T ))
]

=

m∑
j=0

1

N j
INj+1 +

m∑
j=0

1

N j
Cj +

1

(2N)m

∫
∆m
T

E
[
V(m+1)((t, tm), µY,Ntm )− V(m+1)((t, 0), µY,N0 )

]
dt.

(4.2.9)

Fix t ∈ ∆m
T such that tm > 0. Applying Lemma 4.2.4(ii) to V(m+1)(t, ·), we obtain that

E
[
V(m+1)((t, tm), µY,Ntm )−V(m+1)((t, 0), µY,N0 )

]
=

1

2N
E
[∫ tm

0

∫
Rd

Tr
[
∂2
µV(m+1)((t, tm+1), µY,Ntm+1

)(υ, υ)a(v, µY,Ntm+1
)
]
µY,Ntm+1

(dυ) dtm+1

]
.
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Inserting this back into (4.2.9), we get

E
[
Φ(µY,NT )− Φ(L(X0,ξ

T ))
]

=

m∑
j=0

1

N j
(INj+1 + Cj) +

1

(2N)m+1

∫
∆m+1
T

E
[
Φ(m+1)(t, µY,Ntm+1

)
]

dt .

The proof is concluded by observing that
∫

∆m+1
T

E
[
Φ(m+1)(t, µY,Ntm+1

)
]

dt < C, due to the uniform

boundedness of Φ(m+1) given in Part 1.

4.2.2 Weak error expansion for the initial condition
Assuming enough smoothness of the functions V(m), we can take care of the terms INm

appearing in the previous theorem, which are error made at time 0. The following weak error
analysis relies on the notion of linear functional derivatives. We first start by studying the weak
error generated between the evaluation of the function at a measure and its empirical measure
counterparts. We prove two results: one dealing mainly with expansion of low orders and the
other one at an arbitrary order.

The main assumption we work with relates to the couple (U,m), where U is a function with
domain P2(Rd).

Assumption 4.2.7.

The pth order linear derivative of U exists and is continuous. The following
holds: for any family (ξi)1≤i≤p of random variable identically distributed with law m,

E

[
sup

ν∈P2(Rd)

∣∣∣∣ δpUδmp
(ν, ξ1, . . . , ξp)

∣∣∣∣
]
≤ L(U,m) ,

for some positive constant L(U,m).
(p-LFD)

We first make the following observation regarding assumption (p-LFD), that will be of later
use.

Remark 4.2.8. (i) Lemma 3.3.7 states that∣∣∣∣ δpUδmp
(m)(y1, . . . , yp)

∣∣∣∣ ≤ C(|y1|p + . . .+ |yp|p
)
, (4.2.10)

for every m ∈ P2(Rd), for every y1, . . . , yp ∈ Rd, and for some C > 0. This means that for any
µ ∈ Pp(Rd), the couple (U, µ) satisfies (p-LFD). This polynomial growth condition is motivated
by our example of application, stated in Section 4.3, that relies on the smoothness of the coef-
ficients.
(ii) The following simple example of measure functional shows that the above condition is rea-
sonable to consider: For any bounded smooth function b : R→ R, we set Ψ(m) := b

(∫
xdm(x)

)
.

An iteration of Example 3.1.2 gives 2

δpΨ

δmp
(m, y1, . . . , yp) = y1 . . . yp b

(p)

(∫
xdm(x)

)
,

which relates to (4.2.10) easily.

Theorem 4.2.9. Let (ξi)1≤i≤N be i.i.d. random variables with law µ ∈ P2(Rd). The following
statements hold:

2Note that δpΨ
δmp

has an explicit product form, due to the special structure of Ψ. However, for general func-
tionals U : P2(Rd) → R, e.g. U := V(0, ·), Assumption 4.2.7 provides the necessary control in the general
case.
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(i) Let (p-LFD) hold with p ∈ {1, 2} for (U, µ). Then

E

[
U

(
1

N

N∑
i=1

δξi

)]
− U(µ) = O(

1

N
) .

(ii) Let (p-LFD) hold with p ∈ {1, 2, 3, 4} for (U, µ). Suppose that µ ∈ P4(Rd). Then

E

[
U

(
1

N

N∑
i=1

δξi

)]
− U(µ) =

1

2N
E
[∫

Rd

δ2U

δm2
(µ)(ξ̃1, y)(δξ̃1 − δξ1)(dy)

]
+O(

1

N2
) ,

where ξ̃1 ∼ µ and is independent of (ξi)1≤i≤N .

Proof. Let µN = 1
N

∑N
i=1 δξi and m

N
t = µ+ t(µN −µ), t ∈ [0, 1]. We also consider i.i.d. random

variables (ξ̃i) with law µ that are also independent of (ξi).

(i) By the definition of linear functional derivatives, we have

E[U(µN )]− U(µ) = E
[∫ 1

0

∫
Rd

δU

δm
(mN

t )(v) (µN − µ)(dv)dt

]
=

∫ 1

0

1

N

N∑
i=1

(
E
[
δU

δm
(mN

t )(ξi)

]
− E
[
δU

δm
(mN

t )(ξ̃1)

])
dt

=

∫ 1

0

E
[
δU

δm
(mN

t )(ξ1)− δU

δm
(mN

t )(ξ̃1)

]
dt.

We introduce measures

m̃N
t := mN

t +
t

N
(δξ̃1 − δξ1) and mN

t,t1 := (m̃N
t −mN

t )t1 +mN
t , t, t1 ∈ [0, 1],

and notice that

E
[
δU

δm
(m̃N

t )(ξ̃1)

]
= E
[
δU

δm
(mN

t )(ξ1)

]
.

Therefore,

E[U(µN )]− U(µ) =

∫ 1

0

E
[
δU

δm
(m̃N

t )(ξ̃1)− δU

δm
(mN

t )(ξ̃1)

]
dt

=

∫ 1

0

E
[ ∫ 1

0

∫
Rd

δ2U

δm2
(mN

t,t1)(ξ̃1, y1)(m̃N
t −mN

t )(dy1) dt1

]
dt

=
1

N
E
[ ∫ 1

0

∫ 1

0

∫
Rd
t
δ2U

δm2
(mN

t,t1)(ξ̃1, y1)(δξ̃1 − δξ1)(dy1) dt1dt

]
.

(4.2.11)

To conclude part (i), we observe that

E
[
δ2U

δm2
(mN

t,t1)(ξ̃1, y1)(δξ̃1 − δξ1)(dy1)

]
≤ E

[
sup

ν∈P2(Rd)

∣∣∣∣ δ2U

δm2
(ν)(ξ̃1, ξ̃1)

∣∣∣∣+

∣∣∣∣ δ2U

δm2
(ν)(ξ̃1, ξ1)

∣∣∣∣
]

≤ 2L(U,µ) ,

by assumption (p-LFD) with p = 2.

(ii) We continue the expansion of (4.2.11). To avoid a further interpolation in measure between
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mN
t,t1 and µ, we proceed via integration by parts. Let

g(t) :=

∫ 1

0

∫
Rd

δ2U

δm2
(mN

t,t1)(ξ̃1, y1)(δξ̃1 − δξ1)(dy1) dt1, t ∈ [0, 1],

and note that mN
t,t1 := tt1

N (δξ̃1 − δξ1) + µ + t(µN − µ). Then, by a similar method as the
derivation of (3.1.4),

g′(t) =

∫ 1

0

∫
Rd

∫
Rd

δ3U

δm3
(mN

t,t1)(ξ̃1, y1, y2)(δξ̃1−δξ1)(dy1)
( t1
N

(δξ̃1−δξ1)+(µN−µ)
)

(dy2) dt1.

Therefore, by integration by parts,

E
[ ∫ 1

0

∫ 1

0

∫
Rd
t
δ2U

δm2
(mN

t,t1)(ξ̃1, y1)(δξ̃1 − δξ1)(dy1) dt1dt

]
= E

[ ∫ 1

0

tg(t) dt

]
= E

[ ∫ 1

0

(1− t)g(1− t) dt
]

= E
[

1

2
g(0) +

∫ 1

0

(t− t2

2
)g′(1− t) dt

]
= E

[
1

2
g(0) +

∫ 1

0

(
1− t2

2
)g′(t) dt

]
=

1

2
E
[ ∫

Rd

δ2U

δm2
(µ)(ξ̃1, y1)(δξ̃1 − δξ1)(dy1)

]
+

1

2N
E
[ ∫ 1

0

∫ 1

0

∫
Rd

∫
Rd

(1− t2)t1
δ3U

δm3
(mN

t,t1)(ξ̃1, y1, y2)

(δξ̃1 − δξ1)(dy1)(δξ̃1 − δξ1)(dy2) dt1 dt

]
+

1

2
E
[ ∫ 1

0

∫ 1

0

∫
Rd

∫
Rd

(1− t2)
δ3U

δm3
(mN

t,t1)(ξ̃1, y1, y2)

(δξ̃1 − δξ1)(dy1)(µN − µ)(dy2) dt1 dt

]
. (4.2.12)

For the final term in (4.2.12), by exchangeability, we rewrite

E
[ ∫

Rd

∫
Rd

δ3U

δm3
(mN

t,t1)(ξ̃1, y1, y2)(δξ̃1 − δξ1)(dy1)(µN − µ)(dy2)

]
=

1

N
E
[ ∫

Rd

∫
Rd

δ3U

δm3
(mN

t,t1)(ξ̃1, y1, y2)(δξ̃1 − δξ1)(dy1)(δξ1 − δξ̃2)(dy2)

]
+

1

N

N∑
i=2

E
[ ∫

Rd

∫
Rd

δ3U

δm3
(mN

t,t1)(ξ̃1, y1, y2)(δξ̃1 − δξ1)(dy1)(δξi − δξ̃2)(dy2)

]
=

1

N
E
[ ∫

Rd

∫
Rd

δ3U

δm3
(mN

t,t1)(ξ̃1, y1, y2)(δξ̃1 − δξ1)(dy1)(δξ1 − δξ̃2)(dy2)

]
+
N − 1

N
E
[ ∫

Rd

∫
Rd

δ3U

δm3
(mN

t,t1)(ξ̃1, y1, y2)(δξ̃1 − δξ1)(dy1)(δξ2 − δξ̃2)(dy2)

]
.

(4.2.13)

As before, we introduce measures

m̃N
t,t1 := mN

t1 +
t

N
(δξ̃2 − δξ2) and mN

t,t1,t2 := (m̃N
t,t1 −m

N
t,t1)t2 +mN

t,t1 , t, t1, t2 ∈ [0, 1].

Then

E
[ ∫

Rd

∫
Rd

δ3U

δm3
(mN

t,t1)(ξ̃1, y1, y2)(δξ̃1 − δξ1)(dy1)(δξ2 − δξ̃2)(dy2)

]
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= E
[ ∫

Rd

δ3U

δm3
(mN

t,t1)(ξ̃1, y1, ξ2)(δξ̃1 − δξ1)(dy1)

]
−E
[ ∫

Rd

δ3U

δm3
(mN

t,t1)(ξ̃1, y1, ξ̃2)(δξ̃1 − δξ1)(dy1)

]
= E

[ ∫
Rd

δ3U

δm3
(m̃N

t,t1)(ξ̃1, y1, ξ̃2)(δξ̃1 − δξ1)(dy1)

]
−E
[ ∫

Rd

δ3U

δm3
(mN

t,t1)(ξ̃1, y1, ξ̃2)(δξ̃1 − δξ1)(dy1)

]
=

t

N
E
[ ∫ 1

0

∫
Rd

∫
Rd

δ4U

δm4
(mN

t,t1,t2)(ξ̃1, y1, ξ̃2, y2)(δξ̃1 − δξ1)(dy1)(δξ̃2 − δξ2)(dy2) dt2

]
.

(4.2.14)

Combining (4.2.11), (4.2.12), (4.2.13) and (4.2.14) gives

E[U(µN )]− U(µ)

=
1

2N
E
[ ∫

Rd

δ2U

δm2
(µ)(ξ̃1, y1)(δξ̃1 − δξ1)(dy1)

]
+

1

2N2
E
[ ∫ 1

0

∫ 1

0

∫
Rd

∫
Rd

(1− t2)t1
δ3U

δm3
(mN

t,t1)(ξ̃1, y1, y2)

(δξ̃1 − δξ1)(dy1)(δξ̃1 − δξ1)(dy2) dt1 dt

]
+

1

2N2
E
[ ∫ 1

0

∫ 1

0

∫
Rd

∫
Rd

(1− t2)
δ3U

δm3
(mN

t,t1)(ξ̃1, y1, y2)

(δξ̃1 − δξ1)(dy1)(δξ1 − δξ̃2)(dy2) dt1 dt

]
+
N − 1

2N3
E
[ ∫ 1

0

∫ 1

0

∫ 1

0

∫
Rd

∫
Rd
t(1− t2)

δ4U

δm4
(mN

t,t1,t2)(ξ̃1, y1, ξ̃2, y2)

(δξ̃1 − δξ1)(dy1)(δξ̃2 − δξ2)(dy2) dt2 dt1 dt

]
.

Using the fact that (U, µ) satisfies assumption (p-LFD) with p ∈ {3, 4}, the statement
for part (ii) is established.

In principle, we can continue the above expansion to higher orders. However, in the next
theorem we present a simplified argument that allows for complete weak error expansion. The
simplification is at the cost of requiring one extra order of regularity in the assumption. However,
we believe the argument is of independent interest.

Theorem 4.2.10 (Weak error expansion: static case). Let q be a positive integer and µ ∈
P2q−1(Rd). Suppose that assumption (p-LFD) holds for U : P2(Rd) → R, for each p ∈
{1, . . . , 2q − 1}. Then, for i.i.d. random variables {ξi}i∈N with law µ,

E

[
U

(
1

N

N∑
i=1

δξi

)]
− U(µ) =

q−1∑
p=2

Cp
Np−1

+O(
1

Nq−1
) ,

where

Cp = E

[∫
Rpd

δpU

δmp
(µ)(y)

p⊗
k=1

(δξ − δξ̂k)(dyk)

]
,

for some i.i.d. random variables (ξ̂k)1≤k≤q with law µ that are also independent of (ξi)i∈N.
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Proof. Let µN = 1
N

∑N
i=1 δξi . By Lemma 3.1.3, we have

E[U(µN )]− U(µ) =

q−1∑
p=1

1

p!
E
[∫

Rpd

δpU

δmp
(µ)(y) (µN − µ)⊗p(dy)

]
+

1

(q − 1)!

∫ 1

0

(1− t)(q−1)R(q,N, t)dt

(4.2.15)

with

R(q,N, t) := E
[∫

Rqd

δqU

δmq
(mN

t )(y) (µN − µ)⊗q(dy)

]
,

wheremN
t := (1−t)µ+tµN . Observe that by assumption (p-LFD) all the terms in the expansion

are well defined. We study them now. For p = 1, we have

E
[∫

Rd

δU

δm
(µ)(y) (µN − µ)(dy)

]
= 0.

Now let p ∈ {2, . . . , q − 1} and observe that

E
[∫

Rpd

δpU

δmp
(µ)(y) (µN − µ)⊗p(dy)

]
=

1

Np

∑
1≤i1,...,ip≤N

E

[∫
Rpd

δpU

δmp
(µ)(y)

p⊗
k=1

(δξik − δξ̂k)(dyk)

]
.

Suppose that at least one of the ik is different from the other ij , j 6= k. Without loss of
generality, we assume that this is the case for k = p. We then observe that

E

[∫
Rpd

δpU

δmp
(µ)(y)

p⊗
k=1

(δξik − δξ̂k)(dyk)

]

= E

[∫
R(p−1)d

δpU

δmp
(µ)(y1, . . . , yp−1, ξip)

p−1⊗
k=1

(δξik − δξ̂k)(dyk)

]

−E

[∫
R(p−1)d

δpU

δmp
(µ)(y1, . . . , yp−1, ξ̂

p)

p−1⊗
k=1

(δξik − δξ̂k)(dyk)

]
= 0,

by conditioning on ξi1 , . . . , ξip−1 , ξ̂
1, . . . , ξ̂p−1. Therefore, when i1 = · · · = ip,

E
[∫

Rpd

δpU

δmp
(µ)(y) (µN − µ)⊗p(dy)

]
=

1

Np−1
E

[∫
Rpd

δpU

δmp
(µ)(y)

p⊗
k=1

(δξ − δξ̂k)(dyk)

]
.

It remains to study the remainder term R above. We rewrite

R(q,N, t) =
1

Nq

∑
1≤i1,...,iq≤N

E

[∫
Rqd

δqU

δmq
(mN

t )(y)

q⊗
p=1

(δξip − δξ̂p)(dyp)

]
.

Let L be a subset of ω = {1, . . . , q}. We denote Lc := {1, . . . , q} \ L and introduce

IL := {i = (i1, . . . , iq) ∈ {1, . . . , N}q | ∀`, `′ ∈ L, i` = i`′ , ∀k, k′ ∈ Lc s.t. k 6= k′ , ik 6= ik′

and ∀(`, k) ∈ L × Lc, i` 6= ik} .

Then

R(q,N, t) =
1

Nq

q∑
j=1

∑
L,|L|=j

∑
i∈IL

E

[∫
Rqd

δqU

δmq
(mN

t )(y)

q⊗
p=1

(δξip − δξ̂p)(dyp)

]
.
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For j = q, we simply observe that

1

Nq

∑
i∈Iω

E

[∫
Rqd

δqU

δmq
(mN

t )(y)

q⊗
p=1

(δξip − δξ̂p)(dyp)

]
= O(

1

Nq−1
) . (4.2.16)

For 1 ≤ j < q, we consider IL defined above and work with the special choice L = {1, . . . , j},
which implies, by exchangeability, that

∑
i∈IL

E

[∫
Rqd

δqU

δmq
(mN

t )(y)

q⊗
p=1

(δξip − δξ̂p)(dyp)

]

= N(N − 1) . . . (N − (q − j))E

∫
Rqd

δqU

δmq
(mN

t )(y)

j⊗
p=1

(δξ1 − δξ̂p)(dyp)

q⊗
p=j+1

(δξp − δξ̂p)(dyp)

 .
(4.2.17)

For later use, we denote

∆(dy) :=

j⊗
p=1

(δξ1 − δξ̂p)(dyp)

q⊗
p=j+1

(δξp − δξ̂p)(dyp).

We will now work iteratively from j + 1 to q.
Firstly, we introduce

m̃N
t := mN

t +
t

N
(δξ̃j+1

− δξj+1
) and mN

t,sj+1
:= m̃N

t + sj+1(mN
t − m̃N

t ),

where we define independent random variables {ξ̃u}j+1≤u≤q that are also independent of (ξi)1≤i≤q
and (ξ̂i)1≤i≤q, but with the same law. We then compute that

E
[∫

Rqd

δqU

δmq
(mN

t )(y)∆(dy)

]
= E
[∫

Rqd

δqU

δmq
(m̃N

t )(y)∆(dy)

]
(4.2.18)

+
t

N

∫ 1

0

E
[∫

R(q+1)d

δq+1U

δmq+1
(mN

t,sj+1
)(y, yq+1)∆(dy)(δξ̃j+1

− δξ̂j+1)(dyq+1)

]
dsj+1. (4.2.19)

As before,

E

∫
R(q−1)d

δqU

δmq
(m̃N

t )(y1, . . . , yj , ξj+1, yj+2, . . . , yq)

j⊗
p=1

(δξ1 − δξ̂p)(dyp)

q⊗
p=j+2

(δξp − δξ̂p)(dyp)


=E

∫
R(q−1)d

δqU

δmq
(m̃N

t )(y1, . . . , yj , ξ̂
j+1, yj+2, . . . , yq)

j⊗
p=1

(δξ1 − δξ̂p)(dyp)

q⊗
p=j+2

(δξp − δξ̂p)(dyp)

 ,
so the term on the right hand side of (4.2.18) is equal to zero. Next, for u ∈ {j + 1, . . . , q − 1},
we define inductively

m̃N
t,sj+1,...,su := mN

t,sj+1,...,su + t
N (δξ̃u+1

− δξu+1),

mN
t,sj+1,...,su+1

:= m̃N
t,sj+1,...,su + su+1(m̃N

t,sj+1,...,su −m
N
t,sj+1,...,su).

This procedure is then iterated from j+ 2 to q on the remainder term in (4.2.19). We thus have

E
[∫

Rqd

δqU

δmq
(mN

t )(y)∆(dy)

]
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=

(
t

N

)q−j ∫ 1

0

. . .

∫ 1

0

E
[ ∫

R(2q−j)d

δ2q−jU

δm2q−j (mN
t,sj+1,...,sq )(y, yq+1, . . . , y2q−j)

∆(dy)

q⊗
k=j+1

(δξ̃k − δξ̂k)(dyq−j+k)

]
dsj+1 . . . dsq. (4.2.20)

Next, by (4.2.10), we estimate the integral by∣∣∣∣E[ ∫
R(2q−j)d

δ2q−jU

δm2q−j (mN
t,sj+1,...,sq )(y, yq+1, . . . , y2q−j)∆(dy)

q⊗
k=j+1

(δξ̃k − δξ̂k)(dyq−j+k)

]∣∣∣∣
≤ E

[ ∑
y1∈{ξ1,ξ̂1}

. . .
∑

yj∈{ξ1,ξ̂j}

∑
yj+1∈{ξj+1,ξ̂j+1}

. . .
∑

yq∈{ξq,ξ̂q}

∑
yq+1∈{ξ̃j+1,ξ̂j+1}

. . .
∑

y2q−j∈{ξ̃q,ξ̂q}∣∣∣∣ δ2q−jU

δm2q−j (mN
t,sj+1,...,sq )(y1, . . . , y2q−j)

∣∣∣∣]
≤ C24q−2jL(U,m) , (4.2.21)

where we used assumption (p-LFD). Combining with (4.2.20) and (4.2.21) gives

E
[∫

Rqd

δqU

δmq
(mN

t )(y)∆(dy)

]
= O(

1

Nq−j ) .

Finally, combining with (4.2.17) yields

1

Nq

q∑
j=1

∑
L,|L|=j

∑
i∈IL

E

[∫
Rqd

δqU

δmq
(mN

t )(y)

q⊗
p=1

(δξip − δξ̂p)(dyp)

]
= O(

1

Nq−1
).

4.3 Full expansion in terms of regularity of the drift and
diffusion functions

In this subsection, we explore a sufficient condition for the expansion of an arbitrary order
purely in terms of regularity of the drift and diffusion functions. It turns out that proving
regularity conditions for higher order expansions for class D is highly non-trivial and therefore
we work with the class Mk defined in Definition 3.3.5. Since the expansion involves simplex
coordinates in time, we extend the definition ofMk to cover this case.

Definition 4.3.1. A function V : ∆m
T × P2(Rd)→ R is said to be inMk(∆m

T × P2(Rd)), if

1. • m = 1: s 7→ V(s, µ) is continuously differentiable on [0, T ].
• m > 1: for all (τ1, . . . , τm−1) ∈ ∆m−1

T with τm−1 > 0 and for all µ ∈ P2(Rd), the
function

[0, τm−1] 3 s 7→ V((τ1, . . . , τm−1, s), µ) ∈ R

is continuously differentiable on [0, τm−1].

2. V(t, ·) ∈ Mk(P2(Rd)), for each t ∈ ∆m
T , where the constant C in (3.3.3) and (3.3.4) is

uniform in t.

3. All L-derivatives (including the zeroth order derivative) of V(·, ·) up to the kth order are
jointly continuous in time and measure.

We now state the key result, which certifies that the expansion along the dynamics is licit.

Theorem 4.3.2. Assume (UB). Suppose that b and σ belong to the classM2k(Rd ×P2(Rd)).
Moreover, suppose that Φ : P2(Rd)→ R also belongs to the classM2k(P2(Rd)). Then Definition
4.2.3 is well-posed for m ∈ {1, . . . , k}.
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Proof. We prove by induction on m ∈ {1, . . . , k} and prove that for each m ∈ {1, . . . , k},
V(m) ∈ M2k−2m+2(∆m

T × P2(Rd)) ⊆ M2(∆m
T × P2(Rd)) and therefore V(m) ∈ D(∆m

T ), which
establishes the claim.

For simplicity of notations, we present this proof in the case of dimension one. We commence
the proof by noting that Φ ∈ M2k and b, σ ∈ M2k, therefore it follows from Theorem 3.5.2
that V(1) ∈M2k.

Suppose that for m ∈ {1, . . . , k − 1}, V(m) ∈ M2k−2m+2. We recall the definition of Φ(m) :
∆m
T × P2(R)→ R as

Φ(m)(t, µ) =

∫
R
∂2
µV(m)(t, µ)(x, x)

(
σ(x, µ)

)2
µ(dx).

Fix t ∈ ∆m
T . We shall first establish the smoothness of Φ(m)(t, ·). Let p : R× P2(R)→ R be a

continuous function defined by

p(x, µ) := ∂2
µV(m)(t, µ)(x, x)

(
σ(x, µ)

)2
.

Since V(m) ∈ M2k−2m+2, by Theorem 3.2.3, we know that for each x ∈ R, p(x, ·) is also
differentiable in measure with its derivative given by

∂µp(x, µ)(y) = ∂3
µV(m)(t, µ)(x, x, y)

(
σ(x, µ)

)2
+ 2∂2

µV(m)(t, µ)(x, x)
(
σ(x, µ)

)
∂µσ(x, µ)(y).

(4.3.1)
We observe that ∂µp(x, µ)(y) and ∂xp(x, µ) are both continuous and uniformly bounded in
space and measure. Therefore, by Theorem 3.2.4, Φ(m)(t, ·) is differentiable in measure with its
derivative given by

∂µΦ(m)(t, µ)(y) = ∂xp(y, µ) +

∫
R
∂µp(x, µ)(y)µ(dx),

where ∂xp(y, µ) is given by

∂xp(y, µ) =

[
∂v1∂

2
µV(m)(t, µ)(y, y) + ∂v2∂

2
µV(m)(t, µ)(y, y)

](
σ(y, µ)

)2

+2∂2
µV(m)(t, µ)(y, y)σ(y, µ)∂yσ(y, µ). (4.3.2)

Formulae (4.3.1) and (4.3.2) tell us that ∂µΦ(m)(t, µ)(y) is uniformly bounded in measure and
space. Furthermore, each of ∂xp(y, µ) and ∂µp(x, µ)(y) is a finite sum of products of uniformly
bounded Lipschitz functions in measure and space, and is hence Lipschitz continuous as well.
Finally, by the duality formula for the Kantorovich-Rubinstein distance (Proposition 2.1.1), we
note that there exist constants C1, C2, C3 > 0 such that for every µ1, µ2 ∈ P2(R) and y1, y2 ∈ R,∣∣∣∂µΦ(m)(t, µ1)(y1)− ∂µΦ(m)(t, µ2)(y2)

∣∣∣
≤ C1

(
|y1 − y2|+W2(µ1, µ2) +

∣∣∣∣ ∫
R
∂µp(x, µ)(y1)µ1(dx)−

∫
R
∂µp(x, µ)(y2)µ1(dx)

∣∣∣∣
+

∣∣∣∣ ∫
R
∂µp(x, µ)(y2)µ1(dx)−

∫
R
∂µp(x, µ)(y2)µ2(dx)

∣∣∣∣)
≤ C2

(
|y1 − y2|+W2(µ1, µ2) +

∣∣∣∣ ∫
R
∂µp(x, µ)(y2)µ1(dx)−

∫
R
∂µp(x, µ)(y2)µ2(dx)

∣∣∣∣)
≤ C2

(
|y1 − y2|+W2(µ1, µ2) + ‖∂µp‖LipW1(µ1, µ2)

)
≤ C3

(
|y1 − y2|+W2(µ1, µ2)

)
,

where W1 denotes the 1-Wasserstein metric.
Subsequently, we can repeat the same procedure to prove existence and regularity properties

of higher order derivatives of Φ(m)(t, ·). In particular, we can show that ∂2
µΦ(m)(t, µ, v1, v2) and
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∂v1∂µΦ(m)(t, µ, v1) exist, by expressing them in terms of derivatives of V(m) up to the fourth
order, and derivatives of σ up to the second order, which also allows us to show that they are
uniformly bounded and Lipschitz continuous. In general, for any multi-index (n,β) such that
|(n,β)| ≤ 2k − 2m, we can show that D(n,β)Φ(m)(t, µ, v1, . . . , vn) exists, by expressing it in
terms of derivatives of V(m) up to the (2k − 2m + 2)th order, and derivatives of σ up to the
(2k − 2m)th order, which again allows us to show that it is uniformly bounded and Lipschitz
continuous. Thus, Φ(m)(t, ·) ∈M2k−2m.

Next, we note that since V(m) ∈M2k−2m+2(∆m
T ×P2(R)), V(m) is continuously differentiable

in the last component of time, for each t ∈ ∆m
T such that tm−1 > 0, and so is Φ(m). Moreover, as

mentioned above, each derivative D(n,β)Φ(m)(t, µ, v1, . . . , vn) up to the (2k − 2m)th order can
be expressed in terms of derivatives of V(m) up to the (2k− 2m+ 2)th order and derivatives of
σ up to the (2k−2m)th order, which implies that each derivative D(n,β)Φ(m)(t, µ, v1, . . . , vn) is
jointly continuous in time, measure and space, since V(m) ∈M2k−2m+2(∆m

T ×P2(R)). Therefore,
by Definition 3.3.5, Φ(m) ∈M2k−2m(∆m

T × P2(R)).
We now recall the definition of V(m+1) : ∆m+1

T × P2(R)→ R, given by

V(m+1)((τ, t), µ) = Φ(m)(τ,L(Xt,µ
τm )), τ ∈ ∆m

T .

For fixed τ ∈ ∆m
T with τm > 0, it follows from Theorem 3.5.2 that V(m+1)((τ, ·), ·) is continuously

differentiable in time and that V(m+1)((τ, t), ·) ∈ M2k−2m, for each t ∈ [0, τm]. Note that for
τ ∈ ∆m

T with τm = 0,

V(m+1)((τ1, . . . , τm−1, 0, 0), µ) = Φ(m)((τ1, . . . , τm−1, 0), µ).

Finally, all derivatives in measure of V(m+1) up to the (2k− 2m)th order are jointly continuous
in time and measure, since Φ(m) ∈ M2k−2m. This implies that V(m+1) ∈ M2k−2m, which
concludes the proof by the principle of induction.

The following theorem is the main result of this chapter and is a direct consequence of
Theorem 4.2.6, Theorem 4.2.10, Theorem 4.3.2 and Remark 4.2.8(i).

Theorem 4.3.3 (Main result on regularity: Full expansion). Assume (UB). Suppose
that b and σ belong to the classM2k+1(Rd ×P2(Rd)). Moreover, suppose that Φ : P2(Rd)→ R
also belongs to the class M2k+1(P2(Rd)). Finally, suppose that the initial condition satisfies
E[|ξ1|2k+1] < +∞. Then

E
[
Φ(µY,NT )

]
− Φ(L(X0,ξ

T )) =

k−1∑
j=1

Cj
N j

+O(
1

Nk
),

where C1, . . . , Ck−1 are constants that do not depend on N .

Proof. We commence the proof by noting that Φ, b and σ all belong to M2k+1, therefore it
follows from Theorem 3.5.2 that V(1) ∈ M2k+1. As in the proof of Theorem 4.3.2, we prove
by induction on m ∈ {1, . . . , k} in order to establish that for each m ∈ {1, . . . , k}, V(m) ∈
M2k−2m+3. By Theorem 4.3.2, Definition 4.2.3 is well-posed for m ∈ {1, . . . , k}. Therefore, by
Theorem 4.2.6, we have

E
[
Φ(µY,NT )

]
− Φ(L(X0,ξ

T )) =

k−1∑
j=0

1

N j

(
Cj + INj+1

)
+O(

1

Nk
), (4.3.3)

for some constants C0 = 0, C1, . . . , Ck−1 > 0, where
IN1 := E

[
V(0, µY,N0 )− V(0,L(ξ))

]
,

INj+1 :=
∫

∆j
T

(
E
[
V(j+1)((τ, 0), µY,N0 )

]
− V(j+1)((τ, 0),L(ξ))

)
dτ, for j ∈ {1, . . . , k − 1}.

80



Recall that V(1) ∈M2(k+1)−1. By Remark 4.2.8(i) and Theorem 4.2.10,

IN1 = E
[
V(0, µY,N0 )− V(0,L(ξ))

]
=

k−1∑
`=1

C
(1)
`

N `
+O(

1

Nk
), (4.3.4)

for some constants C(1)
1 , . . . , C

(1)
k−1 > 0. Similarly, for every j ∈ {1, . . . , k − 1}, since V(j+1) ∈

M2(k−j+1)−1, it also follows by Remark 4.2.8(i) and Theorem 4.2.10 3 that

INj+1 =

k−j−1∑
`=1

C
(j)
`

N `
+O(

1

Nk−j ), (4.3.5)

for some constants C(j)
1 , . . . , C

(j)
k−j−1 > 0. The result follows by combining (4.3.3), (4.3.4) and

(4.3.5).

3Note that for U ∈ M2(k−j+1)−1(∆j+1
T × P2(Rd)), the constant C in Lemma 3.3.7 is uniform in t ∈ ∆j+1

T .
Therefore, the constant C in the same inequality (4.2.10) in Theorem 4.2.10 is also uniform in t ∈ ∆j+1

T . The
fact that the constants C(j)

1 , . . . , C
(j)
k−j−1 are well-defined follows from a similar argument as the first part of

the proof of Theorem 4.2.6.
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Chapter 5

Antithetic Multi-level Monte Carlo
approximation

The content of this chapter is extracted from [62].

5.1 Comparison of computational complexity of different
algorithms

We begin by recalling the conclusion from Section 4.1. In this section, we consider b and
σ of the forms (4.1.1) and (4.1.2) respectively. As before, we aim to find an estimator E(ε) of
Φ(µXT ) that achieves a mean-square error of O(ε2), i.e.

E
[(
E(ε)− Φ(µXT )

)2] ≤ Cε2, for every ε > 0, for some constant C > 0.

To achieve a mean-square error of O(ε2) in the approximation, by standard Monte-Carlo,
the order of interactions is O(ε−2(p+1)). By introducing ensembles of particles (see (4.1.6)), the
order of interactions is O(ε−2−p). Then, by introducing Romberg extrapolation to the ensembles
of particles (see (4.1.4)), the order of interactions can be reduced to O(ε−2−p/k). However, this
requires the conditions in Theorem 4.3.3 to hold, which are very strong assumptions on the
smoothness. Therefore, in principle, as the number k in the assumption of Theorem 4.3.3 gets
sufficiently large, the order of interactions is very close to O(ε−2). In this chapter, we shall show
that the Antithetic Multi-level Monte-Carlo (MLMC) algorithm allows us to nearly achieve this
order, whilst assuming weaker conditions on b and σ, if p = 1.

How does the algorithm work? The first core idea of the algorithm is to obtain better
complexity of simulation using the Multilevel Monte Carlo approach of Giles and Heinrich
[29, 36, 43] (see also 2-level Monte-Carlo of Kebaier [43]). The method of MLMC breaks down
the simulation into a sequence of approximations G0, G1, . . . , GL with increasing accuracy, but
also with increasing cost. If the variance between successive approximations G`−G`−1 converges
to zero as the level increases, then MLMC reduces the computational cost of simulation by
carefully combining many simulations on low levels with low accuracy (at a corresponding low
cost); with relatively few simulations on high levels with low accuracy (and at a high cost).

The second core idea of the algorithm is the combination of the notion of antithetic es-
timation with MLMC. At each level `, instead of simulating G` − G`−1 based on standard
Monte-Carlo, the random variable G`−1 is simulated using the same noise as the simulation of
G`. More precisely, G`−1 is the arithmetic average of two sub-particle systems, each of which is
generated using a mutually disjoint subset of the Brownian motions that are used to generate
G`. This idea of antithetic MLMC is not new. It was done in [30] with Milstein discretisation
and was applied specifically to the simulation of McKean-Vlasov SDEs in [32].

By using the algorithm of Antithetic MLMC, Theorem 5.3.2 proves that the order of inter-
actions can be reduced to O(ε−1−p(log ε)(p+1) max{2−p,0}). The following table summarises the
order of interactions for each estimator, along with the corresponding regularity assumptions
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on I1,i (i.e. on b), I2,i,j (i.e. on σ) and the test function Φ.

Table 5.1: Comparison of the order of interactions for different estimators

Estimator Order of
interactions

Regularity assumption of
I1,i I2,i,j Φ

Ensembles of particles
(4.1.6) O(ε−2−p) C3

b,Lip((Rd)p+1)
C3
b,Lip((Rd)p+1)

and uniformly bounded M3

Romberg extrapolation
(4.1.4) O(ε−2−p/k) C2k+1

b,Lip ((Rd)p+1)
C2k+1
b,Lip ((Rd)p+1)

and uniformly bounded M2k+1

Antithetic MLMC
in Section 5.3

O(ε−2(log ε)2), for p = 1,
O(ε−1−p), for p > 1. C4

b,Lip((Rd)p+1) C4
b,Lip((Rd)p+1) M4

For practical purposes, time discretisation is generally needed to simulate SDEs. We consider
the time discretisation of (2.1.5), as in seminal papers by Bossy and Talay [7, 8], by working
with an Euler scheme. Take partition {tk}k of [0, T ], with tk − tk−1 = h and define η(t) :=
tk if t ∈ [tk, tk+1). The continuous Euler scheme reads

Zi,N,ht = Zi,N,htk
+ b(Zi,N,hη(t) , µZ,N,hη(t) )(t− tk) + σ(Zi,N,hη(t) , µZ,N,hη(t) )(W i

t −W i
tk

) ,

or its integral form, as
Zi,N,ht = ξi +

∫ t
0
b(Zi,N,hη(r) , µ

Z,N,h
η(r) ) dr +

∫ t
0
σ(Zi,N,hη(r) , µ

Z,N,h
η(r) ) dW i

r ,

µZ,N,hs := 1
N

∑N
i=1 δZi,N,hs

.

(5.1.1)

To compute Φ(µXT ), for some test function Φ : P2(Rd) → R, we are interested in the com-
putational complexity of achieving a mean-square-error of O(ε2) via the Monte-Carlo estimator
corresponding to ensembles of particles with time discretisation:

QM,N,h :=
1

M

M∑
θ=1

Φ(µ
Z,N,h,(θ)
T ), (5.1.2)

where µZ,N,h,(θ)T denotes the empirical measure obtained for each i.i.d. sample θ ∈ {1, . . . ,M}.
We decompose the mean-square error as follows.

Mean-square error = E
[
(QM,N,h − Φ(µXT ))2

]
= E

[
(QM,N,h − EQM,N,h)2

]
+ (EQM,N,h − Φ(µXT ))2

= Var(QM,N,h) + (EQM,N,h − Φ(µXT ))2. (5.1.3)

It will be shown in Theorem 5.4.1 that the weak error between µZ,N,hT and µXT is bounded by

|EΦ(µZ,N,hT )− Φ(µXT )| ≤ C(
1

N
+ h), (5.1.4)

which is an extension of Theorem 4.3.3 to include time discretisation. Next, by the proof of
Theorem 5.4.1, namely (5.4.5) and the strong error analogue of (5.4.4) (which follows from
Lemma 5.2.2), we observe that

E|Φ(µZ,N,hT )− Φ(µXT )|2 ≤ C(
1

N
+ h). (5.1.5)
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Therefore, by (5.1.4) and (5.1.5), we have

(EQM,N,h − Φ(µXT ))2 = (EΦ(µZ,N,hT )− Φ(µXT ))2 ≤ C(
1

N
+ h)2

and

Var(QM,N,h) =
1

M
Var
[
Φ(µZ,N,hT )

]
=

1

M
Var
[
Φ(µZ,N,hT )− Φ(µXT )

]
≤ 1

M
E
∣∣Φ(µZ,N,hT )− Φ(µXT )

∣∣2
≤ C

M

( 1

N
+ h
)
.

Therefore, by setting N = M = ε−1 and h = ε, we obtain that

Mean-square error ≤ Cε2.

By Definition 4.1.1, since there are M clouds, the total complexity is given by

Complexity ≤ C(Np+1M)h−1 = Cε−3−p.

As before, this analysis with time discretisation can be done with Romberg extrapolation,
for which the computational complexity becomes O(ε−3−p/k). The computation follows the
same principles as previous calculations and is omitted. Finally, Theorem 5.4.4 in Section 5.4
proves that, by using an Euler time-discretisation, the computational complexity upon applying
antithetic MLMC is O(ε−2−p). The following table provides a summary.

Table 5.2: Comparison of the complexity for different algorithms

Algorithm Complexity Regularity assumption of
I1,i I2,i,j Φ

Ensembles of particles
(5.1.2) O(ε−3−p) C3

b,Lip((Rd)p+1)
C3
b,Lip((Rd)p+1)

and uniformly bounded M3

Romberg extrapolation
with time discretisation O(ε−3−p/k) C2k+1

b,Lip ((Rd)p+1)
C2k+1
b,Lip ((Rd)p+1)

and uniformly bounded M2k+1

Antithetic MLMC
with time discretisation

in Section 5.4 O(ε−2−p) C4
b,Lip((Rd)p+1) constant M4

Tables 5.1 and 5.2 manifest the superiority of the antithetic MLMC algorithm for the case
of first-degree interaction (i.e. for the case when p = 1). The goal of this chapter is indeed to
show the respective order of interactions and complexity under the antithetic MLMC algorithm.
To prove this, we need a dimension-independent rate of uniform strong propagation of chaos
for sufficiently smooth drift and diffusion functions (Theorem 5.2.5) and an L2 estimate of the
antithetic difference for i.i.d. random variables, under general smooth functionals in measures
(Theorem 5.2.6), which are results that might be of independent interest. This is the goal of
the next section.

5.2 Dimension-independent rate of uniform strong propa-
gation of chaos and L2 estimate of antithetic difference
for i.i.d. random variables

We begin this section with the following lemma on the W2 metric.

Lemma 5.2.1. Let η ∈ Rd and m ∈ P2(Rd). Then

W2

( 1

N
δη +

N − 1

N
m,m

)2

≤ 2

N

(
|η|2 +

∫
Rd
|x|2m(dx)

)
.
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Proof. Let Y be a random variable with law m and let Ω′ ∈ F be a measurable event that is
independent of σ(Y ), with probability N−1

N . Let X be a random variable defined by

X(ω) :=

{
Y (ω), ω ∈ Ω′,

η, ω 6∈ Ω′.

Then the law of X is 1
N δη + N−1

N m. Therefore, by the definition of the 2-Wasserstein metric,

W2

( 1

N
δη +

N − 1

N
m,m

)2

≤ E
[
|X − Y |2

]
= E

[
|X − Y |2

∣∣Ω′]P(Ω′) + E
[
|X − Y |2

∣∣(Ω′)c]P((Ω′)c)

=
1

N
E[|η − Y |2]

≤ 2

N
(|η|2 + E[|Y |2]).

For any functional from P2(Rd) to R, the following lemma gives a bound on the error between
the value of empirical measures under the functional and its limiting law under the functional.
It relies on the regularity conditions stipulated in Theorem 3.3.7. The proof of the following
lemma is similar to Lemma 5.10 in [21]. However, the following result is slightly more general,
as the first and second order linear functional derivatives are only of linear and quadratic
growth respectively (Theorem 3.3.7), whereas they are assumed to be uniformly bounded and
W1-Lipschitz continuous in Lemma 5.10 of [21]. The following result is stated in a way with a
constant that does not depend on the functional of measure, nor on the limiting law, so that it is
useful with the relevant conditioning argument in the proof of Proposition 5.2.4. The technique
of the following proof is also adopted in the proof of Theorem 5.2.6.

Lemma 5.2.2. Let U ∈ M3(P2(Rd)). Let m0 ∈ P12(Rd) and mN = 1
N

∑N
i=1 δζi , where

ζ1, . . . , ζN are i.i.d samples with law m0. Then there exists a constant C > 0 (which does
not depend on U , ζ1, . . . , ζN and m0) such that

E
[∣∣U(mN )− U(m0)

∣∣4] ≤ C

N2

3∏
i=1

(
1 + ‖∂iµU‖4∞

)(
1 +

∫
Rd
|x|12m0(dx)

)
.

Proof. In this proof, C denotes an absolute constant that does not depend on U , ζ1, . . . , ζN and
m0, whose value may vary from line to line. By the definition of linear functional derivatives,
we have

U(mN )− U(m0) =

∫ 1

0

∫
Rd

δU

δm
(λmN + (1− λ)m0, v) (mN −m0)(dv) dλ

=
1

N

N∑
i=1

∫ 1

0

ϕiλ dλ,

where, for i ∈ {1, . . . , N} and λ ∈ [0, 1],

ϕiλ =
δU

δm
(λmN + (1− λ)m0, ζi)− Ẽ

[
δU

δm
(λmN + (1− λ)m0, ζ̃)

]
. (5.2.1)

By the bound on δU
δm in Theorem 3.3.7, we know that for distinct i, j ∈ {1, . . . , N},

E
[
(ϕiλ)4 + (ϕiλ)2(ϕjλ)2 + ϕiλ(ϕjλ)3

]
≤ C‖∂µU‖4∞E[|ζ1|4]. (5.2.2)
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We have the estimate

E
[∣∣U(mN )− U(m0)

∣∣4] ≤ 1

N4

∫ 1

0

E
[( N∑

i=1

ϕiλ

)4]
dλ

≤ C

(
1

N2
‖∂µU‖4∞E[|ζ1|4]

+
1

N4

∫ 1

0

E
[ ∑
i1,i2,i3 distinct

ϕi1λ ϕ
i2
λ (ϕi3λ )2 +

∑
i1,i2,i3,i4
distinct

ϕi1λ ϕ
i2
λ ϕ

i3
λ ϕ

i4
λ

]
dλ

)
.

(5.2.3)

For any distinct i1, i2, i3, we define mN,−(i1,i2,i3) := 1
N−3

∑
` 6=i1,i2,i3 δζ` , which implies that

mN −mN,−(i1,i2,i3) =
1

N
(δζi1 + δζi2 + δζi3 )− 3

N(N − 3)

∑
` 6=i1,i2,i3

δζ` .

By the definition of second-order linear functional derivatives, we observe that

δU

δm
(λmN + (1− λ)m0, ζi)−

δU

δm
(λmN,−(i1,i2,i3) + (1− λ)m0, ζi)

=

∫ 1

0

∫
Rd

δ2U

δm2

(
sλmN + (1− s)λmN,−(i1,i2,i3) + (1− λ)m0, ζi, v

)
(mN −mN,−(i1,i2,i3))(dv) ds

=

∫ 1

0

1

N

[ ∑
`=i1,i2,i3

δ2U

δm2

(
sλmN + (1− s)λmN,−(i1,i2,i3) + (1− λ)m0, ζi, ζ`

)
− 3

N − 3

∑
6̀=i1,i2,i3

δ2U

δm2

(
sλmN + (1− s)λmN,−(i1,i2,i3) + (1− λ)m0, ζi, ζ`

)]
ds. (5.2.4)

By the bound on δ2U
δm2 in Theorem 3.3.7,

E
∣∣∣∣ δUδm (λmN + (1− λ)m0, ζi)−

δU

δm
(λmN,−(i1,i2,i3) + (1− λ)m0, ζi)

∣∣∣∣4 ≤ C

N4
‖∂2
µU‖4∞E[|ζ1|8].

Similarly, by applying the same argument to the second term in (5.2.1), we obtain that

E
∣∣∣∣Ẽ[ δUδm (λmN + (1− λ)m0, ζ̃)

]
− Ẽ

[
δU

δm
(λmN,−(i1,i2,i3) + (1− λ)m0, ζ̃)

]∣∣∣∣4
≤ C

N4
‖∂2
µU‖4∞E[|ζ1|8],

which implies that

E|ϕiλ − ϕ
i,−(i1,i2,i3)
λ |4 ≤ C

N4
‖∂2
µU‖4∞E[|ζ1|8], (5.2.5)

where

ϕ
i,−(i1,i2,i3)
λ =

δU

δm
(λmN,−(i1,i2,i3) + (1− λ)m0, ζi)− Ẽ

[
δU

δm
(λmN,−(i1,i2,i3) + (1− λ)m0, ζ̃)

]
.

(5.2.6)
Finally, by writing ϕiλ = (ϕiλ−ϕ

i,−(i1,i2,i3)
λ )+ϕ

i,−(i1,i2,i3)
λ and applying the generalised Hölder’s

inequality to (5.2.2) and (5.2.5),∑
i1,i2,i3 distinct

E
[
ϕi1λ ϕ

i2
λ (ϕi3λ )2

]
≤

∑
i1,i2,i3 distinct

[
C

N
(1 + ‖∂µU‖4∞)(1 + ‖∂2

µU‖4∞)E[|ζ1|8]
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+E
[
ϕ
i1,−(i1,i2,i3)
λ ϕ

i2,−(i1,i2,i3)
λ

(
ϕ
i3,−(i1,i2,i3)
λ

)2]]
≤ CN2(1 + ‖∂µU‖4∞)(1 + ‖∂2

µU‖4∞)E[|ζ1|8]

+
∑
i1,i2,i3
distinct

E
[
ϕ
i1,−(i1,i2,i3)
λ ϕ

i2,−(i1,i2,i3)
λ

(
ϕ
i3,−(i1,i2,i3)
λ

)2]
. (5.2.7)

Let F−i be the σ-algebra generated by ζ1, . . . , ζN except ζi. Since ζ1, . . . , ζN are independent,
for any distinct i1, i2, i3,

E
[
ϕ
i1,−(i1,i2,i3)
λ ϕ

i2,−(i1,i2,i3)
λ

(
ϕ
i3,−(i1,i2,i3)
λ

)2]
= E

[
ϕ
i2,−(i1,i2,i3)
λ

(
ϕ
i3,−(i1,i2,i3)
λ

)2E[ϕi1,−(i1,i2,i3)
λ

∣∣F−i1]] = 0, (5.2.8)

which implies that∑
i1,i2,i3 distinct

E
[
ϕi1λ ϕ

i2
λ (ϕi3λ )2

]
≤ CN2(1 + ‖∂µU‖4∞)(1 + ‖∂2

µU‖4∞)E[|ζ1|8]. (5.2.9)

Next, we define analogously the notation ϕi,−(i1,i2,i3,i4) as (5.2.6). As above, by applying the
generalised Hölder’s inequality to (5.2.2) and (5.2.5), followed by a similar reasoning as (5.2.8),
we have ∑

i1,i2,i3,i4
distinct

E
[
ϕi1λ ϕ

i2
λ ϕ

i3
λ ϕ

i4
λ

]

≤
∑

i1,i2,i3,i4
distinct

[
C

N2
(1 + ‖∂µU‖4∞)(1 + ‖∂2

µU‖4∞)E[|ζ1|8]

+E
[ 4∑
j=1

(
ϕ
ij
λ − ϕ

ij ,−(i1,i2,i3,i4)
λ )

4∏
k=1
k 6=j

ϕ
ik,−(i1,i2,i3,i4)
λ

]

+E
[
ϕ
i1,−(i1,i2,i3,i4)
λ ϕ

i2,−(i1,i2,i3,i4)
λ ϕ

i3,−(i1,i2,i3,i4)
λ ϕ

i4,−(i1,i2,i3,i4)
λ

]]
≤ CN2(1 + ‖∂µU‖4∞)(1 + ‖∂2

µU‖4∞)E[|ζ1|8]

+
∑

i1,i2,i3,i4
distinct

E
[ 4∑
j=1

(
ϕ
ij
λ − ϕ

ij ,−(i1,i2,i3,i4)
λ )

4∏
k=1
k 6=j

ϕ
ik,−(i1,i2,i3,i4)
λ

]
. (5.2.10)

Note that (5.2.5) only gives a growth in the order of O(N3) for the final term in (5.2.10),
therefore it is insufficient.

By (5.2.4) followed by an application of the definition of third order linear functional deriva-
tives, we have

δU

δm
(λmN + (1− λ)m0, ζi)−

δU

δm
(λmN,−(i1,i2,i3,i4) + (1− λ)m0, ζi)

=
1

N

[ ∑
`=i1,i2,i3,i4

δ2U

δm2

(
λmN,−(i1,i2,i3,i4) + (1− λ)m0, ζi, ζ`

)
− 4

N − 4

∑
` 6=i1,i2,i3,i4

δ2U

δm2

(
λmN,−(i1,i2,i3,i4) + (1− λ)m0, ζi, ζ`

)]
+ ε

i,−(i1,i2,i3,i4)
N ,

(5.2.11)

where

ε
i,−(i1,i2,i3,i4)
N
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=

∫ 1

0

sλ

N2

[ ∑
`=i1,i2,i3,i4

∫ 1

0

[ ∑
`′=i1,i2,i3,i4

δ3U

δm3

(
tsλmN + (1− ts)λmN,−(i1,i2,i3,i4) + (1− λ)m0,

ζi, ζ`, ζ`′
)
− 4

N − 4

∑
`′ 6=i1,i2,i3,i4

δ3U

δm3

(
tsλmN + (1− ts)λmN,−(i1,i2,i3,i4)

+(1− λ)m0, ζi, ζ`, ζ`′
)]
dt

− 4

N − 4

∑
6̀=i1,i2,i3,i4

∫ 1

0

[ ∑
`′=i1,i2,i3,i4

δ3U

δm3

(
tsλmN + (1− ts)λmN,−(i1,i2,i3,i4) + (1− λ)m0,

ζi, ζ`, ζ`′
)
− 4

N − 4

∑
`′ 6=i1,i2,i3,i4

δ3U

δm3

(
tsλmN + (1− ts)λmN,−(i1,i2,i3,i4)

+(1− λ)m0, ζi, ζ`, ζ`′
)]
dt

]
ds,

which implies that

E|εi,−(i1,i2,i3,i4)
N |4 ≤ C

N8
‖∂3
µU‖4∞E[|ζ1|12],

by the bound on δ3U
δm3 in Theorem 3.3.7. Repeating the same argument to the other term in

(5.2.1) gives

ϕiλ − ϕ
i,−(i1,i2,i3,i4)
λ

=

∫
Rd

δ2U

δm2

(
λmN,−(i1,i2,i3,i4) + (1− λ)m0, ζi, v

)
(mN −mN,−(i1,i2,i3,i4))(dv)

−Ẽ
[ ∫

Rd

δ2U

δm2

(
λmN,−(i1,i2,i3,i4) + (1− λ)m0, ζ̃, v

)
(mN −mN,−(i1,i2,i3,i4))(dv)

]
+ε̃

i,−(i1,i2,i3,i4)
N ,

where
E|ε̃i,−(i1,i2,i3,i4)

N |4 ≤ C

N8
‖∂3
µU‖4∞E[|ζ1|12]. (5.2.12)

Note that we can write the difference ϕi1λ − ϕ
i1,−(i1,i2,i3,i4)
λ − ε̃i1,−(i1,i2,i3,i4)

N as

ϕi1λ − ϕ
i1,−(i1,i2,i3,i4)
λ − ε̃i1,−(i1,i2,i3,i4)

N =

4∑
j=2

Fj(
(
ζr
)
r 6=i1,...,i4

, ζi1 , ζij ),

for some measurable functions F2, F3, F4 : (Rd)N−2 → R. Therefore,

E
[(
ϕi1λ − ϕ

i1,−(i1,i2,i3,i4)
λ − ε̃i1,−(i1,i2,i3,i4)

N

)
ϕ
i2,−(i1,i2,i3,i4)
λ ϕ

i3,−(i1,i2,i3,i4)
λ ϕ

i4,−(i1,i2,i3,i4)
λ

]
= E

[( ∑
j∈{3,4}

Fj(
(
ζr
)
r 6=i1,...,i4

, ζi1 , ζij )
)
ϕ
i3,−(i1,i2,i3,i4)
λ ϕ

i4,−(i1,i2,i3,i4)
λ E

[
ϕ
i2,−(i1,i2,i3,i4)
λ

∣∣∣F−i2]]

+E
[
F2(
(
ζr
)
r 6=i1,...,i4

, ζi1 , ζi2)ϕ
i2,−(i1,i2,i3,i4)
λ ϕ

i4,−(i1,i2,i3,i4)
λ E

[
ϕ
i3,−(i1,i2,i3,i4)
λ

∣∣∣F−i3]] = 0.

Applying the generalised Hölder’s inequality to (5.2.12) and (5.2.2) gives

E
[(
ϕi1λ − ϕ

i1,−(i1,i2,i3,i4)
λ

)
ϕ
i2,−(i1,i2,i3,i4)
λ ϕ

i3,−(i1,i2,i3,i4)
λ ϕ

i4,−(i1,i2,i3,i4)
λ

]
≤ C

N2
‖∂3
µU‖∞

(
E[|ζ1|12]

)1/4‖∂µU‖3∞(E[|ζ1|4]
)3/4
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≤ C

N2

(
1 + ‖∂µU‖4∞

)(
1 + ‖∂3

µU‖4∞
)

(1 + E[|ζ1|12]).

By the same reasoning, we can show that

∑
i1,i2,i3,i4
distinct

E
[ 4∑
j=1

(
ϕ
ij
λ − ϕ

ij ,−(i1,i2,i3,i4)
λ )

4∏
k=1
k 6=j

ϕ
ik,−(i1,i2,i3,i4)
λ

]

≤ CN2
(

1 + ‖∂µU‖4∞
)(

1 + ‖∂3
µU‖4∞

)
(1 + E[|ζ1|12]). (5.2.13)

We conclude the result by combining (5.2.3), (5.2.9), (5.2.10) and (5.2.13).

Due to Lemma 5.2.2, in many of the subsequent theorems, we assume that the initial law ν
satisfies the following assumption.

Assumption 5.2.3. ∫
Rd
|x|12 ν(dx) < +∞. (Int)

The following proposition is essential to the proofs of Theorem 5.2.5 and Theorem 5.3.1. We
define

µX,Nt :=
1

N

N∑
j=1

δXjt
.

Proposition 5.2.4. Assume (Lip) and (Int). Suppose that ϕ ∈M3(Rd × P2(Rd)). Then

1

N

N∑
i=1

sup
t∈[0,T ]

E
∣∣∣ϕ(Xi

t , µ
X,N
t )− ϕ(Xi

t , µ
X
t )
∣∣∣4 ≤ C

N2
,

for some constant C > 0.

Proof.

1

N

N∑
i=1

sup
t∈[0,T ]

E
[∣∣∣∣ϕ(Xi

t ,
1

N

N∑
j=1

δXjt

)
− ϕ(Xi

t , µ
X
t )

∣∣∣∣4]

=
1

N

N∑
i=1

sup
t∈[0,T ]

E
[
E
[∣∣∣∣ϕ(η, 1

N
δη +

N − 1

N
· 1

N − 1

∑
1≤j≤N
j 6=i

δXjt

)
− ϕ(η, µXt )

∣∣∣∣4]∣∣∣∣
η=Xit

]

≤ 8

N

N∑
i=1

sup
t∈[0,T ]

E
[
E
[∣∣∣∣ϕ(η, 1

N
δη +

N − 1

N
· 1

N − 1

∑
1≤j≤N
j 6=i

δXjt

)

−ϕ
(
η,

1

N − 1

∑
1≤j≤N
j 6=i

δXjt

)∣∣∣∣4]∣∣∣∣
η=Xit

]

+
8

N

N∑
i=1

sup
t∈[0,T ]

E
[
E
[∣∣∣∣ϕ(η, 1

N − 1

∑
1≤j≤N
j 6=i

δXjt

)
− ϕ(η, µXt )

∣∣∣∣4]∣∣∣∣
η=Xit

]
=: Π1 + Π2.

By Lemma 5.2.1,

Π1 ≤
8

N

N∑
i=1

sup
t∈[0,T ]

E
[

4

N2

(
|Xi

t |2 +
1

N − 1

∑
1≤j≤N
j 6=i

|Xj
t |2
)2]

.
1

N2
. (5.2.14)
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By the assumption on ϕ, we observe that for any η ∈ Rd, the uniform bounds on ∂µϕ(η, ·),
∂2
µϕ(η, ·) and ∂3

µϕ(η, ·) do not depend on η. Finally, since b and σ are Lipschitz and E[|ξ|12] <
+∞, we have supt∈[0,T ] E[|Xt|12] < +∞. Therefore, Lemma 5.2.2 implies that

Π2 .
1

(N − 1)2

3∏
i=1

(
1 + sup

η∈Rd
‖∂iµϕ(η, ·)‖4∞

)(
1 + sup

t∈[0,T ]

∫
Rd
|y|12 µXt (dy)

)
. (5.2.15)

A combination of (5.2.14) and (5.2.15) yields the result.

Recall that Theorem 2.2.6 (from [61]) gives a strong error between the particle system
(2.2.4) and its coupling (2.2.5). However, it requires a particular structure (First order) and the
proof does not hold for arbitrary integrating kernels b and σ. Nonetheless, we can still conclude
something by resorting to the Wasserstein metric. Assuming (Lip) and (Int), Theorem 10.2.7
in [58] gives us a rate of convergence of

E
[

sup
t∈[0,T ]

W2

(
µXt , µ

X,N
t

)2] ≤ C

N2/(d+8)
. (5.2.16)

There are results in the literature that give a slightly better rate of convergence of theW2 norm
of empirical measures of i.i.d. random variables. However, they are not for i.i.d. processes and
are still dimensionally dependent. Moreover, the rates of convergence (in the L2 norm) in those
results are all substantially slower than O(N−1/2).

Proposition 5.2.4 allows us to completely bypass the consideration of the Wasserstein dis-
tance between empirical measures and their limiting law. The following result gives a uniform
rate of strong propagation of chaos between the particle system (2.2.4) and its coupled mean-
field limit (2.2.5), under the assumption that b and σ are sufficiently smooth.

Theorem 5.2.5 (Uniform strong propagation of chaos). Assume (Int). Suppose that b, σ ∈
M3(Rd × P2(Rd)). Then

E
[
WCT ,2

(
µY,N , µX,N

)4] ≤ E
[

1

N

N∑
i=1

(
sup
t∈[0,T ]

∣∣Xi
t − Y

i,N
t

∣∣4)] ≤ C

N2
,

for some constant C > 0.

Proof. By the Hölder and Buckholder-Davis-Gundy inequalities, estimating the L4 difference
between (2.2.4) and (2.2.5) gives

E
[

sup
s∈[0,t]

∣∣Xi
s − Y i,Ns

∣∣4] ≤ C

(∫ t

0

E|b(Xi
s, µ

X
s )− b(Y i,Ns , µY,Ns )|4 ds

+

∫ t

0

E|σ(Xi
s, µ

X
s )− σ(Y i,Ns , µY,Ns )|4 ds

)
, (5.2.17)

for every t ∈ [0, T ]. By Lipschitz continuity of b and σ,

E
[

sup
s∈[0,t]

∣∣Xi
s − Y i,Ns

∣∣4] ≤ C

(∫ t

0

E
[

sup
u∈[0,s]

∣∣Xi
u − Y i,Nu

∣∣4] ds+

∫ t

0

E|b(Xi
s, µ

X
s )− b(Xi

s, µ
Y,N
s )|4 ds

+

∫ t

0

E|σ(Xi
s, µ

X
s )− σ(Xi

s, µ
Y,N
s )|4 ds

)
,

for every t ∈ [0, T ], which gives, upon taking average over i,

1

N

N∑
i=1

E
[

sup
s∈[0,t]

∣∣Xi
s − Y i,Ns

∣∣4] ≤ C

(∫ t

0

1

N

N∑
i=1

E
[

sup
u∈[0,s]

∣∣Xi
u − Y i,Nu

∣∣4] ds
+

∫ t

0

1

N

N∑
i=1

E|b(Xi
s, µ

X
s )− b(Xi

s, µ
Y,N
s )|4 ds
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+

∫ t

0

1

N

N∑
i=1

E|σ(Xi
s, µ

X
s )− σ(Xi

s, µ
Y,N
s )|4 ds

)
.

(5.2.18)

Also, the empirical measure of the particles can be replaced by the empirical measure of the
coupled system by the bound

E
[
W2(µX,Ns , µY,Ns )4

]
≤
[(

1

N

N∑
i=1

E
∣∣Y i,Ns −Xi

s

∣∣2)2]
≤ 1

N

N∑
i=1

E
[

sup
u∈[0,s]

∣∣Xi
u − Y i,Nu

∣∣4].
(5.2.19)

A combination of (5.2.18) and (5.2.19) gives

1

N

N∑
i=1

E
[

sup
s∈[0,t]

∣∣Xi
s − Y i,Ns

∣∣4] ≤ C

(∫ t

0

1

N

N∑
i=1

E
[

sup
u∈[0,s]

∣∣Xi
u − Y i,Nu

∣∣4] ds
+

∫ t

0

1

N

N∑
i=1

sup
u∈[0,s]

E|b(Xi
u, µ

X
u )− b(Xi

u, µ
X,N
u )|4 ds

+

∫ t

0

1

N

N∑
i=1

sup
u∈[0,s]

E|σ(Xi
u, µ

X
u )− σ(Xi

u, µ
X,N
u )|4 ds

)
.

Therefore, by Proposition 5.2.4 and Gronwall’s inequality, we have

1

N

N∑
i=1

E
[

sup
s∈[0,T ]

∣∣Xi
s − Y i,Ns

∣∣4] ≤ C

N2
,

for every t ∈ [0, T ].

We now recall, from Section 9 in [29], that the the second moment of the antithetic difference
(see (5.3.1) for the definition of µY,2N,(1) and µY,2N,(2)) given by

U(µY,2N0 )− 1

2

(
U(µ

Y,2N,(1)
0 ) + U(µ

Y,2N,(2)
0 )

)
converges to 0 in the rate O(1/N2), for functions U : P2(Rd)→ R of the form

U(µ) := F

(∫
Rd
G(x)µ(dx)

)
, (5.2.20)

where G : Rd → R is an integrable function and F : R → R is a twice-differentiable function
with bounded derivatives. The following theorem gives a similar result for functions U with a
more general form (at the price of requiring extra regularity assumptions).

Theorem 5.2.6 (Antithetic error on the initial conditions). Suppose that ν ∈ P8(Rd) and
U ∈M4(P2(Rd)). Then there exists a constant C > 0 such that

E
∣∣U(µY,2N0 )− 1

2

(
U(µ

Y,2N,(1)
0 ) + U(µ

Y,2N,(2)
0 )

)∣∣2 ≤ C

N2
.

Proof. For simplicity of notations, let

µ2N := µY,2N0 , µ2N,(1) := µ
Y,2N,(1)
0 , µ2N,(2) := µ

Y,2N,(2)
0 .

For every t ∈ [0, 1], let

m2N
t := (1− t)ν + tµ2N , m

2N,(1)
t := (1− t)ν + tµ2N,(1), m

2N,(2)
t := (1− t)ν + tµ2N,(2).
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We define

[0, 1] 3 t 7→ f(t) = U
(
(1− t)ν + tµ2N

)
= U

(
ν + t(µ2N − ν)

)
∈ R

and apply Taylor-Lagrange formula to f up to order 2, namely

f(1)− f(0) = f
′
(0) +

∫ 1

0

(1− t)f (2)(t) dt.

This yields

U(µ2N )− U(ν) =

∫
Rd

δU

δm
(ν)(y) (µ2N − ν)(dy) +

∫ 1

0

(1− t)
[∫

R2d

δ2U

δm2
(m2N

t )(y) (µ2N − ν)⊗2(dy)

]
dt.

(5.2.21)

Similarly,

U(µ2N,(1))− U(ν) =

∫
Rd

δU

δm
(ν)(y) (µ2N,(1) − ν)(dy)

+

∫ 1

0

(1− t)
[∫

R2d

δ2U

δm2
(m

2N,(1)
t )(y) (µ2N,(1) − ν)⊗2(dy)

]
dt

(5.2.22)

and

U(µ2N,(2))− U(ν) =

∫
Rd

δU

δm
(ν)(y) (µ2N,(2) − ν)(dy)

+

∫ 1

0

(1− t)
[∫

R2d

δ2U

δm2
(m

2N,(2)
t )(y) (µ2N,(2) − ν)⊗2(dy)

]
dt.

(5.2.23)

Computing the difference of (5.2.21) with the arithmetic average of (5.2.22) and (5.2.23) gives

U(µ2N )− 1

2

(
U(µ2N,(1)) + U(µ2N,(2))

)
=

∫ 1

0

(1− t)
[∫

R2d

δ2U

δm2
(m2N

t )(y) (µ2N − ν)⊗2(dy)

]
dt

−1

2

∫ 1

0

(1− t)
[∫

R2d

δ2U

δm2
(m

2N,(1)
t )(y) (µ2N,(1) − ν)⊗2(dy)

]
dt

−1

2

∫ 1

0

(1− t)
[∫

R2d

δ2U

δm2
(m

2N,(2)
t )(y) (µ2N,(2) − ν)⊗2(dy)

]
dt. (5.2.24)

The rest of the proof is very similar to the proof of Lemma 5.2.2. It suffices to consider only
the first term in (5.2.24). The other two terms can be handled in a similar way. We rewrite∫

R2d

δ2U

δm2
(m2N

t )(y) (µ2N − ν)⊗2(dy)

=

∫
Rd

[
1

2N

2N∑
i=1

δ2U

δm2
(m2N

t )(ξi, y2)−
∫
Rd

δ2U

δm2
(m2N

t )(z, y2) ν(dz)

]
(µ2N − ν)(dy2)

=
1

(2N)2

2N∑
i,j=1

δ2U

δm2
(m2N

t )(ξi, ξj)−
1

2N

2N∑
j=1

∫
Rd

δ2U

δm2
(m2N

t )(z, ξj) ν(dz)

− 1

2N

2N∑
i=1

∫
Rd

δ2U

δm2
(m2N

t )(ξi, z) ν(dz) +

∫
Rd

∫
Rd

δ2U

δm2
(m2N

t )(z, z′) ν(dz) ν(dz′)
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=
1

(2N)2

2N∑
i,j=1

ϕ
(i,j)
t , (5.2.25)

where

ϕ
(i,j)
t :=

δ2U

δm2
(m2N

t )(ξi, ξj)−
∫
Rd

δ2U

δm2
(m2N

t )(z, ξj) ν(dz)

−
∫
Rd

δ2U

δm2
(m2N

t )(ξi, z) ν(dz) +

∫
Rd

∫
Rd

δ2U

δm2
(m2N

t )(z, z′) ν(dz) ν(dz′).

Next, we observe that

E
∣∣∣∣ 1

(2N)2

2N∑
i,j=1

ϕ
(i,j)
t

∣∣∣∣2

.
1

N2
+

1

N4

[ ∑
i1,j1,i2,j2∈{1,...,2N}

exactly two of i1,j1,i2,j2 are identical

E
[
ϕ

(i1,j1)
t ϕ

(i2,j2)
t

]

+
∑

i1,j1,i2,j2∈{1,...,2N}
i1,j1,i2,j2 are distinct

E
[
ϕ

(i1,j1)
t ϕ

(i2,j2)
t

]]
. (5.2.26)

We first consider the case where exactly two of i1, i2, j1, j2 are identical. Without loss of gener-
ality, suppose that i1 = i2. As in the proof of Lemma 5.2.2, we define

ϕ
(i,j),−(i1,j1,j2)
t

:=
δ2U

δm2
(m

2N,−(i1,j1,j2)
t )(ξi, ξj)−

∫
Rd

δ2U

δm2
(m

2N,−(i1,j1,j2)
t )(z, ξj) ν(dz)

−
∫
Rd

δ2U

δm2
(m

2N,−(i1,j1,j2)
t )(ξi, z) ν(dz) +

∫
Rd

∫
Rd

δ2U

δm2
(m

2N,−(i1,j1,j2)
t )(z, z′) ν(dz) ν(dz′),

(5.2.27)

where
m

2N,−(i1,j1,j2)
t := (1− t)ν + t

[
1

2N − 3

∑
1≤`≤2N
6̀∈{i1,j1,j2}

δξ`

]
.

By the same argument as in the proof of Lemma 5.2.2, along with the bound on δ3U
δm3 in Theorem

3.3.7 (see (5.2.4) for details), we have

E|ϕ(i,j)
t − ϕ(i,j),−(i1,j1,j2)

t |2 .
1

N2
.

Then, we write

E
[
ϕ

(i1,j1)
t ϕ

(i1,j2)
t

]
= E

[
(ϕ

(i1,j1)
t − ϕ(i1,j1),−(i1,j1,j2)

t )(ϕ
(i1,j2)
t − ϕ(i1,j2),−(i1,j1,j2)

t )
]

+E
[
(ϕ

(i1,j1)
t − ϕ(i1,j1),−(i1,j1,j2)

t )ϕ
(i1,j2),−(i1,j1,j2)
t

]
+E
[
ϕ

(i1,j1),−(i1,j1,j2)
t (ϕ

(i1,j2)
t − ϕ(i1,j2),−(i1,j1,j2)

t )
]

+E
[
ϕ

(i1,j1),−(i1,j1,j2)
t ϕ

(i1,j2),−(i1,j1,j2)
t

]
.

By the Cauchy-Schwarz inequality and the bound on δ2U
δm2 in Theorem 3.3.7, the first three terms

converge to 0 in the order O(1/N). Let F−i be the σ-algebra generated by ξ1, . . . , ξN except
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ξi. Then

E
[
ϕ

(i1,j1),−(i1,j1,j2)
t ϕ

(i1,j2),−(i1,j1,j2)
t

]
= E

[
ϕ

(i1,j1),−(i1,j1,j2)
t E

[
ϕ

(i1,j2),−(i1,j1,j2)
t

∣∣∣F−j2]] = 0.

Therefore,
1

N4

∑
i1,j1,i2,j2∈{1,...,2N}

exactly two of i1,j1,i2,j2 are identical

E
[
ϕ

(i1,j1)
t ϕ

(i2,j2)
t

]
.

1

N2
. (5.2.28)

Finally, we consider the case where i1, j1, i2, j2 are mutually distinct. We define ϕ(i,j),−(i1,j1,i2,j2)
t

analogously, as the definition of ϕ(i,j),−(i1,j1,j2)
t in (5.2.27). As above, we write

E
[
ϕ

(i1,j1)
t ϕ

(i2,j2)
t

]
= E

[
(ϕ

(i1,j1)
t − ϕ(i1,j1),−(i1,j1,i2,j2)

t )(ϕ
(i2,j2)
t − ϕ(i2,j2),−(i1,j1,i2,j2)

t )
]

+E
[
(ϕ

(i1,j1)
t − ϕ(i1,j1),−(i1,j1,i2,j2)

t )ϕ
(i2,j2),−(i1,j1,i2,j2)
t

]
+E
[
ϕ

(i1,j1),−(i1,j1,i2,j2)
t (ϕ

(i2,j2)
t − ϕ(i2,j2),−(i1,j1,i2,j2)

t )
]

+E
[
ϕ

(i1,j1),−(i1,j1,i2,j2)
t ϕ

(i2,j2),−(i1,j1,i2,j2)
t

]
.

As before, we have

E|ϕ(i,j)
t − ϕ(i,j),−(i1,j1,i2,j2)

t |2 .
1

N2

and hence

E
∣∣∣(ϕ(i1,j1)

t − ϕ(i1,j1),−(i1,j1,i2,j2)
t )(ϕ

(i2,j2)
t − ϕ(i2,j2),−(i1,j1,i2,j2)

t )
∣∣∣ . 1

N2
, (5.2.29)

by the Cauchy-Schwarz inequality. By the same argument as in the proof of Lemma 5.2.2
through considering the fourth order linear functional derivative of U , along with the bound on
δ4U
δm4 in Theorem 3.3.7 (see (5.2.11) and (5.2.12) for details), we obtain that

ϕ
(i1,j1)
t − ϕ(i1,j1),−(i1,j1,i2,j2)

t

= F1(
(
ξr
)
r 6=i1,j1,i2,j2

, ξi1 , ξj1 , ξi2) + F2(
(
ξr
)
r 6=i1,j1,i2,j2

, ξi1 , ξj1 , ξj2) + ε̃
(i1,j1),−(i1,j1,i2,j2)
N ,

for some measurable functions F1, F2 : (Rd)2N−1 → R, where

E
∣∣∣ε̃(i1,j1),−(i1,j1,i2,j2)
N

∣∣∣2 .
1

N4
.

By a similar conditioning argument as the proof of Lemma 5.2.2,

E
[(
ϕ

(i1,j1)
t − ϕ(i1,j1),−(i1,j1,i2,j2)

t − ε̃(i1,j1),−(i1,j1,i2,j2)
N

)
ϕ

(i2,j2),−(i1,j1,i2,j2)
t

]
= E

[
F1(
(
ξr
)
r 6=i1,j1,i2,j2

, ξi1 , ξj1 , ξi2)E
[
ϕ

(i2,j2),−(i1,j1,i2,j2)
t

∣∣∣F−j2]]
+E
[
F2(
(
ξr
)
r 6=i1,j1,i2,j2

, ξi1 , ξj1 , ξj2)E
[
ϕ

(i2,j2),−(i1,j1,i2,j2)
t

∣∣∣F−i2]] = 0,

which implies, by the Cauchy-Schwarz inequality and the bound on δ2U
δm2 in Theorem 3.3.7, that

E
∣∣∣(ϕ(i1,j1)

t − ϕ(i1,j1),−(i1,j1,i2,j2)
t

)
ϕ

(i2,j2),−(i1,j1,i2,j2)
t

∣∣∣ . 1

N2
. (5.2.30)

Similarly,

E
∣∣∣ϕ(i1,j1),−(i1,j1,i2,j2)
t (ϕ

(i2,j2)
t − ϕ(i2,j2),−(i1,j1,i2,j2)

t )
∣∣∣ . 1

N2
. (5.2.31)

94



By the same conditioning argument,

E
[
ϕ

(i1,j1),−(i1,j1,i2,j2)
t ϕ

(i2,j2),−(i1,j1,i2,j2)
t

]
= E

[
ϕ

(i1,j1),−(i1,j1,i2,j2)
t E

[
ϕ

(i2,j2),−(i1,j1,i2,j2)
t

∣∣∣F−i2]] = 0.

(5.2.32)
A combination of (5.2.29), (5.2.30), (5.2.31) and (5.2.32) implies that

1

N4

∑
i1,j1,i2,j2∈{1,...,2N}
i1,j1,i2,j2 are distinct

E
[
ϕ

(i1,j1)
t ϕ

(i2,j2)
t

]
.

1

N2
. (5.2.33)

Finally, a combination of (5.2.25), (5.2.26), (5.2.28) and (5.2.33) implies that

E
∣∣∣∣∫

R2d

δ2U

δm2
(m2N

t )(y) (µ2N − ν)⊗2(dy)

∣∣∣∣2 .
1

N2
.

5.3 Antithetic MLMC without time discretisation
We begin this section by elaborating on the idea of multilevel Monte-Carlo simulation that

is discussed in Section 5.1. As outlined in the introduction, we want to estimate the quantity
Φ(µXT ). In contrast to direct Monte-Carlo simulations, we sample not just from one approxima-
tion E[Φ(µY,NT )], but from different approximations E[Φ(µY,N`T )], over levels ` ∈ {0, . . . , L}. By
the linearity of expectation,

E[Φ(µY,NLT )] = E[Φ(µY,N0

T )] +

L∑
`=1

(
E[Φ(µY,N`T )]− E[Φ(µ

Y,N`−1

T )]
)
.

Hence, the expectation on the finest level is equal to the expectation on the coarsest level, plus
a sum of corrections adding the difference in expectation between simulations on consecutive
levels. The idea is to independently estimate each of these expectations such that the overall
variance is minimised for a fixed computational cost.

For each level `, we approximate E[Φ(µY,N`T )] by a standard Monte-Carlo estimator. Sub-
sequently, we combine this approximation with the antithetic trick, which involves estimating
the second random variables of the differences in the telescopic sum by the arithmetic average
of two sub-particle systems. For simplicity, we set

N` := 2`, ` ∈ {0, . . . , L}.

We also set the two sub-particle systems to have the same number of particles. More precisely,
we define the pair of sub-particle systems to {Y i,2N}2Ni=1 as

Y
i,2N,(1)
t = ξi +

∫ t

0

b

(
Y i,2N,(1)
r , µY,2N,(1)

r

)
dr +

∫ t

0

σ

(
Y i,2N,(1)
r , µY,2N,(1)

r

)
dW i

r , 1 ≤ i ≤ N,

Y
i,2N,(2)
t = ξi +

∫ t

0

b

(
Y i,2N,(2)
r , µY,2N,(2)

r

)
dr +

∫ t

0

σ

(
Y i,2N,(2)
r , µY,2N,(2)

r

)
dW i

r , N + 1 ≤ i ≤ 2N,

where

µY,2N,(1)
r :=

1

N

N∑
i=1

δ
Y
i,2N,(1)
r

and µY,2N,(2)
r :=

1

N

2N∑
i=N+1

δ
Y
i,2N,(2)
r

. (5.3.1)

Therefore, we define the theoretical MLMC estimator (without time discretisation) as

ATheo. :=
1

M0

M0∑
θ=1

Φ(µ
Y,N0,(θ),(0)
T )
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+

L∑
`=1

[
1

M`

M∑̀
θ=1

[
Φ(µ

Y,N`,(θ),(`)
T )− 1

2

(
Φ(µ

Y,N`,(1),(θ),(`)
T ) + Φ(µ

Y,N`,(2),(θ),(`)
T )

)]]
,

(5.3.2)

where µY,N`,(θ),(`)T , µY,N`,(1),(θ),(`)
T and µY,N`,(2),(θ),(`)

T are defined similarly as µY,N`T , µY,N`,(1)
T and

µ
Y,N`,(2)
T respectively, but correspond to the

∑L
`=0M` independent clouds of particles indexed

by ` ∈ {0, . . . , L} and θ ∈ {1, . . . ,M`}. Each cloud (indexed by `, θ) has particles with initial
conditions ξi,`,θ, i ∈ {1, . . . , N`}, driven by Brownian motions W i,`,θ, i ∈ {1, . . . , N`}, where
{ξi,`,θ} and {W i,`,θ} are independent over i, ` and θ.

The following theorem states that the variance of the antithetic difference in (5.3.2) converges
in N in the rate O(1/N2). In the proof, Proposition 5.2.4 and Theorem 5.2.5 provide us with
the necessary estimates when we revert to the mean-field limit.

Theorem 5.3.1 (Variance of antithetic difference). Assume (Int). Suppose that b, σ ∈M4

(
Rd×

P2(Rd)
)
and Φ ∈M4

(
P2(Rd)

)
. Then

Var
[
Φ(µY,2NT )− 1

2

(
Φ(µ

Y,2N,(1)
T ) + Φ(µ

Y,2N,(2)
T )

)]
≤ E

∣∣∣Φ(µY,2NT )− 1

2

(
Φ(µ

Y,2N,(1)
T ) + Φ(µ

Y,2N,(2)
T )

)∣∣∣2 ≤ C

N2
,

where C is a constant that depends on Φ, b, σ and T , but does not depend on N .

Proof. Let V be defined by (3.5.1), where t is set to be T . By Lemma 4.2.5, we have

Φ(µY,NT )− Φ(µXT ) =
(
V(T, µY,NT )− V(0, µY,N0 )

)
+
(
V(0, µY,N0 )− V(0, ν)

)
=

(
V(0, µY,N0 )− V(0, ν)

)
+

∫ T

0

1

2

[
1

N2

N∑
i=1

Tr
(
a
(
Y i,Ns , µY,Ns

)
∂2
µV
(
s, µY,Ns

)
(Y i,Ns , Y i,Ns )

)]
ds

+
1

N

N∑
i=1

∫ T

0

σ(Y i,Ns , µY,Ns )T∂µV
(
s, µY,Ns

)
(Y i,Ns ) · dW i

s . (5.3.3)

Hence,

Φ(µY,2NT )− 1

2

(
Φ(µ

Y,2N,(1)
T ) + Φ(µ

Y,2N,(2)
T )

)
= A + D + S ,

where
A := V(0, µY,2N0 )− 1

2

(
V(0, µ

Y,2N,(1)
0 ) + V(0, µ

Y,2N,(2)
0 )

)
,

D :=

∫ T

0

1

2

[
1

(2N)2

2N∑
i=1

Tr
(
a
(
Y i,2Ns , µY,2Ns

)
∂2
µV
(
s, µY,2Ns

)
(Y i,2Ns , Y i,2Ns )

)]

− 1

2N2

[ N∑
i=1

Tr
(
a
(
Y i,2N,(1)
s , µY,2N,(1)

s

)
∂2
µV
(
s, µY,2N,(1)

s

)
(Y i,2N,(1)
s , Y i,2N,(1)

s )

)

+

2N∑
i=N+1

Tr
(
a
(
Y i,2N,(2)
s , µY,2N,(2)

s

)
∂2
µV
(
s, µY,2N,(2)

s

)
(Y i,2N,(2)
s , Y i,2N,(2)

s )

)]
ds

and

S :=

2N∑
i=1

∫ T

0

1

2N
∂µV

(
s, µY,2Ns

)
(Y i,2Ns )Tσ(Y i,2Ns , µY,2Ns )dW i

s
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− 1

2N

( N∑
i=1

∫ T

0

∂µV
(
µY,2N,(1)
s

)
(Y i,2N,(1)
s )Tσ(Y i,2N,(1)

s , µY,2N,(1)
s )dW i

s

+

2N∑
i=N+1

∫ T

0

∂µV
(
s, µY,2N,(2)

s

)
(Y i,2N,(2)
s )Tσ(Y i,2N,(2)

s , µY,2N,(2)
s )dW i

s

)
.

By the assumptions on b, σ and Φ, it follows from Theorem 3.5.2 that V ∈ M4

(
[0, T ]×P2(Rd)

)
.

We can therefore see that
E[D2] . 1/N2.

In particular, V(0, ·) ∈M4

(
P2(Rd)

)
. Therefore, by Theorem 5.2.6, we obtain that

E[A 2] . 1/N2.

Hence, it remains to show that E(S 2) . 1/N2. Define Σ(t, x, µ) := ∂µV
(
t, µ
)
(x)Tσ(x, µ). By

the independence of the Brownian motions, we first rewrite E[S 2] as

E[S 2] = E
[(

1

2N

N∑
i=1

∫ T

0

Σ(s, Y i,2Ns , µY,2Ns )− Σ(s, Y i,2N,(1)
s , µY,2N,(1)

s )dW i
s

)2]

+E
[(

1

2N

2N∑
i=N+1

∫ T

0

Σ(s, Y i,2Ns , µY,2Ns )− Σ(s, Y i,2N,(2)
s , µY,2N,(2)

s )dW i
s

)2]
.

Using the independence of the Brownian motions and Itô’s isometry,

E
[(

1

2N

N∑
i=1

∫ T

0

Σ(s, Y i,2Ns , µY,2Ns )− Σ(s, Y i,2N,(1)
s , µY,2N,(1)

s )dW i
s

)2]

=
1

4N2

N∑
i=1

E
[(∫ T

0

Σ(s, Y i,2Ns , µY,2Ns )− Σ(s, Y i,2N,(1)
s , µY,2N,(1)

s )dW i
s

)2]

=
1

4N2

N∑
i=1

∫ T

0

E
[∣∣∣Σ(s, Y i,2Ns , µY,2Ns )− Σ(s, Y i,2N,(1)

s , µY,2N,(1)
s )

∣∣∣2] ds.
Note that V ∈ M4([0, T ] × P2(Rd)). Therefore, ∂µV is Lipschitz continuous and uniformly
bounded. Also, note that σ is Lipschitz continuous. By Theorem 5.2.5,

sup
t∈[0,T ]

E
[∣∣Σ(t, Y i,2Nt , µY,2Nt )− Σ(t,Xi

t , µ
X,2N
t )

∣∣2]
= sup

t∈[0,T ]

E
[∣∣∂µV(t, µY,2Nt )(Y i,2Nt )Tσ(Y i,2Nt , µY,2Nt )− ∂µV(t, µX,2Nt )(Xi

t)
Tσ(Xi

t , µ
X,2N
t )

∣∣2]
. sup

t∈[0,T ]

E
[∣∣∂µV(t, µY,2Nt )(Y i,2Nt )T

(
σ(Y i,2Nt , µY,2Nt )− σ(Xi

t , µ
X,2N
t )

)∣∣2]
+ sup
t∈[0,T ]

E
[∣∣(∂µV(t, µY,2Nt )(Y i,2Nt )T − ∂µV(t, µX,2Nt )(Xi

t)
T
)
σ(Xi

t , µ
X,2N
t )

∣∣2]
. sup

t∈[0,T ]

E
[∣∣∂µV(t, µY,2Nt )(Y i,2Nt )T

(
σ(Y i,2Nt , µY,2Nt )− σ(Xi

t , µ
X,2N
t )

)∣∣2]
+ sup
t∈[0,T ]

(
E
[∣∣(∂µV(t, µY,2Nt )(Y i,2Nt )− ∂µV(t, µX,2Nt )(Xi

t)
∣∣4])1/2(

E
[∣∣σ(Xi

t , µ
X,2N
t )

∣∣4])1/2

. sup
t∈[0,T ]

E
[∣∣Y i,2Nt −Xi

t |2
]

+
1

2N

2N∑
j=1

sup
t∈[0,T ]

E
[∣∣Y j,2Nt −Xj

t |2
]

+
(

sup
t∈[0,T ]

E
[∣∣Y i,2Nt −Xi

t |4
])1/2

+
( 1

2N

2N∑
j=1

sup
t∈[0,T ]

E
[∣∣Y j,2Nt −Xj

t |4
])1/2

.
1

N
. (5.3.4)
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Similarly, we can show that

sup
t∈[0,T ]

E
[∣∣Σ(t, Y

i,2N,(1)
t , µ

Y,2N,(1)
t )− Σ(t,Xi

t , µ
X,N
t )

∣∣2] . 1

N
. (5.3.5)

Next, we apply Proposition 5.2.4 to σ and ∂µV(t, ·)(·). (Note that the constant C in Proposition
5.2.4 corresponding to ϕ = ∂µV(t, ·)(·) does not depend on time, since the first, second and
third order derivatives in measure of this function are uniformly bounded in time.) By a similar
calculation as (5.3.4), we obtain that

sup
t∈[0,T ]

E
[∣∣Σ(t,Xi

t , µ
X,2N
t )− Σ(t,Xi

t , µ
X
t )
∣∣2]

. sup
t∈[0,T ]

E
[∣∣∂µV(t, µX,2Nt )(Xi

t)
T
(
σ(Xi

t , µ
X,2N
t )− σ(Xi

t , µ
X
t )
)∣∣2]

+ sup
t∈[0,T ]

(
E
[∣∣(∂µV(t, µX,2Nt )(Xi

t)− ∂µV(t, µXt )(Xi
t)
∣∣4])1/2(

E
[∣∣σ(Xi

t , µ
X
t )
∣∣4])1/2

.
1

N
.

(5.3.6)

Similarly,

sup
t∈[0,T ]

E
[∣∣Σ(t,Xi

t , µ
X,N
t )− Σ(t,Xi

t , µ
X
t )
∣∣2] . 1

N
. (5.3.7)

A combination of (5.3.4), (5.3.5), (5.3.6) and (5.3.7) gives

E
[(

1

2N

N∑
i=1

∫ T

0

Σ(s, Y i,2Ns , µY,2Ns )− Σ(s, Y i,2N,(1)
s , µY,2N,(1)

s )dW i
s

)2]
.

1

N2
.

Similarly,

E
[(

1

2N

2N∑
i=N+1

∫ T

0

Σ(s, Y i,2Ns , µY,2Ns )− Σ(s, Y i,2N,(2)
s , µY,2N,(2)

s )dW i
s

)2]
.

1

N2
.

Consequently, E[S 2] . 1
N2 .

We now perform an analysis on the order of interactions of this algorithm by assuming that
b and σ are of the forms (4.1.1) and (4.1.2) respectively. Recall that, by Theorem 4.3.3,

|E[Φ(µY,N`T )]− Φ(µXT )| ≤ C

N`
. (i)

Moreover, by Theorem 5.3.1, we have

Var
[
Φ(µ

Y,N`,(θ),(`)
T )− 1

2

(
Φ(µ

Y,N`,(1),(θ),(`)
T ) + Φ(µ

Y,N`,(2),(θ),(`)
T )

)]
≤ C

N2
`

. (ii)

By Definition 4.1.1, the order of interactions of the antithetic difference is bounded by

Order of interactions
[
Φ(µ

Y,N`,(θ),(`)
T )− 1

2

(
Φ(µ

Y,N`,(1),(θ),(`)
T ) + Φ(µ

Y,N`,(2),(θ),(`)
T )

)]
≤ CNp+1

` .

(iii)
Properties (i) to (iii) allow us to conclude the order of interactions of the theoretical anti-

thetic MLMC estimator.

Theorem 5.3.2 (Order of interactions of theoretical antithetic MLMC). Assume (Int). Suppose
that b and σ are of the forms (4.1.1) and (4.1.2) respectively. Furthermore, suppose that b, σ ∈
M4

(
Rd × P2(Rd)

)
and Φ ∈ M4

(
P2(Rd)

)
. Then there exist constants C1, C2 > 0 such that for

any ε < e−1, there exist a value L and a sequence {M`}L`=0 such that the mean-square error of
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ATheo. is bounded by
E
[(
ATheo. − Φ(µXT )

)2] ≤ C1ε
2

and the order of interactions of ATheo. is bounded by

Order of interactions
(
ATheo.) ≤ {C2ε

−2(log ε)2, p = 1,

C2ε
−1−p, p > 1.

Proof. The proof of this theorem is almost identical to the proof of Theorem 1 in [18] and is
therefore omitted. Nonetheless, the proof for the complexity of the antithetic MLMC estimator
with time discretisation (Theorem 5.4.4) will be presented in detail for completeness.

5.4 Antithetic MLMC with Euler time discretisation
In this section, we construct an MLMC estimator in the same way as the previous section,

but with time discretisation. We set

N` := 2`, h` :=
T

N`
, ` ∈ {0, . . . , L}.

We also set the two sub-particle systems to have the same number of particles. We define the
pair of sub-particle systems to {Zi,2N,h}2Ni=1 as

Z
i,2N,(1),h
t = ξi +

∫ t

0

b

(
Z
i,2N,(1),h
η(r) , µ

Z,2N,(1),h
η(r)

)
dr +

∫ t

0

σ

(
Z
i,2N,(1),h
η(r) , µ

Z,2N,(1),h
η(r)

)
dW i

r ,

1 ≤ i ≤ N,

Z
i,2N,(2),h
t = ξi +

∫ t

0

b

(
Z
i,2N,(2),h
η(r) , µ

Z,2N,(2),h
η(r)

)
dr +

∫ t

0

σ

(
Z
i,2N,(2),h
η(r) , µ

Z,2N,(2),h
η(r)

)
dW i

r ,

N + 1 ≤ i ≤ 2N,

where

µZ,2N,(1),h
r :=

1

N

N∑
i=1

δ
Z
i,2N,(1),h
r

and µZ,2N,(2),h
r :=

1

N

2N∑
i=N+1

δ
Z
i,2N,(2),h
r

.

Therefore, we define the MLMC estimator with time discretisation as

A :=
1

M0

M0∑
θ=1

Φ(µ
Z,N0,h0,(θ),(0)
T )

+

L∑
`=1

[
1

M`

M∑̀
θ=1

[
Φ(µ

Z,N`,h`,(θ),(`)
T )− 1

2

(
Φ(µ

Z,N`,(1),2h`,(θ),(`)
T ) + Φ(µ

Z,N`,(2),2h`,(θ),(`)
T )

)]]
,

(5.4.1)

where µZ,N`,h`,(θ),(`)T , µZ,N`,(1),2h`,(θ),(`)
T and µZ,N`,(2),2h`,(θ),(`)

T are defined similarly as µZ,N`,h`T ,
µ
Z,N`,(1),2h`
T , and µZ,N`,(2),2h`

T respectively, but correspond to the
∑L
`=0M` independent clouds

of particles indexed by ` ∈ {0, . . . , L} and θ ∈ {1, . . . ,M`}. Each cloud (indexed by `, θ) has
particles with initial conditions ξi,`,θ, i ∈ {1, . . . , N`}, driven by Brownian motions W i,`,θ,
i ∈ {1, . . . , N`}, where {ξi,`,θ} and {W i,`,θ} are independent over i, ` and θ.

First, we prove the analogue of (i) under time discretisation. Note that, under (Lip), it
follows by a standard Gronwall-type argument that

sup
N∈N

sup
u∈[0,T ]

E
[

1

N

N∑
i=1

|Y i,Nu |2
]
< +∞, sup

N∈N
sup

u∈[0,T ]

E
[

1

N

N∑
i=1

|Zi,N,hη(u) |
2

]
< +∞, (5.4.2)

for some C > 0.
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Theorem 5.4.1. Suppose that b, σ ∈M2

(
Rd×P2(Rd)

)
and Φ ∈M2

(
P2(Rd)

)
. Then the weak

error in the particle approximation with Euler scheme satisfies∣∣∣E[Φ(µZ,N,hT )]− Φ(µXT )
∣∣∣ ≤ C( 1

N
+ h
)
, (5.4.3)

where C is a constant that depends on Φ, b, σ and T , but does not depend on N or h.

Proof. Let V be defined by (3.5.1), where t is set to be T . Let ZN,h := (Z1,N,h, . . . , ZN,N,h).
As before, by Theorem 4.2.9 and Remark 4.2.8,∣∣E(V(0, µZ,N,h0 )− V(0, ν)

)∣∣ ≤ C

N
. (5.4.4)

Next, by the time-discretised analogue of Lemma 4.2.5, we observe that(
Φ(µZ,N,hT )− Φ(µXT )

)
−
(
V(0, µZ,N,h0 )− V(0, ν)

)
= V(T, µZ,N,hT )− V(0, µZ,N,h0 )

=

∫ T

0

N∑
i=1

[
1

N
∂µV

(
s, µZ,N,hs

)
(Zi,N,hs )

(
b
(
Zi,N,hη(s) , µZ,N,hη(s)

)
− b
(
Zi,N,hs , µZ,N,hs

))
+

1

2
Tr
((
a
(
Zi,N,hη(s) , µZ,N,hη(s)

)
− a
(
Zi,N,hs , µZ,N,hs

)) 1

N
∂v∂µV

(
s, µZ,N,hs

)
(Zi,N,hs )

)
+

1

2
Tr

(
a
(
Zi,N,hη(s) , µZ,N,hη(s)

) 1

N2
∂2
µV
(
s, µZ,N,hs

)
(Zi,N,hs , Zi,N,hs )

)]
ds

+

∫ T

0

N∑
i=1

1

N
∂µV

(
s, µZ,N,hs

)
(Zi,N,hs )Tσ(Zi,N,hη(s) , µZ,N,hη(s) )dW i

s

=

∫ T

0

N∑
i=1

[
1

N
∂µV

(
s, µZ,N,hη(s)

)
(Zi,N,hη(s) )

(
b
(
Zi,N,hη(s) , µZ,N,hη(s)

)
− b
(
Zi,N,hs , µZ,N,hs

))
+

1

2
Tr
((
a
(
Zi,N,hη(s) , µZ,N,hη(s)

)
− a
(
Zi,N,hs , µZ,N,hs

)) 1

N
∂v∂µV

(
s, µZ,N,hη(s)

)
(Zi,N,hη(s) )

)
+

1

N

[(
∂µV

(
s, µZ,N,hs

)
(Zi,N,hs )− ∂µV

(
s, µZ,N,hη(s)

)
(Zi,N,hη(s) )

)
×
(
b
(
Zi,N,hη(s) , µZ,N,hη(s)

)
− b
(
Zi,N,hs , µZ,N,hs

))]
+

1

2
Tr
((
a
(
Zi,N,hη(s) , µZ,N,hη(s)

)
− a
(
Zi,N,hs , µZ,N,hs

)) 1

N

(
∂v∂µV

(
s, µZ,N,hs

)
(Zi,N,hs )

−∂v∂µV
(
s, µZ,N,hη(s)

)
(Zi,N,hη(s) )

))
+

1

2
Tr

(
a
(
Zi,N,hη(s) , µZ,N,hη(s)

) 1

N2
∂2
µV
(
s, µZ,N,hs

)
(Zi,N,hs , Zi,N,hs )

)]
ds

+

∫ T

0

N∑
i=1

1

N
∂µV

(
s, µZ,N,hs

)
(Zi,N,hs )Tσ(Zi,N,hη(s) , µZ,N,hη(s) )dW i

s . (5.4.5)

Let {Ft}t∈[0,T ] be the filtration generated by W 1, . . . ,WN . Then, by the Itô’s formula, for each
k ∈ {1, . . . , d},

E
[
bk
(
Zi,N,hη(s) , µZ,N,hη(s) )− bk

(
Zi,N,hs , µZ,N,hs

)∣∣∣Fη(s)

]
= −E

[ ∫ s

η(s)

(
∂xbk(Zi,N,hr , µZ,N,hr ) +

1

N
∂µbk(Zi,N,hr , µZ,N,hr

)
(Zi,N,hr )

)
· dZi,N,hr
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+
∑
j 6=i

∫ s

η(s)

1

N
∂µbk(Zi,N,hr , µZ,N,hr

)
(Zj,N,hr ) · dZj,N,hr

+

∫ s

η(s)

Tr
((

∂2
xbk(Zi,N,hr , µZ,N,hr ) +

2

N
∂x∂µbk(Zi,N,hr , µZ,N,hr )(Zi,N,hr )

+
1

N
∂v∂µbk(Zi,N,hr , µZ,N,hr )(Zi,N,hr ) +

1

N2
∂2
µbk(Zi,N,hr , µZ,N,hr )(Zi,N,hr , Zi,N,hr )

)
d
〈
Zi,N,h

〉
r

)
+
∑
j 6=i

∫ s

η(s)

Tr
((

1

N
∂v∂µbk(Zi,N,hr , µZ,N,hr )(Zj,N,hr )

+
1

N2
∂2
µbk(Zi,N,hr , µZ,N,hr )(Zj,N,hr , Zj,N,hr )

)
d
〈
Zj,N,h

〉
r

)∣∣∣∣Fη(s)

]
= −E

[ ∫ s

η(s)

N∑
j=1

1

N
∂µbk(Zi,N,hr , µZ,N,hr

)
(Zj,N,hr ) b(Zj,N,hη(r) , µZ,N,hη(r) ) dr

+

∫ s

η(s)

∂xbk(Zi,N,hr , µZ,N,hr

)
b(Zi,N,hη(r) , µ

Z,N,h
η(r) ) dr

+

N∑
j=1

∫ s

η(s)

1

N
∂µbk(Zi,N,hr , µZ,N,hr

)
(Zj,N,hr )T σ(Zj,N,hη(r) , µZ,N,hη(r) ) dW j

r

+
1

N

∫ s

η(s)

∂xbk(Zi,N,hr , µZ,N,hr

)T
σ(Zi,N,hη(r) , µ

Z,N,h
η(r) ) dW i

r

+

N∑
j=1

∫ s

η(s)

Tr
((

1

N
∂v∂µbk(Zi,N,hr , µZ,N,hr )(Zj,N,hr )

+
1

N2
∂2
µbk(Zi,N,hr , µZ,N,hr )(Zj,N,hr , Zj,N,hr )

)
a(Zj,N,hη(r) , µZ,N,hη(r) )

)
dr

+

∫ s

η(s)

Tr
((

∂2
xbk(Zi,N,hr , µZ,N,hr ) +

2

N
∂x∂µbk(Zi,N,hr , µZ,N,hr )(Zi,N,hr )

)
×a(Zi,N,hη(r) , µ

Z,N,h
η(r) )

)
dr

∣∣∣∣Fη(s)

]
= −

∫ s

η(s)

E
[ N∑
j=1

1

N
∂µbk(Zi,N,hr , µZ,N,hr

)
(Zj,N,hr ) b(Zj,N,hη(r) , µZ,N,hη(r) )

+∂xbk(Zi,N,hr , µZ,N,hr

)
b(Zi,N,hη(r) , µ

Z,N,h
η(r) )

+

N∑
j=1

Tr
((

1

N
∂v∂µbk(Zi,N,hr , µZ,N,hr )(Zj,N,hr )

+
1

N2
∂2
µbk(Zi,N,hr , µZ,N,hr )(Zj,N,hr , Zj,N,hr )

)
a(Zj,N,hη(r) , µZ,N,hη(r) )

)
+Tr

((
∂2
xbk(Zi,N,hr , µZ,N,hr ) +

2

N
∂x∂µbk(Zi,N,hr , µZ,N,hr )(Zi,N,hr )

)
a(Zi,N,hη(r) , µ

Z,N,h
η(r) )

)∣∣∣∣Fη(s)

]
dr.

(5.4.6)

Hence, upon taking expectation, by (5.4.6), the first term of (5.4.5) can be rewritten as∫ T

0

N∑
i=1

E
[

1

N
∂µV

(
s, µZ,N,hη(s)

)
(Zi,N,hη(s) )

(
b
(
Zi,N,hη(s) , µZ,N,hη(s)

)
− b
(
Zi,N,hs , µZ,N,hs

))]
ds

=

∫ T

0

1

N

N∑
i=1

d∑
k=1

E
[(
∂µV

(
s, µZ,N,hη(s)

)
(Zi,N,hη(s) )

)
k
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×E
[(
bk
(
Zi,N,hη(s) , µZ,N,hη(s)

)
− bk

(
Zi,N,hs , µZ,N,hs

))∣∣∣∣Fη(s)

]]
ds

= −
∫ T

0

∫ s

η(s)

1

N

N∑
i=1

d∑
k=1

E
[(
∂µV

(
s, µZ,N,hη(s)

)
(Zi,N,hη(s) )

)
k
×

[ N∑
j=1

1

N
∂µbk(Zi,N,hr , µZ,N,hr

)
(Zj,N,hr ) b(Zj,N,hη(r) , µZ,N,hη(r) ) + ∂xbk(Zi,N,hr , µZ,N,hr

)
b(Zi,N,hη(r) , µ

Z,N,h
η(r) )

+

N∑
j=1

Tr
((

1

N
∂v∂µbk(Zi,N,hr , µZ,N,hr )(Zj,N,hr )

+
1

N2
∂2
µbk(Zi,N,hr , µZ,N,hr )(Zj,N,hr , Zj,N,hr )

)
a(Zj,N,hη(r) , µZ,N,hη(r) )

)
+Tr

((
∂2
xbk(Zi,N,hr , µZ,N,hr ) +

2

N
∂x∂µbk(Zi,N,hr , µZ,N,hr )(Zi,N,hr )

)
a(Zi,N,hη(r) , µ

Z,N,h
η(r) )

)]]
dr ds.

Finally, by (5.4.2) and the fact that V ∈ M2([0, T ]× P2(Rd)), we have∣∣∣∣ ∫ T

0

N∑
i=1

E
[

1

N
∂µV

(
s, µZ,N,hη(s)

)
(Zi,N,hη(s) )

(
b
(
Zi,N,hη(s) , µZ,N,hη(s)

)
− b
(
Zi,N,hs , µZ,N,hs

))]
ds

∣∣∣∣ ≤ Ch.
Similarly, upon taking expectation, the second term of (5.4.5) is bounded by Ch and the third
and fourth terms of (5.4.5) are also bounded by Ch by the Cauchy-Schwarz inequality. This
completes the proof.

To prove the analogue of Theorem 5.3.1 with time discretisation, we need the following
lemma that provides a strong error bound between the particle system (2.2.4) and the Euler
scheme (5.1.1). However, we require a higher-order approximation in time discretisation. Hence,
we restrict ourselves to the case of constant diffusion, in order to avoid the complication of
introducing the Milstein scheme of time discretisation.

Lemma 5.4.2. Suppose that b ∈M2(Rd × P2(Rd)) and σ is constant. Then

sup
N∈N

sup
s∈[0,T ]

E
[
W2(µY,Ns , µZ,N,hs )2] ≤ Ch2,

for some constant C that does not depend on h.

Proof. The proof is presented in dimension one, for simplicity of notations. By Itô’s formula,

(Y i,Nt − Zi,N,ht )2 = 2

∫ t

0

(Y i,Ns − Zi,N,hs )
(
b(Y i,Ns , µY,Ns )− b(Zi,N,hη(s) , µZ,N,hη(s) )

)
ds.

Take 0 ≤ t′ ≤ t ≤ T . Then

1

N

N∑
i=1

E(Y i,Nt′ − Zi,N,ht′ )2

=
2

N

N∑
i=1

E
[ ∫ t′

0

(Y i,Ns − Zi,N,hs )
(
b(Y i,Ns , µY,Ns )− b(Zi,N,hs , µZ,N,hs )

)
ds

]

+
2

N

N∑
i=1

E
[ ∫ t′

0

(Y i,Ns − Zi,N,hs )
(
b(Zi,N,hs , µZ,N,hs )− b(Zi,N,hη(s) , µZ,N,hη(s) )

)
ds

]
.

(5.4.7)
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We first bound the first term of (5.4.7).

2

N

N∑
i=1

E
[ ∫ t′

0

(Y i,Ns − Zi,N,hs )
(
b(Y i,Ns , µY,Ns )− b(Zi,N,hs , µZ,N,hs )

)
ds

]

≤ CE
[

1

N

N∑
i=1

∫ t′

0

|Y i,Ns − Zi,N,hs |
(
|Y i,Ns − Zi,N,hs |+

( 1

N

N∑
j=1

|Y i,Ns − Zi,N,hs |2
)1/2

)
ds

]

≤ C

N

N∑
i=1

∫ t′

0

E|Y i,Ns − Zi,N,hs |2 ds ≤ C
∫ t

0

sup
u∈[0,s]

[
1

N

N∑
i=1

E|Y i,Nu − Zi,N,hu |2
]
ds. (5.4.8)

To bound the second term of (5.4.7), we proceed as in the proof of Theorem 5.4.1 by applying
Itô’s formula to the process{

(Y i,Ns − Zi,N,hs )
(
b(Zi,N,hs , µZ,N,hs )− b(Zi,N,ht0 , µZ,N,ht0 )

)}
s≥t0

,

which gives

(Y i,Ns − Zi,N,hs )
(
b(Zi,N,hs , µZ,N,hs )− b(Zi,N,ht0 , µZ,N,ht0 )

)
=

∫ s

t0

(
b(Zi,N,hu , µZ,N,hu )− b(Zi,N,ht0 , µZ,N,ht0 )

)
d(Y i,Nu − Zi,N,hu )

+
∑
j 6=i

∫ s

t0

(Y i,Nu − Zi,N,hu )
( 1

N
∂µb(Z

i,N,h
u , µZ,N,hu )(Zj,N,hu )

)
dZj,N,hu

+

∫ s

t0

(Y i,Nu − Zi,N,hu )
( 1

N
∂µb(Z

i,N,h
u , µZ,N,hu )(Zi,N,hu ) + ∂xb(Z

i,N,h
u , µZ,N,hu )

)
dZi,N,hu

+
1

2

∑
j 6=i

∫ s

t0

(Y i,Nu − Zi,N,hu )
( 1

N
∂v∂µb(Z

i,N,h
u , µZ,N,hu )(Zj,N,hu )

+
1

N2
∂2
µb(Z

i,N,h
u , µZ,N,hu )(Zj,N,hu , Zj,N,hu )

)
d
〈
Zj,N,h

〉
u

+
1

2

∫ s

t0

(Y i,Nu − Zi,N,hu )
( 1

N
∂v∂µb(Z

i,N,h
u , µZ,N,hu )(Zi,N,hu )

+
1

N2
∂2
µb(Z

i,N,h
u , µZ,N,hu )(Zi,N,hu , Zi,N,hu ) +

2

N
∂x∂µb(Z

i,N,h
u , µZ,N,hu )(Zi,N,hu )

+∂2
xb(Z

i,N,h
u , µZ,N,hu )

)
d
〈
Zi,N,h

〉
u
.

Putting t0 = η(s), taking average of i from 1 to N , taking expectation and rewriting terms, we
have

1

N

N∑
i=1

E
[
(Y i,Ns − Zi,N,hs )

(
b(Zi,N,hs , µZ,N,hs )− b(Zi,N,hη(s) , µZ,N,hη(s) )

)]
= I1 + I2,

where

I1 :=
1

N

N∑
i=1

E
[ ∫ s

η(s)

(
b(Zi,N,hu , µZ,N,hu )−b(Zi,N,hη(s) , µZ,N,hη(s) )

)(
b(Y i,Nu , µY,Nu )−b(Zi,N,hη(s) , µZ,N,hη(s) )

)
du

]
and

I2 :=
1

N

N∑
i=1

E
[ ∫ s

η(s)

(Y i,Nu − Zi,N,hu )Diu du
]
,

where

Diu :=
1

N

N∑
j=1

(
∂µb(Z

i,N,h
u , µZ,N,hu )(Zj,N,hu )b(Zj,N,hη(u) , µ

Z,N,h
η(u) )

)
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+∂xb(Z
i,N,h
u , µZ,N,hu )b(Zi,N,hη(u) , µ

Z,N,h
η(u) )

+
1

2
σ2

N∑
j=1

(
1

N2
∂2
µb(Z

i,N,h
u , µZ,N,hu )(Zj,N,hu , Zj,N,hu ) +

1

N
∂v∂µb(Z

i,N,h
u , µZ,N,hu )(Zj,N,hu )

)

+
1

2
σ2

(
2

N
∂x∂µb(Z

i,N,h
u , µZ,N,hu )(Zi,N,hu ) + ∂2

xb(Z
i,N,h
u , µZ,N,hu )

)
.

By the hypothesis on b, all derivatives of b are uniformly bounded. Moreover, by (Lip), b has
linear growth in space and measure. Therefore,

1

N

N∑
i=1

E|Diu|2 ≤ C
(

1 +
1

N

N∑
i=1

E|Zi,N,hη(u) |
2
)
.

Then, by (5.4.2),

sup
u∈[0,T ]

[ 1

N

N∑
i=1

E|Diu|2
]
≤ C.

By first applying the Cauchy-Schwarz inequality to the expectation operator and then to the
sum,

I2 ≤
∫ s

η(s)

(
1

N

N∑
i=1

E|Y i,Nu − Zi,N,hu |2
)1/2(

1

N

N∑
i=1

E|Diu|2
)1/2

du

≤ C

(
sup
u∈[0,s]

1

N

N∑
i=1

E|Y i,Nu − Zi,N,hu |2
)1/2

h

≤ C

(
1

2
sup
u∈[0,s]

1

N

N∑
i=1

E|Y i,Nu − Zi,N,hu |2 +
1

2
h2

)
. (5.4.9)

Next, we rewrite I1 as

I1 =
1

N

N∑
i=1

E
[ ∫ s

η(s)

(
b(Zi,N,hu , µZ,N,hu )− b(Zi,N,hη(s) , µZ,N,hη(s) )

)(
b(Y i,Nu , µY,Nu )− b(Zi,N,hu , µZ,N,hu )

)
du

]

+
1

N

N∑
i=1

E
[ ∫ s

η(s)

(
b(Zi,N,hu , µZ,N,hu )− b(Zi,N,hη(s) , µZ,N,hη(s) )

)2
du

]
.

It is clear that

1

N

N∑
i=1

E
[ ∫ s

η(s)

(
b(Zi,N,hu , µZ,N,hu )− b(Zi,N,hη(s) , µZ,N,hη(s) )

)2
du

]
≤ Ch2. (5.4.10)

By the Cauchy-Schwarz inequality and (Lip), the first term of I1 is bounded by

1

N

N∑
i=1

E
[ ∫ s

η(s)

(
b(Zi,N,hu , µZ,N,hu )− b(Zi,N,hη(s) , µZ,N,hη(s) )

)(
b(Y i,Nu , µY,Nu )− b(Zi,N,hu , µZ,N,hu )

)
du

]

≤ 1

N

N∑
i=1

∫ s

η(s)

(
E
∣∣∣∣b(Zi,N,hu , µZ,N,hu )− b(Zi,N,hη(s) , µZ,N,hη(s) )

∣∣∣∣2)1/2

(
E
∣∣∣∣b(Y i,Nu , µY,Nu )− b(Zi,N,hu , µZ,N,hu )

∣∣∣∣2)1/2

du

≤ 1

N

N∑
i=1

C
√
h

∫ s

η(s)

(
E
∣∣∣∣b(Y i,Nu , µY,Nu )− b(Zi,N,hu , µZ,N,hu )

∣∣∣∣2)1/2

du
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≤ 1

N

N∑
i=1

C
√
h

∫ s

η(s)

(
E|Y i,Nu − Zi,N,hu |2 +

1

N

N∑
j=1

E|Y j,Nu − Zj,N,hu |2
)1/2

du

≤ 2

N

N∑
i=1

C
√
h

∫ s

η(s)

(
E|Y i,Nu − Zi,N,hu |2

)1/2
du

≤ 2Ch3/2

[
sup
u∈[0,s]

(
1

N

N∑
i=1

E|Y i,Nu − Zi,N,hu |2
)]1/2

≤ C

(
h3 + sup

u∈[0,s]

(
1

N

N∑
i=1

E|Y i,Nu − Zi,N,hu |2
))

. (5.4.11)

A combination of (5.4.7), (5.4.8), (5.4.9), (5.4.10) and (5.4.11) gives

sup
u∈[0,t]

[
1

N

N∑
i=1

E(Y i,Nu −Zi,N,hu )2

]
≤ C

(∫ t

0

sup
u∈[0,s]

[
1

N

N∑
i=1

E|Y i,Nu −Zi,N,hu |2
]
ds+h2

)
, ∀t ∈ [0, T ],

which implies by Gronwall’s inequality that

sup
u∈[0,T ]

[
1

N

N∑
i=1

E(Y i,Nu − Zi,N,hu )2

]
≤ Ch2.

Since the constant C does not depend on N , we conclude that

sup
N∈N

sup
s∈[0,T ]

E
[
W2(µY,Ns , µZ,N,hs )2] ≤ sup

N∈N
sup

s∈[0,T ]

[
1

N

N∑
i=1

E(Y i,Ns − Zi,N,hs )2

]
≤ Ch2.

A combination of Lemma 5.4.2 and Theorem 5.3.1 immediately gives the following result.

Theorem 5.4.3 (Variance of antithetic difference). Assume (Int). Suppose that b ∈M4

(
Rd ×

P2(Rd)
)
and Φ ∈M4

(
P2(Rd)

)
. Moreover, suppose that σ is constant. Then

Var
[
Φ(µZ,N,hT )− 1

2

(
Φ(µ

Z,N,(1),2h
T ) + Φ(µ

Z,N,(2),2h
T )

)]
≤ E

∣∣∣Φ(µZ,N,hT )− 1

2

(
Φ(µ

Z,N,(1),2h
T ) + Φ(µ

Z,N,(2),2h
T )

)∣∣∣2 ≤ C( 1

N2
+ h2

)
,

where C is a constant that depends on Φ, b, σ and T , but does not depend on N or h.

As before, we perform an analysis on the complexity of this algorithm by assuming that b
is of the form (4.1.1) and that σ is constant. By Theorem 5.4.1, since h` = T

N`
,

|E[Φ(µZ,N`,h`T )]− Φ(µXT )| ≤ C

N`
. (I)

Moreover, by Theorem 5.4.3, we have

Var
[
Φ(µ

Z,N`,h`,(θ),(`)
T )− 1

2

(
Φ(µ

Z,N`,(1),2h`,(θ),(`)
T ) + Φ(µ

Z,N`,(2),2h`,(θ),(`)
T )

)]
≤ C

N2
`

. (II)

Finally, by Definition 4.1.1, the complexity of the antithetic difference is bounded by

Complexity
[
Φ(µ

Z,N`,h`,(θ),(`)
T )− 1

2

(
Φ(µ

Z,N`,(1),2h`,(θ),(`)
T ) + Φ(µ

Z,N`,(2),2h`,(θ),(`)
T )

)]
≤ CNp+2

` .

(III)

Theorem 5.4.4 (Complexity of antithetic MLMC with time discretisation). Assume (Int).
Suppose that b is of the form (4.1.1). Furthermore, suppose that b ∈ M4

(
Rd × P2(Rd)

)
, Φ ∈
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M4

(
P2(Rd)

)
and σ is constant. Then there exist constants C1, C2 > 0 such that for any ε < e−1,

there exist a value L and a sequence {M`}L`=0 such that the mean-square error of A is bounded
by

E
[(
A− Φ(µXT )

)2] ≤ C1ε
2

and the complexity of A is bounded by

Complexity
(
A
)
≤ C2ε

−2−p.

Proof. As in Theorem 5.3.2, the proof of this theorem is also almost identical to the proof
of Theorem 1 in [18]. Nonetheless, we present the proof with explicit expressions for L and
{M`}L`=0 so that practitioners can implement this algorithm easily. Set

L := dlog2(
√

2ε−1)e, M` := d2ε−22pL/2(1− 2−p/2)−12−(p+4)`/2e, ` ∈ {0, . . . , L}.

As in (5.1.3), we have

Mean-square error = Var(A) + (E(A)− Φ(µXT ))2.

By the choice of L, 2−L ≤ ε√
2
. Therefore, by Property (I),

|E(A)− Φ(µXT )|2 = |E[Φ(µZ,NL,hLT )]− Φ(µXT )|2 ≤
( C

NL

)2

= (C2−L)2 ≤ C2
(ε2

2

)
. (5.4.12)

On the other hand, by Property (II) and the choice of {M`}L`=0,

Var(A) ≤
L∑
`=0

1

M2
`

[ M∑̀
θ=1

C

N2
`

]
≤

L∑
`=0

C

M`
2−2` ≤

L∑
`=0

C2−2`
(

2−1ε22−pL/2(1− 2−p/2)2(p+4)`/2
)

= C2−1ε22−pL/2(1− 2−p/2)

L∑
`=0

2p`/2

<
1

2
Cε2.

This verifies that the mean-square error is bounded by 1
2 (C2 + C)ε2. Next, we note that

M` ≤ 2ε−22pL/2(1− 2−p/2)−12−(p+4)`/2 + 1

and hence, by Property (III),

Complexity(A) ≤ C
( L∑
`=0

2ε−22pL/2(1− 2−p/2)−12−(p+4)`/22(p+2)` +

L∑
`=0

2(p+2)`

)
. (5.4.13)

Note that the choice of L implies that 2L ≤ 2
√

2ε−1.

L∑
`=0

2ε−22pL/2(1− 2−p/2)−12−(p+4)`/22(p+2)` = 2ε−22pL/2(1− 2−p/2)−1
L∑
`=0

2p`/2

< 2ε−22pL/2(1− 2−p/2)−1
(

2pL/2(1− 2−p/2)−1
)

= 2ε−22pL(1− 2−p/2)−2

≤ 2
(
2
√

2
)p

(1− 2−p/2)−2ε−2−p. (5.4.14)

Similarly,
L∑
`=0

2(p+2)` ≤ 2(p+2)L

1− 2−(p+2)
≤ (2

√
2)p+2

1− 2−(p+2)
ε−(p+2). (5.4.15)
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A combination of (5.4.13), (5.4.14) and (5.4.15) finally gives

Complexity(A) ≤ C
(

2
(
2
√

2
)p

(1− 2−p/2)−2 +
(2
√

2)p+2

1− 2−(p+2)

)
ε−2−p.

107



Chapter 6

Higher order approximation and
fluctuation of the standard particle
system

Until this point, the focus is on approximating McKean-Vlasov SDEs by various methods,
such as Romberg extrapolation and multilevel methods. Nonetheless, standard particle systems
arise naturally in many PDEs and in the theory of mean-field games. Recalling Example 2 in the
introduction, anN -player PDE system is difficult to solve analytically and can be very expensive
to approximate numerically if the dimension is large. On the other hand, it can be approximated
by the master equation (a “limiting” PDE), which therefore allows us to approximate the Nash
equilibrium of the players in the mean-field limit. (See [21] and [22].)

In this section, we focus on the approximation of standard particle systems. Instead of
replacing the empirical measure between the law of the evolving process itself, we construct
alternative theoretical approximations to the standard particle systems. We divide our discus-
sion into two parts: higher order fluctuation and higher order strong error approximation. Since
the constructions corresponding to these approximations are defined in terms of L-derivatives,
they are far from being implementable from a practical perspective, but are interesting from a
theoretical perspective.

6.1 Higher order fluctuation
In the literature, one often considers the fluctuation of the empirical measure with the

limiting law, defined by SN :=
√
N(µY,N − µX), as N goes to infinity. For every N , SN is a

signed measure. The space of signed measures endowed with the weak convergence topology
is a non-metrizable topological space and is therefore not ideal to apply classical tightness
arguments to prove convergence. This problem has been addressed by a few papers in the
literature. The technique is to show that the sequence of random measures (SN )N≥1 converges
in law as random variables taking values in some Sobolev space. This is done via a classical
tightness argument, which implies the existence of a weak limit (through a subsequence) by
the Prokhorov’s theorem. The limit is shown to satisfy an Ornstein-Uhlenbeck process in an
appropriate space. In [37], the Sobolev space being considered is C([0, T ],Φ′p), where Φ′p is the
dual of Φp, with Φp being the completion of the Schwarz space of rapidly decreasing infinitely
differentiable functions under a suitable class of seminorms ‖ · ‖p. This result was generalised
in [53] to the Sobolev space C([0, T ],W

−(2+2D),D
0 ), whereas the limiting Ornstein-Uhlenbeck

process is in C([0, T ],W
−(4+2D),D
0 ), where D = 1 +

⌊
d
2

⌋
. A similar result was proven in [21] to

include mean-field equations with additive common noise.
We first consider the above fluctuation at time T , but for general functionals of measures (i.e.

not necessarily of the form µ 7→
∫
Rd φ(x)µ(dx)). This is an easy consequence in the framework

of analysis developed in the previous two chapters.
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Theorem 6.1.1. Assume that the initial law 1ν = δc, for some c ∈ Rd. Suppose that b, σ ∈
M4(Rd × P2(Rd)). Then, for each Φ ∈M4(P2(Rd)), the sequence of random variables{√

N
(

Φ(µY,NT )− Φ(µXT )
)}

N∈N

converges in law to a centered normal random variable.

Proof. Let V be defined by (3.5.1), where t is set to be T . By (5.3.3), upon multiplication by√
N on both sides, the expression becomes

√
N
[
Φ(µY,NT )− Φ(µXT )

]
=

∫ T

0

1

2

[
1

N3/2

N∑
i=1

Tr
(
a
(
Y i,Ns , µY,Ns

)
∂2
µV
(
s, µY,Ns

)
(Y i,Ns , Y i,Ns )

)]
ds

+
1√
N

N∑
i=1

∫ T

0

σ(Y i,Ns , µY,Ns )T∂µV
(
s, µY,Ns

)
(Y i,Ns ) · dW i

s .

=

∫ T

0

1

2

[
1

N3/2

N∑
i=1

Tr
(
a
(
Y i,Ns , µY,Ns

)
∂2
µV
(
s, µY,Ns

)
(Y i,Ns , Y i,Ns )

)]
ds

+

[
1√
N

N∑
i=1

∫ T

0

σ(Y i,Ns , µY,Ns )T∂µV
(
s, µY,Ns

)
(Y i,Ns ) · dW i

s

− 1√
N

N∑
i=1

∫ T

0

σ(Xi
s, µ

X
s )T∂µV

(
s, µXs

)
(Xi

s) · dW i
s

]

+
1√
N

N∑
i=1

∫ T

0

σ(Xi
s, µ

X
s )T∂µV

(
s, µXs

)
(Xi

s) · dW i
s . (6.1.1)

Since V ∈ M2([0, T ]× P2(Rd)) and σ is Lipschitz continuous,∥∥∥∥∫ T

0

1

2

[
1

N3/2

N∑
i=1

Tr
(
a
(
Y i,Ns , µY,Ns

)
∂2
µV
(
s, µY,Ns

)
(Y i,Ns , Y i,Ns )

)]
ds

∥∥∥∥
L2

N→∞−−−−→ 0.

By (5.3.5) and (5.3.7),∥∥∥∥ 1√
N

N∑
i=1

∫ T

0

[
σ(Y i,Ns , µY,Ns )T∂µV

(
s, µY,Ns

)
(Y i,Ns )− σ(Xi

s, µ
X
s )T∂µV

(
s, µXs

)
(Xi

s)

]
· dW i

s

∥∥∥∥
L2

N→∞−−−−→ 0.

Finally, by the central limit theorem, the final term in (6.1.1) converges in law to N (0, R),
where the variance R is given by

R :=

∫ T

0

E
∣∣∣σ(X1

s , µ
X
s )T∂µV

(
s, µXs

)
(X1

s )
∣∣∣2ds.

An application of Slutsky’s theorem (see, e.g., Theorem 7.34 in [25]) concludes that√
N
[
Φ(µY,NT )− Φ(µXT )

]
also converges to N (0, R) in law.

6.1.1 Higher order fluctuation via a correction term
In terms of numerical simulations, at each time t, it is very difficult to simulate the limiting

measure µXt directly, as most Mckean-Vlasov equations do not have explicit solutions. In order
to be able to observe the fluctuation, one typically has to apply a Monte-Carlo procedure to

1Without this assumption, one would have to deal with the term
√
N
(
V(0, µY,N0 ) − V(0, ν)

)
. However, the

convergence of this term in N is not clear, as the central limit theorem is in general not applicable to functions
V with a non-linear dependence on the measure component.
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simulate Φ(µXt ) by its coupling Φ(µX,Nt ). The following theorem shows that, by adding an extra
term that only depends on the path of µX,N , the fluctuation of µX,N with µY,N exhibits higher
order behaviour.

Theorem 6.1.2. Assume (Int). Suppose that b, σ ∈ M4(Rd × P2(Rd)) and Φ ∈ M4(P2(Rd)).
Then there exists a (deterministic) continuous function S : [0, T ] × P2(Rd) → R (defined in
(6.1.4)) such that the sequence of random variables{

N

(
Φ(µY,NT )−

(
Φ(µX,NT )−

∫ T

0

S(s, µX,Ns ) ds

))}
N∈N

converges in law through a subsequence to a centered random variable.

Proof. Let V be defined by (3.5.1), where t is set to be T . By (5.3.3), upon multiplication by
N on both sides, we have

N
[
Φ(µY,NT )− Φ(µXT )

]
= N

(
V(0, µY,N0 )− V(0, ν)

)
+

∫ T

0

1

2

[
1

N

N∑
i=1

Tr
(
a
(
Y i,Ns , µY,Ns

)
∂2
µV
(
s, µY,Ns

)
(Y i,Ns , Y i,Ns )

)]
ds

+

N∑
i=1

∫ T

0

σ(Y i,Ns , µY,Ns )T∂µV
(
s, µY,Ns

)
(Y i,Ns ) · dW i

s .

= N

(
V
(

0,
1

N

N∑
i=1

δξi

)
− V(0, ν)

)

+
1

2

∫ T

0

∫
Rd

Tr
(
a
(
x, µY,Ns

)
∂2
µV
(
s, µY,Ns

)
(x, x)

)
µY,Ns (dx) ds

+

N∑
i=1

∫ T

0

σ(Y i,Ns , µY,Ns )T∂µV
(
s, µY,Ns

)
(Y i,Ns ) · dW i

s . (6.1.2)

Applying the same argument as (4.2.4), but to the coupled processes X1, . . . , XN instead of
Y 1,N , . . . , Y N,N , we have

Φ(µX,NT )− Φ(µXT )

= V
(

0,
1

N

N∑
i=1

δξi

)
− V(0, ν) +

∫ T

0

∂sV
(
s, µX,Ns

)
+

N∑
i=1

[
1

N
∂µV

(
s, µX,Ns

)
(Xi

s)b
(
Xi
s, µ

X
s

)
+

1

2
Tr

(
a
(
Xi
s, µ

X
s

)( 1

N
∂v∂µV

(
s, µX,Ns

)
(Xi

s) +
1

N2
∂2
µV
(
s, µX,Ns

)
(Xi

s, X
i
s)

))]
ds

+
1

N

N∑
i=1

∫ T

0

σ(Xi
s, µ

X
s )T∂µV

(
s, µX,Ns

)
(Xi

s) · dW i
s

= V
(

0,
1

N

N∑
i=1

δξi

)
− V(0, ν) +

∫ T

0

∂sV
(
s, µX,Ns

)
+

N∑
i=1

1

N

[
∂µV

(
s, µX,Ns

)
(Xi

s)b
(
Xi
s, µ

X,N
s

)
+

1

2
Tr
(
a
(
Xi
s, µ

X,N
s

)
∂v∂µV

(
s, µX,Ns

)
(Xi

s)
)]
ds

+
1

2N2

N∑
i=1

∫ T

0

Tr
(
a(Xi

s, µ
X
s )∂2

µV
(
s, µX,Ns

)
(Xi

s, X
i
s)

)
ds

+
1

N

N∑
i=1

∫ T

0

σ(Xi
s, µ

X
s )T∂µV

(
s, µX,Ns

)
(Xi

s) · dW i
s

+

∫ T

0

∫
Rd
∂µV(s, µX,Ns )(y)

(
b(y, µXs )− b(y, µX,Ns )

)
µX,Ns (dy) ds
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+
1

2

∫ T

0

∫
Rd

Tr
(
∂v∂µV(s, µX,Ns )(y)

(
a(y, µXs )− a(y, µX,Ns )

))
µX,Ns (dy) ds

= V
(

0,
1

N

N∑
i=1

δξi

)
− V(0, ν) +

1

2N2

N∑
i=1

∫ T

0

Tr
(
a(Xi

s, µ
X
s )∂2

µV
(
s, µX,Ns

)
(Xi

s, X
i
s)

)
ds

+
1

N

N∑
i=1

∫ T

0

σ(Xi
s, µ

X
s )T∂µV

(
s, µX,Ns

)
(Xi

s) · dW i
s

+

∫ T

0

∫
Rd
∂µV(s, µX,Ns )(y)

(
b(y, µXs )− b(y, µX,Ns )

)
µX,Ns (dy) ds

+
1

2

∫ T

0

∫
Rd

Tr
(
∂v∂µV(s, µX,Ns )(y)

(
a(y, µXs )− a(y, µX,Ns )

))
µX,Ns (dy) ds, (6.1.3)

where PDE (3.4.3) is applied in the last equality. Now, we define a deterministic function
S : [0, T ]× P2(Rd)→ R by

S(s, µ) :=

∫
Rd
∂µV(s, µ)(y)

(
b(y, µXs )− b(y, µ)

)
µ(dy)

−1

2

∫
Rd

Tr
(
∂v∂µV(s, µ)(y)

(
a(y, µXs )− a(y, µ)

))
µ(dy). (6.1.4)

Next, we subtract (6.1.2) by (6.1.3) multiplied by N , which gives

N

(
Φ(µY,NT )−

(
Φ(µX,NT )−

∫ T

0

S(s, µX,Ns ) ds

))
= E

(1)
N + E

(2)
N ,

where

E
(1)
N =

1

2N

N∑
i=1

∫ T

0

Tr
(
a
(
Y i,Ns , µY,Ns

)
∂2
µV
(
s, µY,Ns

)
(Y i,Ns , Y i,Ns )

)
ds

− 1

2N

N∑
i=1

∫ T

0

Tr
(
a
(
Xi
s, µ

X
s

)
∂2
µV
(
s, µX,Ns

)
(Xi

s, X
i
s)
)
ds

and

E
(2)
N =

N∑
i=1

∫ T

0

[
σ(Y i,Ns , µY,Ns )T∂µV

(
s, µY,Ns

)
(Y i,Ns )

−σ(Xi
s, µ

X
s )T∂µV

(
s, µX,Ns

)
(Xi

s)

]
· dW i

s .

It follows from the same argument in the proof of Theorem 5.3.1 to deduce that

‖E(1)
N ‖L1

N→∞−−−−→ 0 and sup
N∈N

E
∣∣E(2)

N

∣∣2 ≤ C, (6.1.5)

for some constant C > 0. For any ε > 0, by the Chebyshev’s inequality,

P
(
|E(2)
N | >

√
C

ε

)
≤ 1(√

C
ε

)2E|E
(2)
N |

2 ≤ ε,

for every N ∈ N. This shows that the set of measures {mN := L(E
(2)
N )}N∈N is tight. By

the Prokhorov’s theorem, we conclude that {mN}N∈N converges (through some subsequence
{Nk}k∈N) to a probability measure m on Rd. By the Skorokhod’s representation theorem (see
[60]), there exist a probability space (Ω̃, F̃ , P̃) and a sequence of measurable random variables
{ηNk}k∈N such that ηNk converges to η almost surely as k → ∞, where L(ηNk) = mNk and

111



L(η) = m. By the second inequality in (6.1.5), we observe that {ηNk}k∈N is uniformly bounded
in L2. Hence, ηNk converges to η in L1, which implies that

Ẽ[η] = lim
k→∞

Ẽ[ηNk ] = 0. (6.1.6)

Since the probability space (Ω,F ,P) is atomless, we can construct an Rd-valued random vari-
able M on (Ω,F ,P) with probability distribution m. Moreover, M is centered, by (6.1.6). An
application of Slutsky’s theorem concludes that E(1)

N +E
(2)
N also converges to M in law through

a subsequence.

6.1.2 Higher order fluctuation via common noise
Inspired by the idea in [12] of introducing space-time white noise for interacting diffusion

processes, we introduce an alternative coupled McKean-Vlasov equation (X1, . . . , XN , CN ),
given by

Xi
t = ξi +

∫ t
0
b(Xi

s, µ
X
s ) ds+

∫ t
0
σ(Xi

s, µ
X
s ) dW i

s , t ∈ [0, T ], 1 ≤ i ≤ N,

CNt = θ +
∫ t

0
b(CNs , µ

C,N
s ) ds+

∫ t
0
σ(CNs , µ

C,N
s ) dWs + 1√

N

∫ t
0

∫
Rd σ(ξ, µC,Ns )B(dξ, ds),

µC,Nt := Law
(
CNt
∣∣G),

(6.1.7)
where B(dξ, ds) is a d-dimensional space-time white noise defined by

B(dξ, ds) :=
1√
N

N∑
i=1

[
δXis(dξ)⊗ dW

i
s

]
and G is the σ-algebra generated by ξ1, . . . , ξN and the space-time white noise B. The initial
condition θ is defined as

θ :=
( 1

N

N∑
i=1

ξi

)
+ ξ − E[ξ]. (6.1.8)

The idea is to capture the trajectories of all N couplings X1, . . . , XN by a single process CN ,
both in the initial condition and the diffusion term. It turns out that the randomness coming
from the diffusion term can be reduced in this way, thus leading to higher order fluctuation,
provided that the test function and the drift are linear.

Theorem 6.1.3. Assume (Int). Suppose that b takes the form

b(x, µ) = k1 + k2x+ k3

∫
Rd
y µ(dy), (6.1.9)

for some k1 ∈ Rd and k2, k3 ∈ R. Suppose that σ ∈M3(Rd × P2(Rd)). Then

sup
t∈[0,T ]

∥∥∥∥√N( 1

N

N∑
i=1

Y i,Nt − E[CNt |G]

)∥∥∥∥
L2

≤ C√
N
.

Moreover, at any time t ∈ [0, T ], the sequence of random variables{
N

(
1

N

N∑
i=1

Y i,Nt − E[CNt |G]

)}
N∈N

converges in law through a subsequence to a centered random variable.

We first prove a lemma that controls the error between µX and µC,N .
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Lemma 6.1.4. Assume (Lip). Then

sup
t∈[0,T ]

E[W2(µXt , µ
C,N
t )2] ≤ C

N
,

for some constant C > 0.

Proof. Take any t ∈ [0, T ]. By Proposition 2.1.1,

E
[
W2(µXt , µ

C,N
t )2

]
= E

[
sup

φ1,φ2 Lipschitz
φ1(x)+φ2(y)≤|x−y|2

(
E
[
φ1(Xt)

]
+ E

[
φ2(CNt )

∣∣G])]

= E

[
sup

φ1,φ2 Lipschitz
φ1(x)+φ2(y)≤|x−y|2

E
[
φ1(Xt) + φ2(CNt )

∣∣G]]

≤ E
[∣∣Xt − CNt

∣∣2]. (6.1.10)

By (6.1.8) and (Lip), estimating the L2 difference between (2.1.5) and (6.1.7) gives

E
[∣∣Xt′ − CNt′

∣∣2] ≤ C

(
E
[∣∣∣∣ 1

N

N∑
i=1

ξi − E[ξ]

∣∣∣∣2]+

∫ t′

0

E|Xs − CNs
∣∣2 + E

[
W2(µXs , µ

C,N
s )2

]
ds+

1

N

)
≤ C

(∫ t

0

sup
u∈[0,s]

E|Xu − CNu
∣∣2 ds+

1

N

)
,

for every t′ ≤ t. Hence,

sup
u∈[0,t]

E
[∣∣Xu − CNu

∣∣2] ≤ C(∫ t

0

sup
u∈[0,s]

E|Xu − CNu
∣∣2 ds+

1

N

)
,

which implies that

sup
u∈[0,t]

E
[∣∣Xu − CNu

∣∣2] ≤ C

N
,

by Gronwall’s inequality. This concludes the result by (6.1.10).

Proof of Theorem 6.1.3. By the definition of (2.2.4), we observe that

1

N

N∑
i=1

Y i,Nt =
1

N

N∑
i=1

ξi + k1 + (k2 + k3)

∫ t

0

1

N

N∑
i=1

Y i,Ns ds+
1

N

N∑
i=1

∫ t

0

σ
(
Y i,Ns , µY,Ns

)
dW i

s .

(6.1.11)
Since ξ is independent of G from its construction, taking conditional expectation on (6.1.8)
gives

E[θ|G] =
1

N

N∑
i=1

ξi.

Also, by taking conditional expectation on both sides of (6.1.7) with respect to G, we have

E
[
CNt
∣∣G] =

1

N

N∑
i=1

ξi + k1 + (k2 + k3)

∫ t

0

E
[
CNs
∣∣G] ds+

1

N

N∑
i=1

∫ t

0

σ
(
Xi
s, µ

C,N
s

)
dW i

s . (6.1.12)

Taking the difference between (6.1.11) and (6.1.12), follwed by a multiplication by
√
N , we

obtain that

√
N

[
1

N

N∑
i=1

Y i,Nt − E
[
CNt
∣∣G]] = (k2 + k3)

∫ t

0

√
N

[
1

N

N∑
i=1

Y i,Ns − E
[
CNs
∣∣G]] ds
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+
1√
N

N∑
i=1

∫ t

0

[
σ
(
Y i,Ns , µY,Ns

)
− σ

(
Xi
s, µ

C,N
s

)]
dW i

s .

(6.1.13)

By Lemma 6.1.4, Theorem 5.2.5 and the Lipschitz property of σ, we have

sup
s∈[0,T ]

[
1

N

N∑
i=1

E
∣∣∣σ(Y i,Ns , µY,Ns )− σ(Xi

s, µ
C,N
s )

∣∣∣2]

≤ C

(
1

N

N∑
i=1

sup
s∈[0,T ]

E
∣∣∣σ(Xi

s, µ
X,N
s )− σ(Xi

s, µ
X
s )
∣∣∣2 +

1

N

)
. (6.1.14)

Then, by Proposition 5.2.4,

1

N

N∑
i=1

sup
s∈[0,T ]

E
∣∣σ(Xi

s, µ
X,N
s )− σ(Xi

s, µ
X
s )
∣∣2 ≤ C

N
. (6.1.15)

Therefore, by combining estimates (6.1.14), (6.1.15) and using the fact that the Brownian
motions are independent, we have

E
[∣∣∣∣ 1√

N

N∑
i=1

∫ t

0

[
σ
(
Y i,Ns , µY,Ns

)
− σ

(
Xi
s, µ

C,N
s

)]
dW i

s

∣∣∣∣2] ≤ C

N
,

for every t ∈ [0, T ]. Finally, an application of Gronwall’s inequality to (6.1.13) gives

sup
t∈[0,T ]

E
[(√

N

∣∣∣∣ 1

N

N∑
i=1

Y i,Nt − E[CNt |G]

∣∣∣∣)2]
≤ C

N
,

i.e.

sup
t∈[0,T ]

∥∥∥∥√N( 1

N

N∑
i=1

Y i,Nt − E[CNt |G]

)∥∥∥∥
L2

≤ C√
N
. (6.1.16)

For the second statement, it follows an identical argument as the final part in the proof of
Theorem 6.1.2 to deduce from (6.1.16) that the sequence of random variables

EN := N

(
1

N

N∑
i=1

Y i,Nt∗ − E[CNt∗ |G]

)
converges in law through a subsequence to some random variable M , at any fixed t∗ ∈ [0, T ].
Taking expectation on both sides of (6.1.11) and (6.1.12) gives

E
[

1

N

N∑
i=1

Y i,Nt

]
= E

[
1

N

N∑
i=1

ξi

]
+ k1 + (k2 + k3)

∫ t

0

E
[

1

N

N∑
i=1

Y i,Ns

]
ds

and

E
[
E
[
CNt
∣∣G]] = E

[
1

N

N∑
i=1

ξi

]
+ k1 + (k2 + k3)

∫ t

0

E
[
E
[
CNs
∣∣G]] ds.

An application of Gronwall’s inequality to the difference between these two equations gives

sup
t∈[0,T ]

∣∣∣∣E[ 1

N

N∑
i=1

Y i,Nt

]
− E

[
E
[
CNt
∣∣G]]∣∣∣∣ = 0.

Therefore, E[EN ] = 0, for each N and hence E[M ] = 0.
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6.2 Higher order approximation of the strong error
Recall that, by Theorem 5.2.5 (and Theorem 2.2.6 for a special form of b and σ), the strong

error between the standard particle system (2.2.4) and its limiting equation (2.1.5) is given by

sup
t∈[0,T ]

E|Y i,Nt −Xi
t |2 ≤

C

N
,

for some constant C > 0 that does not depend on N . This gives a rate of convergence of
O(N−1/2) in the L2 norm. In this section, we construct an alternative coupled McKean-Vlasov
equation (X,H1,N , . . . ,HN,N ) that gives a rate of convergence of O(N−1) in the L2 norm.

We assume that for each j, k ∈ {1, . . . , d},

bj(x, µ) = Bj(x) + Φ
(1)
j (µ), σj,k(x, µ) = Σj,k(x) + Φ

(2)
j,k(µ), (Structure)

where Bj : Rd → R and Σj,k : Rd → R satisfy the condition that

Bj ,Σj,k ∈ C4
b,Lip(Rd), for each j, k ∈ {1, . . . , d}; (Reg-B and Σ)

whereas Φ
(1)
j : P2(Rd)→ R and Φ

(2)
j,k : P2(Rd)→ R satisfy the condition that

Φ
(1)
j ,Φ

(2)
j,k ∈M4(P2(Rd)), for each j, k ∈ {1, . . . , d}. (M4-Φ(1) and Φ(2))

Note that the assumptions (Structure), (Reg-B and Σ) and (M4-Φ(1) and Φ(2)) together imply
that b, σ ∈M4(Rd × P2(Rd)). Recall from (4.2.1) that

∆2
T =

{
(t1, t2)

∣∣∣ 0 ≤ t2 ≤ t1 ≤ T}. (6.2.1)

For each Φ : P2(Rd)→ R, we define VΦ : ∆2
T × P2(Rd)→ R by

VΦ((t1, t2), µ) = Φ(L(Xt2,µ
t1 )). (6.2.2)

We define a higher order limiting system (Xt,H1,N
t , . . . ,HN,Nt )t∈[0,T ] by

Xt,j = ξj +

∫ t

0

bj(Xs, µ
X
s ) ds+

d∑
k=1

∫ t

0

σj,k(Xs, µ
X
s ) dW k

s , 1 ≤ j ≤ d,

Hi,Nt,j = ξi,j +

∫ t

0

bj(Hi,Ns , µXs ) ds+

d∑
k=1

∫ t

0

σj,k(Hi,Ns , µXs ) dW i,k
s

−
∫ t

0

[(
VΦ

(1)
j

(
(s, 0),

1

N

N∑
`=1

δξ`

)
− VΦ

(1)
j ((s, 0), ν)

)

+
1

N

N∑
`=1

∫ s

0

σ(H`,Nu , µXu )T∂µVΦ
(1)
j
(
(s, u), µXu

)
(H`,Nu ) · dW `

u

]
ds

−
d∑
k=1

∫ t

0

[(
VΦ

(2)
j,k

(
(s, 0),

1

N

N∑
`=1

δξ`

)
− VΦ

(2)
j,k((s, 0), ν)

)

+
1

N

N∑
`=1

∫ s

0

σ(H`,Nu , µXu )T∂µVΦ
(2)
j,k
(
(s, u), µXu

)
(H`,Nu ) · dW `

u

]
dW i,k

s ,

1 ≤ i ≤ N, 1 ≤ j ≤ d,

(6.2.3)
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where, for each t ∈ [0, T ],

Hi,Nt = (Hi,Nt,1 , . . . ,H
i,N
t,d )T , ξi = (ξi,1, . . . , ξi,d)

T , Xt = (Xt,1, . . . , Xt,d)
T , W i = (W i,1, . . . ,W i,d)T ,

denote the respective vectors of one-dimensional components.
The following proposition asserts that SDE (6.2.3) is well-defined and has a unique solution.

Proposition 6.2.1. Assume (Int), (Structure), (Reg-B and Σ) and (M4-Φ(1) and Φ(2)). Then
(6.2.3) is well-defined and has a unique strong solution such that

sup
t∈[0,T ]

(
E[|Xt|4] +

N∑
i=1

E[|Hi,Nt |4]

)
< +∞. (6.2.4)

Proof. To begin the proof, we notice that the law of (2.1.1) is invariant under translation in
time, i.e. for each 0 ≤ u ≤ s ≤ T , µ ∈ P2(Rd) and Φ ∈M4(P2(Rd)),

VΦ((s, u), µ) = Φ(L(Xu,µ
s )) = Φ(L(Xu+T−s,µ

T )) = VΦ((T, u+ T − s), µ). (6.2.5)

This fact is established in the proof of Lemma 6.1 in [9]. By Theorem 3.5.2, we know that
VΦ((T, ·), ·) ∈M4(Rd × P2(Rd)). Therefore, the maps

s 7→ VΦ((s, u), µ); s 7→ ∂µVΦ((s, u), µ)(y)

are continuous. This shows that the time integrals in (6.2.3) are well-defined. Moreover, the
stochastic integrals are well-defined, since for any Φ ∈M4(P2(Rd)) and any sequence (sn)n in
[0, T ] converging to s,∫ T

0

1(0,sn]σ(H`,Nu , µXu )T∂µVΦ
(
(sn, u), µXu

)
(H`,Nu ) · dW `

u

n→∞, L2

−−−−−−→
∫ s

0

σ(H`,Nu , µXu )T∂µVΦ
(
(s, u), µXu

)
(H`,Nu ) · dW `

u,

by Itô’s isometry and dominated convergence theorem, which shows that the map

s 7→
∫ s

0

σ(H`,Nu , µXu )T∂µVΦ
(
(s, u), µXu

)
(H`,Nu ) · dW `

u

is continuous almost surely. To show that (6.2.3) has a unique solution, we rewrite (6.2.3) as

Xt,j = ξj +

∫ t

0

bj(Xs, µ
X
s ) ds+

d∑
k=1

∫ t

0

σj,k(Xs, µ
X
s ) dW k

s , 1 ≤ j ≤ d,

Hi,Nt,j = ξi,j +

∫ t

0

[
bj(Hi,Ns , µXs )−

(
VΦ

(1)
j

(
(s, 0),

1

N

N∑
`=1

δξ`s

)
− VΦ

(1)
j ((s, 0), ν)

)
−R(1,j)

s

]
ds

+
d∑
k=1

∫ t

0

[
σj,k(Hi,Ns , µXs )−

(
VΦ

(2)
j,k

(
(s, 0),

1

N

N∑
`=1

δξ`s

)
− VΦ

(2)
j,k((s, 0), ν)

)
−R(2,j,k)

s

]
dW i,k

s , 1 ≤ i ≤ N, 1 ≤ j ≤ d,

R
(1,j)
t =

1

N

N∑
`=1

∫ t

0

σ(H`,Nu , µXu )T∂µVΦ
(1)
j
(
(t, u), µXu

)
(H`,Nu ) · dW `

u, 1 ≤ j ≤ d,

R
(2,j,k)
t =

1

N

N∑
`=1

∫ t

0

σ(H`,Nu , µXu )T∂µVΦ
(2)
j,k
(
(t, u), µXu

)
(H`,Nu ) · dW `

u, 1 ≤ j ≤ d, 1 ≤ k ≤ d,

ξ`t,j = ξ`,j , 1 ≤ ` ≤ N, 1 ≤ j ≤ d,
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(6.2.6)

where ξ`s = (ξ`s,1, . . . , ξ
`
s,d)

T . Let Vt =
(
{Xt,j}, {Hi,Nt,j }, {R

(1,j)
t }, {R(2,j,k)

t }, {ξ`t,j}
)T be the

R2dN+d2+2d-dimensional vector corresponding to the system of SDEs (6.2.6). Then we observe
that there exist functions Π1 : ∆2

T ×R2dN+d2+2d → R2dN+d2+2d and Π2 : ∆2
T ×R2dN+d2+2d →

R2dN+d2+2d ⊗ Rd2 such that

Vt = V0 +

∫ t

0

Π1((t, s),Vs) ds+

∫ t

0

Π2((t, s),Vs) dWs,

where W := (W 1,1, . . . ,W 1,d, . . . ,W d,1, . . . ,W d,d)T . (Note that the dependence on the evolving
time t in Π1 and Π2 is due to the processes R(1,j) and R(2,j,k).) For any Φ ∈M4(P2(Rd)), there
exists some C > 0 such that for any µ1, µ2 ∈ P2(Rd),

sup
s∈[0,T ]

∣∣VΦ((s, 0), µ1)− VΦ((s, 0), µ2)
∣∣ ≤ ‖Φ‖Lip sup

s∈[0,T ]

W2

(
L(X0,µ1

s ),L(X0,µ2
s )

)
≤ C‖Φ‖LipW2(µ1, µ2), (6.2.7)

where the final inequality follows from the proof of Lemma 3.1 in [9]. Moreover, by the Lip-
schitz property of σ, (6.2.5) and the fact that VΦ((T, ·), ·) ∈ M4([0, T ] × P2(Rd)) for any
Φ ∈M4(P2(Rd)), it is clear that the map

x 7→ σ(x, µXu )T∂µVΦ
(
(t, u), µXu

)
(x)

is locally Lipschitz continuous, uniform in t and u, for any Φ ∈ M4(P2(Rd)). Combining with
(6.2.7), we deduce that there exists some real number C > 0 (depending on N and d) such that
for any (t, s) ∈ ∆2

T and x1,x2 ∈ R2dN+d2+2d,∣∣∣Π1((t, s),x1)
∣∣∣2 +

∣∣∣Π2((t, s),x1)
∣∣∣2 ≤ C(1 + |x1|2).

Furthermore, there exists a sequence of positive integers {Ck}k∈N (depending on k, N and d)
such that for any (t, s) ∈ ∆2

T and x1,x2 ∈ R2dN+d2+2d with |x1|, |x2| ≤ k,∣∣∣Π1((t, s),x1)−Π1((t, s),x2)
∣∣∣2 +

∣∣∣Π2((t, s),x1)−Π2((t, s),x2)
∣∣∣2 ≤ Ck|x1 − x2|2.

By these two estimates, we can proceed via the classical argument of Picard iteration to show
the existence of a strong solution. Uniqueness also follows from these two estimates. (See, for
example, the proof of Theorem 2.3.4 in [50] for details.) Finally, (6.2.4) follows from standard
arguments involving Lp estimates. (See, for example, the proof of Theorem 2.4.1 in [50] for
details.)

Next, we state the result on the strong error between Hi,N and Y i,N .

Theorem 6.2.2. Assume (Int), (Structure), (Reg-B and Σ) and (M4-Φ(1) and Φ(2)). Then

sup
t∈[0,T ]

E|Hi,Nt − Y i,Nt |2 ≤ C

N2
,

for some constant C > 0 that does not depend on N .

Proof. To begin, we observe from Lemma 5.2.2 (for the initial conditions) and the equations of
Xt,j and Hi,Nt,j in (6.2.3) that

sup
t∈[0,T ]

E|Xi
t,j −H

i,N
t,j |

4 .
1

N2
, for each j ∈ {1, . . . , d},
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which implies that

sup
t∈[0,T ]

E|Xi
t −H

i,N
t |4 .

1

N2
. (6.2.8)

By (5.3.3), subtracting Hi,Nt,j by Y i,Nt,j gives

Hi,Nt,j − Y
i,N
t,j =

∫ t

0

[(
Bj(Hi,Ns )−Bj(Y i,Ns )

)
+
(
Φ

(1)
j (µXs )− Φ

(1)
j (µY,Ns )

)
+
[
VΦ

(1)
j

(
(s, 0),

1

N

N∑
`=1

δξ`

)
− VΦ

(1)
j ((s, 0), ν)

+
1

N

N∑
`=1

∫ s

0

σ(H`,Nu , µXu )T∂µVΦ
(1)
j
(
(s, u), µXu

)
(H`,Nu ) · dW `

u

]]
ds

+

m∑
k=1

∫ t

0

[(
Σj,k(Hi,Ns )− Σj,k(Y i,Ns )

)
+
(
Φ

(2)
j,k(µXs )− Φ

(2)
j,k(µY,Ns )

)
+
[
VΦ

(2)
j,k

(
(s, 0),

1

N

N∑
`=1

δξ`

)
− VΦ

(2)
j,k((s, 0), ν)

+
1

N

N∑
`=1

∫ s

0

σ(H`,Nu , µXu )T∂µVΦ
(2)
j,k
(
(s, u), µXu

)
(H`,Nu ) · dW `

u

]]
dW i,k

s

=

∫ t

0

[(
Bj(Hi,Ns )−Bj(Y i,Ns )

)
−
∫ s

0

1

2N2

N∑
i=1

Tr
(
a
(
Y i,Nu , µY,Nu

)
∂2
µVΦ

(1)
j
(
(s, u), µY,Nu

)
(Y i,Nu , Y i,Nu )

)
du

− 1

N

N∑
i=1

∫ s

0

σ(Y i,Nu , µY,Nu )T∂µVΦ
(1)
j
(
(s, u), µY,Nu

)
(Y i,Nu ) · dW i

u

+
1

N

N∑
i=1

∫ s

0

σ(Hi,Nu , µXu )T∂µVΦ
(1)
j
(
(s, u), µXu

)
(Hi,Nu ) · dW i

u

]
ds

+

m∑
k=1

∫ t

0

[(
Σj,k(Hi,Ns )− Σj,k(Y i,Ns )

)
−
∫ s

0

1

2N2

N∑
i=1

Tr
(
a
(
Y i,Nu , µY,Nu

)
∂2
µV

Φ
(2)
j,k
(
(s, u), µY,Nu

)
(Y i,Nu , Y i,Nu )

)
du

− 1

N

N∑
i=1

∫ s

0

σ(Y i,Nu , µY,Nu )T∂µVΦ
(2)
j,k
(
(s, u), µY,Nu

)
(Y i,Nu ) · dW i

u

+
1

N

N∑
i=1

∫ s

0

σ(Hi,Nu , µXu )T∂µVΦ
(2)
j,k
(
(s, u), µXu

)
(Hi,Nu ) · dW i

u

]
dW i,k

s .

(6.2.9)

Take any Φ ∈M4(P2(Rd)). By (6.2.8), we observe that

E
[(

1

N

N∑
i=1

∫ s

0

σ(Xi
u, µ

X
u )T∂µVΦ

(
(s, u), µXu

)
(Xi

u) · dW i
u

− 1

N

N∑
i=1

∫ s

0

σ(Hi,Nu , µXu )T∂µVΦ
(
(s, u), µXu

)
(Hi,Nu ) · dW i

u

)2]
.

1

N2
. (6.2.10)
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On the other hand, a combination of (5.3.5) and (5.3.7) gives

E
[(

1

N

N∑
i=1

∫ s

0

σ(Y i,Nu , µY,Nu )T∂µVΦ
(
(s, u), µY,Nu

)
(Y i,Nu ) · dW i

u

− 1

N

N∑
i=1

∫ s

0

σ(Xi
u, µ

X
u )T∂µVΦ

(
(s, u), µXu

)
(Xi

u) · dW i
u

)2]
.

1

N2
. (6.2.11)

Therefore, a combination of (6.2.10) and (6.2.11) gives

E
[(

1

N

N∑
i=1

∫ s

0

σ(Y i,Nu , µY,Nu )T∂µVΦ
(
(s, u), µY,Nu

)
(Y i,Nu ) · dW i

u

− 1

N

N∑
i=1

∫ s

0

σ(Hi,Nu , µXu )T∂µVΦ
(
(s, u), µXu

)
(Hi,Nu ) · dW i

u

)2]
.

1

N2
. (6.2.12)

Finally, a combination of (6.2.9), (6.2.12) and the Lipschitz property of Bj and Σj,k, j, k ∈
{1, . . . , d}, gives

E
(
Hi,Nt,j − Y

i,N
t,j

)2
.
∫ t

0

E|Hi,Ns − Y i,Ns |2 ds+
1

N2
, j ∈ {1, . . . , d},

which concludes the result, by summing j over 1 to d, along with an application of Gronwall’s
inequality.
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Chapter 7

Conclusion and Future Works

For the bulk of the thesis, most of the results rely on the regularity of function V defined
in Theorem 3.5.2, which is a mere generalisation of Theorem 7.2 of [9]. Accordingly, most
theorems are formulated under the strong hypothesis of classMk. This inevitably excludes many
interesting examples, such as the Burger’s equation, whose drift is the Heaviside function (recall
(2.2.3) and Example 2.2.2). The only occasion where the condition of uniform boundedness of
V is needed is when we apply Theorem 3.3.7 to conclude that the pth order linear functional
derivative of a function has pth order polynomial growth if the function is inMp. Nonetheless,
Theorem 3.3.7 is no longer needed and Theorem 3.5.2 can be applied to a much more general
setting if Theorem 3.5.2 is formulated in terms of linear functional derivatives. This might be
possible by following the approach of PDE analysis of forward-backward systems in [11].

There are also several potential results upon generalisation of Theorem 3.5.2. Firstly, if one
can obtain full control over the L-derivatives of V in Theorem 3.5.2 over [0,∞), then the results
in Chapters 4-6 can be extended to the case of unbounded time horizon. Work can also be done
to investigate McKean-Vlasov SDEs and particle systems beyond the respective forms of (2.1.5)
and (2.2.4), which can have potential applications in Lagrangian models and mean-field games.
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