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Abstract

The postsynaptic density (PSD) is a complex, dynamic structure composed of ~2000

distinct proteins, found at the postsynaptic membrane. Interactions, of transient and

non-transient nature, organise the PSD’s constituent parts into a protein complex,

which functions as an intricately regulated molecular machine, orchestrating the medi-

ation and regulation of synaptic transmission and synaptic plasticity. Furthermore,

many of the proteins found in this complex have been linked to synaptic and be-

havioural plasticity, basic cognition or disease. Although, through proteomics we

have accumulated a lot of information on the constituent parts of this machine as

well smaller sub-networks representing pathways, not a lot is known about the or-

ganisational principles of the PSD. In this project our aim is to develop a standardised

approach to reconstructing protein interaction networks from PSD proteomics data,

providing a descriptive integrative model. Using these models we also performed an

analysis elucidating parts of these organisational principles. We applied this method

on two murine postsynaptic density proteomics datasets and found a persistent mod-

ular architecture of biological significance. Furthermore, given the lack of substantial

evidence on the composition and architecture of postsynaptic density interaction net-

works of other model organisms, we decided to perform an affinity purification of

Drosophila melanogaster postsynaptic density proteins and perform a similar analy-

sis. The resulting model corroborated theoretical predictions of a lower complexity but

similar functionality and also showed a modular architecture. As a final analysis we

compared the two models from a structural and evolutionary perspective attempting to

elucidate the mechanisms of evolution of this molecular machine. The results of this

analysis implied that a whole component rather than just individual proteins of the fly

protein interaction network have been conserved, highlighting the importance of the

aforementioned organisational principles.
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Chapter 1

Introduction and Background

1.1 The synapse and the postsynaptic density

Information in the nervous system is transmitted in patterns of action potentials - elec-

trical pulses generated in neurons, and transmitted from one to another at specialised

junctions known as synapses. At chemical synapses, the most abundant type in the

nervous system, action potentials propagating through the presynaptic neuron are con-

verted into release of a neurotransmitter, such as glutamate. This diffuses across the

synaptic cleft and binds to receptors on the postsynaptic cell, resulting in transient lo-

cal depolarization of the cell membrane. When the postsynaptic neuron becomes suf-

ficiently depolarised, due to input from one or more synapses, a new action potential

is generated. Synaptic input is also processed by the postsynaptic signalling machin-

ery, which is closely linked to the intracellular side of the post-synaptic membrane

in a structure known as the postsynaptic density (PSD) (Figure 1.1). The PSD is a

complex, dynamic structure composed of ~2000 distinct proteins (Bai and Witzmann,

2007, Choudhary and Grant, 2004, Li et al., 2004, Collins et al., 2006, Emes et al.,

2008, Li and Jimenez, 2008, Trinidad et al., 2008, Fernández et al., 2009, Croning

et al., 2009), of which ~100 are thought to be present at an individual synapse (Sheng

and Hoogenraad, 2007, Selimi et al., 2009). Physical interactions organise these pro-

1



2 Chapter 1. Introduction and Background

Figure 1.1: The PSD, visible as an electron dense area in an electron microscopy scan. Synapses of

mice neurons exhibit presynaptic vesicles (asterisks), a synaptic cleft and a distinct postsynaptic density

(arrowheads). Figure from Heupel et al. (2008)

teins into signalling pathways that coordinate changes in synaptic strength in response

to patterns of neuronal activity. These changes in synaptic strength can alter the flow of

activity in neuronal networks and are widely thought to form the basis of behavioural

learning and memory.

1.2 The excitatory synapse

The major classification of synapses reflects their function, as excitatory or inhibitory,

depending on the type of primary neurotransmitters used. Glutamate is an example

of excitatory neurotransmitter while GABA and serotonin are examples of inhibitory

neurotransmitters. The studies performed in this work are centered around glutamate

excitatory synapses.

Glutamate synapses have been implicated in various processes including neuronal

development, neurotoxicity, and synaptic plasticity to name but a few. Both types of

glutamate receptors, namely ionotropic (ion channel coupled) and metabotropic (sec-

ond messenger coupled) receptors are differentially distributed on pre- and postsy-

naptic sites to contribute to action potential propagation and neuronal signal process-

ing, functions that determine learning and memory formation (Bliss and Collingridge,

1993, Bear and Abraham, 1996, Riedel et al., 1996; 2003). Furthermore, glutamate

receptors and the proteins they interact with have been implicated in various men-
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tal diseases such as schizophrenia or various other forms of neurodegeneration such

as Alzheimer’s disease (Ellison, 1995, Pellicciari and Costantino, 1999, Millar et al.,

2000, Jamain et al., 2003, Harrison and Weinberger, 2005, Redon et al., 2006, Jamain

et al., 2008, Purcell et al., 2009, Pinto et al., 2010) (discussed in detail in subsection

1.2.2.3).

These glutamate receptor subtypes, as defined by the constituting subunits are in-

volved in two types of transmission, fast and slow. Fast transmission is mediated

by ionotropic receptor subtypes, namely N-Methyl-D-aspartic acid (NMDA), alpha-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and Kainate glutamate

receptors. Ionotropic receptors are tetramer ion channels, composed of class-specific

subunits that can form homo- or heteromers. Each subunit has an extracellular N- and

intracellular C- terminus. Slow transmission is mediated by eight metabotropic gluta-

mate receptor subtypes (mGluRs). Structurally, mGluRs have 7 transmembrane seg-

ments, but show sequence similarities with metabotropic GABA receptors (Kaupmann

et al., 1997). For further details on the structure and function of glutamate receptor

subtypes see Riedel et al., 2003. Although AMPAs are the basic synaptic transmission

receptors, allowing the influx of cations once the agonist neurotransmitter has bound

on the extracellular side, NMDA receptor function has been described as that of a coin-

cidence detector (Bliss and Collingridge, 1993, Bourne and Nicoll, 1993, Stevens and

Sullivan, 1998, Tang et al., 1999). More specifically NMDA receptors, sensing posi-

tive changes in the membrane potential caused by an initial depolarisation, are likely

to expel the Mg2+ ion that blocks the channel from the outside, leading to further com-

partmentalised, thus input specific, Ca2+ influx, a property crucial to plasticity (Nicoll

et al., 1988) as well as learning and memory processes (Tang et al., 1999, Tsien, 2000).

1.2.1 The architecture of an excitatory synapse

The function of molecular complexes on the presynaptic terminal is to mediate the

release of glutamate from synaptic vesicles, in a four step process involving 1) vesicle
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formation, 2) docking, 3) priming, and 4) fusion. Pre- and postsynaptic terminals are

separated by the synaptic cleft, but held together by cell-adhesion molecules (CAMs)

of the immunoglobulin, neurexin, neuroligin, eprhin, ephrin receptor, synaptic cell-

adhesion molecules (SynCAMs), and cadherin families (Dalva et al., 2007, Fogel et al.,

2007; 2010, Rebsam and Mason, 2011), which provide this trans-synaptic linkage.

The PSD element of the synapse typically resides in mushroom like dendritic pro-

trusions (dendritic spines) (Tada and Sheng, 2006, Sheng and Hoogenraad, 2007, New-

pher and Ehlers, 2008). Dendritic spine morphology has been found to be associated

with synaptic plasticity (Yuste and Bonhoeffer, 2001). An excellent recent review of

the architecture of the excitatory synapse (Chua et al., 2010) classifies high-level PSD

functions into three main purposes: 1) to cluster glutamate receptors and CAMs, 2)

to recruit signalling proteins, and 3) to anchor these components to the microfilament

cytoskeletal structures of the spine. The latter is achieved by an array of PSD pro-

teins that create filamentous or lattice-like scaffolds and connect the receptor and sig-

nalling component to the cytoskeleton. A main example of this category of proteins are

membrane-associated guanylate kinase (MAGUK) superfamily member families such

as the protein products of the Dlg, Dlgap and Shank genes families. These proteins

are organised in filaments, e.g. PSD-95 of the Dlg family (Chen et al., 2008) or lattice

like structures, e.g. proteins of the Shank and Homer families (Hayashi et al., 2009),

underlying the structural stability of the PSD. These proteins also serve by interacting

directly or indirectly with receptors and signalling molecules. Shank proteins interact

via Dlgap with PSD-95 , which in turn interacts with NMDA receptors, K+channels,

neuroligins and indirectly AMPA receptors via Stargazin interactions (Schnell et al.,

2002, Kim and Sheng, 2004, Schoch and Gundelfinger, 2006, Newpher and Ehlers,

2008, Sturgill et al., 2009). The Shank family of proteins also binds this scaffold to

the cytoskeleton via direct or indirect (e.g. with densin-180) interactions with actin

binding proteins such as a-fodrin, Abp1, and α-actinin (Walikonis et al., 2001, Quitsch

et al., 2005, Schoch and Gundelfinger, 2006, Kreienkamp, 2008).
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The influx of Ca2+ after glutamate receptor activation activates calmodulin (CaM),

which in turn activates a series of different signalling enzymes with downstream ef-

fect, acting as a signal integrator (Xia and Storm, 2005). These downstream proteins

are recruited into PSD complexes by associating, directly or indirectly, with scaffold-

ing proteins like PSD-95 and Shank and by extension coupling with the receptors and

channels the scaffolding proteins interact with. Examples of indirectly associating pro-

teins are adenylate cyclase isoforms and phosphodiesterase 1 (Pde1), all of which in-

teract with PSD-95 interactor, Akap79 (Gorski et al., 2005, Efendiev et al., 2010), Ras

GTPase interacting with PSD-95 via SynGAP (Kim et al., 1998) and Plcβ interacting

with Shank2 (Hwang et al., 2005). Furthermore, there are examples of direct PSD-95

associations such as the one between Src kinases family members (Lyn, Src, Yes, Fyn)

(Tezuka et al., 1999, Kalia and Salter, 2003) and Rho-GEF family member karilin-7

(Penzes et al., 2001, Ma et al., 2008). It is worth noting that the signalling proteins not

only interact with scaffolding molecules but in many cases modulate their interactions

with other proteins, e.g. the CamK2 dependent phosphorylation of PSD-95, as reported

by Gardoni et al. (2006). Also, there are direct interactions of signalling enzymes with

receptor subunits, such as the interactions of NMDA receptor second subunit with PI-3

(Perkinton et al., 2002), CamK2 (Barria et al., 1997) and RasGRF1, which also con-

nects it to the extracellular signal regulated kinase (Erk) / Mitogen activated kinase

(Mapk) pathway (Krapivinsky et al., 2003).

One of the basic protein interaction domains found in scaffolding proteins dis-

cussed in this work is the PDZ domain (reviewed in Nourry et al., 2003, Kim and

Sheng, 2004, Feng and Zhang, 2009). One could argue that PDZ mediated interactions

are as much of a basic component for the synapse as the neurotransmitter receptors,

which they also modulate (Chung et al., 2004, Iwamoto et al., 2004). PDZ domains

can occur in one or multiple copies and are nearly always found in cytoplasmic pro-

teins (Nourry et al., 2003). The MAGUK superfamily proteins contain PDZ domains

(one or three), one SH3 domain, and a guanylate kinase domain (GuK), comprise a
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characteristic PSD PDZ-containing group of proteins and have many representatives

studied in Chapters 4, 5 and 6.

PSD-95, a protein central to the models of the aforementioned Chapters and rep-

resentative of the MAGUKs, forms multimers in a head-to-head manner (Hsueh and

Sheng, 1999), possibly allowing further clustering of its partners in large molecular

complexes. There are many examples of such clustering involving key PSD proteins

like K+ channels (Kim et al., 2007) and NMDA receptors (Cho et al., 1992, Craven and

Bredt, 1998). Except the organisation of such clusters PSD-95 also interacts with neu-

roligin, a postsynaptic membrane protein that interacts trans-synaptically with neurex-

ins (Irie et al., 1997), involving the PSD-95-based scaffold in synaptic adhesion as

well. An illustration of the molecular organisation of the PSD around PDZ-containing

proteins can be seen in Figure 1.2.

1.2.2 The molecular basis of cognition and disease

The protein interaction networks generated in this project are static models of mecha-

nisms and pathways underlying molecular signalling, synaptic plasticity and disease.

For that reason, the following paragraphs give an overview of synaptic plasticity and

its associated signalling pathways as well as pathways involved in disease, in order to

see these in a PSD context.

1.2.2.1 Synaptic plasticity

Synaptic plasticity is the modification (potentiation or depression) of synaptic trans-

mission by experience, i.e. by other synaptic transmission. This modulated modi-

fication constitutes the basis of higher cognitive functions like learning and memory

formation (Morris et al., 1990, Morris and Frey, 1997, Martin et al., 2000, Pastalkova

et al., 2006, Whitlock et al., 2006). Although causal connections between plasticity

and behaviour are hard to establish, some evidence, for example plasticity connec-

tion with fear conditioning (McKernan and Shinnick-Gallagher, 1997), show that it
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Figure 1.2: Overview of the architecture of a synapse. The main PDZ-containing proteins of a glu-

tamatergic synapse are shown, focusing on the postsynaptic density. PDZ domains are indicated by

purple circles. The C-terminal cytoplasmic tails of membrane proteins are indicated by black lines. Spe-

cific protein–protein interactions are indicated by the overlap of proteins. Only a subset of known protein

interactions is illustrated. Although not shown, Lin2, Lin7 and Lin10 are also present postsynaptically,

and many of the proteins of the postsynaptic domain are also present in the presynaptic terminal. Green

and blue ellipses in PSD-95 represent SH3 and GK domains, respectively. Figure from Kim and Sheng

(2004).
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is likely. Plasticity itself is a very wide term and it is well dissected into different

types in an excellent review by Citri and Malenka (2008). There are two main types

of plasticity, namely short term and long term. Short term plasticity, lasting between

milliseconds to minutes has been observed in a wide range of invertebrates and mam-

mals is generated by short or long trains of repetitive or tetanic stimulation (Zucker

and Regehr, 2002). It can be either potentiating or depressing plasticity and can be at-

tributed to mechanisms controlling the release of neurotransmitter, Ca2+ accumulation

or postsynaptic mechanisms. Long term plasticity is expressed as long term potentia-

tion (LTP) or depression (LTD) and has a longer temporal effect. For this reason it is

an appealing mechanism to support Hebbian type learning (Lisman, 1989). The first

evidence of long lasting activity dependent plasticity were given by Bliss et al. (Bliss

and Gardner-Medwin, 1973), and further research gave rise to the, now well studied,

CA1 hippocampal region model.

1.2.2.2 Synaptic plasticity in the context of PSD signalling

The main mechanistic distinction between LTP and LTD is based on their depen-

dence upon the NMDA receptor (independent pathways include mGluR and endo-

cannabinoid receptors). Many proteins have been implicated in the triggering, me-

diation/modulation and maintenance of LTP and LTD. Citri and Malenka cover the

issue in their review, out of which we isolate and present highlights with specific PSD

connections. In NMDA dependent LTP, a mechanism involved in long term-memory

(Zola-Morgan and Squire, 1993, Martin et al., 2000), NMDA receptor activation is

required (Malenka, 1991, Malenka and Nicoll, 1993) and the influx of Ca2+ beyond

a threshold then acts as the initiator. This initiation is translated into LTP via down-

stream signalling pathways. A key component of these pathways is CamK2, which

autophosphorylates after the triggering of LTP (Barria et al., 1997), but also phospho-

rylates AMPA receptors during LTP expression (Derkach et al., 1999; 2007). Also,

activation of Pka kinase boosts the activity of CamK2, by inhibiting competing phos-
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phatase activity (Blitzer et al., 1998). The Erk/Mapk pathway (Sweatt, 2004, Thomas

and Huganir, 2004), Src kinase (Kalia et al., 2004) and Pkc (Pkmζ isoform) (Hrabetova

and Sacktor, 1996) play roles in stages of LTP induction and associated signalling. Be-

yond induction, expression and maintenance of LTP involves specific molecular mech-

anisms. Expression of LTP (in CA1) involves an increase of AMPA receptors clustered

in the PSD (Bredt and Nicoll, 2003, Derkach et al., 2007). It is suggested that these

receptors come from endosome recycling, a process mediated by Rab11a (Park et al.,

2004), while MAGUKs like the Dlgs are also good candidates for the process (Kim

and Sheng, 2004, Montgomery et al., 2004), with PSD-95 being associated with sur-

face expression of AMPAs (Ehrlich and Malinow, 2004). Maintenance of LTP also

requires molecular signalling in order to establish protein synthesis (Zhou et al., 2006,

Sutton and Schuman, 2006), depending on number of proteins including Pka, CamK4

and Erk-Mapk (Thomas and Huganir, 2004) as well as structural remodelling of the

synapse (Lüscher et al., 2000).

In NMDA dependent LTD (Dudek and Bear, 1992) on the other hand, a modest

Ca2+ influx can initiate this process (Mulkey and Malenka, 1992, Cummings et al.,

1996), expressing the bidirectionality of plasticity. The signalling pathways that trig-

ger LTD involve calcineurin, PP1 and inhibitor-1 (Lisman, 1989). The expression

of NMDA dependent LTD, involves clathrin and dynamin mediated AMPA receptor

endocytosis (Ashby et al., 2004, Blanpied et al., 2002). Other than the NMDA de-

pendent LTP and LTD, signalling pathways have been involved in other types of LTP,

LTD and/or plasticity like metaplasticity (“the plasticity of plasticity”) (Abraham and

Bear, 1996, Abraham and Tate, 1997) and homeostatic plasticity(Turrigiano and Nel-

son, 2004). For example, p38, Erk, and Jnk have been shown to be involved in mGluR

dependent LTD (Gallagher et al., 2004, Rush et al., 2002). Recent studies have also

identified proteins of the cytoskeleton controlling spine morphology (Yoshihara et al.,

2009, Tada and Sheng, 2006) and spine growth (Jaworski et al., 2009, Hoogenraad and

Bradke, 2009), processes that have also been connected with plasticity pathways (Chen
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et al., 2004, An et al., 2008, Lebeau et al., 2011).

It is speculated that since the triggering of plasticity is mediated by the integra-

tion of excitatory and inhibitory inputs to a neuron, there must be precise regulatory

mechanisms to maintain the balance of excitatory and inhibitory transmission, the so

called E/I balance (van Spronsen and Hoogenraad, 2010, Fritschy, 2008, Litvak et al.,

2003, Gogolla et al., 2009). However, although knowledge has immensely progressed

regarding molecular mechanisms of plasticity, there have been fewer attempts to put

these within a larger PSD context.

1.2.2.3 The synapse and disease

Given the importance of synaptic signalling to normal brain function and develop-

ment, it is natural to expect that mutations affecting synapse proteins may contribute

to human psychiatric disorders. The Agency for Healthcare Research and Quality

(http://www.meps.ahrq.gov/mepsweb/), cites a cost of $57.5 billion in 2006 for mental

health care in the U.S., equivalent to the cost of cancer care. Added to this cost is

the cost of mental illness due to unemployment, expenses for social support and other

indirect cost due to the individual’s a chronic disability.

Indeed, functional genetic studies have shown that disruption of PSD proteins

linked to glutamate receptor signalling alters cognitive function in rodents (Migaud

et al., 1998, Husi et al., 2000, Grant, 2003), while drugs acting at synapses via an-

tagonism of the glutamatergic NMDA receptors have long been known to result in

a schizophrenia-like psychosis with cognitive disturbance. However, it is only com-

paratively recently that clear evidence has started to appear for a specifically synap-

tic involvement in complex psychiatric disorders such as autism (Jamain et al., 2003,

Moessner et al., 2007, Berkel et al., 2010, Pinto et al., 2010, Hamdan et al., 2011)

and schizophrenia (Kirov et al., 2009b). Additionally, a range of mental diseases or

“abnormal” cognitive manifestations such as Fragile X syndrome (Pfeiffer and Huber,

2009, Dölen and Bear, 2008, Hagerman et al., 2005, Klemmer et al., 2011, Zalfa et al.,

http://www.meps.ahrq.gov/mepsweb/
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2007), Parkinson’s disease (Calabresi et al., 2006), compulsive behavior (Welch et al.,

2007), and even addiction (Kauer and Malenka, 2007) have been shown to have synap-

tic or PSD related pathology. For example, of the 69 proteins linked to X-linked mental

retardation 19 (28%) are postsynaptic proteins (Laumonnier et al., 2007). For some of

the above diseases there are only gene association data, while for a very few cases,

molecular mechanisms have been elucidated. A well studied example is the Fragile X

mental related retardation, where it was recently shown that the affected FMRP protein

directly interacts and affects the turnover of Dlg4 mRNA (Zalfa et al., 2007).

The earliest genetic studies, focusing on candidate genes, were based on small

samples with only sufficient power to reliably detect disease-relevant mutations of rel-

atively large effect. As a result, most reported genes failed to replicate in subsequent

studies, and there was little consensus on which genes were the most strongly sup-

ported (for a review of schizophrenia studies see Harrison and Weinberger, 2005). To

support the equivocal genetic data, comparisons were also made between gene expres-

sion and protein abundance between affected and unaffected individuals, some identi-

fying differences in synaptic proteins. These studies were also of limited impact due

to small sample sizes and problems in interpretation; in particular, it was unclear if the

changes identified were primary causes of disease or secondary effects due to compen-

satory mechanisms or medication. When genome-wide association studies (GWAS) of

common single nucleotide polymorphisms (SNPs) started to be performed, it became

clear that conditions such as schizophrenia and bipolar disorder are highly polygenic,

with potentially thousands of SNPs of small effect contributing to susceptibility (Pur-

cell et al., 2009). The SNPs that have so far reached genome-wide levels of significance

have not yet converged on a clear set of disease-relevant processes. Arguably the most

productive area of research to date has been the study of rare structural variants, with

early studies identifying a translocation of Disc1 (Millar et al., 2000), Pde4b (Millar

et al., 2005) and a micro-deletion causing Velocardiofacial syndrome as conferring in-

creased risk of schizophrenia (for a recent review see Karayiorgou et al., 2010). There
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have been cases where models have been proposed, involving whole pathways such as

the Creb1 - Bdnf - Ntrk2 pathway in depression (Juhasz et al., 2011). Genome-wide

studies of copy number variants (CNVs), in which extended genomic sequences are

duplicated or deleted, have discovered that large, rare CNVs contribute to both autism

and schizophrenia (Redon et al., 2006, Walsh et al., 2008, Stone et al., 2008, Tam

et al., 2009). Many CNVs disrupt multiple genes, making identification of the under-

lying risk factors difficult. Where it has been possible to link a CNV to disruption

of a single gene, strong evidence for involvement of the trans-synaptic machinery has

been found, with the identification of Nrxn1 (Kim et al., 2008), Nlgn3 (Jamain et al.,

2003), Nlgn4x (Jamain et al., 2003), Shank2 (Berkel et al., 2010, Pinto et al., 2010),

Shank3 (Moessner et al., 2007), SynGAP1 (Hamdan et al., 2011, Pinto et al., 2010),

Dlgap2 (Pinto et al., 2010) and Cntnap2 in autism, and Nrxn1 (Kirov et al., 2009a)

in schizophrenia. Interestingly, almost all of these genes regulate synapse structural

organisation: the presynaptic neurexins (Nrxn) and their postsynaptic binding partners

the neuroligins (NLGN) are also known to play a key role in synapse development

and differentiation (Craig and Kang, 2007); while Shank2, Shank3 and Dlgap2 are

PSD scaffolding molecules that organise postsynaptic signal transduction pathways, in

various manners as discussed in earlier paragraphs.

In addition to being involved in mental diseases, PSD proteins are also involved in

many types of neurodegeneration such as Huntington’s disease (Harjes and Wanker,

2003, Goehler et al., 2004) and neurodegenerative dementias such as Alzheimer’s dis-

ease. In the latter case, which has been well studied, various PSD proteins have been

implicated including NMDA receptor subunits (Coleman and Yao, 2003, Shankar et al.,

2007), AMPA receptor subunits (Armstrong et al., 1994), mGluRs (Allen et al., 1999),

CamK2 (Gu et al., 2009), Dlg4 (Gardoni, 2008), Shanks and SynGAP (Gong et al.,

2009), neuroligins (Zhong et al., 2008), integrin (Caltagarone et al., 2007) and cad-

herins (Serban et al., 2005), which have all been shown to be affected by the Alpha-beta

amyloid toxicity.
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Although there is no point listing cases of strong or weak genetic associations,

what is striking from the waxing volume of data on synaptic proteins and disease is

that, beyond the polygenic nature of many of those diseases, there is a clear overlap

in genetic associations. Examples of genetic overlap between diseases include autism

and fragile X syndrome (Budimirovic and Kaufmann, 2011), schizophrenia and bipolar

disorder (Purcell et al., 2009) and autism and schizophrenia (Stone et al., 2008). This

could lead to the speculation that while a gene might be involved in more than one

diseases, it is the molecular context within which it acts that decides the manifesting

phenotype. This molecular context is defined by the interactions of the gene products

within pathways or molecular machines like the PSD.

1.3 Systems neurobiology of the synapse

1.3.1 Neurobiology and the Omics

The advance of molecular biology allowed neuroscience to move from studying neu-

ronal circuits to studying molecules of interest. In a similar fashion the -omics era,

with its continuous improvement of methods (e.g. nucleic acid arrays, mass spectrom-

etry, next generation sequencing, etc) and associated analysis approaches has (again)

revolutionised modern neurobiology, giving direction towards the combination of a

wide range of data into system-wide models. This effect has also, partially at least,

shifted research strategies from direct hypothesis testing to data driven approaches.

In a recent review Geschwind and Konopka (2009) highlight a series of interface ar-

eas between neuroscience and systems biology. The first area is public data sharing

and resource integration, including resources such as the Gene Expression Omnibus

(GEO) database of microarray data (Barrett et al., 2009; 2011), the Allen Brain Atlas

(Ng et al., 2009, Jones et al., 2009), GenePaint (Visel et al., 2004, Alvarez-Bolado and

Eichele, 2006), GENSAT (Heintz, 2004), and BGEM (Magdaleno et al., 2006). All the

latter resources allowed scientists to explore the transcriptome and proteome of neu-
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rons and synapses. The second area of interface is genotype and phenotype integration

using quantitative trait locus (QTL), CNV, or SNP analyses allowing to associate genes

or genetic loci with a specific phenotype. The third area of interface is the accelerated

discovery associated with next-generation sequencing, which allowed not only to re-

sequence genes, but to quantify mRNA, RNA splicing, epigenetic phenomena, DNA

binding, CNVs, insertions, and mutations. The final and most relevant are to this work

is the move from lists, such as the ones provided by proteomics or microarray data,

to networks. Biological networks allow the study of systems in an integrative manner

and also, because of their nature, allow the utilisation of a series of analysis methods

from network science. Moreover, this network perspective allowed vertical integration

between different types of data including genomics, proteomics and phenotypes.

Since this work has a strong focus on the reconstruction of PSD protein interaction

networks based on proteomics data, we will describe the basic aspects of this neurobi-

ology discipline in the following paragraphs.

1.3.2 Proteomics of the synapse

The term proteome (Wasinger et al., 1995) was coined to describe the complete set of

proteins expressed in a cell or organism, as an analogy to the term genome. Proteomics

is a vast discipline in its own right. Proteomic methodology includes techniques such as

protein electrophoresis and 2D electrophoresis (O’Farrell, 1975) as well technologies

such as mass spectrometry (MS) and chip based methods (e.g. Schutkowski et al.,

2005, Coba et al., 2008; 2009) to identify and catalogue proteomes of multi-protein

complexes, organelles, cells, tissues, organs or whole organisms.

A typical approach for the identification of synaptic protein complexes requires

the isolation of the complex from a, usually pre-fractionated, sample extracted us-

ing various types of detergents (e.g. Triton X-100, ComplexioLytes, and DOC). Pre-

fractionation is achieved by extracting synaptic fractions from homogenised brain tis-

sue through synaptosome isolation methods, such as the one described by Carlin et. al
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(Carlin et al., 1980) and Wu et. al (Wu et al., 1986) or more recent optiomisations such

as the ones used in (Husi et al., 2000, Husi and Grant, 2001, Klemmer et al., 2009). The

characterisation of synaptic complexes has generally been performed by MS applied

to the protein sample, after it is separated by electrophoresis (e.g. SDS-PAGE or native

PAGE): enzymes cut the proteins into fragments, which are then ionized, fired through

an electromagnetic field, and their mass to charge ratio is then measured by a detec-

tor. The abundance of individual peptides is calculated from the resulting spectrum,

and clusters of peptides corresponding to individual proteins (or sets of closely related

proteins) identified. The ability to reliably detect a protein will depend on its abun-

dance, the number of characteristic peptide fragments it is cleaved into, and how well

these peptides ionise and ’fly’ within the machine. With improving technology it has

become possible to identify low abundance proteins, an inevitable side-effect of which

is the increased identification of trace contaminants. This problem may be reduced by

improvements in isolation techniques, more extensive validation of identified proteins

and the removal of known common contaminants from results. The most prevalent MS

method is liquid chromatography-mass spectrometry (LC-MS) (Yates et al., 1996), al-

though matrix-assisted laser desorption/ionization reflector time-of-flight mass spec-

trometry (MALDI-TOF-MS) has also been used, primarily in early publications. For a

review of the methods see (Domon and Aebersold, 2006).

The first cataloguing attempts of the proteome of mammalian synaptosomes re-

vealed the presence of over 1000 proteins (Husi et al., 2000, Schrimpf et al., 2005).

However, in order to isolate specific components of the synaptic machinery affinity or

immunoprecipitation methods can be used. In these a “bait” protein is immobilised on

a resin via interaction with an antibody against an epitope or a genetically engineered

tag; contaminants are removed with repeated washes; then the complex of “prey” pro-

teins binding to the bait (both directly and through interactions with other proteins) are

eluted and identified. A similar approach is the use of resin with a bound synthetic

peptide acting as an artificial protein interaction domain. In analysing the composition
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of such complexes, it must be remembered that affinity and immunoprecipitation based

methods are susceptible to biases ranging from non-specificity of the affinity reagent

to potential inability of a genetically tagged protein to be post-translationally modified

in order to interact with some of its partners. Additional problems may arise if the

immunoprecipitation epitope or affinity tag overlap interaction domains required by

prey proteins or from the presence of promiscuous non-specific interactors. A com-

mon way to tackle these is by using multiple antibodies Schwenk et al. (2009). The

transgenic Tandem Affinity Purification (TAP) method (Puig, 2001), which can tackle

some of these issues by using two consecutive purifications with two different affinity

tags, was used to generate some of the data in this project. The MS data in this case

have to be compared to a negative control, where no affinity purification took place,

revealing the true interactors of a bait protein.

Cataloguing the neural proteome in human brain regions is a project undertaken by

the Human Brain Proteome Project (HBPP) (Hamacher et al., 2008). This is a com-

plex task since different brain areas express different PSD proteins (Emes et al., 2008)

and also synaptic plasticity has an effect on the composition of the synaptic proteome

(McNair et al., 2006, Henninger et al., 2007, Piccoli et al., 2007). The aforementioned

methods have been applied to the synaptic proteome both on the pre- and postsynap-

tic sides. Presynaptic proteome proteomics have yielded interesting models of the

synaptic vesicle (Morciano et al., 2005, Takamori et al., 2006) and presynaptic protein

complexes (Burré et al., 2006, Burré and Volknandt, 2007, Morciano et al., 2009) as

well as common pre- and postsynaptic proteins (Collins et al., 2006, Phillips et al.,

2005). Postsynaptic proteome studies have mostly been performed in mice, rats and

humans. One of the earliest high throughput studies identified proteins in a series of

26 prominent multi-protein bands from synaptosome preparations using MALDI-TOF-

MS (Walikonis et al., 2000) . Other proteomic studies focusing on the PSD followed,

including studies by Jordan et al. (2004), Peng et al. (2004), Yoshimura et al. (2004),

Collins et al. (2006), and Klemmer et al. (2009). More recent additions to these lists
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come from Hahn et al. (2009) and Bayés et al. (2010) who studied the human PSD, as

well as Trinidad et al. (2008) and Coba et al. (2009), with the latter two focusing on

phosphorylation and signaling associated proteins. With these constant additions the

total number of proteins in the PSD has risen to more than 2000 (Bayés and Grant,

2009).

The high complexity of the PSD proteome is put into context when looked at from

the perspective of protein complexes. A number of receptor protein complexes have

been analysed including the AMPA (Husi et al., 2000), mGluR5 (Farr et al., 2004),

serotonin (Bécamel et al., 2004), and nicotinic (Kabbani et al., 2007, Paulo et al., 2009)

receptors as well as ion channels such as the K+ channel Kir2.2 (Leonoudakis et al.,

2004). The first studies to isolate protein complexes from within the PSD focused on

the NMDA receptor (NMDAR), which is coupled to signalling pathways via MAGUK-

family (and other) scaffold proteins and plays a major role in the induction of synaptic

plasticity. Initially 100 proteins were identified in isolates using an antibody to the

NR1 subunit of the receptor then 170 by peptide-affinity purification using a MAGUK-

binding peptide from the C-terminus of the NR2B subunit (Husi et al., 2000, Husi

and Grant, 2001, Farr et al., 2004, Collins et al., 2005). The combined set of 186

proteins, referred to as NRC/MASC (NMDA Receptor Complex/ MAGUK-Associated

Signalling Complex) has been the subject of a number of subsequent analyses and will

also be used and referenced throughout this project. More recently the transgenic

TAP technique was applied by Fernández et al. (2009) to characterize 118 proteins in

complexes containing PSD-95. The latter was part of this project and is discussed in

Chapter 4.

Although isolation and identification methods have improved over the years, the

latter studies revealed protein sets with an overlap in the area of 50%. An attempt to

define a consensus PSD proteome or postsynaptic proteome (PSP), abbreviated cPSD,

was made by Collins et al. (2006). Utilizing 1D gel electrophoresis of synaptosome

protein extracts and LC-MS, 698 proteins were identified in the mouse postsynaptic
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terminal, of which 620 had previously been found in PSD preparations. These were

combined with data from other studies (Walikonis et al., 2000, Jordan et al., 2004,

Peng et al., 2004, Yoshimura et al., 2004, Farr et al., 2004) to produce a list of 1126

postsynaptic proteins, of which 446 were found in two or more studies. The majority of

PSD proteins had been identified only once (Collins et al., 2006) at the time, although,

besides proteins of very central importance, such as receptors the situation remains

similar and has to do with technical issues in the complex purification or MS analysis1.

1.3.3 Models of the PSD

The existence of the synaptic proteome catalogues discussed in the previous subsection

is what initiated the attempt to generate static models of PSD data, in order to under-

stand not only the composition but also the organisation of the synaptic proteome.

In the following paragraphs we will discuss important datasets, as well as the major

modelling attempts of PSD proteomics data, which inspired this project.

1.3.3.1 The NRC/MASC model

The accumulation of PSD proteomic profiling data at the beginning of the last decade

led to the first and seminal PSD interactome model, published by Pocklington et al.

(2006). The authors reconstructed and analysed a model of the NMDA receptor and

MAGUK associated molecules complexes (NRC/MASC) using rigorous annotation

and curation of its constituent parts and the interactions between them. They also per-

formed analysis of the network and annotations leading to the first model that described

not only the architecture of the PSD proteome but its correlations with the molecular

basis of plasticity and disease. The dataset was based on 186 proteins of the NMDA,

AMPA and mGluR receptor complexes (Husi et al., 2000, Husi and Grant, 2001, Farr

1Interesting extreme examples can be found within the AMPA receptor complexes where Cornichon,
a very small AMPA receptor interactor that had not been discovered because of its small size (Schwenk
et al., 2009) and Ckamp44, a plasticity associated protein , was not identified since it was, at the time a
novel protein, not annotated in SwissProt (von Engelhardt et al., 2010).
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et al., 2004, Collins et al., 2006), including receptors, key interacting components such

as MAGUKs (e.g. protein of the DLG family), and signalling proteins. These pro-

teins were annotated and classified in functional families. Protein interactions were

retrieved and manually quality controlled, resulting in a protein interaction network of

105 proteins with 248 interactions, which segregated into 13 clusters or modules after

computational analysis (Figure 1.3).

The results of the study showed that the NRC/MASC dataset had highly enriched

protein domains (Table 1.1) with key synaptic signalling functionality including cal-

cium binding, G-protein coupled signal transduction, phosphorylation, scaffolding and

membrane localisation. Interestingly, 24% of the proteins in the NRC/MASC dataset

were involved in plasticity, 29% in rodent behaviour, 23% in learning, and 29% in

mental illness. Further statistical analysis of the data showed significant statistical

correlations between functional families and specific annotations, e.g. the Glutamate

receptors family showed correlations with synaptic plasticity, behaviour, cognitive dis-

orders and schizophrenia and the Phosphatases family with synaptic plasticity. Also,

interestingly there were significant overlaps between proteins involved in more than

one annotations, for example synaptic plasticity showed overlap with disorders such

as schizophrenia and bipolar disorder, revealing a possible overlap in the underlying

biological mechanisms. Most importantly, statistical analysis showed correlations be-

tween modules and specific annotations, e.g. cluster 1 of the network appeared en-

riched in ionotropic glutamate receptors, as well as schizophrenia and synaptic plastic-

ity correlations, while cluster 2 appeared enriched in metabotropic glutamate receptors

and behaviour correlations. Another important finding from this analysis had to do

with the position and the importance of the protein in the network and how that corre-

lates with the effects of its mutation. Using all the data available the authors showed a

correlation between the number of interactors a protein has and the effect its mutation

has on measured LTP (Figure 1.4).

Overall the reconstruction and analysis of the NRC/MASC model yielded some
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Figure 1.3: The NRC/MASC protein interaction network segregated in clusters (briefly summarised).

Each of the resulting clusters showed enrichment in distinct groups key annotation terms of PSD func-

tionality. Figure from Pocklington et al. (2006)
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Table 1.1: Ten most common protein domains in NRC/MASC proteins. All domains in this list ap-

pear enriched compared to the genome and have key synaptic signalling functionalities, highlighting the

involvement of the the complex in such processes.

Domain n-fold enrichment compared
to genome

IQ calmodulin-binding region 12.1

PDZ/DHR/GLGF 7.3

Serine/threonine-protein kinase domain 6

C2 calcium-dependent membrane targeting 5.9

Src homology-3 domain 5.3

Pleckstrin homology 4.7

Pleckstrin homology-type 4.5

Small GTP-binding protein 3.2

Protein kinase, catalytic domain 3.1

Calcium-binding EF-hand 2.9

Figure 1.4: An analysis performed on 36 proteins nodes in the NRC/MASC model (where data was

available) shows that the effect of mutation of the node is significantly correlated to the node degree. The

plot shows absolute change (% baseline) as a function of node degree. Data from personal communica-

tion with AJ Pocklington and Pocklington et al. (2006)
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important findings regarding the modularity in the architecture of the PSD and how

modules correlate with specific functionality, often in an overlapping manner. How-

ever, the most important conclusions were regarding the organisation of PSD protein

complexes as a molecular computation machine. It was shown that proteins are or-

ganised in a modular protein interaction network, where each module shows specific

correlations with molecular functions and biological processes. Analysis of this or-

ganisation showed that a higher level model of organisation (Figure 1.5) could be ex-

tracted from the protein interaction network. MASC proteins clustered into modules

with specific functional roles. Primary signal reception modules (blue in Figure 1.5)

are formed around ionotropic and metabotropic receptors. This ’input’ layer directs

information to a large ’information processing’ layer (red in Figure 1.5) responsible

for the integration and co-ordination of downstream processes. Other sources of input

(‘other receptors’ in Figure 1.5) may feed into this module directly, or through smaller

input/processing modules. Furthermore, modules appear not to have individual but

multiple roles distributing information processing and regulation. The lower ’informa-

tion processing layer consists of several intermediate modules (yellow in Figure 1.5),

which regulate overlapping sets of pathways, while numerous small modules (green in

Figure 1.5) are specific to individual effector responses, which constitute the ’output’

layer. Interactions between components of these layers do not take place in with sim-

ple feed-forward mechanism, rather a dynamical balance between multiple functional

processes.

1.3.3.2 The PSD phosphoproteome model

In light of the static models describing protein interaction networks of the PSD, namely

the NRC/MASC model, as well as the models described in Chapters 4 and 5, the need

to apply the same type of analysis on the dynamic aspect of these networks became

apparent. Activation of NMDA receptors is known to modulate the activity of post-

synaptic tyrosine, serine and threonine kinases (Kandel, 2001, Collins et al., 2005,
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Figure 1.5: Modular structure and functional organisation of the NRC/MASC protein interaction net-

work. Receptor complexes modules form the input layer (blue), which connects to signalling modules

forming the information processing layer (red), which integrates the signals. The latter in turn connects

to the output layer (green) which consists of modules directly regulating specific biological processes.

Note that the connectivity is not strictly feed-forward manner, but there also are regulatory loops present.

Figure from Pocklington et al. (2006)
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Trinidad et al., 2006, Munton et al., 2007) and computational models have supported

the advantage of the organisation of these phosphorylation interactions in signalling

networks (Jordan et al., 2000, Ma’ayan et al., 2005). Coba et al. (2009) made the first

attempt of modelling these synaptic phosphorylation networks, integrating data from

previous knowledge on the PSD kinome with proteomic data on the change of the

phosphorylation state of PSD proteins after LTD induction and receptor activation as

well as phosphorylation peptide array data. Results showed that LTD induction elicited

changes in a wide range of functional families of PSD proteins, including channels and

receptors and scaffolding proteins accounting for 10% and 15% of proteins modulated

respectively. Measuring the activation of 23 PSD kinases, 9, representing all four ma-

jor kinase groups, showed NMDA dependent activity changes. Additionally, agonist

activation of NMDA, dopamine and mGluR receptors, as well as Pka and Pkc kinases

drove phosphorylation of NMDA and AMPA receptor subunits, revealing cross-talking

regulatory pathways. Furthermore, using phosphoproteome (PPP) arrays, representing

300 phosphorylation sites of 92 PSD proteins, the authors probed 25 PSD kinases. The

results revealed a complex kinase-substrate network (Figure 1.6), which was further

investigated and found to be representing various phosphorylation mechanism motifs

(single / multiple site, kinase divergence / convergence, pairing, and priming). Over-

all these results highlight the potential complexity within the already complex PSD

molecular machine. Taking into account the dynamic nature of the phosphoproteome

network the authors speculate that it could provide a framework for the transmission of

information from a single neurotransmitter to a numerous output proteins in an orches-

trated manner, also providing a basis of resilience to perturbations. Furthermore, with

computational models indicating that two-state synapses perform poorly on memory

storage compared to multi-state synapses (Fusi et al., 2005, Fusi and Abbott, 2007),

this framework could provide a model for the latter type of synapse, via the wide range

of possible states of kinases and substrates.
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Figure 1.6: Postsynaptic phosphoproteome network, constructed by linking kinases to their respective

substrates, which include other kinases. The network was segregated into groups of proteins by using

an unsupervised clustering algorithm. In the diagram, each group was separated into two levels (one

level containing kinases, the other containing substrates) for ease of viewing. Adjacent to each substrate

is a “barcode” composed of five boxes (shaded either black or white) indicating the presence (black) or

absence (white) of particular regulatory motifs within that substrate. Figure from Coba et al. (2009)
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1.3.4 Evolution of the PSD

Most of the PSD studies in the literature have been performed using mammalian and

most specifically mouse or rat samples. It is important, however, both for the basic

understanding of the PSD’s function, but also for future applications (e.g. identification

of drug targets or disease susceptibility genes) to also look at the evolution of this

molecular machine. This evolutionary study of the PSD extends both to organisms

with “simpler” nervous systems, possessing PSD orthologs, as well as the human PSD,

which is of major interest due to the cognitive and disease aspect of it. The following

paragraphs summarise the state of the art regarding the evolution of the PSD and non-

murine PSD models. Although our focus is on proteomics based datasets and models

throughout this work, a lot if not most of the work on the study of the evolution of

PSDs has been based on comparative genomics approaches, which with the exception

of the human PSD, dominate this subsection.

1.3.4.1 Evolution of PSD complexes

Sakarya et al. (2007) assembled phylogenies from 36 PSD gene families from the

genomes of demosponge A. queenslandica (lacking neurons and nervous system),

cnidarian N. vectensis (possesses a nerve net), reference invertebrate (D. melanogaster),

and mammalian (H. sapiens) species. From comparison of the data the authors found

that a surprising number of PSD proteins are present in the demosponge and cnidar-

ian genomes. Furthermore, they found that domain organisation in dlg (representative

of the Dlg family) was 100% conserved between these species and also that the con-

served PSD genes were expressed in ciliated A. queenslandica cells. Other studies

have confirmed that many families of synapse and cell signalling genes are present in

the phylum Porifera (sponges), supporting the hypothesis that core synaptic signalling

components were present at the base of animal kingdom (Yasuyama et al., 2002, Ruiz-

Cañada et al., 2002, te Velthuis et al., 2007).

In an attempt to investigate the evolutionary origins and trajectory of the PSD and
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its architecture a larger scale comparative genomics approach was applied by Emes

et al. (2008). This approach was based on the proteomics data from the NRC/MASC

and PSD datasets (Husi et al., 2000, Husi and Grant, 2001, Farr et al., 2004, Collins

et al., 2006). One-to-one mappings of orthologues of genes encoding for proteins in

the PSD were retrieved for 19 species. The species studied comprised of a wide range

of animals with nervous systems of differing anatomical complexity, including inver-

tebrates, non-mammalian vertebrates, mammals and also an out-group that does not

possess a nervous system (S. cerevisiae). The authors observed that approximately

23% of all mammalian synapse proteins were detected in yeast (21.2% NRC/MASC,

25.0% PSD) and 45% were detected in invertebrates (46.2% NRC/MASC, 44.8% PSD)

(Figure 1.7). Therefore, a substantial proportion of genes encoding MASC and PSD

orthologues predated the origins of the nervous system, with apparent stepwise ex-

pansions following the divergence of metazoans from eukaryotes and vertebrates from

invertebrates. Of these genes of course, the ones coding for membrane receptors, are

absent from species lacking a nervous system. Further investigation suggested that

most functional types of synaptic proteins were present in early metazoans and that the

proto-synapse constructed from this core functionality has been elaborated on during

the evolution of invertebrates and vertebrates. A more careful examination of individ-

ual functional families of PSD genes shows that this expansion appears to have primar-

ily involved gene family expansion and diversification among upstream signalling and

structural components (receptors, scaffolding proteins, and cytoskeletal, adhesion and

signal transduction molecules). These gene family expansions, have possibly resulted

from genome duplications and can be seen in Figure 1.7 as “jumps” in percentage of

human PSD genes marked by the arrows. It must also be noted that in the light of

the new human PSD proteomics data (see next subsection), a recent follow-up study

(Emes and Grant, 2011) showed that there is conservation of human PSD genes, pro-

tein domains and even functional pathways that spans from prokaryotic organisms to

human. A characteristic example is the chemotaxis system in E. coli, components
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Figure 1.7: Comparison of PSD and MASC orthologues across species. The occurrences of human

PSD and MASC orthologues found in each of the 19 species are shown as a percentage of those found

in human. Black arrows mark major events of gene family expansions. Figure from Emes et al. (2008)

of which have homologs in the human PSD. Emes et al. obtained expression data for

~150 MASC genes in ~20 brain areas and showed that proteins in the upstream compo-

nents (’input’ and partially ’information processing’ layers) showed greater variation

in expression and were of more recent evolutionary origin.

Research on other non-mammalian PSD complexes has been done either in a gene

or small pathway context, or in order to augment comparative genomics approaches.

Among these, the case of model organism D. melanogaster (fruitfly) is interesting.

Xia et al. (2005) showed that NMDA receptors mediate learning and memory in D.

melanogaster. In a complementary study Leibl and Featherstone (Liebl and Feath-

erstone, 2008) showed that the fruitfly genome has homologs for mammalian PSD

receptors such as NMDA, AMPA and Kainate receptors as well as proteins associated

with trafficking of these receptors and also demonstrated the effect of one of them

(pod1) to glutamate receptor clusters. Interestingly, most synapse work in fruitfly has

been done in a neuromuscular junction (NMJ) rather than a neuronal synapse context

although the two are highly similar (Collins and DiAntonio, 2007). To our knowledge

the only attempt to isolate and identify fruitfly PSD complexes was done by Emes et al.

(Emes et al., 2008), where the authors used a synthetic hexapeptide NR2 C-terminus

bait and isolated 220 fly MAGUK and MASC (fMASC) proteins. Although no net-
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Figure 1.8: The emergence of titular MASC components across clades is illustrated. Proteins are or-

dered based on whether they are located ‘upstream’ or ‘downstream’ in synaptic signal transduction path-

ways of the NRC/MASC model. Non-coloured fields represent the absence of a given protein, whereas

dark grey rectangles denote its presence. Diagrams of MASC structure are placed above each clade,

along with an illustration of a representative model organism. Figure from Ryan et al. (2008)

work was reconstructed it was found that ~25% of the fMASC proteins were upstream

components, in contrast with ~60% in the mouse case.

Ryan and Grant (2009) reviewed data from Emes et al. (2008), along with data

on choanoflagelates, sponges and cnidarians. They give a descriptive review of the

progression from organisms lacking a nervous system but having components to form

a “protosynapse” to the complex synapses of mammals, via the simpler synapses of

metazoans. Their review is summarised in Figure 1.8, where the authors show how

NRC/MASC components started accumulating during evolution, allowing the forma-

tion of the deuterostome synapse. The high complexity of the deuterostome synapse

according to the model is also a result of the gene family expansion of key PSD families

like the DLGs and the second subunit of the NMDA receptor (NR2), which allowed

more different interaction combinations. This is also supported by the evolutionary

elaboration of the intracellular terminal of NR2B, which in contrast with the inverte-

brate gene that only interacts with PDZ domains, has more interaction interfaces (Ryan
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et al., 2008). The authors also give some ’synapse first’ speculations, hypothesising

that current evidence shows that the presence of some synaptic components allowed

further evolution in mechanisms of synaptogenesis.

1.3.4.2 The human PSD

The human PSD (hPSD) is of great interest due to the aforementioned involvement in

cognition and disease. The first analysis of proteomics data from hPSD samples was

not published until recently, partly because of issues with acquiring human brain tissue

samples. Bayés et al. (2010) isolated hPSD complexes from fractionated human neo-

cortical biopsies samples and using LC-MS identified 1461 proteins (748 detected in

triplicate). This study focused more on disease and phenotype annotation, rather than

network reconstruction and showed that 269 monogenic diseases result from mutations

of 199 hPSD (14% of total) genes. Of these diseases 133 (~50%) are nervous system

disorders, with ~80% being central nervous system disorders. The authors also showed

that hPSD proteins and their mouse orthologs were enriched in 21 neural phenotype

annotations from the Human Phenotype Ontology (HPO) (Robinson et al., 2008) and

77 neural phenotype annotations from the Mammalian Phenotype Ontology (MPO)

(Smith et al., 2005), including cognitive and motor phenotypes. A reconstructed net-

work model, although unpublished, showed overall high similarity to that of the mouse

cPSD (L.N. van de Lagemaat, personal communication). The results of this analysis

corroborates indications from the NRC/MASC mouse model, regarding the associa-

tion of the hPSD in cognition and disease and also offers tangible evidence about the

constituent parts of the human PSD and its similarity to the mouse PSD as speculated

in earlier studies (see Emes et al., 2008 and Chapter 5).

Another important aspect regarding the evolution of the PSD under the light of the

hPSD proteomics data was revealed after the analysis of dN/dS ratios (Hurst, 2002)

(where dN represents amino-acid substitution frequency and dS the background rate

of neutral DNA changes). Comparisons of human dN/dS ratios with mouse, chimp
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and macaque showed that hPSD proteins were highly conserved compared to the rest

of the genome, a phenomenon not restricted to the human lineage. It was also shown

that hPSD proteins were more conserved than other brain expressed proteins, which

are also known to evolve with a slower rate (Winter et al., 2004, Khaitovich et al.,

2005, Wang et al., 2007). This agrees with previous reports showing that proteins with

many interactions are more conserved (Fraser et al., 2003).

1.3.5 Neuroproteomics informatics

In order to make biological sense of the efforts to catalogue and model the PSD (or

in general the synaptic proteome) it is of great importance to handle and organise

the data (Kumar and Mann, 2009). Neuroproteomics (and proteomics in general)

is notorious for the large volumes of data that it generates. Additionally, given the

volume of data from annotations of genes and proteins as well as PPIN models of

complexes, the need for neuroproteomics informatics is apparent. Although there is

a large collection of freely available biological databases for functional annotation,

known protein interactions and the associated phenotypes and physiology of genes,

bespoke specialist neuroproteomics databases are now starting to appear. Prominent

examples of these are SynDB (Zhang et al., 2007) (http://syndb.cbi.pku.edu.cn/) and

Genes2Cognition (Croning et al., 2009) (G2Cdb, http://www.genes2cognition.org/db/)

databases. SynDB is a database of genes and proteins with known (or predicted) synap-

tic function based on other annotations. G2Cdb is a data warehousing project, which

compiles a catalogue of the mammalian synapse genes along with information on their

synonyms, annotations, and associations with phenotypes of disease, behaviour, or

physiology.

http://www.genes2cognition.org/db/
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1.4 Motivation, hypothesis and goals

1.4.1 Motivation

The number of known synaptic proteins has increased 10-fold (Croning et al., 2009),

since 2000, mostly as a result of improvements in the complex isolation, purifica-

tion and characterisation methodology, and overall data acquisition process. However,

even as recently as 2009, when Bayés and Grant reviewed the discipline of neuropro-

teomics, there was no standardised methodology for the analysis of the data. The effect

of that can be seen in an otherwise excellent paper by Klemmer et al. (2009), where

the authors deliver a high standard proteomic dataset but admit that the resulting recon-

structed model (generated by expensive proprietary software) lacked many interactions

and failed to integrate and represent the data. Due to that the analysis of the dataset was

confined to the protein lists. From the previous paragraphs it must be now evident how

reconstructions of models based on proteomics data can generate descriptive models.

These models not only describe the data but also tease out hidden information that

lies within the organisational principles in the PSD molecular machine. We find that

the NRC/MASC model set a standard for the reconstruction and analysis of models

from neuroproteomics data. This was achieved not only by successfully applying an

approach to reconstruct the NRC/MASC complex but also because the resulting anal-

ysis showed a clear modular structure within it. The most interesting feature of this

structure was that modules correlated with somewhat specific biological functions. We

believe that being able to dissect and investigate that modular structure will lead to a

better understanding of the function of the PSD molecular machine. Based on that we

decided to create a standardized pipeline and apply it to different proteomics datasets

in order to show that this modular structure and architecture is a prominent feature of

PSD complexes and reflects a modularity in biological functions.

Furthermore, by applying this pipeline to proteomics data of the PSD, we noticed

a missing link between work that has been done to characterise PSD protein in simple
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organisms (e.g. cnidaria) and mammals. There was an impressive lack of information

on the PSD complexes of the fruitfly. D. melanogaster is a model animal and because

of that a vast repertoire of techniques and tools to genetically manipulate it is available.

Also, given the evidence backed speculations that the fruitfly possesses similar but

slightly “simpler” PSD complexes, we thought it would be interesting to attempt a first

mapping of these using direct experimental methods rather than comparative genomics.

This would allow not only to catalogue the fly PSD but also investigate whether the

same modularity principles that govern complexes like the murine NRC/MASC apply

there as well.

1.4.2 Hypothesis

The motivation to undertake this project was distilled into the following set of testable

hypotheses:

1. PSD proteomics data, although substantial, is still sparse. These data can be

augmented using new methods and affinity purification strategies isolating novel

or known PSD proteins in the context of their protein complexes.

2. Protein interaction networks of the PSD have a modular architecture. This struc-

ture or modularity is persistent with respect to the addition of new data or the

examination of different subsets of the PSD, as acquired by using different pro-

tein baits in affinity purification experiments. This modular architecture reflects,

to some level, a functional significance.

3. The lower complexity in constituent parts of organisms with less intricate ner-

vous systems and behavioural repertoires is reflected both in proteomics data

and the reconstructed network models. However, although less complex from

a constituent parts perspective we also hypothesise that there is evidence of the

aforementioned modular architecture as well as a meaningful biological inter-

pretation of it.
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4. Reconstructed models of mouse and fruitfly PSDs are comparable, namely through

their constituent parts and modular architecture. Furthermore, we expect to see

some basic modules and their functionalities being conserved up to the level al-

lowed by the presence of homolog gene products and their successful proteomic

isolation.

1.4.3 Goals

In order to address these hypotheses we set out to achieve the following goals. Initially

we compiled and put together the methods for the model reconstruction and analysis

pipeline (Chapter 3). Followingly this pipeline was applied to a) a new mouse pro-

teomics dataset (Chapter 4), addressing hypotheses (1) and (2), as well as b) a mouse

proteomics dataset compiled from previous high quality datasets (Chapter 5), address-

ing hypothesis (2). Additionally, we set out to produce the first model of the fly PSD

by isolating and identifying protein complexes and applying the same pipeline to this

dataset (Chapter 6), addressing hypothesis (3). Finally, after obtaining these models,

we discuss observations on their comparison in Chapter 7, addressing hypothesis (4).
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Materials and Methods

2.1 Drosophila strains

Materials and methods described here were used by the author to generate the fly PSD

(fPSD) proteomics data discussed in Chapter 6. For the methods used for the gener-

ation of the mouse PSD data discussed in Chapters 4 and 5 refer to Fernández et al.

(2009) and Husi et al. (2000), Husi and Grant (2001), Farr et al. (2004), Collins et al.

(2005), Fernández et al. (2009) respectively. Generation of the two aforementioned

datasets was not performed by the author.

2.1.1 Handling

Flies were transferred from 18°C stock vials and reared on standard cornmeal food in

bottles at 25°C in LMS cooled incubators. Food was ‘Dundee food’ (a standard yeast,

cornmeal and agar medium) prepared in the Swann media kitchen, Kings Buildings at

18°C or room temperature. Precise numbers of flies were not maintained in vials but

stocks were kept healthy by frequent changes into fresh food when required judging

on the size of individuals and mobility of larvae. Stocks were tipped frequently to

avoid mite pests and yeast paste (made from dried Allison’s yeast mixed with water)

was added to vials with sick stocks when required. Small volumes (~0.5-3ml) of water

35
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were occasionally added to vials or bottles when required, to prevent food from drying

out.

Figure 2.1: Overview of the piggyBac construct used for the transformation of the CPT fly lines. The

series of affinity tags (StrepII, FLAG and yellow fluorescent protein - YFP) flanked by splice donor and

acceptor sites is visible in the middle of the construct.

2.1.2 Strains

2.1.2.1 Genetics

The D. melanogaster strains that were used are part of the Cambridge Protein Trap

(CPT) line collection (Ryder et al., 2007). These strains were genetically modified with

a combined piggyBac (Cary et al., 1989) and P-element transposon strategy, using an

exon encoding a series of affinity tags (StrepII, FLAG and yellow fluorescent protein -

YFP) flanked by splice donor and acceptor sites (Morin et al., 2001). This allowed the

expression of a tagged protein product when inserted in correct orientation and reading

frame. Figure 2.1 shows an illustration of the construct (top) and how it allows tagging

of the expressed proteins.

This effort generated fly lines which were subsequently used to document and an-

notate the expression of Drosophila genes (Ryder et al., 2009) and also the in-vivo

analysis of interactomes by parallel affinity capture (iPAC) (Rees et al., 2011).
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2.1.2.2 Bait choice

In order to isolate fPSD complexes we chose four different CTP strains, each express-

ing a tagged protein which we considered a candidate bait for affinity purification of the

fPSD complexes. These proteins were dlg1 (CPTI-0000207) , Bsg (CPTI-0000062),

14-3-3ε (CPTI-0000034) and tau (CPTI-0000194). The entries in FlyProt database

(Ryder et al., 2009) (http://www.flyprot.org/), which is an annotation portal for the

CPT lines, shows that in all cases the insertions are included in all known splice vari-

ants.

One reason these bait proteins were chosen was their expression pattern in areas

of the brain associated with learning and memory. We retrieved data from the Brain-

Trap database (Knowles-Barley et al., 2010) (http://fruitfly.inf.ed.ac.uk/braintrap/ - at

the time only partial annotation was available), which integrates expression data for

the subset of CTP lines that express the tagged protein in the brain. All of the above

proteins are expressed in the brain (Figure 2.2). More specifically the data suggests

that the above proteins are expressed in the ellipsoid body (14-3-3ε, Bsg, dlg1), calyx

(dlg1), stalk (14-3-3ε), alpha-lobe (14-3-3e), and gamma-lobe (14-3-3ε, Bsg). The bait

proteins are also expressed in the whole (14-3-3ε, Bsg, dlg1) of the mushroom body,

the fan-shaped body (14-3-3ε, Bsg, dlg1), the optic neuropil (dlg1, tau), the protocere-

bral bridge (Bsg, dlg1), the cerebral cortex (14-3-3ε, Bsg, tau), the subesophageal gan-

glion (dlg1), the protocerebrum (dlg1, tau), the deutocerebrum (dlg1, tau), the nodulus

(dlg1), lamina (Bsg, tau), antennal lobe (14-3-3e, dlg1), and optic (Bsg, dlg1) lobes.

The aforementioned data are a good indicator of the involvement of these proteins in

PSD processes, since the fly’s mushroom bodies are associated with learning and ol-

factory memory (Strausfeld et al., 1998, Yu et al., 2006) while the fan-shaped body

has been associated with visual memory (Liu et al., 2006a). Additionally, the ellipsoid

body has been implicated in visual pattern memory via a protein kinase G pathway

(Wang et al., 2008), NMDA receptor-dependent long-term memory consolidation via

R2/R4m neurons (Wu et al., 2007) and spatial orientation memory via the R3/R4d
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neurons (Neuser et al., 2008).

Another reason for choosing these baits was the central position of their mouse

homologs in the corresponding PSD models. Dlg1 and 14-3-3ε are known central

component of the mammalian PSD. Additionally, tau, the homolog of the human tau

protein (Mapt), is involved in pathways associated with Alzheimer’s and other neu-

rodegenerative diseases (Wittmann et al., 2001, Jackson et al., 2002, Scherzer-Attali

et al., 2010, Ittner et al., 2010). Furthermore, Bsg is known to be required pre and

post-synaptically in NMJs (Besse et al., 2007) and also its mouse homolog has been

associated with abnormal behavioural responses (Igakura et al., 1996). Finally, we

should note that an additional criterion to the bait choices along with the choice of

specific CPT lines1 was the quality of results obtained in preliminary experiments.

Figure 2.2: Expression of the 4 chosen bait proteins in the fly brain. Data from the Braintrap database

Knowles-Barley et al. (2010). All proteins show localised expression in brain areas asosciated with

Drosophila learning and memory. Also dlg1, 14-3-3ε and tau have known postsynaptic localisation and

known interactions with fPSD proteins, while Bsg has a learning and memory phenotype (see text for

references)

1There were more than one insertion lines per gene.
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2.2 Methods

2.2.1 Affinity purification of complexes

2.2.1.1 Overview

The proteomic isolation and purification of the fPSD complexes was an adaptation

of the affinity purification protocol, described in Rees et al. (2011), optimised for fly

head samples using the bait proteins discussed earlier. For each bait protein extract

was mixed with resin slurry, which resulted in the immobilisation of the bait protein

via resin - tag (StrepII) or antibody-tag (YFP) interactions. All experiments were per-

formed in parallel with a wild type (WT) untagged control (csw− flies). Two separate

sets of affinity purifications were performed and an overview of the workflow is shown

in Figure 2.3. The first purification (Figure 2.3, left) involved four protein baits, using

Strep-Tactin sepharose resin (IBA) and anti-YFP (Clontech) resins, against the Strep

II and the YFP tag respectively, and was done in duplicate. Data from the YFP and

Strep-Tactin purifications were merged after discussions with the proteomics facility.

This affinity purification was performed in the Cambridge Centre from Proteomics and

the resulting data will be hereon referred to as CCP data. The second purification (Fig-

ure 2.3, right) was performed using 3 out of 4 baits (tau was left out since it did not

provide satisfying results in the first purification) using only a Strep-Tactin resin, also

in duplicate. This affinity purification was performed in the Edinburgh Centre from

Proteomics and the resulting data will be hereon referred to as ECP data. Note that in

this case we chose a single-step purification protocol.

Although a tandem affinity purification ensures lower contamination rates we pre-

ferred a single step approach for two reasons. First, it would be simpler since the

tagged constructs had not been extensively studied and we had no data on how good

the exposure of a second tag would be. Second, based on in house data and discussions

with the Genes2Cognition consortium, a two step purification would be suitable for a

more detailed study of sub-complexes rather than an attempt to map and reconstruct as
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much of the fPSD as possible.

Each affinity purification experiment in the workflow was experimentally validated

for the presence and enrichment of the bait protein before the samples were sent to

be analysed with LC-MS. This validation was done by western blotting and probing

against the YFP tag. Results of this validation can be found in Appendix A.1.1.

Figure 2.3: Overview of the complex purification and identification experimental design.

2.2.1.2 Head sample preparation

The fPSD protein complexes were isolated using affinity purification from fly head

protein extract. For each transgenic or wild type Drosophila line, independent samples

were prepared for each replicate. An approximate number of adult (7-10 days old)

flies was collected in a skirtless 50mL Falcon tube (Greiner), up to the 15mL line.

The tube was flash frozen by immersing in liquid N2 for at least 45s. The tube was

then shaken on a bentchtop vortex for 10 seconds. This results in the heads, wings

and legs being separated from the bodies. The content was poured through 2 tandem

sieves (Fisher Scientific, top 710µm mesh, bottom 425µm mesh) immersed in liquid

nitrogen. The sieves were then shaken sideways in order to separate coarser (bodies)

from finer (heads) particles. The top sieve retained the bodies, while the bottom sieve

retained the heads and let the legs, wings and other debris fall through. The heads



2.2. Methods 41

retained by the lower sieve were transferred and weighted into eppendorf tubes and

then frozen at -80°C for the preparation of the protein extract (~80mg needed). We

decided against using brain protein extract because of the time bottleneck introduced

by the need for dissections in order to obtain enough sample material. Additionally,

individual fly brains are much harder to handle, compared to the bulk preparations of

heads.

2.2.1.3 Protein extraction protocol

For the protein sample preparation the tubes were transferred from -80°C on dry ice.

80mg of heads were weighted in an eppendorf tube. 1mL of lysis buffer (LB) was

added to the heads and the mixture was homogenised on ice using a pestle and grinder

(40 sec). The samples were left to stand on ice for 5min and then the pellet was re-

moved by centrifugation (10.000 rpm for 10 mins) at 4ºC. This results in a separation

of the pellet and the protein extract. After optimisation, we found that a total volume

of 1mL gave good separation of protein extract and pellet. The supernatant (S10) was

removed avoiding the fatty layer between supernatant and pellet. During the optimi-

sation of the protocol we noticed that the presence of this fatty layer in the affinity

purification caused lower final yields. The concentration of the SN was calculated us-

ing a Nanodrop (Thermo Scientific). Typical concentrations varied between 30 and

60 mg/ml. All samples were normalised to 30 mg/ml.Buffer recipes can be found on

Table 2.1.

This protocol was developed by Jo Rees (Cambridge Centre from Proteomics) and

optomised by Jo Rees and the author. It has to be noted that initially we used the lysis

buffer recipe used in Emes et al. (2008) (LB2) but decided against it since the recipes

and protocol above gave slightly higher yields of protein.
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2.2.1.4 Affinity purification protocol

For the StrepII tag purifications 50 μl pre-washed Strep-Tactin sepharose resin was

added to 1 ml (30 mg) protein extract S10 and incubated at 4ºC for 2 hours on a rotary

mixer. Non binding (NB) material was removed by centrifugation (3.000rpm for 2

min), while a small sample was kept for western blotting and the resin washed three

times in ice cold LB, with a sample from the first wash (W) kept for western blotting.

StrepII tagged bait protein, with any associating proteins, was eluted twice with 50

μl of 10 mM desthiobiotin (Sigma) in LB for 30 min at 4ºC on a rotary mixer. The

two eluates (E1 and E2) were combined (E) and any residual resin was removed by

centrifugation at 4.000 for 2 min. For the YFP purifications we followed an identical

protocol although elution was performed using YFP high affinity peptide (Jo Rees,

unpublished, sequence AcDFKEDGNILGHKLEYNYNSH/NH2, 100 µg/mL) in LB.

Final eluates were reduced in volume to approximately 20µL in a SpeedVac (Savant).

Buffer recipes can be found on Table 2.1.

2.2.1.5 Protein identification using immunoblotting

Initially enrichment of the protein extract in bait protein was verified via comparison

with the amount of protein in the NB, W and S10 samples by immunoblotting. 2µL

of E sample were with 18µL LB and 5µL 5 x sample buffer (5xSB). On all other

samples (S10, NB, W) 20µL were mixed with 5µL of 5xSB. Precast 4-20% SDS-PAGE

gels (PAGEgel) were loaded and run at 160V for ~1h. Transfer was done at 300A

of current on nitrocellulose sheets (Amersham). Blots were blocked in 5% milk in

wash buffer (WB) solution for 1h, probed with 1:1000 anti-JL8 (Clontech) in WB

overnight, washed 3 times (15min) with WB and probed with secondary antibody (anti-

mouse-HRP conjugate, Amersham). The gels were developed after an additional 3

15min washes with WB, using ECL Plus reagents (Amersham). The anti-JL8 antibody

recognises the YFP tag expressed in the bait proteins. Buffer recipes can be found on

Table 2.1.
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Table 2.1: Recipes for buffers used in protein extraction (LB, LB2) and protein identification using

immunoblotting (5xSB, WB, RB, TB)

Buffer Recipe

LB Final concentrations: Tris pH7.5 50mM, NaCl 125mM, MgCl 1.5mM, EDTA
1mM, Glycerol 5%, Nonidet P-40 0,4%, Tween 20 0.1%, PMSF 1mM.

Make10mL and add 1 tablet PhoStop (Roche), 1 tablet CompleteMini protease
inhibitor (Roche) and DTT on tip of spatula.

LB2 Final concentrations: Tris pH 7.4 50 mM, Nonidet P-40 0.5 %, NaF 50 mM, ZnCl2
20 mM, o-vanadate 1 mM, PMSF 1mM, aprotinin 2 µg/ml and leupeptin 2 µg/ml.

5xSB Final concentrations: Tris pH7.5 200 mM, Bromophenol blue 0.05%, Glycerol
20%, SDS 4% fc, B-mercaptoethanol 5%, PMSF in MeOH 2mM, EDTA 2 mM.

Add fresh DTT on tip of spatula before using.

WB PBS with 0.1% Tween-20

RB RunBlue Fast Run Buffer (Expedeon): Tris-MOPS-SDS.

TB 3.03g Tris, 14.4g Glycine and 200ml Methanol. Make up to 1L and adjust pH to
8.3

2.2.2 Mass spectrometry

The ECP affinity purification data was processed in the Edinburgh Centre for Pro-

teomics by Juri Rappsilber’s group. An LTQ-Orbitrap mass spectrometer (Thermo-

Electron) was coupled online to an Agilent 1100 binary nanopump and an HTC PAL

autosampler (CTC). To prepare an analytical column with a self-assembled particle

frit (Ishihama et al., 2002), C18 material (ReproSil-Pur C18-AQ 3 μm; Dr. Maisch,

GmbH) was packed into a spray emitter (75-μm ID, 8-μm opening, 70-mm length;

New Objective) using an air-pressure pump (Proxeon Biosystems). Mobile phase A

consisted of water, 5% acetonitrile, and 0.5% acetic acid; mobile phase B, consisted

of acetonitrile and 0.5% acetic acid. The peptides were loaded onto the column at a

flow rate of 0.7µL/min and eluted at a flow rate of 0.3µL/min according to the gradient

0% to 20% buffer B in 75 min and then to 80% B in 13 min for two hours run. FTMS

spectra were recorded at 30,000 resolution and the six most intense peaks of the MS

scan were selected in the ion trap for MS2, (normal scan, wideband activation, filling
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7.5 ∗ 105 ions for MS scan, 1.5 ∗ 104 ions for MS2, maximum fill time 150 msec, dy-

namic exclusion for 60s sec). Raw files were processed using DTA SuperCharge to

obtain the peak list. Searches were conducted using MASCOT (MatrixScience, ver-

sion 2.2) against a Drosophila database. The search parameters were: MS accuracy, 6

ppm; MS/MS accuracy, 0.6 Da; enzyme, trypsin; allowed number of missed cleavages,

2; fixed modification, carbamidometylation on Cysteine and variable modification, ox-

idation on Methionine.

The CCP affinity purification data was processed in the Cambridge Centre for Pro-

teomics by Kathryn Lilley’s group. 5 or 10 μl peptide was loaded onto a precolumn

(Presearch) then concentrated peptides were subsequently loaded onto a PepMap C18

reverse phase, 75 mm i.d., 15 cm analytical column (LC Packings) and eluted using

an Eksigent nano LC system at a flow rate of 300 nl/min attached to a LTQ Orbitrap

(Thermo Electron). Gradient was applied to resolve and elute the peptides into the

LTQ ion trap. The two 30 min washes with 85% and 65% ACN were adopted to re-

duce carryover of residual abundant peptides, such as Actin, that bind non-specifically

due to their sticky nature. The Orbitrap was operated in data dependant mode, MS then

2x MS/MS with data dependent settings set to excluded contaminant masses with a dy-

namic exclusion of 0.3 Da. m/z values were selected based on the protein abundance

across multiple samples, including controls, from the same purification batch and from

previous assays. Resulting fragment masses (MS/MS) were searched using the MAS-

COT (version 2.2) search engine against an in house database comprising FlyBase D.

melanogaster genome (version 5.9) plus the FASTA sequence for YFP to confirm the

presence of the tagged protein. The search parameters were: enzyme, trypsin; allowed

number of missed cleavages, 2; fixed modification, carbamidometylation on Cysteine

and variable modification, oxidation on Methionine. The decoy database option, com-

prising a scrambled D. melanogaster database in silico digested that generates a similar

number of the same sized peptides, was checked to automatically calculate the protein

false discovery rate (FDR).



Chapter 3

Computational Methods

3.1 Background

Models of protein-protein interaction networks (PPINs) are pivotal to systems biology

approaches. Generation of valid PPIN models requires; a) proteomics data to provide

a parts list and b) molecular interaction data to provide the connectivity of the model,

with both datasets being of vital importance to the quality of the resulting model. One

of the goals of this project was to design and implement a standardised workflow for the

reconstruction of PSD PPIN models and their subsequent analysis in order to address

and test the hypotheses. After background research and testing, we assembled a set of

methods into a bioinformatics workflow, hereon referred to as the modelling pipeline,

in order to reconstruct and analyse these models.

This modelling pipeline is in essence a series of annotation and computational anal-

ysis methods and software solutions that are applied in order to annotate the proteins

and interactions of the model, reconstruct, visualise and finally analyse it (Figure 3.1).

Although the contents of this chapter are in essence methods in the shape of algorithms,

tools or data resources, a great deal of time was dedicated in compiling, reviewing, se-

lecting and integrating the ones used in this work. For that reason we will not only

mention these but give a very short background summary for each group.

45
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Figure 3.1: Diagrammatic overview of the modelling pipeline.

3.2 Annotation methods

3.2.1 Data annotation

The first step when faced with a set of proteins is to collate information concerning

their biological roles. Relevant features include known functional characteristics, phe-

notype and disease association, patterns of expression and evolution. Analysing these

annotations can often yield insight into a complex even before constructing a network

model.

3.2.1.1 Molecular function and pathways

Functional information can range from a broad classification of molecular function,

to presence of functional domains and motifs, to involvement in biological processes

and pathways. The most commonly used source of gene and protein annotations is the

Gene Ontology database (Ashburner et al., 2000) (GO, http://www.geneontology.org),

a hierarchical ontology of controlled terms organised into 3 independent domains: cel-

http://www.geneontology.org
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lular component (CC), biological process (BP), and molecular function (MF). With

thousands of terms and up to 12 levels of specificity, GO can potentially provide quite

detailed annotation. However, some terms are applied to only a handful of molecules,

while others are so non-specific as to be virtually meaningless, and there can be ex-

treme variability even between terms at the same level of the hierarchy. This is in

part due to the perennial problem of literature bias - some genes have been subject to

much greater research than others, which will be reflected in the reliability and depth

of their annotation. Utilised in its entirety, GO imposes a large multiple testing burden

on statistical analyses, and strategies for identifying a subset of meaningful, relatively

independent terms must be devised (e.g. GO Slim subsets), in order to maximise the

power of any test. More recent functional ontologies, such as PANTHER (Thomas

et al., 2003, Mi et al., 2006) (http://www.pantherdb.org/), have tried to deal with some

of the above issues. While PANTHER terms fully map to a subset of GO (and are

backed up by the same types of evidence) they are much better balanced, being only

3 levels deep with more evenly sized gene sets at each level1. Since GO is the stan-

dard in functional annotation but PANTHER is also superior in the aforementioned

aspects, we have used both for the annotation of proteins in this project. More specifi-

cally PANTHER was used to classify proteins into functional families and subfamilies

(examples in Table 3.1), while GO was used for annotation enrichment.

Protein domains - peptide sequences encoding structured, functional units - provide

another important source of information (especially where gene-level data is poor).

Sources of domain classifications include InterPro (Hunter et al., 2009) and PFAM

(Finn et al., 2010). The UniProt database (Magrane and Consortium, 2011) anno-

tates the amino acid sequence of each protein for known domains and other functional

features such as binding and phosphorylation sites. Tools such as ELM (Gould et al.,

2010) can also be used to identify short linear peptide motifs regulating subcellular tar-

1While PANTHER provides accurate classifications for molecules of the nervous system, it does not
come without flaws in that domain. Take the example of PANTHER’s entry for D. melanogaster’s dlg1
gene, which codes for one of the most central proteins in the fly PSD (and its homologs in the mouse
and human PSDs). Its molecular function was “Unclassified” (as of 2010/02/15).

http://www.pantherdb.org/
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geting, physical interactions, phosphorylation and other processes. As these are short

and often highly degenerate, they can easily occur by chance and many predicted sites

will not be functional.

Table 3.1: Classification of the PSD genes and their products discussed in this thesis in functional

families. This table shows examples of the types of families (and example subfamilies) of PSD proteins

discussed throughout this work.

Family Subfamilies (example)

Adaptor/ Regulatory 14-3-3, PDZ-domain containing scaffolders, non-PDZ-domain
containing scaffolders

Cytoskeletal/ Structural/
Cell adhesion

Actin / Actin Related Proteins (ARP), Catenins, MAPs, Myelin, Other
Cell Adhesion Molecules, Other Cytoskeletal Proteins, Other signalling

molecules, Spectrin, Tubulin, actinin

Enzymes ATP synthases, Other Enzymes

G-protein signaling G-proteins, Modulators

Kinases Ser/Thr Kinases, Tyr Kinase

Phosphatases Protein Phosphatases

Receptors/ Channels/
Transporters

ATP synthases, Ca2+-ATPases, Glutamate Receptors, Inward rectifying
K+ channel, NA+/K+-ATPases, Other Channels and Receptors, Other
signalling molecules, Transporters, Voltage-dependent anion channels,

Voltage-gated K+-channel

Signalling molecules and
Enzymes

Heat shock / Chaperones / Chaperonins, Mitochondrial Enzymes,
NADH-Ubiquinone Oxidoreductase, Other Enzymes, Other signalling

molecules, Translation

Transcription/
Translation

Ribosomal Proteins, Transcription, Transcription Elements

Unclassified Other transmembrane, Uncharacterised / novel

Vesicular/ Trafficking/
Transport

Clathrin, Modulators, Motor Proteins, Other Enzymes, Other signalling
molecules, Other transport, Synaptic vesicle

Information on involvement in biological processes and ’pathways’ can be obtained

from GO, PANTHER, KEGG (Kanehisa et al., 2010) and Reactome (Matthews et al.,

2009). However, with the exception of well studied metabolic processes (and even

here novel observations are still being made), most functional pathways are still poorly

defined.
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None of the annotation resources mentioned above captures the entire literature

and the overlap between similar terms in different ontologies can be surprisingly low

in some cases. Although all annotations can be improved by manual curation, this is

a time-consuming process best reserved for highly focussed studies, such as refining

the results of analyses based on one of the comprehensive ontologies. Evidence codes

summarising the type of information linking an annotation to a gene (e.g. as supplied

by GO) can be very useful for simple filtering without recourse to manual checking

of references. Since each gene can have multiple functional annotations, these may

capture pleiotropic effects in diverse cell-types that in some cases are misleading (In-

low and Restifo, 2004). On the other hand, this can be hard to disentangle from genes

which truly have multiple functions - some of which were first observed in one cell-

type, some in another - and whose disruption may have a more widespread effect on

a complex than disruption of a highly specialised, single-function gene. The question

of literature bias must always be kept in mind, especially when analysing the overlap

between annotations. The fact that a gene has been extensively studied in one con-

text (e.g. synaptic signalling) may make it more likely to have been studied in another

(e.g. as a candidate gene for schizophrenia), making annotations based on these studies

non-independent.

3.2.1.2 Diseases and phenotypes

Data covering involvement of genes in human Mendelian disorders is collated in the

Online Mendelian Inheritance in Man (OMIM) database (McKusick and Amberger,

1994, McKusick, 2007) (http://www.ncbi.nlm.nih.gov/omim/). OMIM also covers

complex disorders, but these are better dealt with using other resources. A number

of recent resources, including the Genetic Association Database Becker et al. (2004),

Alzgene (Bertram et al., 2007) (http://www.szgene.org), PDgene (Yu et al., 2008c)

(http://www.pdgene.org), and SZgene (Allen et al., 2008) (http://www.szgene.org),

collate the results of genetic association studies for a particular disorder, perform meta-

http://www.ncbi.nlm.nih.gov/omim/
http://www.szgene.org
http://www.pdgene.org
http://www.szgene.org
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analyses and provide ranked lists of associated genes or loci, making them a useful

gateway into the field for non-experts. While it is possible to use the top hits from

these or other lists as a disease annotation, this does throw away a lot of informa-

tion and can introduce the problem of literature bias. With many genome-wide stud-

ies of SNPs and CNVs now available through dbGAP (Wooten and Huggins, 2011)

(http://www.ncbi.nlm.nih.gov/gap) it makes much more sense to use individual studies

in their entirety, with access to multiple datasets, allowing replication of results.

Genetic and pharmacological manipulations of model organisms have uncovered

developmental, physiological and behavioural roles for many genes. A substantial

amount of this phenotypic data is available from organism-specific databases such as

Mouse Genome Informatics (Blake et al., 2002, Eppig et al., 2005; 2007, Bult et al.,

2008) (MGI, http://www.informatics.jax.org/), Rat Genome Database (Shimoyama et al.,

2011) (RGD, http://rgd.mcw.edu), Flybase (Gelbart et al., 1997) (http://www.flybase.org)

and Wormbase (Stein et al., 2001) (http://www.wormbase.org). MGI and RGD both

use the Mammalian Phenotype ontology (Smith and Eppig, 2009), allowing them to

be easily combined if necessary. As with virtually all resources, the databases listed

above do not encapsulate the entire literature and can always be supplemented by text

mining. As noted earlier, the representation of genes in the literature may be biased.

Depending on the source, phenotype annotations can be based on a diverse array of ev-

idence, and the ability to filter out certain types of studies is essential for ensuring data

quality. We would strongly recommend separating single gene data from multi-gene

manipulations, and suggest that the relevance of transgenic studies be carefully con-

sidered. Some additional resources have appeared in the literature, e.g. PhenomicDB

(Kahraman et al., 2005, Groth et al., 2007) (http://www.phenomicdb.de/) that integrate

data from multiple sources (including the databases listed above). These may also be

of use, although care must still be taken to ensure data quality.

http://www.ncbi.nlm.nih.gov/gap
http://rgd.mcw.edu
http://www.flybase.org
http://www.wormbase.org
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3.2.1.3 Gene and protein expression

Complexes are typically isolated from either whole brain preparations, or in some cases

a particular anatomical region. Analysis of expression data can indicate the ways in

which complex composition and function may vary across brain regions, cell-types and

developmental stages. Expression can be measured in multiple ways. Western blots

can detect the presence of a protein in a tissue, while immunohistochemistry allows

its localisation to be determined as well. These methods are semi-quantitative at best,

as is in-situ hybridisation which highlights mRNA localisation in a tissue. Microar-

rays and RNA sequencing both measure RNA abundance in a quantitative manner. In

addition to producing more detailed information, exon arrays give more accurate gene-

level expression measurements compared to older microarray chips, with the emerging

RNAseq technology providing the cleanest data to date. When drawing upon multi-

ple types of expression data it must be kept in mind that neurons can span multiple

anatomical regions, with their cell-body (and most of the RNA) in one and axons and

dendrites (and many proteins) extending into others. Useful resources include the MGI

gene expression database (Ringwald et al., 1997; 2001, Smith et al., 2007b, Finger

et al., 2011), the Brain Gene Expression Map (BGEM) (Magdaleno et al., 2006) and

GENSAT (Heintz, 2004) (http://www.gensat.org/index.html) for mouse, and the Allen

Brain Atlas (Jones et al., 2009) (http://www.brain-map.org/) for both mouse and hu-

man. Individual high quality datasets (Doyle et al., 2008a) can also be identified in

the literature. Many of these can be downloaded from the large public repositories Ar-

rayExpress (Parkinson et al., 2009) and the Gene Expression Omnibus (Barrett et al.,

2009; 2011) (GEO, http://www.ncbi.nlm.nih.gov/geo/).

3.2.1.4 Evolution and orthology

Nervous systems and the behaviour repertoires they support vary tremendously in com-

plexity. By identifying and comparing orthologous PSD genes across organisms we

can start investigating the evolutionary mechanisms behind PSD complexes. This

http://www.gensat.org/index.html
http://www.brain-map.org/
http://www.ncbi.nlm.nih.gov/geo/
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may in turn shed light on the relative importance of particular complexes or classes

of molecules in the behavioural complexity of different species. More pragmatically,

identifying orthologous genes allows annotations to be transferred from one species

to another e.g. when wanting to investigate the relevance to human disorders of com-

plexes characterised in rodents. The Ensembl Compara database (Vilella et al., 2009)

(http://www.ensembl.org/) concentrates upon vertebrates, but also contains a number

of invertebrate and unicellular species commonly used as model organisms. The In-

Paranoid database (Berglund et al., 2008, Ostlund et al., 2010) covers a more diverse

range of organisms. Information retrieved from these databases will typically contain

a large number of many-to-one and many-to-many mappings. These will need to be re-

solved, identifying the most closely related cross-species pair. An alternative approach

to this is using MGI, which has pairwise one-to-one mappings between mouse, human

and rat. A caveat of this type of precomputed annotation, when there is no manual

sanity checking, is that if there is a misannotated ortholog, this mistake will “spread”

since this misannotated ortholog is going to bring its homologs as orthologs of the

query gene. The above has to be taken into account even when high quality resources,

such as Compara, are used.

3.2.1.5 Implementation

Data annotation collection was implemented in PERL (http://www.perl.org). Imple-

mentation details are given on Tables 3.2 and 3.3. Note that also, since integrated

disease associated SNP, GWAS and CNV resources were not available at the time we

had to rely on database cross-references, text mining and manual curation for the an-

notation of these complexes.

3.2.1.6 Considerations

Various issues can arise during the annotation process. We have found that a typi-

cal problem in data annotation is keeping the protein and gene identifiers up-to-date.

 http://www.ensembl.org/
http://www.perl.org
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Table 3.2: Data annotation implementation. All implementations in PERL using the CSV/XLS, OBO

and XML parsers (CPAN)

Annotation Source file Comments

Database identifiers and
gene/protein synonyms

UniPro XML and
Ensembl Biomart query

csv/xls (version 53)

UniPro has a synonyms field. Biomart should
be queried for all database identifiers.

GO Ensembl Biomart query
exported csv/xls (version

53)

Ignore “Inferred from Electronic Annotation”
(IEA). Parse the OBO file from GO and

maintain the term hierarchy so over-counting
is avoided.

PANTHER PANTHER flat file
(version 6)

The PANTHER GO-like ontology was
eventually discontinued.

Table 3.3: Data annotation implementation. All implementations in PERL using the CSV/XLS parsers

(CPAN).

Annotation Source file Comments

Functional families and
subfamilies

PANTHER flat file PANTHER family/subfamily classifications
were mapped to the family/subfamily
classifications and then were manually

checked.

Protein domains InterPro and PFAM flat
files

InterPro and PFAM annotations were taken
from the UniPro entry.

Evolution Ensembl Biomart query
exported csv/xls

Query Biomart for compara orthologs. Also
include orthology type.

Disease & phenotypes OMIM, G2C in-house
association files

Most of the information gathered at this stage
of annotations was also augmented with text

mining data.

This type of analysis is done at a later stage, after the proteomics results have been ob-

tained, and it is very common for some of the database IDs of the proteins or associated

genes to have changed or become “stale” (outdated) resulting in a chain of misanno-

tation events. A solution to this can be automated by running sanity check scripts on

the dataset frequently and manually checking any inconsistencies. Also, choosing a

database which uses identifiers that do not become “stale” often is suggested. We have

found that MGI IDs rarely become “stale”.

Other issues that we have encountered involved the use of annotation resources
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such as GO and PANTHER. The reader has to keep in mind that these annotations are

based on various types of evidence which are denoted by an attached evidence code

(http://www.geneontology.org/GO.evidence.shtml). Our practice, which we can sug-

gest for similar tasks, is to choose a set of standards as to which evidence codes are

deemed acceptable. These standards should be applied systematically throughout the

annotation procedure. e.g. GO data with a general “Inferred from Electronic Anno-

tation” (IEA) evidence code should usually be ignored or thoroughly checked before

used. The same standards should be applied in cases of ambiguous annotation or simi-

lar issues that can only be resolved by a human annotator. Also, there are cases where

an annotation will not fit the ontology format of GO or PANTHER since the user will

want to have more control over parameters. An example of that would be differential

expression of a gene in different cell types, where the user would want to control things

like the threshold of the ratio of gene expression in different brain areas. These types

of annotations have to be accommodated manually. Also, for compactness some an-

notation database files will only contain the lowest level terms for each gene, in which

case it will be necessary to download the full ontology (OBO file) and assign all parent

terms to avoid over-counting in correlation computations.

The process of annotation is lengthy, but rigorous systematic annotation can be

assisted by partial automation. Ensembl offers the Biomart webservice which can be

accessed programmatically (http://www.ensembl.org/biomart/) and automate the re-

trieval of such information. However we suggest, specially in cases of smaller datasets,

that everything is manually checked. This manual curation has to be done using a set

of rules, as to what is accepted and what not, and these rules have to be followed for

all the annotation curation. As an extension to that reusing annotations from old data

can save a lot of time and effort, so good archiving and regular updating of the central

data repository is imperative.

As a final point, the reader should take into account that imbalances in literature

affects most annotations. These imbalances range from bias towards the study of spe-
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cific genes and their products, or specific contexts of the latter. Sources of imbalance,

however, could be even more subtle and could e.g. have to do with biases in the exper-

imental methods uses to study specific gene products.

3.2.2 Interaction annotation

Once a list of constituent parts of a protein complex is obtained and annotated, the

next step is gathering the connectivity information, in order to produce a PPIN model.

Connectivity in the case of PPINs comes from binary interaction information. The

following section describes the ways which interaction data may be obtained. There

is a wide variety of data resources for protein-protein interactions ranging from single

interaction studies to high throughput whole interactome studies. This subsection dis-

cusses methods for interaction annotation via direct data retrieval from these resources,

while techniques for interaction annotation via text mining and manual literature cura-

tion will be discussed in section 3.2.3.

3.2.2.1 Experimental data resources

The constant improvement of protein complex affinity purification, mass spectrometry

identification and other high throughput methods like Yeast Two-Hybrid (Y2H) screen-

ing (Young, 1998) and the mammalian protein interaction oriented LUMIER method

(Barrios-Rodiles et al., 2005) have resulted in a great accumulation of protein-protein

interaction data. Beyond the volume of research done on smaller complexes and in-

teractions in a low throughput manner, as of today there are also a number of whole

interactomes available, including organisms like yeast (Uetz et al., 2000, Schwikowski

et al., 2000, Ho et al., 2002, Gavin et al., 2002; 2006, Krogan et al., 2006, Yu et al.,

2008a), C. elegans (Walhout et al., 2000; 2002), D. melanogaster (Stuart et al., 2007),

H. pylori (Rain et al., 2001) and human (Bouwmeester et al., 2004, Barrios-Rodiles

et al., 2005, Rual et al., 2005, Ewing et al., 2007).

Several issues have been raised over the years with regard to Y2H screening, which
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at the moment is the most high throughput of the experimental methods. The critique

has focused on the high rate of false positives, analysed by Vidalain et al. (2004) as

biological and technical false-positives and has caused dispute over the use of Y2H

screening data in manually curated interaction models unless there is other support-

ing evidence. The first category includes interactions that occur in yeast cells, but do

not occur in vivo in the organism of study, because there is no way to simulate dif-

ferential gene expression and protein localisation. The only way to eliminate these

is by obtaining this type of information regarding the studied proteins, which is not

always available. The second category of technical false positives includes protein in-

teractions that are identified in Y2H screens due to technical limitations of the system

(e.g. auto-activation of reporter domains). Various approaches and frameworks have

been proposed to minimise the false positives. These involve changes in the method

itself (Vidalain et al., 2004), the use of combined results obtained by other methods

(Mering et al., 2002), or the use of statistical methods in combination with functional

annotation, in order to estimate the quality parameters of a Y2H screening experiment

(Venkatesan et al., 2009). These high throughput based approaches are usually avail-

able as entries in protein interaction databases and are currently a major source for pro-

tein interaction data retrieval. However, in order to avoid the aforementioned caveats

as much as possible, we manually curated the entries utilising specific standards (see

subsection 3.2.3.7).

3.2.2.2 Databases

Technology allows us to take advantage of the accumulation of data coming from

low and high throughput methods by organising it in databases. Because of the var-

ious different experimental approaches and data sources there is a lot of variety in

the available data as well. This variety stems from the methods, different species,

types of interactions (binding, phosphorylation etc), dataset quality, and confidence.

Although several protein interaction databases are publicly available (see http://ppi.fli-
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leibniz.de/jcb_ppi_databases.html), we will focus on databases that include mammalian

(or in the case of the fPSD complexes discussed in Chapter 6, also invertebrate) data.

Databases have two major focuses, either being central protein complex repositories

or curated databases of protein interactions focused on a specific set of organisms

or type of interaction. An example of the former is IntAct (Hermjakob et al., 2004)

(www.ebi.ac.uk/intact/), which is the one of the central repositories for protein inter-

actions. It is managed by the European Bioinformatics Institute (EBI) and contains

a mixture of literature curated entries and data submissions. The other category of

databases include entries that usually come from manual or semi-automated curation

of the literature or collections of high throughput interaction screening experiments.

Databases that were used in the interaction annotation for this project are given in

Table 3.4. UniHi is a very comprehensive database of the computational, predicted

and experiment-based human protein interactions and has been extensively used in our

workflows. It is based on merging different whole interactome maps from different

data sources, including BioGrid, IntAct and DIP among others as well as Y2H screen-

ing data.

Table 3.4: Protein interaction databases used for the reconstruction of PSD PPIs.

Database URL Reference

BioGRID http://www.thebiogrid.org/ Stark et al., 2006

DIP http://dip.doe-mbi.ucla.edu/dip/ Salwinski et al., 2004

HOMOMINT http://mint.bio.uniroma2.it/HomoMINT/ Persico et al., 2005

HPRD http://www.hprd.org/ Peri et al., 2003

MINT http://mint.bio.uniroma2.it/mint/ Ceol et al., 2010, Cesareni et al., 2008

UniHi http://www.mdc-berlin.de/unihi Chatr-aryamontri et al., 2007; 2008

Parsing data from these resources can (usually) be done automatically - when the

data is available as for download or bulk searches. This is done by mapping gene

IDs to the database’s internal IDs and then retrieving all the relevant interactions. In

some cases, where it is possible, setting confidence cut-offs is very useful since many

http://www.ebi.ac.uk/intact/
http://www.thebiogrid.org/
http://dip.doe-mbi.ucla.edu/dip/
http://mint.bio.uniroma2.it/HomoMINT/
http://www.hprd.org/
http://mint.bio.uniroma2.it/mint/
http://www.mdc-berlin.de/unihi
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of the interactions have a low confidence score. Recently there was a very useful

addition to the toolkit for protein interaction retrieval, namely the release of PSICQUIC

(Aranda et al., 2011), a common interaction retrieval interface. Although currently not

all databases are integrated in the system, when that becomes the case we speculate

that PSICQUIC will become an indispensable tool.

3.2.2.3 Homology data

When two pairs of ortholog proteins from different species interact they are referred

to as interolog pairs. Interolog prediction is a good way of inferring interactions but is

also a thorny subject when only using the sequence homology as a criterion of simi-

larity between interacting pairs. There are cases of very big length and sequence dif-

ferences between orthologues in distant lineages, e.g. the NR2 subunit of the NMDA

receptor in mice and flies (Ryan et al., 2008) and in these cases not all interolog inter-

actions might take place. Interolog data should be used carefully and ideally filtered

using a confidence score based on homology, correlation of gene expression, or func-

tional annotations. An example of this approach has been implemented in DroID (Yu

et al., 2008b), a database of interactions for D. melanogaster. Recently Gallone et al.

(2011) developed a method for automated scoring of interolog-based protein interac-

tions which, in the case of invertebrate complexes such as the fly PSD, will automate

part of this process.

3.2.2.4 Implementation

For the part of the interaction data retrieved from databases, custom PERL scripts were

written to parse flat files from databases in Table 3.4. Information retrieved included

type of interaction, supporting pubmed ID and annotation type (if automatically or

manually sourced from the paper). UniHi flat files were provided by Prof. Erich

Wanker. The set of interactions used for the NRC/MASC model was also used as a

source file. As mentioned in the next paragraphs, all evidence was manually checked.
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3.2.2.5 Considerations

When using protein interaction databases it is important to consider the following fac-

tors. First of all a supporting pubmed ID must be accompanying every interaction.

Second the protein interaction must be a direct interaction and not product of a spoke

model expansion, which sometimes are included in the raw data file (e.g. IntAct). The

most important factor is to consider which databases are manually curated and which

include annotations from indirect protein interaction inference (e.g. co-citation of gene

names in Pubmed abstracts). The latter type should be avoided.

3.2.3 Mining data from the literature

3.2.3.1 Text mining

While protein interaction and annotation databases like the ones mentioned in the

previous paragraphs rapidly provide data for the models, their coverage is far from

complete. Data is also buried within a corpus of hundreds of thousands of scientific

papers in the existing literature. The volume of this corpus along with other issues

(e.g. ambiguous terms and non-machine readable formats) makes the application of

text-mining methods for information extraction imperative (Policies et al., 2008).

3.2.3.2 Corpus compilation and indexing

For biomedical text mining applications, local mirrors of PubMed, including all the

meta-information are the standard type of corpus2. The corpus has to be indexed

in order to optimise the search of terms. This can be achieved with freely available

software like Lucene (http://lucene.apache.org/). Additional application of natural lan-

guage processing (NLP) tools can maximise the efficiency of text mining. These in-

clude pre-processing of the corpus with for the purposes of: tokenisation and sentence

detection, part of speech (POS) tagging and abbreviation detection and named entity

2It has also been empirically found that figure legends provide an excellent additional corpus as well,
although correctly extracting them from the papers still poses a challenge.

http://lucene.apache.org/
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recognition (NER). In NER parts of the text referring to biological entities are tagged

using classifiers trained for the biomedical domain, e.g. in Alex et al. (2007), identify-

ing terms that represent protein names or interaction terms. Currently there are freely

available tools like the ones offered by NaCTeM (http://www.nactem.ac.uk) which can

be used for all the NLP steps. This collection of tools could perform most of the text

tokenisation and POS tagging. The aforementioned, used in combination with tools

like Biothesaurus (Liu et al., 2006b) or Biotagger-GM (Torii et al., 2009) for the NER

can potentially provide higher efficiency.

Figure 3.2: Potential protein-protein interaction curation procedure with collabQC.

3.2.3.3 Queries and query expansion

Queries are made against the corpus, in order to retrieve abstracts containing rele-

vant information. Obtaining the right keywords to retrieve relevant abstracts is another

challenge. This is mainly because of the number of potential synonyms every gene or

protein might have as well as their potential spelling variations. For some common

terms or initials lists of variations can be manually compiled and combined with a list

of synonyms for each protein and its associated gene name. Acquiring the gene and

protein synonyms can be done by mining public database entries’ “name”, “synonyms”

http://www.nactem.ac.uk
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and “gene name” fields or using some specialised service like BioMinT (Pillet et al.,

2005) (http://biomint.pharmadm.com/). Query expansion is a key step in compiling the

list of synonyms. The simplest form of query expansion would be to try all possible

combinations of spelling taking things like special characters (e.g. spaces, hyphens)

and roman numerals into account. Although pre-compiled thesauruses which can be

very useful (Sasaki et al., 2010), there is no standalone solution for this problem. We

have found that collecting all available synonyms for a gene and protein entity and

applying rules like the one mentioned above will generate rich enough lists. An alter-

native to this is using the EFetch utility, as mentioned above, which uses PubMed’s

built-in query expansion system although that was recently found to reduce precision

in some cases (Schuemie et al., 2010). More recent innovations addressing this prob-

lem are based on the query itself, expanding it based on the biological context of the

gene or protein, like e.g. QuExT (Matos et al., 2010).

3.2.3.4 Overview of the text mining process

Once the corpus is prepared and the list of queried terms is compiled it is easy to pro-

grammatically automate a process of submitting queries with the keywords of interest.

If attempting to mine for protein annotations these queries will include all the syn-

onyms of a specific gene or gene product (after query expansion) in all combinations

with all the annotation terms of interest (e.g. [“gene name” OR “synonym”] AND “dis-

ease”). If mining for protein interactions, these queries will include all combinations

of synonyms for a given pair of potentially interacting proteins. This will generate lists

of results or “hits” which can then be prioritised and curated.

3.2.3.5 Implementation

Mining the literature for annotations of proteins Although annotation retrieval

can be more difficult than protein interaction retrieval due to the more evasive na-

ture of the types of annotations, annotating for specific features can be easier once

http://biomint.pharmadm.com/
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the keywords are defined. In the case of the PSD complexes annotation we initially

used a combination of Lucene, Rainbow (http://www.cs.cmu.edu/∼mccallum/) and

Weka (Hall et al., 2009) for text classification. These annotations were performed

for the NRC/MASC complex by Pocklington et al and were available as an in-house

G2CDB dataset. At a later stage, in order to annotate novel mouse data and update the

NRC/MASC annotations a custom script calling the PERL interface of the EFetch util-

ity (http://eutils.ncbi.nlm.nih.gov/entrez/eutils) provided by PubMed was used. EFetch

utilises PubMed’s search function but can be used in programmatic workflows. The im-

plementation included the gene name and synonyms along with the disease or pheno-

type term of interest. The abstracts retrieved from this process were manually checked.

Interaction retrieval In order to reconstruct mouse PSD complexes we used the

TXM pipeline (Alex et al., 2008), a system initially developed for the BioCreativeII

challenge (http://www.biocreative.org/). This pipeline queries an indexed corpus for

co-citation of all possible combination of gene names in a complex (including syn-

onyms). Further analysis of the co-citation hits utilises information within the structure

of the text, in order to compute a confidence for each hit, based among others on the

proximity of the references of the two potentially interacting entities in the text or the

presence of interaction-associated terms.

3.2.3.6 Interaction curation using collabQC

While text-mining methods have become more accurate the results still contain false

positive hits and have to be manually quality controlled. This manual quality control

(curation) of each hit is done by human experts and is the single major bottleneck of

the modelling pipeline.

Given the size of the text-mining task and volume of resulting data including hits

and the data retrieved from databases, the procedure of quality control needs to be

streamlined. After noticing that there is a lack of freely available software to assist with

http://eutils.ncbi.nlm.nih.gov/entrez/eutils
http://www.biocreative.org/
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that, we developed our own solution. CollabQC is a server-side application designed

to organize and assist with the collaborative quality control of text-mining results for

binary protein interactions, allowing multiple experts (curators) to annotate each po-

tential interaction hit. Figure 3.2 illustrates an overview of how collabQC works as

part of the modelling pipeline.

The design of collabQC was based on the need for a software solution that offers

an intuitive, web-based, curation interface (Figure 3.3) and a database manipulation

backend to store and manage the text-mining results. As a server-side application

it is designed to provide an easy way to allow curators to annotate the text-mining

results. The installation is simple and the software is optimized for large datasets.

Most importantly, the curation procedure is done through an intuitive interface and

that allows going through a significant volume of results in fewer man-hours.

Multiple experts can log into the server. Once they select one of the datasets they

can view various grouped lists and start annotating hits. The grouping and sorting of

the text-mining results is based on the protein names, PubMed IDs of the papers or

likelihood of the hit (ranking), as provided by the text-mining methods. As such, these

lists cover all the hits for a pair of interacting proteins or all hits found in a specific

paper. The curator can go through and rapidly annotate the individual hits. Annotation

of the individual hits is done on the curation page. This page is compact and infor-

mative. It includes the abstract of the paper in which the text-mining method found

potential evidence of interaction and an annotation form. External protein interaction

database entries, if found, are cross-linked from IntAct. The original query terms for

the protein names and their synonyms are colour coded and highlighted in the text to

aid the user to find the appropriate text and decide on the annotation. Next, the hit is

annotated as a true positive or false positive. If the curator classifies the hit as a true

positive, the type of interaction may be also annotated using a protein interaction term

from the open biomedical ontology (OBO) (Smith et al., 2007a).

CollabQC requires apache server with PHP 5, MySQL 5 and PERL > 5. It will run
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on standard Linux and Unix distributions. On the client side, the requirements are just

a JavaScript enabled web browser. CollabQC is available under a GPL license from

http://fruitfly.inf.ed.ac.uk/∼lzografos/cqc/.

3.2.3.7 Considerations

Text-mining tools and methods keep getting more accurate, but the results always con-

tain false positive hits and have to be manually quality-controlled. Furthermore, it is

good practice to re-check the evidence supporting interactions retrieved from databases

using the same criteria as in the text mining result check. This curation is a form of

manual quality control, which is performed by reading the abstract of the paper linked

as supporting evidence and verifying the interaction between the proteins along with

the experimental evidence provided. This manual checking of individual papers, al-

though in 90% of the cases just the abstract provides the related information, is the

single major bottleneck of the modelling pipeline. Given the size of the text-mining

task and volume of resulting hits, combined with the data retrieved from databases, the

procedure of quality control needs to be streamlined.

When multiple curators collaborate, curation standards are imperative. These stan-

dards dictate if a potential physical interaction is accepted as a true positive or not and

should be followed as an intact set of instructions throughout the data curation. The

common curation standard used for the PSD complexes includes the following rules:

1) Clear mention of physical interaction in the abstract or full text (any evidence except

“prior experimental knowledge”, unless backed up by experimental evidence). 2) Do

not accept as true positive if the only supporting data only comes from co-localisation,

protein complex pulldown, interolog pairs from distant lineages or Y2H with no other

supporting evidence3. Regarding the last point we refer the reader to the relevant para-

graphs of subsection 3.2.2.1. We advice that if Y2H data is used then it should be

coming from datasets that have been thoroughly reviewed and shown to consider and

3At the time of this study the Y2H data quality dispute was at its peak.

http://fruitfly.inf.ed.ac.uk/~lzografos/cqc/
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tackle the caveat of false positives successfully.

3.3 Analysis methods

Up to this point the modules of the pipeline discussed have to do with annotating the

nodes and edges of the biological network. More specifically in the PPIN case, anno-

tating proteins and their interactions. The premise of network biology is that we can

integrate the data in a network model (e.g. a PPIN) and abstract this network to a graph.

The term graph is used as the mathematical equivalent of the network. Application of

the modelling pipeline up to this point would result in a “coloured” graph. The term

coloured in graph theory refers to specific attributes (colours) of the nodes and edges.

Attributes can be of any type, i.e. gene name, family, subfamily, disease correlation

or confidence for an interaction etc. Graphs are useful data abstractions because they

can be manipulated by a wide variety of algorithms with which we can ask questions

about the topology, architecture and most importantly latent structures or patterns in

the network that we couldn’t see otherwise.

3.3.1 Biological network primer

3.3.1.1 Networks and graph measures

Before we discuss any specific algorithms or workflows it is critical to mention some

principles and central concepts of graph theory that are the basis of any analysis per-

formed on PPINs. The most important is the definition of a graph. A graph is an

abstract representation of a set of objects, called nodes or vertices, where some pairs

of the objects are connected by links, called edges. These links may or may not have

a specific direction, resulting in directed and undirected graphs respectively (there are

“mixed” graphs as well).

The formal definition of a graph G is: G = {N, E}, where N is a set of k nodes,

N = {n1, . . . ,nk} and E is a set of l edges, E = {e1, . . . ,e}. Each edge e is defined as



66 Chapter 3. Computational Methods

a relation of incidence that connects two nodes from N. The graphs resulting from the

PPINs usually 1) finite: i.e. have a finite set of nodes and edges, 2) unweighted, i.e. no

special value is associated with each edge, e.g. an association coefficient representing

the strength of the interaction and 3) undirected, since binding is an bidirectional pro-

cess. Note that (2) is not true if interaction confidence data is used and (3) is not true

when modification (e.g. phosphorylation) interactions are included.

In order to use graphs for computations, they have to be represented in a manipulat-

able form. One such form is the adjacency matrix, A. A is a symmetric matrix defined

as:

Ai j


= 1 i f there isanedgebetweenni and n j

= 0 otherwise

Figure 3.4 shows an illustration of an example where the adjacency matrix in panel

A would result to the network in panel B.

There are a number of ways to describe and summarise a network, its topology and

overall architecture. First we will look at the methods that describe the global topology

of a graph as well as some basic properties of the nodes. Graph metrics of this type

that are used for biological networks are:

• Degree: the degree of node i, ki s the number of edges connected to it. (Figure

3.4C)

• Distance: the distance di j between nodes i and j is the shortest path (counted in

edges) between them (Figure 3.4D).

• Diameter: the network’s diameter is the maximum possible path length between

any two nodes in the network (Figure 3.4E). Formally, D = max{di j|i, j ∈ N}.

• Clustering coefficient (local): this measure is calculated for each node and shows

the degree to which the neighbors of a particular node are connected to each
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other. It is defined as Ci = 2ei/(ki(ki−1)), where ei are the number of edges between

the ki nodes that connect to node i.

Distance in networks is measured by the path length, which tells us how many

edges we need to cross in order to travel between any two nodes. As there are many

alternative paths between two nodes, we choose the shortest path, i.e the path with

the smallest number of links between the selected nodes. Formally, the shortest path

problem is the problem of finding a path between two nodes such that the sum of the

weights of its constituent edges is minimized. In unweighted graphs like most PPINs

all edge weights are 1. There are different algorithmic approaches that can solve some

of the categories. Some of these algorithms are: Dijkstra’s algorithm (Dijkstra, 1959),

the Bellman-Ford algorithm (Bellman, 1958) and the A* search algorithm (Hart et al.,

1968) among others.

The concept of shortest paths allows us to introduce the notion of betweenness in

graphs. Betweenness is a measurable property of nodes and edges. More specifically

there are two types of betweenness in a graph. The first type is node betweenness,

which for a node l is defined as:

bn
l = ∑

i j
pi j(l)/pi j (3.1)

where pi j(l) is the number of shortest paths between nodes i and j that go through

node l and pi j is the total number of shortest paths between nodes i and j. The second

type is edge betweenness, which for a edge k is defined as:

be
k = ∑

i j
pi j(k)/pi j (3.2)

where pi j(k) is the number of shortest paths between nodes i and j that include

edge k and pi j is the total number of shortest paths between nodes i and j.

3.3.1.2 Implementation

The computation of the above measures was implemented in Matlab (Mathworks Inc)

with additional use of the MatlabBGL (https://github.com/dgleich/matlab-bgl) library,

https://github.com/dgleich/matlab-bgl
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a port of the Graph C++ library from Boost (http://www.boost.org/).

3.3.2 Community structure in PPINs

3.3.2.1 Community structure

Studies on all types of networks have shown that one of their universal properties is

community structure (Ravasz et al., 2002, Guimerà and Amaral, 2005, Lagomarsino

et al., 2007). Community structure is the segregation of nodes into groups, called clus-

ters or communities. The characteristic feature of network clusters is that the nodes

form densely connected groups or sub-graphs with sparse connections between them.

An illustration of this concept can be see in Figure 3.5. Notice how the three com-

munities in the orange, yellow and red circles have more intra-connections rather than

inter-connections between them.

3.3.2.2 Clustering algorithms

The identification of clusters or “clustering” within networks is a well studied general

graph theory problem where numerous solutions have been proposed over the years.

Clustering in biological networks is similar to the problem of graph partitioning in

computer science and hierarchical clustering in the social sciences. In this section

we will focus on clustering solution presented in the domain and context of systems

biology. Due to the very high number of algorithms available we refer the reader

to an excellent recent review by Wang et al. (Wang et al., 2010) and in this section

we will present some of the widely used algorithms based on the classification used

to present them in the aforementioned review. The algorithms can be split into two

major categories: graph-based and combination-based. The first category encompasses

algorithms that are based solely on the structure of the graph and act independently of

the annotation of the nodes and the second category encompasses algorithms that use

such information.

http://www.boost.org/
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Graph-based algorithms These algorithms are based on local search around dense

sub-graphs, hierarchical clustering or parameter optimisation.

Local search algorithms: In this category the clusters are defined as densely con-

nected sub-graphs of the main network. The density of a sub-graph is defined as

d = 2nedges/(nnodes−1)nnodes (Spirin and Mirny, 2003) and reaches its maximum of 1

in a sub-graph where every two nodes are connected by an edge. In this case the sub-

graph is called a clique (for more rigorous definitions and analysis see Erdös and Szck-

eres, 1987). Enumerating cliques in a graph is an NP-complete problem. However,

protein networks make the enumeration less difficult because of their sparseness. Var-

ious solutions have been proposed implementing clique based methods including su-

permagnetic clustering (SPC) with Monte Carlo (MC) optimisation (Spirin and Mirny,

2003) and a quasi clique based method (Bu et al., 2003) among others. A widely used

algorithm of this type is the molecular complex detection (MCODE) algorithm (Bader

and Hogue, 2003). Although these algorithms tackle the issue of missing edges - or

unknown interactions - in proteins interaction networks they suffer from issues related

to the topology of the graphs as illustrated by Altaf-Ul-Amin et al. (2006).

Hierarchical clustering algorithms: Hierarchical clustering algorithms can be

either agglomerative or divisive, depending on whether they add or removes edges

to or from the network. One type of divisive algorithms are clustering coefficient

based algorithms. Clustering coefficient represents a more local view of the network

centered around a node and has been used as the basis for algorithms proposed by

Radicchi et al. (2004) and Li et al. (2008). Newman and Girvan (2004) have proposed

a betweenness based divisive hierarchical clustering algorithm. Along similar lines,

authors have proposed other divisive algorithms as well with variations on the distance

measures. These include HCS (Przulj et al., 2004), which is based on the minimum

cut heuristic rule for grouping nodes, i.e. a configuration that separates two groups of

nodes with the minimum number of edges between them (Hartuv and Shamir, 2000)

and UVCLUSTER (Arnau et al., 2005) which is based on shortest paths instead of
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edge betweenness.

Parameter optimisation algorithms: From a machine learning perspective pa-

rameter optiomisation is based on the definition of a cost function which is then min-

imized searching through different clustering configurations. Markov Cluster Algo-

rithm (MCL) (Enright et al., 2002) is a widely used parameter optimisation algorithm,

which uses random walks on the network and then computes all the transition proba-

bilities between nodes.

Combination based algorithms Unlike graph-based algorithms, combination based

algorithms are not solely based on the graph that the PPIN represents but also the prop-

erties of its nodes. By taking the latter into account, these algorithms reduce the effects

of false positive or false negative interactions. Properties can include genomic data

(Jiang and Keating, 2005, Zhang et al., 2008), structural features of the proteins (Dit-

trich et al., 2008), gene co-expression data (Jansen et al., 2002, Hanisch et al., 2002,

Ideker et al., 2002, Segal et al., 2003, Cho et al., 2006, Cline et al., 2007, Maraziotis

et al., 2007, Lu et al., 2006, Ulitsky and Shamir, 2009, Jung et al., 2008) and ontology

annotations (Lubovac et al., 2006, Ulitsky and Shamir, 2009) . These properties are

integrated into frameworks like AVID (Jiang and Keating, 2005), PSIMAP (Park et al.,

2005) and MATISSE (Ulitsky and Shamir, 2009), which usually utilise graph-based

algorithms in light of the node properties data. Although these methods are evolving

constantly the fact that all the availability of data of all properties examined is not

always guaranteed and that has to be taken into account.

Within the class of combination based algorithms there is the variation of ensemble

frameworks which use combinations of clustering methods and integrate their results

into a common consensus. This type of approach was first proposed by Asur et al.

(2007), followed by Greene et al. (2008) and Simpson et al. (2010). Although still

in development as an approach ensemble clustering shows promise, if the choice of

parameters, like which basic clustering methods to use and how to build the consensus,
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is done with care.

3.3.2.3 Implementation

We have chosen the Newman and Girvan (Newman and Girvan, 2004) algorithm for

our approach because it is a simple and elegant algorithm that allows not only to group

proteins in clusters, but also to tease out hierarchical structures via the use of the den-

drogram. Also, as a non-heuristic algorithm that runs within tractable time for the

dataset sizes in hand and, when tested, it produced biologically meaningful results for

our models. Making a choice for a clustering algorithm out of the variety of those

available was based on mostly on empirical testing. We chose this approach because

there was no common reference data set to compare them on (the number of clusters

in PPINs is unknown and pathway based data sets are too small). After concidering a

number of algorithms available, we applied them on the datasets and manually com-

pared the results. What we noticed was that some algorithms always returned smaller

size clusters (e.g. MCL, also later verified by Wang et al., 2012) or left some nodes

ungrouped (e.g. MCODE). We also noticed that the configurations obtained be the

Newman and Girvan algorithm we biologically meaningful (i.e. recapitulated many

pathways known from the literature). In addtition to these evidence there were some

practical issues that led us to chose the aforementioned algorithm for our approach,

namely: 1) it uses more “global” view of the network architecture (Tuji et al., 2007),

2) the potential of recomputing Q after small permutations of the final configuration

(this is very handy when one wants to move one or two nodes around in a given con-

figuration).

Implementation was done in Matlab using MatlabBGL and using edge between-

ness as a metric. Edges with high betweenness tend to be edges where the flow of

information converges. This is because according to equation 3.2 on page 67, more

shortest paths pass from these edges, thus they are parts of the path of least resistance.

An interesting property of these paths is that they usually tend to connect the segre-
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gated clusters of the network, as more thoroughly discussed in subsection 3.3.3. The

steps of the Newman and Girvan algorithm are: 1) Compute betweenness score for

all edges in the network. 2) Find the edge of highest betweenness and remove it. 3)

Recompute betweenness score for all edges in the network. 4) Repeat from 2

Up to this point the application of the algorithm would eventually start breaking

up the network in sub-networks. If one knew a priori how many communities were

in a network, the algorithm would be stopped when reaching that number. However,

this is not the case in most practical applications. For that reason, the authors also

define a cost function or modularity quantity, Q. If one considers a particular division

of a network into k communities, we can define a k x k, e matrix whose elements ei j

are the fractions of all edges in the network that connect nodes in ki with nodes in k j,

considering all edges in the original network including the ones removed so far. The

trace of the aforementioned matrix, Tr e = ∑i eii, would in practice give the fraction

of edges in the network that connect nodes from the same community. However, the

trace is not a good indicator because there are cases where Tr e = 1, without that being

the best configuration, e.g. if all nodes were in the same community. For that reason

the authors define the row or column sums ai = ∑ j ei j, which represent the fraction

of edges that connect to nodes in community i. In a network where all edges connect

nodes without regard to which community they belong to, that would mean ei j = aia j.

Thus Q is defined as:

Q = ∑
i
(ei j−a2

i ) = Tr e−||e||2

where ||e|| is the sum of elements of e.

In practice Q measures the fraction of edges between nodes of the same commu-

nity over the edges between nodes of different communities. Q is monitored as the

algorithm progresses and once all edges have been removed we can trace back to the

configuration that resulted to the maximum value of Q, which also is the optimal com-

munity structure. By definition Q is found to be between 0 and 1, with low values

reflecting configurations that are no better than random. Empirically, in biological net-
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works the value of Q lies between 0.3 and 0.7. After trials we found that it is better to

implement this algorithm allowing multiple random initialisations (5 to 10 is feasible)

in order to find the maximum Q.

This algorithm was in Matlab using MatlabBGL. It should be noted that this algo-

rithm has heavy demands on computational resources, running in O(e2n) time on an

arbitrary network with e edges and n nodes, or O(n3) on a sparse network, where n∼ e.

This restricts the algorithm to networks of a few thousand nodes. For that reason there

has been a later modification by Clauset et al. (2004) based on more sophisticated data

structures.

3.3.2.4 Considerations

It should be mentioned that, depending on their definition of a cluster, algorithms can

either identify overlapping or non-overlapping clusters. Overlapping clusters can po-

tentially represent multiple complexes that a protein can belong to as a result of tran-

sient associations or differential expression of the components. Although the Newman

& Girvan algorithm does not identify overlapping clusters, we strongly suggest that

this should be considered in the future, especially with more protein stoichiometry

data becoming available (see section 8.2 of Chapter 8). It should be taken into account

that more recent studies have shown that Q has some weaknesses and could be substi-

tuted by other measures, e.g. surprise, S (Aldecoa and Marín, 2011). Also, clustering,

independently of which method is being used, has to performed with two problems

taken into account. These are 1) the presence of false positive and negative interaction

data, and 2) the fact that we, in reality, do not know the number of clusters an algorithm

should produce. Although these cannot be eradicated, the former can be partially min-

imized with careful data curation. Regarding the latter, it has to be taken into account

that the results of clustering algorithms represent a mathematical computation or opti-

misation and do not necessarily accurately reflect biological reality, since an algorithm

will always generate an output. As a final point we have to mention that because of
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its implementation the Newman and Girvan algorithm the best local maximum after a

series of randomised restarts 4

3.3.3 Network topology features

A widely reported feature of many networks, including biological, are their “scale-

free architectures” (Barabási and Albert, 1999, Albert et al., 2000, Jeong et al., 2001,

Barabási et al., 2003). The scale-free architecture of biological networks implies that

the great majority of nodes only have a few edges connecting them to other nodes.

On the contrary, there are only a few nodes in the network that have many edges con-

necting them to other nodes (Barabási and Albert, 1999). The scale-free property of

the architecture can be formally described by the degree distribution of nodes which

approximates a power law, P(k)∼ k−γ, where P(k) is the probability of a node having

degree k. The “scale-free” term comes from the dependence of the P(ak)
P(k) ratio only

from a. This is illustrated in Figure 3.6. Power law curve fitting has been addressed

many times in the literature with different methods, including least squares fitting as

the most popular approach. However, the choice of method is crucial since substantial

inaccuracies might arise (Clauset et al., 2007). There are also two important relevant

points worth mentioning. The first is that the intuitive assumption that a scale-free

network’s sub-networks are scale-free does not always hold (Stumpf et al., 2005). The

second point applies to datasets that give rise to scale-free networks. In these cases

the reader must be aware that the scale-free architecture might be an artifact caused by

regularities and biases in the selection of the dataset (Han et al., 2005) and does not

reflect any biological importance. Taking the above issues and caveats into account,

we decided not to draw on power law fitting and interpretations in the analyses of the

models described here.

However, an observable consequence of the scale-free structure in biological net-

4The maximum is inherently local since every time betweeness is computed, more than one edges
might have the same, in those cases a random removal choice is made. For this reason we do multiple
restarts of the algorithm and chose the best solution out of these.
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works is that only a few nodes have many interactions and this can lead to robustness

against random mutations (Albert et al., 2000). Additionally, the scale-free architec-

ture, by definition, implies that there are nodes in the network that have more connec-

tions than others. When this is interpreted in the context of community structure of

networks, the notion of hub nodes emerges. Hub nodes are nodes that interact with

many partners. For that reason and in contrast with non-hub nodes, hub nodes are

extremely sensitive to targeted mutation (Jeong et al., 2001). Hub nodes are points of

convergence and in some cases connect different functional modules of the network

that appear in the form of communities. There are two types of hubs in biological

networks: party hubs, where most of the interactions are simultaneous, and date hubs,

where different interactions take place at different times (Han et al., 2004).

Although the high degree of nodes in biological networks could imply importance

of a specific node, betweenness is often used as a measure as well. By definition,

nodes and edges of high betweenness accumulate the majority of shortest paths passing

through them. Therefore, seen by a “path of least resistance” principle these nodes be-

come the central points controlling the direction of information passing in the network.

Newman and Girvan argue that high betweenness implies nodes or edges that connect

modules in the network (Newman and Girvan, 2004) and thus promoting crosstalk.

Additionally, it has been found that clustering on betweenness results in clusters with

similar functional annotation (Dunn et al., 2005). However, although these claims

might seem intuitive, there has been a lack of direct supporting evidence. Yu et al.

(2007) reported evidence by bioinformatic analysis of yeast PPINs. In their work, the

authors defined high betweenness nodes as “bottleneck” nodes and dissected the types

of nodes to hub bottleneck, non-hub bottleneck, hub non-bottleneck, non-hub non-

bottleneck. They showed evidence that non-hub bottleneck nodes tend to be essential

when involved in non-transient interactions, are rarely parts of large complexes, and

are joints for crosstalk.

Taking all this into account, along with some contradicting evidence in the litera-
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ture, like the findings of Goh et al. (2003), who showed a correlation between between-

ness and degree in social networks, the reader has to be cautious about the use of these

measures for such predictions. Yu et al. (2007) also argue that degree might be a better

predictor for PPINs specifically, but that is heavily affected by missing interactions. In

any case, even partial corroboration of predictions by previous biological knowledge

is advised.

3.3.4 Statistical significance

3.3.4.1 Annotation significance

Once the constituent protein parts of a complex have been annotated with specific

attributes regarding, e.g. their functional classification or involvement in a certain

phenotype, questions arise regarding the relation of these attributes. For instance we

can ask questions such as: is a functional family A significantly associated with module

K?. Here the notion of significance represents a number of co-occurrences that is

higher than expected at random. The simplest approach is to use Fisher’s exact test

(Fisher, 1922), either one- or two-sided depending on whether the test is specifically

for enrichment, or both enrichment and depletion.

3.3.4.2 Multiple testing

Multiple testing is a general statistical concept of considering multiple statistical infer-

ences simultaneously. In a more specific context, when dealing with annotation data,

one can use multiple replicates of randomized data point sets in order to assess the

null hypothesis, e.g. of an annotation having a high count due to chance. An example

of that is that if an annotation appears k times in a protein list of N proteins, one can

randomly sample multiple N sized samples the proteome in hand and see how many of

the proteins possess that annotation.

Another important application of multiple testing, summarised by Noble (2009) is
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correcting p-values obtained from tests like the one mentioned above above - partic-

ularly in the cases of larger datasets. The most popular multiple testing p-value cor-

rection methods are Bonferoni and false discovery rate (FDR) estimation (Benjamini

and Hochberg, 1995). Application of the Bonferoni method means that a p-value p is

accepted if p < a/n, where a is the confidence threshold and n the number of separate

tests. This approach can sometimes be too strict so the FDR estimation method or the

Benjamini-Hochberg variation of the FDR procedure can be used as an alternative. In

the former the FDR is computed using the empirical distribution of the null hypothesis

while the latter uses the p-values (see also Benjamini and Yekutieli, 2001).

3.3.4.3 Implementation

A number of tools have been developed to perform gene set enrichment analyses in-

cluding DAVID (Dennis et al., 2003, Hosack et al., 2003), FuncAssociate (Berriz et al.,

2003), MAPPFinder (Doniger et al., 2003), GoMiner (Zeeberg et al., 2003), GoSurfer

(Zhong et al., 2004), FatiGO (Al-Shahrour et al., 2004) and BINGO (Maere et al.,

2005). These tools used similar variants of Fisher’s exact test or the Hypergeomet-

ric test and the Z-statistic. The Hypergeometric test is identical to the correspond-

ing one-tailed version of Fisher’s exact test. Additionally, other alternatives for com-

puting annotation significance are available including Barnard’s test (Barnard, 1945),

Chi-square tests (e.g. Vêncio and Shmulevich, 2007, Prifti et al., 2008) and Bayesian

methods (e.g. Antonov et al., 2008).

When analysing the PSD complexes discussed in this thesis we decided to re-

implement the same in-house approach that we had experience with, as used by Pock-

lington et al. (2006), allowing us to easily incorporate it in our workflows (at the time

no method offered satisfactory programmatic access).

Suppose now that for a set of N molecules, na and nb possess the annotations a and

b respectively. If these annotations were distributed randomly within the full set, the

probability h(nab, na, N, nb) or p(nab), of a node possessing both annotations a and b,
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when the total number of nodes is N and na and nb possess the annotations a and b

respectively, is given by the following formula, according to Fisher’s exact test.

p(nab) = h(nab, na, N, nb) =
na!(N−na)!nb!(N−nb)!

[N!(na−nab)!nab!(N−na−nb +nab)!(nb−nab)!]
(3.3)

This probability distribution has one single maximum pml = p(nml), with nml the

most likely overlap that would be occurring by chance (nml + 1 is equally likely de-

pending on symmetry). If in our observed data µab molecules possess both a and b

annotations, we can evaluate the significance of deviation between µab and nml by cal-

culating the probability P(µab) of finding µab molecules possessing both annotations,

of finding an overlap as or less likely under the random distribution. In practice this

means summing over all nodes n, where p(n)≤ p(µab), i.e.

P(µab) = ∑
n

p(n) : p(n)≤ p(µab) (3.4)

Using this definition in equation 3.4 above, for nml , P(nml) = 1, with both tails of

the distribution contributing to P. This way P in 3.4 can be used to evaluate deviations

in either direction of nml .

3.3.4.4 Considerations

We have to note that while we used our own implementation of Fisher’s exact test,

currently there are many tools that implement a range of methods, including the latter.

Most of these tools are available online, with some offering an application program-

ming interface (API) for programmatic access. Of these we highlight GSEA (Sub-

ramanian et al., 2005) and a later updated version of DAVID (Huang et al., 2009).

Computations in the former are based on a variation of the Kolmogorov-Smirnov test

while the latter uses a Fisher’s exact test in combination with multiple testing p-value

correction. A large and constantly updated list of these tools can be found on the GO

website (http://www.geneontology.org/GO.tools.shtml).

When implementing these methods one has to take a few things into account. The
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first is that sets of annotation variables are seldom independent and they range from

mutually exclusive (e.g. the chromosomal location of the gene a protein is associated

with) to redundant and overlapping. Another issue in the use of the method is our

partial knowledge of the datasets. e.g. if a protein is not known to be associated with

a disease mechanism, that could be either a true negative or the result of a bias of the

experimental observations (false negative). For these reasons this method should be

used carefully and its results should be trusted if appearing consistently and repeatedly.

3.3.5 Visualisation

3.3.5.1 Visualisation software

Since the models discussed in this work are descriptive and integrate annotations from

different sources, this means that they carry a lot of information. Good and informa-

tive visualisation can convey abstract, complex information in intuitive ways. There

are many software solutions for data visualisation. These vary from graph visuali-

sation libraries like GraphViz (http://www.graphviz.org/), to more biological network

oriented software. The former can be integrated in programmatic workflows, while

the latter allow interaction with the model via a graphical user interface and a set of

different functionalities and options.

Cytoscape (Shannon et al., 2003) was used for all the network visualisations, al-

though alternatives such as BioLayout3D (Theocharidis et al., 2009) and BioLayout

(Enright and Ouzounis, 2001) are available. In general, although tool choice is a mat-

ter of preference, performance issues might arise in bigger datasets. Cytoscape is an

open source platform for visualizing molecular interaction networks and biological

pathways and integrating these networks with annotations, gene expression profiles

and other state data. Features that make Cytoscape a useful tool are the support of

many different formats and standards for input and output (e.g. plain text and XML

based formats) as well as an API, which allows easy integration in all workflows, an

http://www.graphviz.org/
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intuitive graphical interface, support of database web services for data import, efficient

2D visualisation with most visual parameters customisable according to attributes, and

a variety of layout algorithms. Its plug-in architecture is probably the strongest fea-

ture of Cytoscape, because it allows the community to design and implement freely

available add-ons.

3.3.5.2 Visualising networks

There can be many different approaches in visualising a PPIN. The typical approach

is to draw the network in some informative manner, e.g. the nodes separated in com-

munities or by subcellular location and highlight nodes with specific features, e.g. of a

specific classification or associated with some disease. Sometimes, when the datasets

are too big, it is more informative to visualise more collapsed versions of a network.

Minimizing the clutter of visualisation by making the information more compact with-

out reducing it can give a quick overview of a dataset, or even provide a collapsed

representation that can tease information out of the model. That could be achieved in

the form of a meta-network. Meta-networks are the same models visualised with the

methods mentioned earlier, but in a collapsed form (Figure 3.7). An example of such

collapsed form can be obtained by grouping the nodes based on a common property

(e.g. family) and assigning a meta-edge if nodes with that property interact in the net-

work. Information is visualised in order to make a structured collection of data shorter

and concise. This higher-level view might allow observations that could not be made

otherwise due to limitations in visualising large datasets.

An important note regarding visualisation of interaction networks in this thesis is

our naming convention. Although displaying proteins, we name the nodes with the

gene name. We took this decision since we do not take isoforms into account and also

because the gene name has less synonyms and is not as easily confused.
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3.4 Comparative methods

3.4.1 Comparing models of PSDs

It is crucial to compare models of PSD from different organisms or models of different

PSD protein sub-complexes such as the ones acquired in this work. This comparison

can answer questions on the evolution of the constituent parts of complexes, the evolu-

tion of their organisation, and how that reflects the evolution of the synapse. One cat-

egory of these approaches is based on the inspection and comparison of the networks’

constituent parts. Examples of this approach have been applied by comparing anno-

tation distributions or enrichments which can give a quantitative result. Another cate-

gory of approaches includes the comparison of the PPINs architectures and topologies

(comparative interactomics). A simple, more qualitative approach of this category is

using the metanetwork visualisation. A more detailed approach can be taken by using

PPIN alignment algorithms such as GraphCrunch (Milenković et al., 2008, Kuchaiev

et al., 2011), protein domain based alignment (Guo and Hartemink, 2009), neighbour-

hood topology (Singh et al., 2007), graph structure (Klau, 2009) or NetworkBLAST,

which uses graph structure and sequence similarity (Kalaev et al., 2007). What we

found using these algorithms comparing the mouse and fly PSD models (Chapter 7),

is that all of them are geared towards global alignment based of very conserved net-

work structures, something which was not true with our data (mostly due to the lack

of protein interactions). NetworkBLAST however, which heavily draws on sequence

similarity, was able to find a conserved component in the two networks. Although

most of these comparative interactomics methods are still in development, we noticed

a lack of methods that combine “blind”, structural only alignment (e.g. GraphCrunch)

with annotations in the same spirit of the combination based clustering algorithms. An

algorithm of this class is discussed in Chapter 8 as part of the future work.
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3.4.2 Implementation

In order to compare the sets of proteins that the different PSD datasets are composed of,

we decided to compare various aspects of their annotation as well as their organisation

in PPINs. Qualitative comparison can be achieved by observing and comparing both

the PPIN models or graphic illustrations of specific features. Other than comparing

annotation enrichments or network measures, for the purpose of quantitative compar-

ison, we compiled a series of methods in order to quantify differences or similarities

in the annotations of the constituent parts of the datasets and models. Dataset com-

parison can, in practice , be reduced to comparisons between two sets of annotations

(e.g. protein domains found in the fPSD dataset versus protein domains found in the

mouse PSD dataset). In order to achieve the quantitative aspect we used the following

meassures.

3.4.2.1 Significance of difference in annotation enrichment

Cai et al. (2006) published a method that compares two genomes based on the differ-

ences in the count of GO terms in their annotations. We modified this method allowing

us to quantify significance of the differences in the count of any annotations within two

sets of genes. More specifically, for each annotation term we compute the enrichment

to the background (genome where available), in both PSD datasets and using a chi-

squared test followed by false discovery rate (FDR) correction, we compute if there is

a significant difference in the abundances.

3.4.2.2 Semantic similarity of gene sets

Jain and Bader (2010) introduced the Topological Clustering Semantic Similarity (TCSS)

algorithm, which scores the semantic similarity of the GO annotations of any two

genes. This semantic similarity is based on the position of each gene’s annotation

terms on the directed acyclic graph (DAG) of GO. TCSS is based on finding subsets of

the GO DAG that define similar concepts and achieves that by a topology based clus-
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tering of the Gene Ontology. This approach by definition normalises the depth of the

gene’s annotations. After creating an “all versus all” TCSS reference comparison of

gene products within fly and mouse PSD, we were able to compare any two gene sub-

sets of the fPSD and Union datasets by computing the average of semantic similarities

between all individual genes within the two subsets.

3.5 Supplementary material

Supplementary material, such as explorable versions of the figures, data tables, and a

demo of collabqc are available at http://fruitfly.inf.ed.ac.uk/∼lzografos/thesis/. A copy

of this website is available as a DVD with this thesis.

3.6 Concluding remarks

This chapter presented an integrated modular modelling pipeline. Each module for

annotation and analysis can be implemented with a programming language of choice

and given raw data files or programmatic access to the databases as input. This is a

semi-automated pipeline since there are steps that require manual quality control or

curation, however, personal experience shows that, in many cases, this distinguishes

good from bad models.

There are various commercial tools available that can perform similar tasks to the

modelling pipeline such as Ingenuity’s IPA (http://www.ingenuity.com/) and GeneGo’s

MetaCore (http://www.genego.com/), which incorporate custom databases of annota-

tions and interactions. While these tools can be used to quickly construct annotated

PPINs, care must be taken that the data is of the correct type (e.g. excluding genetic

interactions when reconstructing a protein complex) and quality (e.g. is computational

annotation acceptable?) for the purpose. They typically provide a fixed workflow

which offers some alternative options and a good GUI, but are generally not very cus-

http://fruitfly.inf.ed.ac.uk/~lzografos/thesis/
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tomisable. Before spending large sums of money on such software, it is worth making

sure that it is sufficiently flexible. Depending on the project needs this may include the

ability to: check data provenance (e.g. via linked PubMed ids, virtually indispensable);

filter the data based on your quality requirements, both manually and through simple

rule-based filtering; incorporate qualitative/quantitative data of your own (e.g. task-

specific annotations, expression data); combine annotations with each other or with

quantitative data to generate new annotations (e.g. all channels and receptors with

high expression in hippocampus); and give sufficient control over statistical testing

(the ability to define an appropriate reference set is vital when performing enrichment

analyses). It is also worth noting that the information incorporated in such tools can

be biased towards particular areas of research, which may not overlap with the area

of interest. We have found that while commercial software might be fine for a quick

first-pass analysis (if one can afford the licenses), having control over all components

of the workflow allows for efficient, agile and potentially more insightful research.

Finally, another important aspect of the modelling pipeline analysis component that

has to be stressed again is that all the annotation data can suffer from the partial knowl-

edge bias. Partial knowledge can affect clustering (false negative protein interactions)

and statistical correlations (missing annotations). For that reason it is imperative to up-

date the annotations and the analysis often in order to have an up-to-date reconstructed

model.
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Figure 3.3: CollabQC interface. A) Grouping of potential interactions in collabQC. In this case potential

interactions are grouped based on the interacting proteins to offer an overview of the data set (grouping

based on publication is also available). External database information becomes instantly available if it

exists allowing quicker curation and higher confidence. B) The curation interface. Synonym highlighting

in the abstract text and simple interface assist curation.
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Figure 3.4: Illustration of central graph concepts: the adjacency matrix (panel A) defines graph con-

nectivity (panel B) , degree of a node (panel C), distance (panel D) and network diameter (panel E).

Figure 3.5: An illustration of community structure.
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Figure 3.6: Degree distribution in a generated scale-free network. The network has 5000 nodes and

was generated using the Barabási and Albert (1999) model of preferential attachment (2 nodes per step).

Notice how the probability of a node connecting with many nodes decreases according to the k−γ power

law.

Figure 3.7: A general example of the network (left) to meta-network (right) transformation concept.





Chapter 4

The PSD-95 associated proteins

complex

4.1 Background

In this chapter we will discuss the results of the targeted tandem affinity purification of

PSD protein complexes, using the scaffolding protein PSD-95 as a bait, as described in

(Fernández et al., 2009). The genetics and proteomics involved were performed at the

Wellcome Trust Sanger Institute, Cambridge, UK by the co-authors and the annotation,

model reconstruction and data analysis were performed by the author in the University

of Edinburgh, UK and are the core of this chapter.

As previously discussed the PSD is a protein complex comprised of more than

2000 proteins. Although there have been numerous attempts to catalogue it the over-

lap between experiments is relatively low (see subsection 1.3.2). This is by itself rea-

son enough to pursue new cataloguing endeavors, using different baits, however, one

should also strive to improve the state-of-art methods. Proteomic analysis of com-

plex sub-cellular structures such as the PSD could always be improved by introducing

approaches that give datasets with less noise. This demand for new, more accurate,

methods in combination with the need for more data was the premise behind the work

89
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described in this chapter.

There is a series of reasons as to why PSD-95 was chosen as a bait for this purifi-

cation. PSD-95 is encoded by the Dlg4 gene and is one of the most abundant scaffold-

ing proteins in the PSD of excitatory brain synapses. PSD-95 is a crucial factor to the

PSD’s organisation, via its protein-protein interactions (Nourry et al., 2003, Peng et al.,

2004). PSD-95 is localized at the postsynaptic compartment, where it interacts with

neurotransmitter receptors and ion channels (Dosemeci et al., 2007, Hunt et al., 1996,

Husi et al., 2000, Kornau et al., 1995, Nehring et al., 2000) and signaling molecules

like protein kinases Fyn (Tezuka et al., 1999), Cask (Chetkovich et al., 2002), and

Prkca (Lim et al., 2002) to assemble signaling complexes. These complexes control

neuronal plasticity (Migaud et al., 1998, Carlisle et al., 2008, Cuthbert et al., 2007),

underlie learning and memory (Migaud et al., 1998) as well as drug addiction (Yao

et al., 2004). Also, PSD-95 was expected to yield some new PSD proteins since it has

different first degree interactors and different properties from previously used baits.

All previously PSD cataloging attempts (Husi et al., 2000, Farr et al., 2004, Husi

and Grant, 2001, Sheng and Kim, 2002, Collins et al., 2006, Dosemeci et al., 2007,

Klemmer et al., 2009, Paulo et al., 2009) used a single step protein complex purifi-

cation step, an approach that is both limited to the specificity of the affinity reagent

and potentially more prone to contaminants compared to an approach with more than

one purification steps. With this being a very central problem - not only to PSD re-

lated proteomics - a solution was proposed and achieved in yeast with the fusion of a

Tandem Affinity Purification (TAP) tag in the C or N terminals of a protein of inter-

est. Application of this method allows a tandem isolation procedure, which overcomes

many of the inherent specificity issues of other methods. Also, the endogenous gene

integration of the TAP tag has a series of advantages over other methods that involve

random insertions or over-expression (e.g. Brajenovic et al., 2004, Drakas et al., 2005,

Angrand et al., 2006, Bürckstümmer et al., 2006), specially when the phenotype needs

to be as close to the wild type as possible. This work is shows the first example of
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Figure 4.1: Domain structure of TAP modified PSD-95. PSD-95 domains, including three PDZ (PSD-

95/discs large/zona occludens), a SH3 (Src homology 3), a GK (guanylate kinase) and C-terminal TAP-

tag domain. Amino-acid sequence of the TAP tag comprising a histidine affinity tag (HAT)-domain, a TEV

site and a 3XFLAG domain separated by a spacer. Figure from Fernández et al. (2009).

gene-targeted TAP tagging in mice that does not alter the expression or introduce any

mutation but also demonstrates the advantages of two step purification in the analysis

of multi-protein complexes.

4.2 Genetics and proteomics

4.2.1 Construct design

The 5kDa TAP tag used for the knock-in (Figure 4.1) consisted of a poly-histidine

affinity tag (HAT) and a triple FLAG tag (Terpe, 2003) in tandem separated by a unique

TEV-protease cleavage site. Note that the size of this tag is considerably smaller than

the one originally used in yeast (20KDa) in (Rigaut et al., 1999). Although PSD-95

is known to have multiple isoforms of various lengths (130-767aa), they all have the

C-terminal in common (Bence et al., 2005) and for that reason that was chosen as the

insertion site. The recombination and integration method details are beyond the scope

of this chapter and are described in Fernández et al. (2009).

4.2.2 PSD−95TAP mice phenotyping

The next step after creating the PSD− 95TAP knock-in line was to ensure that it did

not differ from the wild type mice in terms of protein expression, localisation and elec-

trophysiology. Protein expression was tested on three different heterozygous PSD−
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Figure 4.2: A) Immunoblot with PSD-95 antibody for immunoprecipitations. Three different heterozy-

gous mice are shown (PSD− 95TAP/+, left panel). PSD− 95TAP/+ forebrain was also affinity purified

with a FLAG antibody (right panel). B) Immunohistochemical staining of PSD-95 in sagittal hippocampus

sections from PSD− 95TAP/TAP and wild type mice showing CA1, CA3 and dentate gyrus (DG). Scale

bar=1 mm. C) Long-term potentiation of fEPSPs induced by theta-burst stimulation in CA1 area of hip-

pocampal slices is similar in PSD− 95TAP/TAP (13 slices from 4 animals) and wild-type mice (15 slices

from 4 animals). Figure from Fernández et al. (2009).
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Figure 4.3: Overview of the TAP protocol. In the first step, the TAP-tagged PSD-95 was captured by

FLAG antibody (1) and eluted by TEV cleavage (2). Cleaved TAP-tagged PSD-95 was then captured

with Ni2+–NTA–agarose beads (3) and eluted with 250 mM imidazole (4). Figure from Fernández et al.

(2009)

95TAP/+ mouse lines (Figure 4.2A, left panel) with anti-PSD-95 antibody. Two bands

were observed, with the top band representing the TAP-tagged PSD-95, as also con-

firmed with anti-FLAG antibody (Figure 4.2A, right panel). Results were also con-

firmed with different protein extract concentrations and PSD−95TAP/TAP samples (re-

sults not shown). Immunohistochemistry was carried out on sagittal brain sections,

in order to examine localisation of the tagged protein. The expression of PSD-95 was

similar in PSD−95TAP/TAP and wild type animals (Figure 4.2B). Synaptic localisation

was confirmed with various synaptic marker antibodies (anti-GluR1, anti-NR1, anti-

MAP2B). Finally, synaptic physiology was examined in order to investigate if long and

short term synaptic plasticity were affected as previously reported (Migaud et al., 1998,

Komiyama et al., 2002, Béïque et al., 2006). Normalized fEPSPs after a theta-burst

LTP inducing protocol on hippocampal slices were similar between PSD−95TAP/TAP

and wild type animals (Figure 4.2C) . In conclusion, the PSD− 95TAP knock-in line

did not show any signs of abnormal gene expression, localisation or functionality.
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Figure 4.4: A) Schematic representation of the total number (301) of proteins identified in the combined

single and tandem purifications. In four independent tandem purifications, a total of 158 proteins were

identified and 118 appeared in at least three of four replicates (PSD-95 core complexes). B) Venn diagram

with the number of proteins from either single or tandem purifications showing the common proteins (87)

and proteins masked (71) in the single-step purification.

4.2.3 Protocol

The protocol followed for the isolation of PSD-95 associated protein complexes in-

cludes two purification steps (Figure 4.3). The TAP-tagged PSD-95 from PSD−

95TAP/TAP mice is captured from brain extracts with an anti-FLAG antibody bound

on Dynal beads. Isolated complexes were then eluted by cleavage using TEV protease,

completing the first step of the purification. The second step of the purification is the

recovery of the complexes using a Ni2+-NTA-agarose coloumn which binds the HAT

part of the TAP tag. A detailed description of the protocol can be found in Fernández

et al. (2009).

4.3 Results

4.3.1 The PSD-95 associated proteins complex

4.3.1.1 Characterisation of isolated complexes

Four replicate experiments were performed using PSD−95TAP/TAP mice brain extracts

and a total of 301 proteins were identified by LC-MS/MS. These included proteins

found in single step (step 1) and tandem (step 2) purifications. A total of 158 (52.5%)

were found in the four independent replicate tandem purifications out of which a set
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of 118 (39%) proteins (Tables 4.1 and 4.2) were found three or four times and are

considered a ’core’ complex (Figure 4.4A).

A significant advantage of the tandem method is that less abundant proteins, present

in the single step, do not get masked in the LC-MS/MS process if they still appear after

the second step of purification (Wang et al., 2006). In this case 71 (45%) of the 158

proteins were masked in the single step purification but appeared in the tandem (Figure

4.4B). To further verify the experimental results the presence of 13 known PSD-95

interactors was verified by immunoblotting.

4.3.1.2 Comparison with previous results

The PSD-95 associated proteins complex was compared with earlier studies of synapse

proteomes. An earlier report (Dosemeci et al., 2007) using a single immunoprecipi-

tation with a PSD-95 antibody identified 276 proteins from PSD fractions extracted

in the absence of detergent. The comparison of this list with the PSD-95 core com-

plexes of 118 proteins reported here shows 49 proteins in common. A peptide affinity

method for binding PDZ domains of MAGUK proteins (Husi et al., 2000, Husi and

Grant, 2001, Collins et al., 2005, Emes et al., 2008) was used in the same extraction

conditions reported here and recovered 105 proteins (Collins et al., 2005). This peptide

affinity method was not specific to PSD-95 as the peptides are known to bind PSD-93

and SAP102 (Lim et al., 2002, Chung et al., 2004). These 105 proteins and the pro-

teins found by NMDA-receptor immunopurification were used to generate a list of 186

MASC proteins (Collins et al., 2006). Comparison of our 118 PSD-95 TAP list with the

186 proteins from the MASC complex shows 48 proteins in common (also discussed

in Chapter 5). An important set of proteins that was recovered using the TAP method

consisted of a) AMPA receptors and b) K+ channels. It should be noted that this pro-

vides support to our first hypothesis, that new proteomics experiments using different

baits or even technical approaches will augment our knowledge of the constituent parts

of the PSD.
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Figure 4.5: Distribution of families in the PSD-95 associated proteins complex.

4.3.1.3 Functional and disease annotation

Data collected included Gene Ontology (GO) and PANTHER terms associated with

the proteins, protein domain data from InterPro, the corresponding homolog human

genes and disease associations.

All proteins were grouped in ten groups (families) and their sub-groups (subfami-

lies) according to their classification in the PANTHER database. This classification is

followed throughout this project for various other datasets. The families and subfami-

lies found in the PSD-95 associated proteins complex are shown in Tables 4.1 and 4.2,

note that genes with * next to their name represent genes whose found peptides are

common to other genes. Distribution of families in the ’core’ dataset is illustrated in

Figure 4.5. The most abundant families are Vesicular / Trafficking / Transport, Adap-

tor / Regulatory, Cytoskeletal / Structural / Cell adhesion, Signalling molecules and

Enzymes and Receptors / Channels / Transporters, which account for more than 70%

of the proteins in the core complex. This is indicative of the central position of PSD-95

in the organisation of this complex but also shows how the method is able to retrieve

what is considered some of the most fundamental parts of the PSD like receptors, ion

channels, scaffolding and signaling molecules.
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Another point has to be made regarding the technical advantage of the tandem pu-

rification. As an initial comparison between the tandem and single step purification

we looked at the distribution of families. The tandem set was enriched in Cytoskeletal/

Structural/ Cell adhesion, Receptors/ Channels/ Transporters and Adaptor/ Regulatory

and depleted in Enzymes. This could reflect the fact that metabolic enzymes are more

abundant and contaminate purifications (Chen and Gingras, 2007), resulting in the

masking of other proteins. When we compared GO terms, the single step set showed

significant over-representation of the terms “metabolism” (p < 10−2). Also, we ob-

served that the two-step procedure unmasked core interacting proteins that were not

detected by mass spectrometry in the single-step purification: Ten known PSD-95 in-

teractors, Begain, Cit, Grik2, Grik5, Grin2c, Kcna4, Lrp1, Nlgn2, Nlgn3, and Shank1,

were present only after the tandem purification. Furthermore, we found 21 new pro-

teins in the PSD-95 core complexes that were not reported in earlier PSD proteomic

analysis (Collins et al., 2006, Dosemeci et al., 2007). These includes the adaptor pro-

teins like Dlgap3 and Anks1, receptors like Gpr123 and Grik5 and ion channels like

Kcnj10, Kcna1, Kcna3, Kcnab1 and Kcna4. This again suggests that the targeted TAP-

tagging strategy produces greater depth and quality of interactors.

Looking at the protein domains that are over-represented in the PSD-95 asso-

ciated proteins complex we can observe that the protein domains most commonly

found in NRC/MASC and the PSD-95 associated protein complex (Table 4.3) were

highly enriched (3-fold to 100-fold) when compared to their frequency in the genome

as a whole. These top 10 most abundant domains represent key functionality asso-

ciated with synaptic signaling: G-protein-coupled signal transduction (Extracellular

ligand-binding receptor, Extracellular solute-binding protein, family 3), scaffolding

(Src homology-3 domain, Variant SH3, PDZ/DHR/GLGF ), channel polymerisation

(BTB/POZ-like, BTB/POZ-fold), membrane localisation (Pleckstrin homology) and

neurotransmitter related signaling (Ionotropic glutamate receptor, NMDA receptor,

Glutamate receptor-related). These functional domain annotations clearly reflect spe-



98 Chapter 4. The PSD-95 associated proteins complex

Table 4.1: Families and subfamilies of the PSD-95 associated proteins complex. Continued in Table

4.2.

Family Subfamilies MGI Gene Symbol

Adaptor/
Regulatory

14-3-3, PDZ-domain containing
scaffolders, non-PDZ-domain

containing scaffolders

Ywhae, Anks1a, Anks1b, Baiap2,
Begain, Dlgap1, Dlgap2, Dlgap3,
Dlgap4, Dlg1, Dlg2, Dlg3, Dlg4,

Slc9a3r1

Cytoskeletal/
Structural/ Cell

adhesion

Actin / ARP, Catenins, MAPs,
Myelin, Other Cell Adhesion

Molecules, Other Cytoskeletal
Proteins, Other signaling

molecules, Spectrin, Tubulin,
actinin

Arpc4, Plp1, Lgi1, Nrxn1, Ablim1,
Adam22, Capza2, Cfl1, Dstn,

Fscn1, Nefl, AI662250, Arc, Spnb2,
Tubb6, Tuba1a*, Tubb2b*

Enzymes ATP synthases, Other Enzymes Atp5a1, Atp5b, Atp5c1, Atp5o,
Gpx4

G-protein
signaling

G-proteins, Modulators Gnao1, Rac1, Sept11, Sept5, Abr,
Kalrn, Syngap1

Kinases Ser/Thr Kinases, Tyr Kinase Camk2a, Camk2b, Mapk1, Pgk1,
Pkm2

Phosphatases Protein Phosphatases Ppap2b, Pppp3ca, Ppp3cb

cialisation for the scaffolding associated with the Glutamate receptor activity. Com-

pared to the NRC/MASC data, signaling related domains (e.g. Kinases) are absent

from the top ten, but still very enriched (e.g. Protein kinase, catalytic domain: 1.38-

fold, Guanylate kinase: 3-fold, Serine/threonine-protein kinase-like domain: 1.4-fold).

4.3.2 The PSD-95 associated proteins interaction network

4.3.2.1 Interaction mining

Interaction data for this reconstruction were collected through the interaction anno-

tation part of the modelling pipeline with two main resources: protein interaction

databases (as described in subsection 3.2.2.4 on page 58) and the TXM pipeline (as

described in subsection 3.2.3.5 on page 62).

Hits from both resources were manually curated using collabQC. Note that, as
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Table 4.2: Families and subfamilies of the PSD-95 associated proteins complex (continued from Table

4.1).

Family Subfamilies MGI Gene Symbol

Receptors/
Channels/

Transporters

ATP synthases, Ca2+-ATPases,
Glutamate Receptors, Inward

rectifying K+ channel,
NA+/K+-ATPases, Other Channels

and Receptors, Other signaling
molecules, Transporters,

Voltage-dependent anion channels,
Voltage-gated K+-channel

Atp6v0d1, Gria1, Gria2, Gria3,
Gria4, Grik2, Grik5, Grin1, Grin2a,

Grin2b, Grin2d, Kcnj10, Kcnj4,
Atp1b1, Gpr123, Slc1a2, Slc4a4,
Cacng2, Sfxn3, Slc25a4, Slc25a5,

Vdac1, Vdac2, Kcna1, Kcna2,
Kcna3, Kcna4, Kcnab1, Kcnab2

Signalling
molecules and

Enzymes

Heat shock / Chaperones /
Chaperonins, Mitochondrial

Enzymes, NADH-Ubiquinone
Oxidoreductase, Other Enzymes,

Other signaling molecules,
Translation

Aco2, Msrb2, Sdha, Acat1, Acot7,
Aldoc, Cnp, Gapdh, Cypin, Glul,

Pdha1, Pdhb, Pgam5, Prdx1, Prdx2,
Sucla2, Btbd11, Phb2, Pcbp1

Transcription/
Translation

Ribosomal Proteins, Transcription,
Transcription Elements

Rps14, Rps3, Park7, Uba52*

Vesicular/
Trafficking/
Transport

Clathrin, Modulators, Motor
Proteins, Other Enzymes, Other

signaling molecules, Other
transport, Synaptic vesicle

Cltc, Iqsec1, Iqsec2, Arf3, Cpne7,
Nsf, Stx1b2, Stxbp1, Syt1,

Vamp2*, Cpne4*

indicative numbers of the size of the task, that the high confidence output of TXM was

289 hits. Out of these 133 were curated as true positive binary interactions between 43

distinct pairs of proteins. Another 21 interactions were added from previous curations

(NRC/MASC and in-house knowledge). The rest of the interactions were manually

curated from UniHi database entries resulting in a total of 119 interactions between 50

of the 118 proteins of the core complex, excluding self-interactions.

4.3.2.2 Model reconstruction

The reconstructed protein interaction network included 50 out of 118 proteins, with

40 proteins forming a major connected component (MCC). The network is illustrated

in Figure 4.6. Application of the Newman & Girvan algorithm (Newman and Gir-
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Table 4.3: Ten most common protein domains in the PSD-95 associated proteins complex. All domains

have key synaptic signalling functionality.

Domain n-fold enrichment compared
to genome

Ionotropic glutamate receptor 101

NMDA receptor 90.9

Extracellular solute-binding protein,
family 3

101

Extracellular ligand-binding receptor 22.03030303

Src homology-3 domain 4.954545455

Variant SH3 5.677083333

PDZ/DHR/GLGF 5.759493671

Pleckstrin homology 3.345588235

BTB/POZ-like 4.212962963

BTB/POZ fold 4.0625

van, 2004) to the MCC segregated the network into five clusters, hereon referred to

as cluster a (Cla) to cluster e (Cle). In addition to the five MCC clusters, two further

disconnected clusters (’Clf’ and ’Clg’) were found (see Table B.1, Appendix B). The

modularity Q for this configuration was found to be 0.37. We found clustering con-

figurations with higher Q values (up to 0.42); however, these configurations did not

reflect the functional organization of the network as well as the one used1. With the

latter in mind, and also on the basis of the observation that 0.37 was over the average

of examined configurations, we decided to use that. This segregation in clusters can be

interpreted as supporting evidence for our hypothesis that some modular architecture is

present in protein interaction networks of the PSD. Note that the protein, interactions,

and annotations lists are available with the supplementary material DVD.

1E.g. receptors of the same family did not cluster together. It has to be noted that solutions of
clustering algorithms such as the one used might be local maxima, and not reflect the optiomal solutions.
Also, given the potential lack of interactors and interaction data we decided that it is reasonable to accept
solutions with a lower Q.
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Figure 4.6: Protein interaction network of PSD-95 interacting proteins. 50 proteins of the PSD-95

core complex were connected, with 119 interactions segregated into 5 clusters (Cla–Cle) forming the

MCC and two separate small clusters Clf and Clg. PSD-95/Dlg4 is showed in red, primary interactors of

PSD-95/Dlg4 are shown in blue and secondary interactors are shown in yellow. The glutamate receptors

(NMDA, AMPA and kainate receptors) and potassium channels are bracketed. From Fernández et al.

(2009). An intercative version of this figure with fully visible node labels is available in the additional

material website (available in DVD format with this thesis)
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4.3.2.3 Network topology analysis

It is interesting to note the location and proximity of the receptors and channels respon-

sible for the postsynaptic depolarization and subsequent action potential generation.

All NMDA, AMPA and kainate glutamate receptors were restricted to Cla and Clb and

the voltage-dependent K+ channels were found in Cla and Clc (entirely comprised of

K+ channels). These channels are known to couple to plasticity mechanisms (Chen

and Sharp, 2004, Kim et al., 2007, Watanabe et al., 2002), and we noted that Cla con-

tains important signaling enzymes involved in plasticity, including CaMK2 (Frankland

et al., 2001) and SynGAP (Komiyama et al., 2002). It therefore seems that Cla, Clb

and Clc are enriched with membrane proteins responsible for the electrical properties

of the postsynaptic terminal as also verified in the statistical correlation of annotation

analysis.

As PSD-95 was the bait for the biochemical isolation of the complexes, we exam-

ined the distribution of its primary interactors (proteins that directly bind PSD-95) and

secondary interactors (proteins that do not bind PSD-95 directly, but bind one of its

primary interactors) (Figure 4.6, top). Of the 39 MCC proteins (excluding PSD-95),

26 (67%) were primary interactors (blue symbols in Figure 4.6, top) and 12 (31%)

were secondary interactors (yellow symbols in Figure 4.6, top) and only one protein,

the AMPA receptor subunit Gria3, was a tertiary interactor. The majority of each clus-

ter was comprised of primary interactors, more specifically Cla (74%), Clb (43%), Clc

(67%), Cld (50%) and Cle (50%). To examine the centrality of each protein in the

network the shortest path from each protein to every other protein was counted, and

the average shortest path (ASP) calculated. For all proteins, the mean ASP was 2.25,

indicating an intricate crosstalk. Ranking the ASP of each protein (not shown) showed

PSD-95 had the lowest ASP (1.3), consistent with its central role in these networks.
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4.3.2.4 Statistical correlation analysis

The distribution and enrichment of families across the clusters seems to be quite spe-

cific, (Table 4.4) with Clb, Clc and containing Receptors/ Channels/ Transporters only

while Cla being significantly enriched in Receptors/ Channels/ Transporters and Adap-

tor/ Regulatory proteins, but containing some signaling proteins (Phosphatases, Ki-

nases, G-protein signaling) as well. Also, Cle only contains Cytoskeletal/ Structural/

Cell adhesion proteins. Clg comprises of of four Enzymes and two Transporters.

When looking at cellular component (CC) GO term enrichments (Table B.2, Ap-

pendix B) Cla, Clb and Clc seem to be tightly or exclusively associated with the mem-

brane. Cla seems to be predominately correlated with the postsynaptic membrane and

the associated scaffolding with the exception of the soluble signaling molecules found

there. Regarding clusters Clb and Clc all the lower level terms are membrane related,

as expected since they both only contain receptors and channels with the exception

of Cacng2. Finally, Clg is associated with the mitochondria. As expected Cla and

Clb and Clg have the most diverse molecular function (MF) GO term enrichment with

most of the enrichments being due to the channel or receptor activities and the binding

interactions between the adaptor and scaffolding proteins with the channels, receptors

or other molecules. The biological process (BP) GO term enrichments (Table B.4, Ap-

pendix B) show that Cla is associated with ion transport through its NMDA receptors

and Potassium channels. Molecules like CaMK2a and CaMK2b indirectly associate it

with Calcium transport. Via the signaling, scaffolding, and receptors proteins GO an-

notations, Cla is associated with the regulation of neuronal synaptic plasticity. Clb is

dominated by AMPA receptor processes. Regarding Clc, its functionally is associated

with Potassium transfer. Clg being mitochondrial, is associated with mitochondrial

processes (e.g proton transport). Crosschecking the above using PANTHER’s protein

classification system, we found a similar distribution of functional groups of proteins

(Table B.5, Appendix B).

PANTHER also offers pathway association information, shown in Table B.6, Ap-
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Table 4.4: Significant cluster and family correlations in the PSD-95 associated proteins network model.

P-values in parentheses.

Cluster Families

Cla Adaptor/ Regulatory (< 10−6), Receptors/ Channels/ Transporters (0.02)

Clb Receptors/ Channels/ Transporters (< 10−6)

Clc Receptors/ Channels/ Transporters (< 10−6)

Clg Enzymes (< 10−5)

pendix B. Cla is associated with NMDA receptor and signaling but also a Huntington

disease pathway. Clb is associated with the AMPA receptor signaling pathways. Also,

Cld is correlated (note that there is a low count so it is not shown) with various path-

ways via Rac1’s signaling activity.

It has to be noted that this distribution of functional families and their respective

biological functions in clusters reflect some biological significance to the computed

clustering configuration of the network. We have to keep in mind that clustering is

computed with no knowledge of biological function. The fact that the latter is segre-

gated in a biologically meaningful manner can be interpreted as evidence of this mod-

ular architecture having biological significance in how protein networks of molecular

machines like the PSD function.

4.3.2.5 PSD-95 associated proteins complex and disease

Regarding disease annotation specifically data was collected for the core set of 118

PSD-95 associated proteins via OMIM, Genetic Association Database, data mining

and manual curation. Out of the 118 proteins 49 (41.5%) were implicated in multi-

ple (25 total) diseases like schizophrenia (28), mental retardation (6), bipolar disorder

(13), Alzheimer’s disease (6) and others (29). All disease associations are shown in

Tables 4.5 and 4.6. For references look within Fernández et al. (2009) supplementary

material. We next analyzed the pair-wise correlation between functional categories and

disease type. The Receptors/ Channels/ Transporters family and Glutamate Receptors



4.4. Concluding remarks 105

subfamily were significantly correlated with schizophrenia (p = 0.002 and p < 10e−6,

respectively). Out of 28 schizophrenia-implicated proteins, 20 were mapped on the net-

work model (orange in Figure 4.7). Of those 20 proteins, 70% fell into Cla, which was

significantly enriched in schizophrenia-related proteins (p = 0.0089). All but one of

the remaining schizophrenia-related proteins were found in cluster Clb. There was also

a correlation between Kinases and depression, which corroborates previous evidence

(Pocklington et al., 2006) but the count (2) made us considering it rather weak in this

case. Mapping the primary interactors of these schizophrenia proteins recruited many

other proteins found in the other modules of the network. More specifically 40 out of

50 proteins in the network were either associated with or first degree neighbours of

genes associated with schizophrenia. This schizophrenia subnetwork (Figure 4.7) cov-

ers more than 92% of the MCC and 80% of the whole PSD-95 associated interactions

network. Note that there are also 47 interactions (~39% of total number of interac-

tions) between the schizophrenia susceptibility genes. All this implies that proteins

and interactions in this core complex are very likely to be involved with schizophrenia.

4.4 Concluding remarks

The work described here contributed in multiple ways to different aspects of catalogu-

ing and modelling the PSD. The first contribution has to do with the genetics and the

proteomics and is that it is the first isolation of mouse proteins complexes using a

knock-in TAP tag fused endogenous protein bait. This allows the gene’s expression

and the protein’s localisation to be regulated by its endogenous regulatory elements.

Also, it must be noted that the insertion of the TAP tagged gene did not seem to in-

troduce any detectable mutation. From a proteomics aspect, the two step purification

process yielded less contaminants, proving the TAP method as a good approach for

isolating and purifying complexes with less noise generating and data obfuscating con-

taminants. One also has to consider how the TAP method in this case can overcome
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some of the common immunoprecipitation limitations such as when i) an antibody for

the bait is not available or cross-reacts, ii) the antibody does not work due to binding of

interactors, iii) the antibody affects the binding of interactors, and iv) the harsh elution

conditions.

The other aspect of the contribution of this work is regarding the PSD. In this work

we managed to co-precipitate NMDA, AMPA, Kainate receptor subtypes along with

major K+ channels, which shows that these proteins are found in native complexes as

expected from major postsynaptic constituents responsible for synaptic transmission

and shaping the postsynaptic electrophysiological response to presynaptic input.

From a protein interaction networks perspective an important observation is that

the data described here connects PSD-95 with AMPA receptors, on which not a lot is

known. PSD-95 has been shown to affect AMPA receptor-mediated excitatory synap-

tic transmission (Migaud et al., 1998, Béïque et al., 2006, Carlisle et al., 2008), via

what is thought to be indirect interactions with stargazin, SAP-97, Adam22, Lgi1 and

Nsf (Leonard et al., 1998, Osten et al., 1998, Fukata et al., 2006). Co-precipitation

with Nsf reinforces the idea of PSD-95 involvement in synaptic vesicle trafficking and

AMPA surface-expression modulation (Lüthi et al., 1999, Noel et al., 1999) since it

implies some interaction between PSD-95 and Nsf. Other proteins involved in the

trafficking and clustering of AMPA receptor are Arc/Arg3.1 (Chowdhury et al., 2006,

Shepherd et al., 2006) and Rac1 (Wiens et al., 2005), and these were found within

the complexes. The isolation of multiple AMPA-receptor modulators in the PSD-95

complexes underlines the importance of this complex in mediating synaptic plasticity.

From a mental disease point of view 19 genes involved in schizophrenia were sig-

nificantly associated with the clusters Cla and Clb that contain all the glutamate recep-

tors and MAGUK/Dlg proteins. There were 47 interactions between these nodes that

create a schizophrenia associated subnetwork with nodes that have internal degrees

(within this subnetwork) varying between one and ten edges. Mapping the primary

interactors of these schizophrenia proteins recruited many other proteins found in the
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Figure 4.7: Left: protein interaction network of PSD-95 interacting proteins. Schizophrenia suscepti-

bility genes are shown in orange. Right: schizophrenia subnetwork in the PSD-95 associated proteins

interaction network. Schizophrenia susceptibility genes are shown in orange and their primary interactors

in red. From Fernández et al. (2009). An intercative version of this figure with fully visible node labels is

available in the additional material website (available in DVD format with this thesis).

other modules of the network. This suggests that the overall network, its topology and

interactions and its various clusters might play a role in schizophrenia, via pathway

crosstalk and interplay, and not simply the glutamate receptors, as was generally con-

sidered in the ’glutamate hypothesis’ of schizophrenia (Greene, 2001, Coyle, 2006,

Lisman et al., 2008).

In its relation to our set of hypotheses this chapter presents evidence verifying

that PSD proteomics data can be augmented by new methods and affinity purifica-

tion strategies. More specifically. the co-precipitation of NMDA, AMPA and Kainate

receptors along with major channels not only augmented the protein lists from the

perspective of constituent parts of the PSD networks, but is also evidence of the inter-

actions of the above proteins in functional complexes, as isolated from samples where

nothing but native regulation of expression takes place. Additionally, the reconstruc-

tion PSD-95 associated proteins interaction network model shows that there is a clear

modular architecture. Most importantly this modular architecture although similar to

that of the NRC/MASC model was computed using data acquired from different ex-

periments, giving further evidence supporting the presence of this modular architecture

as a feature in different modules of the PSD networks. Finally, as the associations of

functional annotation show, this modular architecture seems to have a biological sig-
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Table 4.5: Diseases and associated genes in the PSD-95 associated proteins complex. Continued in

Table 4.6.

Disease Num of
Genes

MGI Gene Symbols

Schizophrenia 28 Acot7, CamK2b, Cnp1, Dlg1, Dlg2, Dlg3, Dlg4, Dlgap1,
Gda, Gnao1, Gria1, Gria2, Gria3, Gria4, Grik2, Grin1,

Grin2a, Grin2b, Grin2d, Kcnj4, Mapk1, Nefl, Nrxn1, Nsf,
Pppp3ca, Sl1a2, Stxbp1, Vdac1

Bipolar affective disorder 7 Atp5c1, Grin1, Grin2b, Msrb2, Slc25a4, Vdac1, Vdac2

Alzheimer’s 6 Atp5a1, Gapdh, Gria1, Grin2a, Prdx1, Vdac1

Bipolar disorder 6 Cacng2, CamK2a, Dlg3, Dlg4, Nefl, Pgk1

Epilepsy 6 Adam22, Gria1, Gria2, Grin2b, Kcnj10, Lgi1

Depression 5 CamK2b, Dlg3, Mapk1, Pdha1, Plp1

Mental retardation 4 Capza2, Cltc, Grik2, Pgk1

ALS 2 Nefl, Sl1a2

Huntington disease 2 Grin2a, Grin2b

Seizure 2 Grin1, Kcnj10

X-Mental retardation 2 Dlg3, Gria3

Attention disorder 1 Grin1

nificance, reflecting the distribution of biological functions to different sub-networks

of the bigger network. Regarding the latter two points, about the architecture of the

complex, admittedly we can not infer conclusions for the whole network of PSD pro-

tein only by looking at a subset of the it. However, the evidence presented in this

chapter offer the first evidence towards that direction regarding the molecular machine

of the PSD.
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Table 4.6: Diseases and associated genes in the PSD-95 associated proteins complex (continued from

Table 4.5).

Disease Num of
Genes

MGI Gene Symbols

Autism 1 Nrxn1

CMT1 1 Nefl

CMT2 1 Nefl

Demyelinating disease 1 Plp1

Episodic ataxia type 1 1 Kcna1

Miller-Dieker
lissencephaly

1 Ywhae

Multiple sclerosis 1 Plp1

Neurodegeneration 1 Atp1b1

Ophtalmoplegia 1 Slc25a4

Parkinson’s 2 Pgk1, Prdx2

Pelizaeus-Merzbacher
disease

1 Plp1

Rett syndrome 1 Atp1b1

Spastic paraplegia 1 Plp1





Chapter 5

The PSD interactome

5.1 Background

Two major murine PSD datasets have been reconstructed into models, the NRC/MASC

and the PSD-95 associated proteins complex. Network models for these complexes

were reconstructed separately by Pocklington et al. (2006) and in Chapter 4 respec-

tively. The contribution of individual complexes towards different aspects of a wider

model of the mouse PSD can become evident after examining the datasets’ compo-

sitions. One can look at the data contribution of the individual models with various

approaches, one of which is to see the contribution of specific protein families (Figure

5.1). One instantly observable difference is in the Receptors / Channels / Transporters

family, which occupies ~15% more of the PSD-95 associated proteins complex com-

pared to the NRC/MASC complex. If we focus on the distribution of subfamilies of

this family (Figure 5.2) we can see how the PSD-95 associated proteins complex con-

tributes to a more cross-membrane “lateral” perspective of the PSD by contributing

insight on the composition of the electrical component (Voltage-gated K+ channels,

Inward rectifying K+ channels) but also with glutamate receptors (AMPA family)

and members of the Other Channels and Receptors subfamilies. The NRC/MASC on

the other hand contributes, with Glutamate Receptors, G-proteins, Kinases and Phos-

111
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Figure 5.1: Protein family distribution in the NRC/MASC and PSD-95 associated proteins complexes.

phatases as well as with different MAGUKS of the Adaptor / Regulatory family.

When looking at the protein lists of the two complexes there is a 48 protein over-

lap, which is also reflected on the protein interaction network models of the two com-

plexes (Figure 5.3). A total of 16 proteins were common to the aforementioned net-

work models (p < 10−7) with overlap centered (10/16 proteins, p < 10−3) on Cla and

NRC/MASC cluster 1. These clusters are part of what is described as the ’input layer’

of these molecular machines, since they contain many of the proteins responsible for

receiving the extracellular signal and relaying it further downstream.

Given the aforementioned overlap in both the context of the protein lists and the

protein interaction network models and also the different contributions of NRC/MASC

and the PSD-95 associated proteins complex we decided to merge the two complexes

into one larger model. Application of the modelling pipeline would lead to a manu-

ally curated and annotated model of all mouse PSD proteomics data produced by the

Genes2Cognition consortium at that time. Using high quality proteomics data from

one source ensures that the core model has high confidence and reproducibility. Such

a “gold standard” model of considerable size, will be useful for integrating existing
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Figure 5.2: Subfamily distribution for the Receptors / Channels / Transporters family in the NRC/MASC

and PSD-95 associated proteins complexes.

data, adding data that is underway, but also for a comparative analysis of the murine

synaptic molecular machine with that of other organisms, like D. melanogaster or hu-

man models.

The overlap between the aforementioned two PSD protein interaction models also

provided evidence for the presence of modular architecture with biological significance

in protein interaction networks like the PSD. More specifically, we saw how the mod-

ular architecture was not only present in two independently derived datasets, but also

how most of the overlap present in the network was found to be clustered together from

two independently computed clustering configurations, showing a persistence of this

modular architecture.

5.2 Integration and data mining

5.2.1 Dataset merging

The first step towards this model was merging the NRC/MASC and PSD-95 associ-

ated proteins complex protein lists. We merged using the ’core’ PSD-95 associated
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Figure 5.3: Overlap of the PSD-95 associated proteins interaction network and NRC/MASC interaction

network (composite nodes removed) . Node colours reflect clusters of the PSD-95 associated proteins

interaction network (left), some of the poteins in these higligthed clusters also belong to the overlap with

the NRC/MASC interaction network (right). An intercative version of this figure with fully visible node

labels is available in the additional material website (available in DVD format with this thesis).
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proteins dataset, after removing protein entries where there was ambiguity for the cor-

responding gene (113 proteins) and the NRC/MASC list after removing composite

entries (188 proteins - two of the proteins of overlap were within the composite entries

part of NRC/MASC1). As mentioned earlier there was an overlap of 48 proteins, so

the total number of proteins in the complex was 253. GO annotations for all entries

were also merged and updated. The dataset resulting from the union of NRC/MASC

and PSD-95 associated proteins complex dataset will be hereon referred to as Union.

5.2.2 Interaction mining

Interactions have been previously curated both for the NRC/MASC and the PSD-95

associated proteins complex individually. For that reason the subsets we had to mine

interactions for would be proteins belonging to the differences of the two sets. Also,

since the PSD-95 associated proteins model curation had been performed 2 months

previous to the reconstruction of this model, we decided that there is no need for an

update. On the other hand the NRC/MASC interaction curation had been done almost

3 years before so we decided to update it. An illustration of the above concept is shown

in Figure 5.4.

Due to the time bottleneck associated with running a dedicated text-mining ser-

vice we decided against it and mined two other main data resources for interactions.

One was protein interaction databases and the other was the FIND protein interaction

dataset. The FIND dataset (Εwa Stocka, unpublished) was provided by the Dietrich

Rebholz’s group at the EBI. It was compiled, with tools developed by the group, by

mining PubMed abstracts based on co-citation of protein and gene names. There were

1052 potential interactions hits from FIND and 248 from protein interaction databases.

Out of these, interactions between 505 pairs of proteins were curated as true positive.2

1Composite entries contained proteins not idenentified by MS.
2The rest were curated out of the dataset as false positive hits, something very common to an error

prone approach such as co-citation.
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Figure 5.4: Overlap and difference between the NRC/MASC and PSD-95 associated proteins datasets

(top). Additional interactions (bottom). Interactions within the NRC/MASC dataset as well as interactions

between the differences of the PSD-95 associated proteins and NRC/MASC datasets had to be updated

and curated respectively.

5.3 Results

5.3.1 The Union protein complex

When examining the twenty most common abundant protein domains (Table 5.1) in

the dataset the functionality represented includes G-protein-coupled signal transduc-

tion (Extracellular solute-binding protein, family 3), scaffolding (Src homology-3 do-

main, Variant SH3, PDZ/DHR/GLGF ), mitochondrial domains (Mitochondrial Rho-

like), membrane localisation (Pleckstrin homology) and neurotransmitter related sig-

naling (Ionotropic glutamate receptor, NMDA receptor, glutamate receptor-related),

and phosphosignalling (Serine/threonine-protein kinase domain, Protein kinase, ATP

binding site, Tyrosine-protein kinase, catalytic domain). This shows a clear overlap

with the abundant domains in the respective datasets, revealing, as expected PSD func-

tionalities.
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Table 5.1: Twenty most common protein domains in the Union complex. All domains have key synaptic

signalling functionalities.

Domain n-fold enrichment
compared to

genome

C2 calcium-dependent membrane targeting 5.83

Protein kinase, catalytic domain 3.48

Serine-threonine/tyrosine-protein kinase 4.05

Ionotropic glutamate receptor 43.08

Src homology-3 domain 5.82

PDZ/DHR/GLGF 6.04

NMDA receptor 40.81

Extracellular solute-binding protein, family 3 45.61

Ras GTPase 5.43

Pleckstrin homology domain 3.83

Serine/threonine-protein kinase domain 3.46

Ras small GTPase, Rab type 4.76

Small GTP-binding protein domain 4.67

C2 calcium/lipid-binding domain, CaLB 5.14

Protein kinase-like domain 3.37

Variant SH3 6.56

Mitochondrial Rho-like 4.85

Ras 5.14

Serine/threonine-protein kinase-like domain 3.56

Tyrosine-protein kinase, catalytic domain 3.55
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5.3.2 The Union protein interaction network model

5.3.2.1 Model reconstruction

The resulting protein nodes and interaction edges generated a protein interaction net-

work with a major connected component (MCC) of 164 nodes and 458 interactions.

The protein interaction network was partitioned in 15 clusters using the Newman and

Girvan (2004) algorithm (modularity, Q = 0.52), as illustrated in Figure 5.5. This fig-

ure also illustrates the distribution of families and specific key protein groups such as

glutamate receptors, ion channels, scaffolding and phosphosignalling related proteins.

The families and proteins in each cluster are shown in Tables B.7, B.8 and B.9, found

in Appendix B. Note that the protein, interactions, and annotations lists are available

with the supplementary material DVD.

As previously discussed there was a 48 protein overlap between the initial NRC/MASC

and PSD-95 associated proteins datasets. The merging of the datasets and addition of

new interactions allowed more of that overlap to enter the network model. More specif-

ically 33 (c.f., 16 before interaction curation) out of the 48 proteins are now in the

model. The distribution of PSD-95 associated proteins complex-only, NRC/MASC-

only and overlap proteins varied from cluster to cluster (Figure 5.6). There are cases

like cluster A where contribution of the original datasets was equal or cases like clus-

ters B and D where one complex contributed many more proteins. There are also the

case of cluster I, which originates only from NRC/MASC

5.3.2.2 Network topology analysis

As mentioned before the network segregates in 15 clusters. Significant correlations

of GO annotations, which include the domains of molecular function (MF), biological

process (BP) and cellular component (CC) are shown in tables B.10, B.11 and B.12

respectively, found in Appendix B. Again, as hypothesised earlier, the network appears

to have a modular architecture parts of which (clusters) have correlations with specific
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Figure 5.5: The Union protein interaction network. 164 proteins connected with 455 interactions segre-

gated into 15 clusters forming the MCC. Nodes are coloured by family. K+ channels are parallelograms,

glutamate receptors V-shaped, Scaffolding proteins are triangular and Kinases / Phospatases square.

An intercative version of this figure with fully visible node labels is available in the additional material

website (available in DVD format with this thesis).



120 Chapter 5. The PSD interactome

Figure 5.6: Node contribution in the Union protein interaction network. Nodes in the PSD-95 associated

proteins complex are green, nodes from the NRC/MASC are blue and overlap nodes are purple.
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biological functions. From the above the following observations can be made about

these clusters:

• A: Consists of 39 proteins. Includes all NMDA and Kainate glutamate receptors.

It also includes all but one of the K+ channels in the network model. The Re-

ceptors/ Channels/ Transporters family correlates significantly with the cluster

(p = 2.31E − 005) and takes up ~35% of the nodes within it. Another ~30%

is taken up by proteins of the Adaptor/ Regulatory family, namely MAGUKs of

the PDZ and non-PDZ domain containing scaffolders subfamilies, which also

correlates with the cluster (p = 0.01). The former subfamily includes all the

proteins of the Dlg gene family (Dlg1-4). This cluster also contains cytoskele-

tal proteins of the PSD’s structural lattice like Shank1. According to the GO

annotations, molecular function (Table B.10) seems to be dominated by recep-

tor and ion channel function related annotation terms. Similarly, the biological

processes (Table B.11) are clearly NMDA receptor, ion transport and synaptic

transmission associated. Also, subcellular localisation (Table B.12) of this clus-

ter seems to be highly post-synaptic membrane associated or bound.

• B: Consists of 6 proteins and is correlated with the Receptors/ Channels/ Trans-

porters family (p < 10−6). This cluster contains all the AMPA receptors (Gria1-

4) in the dataset. It also contains Cacng2 and Nsf, which have been associ-

ated with AMPA receptor trafficking (Hashimoto et al., 1999, Chen et al., 2000

and Nishimune et al., 1998 respectively). Nsf has also been shown to influence

AMPA receptor subunit (Gria2) via endocytosis (Braithwaite et al., 2002). GO

annotations show that the cluster’s molecular function, cellular component and

the biological processes it is involved in are dominated by the AMPA receptors

terms.

• C: Consists of 12 proteins. This cluster includes the metabotropic glutamate

receptors in the model (Grm1 and Grm5). The cluster also includes members
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of and is correlated with the G-protein signalling family (p = 0.03), but also

contains signalling enzymes and cytoskeletal proteins. Again, this cluster is en-

riched in membrane related GO CC terms and its dominant GO BP is signal

transduction. Homer1 is a member of this cluster. Homer1 is an PDZ-domain

containing scaffolder that interacts with Shank1 (found in cluster A) to create a

dynamic polymeric network scaffolding lattice structure for the PSD (Hayashi

et al., 2009). Also Homer1 - mGlur interactions are responsible for the clustering

of mGlurs (Kammermeier, 2006).

• D: Consists of 56 proteins and is the larger cluster in the network. This cluster is

of a mixed nature, but ~46% of it consists of the signalling related protein fami-

lies, Kinases (~21%), Phosphatases (~12.5%) and Signalling Molecules and En-

zymes (12.5%). This cluster contains all the members of the phosphodependent

chaperones 14-3-3 subfamily (Ywhae, Ywhag, Ywhah, Ywhaz) of the Adaptor/

Regulatory family of proteins. The 14-3-3 proteins interact densely with the Ki-

nases and Singalling Molecules and Enzymes members but not that much with

the Phosphatases, which in turn have a similar number of interactions with the

Kinases and Singalling Molecules and Enzymes members. This cluster contains

7 out of the 8 Phosphatases family members in the network model and highly

correlates with the family (p < 10−6), while the Kinases family members seem

to be more distributed in the network. However, cluster D encapsulates the well-

studied Erk/Mapk signalling pathway cluster. From a GO term enrichment per-

spective the cluster appears to have it molecular functions highly correlated with

kinase related activity and a mixed cytoplasmic, cytoskeletal and membrane GO

CC annotation. The results are similar in the GO BP annotation domain, where

phosphorylation related terms prevail, along with a cytoskeletal regulation (reg-

ulation of cell shape) via the GO annotations of Ppp2ca and Nefl.

• E and F: Consist of 5 and 9 proteins respectively and are of a mixed functional
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nature. There are no dominant correlated GO terms or families associated with

these clusters, except for the case of GO CC for cluster F, which is correlated

with the cytoplasm and the nucleus. Both clusters contain a mixture of Adaptor/

Regulatory proteins as well as members of the Signalling Molecules and En-

zymes and / or Kinases families. Cluster E also contains Na/K channel Atp1a1,

which is responsible for the maintenance of the postsynaptic resting potential

(Dobretsov and Stimers, 1997).

• G: Consists of 8 proteins and is also highly correlated with the Kinases family

(p = 0.02). The cluster is highly correlated with the transferase activity in MF

terms and the glycolisis process in GO BP terms. Its also correlated with the

cytosol and the nucleus cellular components.

• H: Consists of 6 proteins and is highly correlated with the Vesicular/ Trafficking/

Transport protein family (p < 10−6). The rest of the proteins of this family are

found in cluster D. The majority of the cluster’s interactions are with clusters A,

C and D and the cluster is highly correlated with the neurotransmitter secretion

GO BP term.

• I: Consists of 5 proteins and is highly correlated with the cytoplasm annotation

in the GO CC domain of GO. Again, this seems to be a cluster centered around

a scaffolding protein (mitogen-activated protein kinase 8 interacting protein 1 -

Mapk8ip1) that is associated with three kinases (Map2k7, Stk39, Mapk10).

• J and K: Consist of 4 and 2 proteins respectively and both exclusively contain

members of the G-protein signalling family. Cluster K is too small to show any

significant correlations, but cluster J appears, as expected, correlated with GO

terms related with G-protein signalling as the cluster itself is correlated with

the protein family (p < 10−6). The clusters appear disconnected on a first de-

gree neighbour level from the other G-protein containing cluster C, with the

metabotropic glutamate receptors. Cluster J connects to cluster D and cluster K
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to cluster H, via an interaction with Stx1a. Also, note all proteins in cluster J

are involved in the Muscarinic acetylcholine receptor 2 and 4 signaling pathway

(Table B.14, Appendix B) .

• L: Consists of 4 proteins. All proteins in the Cluster are of the Enzymes fam-

ily (p < 10−7), and more specifically ATP proton transporters. The cluster is

highly correlated with the associated GO MFs and BPs and is also correlated

with mitochondrion associated GO CC terms.

• M, N and O: Consist of 4, 2 and 2 proteins respectively. All proteins but one

belong to the Cytoskeletal/ Structural/ Cell adhesion family. Cluster M includes

Vdac1, an outer mitochondrial membrane protein, while the rest of the proteins

are of cytoskeletal nature.

Pocklington et al. divided the NRC/MASC complex into three layers, or components,

by grouping the clusters it was segregated in. These layers were input (or upstream

component), information processing (or midstream component) and output (or down-

stream component), based on their overall biological function. We looked at how this

division mapped on the clustering of the Union network, given the addition of new

nodes, we expected some of the original mapping to have changed. Clusters A, B

and C, mapped almost completely to the input layer with the exception of four out-

put component proteins that were also clustered in the aforementioned clusters due

to interactions with their members. An example of such protein is Shank1, which in

the Union network has 4 additional interactions with cluster A members. Cluster H is

also comprised of 50% input layer proteins, with the exception of Snap25, Nefm and

Nrxn1, which also give it a more structural character. Clusters J and K - comprised of

G proteins - can also be considered part of the input layer, along with cluster O, which

is part of the input layer’s cytoskeletal support. Given the above, the Union network’s

input layer comprises of clusters A, B, C, J, K and O. Cluster H is likely to belong to

this layer. The information processing layer maps almost exclusively to cluster D, with
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the exception of three proteins (2 in F and 1 in M). Cluster G, which also contains 4

Ser/Thr kinases can be considered part of the information processing layer. Therefore,

in the Union network the information processing layer corresponds to cluster D and G.

When the NRC/MASC network’s output layer was mapped on to the Union network

we noticed that part of it mapped to clusters I (exclusively output layers proteins) and

D, with the latter cluster appearing to be of a mixed information processing and output

nature. The rest of the clusters E, L, M and N can be considered part of the molecular

machine that is further downstream of the output and are responsible for individual

effector responses (e.g. cytoskeleton rearrangement, mitochondrial function, vesicular

trafficking).

5.3.2.3 Architecture

To our experience the most informative metrics are node degree and betweenness as

well as the average shortest path (ASP) to node. Since the latter two tend to follow sim-

ilar trends we present the twenty nodes from the network with the highest betweenness

in descending order in Table B.15 of Appendix B. As previously discussed in 3.3,

nodes of high betweenness are central points in the network where the information

flow converges and they tend to connect modules of the network. Also, the ASP of a

node can be a measure of its importance in pathway crosstalk.

When looking at the top-20 nodes of highest betweenness we see various types of

proteins. Two PDZ domain and two non-PDZ domain containing scaffolders are in this

set of twenty proteins, with a total of 5 proteins belonging to the Adaptor/ Regulatory

family being in this set. The PDZ containing domain proteins are both members of

the Dlg gene family. As mentioned in Chapter 4, Dlg4 is central to the organisation of

the scaffolding lattice of the PSD and is at the top of the list, with a betweenness of

0.19. Scaffolding proteins in general are expected to hold central positions in a network

since they connect the receptors with the downstream signalling. Another prominent

group in this set are the Grin1, Grin2b and Grin2d NMDA receptor subunits. These
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receptors all have a high degree in the network and are expected to hold positions

of high betweenness since the interact with many adaptor, scaffolding and signalling

proteins.

Looking at the family distribution in this set of 20 nodes, we see that 6 (30%) are of

the Kinases family, with a total of 9 (45%) being comprised of proteins with signalling

functionality (Kinases and Signalling molecules and Enzymes families). This could

be interpreted on the basis that these types of proteins are points of information flow

convergence from the receptors towards more downstream signalling (Salter and Kalia,

2004)

From an ASP perspective, all but three nodes in the top 20 list have an ASP <

3, with two exceptions, with the networks average ASP being 3.35. Looking at the

general distribution of nodes with a low ASP (< 3) in Figure 5.7, we can see that they

appear gathered in clusters A and D as would be expected. Low ASP is indicative of the

importance of a node to the information flow in the network, since it usually indicates

high crosstalk between modules. An example of such crosstalk is between clusters A

and D, via tyrosine kinases Ptk2b in A and Src in D. Again, tyrosine kinases in this

case are a point of convergence for multiple signalling pathways regulating NMDA

receptor activity found in cluster A (Salter and Kalia, 2004).

5.3.2.4 Module and family interactions

An interesting aspect of a network model is that we can observe interactions between

modules of the network and interpret them from a functional perspective using annota-

tion information. In the following paragraph we will look at the interactions between

the clusters of the network which represent functional modules. In the Union network

there are 3 receptor clusters (A, B, C) and a major cluster of signalling nature (D).

However, we notice signalling related proteins (Kinases and Signalling molecules and

Enzymes families) spread in other clusters as well (E, F, G). From a functional mod-

ule connectivity point of view it would be interesting to see how the input component
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Figure 5.7: Average shortest paths to nodes in the Union interaction network. Nodes with ASP > 3 are

grey. Nodes with ASP < 3 vary from yellow (lower) to red (higher).

of the network (receptors) connects to the more downstream signalling component.

The NMDA receptor cluster, A, seems to be well connected (66 edges) to D, with

its first degree neighbours covering most of the latter cluster. Similarly, cluster C

(metabotropic glutamate receptors) is connected via 12 edges via proteins from var-

ious families including Adaptor/ Regulatory, Kinases and Signalling molecules and

Enzymes. Cluster B (AMPA receptors) seems to be more cut off, connecting to D via

and interaction between Gria4 and Prkcc. Except direct connections there seem to be

some indirect connections of cluster A to cluster D via smaller clusters that are con-

nected to both with equal or comparably similar numbers of edges. There is also the

case of cluster G that connects the metabotropic glutamate receptor cluster C to the

signalling cluster D. Clusters C and G are connected via an interaction between Gapdh

and Tpi1. Tpi1 interacts via another protein in cluster G (Cfl1) with clusters D and

E. Cluster G also interacts with cluster D via interactions with cytoskeleton regulating

protein Cse1l. Another cluster that connects to many other is M. M contains cytoskele-
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tal proteins and a voltage-dependent anion channel (Vdac1) and connects to clusters

A, C, D and F. Interactions are achieved mostly via Vdac1, actinin Actn4, and gelsolin

(Gsn).

Another perspective of observations is that of interactions between protein families

(Figure 5.8). If the diagonal of the illustration is ignored (as it represents interactions

within the same family), one can observe that members of the Kinases family inter-

act with the Adaptor/ Regulatory (31 edges), Receptors/ Channels/ Transporters (25

edges), Cytoskeletal/ Structural/ Cell adhesion (16 edges) and the Signalling molecules

and Enzymes (13 edges) families. The Adaptor/ Regulatory interacts a lot with Recep-

tors/ Channels/ Transporters (52 edges), Cytoskeletal/ Structural/ Cell adhesion (35

edges) and Signalling molecules and Enzymes (26 edges) families. These numbers

sketch the foundation of the PSD’s organisation, i.e. the cytoskeletal proteins interact-

ing with the adaptor proteins, creating a lattice and scaffold. This scaffold becomes a

substratum not only for the receptors and ion channels, but for part of the signalling

component as well. Finally, interactions of the receptors and channels with signalling

and phosphosignalling molecules of the PSD allow the propagation of downstream

signals to the cell, regulating aspects of synaptic transmission such as plasticity.

The aforementioned notion of basic architecture could also be illustrated using a

metanetwork. In Figure 5.9 we can observe how the dominant (thicker) metaedges

connect proteins of the Adaptor/ Regulatory with the structural proteins of the Cy-

toskeletal/ Structural/ Cell adhesion family and the receptors and ion channels of the

Receptors/ Channels/ Transporters family. The Adaptor/ Regulatory family also con-

nects with proteins of a signalling nature (Kinases and Signalling molecules and En-

zymes families) - providing a hub for the downstream propagation of the signal. In

addition to these interactions, there are also direct interactions of the singalling and

structural proteins with the receptors and channels adding to the complexity of the

network.
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Figure 5.8: Table of the protein family to protein family connectivity in the Union network (normalised).

Cells are coloured according on a scale of white (smallest) to red (highest) . Note how prominent the

central interactions between Adaptor and Cytoskeletal, Kinases and Receptors are.

Figure 5.9: Metanetwork of nodes in the union network. Each metanode represents a family and

groups all nodes of in it. Metaedges represent normalised ratios of edges between proteins of the same

family in the original network model. The weight of the metaedges is proportional to the edge count in

the original network.
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5.3.3 The PSD interactome and physiology

We annotated the proteins in the Union dataset using previous in-house curation and

G2Cdb data (for references see within Pocklington et al., 2006, Fernández et al., 2009).

Figure 5.10 shows the Union protein interaction network with the nodes involved in

synaptic plasticity, behaviour or both highlighted. Most of the nodes in the model are

correlated with both plasticity and behaviour. Most nodes involved in either one or

both are spread across clusters A - E, with the exception of synaptic vesicle protein

Syt1 in cluster H and Vdac1 in cluster M. As expected these clusters are the ones

associated with receptors, signalling and scaffolding of the PSD.

The Receptors / Channels / Transporters and Signalling molecules and Enzymes

families correlated with behaviour (p < 10−6 and p = 0.05 respectively). The Re-

ceptors / Channels / Transporters family also correlated with plasticity (p = 0). The

Glutamate receptors subfamily of the Receptors / Channels / Transporters family cor-

relates both with plasticity and behaviour (p < 10−6 in both cases) and also the Tyr

Kinases subfamily of the Kinases family correlates with behaviour (p = 0.01). Cluster

E was found to correlate with behaviour (p = 0.05). This is interesting because as

previously discussed, cluster E is one of the signalling associated clusters that connect

with A and D via equal number of interactions - and could function as an information

relay in their communication. A position like that would be likely to affect the flow of

information from input (receptors) to the more downstream components of signalling.

Among the top twenty nodes of highest betweenness in Table B.15 on page 253, found

in Appendix B, 9 have plasticity and 9 have behavioural phenotype associations.

5.3.4 The PSD interactome and disease

5.3.4.1 Disease annotation and correlation

We collected disease associations for all proteins in the Union dataset from the previ-

ously curated NRC/MASC and PSD-95 associated proteins datasets (for references see
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Figure 5.10: Proteins associated with behaviour (blue), plasticity (orange) or both (pink) in the Union

network. An intercative version of this figure with fully visible node labels is available in the additional

material website (available in DVD format with this thesis).
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within Pocklington et al., 2006, Fernández et al., 2009). An additional semi-automatic

curation was done in case any new data had appeared. The disease associations of

proteins in the Union dataset are shown in tables 5.2 and 5.3. The dataset associated

with a total of 23 diseases. Out of these we will focus on schizophrenia, bipolar and

bipolar affective disorder (grouped as bipolar disorder), mental retardation and depres-

sion since all of the aforementioned diseases correlate with more than 10 proteins in the

dataset. A total of 59 nodes in the network are associated with one or more of these dis-

eases. From a functional correlation point of view, Receptors/ Channels/ Transporters

correlate with schizophrenia (p < 10−4) and Kinases with depression (p = 0.02) - as

previously shown for the PSD-95 associated proteins dataset. Another correlation that

appeared by merging NRC/MASC to the aforementioned dataset is a correlation of the

Receptors/ Channels/ Transporters family with bipolar disorder (p = 0.01) - corrob-

orating previous correlations between proteins involved in schizophrenia and bipolar

disorder (Pocklington et al., 2006). A more fine grain examination of the functional

family annotation in correlation with disease reveals that in the Receptors/ Channels/

Transporters family it is the Glutamate Receptors subfamily that is correlated with

schizophrenia (p = 3.93E − 7) and the Voltage-dependent anion channels subfamily

that is correlated with bipolar and bipolar affective disorder (p = 0.01).

5.3.4.2 Disease in the network

It is interesting to look at how disease associations correlate with modular structure.

Besides the correlations of specific modules with disease it is also interesting to exam-

ine the distribution of disease nodes and their primary interactors across the network.

This way we can isolate a disease associated sub-network and assert its spread within

the model.

Schizophrenia correlates with all clusters A (p = 0.03) and B (p = 0) where NMDA

and AMPA glutamate receptors appear. It also correlates with clusters D (p = 0.02)

and H (p = 0.02). Other than the NMDA receptors in cluster A, cluster D contains
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Table 5.2: Diseases and associated genes in the Union complex. Continued in Table 5.3.

Disease Num of
Genes

MGI Gene Symbols

Schizophrenia 43 Acot7, CamK2b, Cnp, Dlg1, Dlg2, Dlg3, Dlg4, Dlgap1,
Dpysl2, Dusp4, Flna, Gap43, Gda, Gnao1, Gnas, Gria1,

Gria2, Gria3, Gria4, Grik2, Grin1, Grin2a, Grin2b, Grin2d,
Grm5, Hspa1b, Kcnj4, L1cam, Mapk1, Mapk3, Nefl, Nos1,

Nrxn1, Nsf, Pik3ca, Pla2g4a, Ppp3ca, Slc1a2, Snap25, Stx1a,
Stxbp1, Vdac1, Ywhah

Bipolar or Bipolar
Affective Disorder

19 Atp1a3, Atp5c1, Cacng2, CamK2a, Dlg3, Dlg4, Gnas,
Gnb2l1, Grin1, Grin2b, Gsk3b, Msrb2, Nefl, Pgk1, Pik3ca,

Slc25a4, Snap25, Vdac1, Vdac2

MentalRetardation 26 Actg1, Calb2, Capza2, Cltc, Dlg3, Dpysl2, Gnas, Gnb2l1,
Gria3, Grik2, L1cam, Ldhb, Msrb2, Nefl, Nefm, Nf1, Nrxn1,

Pfkl, Pgk1, Pik3ca, Pklr, Ptpn11, Rab3a, Rac1, Rap2a,
Rps6ka3, Tpi1

Depression 12 CamK2b, Dlg3, Dusp4, Gnas, Hspa1b, Mapk1, Mapk3,
Pdha1, Pla2g4a, Plcb1, Plp1, Ptk2b

Epilepsy 6 Adam22, Gria1, Gria2, Grin2b, Kcnj10, Lgi1

ALS 2 Nefl, Sl1a2
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Table 5.3: Diseases and associated genes in the Union (continued from Table 5.2).

Disease Num of
Genes

MGI Gene Symbols

Huntington disease 2 Grin2a, Grin2b

Seizure 2 Grin1, Kcnj10

X-Mental retardation 2 Dlg3, Gria3

Attention disorder 1 Grin1

Autism 1 Nrxn1

CMT1 1 Nefl

CMT2 1 Nefl

Demyelinating disease 1 Plp1

Episodic ataxia type 1 1 Kcna1

Miller-Dieker
lissencephaly

1 Ywhae

Multiple sclerosis 1 Plp1

Neurodegeneration 1 Atp1b1

Ophtalmoplegia 1 Slc25a4

Parkinson’s 2 Pgk1, Prdx2

Pelizaeus-Merzbacher
disease

1 Plp1

Rett syndrome 1 Atp1b1

Spastic paraplegia 1 Plp1
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some key signalling molecules involved in the disease like Mapk1, Mapk3 and Nefl.

Cluster H, as mentioned earlier, contains 4 out of 6 synaptic vesicle proteins in the

network (not including Clathrin or motor proteins). All 4 synaptic vesicle proteins in

cluster H are associated with schizophrenia. The total of 36 nodes associated with

schizophrenia seem to be in 8 out of 15 clusters in the network (Figure 5.11 top left).

The primary interactors to these nodes seem to be distributed in 10 out of 15 clusters,

covering >70% of the network, mostly due to the fact that some of the associated

genes are of very high degree (e.g. Grin1, Grin2b, Grin2d, Dlg3 and Dlg1). Also,

notice how cluster F, with no directly associated proteins, consists of >50% of their

primary interactors. Another strong impression is made by how much clusters A - D

are affected.

Bipolar disorder does not correlate with any of the clusters in particular. The total

of 15 genes associated with it are distributed over 8 out of 15 clusters in the network

(Figure 5.11 top right), with their primary interactors in 11/15 clusters covering ~46%

of the network. With the exception of cluster G, K and L the clusters affected are the

same with schizophrenia, with the main NMDA and AMPA receptors and signalling

clusters A and D affected in similar extent with schizophrenia.

Mental retardation (Figure 5.11 bottom left) correlates with cluster G (p = 0.02).

The disease correlates with 3 out of 4 Ser/Thr Kinases found in that cluster (Pfkl,

Pklr, Pgk1) and signalling associated enzyme Tpi1. There is a total of 21 proteins

associated with mental retardation, interacting with 56 proteins on a first degree level.

What is also noticeable, is that clusters A and D are not as affected as they are in the

schizophrenia and bipolar disorder cases. Another relevant observation is that when

comparing mental retardation to bipolar disorder, we see that even if more proteins

are actually directly associated in the former the number of first degree interactors is

lower. That is a result of the type of nodes involved. In the case of mental retardation all

associated nodes with the exception of Actg1, Dlg3 and Pik3ca have a degree smaller

than 10 nodes.
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Figure 5.11: The Union protein interaction with protein nodes associated with disease highlighted in

red and primary interactors in yellow. Top left: schizophrenia, top right: bipolar disorder, bottom left:

mental retardation, bottom right: depression. An intercative version of this figure with fully visible node

labels is available in the additional material website (available in DVD format with this thesis).

Depression (Figure 5.11 bottom right) is also not correlated with any particular

clusters. There are a total of 9 proteins associated with depression interacting with

another 39 nodes on a first degree level. Four of the associated proteins belong to the

Kinases family. Again, in this case, clusters A and D are less affected.

It is also interesting to note that among the top twenty nodes of highest betweenness

in Table B.15 on page 253, 9 are associated with schizophrenia, 7 with bipolar disorder,

2 with mental retardation and 1 with depression, while 9 of the nodes have no disease

association (with two of them associated with plasticity and behaviour).
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5.3.5 Evolution of the PSD interactome

Following up on analysis originally performed by Emes et al. (2008) we decided to ex-

amine the Union complex from an evolutionary perspective in order to elucidate open

questions about the evolution of synaptic molecular machines. Based on this approach

and the additional network model, which at the time the original study was performed

was unavailable, we performed a comparative genomics analysis of the Union network

and also superimposed the results on the protein interaction network in order to explore

possible links between evolutionary origin and network architecture.

For each protein in the Union dataset, we retrieved the corresponding gene’s or-

thologues across 18 species (the genome of A. melifera was unavailable via Compara).

This, besides retrieving the database accession numbers for all orthologs of a gene also

allowed us to define another attribute. This attribute, hereon referred to as the “bound-

ary of appearance in evolution” or simply “boundary”, represents the first appearance

of a gene in evolution. Due to the nature of our data we divided on three lineage

boundaries: Eukaryotic, Metazoan and Chordate.

The distribution of orthologs across the 18 species, visualised as a percentage of the

total human genes (Figure 5.12), corroborated the results by Emes et al. (2008). More

specifically, and from a perspective of appearance in evolution, in the Union dataset

~21% of the proteins were present in Eukaryotes, ~41% in Metazoans and ~39% were

in Chordates. Rises in Union complexity, by the addition of more genes are visible

as “jumps” at the Eukaryotic-Metazoan and Metazoan-Chordate boundaries (arrows in

5.12), are speculated to be coinciding with genome duplications.

The rises in complexity are a result of a specific elaboration mechanism based

on expansion by duplication and diversification of existing gene families (e.g. re-

ceptors, scaffolders, etc) rather than the addition of new genes (Emes et al., 2008).

This conclusion is drawn from observations like the following. Although representa-

tives of all families were present in Eukaryotes (Figure 5.13, top), specific subfamilies

only appeared in the complex after the Metazoan boundary, once a nervous system ap-
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peared. Examples of these subfamilies are the PDZ-domain containing scaffolders of

the Adaptor/ Regulatory family the Glutamate Receptors, Inward rectifying K+ chan-

nel, Voltage-dependent anion channels and Voltage-gated K+ channel subfamilies of

the Receptors/ Channels/ Transporters family (Figure 5.13, bottom). It is also interest-

ing to notice how these key components got even more elaborate in variety after the

Chordate boundary. For example,~33% of Glutamate receptors and 64% of the non-

PDZ domain containing scaffolders subfamilies variety was added after the Chordate

boundary. From an enrichment perspective, the Enzymes, Signalling molecules and

Enzymes, Transcription/ Translation families are significantly enriched in proteins ap-

pearing at the Eukaryotic boundary (p = 0, p = 0 and p = 0.01 respectively). Also, the

Adaptor/ Regulatory, Signalling molecules and Enzymes and Cytoskeletal/ Structural/

Cell adhesion families are significantly enriched in proteins appearing at the Chordate

boundary (p = 0.04, p = 0.04 and p = 0.02 respectively).

All this reflects the existence of a generic signalling toolkit along with the basic

cytoskeletal and adaptor scaffolding in Eukaryotes (some of the PSD components are

also parts of basic cellular toolkits like the ribosome or mitochondria). This signalling

toolkit got more elaborate in Metazoans after the formation of the first synapse (proto-

synapse). Chordates possess a molecular machine of even greater complexity, with a

great variety of key components like glutamate receptors, PDZ-domain and non-PDZ

domain containing scaffolders and signalling molecules.

The novelty in this approach was attempting to use the Union protein interaction

network model as a scaffold for these evolution annotations. We annotated the net-

work with the boundary of evolutionary appearance for all proteins (Figure 5.14). As

expected, cluster A appears almost exclusively of Metazoan or Chordate origin with

the exception of Ca+2 Atpase Atp2b4. Similarly, cluster B contains only one protein of

Eukaryotic appearance, synaptic vesicle protein Nsf, which as previously mentioned is

associated with trafficking of other proteins in the cluster. Clusters C and D appear to

have a more mixed composition since they’re associated with signalling, which could
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Figure 5.12: Distribution of Union gene orthologues across 18 species. Orthologs are plotted as a

percentage of total human Union genes as per (Emes et al., 2008), the results of which are recapitulated

as indicated by the jumps (arrows) in complexity, potentially coinciding with genome duplication events.

be part of the protosynaptic toolkit. Also, clusters G and L are correlated with the

proteins of Eukaryotic appearance (p = 0.01 and p < 10−4 respectively). As men-

tioned earlier, cluster L is associated with the mitochondrion, an organelle present in

all Eukaryotes examined.

The next step in the analysis was to use the interaction network and the boundary

annotations in order to draw some conclusions on how the increase of complexity over

evolutionary time, by the addition of new nodes, affected the connectivity of the net-

work. Two metrics that can describe this are the node degree and the ASP to node.

As mentioned earlier, the first shows how connected a node is and the second how

central a node is in the crosstalk of pathways, by being in a short distance from other

nodes. The cumulative distribution functions of the node degree and ASP are illus-

trated in Figure 5.15. We noticed that the degree cumulative distributions are similar

(Kolmogorov-Smirnov test p < 0.05) and independent of the evolutionary origin of the

proteins. However, the ASP to node distributions are similar for proteins of Metazoan

or Chordate origin and have values lower that those for proteins of Eukaryotic origin

(Kolmogorov-Smirnov test p < 0.05 in both cases). These results can be interpreted in

the following way: while the degree of a protein in the network is independent of its
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Figure 5.13: Top: Distribution of boundaries of appearance in evolution (Eukaryotic, Metazoan or Chor-

date) for families of proteins in the Union dataset. Bottom: Distribution of boundaries of appearance in

evolution (Eukaryotic, Metazoan or Chordate) for subfamilies of the Adaptor/ Regulatory and Receptors/

Channels/ Transporters families of proteins in the Union dataset.
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Figure 5.14: The Union protein interaction network with nodes annotated according to their boundary

of appearance in evolution: Eukaryotic (red), Metazoan (green) and Chordate (blue) .

evolutionary origin, the average distance separating proteins is not. The average dis-

tance separating proteins of Eukaryotic origin from other proteins in the network tends

to be larger and also proteins of the Metazoan and Chordate origin classes tend to be

closer to each other and be separated with shorter paths from the rest of the proteins in

the network. From an architecture point of view this means that proteins of the “basic”

cellular (e.g. mitochondrial) and signalling (e.g. kinases) toolkit, that were available

before the early protosynapse are present but not as central in pathway crosstalk. Pro-

teins of the Metazoan and Chordate synapse, which were mostly added by gene family

duplication and diversification tend to be closer connected to each other from an ASP

to node perspective. This is probably a result of proteome evolution, where a node gets

duplicated but still retains some of the original’s interactions, thus keeping homolog

nodes closer in the network.

From a more physiological perspective of the 36 genes associated with plasticity or

behaviour in the complex 15 are of Chordate, 16 are of Metazoan and 5 of Eukaryotic
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origin. Additionally, out of the genes associated with one or more of the four men-

tal diseases we focus on, 21 are of Chordate, 25 of Metazoan and 13 of Eukaryotic

origin. Again, due to partial knowledge we cannot test these numbers but it seems to

be the case that out of the proteins which have a physiological effect mostly are of

Metazoan or Chordate origin. This can be partially because of the wider effect of mu-

tations on proteins of Eukaryotic origin since they would be expected to be of a more

“housekeeping” nature.

5.4 Concluding remarks

The Union model is the biggest manually curated and annotated ’gold standard’ model

of the PSD’s protein interaction network coming from mouse affinity purified com-

plexes data. This model described the core of the mouse PSD (mPSD) protein interac-

tion network since it contains key proteins of the receptor, scaffolding, electrical and

signalling components.

5.4.1 Issues

One issue that has to be kept in mind when discussing annotations is partial knowl-

edge. All data on protein interactions, functional, behavioural or disease annotation

are likely to be incomplete. This is due to inherent experimental method drawbacks

and research bias towards specific genes (interactions, annotation, association with

behaviour and disease). In other words, protein interaction detection methods could

have some false negative results by missing some protein interactions. There are also

false positive interactions, most of which we assume we have resolved by combining

multiple protein interaction resources and manual curation. As for behaviour and dis-

ease annotations, the main causes of false negatives are inherent research strategy bias

towards “known suspects” or lack of solid experimental evidence (rather than weak

literature associations). Nevertheless, given that careful manual curation is likely to
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remove some or most false positives, working with partial knowledge still provides

information. Some correlations might be obfuscated due to low number or missing

instances of a specific annotation, but the strongest are still visible and might give an

overall approximation. Specifically regarding missing protein interactions, we can see

from the clustering analysis that the grouping of the proteins fits to previous biologi-

cal knowledge and research findings (clusters of receptors and signalling etc), so our

feeling is that the overall structure of the network is well represented in this model.

Another observation that has to be kept in mind is regarding the data used to

reconstruct this complex. In both the PSD-95 associated proteins complex and the

NRC/MASC cases, we have addressed the complexes as if they were identical at all

synapses, which is known not to be the case in all parts of the central nervous system

(Porter et al., 2005). Studies of PSD proteins using microarray data and protein local-

isation show a high degree of co-expression for most proteins in the Union complex

in forebrain structures, including hippocampus, cortex, striatum and amygdala (Zapala

et al., 2005). If one takes into account the number of proteins and interactions lead-

ing to the resulting complexity it seems likely that any given synapse will contain a

distribution of complexes of varying composition.

5.4.2 Biological significance of clustering

Computation of the clustering configuration shows how a modular architecture is present

and has persistence between the different overlapping datasets used to form the Union

dataset. This modular architecture appears to have biological significance since spe-

cific correlations of annotations appear in some clusters. It has to be taken into account

that these enrichements have been computed based on the dataset annotation back-

ground (rather than the whole genome). Union is a dataset that already has a lot of

annotatation bias towards specific PSD related annotations, because of the proteomics

isolation methods (proteins PSD protein baits). The appearance of even more specific

signigicant annotation enrichments of terms within clusters shows that the chosen con-
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Figure 5.15: Cumulative distributions of node degree (top) and average shortest path (ASP) (bottom)

for the Union protein interaction network. Degree and ASP were computed on the whole Union network.

figuration is better than random. To our knowledge, the scientific community considers

this sufficient, since it appears to be the common approach in the biologica network

analysis literature (not only limited to the PSD).

Ideally we would need to quantify how much better than random this configuration

is. This is hard because of two reasons there is no known “perfect” solution we could

compare it to. Nevertheless a potential approach could be multiple testing based. This

means generating random clustering configurations (of the same cluster number and

size, otherwise the problem becomes computationally intractable) and testing them for

some metric such as semantic similarity of annotations using TCSS (Jain and Bader,

2010). An appoach like this is limited in the sense that the number of randomised

configurations to be checked are limited (nodes within a cluster must still interact, we

can not just chose random nodes in the network). Alternatively there have been recent

approaches that can measure the “goodness” of a configuration based on architecture

and enrichement of KEGG pathway annotation terms (Martha et al., 2011), as well as

other more data dependent methods (Tang et al., 2011).

Additional evidence for the significance of the clustering can also be given by com-
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paring the average semantic similarity of individual cluster GO annotations with the

corresponding average in the network. In all domains the majority of clusters appears

to be higher that the background of the proteins within the network (Figure 5.16).

5.4.3 A core PSD protein interaction network dataset and model

Merging of the two different datasets contributed various different or overlapping com-

ponents to the resulting Union dataset. This highlights how we can start obtaining a

more complete PSD model by augmenting the datasets with new proteomics data and

then merging them or adding them to existing models, as hypothesised earlier. Obser-

vations on the Union dataset and model also highlight the basic principles of the PSD’s

structure, organisation, and architecture. The most common protein domains and GO

MF annotations highlight the main functionality in the complex. Similarly, the clas-

sification of proteins into families and subfamilies outlines the basic types of proteins

involved in the complex. Combining this with the protein interaction network we can

get a basic grasp of how these protein classes interact and form the basic foundation

for PSD’s functions as a molecular machine. Also as mentioned earlier we saw that the

modularity in the organisation of this molecular machine is biologically significant and

persistent. Furthermore, proteins and their modules in the model correlate to synap-

tic plasticity, behaviour and disease, highlighting the involvement of the PSD in such

processes

Most genes associated with synaptic plasticity and/or behaviour are distributed

around clusters A-E, with the glutamate receptors associated with both and Tyr Ki-

nases with behaviour. It is also interesting to note that the representatives of the latter

subfamily found in this complex, appeared after the Chordate boundary. When we

examined the 4 more prevalent diseases in the network, we identified schizophrenia as

the disease most closely associated with the network, with the directly associated genes

and their primary interactors covering ~70% of the network and significantly correlat-

ing with clusters A, B, D and H. Another cognitive disorder, mental retardation, covers
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a similar percentage (~71%) of the network when the primary interactors of the asso-

ciated genes are taken into account. Mental retardation correlates only with cluster H

and has a smaller occupancy of clusters A and D in terms of associated proteins and

primary interactors. Bipolar disorder and depression were not found to correlate with

specific clusters. Although depression had less spread over the network, the spread of

primary interactors of bipolar disorder seems to cover a portion of the network com-

parable to that of schizophrenia’s because it is correlated with fewer nodes which,

however, have a higher degree. Regarding depression specifically, its first degree as-

sociation with association with the NMDA receptors in cluster A might corroborate

evidence of depressive symptoms being improved by altering the actions of glutamate

using sub-anesthetic doses of antagonist Ketamine (Zarate et al., 2006). Proteins asso-

ciated with schizophrenia significantly overlap with depression (8 proteins, p < 10−4),

bipolar and bipolar affective disorder (9 proteins, p < 10−4) and mental retardation (9

proteins, p = 0.02). This overlap is reflected in an overlap in the molecular pathways

involved in these diseases. Also, the same proteins significantly overlap with proteins

associated with synaptic plasticity (17 proteins, p < 10−6) and behaviour (18 proteins,

p < 10−7). Additionally, proteins associated with mental retardation have a lower

but significant overlap (9 proteins, p < 10−8) with proteins associated with behaviour.

The latter is possibly evidence of the true cognitive nature of the two diseases from a

molecular perspective. Possibly the most important conclusion that can be drawn from

disease associations is that a given mental disease can associate with a given - finite

- number of proteins, but its manifestation mechanisms are more complicated since

it is part of a complex network of interacting agents. What also stems from placing

disease associated genes and their protein products in the context of a protein interac-

tion network is that we are not looking at independent pathways - but at overlapping,

guilt-by-association subnetworks.

It is also vital to clarify that the model of the core PSD protein interaction network

presented in this chapter is only a snapshot of the molecular machine in action. If one
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Figure 5.16: Plots of semantic similarity within the clusters of the Union network (bars) compared to

the average network background value (red line). Most clusters appear to have a higher internal semantic

similarity compared to the average corresponding value in the network in all three GO domains (CC: top,

MF: middle, BP: bottom). Note that there were not enough annotations to compute semantic similarity

for clusters K, N and O. .
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factors in dynamics such as the variations in protein abundance due to different protein

turnover rates or differential gene expression and change of binding capacities due to

modifications like phosphorylation, there is an explosion in the emergent complexity

of the resulting network.

5.4.4 Evolution of the PSD interactome

The findings regarding evolution of the PSD corroborate results by Emes et al. (2008).

In that paper the authors propose a potential mechanism of evolution (Figure 5.17)

where a good proportion of the PSD’s protein components predated synapses and were

utilised in order to form a synaptic proteome once it first appeared (Cnidarian phy-

lum synapse). During the course of evolution the PSD’s upstream (receptors, adhesion

proteins) and midstream (signalling and scaffolding proteins) components expanded

while the downstream component, mostly comprised of Eukaryotic downstream sig-

nalling proteins and basic cellular toolkits (e.g. protein synthesis), remained similar

in size. Also, according to the results of the Union protein interaction network anal-

ysis, proteins of Metazoan and Chordate origin tend to possess similarly more central

positions in the network, providing crosstalk paths between modules. Proteins of Eu-

karyotic origins, which are mostly found in more conservatively expanded downstream

clusters, on the other hand, occupied less central positions and provide paths for the

molecular machine to communicate with more basic cellular mechanisms. The in-

creased complexity of postsynaptic signalling complexes in vertebrates was possibly

the result of an expansion of the upstream component, including the receptors, which

provided a wider range of ligands to be added as extracellular signals. According to the

model proposed by Ryan and Grant (2009) the complexes themselves show differences

in their organisation. More specifically invertebrates only have one NMDA receptor

2nd subunit and a single Dlg adaptor protein, with one resulting complex. Vertebrates

on the other hand have 4 of each, allowing 16 different combinations. The authors

also argue that the different plasticity and distinct cognitive learning task phenotypes
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Figure 5.17: Illustration of the evolutionary expansion of the PSD’s molecular machine. Genes of

interest to learning and plasticity are listed where they first arise. The schematic representations of

signaling complexes use three interlinked shapes (blue circles represent upstream receptor/adhesion

proteins, the red box indicates signaling proteins and yellow triangles are downstream proteins). The

amount of blue circles and the size of the red box increased, illustrating the relative expansion of the

up- and midstream components. Note that the expansion of mammalian brain size occurred after the

expansion of synaptic proteome complexity. Adapted from Emes et al. (2008).

of Dlg2, Dlg3, Dlg4 mutant mice (Cuthbert et al., 2007, Migaud et al., 1998) support

the above. It has been shown that in tissue specific networks, proteins that appeared

first in evolution have an overall higher degree distribution (Bossi and Lehner, 2009).

In the PSD’s case, proteins of Eukaryotic that appeared first were not specific to that

network, since it was before the existence of a synapse, thus do not fall into the tissue

specific category. Proteins of Metazoan origin on the other hand, appeared after the

synapse, but share similar degree distributions with proteins of Chordate origins. This

is because of their expansion via duplication and diversification mechanisms.
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The fPSD interactome

6.1 Background

As seen in the previous chapters the majority of PSD proteomics data comes from

mammalian samples, with the exception of representatives of the Cnidarian phylum

(te Velthuis et al., 2007, Ryan and Grant, 2009), which possess the earliest form of

nervous system and are the point of the emergence of postsynaptic ionotropic gluta-

mate receptors (Nakazawa et al., 2004, Kessels and Malinow, 2009). Research has

also been done in other species, including model organisms like D. melanogaster (Lee

et al., 2008, Emes et al., 2008) or Aplysia sp (Belvin and Yin, 1997, Zhu et al., 2007),

however, in these cases the methodology used was genomics rather than proteomics

based, or focused in very small sub complexes, rather than attempting to reconstruct a

wider descriptive model and elucidate its organisational principles.

Genomics and bioinformatics approaches can predict the potential composition of

PSD complexes of organisms, although these approaches cannot offer lineage spe-

cific information about the architecture and organisation of the complexes. Knowledge

about the composition and organisation of PSDs of other model organisms would al-

low us to draw conclusions about its molecular and architectural evolution, in parallel

with the evolution of the synapse and the nervous system. This knowledge would also

151
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allow us to use a model organism with a smaller but present behavioural repertoire as a

model. Acquiring the information on proteomic composition, protein interactions and

the PSD’s organisation would also be indispensable tools for using the organism as a

platform for understanding the basis molecular basis of cognition. D. melanogaster

is an ideal organism for the above. Its short generation time, in combination with

the low maintenance cost and the wide range of genetics and molecular biology tools

available, would result in a versatile and fast neurobiology research platform. For the

aforementioned reasons we decided it would be interesting to perform a purification,

identification as well as the first reconstruction and analysis of fly PSD (fPSD) protein

complexes.

Systematic attempts to elucidate the proteomic constituent parts of the fPSD have

never been made before, with the exception of one published experiment by (Emes

et al., 2008). A significant volume of data is available on the fruitfly’s neuromuscu-

lar junction (NMJ) (Schuster, 2006a, Budnik et al., 2006, Ruiz-Cañada and Budnik,

2006a, Peron et al., 2009) and many of the genes found to be involved in the fPSD

in have been characterised within the context of the NMJ. The NMJ is glutamatergic

making it similar in composition and function to mammalian CNS synapses (Collins

and DiAntonio, 2007). Also, the NMJ has been used as a model system for research

on many fPSD genes as well as synaptic function and development since it is easier

to isolate and study (e,g, Keshishian et al., 1996, Personius and Balice-Gordon, 2002,

Hebbar et al., 2006, Schuster, 2006b, Ruiz-Cañada and Budnik, 2006b). With the ma-

jor neurotransmitters, as with all insects, being achetylocholine (Ach), γ-Aminobutyric

acid (GABA) and glutamate (Brotz et al., 2001, Kolodziejczyk et al., 2008), one would

expect to find proteins of the associated pathways within the fPSD. If neurotransmit-

ters like glutamate, that are central to mammalian brain function are equally important

in insect brain function, remains to be seen.
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6.2 Results

The methods used for the proteomic isolation and mass spectrometry identification of

the fPSD complexes were discussed in Chapter 2. In summary the two resulting raw

datasets, namely ECP and CCP, were a result of affinity purifications using four chosen

protein baits believed to be involved in fly PSD complexes (dlg1, tau, 14-3-3ε, Bsg).

6.2.1 Isolation of fPSD complexes

6.2.1.1 Data filtering and stringency

The chosen criteria cut-offs for the raw MS data are discussed in detail in Appendix

A, subsection A.1.2. Three levels of stringency were chosen for the ECP and CCP

raw datasets, generating three distinct labelled datasets according to stringency level:

tolerant, intermediate and strict.

The first level, generating the filtered datasets labelled as tolerant (ECP tolerant,

CCP tolerant), uses criteria values slightly above what each mass spectrometry facility

uses as standard, reflecting a higher standard baseline. The second level, generating

datasets labelled as intermediate (ECP intermediate, CCP intermediate), uses the same

cut-offs but with an additional filter that allowed in only previously known proteins1.

Finally, the third level, generating datasets labelled as strict (ECP strict, CCP strict),

uses the same cut-offs but only allows in lists appearing in more than one affinity

purification replicates. The filtered datasets of corresponding stringency levels from

the ECP and CCP raw datasets were then integrated to generate the final protein lists.

Before examining the aforementioned lists we will discuss observations on the

sizes and overlaps between prays of different bait proteins. The numbers of proteins

identified by each different affinity purification after data filtering as well as the number

of total distinct proteins are shown in Table 6.1. It is interesting to look at the overlap

between the two datasets prior to integration. When examining the total of distinct

1Found in an in-house (Bilal Malik, unpublished data) and data published by Emes et al. (2008)
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Figure 6.1: Venn diagrams of the overlap between the CCP and ECP datasets. a) tolerant label and

b) intermediate label.

prey proteins of the CCP and ECP datasets (Figure 6.1) we can notice that the contri-

bution of proteins by the CCP is 16 or ~9% of the total dataset in the tolerant dataset.

That number drops to 7, which is the same percentage of the total size, when looking

at previously known proteins only (intermediate dataset). This highlights the smaller

contribution of the CCP dataset, which is nevertheless, considered reliable. Addition-

ally, we can notice that the overlap of the CCP and ECP datasets has been isolated

in previous purification almost in its entirety. The difference between the contributed

data between CCP and ECP is also discussed in Appendix A, subsection A.1.2.4 and

is mainly attributed to differences in the processing workflows of the facilities.

6.2.1.2 Data integration

For the purpose of integration we merged datasets of the same stringency level (e.g.

CCP tolerant and ECP tolerant), resulting in the generation of two merged datasets or

masterlists (tolerant and intermediate). The strict datasets were too small to provide

strong statistical associations and were not used for the subsequent analysis. The small

size of the datasets is due to low reproducibility we found in the data, an issue discussed

in Appendix A, subsection A.1.2.4. The tolerant merged dataset contains 166 proteins

out of which 66 (~40%) were known from previous affinity purifications and constitute
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Table 6.1: Number of proteins in the CCP and ECP datasets prior to integration.
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Figure 6.2: Prey overlaps between affinity purifications using different baits (merged datasets). a)

tolerant label and b) intermediate label

the intermediate merged dataset. The tolerant merged dataset will be used for further

analysis and the intermediate merged dataset will serve as a quality control since it

comprises of proteins previously known to be part of fPSD complexes. Note that the

data from tau purifications were not used, except in the network models, where we

found interactions with other proteins.

Before proceeding with the annotation and analysis of the proteomics lists, we

examined overlaps of preys between affinity purification with different baits (Figure

6.2). What can be observed is that there is a good overlap of 14-3-3ε and Bsg preys with

dlg1 preys. More specifically both 14-3-3ε and Bsg have 18 protein preys in common

with dlg1 in the tolerant merged dataset (~10% of the dataset in each case). There

is also an overlap of 16 proteins that are common preys to 14-3-3ε, Bsg and dlg1 n

the tolerant merged dataset (~9% of the dataset in each case). These numbers go down

when examining the intermediate dataset but their relative proportion to the dataset size

slightly rises to the 11%-15% area. It is interesting to look at the composition of this

common protein core (Table 6.2). Although we noticed potential common abundant

contaminants like tubulin, enzymes and proteins of the mitochondria, we also notice

kinases, vesicular proteins, a a G-protein.
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Table 6.2: Composition of the common protein core found in the prey overlap of 14-3-3ε, Bsg and dlg1.

Gene symbol Family Subfamily

alphaTub84B Cytoskeletal/ Structural/ Cell adhesion Tubulin

CG8193 Enzymes Other Enzymes

Cat Enzymes Other Enzymes

Gbeta76C G-protein signaling G-proteins

PyK Kinases Other Enzymes

Argk Kinases Other Kinases

Sod2 Signalling molecules and Enzymes Mitochondrial Enzymes

Sccs-fp Signalling molecules and Enzymes Mitochondrial Enzymes

kdn Signalling molecules and Enzymes Other Enzymes

ade5 Signalling molecules and Enzymes Other Enzymes

Ald Signalling molecules and Enzymes Other Enzymes

norpA Signalling molecules and Enzymes Phosphodiesterases

Ef2b Transcription/ Translation Transcription Elements

Ef1alpha48D Transcription/ Translation Transcription Elements

Chc Vesicular/ Trafficking/ Transport Clathrin

Mhc Vesicular/ Trafficking/ Transport Motor Proteins
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Table 6.3: Selected GO terms that were found enriched compared to the genome in the tolerant merged

dataset. These selected term reflect neuron and neuron associated biological processes, molecular

functions and cellular components. Continues in Table 6.4.

Term (count) Enrichment
(p-value)

synaptic transmission (7) 9.12 (0.03)

behavior (21) 3.8 (0)

locomotory behavior (11) 5.5 (0.02)

regulation of G-protein coupled receptor protein
signaling pathway (6)

28.84
(<0.000001)

synaptic vesicle coating (4) 32.36 (0.02)

synaptic vesicle transport (6) 10.23 (0.05)

neurotransmitter secretion (10) 8.71
(<0.000001)

neurotransmitter transport (10) 6.92 (0.01)

regulation of neurotransmitter levels (11) 9.12
(<0.000001)

response to external stimulus (17) 8.13
(<0.000001)

6.2.2 The fPSD proteomic catalogue

The genes associated with the proteins in the obtained merged dataset lists were anno-

tated using Gene Ontology (GO) (retrieved from FlyBase, v10.08) and protein domain

information from InterPro. The genes were also grouped in functional families and

subfamilies using the same methodology as in Chapters 4 and 5, so the results could

be comparable.

6.2.2.1 Gene ontology

In order to get an overview of the merged dataset we initially examined all GO an-

notation terms (with more than 5 occurrences in the dataset, exceptions were made

for interesting terms with lower counts). This can give a more general picture of the

function, localisation and processes the complexes are involved in and also evaluate
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what types of proteins this specific affinity purification protocol is able to isolate and

how these proteins might be connected to fPSD function. The frequently occurring

and enriched GO annotations of the tolerant merged dataset, presented separated by

GO domain are:

• Cellular component (CC) (Figure 6.3). All terms show an n-fold enrichment

in the range of ~4-30, compared to the whole genome. The only exception is the

nucleus term which appears depleted compared to the whole genome. Within

the annotation terms we also find synapse (3) and postsynaptic membrane (1).

The above terms can outline cellular components and organelles that the proteins

appear in. The majority of proteins found in the lipid particle (45), microtubule

associated complex (38) and cytoplasm (33). The presence of the plasma mem-

brane, synaptic vesicle, and lipid particle shows that the current form of the

affinity purification protocol is able to isolate membrane associated proteins to

some extent. However, examination of the list shows a lack of receptors that we

would expect to be there (e.g. NMDA receptor as a prey). This is more exten-

sively discussed in the end of this subsection. The presence of nuclear proteins

could be a result of contamination because of the use of whole heads rather than

synaptosome preparations.

• Molecular function (MF) (Figure 6.4). All terms show an n-fold enrichment

in the range ~3-37, compared to the whole genome. Terms like calcium ion

binding and phosphorylative mechanism are common in the mPSD and its sub-

complexes. Additionally, protein binding seems to be a prominent function,

as expected by a set of proteins that function in complexes. Due to potential

contaminations associated with proteins from neuron nuclei or cytoplasm, as

seen from the GO CC annotations, we have to keep in mind that not all terms

might be equally relevant.

• Biological process (BP) (Figure 6.5). All terms show an n-fold enrichment in
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the range ~7-38. It also worth mentioning, that between annotations with lower

counts we find more neuron related process terms (olfactory behavior, synap-

tic vesicle coating, synaptic vesicle endocytosis, axonogenesis, nervous system

development, peripheral nervous system development, central nervous system

development, axon midline choice point recognition, synaptic growth at neu-

romuscular junction) and terms previously associated with the mPSD and the

Union protein complex (synaptic vesicle priming, G-protein coupled receptor

protein signaling pathway, synapse assembly). Again, there is a mixture of an-

notations describing biological processes that are either common or clearly asso-

ciated with neuronal function. Example of the latter type are synapse associated

terms (neurotransmitter secretion, synaptic transmission, axon guidance). Terms

like organisation of cytoskeleton (cytoskeleton organization) and protein trans-

port and folding (protein folding, intracellular protein transport) could also be

associated with PSD functions. The rest of the functions could also reflect pro-

cesses that contaminants are involved in.

We also examined significant enrichments compared to the whole genome (p < 0.05).

Among the enriched terms we also found terms implying that many of these proteins

are organised in complexes (protein complex, cellular protein complex assembly, en-

riched ~4 and ~9 fold respectively, p < 10−6), associated with protein folding and

targeting (protein folding, establishment of localization in cell, enriched ~7 and ~4

fold, p = 0.04 and p < 10−6 respectively) and cation transfer activity (inorganic cation

transmembrane transporter activity, enriched ~9 fold, p < 10−6 ). All these processes,

although having general applications in all cells are also related with synaptic func-

tion. Between the ~200 terms, we isolated terms that are associated with neurons or

neuronal processes (Tables 6.3 and 6.4). Within these ms we notice terms associated

with synaptic transmission, behaviour, G-protein signalling, synaptic vesicles, neuro-

transmitter secretion and regulation, response to various types of stimuli, and a set of

terms associated with light perception. Terms belonging to the latter set, associated
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Table 6.4: Selected GO terms that were found enriched compared to the genome in the tolerant merged

dataset. These selected term reflect neuron and neuron associated biological processes, molecular

functions and cellular components. Continued from Table 6.3.

Term (count) Enrichment
(p-value)

response to light stimulus (12) 12.02
(<0.000001)

response to stimulus (43) 3.72
(<0.000001)

response to chemical stimulus (15) 3.63 (0.04)

detection of abiotic stimulus (8) 14.79
(<0.000001)

detection of external stimulus (8) 13.18
(<0.000001)

detection of light stimulus (8) 16.6
(<0.000001)

detection of light stimulus involved in
visual perception (8)

16.98
(<0.000001)

detection of stimulus (8) 9.12 (0.01)

detection of stimulus involved in sensory
perception (8)

11.48
(<0.000001)

with the neurons innervating ommatidia and photoreceptor cells, occur often in this set

and are possibly a result of dlg1 abundance in these.

6.2.2.2 Protein families

In order to obtain a concise representation of the constituent parts of the isolated com-

plexes, we examined the distribution of different protein families in the tolerant and

intermediate merged datasets (Figure 6.6). Keeping in mind that the intermediate

dataset represents the previously known portion of the tolerant dataset, we can observe

the contribution of novel fPSD associated proteins by this dataset. More specifically

we can see that some of the biggest contributions are classified under the Signalling

Molecules and Enzymes family. Proteins in this functional category have a function
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Figure 6.3: Histogram of GO Cellular Component annotation counts of the fPSD merged tolerant

dataset.

Figure 6.4: Histogram of GO Molecular Function annotation counts of the fPSD merged tolerant

dataset.
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Figure 6.5: Histogram of GO Biological Process annotation counts of the fPSD merged tolerant dataset.

that is either signalling associated (e.g. proteases) or are involved in pathways with

signalling associated products. Although the count of this family is dominated by

the latter category which is more general, we noticed contributions of proteins be-

longing to the Heat shock / Chaperones / Chaperonins (Hsp60, jdp, Pdi, Hsp83) and

Proteases (DppIII, CG12163, CG3107, Rpn2, Pros28.1, Cp1) subfamilies that had not

been previously associated with the complexes. Although there are contributions in all

families, sizable contributions are seen in the case of the Cytoskeletal/ Structural/ Cell

adhesion, Enzymes, Transcription/ Translation and Vesicular/ Trafficking/ Transport

families. All these families have representatives in the mPSD, but in the case of the

fPSD, isolating novel proteins from these families can give us a wider picture of their

role in the function of the molecular machine. There are cases where the contribution

is not as high in count, but for example in the cases of Kinases, Phosphatases and G-

protein signalling families, which have a central role in the signalling component of

PSDs (Ballyk and Goh, 1993, Miller et al., 1995, Dosemeci and Reese, 1995, Shen and

Johnson, 1997, Lüscher et al., 1997, Castro et al., 2003, Coba et al., 2008; 2009), even
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Figure 6.6: Distribution of protein families in the tolerant (blue) and intermediate (red) datasets.

a small contribution could be important in drafting the components of these pathways

in the PPIN analysis to follow.

6.2.2.3 Protein domains

Another aspect of functional annotation is that of the protein domains present within a

complex. We examined the frequency of occurrence and enrichment of domains com-

pared to the whole genome. Domains with high occurrence frequency (>5) and high

enrichment (>10-fold) included mitochondrial (ATPase, F1/V1/A1 complex) and cy-

toskeletal (Actin/actin-like, Actin/actin-like conserved site and Actin, conserved site)

domains. Both these structures have been known to be parts of the PSD (MacAskill

et al., 2010, Hotulainen and Hoogenraad, 2010). Interestingly, among domains with

lower counts we found many domains that were highly enriched in the Union com-

plex (see subsection 5.3.1, Chapter 5). These included domains that are involved in G-

protein signalling (Small GTP-binding protein, Ras small GTPase, Rab type), Calmod-

ulin and Calcium binding (IQ calmodulin-binding region, C2 calcium/lipid-binding



6.2. Results 165

domain, CaLB, C2 calcium-dependent membrane targeting, EF-Hand 1, calcium-binding

site), phosphorylation (Protein kinase-like domain, Serine-threonine/tyrosine-protein

kinase, Protein kinase, ATP binding site, Serine/threonine-protein kinase, active site,

Guanylate kinase), scaffolding (PDZ / DHR / GLGF, Src homology-3 domain), cy-

toskeleton (Pleckstrin homology), and mitochondrion (MIRO-like).

6.2.2.4 Discussion of annotations

Overall the annotation of this complex contains many GO terms and protein domains

that would be expected in a PSD complex, as highlighted in the paragraphs above.

However, the two main differences with the mPSD datasets discussed in previous chap-

ters are, a) the lower count and enrichment factor of these annotations when compared

to similar annotations from the mPSD datasets and b) the presence of a wider variety

of annotations and protein domains. Although hard to quantify, we believe that this

variation is due to a mixture of the following reasons. First, the constituent parts of the

fPSD are partially different to these of the mPSD. Also, mouse nervous system pro-

teins are expected to be better annotated in GO compared to those of D. melanogaster.

Finally, the fly head protein extract used was not as enriched in fPSD proteins as ex-

pected. Nevertheless, given the circumstances domains and annotations representative

of the mPSD were found, although their lower counts and enrichment could also reflect

a masking of the fPSD proteins by contaminants or an effect of lack of annotations.

Another issue observed with this dataset is the lack of neurotransmitter receptor

proteins. While we were able to isolate part of the scaffolding, signalling, G-protein

signalling protein synthesis and turnover components we were not able to isolate the

receptor component. Although the complex shows a number of membrane related GO

CC annotations, almost all were after manual inspection, found to be associated with

proteins found near rather than spanning the cell membrane. Although the protocol

included steps that assist the enrichment in membrane proteins, some PSD receptors

like the NMDA receptor subunits are notoriously hard to isolate. Proposed solutions
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to this are discussed at the end of the chapter.

6.2.3 An integrated protein interaction network of the fPSD

6.2.3.1 Integration with previous data

In order to produce the network model reconstructions presented in the rest of this

chapter we decided to merge the dataset at hand with data from previous affinity pu-

rifications. The premise behind this merge was to include a body of previously known

data based on affinity purification approaches, in order to provide the basis for recon-

structing a network model that includes all the known data. More specifically we use

the following data:

• Nmdar2 C-terminal affinity purification data (Emes et al., 2008). This dataset

was acquired with an affinity purification using a synthetic C-terminal peptide

from the Nmdar2 subunit as a bait. The use of this dataset also allows us to

include Nmdar2 as an element in the reconstructed networks.

• Bsg affinity purification data (Bilal Malik, unpublished data). This dataset is the

result of a successful purification using the method described in this chapter.

We added the 219 proteins from the Nmdar2 C-terminal affinity purification data and

the 92 proteins from the Bsg affinity purification data to the tolerant merged dataset

(166 proteins). The resulting dataset contained 402 proteins. 192 of these proteins were

unique to the Nmdar2 C-terminal affinity purification data only, which was expected

since the method was slightly different and performed using a different bait.

6.2.3.2 Interaction mining

The current availability of protein interaction data for Drosophila is rather low. Addi-

tionally, only a few (Giot et al., 2003, Stanyon et al., 2004, Formstecher et al., 2005)

Y2H datasets are available. Also, it has been shown that the majority of interaction
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data come only from a few studies and have not been otherwise verified (Razick et al.,

2008). For the reconstruction of the fPSD network model we decided to use DRoID

(Yu et al., 2008b) as a protein interaction resource. DRoID integrates data from vari-

ous resources including Y2H datasets, the literature, other databases and interactions

of homolog proteins from other organisms. Additionally, the data integration process

behind DRoID allows the computation of a logistic regression based interaction con-

fidence score (Giot et al., 2003), which is independent of the original data source and

type of experiment.

When considering interaction resources we also tested alternative resources. An

example is the emerging STRING database (Mering et al., 2007, Jensen et al., 2009,

Szklarczyk et al., 2011). STRING contains more than 12 million protein and genetic

interactions, most of which are not curated. The evidence used to compile such a

dataset range from the acceptable previous knowledge, homology and direct exper-

imental data approaches to predictions based on empirically weak features such as

co-citations in PubMed or association in other databases. Weak features such as these

can lead to false positives, e.g. we noticed many cases where a Reactome entry was

cited as evidence, but in the original entry the protein complex was annotated having

an unknown topology.

When testing various confidence score cut-off values we encountered a problem:

while the core of the resulting networks had many protein interactions with a high

score (> 0.5), most of the protein interactions connecting baits with preys had confi-

dence scores between 0.2 and 0.4 (Figure 6.7). For that reason we decided to use a

specific cut-off for the core of the network, but not filter interactions between baits and

prey proteins in the same affinity purification. The choice of a cut-off score was 0.5

(medium confidence model) was based on empirical observations. There were also in-

teractions without a confidence score and in these cases we performed a manual check

before including these in the model. A confidence score cut-off above 0.5 also al-

lowed for a substantially sized major connected component in the interaction network
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Figure 6.7: Distribution of protein interaction confidences in the low and medium confidence network

models. A confidence score cut-off above 0.5 (medium confidence model) also allowed for a substantially

sized major connected component in the interaction network and ensured that almost all proteins that had

a nervous system associated functional annotation remained within the connected portion of the model

and ensured that almost all proteins that had a nervous system associated functional

annotation remained within the connected portion of the model.

6.2.3.3 The fPSD protein interaction network

The protein interaction network included 182 nodes and 516 edges. Many of these

interactions were between pairs of proteins that did not interact with the main com-

ponent of the network. The network’s major connected component (MCC) consists

of 105 nodes and 389 edges which segregates into 9 communities using the Newman

and Girvan algorithm (Q = 0.51). Further analysis showed that segregation into 10

clusters was more biologically meaningful (a sub-cluster of nuclear proteins found in

the first cluster was assigned to a separate cluster). Additionally, to those, there are 5

more disjoint communities of substantial size (1 5) including a total of 149 nodes. For

the rest of this analysis we will focus on the 10 clusters of the MCC and the 5 disjoint

clusters, shown on Figure 6.8. Note that the protein, interactions, and annotations lists

are available with the supplementary material DVD.
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Figure 6.8: The fPSD protein interaction network. The MCC segregates into 10 communities and the

set also includes 5 disjoint communities of substantial size. Node colour represents community, node size

represent number of independent proteomic pulldowns the protein has appeared in and the edge width is

proportional to the edge confidence (except zig-zag edges where the confidence was not known). Baits

shown with red border. An intercative version of this figure with fully visible node labels is available in the

additional material website (available in DVD format with this thesis).
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6.2.3.4 Clusters and statistical correlations

As mentioned earlier the network segregates in a total of 15 clusters, with 10 of them

being connected in the MCC. These clusters are

• Cl1: This cluster was initially found to consist of 12 nodes and contains bait (in

previous experiments) protein Nmdar2. After close inspection we noticed that

4 of these nodes formed a tightly interconnected sub-cluster which interacted

via the Nmdar2 subunit with the rest of Cl1. Inspection of the annotations for

these proteins shows that they are all nuclear proteins - possibly contaminants

with respect to the fPSD. We manually removed these to an independent cluster

(Cl10), with no significant change to Q and proceeded with the annotation anal-

ysis. The new resulting cluster consists of 8 proteins and is composed of 37% -

and significantly correlated with - the Kinases family (p = 0.03) and kinase GO

annotations. 50% of the cluster are direct interactors of Nmdar2 and the cluster

also contains the PDZ-domain containing scaffolding protein Patj. No specific

synapse associated GO BP associated terms were found enriched compared to

the whole network - although there were enrichments in other types of processes

like establishment of tissue polarity or digestive tract development, intracellu-

lar signalling and light perception. This could be also attributed to the effect of

pleiotropy on nervous system annotations (see section 6.3), as well as biased,

missing or wrong annotations in GO.

• Cl2: Consists of 8 proteins and includes bait protein dlg1. It is dominated by

(∼ 62%) and significantly correlated with the Cytoskeletal/ Structural/ Cell ad-

hesion family (p = 0.03). The cluster has a clear localisation at the postsynaptic

terminal and its membrane element, showing enrichments in associated GO CC

terms. From a GO MF perspective, binding is prevalent and significantly cor-

related (p < 0.05). The GO BP terms in this case include enrichments in terms

like synaptic transmission, transmission of nerve impulse, generation of neurons
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and regulation of synapse structure and activity (all with p < 0.05). The clus-

ter contains bait protein dlg1 which is among other functions is associated with

synapse and receptor complex assembly (Budnik et al., 1996, Chen and Feather-

stone, 2005).

Clusters Cl1 and Cl2 contain the more well studied fPSD proteins, we can observe

how a complex between veli, dlg1 and Nmdar2 appears in the model. The interaction

between veli and dlg1 is known to be cell type specific and important for the localisa-

tion of veli (Bachmann et al., 2004). It has also been observed that the aforementioned

interaction controls proper structural oragnanisation of NMJs (Bachmann et al., 2010).

Cluster Cl2, contains dlg1, which also recruits scrib via a binary interaction requir-

ing gukh (Mathew et al., 2002) which however, is not present in these purifications.

The mouse homologs of scrib, Scribble1 has been found to be essential to neuronal

plasticity in other studies (Moreau et al., 2010). Mutations to another direct inter-

actor of dlg1, futsch, has been found to cause neurodegeneration-like symptoms to

Drosophila via caused defects to cytoskeleton organisation and axon transport mech-

anisms. The results are similar to the over-expression of fly or bovine tau, suggesting

a certain degree of functional redundancy of microtubule-associated proteins (da Cruz

et al., 2005). Regarding β-Spectrin, also belonging to Cl2, it is known to be associated

with the localisation of various PSD membrane receptors in mice (Bloch and Morrow,

1989, Daniels, 1990, Wechsler and Teichberg, 1998). Interestingly, mutations caus-

ing disruptions to synaptic transmission and plasticity mutations have been found in

Drosophila, but their causes seem to be of a presynaptic nature (Featherstone et al.,

2001).

• Cl3: Consists of 7 proteins, includes bait protein 14-3-3ε, and is dominated and

significantly correlated with the Phosphatases (p < 10−4) family and that reflects

on the GO terms enrichments found for that cluster that are mostly dephospho-

rylation and phosphatase complex related (all with p < 0.05).
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• Cl4: Consists of 5 proteins and is of a mixed family nature. It shows no particular

correlation with specific GO terms.

Clusters Cl3 and Cl4 appear to be organised around 14-3-3ε and 14-3-3ζ respectively.

While the mouse homolog of 14-3-3ε has a central position in the network, in the fPSD

case it seems to directly interact with 3 proteins. Nevertheless, this could be a result

of the lack of interaction data. 14-3-3ε is known to be an activator of the Ras pathway

(Chang and Rubin, 1997) which is known to possess a role in synaptic transmission

and plasticity (Brambilla et al., 1997). On the other hand 14-3-3ζ (leo), mutations

of which have also been associated with memory consolidation defects in Drosophila

(Skoulakis and Grammenoudi, 2006), associates with 6 proteins on a first degree. One

of these proteins is drk, also associated with the Ras pathway (Olivier et al., 1993),

has been associated with olfactory learning and memory (Moressis et al., 2009). An-

other protein associated with 14-3-3ζ is Clh (clathrin), which among other functions

mediates changes in receptor number and distribution via endocytosis mechanisms,

affecting LTD (Wang and Linden, 2000).

• Cl5: This is the second biggest cluster in the network consisting of 21 proteins

and contains the bait protein tau. It is dominated by (66%) and is significantly

correlated (p < 109) to the Cytoskeletal/ Structural/ Cell adhesion family of pro-

teins. All the annotations its is significantly correlated with, are cytoskeleton

related. This seems to be the cytoskeletal component of the fPSD. The cluster

also contains two heat shock proteins, Hsp83 and Hsc70-4 both known to have

a synaptic function but most likely of a presynaptic nature (Bronk et al., 2001,

Neal et al., 2006). Bait protein tau is also in this cluster, via its only interaction,

with abundant cytoskeletal protein Act42A.

• Cl6: Consists of 8 proteins and is significantly correlated with the Vesicular/

Trafficking/ Transport family (p = 0.02) as well as the associated GO CC terms.

Cluster Cl6 contains rl (rolled), an extracellular signal-regulated (Erk) kinase,
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down-regulation of which is associated with the correct structural formation of

synapses (Wairkar et al., 2009). This protein associates, among others, with

ras which mediates the synthesis of Guanine nucleotides, which in turn are key

players in mediating growth-cone signaling during neural development. Also,

Cl6 interacts with the MCC only through an interaction with Cl10, so although

synaptic it might not be necessarily considered postsynaptic.

• Cl7: Consists of 3 proteins and is a small tubulin associated cluster.

• Cl8: Consists 6 proteins and is associated with metabolism related GO terms.

However, this cluster includes tpi, a gene which has been show to be associated

with locomotion with a mechanism independent of general bioenergetic impair-

ment (Celotto et al., 2006).

• Cl9 is the biggest cluster in the network (35 proteins) and consists of a set of

highly interconnected ribosomal proteins as well as the parts of the ubiquitina-

tion mechanism. The cluster is associated with protein synthesis and turn-over.

GO BP terms that appear enriched include translation and ubiquitin-dependent

protein catabolism (both with p < 0.0005). Most of its cross-cluster interactions

are via ubiquitin Ubi-p63E to clusters Cl5, Cl7 and Cl8.

• Cl10 is the cluster resulting from the manual separation of Cl1 and consists of

nuclear proteins that interact with the MCC only via the Nmdar2 subunit with

a very low confidence interaction. Thus, this cluster can be safely considered a

result of contamination.

The rest of the clusters are disjoint from the MCC.

• Cl11 consists of 17 proteins and is protease and proteasome associated. GO

CC terms do not offer more information about its localisation. It has however,

been shown that postsynaptic impairment of the Ubiquitin-Proteasome system

demonstrated that postsynaptic proteasome function limits neurotransmission
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strength (Haas et al., 2007). We have to note that the only Ubiquitin associated

protein in the network is found in cluster Cl9 (Ubi-p63E) and is not connected

with Cl11 with any interactions - although that could be a result of missing in-

teractions in the databases.

• Cl12 consists of 11 proteins of mitochondrial nature, verified by relevant term

enrichments in all domains of GO. Mutations to ADP/ATP translocase sesB has

been shown to affect the NMJ, causing activity-dependent neurotransmission

lesions (Trotta et al., 2004).

• Cl13 consists of 6 proteins, mostly of vesicular nature and also includes and

PDZ-domain containing scaffolding protein (skf). It is associated with clathrin

vesicles and by examination of its GO BP terms, it is likely to be of a presynaptic

nature. Nevertheless, it is interesting that all the vesicular proteins have been iso-

lated from purifications using Nmdar2 C-terminal peptides and dlg1 baits which

are known to be postsynaptic. The interacting pair of comt (comatose or nsf1)

and nsf2 are found in this cluster. These two highly related isoforms of NEM-

sensitive fusion protein (Nsf) are required for many intracellular membrane traf-

ficking steps, including presynaptic neurotransmitter vesicle priming (Kawasaki

and Ordway, 2009). Again, supporting the potential presynaptic relevance of

this cluster, is the presence of lap, a key factor in receptor-mediated endocytosis

(Zhang et al., 1998).

• Cl14 and Cl15 consist of 5 proteins each associated with vacuoles and the Golgi

apparatus respectively

The previously discussed distribution of protein families in the network can be seen

in Figure 6.9. In link to the second part of hypothesis 3, we notice that regardless

of potential contaminants and drawbacks of the protein extraction methods regarding

receptor proteins a modular architecture is present. While we speculate that lack of

both constituent parts and interaction data does not give a “final” cluster configuration,



6.2. Results 175

the modular architecture is analogous to the one of mPSD models. An example of this

architecture can be seen in Cl1 and Cl2 organised around Nmdar2 and dlg1 respec-

tively. Similarly, clusters Cl3 and Cl13 organise around 14-3-3ε and skf respectively.

Again, GO annotation correlations and previous knowledge verify some biological sig-

nificance to the modularity.

6.2.3.5 Cluster interactions and architecture

With the exception of Cl9, inter-cluster connections seem to be rather sparse - 24 edges

between the 10 MCC clusters with the average confidence being in the 0.5 area. Clus-

ters Cl1 to Cl5 are interconnected with Cl5 having most connections due to its size.

Cl6, Cl7 and Cl8 connect to the MCC via Cl9. It is possible that these interactions

are not fPSD specific - although 11 out of the total of 17 proteins have been purified

with more than one baits. This implies that they are either common contaminants of

the preparation or that the interactions connecting them to the fPSD are not yet known

or bellow the threshold. Similarly, cluster Cl10 is connected to the MCC via an inter-

action between the Nmdar2 subunit and CG30122. The interaction is of particularly

low confidence, reinforcing the notion that this interaction as well as the whole of Cl10

might be out of the fPSD context.

Cluster Cl9 has a big impact when calculating any network measure due to its very

high rate of intra-connections, which account to more than 60% of the edges in the

MCC with 73% of these interactions having intermediate (0.5) to high (0.7) confi-

dence. For this reason members of that cluster appear to have relatively low average

shortest path (ASP) length leading to them. Setting these nodes aside, other nodes with

low ASP lengths to them include, Cl5 members Act42A, Hsc70-4, Actn, Act87E and

Act5C ranging between 3.1 and 3.5 edges. These protein are in majority cytoskeletal

with the exception of Hsc70-4. Dlg1 is found further down the ranked list with an ASP

of 3.8 edges, considerably higher than the Dlg family values in the mPSD complexes.

Similarly, 14-3-3ε and Nmdar2 have high ASPs of 4.25 and 4.6 respectively. This
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Figure 6.9: The distribution of protein families in the clusters of the fPSD protein interaction network.
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can be interpreted as a result of the combination of highly dense interactions in Cl9

in combination with a potential lack of interaction information between members of

the network belonging to other clusters, leading to longer shortest paths between key

members of the complex.

We also examined the network with respect to betweenness centrality (Figure 6.10).

This revealed a different set of results where members of the Adaptor/ Regulatory

(Ubi-p63E, dlg1), Cytoskeletal/ Structural/ Cell adhesion (Act42A), Kinases (rl) and

Receptors/ Channels/ Transporters (Nmdar2) are found on the top of the ranking. So

while the role of proteins known to be central in other PSD networks is somewhat

obfuscated when using the ASP measure, use of the centrality measure manages to

highlight this role. Again, this interpretation shows a similarity to the organisation of

mPSD networks where NMDA receptor subunits and proteins of the Dlg family appear

central to the network. We also have to take into consideration that due to the quality

of the interaction data, there could potentially be missing or false positive interactions

in the dataset altering the results.

6.2.3.6 Protein expression

We retrieved a set of expression data from the BrainTrap database. This set could not

under any circumstances be considered complete, however, we considered interesting

to examine, using the data available, the distribution of expression of proteins in the

brain. We also considered FlyAtlas (Chintapalli et al., 2007) as an alternative but

decided against it since it does not provide with enough granularity on brain regions.

After retrieving a set of expression data from the BrainTrap database, we found no

particular statistical correlations between brain regions and clusters of the fPSD net-

work. This was expected since the sample in hand represents a brain average. We also

examined the gene lists of the dataset used for the reconstruction of the fPSD network

model as well as the list of 182 genes that made it in the connected model for expres-

sion annotation in BrainTrap. Out of the 402 proteins in the reconstruction dataset, 39
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Figure 6.10: The fPSD protein interaction network annotated with network measures. More specif-

ically the colour gradients of the edges and nodes are based on a their edge and node betweenness

respectively(zig-zag shaped edges have an unknown confidence).



6.2. Results 179

had annotated entries in BrainTrap. Out of these 39 genes, 13 were expressed in the

whole brain, 15 showed expression in the cerebral cortex and 35 (89%) were expressed

in some component of the central complex. Similarly, out of the 182 genes encoding

for proteins in the network, 21 had annotated entries in BrainTrap. Out of these 21

entries, 19 included some central complex component. As mentioned previously com-

ponents of the central complex such as the mushroom, ellipsoid and fan-shaped body

are involved in various form of learning and memory (see 2.1.2.2). Although Brain-

Trap does not offer full or unbiased coverage of the fPSD or genome, these evidence

verify that at least part of the dataset is expressed in areas of brain associated with

learning and memory.

6.2.4 Comparison of bait complexes

Although the focus of this work is to reconstruct and analyse a protein interaction

network model for the fPSD, it is also interesting to examine sub-complexes of the

individual baits used for the affinity purifications with the corresponding preys. For

that reason, in the following paragraphs we will present and discuss the position of

bait proteins 14-3-3ε, dlg1, Nmdar2 and Bsg from a different perspective.

For reference and comparison purposes we also reconstructed a network using a 0

confidence cut-off and the tolerant merged dataset (low confidence network model).

It is evident that the low confidence network model contains many more interactions,

with the majority being bellow a 0.4 confidence (Figure 6.7), allowing more proteins

from the affinity purification to be included with the trade-off of containing non-

specific and/or false positive interactions, or non-fPSD context specific interactions

of contaminants. For these reasons, the low confidence model will only be used as a

reference when examining the bait-prey complexes rather than a model of the fPSD

network.
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6.2.4.1 Bait-prey complexes of 14-3-3ε

14-3-3ε purifies a total of 71 preys in the tolerant merged dataset. Out of these 71

proteins 30 (~42%) and 56 (~78.8%) appear in the medium (Figure 6.11, top) and low

confidence network models respectively. However, in both cases, the only bait-prey

interaction found in both cases is between Pp1-87B and 14-3-3ε. Also, within the set

of 26 proteins that are not included in the medium confidence network model, we see

enrichment in GO BP terms associated with light perception (response to abiotic stim-

ulus, p < 10−4) and photoreceptor associated phospholipase C signalling (activation of

phospholipase C activity, p < 10−4). This could be evidence of contamination via non

specific interactions due to the affluence of ommatidia in the prepared head sample.

Looking at the immediate neighbourhood (1st-3rd degree interactors) of 14-3-3ε in the

medium confidence network (Figure 6.11, bottom), we observe that only 3 of the 31

prey proteins are included. Adding one more degree of neighbours (up to 4th) includes

12 (~38% of the preys appearing in the network) preys spanning clusters Cl3, Cl4,

Cl5, Cl7 and Cl9. Some of the preys appear to be in a 8th degree neighbourhood (e.g.

Arf79F) while others are disconnected from the MCC. It is interesting that a 14-3-3ε

bait two of its interactors (drk and AnnIX), but not its homolog and interactor 14-3-3ζ.

6.2.4.2 Bait-prey complexes of dlg1

Dlg1 purifies a total of 113 proteins in the tolerant merged dataset. Out of these 50

(~44%) and 99 (88.7%) proteins appear in the medium (Figure 6.12, top) and low con-

fidence network models respectively. In the medium confidence network dlg1 appears

connected with Moe, but when examining the low confidence network we can see that

this pair of interacting proteins connects to another 30 proteins via an interaction with

14-3-3ζ. Part of this tightly connected component of the complex is also visible in the

medium confidence network, although the majority of interactions gets filtered out in

that model. The set of 49 proteins that are not included in the medium confidence net-

work model, are involved in biological processes that are associated with metabolism
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Figure 6.11: Top: prey proteins of 14-3-3ε. Bottom: the 1st-3rd degree neighbours of 14-3-3ε (prey

proteins highlighted in yellow). Node colour represents community (grey nodes were not in the clustered

network), node size represent number of independent proteomic pulldowns the protein has appeared in

and the edge width is proportional to the edge confidence (except zig-zag edges where the confidence

was not known).
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(e.g. glycogen metabolic process, p < 10−3) and metabolic response to inorganic sub-

stances (e.g. response to reactive oxygen species, p < 10−3). Again, there are enriched

sets of annotations for photoreceptor associated signaling (detection of light stimulus)

involved in visual perception and deactivation of rhodopsin mediated signaling, both

p < 10−3, which could be attributed to contaminations due to non-specific interactions

or non-fPSD context specific proteins due to the abundance of ommatidia in the sam-

ple. Looking at the immediate neighbourhood (1st-3rd degree interactors) of dlg1 in

the medium confidence networks (Figure 6.12, bottom) , we can see that 10 of the

prey proteins are included. This number rises to 19 (16.8% of the preys appearing in

the network) on the by adding one more degree of neighbours (4th degree neighbours)

with preys spanning clusters Cl1-Cl5, Cl9 and Cl10.

6.2.4.3 Bait-prey complexes of Nmdar2

The Nmdar2 C-terminal peptide purifies 217 proteins in the tolerant merged dataset.

Out of these 100 (~45%) and 160 (~73%) appear in the medium (Figure 6.13, top)

and low confidence network models respectively. In the medium confidence network

Nmdar2 is connected with 14 prey proteins, spanning clusters Cl1, Cl2, Cl5 and Cl10,

in a tightly connected component. Other sets of preys also appear in sets of appear in

tightly connected components varying in size from 23 to 4 prey proteins. These com-

ponents appear interconnected into a larger component in the low confidence network

via a set of low confidence interactions. The set of 60 proteins that are not included

in the medium confidence network model, are involved in biological processes that

are associated with organic acid metabolism (e.g. pyruvate metabolism, p < 10−3) and

fatty acid transfer (e.g. long chain fatty acid transfer, p < 10−3). The immediate neigh-

bourhood (1st - 3rd degree interactors) of Nmdar2 in the medium confidence network

(Figure 6.13, bottom) includes 15 preys, while adding one more degree of neighbours

includes 24 preys (24% of the preys appearing in the network) spanning clusters Cl1,

Cl2, Cl4, Cl5, Cl9 and Cl10.
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Figure 6.12: Top: prey proteins of dlg1. Bottom: the 1st-3rd degree neighbours of dlg1 (prey proteins

highlighted in yellow). Node colour represents community (grey nodes were not in the clustered network),

node size represent number of independent proteomic pulldowns the protein has appeared in and the

edge width is proportional to the edge confidence (except zig-zag edges where the confidence was not

known).
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Figure 6.13: Top: prey proteins of Nmdar2. Bottom: the 1st-3rd degree neighbours of Nmdar2 (prey

proteins highlighted in yellow). Node colour represents community (grey nodes were not in the clustered

network), node size represent number of independent proteomic pulldowns the protein has appeared in

and the edge width is proportional to the edge confidence (except zig-zag edges where the confidence

was not known).
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Figure 6.14: Prey proteins of Bsg. Node colour represents community (grey nodes were not in the

clustered network), node size represent number of independent proteomic pulldowns the protein has

appeared in and the edge width is proportional to the edge confidence (except zig-zag edges where the

confidence was not known).

6.2.4.4 Bait-prey complexes of tau

Affinity purifications using tau did not yield any substantial results. The 4 preys in-

cluded only cytoskeletal proteins like actin and tropomyosin, as expected from the

cytoskeletal function of tau, but all of them known abundant contaminants.

6.2.4.5 Bait-prey complexes of Bsg

Bsg constitutes an interesting case since there is no known interaction found connect-

ing it to any of its preys. More specifically out of the 122 proteins Bsg purifies, 57

(~45%) and 105 (~84%) appear in the medium (Figure 6.14) and low confidence net-

work models respectively. What is even more striking is that there seem to be many

known interactions between the preys – even in the medium confidence network – in
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which 37 out of 57 appear to be in a tightly connected component. Bsg is the also the

only case where the difference set of the of 48 proteins that are included in the low,

but not the medium confidence network model, have an fPSD context annotations.

More specifically the set showed an enrichment for the term neurotransmitter receptor

metabolic process (p < 10−3), which is associated with Gad1 and Gs2. Gad1 is asso-

ciated with GABA synthesis (Küppers et al., 2003) and Gs2 with glutamate catabolism

(Featherstone et al., 2002).

6.2.4.6 Proteins family distribution

From a protein family distribution (Figure 6.15) point of view 14-3-3ε and Bsg com-

plexes include 8 out of 10 families of preys, with Bsg’s complexes including most of

the Receptors/ Channels/ Transporters family and a substantial proportion of the total

proteins. Nmdar2 complexes include members of all families. These complexes also

include all G-protein signaling associated proteins as well as 5 out of 6 kinases, 5 out of

10 Adaptor/ Regulatory and 3 out of 6 phosphatases in the model. Interestingly, mem-

bers of the Enzymes, Singalling molecules and Enzymes families, which are likely to

include contaminants, were purified from all baits (except tau).

6.2.5 Mapping the fPSD to human disease

Using Biomart (Ensembl Genes version 64) and the Compara service we mapped all

genes in the tolerant merged dataset to human orthologs and also retrieved the human

orthologs disease associations from OMIM. The merged tolerant dataset showed as-

sociations with 141 diseases via human orthologs (28 diseases when only using one to

one ortholog mappings). Proteins in the merged tolerant network showed associations

with 44 diseases (2 diseases when only using the one to one ortholog mappings). In-

terestingly, in the case of the tolerant merged dataset scu, Nmdar2, Gdi and Sc2 were

linked to forms of X-linked and autosomal mental retardation, with scu linked via a

one to one orthology. Also, Idgf2, Idgf4, Chit and slgA were linked to schizophrenia,
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Figure 6.15: Protein family composition of individual bait complexes.

out of which slgA with a one to one orthology. Additionally, Mdh and Nmdar2 were

also linked with forms of epilepsy. Further to these, other interesting peripheral ner-

vous system diseases had links with proteins in the dataset such as distal hereditary

motor neuropathy (via Hsp83) and agenesis of the corpus callosum with peripheral

neuropathy (via CG5594). The evidence, although not as impressive as in the case of

the mPSD, still highlights the relevance of the fPSD dataset with regards to its human

homolog set.

6.2.6 Evolution of the fPSD

We have already presented data on the evolution of the mPSD (section 5.3.5), examin-

ing PSD evolution from the viewpoint of the mouse and human data. Here we describe

a different perspective of the evolution of the PSD, from the viewpoint of the fPSD

data. We obtained only one to one human, mouse and yeast orthologs of genes in the

tolerant merged dataset via Compara (version 59). Results of the homolog retrieval
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are shown in Table 6.5. Focusing on one to one homologs means excluding interesting

proteins that have undergone gene family expansion (e.g. dlg1 - the mapping of these

is one to many by definition). These homologies, however, are examined in the next

chapter.

A similar number of one to one homologs of the fly genes were retrieved from

mouse and human, while fewer were found in yeast in accordance with previous find-

ings. We looked up genes found in these homolog lists in the updated Emes et al.

dataset in Chapter 5, which contains homologs of PSD genes across species includ-

ing human, mouse and yeast. These queries showed that 30 of the one to one human

homologs, 36 of the mouse one to one homologs and 23 of the yeast one to one ho-

mologs were in that list, linking these directly to PSD complexes. These numbers are

quite satisfactory given the fact that we have knowingly excluded many PSD proteins

which have undergone family expansion.

A breakdown of the results is shown in Figure 6.16. We can observe how most

of the aforementioned hits map to the general (consensus) human PSD, rather than

its core sub-complexes like NRC/MASC or the PSD-95 associated proteins complex

(Figure 6.16A). Most of these hits belong predominantly to the Signalling molecules

and Enzymes family and to the Transcription/ Translation and Vesicular/ Trafficking/

Transport families (Figure 6.16B). Interestingly, the common hits between the one to

one homolog lists include 12 proteins (Figure 6.16C), out of these 7 are in the Sig-

nalling molecules and Enzymes, 2 in the Transcription/ Translation, 2 in the Vesicular/

Trafficking/ Transport and 1 in the Receptors/ Channels/ Transporters families. This

can lead to the conclusion that the part of the fPSD that has not undergone gene dupli-

cation belongs mostly to the Vesicular/ Trafficking/ Transport and Signalling molecules

and Enzymes families and maps to the “general” part of the consensus PSD, rather that

the components more closely associated with the membrane.

Furthermore, when we compared the found fly homologs of the human PSD in the

updated Emes et al. dataset with the tolerant merged dataset we found that out of the
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Table 6.5: Homolog retrieval results for genes in the tolerant merged dataset.

Total genes in
fPSD model

Human homologs
(one to one)

Mouse homologs
(one to one)

Yeast homologs
(one to one)

402 129 (~32%) 124 (~31%) 89 (22%)

402 genes in the dataset 96 (23.8%) had been predicted according to that comparative

genomics approach. This at least partially corroborates this 23% of the tolerant merged

dataset as likely by prediction.

6.3 Concluding remarks

Overall this chapter presented the first draft protein interaction network model of the

fPSD based of proteomics data as well as an analysis of its architecture. However,

affected by the shortcomings of the specific method, contaminants, and lack of quality

interaction or annotation data, the model captures a number of the molecules involved

in the fPSD and associated pathways. This, along with annotation similarities estab-

lishes a basis of a similar functionality to the mPSD. The fPSD was also hypothesised

to have a lower complexity. We believe that this is reflected by the lower counts and

enrichments of domains and annotations. Although hard to distinguish at this point,

the latter could be due to the presence of contaminants or misannotations that lower

the enrichment of the aforementioned PSD functionality. However, some additional

support for the lower enrichments reflecting lower complexity comes from looking

at isolated modules of the network (e,g. Cl1 and Cl2) where we see a very similar

structure to mPSD clusters, with the only difference being the lack of family expan-

sion. This results in e.g. specific domains and their annotations having a comparatively

lower count. Also, when looking at the evolution of the proteins found here we find

almost 1/4th being in list generated by comparative genomics approaches based on

mPSD. Given that the aforementioned examination also excludes key proteins such as

the NMDA receptor and dlg1, we consider this as giving some additional confidence
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Figure 6.16: Summary of fPSD one to one homolog query in the human PSD associated genes

homologs list across 18 species. Homologs for the tolerant merged fPSD dataset were retrieved from

human, mouse and yeast. A) Homolog one to one hits from the list separated by which sub-complex

they belong to in the human PSD, showing how PSD complexes have higher representation compared to

NRC/MASC or PSD-95 associated protein complexes . C) Family distribution of hits, showing that while

most families are represented the dataset is biased towards specific families (e.g. Signalling molecules

and Enzymes) D) Venn diagram showing the overlaps between hits from different sets of fPSD one to

one homologs showing a core of 12 proteins conserved from yeast to humans.
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in the results.

It is evident from the results that the parts list and the network model captured

part of the protein synthesis and turnover, signalling - including kinases, phosphatases,

G-proteins and other enzymes, cytoskeletal and vesicular components of the fPSD. It

is worth mentioning that the majority of the isolated proteins are soluble and in some

cases the annotations did not provide any evidence of their relative localisation with re-

gards to the postsynaptic membrane. This highlights one issue of the applied method,

the fact that, although steps were taken in order to purify parts of the membrane as-

sociated proteins, it is not optimised to isolate them. Further improvements to the

proteomics protocol including a more detailed study of the fatty layers of the protein

extract or the application of a detailed study of separation might give better insights

regarding the membrane associated proteins found in the fPSD. Use of different deter-

gents would be the first suggested strategy. It is known that detergents such as DOC

and ComplexioLytes can be successful in solubilising receptors and ion channels (Li

et al., 2010). This would resolve issues regarding another key family in PSD com-

plexes, that of Channels and Receptors. A key example of the previous is the NMDA

receptor, which in spite of having been shown to mediate memory consolidation in

Drosophila (Xia et al., 2005) was not isolated in these purifications as it was not in

the only other previous proteomic characterisation (Emes et al., 2008), where it was -

strictly speaking - present only as a peptide bait.

To our opinion the drawbacks of this particular model are the presence of contam-

inants and the issues we found with GO annotations. It is hard to to truly dissect the

effect of these two to our final conclusions. Regarding the contaminants in the model

we can say that while there are some more obvious cases (e.g. Cl10), most cases are

ambiguous. For example, one cannot exclude the protein synthesis machinery from the

PSD, but such close association as the one found here could be suspicious. Similarly,

the high presence of Signalling molecules and Enzymes family, could indicate contam-

inations - since these soluble proteins are abundant and known to contaminate (Chen
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and Gingras, 2007). On the other hand the potential of some compensation signalling

mechanisms (in lack for such a wide repertoire of kinases) could not be excluded.

Regarding GO annotation there are several issues such as protein function pleiotropy

with respect to annotations in the nervous system. GO annotations are known to cap-

ture pleiotropic effects of protein functions in a non-neuronal context which can result

to misleading and skewed annotations (Inlow and Restifo, 2004). Also, since the fly

synapse has not been extensively studied from the PSD perspective it might be the case

that some of molecules have not been annotated yet, or have been annotated from other

perspectives of function.

Contamination issues could be addressed by changes in the experimental method.

Fly heads, due to their size are very hard to handle in order to remove a sufficient

number of brains, quickly enough so the that the protein complexes remain intact and

do not degrade. A potential solution would be to approach this problem after the col-

lection of the heads but before the extraction of the protein. More specifically this

can be achieved with the use of a synaptosome preparation with gradient centrifuga-

tion. This could possibly reduce potential contaminants and also give the proteomic

analysis a subcellular location context that is closer to the PSD also addressing the is-

sue of transmembrane or membrane associated proteins. The successful isolation of a

synaptosome preparation has been attempted few times in insects with unclear results.

When designing the experiment we were not convinced of the efficiency of the method

- since it has not become standardised although it appeared in the literature around the

1980s. More specifically synaptosomes have been isolated from various mammalian

nervous tissues. However, the conditions established for mammalian systems are not

necessarily suitable for insect systems (Breer and Jeserich, 1980). There have been few

attempts to actually isolate synaptosomes from other insects (Breer and Jeserich, 1980,

Breer and Knipper, 1984, Torrence-Campbell et al., 1991) including two in Drosophila

(Kelly, 1981, Ramarao et al., 1987). The latter work by Ramarao et al. proposes a

method using ficoll floatation technique, which is an adaptation of the method of Breer
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and Jeserich. This method circumvents the use of liquid nitrogen - which can dam-

age the fine structures of the synaptosome but is also necessary in our high-throughput

head collection protocol, in order to avoid protein degradation and also be able to col-

lect enough tissue for a proteomic pull down. Although not impossible, developing a

method that balances avoiding protein degradation with the retrieval of intact synap-

tosomes, would be very time-consuming for this project. Also most of this, rather

limited, knowledge is based on NMJ synapses rather than neuron synapses. Another

consideration that has also been reported, is that synaptosome preparations provide

limited amount of material for affinity purification, a scenario which is not ideal for

the general fPSD mapping we were trying to achieve. In conclusion, we believe that

while using a synaptosome preparation would be a valid strategy, its optimisation for

an initial mapping of the fPSD would be exceeding what is necessary, however, future

endeavors would probably need to take this approach into account.





Chapter 7

Comparative analysis of PSD

complexes and interaction networks

7.1 Background

After obtaining datasets and reconstructing protein interaction network models de-

scribing PSD complexes of two different organisms, the next step was to compare them

in a qualitative and quantitative manner. Such comparison could provide insight on the

differences and similarities between the datasets and models from two perspectives of

interest. The first perspective will allow us to highlight differences in the proteomics

methods and data availability for the model reconstruction. This takes into account

that the fPSD complexes were isolated using a less optimised approach and also that

the protein interaction models were reconstructed with data of lesser quality and cov-

erage. The second, and perhaps most relevant, perspective is that of the comparison

with respect to the constituent parts and organisation of these two PSD molecular ma-

chines. As hypothesised in the introduction, the fPSD model shows evidence of lower

complexity with regards to its constituent parts. However, as shown in the previous

chapter, the fPSD model has a modular architecture comparable to this of the mPSD,

and using this modular architecture we will also present evidence on how some module

195
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Table 7.1: Homologies between genes across the Union and fPSD network models. Abbreviations of

orthology types are o2m: one to many; o2o: one to one; m2m: many to many. Continued in Table 7.2

Union gene
symbol

fPSD gene
symbol

Homology
type

(Compara)

Union gene
symbol

fPSD gene
symbol

Homology
type

(Compara)

Atp1a1 Atpalpha o2m Gapdh Gapdh1 o2m

Atp5a1 blw o2o Gapdh Gapdh2 o2m

Atp5b ATPsyn-beta o2o Grb2 drk o2o
(apparent)

Atp5c1 ATPsyn-
gamma

o2o Grin2a Nmdar2 o2m

Cfl1 tsr o2m Grin2b Nmdar2 o2m

Cltc Chc o2o Grin2d Nmdar2 o2m

Dlg1 dlg1 o2m Lin7a veli o2m

Dlg2 dlg1 o2m Mapk1 rl o2m

Dlg3 dlg1 o2m Mapk3 rl o2m

Dlg4 dlg1 o2m

or modules have been conserved in evolution.

In order to compare the mouse and fly PSD complexes we chose the two datasets

and their resulting PPIN models respectively. More specifically, for the mouse PSD

we chose the Union dataset (253 proteins) and protein interaction network model (164

proteins and 458 interactions), as described in Chapter 5. For the fly PSD we chose the

fPSD dataset and model as described in Chapter 6. Since there were different versions

of the latter dataset and model we chose the largest, namely the merged version used

to reconstruct the model, described section 6.2.3.1 on page 166, hereon referred to as

fPSD dataset (402 proteins) and protein interaction network model (149 proteins and

495 interactions).
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7.2 Results

The following subsections describe the comparisons of certain annotation aspects (e.g.

proteins domains, families, GO annotation), along with a comparative interactomics

approach, where we attempt to highlight conserved components between the two net-

works.

7.2.1 Homology

We retrieved ortholog data from Ensembl’s compara service (version 50) for the Union

and fPSD datasets. We found 70 orthology relations of different types (many to many

- 24, one to many - 37, one to one - 9), between 64 (25.3%) genes of the Union and 52

(12.9%) genes of the fPSD dataset. The one to many category includes the genes that

have undergone gene family expansion such as dlg1, Nmdar2, spectrin (beta-Spec)

and Atpalpha. When examining the subsets of genes that have proteins in the net-

work models these numbers changed to 32 (19.5% of proteins in the network) and 27

(18.1% of proteins in the network) genes respectively, with a total of 37 orthology re-

lations between the network models. These ortholog genes encode proteins existing in

both datasets and include the representatives from most functional families1. A closer

look at the subfamilies reveals that these are key protein types with known PSD func-

tionality such as PDZ-domain containing scaffolders and non-PDZ-domain containing

scaffolders, Ser/Thr Kinases, Protein Phosphatases, G-protein signaling proteins, Glu-

tamate Receptors, Voltage-dependent anion channels and Motor Proteins.

When looking at the subset of conserved constituent parts within the protein in-

teraction network models (Tables 7.1 and 7.2), we can notice a trend in key protein

components being conserved. An exception to this is the G-protein signalling family

which has 5 representatives in the fPSD dataset conserved constituent parts core but

none in the network’s conserved constituent parts core. Results are similar, but not

1with the exception of Histones, Extracellular Proteins and Uncharacterised/ novel
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as prominent for the Kinases and Receptors/ Channels/ Transporters families. Manual

inspection shows that the majority of the above can be attributed to lack of interactions

or missing interaction partners in the fPSD network model.

The above is evidence of conservation at least at the level of constituent parts,

showing that although the mPSD contains expanded gene families (e.g. DLGs) a sub-

stantial number of these appear in the fPSD dataset and network, revealing a potential

of a molecular machine of similar composition but lower complexity. How the latter

is actually organised in conserved modules is approached in subsection 7.2.5.2, where

network connectivity is taken into account.

7.2.2 Families

From a functional annotation perspective, we can compare the distribution of families

found in the datasets and the network models. Their ratios to the total number of con-

stituent parts are in Figure 7.1, where significant (χ2 test p-value < 0.05) differences

are highlighted. There are significant composition ratio differences within most fami-

lies, with the Union dataset having a higher ratio of Adaptor/ Regulatory, Cytoskeletal/

Structural/ Cell Adhesion, G-protein signaling and Kinases. fPSD ratios are higher

for the Enzymes, Signalling molecules and Enzymes and Transcription/ Translation

families. This propagates in the ratios within the network models, with the exception

of the Enzymes family, where the difference is not significant anymore. This could

potentially highlight an issue with a number of contaminants which belong to the latter

family. After all it has been shown that metabolic enzymes are more abundant and of-

ten contaminate purifications (Chen and Gingras, 2007). It is also worth noticing how

the Phosphatases and Vesicular/ Trafficking/ Transport families’ ratios are not signif-

icantly different between the models, possibly reflecting good affinity purification of

these families, but also suggesting a similar extent of involvement in the two molecular

machines.

Another observation is how the fPSD network contains more than twice the ratio of
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Table 7.2: Homologies between genes across the Union and fPSD network models. Abbreviations of

orthology types are o2m: one to many; o2o: one to one; m2m: many to many. Continued from Table 7.1

Union gene
symbol

fPSD gene
symbol

Homology
type

(Compara)

Union gene
symbol

fPSD gene
symbol

Homology
type

(Compara)

Mpp3 skf o2m Prkcc Pkc53E o2m

Mtap2 tau o2m Prkcc inaC o2m

Myh10 zip o2m Prkce Pkc98E o2m

Myh9 zip o2m Slc25a4 Ant2 o2m

Nsf comt o2m Slc25a4 sesB o2m

Nsf Nsf2 o2m Spnb2 beta-Spec o2m

Pgk1 Phosphoglycerate
kinase

o2m Spnb3 beta-Spec o2m

Prkcb inaC o2m Tpi1 Tpi o2o

Prkcb Pkc53E o2m Ywhae 14-3-
3epsilon

o2o

Signalling molecules and Enzymes family compared to the Union network. This can

be interpreted, from a functional perspective, as a compensation for the lower ratio in

other signalling related families (e.g. Kinases and G-protein signalling), however, the

factor of contamination is still present in this case. Another big difference both in the

dataset and network contexts is the ratio of the Transcription/ Translation family, which

is much higher in the fPSD case. The majority of this family represents translation

associated proteins (e.g. ribosomal proteins) and although many mass spectrometry

oriented groups consider them contaminants (Peng et al., 2004), they have been found

in the PSD numerous times (e.g. Steward and Falk, 1991, Krichevsky and Kosik,

2001). Furthermore, local transcription is considered part of the mechanism for plastic

phenomena (Gardiol et al., 1999).
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Figure 7.1: Family ratios in the Union and fPSD datasets (top panel) and networks (bottom panel).

Families indicated with a red star have significant (χ2 test p-value < 0.05) difference in their ratio within

the datasets or networks.
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7.2.3 Protein domains

We then examined if there are significant (χ2 test p-value < 0.05) differences in the

counts2 of specific domains within the datasets (Figure 7.2) and networks (Figure 7.3).

With the exception of one, all domains with significant differences have a higher count

in the Union dataset. The NAD(P)-binding domain, a domain found in enzymes, with

some neuronal function (e.g. Nitric oxide synthase) has a comparatively high count

in the fPSD data because of its presence on many enzymes with metabolic function-

ality (Enzymes family) or signalling functionality (Signalling molecules and Enzymes

family).

Most of the domains with significant differences have some direct association with

the signalling or receptor associated processes of the PSD (see Table 5.1, Chapter 5).

As also reflected by the differences in the ratio of the Receptors/ Channels/ Trans-

porters family, the complete lack of ion channels is evident in the fPSD dataset by the

lack of the associated domains (e.g. Ionotropic glutamate receptor, Potassium channel

domains, BTB/POZ). A significant difference in the counts of phosphorylation associ-

ated domains (e.g. Serine-threonine/tyrosine-protein kinase, Protein kinase, catalytic

domain, etc) and SNARE protein domains (t-SNARE) can also be noted. In all the

above cases the Union dataset has more proteins with such domains, which in many

cases are absent from the fPSD dataset (e.g. Potassium channels and glutamate recep-

tors).

When looking at the network data the observations are similar, although none of

the domains with significant differences is completely absent from the fPSD. We can

also notice how there are some domains (ATPase, AAA-type, conserved site, Actin,

conserved site, Actin/actin-like conserved site and Proteasome, subunit alpha/beta) are

absent from the Union network. If we assume that the presence of proteins with such

domains in the network reflects the existence of the associated interactions, then we can

2We consider that counts are a better measure for protein domains since percentages in the dataset
are not as clearly defined (it is possible that not all domains are annotated)
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credit these differences to biases in the protein complex isolation methods, although,

as mentioned in Chapter 6 the proteasome is a known component of the PSD (Haas

et al., 2007).

Overall we can say that the Union dataset seems to have a higher count of all PSD

signalling and neurotransmitter receptor associated domains. This could be partially

attributed to: a) the purification methods used, which did not isolate enough trans-

membrane proteins in the fPSD case, b) the expansion of gene families carrying spe-

cific domains, e.g. the Dlg family (see Emes et al., 2008 and subsection 5.3.5), and c)

differences in the complexity of the two PSD complexes. While the first explanation

is a technical issue, the latter two are indicative, as previously hypothesised, of less

complex fPSD, which maintains the same protein functions, but with less diversity.

7.2.4 GO annotation

We applied the modified version of the method by Cai et al. (2006), in order to examine

significant (FDR corrected p-value< 0.05) differences in the GO annotations of the

Union and fPSD data. More specifically we applied the method to both the datasets

and the subset of the datasets, which constitute the protein interaction networks.

The results are presented in Treemap illustrations3, generated using Revigo (Rivals

et al., 2007) (http://revigo.irb.hr). This specific visualisation is for 2 levels of GO

annotation (the starting level is decided by the Revigo algorithm). Revigo also clusters

terms (squares) based not only on if they have a common ancestor but also based on

semantic similarity of the terms.

From a GO BP annotation perspective, of the terms which have a significant com-

parative enrichment in the fPSD (Figure 7.4) dataset, we see the presence of protea-

some components again. Among the other terms we see either fruitfly specific (e.g.

3Treemaps display hierarchical (tree-structured) data as a set of nested rectangles. Each branch of the
tree is given a rectangle, which is then tiled with smaller rectangles representing sub-branches. These
treemaps retain the parent-child information inherent from the GO structure. More specifically terms
appear in nested squares according to the count of their or their child terms occurrences.

http://revigo.irb.hr
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Figure 7.2: Significant differences in normalised domain counts in the Union and fPSD datasets.

Figure 7.3: Significant differences in normalised domain counts in the Union and fPSD networks.
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instar larval or pupal development), transcriptional mechanism associated, and a set

of terms associated with phagocytosis, probably due to contamination. The terms that

have a significant comparative enrichment in the Union dataset (Figure 7.5) on the

other hand, encompass a majority of PSD and PSD signalling associated terms, show-

ing how the Union dataset is comparatively more enriched in such processes. From a

GO MF annotation perspective both terms with a significant comparative enrichment

in the fPSD (Figure 7.6) and the in the Union (Figure 7.7) datasets show functions

that are reflected at GO BP level (e.g. peptidase activity for the proteasome or kinase

activity for protein phosphorylation). The results are similar to the ones of the GO

BP comparative enrichment, showing the Union dataset significantly more enriched

for PSD associated GO MFs than its fPSD counterpart. Finally, from a GO CC an-

notation perspective, while there are no significant comparative enrichments for the

fPSD dataset, the Union dataset (Figure 7.8) shows comparative enrichment for many

known PSD associated subcellular locations (e.g. postsynaptic membrane) as well as

for membrane bound or transmembrane proteins. Overall the comparison suggests that

key annotation terms appear more enriched in the Union rather than the fPSD dataset,

where in most cases they are present but in low counts. This can be attributed to rea-

sons such as contamination of the fPSD dataset or overall better quality of the Union

dataset. However, we have to note that this is one of the cases where GO annotation

quality plays a significant role. We have found a number of cases where the annotation

of fly orthologs is poorer compared to that of the mouse and we believe that this plays

a role in the results above.

7.2.5 Comparative interactomics

7.2.5.1 Comparison of basic network architecture

When examining the path length distribution (Figure 7.9, top), we notice how the fPSD

has a wider distribution (with lower frequencies), meaning that there are some longer
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Figure 7.4: Terms with comparative enrichment in the fPSD dataset (GO BP).
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Figure 7.5: Terms with comparative enrichment in the Union dataset (GO BP).
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Figure 7.6: Terms with comparative enrichment in the fPSD dataset (GO MF).
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Figure 7.7: Terms with comparative enrichment in the Union dataset (GO MF).
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Figure 7.8: Terms with comparative enrichment in the Union dataset (GO CC).
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paths in the network. We believe however, that this is because of biases towards spe-

cific parts of the fPSD network (e.g. Cl9), which have more interactions present com-

pared to nodes in the rest of the network, as a result of a literature bias towards the more

well studied proteins (e.g. translation associated protein of Cl9). This becomes evident

when analysing the network, while ignoring Cl9, where the path length distributions

become more similar (although the number of interactions is reduced). The data also

shows that the path distriutions are significantly different (Figure 7.9, bottom).

The average shortest path (ASP) length metric that represents cross-talk between

modules as well as betweenness centrality. The fPSD protein interaction network ap-

pears to have an average ASP length of 3.56±1.48 while the Union protein interaction

network has an average ASP length of 3.35±0.67. However, although the average ASP

lengths are similar, the fPSD protein interaction network’s ASPs are affected by the

highly dense interactions in Cl9 (or possibly contaminants), in combination with a po-

tential lack of interaction information between members of the network (subsection

6.2.3.5). For these reasons, while the Union network (subsection 5.3.2.3) shows Adap-

tor/ Regulatory, Kinases and Receptors/ Channels/ Transporters in the top rankings for

shortest individual ASP length, this is not the case for the fPSD network. There, the

same families are lower in the ranking, having however, still considerably low ASP

lengths. For this reason we focused on the conserved homology core of constituent

parts found in the networks (see 7.2.1). Within this subset of nodes we notice that

in most cases we see that the average ASP length value of functional families tested

(Adaptor/ Regulatory, Kinases and Receptors/ Channels/ Transporters) is higher than

the average of the network. However, when we examined the betweenness centrality

of this subset we noticed something different. More specifically the average between-

ness centrality of the Cytoskeletal/ Structural/ Cell adhesion, Kinases and Receptors/

Channels/ Transporters appears higher than average, in contrast with that of the Union

network. Although this is not necessarily indicative of a more centralised connectiv-

ity we believe it still shows the relatively central position of the latter families in the
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fPSD network model, regardless of the the effect of of interaction data quality and

availability on the network.

We also compared metanetworks of the Union and fPSD protein interaction mod-

els. The metanetworks collapsed on family and are shown in Figure 7.10. An im-

mediate observation is the difference between the variety of inter-family interactions.

This of course is attributed partially to the differences in numbers, however, it could

be a case of missing interaction data. This visualisation is also useful for summaris-

ing observations from the previews sections, highlighting differences in the counts of

different families.

7.2.5.2 Identification of conserved components

With both the Union and fPSD network models available it would be interesting to

examine the two in a comparative manner. A comparative interactomics approach

augments the orthology data, by giving a context of the conserved network components

which contain them.

We applied the NetworkBLAST algorithm (default parameter values) to the two

networks after running an all against all BLAST (default parameter values, BLO-

SUM62 substitution matrix) for the proteins in the Union and fPSD network models.

The e-values resulting from the BLAST run were used as a similarity measure for Net-

workBLAST, along with the protein interaction data. The results of the algorithm are

illustrated in Figure 7.11. The figure illustrates the two conserved components of the

fSPD and Union networks members, connected by homology (zig-zag edges in Fig-

ure 7.11). Proteins within one conserved component interact with protein interactions,

most of which are partially conserved between the two components. Although there

are no long pathways conserved, what we see preserved is the typical architecture that

emerges from all PSD related data. That architecture includes cytoskeletal proteins

(Actn / ACTN2, ACTN4) interacting with scaffolding proteins (dlg1 / DLG1, DLG2,

DLG3, DLG4) which in turn interact with receptors (Nmdar2 / GRIN1, GRIN2A,
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Figure 7.9: Path length frequency (top) and cumulative frequency (bottom) comparison between the

Union and fPSD protein interaction network models. A Kolmogorov-Smifnov test showed significant

difference (p = 10−5).
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Figure 7.10: Family metanetworks of the fPSD (left) and Union (right) network models. Node size is

proportional to family count and edge size proportional to family-family interaction counts.

GRIN2B, GRIK2). The receptors in turn interact with cytoskeletal proteins (e.g. veli

/ LIN7A) that assist with differential modulation (veli / LIN7A - see Iwamoto et al.,

2004 ) or kinases as downstream signalling molecules that modulate signal transduc-

tion (Pkc53E / PRKCC, Pkc98E/ PRKCE , inaC / PRKCB - see Lan et al., 2001).

What this result shows is the existence of a core component which is present in both

networks and has evolved after the gene family expansion. This component is only a

small fraction of both networks and this is not because of the lack of homologies, but

possibly due to the confidence of the corresponding interactions, either due to the lack

of interaction data or to their absence. Fox et al. (2009) recently showed that hub

proteins tend to have more conserved interactions and this one of this cases. Also,

recently Zinman et al. (2011) showed that interactions which are parts of functional

modules are conserved at much higher rates than interactions which are not. In this

case the conserved component of the network is speculated to be a functional module

which had its interactions conserved. It has also been shown that protein interactions

overlap at a low rate with conservation of binding partners in whole proteomes (Gandhi

et al., 2006). In this case due to the potential partial nature of the datasets we can not

test such findings. Finally, Figure 7.11 also recapitulates characteristic examples f the
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evolution via gene family expansion mechanism proposed by Emes et al. (2008).

7.2.5.3 Semantic similarity of conserved components

Using an adapted version of TCSS (Jain and Bader, 2010), we attempted to compare

various subsets of the two networks regarding the semantic similarity of their anno-

tations. Since semantic similarity is measured between 0 and 1, we needed to set a

standard for high semantic similarity. For that reason we compared the semantic sim-

ilarity between all pairs of Union and fPSD dataset homologs. The average semantic

similarity was 0.49±0.28 for GO CC, 0.51±0.21 for GO BP and 0.69±0.25 for GO MF.

The conserved network components of fPSD and Union showed averaged semantic

similarities of 0.31, 0.33 and 0.24 for GO CC, GO BP and GO MF respectively (c.f.

values for whole networks: 0.24, 0.24 and 0.17) , with all values bellow the cutoffs.

However, when examining homolog pairs, the semantic similarity results improve (Ta-

ble 7.3). Interestingly, adding the first degree neighbours to each component results in

a small reduction of semantic similarity (0.26, 0.28 and 0.23 for GO CC, GO BP and

GO MF respectively), which still remains higher than for the whole networks. This

can be considered as additional evidence that the conserved component (along with

the respective immediate neighbours in the network models) show overall similarity in

their functional and localisation annotations.

7.3 Concluding remarks

This chapter discusses a direct comparison between the representative datasets and

protein interaction network models of the mPSD and fPSD. The comparison is done in

from two distinct perspectives. We compared the data bearing in mind that it was the

first time that fPSD complexes were isolated and characterised using a less optimised

approach. In the beginning of this project we hypothesised that PSD complexes of

the fly and mouse would be similar enough to be comparable both from a constituent
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Figure 7.11: Conserved components of the fPSD (left) and Union (right) networks, as predicted by the

NetworkBlast algorithm. Node colour represents functional families. Blue: Kinases, Orange: Adaptor/

Regulatory, Purple: Receptors/ Channels/ Transporters, Lime: Cytoskeletal/ Structural/ Cell Adhesion.

An intercative version of this figure with fully visible node labels is available in the additional material

website (available in DVD format with this thesis).
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parts and a network perspective. The results showed that while both datasets contained

annotations relevant to PSD functionality, as it is at least understood from the mPSD

data, the fPSD data contained these annotations with lower counts and enrichments.

This reflects how the basic mPSD functionality is also present in the fPSD, although

GO annotations for the fly data are more rare, since it is has not been studied as ex-

tensively. Furthermore, as hypothesised, comparison between the datasets showed a

conserved core of constituent parts. A small part of this core, was also reflected in the

network models as conserved sub-networks of nodes and their interactions, reflecting

again basic mPSD functionality present in the fPSD in the form of interacting proteins.

This provided evidence not only for the conservation between the mPSD and fPSD

complexes but also suggests that the mechanism of that conservation might be based

on conservation of particular modules of the networks. As it has been mentioned be-

fore, both by Emes et al. (2008) and in Chapter 6, gene family expansion is one of

the proposed mechanisms of evolution and this mechanism would be compatible with

the results shown here, where the conserved component evolved by expanding with

ortholog gene products, which maintain similar patterns of interactions.
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Table 7.3: Semantic similarities between ortholog pairs within the conserved components of fPSD and

Union.

Union
genes

fPSD genes Semantic
similarity for GO

CC

Semantic
similarity for GO

BP

Semantic
similarity for GO

MF

ACTN2,
ACTN4

Actn 0.44 0.45 0.79

DLG1,
DLG2,
DLG3,
DLG4

dlg1 0.55 0.38 0.32

LIN7A veli 0.6 0.39 0

GRIN1,
GRIN2A,
GRIN2B,
GRIK2

Nmdar2 0.67 0.34 0.8

PRKCC Pkc53E 0 0.33 0.77

PRKCE Pkc98E 0 0.58 0.77

PRKCB inaC 0.42 0.33 0.77





Chapter 8

Discussion

8.1 General discussion

8.1.1 A broader view

This project describes our effort to catalogue and analyse the complex postsynaptic

protein machinery by the reconstruction and analysis of PSD protein interaction net-

work models based on proteomics data. Although the datasets and networks presented

and discussed in Chapters 4 and 5 are models of the murine PSD, the effort of Chapter

6 is to model a non-mammalian PSD complex, by using Drosophila as a model organ-

ism. Furthermore, Chapter 7 compares the mouse and fly models, highlighting some

emerging similarities in the data, which are also reflected in the network models. Be-

sides the contribution of each chapter in methods, data and models there is a significant

wider perspective towards which this work has contributed.

Perhaps the most exciting part of postgenomic-era biology was moving away from

the single gene or protein studies towards the study of whole sets of molecules, working

together via their interactions. It is the combination of constituent parts and interac-

tions that gives these sets the emergent properties of a molecular machine. Studying

something as evasive and intangible as emergent properties is hard. However, the

mediators of emergent properties are the organisational principles of these molecular

219
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machines and in practice it was these principles that we tried to elucidate with our

approach.

Chapters 4, 5 and 6 model the basic organisation of PSD networks and assess if the

there are correlations of specific functions with modules of these networks. That allows

us not only to functionally characterise protein complexes but also to tease out some

of their basic organisational principles. Note that the modelling pipeline, although

applied to the PSD molecular machine example, is not limited to that.

In Chapter 4, the initial attempt was to model a subset of proteins organised around

PSD-95, which was used as a bait for the tandem affinity purification. This dataset not

only augmented PSD data, but moreover the use of a different bait assisted with reveal-

ing slightly different subsets of the PSD (a more “lateral” membrane view). Further

to the model revealing the organisation of these proteins around PSD-95 in a tightly

connected protein interaction network of modular architecture, it also showed how very

basic components of the toolkit of an excitatory synapse are closely interconnected (i.e.

the simultaneous isolation of NMDA and AMPA glutamate receptors along with K+

channels). Additionally, the association of some of these proteins with various types

of mental disease not only highlights general observations regarding the importance

of this central core of the PSD molecular machine in disease mechanisms, but also

shows that these mechanisms could make a whole group of proteins more susceptible

candidates (e.g. glutamate receptors and MAGUK/Dlg proteins of Cla and Clb).

An extension to the analysis of the PSD-95 associated proteins complex data was

to combine it with other recent proteomics data (Collins et al., 2006, Husi and Grant,

2001, Husi et al., 2000), previously modelled by Pocklington et al. (2006), in order

to create a more inclusive model of the PSD, was presented in Chapter 5. The re-

sulting model did not only corroborate previous results but allowed the statistical and

topological description of a protein interaction network with all the key components

of the excitatory synapse present (including components not modelled previously, e.g.

AMPA receptors and K+ channels). Subsequent analysis also showed that the model
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possesses a modular architecture. This, in combination with Chapter 4 and the re-

sults of Pocklington et al. (2006), shows that this modular architecture is persistent,

i.e. present when modelling sub-networks of the PSD reconstructed from different

datasets. The modular architecture is also biologically relevant, as highlighted by the

correlation of molecular function and phenotype (plasticity, behaviour or disease) an-

notations to specific modules of the network. In the same manner that a car engine

has parts that work together to perform specific sub-tasks (e.g. fuel injection, combus-

tion, cooling etc), a molecular machine has functional modules performing sub-tasks.

Crosstalk between these modules is vital not only in order to successfully fulfill the

task in hand, but also to regulate it. Examples of this regulation can be found with the

phosphorylation of the NMDA receptor (Coba et al., 2009; 2008). Furthermore, in the

same chapter the dataset is analysed from the viewpoint of evolution, not only of its

constituent parts, but also of their organisation in protein complexes.

After noticing how this modular architecture is persistent and has biological impor-

tance, we furthermore theorised that the PSDs of organisms with less intricate nervous

systems and behavioural repertoires will also have some evidence of it. Chapter 6

presents our findings in a study of the fPSD. In this part of the work, we acquired the

first catalogue and model of the fPSD based on affinity purification of selected in-vivo

protein baits. Although the protein complex purification methods had their shortcom-

ings and the dataset was not as optimised and noise-free as the mouse counterparts,

a model was successfully reconstructed. Analysis of the annotations in this model

showed presence of basic mouse PSD functionality. Although the fPSD appears to

have a lower complexity in constituent parts, as previously predicted in the literature,

the resulting network model appears to be organised in the same modular manner.

Application of the modelling pipeline in the aforementioned chapters allowed only

for species specific conclusions to be drawn. The natural extension of this was the

direct comparison of the PSD complexes. In Chapter 7 we compared the annotations

found in the two datasets along with the network models and their architectural fea-
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tures. These comparisons, beyond homologies in constituent parts and similarities in

annotations, corroborated the comparative genomics prediction that the fPSD would

be less complex in constituent parts. Most importantly however, by using the network

models we showed how parts of the fPSD that have been conserved both structurally

and architecturally, and revealed a conserved core component of the network. An im-

portant aspect of this evolutionary conservation is that it shows how a specific type of

interaction configuration of receptors with cytoskeletal, adaptor and signalling proteins

proved to be so useful as a general model of function and regulation that practically

remained the same between species with very different cognitive repertoires.

8.1.2 Limitations

It is very important to consider that the results and contributions summarised above

are the outcome of a process, based on a series of assumptions which have to be ac-

knowledged. Furthermore, there are potential limitations of the methods used, which

also have to be recognized. All of the former can at be least partially addressed with

some future work. These assumptions and limitations can be grouped in the following

categories:

Data assumptions and limitations: This category includes assumptions on the

proteomics data. Such assumptions are that we are first of all modelling an “aver-

age” synapse, i.e. not a specific population of cells but tissue preparation from a

specific brain region or whole brains. Differential expression of genes in different

neuronal cell types has been shown several times and with different approaches in-

cluding mRNA assays (Magdaleno et al., 2006, Doyle et al., 2008b) and protein assays

(Emes et al., 2008). Also, electron microscopy studies of single synapses in rodents

reveal that this gene expression diversity (for Grin2 subunits and MAGUK proteins)

distinguishes individual synapses (Sans et al., 2000, Petralia et al., 2005). Another as-

sumption is that of the presence of noise in data. Although this issue stretches more

into MS data analysis, we have to bear in mind that contaminants are always present
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in the dataset and that even the reconstruction of a protein interaction network does

not guarantee their removal since some proteins might interact with members of the

complex, but outside its PSD context. The reverse is also the case sometimes, when

common contaminants, such as those found in “beadomes” (Rees et al., 2011) or that

are common in cell lysates, like cytoskeletal proteins, might indeed have functionally

important interactions within the PSD complexes.

There are also some less specific assumptions, applying to the fPSD. More specif-

ically it is widely accepted that glutamate is a principal excitatory neurotransmitter in

the mammalian CNS. Although the role of glutamate in fly synapses was established

years ago (Jan and Jan, 1976, Chase and Kankel, 1987), the literature is mostly focused

in the NMJ context (e.g. see Schuster et al., 1991). There is also evidence supporting

the presence of glutamate receptors in the fly CNS (Ultsch et al., 1992, Parmentier

et al., 1996, Völkner et al., 2000). Glutamate has been show to have both excitatory

and inhibitory actions in animals like molluscs (VYu et al., 1991) and Aplysia sp (Ke-

hoe, 1994). What the previous research has not extensively covered is if glutamater-

gic transmission in Drosophila is as central as it is in mammalian CNSs. In turn the

fPSD model reconstructed here appears somewhat “simpler” since the gene duplica-

tion events that made it evolve to the current complexity (Ryan and Grant, 2009) took

place at the Deuterostome Bilaterian boundary. However, we must note that this appar-

ent simplicity is based on a glutamate-centric model of PSDs and might or might not

reflect the full fPSD functionality since it is likely that other neurotransmitter receptors

and their associated protein complexes might account for additional functionality.

Another issue with PSD data in general is the identification of many presynaptic

proteins in all datasets. Some of these might be normally expressed in the postsynaptic

cell, while others might be affinity purified due to trans-synaptic complex formation or

just because of interaction promiscuity. Identifying these categories can be challenging

but until these annotations are available we also assume that the PSD models examined

are not strictly ”post”-synaptic.
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There are also some technical issues to be acknowledged, as discussed in Chapter 6.

These issues are centered around the protein complex isolation and purification method

used to acquire the fly PSD data. More specifically, the method was based on whole

brain extract rather than synaptosome extract. This was unavoidable since we were

unable to find a standard synaptosome preparation method for insect neurons and were

limited in time available for developing one. This resulted to a variety of contaminants

in the dataset, some of which could be attributed to this fact (e.g. proteins abundant in

the ommatidia). Additionally, with transmembrane proteins of the PSD like the NMDA

receptor, being hard to isolate, again due to the time-frame of this project, we decided

to trade-off a full optimisation towards these proteins with a more general protocol that

would give a first catalogue of the fly PSD, rather than to strictly focus on MASC-type

complexes.

Modelling and model interpretation assumptions and limitations: This cate-

gory includes assumptions relevant to the reconstruction of the models using protein

interaction data as well as the analysis and interpretation of these models using annota-

tions and clustering methods. When it comes to protein interactions, admitting partial

knowledge along with the presence of both false positive and negative data is common,

is essential. Similarly crucial is a critical evaluation of their accuracy, biases, overlaps

and complementarities (Mering et al., 2002). Similarly, gene and gene product anno-

tation and its use in statistical inferences has to be based on the assumption that the

dataset in hand is well annotated. This, however, does not always hold and along with

issues such as the skewed annotations generated due to pleiotropic effects of protein

functions in non-neuronal contexts (Inlow and Restifo, 2004), can cause issues. An-

other related issue is that fly synaptic proteins are not as well studied„ thus annotated,

as mouse synaptic proteins. The latter becomes even more evident when looking for

the very scarce behavioural phenotype associations of fly proteins.

Another limitation of the modelling approach is that when using the Newman and

Girvan algorithm we are unable to identify overlaps between clusters. In the light of
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new data, this approach might be more useful in order not only to identify modules but

also multiple simultaneous sub-complexes.

8.1.3 Critical examination

Given the contributions, the “bigger picture” and the acknowledged limitations pre-

sented in the previous paragraphs we can examine how far the initial proposed set of

hypotheses was tested. From a proteomics data perspective (hypothesis 1), it is evident

that new affinity purifications not only augment PSD in the form of lists of constituent

parts. Namely, beyond the new proteins that are isolated and the higher confidence in

the presence of certain proteins that tend to re-appear often, the use of different baits

can better isolate different sub-complexes of the PSD. From a network organisation

perspective (hypothesis 2) we were able to provide evidence of a persistent modular

architecture with biological interpretation or significance, although the confidence var-

ied from case to case due to data limitations (e.g. noise or different contamination

levels in datasets, unavailable or false annotations and availability of protein interac-

tions). The biological significance of this modular architecture, although impossible

to precisely quantify, can be supported by the correlation of specific annotations with

specific modules. The latter is also supported by a common concept in the literature,

where proteins that interact are expected to have common or semantically more similar

annotations (example references Mahdavi and Lin, 2007, Lord et al., 2003). Regard-

ing the fPSD (hypothesis 3), we were able to obtain a list of the constituent parts based

on affinity purifications and reconstruct the first model using the modelling pipeline.

Although the method suffered from technical drawbacks, we were able to produce an

initial map of the fPSD, showing how it has similar functionality and modular archi-

tecture to that of the mPSD. Given these drawbacks and the additional issues with the

lack of protein interaction data and annotations, it can be said that this was the least

supported of our hypotheses. Finally, regarding the comparison of PSD complexes

(hypothesis 4), we presented a set of approaches and adapted method to quantify sim-
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ilarities and differences and showed how components of the network were conserved.

Again, in this case our approach was not as fruitful as expected since it suffered from

the issues of the fPSD model. However, we believe that given the quality of the model,

due to contamination and missing interaction, as well as annotation data, the quality of

the resulting evidence is satisfactory.

8.2 Future work

Some of the drawbacks and limitations in this work are technically more addressable

than others, since there are clear steps to be taken in order to improve them. For

example the isolation and purification of protein complexes of the fPSD, can be further

improved in two steps. The first step would be the optimisation of the purification

protocols towards transmembrane proteins. This could be achieved by testing different

lysis buffer compositions with varying concentrations of different detergents (Triton

X-100, DOC, ComplexioLytes, digitonin). By targeting more towards proteins of the

membrane fraction, we could potentially isolate more receptors and channels relevant

to the fPSD. The second step would include the use of different proteins as baits.

Potential bait candidates could include synthetic peptides of interaction domains of

other insect neurotransmitter receptors, potentially also central to the fPSD. Other bait

candidates could include prey proteins that were found to be central components in this

work and also known interactors of current baits. Since a first draft of, the fly PSD was

obtained here, it would also be interesting to attempt two step purifications using TAP,

in order to reduce noise from contaminants. Another alternative to that would be to use

parallel affinity capture of complexes utilising two tags of the CPTI lines of interest.

Additionally, and in retrospect we think that it would have been an interesting endeavor

to attempt purification using the same bait but different protocols, one more optimised

towards proteins localised in or near the cell membrane and one for soluble proteins.

This way one can generate affinity purifications under conditions suitable for a wider
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range of proteins. A similar approach to this would be optimising a more inclusive set

of bait-prey interactions by trying antibodies that recognise different epitopes of the

bait proteins.

Other directions of the future work are relevant to models of PSD complexes in

general, and would probably be initially applicable to the more well studied and anno-

tated mouse PSD. The constituent parts of the static models described in this work did

not include two important annotation components, namely of differential expression by

brain region and of protein abundance. Although this information was partially avail-

able at the time, the coverage of the datasets was small. More specifically regarding

differential expression in brain areas, a proposed approach would be measuring tran-

scription data from BACTRAP (Doyle et al., 2008b) and array (e.g. Magdaleno et al.,

2006) approaches. Although some comparative analysis suggests correlation between

transcriptional and translational expression for the majority of genes (Mijalski et al.,

2005), the subject of general transcriptome - proteome correlation is still debatable.

Efforts to analyze noisy data with simple correlation metrics have resulted in weak

positive correlations (Lian et al., 2001, Griffin et al., 2002, Roch et al., 2004), while on

the other hand an analysis with more robust statistic framework have yielded stronger

correlations (Gygi et al., 1999). Being able to identify differences in the composition

of the PSD will allow us to better understand not only its evolution as neuron cell

types diversified, but also if this differential composition has functional significance.

Regarding protein abundance there have been various quantitative solutions proposed

ranging from relative abundance within the dataset, to quantitive methods involving

metabolic (e.g. SILAC - Ong et al., 2002), chemical labeling (e.g. iTRAQ - Ross

et al., 2004), or label free methods such as spectral counting (Liu et al., 2004, Vogel

and Marcotte, 2008). For a review of methods see Ong and Mann, 2005, Bantscheff

et al., 2007. Abundance information is not only important in static models such as the

ones described here, but it is also the first step towards more detailed models that take

features like complex stoichiometry into account.
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Incorporating the aforementioned parameters to PSD models would mean richer

descriptive models which would still, nevertheless, be static models describing what is

fundamentally an adaptive and highly dynamic structure. For that reason another major

direction would be that of dynamic models. Recently Sorokina et al. (2011) presented a

solution towards quantitative modelling of the PSD, using a core of molecules from the

PSD model described in Chapter 5, illustrating the possibility of extending a qualitative

protein-protein interaction map into a quantitative executable model and capturing the

dynamic complexity expected to be found in the PSD. Dynamic “executable” models

will require even more parameters (e.g. binding site affinities, quantitative proteomics

etc) and so extending from reduced pathway models of a few molecules to the scale of

models described here (>100s of molecules) will take a significant investment in both

modelling and biochemical characterisation. However, this problem could be partially

addressed by computational inference.

Part of this dynamic complexity is also the presence of one protein in multiple si-

multaneous complexes, the identification of which could show us a different type of

modularity, this of protein organising or taking part in multiple modules. Identifica-

tion of overlapping complexes could be achieved by using appropriate clustering algo-

rithms that allow that, for example MCODE(Bader and Hogue, 2003), OMIM(Wang

et al., 2012), or CPM(Bu et al., 2003). However, identifying these overlapping modules

makes the concept of modularity multidimensional, which will result to computation

of statistical correlations being far more complicated. Also, due to technical restric-

tions and lack reference data availability there have been few attempts to compare the

performance of these algorithms. In the comparisons we are aware of, MCL shows

good performance and robustness to noise (Brohee and van Helden, 2006, Vlasblom

and Wodak, 2009).

Yet another direction of dynamic models will be the challenge of the PSD phos-

phoproteome. This issue was addressed by Coba et al. (Coba et al., 2008; 2009) who

collected phosphorylation data on a set of PSD kinases and their known substrates,
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after range of NMDA receptor stimulation protocols. While the range of the stimu-

lations protocols had sufficient coverage, the range of kinases and substrates did not

provide full PSD coverage. Nevertheless, the resulting model was one of impressive

complexity, possibly explaining some of the combinatorial computational power of

synapses.

The other aspect of future work would be that of completing the comparative PSD

model analysis started here after acquiring more data to complete the fly PSD model.

Besides the comparison of parts lists and distribution of functionalities or annotations,

comparative interactomics approaches could be used in order to compare how these

parts lists are organised in networks. There are various solutions proposed recently in

order to compare network models using computational methods, including Network-

BLAST (Sharan et al., 2005), also used here, graphlet degree distribution (Przulj, 2007,

Kuchaiev and Przulj, 2011) and other graph based methods, e.g. (Klau, 2009). These

methods allow the identification of common conserved cores or topological features

of the networks based on protein homology and/or interaction motifs, usually heav-

ily depending on the former, with the exception of graphlets. If the case is that there

is more overlap to be found between fly and mouse PSDs, these methods will indi-

cate how this overlap constitutes a conserved signalling network, extending work in

Chapter 7. However, these methods rely heavily on either sequence and/or network

architecture similarity1. The author has developed a comparative method (summarised

in Figure 8.1), which is based on network motifs (Milo et al., 2002, Shen-Orr et al.,

2002, Alon, 2007) common in the two networks under comparison. Network motifs

are statistically significant recurring pattern of connections between nodes in a net-

work. These motifs, if present, represent similar organisation patterns between the two

networks. Motifs also have a local organisation (a specific protein in every orbit, i.e.

node position with respect to symmetries). In the proposed approach common motifs

are detected and tested for statistical correlations of specific orbits with a functional

1Both found to be problematic at times.
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Figure 8.1: A proposed workflow for finding conserved motifs of functional family interactions.

family. In turn, these correlations in combination with the motifs represent conserved

interaction topologies of specific functions. The method is still under development and

the author was not able to present a detailed application to these datasets due to time

limitations.

Furthermore, another interesting aspect is the evolution of this network which could

be modelled with application of the Pastor-Satorras et al. (2003) model. This model is

based on gene duplication events and the respective protein binary interaction dupli-

cation, taking place with a probability a. This modelling approach is very appealing

in the PSD case since gene family expansion via gene duplication is very frequent in

central proteins (e.g. DLG family, 2nd unit of the NMDA receptor, etc).

8.3 Conclusions

Systems Biology (and Systems Neuroscience) analysis of the brain aims to provide

a framework upon which we can understand the brain at all levels of its complexity

from bio-molecular events at synapses through complex networks of neurons, brain
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regions and systems and ultimately to individual and social behaviour. Here we have

focussed on strategies and methods that help us capture, explore and understand molec-

ular complexes identified from primary biochemical analysis of neural tissues. Protein

interaction network models provide a powerful scaffold for knowledge integration and

hypothesis generation. By combining data annotation, analysis and protein interac-

tion network reconstruction we model and investigate proteomics datasets. Utilising

the resulting models as integrative descriptive tools offers an overview of the major

constituent parts of molecular machines and also gives insight on how these parts are

combined to give rise to the properties of a complex system such as the receptor sig-

nalling complexes embedded in synapse proteomes.

Closer examination of these models can also be used to explore the validity of

disease hypotheses. In the case of the PSD for example, using models like the ones

described here one can see that the primary interactors of genes associated with dis-

ease, e.g. schizophrenia, are spread throughout many modules within the networks.

Also, GWAS of common SNPs showed that conditions such as schizophrenia and

bipolar disorder are highly polygenic, with potentially thousands of SNPs of small

effect contributing to susceptibility (Purcell et al., 2009). However, the SNPs that have

so far reached genome-wide levels of significance have not yet converged on a clear

set of disease-relevant processes. This suggests that the overall network and its var-

ious clusters might play a role in these diseases, and in schizophrenia for example

while enriched, the glutamate receptors may not the entire story, as per the “glutamate

hypothesis” of schizophrenia (Greene, 2001, Coyle, 2006, Lisman et al., 2008). Sim-

ilarly, we can also start to query common mechanisms that might be shared across

multiple diseases. For example, the reconstructed PSD models uncover 43 proteins

linked by various lines of evidence to schizophrenia, of which 20 are also implicated

in other diseases (bipolar disorder, depression mental retardation). Also, genome-wide

studies of copy number variants (CNVs), in which extended genomic sequences are

duplicated or deleted, have discovered that large, rare CNVs contribute to both autism
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and schizophrenia (Redon et al., 2006, Walsh et al., 2008, Stone et al., 2008). This is

supporting evidence of a rising trend of the belief that diseases like schizophrenia and

bipolar disorder, which have been described in psychiatry as a spectrum of disorders

with heterogeneous presentation, have genetic mechanisms behind them can lead to a

sub-classification of these diseases into subtypes. But it is not only the genetics but

also the organisation of affected proteins in functional complexes. Recent data (Frank

et al., 2011) have shown also shown schizophrenia and bipolar disorder diseased indi-

viduals possessed an increased load of deleteriousness from multiple concurrent rare

and common coding variants. This, by first observation, raises the question of the

missing heritability (Maher, 2008, Gunter, 2009). However, analysis of these models

along with other analysis of GWAS data (Maher, 2008, Gershon et al., 2011) suggests

that it is the multiple rare variants combined via an epistatic interplay can be causing

the disease or varying the symptoms. So in the schizophrenia and bipolar disorder

cases the interplay of compound genetic coding variants, distributed among glutamate

receptors and their interacting proteins, could contribute to the pathogenesis and phe-

notype of the diseases. As confidence in the data underpinning these models increases

with time, these methods will start to deliver on their potential. However, as mentioned

throughout, one must always bear in mind the significant limitations of these models

when making any decisions based upon them.

In conclusion, after considering potential flaws of the approach described in this

work, namely the limitations of the methods for obtaining proteomics and interaction

data as well as the static nature of it. Nevertheless, these static models managed to

efficiently describe a complex molecular machine such as the PSD and give insight

to some of the underlying principles of its organisation. We are acutely aware that in

the longer term we need to look to more dynamic modelling approaches that cover

the computational complexity of synaptic molecular machines, however, we also see

these approaches stemming and evolving out of methods and models similar to the

ones described (and referenced) in this work and feel that this is part of our main
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contribution.





Appendix A

Supplemental Methods

A.1 fPSD complexes

A.1.1 Validation of affinity purifications

Figure A.1 shows the western blot for the ECP and CCP datasets. Note that the migra-

tion lengths of the bands correspond to the molecular weight of known isoforms with

the added weight of the tag. Blots were probed with the JL-8 antibody (Clonetech)

against the YFP tag. The CCP blot was slightly under-exposed, but the bands are still

visible. The bands were verified based on molecular weight (MW ). More specifi-

cally MWtarget = MWiso f orm + MWtag, where MWtag =∼ 30KDa. Also, in the second

replicate of dlg1 in the CCP data the band was very faint. Given that the film was un-

derexposed, we decided to proceed with the mass spectrometry analysis of the sample.

A.1.2 Mass spectrometry data filtering

A.1.2.1 Filtering criteria

Since we had to deal with two substantially different raw data analysis workflows and

sets of exported results from the two different facilities, the following paragraphs will

explain the data filtering and integration process for the CCP and ECP datasets.

235
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Figure A.1: Experimental validation of affinity purification samples. Each well was loaded with 18μl of

sample with loading dye. Note that the molecular weights of the bands are similar to weights of known

isoforms plus ~30KDa, which is the weight of the expressed tag construct. Red arrows show the weight

of the closest molecular weight marker.
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Due to the intricacies of the different mass spectrometry workflows the datasets

had to be filtered using different combinations of the following criteria:

1. Peptide count (pepcount): the number of distinct peptides that belong to a spe-

cific protein sequence.

2. % sequence coverage (%cov): per cent coverage of a protein sequence by the

distinct peptides found

3. MASCOT score (M_score): MASCOT score is computed by the Mascot soft-

ware and is based on false discovery from a “negative control” database. Al-

though the specifics are beyond the scope of this chapter, the definition is M_score =

−10∗ log10(P), where P is the false positive match probability. To illustrate this

we can use the following example: in a database of 5∗105 entries, a 0.001 chance

of getting a false positive match is a probability of P = 1/(103 ∗5∗105) , which

is equivalent to a Mascot score M_score = 87.

4. Peptide enrichment ratio (Rpep): given the data filtering strategy of choice, if

a protein is found both in the control and a affinity purification sample, it can

either considered contamination of the affinity purification sample and discarded

or not. In the second case we can apply a dynamic filtering approach where the

peptide enrichment ratio is the criterion. If for every protein X found both in

control and an affinity purification sample we define:

Rpep =

nsample(X)
Nsample

ncontrol(X)
Ncontrol

Where n(X) is the peptide count of X and N is the total peptide count in the

sample and control respectively. This way we can control for enrichment in the

relative proportion of protein specific peptides in a pool of peptides. Note that in

case protein X is absent from the control Rpep = +∞. Note that in order to use

this model of dynamic cut-offs it makes more sense to adjust the peptide count a
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low value (1 peptide with a MASCOT score above 60 is considered acceptable

by the Edinburgh facility).

5. Number of replicates a protein appears in. Since each affinity purification was

performed in duplicate, one approach is to allow in the dataset proteins appearing

in one or more replicates another more stringent approach is to allow in proteins

appearing in both replicates. In our case this caused an issue for one case (dlg1

in the CCP data) where one of the replicates failed to purify any baits probably

due to unsuccessful purification.

On suggestion from each of the two facilities, we decided to use the criteria they used

in-house for the filtering of the datasets generated in each facility. For the CCP data

criteria 1,2 and 5 were used and for ECP data criteria 1, 3, 4 and 5.

A.1.2.2 ECP data filtering

The minimum number of peptides (criterion 1) was set to 2, with 1 being the default

value the Edinburgh facility uses. This in combination with a MASCOT score cut-

off of 80 (60 being the facility’s default) guarantees confidence in the identification.

After experimenting with the Rpep ratio we observed that any value above 4 gives

similar number of proteins in the resulting dataset so we chose a cut-off of 6. We

had to manually add the 14-3-3ε and Bsg baits in their respective affinity purification.

Although the presence of all baits was verified with western blotting, 14-3-3ε was

under the 2 peptide cut-off and Bsg peptides were probably masked. Regarding Bsg

specifically - it is not the first time that the mass spectrometer of the Edinburgh facility

has been unable to identify its presence in samples where it has been otherwise verified.

The above are also summarised in table A.1.
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Table A.1: Cut-off criteria for the ECP dataset filtering.

Dataset label Number
of

Peptides

Number
of

replicates

MASCOT
score

Rpep Keep only proteins
known from

previous pulldowns

tolerant 2 > 1 80 6 no

intermediate 2 > 1 80 6 yes

strict 2 > 1 80 6 no

Table A.2: Cut-off criteria for the CCP dataset filtering.

Dataset label Number
of

Peptides

Number
of

replicates

Coverage Keep only proteins
known from

previous pulldowns

tolerant 3 > 1 15% no

intermediate 3 > 1 15% yes

strict 3 > 1 15% no

A.1.2.3 CCP data filtering

The minimum number of peptides (criterion 1) was set to 3, with 2 being the default

value the Cambridge facility uses. The minimum coverage (criterion 2) was set to 15%

of the protein sequence, with 10%-12% being the standard values the facility uses. The

minimum number of replicates a protein should appear in was set to > 1 (one or more)

for the tolerant and intermediate labelled datasets. For the strict labeled dataset we

chose exactly the same parameters but only allowed in proteins appearing in one or

more replicate. Although all baits were identified by mass spectrometry, we had to

manually add the tau and 14-3-3ε baits in the intermediate labelled dataset because

they were filtered out as previously unknown (these proteins have not been isolated

as preys in our in-house small scale experiments). The above are also summarised in

table A.2. Note: in the case of dlg1 in the CCP data, one replicate returned a very short

list which we considered as failed and for this reason the dlg1 data were excepted from

the number of replicates criterion.
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A.1.2.4 Issues with the data

Although affinity purifications experiments were always performed by the author using

the same types of reagents, with all different baits and replicates performed in parallel

with one exception (see bellow), in an attempt to minimize the effect of systematic

error on the purification level, we noticed two main issues with the data after the mass

spectrometry results we returned. This were:

• Difference in numbers of identified proteins (for the same bait): It has been

noted before that when using these two mass spectrometry facilities, the Edin-

burgh Centre for Proteomics always returns larger lists of identified proteins.

Although this is an empirical observation it has occurred many times and we be-

lieve it has to do with the workflow of processing raw data in the Edinburgh and

Cambridge facilities. One of the major effects of this is the difference in dataset

sizes and subsequently the contribution of each affinity purification identifica-

tion in the final dataset. Nevertheless, we manually checked the overlap between

the datasets and found their overlaps statistically significant (p < 0.05) using a

Fischer’s exact test and given the dataset sizes.

• Low reproducibility between replicates: an overall low reproducibility between

replicates within the same experiment was also noticed. In the case of the CCP

datasets this was observed with the 14-3-3ε and Bsg purifications. In the ECP

datasets it was the case with all affinity purifications. A possible explanation for

that is that one of the two replicate samples was destroyed by the facility and had

to be repeated as an independent purification.

In order to control for this issue we compared the tolerant dataset with a list

of proteins known from previous independent proteomics experiments. These

“previously known” proteins come from an in-house collection of unpublished

data from smaller scale experiments (using a Nmdar2 N-terminal bait and a Bsg

affinity purification). We filtered out all proteins from the tolerant datasets if
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they were not in this list and generated a new dataset. Using these versions of

the tolerant datasets, labelled intermediate, we observed that while there is a

considerably low reproducibility between replicates the both the CCP and ECP

datasets isolate previously known proteins. More specifically ~50% and ~40%

of the proteins identified in the CCP and ECP datasets respectively were in the

“previously known” list. Taking into account that the only common previous

bait was Bsg these numbers can be considered satisfactory.
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Data tables
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Table B.1: List of proteins per cluster in the PSD-95 associated proteins network.

Cluster Proteins

Cla Begain, Camk2a, Camk2b, Cltc, Cypin, Dlg1, Dlg2, Dlg3, Dlg4,
Dlgap1, Dlgap2, Dlgap3, Dlgap4, Grin1, Grin2a, Grin2b, Grin2d,

Kcnj10, Kcnj4, Nefl, Pppp3ca, Spnb2, Syngap1

Clb Cacng2, Gria1, Gria2, Gria3, Gria4, Grik2, Grik5

Clc Kcna1, Kcna2, Kcna3, Kcna4, Kcnab1, Kcnab2

Cld Baiap2, Rac1

Cle Adam22, Lgi1

Clf Fscn1, Gapdh, Pgk1, Vdac1

Clg Atp5a1, Atp5b, Atp5c1, Atp5o, Slc25a4, Slc25a5

Table B.2: Significant cluster and “cellular component” gene ontology (GO) terms correlations in the

PSD-95 associated proteins network.. P-values in parentheses.

Cluster Cellular Component (GO)

Cla N-methyl-D-aspartate selective glutamate receptor complex (0.04), integral to
membrane (0.01), synapse (0.04)

Clb alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid selective glutamate
receptor complex (0.01), cell junction (0), dendrite (0), integral to membrane (0),

membrane (0.01), membrane fraction (0.01), neuronal cell body (0), outer
membrane-bounded periplasmic space (8.53E-05), perikaryon (0), plasma
membrane (0.04), postsynaptic density (0.05), postsynaptic membrane (0),
presynaptic membrane (0.03), synapse (0.01), terminal button (9.91E-06)

Clc integral to membrane (0), juxtaparanode region of axon (0), voltage-gated
potassium channel complex (6.51E-05)

Clg mitochondrial inner membrane (4.41E-07), mitochondrial proton-transporting
ATP synthase complex (0), mitochondrion (1.32E-05), proton-transporting ATP

synthase complex, catalytic core F(1) (6.51E-05)
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Table B.3: Significant cluster and “molecular function” gene ontology (GO) terms correlations in the

PSD-95 associated proteins network.. P-values in parentheses.

Cluster Molecular Function (GO)

Cla N-methyl-D-aspartate selective glutamate receptor activity (0.04), calmodulin
binding (0.04), cation channel activity (0.04), protein domain specific binding

(0.01)

Clb PDZ domain binding (0.02), extracellular-glutamate-gated ion channel activity
(8.53E-05), ion channel activity (0), ionotropic glutamate receptor activity

(8.53E-05), receptor activity (0), transporter activity (0)

Clc ion channel activity (0.02), voltage-gated ion channel activity (5.29E-06),
voltage-gated potassium channel activity (6.29E-08)

Clg ATPase activity (0), hydrogen ion transporting ATP synthase activity, rotational
mechanism (6.51E-05), proton-transporting ATPase activity, rotational mechanism

(0)

Table B.4: Significant cluster and “biological process” gene ontology (GO) terms correlations in the

PSD-95 associated proteins network.. P-values in parentheses.

Cluster Biological Process (GO)

Cla calcium ion transport (0.04), cell-cell signaling (0.04), ion transport (0), regulation
of neuronal synaptic plasticity (0.04), startle response (0.04)

Clb ion transport (0), regulation of membrane potential (0.03), transport (0)

Clc ion transport (0), potassium ion transport (1.76E-06), transmembrane transport
(5.29E-06)

Clg ATP synthesis coupled proton transport (6.51E-05), proton transport (6.51E-05)

Table B.5: Significant cluster and PANTHER protein classes correlations in the PSD-95 associated

proteins network.. P-values in parentheses.

Cluster Protein Class

Cla transmembrane receptor regulatory/adaptor protein (0)

Clb ionotropic glutamate receptor (8.53E-05), ligand-gated ion channel (0)

Clc potassium channel (1.76E-06), voltage-gated ion channel (1.32E-05)

Clg ATP synthase (6.51E-05), hydrolase (0), ligand-gated ion channel (0.04)
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Table B.6: Significant cluster and PANTHER pathways correlations in the PSD-95 associated proteins

network. P-values in parentheses.

Cluster Pathways

Cla Huntington disease->N-methyl-d-aspartate receptor (0.04), Ionotropic glutamate
receptor pathway->N-methyl-D-aspartate Receptor (0.04), Metabotropic glutamate

receptor group I pathway->N-methyl-D-aspartate Receptor (0.04), Metabotropic
glutamate receptor group III pathway->N-methyl-D-aspartate Receptor (0.04),

Muscarinic acetylcholine receptor 1 and 3 signaling pathway->N-methyl-D-aspartate
Receptor (0.04)

Clb Ionotropic glutamate receptor pathway->AMPA Receptor (0), Ionotropic glutamate
receptor pathway->AMPA/Kainate Receptor (4.41E-07), Ionotropic glutamate receptor
pathway->Glutamate receptor, ionotropic, AMPA 1 (0), Ionotropic glutamate receptor
pathway->Glutamate receptor, ionotropic, AMPA 2 (0), Ionotropic glutamate receptor
pathway->Glutamate receptor, ionotropic, AMPA 3 (0), Ionotropic glutamate receptor

pathway->Glutamate receptor, ionotropic, AMPA 4 (0), Metabotropic glutamate
receptor group III pathway->AMPA/Kainate Receptor (4.41E-07)

Table B.7: List of proteins per cluster in the Union network. Continues in Table B.8.

Cluster Number
of

proteins

Families in cluster MGI gene symbol

A 39 Adaptor/ Regulatory, Cytoskeletal/
Structural/ Cell adhesion, G-protein

signaling, Kinases, Receptors/
Channels/ Transporters, Signalling

molecules and Enzymes

Actn2, Adam22, Atp2b4,
Baiap2, Begain, Camk2a,

Camk2b, Dlg1, Dlg2, Dlg3,
Dlg4, Dlgap1, Dlgap2,

Dlgap3, Gda, Grik2, Grik5,
Grin, Grin2a, Grin2b, Grin2d,
Kcna1, Kcna2, Kcna3, Kcna4,

Kcnab1, Kcnab2, Kcnj10,
Kcnj4, Lgi1, Lin7a, Mpp2,

Mpp3, Nos1, Ptk2b, Shank1,
Shank2, Spnb2, Syngap1

B 6 Receptors/ Channels/ Transporters,
Vesicular/ Trafficking/ Transport

Cacng2, Gria1, Gria2, Gria3,
Gria4, Nsf

C 12 Adaptor/ Regulatory, Cytoskeletal/
Structural/ Cell adhesion, G-protein

signaling, Receptors/ Channels/
Transporters, Signalling molecules

and Enzymes

Calm2, Flna, Gap43, Gapdh,
Grm1, Grm5, Homer1,

Pla2g4a, Rab2a, Rab3a, Rala,
Spnb3
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Table B.8: List of proteins per cluster in the Union network (continued from Table B.7). Continues in

Table B.9.

Cluster Number
of

proteins

Families in cluster MGI gene symbol

D 56 Adaptor/ Regulatory, Cytoskeletal/
Structural/ Cell adhesion, G-protein
signaling, Kinases, Phosphatases,

Receptors/ Channels/ Transporters,
Signalling molecules and Enzymes,

Vesicular/ Trafficking/ Transport

Ablim1, Actg1, Akap9,
Anks1, Bad, Cit, Cltc, Cttn,

Dlgap4, Dnm1, Dusp4, Fgd4,
Gnb2l1, Grb2, Hras1, Ina,

Irs1, Klc2, Lmnb1, Map2k1,
Map2k2, Map2k3, Mapk1,

Mapk3, Mtap2, Myh10,
Myh9, Myo5a, Nefl, Nf1,

Pdpk1, Pgam5, Pik3ca, Plcg1,
Ppp1cc, Ppp2ca, Ppp2r1a,

Ppp5c, Prkcb, Prkcc, Prkce,
Ptpn11, Ptpn5, Raf1, Rap2a,
Rps6ka3, Slc25a4, Src, Tjp1,

Trp53bp1, Tuba1b, Vegfa,
Ywhae, Ywhag, Ywhah,

Ywhaz

E 5 Adaptor/ Regulatory, Kinases,
Phosphatases, Receptors/ Channels/

Transporters

Akap5, Atp1a1, Ppp3ca,
Prkacb, Prkar2b

F 9 Adaptor/ Regulatory, Cytoskeletal/
Structural/ Cell adhesion, G-protein

signaling, Kinases, Signalling
molecules and Enzymes

Akt2, Appl1, Cdh2, Ctnnb1,
Fus, Gsk3b, Plcb1, Rac1,

Slc9a3r1
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Table B.9: List of proteins per cluster in the Union network (continued from Table B.8).

Cluster Number
of

proteins

Families in cluster MGI gene symbol

G 8 Cytoskeletal/ Structural/ Cell
adhesion, G-protein signaling,

Kinases, Signalling molecules and
Enzymes

Cfl1, Cse1l, Pfkl, Pgk1, Pklr,
Pkm2, Ran, Tpi1

H 6 Cytoskeletal/ Structural/ Cell
adhesion, Vesicular/ Trafficking/

Transport

Nefm, Nrxn1, Snap25, Stx1a,
Stxbp1, Syt1

I 5 Adaptor/ Regulatory, Cytoskeletal/
Structural/ Cell adhesion, Kinases

Dbn1, Map2k7, Mapk10,
Mapk8ip1, Stk39

J 4 G-protein signaling Gnao1, Gnb1, Gnb2, Gnb4

K 2 G-protein signaling Sept11, Sept5

L 4 Enzymes Atp5a1, Atp5b, Atp5c1, Atp5o

M 4 Cytoskeletal/ Structural/ Cell
adhesion, Receptors/ Channels/

Transporters

Actn4, Fscn1, Gsn, Vdac1

N 2 Cytoskeletal/ Structural/ Cell
adhesion

Capza2, Capzb

O 2 Cytoskeletal/ Structural/ Cell
adhesion

Mbp, Plp1
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Table B.10: Significant cluster and molecular function gene ontology (GO) terms correlations in the

Union network. P-values in parentheses.

Cluster Molecular Function (GO)

A ATP binding (0.05), N-methyl-D-aspartate selective glutamate receptor activity
(0), PDZ domain binding (0), cation channel activity (0),

extracellular-glutamate-gated ion channel activity (0.01), ion channel activity (0),
ionotropic glutamate receptor activity (0.01), nucleotide binding (0), receptor
activity (0.05), transporter activity (0.04), voltage-gated ion channel activity

(4.18E-005), voltage-gated potassium channel activity (0)

B extracellular-glutamate-gated ion channel activity (0), ion channel activity (0),
ionotropic glutamate receptor activity (0), receptor activity (0), transporter activity

(0)

D ATP binding (0.01), insulin receptor binding (0.01), motor activity (0.01),
phosphotyrosine binding (0.01), protein domain specific binding (0.01), protein

kinase activity (0.01), protein serine/threonine kinase activity (0.01), protein
tyrosine kinase activity (0.05)

G transferase activity (0.02)

J signal transducer activity (7.23E-006)

L hydrogen ion transporting ATP synthase activity (3.44E-008)
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Table B.11: Significant cluster and biological process gene ontology (GO) terms correlations in the

Union network. P-values in parentheses.

Cluster Biological Process (GO)

A calcium ion transport (0.01), ion transport (0), potassium ion transport (0),
regulation of excitatory postsynaptic membrane potential (0), regulation of

long-term neuronal synaptic plasticity (0.02), regulation of membrane potential
(0), regulation of neuronal synaptic plasticity (0.01), startle response (0), synaptic

transmission (0), synaptic transmission (0.05), transmembrane transport (0),
transport (0.04)

B ion transport (0), transport (0)

C signal transduction (0.04)

D MAPKKK cascade (0.02), intracellular signaling cascade (0), protein amino acid
dephosphorylation (0.01), protein amino acid phosphorylation (0.03), regulation

of cell shape (0.01)

G glycolysis (3.56E-007)

H neurotransmitter secretion (2.56E-006)

J G-protein coupled receptor protein signaling pathway (5.16E-007), signal
transduction (0)

L ATP synthesis coupled proton transport (3.44E-008), ion transport (0), proton
transport (3.44E-008)
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Table B.12: Significant cluster and cellular component gene ontology (GO) terms correlations in the

Union network. P-values in parentheses.

Cluster Cellular Component (GO)

A N-methyl-D-aspartate selective glutamate receptor complex (0), cell junction
(2.31E-005), cytoplasm (0.01), integral to membrane (0), integral to plasma

membrane (0), membrane (0.01), outer membrane-bounded periplasmic space
(0.01), postsynaptic density (0), postsynaptic membrane (2.02E-006), presynaptic

membrane (0.04), synapse (7.90E-006), synaptosome (0.01), voltage-gated
potassium channel complex (0.01)

B cell junction (0.01), integral to membrane (0), membrane (0.01), outer
membrane-bounded periplasmic space (0), postsynaptic density (0), postsynaptic

membrane (0), synapse (0.01)

D Golgi apparatus (0.02), cell cortex (0.05), cytoplasm (0.03), membrane (0.03),
microtubule (0), mitochondrial outer membrane (0.05), plasma membrane (0.03)

F cytosol (0), lamellipodium (0), nucleus (0.04)

G cytosol (0.04), nucleus (0.02)

I cytoplasm (0.03)

L mitochondrial inner membrane (1.20E-006), mitochondrion (0),
proton-transporting ATP synthase complex (3.44E-008)

Table B.13: Significant cluster and family correlations. P-values in parentheses.

Cluster Families

A Adaptor/ Regulatory (0.01), Receptors/ Channels/
Transporters (2.31E-005)

B Receptors/ Channels/ Transporters (0)

C G-protein signaling (0.03)

D Phosphatases (0)

G Kinases (0.02)

H Vesicular/ Trafficking/ Transport (0)

J G-protein signaling (0)

L Enzymes (3.44E-008)
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Table B.14: Significant cluster and PANTHER pathways correlations. P-values in parentheses.

Cluster Pathways

A Huntington disease->N-methyl-d-aspartate receptor (0), Ionotropic glutamate receptor
pathway->N-methyl-D-aspartate Receptor (0), Metabotropic glutamate receptor group I
pathway->N-methyl-D-aspartate Receptor (0), Metabotropic glutamate receptor group
III pathway->N-methyl-D-aspartate Receptor (0), Muscarinic acetylcholine receptor 1

and 3 signaling pathway->N-methyl-D-aspartate Receptor (0)

B Ionotropic glutamate receptor pathway->AMPA Receptor (5.16E-007), Ionotropic
glutamate receptor pathway->AMPA/Kainate Receptor (7.59E-006), Ionotropic

glutamate receptor pathway->glutamate receptor, ionotropic, AMPA 1 (5.16E-007),
Ionotropic glutamate receptor pathway->glutamate receptor, ionotropic, AMPA 2

(5.16E-007), Ionotropic glutamate receptor pathway->glutamate receptor, ionotropic,
AMPA 3 (5.16E-007), Ionotropic glutamate receptor pathway->glutamate receptor,

ionotropic, AMPA 4 (5.16E-007), Metabotropic glutamate receptor group III
pathway->AMPA/Kainate Receptor (7.59E-006)

D EGF receptor signaling pathway->14-3-3 (0.01), FGF signaling pathway->14-3-3
(0.01), PI3 kinase pathway->14-3-3 (0.01), Parkinson disease->14-3-3 (0.01), p53

pathway->14-3-3 (0.01), p53 pathway->14-3-3 sigma (0.01)

J Metabotropic glutamate receptor group II pathway->G-protein (3.44E-008), Muscarinic
acetylcholine receptor 2 and 4 signaling pathway->Gi (3.44E-008)
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Table B.15: Top twenty nodes of highest betweeness in the Union network.

Mgi gene symbol Betweeness Average Shortest Path Cluster

Dlg4 0.19 2.25 A

Grin1 0.17 2.28 A

Calm2 0.15 2.47 C

Ywhag 0.14 2.61 D

Src 0.08 2.36 D

Actg1 0.08 2.71 D

Grb2 0.06 2.71 D

Gapdh 0.06 3.04 C

Grin2d 0.05 2.47 A

Prkce 0.05 2.54 D

Dlg1 0.05 2.6 A

Raf1 0.05 2.77 D

Prkcb 0.04 2.58 D

Ctnnb1 0.04 2.74 F

Gnb2l1 0.04 2.78 D

Tuba1b 0.04 2.78 D

Mapk3 0.04 2.95 D

Stk39 0.04 3.66 I

Tpi1 0.04 3.67 G

Grin2b 0.03 2.45 A
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