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Abstract 
DNA methylation is a common modification in vertebrates that is mainly restricted 

to CpG dinucleotides. It is an essential component of a genome, which is important 

for proper development, imprinting, X-chromosome inactivation and for 

transcriptional silencing in general. MeCP2 was initially identified as a protein that 

binds methylated CpG. Transient transfection studies and identification of protein 

partners suggested that MeCP2 is a transcriptional repressor. 

Mutations in the MECP2 gene are frequently found in patients with Rett syndrome. It 

is now commonly agreed that Rett syndrome is a monogenic neurological disease 

caused by mutations in MECP2 gene. Rett syndrome mainly occurs in girls and it is 

characterised by a period of normal development until around 6 - 18 months, 

followed by a rapid regression. After the regression, symptoms persist as severe 

mental retardation, reduced head size, seizures, ataxia, hyperventilation and 

repetitive hand wringing movements. 

The phenotype of mice with a deleted Mecp2 gene mimics some Rett syndrome 

symptoms. The Mecp2-null mouse develops normally until about 6 weeks of age 

after which tremors, irregular breathing, lack of mobility and hindlimb clasping 

develop. 

The main goal of this thesis is to understand how the mutation in MECP2 gene 

causes Rett syndrome. The search for MeCP2 regulated genes was initiated in 

Mecp2-null mouse brain. Examination of candidate genes revealed that Bdnf is 

down-regulated and Hesi is up-regulated in pre, early and late symptomatic Mecp2-

null mice. Further, global analysis of gene expression was examined by ADDER 

differential display. Some mis-regulated genes were identified, two of which are 

involved in mitochondrial respiration. Oxygen electrode measurements revealed 

defects in brain mitochondrial respiration, which commenced coincident with 

symptom onset in Mecp2-null mice. This finding suggests mitochondrial 

involvement in the pathogenesis of Rett syndrome symptoms. 

V. 



In the course of these studies, the structure of the Mecp2 gene was re-investigated, 

leading to the identification of a new MeCP2 isoform. Data in this thesis 

demonstrates that the new isoform is the major form of MeCP2 in both mouse and 

human brain. 
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ATP adenosine triphosphate 

bp base-pair 
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dNTP dATP + dGTP + dTTP + dCTP 

Dox doxycycline 

dTTP deoxythymidine triphosphate 
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M 	molar 
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MOPS 	3 -(N-morpholino) propanesuiphonic acid 
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1. 1. Overview 

The literature review provides a background about the MeCP2 protein and Rett 

syndrome, the main subjects investigated in this thesis. MeCP2 is a methyl-CpG 

binding protein and a lot of the MeCP2 research is related to the understanding of 

DNA methylation function in different organisms. The initial section describes the 

known properties of the DNA methylation in prokaryotes and eukaryotes. The 

studies of DNA methyltransferases in mouse has provided significant input to the 

understanding of the in vivo importance of methylation, therefore substantial 

attention is paid to this topic. Next, the evidence of histone modifications' 

connection with DNA methylation is discussed. The general part of the introduction 

is finished by a description of the protein family which share a similar methylated 

DNA recognition domain. The subsequent sections describe the most important 

evidence showing DNA binding and transcriptional repression properties of MeCP2. 

Next, Rett syndrome and MeCP2 mutation distribution are discussed, followed by, a 

description of existing mouse models. In the discussion section, the different theories 

concerning MeCP2 function are put forward. The final section formulates the 

objectives of this thesis. 

1.2. DNA Methylation 

1.2.1. Common theme 

There is only one common type of biologically acquired DNA modification present 

in most living organisms - methylation. DNA can be modified by addition of a 

methyl group to either the endocyclic carbon-5 in cytosine (Hotchkiss, 1948), or the 

exocyclic nitrogen-4 (Janulaitis et al., 1983) of cytosine or the nitrogen-6 (DUNN 

and SMITH, 1955) of adenine (Figure 1-1). Cytosine was additionally shown to 

harbour two methyl groups, on both the CS and N4 positions, however the in vivo 

presence of such modification is unclear (Klimasauskas et al., 2002). The methyl 

group is added post-replication by DNA methyltransferase enzymes, which use S-

adenosyl-L-methionine (SAM) as a methyl group donor. Determination of primary 
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protein sequences for different classes of methyltransferases followed by alignments, 

led to a conclusion, that different DNA methyltransferases share common 

homologous motifs (Klimasauskas et al., 1989). The close structural similarity 

between DNA methyltransferases was shown, when more structures became 

available (Cheng and Roberts, 2001). The most conserved part is the catalytic 

domain which has 10 conserved motifs (Kumar et al., 1994). The structure of Hha I 

cytosine-5 DNA methyltransferase in complex with DNA revealed that the 

mechanism by which DNA is methylated involves flipping out of the cytosine from 

the double helix of DNA, exposing it to a catalytical pocket where the methyl group 

is transferred from SAM to cytosine (Klimasauskas et al., 1994). 

1.2.2. Biology of DNA methylation in prokaryotes 

Bacteria can have methylation on cytosine-5, cytosine-4 and adenine-4 residues. 

Often methyltransferases are linked with restriction endonucleases. These cases are 

described as restriction-modification (R-M) systems and the biological function of 

restriction-modification is to defend against invading phage genomes (Wilson and 

Murray, 1991). When foreign DNA enters a bacterial cell it can be attacked by 

restriction endonuclease. The host cell, however, in addition to endonuclease, 

harbours DNA methyltransferase, which maintains the host genome methylated and 

resistant to endonuclease activity. Some phage genomes acquired a methyltransferase 

to protect their genome from digestion. The constant competition between bacteria 

and bacteriophages resulted in the evolution of a whole range of R-M systems with 

different DNA sequence specificities. Often one bacterial strain has more than one R-

M system, for example Neisseria gonorrheae has as many as 14 R-M systems (Stein 

et al., 1995). Usually R-M systems are not essential for normal growth of bacteria, 

because the mutation in them does not give rise to a phenotype. This suggests that 

the main advantage of R-M systems is in natural settings, where the organism is 

subjected to pathogen induced competition. 
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Adenine 

Figure 1-1. Biologically acquired DNA modifications found in living organisms, a) The common 

base cytosine is shown in the square. Cytosine can be modified by DNA methyltransferases, which 

add a methyl group to the cyclic carbon on position 5 or exocyclic nitrogen 4. b) The adenine is 

shown in the box. Methylation of adenine occurs only at exocyclic nitrogen 6. 
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Another described biological function of DNA methylation in bacteria is in mismatch 

repair. Because cytosine methylation occurs after replication, there is a period when 

the parental strand of the DNA double helix is methylated and the newly synthesized 

strand is un-methylated, resulting in the hemi-methylated DNA. If there were any 

mismatch errors made during replication, methylation mark help to distinguish the 

parental strand hence the mutated daughter strand could be repaired. For that purpose 

E. co/i has DAM methyltransferase which methylates adenine in the sequence 

context GATC at most places in the genome (Palmer and Marinus, 1994). The 

deletion of DAM methyltransferase is, therefore, associated with an increased 

mutability phenotype (Bale et al., 1979). Additionally, it has been reported that DAM 

methylation is important for replication initiation and regulation of expression of 

several genes. 

1.2.3. 5-methyl cytosine in different eukaryotes 

In eukaryotes, DNA methylation is common but limited to 5-methyl cytosine. There 

are some species without detectable DNA methylation (such as yeast Saccarornyces 

cerevisiae, Schizosaccharornyces porn be, worm Caenorhabditis elegans), however 

there is no known vertebrate or plant genome that does not contain DNA 

methylation. 

Insects have variable levels of DNA methylation which ranges from 0 - 10% of total 

cytosines methylated (Field et al., 2004). In the widely used model organism fruit-

fly, Drosophila rnelanogaster, it has been challenging to find any methylation. 

However recent studies suggest that D. melanogaster embryos have 0.4% 

methylation which drops sharply to approximately 0.1% in the larval stage and then 

gradually decreases to less than 0.1% in adults (Lyko et al., 2000; Lyko, 2001). 

Bisulfite sequencing determined that in fruit-flies genomic methylation is most 

common in CpA and CpG dinucleotide sequences. In the cabbage moth, Marnestra 

brassicae, overall DNA methylation has been reported to be very high, reaching 

approximately 9% in larvae and adults. Restriction digestion with methyl sensitive 

enzymes determined that part of the moth's genome has CpG methylation, however, 
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CpG methylation was absent in several transposons and ribosomal repeats, which are 

often methylated in plants and vertebrates (Mandrioli and Volpi, 2003). Yet more 

detailed bisulfite sequencing analysis is required to investigate the possibility of non 

CpG methylation in the repeats. 

In plant genomes in addition to frequently methylated cytosine in CpG context, there 

is a significant presence of symmetric methylation in CNG and asymmetric 

methylation in CNN sequences (Tariq and Paszkowski, 2004). It is now well 

described, that methylation in plants is required for silencing of transposons and 

viruses, regulation of imprinted genes and is essential for normal development (Tariq 

and Paszkowski, 2004). Mutant Arabidopsis thaliana plants lacking approximately 

25 - 50% of methylation (metl-1 and metl-2 alleles), display late flowering and loss 

of gene silencing (Ronemus et al., 1996; Finnegan et al., 1996; Kankel et al., 2003). 

Other mutants that get rid of almost all CpG methylation are not viable (Saze et al., 

2003). 

The fungus, Neurospora crassa, has evolved different methylation patterns. Most of 

the cytosines in the Neurospora genome are unmethylated. The methylated cytosines 

are found in sequences which have been subjected to repeat induced point mutations 

(RIP) (Singer et al., 1995). Surprisingly, mutation of the methyltransferase DIM-2, 

which causes genome wide demethylation, does not display any obvious phenotype 

(Kouzminova and Selker, 2001). 

In humans, methylated cytosine represents 	1% of the genome and is mainly 

observed in the context of CpG dinucleotides. Initially it was thought that cytosine 

methylation is present exclusively at CpG residues, however several recent studies 

show the presence of CpA and CpT methylation but at a much lower frequency 

(Ramsahoye et al., 2000; Haines et al., 2001; Dodge et al., 2002; White et al., 2002). 

In mammalian cells, methylated DNA is dispersed through out the genome with the 

majority of methylated CpGs located in transcribed regions and intergenic DNA. 

Exceptions to these observations are CpG islands, which are mostly unmethylated. 

CpG islands are defined as 1-2 kb CG rich regions (60-70%), which are found at the 

promoter regions of about 60% of RNA polymerase II transcribed genes (Antequera 

and Bird, 1993; Waterston et al., 2002). 

22 



In mammals, DNA methylation has been reported to play an important role in 

development, imprinting, X-chromosome inactivation, DNA mutability and cancers 

(Bird and Wolffe, 1999; Laird, 2003; Jaenisch and Bird, 2003; Li, 2002; Jones, 2002; 

Prokhortchouk and Hendrich, 2002). Numerous studies have shown that promoter 

methylation often correlates with silencing of a gene (Makar et al., 2003; Issa et al., 

1994; Issa et al., 1996), however, not every silenced gene is methylated. There are 

several examples of tissue specific genes that are silenced and un-methylated (Bird, 

2002). 

There are several theories addressing the evolution of DNA methylation. One argues 

that the primary function of DNA methylation is to silence transposons and viral 

elements, serving as a defence against damage caused by intracellular parasites 

(Jahner et al., 1982; Bestor, 1990). Another theory says that silencing of repeat 

sequences evolved as a secondary mechanism in vertebrates, when genomes became 

large suggesting the primary function of DNA methylation is silencing of 

transcriptional noise (Bird and Tweedie, 1995). 

1.2.4. Biological functions in mammals related to DNA methylation 

DNA methylation is involved in a variety of biological functions, many of them 

involving gene silencing. As mentioned before these include genomic imprinting, X-

chromosome inactivation, turnorigenesis and genome stability. 

Imprinting is a common mechanism of gene dosage management and it is present 

from plants to humans. Genomic imprinting occurs when one parental allele is 

expressed and another is silenced. The role of DNA methylation in imprinting was 

noted with the finding that as well as parental specific gene expression patterns, there 

are parental specific heritable methylation patterns (Li et al., 1993). These parental 

origin specific methylation marks were termed imprinting control regions (ICR). One 

of the suggested models of how ICR works is through binding of the CTCF insulator 

protein, which has a reduced affinity to methylated sites. It has been demonstrated 

that in the H19/1g12 locus CTCF blocks the enhancer from activating the Igj'2 

promoter. At the paternal locus, CTCF is unable to bind methylated sites and thus 
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can not block the enhancer, permitting 1gJ2 activation (Hark et al., 2000; Bell and 

Felsenfeld, 2000; Kanduri et al., 2000). Another model proposes that antisense RNA 

transcription is necessary for the establishment of imprinting and later the 

methylation is required for propagation of stable silencing (Constancia et al., 1998). 

A good example for antisense RNA involvement is the Igf2r gene, whose imprinting 

is lost when the promoter of the antisense RNA is deleted (Lerchner and Barlow, 

1997). 

X chromosome inactivation has many similarities to imprinting (discussed in (Lee, 

2003)). It has endured as a way of solving the gene dosage problem in mammals, 

where almost the whole of one X chromosome is inactivated in females. In humans, 

the X-chromosome is inactivated randomly both in the embryonic and extra-

embryonic tissue, but in mice extra-embryonic tissue has imprinted paternal X 

chromosome inactivation, whereas the embryo has a random X chromosome 

inactivation. One of the important events in X chromosome inactivation is DNA 

methylation of CpG islands on inactive chromosome and of the Xist gene on the 

active X. Xist is a non-coding RNA essential for proper X-inactivation (reviewed in 

(Brockdorff, 2002)). 

Numerous studies have shown that cancer cells have altered DNA methylation 

profiles. Global hypomethylation and some local CpG island hypermethylation are 

often observed in cancer cells (Baylin and Herman, 2000; Plass, 2002). It is widely 

argued whether altered methylation profiles are the cause or consequence of 

tumorigenesis, but it is commonly agreed that DNA methylation plays a significant 

role in cancer. The genetic link between DNA methylation and development of 

cancer was demonstrated in mice with DNA methyltransferase I (Dnmtl) 

hypomorphic allele, which results the reduced level of DNA methylation ('-10%). 

These mice were shown to develop aggressive T cell lymphomas (Gaudet et al., 

2003; Eden et al., 2003). 

In mouse development, global DNA methylation has been shown to change 

dynamically. The paternal genome is actively de-methylated within hours after 

fertilization, before any DNA replication. The maternal genome is de-methylated 

later by a passive mechanism. Both genomes are methylated again before 
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implantation. A second wave of de-methylation occurs in primordial germ cells until 

E13 - E14, which is later followed by de novo methylation during gametogenesis 

(Reik et al., 2001). 

One potentially dangerous "side effect" of DNA methylation is its increased 

susceptibility to mutation. After spontaneous deamination, un-methylated cytosine 

becomes uracil, which is not a DNA base, and therefore can be easily distinguished 

by the DNA repair machinery and removed. However deamination of methylated 

cytosine leads to thymine, which is a common base in DNA. The resulting G:T 

mismatch can be repaired to G:C, which would result in correction, or replicated 

causing G:C and A:T strands one of which (A:T) would have a mutation. Because 

DNA methylation in mammals is primarily found in the CpG dinucleotide context, 

mammalian genomes become depleted in CpG sequences, leaving the majority of 

CpGs in the unmethylated promoter regions, which are called CpG islands (Cooper 

et al., 1983). As predicted (Cooper and Youssoufian, 1988), the remaining 

methylated CpG's in the genome are hot spots for disease causing point mutations. 

For example the majority of MECP2 point mutations in humans are in CpG to TpG 

transitions. 

1.2.5. Understanding DNA methylation through investigation of DNA 
methyltransferases 

There are four known DNA methyltransferases in mammals falling into three distinct 

families: DNMT1, DNMT2 and DNMT3. Clear evidence exist that DNMT1 and two 

members of DNMT3 family (DNMT3A and DNMT3B) are active 

methyltransferases. DNMT2 has all ten methyltransferase motifs and is conserved in 

different mammals, insects and even yeast, but so far detection of any 

methyltransferase activity has been challenging in vitro or in vivo (Dong et al., 2001; 

Okano et al., 1998b; Hermann et al., 2003). Only recently, several independent 

reports showed, that overexpression of DNMT2 in flies increases genomic 

methylation levels at CpA and CpT sites, suggesting that DNMT2 is capable of 

methylating the genome (Kunert et al., 2003; Mund et al., 2004; Tang et al., 2003). 



The first methyltransferase to be cloned and characterized was DNA 

methyltransferase 1 (DNMT1) (Bestor, 1988). DNMT1 shows a strong preference (5 

to 30 fold) for hemimethylated DNA as a substrate, therefore it has been suggested 

that its main role is to maintain DNA methylation patterns after replication of DNA 

(Yoder et al., 1997). Further evidence supporting this role of DNMT1 together with a 

mechanistic insight, was demonstrated by the interaction of DNMT1 with PCNA, 

which is major DNA replication protein found at the replication fork (Jida et al., 

2002). The enzymatic activity of DNMT1 on hemimethylated substrate was also 

enhanced by the presence of PCNA, suggesting that PCNA is responsible for keeping 

and stimulating DNMT1 activity during replication, when daughter strand is being 

methylated. Other studies have also demonstrated DNMT1 co-purification with 

replication activity (Vertino et al., 2002). In mouse fibroblasts, Dnmtl co-localises 

with replication foci in S-phase (Leonhardt et al., 1992; Bestor, 2000). These and 

other studies established a model that after semi-conservative DNA replication, when 

DNA becomes hemimethylated, DNMT1 methylates the daughter strand. Therefore 

the replication machinery, via protein-protein interactions, keeps DNMT1 in close 

proximity to perform this. 

A great deal of insight into the role of DNA methylation in mammals has come from 

Dnmtl knock-out experiments in mice. Dnmtl knock-outs in embryonic stem (ES) 

cells were viable and resulted in a loss of about one third of the total methylation (Li 

et al., 1992). These ES cells were used to generate Dnmtl deficient mice, which were 

developmentally delayed and died around mid-gestation (Li et al., 1992). 

Additionally, DNA methylation loss resulted in the reactivation of imprinted silent 

paternal allele of H19 gene and repression of maternally expressed IgJ2r and 

paternally expressed 1gf2 (Li et al., 1993). These findings confirmed the importance 

of DNA methylation in imprinting. 

Previously it has been shown that in a female mouse the Xist gene on the active X 

chromosome is silent and methylated, whereas it is active and unmethylated on the 

inactive X (Brown et al., 1991b; Brown et al., 1991a). In males, the Xist gene 

promoter is always methylated and silent. Evidence that methylation is an important 

component of Xist regulation came again from the Dnmtl-null embryos. Xist 
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becomes demethylated and reactivated in the male X chromosome in Dnmtl -null 

embryos, but in ES cells, Xist expression is not affected (Beard et al., 1995). 

An elevated gene mutation rate was demonstrated when Hprt and HS V-Tk transgenes 

were introduced in Dnmt] deficient ES cells (Chen et al., 1998). Most of the 

mutations were found to be recombination derived, rather then point mutations, 

suggesting a role for methylation in genome stability. In contrast other group have 

observed reduced HSV-TKNeo transgene loss in ES cells lacking DNMT1 (Chan et 

al., 2001). The discrepancy between these results was explained by the possibility 

that different mechanisms may act at different chromosomal loci. 

Mouse oocytes and preimplantation embryos have an isoform of Dnmtl lacking N-

terminal 118 amino acids (Dnmtlo) (Mertineit et al., 1998). Specific Dnmtlo knock-

out mice were apparently normal if the parents were heterozygous for the mutant 

allele. However, null females were infertile, resulting in embryonic death of 

offspring at day E14 -21 of gestation. Global methylation patterns were not affected, 

but imprinted genes h19 and Snrpn were abnormally expressed from both paternal 

and maternal alleles (Howell et al., 2001). It has been suggested that Dnmtlo is 

required for faithful maintenance of certain imprints in early development, when 

there is no Dnmtl present in the nucleus. 

Dnmt3 family members were identified by sequence homology to bacterial DNA 

methyltransferases. Dnmt3a and Dnmt3b mRNA were found to be highly abundant 

in ES cells, suggesting that they might be responsible for the residual DNA 

methylation present in Dnmtl-null ES cells (Okano et al., 1998a). Just like Dnmtl-

nulls, Dnmt3a and Dnmt3b single and double null ES cells were shown to be viable 

(Okano et al., 1999). Dnmt3a-null mice were born alive, but runted and died at 4 

weeks of age. Dnmt3b mutation in mice were embryonic lethal with abnormalities 

starting at E9.5 (Okano et al., 1999). De novo methylation activity was tested by 

infecting mutant ES cells with recombinant retrovirus, which in wt (or Dnmt 1-null) 

cells becomes silenced by DNA methylation. The retrovirus was methylated in single 

Dnmt3a or Dnmt3b nulls, but failed to become methylated in double nulls (Okano et 

al., 1999). De novo methylation is a slow event - it takes 8 days for the retrovirus to 

become methylated. Prolonged (up to 5 months) culturing of Dnmt3a or Dnmt3b 
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double null ES cells leads to the loss of methylation from repeats and some single 

copy genes. Re-introducing either Dnmt3a or Dnmt3b methyltransferase restores the 

methylation profile, but overexpression of Dnmtl does not (Chen et al., 2003a). 

These experiments provided a clear distinction between the role of Dnmtl and 

Dnmt3 families of methyltransferases. Recently, cre-lox mediated knock-outs in 

primordial germ cells demonstrated that Dnmt3a plays an important role in 

establishing paternal and maternal imprints (Kaneda et al., 2004). Interestingly, a 

similar loss of imprint phenotype is caused by Dnmt3L knock-out (Bourc'his et al., 

2001). The Dnmt3L gene does not encode a functional methyltransferase (although it 

is similar to other methyltransferases, it lacks important catalytic motifs), therefore 

its function is likely to be related with the recruitment of a functional 

methyltransferase. 

Mutations in the de novo DNA methyltransferase DNMT3B result in a rare disorder 

called ICF (immunodeficiency centromere instability and facial abnormalities) 

syndrome (Wijmenga et al., 1998). The typical symptoms are immunodeficiency, 

instability of pericentromeric heterochromatin, facial abnormalities and mental 

retardation (Hendrich and Bickmore, 2001). Interestingly in ICF patients methylation 

is lost in satellite DNA and few non-satellite repeats, suggesting that DNMT3B 

might act at specific loci (Kondo et al., 2000). 

1.2.6. Interplay between DNA methylation and histone modifications 

In addition to DNA modification, which is limited only to 5-methyl-cytosine, there 

are many known histone modifications. Arginine can be mono or dimethylated, 

lysine can be mono-, di- or tri-methylated, acetylated, ubiquitylated and 

SUMOylated, serine and threonine can be phosphorylated (reviewed in (Fischle et 

al., 2003)). It has been demonstrated, that not only does type of modification matter 

for the biological role, but also the position of the modified amino acid. A good 

illustration for this statement is the methylation of lysine 4 or 9 on the histone H3 

tail. Lysine 4 methylation correlates well with actively transcribed chromatin, 

whereas lysine 9 methylation is a mark for silent heterochromatin (Litt et al., 2001). 



Data from fungi and plants suggests that crosstalk occurs between the DNA 

methylation and histone modifications. In the fungus, the Neurospora crassa 

mutation dim-5 causes loss of DNA methylation. Surprisingly, dim-5 mutation was 

identified in Set domain protein, which in vitro methylates H3 lysine 9 (Tamaru and 

Selker, 2001). In the plant Arabidobsis thaliana, mutation in the H3 lysine 9 

methyltransferase KRYPTONITE leads to loss of cytosine methylation in CpNpG 

sites (Jackson et al., 2002; Malagnac et al., 2002). These findings suggest that in 

fungi and plants H3 lysine 9 methylation is required for DNA methylation. 

Subsequently, evidence that DNA methylation is required for H3 lysine 9 

methylation was demonstrated. In Dnmtl null plants, which lack CpG methylation 

loss of H3 lysine 9 methylation was demonstrated (Tariq et al., 2003). In mouse ES 

cells, knock-out of H3 lysine 9 methyltransferase Suv39h leads to a decrease in 

methylation at pericentric satellite repeats. However H3 lysine 9 methylation in 

pericentric heterochromatin is not perturbed in Dnmtl-null or Dnmt3a and Dnmt3b 

double null cells, suggesting that histone methylation guides DNA methylation at 

satellite DNA (Lehnertz et al., 2003). The suggested mechanism for the crosstalk 

between DNA and histone methylation may involve direct interaction of Dnmt3b 

with HP  alpha (which binds to methylated H3 lysine 9), which in turn interacts with 

Suv39h histone methyltransferase (Lehnertz et al., 2003). 

1.3. Methyl CpG binding proteins 

The methylation mark is postulated to act by two mechanisms. The first is by directly 

preventing binding of DNA binding proteins like Etsi (Ets-1) or CTCF (Maier et al., 

2003; Bell and Felsenfeld, 2000), which demonstrate restricted binding to methylated 

sequences, but bind to the same sequence when it is unmethylated. The second 

mechanism involves a group of proteins which bind the methylated CpG sequence. 

Currently there are four known proteins that bind methylated CpG independent of its 

sequence context: MeCP2, MBD1, MBD2 and MBD4 (Figure 1-2). Kaiso is the fifth 

protein binding methylated DNA, however it requires at least two symmetrically 

methylated CpGs in a context dependent manner (Prokhortchouk et al., 2001). 
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Figure 1-2. Methyl-CpG binding proteins. MeCP2, MBD1, MBD2, MBD3 and MBD4 have 

homologous domains (MBD) for recognising methyl-CpG dinucleotide. Kaiso uses zinc fingers to 

recognise at least two methylated CpGs. MeCP2 and MBD1 have transcriptional repression domains 

(TRD), which have been shown to be required for transcriptional repression. CxxC III domain in 

MBDI binds non methylated CpGs. MBD3 is the part of Mi-2/NuRD repressor complex, which 

interacts with MBD2. MBD4 is a DNA T:G mismatch glycosylase. 
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The first cloned methyl-CpG binding protein was MeCP2 (Lewis et al., 1992). After 

narrowing down a region of MeCP2 responsible for binding to methylated CpG 

(MBD domain), the search for homologous MBD domains revealed another four 

genes, which were assigned to the MBD family - Mbd], Mbd2, Mbd3 and Mbd4 

(Hendrich and Bird, 1998). Mbdl, Mbd2 and Mbd3 have been described as 

transcriptional repressors, whereas Mbd4 is a DNA glycosylase. Mbdl is the largest 

family member, which has several alternative splicing isoforms (Hendrich and Bird, 

1998; Fujita et al., 1999; Jorgensen et al., 2004) and represses transcription when 

fused to Gal-4 DNA binding domain (Ng et al., 2000). Different approaches have 

identified MBD1 interacting proteins such as histone methyltransferase Suv39hl and 

chromatin assembly factor MCAF (Fujita et al., 2003b; Fujita et al., 2003a), which 

are suggested to act as a transcriptional co-repressors for MBD 1. Mice lacking Ivfbdl 

are viable and look normal. However, behavioural tests revealed spatial learning 

difficulties in Mbdl nulls, which could be explained by reduced forebrain weight and 

cell density in dentate gyms (Zhao et al., 2003). Adult neural stem cells derived from 

null mice show increased expression of TAP and increased genomic instability (Zhao 

et al., 2003). Recently, another DNA binding domain was identified in Mbdl. The 

CxxC III domain was noticed to be similar to one found in CpG binding protein, 

which binds non-methylated CpG (Fisscher et al., 1996). Electrophoretic mobility 

shift experiments, together with localisation studies in DNA methylation deficient 

cells, demonstrated that MBD1 binds non-methylated CpGs via its CxxC III domain 

(Jorgensen et al., 2004). Interestingly, CxxC III mediated MBD1 binding to non 

methylated promoters also leads to transcriptional repression (Jorgensen et al., 2004). 

This finding makes understanding of MBD1 function difficult and further 

experiments are required to investigate MBD1 binding sites in the genome and 

potential target genes. 

MBD2 and MBD3 are similar proteins ('70% homology), which are suggested to 

have evolved from a single common MBD2/3 ancestral form (Hendrich and 

Tweedie, 2003). The mammalian form of MBD2 binds methylated DNA, but MBD3 

does not (Hendrich and Bird, 1998). Frogs have two forms of MBD3, one of which 
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binds methyl-CpG and another which does not (Wade et al., 1999). MBD3 is the 

integral part of Mi2INuRD histone deacetylation and nucleosome remodelling 

complex (Wade et al., 1999; Zhang et al., 1999). In addition MBD2 was found to co-

purify with the NuRD complex (Feng and Zhang, 2001). MBD2-NuRD complex was 

previously seen in the methyl-CpG specific electrophoresis mobility shift and was 

called MeCP1 (Meehan et al., 1989). Therefore biochemical experiments suggest that 

MBD2 recruits NuRD for transcriptional repression. The biological role of Mbd2 and 

Mbd3 genes was investigated by knock-out experiments. Mbd3-null mice are not 

viable and display multiple abnormalities at day E8.5 (Hendrich et al., 2001). Mbd2-

null mice are viable, look normal, but have impaired maternal behaviour (Hendrich 

et al., 2001). The analysis of helper T cells lacking IvIbd2 revealed defects in 

differentiation, and demonstrated that 11-4 is a target gene for MBD2 repression 

(Hutchins et al., 2002). Another phenotype of IvIbd2 deficiency was noticed when the 

Mbd2-null mouse was crossed to the Min mouse, which has a mutation in one of the 

Apc alleles and is prone to intestinal tumours (Sansom et al., 2003). Min mice 

develop tumours and die around 8 months old. Interestingly, Mbd2 deficient Mm 

mice, developed only few tumours and most of them survived longer than a year 

(Sansom et al., 2003). The observation is similar to that seen in the mice with 

reduced levels of DNA methylation (Dnmtl heterozygous mice fed with 5-aza- 

deoxycytidine), although, the molecular basis of the tumour suppression mechanism 

is not clear (Laird et al., 1995). Further determination of MBD2 target genes could 

help to understand the link between MBD2 and cancer. 

MBD4, in addition to methyl-CpG binding domain, has a glycosylase domain 

(Figure 1-2), which was shown be a functional T:G mismatch glycosylase (Hendrich 

and Bird, 1998; Petronzelli et al., 2000). Because T:G mismatches frequently arise 

from deamination of methyl-cytosine (as described in 1.2.4), it has been proposed 

that MBD4 activity could help to repair them. In vivo experimental evidence to 

support this hypothesis was acquired, when mice lacking Mbd4 were crossed with 

"Big Blue" reporter mice, which has ?-phage genome transgene (Millar et al., 2002). 

The X-phage transgene can be recovered from the mouse genome and used as a 

readout for mutations. Mbd4-null mice were shown to have approximately 3 times 

increased C to T transition rate (Millar et al., 2002). At the moment, the role of the 
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MBD in MBD4 has not been demonstrated. The simple explanation is that MBD 

targets MBD4 to sites, which are highly methylated, and therefore have the biggest 

probability of deamination occurring. However, there is a lack of experimental data 

yet to support this hypothesis. 

Kaiso was purified following its ability to shift methylated probe from CSML-0 

adenocarcinoma cell line (Prokhortchouk et al., 2001). Unlike MBD family 

members, Kaiso uses a zinc finger domain to bind DNA and requires at least two 

methylated CpG's (Prokhortchouk et al., 2001). Interestingly, in addition to 

methylated CpGs, Kaiso can bind to specific non-methylated sequences (Daniel et 

al., 2002). In human cells Kaiso was shown to co-purify with N-CoR complex and 

repress transcription from the MTA2 gene promoter in a methylation dependent 

manner (Yoon et al., 2003). 

1.4. MeCP2 

1.4.1. MeCP2 specific binding to methylated CpGs 

The first described methyl-CpG binding activity was MeCP1, which was discovered 

in crude nuclear extracts by its ability to bind a methylated DNA probe containing 12 

or more methylated CpG's (Meehan et al., 1989). Later MeCP2 was purified as an 80 

kDa protein that binds a single methylated CpG in South-Western assays (Lewis et 

al., 1992). In mouse cells MeCP2 localises to pericentromeric heterochromatin, 

which comprises mainly highly methylated satellite DNA (Nan et al., 1996). The 

methyl-CpG binding domain (MBD) in MeCP2 was mapped by the construction of 

deletion mutants, and was found to be located in the N-terminal region of the protein. 

DNase I in vitro footprinting indicated that the MBD from MeCP2 can protect a 12 

nucleotide region surrounding a methyl-CpG site, and has an approximate 

dissociation constant of 10 M. Bandshift experiments have shown, that 

symmetrically methylated CpG is required for binding, with no noticeable affinity 

for hemimethylated DNA (Nan et al., 1993). A recent study suggested that in vitro 

MeCP2 binds oligonucleosome arrays and compacts the chromatin (Georgel et al., 

2003). However the results are very ambiguous, because non-methylated DNA was 
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used in the study, ignoring all previous experimental evidence that shows preferential 

MeCP2 binding to methylated DNA. 

It was suggested that MeCP2 can bind methylated CpG's without major impediment 

from a nucleosome surface (Chandler et al., 1999). This finding was supported by 

solving the structure of the MBD (from MBD1) in complex with DNA (Ohki et al., 

2001). Methyl groups in the CpG dinucleotide point to the major groove. Therefore 

the MBD utilises the DNA major groove as an access surface (Figure 1-3). The way 

MBD faces DNA and has limited contacts with DNA suggested that access to 

methyl-CpG sites should not interfere with nucleosome - DNA binding (Ohki et al., 

2001). 

Several regions were examined for the presence of MeCP2 using the chromatin 

immunoprecipitation (ChIP) technique. Results clearly indicate that MeCP2 is bound 

to methylated DNA in vivo. Some targets include: the maternally methylated U2afl - 

rs 1 differentially methylated region (DMR) in mouse liver, the methylated H19 

DMR in cultured mouse cells, the silent and methylated MT-I promoter, the NaCh II 

promoter in Rat- 1 cells, methylated p1 4(ARF)Ip 1 6(INK4A) CpG islands in human 

cancer cells and others (Fournier et al., 2002; Fuks et al., 2003; Ghoshal et al., 2002; 

Koizume et al., 2002; Lunyak et al., 2002; El Osta et al., 2002; Nguyen et al., 2001). 

Recently, MeCP2 was found to bind the brain derived neurotrophic factor (BdnJ) 

promoter in cultured mouse and rat neurons (Chen et al., 2003b; Martinowich et al., 

2003). Interestingly, after treating neuronal cultures with KCI (which induces Ca 
2+ 

 

influx), MeCP2 was shown to become phosphorylated and subsequently leave the 

Bdnf promoter. South - Western analysis suggested that the phosphorylated version 

of MeCP2 may have lost its methylated DNA binding affinity. Surprisingly, KC1 

treatment does not displace MeCP2 from the H19 gene, even when around half of 

MeCP2 is phosphorylated (Chen et al., 2003b). 
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Figure 1-3. Representative structure of MBD (from MBD1) in complex with DNA. Methyl groups 

are displayed as space-filling balls and are pointing towards the major groove of double DNA helix. 

MBD accesses and specifically recognises methyl groups from the major groove side. Because the 

MBD does not interfere with the other DNA side which could be a binding surface for histones, it has 

been suggested that an MBD could bind DNA on the nucleosome surface (Ohki et al., 2001). 
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Previously, MeCP2 was seen as a static transcriptional repressor that binds 

methylated genes and ensures proper silencing. Discovery of MeCP2 involvement in 

Bdnf regulation suggested that there might be dual MeCP2 roles. The dynamic, 

phosphorylation mediated, MeCP2 role could be on inducible promoters (example 

Bdnf promoter III), when after a signal MeCP2 leaves the promoter. The "static" 

MeCP2 could be responsible for constant silencing of permanently silent regions of a 

genome (example H19 DMR). Another possible explanation of the dynamic MeCP2 

association and dissociation could be the appearance or disappearance of the 

methylation at a given locus. Therefore release of MeCP2 from Bdnf promoter III 

might be explained not only by phosphorylation, but also by a decrease in 

methylation after induction with KC1 (Martinowich et al., 2003). 

The above mentioned studies strongly suggest that MeCP2 binds the methylated 

CpGs and that the MBD is responsible for recruiting it to methylated DNA in various 

cell lines and some tissues. 

1.4.2. MeCP2 as transcriptional repressor 

Many genes are shown to be silent when the promoter is, or becomes, methylated. 

Therefore, MeCP2 was initially hypothesized to be a transcriptional repressor. 

Transient transfection studies using reporter gene under the control of a methylated 

promoter show that MeCP2 is able to repress transcription both in cells and in vitro 

(Meehan et al., 1992; Nan et al., 1997). MeCP2 repression properties were 

investigated by monitoring reporter gene (n-gal) expression, using a GAL4 fusion 

with various parts of the Mecp2 gene (Nan et al., 1997). A 100 amino acid region in 

the middle of the protein was mapped as a minimal region which is able to repress 

transcription (TRD). GAL4-MeCP2 and MeCP2 on its own were shown to repress 

transcription up to 2 kb from the transcription initiation site (Nan et al., 1997). 

Initial GST-MeCP2 "pull downs" from HeLa nuclear extracts and partial MeCP2 

complex purification from Xenopus laevis oocytes, suggest that MeCP2 is found in a 

stable complex with a co-repressor mSin3A/HDAC1,2 (Nan et al., 1998; Jones et al., 

1998). However, later MeCP2 purification from rat brain and different other sources 
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demonstrated that MeCP2 does not exist in a stable complex with any other proteins 

(Klose and Bird, 2004). Therefore, it is likely that mSin3A co-repressor complex is 

recruited to the target genes only. Treating cells with the HDAC inhibitor TSA 

partially relieves MeCP2 mediated repression, supporting HDAC involvement in 

transcriptional repression (Nan et al., 1998; Jones et al., 1998). Different approaches 

identified other interacting proteins including the transcription factor TFIIB, proto 

oncogene c-ski, DNA methyltransferase DNMT 1, histone methyltransferase 

Suv39Hl, transcription factor PU. 1 and nuclear co-repressor NcoR (Lunyak et al., 

2002; Kaludov and Wolffe, 2000; Kimura and Shiota, 2003; Kokura et al., 2001; 

Fuks et al., 2003; Suzuki et al., 2003; Rietveld et al., 2002). The in vivo occurrence 

and significance of later interactions is not yet clear, however, it may represent 

different ways by which MeCP2 is involved in regulating different genes. The 

biological importance of the interaction between MeCP2 and Sin3A/HDAC and 

SMRT co-repressor complexes was elegantly demonstrated in Xenopus (Stancheva et 

al., 2003). Antisense morpholino - mediated translational MeCP2 knock-out 

demonstrates developmental arrest, which could subsequently be rescued by 

injection of Wi' mRNA. Identification of target genes downstream of the Delta/Notch 

signalling cascade suggested potential co-repressors which are involved in silencing 

Hairy/Enhancer of Split genes. Interactions with Sin3A and SMRT co-repressors 

were demonstrated by reciprocal GST pull-downs. Finally, chromatin IP confirmed 

that both MeCP2 and SMRT are displaced from the Hairy2a promoter after 

activation with the Notch intracellular domain (Stancheva et al., 2003). This study 

provided the first molecular example of the function of MeCP2 in the endogenous 

gene repression in vivo. The second example is the Bdnf gene, which is up to 2 fold 

up-regulated in neuronal cultures established from Mecp2-null mouse (Chen et al., 

2003b). Similarly to Hairy2a gene promoter, MeCP2, Sin3a and HDAC 1 are found 

on the promoter III of Bdnf and all together leave the promoter after Bdnf is induced 

by KC1 (Martinowich et al., 2003). Interestingly, the disappearance of the repressor 

complex is accompanied by changes in the chromatin structure with a reduction of 

H3 lysine 9 di-methylation and an increase in H3 lysine 4 di-methylation and H4 

acetylation (Martinowich et al., 2003). 
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1.5. Rett syndrome 

Rett syndrome is a frequent form of mental retardation and occurs sporadically once 

every 10 000 - 22 000 female births. A typical Rett syndrome case is characterised 

by a period of normal development until around 1 year, followed by a rapid 

regression including loss of acquired speech and motor skills, microcephaly, 

seizures, autism, ataxia, intermittent hyperventilation and stereotypic hand 

movements (Armstrong, 2002; Glaze, 2002; Hagberg, 2002; Jellinger, 2003; Kerr, 

2002; Segawa, 2001). Classical Rett syndrome progression after the period of normal 

development was divided into four stages: 

Onset of the disease is characterised by reduced head grow, reduced 

communication and hypotonia. It often happens between 6 - 18 months and 

girls at that time do not display any other abnormalities. 

Rapid regression occurs at 1 to 4 years of age and is characterised by the 

further loss of communication, loss hand skills and appearance of typical hand 

wringing, loss of language, irritability, the first signs of mental retardation and 

possibly seizures. 

At the pseudo-stationary phase girls have developed severe mental 

retardation, ataxia, persistence of seizures, irregular breathing, typical hand 

movements, teeth grinding, hyperventilation and early scoliosis. This stage is 

usually apparent at preschool age and can continue for years. 

The late motor deterioration stage is characterised by progressive scoliosis, 

wheelchair dependence, tropic disturbance, but with fewer seizures and 

improved communication. 

After the initial regression symptoms stabilise, patients often survive into adulthood. 

Apart from "classical" Rett syndrome there are some variations. Girls having 

"preserved speech" variant are able to speak, "formesfrustes" has a longer period of 

normal development and "congenital onset" have no period of normal development. 



Several recent studies showed that after the initial symptom onset period there is no 

further regression, suggesting a non-degenerative nature of the disease (Cass et al., 

2003; Armstrong, 2002). Some of the best described neuropathological features of 

Rett syndrome are the reduced brain size and reduced dendritic branching 

(Armstrong, 2001). In nine different age Rett syndrome girls brain size was found 

decreased to 66% - 88% of expected values (Jellinger et al., 1988). The sizes of 

individual neurons and dendritic trees were found reduced in different areas of the 

cortex (Bauman et al., 1995; Armstrong, 1995). EEG is clearly abnormal and 

abnormalities are most prominent at disease stages II and III (Dunn and MacLeod, 

2001). 

A familial Rett syndrome case allowed mapping of the disease to the region Xq28 

(Amir et al., 1999). Screening candidate genes in the region identified MECP2 gene 

mutations as a frequent event in Rett patients (Amir et al., 1999). Later, numerous 

mutation screenings confirmed that approximately 80% of Rett syndrome cases are 

caused by mutation in the MECP2 gene. 

Rett syndrome causing mutations are a valuable tool for the highlighting the 

important regions of MeCP2 (Figure 1-4). Numerous laboratories initiated screens 

and a lot of information about the mutations become scattered in the different 

publications and unpublished reports. Brian Hendrich and the author of this thesis 

have established the first freely available Rett syndrome mutation database on the 

Internet (http://homepages.ed.ac.uk/skirmis/  which was later transferred to 

http://www.mecp2.org.uk) to concentrate data available in different sources. 

The distribution of MECP2 point mutations causing Rett syndrome, together with 

homology between different species suggested that apart from conserved and 

frequently mutated MBD and TRD domains, there is conserved C-terminal domain 

(Figure 1-4). Moreover, there are Rett syndrome causing point mutations which are 

at the very C-terminal end. This shows that C-terminal domain is important for the 

MeCP2 function, which have no molecular explanation yet. 
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Figure 1-6. Frequencies of different Rett syndrome causing mutations in the MECP2 gene. The place 

of coding exons is denoted below the schematic structure of the protein. Numbers below indicate 

amino acids. 

Most of the missense mutations in MECP2 that cause Rett syndrome are tightly 

clustered at the methyl binding domain (MBD) (Figure 1-5). Deletion/insertion 

mutations leading to shifts of the open reading frame are clustered in the C-terminal 

part of the protein, which contains a poly-histidine repeat (Figure 1-5). Rett 

syndrome patients display a wide spectrum of mutations, but --67 % of all mutations 

are in eight hot spots (R106, R133, T158, R168, R255, R270, R294 and R306) 

(Figure 1-6). Seven out of the eight major mutations affect arginine (R), which often 

has a CpG in its codon (four out of six arginine codons has got a CpG). In mammals, 

the majority of CpGs in the coding region of a gene are methylated and therefore can 

undergo deamination. As mentioned previously, if unrepaired methyl-CpG 

deamination leads to TpG transitions as a frequent event. 

Several cases of mutations in MECP2 were also reported in non-specific X-linked 

mental retardation (Couvert et al., 2001) and Angelman syndrome (Watson et al., 

2001). Because one of the Rett syndrome symptoms is loss of communication, a 
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group of autistic patients were screened for MeCP2 mutation, with no MeCP2 

mutations found (Lobo-Menendez et al., 2003; Zappella et al., 2003). In the latest 

study only two of sixty nine autism patients were shown to have a de novo MECP2 

mutations (Carney et al., 2003). However the significance of MECP2 mutations in X-

linked mental retardation, Angelman syndrome and autism is not clear because of 

low mutation frequency and possibility of disease misdiagnosis. 

Because there is a population of Rett syndrome patients without MECP2 mutations 

identified, a possibility exists that mutations in other genes are involved in Rett 

syndrome pathology as well. Mutation analysis was done for a group of candidate 

genes (UBE], GdXJ, GABRA3 and CDR2) involved in the pathology of similar 

diseases (Angelman syndrome and X-linked mental retardation), however no 

mutations were found (Xiang et al., 2000). Expression analysis of several candidate 

genes (GdX L1CAM and GABRA3) has not revealed any differences as well (Xiang 

et al., 2000). 

Rett syndrome girls are heterozygous for the mutated MECP2, and as a result of 

random X chromosome inactivation, half of cells will have the wild type (wt) copy 

and the other half will have the mutated copy of MECP2 inactivated. Therefore, the 

female cell population is mosaic for the mutated allele, whereas male with the 

mutated MECP2 will have cells with a mutated allele only. Initially, it was thought 

that males with MECP2 mutation die prenatally, but later, some live born boys 

carrying the mutant MeCP2 have been described. These boys have a different and 

more severe phenotype than Rett syndrome. The same mutations, which are common 

among female Rett patients, usually causes severe congenital encephalopathy in 

males (Ravn et al., 2003). 

Numerous Rett syndrome studies failed to find a correlation between the location of 

different MECP2 mutations and severity of the disease. Some studies claimed to find 

that truncations are more severe than point mutations, but others do not observe this 

(Colvin et al., 2003; Nielsen et al., 2001; Amir and Zoghbi, 2000; Cheadle et al., 

2000; Ravn et al., 2003; Hoffbuhr et al., 2002). The complicating parameter in 

genotype phenotype correlation is the pattern of X chromosome inactivation. Shift 
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towards silencing of the mutated copy usually causes milder version of the disease 

and vice versa. 

Linkage analysis of MECP2 mutations in Rett syndrome patients revealed that 

mutations almost exclusively arise in the paternal copy of X chromosome (Trappe et 

al., 2001; Girard et al., 2001). This finding helps to explain why MECP2 mutations 

are much more common in females. 

1.6. Mecp2 mutations in mouse 

The first attempt to make Mecp2-nulls by insertion mutation of promoterless 

lacZ/neomycin cassette into Mecp2 locus was unsuccessful (Tate et al., 1996). 

Embryos with a high level of mutant ES cell contribution had developmental defects 

and died in mid-gestation. However, an Mecp2-null mouse was successfully 

produced using cre/lox recombination technology (Guy et al., 2001; Chen et al., 

2001). The discrepancy between these results might be explained by Mecp2 status in 

ES cells. Cre/lox recombination allows generation of ES cells with the protein still 

present, while insertion mutation disrupts the coding locus leading to null ES cells. 

These findings left an open question of MeCP2 significance in pluripotency during in 

vitro culturing of mouse ES cell lines. 

Mecp2-null allele was made by crossing mice having MeCP2-loxP allele to mice 

expressing cre recombinase under ubiquitous viral promoter (Guy et al., 2001; Chen 

et al., 2001). Mecp2-null male (Mecp2) and female (Mecp2) mice have no 

apparent phenotype until around 6 weeks when a period of rapid regression starts, 

resulting in reduced spontaneous movement, clumsy gait, irregular breathing, 

hindlimb clasping and tremors. Rapid progression of symptoms leads to death at 

approximately 8 weeks of age (Guy et al., 2001; Chen et al., 2001). Interestingly, 

pathological examination revealed reduced brain and neuron cell sizes (Chen et al., 

2001), which have been noted in Rett syndrome girls. The onset of symptoms can 

vary with littermates displaying symptoms and dying over different time periods. 

Crossing mice with intronic loxP sites flanking Mecp2 to mice expressing cre 



recombinase under the nestin promoter, allowed tissue/time specific Mecp2 deletion. 

Nestin is expressed mainly in neuronal progenitors from around embryonic day 12 

(Zimmerman et al., 1994). Mice with nestin-cre mediated Mecp2 deletion showed the 

same phenotype as whole body nulls (Guy et al., 2001; Chen et al., 2001). This 

finding led to two important conclusions: a) Mecp2 deletion in the brain is sufficient 

to produce the same phenotype as a whole body nulls; b) the presence of wt protein 

until embryonic day 12 is not enough to rescue or even relieve the phenotype. 

Further investigations used the same mouse genetics approach to delete Mecp2 at a 

later developmental time. Under CamKJI promoter, ere recombinase expresses in 

post-mitotic neurons (Tsien et al., 1996). After CamKJI-cre mediated deletion, 

symptoms were delayed up to three months (Chen et al., 2001). Interestingly, the 

time between deletion of the gene and manifestation of symptoms remains 

approximately the same as nestin mediated nulls - around 60 days. In these mice, the 

onset of symptoms becomes more variable, than in germline inherited or nestin 

mediated deletions. An alternative explanation is that CamKIJ-cre is not expressed in 

the cerebellum, restricting the ere mediated deletion pattern. Therefore the delayed 

and variable symptoms could be due to presence of wt MeCP2 in cerebellum. 

A lack of correlation between mutations and symptoms suggests that Rett syndrome 

is caused by loss of MeCP2 function regardless of what region of the gene is 

mutated. Therefore, the genetic mouse model for Rett syndrome is a female mouse 

heterozygous for Mecp2-null allele. The heterozygous mice are normal till around 

nine months old at which point they start showing breathing irregularities and hind 

limb clasping. Reduced mobility was confirmed by an open field test (Guy et al., 

2001). There is a striking similarity between time of symptom onset in heterozygous 

mice and Rett patients despite the fact that a one year old human is still in its period 

of development and a nine month old mice has already been mature for 3 months. 

Around 80 % of all Rett-causing mutations lie in the described functional MeCP2 

domains: the methyl-CpG binding domain and transcriptional repression domain. As 

mentioned previously, currently no function has been mapped to the C-terminus, but 

mutations which disrupt C-terminus in humans cause Rett syndrome (Figure 1-5). 

Mice with C-terminally truncated MeCP2 reveal some interesting findings. The 



symptom onset window in hemizygous mutants is increased with slight tremors at 6 

weeks to kyphosis, visible tremors and seizures at around 5 months of age 

(Shahbazian et al., 2002a). Survival of these mice is only slightly affected. In mice, 

the C-terminal deletion of Mecp2 shows less severe phenotype than the null mutation 

(Shahbazian et al., 2002a). The difference between the null mutation and the C-

terminal truncation also suggests that mice, in contrast to humans, could have a more 

pronounced genotype - phenotype correlation for other mutations as well. 

The X inactivation profile was examined in detail in mice carrying the truncated 

Mecp2 mutation. The results showed that in two thirds of investigated female mouse 

brains, 70% of cells expressed wt MeCP2 (Young and Zoghbi, 2004). No mice were 

observed with fewer than 54% of neurons expressing wt MeCP2. Moreover, after 3 

to 7 days in culture, neurons expressing wt MeCP2 had a better selective survival 

even when the initial number of wt and Mecp2 mutant cells were equal (Young and 

Zoghbi, 2004). 

Clear genetic confirmation that MeCP2 deficiency in neurons causes Rett-like 

phenotype in mouse was demonstrated by the rescue experiment, in which MeCP2 

expression from the neuronal Mapt (tau) promoter was able to rescue Mecp2-null 

mouse (Luikenhuis et al., 2004). Interestingly, the same study showed that over-

expression of MeCP2 in homozygous for Mapt (tau)-Mecp2 transgene mice resulted 

in a motor dysfunction phenotype. Two to three times more MeCP2 can be tolerated, 

but 10 times more protein gives phenotypic defects. 

1.7. MeCP2 studies in brain 

Tissue-specific Mecp2 gene knock-outs revealed the brain as a tissue of interest. 

Therefore now we can question the role of MeCP2 in the tissue that is responsible for 

the pathology of Rett syndrome. 

Expression of MeCP2 mRNA is ubiquitous in mouse, rat and humans. In brain, 

MeCP2 is preferentially expressed in neurons but is not detected in glia. Laser 

scanning cytometry revealed an increase in the number of high MECP2 expressing 



neurons during postnatal development in humans, and this expression correlated with 

alternative polyadenylation (Balmer et al., 2003). In situ hybridization showed that 

MeCP2 up-regulation starts in the postnatal brain in mouse, rat and humans 

(Shahbazian et al., 2002b; Jung et al., 2003; Akbarian et al., 2001; Cassel et al., 

2004). MeCP2 expression studies in the olfactory epithelium, which contains both 

mature and immature olfactory receptor neurons, demonstrated that only mature 

olfactory receptor neurons up-regulate MeCP2 before synaptogenesis (Cohen et al., 

2003). A recent study demonstrated that in different rat brain regions, MeCP2 is up-

regulated at different times. For example, early generated Purkinje cells up-regulate 

MeCP2 by postnatal day 6, whilst late generated granule cells only become MeCP2 

positive only at day 21 (Mullaney et al., 2004). 

The time point of MeCP2 up-regulation helps to explain the symptom onset window 

in different Mecp2 deletions. Nestin-cre mediated Mecp2 deletion at around 

embryonic day 12 produces mice with the same symptom onset as the inherited 

Mecp2-null allele. However, when the protein is deleted at the same time as it is up-

regulated (CamKII mediated deletion), the symptom onset is delayed. 

Does MeCP2 bind methylated CpGs in the brain? Originally, MeCP2 activity was 

purified from rat brain, proposing that the brain "version" of MeCP2 in vitro 

preserves methylated CpG binding selectivity (Lewis et al., 1992). Later, in situ 

hybridization to mouse brain slices suggested that MeCP2 co-localizes with DAPI 

bright spots in mouse neurons (Payen et al., 1998). A more detailed 

compartmentalisation study in the nucleus showed co-localisation of 5-methyl 

cytosine, as well as 'y-satellite DNA, with MeCP2 in large neurons (Akhmanova et 

al., 2000). However, MeCP2 did not localise to methylated ribosomal DNA loci 

(Akhrnanova et al., 2000). 

A microarray approach was used in search of transcriptional consequences of Mecp2 

loss in the mouse brain (Tudor et al., 2002). The experiment showed no significant 

changes in Mecp2-null mice brain, however, some gene expression variability was 

noticed. Statistical predictions, based on gene expression variability, could 

distinguish Mecp2-null brain samples from wt ones. Some of the genes were 

confirmed to show small (up to 35%) differences by RNase protection assay (Tudor 
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et al., 2002). One interpretation could be that the brain is a very heterogeneous tissue, 

therefore, when investigating a mixture of cells, it becomes difficult to see any 

transcriptional differences. In addition, microarray techniques have limitations, such 

as detection of low abundance transcripts and small differences in transcription 

(Nisenbaum, 2002). 

As mentioned before, Bdnf gene was identified as the MeCP2 target gene in cultured 

mouse cortical neurons (Chen et al., 2003b; Martinowich et al., 2003). However it is 

still unclear how increase of basal Bdnf level could contribute to the pathophysiology 

of a mouse model for Rett syndrome. 

A clue about the importance of MeCP2 in the brain function comes from studies in 

Xenopus. Morpholino MeCP2 down regulation in Xenopus embryos results in 

developmental arrest, which is likely a consequence of abnormal patterning of 

primary neurons (Stancheva et al., 2003). 

The possibility was explored that MeCP2 has a transcription-independent role in the 

brain. One study suggests that MeCP2 could be localised in synapses (Aber et al., 

2003). However, the result is not clear, because the lack of antibody controls in 

immuno-histochemistry experiment, and high MeCP2 abundance in brain that could 

allow contamination of the synaptic fraction. 

1.8. Discussion 

Recent data has highlighted that neurological defects occur when methyl-CpG 

binding proteins are mutated or deleted in mouse models. Mbd2-null females fail to 

nurse their offspring, with no known underlying neurological basis (Hendrich et al., 

2001). Mbdl-null cells showed reduced neuronal differentiation and chromosome 

instability in vitro, and the mice had defected spatial learning and long-term 

potentiation in the hippocampus (Zhao et al., 2003). Mecp2-null mice have the most 

severe neurological symptoms and die at around 8 weeks of age (Guy et al., 2001; 

Chen et al., 2001). It is easy to notice that the most defects in MBD family nulls have 

the connection with a brain. One possibility is that the brain is the most intensively 



studied tissue and the abnormalities in other tissues are waiting to be discovered. 

Another possibility is that the DNA methylation plays distinctive and important role 

in the brain, therefore removing any of the methyl CpG signal "readers" results 

defects in the brain. This possibility was investigated by attempts to eliminate the 

DNA methylation signal from brain. Removing Dnmtl, the maintenance DNA 

methyltransferase, has a very severe phenotype with failure of embryo development 

(Li et al., 1992). Tissue specific removal of Dnmtl in mouse CNS precursors using 

nestin-cre mediated deletion did not produce any viable offspring, however, embryos 

were recovered at all stages (Fan et al., 2001). After a Cesarean section, death 

occurred within 1 hr due to respiratory failure. Occasional gasping was seen, 

however there was no rhythmic breathing. Interestingly, Mecp2-null mice, as well as 

Rett patients, show breathing abnormalities. Post-natal Dnmtl deletion in neurons 

does not affect either animal viability or global methylation levels of endogenous 

retroviral repeats (Fan et al., 2001). 

There are other functions for MBD proteins outside of the brain as Hutchins et al 

described in a helper T cell differentiation system in MBD2 null mice. 

Comprehensive experiments revealed that MBD2 null helper T cells fail to silence 

the 114 gene after induction of differentiation (Hutchins et al., 2002). Only when 

individual cells were assayed by cell sorting experiments, was a difference in 114 

expression revealed, which could easily have been missed by global gene expression 

analysis tools such as microarrays. Maybe MeCP2 functions similarly in the post-

natal brain? For example, at a time point when individual neurons acquire their late 

fate i.e. dopaminergic versus GABA-ergic function? These cells have a different role 

in signal interpretation producing different neurotransmitters and receptors, however, 

they are the closely related and share many properties as well. 

The study by Guan, Z. demonstrated a link between different neurotransmitters and 

the chromatin state of the C/EBP promoter in Aplysia (Guan et al., 2002). Treating 

the synapse with the facilitatory transmitter 5-HT, recruited CREB 1 with CBP 

histone acetylase, which caused histone acetylation and expression of C/EBP gene. 

While treatment with the inhibitory transmitter FMRFa brought CREB2 repressor 

with HDAC5 deacetylase, leading to deacetylation of promoter chromatin and 



silencing of the gene (Guan et al., 2002). As there is a close interplay between 

chromatin modifications and DNA methylation, it might be possible that silencing of 

some genes relies on DNA methylation. The most attractive possibility is that closely 

related cell types that have just a few differentially expressed genes, might need 

more tight regulation to distinguish them in a specific manner. 

It has also been proposed that the extensive DNA replication-independent 

replacement of histone H3 by a histone variant H3.3 in neurons may cause the loss of 

the information which is present in the modifications on the H3 histone tail. 

Therefore MeCP2 could use interactions with histone modifying enzymes (HDAC 1,2 

and Suv39h) to re-establish appropriate histone modifications at certain loci (Ahmad 

and Henikoff, 2002) 

MeCP2 is the first MBD protein isolated and intensively studied in past years. 

However, the link with Rett syndrome created new questions to answer as well as 

pointing to the brain as a tissue of specific interest. Co-immuno precipitation studies 

have suggested some MeCP2 protein partners and chromatin IP studies point to 

promoters possibly regulated by MeCP2, however, the Holy Grail still remains to 

dissect the in vivo functions of MeCP2 and its relation to Rett syndrome. 

1.9. Thesis objectives 

The main objective of the work presented in this thesis is to find and investigate the 

molecular link between MECP2 deficiency and Rett syndrome. After the discovery 

of MECP2 mutations in Rett syndrome it became possible to merge the knowledge 

about molecular properties of MeCP2 and the clinical findings of Rett syndrome in 

order to understand both phenomena much better. On the one hand it was a big 

surprise, that mutations in a "global" repressor cause such a specific disease. Thus 

the "global" hypothesis had to be revisited in order to find specific target genes that 

MeCP2 represses. Consequently, the main part of the work presented here will be the 

search for genes that become deregulated by the absence of MeCP2. Finding target 

genes is crucial in understanding both MeCP2 function and Rett syndrome. From the 
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perspective of MeCP2 function, a target gene could serve as a tool to investigate its 

repression mechanism. What co-repressors are recruited for transcriptional 

repression? Is repression followed by local changes in chromatin modifications? 

What are the critical regions of MeCP2 required for in vivo repression? From the 

Rett syndrome point of view, a target gene could give a pathological insight. Which 

process is the target gene involved in? How does it relate with already known 

symptoms? What medicines could be used to intervene in the disease-specific 

pathway? One of the best examples of how a target gene could help to understand the 

biology, is the MeCP2 regulation of Hairy2a gene in Xenopus laevis development 

(discussed in 1.4.2). Therefore one of the major projects in this thesis was to find 

genes which are mis-expressed in Mecp2-null mouse brain (Chapter 3). 

Growing EST and genome sequencing projects, especially sequencing of 5' enriched 

EST libraries such as the RIKEN consortium, allowed us to revisit gene structure. 

Examination of available EST clones encoding human and mouse MeCP2 aided in 

identification of a new MeCP2 splice isoform (Chapter 4). 

There are a few theories about the role of MECP2 in originating Rett syndrome 

symptoms. The neurodevelopmental theory says that MECP2 is required for proper 

brain development and therefore the MECP2 mutations cause developmental arrest. 

Alternatively MeCP2 may be required for proper maintenance of neuronal function. 

We have used mouse genetic approaches which are able to distinguish between these 

two possibilities to provide some potential hope for future therapies (Chapter 5) 



2. Chapter Two. 

Materials and methods 

52 



2. 1. Materials 

2.1.1. Common solutions and reagents 

TAE electrophoresis buffer (lOx): 0.4 M Tris-acetate, 100 mM EDTA, pH 8.5. 

TBE electrophoresis buffer (lOx): 890 mM Tris, 890 mM boric acid, 20 mM 

EDTA, pH 8.0. 

MOPS electrophoresis buffer (lOx): 400 mM Mops; 100 mM sodium acetate; 

1mM EDTA; pH 7.0; made with DEPC treated water. 

Orange DNA loading buffer (lOx): 0.33% (w/v) Orange G; 0.1 M EDTA; 30% 

(v/v) glycerol; pH 8.0 

Blue DNA loading buffer (lOx): 0.25% (w/v) bromphenol blue, 0.25% xylene 

cyanol, 0.1 M EDTA, 30% (v/v) glycerol, pH 8.0. 

Formamide gel-loading buffer (2x): 80% formamide (v/v), 10 mlvi NaOH, 10 mM 

EDTA, 0.1% bromphenol blue, 0.1% xylene cyanol. 

RNA loading buffer (lOx): 0.25% (w/v) bromphenol blue, 0.25% xylene cyanol, 

1mM EDTA, 50% (v/v) glycerol, pH 8.0, made with DEPC treated water. 

DEPC treatment of water: 0.2% of DEPC was added, mixed well and autoclaved. 

Nucleic acid transfer buffer (SSC 20x): 3 M NaCl, 0.3 M Na citrate, pH 7.0. 

Phosphate buffer (1M, pH=7.4): Solution A: 276 g of NaH2PO4 H2O was dissolved 

in 11 of water (2 M); Solution B: 536.5 g of Na2HPO4 7H2O was dissolved in 11 of 

water (2 M); to get 200 ml of 1 M phosphate buffer pH=7.4, 19.0 ml of solution A 

was mixed with 81.0 ml of solution B and diluted to total volume of 200 ml with 

water. 

Modified Church and Gilbert buffer for hybridization: 0.5 M phosphate buffer, 

7% SDS, 10 mM EDTA, 50 g salmon sperm DNA. 

Depurination solution: 0.125 M HC1. 
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Denaturation solution: 1.5 M NaCl, 0.5 M NaOH. 

Denhardt's solution (50x): 1% v/v Ficoll 400, 1% w/v polyvinyl pyrolidone, 1% 

bovine serum albumine (BSA). 

TE: 10 mM Tris-HCI, 1 mM EDTA pH=8. 

TENT: 10 mM Tris-HC1, 0.1 M EDTA, 1 M NaCl, 0.1% (v/v) Triton X-100. 

TB buffer: 10 mM Hepes, 55 mM MnC12, 15 mM CaC12, 250 mM KC1. 

2.1.2. Protein manipulation solutions 

TBS: 20 mM Tris-HC1, 100 mM NaCl pH=8. 

5x tris-glycine electrophoresis buffer: 125 mM Tris, 1.25 M glycine, 1% SDS. 

2x SDS-PAGE loading buffer: 6% 3-mercaptoethanoI, 6% SDS, 0.6 % 

bromophenol blue, 20% glycerol. 

ECL (Enhanced Chemiluminescence) solution 1: 250 mM luminol, 90 mM p-

coumaric acid, 1 mM Tris-HC1 pH=8.5. 

ECL solution 2: 0.0 15% H202, 1 mM Tris-HC1 pH=8.5. 

2.1.3. Cell culture solutions 

PBS: 0.14 M NaCl, 3 mM KC1, 2 m KH2PO4, 10 mM Na2HPO4. 

ES cell medium: 500 ml Glasgow MEM (Invitrogen), 5.6 ml Sodium Pyruvate (100 

mM, Gibco), 5.6 ml Non-essential Amino Acids (Gibco), 56 ml Foetal Calf Serum, 

570 tl f3-mercaptoethanol (50 mM), 570 i.xl LIF. 

Mouse fibroblast medium: 500 ml Alpha-MEM (Gibco), 56 ml Calf Serum, 5.6 ml 

penicillin/streptomycin (Gibco). 
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Freezing medium: 15.6 ml complete medium, 2.4 ml Foetal Calf Serum, 2 ml 

DMSO. 

lOOx Modified N2 supplement: bovine insulin (Sigma 1-1882) 2.5 mg/ml, human 

apo-transferrin (Sigma T-1 147) 10 mg/ml, progesterone (Sigma P-8783) 600 ng/ml, 

putrescine (Sigma P-5780) 1.6 mg/ml, selenium chloride (Sigma S-5261) 3 tM and 

BSA (Gibco/BRL 15260-011) 5 mg/ml. 

HBS: HEPES 20 mM, 150 mM NaCl. 

lOx Trypsin/EDTA: 0.5% Trypsin, 5.3 mM EDTA (Gibco). 

2.1.4. Microbiological solutions and reagents 

LB broth: 10 g/l NaCl; 10 g/l Difco bacto-tryptone; 5 g/l Difco yeast extract. 

E. coli freezing solution: 65% glycerol; 0.1 M MgSO4; 0.025 M Tris-HC1 pH=8. 

2.2. Specific Reagents 

2.2.1. Antibodies 

Table 2-1. Antibodies used in the different experiments presented in this thesis. 

Primary antibodies: 

Dilution used for 
Manufacturer or 

Name Western blot I Antibody type 
reference 

immunohistochemistry 

Anti-MeCP2 Upstate #07-013 1:1000 I 1:200 Rabbit 	polyclonal 

IgG 

674, anti-MeCP2 (Nan et al., 1998) 1:1000 I not used Rabbit anti-sera 

anti 	H3 	di-methyl Abeam, #ab7312 ChIP 1:300 Rabbit polyclonal 
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K9 antibody 

Tuji, 	anti-Neuronal 

Class III J3-Tubulin 

Covance, 	#MMS- 

435P 

not used/ 1:500 mouse 	monoclonal 

IgG2a  

Secondary antibodies: 

Anti-Rabbit Vector 	Laboratories, not used/ 1:100 goat IgG (H+L) 

fluorescein #171- 1000 

conjugated 

Anti-Sheep Vector 	Laboratories, not used / 1:100 rabbit IgG (H+L) 

fluorescein #171-6000 

conjugated 

Anti-digoxigenin Roche, #1207741 not used/ 1:15 sheep Fab fragments 

fluorescein 

conjugated 

Anti-rabbit Amersham, #NA 934 1:5000 / not used donkey IgG 

peroxidase 

conjugated 

Anti-mouse Amersham, #NA 931 1:5000 / not used sheep IgG 

peroxidase 

conjugated 

2.2.2. Primers 

Table 2-2. Primers used for ADDER differential display. 

Upstream primers (5'-3') Downstream primers (5'-3') 

UI CCAACGGATCGG Dl AGCTTTTTTTTTTTTGG 

U2 AACCGATCGA D2 AGCTTTTTTTTTTTTAA 

U3 AACCGATCGT D3 AGCTTTTTTTTTTTTCT 

56 



U4 AACCGATCGC D4 AGCTTTTTTTTTTTTGC 

US AACCGATCAG D5 AGCTTTTTTTTTTTTAG 

U6 AACCGATCAA D6 AGCTTTTTTTTTTTTCA 

U7 AACCGATCAT D7 AGCTTTTTTTTTTTTGT 

U8 AACCGATCAC D8 AGCTTTTTTTTTTTTAC 

U9 AACCGATCTG D9 AGCTTTTTTTTTTTTCG 

UlO AACCGATCTA D1O AGCTTTTTTTTTTTTGA 

Ui 1 AACCGATCTT Dli AGCTTTTTTTTTTTTAT 

U12 AACCGATCTC D12 AGCTTTTTTTTTTTTCC 

U13 CCAACCGATCCG 

U14 CCAACCGATCCA 

U15 AACCGATCCT 

U16 AACCGATCCC 

Table 2-3. Primers used for the Real Time PCR. 

Gene 
Symbol, Name! Reverse primer (5'- 

accession Forward primer (5'-3') 
/Homology 39) 

No. 

XM_i 46892 Gapdh, 	giyceraldehyde-3 tacccccaatgtgtccgtcg cctgcttcaccaccttcttg 

phosphate dehydrogenase 

113  1361 Sgk, 	serumlglucocorticoid cgccaagtccctctcaacaa tgccctttccgatcactttc 

regulated kinase 
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NM_213 149 Fkbp5, 	FK506 	binding gctggcaaacaacacgagag gaggagggccgagttcatt 

protein 5 

AK00923 1 Prkaa2, 	the 	5-AMP- tggcatagttctgacttctcc ttgtggatgctgttattagagg 

activated protein kinase 

XM_ 147936 Unknown agaaggctggaagggctgtg agtcggttattgtgctgcttagt 

NM 025407 Uqcrcl, 	ubiquinol- acggtgggagtgtggattgac cattgccaggccgattctttg 

cytochrome 	c 	reductase 

core protein 1 

NM_008946 Psmb6, 	proteasome acacagccgccagtctcttt agtacacctgccctccttcttg 

(prosome, 	macropain) 

subunit, beta type 6 

AK075675 Spnb2, spectrin beta 2 gtttcctgcgctactacttgtc catattgttgcttctctttagg 

E130120 Unknown, contains SAM gcatatcaagtgcatatcaagtg cttaaattagtttgctttgcttg 

domain 

NM_ 144828 Ppp 1 r I b, 	Protein ccagaaggccataaacaaccatt ctcagtacctcctttccccagat 

phosphatase 	1 	regulatory 

(inhibitor) subunit 1 B 

BCO2897 I Gt12/Meg3, 	imprinted tgcagcggagagccataaataac acatcgcctccctccctcgtg 

maternally 	expressed 

untranslated mRNA 

AKO 11516 Histl h2bc, histone I H2bc gatactagcagattaaccaccat ttcttatcacaaatttctacagt 

AK036751 Tbcld20, 	TBC1 	domain tttggcaggaaccgcacacc caaagccatcctaggaagaccaa 

family member 20 

BC002028 Tarbp2, TAR (HIV) RNA catttttccattggcgtgagc gagcaacttcgaagggatagg 

binding protein 2 

NM-01 1029 Lamrl, laminin receptor 1 gcaccagctcctgagttcactg agtcttccgtggggaactgctg 

(ribosomal protein SA) 

AK034339 Unknown, 	similar 	to gcctatcatgcagaccacag gctcgcaggtaaggatgtag 

Esterase/lipase/thioesterase 



family members 

AK006990 Unknown gcgtcctcatacctttagtgc gaagccattcagttaactcgg 

AUO 18611 mt-Nd2, 	NADH gggcatgaggaggacttaaccaaac tgaggttgagtagagtgagggatgg 

dehydrogenase 2 

AK04905 8 Unknown ccagctagaaagaacgcagagg gcaggggacagactgaaatagag 

NM_0 16959 Rps3a, 	ribosomal 	protein cagcaagtccgccagatc atggagaggataaatggactgg 

S3 	(tnf) 

NM_175092 Rhof, 	ras 	homolog 	gene gtcccaagcccactgtttctg ttgatgcctgtgttctcctgatag 

family, member f 

AK0024 12 Asb 11, ankyrin repeat and cagagagttgattgtgtgaagaag acagtgagcagattgatgacc 

SOCS 	box-containing 

protein 	11 	containing 

protein 11 

AK003881 Unknown, 	similar 	to gaacttccacctttgccctcac gtttccacagtttcccctcgt 

ubiquinol 	cytochrome-c 

reductase 

BB26623 5 Unknown atccttgggtgtattttatgg gcttttctttctgttacctctca 

AK049648 Unknown agttccagaataaccgctctcc ctctctcacccatctgataccttag 

XM_127854 Akapl 1, A kinase (PRKA) tcaccgaagtcactggctaagc gcactggggcacctgtagag 

anchor protein 11 

AK029 199 Cdon, 	cell 	adhesion tcccagtggtagcctcttatcc attggtgccacactgtccttg 

molecule-related/down- 

regulated by oncogenes 

AK079922 Add 1, adducin I (alpha) ggaacttccagatatgtactc ccggtctaatggcaaaacgatg 

BCO25 130 Cc119, 	chemokine 	(C-C gagccctgtgtcttgagtaaag acttggctgggttaggtctg 

motif) ligand 19 

NM 009941 Cox4i1, 	cytochrome 	c agagcgctgagcctgattg gtaagtggggaaagcatagtct 

oxidase subunit IV isoform 
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BC004742 Pja2, 	praja 	2, 	RTNG-H2 gcagcagcgatgaagggaatgag acaggctccagtccacatccaag 

motif containing 

BB634200 Unknown ggagtcagtacaccctgagttg gggcctacagaatagctcagc 

NM_0 1 8753 Ywhab, 	tyrosine 	3- aggtgcccgccgctcttcc tgcagctccgcctcgatcttctc 

monooxygenase/tryptophan 

5 -monooxygenase 

activation 	protein, 	beta 

polypeptide 

AV02 1813 Unknown, similar to human gcagtcagacccacacaag accagcggcagagaataaag 

AUTS2 

XM127738 Unknown, 	similar 	to cacgcttggttccagtacattac ttcctctggggcgtctgag 

disrupter 	of 	silencing 

SAS1O 

BC0585 13 Snrp70, UI 	small nuclear gctgactggtgggagtgtgag tgccatctgcgtgcttgtaag 

ribonucleoprotein 

polypeptide A 

BC062 180 Unknown, 	similar 	to 	tio- cagatcgcaccctggaaacac caccagcaaccaatccacagtc 

redox domain 

BC006914 Lzf, leucine zipper domain caagcacctgcctgactcctc tgccatcagtaccacagggaatg 

protein 

X63615 Camk2b, actcaacaagaaagcagatggag cagggcagcaggagggag 

calciumlcalmodulin- 

dependent protein kinase II, 

beta 



Table 2-4. PCR primers used for the genotyping of mice. Primers were designed by Jacky Guy. 

Allele - 
expected 

Forward primer (5' - 3') Reverse primer (5' - 3') 
fragment 

size 

Mecp2 wt - 
tggtaaagacccatgtgacccaag tccacctagcctgcctgtactttg 

420 bp 

Mecp2-null - 
tggtaaagacccatgtgacccaag ggcttgccacatgacaagac 

450 bp 

Mecp2-IoxP 
tggtaaagacccatgtgacccaag tccacctagcctgcctgtactttg 

—490bp 

Cre - 450 bp gaccgtacaccaaaatttgcctgc ttacgtatatcctggcagcgatc 

2.3. Protocols 

2.3.1. RNA and genomic DNA extraction 

RNA was purified using TRI-Reagent (Sigma) according to the manufacturer's 

recommendations. Briefly, dissected tissues were snap frozen in liquid nitrogen and 

stored at -80°C until RNA purification. Frozen tissue was added to required volume 

of TRI-Reagent (1 ml per 50 - 100 mg of tissue) and homogenised in a dounce. For 

monolayer cultured cells, the cells were washed once with PBS, required volume (1 

ml per 10 cm2) of TRI-Reagent was added and cells were harvested by scraping with 

cell scraper. For complete lysis, the samples were incubated for 5 min at room 

temperature. After the addition of 0.2 ml of chloroform per 1 ml of TRI-Reagent, the 

samples were shaken vigorously and left to settle for 10 min at room temperature. 

The resulting mixture was centrifuged at 10 000 g for 20 min at 4°C. The top 

aqueous layer was removed to a separate tube and 0.5 ml of isopropanol was added 

per 1 ml of TRI-Reagent. Samples were mixed and left to stand for 10 mm. RNA 
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was precipitated by centrifugation at 10 000 g for 15 min at 4°C. The RNA 

precipitate was washed by addition of 1 ml of 75% ethanol per 1 ml of TRT-Reagent 

used and a 7500 g spin for 5 min at 4°C. The RNA pellet was briefly dried at 37°C 

and re-suspended in the required volume of DEPC treated water. 

DNA was purified by a standard method. Briefly, tissues were cut into small pieces, 

added to the lysis buffer (50 mM Tris-HCl pH=7.5, 100 mM NaCl, 100 mM EDTA, 

1% SDS) with 0.5 mg/ml proteinase K and incubated overnight at 55°C. Next day 

RNase (final 10 g/ml) was added and the incubation was continued for additional 

lh at 37°C. For the protein extraction equal volume of phenol-chloroform-isoamyl 

alcohol (25:24:1) was added, samples were well mixed, centrifuged for 5 min at 

16000 g (tabletop centrifuge) and top aqueous phase was removed to a separate tube. 

The DNA was precipitated by addition of 2.5 volumes of ethanol or 0.7 volumes of 

isopropanol and centrifugation at 16000 g for 10 mm. The pellet was washed from 

salts by the additional incubation with 70% ethanol and centrifugation step. Finally, 

the precipitate was dried at 37°C for 10 min and re-suspended in required volume of 

water or TE buffer. 

2.3.2. Crude genomic DNA extraction for the genotyping of mice 

Mice were genotyped from ear punch biopsies. The ear punch was transferred to 25 

tl of solution I (25 mM NaOH, 0.2 mM EDTA) and heated at 95°C for 20 mm. The 

solution was then cooled down on ice and 25 tl of solution 11 (40 mM Tris pH=5) 

was added. The resulting solution was vortexed and 1 tl was used as a template for 

PCR reactions. 

2.3.3. Preparation of frozen competent E.coIi 

2-3 fresh colonies were transferred into 5 ml of LB with antibiotics appropriate to the 

bacterial strain and grown overnight at 37°C. The next day 250 ml of LB was 

inoculated with 250 .il of the overnight culture. The cells were grown until they 

reached A600=0.5 - 0.6. Then the cells were cooled down for 10 min on ice and 
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centrifuged for 10 min at 1400 g at 4°C. The supernatant was discarded and the 

bacterial pellet was re-suspended in 80 ml of ice cold TB and gently mixed. The mix 

was left on ice for 10 min and centrifuged for 10 min at 1400 g at 4°C. The 

supernatant was discarded and the bacterial pellet re-suspended in 20 ml of TB and 

1.5 ml DMSO was then added. The bacteria were aliquoted in 1.5 ml tubes, 200 il in 

each, and snap frozen in liquid nitrogen. Aliquots were transferred to a -70°C freezer 

for storage. 

2.3.4. Restriction digestion of DNA 

For restriction digestion the required amount of DNA was incubated with 5 U of a 

restriction endonuclease (NEB, Roche) per 1 tg of DNA in reaction mix containing 

required reaction buffer. For some reactions BSA was added to final concentration of 

100 jig/ml. 

2.3.5. DNA electrophoresis and gel purification 

DNA electrophoresis was done on 0.8 - 3% (w/v) agarose gels containing 0.1 tg/ml 

ethidium bromide in lx TAE or TBE running buffer. DNA loading buffer was added 

to one tenth of the total sample volume. Depending on the expected sample size 

distribution, various DNA ladders (NEB, Invitrogen) were loaded besides the 

sample. Electrophoresis was carried out at 30 - 200 V for required time. DNA was 

visualised by UV illumination. If the DNA fragments were going to be purified, the 

UV damage was avoided by minimizing the exposure time to UV and using glass 

plate as a protection. For DNA purification the gel piece was excised with sterile 

scalpel. Recovery of the DNA fragments was carried out using QlAquick Gel 

Extraction Kit (Qiagen) following manufacturers recommendations. 
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2.3.6. DNA ligation 

Prior to a ligation reaction, if necessary according to a cloning strategy, DNA was 

treated with Calf Intestine Phosphatase (NEB) to prevent vector self-ligation, T4 

DNA polymerase (NEB) to fill in overhangs or poly-nucleotide kinase (NEB) for the 

phosphorylation of the DNA ends according the manufacturers recommendations. 

For the ligation reaction, DNA vector and insert sequences were mixed in equa-

molar amounts (total 50 - 500 ng) and incubated with 6 - 12 Weiss Units of T4 DNA 

ligase (NEB) in the supplied buffer for 2 - 24 h at 20 - 4°C. After the ligation, whole 

reaction mixture was used for the transformation of bacteria. 

2.3.7. Plasmid DNA transformation of competent E.co!i 

A frozen competent bacteria stock was defrosted on ice. Approximately 10 ng of 

bacterial plasmid or whole ligation reaction was cooled on ice and added to 200 il of 

the bacterial stock. The mixture was left on ice for 20 mm. Then the tube was 

transferred to a 42°C bath for 1 min and placed on ice again for a few minutes to cool 

down. Subsequently 1.2 ml of LB was added and the tube was incubated at 37°C for 

lh. 100 jil of the transformation mix was plated on a selective agar plate. If a low 

transformation efficiency was expected (i.e. blunt end ligation) then the transformed 

cells were pelleted, most of supernatant is discarded leaving approximately 100 il 

and all of the bacterial pellet was then plated onto the selective agar plate. 

2.3.8. Small scale crude plasmid DNA preparation 

Small scale crude DNA purification was often used for a restriction digest based 

screening of plasmid DNA constructs. Single bacterial colonies were streaked on 

around 3 - 4 cm2  spots in Petri dish and incubated at 37°C overnight. Next day, some 

of the culture from the spot was scraped with a sterile tooth stick and re-suspended in 

50 tl of TE with 100 g/ml RNase A. Then 50 j.il of 0.2 M NaOH, 1% SDS was 

added and the solution was gently mixed. Neutralisation was done by addition of 75 

tl of 3M NaOAc (pH=5) and the liquid was again mixed gently by inverting the 
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tube. Insoluble proteins were then precipitated by 5 min centrifugation at 16 000 g in 

a benchtop centrifuge. The supernatant was transferred to a new tube, 130 t1 of iso-

propanol was added, solutions were mixed and precipitated by 10 min centrifugation 

at 16 000 g. The supernatant was discarded and the precipitate dissolved in 50 pJ of 

water. Then 45 pA of 10 M LiC1 was added, solutions were mixed and incubated at - 

80°C for 20 mm. Proteins were precipitated with an additional 5 min centrifugation 

at 16 000 g and the supernatant was transferred to a tube containing 75 i1 of 

isopropanol. Solutions were mixed and centrifuged for 10 min at 16 000 g. The DNA 

pellet was then washed once with 70% ethanol, briefly dried and re-suspended in 30 

tl of water. 10 p1 was usually used for a restriction digest. 

2.3.9. Large, medium and small scale plasmid DNA purification 

Plasmid DNA purification is a common technique and was done using the Qiagen 

Maxi, Midi and Mini prep kits, according to the manufacturer's instructions. 

2.3.10. DNA labelling by direct incorporation of radioactive nucleotides 

The protocol presented here is a general protocol used for radioactive labelling of 

DNA probes for Southern and Northern hybridisations. The protocol is adapted from 

Roche. 25 - 50 ng of DNA (usually sufficient for 1 - 2 hybridisations) was denatured 

by heating for 10 min at 100°C and snap cooled on ice. Then dDTP (final 72 M 

each), hexanucleotide mix (containing random hexanucleotides and reaction buffer, 

Roche), P32-adCTP (40 tCi, -3000 Ci/mmol, Amersham) and Klenow enzyme (2 U, 

Roche) were added. The reaction was incubated at 37°C for 30 mm - 1 h. The probe 

was purified from unincorporated radio-nucleotides using a home made G50 

sepharose (Amersham Biosciences) column. Before addition to the hybridisation 

solution, the probe was denatured (10 min at 100°C) and cooled on ice (5 mm). 



2.3.11. DNA end labelling by phosphate group transfer 

DNA end labelling was used to label the 30 - 330 AFLP DNA Ladder (GibcoBRL). 

The labelling reaction was performed according to the manufacturer's 

recommendations. Briefly the reaction mix was prepared by mixing 4 d of AFLP 

DNA Ladder, 2 jtl of 5x kinase buffer (NEB), 2 pA of 732P-ATP (3000 Ci/mmol; 10 

tCi/pA) and 2 j.tl of (10 U/jil) T4 polynucleotide kinase (NEB). The reaction was 

incubated for 10 min at 37°C and stopped by heating for 15 min at 65°C. For the 

electrophoresis, 10 il of TE buffer and 50 pA denaturing DNA loading buffer were 

additionally added. 7 jtl of the labelled ladder was loaded onto each sequencing gel. 

2.3.12. Southern blot using alkali transfer 

Southern blots were done using standard procedures and recommendations from the 

Hybond-N+ (Amersham Biosciences) users manual. Briefly, DNA was digested 

overnight with the appropriate restriction endonuclease. Digested DNA was 

separated on 0.8 - 2.0 % (w/v) agarose gel containing 0.1 ig/ml ethidium bromide. 

After taking a photograph under UV for size evaluation purposes, the gel was 

incubated in depurination solution for 10 min on a gently shaking platform. The gel 

was then washed with water and incubated with denaturation solution for 30 min on 

a gently shaking platform. DNA was transferred onto Hybond-N+ membrane by 

capillary action using denaturation solution as the transfer buffer. The nucleic acid 

transfer was left to proceed overnight. After the transfer the membrane was pre-

wetted in 0.5 M phosphate buffer and transferred into a hybridisation tube containing 

Church and Gilbert hybridisation buffer. Pre-hybridisation was done for at least 30 

min in a 65°C oven. Later the solution was replaced with fresh hybridisation solution 

containing a radioactively labelled probe. The hybridisation was carried out 

overnight in a 65°C oven. After the hybridisation the blot was briefly rinsed with 

pre-heated 65°C 2x SSC 0.1% SDS. The washes are performed in 65°C as follows: 

5 min twice with 2x SSC 0.1% SDS; 15 min with lx SSC 0.1% SDS; 10 min twice 

0.1x SSC 0.1% SDS. The membrane was then covered with Saran wrap and exposed 

to a phosphor cassette overnight. The next day the phosphor screen was scanned 



using a Storm phosphor-imager (Molecular Dynamics). Signals were visualised and 

quantified with ImageQuant software v3.3 (Amersham). 

2.3.13. Northern blot 

Northern blots were done using standard procedures and recommendations from the 

Hybond-N+ (Amersham Biosciences) users manual. Electrophoresis was performed 

in a denaturing MOPS agarose gel (with 0.7 M formaldehyde) using MOPS as the 

electrophoresis buffer. Typically 30 tg of total RNA was denatured in RNA loading 

buffer at 55°C for 15 mm. The sample was then placed on ice, and DNA loading 

buffer with ethidium bromide was added just prior to loading. The samples subjected 

to electrophoresis at 50 V in a 4°C room for 3 - 4 h. After electrophoresis, a 

photograph of the gel was taken in a UV chamber. Soon after, the gel was placed on 

a shaking platform in a box with distilled water for 15 mm. The water was then 

replaced with lOx SSC, followed by a second incubation for 15 mm. Later the RNA 

was transferred to Hybond-N+ membrane by capillary transfer using 20x SSC as the 

transfer buffer. After overnight transfer the RNA was crosslinked to the membrane 

using a Stratalinker 1800 (Stratagene) UV crosslinker (120 mJ). The blot was then 

pre-wetted in 0.5 M phosphate buffer. Hybridisation and washes were done as 

described in the Southern blot protocol (section 2.3.12 above). 

2.3.14. Nascent RNA fluorescent in situ hybridization (FISH) on mouse 
brain tissue sections 

The nascent RNA FISH protocol was adapted from the Nonradioactive In Situ 

Hybridisation Manual (Roche). 

Generation of the RNA probe 

The probe for nascent RNA FISH has to be located within an intron. The nascent 

RNA probe was PCR cloned into the pBSIIKS+ vector containing multiple cloning 

sites in between the T3 and T7 promoters. T3 and T7 promoters allow transcribing in 

sense and antisense directions. It was important to be able to synthesise either RNA 
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strand, because the probe transcribed from sense direction was used as a control for 

specific RNA hybridisation. The RNA probe was generated by in vitro transcription 

using UTP with covalently attached digoxigenin (Dig RNA labelling Mix; Roche). 

To increase permeability of long probes (longer than 1 kB) the probe was partially 

hydrolysed in 80 mM NaHCO3, 120 mM Na2CO3  at 60°C for the required period of 

time. The incubation time depends on the length of the probe (L) to be hydrolysed 

and is calculated using formula 
L —0.5

0.055L 
Probe was then precipitated with the 

addition of ethanol (75% final), 0.3 M sodium acetate and then examined by agarose 

electrophoresis. Finally, the probe was quantified using a dot blot and comparing 

intensities with a standard provided with the DIG labelling kit (Roche). 

Preparation of cryopreserved brain sections for RNA FISH 

5-15 .im thickness sections were cut with a CM1900 (Leica) cryostat and mounted 

on Super Frost Plus Gold (Erie Scientific Company) slides. The RNA was fixed in 

the tissue by heating the slides for 2 min at 50°C. After drying for 30 min at room 

temperature the sections were fixed in 4% paraformaldehyde in PBS for 10 mm. The 

slides were then washed three times for 5 min in PBS. An excess of proteins was 

removed by overlaying the slides with 10 .xg/m1 proteinase K (RNase free, Sigma) 

solution for 10 min at room temperature. After an additional round of fixation in 

paraformaldehyde the slides were washed once with PBS and twice with 2x SSC. 

Sections were then used immediately for hybridisation. 

FISH hybridisation and signal detection 

Mounted sections were pre-hybridised for 1 h at 37°C in 100 j.tl of hybridisation 

buffer (4x SSC; 10% dextran sulfate; lx Denhardt's solution; 2 mM EDTA; 50% 

formamide; 500 jig/ml herring sperm DNA; made with DEPC treated water) in a 

humidified sealed chamber (a box with tissues soaked with 50% formamide and 5x 

SSC). No coverslips were used. For the hybridisation, the solution was replaced with 

hybridisation solution containing 200 ng/ml of a DIG labelled RNA probe and 

incubated at 37°C for 16 h. After the hybridisation the sections were washed once for 

5 min with 2x SSC at 37°C; three times for 5 min with 60% formamide 0.2x SSC at 



37°C; twice for 5 min with 2x SSC at room temperature and once with 100 mM Tris-

HC1 (pH=7.5) 150 mM NaCI at room temperature. The sections were then blocked 

with blocking solution (100 mM Tris-HC1, 150 mM NaCl, 1% wlv blocking powder 

[Roche]) for 30 min at room temperature. The blocking solution was then replaced 

with primary anti-digoxigeriin antibody (Roche) diluted 1:15 in blocking solution. 

The slides were incubated with the primary antibody for 2 h at room temperature. 

Antibodies were washed three times for 5 min with 100 mlvi Tris-HC1 150 mM NaCl 

at room temperature. The slides were then incubated with fluorescein anti-sheep IgG 

(Vector Laboratories) labelled secondary antibody (1:100 dilution) for 1 h at room 

temperature. Washes were performed the same as after the incubation with the 

primary antibody. The slides were then mounted with Vectashield + DAPI (Vector 

Laboratories) and examined with a Zeiss axioscope. Images were captured with 

IPLab v3.2 (Scanalytic) software. 

2.3.15. Immuno-staining of monolayer cells 

Cells were grown on a coverglass (BDH, 20x22 mm) in 6 well tissue culture plates. 

After an initial wash with PBS, the cells were fixed in 4% paraformaldehyde (in 

PBS) for 20 mm. Subsequently, the cells were washed twice with PBS and 

permeabilised in 0.2% Triton X-100 (BDH) for 10 mm. The cells were then washed 

2x with PBS and blocked with 3% bovine serum albumine (Sigma). The primary 

antibody was diluted in blocking solution. 100 tl of diluted antibody was applied on 

a piece of Parafilm M (Sigma) and the coverglass was placed on the drop, upside 

down. The incubation was continued for 60 mm. Primary antibodies were washed 3 

times for 3 min in PBS. The incubation with an appropriate secondary antibody and 

subsequent washes were done the same way as with the primary antibody. The slides 

were then mounted with Vectashield + DAPI (Vector Laboratories) and examined 

using a Zeiss axioscope. Images were captured with IPLab v3.2 (Scanalytic) 

software. 



2.3.16. cDNA synthesis 

Prior to eDNA synthesis RNA was treated with RQ 1 RNase-Free DNase (Promega) 

to avoid the contamination of sample with genomic DNA. cDNA was synthesised by 

annealing 5 ig of total RNA and 5 tg random hexanucleotides (Amersham) at 70°C 

for 5 mm. Then the RT mix (final lx reaction buffer, 40 U RNasin Ribonuclease 

Inhibitor (Promega), 1 mM dNTP) was added and the solution was incubated for 5 

min at 25°C. After addition of M-MLV reverse transcriptase (RNase H Minus; 

Promega) the 25 .il reaction mix was incubated for 10 min at 25°C and 1 h at 37°C. 

The reverse transcriptase was inactivated by incubating for 10 min at 70°C. The 

reaction mixture was diluted to 500 pd and 2.5 t1 used for PCR reactions. The control 

experiments (reactions without the reverse trascriptase) were always done and 

evaluated by PCR to ensure that there is no contamination or genomic DNA. 

2.3.17. Western blotting 

Proteins were separated using SDS denaturing poly-acrylamide gel electrophoresis 

(SDS-PAGE). After electrophoresis proteins were transferred to a Protran 

nitrocellulose (Schleicher & Schuell Bioscience GmBH) membrane using semi dry 

transfer apparatus Trans-Blot SD (BioRad). The membrane was then shifted to 

blocking solution (5 % milk powder in lx TBS) and left to block overnight at 4°C. 

The next day the membrane was incubated with a primary antibody for 2 h at room 

temperature in a tube on a rolling platform. The unbound antibodies were washed 3 

times (10 - 15 min each wash) with blocking buffer. Incubation with horseradish 

peroxidase (HRP) conjugated secondary antibody (1:5000 dilution in blocking 

solution) was done for 1 h at room temperature. Then the antibodies were washed 

once with blocking solution and twice with lx TBS. After the last wash the 

membrane was incubated with ECL solution (mix of equal volumes of ECL solutions 

1 and 2) for 1 mm, wrapped in Saran wrap and exposed to ECL-grade film 

(Hyperfilm ECL, Amersham) for various lengths of time (usually 10 s, 1 mm, s 
mm). The films were then developed using a SCX-101A (Konica) medical film 

processor. 
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2.3.18. DNA sequencing 

DNA sequencing was performed with Big Dye v3.1 (ABI PRISM) according to the 

manufacturer's recommendations. Briefly, the required amount of DNA (5 - 20 ng 

PCR product; 150 - 300 ng double stranded plasmid DNA) was mixed with 2 t1 of 

Big Dye reaction mix and the required amount of primers (final concentration 3.2 

pmol) in a 10 t1 reaction volume. The reaction was then transferred into a thermo 

cycler (MJ Research). The cycling conditions were as follows: 

Initial denaturation 96 °C for 1 mm, then 

25 cycles of 

I 

96 °C for 10 s, 

50 °C for 5 5, 

60 °C for 4 mm. 

DNA electrophoresis and fluorescence detection were performed by the sequencing 

service in the department of Biological sciences. Analysis of received DNA sequence 

trace was performed with Seqman (DNAStar). 

2.3.19. Site-directed mutagenesis 

Site directed mutagenesis was done with QuikChange XL Site-Directed Mutagenesis 

Kit (Stratagene) according to the manufacturer's recommendations. Briefly, primers 

with the target mutation were annealed to the plasmid, where the mutation had to be 

introduced. PCR was performed using high fidelity Pfu DNA polymerase resulting in 

nicked circular strands. Parental non-mutated plasmid was digested with DpnI 

restriction endonuclease, which cuts methylated DNA (the parental plasmid is 

methylated by dcm from the host E. coli). Nicked plasmid was then transformed into 

the competent E. coil, where the nicks were repaired. Plating bacteria on selective 
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plates allowed growth of only the clones with the repaired plasmid. The mutation 

was then confirmed by DNA sequencing. 

2.3.20. Real Time PCR 

All Real-time PCR was performed using SYBR Green I chemistry. Fluorescent dye 

SYBR Green I binding to the minor groove of double stranded DNA helix enhances 

its fluorescence. During the PCR reaction, the amount of double stranded product 

increases resulting in an increase in fluorescence. 

Real-time PCR analysis was done using the iCycler (Bio-Rad) Real Time PCR 

machine. Four reactions were done for each cDNA pool with IQ SYBR Green 

supermix (Bio-Rad) or a home-made mix consisting of 0.5x SYBR Green I 

(Molecular Probes); 10 nm fluorescein (Sigma); lx PCR buffer with MgC12  (Roche); 

200 .LM dNTP (ABgene) and 1U FastStart Taq polymerase (Roche). The dilutions of 

cDNA (2x or 1 Ox) were always made to ensure that fluorescence readings correlated 

with the amount of template used and to evaluate PCR efficiency (Figure 2-1 a,b). 

Standard PCR cycling conditions were as follows: 

Initial denaturation and hot start Taq polymerase activation 95 °C for 3 mm, then 

40 cycles of 

95 °C for 45 s, 

Ta °C for 45 s, 

Ta is the primers specific annealing temperature. There was no need for an additional 

extension step as products are usually very short (90 - 150 bp), therefore there was 

sufficient time for synthesis while thermal cycler was increasing the temperature of 

the block. 
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Figure 2-1. Evaluation of the Real Time PCR assay. Gapdh gene was amplified from mouse brain 

cDNA template. For each cDNA dilution the PCR was done in duplicate, a) The figure shows relative 

fluorescence change during PCR reaction (from blue to green cDNA is diluted twice: lx, 0.5x, 0.25x, 

0.125x). For more diluted DNA, more cycles are required to achieve the same fluorescence (the red 

line). b) Correlation between cycle number and the amount of template. The line is derived from data 

in panel a. c) Melt curve analysis shows one peak, which means that only one product was amplified 

during PCR reaction. 
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PCR was followed by melting curve analysis: 

95 °C for 60 s, denaturation of product 

35 °C for 10 5, 

0.5 °C increase and 10 s incubation for 120 cycles. 

The melting curve was used to determine, if the result of the PCR reaction was a 

single PCR product (Figure 2-1 c). 

A constant fluorescence value was picked (usually 10 ö values above the baseline) 

from the linear phase of PCR amplification (Figure 2-1). To calculate the relative 

amounts of a transcript represented by cDNA (Q), following formula was used: 

= 	_Ct g pdh ) 

C (threshold cycle) is the fractional cycle number at which fluorescence of a sample 

passes the fixed threshold in the linear amplification range. Q values were calculated 

for each replica reaction. The mean, standard error of the mean and standard 

deviation were calculated and displayed with statistical software packages (SPSS, 

Sigma Plot). Comparison of the values was done using the Student t-test method. 

2.321. Mammalian monolayer cell culture 

Monolayer cells were grown in the required medium (listed in paragraph 2.1.3). To 

passage cells, the medium was aspirated, the flask was rinsed-aspirated with trypsin 

solution (1 ml per 25 cm  flask), then additional trypsin was added and cells were 

incubated 1 - 2 min in a 37°C incubator until cells have detached. Trypsinisation was 

stopped by addition of 5 volumes of complete medium and the suspension was 

transferred into a conical bottomed tube. Cells were pelleted by 5 min centrifugation 

at 1300 rpm. The supernatant was discarded and the cells were re-suspended in an 

appropriate volume of fresh medium. 
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For long term storage, the cells were usually kept in liquid nitrogen. Cultures to be 

frozen were passaged using the same protocol as above. In the last step of 

trypsinisation the cells were re-suspended in cold (+4°C) freezing medium and 

aliquoted into ciyo-vials. The aliquots were then transferred to -20°C freezer for 2 h 

and to -80°C overnight. Then the vials were transferred to liquid nitrogen for long 

term storage. To defrost cells from frozen stocks, the cells were thawed rapidly at 

37°C and diluted in the appropriate medium, before plating out. 

Mouse embryonic stem cells were cultured in tissue culture plastic-ware pre coated 

with gelatine. 

2.312. Monolayer cell transient transfection 

Mouse fibroblasts were transfected using Lipofectamine Reagent (Invitrogen), 

according to the manufacturer's recommendations. Briefly, the day before 

transfection the cells were seeded at ,106  per well of a 6 well plate. When the cells 

had reached the required density, the medium was replaced with serum free Opti-

MEM (Invitrogen). For each transfection 3 tg of DNA was diluted into 100 l (final 

volume) of Opti-MEM and mixed with 15 jil Lipofectamine reagent diluted in 100 p1 

(final volume) of Opti-MEM. The resulting 200 p1 mixture was incubated at room 

temperature for 45 min to form DNA-lipid complexes. The resulting mixture was 

then added to the well. Complete culture medium was usually added after 5 h. Cells 

were harvested 48 h after transfection. 

2.3.23. Embryonic stem (ES) cell differentiation into neurons 

Coating plastics for neuronal adhesion: 

Poly-D-lysine (PDL) was diluted to 10 jig/ml with PBS. Enough PDL was applied to 

cover the surface and incubated at room temperature for 20 mm. The PDL solution 

was then aspirated off and the plastics were washed twice with PBS. Laminin 

solution was applied (2 - 10 jig/ml) and left at room temperature for at least 20 mm. 

The laminin was aspirated just before plating dissociated EB. 
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ES differentiation: 

E14TG2a mouse ES cells were differentiated into neurons as described elsewhere (Li 

et al., 1998). ES cells were dissociated by trypsinisation and washed with ES cell 

medium without LIF. 10 ml of the cell suspension (5-7 x 105  cells/ml) was plated on 

a 90 mm bacterial grade plate (to prevent adhesion). Under these conditions, ES cells 

form embryoid bodies (EB), which contain different cell lineage progenitors. On the 

second day the media was replaced after letting the EB to sediment in a conical tube. 

On the fourth day media was again replaced and all-trans retinoic acid (Sigma) was 

added to a final concentration of 10 LM. The medium was again replaced with 

retinoic acid containing medium on the sixth day. On the eight day EB were 

collected into conical tubes and washed twice with PBS. The EB were dissociated by 

5 min incubation with 500 .tl of 4x trypsin-EDTA in a 37°C bath. Trypsinisation was 

stopped by the addition of 5 ml of the complete medium and the EB were pelleted by 

5 min centrifugation at 1300 rpm. The pellet was re-suspended in complete medium 

and gently dissociated by pipetting with a glass pipette. Undigested EB were left to 

sediment for 5 min and upper portion, containing the single cells, was transferred to a 

fresh tube. The cells were then counted and pelleted by centrifugation. The pellet was 

re-suspended in DMEM/F 12 with lx N2 and the cells were plated 1-2 x 
105  cells/cm2 

on a laminin pre-coated surface. One to two days later, half of the medium was 

replaced by Neurobasal medium supplemented with B27 (Gibco). Every three days, 

half of the medium was replaced with Neurobasal+1327 medium. The cells were used 

for experiments 1 - 2 weeks after plating. Most of the cells displayed a neuronal 

phenotype and stained positively with 3-tubulin type III antibody (Figure 2-2). 
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a) 

b) 	DAPI 	 TuJ 

Figure 2-2. Neurons derived by in vitro differentiation of ES cells, a) Cell morphology through a light 

microscope after the differentiation procedure. Multiple outgrowths reminiscent of neuronal 

morphology. b) Cells stained with neuron specific f3-tubulin type III antibody (TuJ). Many cells 

display strong staining. 
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2.3.24. ADDER differential display 

Amplification of Double-stranded cDNA End Restriction Fragments (ADDER) has 

been described previously (Kornmann et al., 2001) and is presented here with minor 

modifications. Briefly, pooled total RNA samples were used for cDNA synthesis. 

Prior to cDNA synthesis the RNA samples were treated with RQ 1 RNase free DNase 

(Promega). cDNA was synthesised using a polyA annealing oligonucleotide with a 

biotin label at 5' end (Figure 2-3). The cDNA was then adsorbed on magnetic 

streptavidin beads and cut with MboI (NEB) restriction endonuclease. The resulting 

DNA ends were ligated to oligonucleotide adaptors and then released from the beads 

by AscI (NEB) digestion. These cDNA fragments were amplified and used as 

templates for differential display PCR using primers with different terminal 

nucleotides (total of 196 combinations, Table 2-2). Bands with different intensities in 

all three pools were cut from the gel, and eluted DNA was PCR amplified. 



EJAkAAApJ-.AAAAAATJ- 
vrTrrTTTrrrrTCGAACGCGCGGIFTA 

Asci 

Step 1: First strand synthesis 	 4 
VrIrTTTTrITrTCGAATCCGCGCCGTT! 

Step 2 Second strand synthesis 

'.'TrTTTrrTcGAATCCccGCci'rTA 

Step 3 Mbol digestion 1, 
rATC 5AhAAAAAPAAAACTTAOGCQCOCCAAT 

vrTTTTrrrrTcGAATccGcscOGTTA 

Step 4 Ligation of Mbol adaptor 

C)H-GGTCCATCCPACC-OH 
OH-GCCAGGTAGGTTGGCTAG- PO4 

000AtCCAA000STC BAPAAPAAGCTTAGCCCGC0PAT 
000AQOTAGGTTGC4CTAG vrTTTrTTcAATcCG0Gcc:G7TA 

Step 5:Ascl digestion 4 
G0rCCATceCCCATC 
GCCATATT0GCTG 

AA?AAPJP.kACTAGG 	CGC000AAT 
vTrTrIrTrTTTcosArccocc 	OGTTA 

Step 6: PCR amplification to generate 4 master cDNA stock 
4— TTCGAATCCOCCCC'TA 

GrCCATCCAACCG5TC fl?AAAAAAAAAAGCTTAGO 
GCCFGCTAGTTGCCTAG VTTTITTTTTTTTCPAATCCOCGC 
COTCCATCCSACCGATC —4. 

Step 7 Differential display PCR 

rrrrrTTTrrTcGA 
OGTCOSTCCAACCGATC P?? TTAGGCGCGCCPAT 

vTyTTrTTTTTrcGsApCCoCGc(;rrA 
AACCOATCN1N2 

4 
Step 8 Gel electrophoresis on high resolution urea-potyacrylamide get 

Figure 2-3 Schematic diagram shows steps involved in ADDER differential display. Diagram was 

taken from (Kornmann et al., 2001). 
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Instead of a general long primer containing NV at the 3' end, a specific primer e.g. 

ending with CA was used to amplify DNA eluted from gel bands (resulted in a better 

recovery). The re-amplified DNA was cloned into a plasmid vector. Restriction 

digest analysis of 24 picked clones allowed identification of the mis-expressed 

fragment. 

2.3.25. Bisulfite DNA modification 

1 tg of genomic DNA was digested with a restriction enzyme outside the region of 

interest. When digestion was complete the DNA was denatured by 5 min incubation 

at 100°C and 20 min incubation with fresh 0.3 M NaOH at 37°C. Then 10 volumes of 

bisulfite/hydroquinone mix (0.51 g/ml sodium hydrogensulfite (Aldrich 24 397-3), 

0.11 g/mI hydroquinone (Sigma H9003) and 0.4 M NaOH) were added, the solution 

was overlayed with mineral oil and incubated for 5 h at 55°C. Bisulfite treated DNA 

was precipitated with isopropanol (with 50 tg of glycogen carrier) and washed with 

70% ethanol. DNA was desulfonated by the addition of NaOH (0.3 M final) and 15 

min incubation at 37C. The DNA was then purified using a PCR purification kit 

(Qiagen). Primers for amplification of Uqcrcl promoter region were designed with 

Methprimer (Li and Dahiya, 2002): ubisd (AAATTATTTTTATATTGTTTTTTTT) 

and ubisr (AAACCCTTCATCTAATCCC ATCTA). 

PCR amplified DNA was cloned using a TOPO cloning kit (Invitrogen), transformed 

into competent E.coli and plated on agar plates with X-gal for blue-white selection. 

Cloned inserts from white colonies were PCR amplified directly from the bacterial 

colony (bacterial colony was touched with sterile pipetman tip and then the tip was 

washed in 20 p1 of water, which was used as the template for the PCR reaction). Half 

of the PCR reaction (usually 25 .il) was examined by agarose gel electrophoresis. 

Samples which migrated at the expected size were then used as the template for 

sequencing (5 .il from the other half of the PCR reaction was incubated with 5 U of 

Exonuclease I and 1 U of Shrimp alkaline phosphatase at 37°C for 15 mm, followed 

by incubation at 80°C for 15 mm; 2 p1 were used as the template for the sequencing 

reaction). 
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2.3.26. Chromatin Immunoprecipitation 

3 whole brains were used as input material (enough for 6-7 immunoprecipitations). 

Brains were ground in liquid nitrogen and the powder was poured into fixation 

solution (1 % formaldehyde in PBS). Fixation was continued for 15 min at room 

temperature and was quenched with 0.125 M (final) glycine solution. Pelleted cells 

were washed with PBS and homogenized in a dounce. After centrifugation cells were 

re-suspended in 9 ml of cell lysis buffer (0.2% NP40, 10 mM NaCl, 10 mM Tris-HC1 

pH=8, Complete [Roche] protease inhibitors). Lysate was triturated through a 25G 

needle until no lumps were left and incubated for 15 min in with added additional 6 

ml of lysis buffer. Nuclei were then harvested by spinning at 4000 g for 5 mm. and 

re-suspended in 3.6 ml of nuclei lysis buffer (50 mM Tris-HC1, 10 mM EDTA, 1% 

SDS, protease inhibitors). Nuclei were lysed for 10 min at room temperature and 

diluted with 2.2 ml of IP dilution buffer (1% Triton X-100, 2 mM EDTA, 150 mM 

NaCl, 20 mM Tris HCl pH=8, protease inhibitors). Chromatin was then sonicated 

twice for 4 min with a Branson Sonifier 250 (Duty cycle 60; Output 6), to obtain 

chromatin DNA fragments of about 200 bp on average. Chromatin was cleared by 

centrifugation, diluted five times, pre-cleared with protein A sepharose (Amersharn) 

and subjected to overnight immunoprecipitation with the following antibodies: rabbit 

polyclonal antibody 674 against MeCP2 (Nan et al., 1998); rabbit polyclonal histone 

H3 di-methyl K9 antibody (Abcam) and un-relevant rabbit serum. Antibody 

precipitates were bound to protein A sepharose for 1 h. Washes were performed once 

with TSEI (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 150 mM NaCl, 20 mM Tris-

HC1 pH=8), four times with TSEII (0.1% SDS, 1% Triton X-100, 2 mlvi EDTA, 500 

mM NaCl, 20 mM Tris-HCI pH=8), once with buffer III (0.25 M LiC1, 1% NP40, 

1% deoxycholate, 1 mM EDTA, 10 mM Tris-HCl pH=8) and three times with TE. 

Antibody precipitates were then extracted twice with extraction solution (1% SDS, 

0.1 M sodium hydrocarbonate) and crosslinks were reversed overnight at 65°C. DNA 

was purified with Qiagen PCR purification kit and eluted in 50 jtl of elution buffer 

(Qiagen). 2 p1 of final eluate was used for PCR reactions. Uqcrc 1 promoter PCR was 

done with primers uqlpd (CTTCTGTGTCTCCATTTCCCAAG) and uqlpr 
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(TCTGTGCAAGAAGGTGTCCAC). Bdnf pill primers were the same as described 

previously (Chen et al., 2003b). 

Sgkl promoter primers were: 

Sgkp 1 d 
	

(ACGGACGGGGTTTAAGGCAGTG), 

Sgkp 1 r 
	 (CGTGAGGAGGTGGCGAGTTAGAG). 

Fkbp5 promoter primers are: 

Fkp 1 d 
	

(TGCTCCCTTAGATTCATCCCACAC), 

Fkp 1 r 
	 (CCACTGGCTCCGATACACATTCTC). 

Fkpd 
	

(AGCCACGGTCCTAGATGAGAGC), 

Fkpr 	 (GTGTGTGAAGGAGAGTGGCAGAAC). 

2.3.27. TUNEL staining 

TUNEL staining detects apoptotic cells by their DNA fragmentation characteristics. 

Fragmented (either by nicks or double stranded breaks) DNA can be labelled by 

3'OH incorporation of a labelled nucleotide using terminal deoxynucleotidyl 

transferase (TdT). 

TUNEL labelling was done using Roche in situ cell death detection kit, TMR red (# 

2156792) according to the manufacturer's recommendations. Briefly, mouse brain 10 

im thickness cryostat sections were cut and adhered onto slides. The tissue sections 

were fixed in 4% paraformaldehyde in PBS (pH=7.4) for 20 mm. After a 30 mm 

wash in PBS, the sections were incubated with permeabilisation solution (0.1% 

Triton X-100, 0.1 % sodium citrate) for 2 min on ice. After two washes with PBS, 

50 tl of TUNEL reaction mixture was added on top of the section and incubated for 

1 h at 37°C in the dark. Subsequently the slides were washed three times with PBS 

and mounted using mounting medium with DAPI (Vector laboratories). Slides then 

were examined with a Zeiss axioscope. 
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For the negative control, a mixture was prepared without TdT. For the positive 

control a section was incubated with 30 U/mI of DNase I (in 50 mlvi Tris-HC1, 1 

mg/ml BSA) for 10 min at room temperature. 

2.3.28. Screening for mutations in exon I of the Mecp2 gene in Rett 
syndrome patients 

The human DNA samples were obtained from John Warner. 1 p1 of genomic DNA 

was used in a 50 pA PCR mix, which had the following composition (Roche Fast 

Start Taq DNA Polymerase #2 032 902): 

lOx Reaction buffer with MgC12  (20 mM) 	S p1 

2 mM (each) dNTP 	 5 pA 

primer hMEld (50 ng/pI) 	 2.5 pA 

primer hMElr (50 ng/pi) 	 2.5 p1 

GC rich solution (Roche) 	 10 p1 

H20 	 24.7 p1  

Fast Start DNA Polymerase 	 0.3 p1 

Cycling conditions: 

Initial denaturation 	 4 min at 95°C 

Denaturation 	 1 min at 95°C 

Annealing 	 1 min at 63°C 

Synthesis 	 1 min at 72°C 

Primer sequences were hME 1 d (cagcccggccatcacagc) 	and hME 1 r 

(gacgggccgaggggagagt). The size of PCR product was examined by gel 

electrophoresis (10 p1 of PCR product) and was expected to be 450 bp long. 20 pA of 



PCR product was purified with a QIAGEN PCR purification kit and eluted in a final 

volume of 30 l. 1 l of this was used for the sequencing reaction with hMEld and 

hMElr primers (Big Dye version 3.1). 

2.3.29. Generation of a mouse with a targeted mutation 

Gene targeting enables the making of mutations in mice by using homologous 

recombination and the pluripotency of mouse embryonic stem cells (Thompson et al., 

1989). 

General description 

Initially the mutation is engineered in the plasmid, which would have homologous 

arms to the target locus and resistance marker. The plasmid is then linearised and 

electroporated into mouse ES cells. Subsequently the ES cells are incubated in the 

presence of a selection drug which allows survival of the cells with the resistance 

marker. The ES colonies are then expanded and assayed by PCR or Southern blot to 

find the ones in which homologous recombination have occurred. The correctly 

targeted ES cells are injected into the mouse blastocysts, which are surgically 

transferred into pseudopregnant females. 

The ES cells are derived from a mouse with agouti (129/01a) coat colour and 

blastocysts are from a mouse with black coat colour (C57/BL), therefore the level of 

the ES cells contribution to the organism can be evaluated by the chimerism of coat 

colour. Coat colour as well helps to evaluate if the engineered mutation can be 

transmited from the chimera to the progeny. Because agouti colour is dominant, if 

crossing the agouti/black chimera with black partner produces an agouti progeny, 

then the progeny is going to be heterozygous for the engineered mutation too. And 

this is an end for the successful targeting experiment, because the mutated allele can 

further be propagated by maintaining the mutant mouse line. 

Gene targeting was done according to published reports (Thompson et al., 1989; 

Hogan et al., 1994) and personal recommendations of Jim Selfridge and Jacky Guy. 



ES cell electroporation 

For gene targeting 50 x 106  cells were electroporated (BioRad Gene Pulser, 0.4 cm 

electrode gap cuvettes, 800 V, 3 tF) with 250 ig of linearised plasmid in 0.8 ml of 

HBS. After electroporation, the cells were left at room temperature for 10 mm. 

Subsequently 8 x 106  cells were plated per 90 mm gelatinised dish. Selection with 

G418 (350 ig/ml) was applied 24 hours after plating. Cells were grown under 

selection until resistant colonies became visible (around 10 days). 

Colony picking 

ES cell colonies were picked into 96 or 24 well tissue culture plates. The following 

protocol is for a 96 well plate. 

Ninety six well plates were prepared by the addition of 10 p1 of PBS to each well. 

The medium was aspirated from dishes containing ES cell colonies, followed by 

washing them twice with 10 ml of PBS. After the last wash, some PBS was left in the 

dish, to prevent colony drying. The colony, together with 5 p1 of PBS, was picked 

with a pipette tip and transferred to the 96 well plate containing 10 .xl of PBS. After 

the transfer of 48 colonies, 20 .tl of trypsin!EDTA was added to each well and the 

plate was incubated at 37°C for 3 - 5 mm. Subsequently, the cells were pipetted to 

help dis-aggregation and incubated for an additional 3 - 5 min at 37°C. During the 

incubation a flat-bottomed gelatine coated 96 well plate was prepared by filling the 

wells with 100 p1 of growth medium. After the trypsin incubation was finished, 120 

p1 of growth medium was added and all the contents of the wells transferred to the 

gelatine coated plate with 100 j.tl medium in it. Cells were grown until medium 

turned yellow (usually 2 days after picking). Then selection medium was replaced 

with 150 jfl of fresh one. 

When the cells in most wells became confluent, they were then split into other 96 or 

24 well plates. One half was frozen down and the other half used for genomic DNA 

purification. After clones with the correctly targeted mutation were identified, the 

replicas were defrosted and expanded for injection into blastocysts. 



ES cell microinjection into blastocysts and embryo transfer 

ES cells were trypsinised and pipetted thoroughly to obtain a single cell suspension. 

Blastocycts were collected from C5713L16 pregnant mice at 3.5 days p.c. by flushing 

uteri with M2 (Sigma) medium. After collection, the embryos were stored in M16 

(Sigma) medium at 37°C until injection. Injections were done using Narashige 

micromanipulator in M2 medium. Under high power magnification, 10 - 15 cells 

were taken up into the injection needle and injected into the blastocysts. Ten injected 

blastocysts were then transferred into a drop containing M16 medium until the 

embryo transfer. Subsequently injected embryos were surgically transferred to the 

uteri of pseudopregnant (2.5 days p.c.) recipient females via a unilateral transfer of 

10 embryos per recipient mouse. 

2.3.30. Luciferase activity measurements 

Luciferase activity was measured with a TD-20/20 Luminometer (Turber designs). 

The protocol and the reagents used for the measurements were from the Dual-

Luciferase Reporter Assay System (Promega). Cells were washed with PBS once and 

lysed in a passive lysis buffer by incubation for 15 min at room temperature and then 

scraping cell lysates into a tube. Un-lysed cells were pelleted by spinning briefly. 100 

jil of LAR II reagent (Promega) was added to a glass tube followed by addition of 20 

t1 of cell lysate. The tube was then transferred into the luminometer, which, after a 

pre-programmed 2 s delay, performed 10 s measurement of luminescence. Readings 

were repeated five times and normalised to the total protein concentration. 

2.3.31. Generation of amino acid sequence alignments 

Amino acid sequence alignmens were done using AlignX program (Informax). 

AlignX uses Clustal W algorithm (Thompson et al., 1994). Settings were as follows: 

gap opening penalty 15, gap extension penalty 6.66 and gap separation penalty 8. 

Visual enhancements (shading and etc) were done using GeneDoc software 

(http://www.psc.edu/biomed/genedoc).  



2.3.32. BLAST searches 

NCBI BLAST server was used to identify genes from ADDER differential display 

screen. 3' eDNA end sequences obtained by sequencing of donned ADDER 

products were queried (using Mega BLAST) against nr (all GenBank, RefSeq 

Nucleotides, EMBL, DDBJ, PDB sequences) database. mRNA hit with highest score 

(usually >98% identity) was assigned as a candidate mis-regulated gene. If BLAST 

against nr database produced only genomic hits, then mouse EST database was 

queried. 

2.3.33. Examination of condition of Mecp2-null mice 

Gene expression studies were done using Mecp2-null mice which were backcrossed 

6 times onto C57B1/6 background. Mecp2-null mice were grouped into pre, early or 

late symptomati groups according the phenotype at the time of brain dissection. 

Mice were selected by investigating clasping, inertia, tremor, weight loss and coat 

condition (Table 2-5). Examination of hindlimb clasping involved picking a mouse 

by the tail and visually assessing the hindlimbs. A wt mouse spreads its hindlimbs (-) 

whilst a Mecp2-null mouse at late stage of sickness clasps its hindlimbs (+). When 

evaluating inertia a mouse was transferred on the flat surface. Inertic mouse was 

sitting in one place (+), opposite to a normal mouse, which was running around 

investigating new area (-). Presence (+) or absence (-) of tremors was investigated by 

placing mouse on the hand. The assessment of weight loss was made by visually 

comparing wether a mouse was significantly smaller then it's siblings (+). Normal 

mouse usually has a shiny coat (-) contrary to a sick mouse which coat is dull and 

sticking (+). 
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Weight Average 
Phenotype Clasping Inertia Tremor LOC*  

loss Age 

Pre- 
- 30d 

symptomatic - - - - 

Early 
-1+ + +- - 55d 

symptomatic 

Late 
+ + + + + —70d 

symptomatic 

Table 2-5. Classification of Mecp2-null mice according to the manifestation of phenotype. The last 

column shows the average age of mice displaying the symptoms. The age was not considered in the 

classification. *LOC - loss of coat condition. Jacky Guy designed the main table categories. 



3. Chapter three. 

Gene expression analysis in 

Mecp2-null mouse brain 



3. 1. Introduction 

Multiple observations show that methylation of a gene promoter restricts its 

expression in mammals. As a methyl CpG binding protein, MeCP2 was therefore 

tested for its transcriptional repression activity. Transient transfection experiments 

with methylated or GAL4 reporters demonstrated MeCP2's ability to repress 

transcription (Nan et al., 1997). The transcriptional repression hypothesis was even 

more strengthened by findings that MeCP2 interacts with the already known Sin3a / 

HDAC1,2 co-repressor complex (Nan et al., 1998; Jones et al., 1998). 

Due to the low complexity of the MeCP2 binding site, it was postulated that MeCP2 

might be a global transcriptional repressor. It was thus expected that many genes will 

be deregulated in the absence of MeCP2. However, it has been difficult to find global 

differences in gene expression between wild-type and Mecp2-nulls mice brains 

(Tudor et al., 2002) or clonal cell lines from the human Rett syndrome patients 

(Traynor et al., 2002). A key point in the field then became to find endogenous target 

genes, which would confirm or reject the idea of an in vivo role of the MeCP2 in 

transcriptional repression and could serve as a tool for the investigation of its 

transcriptional repression mechanism. 

Another important purpose of MeCP2 target gene identification is to understand the 

pathology of Rett syndrome. The discovery of MECP2 mutations as the cause of this 

neurological disorder was rather surprising, because MECP2 had no previously 

known connections with a specific role in brain. One potential possibility is that 

MeCP2 is involved in regulation of certain genes, which are important in normal 

brain function. Finding target genes would help to clarify what is happening when 

MeCP2 is damaged due to a mutation. 

This gene expression analysis chapter is divided into seven sections. The 

introduction will review the currently published achievements in finding "candidate" 

genes and previous attempts in identifying mis-regulated genes by global analysis of 

gene expression. The following results section will address mis-regulation of several 

candidate genes (Bdnf, Ss1811 and Hesi) in mouse brain. Subsequently verification 

of genes obtained by microarray analysis together with promoter occupancy will 
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follow. ADDER, a variant of differential display, was completed, and a dozen genes 

were found to be mis-regulated in late symptomatic Mecp2-null brain. The final, 

section explains the experiments addressing the biological meaning of several mis-

regulated genes (Meg3/gtl2 and Uqcrcl). Investigation of Meg3/gtl2 imprinting 

status revealed no bi-allelic expression, and the mitochondrial respiration 

measurements showed performance defects in certain components of respiration 

chain. 

3.2. Literature overview of previously identified MeCP2 target genes 

by a candidate approach 

The expression of imprinted genes correlates with the methylation status of 

differentially methylated regions (DMR), suggesting the involvement of members of 

MBD family. Fuks et al tested the role of MeCP2 on the imprinted non-coding h19 

gene in tissue culture cells (Fuks et al., 2003). In Mecp2-null mouse fibroblasts h19 

expression was found to be up-regulated compared to wt cells. MeCP2 was 

associated with the methylated DMR, suggesting that h19 could be a direct target of 

repression by MeCP2. Over-expression of MeCP2 in wt cells lead to increased 

occupancy of MeCP2 at the h19 locus and increased level of histone H3 lysine 9 

methylation in the h19 DMR (Fuks et al., 2003). Together with MeCP2-GST pull-

downs of methyltransferase activity, occupancy studies by chromatin IP suggested 

that MeCP2 recruits H3K9 methyltransferase to the h19 locus, which would result in 

methylation of histones and facilitate silencing of transcription (Fuks et al., 2003). 

In frogs inhibition of MeCP2 translation by morpholino oligonucleotide injection 

resulted in developmental arrest (Stancheva et al., 2003). Stancheva et al then 

examined the expression of genes involved in early neurogenesis. Morpholino 

MeCP2 down-regulation have not resulted in mis-regulation of proneural genes 

(neurogenin, NeuroD and Notch/Delta), but affected downstream targets (Hairy2a, 

N-tubulin and NCAM) (Stancheva et al., 2003). In more detail, MeCP2 morpholino 

frogs had Hairy2a up-regulated, while other genes (N-tubulin and NCAM) were 

down-regulated (Stancheva et al., 2003). Hairy2a encodes a basic-helix-loop-helix 
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transcription factor, which in turn represses a group of neural genes. Because it acts 

up-stream of the other mis-regulated genes and it is up-regulated in the absence of 

the transcriptional repressor, it was thought to be a primary target for MeCP2. This 

assumption was confirmed by chromatin IP, which showed the presence of MeCP2 at 

the Haiiy2a promoter in frog embryos. Interestingly, after the Notch/Delta signaling, 

MeCP2 was removed from the Hairy2a promoter by the intracellular domain of 

Notch (Stancheva et al., 2003). 

Recent studies have identified Bdnf as a target gene of MeCP2 (Martinowich et al., 

2003; Chen et al., 2003b). The Bdnf promoter 3 is highly induced by calcium influx 

in cultured neurons. By introduction of point mutations in the different minimal 

promoter sites, several factors required for calcium mediated Bdnf induction were 

identified, such us calcium response factor (CaRF), upstream stimulatory factors 

(USFs) and calcium/cAMP responsive element binding protein (CREB) (Tao et al., 

1998). There are several CpGs in the promoter 3 region, therefore authors have 

examined the possibility of MeCP2 presence by chromatin IP (Martinowich et al., 

2003; Chen et al., 2003b). Interestingly, several CpGs in that locus were methylated 

and MeCP2 was found binding to the promoter region. Upon calcium influx MeCP2 

was shown to become phosphorylated and leave the Bdnf promoter (Chen et al., 

2003b). The other group however observed significant de-methylation of Bdnf 

promoter 3, which was suggested as a reason why MeCP2 leaves the promoter 

(Martinowich et al., 2003). Possibly both de-methylation and phosphorylation 

contributes to MeCP2 leaving the Bdnf promoter. Interestingly, MeCP2 

disappearance correlates with local changes in chromatin structure such as decrease 

in histone H3 lysine 9 methylation, increase in H3 lysine 4 methylation and H4/H3 

acetylation (Martinowich et al., 2003). Absence of MeCP2 in cultured cortical 

neurons resulted in almost two fold higher basal level of Bdnf. When induced by 

calcium, which increases Bdnf expression up to 100 fold, the difference between 

Mecp2-null and wt neurons disappears (Chen et al., 2003b). 
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3.3. Previously described attempts to identify MeCP2 target genes by 

global analysis of gene expression 

Mis-regulation of gene expression in Rett syndrome patients has been examined 

using post-mortem brains and microarray analysis (Colantuoni et al., 2001). Multiple 

microarray experiments allowed identification of many mis-regulated genes. Glial 

GFAP and a B-crystallin were confirmed to be up-regulated using several different 

methods, but not in all patient samples examined (Colantuoni et al., 2001). Other 

group have failed to confirm mis-regulation of these genes in mouse model of Rett 

syndrome (Tudor et al., 2002). 

Global gene expression analysis was performed on clonal fibroblast cell lines derived 

from Rett syndrome patients (Traynor et al., 2002). Affymetrix microarrays 

identified mis-regulated genes, but Real Time PCR analysis showed significant 

variability between different clones rather than genotypes. The study concluded that 

there is no global deregulation of gene expression, which could be detectable in the 

cell lines (Traynor et al., 2002). However the cell lines used in the study express 

MECP2 at a much lower level than brain (Traynor et al., 2002), thus the 

transcriptional consequences of the mutations in MECP2 may be reduced in these 

cells. 

Affymetrix microarrays were used to investigate global gene expression changes in 

different brain regions of Mecp2-null mice (Tudor et al., 2002). Multiple experiments 

revealed no significant gene mis-expression. However when the advanced gene 

expression classifiers were used, predictions could correctly distinguish between Wi' 

and Mecp2-null mice brains. The best candidates for prediction were serum 

glucocorticoid kinase (SGK), Cam kinase II, prostaglandin D2 synthase, Rho GDP 

dissociation inhibitor 'y and parvalbumin. (Tudor et al., 2002). 

Recently, another method was used to identify MeCP2 target genes. Chromatin IP 

was used to make a library enriched in fragments bound to MeCP2 in the human cell 

line, MCF7 (Koch and Stratling, 2004). Sequencing of the library clones identified 

different repeat families, most of them being Alu repeats, SINEs and LINEs. 

93 



3.4. MeCP2 target genes identified by candidate approach 

3.4.1. Bdnf mRNA is down-regulated in Mecp2-null mouse brain 

As described in the section above, during resting state Bdnf mRNA was found 

present in a two fold excess in Mecp2-null cultured cortical neurons (Chen and 

Weber, 2004). Because Bdnf expression was compared in a cultured neuronal cell 

system, we decided to examine Bdnf expression in Mecp2-null mouse brain tissue. 

For the analysis mice were classified according the manifestation of symptoms into 

three groups - pre-symptomatic, early symptomatic and late symptomatic (Table 2-5 

in page 88). The grouping of mouse according the phenotype presentation rather than 

the age was decided because of observations that even in the same litter Mecp2-nulls 

start to display symptoms at different ages. A pre-symptomatic mouse looks 

undistinguishable from a wt littermate. According our criteria, an early symptomatic 

mouse has a tremor which can be felt when a mouse is held on the hand, reduced 

movement in the cage and sometimes clasps its hindlimbs if picked by the tail. It is 

easy to find a late symptomatic mouse in the cage, because it sits in one place, it is 

smaller than littermates and has a dull coat as well as other symptoms listed at Table 

2-5. 

For the each group and genotype we pooled mouse brain RNA from nine mice into 

three pools of three. eDNA was made from these pools and used for Real Time PCR 

analysis. Because Bdnf is transcribed from four different promoters, we initially 

asked if the total coding Bdnf mRNA level is different between Wi' and Mecp2-null 

mice samples. Surprisingly, the quantitative Real Time PCR analysis demonstrated 

that Bdnf mRNA is significantly down-regulated in Mecp2-null mouse brain (Figure 

3-1). Furthermore, Bdnf was found to be down-regulated at all three different stages 

of disease progression, from 35% in late symptomatic mice to 23% in pre-

symptomatic mice (Figure 3-1). This finding with whole brain eDNA is opposite to 

the previously published observations in Mecp2 deficient neuronal cultures, where 

basal Bdnf mRNA level was found to be two fold up-regulated (Chen et al., 2003b). 
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Figure 3-1. Bdnf expression is significantly down-regulated in the Mecp2-null mouse brain during 

progression of symptoms. a) Schematic structure of the Bdnf gene. Boxes represent exons. p1, p2, p3 

and p4 are different Bdnf promoters and the long box contains coding DNA region. The two arrows 

underneath the box show the position of primer pairs used for the Real Time PCR analysis. b) Primary 

Real Time PCR data of Bdnf expression. The dot in a box represents the mean of Real Time PCR 

values, a box outlines the standard error of the mean and the whisker is standard deviation. c) 

Statistical analysis of Real Time PCR data. Columns represent the difference from the corresponding 

i't value and the statistical significance of the difference is displayed as a p value (Student t test). 
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The discrepancy between these observations raised several possibilities. Firstly, the 

study of Chen et al. examined the transcription from Bdnf promoter 3 only, whereas 

here the total Bdnf expression was assayed, which starts at all promoters (see primers 

in Figure 3-1). Therefore, there was a possibility that a different Bdnf promoter is 

responsible for the down-regulation of total Bdnf. To test this hypothesis we 

examined transcripts from the different Bdnf promoters using promoter-specific Real 

Time PCR primers in pre-symptomatic mice (Figure 3-2). The data revealed that 

there is no significant contribution from any one promoter, however promoter 3 

showed the lowest p value (p=0.07) and the highest down regulation (22%). Further 

we examined possibility of potential feedback mechanism, which could act through 

the high affinity Bdnf receptor Ntrk2 (trkB). It has been reported that external 

application of Bdnf results in a decrease of full length Ntrk2 receptor in retina (Chen 

and Weber, 2004). Therefore, we have compared Ntrk2 mRNA levels in wt and 

Mecp2-null mouse brain (Figure 3-3 a). There was no statistically significant 

difference in Ntrk2 mRNA levels, suggesting that up-regulation of Bdnf mRNA does 

not alter expression of its receptor. 
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Figure 3-2. Contribution of different Bdnf promoters to the total Bdnf mRNA under-representation in 

pre-symptomatic Mecp2-null mouse brain, a) Structure of the Bdnf gene. p1, p2, p3  and p4 are 

different promoters that generate alternative first exons that are spliced onto exon 2. Specific primers, 

used for detection of each transcript are shown below. For promoter 3 one primer was used from p3 

region and other was from exon 2 of Bdnf b) Data from Real Time PCR analysis of different 

promoter activity. c) Statistical analysis of Real Time PCR data. No single promoter is significantly 

down-regulated. Significance of difference between expression in wt and Mecp2-null mouse brain is 

displayed by p value. 
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3.4.2. Ss1811 (Crest) mRNA is not mis-regulated in Mecp2-null mouse 
brain 

Ss1811 was selected as a candidate gene for examination because of the phenotypic 

and pathological overlap between Mecp2-null and Ss1811-null mouse. Ss1811-null 

mice look normal at birth, but later develop coordination defects and are smaller than 

littermates (Aizawa et al., 2004). Most of the mutant mice die between post-natal day 

14 and 28. The pathological analysis done by Aizawa et al revealed that Ss1811-null 

mice have smaller cortex and cerebellum. There was also a marked decrease in 

dendritic branching and growth (Aizawa et al., 2004). Because above mentioned 

pathological findings observed in Ss1811-null mice are similar to ones in the Mecp2-

null mice (described in section 1.6 in the literature review chapter), we thought of a 

possibility that a similar molecular pathway could be affected. A simple hypothesis is 

that MeCP2 is involved in the regulation of Ss1811 expression. We have compared 

Ss1811 expression between the late symptomatic Mecp2-null mice and Wi' littermates. 

Real Time PCR data showed no mis-regulation of Ss1811 expression in late 

symptomatic mice (Figure 3-3 b). 
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Figure 3-3. Ntrk2 and Ss1811 are not mis-regulated in late symptomatic Mecp2-null mouse brain, a) 

Real Time PCR data of Ntrk2 expression. Statistical analysis revealed that there is no significant mis-

regulation (p=0.08) of Ntrk2 in Mecp2-null mouse brain. b) Real Time PCR data of Ss1811 expression. 

There is no significant mis-regulation (p=0.49). 



3.4.3. Mammalian homolog of Hairy2a is up-regulated in the Mecp2-null 
mouse brain 

Section 3.2 describes the findings by Stancheva et al showing that in frog embryos 

lacking MeCP2, Hairy2a expression is up-regulated. Even though Mecp2 deletion in 

a mouse does not give as severe phenotype as the morpholino knock-down in frogs, 

the possibility was considered that MeCP2 might be involved in the regulation of the 

mammalian homolog of Hairy2a. Hesi is the closest Hairy2a homolog in mammals. 

Therefore the expression of Hesi was examined in Mecp2-null mouse brain. 

Interestingly, Hesi was found to be significantly up-regulated in pre, early and late 

symptomatic mice (Figure 3-4). The level of up-regulation is moderate and reaches 

its maximum of 80 % in late-symptomatic Mecp2-null mice. 

3.4.4. Verification and syptom-course analysis of Sgk and Fkbp5 
expression 

In collaboration with Ulrike A. Nuber and Jacky Guy microarray analysis was 

carried out on the late symptomatic Mecp2-null mouse brain. Eleven genes were 

identified mis-regulated and four of these genes (Fkbp5, Sgk, Pomcl and Hspl05) 

are known to be regulated by stress hormones, glucocorticoids. Fkbp5 encodes a 

peptidyl-prolyl cis-trans-isomerase which was shown to interact with glucocorticoid 

receptor in cell-free receptor assembly assay (Barent et al., 1998). Serum 

glucocorticoid induced kinase (SGK1) is up-regulated immediately when cells are 

exposed to glucocorticoids (Lang and Cohen, 2001). Real Time PCR analysis was 

performed to verify mis-regulation of Sgk and Fkbp5 genes. Consistent with 

microarray results, Sgk and Fkbp5 expression was found to be up regulated to around 

2.6 fold in late symptomatic Mecp2-null mice (Figure 3-5). Additionally, expression 

analysis in early and late symptomatic mice demonstrated significant up-regulation at 

these stages as well. Interestingly, the standard deviation was increased significantly 

(F-test, p<0.001) in early and late symptomatic Mecp2-null mice for both Fkbp5 and 

Sgk genes (Figure 3-5 a). 
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Figure 3-5. Fkbp5 and Sgk are significantly up-regulated in pre, early and late symptomatic mice, a) 

Real Time PCR analysis of Fkbp5 and Sgk expression. Note highly increased standard deviations in 

early and late symptomatic mice Mecp2-null mice. b) T-test statistical analysis and the level of up-

regulation, compared with Wi' littermates. Both genes are significantly up-regulated in all stages 

examined. 

101 



Because both Sgk and Fkbp5 are regulated in the response to stress hormones, the 

possibility was considered that the hormone levels are elevated in these mice. 

Therefore the circulating glucocorticoid levels were measured in Mecp2-null mice 

(work done by Jim Selfridge and Megan C. Holmes). There was no significant 

difference of basal and stressed levels of circulating glucocorticoids between Mecp2-

null mouse and Wi' littermates. If not the hormones induce Sgk and Fkbp5 up-

regulation in Mecp2-null mice, then it could be that MeCP2 directly regulates 

expression of these genes. In this case it was expected that MeCP2 would bind 

promoter regions of Sgk and Fkbp5 genes. The presence of MeCP2 was examined by 

chromatin IP and MeCP2 was found to bind in the vicinity of both Sgk and Fkbp5 

promoters (Figure 3-6 c, placebo). 

It was previously demonstrated that MeCP2 leaves the promoter III of Bdnf after 

Bdnf induction by membrane depolarization (Chen et al., 2003b; Martinowich et al., 

2003). We thought that MeCP2 could behave in the similar manner on the Sgk and 

Fkbp5 promoters, when these genes are induced by glucocorticoids. For this 

experiment mice were implanted with corticosterone and placebo pumps for 2 days 

and sacrificed 3 days later (experiment done by Megan C. Holmes). The plasma 

corticosterone level was increased approximately 7.4 folds (measured by Megan C. 

Holmes). Comparison of Sgk and Fkbp5 promoter occupancy by MeCP2 between 

vehicle and hormone treated mice brain revealed the absence of any obvious changes 

(Figure 3-6). 
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Figure 3-6. MeCP2 presence at the two different regions of Fkbp5 and one region of Sgk is not 

abolished after the infusion of corticosterone. a) Genomic organisation of Fkbp5 gene. The regions 

which were used for the amplification after chromatin IP are marked as solid lines. Two regions of 

Fkbp5 were assayed because the current information is limited in distinguishing which is the real 

promoter (Exon I is non-coding). b) Genomic organisation of Sgk gene with the highlighted region of 

PCR amplification. c) PCR analysis of chromatin IP DNA fragments from hormone treated and 

control mice brains. Similar amounts of Fkp, Fkpl and Sgkl DNA fragments were precipitated with 

MeCP2 antibody after corticosterone treatment. MeCP2 (674) antibody is raised against N-terminal 

part of MeCP2 and it recognises both MeCP2 isoforms. 
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3.5. Global analysis of gene expression 

3.5.1. Gene expression analysis in Mecp2-null mouse brain by a variant 
of differential display 

Conventional differential display is based on cDNA synthesis and PCR amplification 

using different primer sets, which will amplify different set of genes. The labelled 

PCR products are then resolved on high resolution gels and intensities of PCR 

products can be compared between the samples. 

The benefits of differential display are that the method is not dependent on the 

knowledge about expressed genes and PCR amplification allows detection of low 

abundance transcripts. The same benefit provides the hitch as well. Thus the band of 

interest needs to be extracted, cloned and identified before it is possible know which 

gene it represents. Another problem with conventional differential display is that it 

suffers from reproducibility difficulties. Reproducibility and sensitivity issues were 

improved by Kornmann et al in developing a new variant of different display termed 

ADDER (Kornmann et al., 2001). Instead of using arbitrary 10-mers for cDNA 

synthesis and differential display PCR, ADDER uses adaptor sequences with all 

possible combinations of two 3' nucleotides, which allow selective amplification of 

different cDNA sub-populations (Figure 3-7 and more detail description in the 

second chapter of materials and methods). 

ADDER and other differential display techniques were reported to suffer from the 

presence of polymorphisms in the genome, which could be found even in the genome 

of inbred mouse strains. Even one nucleotide difference in a primer binding site 

could change the efficiency by which the product is amplified. Additionally 

insertions or deletions would change the amplified fragment size. To avoid false 

positives, which could appear due to polymorphisms, in the differential dispaly 

screen we used RNA from nine mouse brains pooled into three pools, 3 brains in 

each. For the analysis we carefully grouped Mecp2-null mice according the 

presentation of symptoms (Table 2-5) and used late symptomatic mice for ADDER 

experiment, with the expectation to see more differentially expressed genes. 
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Figure 3-7. ADDER differential display analysis from Mecp2-null and wt mice brains, a) Schematics 

of differential display PCR. Shaded bars are the known poly-A and adaptor sequences common for all 

cDNAs, and the line in between represents unknown cDNA. b) A typical differential display gel. Each 

column of similar pattern (containing 6 smaller columns) contains resolved products of the differential 

display PCR amplification using different primer combination. The first three small columns are 

derived from wt and next three from Mecp2-null mice brains (the same loading order as in b). b) The 

part of differential display gel, which has two mis-regulated bands marked with *• Bands showing 

different intensity in all three lanes were considered as mis-regulated candidates. 
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Thus we performed ADDER on nine Mecp2-null late symptomatic mice (in three 

pools) and nine wt littermates (in three pools). A total of 196 primer combinations 

were used for differential display PCR, whose products were resolved on high 

resolution electrophoresis gels (Figure 3-7). The intensity of bands was examined 

visually by phosphor screen derived image and exposure with film. Only when a 

band showed increased or decreased intensity in all three lanes it was considered as a 

potential candidate for a differentially expressed gene (Figure 3-7). 

On average, differential display PCR with one primer pair produced 50 bands. Thus, 

all 196 primer pair combinations allowed examination of approximately 10 000 

bands. If the assumption is made that a single gene is represented by only one band 

on the gel, then the total number of examined genes is 10 000 approximately. In 

practice the number of transcription units analysed is probably less than this number 

and more difficult to estimate, since we have observed that one gene can be 

represented by more than one band on the gel. This happens when the eDNA 

synthesis primer anneals not only to the poly-A tail, but to the tracks of five As or 

more present in the middle of a transcription unit. 

After examining all 196 differential display primer combinations, 39 bands were 

observed to be more intense in Mecp2-null samples and 11 were less intense. 

Following the previous estimations, mis-regulated genes accounted for only 0.5 % 

of total 10 000 bands examined. 

Potential candidate genes were then cloned and identified (Figure 3-8). As one band 

was found often to contain more than one PCR fragment, fingerprinting using 

restriction enzyme digests was used to identify the fragment showing differential 

expression between the genotypes. For identification of differentially expressed 

transcription unit, the restriction digest pattern was compared between high and low 

intensity bands (Figure 3-8). In some cases it was difficult to identify the correct 

band. In these cases two or three of the most frequently represented clones were 

picked as potential candidates for the mis-regulated transcript. 
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Figure 3-8. An example of a standart procedure used for the identification of genes from differential 

display screen. Bands which display maximum (max) and minimum (mm) intensity were excised 

from the gel and re-amplified using specific primers, which contain MboI and AscI restriction sites. 

Different cycle numbers were used for PCR amplification to ensure that the band used for cloning is 

in the linear phase of amplification (19 cycles). To identify the clone, which contains the differentially 

expressed band, inserts from 24 clones were amplified and digested with frequently cutting restriction 

endonucleases and compared with the digestion pattern of the source "max" and "mm" PCR products. 

Patterns that show the difference between "max" and "mm" were compared with digestions from 

clones and the representing clones were then identified (*). Sequencing of one identified clone 

allowed identification of the mis-regulated gene (in this example Uqcrcl gene). 
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The selected clones were then sequenced to identify mis-regulated genes. 

Subsequently Real Time PCR analysis was done to confirm the mis-regulation. Real 

Time PCR quantification was done on the same eDNA pools of late symptomatic 

Mecp2-null mice used for ADDER. From 36 isolated genes (listed in Table 2-3, from 

row 4 onwards) mis-regulation was confirmed for 11 genes (Table 3-1, p<0.05). 

Because multiple Real Time PCR experiments were done to identify mis-regulated 

genes (36 in total for late symptomatic samples), the probability of false positives 

increases if p<0.05 is used as a cut-off of significance. The Bonferroni significance 

correction for the multiple tests could be used to exlude the possibility of random 

positives. After Bonferroni correction p value becomes p<0.0014. Because there is a 

dispute that Bonferroni correction as well increases the probability of the true 

positive exlusion, both p<0.05 (grey shaded) and p<0.0014 (* marked) values are 

shown in the table 3-1, 

Subsequently, the expression of the genes (which are below p<0.05 significance in 

late symptomatic samples) was examined at earlier stages of disease progression 

(pre- and early symptomatic mice). Real time PCR analysis showed that out of 11 

mis-regulated genes in late symptomatic mice only 3 genes were significantly mis-

regulated in early symptomatic mice and none were mis-regulated in pre-

symptomatic mice (Table 3 

The list of 11 mis-regulated genes was then examined to see if it could tell something 

about MeCP2 function or Rett syndrome. Interestingly, ubiquinol-cytochrome c 

reductase core protein I (Uqcrc 1) and Nadh dehydrogenase subunit 2 (mt-Nd2) are 

proteins involved in mitochondrial respiration (described in paragraph 3.6.2 below). 

The maternally expressed gene 3 (Meg3/gt12) is an imprinted gene (described in 

paragraph 3.6 below). Other genes are less well described in the literature, but have 

similarity to known domains of certain proteins such as a sterile alpha motif (SAM), 

historic core or rho protein. From the early mis-regulated genes, embryo spinal cord 

eDNA is present in different tissues and does not have an open reading frame. 

Esterase/lipase/thioesterase family member is an unknown protein, which has a 

homology to aiylacetamide deacetylases known to be involved in lipid metabolism. 
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3.6. Biological causes and consequences of gene mis-regulation in 

Mecp2-null mouse brain 

3.6.1. Meg3/gtl2 up-regulation is not due to bi-allelic expression 

Initially, the Gt12 locus was characterized in a gene trap integration site screen, for 

parental origin-dependent phenotypes in mouse (Schuster-Gossler et al., 1998). 

When the gene trap transgene was inherited from the father, mice showed the 

dwarfism phenotype. The penetrance and expressivity of the phenotype were greatly 

reduced if the transgene was inherited from the mother (Schuster-Gossler et al., 

1998). Later independently, the Meg3 (gt12) imprinted gene was identified by 

subtraction-hybridisation screen using androgenetic and normally fertilized embryos 

(Miyoshi et al., 2000). Further investigations revealed a reciprocally imprinted gene 

Diki and a differentially methylated region, with characteristics of 1gJ2/h19 locus 

(Schmidt et al., 2000; Takada et al., 2000; Wylie et al., 2000). 

Identification of up-regulation of the Meg3/gtl2 gene in Mecp2-null mouse brain by 

the ADDER technique raised the possibility that MeCP2 might be involved in 

repressing the silent, paternal copy of the gene. The possibility was considered that 

over-expression of Meg3/gtl2 is due to bi-allelic expression. Few approaches can be 

used to address the question. Often, parental origin-dependent expression is 

examined by identifying polymorphisms in the gene of interest in different mouse 

lines (such as Mus musculus molossinus and Mus musculus domesticus), crossing the 

mouse lines and examining which allele is being expressed. Another approach uses 

fluorescent in situ hybridization (FISH) with an intronic probe, which detects nascent 

RNA transcripts. Because nascent transcripts are present only at the site of 

transcription, it is therefore seen as a dot after hybridization with a labelled probe. If 

two alleles are transcribed, two dots are observed (Figure 3-9 b). To investigate the 

allelic expression of Meg3/gtl2 gene the last approach was chosen, because the 

absence of a different mouse line in the laboratory. 
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Figure 3-9. Nascent RNA FISH experiment scheme, a) Two possible splice isoforms of the Meg3/gtl2 

gene. The line underneath intron 8 shows the position of the probe, which was used for the FISH 

experiment. b) Prediction of the results from the FISH experiment that would explain the Meg3/gtl2 

up-regulation observed in Mecp2-null mice brain. The top panel shows more cells with two dots in 

Mecp2-null mouse brain, which would suggest bi-allelic expression. In the middle panel no difference 

is observed, because if over-expression is from a single allele, then nascent RNA FISH is not sensitive 

enough in quantifying the brightness of a dot. In the bottom panel, more cells express the Meg3/gtl2 

mono-allelicly in Mecp2-null mouse brain. 



Using nascent RNA FISH is advantageous because it would be possible to 

discriminate between two possibilities of over expression of Meg3/gtl2 due to bi-

allelic expression or due to an increased number of expressing cells (Figure 3-9). 

Nascent RNA FISH was never reported before in adult mouse tissue sections. 

Therefore the protocols were adapted from nascent RNA FISH done in cell culture 

systems and regular RNA FISH in tissue sections. 

The bacterial artificial chromosome, containing mouse Meg3/gtl2 genomic locus was 

obtained (Invitrogen, RPCI-23-394E14) and the 6.4 kb intron 8 (Figure 3-9 a) was 

sub-cloned between T3 and T7 promoters. The T3 and T7 promoters permitted in 

vitro transcription of sense and anti-sense RNA strands. Hybridisation to the sense 

strand serves a negative control for the experiment. 

For the nascent RNA FISH experiment a Mecp2-null late symptomatic mouse and a 

wt littermate were selected, the brains were harvested and divided into two halves. 

One half was used for purification of RNA to determine if Meg3/gtl2 is significantly 

up-regulated in this animal. As expected, Real Time PCR showed significant up-

regulation of Meg3/gtl2 in this late symptomatic mouse (Figure 3-10). Hence the 

other brain half was used to prepare cryo-sections for the FISH experiment. When 

the sense probe was used for the experiment no signal was observed, therefore the 

conditions were stringent enough to eliminate unspecific binding (Figure 3-11 d). 

Hybridisation with the antisense probe mostly showed one dot per nucleus. However 

there were some instances of two dots per nucleus (Figure 3-11 a,c). These could be 

due to bi-allelic expression in certain cell types, or to dividing or partially 

overlapping cells. 

In order to avoid subjectivity in the experiment, samples from wt and Mecp2-null 

mouse were coded. Cells in fifty fields were analysed and scored by the presence of 

one or two dots. Surprisingly, the wt sample scored highest in both categories - the 

opposite to the expectation considering Meg3/gtl2 up-regulation in Mecp2-null brains 

(Figure 3-10). Most of the cells were still expressing one, rather then two copies of 

the gene. 
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Figure 3-10. Results from the nascent RNA FISH experiment. Brains from Mecp2-null late 

symptomatic mouse and wt littermate were divided into two halves. One half was used for Meg3/gtl2 

expression analysis (quantitative PCR was done in 8 replicas) and shows that the gene is up-regulated 

in the selected Mecp2-null mouse (quantitative PCR analysis). The table shows results from the 

nascent RNA FISH experiment. Slides were given code names and fifty fields were analysed before 

the genotypes were uncovered. 
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Figure 3-11. Nascent RNA FISH images. a) An arrow points to the brain region (picture was taken 

from the mouse brain atlas), which is showed in b, c and d. b) Hybridization of the antisense 

Meg3/gtl2 intron probe. Dots visualise sites of transcription, where nascent RNA is still present. c) 

Magnification of the indicated region from a. d) Hybridization of the sense probe serves as a negative 

control. 
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Therefore, the conclusion was made that Meg3/gtl2 up-regulation is not due to 

biallelic expression in Mecp2-null mouse brain. The likely explanation is that 

Meg3/gtl2 is over-expressed from one allele (Figure 3-9 b). 

3.6.2. Mis-regulation of Uqcrcl correlates with mitochondrial respiration 
defect in Mecp2-null mouse brain 

As mentioned previously, two mis-regulated genes Uqcrcl, and mt-Nd2, are 

localised to mitochondria. Uqcrcl and mt-Nd2 are components of the mitochondrial 

electron transport chain that maintains a proton gradient across the mitochondrial 

inner membrane and drives synthesis of ATP (Figure 3-12). Uqcrcl is a core 

structural component of Complex III, whereas NADH dehydrogenase subunit 2 (mt-

Nd2) is a part of Complex I in the mitochondrial respiratory chain. 
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Figure 3-12. The mitochondrial respiration chain consists of four complexes, which pump protons to 

maintain a proton gradient across the inner mitochondrial membrane. Complex V or ATP synthase 

uses the proton gradient to synthesise ATP. Different substrates (pyruvate/malate, succinate or 

TMPD/ascorbate) can provide electrons for electron transport chain at different stages permitting an 

examination of the activity of different complexes. The figure is from Internet 

(http://wps.prenhall.comlwps/media/objects/3  76/385232/Media-Portfolio/index.html) 
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Figure 3-13. Real Time PCR data showing Uqcrcl and mt-M2 mis-regulation in Mecp2-null mouse 

brain, a) Real Time PCR data of Uqcrcl and mt-M2 expression in pre, early and late symptomatic 

mouse brain. b) Summary of the real Time PCR data with statistical analysis, showing that Uqcrcl is 

significantly up-regulated in early and late symptomatic mice and that mt-M2 is significantly down-

regulated only in late symptomatic mice. 
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Uqcrcl, a nuclear-encoded gene, was significantly up-regulated in early and late 

symptomatic brain, whereas mitochondrially encoded mt-Nd2 was significantly 

down-regulated in late, but not early, symptomatic brains. Neither gene was mis-

expressed in pre-symptomatic animals (Figure 3-13). 

Because the mt-Nd2 gene is not nuclear and is only mis-regulated in late 

symptomatic mice, the Uqcrcl gene was considered as a potential direct target for 

MeCP2. If Uqcrcl is a direct target, MeCP2 should bind in the vicinity of its 

promoter. This prediction was verified by chromatin immunoprecipitation, which 

showed that an anti-MeCP2 antibody, but not random rabbit serum, could precipitate 

a DNA region near the Uqcrcl transcriptional start site (Figure 3-14). This region 

was not detected when Mecp2-null brain nuclei were subjected to anti-MeCP2 

chromatin immunoprecipitation, which eliminates the possibility of non-specific 

cross-reaction of the antibody with other nuclear components (Figure 3-14 b). An 

antibody against di-methylated lysine 9 of histone H3 gave identical recovery of the 

Uqcrcl promoter region in Mecp2-null and wt brain nuclei showing equivalent 

quality of chromatin in these preparations. A known MeCP2 binding site, promoter 

III of the Bdnf gene (Chen et al., 2003b; Martinowich et al., 2003), served as a 

positive control for the immunoprecipitation reaction. Because chromatin IP 

precipitates different length DNA fragments (usually ranging from 200 - 800 bp) it is 

impossible to say which CpG could be occupied by MeCP2. To narrow down the 

MeCP2 binding site DNA methylation status was examined in the region. The 

presence of methylated CpG sites in the region that binds MeCP2 was determined 

using bisulfite sequencing. The region is generally non methylated but one CpG site 

in the Uqcrcl promoter was found to be 33% methylated in total brain DNA. This 

data permit the conclusion that MeCP2 is associated with the Uqcrcl gene in brain 

and that Uqcrcl up-regulation might therefore be a direct consequence of MeCP2 

deficiency. 
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Figure 3-14. MeCP2 binds the promoter region of Uqcrcl gene. a) Uqcrcl promoter map showing 

CpG frequency and the region used for PCR amplification of immunoprecipitated chromatin. Below 

the methylation status of the investigated region is shown (determined by the bisulfide sequencing 

analysis). b) Chromatin immunoprecipitation reveals binding of MeCP2 to the Uqcrcl promoter in Wi 

mouse brain, but not in Mecp2-null mouse brain. The Bdnf promoter III is a positive control. DNA is 

specifically immunoprecipitated with MeCP2 antibody, but not with rabbit serum. Chromatin 

corresponding to neither Bdnf pill nor Uqcrcl is precipitated from Mecp2-null mouse brain using anti-

MeCP2 antibody. Anti di-methyl H3 K9 antibody is able to precipitate similar amounts of DNA 

showing that chromatin amount and quality is similar in wt and Mecp2-null mouse brain. 
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The possibility was considered that the abnormal expression of Uqcrcl in 

symptomatic Mecp2-null mice might affect mitochondrial morphology and/or 

physiology. Initial examination of purified mitochondria by transmission electron 

microscopy (TEM) did not reveal gross structural differences between wt and 

Mecp2-null mice (Figure 3-15 a). The mitochondrial purification procedure changes 

the normal appearance of some mitochondria. Therefore in situ TEM of brain 

sections is an important follow-up experiment. 

Polarographic oxygen electrode studies were done to evaluate the activity of the 

different complexes within the electron transport chain (as noted in Figure 3-15 these 

experiments were done by A.P., J.C. and N.M.). The protonophore FCCP was added 

to uncouple the activity of complexes I-TV from the rate-limiting electrochemical 

proton gradient, thereby permitting analysis of maximal activity. Symptomatic 

Mecp2-null mitochondrial samples consistently showed increased uncoupled 

respiration rates when substrates that fed in upstream of complex III were used 

(Figure 3-15c P/M, Succ.), but not with a substrate that enters downstream of 

complex III (Figure 3-15c, TMPD). This difference was not seen in brain 

mitochondria from pre-symptomatic mice. The data suggests that in the symptomatic 

Mecp2-nulls the maximal capacity of the respiratory chain upstream of complex IV, 

but probably downstream of complexes I and II, is increased. Enhancement of 

complex III activity is consistent with the observed over-expression of the complex 

III component Uqcrcl in Mecp2-null mice. 

Under physiological conditions, proton translocation associated with complexes I, III 

and IV works against an electrochemical proton gradient, providing a mechanism for 

respiratory control. The states 2 and 4 represent this condition. Increases in oxygen 

consumption at state 2 and 4 were observed in symptomatic Mecp2-null versus Wi' 

mitochondria when substrates fed in at complex I and II, but not when these were by-

passed by addition of a complex IV substrate (Figure 3-15 d and e). Differences in 

state 3 respiration rates between symptomatic Mecp2-null and wt mouse brain 

mitochondria were also observed only for substrates that feed electrons to the chain 

before complex IV (Figure 3-15 f). 
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Figure 3-15. Investigation of the respiratory chain in mitochondria isolated from whole brain of wi 

and Mecp2-null mice. a) Electron micrographs showing isolated mitochondria from a symptomatic 

Mecp2-null (KO) mouse and an age-matched wt littermate. Scale bar is 2 .tm. b) Typical output traces 

from a polarographic oxygen electrode. Initially, mitochondria consume very little oxygen, but 

following the addition of substrates, oxygen consumption is moderately increased (State 2). Addition 

of ADP (State 3) permits rapid respiration during which the proton gradient is relieved by ATP 

synthase. Following phosphorylation of all the ADP present, respiration slows again (State 4). At this 

point, mitochondria were directly uncoupled by the addition of the protonophore FCCP allowing the 

proton pumps to run freely. Panels c-h: each pair of columns shows data using one of three different 

substrates: pyruvate and malate (PM), succinate (succ) or TMPD. Panels c,d,e, and f compare 

respiration rates during the different respiratory states from brain mitochondria isolated from Mecp2-

null animals (light bars; n = 8 runs with separate mitochondrial preparations derived from 4 animals) 

compared to age-matched wt litter-mate controls (dark bars). Data from symptomatic Mecp2-null 

mouse mitochondria (n = 16 runs with preparations from 8 animals), compared to wt controls are 

shown to the right of each panel. All comparisons were tested with one-way ANOVA's. One star (*) 

indicates p<0.05; two stars (**) p<O.Ol; three stars (***) represent p<0.001 Panel g, shows the 

calculated ATP:O ratios for pre-symptomatic and symptomatic Mecp2-null animals and wt controls. 

Panel h, shows the calculated respiratory control ratios (RCRs). Mitochondrial isolation, respiration 

measurements and data analysis were done by Andrew Paterson, John Curtis and Nikki MacLeod. 

TEM technical work was done by John Findlay and image analysis was done by the author of this 

thesis. 
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Measurement of the amount of oxygen consumed during the conversion of a known 

amount of ADP (during state 3), allows the calculation of the ATP:O ratio. This 

relates the stoichiometries of protons translocated to the number of protons flowing 

through the ATP synthase per ATP molecule produced. There were no significant 

differences observed in any of the measured ATP:O ratios (Figure 3-15 g), implying 

that the significant differences reported above were not the result of a change in the 

respiratory chain proton pumps or the efficiency of the ATP synthase. In none of the 

above experiments we have observed difference between pre-symptomatic Mecp2-

nulls and wt controls. 

Our data show that respiration rates for symptomatic Mecp2-null animals are 

significantly increased relative to WI controls for all substrates that feed in upstream 

of complex IV. Calculation of the respiratory control ratios (RCR) shows how the 

coupled respiration has increased proportionally than the uncoupled respiration rate 

(Figure 3-15 h). This may indicate an increase in the proton conductance across the 

mitochondrial inner membrane (Nicholls and Ferguson, 2002). Therefore, to 

maintain the proton gradient against this background "leak", the electron transport 

chain works faster and therefore consumes more oxygen. Thus mitochondria from 

symptomatic mutants appear to have an overall greater respiratory capacity (Figure 

3-15 c), but also appear to work less efficiently (Figure 3-15 e & h). 

3.6.3. Mitochondrial respiration dysfunction does not lead to increased 
apoptosis in Mecp2-null mouse brain 

Mitochondria are important players in programmed cell death - apoptosis. They store 

important factors for the apoptotic signalling cascade such as cytochrome c and 

caspases (Gorman et al., 2000). Cytochrome c release from the intermembrane space 

either by rupture of the outer membrane or by transport through channel, activates 

various caspases, which degrade cellular proteins. Apoptosis inducing factor (AIF) 

and endonuclease G release from mitochondria contributes to nuclear DNA 
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fragmentation (Saelens et al., 2004). Nuclear DNA breaks are often used to detect 

apoptosis. 

Mitochondrial respiration abnormality was observed in late symptomatic Mecp2-null 

mouse brain. Hence there was a possibility that cells in the brain die by apoptosis. As 

mentioned before, the decrease in RCR suggested that there might be a leak of 

protons through inner membrane (Figure 3-15 h). The leak might be caused by the 

rupture of the outer membrane, which could also release apoptosis signals. 

One of the characteristic signs of apoptosis is fragmentation of DNA either by double 

stranded breaks or by nicks. The resulting 3'OH termini can be labelled by the fill in 

reaction with labelled nucleotides using nucleotide terminal transferase (TdT). The 

TUNEL (TdT-mediated dUTP nick end labelling) procedure was used to compare 

the cell death frequencies between late symptomatic Mecp2-null mouse brain and 

healthy control litterrnate. As a result in both wt and Mecp2-null mice we observed 

less than ten labelled cells per brain section, suggesting that there is no increased 

apoptosis (Figure 3-16). Because only two diagonal brain sections were analysed per 

genotype, it is still possible that in certain areas of the brain, there might be increased 

cell death rate in Mecp2-null mice. 
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Figure 3-16. TUNEL staining on late symptomatic Mecp2-null mouse and wt litter mate brain section. 

a) A brain section treated with DNase I serves a positive control for TUNEL labelling. b) As a 

negative control for unspecific labelling serves a brain section, which has gone trough the TUNEL 

procedure without TdT. No unspecific labelling was observed. TUNEL assay of wt (c) and late 

symptomatic Mecp2-null (d) mouse brain sections display only few apoptosis dying cell in the brain. 

DAPI stain marks cell nuclei. 
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3.7. Summary and conclusions 

In this chapter a thorough analysis of gene expression in Mecp2-null mouse brain is 

described. Candidate approaches surprisingly revealed that Bdnf is down regulated in 

Mecp2-null mouse brain. This is the opposite of the observed up-regulation in 

cultured neurons. The discrepancy might be due to feedback loops in living animal 

which are dependent on the different cell types in the brain or even different organs. 

From the perspective of Rett syndrome, the findings about the Bdnf gene raised 

several issues. Firstly, Bdnf is a neurotrophic factor, which promotes neuronal 

growth and survival (Bonni et al., 1999). Therefore the expectation is that neurons 

would be larger in cells over-expressing Bdnf. It is documented, that Bdnf 

overexpressing transgenic mice has no gross abnormalities (Croll et al., 1999) and 

that dendritic branching in these mice is increased (Tolwani et al., 2002). However, 

in Rett syndrome girls one of the best documented findings is that neurons have 

reduced dendritic branching and brains are smaller. In mouse models for Rett 

syndrome the findings are rather similar - brain and neuronal soma size are reduced 

(Chen et al., 2001). As mentioned before, the finding presented in this thesis shows 

that Bdnf is in fact down regulated in total Mecp2-null mouse brains. This finding 

better relates with the mouse phenotype of smaller brain size and reduced neuronal 

branching in humans. Reduced neuronal branching, smaller brains and delayed 

symptoms onset were seen as well in the Ss1811-null mouse (Aizawa et al., 2004). 

Real Time PCR analysis, however, did not reveal any mis-expression of Ss1811 gene 

in late symptomatic Mecp2-null mice. 

The Hesi gene was found to be up-regulated in Mecp2-null mice at pre, early and 

late stages of the disease. This is an interesting gene for future work for the following 

reasons. Firstly, it is up-regulated in the absence of MeCP2, therefore it is more 

likely to be a primary target for a transcriptional repressor. Secondly, the gene is mis-

regulated in pre-symptomatic mice and it could be involved in the development of 

symptoms. 

Microarray and Real Time PCR analysis revealed constitutively up-regulated Sgk 

and Fkbp5 genes, even though glucocorticoid levels are not affected. Interestingly in 

Rett syndrome patients cortisol levels appear to be normal (Huppke et al., 2001; 
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Echenne et al., 1991), but over-alertness, agitation an periods of scream may result 

from absence of functional MeCP2, which affect downstream members of stress 

signalling pathway. Reduced head size, lower IQ scores and poor motor coordination 

were noted in children, who had early post-natal administration of the 

glucocorticoids (Yeh et al., 2004). Reduced neuronal branching observed in Rett 

syndrome (Armstrong, 2002) was also seen after chronic administration of the 

glucocorticoids (Wellman, 2001). Osteopenia is known side side-effect of 

glucocorticoid administration (Patschan et al., 2001), occurs in Rett syndrome as 

well (Haas et al., 1997; Leonard et al., 1999). These phenotypic similarities suggest 

that disturbance in glucocorticoid signalling may be responsible for some symptoms 

in Rett syndrome. 

By global analysis of gene expression about dozen genes were found to be mis-

regulated in late symptomatic mice. Of these only a few were mis-regulated in early 

symptomatic mice as well. This suggests that either more genes become targets of 

MeCP2 when MeCP2 becomes progressively up-regulated in the brain, or that 

disease progression causes secondary responses, which are reflected as changes in 

transcription. One of the genes up-regulated in late symptomatic mice was Meg3/gtl2 

gene which was known to be maternally expressed. The possibility was raised, that 

MeCP2 could be important in silencing of the paternal copy of the gene. A closer 

examination of the imprinted status of up-regulated Meg3/gtl2 revealed that 

Meg3/gtl2 is mostly expressed monoallelicly in late-symptomatic Mecp2-null mice. 

The option remains that the expression is up-regulated from the one expressed allele. 

Up-regulation of Uqcrcl expression in early and late symptomatic mice and down 

regulation of mt-Nd2 only in late symptomatic mice suggested examination of the 

mitochondrial respiration in Mecp2-null mouse brain. Investigation of the activity of 

different respiration complexes showed no difference in respiration, when complex 

IV substrates were used. However complex I or II substrates both resulted in an 

increase in the respiration of mitochondria purified from symptomatic Mecp2-null 

mice. These results suggested that either both complex I and II or only the 

downstream complex III are affected. Given the evidence that the complex III 

member Uqcrcl is up-regulated, it is possible that complex III might be responsible 
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for the observed increase in mitochondrial respiration. Additionally, reduced 

respiratory control ratio suggested that membrane leakage might be contributing to 

the mitochondrial defect as well. However, at this stage, it is still un-clear how the 

transcriptional up-regulation of one of the complex III components could perturb the 

mitochondrial respiration. Future experiments will have to determine if there is any 

change in Uqcrcl protein amounts and in complex III assembly in Mecp2-null 

mouse. Over-expression of Uqcrcl in cells or mice would help to find out if the 

observed respiration defects are the only dependent on increased Uqcrcl amounts. 

Another interesting question is if the increased mitochondrial respiration causes any 

symptoms in mice and in humans. The possible experiment that could answer this 

question is examination if over-expression of Uqcrcl gives rise to any of the 

symptoms in mice. 

The delayed onset of Uqcrcl up-regulation may mean that mis-expression is an 

indirect consequence of the absence of MeCP2. However, the amount of MeCP2 in 

neurons is known to increase dramatically as neurons mature (Mullaney et al., 2004; 

Jung et al., 2003) and therefore some genes that are not initially affected by MeCP2 

may come under its regulatory influence as MeCP2 becomes more abundant. The 

increase in the concentration in brain MeCP2 occurs progressively during postnatal 

life as synaptogenesis proceeds and neurons mature, continuing well beyond 6 weeks 

of age in the rat (Mullaney et al., 2004). 

The presented data revive the idea that mitochondrial abnormality may contribute to 

pathogenesis of Rett syndrome. Structural abnormalities in mitochondria from skin 

and muscle biopsies of RTT patients have been sporadically reported (Armstrong, 

1992; Dotti et al., 1993; Eeg-Olofsson et al., 1989; Ruch et al., 1989) and there is 

limited evidence of defects in the electron transport chain in these samples (Coker 

and Melnyk, 1991; Dotti et al., 1993). Small stature and hypotonia are typical 

features of mitochondrial disorders that are shared with RTT. Additional 

circumstantial support for this link comes from the observation that in about half of 

RTT patients elevated levels of circulatory lactic or pyruvic acid were measured 

(Lappalainen and Riikonen, 1994; Matsuishi et al., 1992). This might be caused by 

defects in the respiratory chain and urea cycle complexes, both of which are 
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mitochondrial. Finally, breathing abnormalities are a key feature of RTT and may 

conceivably reflect an underlying weakness in oxidative respiration. 

There are several reasons to expect increased apoptosis in the Mecp2-null mouse 

brain. Observed mitochondrial respiration abnormalities potentially could lead to 

apoptosis. Other suggestions for the increased apoptosis come from experiment, in 

which in vitro cultured wt neurons were found to have a better survival rate than 

Mecp2 mutant ones (Young and Zoghbi, 2004). The examination of Mecp2-null late 

symptomatic mouse by the TTJNEL assay leads to the conclusion that there is no 

dramatic increase in apoptosis. However, because only few sections were analysed 

there is still a possibility that certain regions of brain has increased cell death. 
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4. Chapter four. 

MeCP2 isoforms 
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4. 1. Introduction 

Initially, MeCP2 protein was purified from rat brain as a single 84 kD protein based 

on it's binding to methylated CpG (Lewis et al., 1992). The results of Edman 

degradation allowed the design of a degenerate probe which was then used to screen 

a eDNA library and isolate full length MeCP2 cDNA (Lewis et al., 1992). Later, the 

mouse Mecp2 gene was mapped to Xq28 and shown to be subject to X-inactivation 

(Quaderi et al., 1994). Further analysis of the Mecp2 transcript identified alternative 

polyadenylation sites, that give rise to two main mRNA variants with different 

3'UTRs (10KB and 2KB) (Coy et al., 1999). At this time Mecp2 was annotated as a 

three-exon gene, with all exons contributing to the protein (Coy et al., 1999). 

Sequencing of the Mecp2 genomic locus in mouse and human combined with more 

detailed bioinformatic analysis revealed an additional upstream non-coding exon 

(Reichwald et al., 2000). Mecp2 is therefore currently recognized as a four-exon 

gene. 

This results chapter describes the identification of a new MeCP2 splice isoform. By 

searching EST databases a novel MeCP2 splice isoform (MeCP2a) was found, 

which encodes a distinct N-terminus. MeCP2a mRNA splice variant is more 

abundant than the previously annotated MeCP2 mRNA (MeCP2) in mouse tissues 

and human brain. Furthermore, MeCP20 mRNA has an upstream open reading frame 

that inhibits its translation. As a result of these differences, more than 90% of 

MeCP2 in mouse brain is MeCP2a. Both protein isoforms are nuclear and co-

localise with densely methylated heterochromatic foci in mouse cells. To investigate 

if newly discovered coding exoni is a hot spot for Rett syndrome causing mutations 

a further mutation screen in Rett syndrome patients was performed. Characterisation 

of the generated isoform-specific antibodies finishes the chapter. 

Other group (Mnatzakanian et al., 2004) at the same time identified the new MeCP2 

isoform as well. However they named the previously known MeCP2 isoform as 

MeCP2A and newly discovered one as MeCP2B. To avoid different nomenclature 

for the same isoforms, in the 5 1h Annual Rett syndrome Symposium it was commonly 

agreed to call the known MeCP2 isoform as MeCP2e2 (previously described as 
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MeCP2I3 or MeCP2A), because it starts at exon 2. The newly discovered isoform 

was accordingly called MeCP2e1 (previously described as MeCP2(X or MeCP2B). In 

this thesis further on MeCP2e1 and MeCP2e2 nomenclature will be used. 

4.2. Identification of MeCP2 splice variant in EST databases 

Mouse expressed sequence tag (EST) databases were searched for cDNA sequences 

encoding MeCP2. Alignments revealed that ESTs can be grouped into two categories 

depending on the presence (BY107013, B1409371) or absence (CA980031, 

BY2441 11) of exon 2. Human MECP2 cDNAs with (BC1 1612, BM923600) and 

without exon 2 (BG706068, B1458175) also exist in human EST database. As exon 2 

contains the ATG for the initiation of translation, the possibility was considered that 

the transcript lacking exon 2 is a non-coding RNA. However exon 1 contains an 

ATG that in the absence of exon 2 initiates a potential open reading frame (ORF) of 

501 amino acids (a.a.) in mice and a 498 a.a. in humans (Table 4-1). The new exon 

2-minus isoform was designated as "MeCP2e1" and the previously described 

isoform containing exon 2 as "MeCP2e2". Alignment of el and e2 predicted protein 

sequences demonstrate identity except at the extreme N-terminus (Figure 4-1). The 

MeCP2e1 N-terminus contains poly-alanine and poly-glycine repeat tracts encoded 

by GCC and GGA trinucleotides. Comparison of these isoforms with other vertebrate 

MeCP2 sequences showed that MeCP2e 1 shares a poly-alanine tract, serine-glycine 

residues and EERL motifs with frog and zebrafish MeCP2 sequences, whereas 

MeCP2e2 lacks these features. The alignment suggested that MeCP2e1 more closely 

resembles the ancestral form of MeCP2 than does MeCP2e2 (Figure 4-1 c). 
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MW, 
kDa 

Length, 
a. a. 

Charge 
at pH 7 

mv1eCP2e1 	53.6 501 9.89 34.9 

hMeCP2el 	53.3 498 9.88 34.8 

rnMeCP2e2 	52.3 484 9.96 37.8 

hMeCP2e2 	52.4 486 9.95 37.8 

Table 4-1. Physical characteristics of human and mouse MeCP2 isoforms. 

43. MeCP2eI is the major mRNA splice variant in vivo 

To confirm in silico evidence and assess the relative abundance of the different 

MeCP2 isoforms in vivo, semi-quantitative RT-PCR analysis of cDNA derived from 

different mouse tissues was performed. The two primers were designed to anneal to 

exon 1 and exon 3 respectively (Figure 4-2 a). Control amplification of mixed 

MeCP2e1 and MeCP2e2 encoding plasmids showed no significant amplification bias 

towards the shorter product (Figure 4-2 a). RT-PCR analysis demonstrated that 

MeCP2e1 is more abundant than MeCP2e2 in most tissues. Relative abundance of 

MeCP2e1 was highest in the brain, thymus and lung, whereas an approximately 1:1 

isoform ratio was seen in testis and liver. Semi-quantitative RT-PCR provided 

evidence that both splice variants exist in human brain; again the predominant form 

of mRNA encodes MECP2e1 (Figure 4-2 b). 

To analyse the abundance of the two isoforms during cellular differentiation, we 

differentiated mouse embryonic stem (ES) cells into neurons. Samples from stages of 

differentiation were assayed for the different isoforms. Semi-quantitative RT-PCR 

showed that MeCP2e1 mRNA is more abundant than MeCP2e2 mRNA in ES cells 

and the proportion of el mRNA appeared to increase during neuronal differentiation 

(Figure 4-2 c). 
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hMeCP2el 	- AA.AP  
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Figure 4-1. Alternative splicing of MeCP2 IURNA. a) Previously described MeCP2e2 is encoded 

when all known exons are sequentially spliced. b) The novel MeCP2e1 isoform arises when exon I is 

spliced onto exon 3, skipping exon 2. Shaded boxes are protein coding and open boxes are non-

coding. ESTs suggesting the occurence of each isoform in vivo are mapped as lines above the gdnomic 

DNA. c) Alignment of mouse and human MeCP2e1 and MeCP2e2 N-termini with zebrafish and frog 

MeCP2. MeCP2e1 is more similar to zebrafish and frog orthologs than is MeCP2e2. * indicates a 

putative serine phosphorylation site. 
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Figure 4-2. Relative abundance of splice variant mRNAs in mouse tissues, human brain and 

differentiating ES cells, a) A mouse tissue cDNA panel was analysed by semi-quantitative PCR with 

primers that anneal to exon 1 and 3 (short arrows on the map). The el isoform was found more 

abundant in lung, thymus, brain and heart. Amplification of an equimolar mixture of el- and e2-

encoding plasmids indicated no preference for amplification of either PCR band. b) Mouse ES cells 

were differentiated to give embryoid bodies and neuronal cells in culture. EB4 and EB8 refer to 

embryoid bodies on day 4 and day 8 of differentiation. 4DN2 refers to day 4 after embryoid bodies 

were dissociated and plated on serum-free neurobasal medium. c) PCR with human brain cDNA 

showed dominance of the el splice isoform. 

133 



4.4. The MeCP2eI splice variant is more efficiently translated in vivo 

Having established that the MeCP2e1 mRNA splice isoform is abundant in mouse 

tissues and human brain, we next asked if MeCP2e1 mRNA is translated in vivo. To 

address this, mouse cDNAs coding both isoforms were obtained from IMAGE 

consortium and sub-cloned into mammalian expression vectors (pRL-SV40, 

Promega) under SV40 viral promoter. Tail fibroblasts from Mecp2-null mice (Guy et 

al., 2001) were transfected with plasmid constructs containing el or e2 isoform 

cDNA (Figure 4-3). Western blotting with a C-terminal MeCP2 antibody showed 

that MeCP2e 1 is successfully translated, but we consistently observed only very low 

amounts of MeCP2e2 in independent transfections. As a potential explanation, a 

short ORF (39 a.a.) within the 5'UTR region of MeCP2e2 was noted that could 

possibly interfere with its translation. The short ORF starts from the ATG that 

initiates translation of the MeCP2e1 isoform, but in MeCP2e2 mRNA this ORF 

tenTmnates due to alternative splicing 55 bp (in mouse) upstream of the bona fide 

MeCP2e2 translation start site. To test for interference of the upstream ORF, a point 

mutation that changed the upstream ATG to AAG (Figure 4-4 a) was introduced and 

the wild-type and mutant versions of MeCP2e2 were expressed in fibroblasts. 

Northern blots probed with MeCP2 cDNA showed that similar amounts of mRNA 

were produced from transfected wildtype MeCP2e 1, MeCP2e2 and mutant MeCP2e2 

plasmids (Figure 4-4 b, lanes 1,2 and 3). As before, MeCP2e1 was efficiently 

synthesised, but a negligible amount of MeCP2e2 protein was translated from the 

wildtype cDNA construct. Mutation of the upstream ATG, however, led to a 

dramatic increase in the amount of translated MeCP2e2 (Figure 4-4 b lanes 1, 2 and 

3). The results indicate that the MeCP2e1 mRNA is more abundant than MeCP2e2 

mRNA, but also that MeCP2e2 mRNA is inefficiently translated. Together, these 

findings suggest that MeCP2e1 protein will be much more abundant than MeCP2e2 

in vivo. To test this prediction, advantage was taken of the different predicted sizes of 

the el and e2 protein isoforms (Table 4-1). 
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Figure 4-3. Western blot analysis of mouse cells transfected with MeCP2eI and MeCP2e2. Top panel 

shows the part of the constructs used for transfections. An SV-40 promoter and artificial intron is 

followed by MeCP2 5'UTR, coding sequence, 3'UTR, MeCP2 polyadenylation signal and SV40 

polyadenylation signal (polyadenylation signals are not shown). MeCP2 exons are shown below each 

map. Two independent plasmid purification baches were used for each type of transfection 

(MeCP2eI, lanes I and 2; MeCP2e2, lanes 3 and 4). The MeCP2eI plasmid gave high protein levels, 

whereas the product of the MeCP2e2 plasmid was barely visible in lane 4 only. MeCP2 was detected 

using Upstate antibody, which was raised agains the common part of both proteins. 

A high resolution SDS-PAGE gel of in vivo translated ci and e2 forms confirmed 

that they migrate differently (Figure 4-4 b). Co-transfection of equal amounts of ci 

and e2 isoform expression constructs showed that MeCP2e1 is greatly over-

represented among the translation products (Figure 4-4 b lanes 4 and 5). Even when 

the first ATG is mutated co-transfection shows preference in the expression of ci 

isoform (Figure 4-4 b lane 4). To ask whether endogenous brain MeCP2 also 

contains predominantly MeCP2e 1, we loaded different amounts of mouse brain 

nuclear extract on the same gel (Figure 4-4 b lanes 8, 9 and 10). MeCP2e2 protein 

could be detected only with higher amounts of nuclear extract loaded. The estimate 

was made that the MeCP2e 1 protein is at least 10 fold more abundant than MeCP2e2 

in mouse brain. Observations showing the dominance of MeCP2e 1 isoform in the 

mouse brain were also made with isoform specific antibodies (see section 4.7 below). 
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Figure 4-4. Reduced abundance of MeCP2e2 due to translational interference by an upstream ORF. a) 

Diagrams of MeCP2 constructs used for transfections. The MeCP2e1 expressing construct is shown 

on top. The start eodon of the wildtype upstream ORF is labeled as ATG (middle diagram) and is 

mutated to AAG in the lower construct (MeCP2e2 ATG->AAG). b) Western blot analysis of 

transfected Mecp2-null mouse fibroblasts and native MeCP2 from mouse brain nuclear extracts. 

MeCP2 protein isoforms (*) migrated at different sizes on this 8% PAGE gel (compare lanes 1, 3 and 

4). The upstream ORF inhibited the translation of MeCP2e2 (lanes 2 and 3). MeCP2e1 is the 

predominant isoform in mouse brain nuclear extract (lanes 8, 9 and 10). The Northern blot (lower 

panel) showed that different levels of translated MeCP2 protein are not due to differential 

transcription of the constructs, as similar amounts of MeCP2 mRNA were seen in lanes 1, 2 and 3. In 

the absence of transfection, no endogenous MeCP2 RNA seen in these Mecp2-null cells (lane 6). 
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4.5. Localisation of different MeCP2 isoforms in mouse cells 

The majority of methylated DNA in mouse cell nuclei is in repeated major satellite 

sequences, which exhibit punctate staining with DAPI. In mouse cells MeCP2e2 has 

previously been shown to co-localise with DAPI bright spots in a DNA methylation-

dependent manner (Nan et al., 1996). To compare localisation of the different 

MeCP2 isoforms in mouse cells, Mecp2-null tail fibroblasts were transfected with 

plasmids expressing the el or e2 isoforms and stained with an MeCP2 antibody that 

recognises the invariant C-terminal domain (Upstate). Both isoforms were nuclear 

and colocalised with DAPI bright spots (Figure 4-5). Therefore no functional 

difference was detected between ci and e2 isoforms at the level of cellular 

localisation. 

DAPI 	 MeCP2e2 

DAPI 	 MeCP2e1 

Figure 4-5. Both MeCP2 isoforms co-localise with methyl-CpG-rich DAFT bright spots when 

MeCP2e1 and MeCP2e2 expression constructs are transfected to Mecp2-null fibroblasts. Cells 

showing strong staining were less frequently observed in MeCP2e2 transfection. 

4.6. Screening of iso form specific sequence variations in humans 

The existence of the new isoform has implications for the study of Rett syndrome. 

Exon 1 was previously thought to be non-coding and has therefore been excluded 

from many mutational screening programmes. To investigate the possibility of 
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mutations in the exon 1, mutation screening strategy was developed. Rett syndrome 

patient DNA samples were kindly provided by John Warner. 

Primers were designed to amplify a 450 bp region of exon 1. PCR amplified 

fragment was then cleaned and used for direct sequencing using the same primers. 

The PCR fragment was sequenced from both directions in order to have better 

coverage and reproducibility. The DNA samples from 60 healthy individuals (30 

male and 30 female) and 100 individuals (all female) with Rett syndrome were 

obtained and sequenced. From these 100 individuals with Rett syndrome there were 

9 samples without known MeCP2 mutations. The screen revealed no sequence 

variations in healthy individuals and no mutations in Rett syndrome. Failure to find 

any mutations could be explained by the fact that we had a very small group of 

patients without known MECP2 mutation. The other group, which in parallel 

described MECP2e1 isoform was successful in identifying 11 nucleotide deletion in 

the exon 1 (Mnatzakanian et al., 2004). However to identify a mutation they screened 

19 Rett syndrome girls, which were tested negative for a MECP2 mutation in other 

exons. 

4.7. Generation of MeCP2 isoform specific antibodies 

Previous results showed that MeCP2e 1 isoform on the PAGE gel migrates at higher 

molecular size than MeCP2e2 (Figure 4-4 b). Following this observation it was 

suggested that the bottom band from brain nuclear extract represents the MeCP2e2 

isoform. However it is possible that the bottom band is other protein or degradation 

product of MeCP2e 1, which is recognized by the antibody. In order to investigate the 

distribution of different isoforms and possible functional differences anti-peptide 

antibodies were raised, which would specifically recognize one or the other MeCP2 

isoform. 

Because there is only a very short amino acid stretch different between the two 

isoforms there was no good choice of possible peptides. Therefore, peptides were 

chosen AAPSGGGGGGEEERLC and MVAGMLGLREEKSC for MeCP2e1 and 

138 



MeCP2e2 respectively. Cysteine residues at the end of each peptide are for 

conjugation purposes. Genosphere Biotecimologies synthesised the peptides, 

conjugated them with an antigen, immunised two rabbits for each peptide and carried 

out ELISA tests. Pre-immune serum was taken before the immunisations were done. 

Ten weeks after immunisation, anti-serum was collected and ELISAs showed good 

chance of antibody affinity for the peptide substrates. Because Genosphere 

Biotechnologies has mixed the antisera, we had to find out the specificity of antisera 

ourselfes. To test specificity for MeCP2 protein, Mecp2-null cells were transfected 

with constructs expressing MeCP2e1 or MeCP2e2 isoforms followed by Western 

blot analysis. Initially transfections were tested using Upstate anti-MeCP2 antibody. 

Then all four pre-immune and anti sera were Western blot tested using 1:500 dilution 

(Figure 4-6). Based on the Western blot analysis probed with Upstate antibodies 

(Figure 4-3 and Figure 4-4) the expectation was to see an MeCP2 band below the 83 

kDa marker. Neither of the pre- immune sera had any immunoreactivity, suggesting 

that all signals which were seen in the anti-sera were due to the immunisations of 

rabbits (Figure 4-6). Western blot with 1958 anti-serum has a predicted size band in 

cells transfected with el and e2 isoforms with slightly stronger band in the e2 

transfected lane (Figure 4-6). Considering that el transfected cells have slightly more 

protein, 1958 anti-serum has better affinity to e2 isoform, however it cross-reacts 

with ci isoform as well. In the brain nuclear extract mostly el isoform is visible, 

because it is much more abundant. Additionally the strong band of around 100 kDa 

size is been recognised in the brain. Overall we concluded that 1958 is not very 

specific antibody. When probed with 1959 anti-serum, there is a strong predicted size 

band visible in the e 1 transfected cell lane but no right size band are in the e2 lane 

(Figure 4-6). There is one band just above 62 kDa marker, however it is wrong size. 

Untransfected lane is clean and the brain nuclear extract has a single predicted size 

signal. Therefore it is a very specific MeCP2e1 antibody, which does not cross-react 

with many other proteins. Probing with 1960 anti-serum gives several strong cross-

reacting bands above 83 kDa marker in transfected, untransfected and brain nuclear 

extract lanes (Figure 4-6). Predicted size band is also observed for e2 transfected 

cells, which is absent in el or untransfected lanes. The weak band of the same size is 

present in the brain nuclear extract, were e2 was shown to be under-represented. 
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Figure 4-6. Western blot analysis of isoform specific anti-sera. Each panel has two sections: one is 

probed with the pre-immune serum (PT) and other with serum harvested 10 weeks after immunisation 

(AS). The first lane in each blot is loaded with the whole cell extract of Mecp2-null fibroblasts 

transfected with MeCP2eI expressing plasmid (el), the second is transfection with MeCP2e2 

expressing plasmid with mutated first ATG (e2), the third is untransfected cells (0) and the last is wt 

mouse brain nuclear extract. The expected size band is 75 - 80 kDa and marked with an asterisk (*). 

Equal amounts of protein were loaded. Antisera were used at 1:500 dilution. 
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In the region of interest (between 83 and 62 kDa) 1960 anti-serum shows clear signal 

and is able to discriminate between el and e2 isoforms. This anti-serum is going to 

be a good tool for Western blot, but probably not for immuno-precipitations. Western 

blot with 1961 anti-serum was the least successful, because no strong predicted size 

bands were observed in any of the lanes (Figure 4-6). 

4.8. Discussion 

MeCP2e 1 is more similar to frog and zebrafish MeCP2 sequences than the currently 

known isoform, MeCP2e2. These findings suggest that MeCP2el is more closely 

related to the ancestral form of MeCP2 and that the appearance of exon 2 may be a 

relatively recent event in the evolution of the mammalian gene. The differing size 

and charge of el and e2 isoforms permit their separation by gel electrophoresis. 

Subsequently it was demonstrated that both isoforms exist in mouse brain, but 

MeCP2e1 is by far the dominant form. The higher abundance of MeCP2e1 in mouse 

brain was later confirmed by protein detection with specific antibodies. The 

predominance of MeCP2e 1 can be partly accounted for by the greater abundance of 

its transcript. In addition, translational interference occurs by an upstream ORF in 

mRNA of the e2 isoform. Translational interference by upstream ORFs is well 

established and has been shown to depend on the distance between the upstream 

ORF and the ATG of the downstream ORF and also on the structure of 5 'UTR RNA 

(Kozak, 2001; Child et al., 1999; Xu et al., 2001; Arrick et al., 1991). It is not known 

whether translational interference of this kind can be modulated in vertebrates as a 

means of regulating protein synthesis. 

New isoform specific antisera investigated in this study have shown to be a 

promising tool in the future investigations of the specific role of MeCP2 isoforms. 

More experiments are still required to proper characterise antisera. Dot-blot with 

peptides would be useful in determining the affinity of antibodies; affinity 

purification would be useful in reducing background noise (especially for the 1960 

antiserum) and competition experiments could strengthen the results showing 

antibody specificity. 
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The discovery of a new coding exon emphasises the need for routine inclusion of 

exon 1 in Rett syndrome screens. Because MECP2e1 is the predominant MeCP2 

isoform, introduction of a nonsense or frameshift mutation would remove over 90% 

of total MeCP2. Indeed, a disease-causing frameshift mutation (11 nucleotide 

insertion) was found in the patient of Rett syndrome (Mnatzakanian et al., 2004). 

MeCP2e 1 N-terminus contains poly-alanine and poly-glycine sequences that are 

encoded by repeated GCC and GGA codons respectively. Expansion of a GCC 

trinucleotide sequence in the FMR2 gene is reported to cause FRAXE mental 

retardation (Knight et al., 1993). It is noteworthy that no Rett syndrome mutations in 

the exon 2 have been described. It is possible that exon 2 mutations, which would 

only affect MeCP2e2, are compensated by the more abundant MECP2e 1 isoform and 

would therefore have a much less severe or no phenotypic consequence. 

Alternatively there is no CpGs in the exon 2 therefore it has a no chance to get 

mutations due to methyl-CpG deamination. 

A similar characterisation of the new MeCP2 isoform was published by another 

group (Mnatzakanian et al., 2004). They named the new isoform as MeCP2B, while 

the old isoform MeCP2A (following historical discovery order). Similarly they have 

found that in human and mouse brain the MeCP2e1 is the dominant isoform. 

Interestingly, RT-PCR suggested that MECP2e1 dominance was only seen in the 

human brain, while MECP2e2 is dominant in other human tissues (Mnatzakanian et 

al., 2004). Contrary to the observations in humans, MeCP2e1 was found to be a 

dominant isoforrn in different mouse tissues. 

Most previous research on MeCP2 function has utilised the MeCP2e2 isoform, 

which we now report to be a minor form in vivo. MeCP2 localisation in mouse cells 

is the same for both isoforms, at least in cultured cells. Also, the alternative N-

terminus is located outside the previously described functional domains - MBD and 

TRD. It is therefore unlikely that MBD or TRD function is affected by the N-

terminus. Indeed, human MECP2e2 alone was able to successfully rescue MeCP2 

deficiency in frog embryos, whose endogenous protein more closely resembles 

MeCP2e1 (Stancheva et al., 2003). Consequently it is expected that the functions of 

el and e2 isoforms may overlap significantly. On the other hand, it cannot be ruled 
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out that the two isoforrns exert somewhat distinct functions in vivo. For example, the 

MeCP2e1 N-terminus contains a conserved serine residue that is absent in MeCP2e2 

and which could be a target of phosphorylation. Recently, MeCP2 phosphorylation 

has been shown to accompany induction of Bdnf transcription in cultured mouse 

neurons (Martinowich et al., 2003; Chen et al., 2003b). It may be of future interest to 

determine the functional significance of different MeCP2 N-terrnini by creation of 

isoform- specific gene disruptions in mice. 

143 



5. Chapter five. 

Inducible MeCP2 expression 

in a mouse 

144 



5. 1. Introduction 

A mouse transgene, in which expression can be regulated by drug administration, is a 

powerful tool for the investigation of the function of a gene. Several systems are now 

commonly used to produce inducible gene expression. One of them is derived from 

the E.coli tetracycline operon (tetO). The tetracycline repressor (tetR) binds tetO and 

represses transcription, when tetracycline is absent. In the presence of tetracycline, 

tetR associates with the drug and loses its DNA binding affinity. To make a 

tetracycline inducible activator, tetR was fused with the herpes simplex virus virion 

protein activation domain (VP 16). The resulting protein (tTA) was able to induce 

transcription from a minimal cytomegalovirus promoter containing several tetO sites 

in the absence of tetracycline (Gossen and Bujard, 1992). The tetracycline inducible 

system has since had many modifications and is widely used. The tetracycline system 

was successfully used to investigate different brain functions in mice, such as 

memory formation through a regulated CaMKII transgene (Mayford et al., 1996), 

adenoviral brain infection with regulated EGFP (Harding et al., 1998) and reversal of 

neuropathology of Huntington's disease with regulated huntingtin (Yamamoto et al., 

2000). 

Another approach to achieve non reversible gene induction or silencing uses the 

combination of conventional ligand mediated induction of Cre recombinase, which in 

turn is able to mediate specific recombination at loxP sites present in the gene of 

interest. The positioning of loxP sites then determines the nature of the mutation, 

which could result in a gene knock-out (i.e. when loxP flanks coding exons) or 

knock-in (i.e. when loxP flanks an engineered artificial exon with STOP signals). To 

reduce the number of steps for gene targeting, required for generation of mice, Cre 

recombinase was fused with the ligand binding domain of the estrogen receptor (ER) 

(Metzger et al., 1995). A mutation in the binding site prevents binding of the natural 

ligand estradiol, but binding of synthetic ligands such as tamoxifen (TAM) or 4-

hydroxytamoxifen remains the same (Danielian et al., 1993). The mutated fusion 

protein (Cre-ERT) was shown to induce recombination of loxP sites in cell cultures 

and mice after the administration of the ligand (Feil et al., 1996). TAM is able to 

penetrate blood-brain barrier as the Cre-ERT  expressed from the brain specific prion 
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protein (PrP) promoter was able to produce recombination of a lacZ transgene in 

mouse brain, after the administration of TAM (Weber et al,, 2001). 

Inducible MeCP2 expression in mice would help to answer several important 

questions. Induction of MeCP2 after a Mecp2-null mouse has developed symptoms 

would help to determine whether Rett syndrome is a reversible disease. This could 

open the prospect for gene therapy based treatments. If it is not possible to reverse or 

relieve the Rett-like phenotype in the mouse (by MeCP2 induction after 

commencement of symptoms) then MeCP2 expression could be induced at different 

ages before the onset of symptom to permit the identification of the critical period at 

which the non reversible pathological events in the brain occur. 

In the first part of the results section, the strategy and the attempts to create a 

tetracycline-inducible MeCP2 mouse will be described. In the second part, a mouse 

with CreERT  transgene was used to delete Mecp2 in the adult animal. 

5.2. Construction of the inducible MeCP2 allele in mice 

To make a MeCP2 inducible mouse line, the tetracycline inducible system was 

chosen because of its flexibility and history of successful applications in mice. The 

"Tet-on" system has a modified tetracycline trans-activator termed "reverse 

tetracycline trans-activator (rtTA)", which in the absence of tetracycline or its analog 

doxycycline (Dox) is unable to bind to DNA (Figure 5-1). Opposite to tTA, the 

addition of doxycyline results in the binding of rtTA to the promoter (with tetO sites) 

followed by target gene activation. As a target gene, the Mecp2 cDNA was cloned 

into a bi-directional expression cassette, which upon activation allows simultaneous 

transcription of two genes. The second gene in the expression vector was Luciferase. 

Once the Luciferase activity ratio with the amount of MeCP2 is established, then 

only Luciferase activity can be measured to evaluate the level of induction in 

different animals harbouring the same transgene. 
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Figure 5-1. Mechanism of"Tet-on" inducible gene expression for induction of Mecp2. In the absence 

of doxycycline, transcription from the bi-directional vector expressing both luciferase and MeCP2 is 

silent. After addition of doxycyline, it binds rtTA. Subsequently complex associates with tetO 

sequences and activates transcription from both promoters. Doxycyline withdrawal results in silencing 

of the Luciferase and Mecp2 genes again. 

To accomplish the described experiment in mice (Figure 5-1), three genetic 

modifications have to be present in the one mouse: constant and ubiquitous 

expression of rtTA, a bi-directional vector allowing MeCP2/Luciferase expression 

and the mutation inactivating the endogenous Mecp2 gene. These mutations can be 

engineered in one animal according to the scheme proposed in the Figure 5-2. The 

modified version of rtTA has a nuclear localisation signal fused to the N-terminal 

part of the protein (N-nlsrtTA) (Gossen et al., 1995). For the ubiquitous expression 

of N-nlsrtTA, the construct was chosen to be targeted to the ROSA26 locus, which 

was demonstrated to provide high ubiquitous expression and it is easily targeted by 

homologous recombination (Soriano, 1999; Zambrowicz et al., 1997). 
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Figure 5-2. Strategy for the production of an inducible MeCP2 in mouse. a) In the first step N-nlsrtTA 

(rtTA with N terminal nuclear localisation signal) is targeted to the ubiquitously expressing ROSA26 

locus in ES cells and correctly targeted clones are used to generate mice. b) The bi-directional vector 

with Mecp2 and Lucferase is used to generate a transgenic mouse by pronuclear injection. c) A 

homozygous N-nlsrtTA mouse is then crossed with a transgenic luc/tetO/Mecp2 mouse and Fl 

progeny can then be assayed for MeCP2 inducibility. d) A homozygous mouse carrying all of the 

described modifications could be then crossed with a Mecp2 heterozygous female and the progeny 

used for the MeCP2 restoration experiments. 



The ROSA26 N-nlsrtTA targeting construct together with screening probe was 

previously used by Anton Wutz who provided us with the materials (Wutz and 

Jaenisch, 2000). According to the experimental strategy, to generate rtTA expression 

from the ROSA26 locus in mouse, E14TG2a embryonic stem cells were targeted 

with the R26/N-nlsrtTA vector. Correct targeting was confirmed by Southern blot 

analysis (Figure 5-3). The targeting efficiency was calculated as 5.6 % (from 54 

successfully screened clones). Three correctly targeted ES cell lines were generated: 

R26A6, R26E3 and R26G6. Subsequently, to test if a functional tetracycline trans-

activator was produced, the targeted R26G6 ES cell line was electroporated with a 

Luciferase reporter construct and incubated with doxycycline (1 jig/m1) or without 

doxycyline. Luciferase measurements revealed that in the presence doxycyline, 

Luciferase activity is induced almost 100 fold (Figure 5-4). 

ES cells were then injected into the blastocysts derived from C5713L/6 mice and 

transplanted into pseudopregnant recipient females. Chimaeric mice were identified 

by the presence of their patchy agouti coat colour. From ES cell lines R26E3, R26A6 

and R26G6, 0, 4 and 27 chimaeras were generated, respectively. The chirnaeric mice 

were then crossed with C5713L/6 mates to test for germline transmision. Three litters 

(producing 10 - 25 pups) were examined from each chimera, however no germline 

transmission was observed from any of the chimeras generated. It is possible that ES 

cells were compromised during gene targeting manipulations and lost their 

totipotency. 
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Figure 5-3. The targeting of ROSA26 locus with the tetracycline trans-acivator. a) ROSA26 locus 

targeting scheme. SA - splice acceptor. Figure taken is from (Wutz and Jaenisch, 2000). b) Southern 

blot analysis of correctly targeted clones. Expected band sizes are: for HindIIl digestion wt allele - 4.4 

kb, targeted - 3.8 kb; for EcoRV digestion wt allele - 14 kb, tartgeted - 5 kb. 

-dox +dox 

Figure 5-4. N-nlsrtTA targeted ES cells were electroporated with a Luciferase reporter construct 

under control of the tetO promoter. In the presence of doxycycline (+dox) luciferase activity is 

induced approximately 100 fold. 
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5.3. Cre-ER mediated MeCP2 knock-out in adult mice 

There are two theories about the nature of Rett syndrome. One says that MECP2 is 

required for a particular developmental event in the brain. Therefore at the time of 

early post-natal development the presence of mutated MECP2 leads to the failure of 

normal brain development. Another possibility is that MECP2 is required for the 

proper maintenance of neuronal function and, in the absence of MECP2, brain 

function can be maintained for some time after which it becames compromised. An 

experiment in which MeCP2 mutation could be introduced at different ages in the 

mouse could help to distinguish between these two possibilities. 

The previously discussed CreERT  system was used to introduce a Cre-loxP 

mediated MeCP2 deletion in the adult mouse (Figure 5-5). A homozygous mouse 

line carrying CreERT  transgene was available in the laboratory. The Mecp2 loxP 

mouse line was used to generate the original MeCP2 knock-out was also available 

(Guy et al., 2001). After a single cross of a homozygous Mecp2b0'0x  female with a 

Cre ERT male, all the Fl progeny had one CreERT  allele and were hemizygous 

(Mecp2") or heterozygous (Mecp2b0)  for Mecp2-loxP allele. All progeny were 

genotyped using PCR with Cre and Mecp2 loxP specific primers. 

To induce deletion of the Mecp2 gene in adult mice, the animals were aged until 7 

weeks old and then tamoxifen (TAM) was injected intra-peritoneally at a dose of 1 

mg/day (dissolved in corn oil) for 5 consecutive days. To monitor the possible 

negative effects of TAM, the same number of wt mice underwent identical injections. 

Five days after the last injection, the animals were sacrificed and genomic DNA was 

purified from different tissues. Genomic DNA was digested with BamHI and a 

Southern blot was probed with NcoI-BamHI 3' MeCP2 cDNA probe as described 

previously (Guy et al., 2001). The Southern blot results demonstrated low amounts of 

recombination were present (Figure 5-6). The highest recombination rate was seen in 

the tail and the lower rates in kidney and liver. 
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Figure 5-5. Generation of ligand inducible mutation in the Mecp2 gene using CreERT technology. In 

the absence of the inducer tamoxifen (TAM) the Crc-ERT  protein is iinmobilised in the membrane. 

After administration of TAM, the protein leaves the membrane and in the nucleus recombines the loxP 

sites, resulting in a null mutation in the Mecp2 gene. 

Procedure: I mg TAM/day for 5 days 

— — 	 1-2 kb 

Figure 5-6. Southern blot analysis of loxP recombination at the Mecp2 locus after administration of 1 

mg of TAM per day. Wt ES - WI embryonic stem cell DNA; TA - tail, HE - heart, LU - lungs, CE - 

cerebellum, LV - liver, KI - kidney, BR - brain. Wt allele gives an 11 kb band, loxP allele - 8.5 kb 

and the deleted Mecp2 allele - 1.2 kb. A strong band marked with * is cross-hybridisation with a size 

marker. 
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Some published reports used a higher dose of tamoxifen for adult animals such as 3 

or 9 mg of TAM per day (Hayashi and McMahon, 2002). The dose of TAM used 

here was then increased in an attempt to get a higher recombination rate in brain 

(Figure 5-7). Still a low recombination rate was observed in all tissues except tail tip. 

The low recombination rate observed in different tissues could be due to tissue 

specific expression of Cre-ERT  transgene. Epithelial cells and connective tissue, 

which significantly contribute to the tail tip, showed consistently moderate 

recombination rate. 

Procedure: 3 mg TAM/day for 5 days 

Mecp2 Mecp21 Mecp20) Name 
- ++++ 	+ ++- + 	+++ 	+ + 	++ 	- TAM 

TA BR KI HE CE LU LV TA TA BR KI HE CE TE LU LV TA TA Tissue 
, j 

11 kb 
8.5 kb 

Figure 5-7. Southern blot of Mecp2 loxP recombination following administration of 3 mg of TAM 

per day for 5 consecutive days. TA - tail, HE - heart, LU - lungs, CE - cerebellum, LV - liver, KI - 

kidney, BR - brain, TE = testis. Wt allele gives an 11 kb band, loxP allele - 8.5 kb and the deleted 

Mecp2 allele - 1.2 kb. 

5.4. Summary and discussion 

This chapter describes attempts to generate mice with inducible MeCP2 expression. 

In the initial experiment a tetracycline inducible gene expression system was used for 

the regulation MeCP2 expression. This system is considered to be the most flexible, 
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because administration of doxycycline would allow induction of the Mecp2 

transgene expression and withdrawal would silence it. Therefore bi-directional 

temporal control of MeCP2 expression could be achieved. In addition, different 

amounts of doxycycline would allow different levels of MeCP2 induction. This is a 

very important feature, because in the transgenic model it was shown that over-

expression of MeCP2 causes a neurological phenotype (Luikenhuis et al., 2004). 

However 2 to 3 fold MeCP2 over-expression is tolerated in mice (Luikenhuis et al., 

2004). Three ES cell lines with a tetracycline trans-activator were generated. There 

were very low numbers of chimaeric mice born from two of the cell lines R26A6 and 

R26E3. The R26G6 ES cell line produced a high number of chimeras, however the 

chimeras were unable to transmit the mutation to the offspring. It is therefore 

possible, that the cells were defective or were damaged during the procedure of 

targeting. 

Knock-out of the Mecp2 gene using a Cre-ERT  inducible cassette was unsuccessful. 

The Cre-ERT  mouse line used was not suitable for experimental purposes. The only 

tissue with a significant amount of recombination present was the tail. 

For follow up experiments using the Cre-ERT  system, mice with a high 

recombination rate in the brain should be acquired. A few suitable mouse strains 

have since been published. The CAGGCre-ERTM  mouse strain was shown to have a 

high recombination rate using a J3-galactosidase reporter, which is activated after 

Cre-loxP recombination (Hayashi and McMahon, 2002). PrP-Cre-ERT  mice were 

shown to have a very high recombination rate in cerebellum and intermediate 

recombination in the brain cortex (Weber et al., 2001). These lines are good 

candidate lines to be obtained for CreERT  mediated gene knock-out or knock-in 

strategies in mouse. 
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6. Chapter six. 

Final conclusions 
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6. 1. Final summary and discussion 

The studies in this thesis are focused on the investigation of MeCP2 function in 

relevance to Rett syndrome. As highlighted in the introduction chapter, the key issue 

in understanding the role of the MeCP2 is identification of its target genes. When the 

global analysis of gene expression by ADDER was initiated, no MeCP2 target genes 

were known in the brain. Only in the recent years were Hairy2a and Bdnf shown to 

be mis-regulated in the absence of MeCP2 (Stancheva et al., 2003; Chen et al., 

2003b; Martinowich et al., 2003). However, it was difficult to relate the mis-

expression of these genes to Rett syndrome, because the expression status of Hairy2a 

and Bdnf genes was not known in the brain. Hairy2a was shown to be mis-regulated 

in frog embryos lacking MeCP2 (Stancheva et al., 2003) and Bdnf in primary mouse 

neuronal cultures from the Mecp2-null mice (Chen et al., 2003b). Bdnf and Hairy2a 

mammalian homolog Hesi expression in mouse brain were investigated in this 

thesis. Comparing the expression of Hes] between wt and Mecp2-null brains 

confirmed that it is significantly up-regulated in the nulls. However, surprisingly, in 

this work Bdnf was shown to be down-regulated in whole mouse brains instead of 

expected up-regulation, which was observed in cultured neurons (Chen et al., 2003b). 

There are few explanations of the different results obtained from mouse brain and 

neuronal cultures. One possibility is that cortical neurons isolated from embryonic 

mice brain behave differentially from the ones present in brain. An alternative 

explanation could be that brain is a very heterogeneous tissue with multiple cell types 

which could have unknown Bdnf regulatory feedback mechanisms. 

The findings of Bdnf and Hesi being mis-regulated in the Mecp2-null mouse brain 

opened new research prospects. Subsequently it is important to investigate further the 

possibility of the primary MeCP2 involvement in the regulation of Hesi expression. 

The presence of MeCP2 at the promoter region would strengthen the hypothesis of 

its primary involvement; however it would not reject the statement that secondary 

factors are contributing to the up-regulation of the gene as well. Therefore, at this 

stage it would be beneficial to establish a simplified model system, such as 

mammalian tissue culture, where the genetic manipulations can be more easily done. 

156 



The down-regulation of total Bdnf in Mecp2-null mouse whole brains was observed 

at different stages of the disease progression, including healthy looking pre-

symptomatic mice. Because the Bdnf gene is transcribed from different promoters, it 

was important to know which promoter causes the observed down-regulation. After 

examination of different promoters, a statistically significant difference between the 

samples was not obtained. It is possible, that several promoters contribute to the total 

down-regulation of Bdnf in pre-symptomatic mice. Another explanation can be based 

on the sensitivity issues of the Real Time PCR technique. Real Time PCR is more 

sensitive in comparing the expression of the higher abundance transcripts rather than 

the lower abundance ones. Therefore, the division of total Bdnf expression into 

activities of four specific promoters may have reduced the sensitivity of the assay. 

Further research should determine how the basal up-regulation of Bdnf expression in 

cultured Mecp2-null neurons relates with the observed decrease of Bdnf messages in 

Mecp2-null brains. RNA FISH or in situ hybridisation with specific Bdnf antibodies 

would be helpful in finding the specific cell types and brain regions, responsible for 

the down-regulation of total Bdnf expression. 

Further gene expression study by microarray suggested that the stress response 

regulation may be perturbed in the mouse model for Rett syndrome. Expression 

analysis clearly showed up-regulation of Sgk and Fkbp5 expression in pre-, early and 

late symptomatic mice. None of the other examined mis-regulated genes showed as 

high as 2.6 fold induction observed for Sgk in the absence of MeCP2. The relation 

between Rett syndrome and symptoms caused by therapeutic glucocorticoid 

administration suggests that the patho-physiological side of Rett syndrome may 

partially caused by the defects in the hormone regulation. Therapeutically, the use of 

glucocorticoid antagonists may provide a potential relief for certain symptoms. 

The global gene expression analysis by ADDER revealed 11 genes that were mis-

regulated in late symptomatic mice, 3 in the early symptomatic mice and no mis-

regulated genes in the pre-symptomatic mice. The previous study of gene expression 

by microarray failed to find any mis-regulated genes (Tudor et al., 2002). The above 

described microarray study identified several genes related to the stress regulation 

pathway. The difficulties in finding many MeCP2 target genes raise few possibilities. 
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One possibility is that there are not many genes mis-regulated in the absence of 

MeCP2. Another possibility is that the microarray technique is not sensitive enough 

to find genes that are subtly mis-regulated and transcribed at a low level. 

Additionally, mice in the study by Tudor et al. were grouped by the age and not by 

symptoms, providing more heterogeneity to the sample. In this thesis, an attempt was 

made both to improve sensitivity by using a variant of differential display and to 

ensure homogeneity of samples by grouping mice according to the presentation of 

symptoms. The third possibility which could explain difficulties in finding mis-

regulated genes by global approaches is that brain contains a lot of cell types with 

different gene expression profiles (Nisenbaum, 2002). Therefore even a hypothetical 

large difference in rnRNA abundance in a certain cell type will be diluted by the 

equal expression in others. 

Another important consideration in investigating gene expression changes in the 

relation to the symptom progression is to understand which event triggers the 

appearance of the symptoms. In classical Rett syndrome the disease starts very 

dramatically with a period of rapid regression. Until this period it is difficult to 

distinguish a normal child from the child which will develop the disease. Therefore, 

an expectation is that a physiological event happens at this period, when the rapid 

regression is initiated. The gene expression studies performed in this thesis suggest 

that such event might be related with mis-expression of mitochondrial gene Uqcrcl. 

Uqcrcl is normally expressed in the Mecp2-null mice without symptoms and it starts 

to be mis-expressed with appearance of the first symptoms in mice. Furthermore, 

similar observations are made for the mitochondrial respiration, where the Uqcrcl 

protein is functioning. Mitochondrial respiration is normal in the healthy Mecp2-null 

mice and it becomes abnormal with the appearance of symptoms. The time course 

conjunction of Uqcrcl expression, abnormal mitochondrial respiration and 

appearance of the symptoms suggest that these events might be related. 

The molecular basis of the observed mitochondrial respiration abnormalities is not 

clear. Future experiments could address if the Uqcrcl protein amounts are affected, if 

mis-regulation of one component affects the assembly of the whole complex and if 

MeCP2 primarily regulates the expression of the Uqcrcl gene. 
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Genes found to be mis-regulated in Mecp2-null mouse brain in the research 

presented in this thesis opened several different prospects of investigation. First 

strand could focus on molecular biology of MeCP2 action. Bdnf, Sgk, Fkbp5 are all 

inducible genes. Bdnf is induced by Ca 2+  induced depolarisation. Sgk and Fkbp5 are 

glucocorticoid inducible genes. This raises the possibility that MeCP2 regulates 

inducible gene expression in a dynamic way, which was suggested for the Bdnf case 

(Chen et al., 2003b). Data presented in the thesis show no any obvious MeCP2 

occupancy changes in the Sgk and Fkbp5 promoters after corticosterone treatment. 

However it is still possible that heterogeneity of brain samples masks some small 

changes. The promoter occupancy could still be envisited in more homogeneous 

populations of cells such as primary cortical neurons or neuronal cell lines. In 

addition new target genes could serve as a model to test what is the mechanism of 

repression. What co-repressors are recruited and how the local chromatin 

modifications are changed? 

Another big strand of investigations could be involved in exploring the relevance of 

newly discovered mis-regulated genes to Rett syndrome. Creating transgenic mouse 

models mimicking the mis-expression of Bdnf, Sgk, Fkbp5 and Uqcrcl genes could 

help to find out how much these genes are contributing to the phenotype observed in 

Mecp2-null mice. Therefore the real relevance of mis-expressed genes to Rett 

syndrome could be evaluated. However there is a possibility that Rett syndrome is a 

very complicated disease, which develops as a consequence of mis-expression of 

many genes in specific regions of the brain. 

This thesis described a new MeCP2 isoform. Both data presented here and parallel 

data published by another group (Mnatzakanian et al., 2004) indicated that the newly 

discovered isoform represents the majority of MeCP2 present in mouse and human 

brain. The lower splicing rate and the inhibition of translation of MeCP2e2 provide 

an explanation for MeCP2e1 dominance. The new coding exon 1 has been shown to 

harbour Rett syndrome-causing mutations (Mnatzakanian et al., 2004). However the 

recent mutation screen of 97 Rett patients negative for mutations in exons 2, 3 and 4, 

revealed no mutations in exon 1 (Evans et al., 2005). Several sequence variations 

were identified, which also were found to be present in healthy individuals. One 
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interesting variation was a (GCC)2  insertion, suggesting that trinucleotide expansions 

can occur in MECP2 exon 1 (Evans et al., 2005). In future it will be important to find 

out if two MeCP2 isoforms have different functions. Isoform specific knock-out will 

be helpful in indicating the possible importance of an alternative MeCP2 splicing. 

Finally, attempts to create a mouse with inducible MeCP2 expression were not 

successful. The lack of a mouse harbouring the transgene (either CreERT  or rtTA), 

which would allow creation of inducible Mecp2 gene, was the main restriction. The 

question of whether the restoration of MeCP2 expression relieves Rett syndrome-like 

symptoms in mice is still un-answered and important for the prospects of possible 

treatment. Gene therapy based treatments could help in delivering functional MeCP2 

to the cells, which have the mutated copy of Mecp2 gene. However it will be still 

important to find out whether there is any dominant negative effect of the presence of 

mutated Mecp2 copy in the same cell, and how the overexpression of MeCP2 (in the 

case of expression vector delivery to the cell expressing wt MeCP2) is going to affect 

the physiology of a cell. 
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Methylation of cytosine in human DNA has been studied for over 60 years, but has only recently been 
confirmed as an important player in human disease. Rett syndrome is a neurological disorder caused by 
mutations in the MeCP2 protein, which has been shown to bind methylated DNA and repress transcription. 
This review will focus on experiments addressing the basic properties of MeCP2 and on mouse models of 
Rett syndrome that are starting to yield insights into this condition. 

DNA METHYLATION 

DNA methylation is probably universal in vertebrates. In 
humans, approximately 1% of DNA bases are modified 
postsynthetically by addition of a methyl group to carbon-5 of 
the cytosine pyrirnidine ring, predominantly at CpG dinucleo-
tides. In mammalian cells, methylated CpGs are dispersed 
throughout the genome, but the majority are located 
in transcribed regions and intergenic DNA. Exceptions to this 
generalization are CpG islands, which are mostly methylation-
free. CpG islands contain high densities of the CpG dinucleo-
tide and are found at the promoter regions of about 60% of 
human genes that are transcribed by RNA polymerase 11 (1 1,2). 
In atypical cases, where CpG islands become methylated during 
development, modification is important for stable silencing of 
the associated gene. For example, failure to methylate CpG 
islands on the inactive X chromosome (Xi) leads to leaky 
repression of X-linked genes (3,4). 

The methylation mark can affect gene expression in two 
ways. The first mechanism involves direct interference of 
methyl-CpG with the DNA binding of transcription factors. For 
example, the transcription factor Ets-1 or the boundary element 
factor CTCF, bind non-methylated but not methylated sites 
(5,6). The second mechanism involves a group of proteins 
which bind methylated CpGs independent of their DNA 
sequence context. Currently there are five known mammalian 
proteins which bind methylated CpG. Four of these, MeCP2, 
MBD1, M13132 and M13134, have related DNA binding 
domains (7). A fifth unrelated protein, Kaiso, requires two 
symmetrically methylated CpGs for binding (8). Four of the 
five proteins can repress transcription from methylated 
promoters in model experiments (the exception being MBD4 
which is a DNA repair protein) (9). 

Defects in the DNA methylation machinery are involved in 
human disease. Most directly, mutations in the de novo DNA  

methyltransferase DNMT3B result in reduced methylation of 
pericentromeric DNA sequences and cause a rare disorder 
called ICF syndrome. The symptoms of this condition are 
immunodeficiency, instability of pericentromeric heterochro-
matin, facial abnormalities and mental retardation (10). Most 
cancers also involve DNA methylation abnormalities, in 
particular unscheduled gene silencing via DNA methylation 
at CpG island promoters. This review concerns Rett syndrome, 
which is known to be caused by mutations in the gene for one 
of the methyl-CpG binding proteins, MeCP2 (11). 

RETT SYNDROME 

Rett syndrome is a relatively frequent form of mental 
retardation and occurs sporadically once every 10000-22 000 
female births. It is characterized by a period of normal 
development until around 1 year followed by a rapid regression 
that involves loss of acquired speech and motor skills, 
microcephaly, seizures, autism, ataxia, intermittent hyperventi-
lation and stereotypic hand movements (12-15). Despite these 
symptoms, patients often survive into adulthood. Several recent 
studies show that, after the initial crisis associated with 
symptom onset, there is no further regression, suggesting that 
the condition does not involve progressive neurodegeneration 
(16,17). 

Rare familial Rett syndrome cases allowed mapping of the 
disease region to Xq28 (18), and screening of candidate genes 
in the region identified mutations in the MECP2 gene as 
frequent events in Rett patients (11). Later, extensive patient 
screening established that 	80% of Rett syndrome cases are 
associated with discernable mutations in the MEP2 gene. 
These mutations are, beyond reasonable doubt, the cause of 
Rett syndrome, as they are almost always absent (see below) in 
parents of the affected child. 
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Comprehensive databases of disease-causing MECP2 muta-
tions and some apparently benign MECP2 polymorphisms 
have been compiled. A database at the University of Edinburgh 
(www.mecp2.org.uk) is primarily focused on collecting 
MECP2 mutations with detailed infonnation about symptoms 
provided by parents and caregivers. Another database, 
RettBASE (http://niecp2.chw.edu.au!), collects information 
from laboratories and from paediatricians who screen for 
MECP2 mutations. 

Most nhissense mutations in MECP2 that cause Rett 
syndrome are tightly clustered at the methyl-CpG binding 
domain (MBD; Fig. 1). Deletion/insertion mutations leading to 
loss of the open reading frame occur throughout the protein, 
but are clustered in the C-terminal region, which contains a 
poly-histidine repeat. Rett syndrome patients display a wide 
spectrum of mutations, but '67% of all mutations are in eight 
hot spots (R106, R133, T158, R168, R255, R270, R294 and 
R306). Seven out of eight major mutations affect arginine, 
which has a CpG in its codon. It is therefore likely that these 
mutations are due to unrepaired deamination of 5-methylcy-
tosine which is responsible for about one-third of all point 
mutations that give rise to human genetic disease (19). it is 
striking that many mutations appear to exclusively affect the 
C-terminus of MeCP2, to which no biochemical function has 
yet been attributed. We clearly have much still to learn about 
this protein. 

Besides Rett syndrome, mutations in MECP2 are now 
thought to contribute to some cases of non-specific X-linked 
mental retardation (20) and Angelman syndrome (21). As 
Rett syndrome patients have some autistic features, autism 
patients have also been screened for MECP2 mutations, with 
no MECP2 mutations found (22). Another study found 
MeCP2 mutation in two autistic patients who meet Rett 
syndrome preserved speech variant criteria (23). In the latest 
study only two of 69 autism patients were shown to have 
de novo MECP2 mutations (24). At present, the significance of 
MECP2 mutations in X-linked mental retardation, Angelman 
syndrome and autism is not clear because of low mutation 
frequency and relatively wide variability of Rett syndrome 
symptoms. 

Rett syndrome is almost exclusively a disease of females 
because MECP2 is X-linked and patients are heterozygous for 
the mutated allele. Following random X chromosome inactiva-
tion, typically half of their cells express wild-type (wt) MECP2 
and the other half express the mutated MECP2. As a result, the 
female cell population is mosaic for expression of the mutant 
allele. This mixture of functionally MECP2 and MECP2 
cells leads to Rett syndrome. Symptom-free female carriers of 
such MECP2 mutations have only been seen in very rare cases 
where extreme skewing of X chromosome inactivation prevents 
expression of the mutated allele (25). 

Males that are hernizygous for comparable MECP2 muta-
tions rarely live beyond 2 years and have a different and more 
severe phenotype than Rett syndrome, usually involving 
congenital encephalopathy (25,26). There are, however, very 
rare males with classical Rett syndrome (27). In these 
individuals, an MECP2 mutation appears to have arisen early 
in development, giving rise to clones of mutant and Wi cells in 
the same individual that mimic the mosaic expression of the 
mutant and wt MECP2 genes in MECP2 	females. 

MeCP2—METHYL CpG BINDING PROTEIN 2 

The original methyl-CpG binding activity known as MeCP 1 
was reported in crude nuclear extracts through its ability to bind 
a methylated DNA probe containing multiple methylated CpGs 
(28). Later, a second activity, MeCP2, was detected as an 
80 kDa protein that could bind a single methylated CpG in a 
south-western assay (29). In mouse cells, MeCP2 is detectable 
throughout the metaphase chromosome anns, but is concen-
trated in the pericentromeric heterochromatin, which contains 
highly methylated satellite DNA (30). The methyl-CpG binding 
domain (MBD) of MeCP2 was mapped near the N-terminus by 
construction of deletion mutants (Fig. 1) and DNase I in vitro 
footprinting indicated that it could protect a 12 nucleotide 
region surrounding a methyl-CpG site. The approximate 
dissociation constant was 10-9m. Symmetrically methylated 
CpG is required for in vitro binding, whereas hemi-methylated 
DNA is only weakly bound (31). The search for other MBD-like 
domains revealed another four proteins, which were assigned to 
the MBD family—MBD I, MBD2, MBD3 and MBD4 (7). 

MeCP2 was suggested to bind methylated CpGs without 
major impediment from the nucleosome surface (32). This 
finding is compatible with the structure of an MBD (from MBD 1) 
in complex with DNA, which indicates that access to methyl-
CpG sites exposed in the major groove might occur without 
encountering steric interference from the core histones (33). 

Early experiments suggested the MeCP2 was targeted to 
methyl CpG sites in vivo, as heterochroinatic localization was 
lost in mouse cells lacking the DNA methyltransferase Dnmtl 
(30). More directly, several chromatin immunoprecipitation 
(ChIP) experiments have shown that MeCP2 is bound to 
methylated DNA in vivo, but does not associate with non-
methylated DNA. Examples include the 'differentially methy-
lated regions' of the imprinted U2af1-rsl and H19 genes in 
mouse, the silenced metallothionein I promoter and sodium 
channel 11 promoters in Rat-1 cells, and the methylated 
p14(ARF)/p16(INK4A) CpG islands in human cancer cells 
(34-40). These findings support the idea that MeCP2 functions 
by binding to methyl-CpG sites in vivo. Furthermore, the 
observations that missense mutations in Rett syndrome patients 
are highly clustered at the MBD of MeCP2 and cause 
decreased binding to methylated DNA (41-43) imply that 
methyl-CpG binding by MeCP2 is essential for brain function. 

MeCP2 AS TRANSCRIPTIONAL REPRESSOR 

Many genes are silenced when the promoter becomes 
methylated. Therefore, MeCP2 was initially hypothesized to 
be a transcriptional repressor. This was confirmed by transient 
transfection studies which showed that MeCP2 is able to 
repress transcription both in cells and in vitro (44,45). MeCP2's 
repression properties were investigated by monitoring reporter 
gene expression following fusion of the GAL4 DNA binding 
domain with various parts of the Mecp2 gene (45). An '-100 
amino acid domain in the middle of the protein was found to be 
responsible for transcriptional repression (TRD). Tethered 
MeCP2 was found to repress transcription from up to 
2000 bp from the transcription initiation site (45). 

Immunoprecipitation from HeLa nuclear extracts and partial 
MeCP2 complex purification from Xenopus laevis oocytes 
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Figure 1. Distribution of human MeCP2 mutations along the protein sequence. (A) Frameshifi mutations are nucleotide(s) insertions or deletions that lead to loss of 
the open reading frame. The protein amino acid sequence is different from the point of mutation and terminates at the first STOP signal (black shading). (B) 
Nonsense mutations are single nucleotide changes, which lead to a STOP signal and premature termination of the protein. (C) Missense mutations are single 
nucleotide changes, which change one codon into another producing a different amino acid at the point of mutation but leaving the rest of the protein intact. 
It is important point to consider that for most mutations there is no evidence that the altered protein is stably produced. Some mutations could affect rnRNA 
or protein stability leading to absence of the protein. Four examples of expected proteins are shown above each map. 

uncovered the mSin3A/HDAC1,2 corepressor complex as an 
interaction partner for MeCP2 (46,47). Treating cells with the 
HDAC inhibitor TSA partially relieves MeCP2 mediated 
repression, supporting HDAC involvement in transcriptional 
repression. Candidate approaches have since identified several 
other interacting proteins—including transcription factor 
TFIIB, the proto oncogene c-ski, the DNA methyltransferase 
DNMT1 and histone methyltransferase Suv39Hl (35,38,48-
50). The lack of clear target genes as an in vivo assay for 
MeCP2 function has made it difficult to draw firm conclusions 
about the importance of these interactions, although there is 
evidence that the association of MeCP2 with Suv39Hl 
contributes to H19 silencing in mouse cells (35). The balance 
of evidence therefore suggests that MeCP2 can act as a 
transcriptional repressor in vivo. Whether this function has 
relevance to Rett syndrome now depends on progress in 
identification of bonafide target genes in the brain (see below). 

THE Mecp2-NULL MOUSE 

The first attempt to make Mecp2-nulI mice by insertion 
mutation of a promoterless lacZ/neoinycin cassette into Mecp2 
locus was unsuccessful (51). Chimeric embryos with a high 
proportion of mutant ES cells had developmental defects and 

died in mid-gestation. Mecp2-null mice were, however, 
produced subsequently using cre/lox recombination technology 
(52,53). The discrepancy between these two sets of results 
could be explained if MeCP2-deficiency during in vitro 
culturing of mouse ES cell lines reduces their pluripotency, 
but this has yet to be tested. Mecp2-null male (Mecp2') and 
female (Mecp2 -1-) mice generated via cre/lox recombination 
have no apparent phenotype until around 6 weeks. There 
follows a period of rapid regression resulting in reduced 
spontaneous movement, clumsy gait, irregular breathing, 
hindlimb clasping and tremors. Rapid progression of symptoms 
leads to death at '8 weeks of age (52,53). Detailed brain 
examination revealed reduced brain and neuron cell size (53). 
Conditional deletion of Mecp2 in brain only was achieved by 
crossing mice with intronic loxP sites flanking Mecp2 to mice 
expressing ere under the nestin promoter. Nestin is expressed 
mainly in neuronal progenitors from around embryonic day 12 
(54). Mice with nestin-cre mediated Mecp2 deletion showed 
the same phenotype as Mecp2-null mice (52,53). This finding 
led to two important conclusions: (a) the Mecp2 mutation in the 
brain is sufficient to produce the same phenotype as a 'whole 
animal' nulls; (b) the presence of wt MeCP2 protein until 
embryonic day 12 is not enough to rescue or even relieve the 
phenotype. Deletion of Mecp2 in postmitotic neurons (i.e. still 
later in brain development) using the CamKII promoter to drive 
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cre recombinase (55) led to delayed onset of symptoms by up 
to 3 months (Fig. 2) (53). Interestingly the time between 
deletion of the gene and manifestation of symptoms remained 
approximately the same ('--'60 days). 

Mecp2 FEMALES—A MOUSE MODEL FOR 
RETT SYNDROME? 
Numerous Rett syndrome studies failed to find a strong 
correlation between the location of different MECP2 mutations 
and severity of the disease. Some report that truncations are 
more severe than point mutations, but others do not observe 
this (26,56-60). The absence of a strong correlation between 
mutation type/location and symptoms suggests that Rett 
syndrome may be caused by loss of MeCP2 function regardless 
of the precise mutation involved. If so, the appropriate genetic 
mouse model for Rett syndrome may be a female mouse 
heterozygous for the Mecp2-null allele. These heterozygous 
mice are normal until they are around 9 months old, when they 
start showing breathing irregularities and hand limb clasping. 
Reduced mobility was confirmed by an open field test (52). 
There is a striking parallel between the time of symptom onset 
in heterozygous mice and in Rett patients, despite the vast 
developmental difference between a 1-year-old infant human 
and a 9-month-old mouse that has already raised several litters. 

Mecp2 expression 
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-20 0 20 40 60 80 100 
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deletion 

Cmv-cre Mecp2 	• 
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Figure 2. Comparison of the times of symptom onset in 1i1ecp2-null mice that 
have lost the gene at different developmental stages and the correlation with the 
timing Mecp2 gene expression in brain. 

bright spots of mouse neurons (67). More detailed compart-
mentalization studies showed co-localization of 5-methylcyto-
sine as well as the major-satellite DNA with MeCP2 in large 
neurons (68). 

TRUNCATING MeCP2 MUTATION IN MICE 
Around 80% of all Rett-causing mutations lie in characterized 
functional domains of MeCP2: the MBD and the TRD. 
Currently no function has been mapped to the C-terminus, 
but mutations which disrupt C-terminus in humans cause Rett 
syndrome. Mice with C-terminally truncated MeCP2 revealed 
some interesting findings. The symptom onset window in 
hemizygous mutants was increased from slight tremors at 6 
weeks to kyphosis, visible tremors and seizures at around 5 
months of age (61). Thus, in mice, the C-terminal deletion of 
Mecp2 shows a significantly less severe phenotype than the null 
mutation (61). The difference between null mutation and 
C-terminal truncation also suggests that mice, in contrast to 
humans, may show a clear genotype—phenotype correlation for 
Mecp2 mutations affecting different regions of the protein. 

MeCP2 EXPRESSION IN BRAIN 
Expression of MeCP2 is ubiquitous in mouse rat and humans, 
although levels vary widely between tissues. In brain, MeCP2 
is preferentially expressed in neurons but not in glia. Laser 
scanning cytometry revealed an increase in the number of high 
MeCP2 expressing neurons at postnatal development in 
humans, and this expression correlated with alternative 
polyadenylation (62). In situ hybridization in mouse and rat 
brains also showed MeCP2 up-regulation postnatally (63-65). 
MeCP2 expression studies in olfactory epithelium, which 
contains both mature and immature olfactory receptor neurons, 
demonstrated that only mature olfactory receptor neurons up-
regulate MeCP2 before synaptogenesis (66). Does MeCP2 bind 
methylated CpG in the brain? In situ hybridization to mouse 
brain slices suggested that MeCP2 is concentrated within DAPI 

THE SEARCH FOR MeCP2-REGULATED GENES 
A microarray approach was used in search of transcriptional 
consequences of MeCP2 loss in mouse brain (69). Surprisingly 
the experiments showed no major changes in the transcriptome, 
although some gene expression variation was noticed. 
Statistical analysis, based on gene expression variability, could, 
however, distinguish Mecp2-null from wt brains. Some of the 
genes were confirmed to show small (up to 35%) differences by 
an RNase protection assay (69). One interpretation could be 
that brain is a very heterogeneous tissue, making it difficult to 
detect regional transcription differences due to MeCP2 loss. 
Alternatively, limitations to the sensitivity of microarray 
technology may prevent the accurate detection of low 
abundance transcripts and of small, but perhaps significant, 
changes in transcription (70). Another possible interpretation of 
this result is that MeCP2 has a transcription-independent role in 
the brain. 

Recent progress in identifying MeCP2 target genes has relied 
on a candidate gene approach. Stancheva et al. (71) used 
Xenopus laevis as a model organism, taking advantage of 
antisense morpholino oligonucleotide injection to knock-out 
gene expression. MeCP2-deficient frog embryos had multiple 
developmental abnormalities in the head and dorsal axis. 
Developmental defects, together with the MeCP2 expression 
pattern suggested that lack of MeCP2 caused a problem in 
neurogenesis. The possibility of a gene mis-expression was 
therefore explored by investigating candidate genes in the 
Delta/Notch signalling pathway, which is known as a key 
pathway in early neuronal development. The Haiiy2a gene was 
found to be up-regulated in MeCP2-deficient frog embryos. 
Further experiments showed that the Haiiy2a promoter has 
methylated CpGs nearby with MeCP2 bound to them. 
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Figure 3. Model of transcription repression activity by MeCP2 protein based 
on the findings of Stancheva et al. (71). MeCP2 binds methylated CpG and 
interacts with the co-repressor complex, comprising components A, B, C etc. 
The specificity of repressor complex might be enhanced by other transcriptional 
factors, with DNA binding ability (e.g. F). In the absence of MeCP2, the repres-
sor complex loses stability and the gene becomes subject to activation. Because 
the promoter is inducible, all other factors are already present to make it active. 
As a result the inducible promoter is more sensitive to de-repression. 

Repression of the Hai,y2a promoter depends on the MeCP2 
interaction with SMRT complex via Sin3A. After Notch-
mediated induction of Hairy2a, MeCP2 leaves the methylated 
CpGs, together with Sin3A, histone deacetylase and the SMRT 
complex. Thus Xenopus Haity2a provides the first documented 
case of a gene that is normally repressed by MeCP2 (Fig. 3). 

METHYL-CpG BINDING PROTEINS AND 
THE BRAIN 
Recent data has highlighted that neurological defects occur 
when methyl-CpG binding proteins are mutated or deleted in 
mouse models. Mbd2-null females neglect their offspring, 
probably due to an unknown neurological lesion (72). Also, 
Mbdl-null mice show reduced neuronal differentiation and 
chromosome instability in vitro and the mice have defective 
spatial learning and long-term potentiation in hippocampus 
(73). As described earlier, Mecp2-null mice have more severe 
neurological symptoms and die at around 8 weeks of age 
(52,53). As MBD proteins share methyl-CpG binding domain, 
these findings raise the question: what role does DNA 
methylation play in the brain? Removing Dnmtl, the main-
tenance DNA methyltransferase, has a very severe phenotype 
resulting in failure of mouse embryo development (74), but 
post-natal deletion of Dnmtl in neurons does not affect animal 
viability, as might be expected in non-dividing cells (75). 
Tissue specific removal of Dnintl in mouse central nervous 
system precursors using nestin—cre mediated deletion, however, 
led to absence of viable offspring, although embryos were 

recovered at all stages (75). After a Caesarean section, death 
occurred within I h due to respiratory failure. Occasional 
gasping was seen, but there was no rhythmic breathing. 
Interestingly both Mecp2-null mice and Rett patients show 
breathing abnormalities. 

Functions for MBD proteins outside of the brain have 
recently been described. Helper T cell differentiation is 
abnormal in MBD2 null mice due to faulty silencing of the 
114 gene both before and during differentiation (76). It may be 
significant that the deregulation of 114 expression was only 
revealed when individual cells were assayed by cell sorting 
experiments. Changes of this magnitude could be easily missed 
by global gene expression analysis tools, such as those used to 
study gene expression changes in the Mecp2-null mouse brain. 

A study by Guan et al. (77) demonstrated an intriguing link 
between different neurotransmitters and the chromatin state of 
the C/EBP promoter in the mollusc Aplysia. Treating the synapse 
with the facilitatory transmitter 5-HT recruited CREB I with CBP 
histone acetylase, which causes histone acetylation and expres-
sion of the gene. On the other hand, treatment with inhibitory 
transmitter FMRFa brought CRE132 repressor with HDAC5 to 
the C/EBP promoter, leading to deacetylation of chromatin and 
silencing of the gene (77). As there is a close interplay between 
the chromatin modifications and DNA methylation, it is likely 
that silencing of certain neuronal genes relies on DNA 
methylation and recruitment of MeCP2, as already indicated 
for the Haiiy2a gene in frog embryos (71) (Fig. 3). It has also 
been proposed that the extensive DNA replication-independent 
replacement of histone H3 in neurons may rely on MeCP2 to re-
establish appropriate histone modifications (78). The study of 
chromatin structure in the brain is in its infancy, but we can look 
forward to rapid developments as we unravel the pathways that 
involve MeCP2 in neurological development and, with them, the 
reasons why MeCP2-loss leads to Rett syndrome. 
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ABSTRACT 

MeCP2 is a methyl-CpG binding protein that can 
repress transcription of nearby genes. In humans, 
mutations in the MECP2 gene are the major cause of 
Rett syndrome. By searching expressed sequence 
tag (EST) databases we have found a novel MeCP2 
splice isoform (MeCP2a) which encodes a distinct 
N-terminus. We demonstrate that the MeCP2a 
mRNA splice variant is more abundant than the pre-
viously annotated MeCP2 mRNA (MeCP23) in mouse 
tissues and human brain. Furthermore, MeCP2 
mRNA has an upstream open reading frame that 
inhibits its translation. As a result of these differ-
ences, >90% of MeCP2 in mouse brain is MeCP2a. 
Both protein isoforms are nuclear and colocalize 
with densely methylated heterochromatic foci in 
mouse cells. The presence of a previously unknown 
MeCP2 isoform has implications for the genetic 
screening of Rett syndrome patients and for studies 
of the functional significance of MeCP2. 

INTRODUCTION 

In vertebrate genomes, 5-methylcytosine (m5C) accounts for 
—1% of all DNA bases. The minor base arises by post-
synthetic modification of cytosine, usually in the context of a 
CpG dinucleotide that is symmetrically methylated on both 
strands of DNA. A family of proteins that specifically bind to a 
methylated CpG pair share a conserved methyl-CpG binding 
domain (MBD) (I). MeCP2 is the founder member of the 
MBD protein family and is present in all tested vertebrates. 
Currently two conserved functional domains have been 
mapped in MeCP2: the MBD (2), which specifically targets 
MeCP2 to methylated DNA sequences in vivo (3-5), and the 
transcription repression domain (TRD), which is the minimal 
domain required to repress transcription in vitro and in vivo 
(5-10). MeCP2 repression is sensitive to histone deacetylase 
(HDAC) inhibitor TSA, indicating that deacetylation may 
contribute to repression (11,12). GST pulldowns and partial 
multiprotein complex purification from Xenopus laevis 
oocytes suggest that the TRD interacts with the mSin3AI 
HDAC co-repressor complex (11,12). As TSA partially 
alleviates repression, HDAC-independent mechanisms of 

repression are likely to exist. For example, MeCP2 has been 
shown to associate with histone methyltransferase activity 

Other HDAC- independent transcriptional repression 
mechanisms, involving interactions of the TRD with basal 
transcriptional repression machinery, have also been proposed 

 
Mutations in the MECP2 gene are the primary cause of Rett 

syndrome (15), a neurological disorder that occurs in one in 
10 000-22 000 female births. After an initial window of 
normal development, girls acquire a variety of symptoms 
including microcephaly, autism, ataxia, stereotypic hand 
movements, seizures and hyperventilation (16). A wide 
spectrum of mutations have been mapped throughout the 
MECP2 gene, including sites outside the MBD and TRD 
regions (17). MeCP2 is also essential in mice, as Mecp2-null 
animals have a period of normal postnatal development 
followed by hindlimb clasping, irregular breathing, reduced 
mobility and death at around 8 weeks of age (18,19). Mice 
with Mecp2 mutations phenotypically mimic several features 
of Rett syndrome (18-20). 

Initially, MeCP2 protein was purified from rat brain as a 
single 84 kDa protein based on its binding to methylated CpG 
(21). The results of Edman degradation allowed the design of a 
degenerate probe which was then used to screen a cDNA 
library and isolate full-length MeCP2 cDNA (21). Later, the 
mouse Mecp2 gene was mapped to Xq28 and shown to be 
subject to X-inactivation (22). Further analysis of the Mecp2 
transcript identified alternative polyadenylation sites that give 
rise to two main mRNA variants with different 3'UTRs (10 kb 
and 2 kb) (23). At this time Mecp2 was annotated as a three-
exon gene, with all exons contributing to the protein (23). 
Sequencing of the Mecp2 genomic locus in mouse and human 
combined with more detailed bioinformatic analysis revealed 
an additional upstream non-coding exon (24). Mecp2 is 
therefore currently recognized as a four-exon gene. Here we 
report the additional complication that MeCP2 is subject to 
alternative splicing generating two different N-termini, one of 
which is significantly more abundant than the other. 

MATERIALS AND METHODS 

Bioinformatics 

Different isoforms encoding expressed sequence tags (ESTs) 
were found using the NCBI BLAST program. Alignment of 
genomic DNA with EST sequences was performed with 
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GeneQuest (DNAStar). Protein alignments were done using 
ClustaiW and T-coffee programs. Alignments were displayed 
with GeneDoc software. 

RNA purification, analysis and RT—PCR 

Total RNA from tissue culture cells was purified using TRI-
Reagent (Sigma) according to the manufacturer's recommend-
ations. Prior to cDNA synthesis RNA was treated with RQ1 
RNase-Free DNase (Promega). cDNA was synthesized by 
annealing 5 ig of total RNA and 5 ig random hexanucleotides 
(Amersham) at 70°C for 5 mm. Then RT mix [final 1 X 

reaction buffer, 40 U RNAasin ribonuclease inhibitor 
(Promega), 1 mM dNTP] was added and the solution was 
incubated for 5 min at 25°C. After addition of M-MLV reverse 
transcriptase (RNase H Minus, Promega) the 25 111 reaction 
mix was incubated for 10 min at 25°C and 1 h at 37°C. The 
reverse transcriptase was inactivated by incubating for 10 mm 
at 70°C. The reaction mixture was diluted to 500 tl, and 2.5 tl 
was used for PCRs. Mouse exon-specific PCR was carried out 
using primers me  Id (GGTAAAACCCGTCCGGAAAATG) 
and me3lr (TTCAGTGGCTTGTCTCTGAG) at Ta  = 61°C. 
Human exon-specific PCR was performed using me11 d  and 
hme3 ir (CTTGAGGGGTTTGTCCTTGAG) primers at Ta  = 
61'C. Human brain cDNA was purchased from Ambion 
(FirstChoice PCR-Ready). Northern blots were performed 
using standard procedures as described in the Hybond-N+ 
(Amersham) membrane users' manual. After extraction, RNA 
was treated with DNase I to remove transfected plasmid. 
Northern blots were probed with a 1.5 kbp NcoI and NotI 
fragment of MeCP2 cDNA. 

Embryonic stem cell differentiation 

Embryonic stem (ES) cells were differentiated as described 
elsewhere (25). In brief, mouse ES cells were plated on non-
adhesive plates without LIF. In these conditions ES cells form 
embryoid bodies which contain different cell lineage progeni-
tors. Later, embryoid bodies were cultured in the presence of 
retirloic acid, which was shown to increase the efficiency of 
neuronal differentiation. In the final stage embryoid bodies 
were dissociated and cells were plated on serum-free N2 
medium which promotes final differentiation and survival of 
neuronal cells. 

Mutagenesis 

Site-directed mutagenesis used the QuikChange XL Site-
Directed Mutagenesis Kit (Stratagene) according to the 
manufacturers' recommendations. Primers used for muta-
genesis were mumed (CCCGTCCGGAAAAAGGCCGCCG-
CTGCCGCC) and mumer (GGCGGCAGCGGCGGCCTTT-
TTCCGGACGGG). 

Vector construction and transfections 

EST clones (131078224 and BG922233) were received from 
the I.M.A.G.E. consortium. Plasmids used for transfection are 
based on pRL-SV40 (Promega). Riuc gene was excised using 
NheI and XbaI sites and replaced with appropriate MeCP2 
splice variant cDNA. All transfections were done with 
Lipofectamine reagent (Invitrogen) according to the manu-
facturer's recommendations. Cells were collected 48 h after 
transfection. 

Table 1. Physical characteristics of human and mouse MeCP2 isoforms 

MW (kDa) Length (aa) p1 Charge at 
pH 7 

mMECP2u 53.6 501 9.89 34.9 
hMECP2cz 53.3 498 9.88 34.8 
mMECP2I3 52.3 484 9.96 37.8 
hMECP2II 52.4 486 9.95 37.8 

Western blotting 

Western blotting was according to standard protocols. 
Transfected cells were harvested by scraping, boiled in SDS 
loading buffer and resolved on 8% SDS—PAGE gels. Mouse 
brain nuclear extract was kindly provided by Rob Klose. Brain 
nuclei were purified from whole mouse brain and nuclear 
proteins were extracted with 400 mM NaCl. Anti-MeCP2 
antibodies were purchased from Upstate Biotechnology (no. 
07-013). 

Immunohistochemistry 

Transfected cells were fixed in 4% paraformaldehyde in PBS 
for 20 mm. After two washes with PBS, cells were 
permeabilized with 0.2% Triton X-100 for 10 mm. Blocking 
was performed in 3% BSA in PBS for 30 mm. MeCP2 
antibody (Upstate Biotechnology) was diluted 1:200 in 
blocking solution and incubated with slides for 1 h. After 
washing three times in PBS, slides were incubated with 
fluorescein anti-rabbit IgG (Vector Laboratories) at 1:100 
dilution. After incubation for 1 h, slides were washed and 
mounted in Vectaschield mounting medium with DAPI 
(Vector Laboratories). Slides were examined using a Zeiss 
microscope. 

RESULTS 

Identification of an MeCP2 splice variant in EST databases 

We searched mouse EST databases for cDNA sequences 
encoding MeCP2. Alignments revealed that ESTs can be 
grouped into two categories depending on the presence 
(BY107013, B1409371) or absence (CA980031, BY244111) 
of exon 2. Human MECP2 cDNAs with (BC11612, 
BM923600) and without (BG706068, B1458175) exon 2 
also exist in human EST databases. As exon 2 contains the 
ATG for the initiation of translation, we considered the 
possibility that the transcript lacking exon 2 is a non-coding 
RNA. However exon 1 contains an ATG that in the absence of 
exon 2 initiates a potential open reading frame (ORE) of 501 
amino acids (aa) in mice and 498 aa in humans (Table 1). We 
designate the new exon 2-minus isoform as MeCP2a and the 
previously described isoform containing exon 2 as MeCP2f3. 
Alignment of a and 13 predicted protein sequences demon-
strates identity except at the extreme N-terminus (Fig. la 
and b). The MeCP2cx N-terminus contains polyalanine and 
polyglycine repeat tracts encoded by GCC and OGA 
trinucleotides. Comparison of these isoforms with other 
vertebrate MeCP2 sequences showed that MeCP2a shares a 
polyalanine tract, serine-glycine residues and EERL motifs 
with Xenopus and zebrafish MeCP2 sequences, whereas 
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Figure 1. Alternative splicing of MeCP2 mRNA. (a) Previously described 
MeCP20 is encoded when all known exons are sequentially spliced. (b) The 
novel MeCP2a isoform arises when exon 1 is spliced onto exon 3, skipping 
exon 2. Shaded boxes are protein coding and open boxes are non-coding. 
ESTs suggesting the occurrence of each isoform in vivo are mapped as lines 
above the genomic DNA. (c) Alignment of mouse and human MeCP2II and 
MeCP2a N-termini with zebrafish and frog MeCP2. MeCP2a is more 
similar to zebrafish and frog orthologs than is MeCP23. 

MeCP213 lacks these features. The alignment suggested that 
MeCP2a more closely resembles the ancestral form of MeCP2 
than does MeCP213 (Fig. lc). We have searched the non-
mammalian EST databases and failed to find any 3-isoform-
like EST. Furthermore, examination of zebrafish and Fugu 
rubripes genomic sequences surrounding the MeCP2 gene 
revealed exon 1 ((x), but no potential exon 2 (13). We conclude 
that the f3 isoform is either absent or highly diverged compared 
with the mammalian 13 sequence. 

MeCP2a is the major mRNA splice variant in vivo 

To confirm in silico evidence and assess the relative 
abundance of the different MeCP2 isoforms in vivo, we 
performed semiquantitative RT—PCR analysis of cDNA 
derived from different mouse tissues. The two primers were 
designed to anneal to exon 1 and exon 3, respectively (Fig. 2a). 
Control amplification of mixed MeCP2a and MeCP213 
encoding plasmids showed no significant amplification bias 
towards the shorter product (Fig. 2a). RT—PCR analysis 
demonstrated that MeCP2a is more abundant than MeCP2f3 in 
most tissues. Relative abundance of MeCP2a was highest in 
the brain, thymus and lung, whereas an approximately 1:1 
isoform ratio was seen in testis and liver. The RT—PCRs (32 
cycles) were not saturating and therefore were responsive to 
template concentration. This was verified for each tissue 
sample by showing that fewer (30) or more (34) cycles 

generated less or more product, respectively (data not shown). 
Similar semiquantitative RT—PCRs provided evidence that 
both splice variants also exist in human brain; again, the 
predominant form of mRNA encodes MECP2a (Fig. 2b). 

To analyse the abundance of the two isoforms during 
cellular differentiation, we differentiated mouse ES cells into 
neurons. Samples from stages of differentiation were assayed 
for the different isoforms. Semiquantitative RT—PCR showed 
that MeCP2a mRNA is more abundant than MeCP2f3 mRNA 
in ES cells and the proportion of a mRNA appeared to 
increase during neuronal differentiation (Fig. 2c). 

The MeCP2a splice variant is more efficiently translated 
in vivo 

Having established that the MeCP2a mRNA splice isoform is 
abundant in mouse tissues and human brain, we next asked 
whether MeCP2a mRNA is translated in vivo. To address this, 
we transfected tail fibroblasts from Mecp2-null mice (18) with 
plasmid constructs containing a- or 13-isoform cDNA (Fig. 3a). 
Western blotting with a C-terminal MeCP2 antibody showed 
that MeCP2a is successfully translated, but we consistently 
observed only very low amounts of MeCP213 in independent 
transfections (Fig. 3b). As a potential explanation, we noted a 
short ORF (39 aa) within the 5'UTR region of MeCP213 that 
could potentially interfere with its translation. The short ORF 
starts from the AUG that initiates translation of the MeCP2a 
isoform, but in MeCP213 mRNA this ORF terminates due to 
alternative splicing 55 nt (in mouse) upstream of the bona fide 
MeCP213 translation start site. To test for interference of the 
upstream ORF, we introduced a point mutation that changed 
the upstream ATG to AAG (Fig. 3a) and expressed the wild-
type and mutant versions of MeCP213 in fibroblasts. Northern 
blots probed with MeCP2 cDNA showed that similar amounts 
of mRNA were produced from transfected wild-type 
MeCP2a, MeCP213 and mutant MeCP213 plasmids (Fig. 3c, 
lanes 1-3). As before, MeCP2a was efficiently synthesized, 
but a negligible amount of MeCP213 protein was translated 
from the wild-type cDNA construct. Mutation of the upstream 
ATG, however, led to a dramatic increase in the amount of 
translated MeCP213 (Fig. 3c, lanes 1-3). 

Our results indicate that the MeCP2a mRNA is more 
abundant than MeCP213 mRNA, but also that MeCP213 mRNA 
is inefficiently translated. Together, these findings suggest that 
MeCP2a protein will be much more abundant than MeCP20 
in vivo. To test this prediction, we took advantage of the 
different sizes of the a and 3 protein isoforms (Table 1). A 
high-resolution SDS—PAGE gel of in vivo translated a and 1 
forms confirmed that they migrate differently (Fig. 3c). 
Cotransfection of equal amounts of a- and f3-isoform 
expression constructs showed that MeCP2a is greatly over-
represented among the translation products (Fig. 3c, lanes 4 
and 5). To investigate whether native MeCP2 also contains 
predominantly MeCP2a, we loaded different amounts of 
mouse brain nuclear extract on the same gel (Fig. 3c, lanes 8-
10). MeCP213 protein could be detected only with higher 
amounts of nuclear extract loaded. We estimate conserva-
tively that the MeCP2a protein is at least 10-fold more 
abundant than MeCP213 in mouse brain extracts. An alterna-
tive hypothetical explanation for the difference might be that 
MeCP213 is poorly extracted from brain nuclei compared with 
MeCP2a. Given our evidence that MeCP2f3 mRNA is not only 
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Figure 2. Relative abundance of splice variant mRNAs in mouse tissue, human brain and differentiating ES cells, (a) A mouse tissue eDNA panel was 
analysed by semiquantitative PCR with primers that anneal to exons I and 3 (short arrows on map). The a isoform was more abundant in lung, thymus, brain 
and heart. Amplification of an equimolar mixture of a- and 13-encoding plasmids indicated no preference for amplification of either PCR band. (b) Human 
brain eDNA showed dominance of the a isoform mRNA. (c) ES cells were differentiated to give embryoid bodies and neuronal cells in culture. EB4 and 
E138 refer to embryoid bodies on day 4 and day 8 of differentiation. 4DN2 refers to day 4 after embryoid bodies were split and plated on serum-free 
neurobasal medium, 

less abundant in brain, but also much less well translated than 
MeCP2a mRNA, we consider it likely that the data accurately 
reflect the rarity of the f3 isoform in vivo. 

Localization of different MeCP2 isoforms in mouse cells 

The majority of methylated DNA in mouse cell nuclei is in 
repeated major satellite sequences, which exhibit punctate 
staining with DAPI. In mouse cells MeCP2I3 has previously 
been shown to colocalize with DAPI bright spots in a DNA 
methylation-dependent manner (4). To compare localization 
of the different MeCP2 isoforms in mouse cells, we 
transfected Mecp2-null tail fibroblasts with plasmids express-
ing the a or 0 isoforms and stained with an MeCP2 antibody 
that recognizes the invariant C-terminal domain. Both 
isoforms were nuclear and colocalized with DAPI bright 
spots (Fig. 4). The construct encoding the f3 isoform included 
the upstream ORF that inhibits translation. Accordingly the 
number of cells that expressed detectable protein was very 
low. By comparison, parallel transfections with the CL 

construct gave a much higher percentage of nuclei with easily 
detectable punctate expression of MeCP2. A few a transfected 
cells expressed very high protein levels that resulted in 
saturating fluorescence throughout the nucleus. We suspect 
that these cells and the few J3 cells expressing detectable 
3MeCP2 (Fig. 4, top panel) received by chance a large dose of 
the transfected expression construct. These experiments reveal 
no functional difference between a and f3 MeCP2 isoforms at 
the level of cellular localization. 

DISCUSSION 

We report a new splice variant of the MeCP2 gene which we 
designate MeCP2a. MeCP2a is more similar to frog and 

zebrafish MeCP2 sequences than the currently known isoform 
MeCP23. These findings suggest that MeCP2a is more closely 
related to the ancestral form of MeCP2 and that the 
appearance of exon 2 may be a relatively recent event in the 
evolution of the mammalian gene. The differing size and 
charge of a and 3 isoforms permits their separation by gel 
electrophoresis. This allowed us to demonstrate that both 
isoforms exist in mouse brain, but that MeCP2u is by far the 
dominant form. The predominance of MeCP2a can be partly 
accounted for by the greater abundance of its transcript. In 
addition, we demonstrate translational interference by an 
upstream ORF in mRNA of the 13 isoform. Translational 
interference by upstream ORFs is well established and has 
been shown to depend on the distance between the upstream 
ORF and the AUG of the downstream ORF and also on the 
structure of 5'UTR RNA (26-29). It is not known whether 
translational interference of this kind can be modulated in 
vertebrates as a means of regulating protein synthesis. 

The existence of the new isoform has implications for the 
study of Rett syndrome. Exon 1 was previously thought to be 
non-coding and has therefore been excluded from many 
mutational screening programmes. Our finding emphasizes the 
need for routine inclusion of exon 1 in these screens. Because 
MeCP2a is the predominant isoform, introduction of a 
nonsense or frameshift mutation would remove >90% of 
total MeCP2. This may result in classical Rett syndrome, a 
milder variant form of Rett syndrome or a related condition 
such as autism or X-linked mental retardation. We note that 
the MeCP2a N-terminus contains polyalanine and poly-
glycine sequences that are encoded by repeated GCC and 
GGA codons respectively. Expansion of a GCC trinucleotide 
sequence in the FMR2 gene is reported to cause FRAXE 
mental retardation (30) and an equivalent expansion may in 
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Figure 4. Both MeCP2 isoforms colocalized with methyl-CpG-rich DAPI 
bright spots when Mecp2-null fibroblasts were transfected with wild-type 
MeCP2ct and MeCP23 expression constructs. 

theory contribute to Rett syndrome. It is noteworthy that no 
Rett syndrome mutations in exon 2 have been described. It is 
possible that exon 2 mutations, which would only affect 
MeCP2f3, are compensated by the more abundant MeCP2a 
isoform and would therefore have a much less severe 
phenotypic consequence. 

Most previous research on MeCP2 function has utilized the 
MeCP23 isoform, which we now report to be a minor form 
in vivo. We found that MeCP2 localization in mouse cells is 
the same for both isoforms, at least in cultured cells. Also, the 
alternative N-terminus is located outside the previously 
described functional domains MBD and TRD. It is therefore 
unlikely that either MBD or TRD function is affected by the 
N-terminus. Indeed, human MECP2J3 alone was able to 
successfully rescue MeCP2 deficiency in frog embryos, whose 
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endogenous protein more closely resembles MeCP2a (31). 
Consequently, we expect that the functions of a and f3 
isoforms may overlap significantly. On the other hand, it 
cannot be ruled out that the two isoforms exert somewhat 
distinct functions in vivo. For example, the MeCP2a 
N-terminus contains a conserved serine residue that is absent 
in MeCP2I3 and which could be a target of phosphorylation. 
Recently, MeCP2 phosphorylation has been shown to accom-
pany induction of bdnf transcription in cultured mouse 
neurons (32,33). It may be of future interest to determine the 
functional significance of differing MeCP2 N-termini by the 
creation of i soform- specific gene disruptions in mice. 
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