
THE SELECTION OF COVARIATES FOR THE RELATIONSHIP

BETWEEN BLOOD-LEAD AND ABILITY

Gillian M Raab

Doctor of Philosophy

University of Edinburgh

1989

* "(
i

J



The field work of the Edinburgh Lead Study, described in

chapter 5, was conducted by a research team of which I was a

member. The data described in chapter 5 were compiled by the

staff of that team, under my direction. All the analyses of

these data which are reported in this thesis, however, have been

performed by me. Part of the text of chapter.5is taken from a

paper of which I was first author CRaab et al 1989).

I declare that, with the exceptions mentioned above, this

thesis has been composed by me, and the work is my own.

Gillian M Raab, August 1989.

-ii-



ACKNOWLEDGEMENTS

I wish to thank all of my colleagues in the Medical

Statistics Unit for their support and encouragement in the

writing of this thesis. Edith Stewart, our department

secretary, has been a particular support.

I am indebted to everyone who worked on the Edinburgh Lead

Study, without whom this work would have been impossible. My

particular thanks must go to Mary Fulton, the study director,

and to Ruth Hunter and Linda Boyd for their organisation and

analysis of the large body of data which was collected.

I am grateful to Lindsay Paterson and Bill Adams who gave

generously of their time to check some of the matrix algebra, and

to my supervisor Robin Prescott for his advice and encouragement.

My thanks are due to my family. My daughter Anna printed

out much of the final version of the text and my son Jonathan

typed the contents pages and prodded me into meeting deadlines.

Finally, to my husband Charlie, for doing more to help than I

could possibly enumerate.

-iii-



ABSTRACT

This thesis arose from a problem in the analysis of data from the
Edinburgh Lead Study. The data were to be used to estimate the
influence of children's blood lead levels on their mental abilities,
controlling for other factors which might confound this relationship.
The other factors were summarised as a set of covariate scores, and the
question arose as to which of these scores should be included in a
multiple regression whose purpose was to estimate the coefficient of
blood-lead. This problem has arisen in other studies of the influence
of lead on ability, and a variety of solutions have been implemented.
The statistical and epidemiological literature offers little guidance.

The problem is formalised by proposing regression models with
various assumptions. Expressions are derived for the mean-square-error
of the parameter of special interest (here the blood-lead coefficient)
in terms of quantities which can be calculated from the data. Various
stepwise procedures are proposed for selecting a sub-set of covariates
to include in the regression equation. These include the usual
stepwise procedures, as well as new ones based on the various mean-
square-error criteria and on changes in the coefficient of interest.
These procedures are studied for the data from the Edinburgh Lead Study
and evaluated by simulation in different ways.

The potential for variance reduction from sub-models, compared to
including all covariates, is a function of the multiple correlation
between the variable of special interest and the variables which could
be omitted from the model. The results suggest that, unless this
correlation exceeds 0.2, inferences should be based on a regression
with the full set of covariates. The greatest benefit is obtained from
sub-set selection procedures when the multiple correlation is increased
as a result of a decrease in the residual degrees of freedom. In these
circumstances the multiple correlation will be high, but its value
will fall when the usual adjustment for degrees of freedom is applied.
The simulation results suggest that sub-set selection will be
beneficial when the residual degrees of freedom for the full model are
less than three time the number of covariates.

The method which performed best was to select, at each step, the
variable which made the largest change in the coefficient of interest.
Stopping rules for this criterion are propped. This method was less
prone than the other methods to underestimate the variance of the
coefficient of interest, when this is evaluated in the usual way for
the final model. But it performed badly and underestimated this
variance, for artificial data where the population multiple correlation
between the variable of special interest and the covariates was high.
This suggests that sub-set selection should not be used when the
estimated multiple correlation adjusted for degrees of freedom is high.

These criteria applied to the Lead Study data would suggest that
the effect of lead on ability should be assessed by adjusting for all
the covariate scores.
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Chapter 1

Introduction and overview

1.1 Introduction

It always comes as a surprise to me that, despite the large

number of books and papers on applied statistics published every

year, practical statistical analysis gives rise to problems for

which no solution appears in the literature. The Edinburgh Lead

Study has been a good example of this. I have been involved

with this study, as a member of the project team, from its first

planning through to data collection, validation and final

analyses. As well as the applied papers which have presented

results of the effects of lead exposure on children, and of the

contribution of environmental lead to children's exposures,

particular features of the study have contributed to developments

in statistical methodology (Raab & Zhou 1987, Paterson & Raab (in

preparation)).

The main aim of the Edinburgh Lead Study was to estimate the

influence of children's blood-lead on their scores in ability

tests. The study was an observational cross-sectional study of

children with a restricted age range. Where observational data

are used to attempt to draw conclusions about causal mechanisms,

the influence of other concomitant variables must be taken into

account (see for example Blalock 1964 and Cochranl984 ). This
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gives some protection against drawing false conclusions that are

the result of confounding by variables which are not under

experimental control. This was reflected in the Lead Study field

work, where most of the data collection effort was focussed on

obtaining information on potential confounding variables. This

emphasis continued during the analysis phase, when the data

collected on potential confounders were reduced' to a series of 33

scores which could be measured for each child.

A question then arose for which I could find no useful

guidance in the statistical literature. It was the following:

" Which of these scores should be included as covariates when
we estimate the influence of blood-lead levels on children's

ability and attainment ?".

This was a bigger question than could be tackled within the time

available for analysis. All that emerged from my initial

literature review was that the of the coefficient of

interest (here, that of blood-lead) is always reduced when other

covariates are excluded, and thus there may well be sub-models

for which the coefficient has a lower mean-square-error (MSE).

However, some related literature on prediction contained

suggestions that improvements from variable exclusion may be less

valuable than they appear, when the covariates to exclude are

selected with reference to the data. Also, one could not be sure

that the confidence intervals which one might calculate after a

variable selection procedure would be valid.

In the circumstances, the safest course was to adjust for

all the available covariates. The substantive papers on the
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effects of lead on children's abilities (Fulton et al 1987,

Thomson et al 1989 and Raab et al 1989) all estimate the

influence of blood-lead, adjusted for all available covariates.

However, the exclusion of certain covariates by stepwise

procedures has become so much the norm in the medical and

epidemiological literature, that the results for models which

excluded certain variables were also presented. It was fortunate

that the conclusions drawn from the data about the influence

of lead on children's abilities, did not change when the analysis

was carried out with a sub-set of the covariates. However, we

cannot guarantee that this would be the case for every set of

data.

The work I present in this thesis has allowed me to return

to this problem. My aim is to provide guidelines for selecting

covariates in studies which share the design characteristics of

the Edinburgh Lead Study.

The selection of a sub-set of the covariates is not the only

method which can be used to obtain improved estimators by

reducing the dimensions of the problem. Principal components

analysis of the covariates, and ridge regression methods might

also be considered. However, sub-set selection methods are by

far the most frequently used in practice, and this is the

justification for restricting attention to them.
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1. 2 Computing methods

The Edinburgh Lead Study data were analysed by BMDP (Dixon

et al 1985). However for the purposes of testing out procedures,

a more flexible package which also provided matrix manipulation

was necessary. All the analyses which I present in this thesis,

including the simulations in chapters 9, 10 and 11 have been

performed using GENSTAT IV (Alvey et al 1980). For graphical

presentation the data, some of the GENSTAT results were

read into S (Becker & Chambers 1984), and also on some occasions

into MINITAB (MINITAB Inc 1986) to allow a quick interactive

assessment of the results.

1. 3 Overview

Following a review of the statistical and epidemiological

literature, my first method of tackling this problem was to

devise criteria which could be calculated from the data, and

which would assess the mean-square-error (MSE) of estimation for

the coefficient of special interest (denoted by £*) for a sub¬

model. There were several such criteria which I have denoted by

the general term GP,, with various additional sub-scripts, where

p refers to the number of covariates in the model. This theory

is developed along similar lines to the equivalent theory which

has derived quantities to use when selecting sub-sets for

prediction (eg Cp, Sp and Ap).
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Although the performance of these Gp criteria, as evaluated

In subsequent chapters, has not lived up to the expectations

which I initially held out for them, they have been invaluable in

helping to understand the structure of the problem. In

particular, they forced me to draw the important distinction

between a random-effects model and a fixed-effects model. This

distinction is not important when one is concerned with

prediction, where random-effects criteria and fixed-effects

criteria perform in a very similar way. However for estimating a

single coefficient the distinction is very important. In its

simplest terms it determines whether one estimates the residual

variance from the full model or from . the reduced model. In

practical epidemiology a random-effects model will almost always

be required.

In chapters 5, 6 and 7 I look closely at the Lead Study

data, and at the way in which various sub-set selection

procedures operate on them. The selection procedures examined

include those which are derived from the Gp procedures, selection

by the significance of the covariates in relation to the outcome,

and selection by choosing the variables which will have the

greatest influence on the estimate of P*.

Without performing any simulation procedures, a detailed

study of how some of these selection procedures operated on the

real data pointed to potential problems. In fact, similar

problems could be seen to occur for the Cp and Sp criteria, in

relation to prediction, which were examined in the context of

selecting variables related to outcome.
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These problems were confirmed in the simulations presented

in chapter 9, where data were generated with a similar structure

to the Lead Study data. Selection by some of the Gp criteria

gave results which were so close to those for the full model as

to be a complete waste of computer time, while others performed

worse than the full model. After this chapter only three

selection procedures remained worthy of further consideration.

They were :

(1) selection by the value of the residual-mean-square (RMS),
the method most commonly used in practical epidemiology;

(2) selection by one of the Gp criteria (G1rp) ;

(3) selecting the variable into the model which gives the
greatest absolute change in the estimate of (5* (A(b*)>.

None of these performed any better than the full model for

the complete Lead Study data. However, when they were further

evaluated in chapter 10 on similar data with smaller sample

sizes, all three gave improvements relative to the full model.

The RMS procedure gave greater improvements when used with a

nominal significance level Of 0.05, than were obtained when the

stepwise procedure was carried further to give models in the

region where the minimum of Cp would be found. A stopping

criterion (C) for (A(b*>) was considered in terms of the squared

change in the estimate b* as a fraction of the variance of b*. A

value of 0.1 for C seemed to be suitable. Only the (A(b*))

procedure seemed to be free of problems of under-estimating the

variance of b*.

Finally, the three procedures were given the more severe

test of selecting variables from multivariate normal data, which
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were selected to have awkward properties. The (A(b*)) procedure

came out best from this evaluation, but it has problems in some

circumstances. In particular it can give poor estimates when the

other covariates are strongly related to the variable of special

interest (blood-lead in this case), and under-estimates of the

variance of b* can also occur in this case.

My final recommendation is that sub-set selection should not

be performed at all, but the full model should be used, unless

the residual degrees of freedom in the analysis are less than

three times the number of covariates. It is reassuring that the

real Lead Study data have more residual degrees of freedom than

this, and so our original decision to include all the covariates

in the analysis would be vindicated. If sub-set selection is to

be done, the best procedure would seem to be (A(b*)), although

one cannot always be sure that it will perform well, especially

when the true dependence between the variable of special interest

and the other covariates is strong. The value of the adjusted

multiple correlation between the variable of special interest and

all the other covariates can be used to judge when this is the

case.
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Chapter 2

Selection of covariates : review of epidemiological practice

2.1 Introduction

In recent years there have been many papers in the statistical

journals on the criteria for selecting a subset of variables to use

in a multiple regression. These will be reviewed in chapter 3.

However, none of these have addressed the problem of interest here,

namely "Which variables should be included in the analysis of

observational studies, when one independent variable is the focus of

interest?"

As long ago as 1965 Cochrane commented on the statistical

contribution to the analysis of observational studies

"This type of research, dealing with the acquisition of
knowledge that may help us to lead happier and more
harmonious lives is potentially important, yet I have the
impression that it has been somewhat neglected by the
statistical profession."

The recent statistical literature does not appear to have done much

to remedy this situation.

In contrast, there have been a considerable number of papers

in the epidemiological literature on the analysis of observational

studies in general, and in particular on the choice of confounding

variables. In this chapter I will review the recommendations in
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books and articles which discuss the methodology of epidemiological

studies, and exemplify how these have influenced the analysis of

lead/ability studies.

2.2 Covariates and confounders : definitions and concepts.

The primary goal of epidemiology can be considered to be "to

discover manipulable causes" (Weed 1986) and we often try to attain

this goal with studies which are observational rather than

experimental in design. Thus the adjustment of estimates for other

explanatory variables is one of the most important statistical tools

for use in this field.

What type of extra variables should be included in an

observational study whose primary purpose is to investigate the

relationship between a risk factor and an outcome measure ? This

question is addressed by many epidemiological texts, and is also

discussed by Smith et al (1983) in the context of lead/ability

studies. The consensus is that we should be controlling for

variables which

(1) are associated with the outcome, and may be a cause of
the outcome;

(2) may be associated with the risk in the study
population;

(3) should not be a cause of the risk (as this would
result in overcontrol).

In what follows I will assume that the variables being

discussed are acceptable in terms of this definition. It will be

assumed, in this and the following chapters, that we have obtained
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error—free measures of all variables which could modify the

relationship between the risk factor and the outcome. Thus we are

not in the situation of measuring an apparent association between a

risk factor and an outcome variable which is the result of an

unmeasured confounding variable. In reality, we will never know

whether this assumption holds. However, the success of

observational studies in identifying risk factors for disease

suggests that this assumption may not be unreasonable.

As more is learnt about the determinants of the outcomes of

interest (eg children's abilities) the number of such variables

which are measured can become large. Also, the availability of

computer programs to perform multiple regression analysis and

logistic regression analysis relatively easily and cheaply has now

made it possible for studies to collect and analyse data with many

covariates.

Most reports of such studies use some data-dependent method

of selecting a sub-set of the covariates which are included in the

final reported analysis. The terminology which I will adopt here is

to use the terms "covariate" and "concomitant variable" for

variables which are candidates for inclusion in the regression

equation. The term "confounder" applies to such a variable whose

inclusion in the equation would appreciably alter the estimate of

the coefficient of interest. Although this definition is somewhat

unsatisfactory, because we have no criterion for what is an

appreciable alteration, it is in line with current usage in the

epidemiological literature (eg Miettenin & Cook 1981). An
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additional uncertainty about this definition is the fact that it

does not distinguish between the alteration of the coefficient for

the data which have been collected, and the difference between the

marginal and partial coefficients in the population from which the

subjects in the study can be considered a sample. I will use the

latter as a definition of a genuine confounder. Thus all covariates

are potential confounders to a greater or lesser extent. The variable

selection process can be considered as the process of selecting the

most important confounders from the covariates.

How do most studies select the confounders from the

covariates? The procedures which are available for selecting

regression variables in the most commonly used computer programs

dominate the published results. Draper and Smith (1981, chapter 6)

give a critical review of these, and emphasise that these procedures

can "easily be abused by the amateur statistician" ; it is not clear

to me why they do not include the professional in this caution.

The main methods which are used to select variables are forwards or

backwards selection procedures or stepwise procedures which are a

combination of these two (Efroymson 1960). These methods have the

advantage of specifying an analysis strategy, although most text

books and computer manuals (eg Draper & Smith 1981, Daniel & Wood

1971, Minitab 1986) stress that these methods should not be followed

in a totally automatic way, but that attempts should be made at

every stage to interpret the coefficients and assess their

plausibility. It is unlikely that this suggestion will be of much

help in epidemiological studies. The covariates are usually chosen

because they are thought likely to influence the outcome, and so it
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is a-priori plausible to control for any one of them.

Epidemiologists have no difficulty in suggesting mechanisms for

observed associations, and explanations of coefficients with a sign

opposite from what is expected can often sound convincing. It is

unlikely that one would be able to distinguish a covariate where

the association was due to the play of chance from one with a

genuine association of similar strength.

The evaluation of epidemiological studies is particularly

difficult when no analysis strategy has been described. When there

are a total of k potential confounders, in addition to the variable

of special interest, the results could be reported after controlling

for any one member of the 2k sets of covariates. Thus for 33

covariates we have a choice of more than eight thousand million

possible regression models from which the influence of the risk

factor on the outcome could be estimated. The possibility of

selecting, from among all of those, the one which is in best

agreement with the investigators' previous beliefs cannot be

discounted unless the analysis policy is fully and objectively

described. This point does not seem to have been considered in the

epidemiological papers reviewed below.

2.3 Review of recommendations in the epidemiological literature

I will review the papers in this field in chronological order,

although they do not represent the development of a single theme.

Rather, each one seems to make a set of rules or prescriptions by

which to carry out analysis, often justified by a successful
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application to one example. Some of these papers use the analysis

of categorical data as their examples, but the arguments are

sufficiently general for them to apply to continuous data.

In 1974 Fisher and Patil discussed the choice of confounding

variables in cross-classified data. They argue that to select

confounders one must examine the relationship of each covariate with

the outcome, taking into account the influence of all the other

covariates. In reply to this Miettenin (1974) argued that their

examination of every possible conditional relationship would have

"too low a productivity". He suggested that examination of the data

should start with an analysis of the simple relationships, and no

variable be considered further unless controlling for this variable

alone would "indicate confounding". Essentially, Fisher and Patil

are arguing for some form of backwards elimination method, whereas

Miettenin suggests a forward selection approach, with screening at

the first step.

In their short note on significance levels in stepwise

regression Kupper, Stewart & Williams (1976) point out that the

selection process can invalidate the usual F statistics used in

stepwise regression. They propose that significance levels derived

from the Bonferroni inequality will provide useful upper bounds for

the p-value to attach to the "most significant" regression

coefficient. Their discussion applies mostly to exploratory data

analysis where there is potential interest in any of the explanatory

factors, and hence the control of type I errors is of the greatest

importance, if the literature is not to be swamped by false leads.
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Their recommendations imply that the nominal p-values to be used in

a multiple regression should be much smaller than the conventional

0. 05 level when many regressors are being considered.

Quite the opposite advice is given by Dales & Ury (1979) who

deal with the case of controlling for covariates. They quote

Bancroft (1964) in suggesting that p-values larger than the

standard ones of perhaps 0.25-0.5 or even 0.7-0. 8 should be used.

They argue that the rationale of evaluating a covariate for its

confounding potential is quite different from that underlying the

usual significance test, and that the question of whether or not the

relationship between the outcome and the covariate could have

occurred by chance is not directly relevant. Significance tests lay

the burden of proof on rejecting the null hypothesis, whereas in

assessing confounding the onus should be on showing that the

covariate could not possibly distort the relationships being

investigated. They suggest a policy of comparing the estimates of

the disease/risk factor association with and without control for the

covariates. This seems sound advice, although it ignores the

influence of variable selection on p-values and, as they comment,

"there are no established guidelines or cut-off points for such a

selection".

Bancroft (1964) is interesting in its own right. It deals

with the general problem of inference procedures which use

preliminary tests of significance, and presents simulation results

for the comparison of two means with a preliminary test of equality

of the variances in the two samples. He presents guidelines for
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the circumstances when the use of the preliminary test may give

increased power without affecting the nominal significance level of

the final test. Bancroft anticipated that the availability of high

speed computers would prove helpful in giving guidance for many

other such problems, and refers to the selection of covariates as an

example. The reality has turned out somewhat differently. High
$

speed computers have incre^ed the number of preliminary significance

tests which are carried out, largely ignoring their influence on the

significance level of the final test.

Quite another set of criteria for carrying out stepwise

regression procedures in epidemiology are put forward by Kleinbaum

Kupper & Morgenstern in their text book Epidemiological Research

(1982); see also Kupper & Hogan (1978). They call their procedure

Hierarchical Model Simplification (chapter 21). They suggest

various strategies all of which start with a model which consists of

all the covariates, the risk factor of special interest and various

interactions. They suggest in particular that one should start by

testing the significance of the interaction of each covariate with

the risk factor of special interest. The analysis then proceeds in

a forward and backward stepwise manner, testing higher order

interactions with extreme significance levels and removing

insignificant terms from the model. There is a suggestion that the

main effects of all Important con founders should never be removed

from the model, as this might result in sacrificing validity for

precision. They propose that such variables might be removed from

the model if "deletion of the main effect does not materially alter

the exposure-related coefficients" This is in line with their
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recommendation in chapter 13 that "the use of a statistical test is

not appropriate to assess confounding". However this point does not

seem to have been appreciated by some epidemiologists who cite this

book as the source of their modelling strategy (see Schroeder et al

1984 below). Also no guidance is given as to what is an important

confounder or how one judges when a coefficient has been materially

alt ered.

To conclude, there are a wide variety of strategies which have

been suggested for choosing a sub-set of covariates in

epidemiological studies. The lack of consensus on the best

procedure, and the lack of any criterion for deciding when an

appreciable bias is being introduced by a confounder, have helped to

fill the correspondence columns of epidemiological journals. To

give but one example, Mantel (1986) criticised the fact that Rona et

al (1985) had not included social class as a covariate in their

analysis of the effects of passive smoking on children's growth.

The authors of the original study replied as follows:

"We are well aware that a variable not significantly
related to the dependent variable should not be
automatically deleted from the model as it may nevertheless
affect the relationship between the dependent variable and
the independent variable of special interest. However a
relationship between a factor, and the independent
variable of special interest , in this case smoking, is not
in itself a reason for its inclusion in the model, as the
factor must also have an association with the outcome."
(Rona et al 1986).

They go on to show that the relationship which they have estimated

is little influenced by the inclusion of social class.
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2.4 The choice of covariates in studies of the effect of lead on

childrens' abilities

The literature on the effects of lead on children's mental

abilities is a large one and several reviews are available (Rutter

(1980), Pocock and Ashby (1985), Lansdown and Yule (1986), Smith

(1985), Lester Grant (1985)). I will not attempt to be

comprehensive here but will concentrate on a few large studies which

have been influential and have used different strategies in the

selection of covariates.

Needleman and his colleagues in Boston (1979) presented the

first study of the effect of lead on children where data were

collected for a substantial number of potential confounding

variables. They present an analysis of covariance which compares 58

children with high-tooth lead levels with 100 with low tooth-lead

levels. A total of 39 covariates were identified, but only four

variables were controlled for in the analysis of covariance. The

criterion used to select covariates was a difference at p<0. 1

between the high and low lead groups, but one variable (parental IQ)

was controlled in the analysis which did not differ at this level

between groups. No information is presented about the relationship

between the outcome measure (child's IQ) and the covariates. This

study has been the subject of much criticism, particularly with

respect to the manner in which the 158 children were selected for

analysis from a much larger original group (EPA 1985). The answers

which have been given to such criticisms (Needleman 1983) have not

always reassured us that the investigators were aware of the biases

- 20 -



which can arise in the conduct of epidemiological studies, or that

they had any coherent analysis policy to guide their analysis.

Largely as a result of these criticisms Smith et al (1983)

replicated the Boston study on a UK population with a larger sample

size. A total of 403 children were selected from a much larger

group who donated teeth, in three groups, high lead, low lead and a

sample from the centre of the tooth lead distribution. A detailed

parental interview collected a large amount of data on family

background which was condensed into a set of scores for concomitant

variables. The scores were derived by selecting the items in the

interview which showed a significant relationship to IQ, and then by

grouping similar items together. The analysis of covariance was

then carried out with the "application of stepwise procedures both

with lead level and with outcome variables", although no details are

given of the strategy employed. In the final analysis there was

adjustment for between five and seven covariates, depending on the

outcome which was being studied.

In a further analysis of the same data (Pocock et al 1986) the

covariate scores and a different analysis policy are described in

detail. Covariates were selected from the 17 available by a

forward stepwise procedure to identify an 'optimal' regression model

defined in terms of Mallows Cp criterion (see chapter 3). This

examines the relationships between the covariates and the outcome

variables to minimise the expected prediction error, and resulted in

ten covariates being chosen. The risk factor (tooth lead) was

entered into the regression after this stepwise procedure. Although
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this method has the advantage of being well specified, and of

including certain terms which are related to the outcome at less

than conventional significance levels, it takes no account of the

relationships between the covarlates and the lead values, which are

crucial in assessing the degree of confounding. The substantial

conclusions of the original paper were not changed by the

reanalysis.

The American groups who have reported results of lead studies

in recent years have been much influenced by Kleinbaum, Kupper and

Morgenstern's text book (1981). Two papers, in particular, give

details of the analysis strategy employed. Schroeder et al (1984)

analysed data from 104 children and eight concomitant variables.

Following the text book's rules they start with a model containing

all the covariates and various interaction terms and proceed to

delete all but one covariate by backward's elimination. In another

study Bellinger et al (1984) analysed the results from 216 infants

who were selected in three groups of high, medium and low cord-

blood lead. They collected information on 120 potential confounding

variables. Their analysis policy is complex, and is described in

great detail. Briefly, they started with forward stepwise

procedures to identify the best predictors of outcome (mental

development) without including the exposure (lead levels). Extreme

p-values were used to allow for variable selection. The lead

variable was then included in the equation and other covariates

removed from the model if their exclusion "did not substantially

alter the magnitude or precision of the blood lead coefficient".

This procedure resulted in the selection of only two covariates from
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the original 120. The authors point out that the extent to which a

variable is a confounder cannot be judged by the significance of the

association between the confounder and the lead level, illustrating

that one of their two final choices resulted in an alteration in the

lead coefficient although its relationship with lead levels had a p-

value of only 0. 13. The results of this study were unusual in that

the significance of the lead coefficient was enhanced, rather than

diminished, by the inclusion of the covariates, and in doing so it

passed through the conventional "5% level".

2.5 Summary of variable selection for lead studies.

To summarise, a variety of different strategies have been used

in the selection of covariates in lead exposure studies. These

include those which examine the relationships only between the

covariates and lead, or only between the covariates and outcome.

Where more complex strategies which look at both these relationships

have been carried out, they seem to result in control for only a

very few covariates from a much larger set. The studies discussed

above are summarised in table 2. 1.
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Table 2. 1

STUDY No of

subjects
N

Needleman 158
et al 1979

Smith 403
et al 1983

Reanalysis of
Smith et al 377
1986

Schroeder 104
et a 19841

Bellinger 216
et al 1984

Total Covariates
covariates used

k-2T p-2*

39 4

17 5

17 10

8 1

120 2

Method of selection

Relationship of
covariates to lead,

No adequate details

Forward stepwise
with Cp,

Hierarchical model

simplification

Hierarchical model

simplification

w As k and p stand for the total number of variables in the full and
reduced models and the lead exposure variable and a constant term
are always included, so the additional covariates in the two models
are k-2 and p-2.

2.6 Questions to be answered

Any approach which examines covariates to see if they may be

confounders must surely attempt to look at both the relationship

between the covariates and the outcome, and the relationship between

the covariates and the variable of special interest. However none

of the proposed strategies seems to have any rationale, nor has

there been satisfactory consideration of the problem of selection

bias from the large number of sets of potential confounders.
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The crucial questions in relation to the selection of

covariates in observational studies are

(1) How does the selection process affect the bias and precision of
the coefficient for the influence of the risk factor on

outcome?

(2) Given an answer to (1) what selection process, if any, should
we chose ?

(3) Can we find a method of estimating the bias and precision of
the risk/outcome coefficient after a variable selection

process, and thus derive a valid confidence interval for the
coefficient of special interest?

These questions are of a statistical nature, and their answer

presupposes a formal approach to defining models and pocedures. The

chapters which follow will develop this approach.
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Chapter 3

Statistical approaches to variable selection

3.1 Introduction

Most of the statistical literature on the topic of variable

selection in regression is concerned with the use of a regression

relationship for prediction. Although this is not the problem here,

yet the results are relevant and will be discussed later in the

chapter. The only papers which consider the effect of variable

selection on the estimate of a single regression parameter are those

which deal with clinical trials. I will discuss them first, but

initially I will outline the various statistical models which have

been proposed, the assumptions made and the notation to be used.

3.2 Types of model considered; fixed or random covariates

In all cases it will be assumed that the outcome variable is a

random variable y which has been observed for n individuals, giving

an n-vector Y of independent observations. Lower case will be used,

throughout this thesis, for random variables and upper case will be

used for their realisations and also for fixed quantities. Greek

letters will be used for unknown parameters and the corresponding

Roman letters for their estimates. The expectation of y for fixed

values of a k-vector of covariates X is given by

E(y> = X P,
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where p is a k-vector of parameters. The first elements (P* and X*>

of P and X correspond to the coefficient and value of the variable

of special interest. We observe the random variable y for the fixed

values of the covariates in the n rows of the n x k matrix X. The

residuals y - X (3 are assumed to have a distribution which is

independent of X with variance a2. Notice that we are assuming that

all relevant covariates have been measured, and that all are free

from measurement error. It is possible that some elements of P may

be zero, but this cannot be known a priori.

The model will be termed a "fixed-effects" model when all the

results are conditional on the observed values of X. This is the

model which is appropriate to industrial experiments when the Xs are

chosen as fixed design points. When the model is extended to

consider some or all of the X's as the realisations of random

variables x, we will be dealing with a random-effects model.

Notice that results from the fixed-effect model will apply to the

random-effects model conditionally on the particular X's observed.

The random-effects model often makes the assumption that the x

variables follow a multivariate normal distribution. If the

distribution of the residuals is normal then the joint distribution

of x and y is also multivariate normal.

Which model is more appropriate for the analysis of covariance

in epidemiological studies? Clearly the covariates are not fixed in

the same sense as they are in experimental studies, and thus a

random-effects model would seem more appropriate. An exception

might be X* in the case when two groups are compared, one containing
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the risk factor and the other free from it. Even when this is not

the case, studies are often designed to include a spread of values

of the dependent variable of special interest and one might argue

for always treating it as a fixed-effect. A model with X* treated

as fixed and the other covariates x as random variables will be

termed a random model with fixed X*. This is the model which has

been used when considering the selection of covariates in clinical

trials. In this situation we have the additional assumption that

the expected value of x is the same across treatment groups, or more

generally, that the distribution of the random covariates is not

dependent on the value of the fixed covariate X*. Without this

assumption it would appear to be a suitable model for

epidemiological studies. Multivariate normality for the other

covariates is unlikely to be found in practice either for

observational studies or for clinical trials.

For most of the results which follow it will not be necessary

to assume that the residuals of y for fixed Xs follow a normal

distribution. However, this assumption will be necessary for such

things as the calculation of confidence intervals and significance

tests. When the residual degrees of freedom are large we would

expect these tests to be robust to modest departures from normality.

Obviously, the condition of normally distributed residuals

will be fulfilled for multivariate normal data. When we are dealing

with a random-effects model for which some of the xs are not

normally distributed (eg if they are categorical variables) and if

the condition of normality of the residuals holds for the full model
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which contains all the covariates, it is unlikely that it would hold

for sub-models with one or more of the non-normal x variables

omitted. An exception to this would be the case when the non-normal

covariates have distributions which are independent of y.

3. 3 Selection for a random-effects model with fixed X*.

The first discussion of selection of covariates for this model

appears in a paper by Cochran (1965) which deals specifically with

the problems of observational studies. He makes the assumption of

equal population means of x in exposed and unexposed populations,

which is really only appropriate for randomised clinical trials, but

which one might hope to achieve by a suitable design in an

observational study. He calculates the coverage of the usual

confidence interval for the unadjusted estimate of fP'', conditional

on the l-statIstic for estimating the difference between exposure

groups on the value of a single covariate x. On the basis of these

results he suggests one should consider using the adjusted estimate

when the t statistic is greater than about 1,5, and that this will

be especially beneficial when the correlation between y and x is

high. Howevet lie does not consider the implications for such a

policy on the significance tests and confidence intervals for p*.

This problem has been considered more recently, in the context

of clinical trials, by papers which have investigated various

strategies by simulations. Forsythe (1977) considered the case of a

single covariate, using a simulation of a clinical trial with two

groups of 16 patients each. Values of x and y were generated from
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the bivariate normal distribution with a range of correlations such

that p2 ranged from 0 to 0.75. Six strategies for variable

selection were considered.

(1) Always adjust for the covariate;
(2) Never adjust for the covariate;
(3) Only adjust if x is correlated with p<0. 05 with y;
(4) Adjust if the estimate of p* is more significant after

adj ustment;
(5) Adjust if the means of x are significantly different

(p<0. 05) in the two treatment groups ( ie X is
correlated with X*);

(6) Both of conditions (3) and (5) are met.

Forsythe investigated the size of tests , with nominal values of

0.05, for assessing treatment-effects after using these strategies.

Strategies <1) and (2) , as one would predict, did not influence the

size. Strategy (3) resulted in a slightly increased size the middle

range of p2, whereas strategies (5) and (6) had sizes which were

less than the nominal values , especially at large p2 <0.03 for a

nominal p-value of 0.05 when p2 was 0.75). As expected, strategy

(4) resulted in the nominal p-values being too extreme, sometimes

considerably so. Forsythe also estimates the power of the various

strategies, showing that all of the policies of adjustment have

advantages when p2 is large. However, the power comparisons made

between methods are difficult to evaluate because of the different

sizes of the tests.

Shirley and Newnham (1984) report a somewhat similar

simulation study in the context of a toxicological experiment. They

do not appear to have been aware of Forsythe's work. They consider

strategies of type <3) with p-values ranging from 0.05 to 0.25. The

simulated data were based on a real toxicological experiment where
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the outcomes were organ weights, and the possibility of controlling

for the x variable, body weight, was considered. Data were

simulated for two treatment groups with 6 animals per group. The

covariate was simulated with the correlation with outcome found in

the data, and also with no correlation with the outcome.

They concluded that, for the case when x and y are correlated,

there will be no gain in power for the adaptive strategies over

always adjusting for the covariate, if the nominal significance

levels for the test of differences between groups (which can be

quite misleading) are adjusted to correspond to the true size of the

test. When there was no correlation between x and y the adaptive

procedures gave a modest improvement in power of about 6-9% compared

to always adjusting.

Forsythe's work was extended to multivariate covariates by

Schluchter and Forsythe (1985). They considered the case k=5 with

two treatment groups, and evaluated various strategies including

always adjusting for the covariates, never adjusting, and a total of

16 strategies for selection which can be considered in three

groups:

(1) Select covariates correlated with y;
(2) Select covariates whose means differ across groups;
(3) Both of conditions (1) and (2).

All these adaptive methods are considered with the preliminary tests

carried out at the 0.05 and 0.25 level. Within group (1) there are

four methods: testing the significance of the joint relationship

between all the 5 covariates and y; testing the marginal

relationship between each column of x and y; testing the partial
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relationship after controlling for all the other members of x; and a

forward stepwise regression of y on x. In all cases the X to Y

relationship is examined within the treatment groups, ie after

adjusting for X*.

Simulated data were generated with (y,x) having the same

multivariate normal distribution in each treatment group. The design

was a factorial one with respect to the following parameters:

Sample size (8, 15 or 32 per group);
Common correlation among the x <0 or 0. 9);
Magnitude of the multiple correlation coefficient R2

between x and y (. 1, . 4 or . 7);
Pattern of distribution of R2 between the covariates (one

only or all x's equally).

The correct type I error rates for the adaptive strategies were

different from their nominal 5% level.

Type (1) strategies
For those strategies which selected on the basis of the

relationship between X and Y, the correct type I error rates were

greater than their nominal value of 5%, the-effect being greatest
for the stepwise and partial correlation methods. The size of this-
effect depends strongly on the sample size (greatest in small

samples) and on the significance level of the intermediate tests

(greatest for 0.25). These results can be explained by the
underestimation of the residual variance in variable selection

procedures (Berk 1978, Rencher and Pun 1980 and Pinault 1988) which
is at its most severe when several variables are competing for
selection and the ratio k/(n~k~l) is large. The-effect can be a

large one giving true significance levels of 10% and greater, but
the authors suggest it can be safely ignored when the ratio of k/(n-
k— 1) is less than 0. 1.
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Type (2) strategies
The strategies which selected on the relationship between X

and X* had true significance levels which were less than 5%, This-
effect was independent of sample size but dependent on the value of

R2, and the level of the significance test. The average type I
errors (nominal significance level 5%) for a preliminary test at

p<0. 25 were 4. 4%, 3. 7% , 2. 3% and for p<0. 05 4. 6%, 4. 1%, 3. 1% at R2
values of . 1, . 4 and .7 respectively. This-effect can be understood
as follows. When x and y are correlated, the occasions when y

differs by treatment group will also tend to be those where x will
differ by treatment group. Adjustment for the covariates will
reduce the number of such occurrences which appear to show a

significant-effect of y on treatment.

Type (3) strategies
The true significance levels of these strategies were

intermediate between those for (1) and (2). However they were more

often biassed to small significance levels ( as in type (2)),
especially as the sample size increased.

The power of the procedures are compared by calculating the

confidence intervals for the resultant estimates of 3*. The exact

variances of never adjusting for covariates or always adjusting for

covariates are calculated, and the authors show that adjustment is

beneficial when R2 > k/(n-3). This was the case for the simulation

data when R2 was .4 and .7, with the benefit being greatest for the

largest sample size. The only conditions for which the adaptive

methods performed better than the best of the other two was when the

R2 was concentrated on a single covariate and methods were of type

(1). The stepwise method seemed to perform best among methods of

type (1) in this case. When R2 was diffuse methods of type (1)

performed similarly or somewhat worse than always adjusting.

Methods of types (2) and (3) had variances which lay closer to the
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unadjusted estimates than to the adjusted ones, and so could result

in large losses when R2 was large.

The authors conclude that the safest strategy is to adjust for

all covariates when the sample size is large in relation to the

number of covariates, since significance tests are valid and the

efficiency is not much impaired. They also suggest that a stepwise

procedure may be of benefit, but that it should only be used if

some method such as the bootstrap (Efron 1979) or the jacknife

(Miller 1974) is used to obtain a valid test for the treatment-

effect after this procedure.

The most important result to follow from this study is that,

even when no bias is introduced by failing to adjust for a covariate

(a condition which will not usually be met in epidemiology), the

significance test for the variable of special interest may be

invalidated by the selection process. It seems likely that the test

may be conservative when the distribution of y is highly dependent

on x, but x and x* are independent, and the selection procedure

requires that x be related to x* before an adjustment is made.

Conversely, when the selection process is on the basis of the

relationship between x and y the significance levels may be too

extreme, especially when k/(n-k-2) is large, say, greater than .1.

In epidemiological studies the omission of any of the

covariates may introduce a bias, which will be in addition to the

problems of the invalid significance tests discussed above. The

sample sizes for which these results have been obtained are
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generally smaller than those used in epidemiological studies. But

to ensure the avoidance of bias the only safe strategy would seem to

be to adjust for all of the covariates. However, it is easy to

prove (see next chapter) that if we were in the favourable position

of having perfect knowledge of the parameters the mean-square-error

of an estimate of P* based on a reduced model can often be less than

that for the full model, even when the estimate based on the reduced

model is biassed. This is the motivation for seeking a mean-square-

error criterion which has more justification than the somewhat ad-

hoc rules suggested by Schluchter and Forsythe (1985). Similar

criteria have been derived for the prediction of future values of y

from a regression equation, and I will review these below.

3.4 Mean-square-error criteria for prediction

The various criteria which have been suggested for minimising

prediction mean-square-error are conveniently reviewed by Thompson

(1978a and b). The two which she recommends are each derived from

the same principle of finding an expression for the mean-square-

error of prediction averaged over a set of x variables with the same

dispersion as the predictor set, and then replacing the parameters

in this expression with terms derived from the data which have the

same expectations.

For the fixed-effects model the appropriate criterion is Cp

(Mallows 1973). For a sub-model which contains p covariates, the

total mean-square-error of estimation calculated over the current

sample can be shown to be
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1 MSEpr^c = IY(bias)2 + p a2 + no2 (3. 1)

where IY(bias)2 is the sum of the square of the estimated bias in

prediction, over the whole sample, caused by omitting covariates

other than the p. Now the expected value for the residual sum of

squares from this model with the p covariates is just

E(RSSp) = ZY(bias)2 + (n-p) <j2.

Hence the quantity

RSSp + <2p - n)o2 + ncr2 <3.2)

will have expectation equal to 3.1. By replacing a2 by the estimate

(s2) from the full model we get a quantity which can be estimated

from the data, and which has the same expectation as (3. 1) and

(3.2). If we ignore the last term (which is common to all models)

and standardise by dividing by s2, we get the criterion

Cp = RSSp / s2 -n + 2p.

For the random-effects model with x and y following a jointly

normal distribution the equivalent criterion is Sp. A procedure

equivalent to minimising Sp was suggested by Narula (1974) but is

introduced by Hocking (1976) and Thompson (1978) without reference

to Narula1s paper. For this model the x variables are assumed to

follow a k-1 dimensional normal distribution (one of the k

covariates being a vector of Is corresponding to the grand mean).
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Conditional on the observed values (Xp) of p of the covariates, y

will have a normal distribution with its mean at the predicted value

of y for a given Xp (expressed in terms of the partial regression

coefficients Pp) and with variance <rp2 (the variance of the partial

conditional distribution).

Predicting a new value of y from Xp will have a mean-square-

error of prediction

ap2/n (1 + n + T2/ (n-1)) (3.3)

where T2 has a non-central Hotelling's T2 distribution, over the

population of all possible regression samples, with p-1 and n-1

degrees of freedom, and non-centrality parameter

X = n (Xp - nP)' X^-1 (Xp - jip>

where pp and Xp are the mean and covariance matrix of the p-1

variables included in the model. The expected value of 3. 3 over all

regression samples is thus

Op2/n (1 + n + ( p-1 + X)/ (n-p-1)).

Now, considering the expectation of this expression over future

values of Xp, since X is just n times a quantity with a x2

distribution with p-1 degrees of freedom, we can obtain the expected

value of the mean-square-error of prediction from the reduced model

as
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opz { (n+l)(n-2) ) / { n(n-p-l) ) (3. 4),

a result reported by Kerridge (1967).

Ignoring the terms which contain only n, and estimating ctp2 from the

residual sum of squares from the model containing the p terms we

obtain the criterion

Sp = RSSP/{(n-p-1)<n-p>).

NOTE; The derivations of this criterion by Thospson and Hocking each contain algebraic errors,

which are confusing, although in neither case is the final value for Sp incorrect,

Both of these criteria are quantities which can be calculated

from the data for any specified subset of the covariates. The

various subsets can then be compared, and those with low values of

the criterion indicate a low prediction mean-square-error for that

predictor set. In addition subsets with values of Cp close to p are

considered as giving evidence that the remaining variables

contribute only noise to the prediction. For the full model the

value of Cp is exactly p.

Various authors have considered the asymptotic properties of

these criteria. In order for the asymptotics to make sense, the

number of parameters <k> must tend to infinity as the sample size

tends to infinity. If this were not the case, the model which

includes all the covariates would always be preferred because the

variance part of the criteria tends to zero as n goes to infinity,

- 38 -



while the sum of the biases remains finite. However, if the number

of potential covariates increases with sample size this no longer

holds.

Brieman & Freedman (1983) show that the optimal number of

regressors to minimise the mean-square-error of prediction is a

small fraction of the number of data points (ie for optimal

prediction p/n -» 0 when n and p each tend to infinity). They show

that for multivariate normal data the Sp criterion provides an

asymptotically optimal rule for selecting regressors. It is easy to

see that under these asymptotics the criteria Sp and Cp are

equivalent, and are also equivalent to the final prediction error

criterion of Akaike (1970) and his information criterion (Akaike

1974). Shibata (1981) derives yet another criterion which he also

calls Sp but which in our notation is

RSSP (n+2p) / n,

and shows that the selection of covariates which minimises this

criterion will attain the lower bound for the mean-square-error of

prediction. His derivation does not require the assumption of

multivariate normality, and his criterion is asymptotically

equivalent to the other four mentioned above.

What is the relevance of these results to epidemiological

studies? Both n and p can be large in epidemiological studies, and

the concept of p and n increasing together is not unreasonable if

studies for outcomes with a large number of potential predictors are

designed to be correspondingly large. For such large studies, we

would expect to obtain optimal prediction from a fraction of the
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covariates, and we would expect either Cp or SP, to select a similar

set of covariates. That this will be approximately true when p<<n

is clear from the definition of the two criteria. Obtaining the

minimum value for either criterion is equivalent to

d

(RSSP,) = -2pa2,

dp

since o2' and o,.,2 are equivalent to the first order in p/n. In my

experience of other studies I have found that the number of

predictors which give a minimum of the Cp criterion is the number

included in a forward stepwise regression which stops when the

F statistic to include a further variable in the model no longer

exceeds 2 (F-to-enter set to 2). This is clearly related to the

results above, although the two criteria ( minimum C^, and an F-to-

enter of 2) are only strictly equivalent when the model with the

larger number of covariates is the full model. This will be

illustrated for the lead study data in the chapter 6.

3.5 Criticism of regression procedures which select x variables

Multiple regression analysis has become one of the most widely

used of statistical techniques and is available as part of almost

all statistical packages. Most computer packages also include

stepwise regression algorithms, and the additional feature of an

"optimum regression" routine which will select the subset of a given

size with the smallest residual sums of squares is considered to be
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worth advertising. A large body of work (eg Hocking & Leslie 1967,

Furnival & Wilson 1974) has been devoted to devising search

procedures which will select such subsets with the minimum amount of

computation. It is now possible, with the computing facilities

generally available, to obtain the regression which will minimise a

criterion such as Cp or Sp for up to about 25 predictors ie

selecting from 22S (over 30 million) possible subsets. It has been

estimated (Copas in discussion of Miller 1984) that over 10s

regressions are carried out per day worldwide, many of which involve

subset selection. However, statisticians have now come to realise

that the apparent benefits which may be obtained from subset

selection may be illusory.

The arguments are well expressed in the paper by Miller

(1984) and in the subsequent discussion. The properties of least-

squares regression, which are used to derive results for hypothesis

tests and for the properties of criterion functions, are only valid

when the subsets being compared are specified in advance without

reference to the data. For example, when the same data are used to

select a subset with a MSE criterion for prediction, as are used to

make the prediction, the estimate s2 will be an underestimate of o2

and the apparent benefit which one can obtain from a reduced set of

predictors will be greater than is really the case. Miller (1984)

illustrates this for a small simulation based on real data with n=31

and k=14. Copas (1983) considers the case of orthogonal predictors

with an n of 50 and 5 covariates. He shows that using a variable

selection procedure is often worse than using all the covariates,

and can even be worse than using no covariates when there is
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competition for selection between the regressors. These results are

related to the problem of the inflated significance levels for

selection procedures discussed by Schluchter and Forsythe (1985).

Miller distinguishes three possible sources of bias in

estimating a least-squares coefficient by sub-set selection:

(1) omission bias;

(2) competition bias, in choosing between subsets of the same
size;

(3) stopping-rule bias, in choosing the number of predictors
to use.

In practice, the predictions and estimated coefficients are

likely to be derived from the same data as are used for subset

selection. One could seldom justify collecting one set of data to

determine which sub-set to use, and then a completely new one to

estimate the coefficients. Thus, Mallow's defence of his criterion

(discussion of Miller (1984), p418) that he had not made any claims

for it in these circumstances, has a rather hollow ring. . His Cp

criterion has become enormously popular because of its inclusion in

so many regression packages and the associated graphical methods (Cp

against p plots) encourage its use.

Any methods which are suggested in this thesis for selecting

subsets of variables in epidemiological studies will have to be

evaluated in terms of their real application. Thus, I will hope to

discover any biases of the types (1) to (3) above before suggesting
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that a subset selection method may be useful in estimating the

coefficient of the variable of special interest.
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Chapter 4

Mean square error criteria for estimation of 3*

4. 1 Introduction

The mean-square-error (MSE) criteria, Gp, which are derived

here, relate to the MSE of the estimate of the coefficient, P*, of

the variable of special interest. There are two possible criteria.

The first (Grp) is derived from the fixed-effects model, and the

second (GRp) from the random-effects model with fixed X*. These

correspond to the two criteria Cp and Sp for prediction. Each of

the two criteria <GRp and GFp) consist of a sum of two terms, a

variance term, and a term for the squared bias which can be

evaluated separately.

For the random-effects model it is necessary to condition on

the observed values of the covariates included in the model. If we

make the assumption of multivariate normality for y and the x

variables in the model (except X*), it is possible to divide the

variance part of GRp into two parts. The expectation of one of

these two parts over the distribution of the xs can be evaluated

directly. Unfortunately, the need to evaluate the second term

prevents us from using this result to derive a further MSE

criterion. However, it allows us to break down the variance part of

GRp into two parts, each of which has a clear interpretation.
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The derivations are similar to those for CP, and Sp outlined in

the previous chapter. The quantities Gp have the property that, for

any selected subset of the data, their expectation (under the

appropriate model) will be equal to the MSE of the estimate b*: of

the coefficient P* which is of special interest. Again the

subscript p refers to a model which contains p covariates. As the

covariates must always include a constant term and X*, the minimum

possible value of p is 2.

4.2 Fixed effects model

The first regression model to be considered is that for which

all the independent variables, including the variable of special

interest, are considered as fixed effects. It is the model for

which the C^, criterion was derived. It is not the ideal model for

the consideration of epidemiological studies (see chapter 3), but

it has the advantage that it does not require any distributional

assumptions for the independent variables.

Let the matrix of observations X be reordered and

partitioned into two matrices [ P.* Q] where P includes X* and the p-1

other covariates included in the regression model, and where Q

contains the k-p covariates which are omitted. The vector of

coefficients is partitioned conformably into pP and pQ. It is also

convenient for the special variable X* to occupy the first column of

P. Now we can estimate P* from the reduced model and obtain an

estimate (b*P> from the first element of (P* P>-1P'Y with variance
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from the corresponding element of <72(P'P)_1. Notice that it is the

residual variance from the full model which enters into the variance

estimate here, which is a consequence of modelling Xs as fixed

effects. The estimate of the coefficient of interest will always

have a smaller variance than the estimate of (3* from the full model.

This result is well known and discussed in various papers (Walls &

Weeks 191,9, Rao 1971, Narula & Ramburg 1972, Rosenberg & Levy 1972

and Hocking 1974). However, the following derivation, using results

from least-squares theory, helps to clarify when a reduction in

variance will be expected.

The sum-of-squares matrix from which the variance of b*P is

derived can be written as

r x*' x* x*'P" i
I I
L P"'X* P'"P" J,

where P" is the matrix P without the first column which contains X*.

The first element of the inverse of this matrix is just

[ X*' C 1-P"[ P'" ?■•]-■> p» • IX*]-1

This is the inverse of the residual sum of squares of X* from the

least-squares fit of X* on P". Thus the inclusion of extra

variables (the matrix Q in our example) can only decrease this sum

of squares, and hence increase the variance of b*>. This shows that

the variables which will have the worst effect on the variance of

b*P are those which are the best predictors of X*.
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Of course, the estimate based on the reduced model will be

biassed and the magnitude of this bias will be the first element of

the vector <P' P)-1 P" Qp^.. Various conditions can lead to a selection

of the matrix Q which will introduce zero bias. If the matrices P

and Q are orthogonal, then there will be no bias even for finite PQ.

However, this situation would confer no benefit in terms of reduced

variance, because X* and Q would be orthogonal. If all the

coefficients Pu are zero then there will be no bias, even when P and

Q are not orthogonal. It is this situation which would appear to

confer the greatest advantage for improved estimation of p*. So the

variables which we might seek to exclude from the regression are

those which are related to the exposure, but which do not act as

predictors of the outcome.

Now for any partition of the X matrix we can compute a MSE

matrix for the estimated coefficients as

a2(p.p)-i + (p'P)—'P'Q PqPq* Q'P (P1 P)"1 (4.1),

and we are interested in the first element of this matrix which

corresponds to the MSE for our variable of special interest. To

obtain an estimate of this quantity from the data, we need an

estimate of a2 and of the (k-p)x(k-p) matrix PqPq1 for the true

regression coefficients of Q in the full model. We can obtain an

unbiassed estimate (s2) of ct2 from the residual sum of squares after

fitting the full model, and we can find an estimate of PqPq' from

the estimate of PQ for the full model.
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The estimate of p<5 from the full model is obtained as

r (P'P) (P'Q) I"1 t P : Q ]• Y
[ <Q'P) <Q' Q) J

and the inverse matrix becomes

C P* P-P' Q(Q' Q>—1 Q' P]-1 ~(P' P)-1 P* QCQ' Q-Q' P CP * P) -1 P1 Q] -1

-[Q* Q-Q' P(P' P)-1?' Q3-1 Q' P(P' P)-1 tQ'Q-Q'P(P'P)-1 P'Q]-1 !

Thus the estimate becomes

bQ = [Q1 (1-P(P' Pl-'P' )Q]-1[-Q' P(P« P)-1?' + Q» ] Y

= [Q* <1-P(P' P)-^' )Q3~1Q* (1-P<P* P)-'P' )Y

with variance matrix C Q' (1-P (P*P)_1P" >Q]_1ct2. Because this is an

unbiassed estimate of PQ the expectation of bQbQ' is given by

PqPq' + tQ' d-P<P'P)-'P')Qi-1a2, and

an unbiassed estimator of Pg-Pq' is

bIsbQ' -[ Q' < 1-P CP* P)-1?' )Q]-1s2 (4. 2)

When this is substituted into 4. 1 and ct2 is estimated by s2 we

obtain an unbiassed estimator of the MSE matrix for the reduced

model which is
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{p. p)-lS2

+ (P' P)-1P'Q[b<sb(3' 3Q' P(P'P)-'

- (P' P)-'P' Q[Q' (1-P(P' P)-'P' )Q]-1Q' P<P' P)-^2 <4. 3)

and we can pick out the first element of this which corresponds to

(3*, which will become the MSE criterion

This is not as bad as it looks. For GPp the first term is the

estimate of variance of b*P from the reduced model, which uses the

estimate of cr2 from the full model.

For the full model we can write

r P'P P'Q ] r bP ] = t P : Q ]' Y
I Q'P Q'Q 1 I bQ I

which gives (P'P) bP + P'Q b« = P' Y

and thus bP - (P'P)-1 P'Y = -(P'P)-1 P'Q bQ.

The left hand side of this equation is just the difference between

the estimates of pP from the full model and from the reduced model.

Thus the second term of the first element of 4.3 is just the square

of the difference between the estimates of g* from the full model

and from the reduced model.
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A matrix equality which is easily derived from the expression

for the inverse matrix given above permits us to write the third

term of 4. 3 as

< <p.p>~i - (F'P - P' Q(Q' Q)-1Q' PI"1 >

and so we see that the first element of the third term of 4.3 is the

difference between the estimate of variance of 3* from the reduced

model (our first term) and its estimated variance from the full

model. This term is negative semi-definite because the estimated

variance from the reduced model cannot be greater than that from the

full model.

If we carry out regression calculations on the reduced model

and on the full model, and obtain the following statistics for the

parameter of special interest p* calculated in the usual way from

each regression equation, as if it were the correct one

Reduced model Full model

estimate of P* b*> b*rpll

estimated variance of b* v*P v*fpll

residual sum of squares RSSP RSSflJ11

then the estimate of MSE for the parameter of special interest

becomes

GPp = <b*fpll-b*>>2 + 2v*P {RS5fLJ11/(n~k))/{RSSP/(n-p)> - v*rLJll
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The multiplying factor in the second term is required because the

regression output for the reduced model will calculate the estimated

variance of b*p from RSSP, rather than from RSSfuli as we require.

This quantity has the property that it will give an unbiassed

estimate of the MSE of b* for any specified submodel defined by the

matrices P and Q. Note that for the full model this expression

reduces to the estimated variance of b*.

We can only be assured that the properties above hold if the

sub-set P has been selected without reference to the data (see

chapter 3 for a discussion of this with respect to prediction MSE

criteria). However, keeping this caution in mind, the value of GFp

can be calculated for any model being considered, and the model with

the smallest value chosen. Forward or backward stepwise procedures

could be designed with this criterion used to include or exclude

variables. These strategies will be described for the lead study

data in chapter 7, and evaluated by simulation in chapter 9.

4.3 Relationship of (VP to other criteria

The GRp criterion can be considered as a special case of the

prediction MSE criterion of Allen (1971). This criterion, Ap,

refers to the prediction of a future value of y at one particular

point in the X space. This criterion has been discussed recently by

Galpin and Hawkins (1986), who suggest various search procedures

based on it and on related criteria. The MSE of b* is equivalent to

the prediction of the fitted value of the outcome at a point where



all the covariates (including the grand mean) are zero except for x*

which has the value 1.

The GFp criterion is also equivalent to a criterion

discussed by Schluchter (1985) for the choice of covariates in a

clinical trial, and Schluchter's criterion is a special case of a

criterion for the selection of covariates in the analysis of

covariance proposed by Linhart & Zucchini (1982). Schluchter's

derivation refers to the case when {3* is a treatment effect which is

a one/zero variable defined by the treatment allocation. Although

his expression for the criterion is expressed in terms of the

within-treatment-group variance-covarlance matrices, it is

equivalent to GRp for this case. He suggests various stepwise

procedures for choosing between models. These involve considering

the model with one additional covariate as though it were the full

model.

Related work, taking a hypothesis-testing approach, has been

carried out by Toro-Vizcarrando and Wallace (1968) and Wallace and

Toro-Vizcarrando (1969). They consider the more general issue of

using a constraint on the X variables in a multiple regression, and

comparing the MSE matrix for the restricted model with the variance

covariance matrix for the full model. If the difference between

these two matrices is positive definite (MSE matrix larger) then the

full model should be used, because it will give a lower variance for

any linear combination of the ps. The condition that this matrix is

positive definite can be shown to be equivalent to the F-statistic

for testing the full model relative to the restricted model
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exceeding a certain value. Under the null hypothesis that the

differences between the matrices is not positive definite, this F-

ratio will have the non-central F distribution, with non-centrality

parameter 1 (or 1/2 in the non-standard parameterisation used by

Toro-Vizcarrando and Wallace). This distribution (which they

tabulate) can be used to test whether there is evidence in favour of

using the more complex (full) model for estimating the gs.

A similar approach can be developed for the estimation of only

one coefficient. The difference in MSE matrices between bp and the

full model becomes, from 4.1

«P« (1-Q (Q' Q)-1 )Q' ) P]-1 - (P* P)-1)^' - (P* PI-'P'QPqPQ' P (P* P)~\ . . (4. 4)

The element corresponding to g* of the final term is the square of

the expected bias in g* when estimating from the reduced model. The

first two terms become, from the matrix equality used in the

previous section

{(p. P)-ip. q[q. q_q. p(P. p>-ip'Q]-iQ« P(P' P)-Mct2 (4. 5)

which is the variance of (P1P)-1P*Qb^, whose first element is

estimated bias of bp*. The ratio, F, of the square of the

estimated bias to its variance can be written as

1st element [ (P'P)"1P' QbQbQ' Q' P(P' P)"1 ]
F = (

1st element [ { (P« P)-1 P' Q[ Q' Q-Q' P (P' P)-1 P* Q]-1 Q* P (P" P)"1 > s2 ]
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Under the null hypothesis that 4. 4 is zero F will have the non-

central F distribution with 1 and n-k degrees of freedom and non-

centrality parameter 1, which has been tabulated by Toro-Vizcarrando

and Wallace (1969). The distribution of this statistic can be used

to test departures from the null hypothesis which suggest that the

more complex model is better.

The GFp, criterion can be written as

GFp = v*ruill + (est. bias)2 - 2 var(est. bias).

Thus a reduced model is to be preferred over the full model, in

terms of the GFp criterion, whenever F > 2. The 5% , 10% and 25%

points of the non-central F distribution are never lower than 6.97,

5.20 and 2.79. Thus using the F statistic as suggested by Toro-

Vizcarrando and Wallace will select simpler models than using GFp.

This is because it requires that the more complex model must not

only give an improvement in the MSE criterion, but also that we must

have evidence that this improvement is more than a chance effect.

Yet another procedure might be possible. One might require

that the statistic F showed evidence that the omission of the

covariates Q introduced a bias into the estimate of g*. This would

imply testing F against the hypothesis that the bias is zero, ie

referring it to the central F distribution. This would favour more

complex models than the above use of the F statistic. The limiting

values for the percentage points of F1^, for large m and p-values of

5%, 10% and 25% are just 3.84, 2.69 and 1.32. The GFp criterion is
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equivalent, for large residual degrees of freedom, to a test for

significant bias in {5*Q at a p-value of 0. 1584.

In the special case when the two models being considered

differ by only one covariate, the vector b,5 becomes a scalar, and

the ratio F becomes identical to the F test for the introduction of

the additional covariate. In this case the criterion for the

minimum Gp-P, used to compare each model with the one with a single

additional covariate (as if this were the correct model), becomes

identical to the choice of the model which gives the minimum Cp

(derived from the assumption that the full model is correct) from

all the models with just one additional covariate.

4.4 Random-effects model with fixed X*

In order to develop this model, it is convenient to modify the

notation introduced in section 3.2. The regression model,

conditional on fixed values of X has the same form as before, with a

total of k covariates which include the constant term and X*. If we

write the regression model, conditional on fixed X as

E(y | X) = p0 + X* p*: + X P (4. 6)

then the matrix X becomes the (k-2) dimensioned matrix of regressors

other than the constant and X*. Now, when we consider the Xs as

realisations of a random variable, x, we can derive (4.6) from the

following assumptions:
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Let y = Yo + X* y* + ey

and x = 50 + X* 5* + ex (4. 7)

where (ey, ex) follow a <k—1> dimensional joint distribution with

mean zero and variance covariance matrix which is independent of X*,

and this distribution is such that E(ey | e^e,,) = gx p.

Substituting this into equation 4.7 we obtain

E(y I X) = Yo + X* y* + <X - 50 - 5* X*) p

= (y0 - P50> + X* <Y* - P5*> + X p (4.8),

which is of the same form as we require for 4.6 to be satisfied. We

also require that the joint distribution of and ey is such that

the conditional distribution of ey given e^ is the same for all e^

and hence for all X, and in particular, has a variance (a2) which

is independent of X. When considering sub-models we also require

that this condition is fulfilled for y and for the subset of x

included in the model. In this case the appropriate variance of the

conditional distribution will depend on which xs are included, and

will be denoted by ct2p. These conditions are fulfilled when and

ey follow a multivariate normal distribution.

Now if we estimate P* from a sub-model of the x matrix, then

our estimate will be biassed by the contribution from the omitted

regressors to the second term in equation 4.8. Conditional on the

p~2 columns of X included in the model, the variance of the estimate

b*p of P* will be the first element of (P"P)-1 ap2, where the matrix
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P is exactly as referred to in the sections above, and where ap2 is

the variance of y conditional on only those covariates which are

included in the model. The MSE of b*p, conditional on the

covariates in the model becomes

(bias)2 i 1 st element of < <P' P)-1) o2P (4.9);

and, estimating ct2p by the residual variance from the submodel, s2p,

and estimating the squared bias from the expression 4. 2 , we obtain

a quantity whose expectation is 4.9 from the first element of

(P' P)-^.2

+ (P' p)-ip' QtbQbQ' ]Q' P(P* P)-'

- (P1 P)-1 P' Qt Q' (1-P(P" P)-^' )Q3-,Q' P(P' P)-^2.

We can write this as

Grp -

(b*fUii-b*p)z + v*P [1 + (RSSfulj/(n-k))/(RSSP/(n-p))] - v*tull,

using the same notation as in section 4.2. This criterion is very

similar to GFp, differing only in that the estimate of variance from

the sub-model uses the residual-mean-square from that model rather

than from the full model.
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4.5 Multi-variate normal x variables

Where x and y follow a multivariate normal distribution, we

can avoid conditioning on the Xs included in the model for the

variance part of the mean-square-error criterion. The squared bias

still requires us to condition on all the observed Xs, and thus to

estimate the squared bias from 4.2.

If the submatrix of X to be included in the model is Xp

(dimension p-2) we can calculate the sample sums of squares and

products matrix of X* and Xp, about their means, as

S*p

Spp
(4. 10)

where S** = X (X* -X*)2 is a scalar, and Spp, S*p are calculated

similarly as the vector and matrix of sums of squares and cross

products for Xp and X*. All summations are over the n observations.

Writing the inverse of this matrix as

A*;:*

Ap*

A*p

App j

(4. 11),

the estimated variance of b*p, conditional on Xp is A** ap2. Using

the fact that 4. 10 and 4. 11 are inverses, and that the first element

of each is a scalar, we can write

A,* = S**-1 < 1 + S**-1 (S*p App Sp*) ) (4. 12)
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This quantity is identical to the first element of (P1 P)-1 in the

notation used above.

Now we can write Sp* = (XP - XP) (X* - X*)

or equivalent ly Sp:t: = (XP) (X* - X*).

This can be considered as a realisation of a vector of fixed

linear combinations of the random variables xp. The mean of Sp*

will be <5*PX* - S*pX*> (X* -X*), which is just S**8%„ where the

vector 5*P, is the rearrangement of the vector 5* to correspond to

xP. Now the variance-covariance matrix XPP of ep and hence of xP,

conditional on the fixed values of X*:, is estimated by App~1 / <n-2).

The variance-covariance matrix of X (xP) (X* - X*) is Xpp,

estimated by (S:** Ap,p,~1 / (n-2)). Now we can form a quantity which

has Hotelling's non-central T2 distribution from the quadratic form

of the vector X (xP) (X* - X*) with the inverse of its estimated

variance covariance matrix

T2 = <S*P CS** App-VCn-X)]"1

= < (n-2) S**"1 <S*P APp, Sp*)> .

The second term in the brackets of expression 4. 12 is thus T2/(n-2)

where T2 has Hotelling's non-central T2 distribution with (p-2) and

(n-2) degrees of freedom, and with non-centrality parameter

X = S** 5*p. Xpp- 5*p.
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Now the expected value of T2 Is [ (n-2) (p-2) / (n-p-1) + X], Thus

taking expectations over the distribution of x, we get

EfA**) = S**-1 CI + (p-2) / (n-p-1) + X/(n-2>]

S**-1 C(n-3) / (n-p-1) + X/(n-2)] (4. 13)

Thus we can express the variance part of GRp as the sum of two

parts. The first part is

which is the expected variance of p* for the case when all the

elements of 5*p are zero, ie the variable of special interest is

uncorrelated with the x variables in the model. The second term is

and represents the increase in the variance of the estimate of p*

which arises from the the correlation of X* with the p-2 x variables

included in the model.

We cannot use the sum of these two terms to derive a further

criterion, because X contains the unknown parameters 5*. In order

to estimate X we must condition on Xp and estimate 5*. To estimate X

we are led to consider the expectation of the term (S*p App S*p)

from 4. 12 which depends on X. When we estimate X from this and

substitute back into 4. 13, we arrive back at the expression 4. 12

which is conditional on the x variables in the model.

S**"1 sp2 (n-3)/ (n-p-1) (4. 14)

S**"1 spa X / (n-2) (4. 15)
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However, we can use the expression 4. 13 to divide the variance

part of GRc, into two parts which correspond to 4. 14 (estimated

directly) and 4.15 (estimated as the difference between GHp and

4. 15. This second part is the estimate of a quantity which is

positive definite, although its estimate may be negative.

We can write GRp, as the sum of three parts as follows :

Grp = v*x:t: (RSSP (n-2) (n-3)> / (RSSx:t. (n-p) (n-p-1)) (variancel)

+ v*p - v*x:t; (RSSP (n-2) (n-3) > / (RSSx;t: (n-p) (n-p-1) (variance2)

+ (b*Tul 1-b*P)2 + v*pCRssfui i! (n-k-2) > / (RSSP/ (n-p-2>>-v:+:fWl j

(bias2)

(4. 16)

where the notation is the same as that used in section 4. 2 with the

extension that vx*: and RSSX* are the expressions, for the model

which contains only X* and a constant, of the variance of the

estimate of (3* (calculated as if this was the correct model) and the

residual sum-of-squares for Y.

4.6 The relation of Grp to another criterion

In their paper about mean square errors for prediction Breiman

& Freedman (1983) give an incomplete reference to a technical report

from Stanford University by Freedman and Moses which they say
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derives a mean-square-error criterion for estimating the main effect

in clinical trials. My correspondence with Moses, suggests that

this Technical report was never completed. However, Moses kindly

supplied me with some draft lecture notes (Moses 1983/87) on this

work. These mention briefly such a criterion which can be shown to

be equivalent for the situation of two treatment group to the

expression 4. 14. Because, one can assume for randomised trials

that no bias is introduced by omitting covariates, the bias term is

not required and all the 5*, and hence term X is exactly zero. Thus

the expression GRp reduces to 4. 14 in this case. This expression is

a constant multiple of Sp (chapter 3) for any given set of data.

Thus, selecting a model which gives the minimum on this criterion

will give identical results to the selection of the model which

minimises Sp.

Moses, however, does not appear to have done any evaluation of

this criterion. The remainder of the draft notes report the results

of a small simulation, similar to that done by Schluchter and

Forsythe, which evaluates the effect of the usual stepwise

regression procedures on the estimation of the treatment effect.

The results of this are broadly in agreement with Schluchter and

Forsythe's.

4. 7 Summary

Thus it can be seen that the two MSE criteria GFp and GRp can

be used to select subsets of regressors by searching for models

which give small values of the criteria. The use of the criteria
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could be combined with stepwise procedures to produce a great many

possible strategies. For example, a stepwise search could be used

which selects the next covariate to enter as the one which will give

the smallest value of the criterion being used. Alternatively each

more complex model to be considered, with say, one or more

additional covariates, could be treated as though it were the full

model in the calculation of the MSE criteria, and compared with the

current model on this basis.

The criteria could also be used as stopping rules in search

procedures which are not directed by them. For example some

conventional stepwise procedures could be used, or else special

search procedures which might, for example, choose the covariates

which produce the largest change in the estimated coefficient for

the variable of special interest.

The two criteria GFp and GRp can each be split into a

component corresponding to the squared bias, and one corresponding

to the variance. The estimate of the squared bias can give a

negative quantity, although we know that the term which is being

estimated is positive definite. The same is true for one of the two

terms in the variance part of GRp. Each of the two criteria could

be modified by replacing negative estimates of positive definite

quantities by zero.

The various possibilities will be illustrated for the lead

study data in the chapters which follow.
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Chapter 5

The Edinburgh Lead Study: description of the data

5. 1 Study design

The Edinburgh Lead Study was set up in 1983 at the instigation

of the Medical Research Council with support from the Scottish Home

and Health Department. Its main aim was to investigate the

association between blood-lead levels and mental abilities in a

population of Edinburgh school children, taking into account a wide

range of other influences.

Most of the centre of Edinburgh was built in the nineteenth

century or earlier. Many homes still retain some of their original

lead plumbing, and the water is plumbosolvent. Thus water lead makes

a substantial contribution to some children's lead intake (Raab,

Laxen & Fulton 1987). Unlike many other inner city areas, the

population of central Edinburgh is affluent and includes a high

proportion of owner-occupiers and of people in professional and

managerial occupations (SASPAK, 1983). The advantage of this

situation for a study of lead exposure is that we may be expected to

find higher lead levels occurring in children who were not subject

to other influences which might result in poor results in the

ability scores. Thus Edinburgh was selected precisely because we

hoped that the extent of confounding between lead exposure and other

variables would be small.
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The basic design was a cross-sectional study of children in

their third and fourth years of primary schooling (6 to 9 year olds)

at local authority schools in a defined area of central Edinburgh.

The schools were approached in random order, with all stages of the

study in each school being completed within two to three months.

The field work lasted from August 1983 to June 1985. The main

outcome measure was an ability score which was standardised on a

reference population to have a mean of 100 and a standard deviation

of 15. Previous studies (Needleman et al 1971, and Smith et al

1983) had found differences of the order of 5 points on similarly

standardised scores, between a high-lead group and a low-lead group.

To detect a 5 point difference between two groups with 95% power and

using a 5% significance level would require 234 pupils per group.

Although our study was cross-sectional, rather than a two group

study, this gave us some indication of the target numbers we should

aim for. It was decided to aim for a sample size of 500 children.

The first step in each school was the compilation of a list of

eligible children, and requests to the parents for their children's

participation. Further details of the eligibility criteria and

other aspects of the design have been published (Raab et al 1985,

Fulton et al 1987). A medical team then visited the school to obtain

venous blood samples which were assayed for lead. A main study

sample was then selected from the blood lead levels in each school,

which included all children in the top quartile of the blood-lead

distribution and a one-in-three (approximately) sample of the

remainder. The study was continued until the numbers in the main

study sample reached our target. This required us to include 18
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schools (excluding 2 small schools which were used In a pilot

project). From the total of 1210 eligible children, parental

consent was obtained for 948 (78%) to take part. A satisfactory

blood sample and a successful lead assay were obtained for 855

children (90% of those whose parents agreed), and 501 of these

children were selected into the main study sample.

The selected children were tested by a psychologist who

visited the school. The test battery consisted of measures of

inspection and reaction time, and ability and attainment tests. The

latter were all taken from the British Ability Scales (BAS)

(Elliott, Murray and Pearson 1978, Elliot 1983) which have been

recently validated and standardised on a United Kingdom population.

The attainment tests were of reading and number skills. Five ability

tests were used which together give a combined score (BASC score),

standardised on the same scale as the WISC-R IQ score (Wechsler

1978). Subsequently, an extensive home interview with one parent

(usually the mother) collected data on the child's home and family

background. This included tests of the parent's vocabulary and

spatial ability (Raven, Court and Raven 1978). Behaviour ratings

(Rutter 1967) for each child were completed by parents and teachers.
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The full set of outcome variables were j

(1) five ability tests from the BAS which were combined to
give a combined score (BASC), standardised to a mean
of 100 and with a standard deviation of 15;

(2) two attainment tests (reaoing and number skills);

(3) two tests of mental speed ( inspection time and
reaction time);

(4) parents' and teachers ratings of the children's
behaviour.

In this thesis I will consider only the BASC, which was the main

outcome measure, and also the basis on which the size of the study

was planned.

5.2 Univariate statistics for blood-lead, BASC and covariates

The geometric mean blood-lead for the 855 children was 104

p.g/1 (mean of natural logs 4. 64 s. d. 0. 37) and the distribution

appeared normal after log transformation. For the selected sample

of 501 children the geometric mean was 115 pg/1 (mean of natural

logs 4. 75 s. d. 0. 38), and the distribution of the log values also

appeared reasonably close to a normal distribution (fig 5. 1). The

log values were used as x* in the regression of outcomes on blood-

lead. The justification for this choice was not that the blood-lead

values were normally distributed, but that when Pocock et al (1987)

examined the dose-response relationship in the data of Smith et al

(1983) they found that it appeared to be more linear when the lead

levels were measured on a log scale.
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Figure 5. 1: Log blood lead
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The mean score for the BASC test, for the 501 children for

whom complete data were available, was 112, s. d. 13.4. Thus the

children performed considerably better than the random sample of the

UK population on which the tests had been standardised. The

distribution of the BASC is shown in figure 5.2.

A large part of the parent's interview was devoted to questions

which probed areas which might result in confounding of the blood-

lead/ability relationship. The interview data were analysed,

without reference either to the outcome scores or to the blood-lead

results, to produce scores for 33 confounding variables. These

variables were chosen because of their potential relationship with

children's performance and their choice and scoring (where this was

relevant) was based on the published results of long term child

development studies (Douglas et al 1964, Douglas 1977, Davie et al

1972, Kellmer-Pringle, Butler and Davis 1966), reports in the

psychological literature (Rutter & Madge 1976, Fogelman et al 1978)

and experience in other lead studies, particularly the Institute of

Child Health/Southampton study (Smith et al, 1983).

Some of the covariates are simple factual items e.g. age, sex

of child, family size and birth order, some are based on well-

established classifications e.g. social class and educational

qualifications, and some have been measured by standardised tests,

e.g. parent's ability. We also constructed more complex covariates

by combining a number of related items in the data collected at

interview and scoring them. Examples are:- parent's general and

mental health scores, family structure score and child's interest
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score. The items contributing to these scores are listed in the

appendix to this chapter. Table 5. 1 gives details and mnemonics for

all the covariates. Scores for each variable were obtained for all

children. For one-parent families, values were imputed for a second

parent.

Table 5.1: Description of the covariates.

Mnemonic Type of Description
variable

AGEINT continuous age of child in months
SEX binary male=l female=2
MOVESCH binary change of school in past year (l=yes, 2=no)
CLASSYR binary year of schooling (3 or 4)
TIMEDAY binary a. m. = 1 p. m. =2
HANDED binary right = l left=2
FAMHIST score score for problems in family history
FSOC score father's and mother's Social class
MSOC It 4=1411, 3=IIInm, 2=IIIm, 1 = IV4V
MQUALIF score father's and mother's qualifications
FQUALIF it from 0=none to 6=degree (see table 5.2)
UNEMPLO binary unemployed father or single mother
WORKMUM score working mother, l=part-time, 2=full-time
PARHLTH score score for parents' health problems
PARMENT score score for parents' mental health problems
TOTCIGS continuous total cigarettes smoked by both parents
CARPHON score car/phone ownership 0=none, l=one, 2=both.
CONSUME score total consumer goods owned from 4 items.
OCCUPRA continuous persons per room
FAMSIZE score family size 1=1 , 2=2, 3=3 or more children
BIRTHOR score 1= first, 2= second, 3= third or more
GESTAT score 0=38+weeks, 1=34-37 weeks, 2=<34 weeks
BRTHWT binary 0=>2500g, l=<2500g
BRTHSCO score score for problems at birth
MEDHIST binary history of child's medical probs 0=no,l=yes
STHEIGH continuous age-standardised height
OFFSCHL continuous number of days off school in past year
CHILDIN score score for child's activities outside school
PARCHCO score score for parent/child communication
PARPART score score for parents' participation with child
PARSCHL score score for parents' involvement with school
PVOC continuous parent's vocabulary test
PMAT continuous parent's matrices test

The distributions of the covariates for the 501 children are

shown in figure 5.3. It is obvious that many are very far from

being normally distributed.
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Figure 5.3: Distribution of covariates
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Figure 5. 3 (contd. )
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For those covariates which were continuous variables, or

scores with more than two categories the relationships with the BASC

were examined. The results are shown in table 5.2. The variables

are ordered by the absolute value of their correlation with BASC.

Table 5. 2: BASC and scored covariates.

BASC correlation
No. of score with

Confounder <Categories children mean BASC

Parent's <30 5 89. 4 52

vocabulary 30-39 69 102. 4

score 40-49 144 106. 5
50-59 142 114. 7

PVOC 60-69 86 120. 0

70+ 55 121. 1

Mother's None 88 101.6 52

qualificat ions Commercial/apprent, 111 108. 1

Ordinary school cert. 85 109. 2

MQUALIF Higher school cert. 41 116. 2
Further education 79 118. 3

Degree 97 121. 5

Father's None 87 102. 2 . 49

qualifications Commercial/apprent. 92 107. 2

Ordinary school cert. 91 110. 9

FQUALIF Higher school cert. 35 109. 9
Further education 36 116. 8

Degree 160 120. 0

Parent' s <20 12 96. 3 . 46
mat rices 20-29 35 98. 3
score 30-39 100 107. 2

40-49 214 113. 0
PMAT 50+ 140 118. 7

Child's 0 1 /\ 16 95. 7 . 40
interest 1 -<2 53 102, 3
score 2 -<3 119 111.4

3 -<4 138 112. 3
CHILDIN 4 ~<5 116 114. 0

5 -<6 51 121. 0
6 -<7 8 126. 9
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Table 5. 2 (contd)

BASC correlation
No. of score with BASC

Confounder Categories children mean

Mother's I, II 198 118. 4 . 39
social class III non-manual 227 109. 0

III manual 36 106. 7
MSOC IV, V 40 101. 9

Father's I, H 217 117. 9 . 37
social class III non-manual 56 109. 0

III manual 181 107. 5
FSOC IV, V 47 105. 7

Parental 1 ~<2 14 98. 6 . 33

participation 2 ~<3 22 102. 9
with child 3 -<4 33 107. 6

4 -<5 77 109. 2
PARPART 5 -<6 162 111.9

6 -<7 193 116. 0

Occupancy <0.5 persons/room 5 122. 4 -. 32
rat io 0. 5 - 0. 65 56 117. 2

0. 66 - 0. 99 134 115. 8
OCCUPY 1 143 112. 3

>1 -1.5 111 108. 1
>1. 5 52 103. 1

Standardised <-2.00 6 94. 8 . 26

height -2. 00 to -1. 01 35 105. 3
-1. 00 to -0. 01 160 110. 4

STHEIGHT 0. 00 to 0. 99 206 113. 0
1. 00 to 1. 99 77 115. 2

> 2. 00 17 119. 6

Parent/child bad 1-4 59 103. 9 . 24
communication 5 77 108. 1

6 133 113. 8
PARCHCO 7 163 114. 5

good 8 69 113. 8

Cigarettes None 246 114. 6 -. 22
smoked per day 1 - 10 58 113. 9
(both parents) 11-20 88 107. 2

21-40 87 110. 0

TOTCIGS 41 - 80 22 105. 0

Age < 7:0 16 121. 0 -. 18
7: 0 - 7: 5 99 114. 4

AGEINT 7: 6 - 7: 11 120 112. 4
8: 0 - 8: 5 130 110. 7
8:6- 8:11 105 112. 1

> 9: 0 31 103. 0
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Table 5. 2 (contd)

BASC correlation
No. of score with BASC

Conf ounder Categories children mean

Parental bad 0 5 101. 6 . 16
Involvement 1 39 107. 1
with school 2 96 108. 6

3 157 113. 1
PARSCHL 4 130 114. 7

5 56 112. 0

good 6 18 114. 2

Car/telephone neither 28 101. 6 . 15

ownership either 148 111.9
CARPHON both 325 112. 9

Absence from 0 days 39 113. 8 15
school in last 1-10 306 113. 0

year 11-20 119 111. 1
21-30 25 103. 5

OFFSCHL > 30 12 107. 7

Gest at ion 38+ weeks 455 112. 5 -. 12
34-37 43 107. 7

GESTAT <34 3 101. 7

Family size 1 child 74 108. 9 . 08
2 289 112. 5

FAMSIZE 3+ 138 112. 6

Birth problem good 0 307 112.5 . 07
score 1 138 111.7

2 41 110. 4
BIRTHSCO bad 3 15 107, 7

Parent's good 0 376 112.6 . 06
health 1 76 109. 9
score 2 37 109. 9
PARHLTH bad 3+ 12 112. 9

Birth order 1st 241 112.6 . 04
2nd 182 111. 7

BIRTHORD 3rd+ 78 111.0

Working mother no paid employment 185 112. 1 . 03
(or single part-time 249 111.4
father) f ull-time 67 114. 1

WORKMUM

Fami1y 0 411 112. 0 -. 03

history 0. 5 - 2. 5 40 113. 1
FAMHIST 3. 0 - 5. 0 50 110. 7
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Table 5. 2 (contd)

Confounder Categories

Parent's 0 (good)
mental health 1
score 2
PARMENT 3+ (bad)

Consumer goods none
1 item
2

3
CONSUME all 4 items

No. of
children

BASC correlation
score with BASC
mean

384
68
26
23

11. 9
112. 8
110. 8
112. 3

02

8
67

209
171
46

111.0
112. 9
111.8

111.4
114. 3

01

This table shows that the results from previous studies have, in the

main, been confirmed in the present data. The relationships between

many of our derived scores and the BASC scores are in the directions

anticipated, and show a consistent dose-response relationship in

most cases. Possible exceptions are the social class measures,

where children from social classes I and II seem to score higher

than would be expected from a simple linear scale. However, this

pattern was not maintained in further investigation of this dose-

response relationship, after control for PVOC and parental

education. Also AGEINT seems to be more strongly influenced by the

extreme groups than by those in the middle of the distribution.

However, this variable has an interesting relationship with CLASSYR

(stage of schooling), and their joint influence on ability explains

this univariate relationship with AGEINT ( see next chapter).
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5.3 Relationship between covariates, blood lead (LNPBBL) and BASC

The correlation matrix between the covariates is shown in

table 5.3 which also gives the correlation of the covariates with

log blood lead and with the BASC score. This correlation matrix was

used in McQuitty's elementary linkage analysis (McQuitty, 1957),

which gives a visual representation of the relationships between

variables, shown in Figure 5.4. This procedure links each variable

with the variable to which it is most highly correlated (shown by an

arrow), thus forming clusters of related variables. The dotted

arrows show the highest correlation from any variable in a cluster

with a variable in another cluster.

The covariates relate much more strongly to the BASC score

than they do to the blood lead levels, as might be expected from the

way in which they were selected. The highest correlations between

covariates and BASC are those for the parents' test scores,

educational qualifications and social class. The specially

constructed scores also relate strongly to BASC, especially CHILDIN

and PARPART, as does STHEIGHT and OCCUPRAT. The covariate with the

strongest relationship with LNBLPB is standardised height, with the

parent's vocabulary test and the social class and education measures

also showing relationships with blood-lead although none of these

are very strong.
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Table 5.3: Correlation matrix of confounders (unadjusted for school)
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Figure 5. < McQultty.s eleeentary linkage anlysis for the 33
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The covariates show strong interrelationships, as can be seen

in Table 5.3. The linkage analysis divides them into five groups.

Four small groups contain items on the age of the child, variables

relating to birth, family size and parent-child communication. The

fifth and largest group includes those variables which relate to the

social and educational background of the family. There appear to be

two sub-branches within this group, one of which relates to the

social situation of the family, centred on the social class measures

and the other relating to the quality of the child's home life

centering on the child's interest score.

5.4 Blood lead, BASC and covariates by school

The analyses presented so far have ignored the blocking factor,

school. Both the BASC and LNBLPB vary between schools. The

analyses of variance for BASC, LNBLPB and selected covariates are

presented in table 5. 4. The variables which have been ommltted

from this table are those with very skew distributions, because they

would be unlikely to meet the assumptions of the analysis of

variance. However, certain binary variables and those with short

ordinal scales have been included, where the distribution is

reasonably symmetrical, because the fairly large numbers which we

are dealing with (the smallest school contributed 14 pupils, and the

largest 54) will ensure that the distribution of school means will

approach normality.
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Table 5. 4: Analyses of variance within and between schools.

VARIATE SUMS OF
between
schools

SQUARES
within
schools

MEAN SQUARES
between within
schools schools

F Ratio*
(17/483 df)

BASC 19964 69442 1174. 4 143. 7 8. 17
LNBLPB 11. 72 61. 53 0. 689 0. 127 5. 41

AGEINT 3646 23808 214. 5 49. 3 4. 35
SEX 3. 48 121.55 0. 201 0. 251 0. 81
CLASSYR 5. 13 120.55 0. 302 0. 249 1. 22
TIMEDAY 3. 79 117. 68 0. 223 0. 244 0. 92
FSOC 138. 3 441. 0 8. 135 0. 914 8. 91
MSOC 95. 8 284. 8 5. 632 0. 590 9. 55

MQUALIF 541. 1 1069. 7 31. 8 2. 2 14. 41

FQUALIF 621. 7 1231. 6 36. 6 2. 5 14. 34
WORKMUM 9. 27 214. 9 0. 54 0. 45 1. 23
CONSUMER 30. 1 359. 3 1. 77 0. 74 2. 37

OCCUPRAT 20. 6 61. 1 1. 21 0. 13 9. 56
FAMSIZE 20. 7 183. 2 1. 21 0. 37 3. 20
BIRTHORD 8. 1 257. 9 0. 47 0. 53 0. 89

STHEIGHT 37. 5 395. 3 2. 208 0. 818 2. 70
OFFSCHL 2123 33180 124. 9 68. 7 1. 81
CHILDINT 213. 7 626. 9 12. 57 1. 30 9. 68
PARCHCOM 145. 1 914. 3 8. 53 1. 89 4. 51
PARPART 156. 6 690. 7 9. 21 1. 43 6. 44.
PARSCHL 93. 0 697. 2 5. 47 1. 44 3. 79
PVOC 23910 52917 1406. 5 108. 7 13. 05
PMAT 7704 36612 453. 2 75. 8 5. 98

♦Percentage points for the F ratio - 1. 66 (p-=0. 05) and 2. 07 (p=0. 01)

The distributions of values within and between schools, for

those variables with skew distributions, were compared using

Kruskal-Wallis tests. No differences between schools were found for

the variables MOVESCHL, HANDED, FAMHIST, UNEMPLOY, PARHLTH, PARMENT,

GESTAT, BIRTHWT, and MEDHIST. There were very pronounced

differences for TOTCIGS and CARPHONE (y2 values of 73 and 57 with

17 degrees of freedom, both p<0. 001) and somewhat less so for OFFSCH

(Xz = 33, p=0. 01).
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The profiles of the school means for all the variables which

vary by by school are shown in Figure 5.5. The schools are numbered

in the order in which they were approached. Each variable is scaled

by the range of the values in the whole sample, and measured on a

scale from 0 (corresponding to the lowest value) and 100 (for the

highest value). The variables are ordered so that those with

similar patterns of between-school variation are placed together.

The variables OCCUPRAT and TOTCIGS have been reversed on this scale,

because they show the reverse pattern to the other variables with

which they are correlated. The scale has also been reversed for

LNBLPB, although the pattern is less clear in this case.

A common pattern of profiles of school means can be seen for

the BASC and the 14 variables (MQUAL to STHEIGHT) which are shown

immediately below it on Figure 5.5. These variables form the core

of the main cluster in Figure 5.4, with the exception of PARSCHL and

PARCHCOM which form a separate cluster which nevertheless has a high

correlation with the main cluster. Variables which show similar

between-school patterns have been group^ed together. AGEINT has a

different pattern between schools, which corresponds to the time of

the school year when the children were seen. CONSUMER has an

increasing trend over the period of the study. The variables

FAMSIZE, OFFSCHL and LNBLPB show somewhat different patterns.
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Figure 5.5 School mean profiles for selected variables. Each
variable is measured on a scale determined by the range
of values in the data on a scale from 0 to 100.
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These differences between schools do not, however, account for

all the inter-relationships between the covariates seen in Table 5.3

and Figure 5.4 above. The correlations adjusted for school means

are given in Table 5. 6 and the corresponding cluster analysis is

shown in Figure 5. 6. Substantial correlations remain between the

variables, in a pattern which is not dissimilar to that for the

unadjusted data. Those correlations forming the core of the cluster

analysis are reduced in absolute value by between 0.06 and 0. 18.

Most other correlations are either reduced by a small amount, or

relatively unaffected.

So far I have not discussed the correlation between BASC and

LNBLPB, which is the item of major interest in this study. It will

be presented along with the results of the regression analyses in

the next section.
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Table 5.6: Correlation matrix of confounders (adjusted for school).
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Figure 5.6. McQuitty*s elementary linkage analysis for the 33
covariates, adjusted for school.

HclUITTY'S ELEMENTARY LINKAGE ANALYSIS
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5. 5 Regression analyses with BASC as the dependent variable.

Taking BASC as the dependent variable, the estimated regression

coefficient for LNBLPB (b*:) is modified by the addition of the

blocking factor school and/or the 33 covariates. The results are

given in Table 5. 7. The standard errors and t-values quoted are

derived in the usual way, by assuming that the model being fitted is

the correct one. The variance of the estimated coefficient is

calculated as the product of the residual mean square from the model

multiplied by a constant (see chapter 4). These two factors of the

variance b* are also given in table 5. 7.

Table 5.7 Regression coefficients (b*> for various models. ▼

Model b* s. e t-value
FACTORS OF

RMS
VARIANCE OF b*

Multiplier

Lead only -5. 45 1. 54 -3. 53 174. 8 13.65 xl0~~3

Lead & schools -3. 89 1. 52 -2. 56 142. 1 16. 26 x 10-3

Lead & covariates -3. 18 1. 30 -2. 45 104. 9 16.05 xl0~3

Lead, schools &
covariates

-3. 81 1. 37 -2. 79 98. 8 18.90 xl0~3

v These results differ very slightly from the results quoted in
Fulton et al (1987), because in that paper the variable WORKMUM was
considered as a factor with 3 levels.

The results show a statistically significant relationship

between blood lead and ability, the negative coefficient implying

that high lead levels are associated with poor scores on the BASC

tests. The relationship, although significant, is not strong in

terms of the correlation between LNBLPB and ABILITY. Their
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univariate correlation is 0. 156, reducing to a partial correlation

of 0.102 after controlling for schools, and to 0.084 after

controlling for schools and the 33 covariates together.

The univariate regression coefficient for LNBLPB is modified

to a rather similar extent by either the schools or the covariates,

or by both taken together. The lowest absolute value for the

coefficient is achieved by adjustment for covariates only. The

residual mean square is more sharply reduced by the covariates than

by the blocking factor, school. However, fitting school after the

covariates still gives a significant improvement to the fit of the

model (F ratio 2.69 df 17/449 p<0. 01). The multiplier of the

variance of the LNBLPB coefficient, which relates to the multiple

correlation of the other covariates with blood lead, is similar for

either the covariates or the schools taken separately, and is

increased even further when both schools and covariates are included

in the model.

The regression which controlled for schools and all the

covariates was the one which was reported in the account of this

study in the medical literature (Fulton et al 1987), as giving the

most secure estimate of the effects of lead on the BASC score. This

decision was taken, before the data were analysed, because of the

uncertainty of the validity of the standard errors based on any

data-dependent selection procedure. However, some results of such

procedures were also quoted to highlight covariates which were

important.
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5.6 Regression coefficients for the covariates

These will be discussed in much more detail in the next

chapter. The strength of the univariate associations between the

BASC score and the covariates can be assessed from the correlations

in table 5.3, and after controlling for the blocking factor, school,

in table 5.6. The relationships with BASC score in the models which

include all the covariates are given in table 5.8.

Table 5.8: Regression coefficients(b) and t values for covariates

Model Covariates Covariates Covariates Covariates
+LNBLPB fschools +school-t-LNBLPB

b t b t b t b t

AGEINT 30 -2. 7 34 -3. 1 -. 54 -4. 2 -. 57 -4. 4
SEX -1. 7 -1. 7 -1. 9 -1. 9 -1. 8 -1. 9 -2. 0 -2. 1

MOVESCHL . 07 , . 25 1. 6 1. 0 .

CLASSYR 1. 4 , 1. 8 4. 1 2. 2 4. 4 2. 4

TIMEDAY -. 02 , -. 46 -. 01 -. 23 ,

HANDED -. 09 -1. 8 -2. 8 -1. 8 -2. 2 -1. 5 -2. 3 ,

FAMHIST -. 01 , -. 15 -. 11 -. 10
FSOC . 73 « . 55 . 64 . 44
MSOC . 02 , . 08 -. 46 . 41 ,

MQUALIF . 75 1. 5 . 63 . 82 1. 6 . 75 1. 5

FQUALIF . 78 1. 8 . 80 1. 9 . 87 2. 1 ♦ 2. 2
UNEMPLO -1. 9 ♦ -2. 1 -2. 3 -2. 6 .

WORKMUM -1. 3 -1. 6 -1. 2 -1. 6 -1. 2 -1. 6 -1. 1 -1. 5
PARHLTH . 35 . 39 . 61 . 66 .

PARMENT . 31 . 33 . 33 . 31. ,

TOTCIGS . 00 . . 01 -. 01 . 00 ,

CARPHON -1. 7 -1. 8 -1. 6 -1.7 -1. 7 -1. 8 -1. 7 -1. 9
CONSUMER . 59 , . 67 . 65 . 76 ,

OCCUPRA . 22 . . 08 . 34 . 01 ,

FAMSIZE -. 89 , . 75 -. 67 -. 35 .

BIRTHOR . 00 , -. 14 -. 01 -. 22 ,

GESTAT -. 45 -2. 6 -4. 5 -2. 6 -4. 6 -2. 6 -4. 4 -2. 5
BRTHWT -1. 3 . -1. 4 -. 64 -1.0
BIRTHSCO . 13 . 23 . 29 . 41
MEDHIST 31 -. 67 -. 66 -1. 1 ,

STHEIGHT 1. 5 2. 9 1. 3 2. 4 1. 4 2. 7 1. 1 2. 1
OFFSCHL -0. 9 -1. 7 -. 10 -1. 8 -. 11 -1. 9 -. 12 -2. 2
CHILDINT 2. 1 4. 6 2. 1 4. 7 2. 2 4. 8 2. 2 4. 8
PARCHCOM -. 22 , -. 20 -. 06 -. 02
PARPART . 52 . 47 . 32 . 28
PARSCHL -1. 2 -2. 8 -1. 1 -2. 6 -1. 1 -2. 6 -1. 0 -2. 4

PVOC . 21 3. 3 . 20 3. 2 . 18 2. 8 . 17 2. 7
PMAT . 23 3. 6 . 24 3. 8 . 24 3. 7 . 25 3. 9

NOTE: t values lower than 1. 5 in absolute value are shown by "."
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Comparing the multivariate regressions with the univariate

associations, we can see that the variables AGEINT, STHEIGHT,

OFFSCHL, CHILDIN, GESTAT, PVOC and PMAT maintain their associations

with BASC in the multivariate regression. The variables MSOC and

FSOC, PARPART, PARSCHL, BRTHWT and BIRTHSCO and TOTCIGS no longer

show significant relationships with BASC after controlling for the

other variables. The effect of FQUALIF and MQUALIF is still

apparent in the multiple regression, but is considerably reduced.

The direction of the association between BASC and each of the three

variables CLASSYR, CARPHON and PARSCHL is reversed in the multiple

regressions.

The results of such multiple regressions must be interpreted

with caution when, as here, there are high correlations between the

x variables. Two correlated factors may each appear unimportant in

a multiple regression, where either together or separately they make

a considerable contribution to the regression. The way in which

vg. inclusion of one variable affects the coefficients of the

others will be further described in the context of the stepwise

analyses.
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Appendix to chapter 5.

Items contributing to constructed scores.

BIRTHSCO Type of delivery, admission to a Special Care Baby
Unit, duration of hospital stay.

MEDHIST Hospital admission for head injury, history of fits,

presence of chronic or recurrent illness.

PARHLTH History of chronic illness or accident, general

practitioner, outpatient or inpatient care, scored for both parents
and combined. Single parent score is doubled.

PARMENT History of depression, anxiety or other psychiatric

problem, general practitioner outpatient or inpatient hospital care,

prescription of psychotropic drugs, chronic mental illness in last
10 years. Scored for both parents and combined. Single parent score

is doubled.

FAMHIST Measures departure from nuclear family using loss of
natural parent(s), most recent disruption in carers, age of child
when these events occurred, current carers, father working away from
home.

CHILDIN Assesses child's regular activities based on number of
books in the home, use of library, attendance at organised
activities including recreational/sporting, artistic/musical and
instructional/educational activities, frequency of these activities.
A higher score indicates a wider range or higher frequency of
act i vi t y.
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PARCHCO Talking with parent(s) about school or study tests and

games, supervision of homework, read stories by parents. A higher
score indicates a higher degree of communication.

PARPART Joint activities with a parent, in sports, outings,
indoor games, reading stories, annual holiday, meals together. A

higher score indicates a higher degree of parental participation.

PARSCHL Self-initiated parental visits to school, attendance
at school and parents' meetings, child's visit to school with parent
before starting, discussing child's progress at school. A higher
score indicates more parental involvement.
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Chapter 6

Stepwise procedures based on the residual sum of squares

for the lead-study data

6. 1 Adjusted and unadjusted data

The lead study data include the blocking factor, "school", as

well as the other covariates. We saw in the last chapter that

entering the factor "school" into the regression equation produced a

large shift in the lead coefficient, to a value similar to that

achieved with all the covariates. However, most of the covariates

still retained some predictive power for the BASC scores after the

factor "school" was fitted. This allows us to treat the data in two

different ways, in looking at the results of the variable selection

procedures:

(1) Ignore the factor "school", and examine the influence
of the selection of covariates, taking the corresponding
"full model" as that which contains lead and covariates

only. For this case the unadjusted lead coefficient is -
5.45 and the full model the lead coefficient is -3. 18 (see
Table 5. 7)

(2) Consider the variable selection process as starting
after the factor "school" has been fitted. This is

equivalent to considering the residuals of BASC from the
factor "school", with the partial residuals of the
covariates from the factor "school" as the set of
covariates. The unadjusted lead coefficient is then -3.89
and the full model lead coefficient is -3.81 (see
Table 5. 7).

These two cases will be referred to as the "unadjusted" and "school

adjusted".

- 93 -



6.2 The forward stepwise procedure

In chapters 3 and 4 criteria were introduced, both for

prediction (Cp and Sp) and for the MSE of the lead coefficient (the

two Gp criteria). If these were combined with the two methods of

treating the data (section 6. 1) and the large number of possible

search strategies which they might provide, it is clear that this

part of this thesis could be extended almost indefinitely. However,

I will describe the results of only a few of the analyses which I

performed, and will use these to illustrate the apparent properties

of the statistics discussed.

To gain an overall impression of how the various criteria

behave, this chapter will report their values for the usual forward

stepwise regression procedure, selecting the next variable at each

step which minimises the residual sum of squares. The constant

term and the blood-lead variable will be included first in all

cases.

Tables 6. 1 and 6.2 give the results for the prediction

criteria for the unadjusted and school-adjusted data. The column

RMSP is the residual-mean-square, or RSSp/(n-p). The value of the

F-ratio is the F-to-enter value for the variable which is entering

the equation at each step. The estimate of for each model is

also given, along with the corresponding t statistic, calculated

from that model as if it were the correct one.
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Table 6.1: Prediction criteria for forward stepwise procedure,
unadjusted data

Variable P F
ratio

RMSP Cp. Sp *: t-
value

X* only 2 174. 80 334. 51 0. 35100 -5. 45 -3. 53

PVOC 3 177. 0 129. 23 118. 47 0. 26001 -3. 18 -2. 38

CHILDINT 4 37. 11 120.49 77. 85 0. 24292 -3. 04 -2. 35

PMAT 5 25. 33 114. 87 52. 11 0. 23205 -3. 51 -2. 77

AGEINT 6 15. 32 111. 64 37. 80 0. 22600 -3. 98 -3. 17

FQUALIF 7 12. 66 109. 07 26. 64 0. 22124 -3. 71 -2. 99

GESTAT 8 10. 75 106.96 17. 67 0. 21740 -3. 49 -2. 83

PARSCHL 9 5. 70 105. 95 13. 92 0. 21579 -3. 26 -2. 65

STHEIGHT 10 6. 09 104. 87 9. 83 0. 21401 -2. 69 -2. 16

SEX 11 4. 37 104, 15 7. 48 0. 21298 -2. 86 -2. 30

OFFSCHL 12 3. 00 103. 73 6. 52 0. 21256 -3. 01 -2. 42

WORKMUM 13 2. 33 103. 45 6. 23 0. 21242 -2. 98 -2. 40

CARPHONE 14 1. 97 103. 24 6. 29 0. 21243 -2. 98 -2. 40

HANDED 15 2. 35 102.96 5. 99 0. 21228 -3. 02 -2. 43

MQUALIF 16 2. 37 102.67 5. 67 0. 21212 -2. 89 -2. 33

CONSUMER 17 1. 45 102.57 6. 25 0. 21237 -2. 97 -2. 39

PARPART 18 1. 15 102. 54 7. 13 0. 21274 -2. 94 -2. 37

FSOC 19 0. 92 102. 56 8. 22 0. 21322 -2. 84 -2. 28

FAMSIZE 20 1. 01 102.55 9. 24 0. 21366 -2. 80 -2. 25

CLASSYR 21 0. 92 102.57 10. 34 0. 21414 -2. 93 -2. 33

UNEMPLOY 22 1. 03 102.56 11. 33 0. 21457 -2. 97 -2. 37

PARMENT 23 0. 53 102.66 12. 80 0. 21523 -2. 97 -2. 36

PARHLTH 24 0. 39 102.80 14. 42 0. 21596 -2. 98 -2. 37

MEDHIST 25 0. 29 102. 95 16. 14 0. 21674 -3. 06 -2. 42

PARCHCOM 26 0. 32 103. 10 17. 82 0. 21750 -3. 06 -2. 41

BRTHWT 27 0. 22 103. 27 19. 60 0. 21832 -3. 06 -2. 41

TIMEDAY 28 0. 22 103. 44 21. 39 0. 21914 -3. 11 -2. 44

FAMHIST 29 0. 12 103.63 23. 27 0. 22002 -3. 13 -2. 45

BRTHSCO 30 0. 11 103. 82 25. 15 0. 22090 -3. 15 -2. 46

TOTCIGS 31 0. 09 104. 02 27. 06 0. 22180 -3. 17 -2. 47

BIRTHOR 32 0. 03 104. 24 29. 03 0. 22273 -3. 19 -2. 48

MOVESCHL 33 0. 01 104. 46 31. 01 0. 22368 -3. 18 -2. 46

MSOC 34 0. 01 104. 68 33. 00 0. 22463 -3. 18 -2. 46

OCCUPRAT 35 0. 00 104. 90 35. 00 0. 22560 -3. 18 -2. 45



Table 6.2: Prediction criteria for forward stepwise procedure,
school-adjusted data

Variable P F
rat io

RMSP cP Sp bp* t-

value
X* only 19 142.10 154. 17 0. 29543 -3. 89 -2. 56

PVOC 20 82. 57 121. 57 130. 81 0.25327 -3. 26 -2. 32

PMAT 21 26. 86 115. 37 101. 45 0.24085 -3. 59 -2. 61

CHILDINT 22 21. 42 110.66 79. 46 0.23150 -3. 44 -2. 56

AGEINT 23 19. 61 106.52 60. 32 0.22331 -3. 93 -2. 97

FQUALIF 24 12. 82 103. 95 48. 83 0. 21838 -3. 83 -2. 93

GESTAT 25 9. 68 102.09 40. 84 0. 21493 -3. 60 -2. 77

PARSCHL 26 5. 06 101. 23 37. 65 0. 21357 -3. 43 -2. 65

CLASSYR 27 4. 75 100.44 34. 83 0. 21234 -3. 53 -2. 74

OFFSCHL 28 5. 14 99. 57 31. 65 0. 21095 -3. 84 -2. 97

SEX 29 4. 48 98. 84 29. 17 0. 20986 -4. 03 -3. 12

STHEIGHT 30 4. 61 98. 09 26. 59 0. 20871 -3. 48 -2. 66

CARPHONE 31 3. 04 97. 67 25. 58 0. 20825 -3. 59 -2. 74

WORKMUM 32 2. 35 97. 39 25. 26 0. 20809 -3. 59 -2. 75

MQUALIF 33 2. 29 97. 12 25. 01 0. 20797 -3. 54 -2. 71

HANDED 34 2. 44 96. 82 24. 63 0. 20778 -3. 59 -2. 75

CONSUMER 35 2. 01 96. 61 24. 66 0. 20777 -3. 70 -2. 83

UNEMPLOY 36 1. 47 96. 52 25. 23 0. 20801 -3. 78 -2. 89

PARHLTH 37 1. 00 96. 52 26. 25 0. 20846 -3. 80 -2. 91

MEDHIST 38 0. 99 96. 52 27. 28 0.20891 -3. 96 -3. 01

PARPART 39 0. 77 96. 57 28. 53 0. 20947 -3. 94 -2. 99

FSOC 40 0. 45 96. 68 30. 09 0. 21018 -3. 85 -2. 91

PARMENT 41 0. 46 96. 80 31. 64 0. 21089 -3. 82 -2. 88

BRTHSCO 42 0. 43 96. 92 33. 22 0. 21161 -3. 85 -2. 90

MSOC 43 0. 37 97. 05 34. 85 0. 21236 -3. 84 -2. 89

FAMSIZE 44 0. 27 97. 20 36. 59 0. 21317 -3. 81 -2. 86

MOVESCHL 45 0. 21 97. 37 38. 38 0. 21401 -3. 74 -2. 79

BRTHWT 46 0. 15 97. 55 40. 23 0. 21488 -3. 76 -2. 80

BIRTHOR 47 0. 10 97. 75 42. 14 0.21578 -3. 79 -2. 81

TIMEDAY 48 0. 07 97. 95 44. 07 0.21670 -3. 81 -2. 82

FAMHIST 49 0. 06 98. 15 46. 01 0.21763 -3. 81 -2. 82

TOTCIGS 50 0. 01 98. 37 48. 00 0.21860 -3. 82 -2. 81

PARCHCOM 51 0. 00 98. 59 50. 00 0.21957 -3. 82 -2. 80

OCCUPRAT 52 0. 00 98. 81 52. 00 0.22055 -3. 81 -2. 79
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The order in which the variables enter the equation for the

unadjusted and adjusted data is remarkably similar. The two tests

of parent's ability and the score for child's interest enter

first, followed by AGE, FQUALIF, GESTAT and PARSCHL. These seven

variables are the first to enter in both cases, and except for

the reversal of the second and third, they enter in the same

order. For these first seven variables the F-to-enter statistics

are considerably greater for the unadjusted data. After the first

seven variables there is much more variation in the order in which

variables enter, and the F-to-enter statistics are not always

larger for the unadjusted data.

For the unadjusted data the estimates coefficient b* is

reduced in absolute value from -5.45 to -3.18 at the first step,

which is almost identical to the value for the full model with 33

covariates. After the first step the estimated coefficient

fluctuates until around the 10th step, when it settles down around

-3. 0 and then gradually rises to -3. 18 over the last 10 steps.

The school-adjusted coefficient of -3.89 is modified to -3.26

at the first step, and at subsequent steps tends to drift back

towards the value for the unadjusted data. Its fluctuations are

somewhat less than for the unadjusted data, and it settles down to

a value of about -3.8 after the 16th step.
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Figure 6. I : Estimates of p* from a forward stepwise procedure,
along with their 95% confidence limits

Unadjusted

5 10 15 20 25 30 35

p

School-adjusted
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These coefficients and their confidence intervals, calculated

in the usual manner are shown in figure 6. 1. At every step the

coefficient of blood lead would be judged statistically

significant by a conventional test at the 5% significance level.

6.3 The criteria Cp and Sp

The similar behaviour of the two criteria Cp and Sp is

apparent for both the adjusted and unadjusted data. For the

unadjusted data the minima of both criteria are achieved at the

14th step when p=16. For the adjusted data the minima are at the

15th and 16th step for Cp and Sp respectively. Note also that the

minima for these criteria, and even the local minimum for the

unadjusted data, occur at the last step for which the F-to-enter

statistic exceeds 2. Thus the asymptotics discussed in chapter 3

seem to make some sense.

The comparison of Cp and Sp is facilitated by rescaling Sp in

the same manner as Cp is scaled. The expression which has

expectation equal to the MSE of prediction in terms of Sp is

Sp(n+1)(n-3)/n. If this is adjusted in the same manner as Cp is

obtained from the expression (3.2) we obtain

(n+1)(n-3)

S'P = Sp - n ,

n s2

which is in equivalent units to Cp. The equivalence of the two

criteria is seen in the plots of Cp and S'p against p in figure

6. 2, and the way in which they have identical small fluctuations
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Figure 6.2: Plots of Cp and S' p against p
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Figure 6.3: Enlargement of part of Figure 6.2

Unadjusted School-adjusted

P P
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is seen clearly in figure 6.3, which is a section of the previous

figure plotted with an exaggerated y scale.

The S'p criterion is larger than Cp for the larger values of p

associated with the adjusted data. When the difference between

the two criteria (S1 p - Cp> is expanded in terms of order 1/n, the

leading term becomes ( (p+1)z- (p+3) >/n times Spa'/s2, which explains

the larger values of S'p for the unadjusted data, for which (p+l)2

is of the same order as n.

For the school adjusted data, considering the dummy variables

for "school" as if they are normally distributed variables seems

particularly inappropriate. It would be better to take a mixed

model for which the factor "school" is considered fixed, and in

which the subsequent variables are assumed to have a joint

distribution. This would produce a criterion which would be a

combination of Cp (for the fixed effects) and Sp for the random

effects. This would be straightforward, but has not been

developed here, because prediction is not the main focus of

interest.

If the covariates omitted from the model have no value in

predicting y <ie the Ps are all identically zero) the expected

value of Cp would be p. This is the justification for the Cp

against p plot. By a similar argument, the value of S'p when no

further variables have any predictive power becomes

(n+1)(n-2)/(n-p-1)-n. The lines for these expected values of the

two criteria are also shown in figure 6.2.

-102-



Both the Cp, and S' p plots start above their expected values,

and then dip well below them, and finally approach their expected

values (as they must do) as all the covariates are entered. This

seems to be a feature of the Cp plots which have been published

for other data eg Hocking 1976 (p24, 25 &27), Thompson

(1984b pl43), Mallows in the discussion of Mitchell & Beauchamp

(1988 pl035> and the Cp values quoted by Pocock et al (1987) for

Smith et al's data which attain a minimum value of 8.5 when p has

the value 12, These plots alone should make us realise that what

we are observing, in searching for low values of the criteria, are

the minima from a distribution of all possible combinations of

covariates which contribute nothing further to the prediction

of y. Of course, we cannot be assured that the forward stepwise

procedure used here has attained the lowest possible value of

either of these criteria. However, since we have already obtained

values which are doing better than they should, any further search

would be likely to be investigating irrelevant noise.

6.4 The Gp criteria

Table 6. 3 gives the values of the criteria Gp.p, GRp and their

constituent parts for the forward stepwise procedure for the

unadjusted data. The random-effects model for the school-adjusted

data treats the "school" dummy variables as fixed effects, and

the other covariates as random effects. The results for the MSE

criteria for this model are given in table 6.4.
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Table 6.3: MSE criteria for the unadjusted data,
selection by forward stepwise procedure

P EstCBias2' V
Fp 'Fp VIrp V2RP 6Rp

none 2 4 9070 1,4323 6 3394 2,3868 0 0 7 2939

PVOC 3 -0 2288 1.4559 1 2271 1,7680 0 0255 1 5647

CHILDINT 4 -0 2076 1,4564 1 2488 1,6518 0 0211 1 4652

PMAT 5 -0 1134 1,4644 1 3510 1,5779 0 0257 1 4901

AGEINT G 0 4282 1,4780 1 9062 1,5367 0 0362 2 0012

FQUALIF 7 0 0781 1,4834 1 5616 1,5043 0 0380 1 6205

GESTAT 8 -0 1030 1,4879 1 3849 1,4782 0 0389 1 4141

PARSCHL 9 -0 1812 1,4965 1 3153 1,4673 0 0442 1 3303

STHEI6HT 10 0 1106 1,5514 1 6620 1,4552 0 0957 1 6614

SEX 11 -0 0243 1,5584 1 5341 1,4482 0 0990 1 5229

OFFSCHL 12 -0 0892 1,5656 1 4764 1,4453 0 1028 1 4589

WORKMUM 13 -0 0789 1,5659 1 4870 1,4443 0 0999 1 4653

CARPHONE 14 -0 0772 1,5660 1 4887 1,4444 0 0967 1 4640

HANDED 15 -0 0916 1,5667 1 4751 1,4434 0 0942 1 4461

MQUALIF 16 -0 0283 1,5735 1 5452 1,4424 0 0976 1 5117

CONSUMER 17 -0 0620 1,5775 1 5154 1,4440 0 0985 1 4804

PARPART 18 -0 0504 1,5780 1 5276 1,4465 0 0960 1 4921

FSOC 19 0 0197 1,5895 1 6092 1,4498 0 1042 1 5737

FAMSI2E 20 0 0462 1,5908 1 6370 1,4528 0 1024 1 6014

CLASSYR 21 -0 0137 1,6072 1 5935 1,4560 0 1155 1 5578

UNEMPLOY 22 -0 0309 1,6088 1 5779 1,4590 0 1140 1 5421

PARMENT 23 -0 0312 1,6088 1 5776 1,4635 0 1111 1 5433

PARHLTH 24 -0 0355 1,6092 1 5737 1,4684 0 1084 1 5414

MEDHIST 25 -0 0375 1,6334 1 5959 1,4737 0 1293 1 5655

PARCHCOM 26 -0 0359 1,6336 1 5976 1,4789 0 1265 1 5695

BRTHWT 27 -0 0362 1,6336 1 5973 1,4845 0 1236 1 5718

TIMEDAY 28 -0 0344 1,6451 1 6108 1,4901 0 1321 1 5878

FAMHIST 29 -0 0335 1,6486 1 6151 1,4960 0 1325 1 5950

BRTHSCQ 30 -0 0304 1,6536 1 6232 1,5020 0 1345 1 6062

TOTCIGS 31 -0 0261 1,6587 1 6326 1,5081 0 1366 1 6187

BIRTHOR 32 -0 0164 1,6683 1 6519 1,5145 0 1432 1 6413

MOVESCHL 33 -0 0042 1,6805 1 6763 1,5209 0 1525 1 6692

MSOC 34 -0 0024 1,6824 1 6800 1,5274 0 1514 1 6764

OCCUPRAT 35 0 0 1,6848 1 6848 1,5340 0 1508 1 6848
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Table 6. 4: MSE criteria for the school-adjusted data,
selection by forward stepwise procedure.

p EstCBias2) GFP VlRp V2Rp Grp
none 19 -0 2560 1,6061 1 3501 2 3105 0 0 2 0545

PVOC 20 0 0487 1,6100 1 6587 1 9802 0 0007 2 0296

PMAT 21 -0 2033 1,6134 1 4101 1 8831 0 0007 1 6804

CHILDINT 22 -0 1121 1,6143 1 5022 1 8100 -0 0020 1 6958

AGEINT 23 -0 2290 1,6257 1 3967 1 7460 0 0066 1 5236

FQUALIF 24 -0 2410 1,6263 1 3853 1 7074 0 0036 1 4700

GESTAT 25 -0 1918 1,6317 1 4399 1 6805 0 0055 1 4942

PAR3CHL 26 -0 0809 1,6376 1 5567 1 6698 0 0081 1 5969

CLASSVR 27 -0 1493 1,6400 1 4906 1 6602 0 0069 1 5177

OFFSCHL 28 -0 2094 1,6578 1 4484 1 6493 0 0213 1 4612

SEX 29 -0 1563 1,6659 1 5096 1 6407 0 0257 1 5102

STHEIGHT 30 -0 0301 1,7300 1 7000 1 6318 0 0857 1 6874

CARPHONE 31 -0 0834 1,7335 1 6501 1 6282 0 0854 1 6301

WORKMUM 32 -0 0842 1,7335 1 6493 1 6270 0 0817 1 6244

MQUALIF 33 -0 0591 1,7346 1 6754 1 6260 0 0790 1 6458

HANDED 34 -0 0829 1,7356 1 6527 1 6245 0 0763 1 6179

CONSUMER 35 -0 1128 1,7412 1 6284 1 6245 0 0781 1 5897

UNEMPLOY 36 -0 1206 1,7460 1 6253 1 6263 0 0792 1 5849

PARHLTH 37 -0 1212 1,7465 I 6253 1 6298 0 0762 1 5849

MEDHIST 38 -0 0728 1,7729 1 7002 1 6334 0 0985 1 6591

PARPART 39 -0 0780 1,7735 1 6955 1 6378 0 0956 1 6553

FSOC 40 -0 0736 1,7929 1 7192 1 6433 0 1111 1 6807

PARMENT 41 -0 0735 1,7942 1 7207 1 6488 0 1089 1 6842

BRTHSCO 42 -0 0698 1,7963 1 7264 1 6544 0 1075 1 6921

MSOC 43 -0 0702 1,7968 1 7266 1 6603 0 1045 1 6946

FAMSIZE 44 -0 0668 1,8009 1 7341 1 6666 0 1051 1 7049

MOVESCHL 45 -0 0410 1,8217 1 7807 1 6732 0 1221 1 7543

BRTHWT 46 -0 0407 1,8245 1 7838 1 6800 0 1214 1 7606

BIRTHOR 47 -0 0367 1,8304 1 7937 1 6871 0 1237 1 7741

TIMEDAY 48 -0 0247 1,8431 1 8184 1 6943 0 1328 1 8024

FAMHIST 49 -0 0242 1,8435 1 8193 1 7016 0 1298 1 8071

TOTCIGS 50 -0 0120 1,8557 1 8437 1 7091 0 1384 1 8355

PARCHCOM 51 -0 0090 1,8587 1 8497 1 7167 0 1379 1 8456

OCCUPRAT 52 0 0 1,8678 1 8678 1 7244 0 1434 1 8678
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The term Est(bias)2 is part of both criteria and is evaluated

from the final line of expression 4. 16. It is the square of the

estimated bias minus its estimated variance, and hence has the

square of the true bias as its expected value. There is a single

variance term VRp for the first criterion, and two such terms VlRp,

and V2Rp, for the second criterion which are defined in expression

4. 16. The term V2Rp depends on the correlations between the x

variables included in the model and X*.

The only one of these quantities which requires modification

for the model with fixed dummy variables for schools is VlRp.

The factor (n-2) (n-3) in the middle term of expression 4. 16 is

replaced by (n-d-1)(n-d-2), where d is the number of levels of the

factor school <18 here). The terms with suffices x* in

expression 4. 16 now refer to the model which contains X* and the

factor "school".

The first point to notice is that the Est(bias)2 term obtains

substantial negative values for a large number of the models

considered. In particular, this is very marked for the first step

of the unadjusted data, and occurs for every step except the first

for the school-adjusted data. This comes about because the values

of b* for these models happen to be almost identical to the value

for the full model, so that the value of the squared bias is much

smaller than would be expected for the case when the true value of

the bias is zero. Where the Est(bias)2 term is negative it would

suggest that for this model the Gp criteria will be

underestimating the MSE of (3*.



Figure 6.4: Values of the Gp criteria and their constituent parts
for forward stepwise procedure

Unadjusted data
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The values of the Gp and their constituent parts are plotted

on figure 6.4. The criteria always attain their lowest values,

for the models examined, when this Est (bias2) term is

substantially negative. For the unadjusted data GFp attains its

lowest value after the first covariate is entered, and for GRp it

is attained after 7 covariates are entered, since by this step the

term VlRp has fallen substantially. For the adjusted data the

lowest value of Gp-p is obtained with no additional covariates in

the model, and for GRp after 9 covariates. These are not minima

of the criteria in relation to the values for the adjacent steps,

because the values of the Gp tend to fluctuate as the estimate of

b* varies about b:t:rLja i.

The variance parts of the Gp criteria tend to behave more

regularly. The variance part of GFp is strictly increasing with

p, as was proved in chapter 4. It shows the most pronounced

increase when the variable STHEIGHT is added into the models,

which is the term that had the strongest univariate relationships

with blood lead (see Tables 5.3 and 5.6). The first variance term

for GRp attains a minimum at the same point as the criterion Sp,

since it differs from it only by a constant factor. It is thus

highly likely that it, too, will be affected by selection bias,

especially when, as here, the models with the minimum residual

sums of squares are selected. The second variance term of GRp

makes a much smaller contribution for these data. The variables

which cause it to increase tend to be those which are most

strongly related to X* (see tables 5.3 and 5.6). The small values

-108-



of this component here relate to the weak associations in these

data between the covariates and X*.

These results suggest that any method which simply searches

for low values of the Gp criteria will be picking out sub-models

which happen, by chance, to give exactly the same value of b* as

the full model for the particular data being examined, and that

such models will not have values for the MSE which are as low as

the criteria suggest. An alternative would be to count the

variance term as equal to zero whenever it is estimated with a

negative quantity. For the unadjusted data Gf-p would still have a

minimum at the first step, but GRp now attains a minimum at the

13th step instead of the 6th. The minima achieved would be

considerably greater in each case. The results for the school-

adjusted data are similar. The same strategy could be used if the

second variance term in GRp became negative, although this only

occurred once in the data which we have here. Although such

procedures would give estimates of the MSE of b* which will be

biassed upwards for a model selected without reference to the

data, they should have a reduced variance and may prove to be

better criteria to use in search procedures or as stopping rules.

6.5 Significance test approaches to MSE

We can apply a significance testing approach, following Toro-

Vizcarrando & Wallace as discussed in section 4.2, to the models

examined in the stepwise procedure. The F ratio for the bias of
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the coefficient of special interest will always be less than 1

when the EstCbias21 term in tables 6.3 and 6.4 is negative.

For the unadjusted data the value of F for the model with no

covariates is 20.4, which is well beyond the 1% point for both the

central and non-central F distribution. Thus we have evidence of

significant bias compared to the full model and evidence that the

estimate of MSE for the blood lead coefficient is significantly

greater for the reduced model compared to the full model.

Subsequently the F statistic has its greatest value of 3.07 at

the 4th step, after AGEINT is entered. This only exceeds the 25°L

point for the non-central F distribution and the 10% point for

central F, so the evidence for a biassed blood lead coefficient is

weak, and for an increased MSE for these reduced models is even

weaker. At the 4th step the value of GFp, is greater than for the

full model. This agrees with the comment in section 4.2 that the

F statistic approach will treat the reduced model more favourably

than GFf-,. At no other step does the F statistic exceed 2.

For the school-adjusted data the F statistic is less than 1

for the model with no covariates, and at every subsequent step

except the first when its value is 1.07. Thus there is no

evidence of significant bias for any of the models considered, and

this obviously implies no evidence of an increased MSE for b*.

Thus all the models examined would be preferred to the full model.

This agrees with the fact that value of GFp, is less than that for

the full model at every step for the school-adjusted data.
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6.6 Changes in the coefficients of the other covariates

The influences of the other covariates on the BASC score are

modified as each additional term is added to the model. Tables

6.5 and 6.6 give the t-values of variables for the first 10 steps

and the full model, for the adjusted and unadjusted data. When a

variable has not been entered into the equation the t-value

corresponds to the coefficient which that variable would have if

it were to be the next to enter the equation. When a variable is

already in the equation the t-value corresponds to the

coefficient, after the variable which is entered at this step has

been included. In each case the t-values are calculated as the

ratio of the coefficient to its standard error, as if the model

for which it has been calculated were the correct one. The

variables have been ordered in the sequence in which they enter

the regression.

Those variables for which no t-statistic exceeds /2 in

absolute value at any of the 33 steps have been excluded from

these tables. They are

unadjusted data : CONSUMER, PARMENT, PARHLTH, TIMEDAY, FAMHIST,

MOVESCH

school-adjusted data : CONSUMER, PARMENT, PARHLTH, TIMEDAY,

FAMHIST, MOVESCH, BRTHSCO, FAMSIZE.
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Table 6.5 : Changes In the t-values for the covariates during forward
stepwise regression, blood lead entered first. The rows
correspond to variables and the columns to steps. Bold type
indicates that the variable is included in the model

ENTERS COEFFICIENT Variable being entered at this step
STEP FOR PVOC CHINT PMAT AGE FQUAL GESTA PARSC STHGH SEX OFFSC FULL

123456789 10

1 PVOC 13. 31 10. 69 6.88 6.85 4. 61 4. 72 4. 99 4. 92 4.89 4.81 3. 25

2 CHINT 9.58 6.09 5.37 5.70 4.93 5.27 5.57 5.15 5.42 5.12 4.68

3 PMAT 11.79 5.79 5.03 4.61 4.00 3.90 3.99 3.87 3.98 3.96 3.80

4 AGE -4. 45 -3. 93 -4. 39 -3. 91 -3. 90 -3. 96 -3. 99 -3. 85 -3. 84 -3. 89 -3. 03

5 FQUAL 12. 15 5. 47 4. 32 3. 58 3. 56 3. 44 3. 75 3. 72 3. 67 3. 66 1.89

6 GESTAT -2. 44 -2. 86 ~3. 48 -3. 32 -3. 40 -3. 28 -3. 53 -3. 47 -3. 41 -3. 44 -2. 56

7 PARSCHL 3. 70 -0. 08 -1. 11 -1. 42 -1. 46 -2. 00 -2. 39 -2. 49 -2. 59 -2. 54 -2. 60

8 STHGH 5. 48 3. 90 2. 99 2. 72 2. 52 2. 46 2. 37 2. 47 2. 57 2. 59 2. 36

9 SEX -0. 39 -0. 79 -1. 81 -2. 06 -2. 04 -1. 94 -1. 84 -1. 96 -2. 09 -1. 95 -1. 94

10 OFFSCH -3. 64 -2. 52 -1. 75 ~1. 76 -1. 88 -1. 86 -1. 92 -1. 85 -1. 89 -1. 73 -1. 83

11 WMUM 0. 57 -1. 56 -1. 32 -1. 34 -1. 27 -1. 21 -1. 32 -1. 54 -1. 57 -1. 55 -1. 58

12 CARPHO 3. 22 0. 50 -0. 41 -0. 76 -0. 80 -1. 53 -1. 36 -1. 38 -1. 58 -1. 47 -1. 74

13 HANDED -3. 02 -1. 44 -1. 73 -1. 80 -1. 58 -1. 49 -1. 58 -1. 36 -1. 17 -1. 29 -1. 85

14 MQUAL 13.00 4.98 3.96 3.15 2.98 1.48 1.05 1.18 1.09 1.18 1.25

16 PPART 7.68 3.13 1.75 1.50 1.38 0.96 0.87 1.20 1.23 1.11 0.97

17 FSOC -8. 51 -3. 51 -2. 90 -2. 48 -2. 49 -0. 76 -0. 70 -0. 69 -0. 68 -0. 76 -0. 86

18 FAMSZ 1. 77 1. 11 0. 19 -0. 01 -0. 14 -0. 54 -0. 54 -0. 47 -0. 38 -0. 40 0. 40

19 CLSSYR -2. 35 -2. 56 -2. 93 -2. 59 0. 92 0. 74 0. 86 0. 90 0. 74 0.84 1.09

20 UNEMPL 0. 34 -0. 76 -1. 39 -1. 15 -1. 14 -1. 34 -1. 25 -1. 27 -1. 44 -1. 33 -0. 89

23 MEDHST -1. 76 -1. 76 -1. 07 -1. 05 -0. 84 -0. 67 -0. 69 -0. 49 -0. 37 -0. 57 -0. 57

24 PCHCOM 5. 29 1. 44 0. 16 0. 15 0. 03 -0. 15 -0. 21 -0. 08 ~0. 09 0. 15 -0. 50

25 BRTHWT -3. 08 -2. 16 -2. 17 -2. 16 -2. 21 -2. 19 -0. 63 -0. 62 -0. 62 -0. 58 -0. 58

28 BRTHSC -1. 40 -0. 62 -1. 16 -1. 01 -0. 81 -0. 60 0. 54 0. 40 0. 41 0. 23 0. 33

29 TOTCIG -4. 78 -2. 27 -0. 71 -0. 36 -0. 24 0. 28 0. 44 0. 31 0. 35 0. 31 0. 29

30 BRTORD -1. 20 -1. 29 -1. 82 -1. 46 -1. 35 -1. 26 -1. 24 -1. 38 -1. 20 -1. 13 -0. 19

32 MSOC -9. 26 -3. 46 -2. 57 -I. 33 -1. 22 ~0. 35 -0. 15 ~0. 19 -0. 06 -0. 14 0. 91

33 OCCUPR -7, 41 -2. 65 -1. 65 -1. 42 -1. 31 -0. 37 -0. 29 -0. 40 -0. 22 -0. 25 0. 06
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Table 6.^?: Changes In the t-values for the covariates during forward
stepwise regression, blood lead and school entered first.
Rows correspond to variables and columns to steps

ENTERS COEFFICIENT Variable being entered at this step
STEP FOR PVOC CHI NT PMAT AGE FQUAL GESTA PARSC STHGH SEX OFFSC FULL

1 2 3 4 5 6 1 8 9 10

1 PVOC 9. 09 5. 75 5. 13 5. 22 3. 66 3. 81 4. 09 4. 09 3. 98 3. 93 3. 88

2 PMAT 8. 70 5. 18 4. 73 4. 45 3. 94 3. 83 3. 92 3. 95 3. 94 4. 05 2. 73

3 CHINT 6. 63 5. 09 4. 63 5. 19 4. 74 5. 03 5. 30 5. 43 5. 27 5. 57 4. 80

4 AGE -3. 86 -4. 01 -3. 76 -4. 43 -4. 62 -4. 71 -4. 74 -4. 34 -4. 51 -4. 61 -4. 43

5 FQUAL 8. 10 4. 55 3. 87 3. 33 3. 58 3. 48 3. 74 3. 74 3. 73 3. 69 2. 18

6 GESTA -2. 40 -2. 76 -2. 63 -3. 08 -3. 22 -3. 11 -3. 35 -3. 45 -3. 48 -3. 43 -2. 53

7 PRSCHL 1. 86 -0. 38 -0. 75 -1. 40 -1. 41 -1. 88 -2. 25 -2. 39 -2. 29 -2. 36 -2. 40

8 CLYR -2. 47 -2. 59 -2. 34 -2. 75 1. 91 1. 90 2. 02 2. 18 2. 31 2. 41 2. 39

9 OFFSCL -2. 80 -2. 26 -2. 25 -1. 91 -2. 19 -2. 19 -2. 24 -2. 14 -2. 27 -2. 14 -2. 19

10 SEX -0. 85 -0. 99 -1. 32 -2. 13 -2. 21 -2. 14 -2. 06 -2. 13 -2. 25 -2. 12 -2. 11

11 STHGHT 3. 52 2. 99 2. 78 2. 31 2. 15 2. 18 2. 09 2. 15 2. 00 2. 03 2. 11

12 CPHON 0. 32 -0. 81 -1. 00 -1. 36 -1. 29 -1. 94 -1. 70 -1. 71 -1. 71 -1. 75 -1. 86

13 WMUM 0. 50 -1. 19 -1. 25 -1. 29 -1. 33 -1. 39 -1. 47 -1. 66 -1. 63 -1. 63 -1. 53

14 MQUAL 8. 94 4. 24 3. 46 2. 92 2. 98 1. 57 1. 14 1. 29 1. 20 1. 18 1. 50

15 HANDD -2. 20 -1. 29 -1. 38 -1. 73 -1. 33 -1. 27 -1. 39 -1. 20 -1. 28 -1. 24 -1. 59

17 UNEMP -1. 27 -1. 60 -1. 34 -1. 66 -1. 52 -1. 67 -1. 53 -1. 54 -1. 67 -1. 73 -1. 11

19 MDHIST -1. 16 -1. 71 -1. 62 -1. 19 -1. 01 -0. 87 -0. 89 -0. 73 -0. 83 -0. 85 -0. 93

20 PPART 4.64 2.32 2.01 1.15 1.08 0.84 0.75 1.03 1.00 0.97 0.56

21 FSOC -4. 63 -2. 31 -2. 02 -1. 90 -2. 15 -0. 49 -0. 45 -0. 47 -0. 38 -0. 43 -0. 70

24 MSOC -5. 06 -2. 00 -0. 75 -0. 41 -0. 45 0. 34 0. 49 0. 39 0. 63 0. 42 0. 55

27 BTHWT -2. 51 -2. 04 -2. 00 -2. 04 -2. 01 -2. 00 -0. 45 -0. 41 -0. 31 -0. 26 -0. 41

28 BTORD -2. 31 -1. 98 -1. 60 -2. 01 -1. 76 -1. 55 -1. 48 -1. 62 -1. 37 -1. 42 -0.31

31 TOTCG -2. 52 -1. 43 -1. 13 -0. 15 -0. 26 0. 13 0.24 0. 14 0. 08 0. 04 0.08

32 PCHCOM 2.76 0.95 0.98 0.06 0.06 0.04 0.00 0.16 0.18 0.25 -0.04

33 OCCRT -3. 39 -1. 22 -1. 13 -0. 82 -0. 91 -0. 17 -0. 13 -0. 23 -0. 16 -0. 15 0.04
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Certain groups of variables can be taken together. Consider

first the 7 variables (PVOC, PMAT, CHILDINT, FQUALIF, MQUALIF,

FSOC & MSOC) which are at the core of the main cluster in figures

5.4 and 5.5. The first four of these enter during the first five

steps for both adjusted and unadjusted data, and the t-values for

the others are reduced as they enter. The variables FSOC & MSOC

have little association with outcome, once these first four are

entered. MQUALIF still retains some association with outcome and

when it enters the model at a later step, the coefficients of the

first four are modified to become close to the values they

achieve for the full model. The regression coefficients for this

group of variables are not influenced by any variables outwith the

group. At early steps the t-values for the unadjusted data are

much greater, but the values are comparable for the adjusted and

unadjusted data, once they have settled down to their final

values.

Certain other variables have large t-values at early steps but

their association with outcome is much diminished after

PVOC, PMAT, CHILDINT & FQUALIF. These are OCCUPRAT, TOTCIGS,

FAMSIZE, PARPART, PARCHCOM & MEDHIST. The t-values for STHEIGH

and OFFSCHL are reduced in a similar manner, but they retain some

association with outcome after control for the first five

variables, which is not diminished by the entry of other variables

into the model.
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The variable PARSCHL, which measures parents' involvement with

the school starts by being positively associated with outcome,

but its influence is reversed, and remains in this direction,

after control for the first four variables. One possible

explanation of this is as follows. When this variable was being

constructed we were aware of the possibility of over-control, when

a parent's visits to the school were prompted by their child's

learning problems. Thus we excluded from the score those visits

made by the parent that were initiated by teachers who were

concerned with the child's progress. However, the reversal of the

PARSCHL coefficient when, after control for parental

characteristics, more parental involvement with the school is

associated with poorer outcome, suggests that we may not have been

entirely successful in removing this aspect of PARCHCOM. The

influence of the variables WORKMUM and CARPHONE on outcome are

also reversed at early steps. Again, various social explanations

for these relationships could be suggested. I will not pursue

these further here, as they are peripheral to my main topic.

However, they do illustrate the way in which data which have

unexpected patterns can be interpreted in a plausible manner.

Even if the t-values quoted here had a valid probabilistic

interpretation (which they have not) we cannot discount the

possibility that some of the patterns which we are observing might

be noise.

The three related variables GESTAT, BRTHWT and BRTHSCO

influence each other's coefficients. GESTAT has the greatest

effect on outcome; there being no evidence of the other two
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variables having an influence on outcome which is independent of

it.

The two variables AGE and CLASSYR must be considered together,

and it must remembered that the outcome measure (BASC) was itself

standardised for age on a random sample of British children. The

scores used in this analysis have been age-adjusted in accordance

with the procedures laid down in the test manual. Because the

Edinburgh Lead Study population was recruited not by age, but by

year of schooling, those children who are younger will have had

more schooling relative to their chronological age. This explains

the negative coefficient for age, with younger children performing

better, and also the reversal of the CLASSYR coefficient once AGE

is included in the model.

Before adjustment for the other covariates the coefficient of

SEX is such that girls obtain slightly lower scores. This effect

is enhanced after adjustment for the other covariates, especially

the inclusion of the variable CHILDINT on which girls obtained

higher scores than boys. Thus this apparent sex difference in the

full model may be an artefact of the different scoring which we

may have used for the activities in which boys participate,

compared with those which are more common for girls.

This description of the changing coefficients for the

covariates is not quite complete, but it illustrates that there is

a considerable degree of structure in the multiple correlation of

these other x variables with the outcome, BASC. I hope to be able
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to model this in later chapters when simulating a model which

requires a joint distribution of y and the x variables.

6.7 Selection by backwards elimination

A backward elimination method of variable selection was also

tried for the unadjusted and adjusted data. Starting with the

full model, covariates were removed from the model at each step by

choosing the covariate which produced the smallest increase in the

residual sum of squares. The order in which the variables were

selected was very nearly the same as the reverse order for the

forward stepwise procedure. The two orders for the unadjusted

data differed only by moving three covariates by at most three

positions. For the adjusted data only one variable needed to be

moved three places to make the orders identical. In both cases

the differences in order were around the middle of the stepwise

procedure.

The details of the backwards elimination method are not shown,

because the models chosen are largely the same as those for

forward selection. The same models are selected as those giving

the minima of all the criteria discussed above.

If there is exact agreement between the ordering of the

subsets chosen by the forward selection and backwards elimination,

then they also agree with the all-subsets minima for every subset

size; Berk (1978) gives a simple proof of this. While this

condition, also referred to as "nesting", is not quite fulfilled
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here, it is very close to being true. Thus we would expect the

subsets selected by the forward and backwards procedures to be

those with the minimum sum of squares for their subset size in the

majority of cases.
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Chapter 7

Other stepwise procedures

7. 1 Introduction

Various other stepwise procedures are described here. The MSE

criteria introduced in chapter 4 can have three different functions

in connection with model selection, each of which could be used with

or without the others. Firstly, the value of the criterion can be

used to drive the selection procedure, by selecting variables to

enter or exclude which will give low values of the criterion.

Secondly, the criteria can be used to provide stopping rules, which

determine what size of model should be used^ Thirdly they can be

used, at the end of selection, to estimate the MSE of the

coefficient b*'

The results described here use the criteria in the first

sense, starting with forward and backward procedures which select

the model at each step which gives the lowest value of the various

GP, criteria. The results are different from those for the MSE of

prediction, in that the fixed and random effects models select

different sets of covariates. Also, unlike the case for prediction

MSEs, different sets of covariates are selected by forward and

backward selection procedures. The stepwise procedures are carried

forward until all variables are entered or removed, and the values

of all of the criteria are given for each stepwise procedure, not

just that of the criterion being used for selection. This allows
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the influences on selection to be understood, and potential biases

identified. Later in this chapter modifications are introduced

which estimate the Gp criteria in such a way that negative

estimates of positive quantities are set to zero.

Examination of these results suggest that either the modified

criteria, or else procedures which select models which include

terms which will influence the estimate of (3*, may be more sensible

than using the GP, for model selection. Finally procedures which

select covariates which are associated with X* are considered.

7.2 Selection to minimise

The results of a forward stepwise procedure to minimise G^p,

for the adjusted and unadjusted data are in tables 7. 1 and 7.2. The

minimum of the criterion for the unadjusted data is achieved at the

first step, and for the school-adjusted data GFp, is minimised at the

third step. For the unadjusted data this is the same model as is

chosen by the first step of the usual forward stepwise procedure,

but for the school-adjusted data the minimum achieved by GFp is

lower than that for the model with no covariates which was the

lowest found in section 6.2.

Several features are obvious from these tables. The models

selected are those with estimates for bp* which are very close to

those for the full model, so that the Est( bias2) term becomes as

negative as possible. The stepwise procedure manages to find such a

model immediately for the unadjusted data and keeps on finding such
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Table 7. 1 : Results
the minimum value of

Variable p EstCbias2)
entered

PVOC 3 -0 22884

WMUM 4 -0 22883

HNDED 5 -0 22881

PMENT 6 -0 22871

OCCRT 7 -0 22830

PCHCM 8 -0 22849

PPART 9 -0 22824

CPHNE 10 -0 22761

PRHLT 11 -0 22595

CSMR 12 -0 22542

BTHWT 13 -0 22399

FHIST 14 -0 22299

MSOC IS -0 22015

FSIZE 16 -0 22119

UNMPL 17 -0 21758

BTSCO 18 -0 21207

TCIGS 19 -0 21033

TMDAY 20 -0 20523

CHINT 21 -0 19621

CLSYR 22 -0 19690

GESTA 23 -0 19417

MDHIS 24 -0 18855

MVSCL 25 -0 18039

BORD 26 -0 15356

FQUAL 27 -0 15878

OFFSC 28 -0 15569

MQUAL 29 -0 13981

SEX 30 -0 13241

FSOC 31 -0 11048

PSCHL 32 0 00804

PMAT 33 -0 07755

STHGT 34 0 24231

AGE 35 -0 00000

of forward stepwise procedure based on choosing
Gp,.,, unadjusted data, (contd on next page).

Vrp ®Fp V 1 Rp V2RP SRP

1 45593 1,22709 1,76797 0 02554 1,53912

1 45594 1,22710 1,76643 0 02192 1,53760

1 45595 1,22714 1,76524 0 01832 1,53643

1 45606 1,22735 1,77190 0 0149! 1,54319

1 45611 1,22781 1,75639 0 01126 1,52808

1 45625 1,22776 1,75992 0 00785 1,53143

1 45630 1,22806 1,74031 0 00428 1,51208

1 45706 1,22945 1,74730 0 00164 1,51969

1 45765 1,23170 1,75141 -0 00123 1,52546

1 45935 1,23393 1,75618 -0 00278 1,53076

1 45961 1,23562 1,74729 -0 00603 1,52330

1 46179 1,23880 1,75274 -0 00703 1,52975

1 46202 1,24187 1,72402 -0 01018 1,50387

1 46347 1,24228 1,72778 -0 01205 1,50659

1 46678 1,24920 1,73403 -0 01175 1,51645

1 46989 1,25783 1,74017 -0 01171 1,52810

1 47404 1,26371 1,74344 -0 01045 1,53311

1 47948 1,27426 1,75026 -0 00770 1,54503

1 47990 1,28369 1,68214 -0 01042 1,48592

1 48300 1,28610 1,66256 -0 01029 1,46565

1 48582 1,29165 1,64802 -0 01053 1,45385

1 4953! 1,30677 1,65167 -0 00352 1,46312

1 50427 1,32388 1,65849 0 00288 1,47810

1 51316 1,35960 1,66001 0 00919 1,50645

1 51762 1,35884 1,63065 0 01039 1,47187

1 52409 1,36840 1,62458 0 01385 1,46889

1 53891 1,39910 1,62671 0 02631 1,48690

1 54825 1,41584 1,62667 0 03281 1,49426

1 56845 1,45797 1,63044 0 05101 1,51996

1 57933 1,58737 1,61713 0 05857 1,62517

1 59256 1,51501 1,57235 0 06709 1,49479

1 65514 1,89745 1,55747 0 12665 1,79978

1 68477 1,68477 1,53396 0 15082 1,53396
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Table 7.1 (contd) : Forward selection on GFp, unadjusted data.

Variable p F ratio RMSP
entered

be* t-ratio

PVOC 3 177. 03 129. 23 118. 47 0.26001 -3. 18 -2. 38

WMUM 4 2. 44 128.85 117. 47 0. 25979 -3. 18 -2. 38

HNDED 5 2. 34 128. 51 116. 61 0, 25961 -3. 18 -2. 38

PMENT 6 0. 14 128. 73 118.44 0.26059 -3. 18 -2. 38

OCCRT 7 6. 38 127.35 112.69 0. 25831 -3. 20 -2. 41

PCHCM 8 1. 01 127. 34 113. 46 0.25883 -3. 19 -2. 40

PPART 9 7. 57 125.67 106. 40 0. 25594 -3. 16 -2. 40

CPHNE 10 0. 03 125.92 108.36 0. 25697 -3. 17 -2. 40

PRHLT 11 0. 85 125.96 109. 34 0. 25758 -3. 14 -2. 38

CSMR 12 0. 67 126. 04 110.53 0. 25828 -3. 18 -2. 40

BTHWT 13 4. 49 125.14 107. 17 0. 25697 -3. 14 -2. 38

FHIST 14 0. 49 125.28 108.59 0. 25777 ~3. 18 -2. 41

MSOC 15 10. 13 122.97 98. 71 0.25355 -3. 13 -2. 39

FSIZE 16 0. 94 122.98 99. 60 0. 25410 -3. 17 -2. 42

UNMPL 17 0. 25 123. 17 101. 31 0.25502 -3. 20 -2. 44

BTSCO 18 0. 29 123. 35 102.96 0. 25592 -3. 23 -2. 46

TCIGS 19 1. 10 123. 33 103.67 0. 25640 -3. 16 -2. 40

TMDAY 20 0. 12 123. 56 105.53 0.25741 -3. 19 -2. 41

CHINT 21 21. 52 118.50 83. 21 0. 24739 -3. 09 -2. 39

CLSYR 22 7. 67 116. 88 76. 67 0.24451 -3. 25 -2. 53

GESTA 23 6. 24 115. 61 71. 79 0. 24237 -3. 11 -2. 43

MDHIS 24 0. 95 115.62 72. 75 0.24291 -3. 21 -2. 50

MVSCL 25 0. 04 115. 86 74. 71 0.24391 -3. 19 -2. 47

BORD 26 1. 57 115.72 74. 98 0. 24413 -3. 31 -2. 56

FQUAL 27 10. 57 113. 43 65. 55 0. 23982 -3. 09 -2. 41

OFFSC 28 3. 78 112.77 63. 48 0. 23892 -3. 25 -2. 54

MQUAL 29 1. 39 112. 68 64. 00 0.23924 -3. 10 -2. 41

SEX 30 2. 02 112.44 63. 84 0. 23923 -3. 24 -2. 52

FSOC 31 0. 91 112. 46 64. 86 0. 23979 -3. 10 -2. 39

PSCHL 32 5. 88 111. 30 60. 62 0.23783 -2. 84 -2. 20

PMAT 33 15. 39 107. 99 46. 77 0.23124 -3. 30 -2. 58

STHGT 34 6. 48 106. 74 42. 18 0.22905 -2. 66 -2. 05

AGE 35 9. 18 104. 90 35. 00 0.22560 -3. 18 -2. 45
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Table 7.2 : Results of forward stepwise procedure based on choosing
the minimum value of GF|-,, school-adjusted data, (contd next page).

Variable p EstCbias2) VFp
entered

PPART 20 -0 25861 1,60659 1,

BTHWT 21 -0 26042 1,60667 1,

HNDED 22 -0 26054 1,60667 1,

CSMR 23 -0 26063 1,60710 1,

PCHCM 24 -0 26040 1,60736 1,

PRHLT 25 -0 25988 1,60786 1,

FHIST 26 -0 25943 1,60830 1,

WMUI1 27 -0 25831 1,60932 1,

0CCRT 28 -0 25314 1,60999 1,

PMENT 29 -0 25464 1,61261 1,

PSCHL 30 -0 24953 1,61547 1,

TMDAY 31 -0 24403 1,62174 1,

BTSC0 32 -0 23238 1,62624 1,

GESTA 33 -0 23401 1,63208 1,

B0RD 34 -0 23244 1,63473 1,

MVSCL 35 -0 22040 1,64724 1,

CPHNE 36 -0 20318 1,65883 1,

MS0C 37 -0 20350 1,65972 1,

UNMPL 38 -0 19949 1,66766 1,

TCIGS 39 -0 16900 1,67800 1,

CLSYR 40 -0 18474 1,68171 1,

CHINT 41 -0 17677 1,68220 1,

COm X 42 -0 16648 1,69101 1,

FQUAL 43 -0 17073 1,69198 1,

FSI2E 44 -0 15566 1,71153 1,

FS0C 45 -0 11955 1,73128 1,

PMAT 46 -0 10576 1,73432 1,

MQUAL 47 -0 12169 1,74079 1,

0FFSC 48 -0 09903 1,75178 1,

PV0C 49 -0 11224 1,75499 1,

M0HIS 50 -0 06908 1,78201 1,

AGE 51 0 26239 1,79182 2,

STHGT 52 -0 00000 1,86778 1,

V,RP ^2Rp Grp

2 22049 -0 00387 1 96188

2 20385 -0 00832 1 94343

2 18867 -0 01281 1 92813

2 19566 -0 01685 1 93502

2 20477 -0 02114 1 94438

2 21403 -0 02516 1 95415

2 22337 -0 02929 1 96394

2 23268 -0 03267 1 97437

2 20871 -0 03602 1 95557

2 21540 -0 03721 1 96076

2 22376 -0 03812 1 97423

2 23321 -0 03445 1 98917

2 24073 -0 03316 2 00835

2 23899 -0 02994 2 00498

2 24280 -0 03115 2 01035

2 25240 -0 01909 2 03199

2 26083 -0 00823 2 05766

2 18708 -0 01150 1 98358

2 19263 -0 00583 1 99315

2 19207 0 00296 2 02308

2 16962 0 00302 1 98488

2 05170 -0 00101 1 87494

2 04475 0 00522 1 87827

1 94040 0 00182 1 76967

1 94718 0 02003 1 79152

1 95124 0 03844 1 83169

1 85169 0 03564 1 74593

1 82662 0 03799 1 70493

1 82055 0 04547 1 72151

1 80075 0 04427 1 68851

1 80547 0 06869 1 73638

1 73372 0 07185 1 99612

1 72436 0 14342 1 72436

®Fp

34798

34625

34613

34646

34696

34798

34888

35101

35685

35797

36593

37770

39386

39806

40229

42683

45566

45622

46817

50900

49698

50544

52453

52126

55587

61172

62856

61910

65275

64275

71292

05421

86778



Table 7.2 (cntd) : Forward selection on GRp,

Variable p F ratio RM5P Cp Sp
entered

PPART 20 21. 57 136. 32 202.63 0. 28401

BTHWT 21 5. 64 135.02 196.92 0. 28188

HNDED 22 5. 34 133. 81 191.69 0. 27994

CSMR 23 0. 48 133. 96 193. 04 0. 28083

PCHCM 24 0. 02 134. 23 195.01 0. 28200

PRHLT 25 0. 01 134. 51 197. 01 0. 28318

FHIST 26 0. 00 134. 79 199.00 0. 28438

WMUM 27 0. 02 135. 07 200.98 0.28557

OCCRT 28 7. 16 133. 34 193.32 0. 28250

PMENT 29 0. 57 133. 46 194. 54 0. 28336

PSCHL 30 0. 23 133. 68 196. 24 0. 28442

TMDAY 31 0. 01 133. 96 198.23 0. 28563

BTSCO 32 0. 42 134. 13 199.65 0. 28660

GESTA 33 2. 37 133. 74 198.45 0. 28637

B0RD 34 1. 21 133.68 198. 81 0. 28686

MVSCL 35 0. 01 133. 96 200.80 0. 28809

CPHNE 36 0. 26 134. 17 202.44 0. 28917

MSOC 37 17. 72 129. 52 181. 22 0. 27973

UNMPL 38 0. 83 129.56 182.13 0. 28044

TCIGS 39 2. 12 129. 25 181. 36 0. 28037

CLSYR 40 6. 80 127.65 174. 57 0. 27750

CHINT 41 28. 56 120. 45 141. 76 0. 26242

SEX 42 3. 57 119. 78 139.43 0. 26153

FQUAL 43 26. 74 113. 42 110.74 0. 24818

FSIZE 44 0. 41 113.57 112.27 0. 24905

FSOC 45 1. 05 113. 55 113. 06 0.24957

PMAT 46 26. 57 107. 52 86. 14 0. 23684

MQUAL 47 8. 26 105.83 79. 29 0. 23363

OFFSC 48 3. 52 105.25 77. 54 0. 23285

PVOC 49 7. 00 103. 87 72. 18 0. 23032

MDHIS 50 0. 82 103.92 73. 32 0. 23092

AGE 51 20. 71 99. 56 54. 45 0. 22175

STHGT 52 4. 45 98. 81 52. 00 0. 22055

school-adjusted data,

bp* t-ratio

■3.76 -2.53

-3. 79 -2. 56

■3.79 -2.57

■3.81 -2.58

-3.81 -2.58

■3.81 -2.57

-3.81 -2.57

•3.80 -2.56

•3.88 -2.63

■3.84 -2.60

-3.87 -2.61

■3.86 -2.60

•3.91 -2.63

■3.77 -2.54

3. 84 -2. 58

3.82 -2.56

3.89 -2.59

3.75 -2.54

3. 84 -2. 60

3. 67 -2. 48

3.85 -2.61

3. 72 -2. 60

3.91 -2.73

3.74 -2.68

3. 84 -2. 74

3.68 -2.61

3.98 -2.90

3.74 -2.74

3.94 -2.89

3. 79 -2. 79

3.94 -2.88

4. 39 -3. 27

3.81 -2.79
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Figure 7. i : Values of b*, forward selection by GFp.
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We know that the variance part of the GFp criterion will be

strictly increasing as further terms are added to the model.

However, we can see that some selection is operating to limit this

increase. There is evidence of selection on the second variance

term in the random-effects model, a multiple of which is an implicit

contributor to the variance of the fixed-effects model. Variables

are selected which give small values (many negative) of this term.

This term increases when variables correlated with X* are added into

the model, and we can see that the variable which hah the strongest

relationship with X* (STHEIGHT) enters at the very end.

These results, with the large number of negative estimates for

quantities which should be positive, must cast some doubt on these

methods. Even if they can be shown to select reasonable models the

value of the GFp criterion at the end of the procedure will be an

underestimate of the MSE, because of the selection effects.

This problem might be ameliorated by replacing a negative

estimate of the squared bias by zero in the expression GFp, thus

obtaining a new criterion G'Fp. The estimates of the MSE criteria

for a forward stepwise procedure based on this criterion are given

in tables 7.3 and 7.4. The criterion G' Fp is not tabulated

explicitly since it is equal to GFp when the Est (bias2) term is

positive, and equal to VFp when Est(bias2) is negative.

The minimum of the new criteria occurs at the first step for

both the adjusted and the unadjusted data. This is bound to happen

if the models chosen at these two steps are such as to give zero for
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Est(bias2), since the variance part of GPp is strictly increasing

with additional covariates. Examination of later steps shows that,

for both the unadjusted data and the adjusted data, models with zero

bias terms were selected up to the last three steps. Also the term

which was being minimised as further covariates were added to the

model was V2Rp, and this was even more marked than for

straightforward minimisation of GRp. These procedures were even

less likely than the previous ones to select a models with low RMSP.

For neither the unadjusted nor the adjusted data did the value of Cp

fall below p, and it was generally high above it (detailed results

not shown).

For selection based on G' Rp the value of bp*: is not so tightly

constrained to be close to the value for the full model. This is

illustrated in Figure 7.2. However, it is constrained to be within

a certain range of the full model estimate by the requirement that

the squared bias be less than its expected value for zero bias.

One interpretation of this criterion is that it is selecting models

with low variance estimates, subject to a condition on the bias.
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Table 7.3 : Results of forward stepwise procedure based on choosing
the minimum value of G'Fp, unadjusted data.

Variable p Est(bias2)
entered

Vfp ®Fp V 1 Rp V2RP GpP

FQUAL 3 -0,13019 1,45235 1,32216 1,84870 0,02211 1 71850

HNDED 4 -0,13647 1,45237 1,31590 1,84029 0,01828 1 70382

OCCRT S -0,12120 1,45246 1,33126 1,82886 0,01455 1 70766

WMUH 6 -0,11681 1,45259 1,33578 1,83537 0,01104 1 71857

PMENT 7 -0,12037 1,45276 1,33239 1,84230 0,00754 1 72193

CPHNE 8 -0,10665 1,45304 1,34640 1,84581 0,00416 1 73916

PPART 9 -0,16417 1,45359 1,28941 1,80460 0,00107 1 64043

PCHCM 10 -0,16569 1,45383 1,28814 1,81182 -0,00232 1 64614

CHINT 1 1 -0,20464 1,45411 1,24947 1,72515 -0,00540 1 52051

PRHLT 12 -0,20757 1,45458 1,24701 1,73146 -0,00839 1 52389

BTHUT 13 -0,22127 1,45511 1,23385 1,71907 -0,01121 1 49780

MSOC 14 -0,22901 1,45567 1,22666 1,68986 -0,01382 1 46085

CSMR 15 -0,22621 1,45787 1,23166 1,69645 -0,01480 1 47024

FHIST 16 -0,22305 1,46016 1,23712 1,70323 -0,01569 1 48018

FSI2E 17 -0,22092 1,46249 1,24157 1,71027 -0,01656 1 48935

UNMPL 18 -0,21054 1,46531 1,25477 1,71378 -0,01684 1 50324

CLSYR 19 -0,15726 1,46782 1,31056 1,69339 -0,01725 1 53613

TCIGS 20 -0,15172 1,47113 1,31941 1,70043 -0,01704 1 54871

GESTA 21 -0,19246 1,47449 1,28203 1,69526 -0,01665 1 50280

BTSCO 22 -0,18183 1,47752 1,29569 1,70166 -0,01679 1 51983

TMDAY 23 -0,16927 1,48270 1,31343 1,70851 -0,01448 1 53924

OFFSC 24 -0,06109 1,48879 1,42770 1,69782 -0,01102 1 63673

MVSCL 25 -0,05318 1,49613 1,44294 1,70497 -0,00629 1 65179

PSCHL 26 -0,13571 1,50403 1,36832 1,70243 -0,00091 1 56671

SEX 27 -0,05678 1,51082 1,45404 1,70169 0,00317 1 64492

PVOC 28 -0,10765 1,52117 1,41353 1,60551 0,01059 1 49787

BORD 29 -0,14006 1,53003 1,38997 1,60751 0,01657 1 46745

PMAT 30 -0,04102 1,54226 1,50124 1,56338 0,02536 1 52236

MQUAL 31 -0,10646 1,55516 1,44870 1,56310 0,03524 1 45664

FSOC 32 -0,11222 1,57158 1,45936 1,56689 0,04879 1 45467

MDHIS 33 -0,07755 1,59256 1,51501 1,57235 0,06709 1 49479

STH6T 34 0,24231 1,65514 1,89745 1,55747 0,12665 1 79978

AGE 35 -0,00000 1,68477 1,68477 1,53396 0, 15082 1 53396
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Table 7.4 : Results of forward stepwise procedure based on choosing
the minimum value of G'Fp, school-adjusted data.

Variable p EstCbias2)
entered

VCP ®Fp V 1 Ftp V2RP Grp

HNDED 20 -0 25576 1,60606 1 35030 2,29688 -0 00477 2 04112

PCHCtl 21 -0 25493 1,60606 1 35113 2,27497 -0 00945 2 02004

BTHWT 22 -0 25027 1,60612 1 35586 2,25289 -0 01396 2 00263

FHIST 23 -0 25210 1,60652 1 35442 2,26130 -0 01815 2 00921

PMAT 24 -0 18128 1,60693 1 42564 1,98009 -0 01952 1 79881

OCCRT 25 -0 14927 1,60739 1 45812 1,96897 -0 02295 1 81970

PRHLT 26 -0 13865 1,60791 1 46927 1,97585 -0 02650 1 8372!

CSMR 27 -0 13233 1,60853 1 47620 1,98384 -0 02999 1 85151

PPflRT 28 -0 18273 1,60951 1 42678 1,96891 -0 03268 1 78617

WMUM 29 -0 17009 1,61073 1 44063 1,97611 -0 03545 1 80602

CHINT 30 -0 24721 1,61246 1 36525 1,90009 -0 03605 1 65288

PSCHL 31 -0 25128 1,61487 1 36359 1,90462 -0 03732 1 65334

BORD 32 -0 23854 1,61724 1 37870 1,90566 -0 03859 1 66712

PdENT 33 -0 24581 1,62007 1 37426 1,90839 -0 03937 1 66258

MSOC 34 -0 24200 1,62364 1 38164 1,90857 -0 03927 1 66657

FQUAL 35 -0 15143 1,62703 1 47560 1,84970 -0 03817 1 69827

BTSCO 36 -0 15882 1,63075 1 47193 1,85732 -0 03809 1 69850

CLSYR 37 -0 22626 1,63586 1 40961 1,83596 -0 03591 1 60970

PVOC 38 -0 12727 1,64024 1 51297 1,79587 -0 03422 1 66860

HQVAL 39 -0 04573 1,64327 1 59754 1,79016 -0 03468 1 74443

TdDAY 40 -0 04729 1,64961 1 60232 1,79789 -0 03186 1 75060

UNdPL 41 -0 11426 1,65686 1 54260 1,80042 -0 02800 1 68616

CPHNE 42 -0 18378 1,66399 1 48021 1,79349 -0 02416 1 60971

QESTA 43 -0 07564 1,67203 1 59639 1,78202 -0 01937 1 70638

TCIGS 44 -0 09516 1,68025 1 58509 1,78902 -0 01463 1 69386

CO m x 45 -0 16187 1,68883 1 52696 1,78386 -0 00945 1 62199

AGE 46 -0 06732 1,69922 1 63190 1,71924 -0 00237 1 65191

MVSCL 47 -0 07550 1,71321 1 63771 1,72646 0 00798 1 65096

FSOC 48 -0 09778 1,72979 1 63201 i,73262 0 02098 1 63484

FSI2E 49 -0 08999 1,75115 1 66116 1,74005 0 03887 1 65007

MDHIS 50 0 02678 1,77910 1 80588 1,74354 0 06338 1 77032

STHGT 51 0 04491 1,85554 1 90045 1,73455 0 13613 1 77946

OFFSC 52 -0 00000 1,86778 1 86778 1,72436 0 14342 1 72436
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Figure 7.2 : Values of b*, forward selection by G'Fp.
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Backward elimination procedures, based on the same two

criteria were also explored. Unlike the case for selection on the

residual sum-of-squares, quite a different set of models were

obtained by the backwards and forwards procedures. Results for the

unadjusted data for the criteria GF(=, and G* are given in tables

7.5 and 7.6. The results for the school-adjusted data were similar.

Those variables which move b* a long way from its full model value

are retained in the model until the last few steps. The minimum

for the GFp procedure is obtained for the same model with just the

one covariate (PV0C) as was found for the forward selection. For

G'Fp. the minimum is obtained a few steps from the end, and is higher

than that found for forward selection.
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Table 7.5 : Results of backward elimination procedure based on
choosing the minimum value of GFp,, unadjusted data.

Variable p estCbias2)
dropped

Vfp Sfp V 1 Rp ^2Rp Grp

MDHIS 35 -0 01806 1,65820 1,64014 1,52844 0,12735 1,51038

FSOC 34 -0 04505 1,63842 1,59338 1,52463 0, 11083 1,47959

BORD 33 -0 05689 1,62743 1,57054 1,51819 0, 10290 1,46130

MVSCL 32 -0 06620 1,61742 1,55123 1,51178 0, 09597 1,44559

TMDftY 31 -0 07721 1,60720 1,53000 1,50626 0, 08889 1,42905

BTSCO 30 -0 08058 1,60297 1,52239 1,50006 0,08771 1,41948

MQUAL 29 -0 08162 1,59456 1,51293 1,49992 0,08272 1,41830

CLSYR 28 -0 10215 1,58083 1,47867 1,49782 0,07232 1,39566

TCIGS 27 -0 10402 1,57702 1,47301 1,49181 0,0715b 1,38779

WMUM 26 -0 10836 1,57616 1,46780 1,49295 0, 07406 1,38459

OCCRT 25 -0 10987 1,57419 1,46432 1,48687 0,07509 1,37700

PPART 24 -0 11143 1,57334 1,46191 1,48373 0,07736 1,37230

CSMR 23 -0 11136 1,57065 1,45929 1,48102 0,07782 1,36966

FSIZE 22 -0 11241 1,57040 1,45799 1,47572 0, 08055 1,36331

PCHCM 21 -0 11236 1,57040 1,45803 1,46974 0,08345 1,35738

MSOC 20 -0 11226 1,57039 1,45813 1,46542 0,08643 1,35315

PMENT 19 -0 11202 1,57037 1,45835 1,46044 0,08933 1,34842

FHIST 18 -0 10983 1,56820 1,45838 1,45597 0,09012 1,34615

GESTA 17 -0 11108 1,56331 1,45223 1,47101 0,08940 1,35993

OFFSC 16 -0 12693 1,55587 1,42894 1,47367 0, 08534 1,34675

BTHWT 15 -0 12932 1,55545 1,42613 1,48065 0,08855 1,35133

PRHLT 14 -0 12968 1,55483 1,42515 1,47554 0,09084 1,34586

CPHNE 13 -0 13005 1,55472 1,42467 1,47771 0,09408 1,34766

HNDED 12 -0 12959 1,55378 1,42420 1,47647 0,09627 1,34688

UNMPL 11 -0 12621 1,55315 1,42694 1,47658 0,09886 1,35036

PSCHL 10 -0 12346 1,54513 1,42167 1,48541 0,09448 1,36195

SEX 9 -0 14432 1,53771 1,39339 1,49217 0,09051 1,34785

CHINT 8 -0 12129 1,53713 1,41585 1,54745 0,09658 1,42616

FQUAL 7 -0 13503 1,53300 1,39797 1,60125 0,09880 1,46622

AGE 6 -0 06483 1,51617 1,45134 1,62998 0,08504 1,56515

STHGT 5 0 05922 1,46313 1,52235 1,66303 0,02896 1,72225

PMAT 4 -0 22884 1,45593 1,22709 1,76797 0, 02554 1,53912

PVOC 3 4 90704 1,43231 6,33935 2,38684 0,00000 7,29388
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Table 7.6 : Results of backward elimination procedure based on
choosing the minimum value of G'Fp, unadjusted data.

Variable p estCbias2)
dropped

VPP Gfp V 1 Rp V2RP GRp

MDHIS 35 -0,01806 1,65820 1,64014 1,52844 0 12735 1 51038

FSOC 34 -0,04505 1,63842 1,59338 1,52463 0 11083 1 47959

MQVAL 33 -0,02369 1,62537 1,60168 1,52395 0 10124 1 50025

AGE 32 0,00747 1,59986 1,60733 1,54828 0 08041 1 55574

STHGT 31 -0,04102 1,54226 1,50124 1,56338 0 02536 1 52236

PMAT 30 -0,14006 1,53003 1,38997 1,60751 0 01657 1 46745

60RD 29 -0,10765 1,52117 1,41353 1,60551 0 01059 1 49787

PVOC 28 -0,05678 1,51082 1,45404 1,70169 0 00317 1 64492

MVSCL 27 -0,07260 1,50348 1,43088 1,69460 -0 00152 1 62200

SEX 26 -0,14513 1,49729 1,35216 1,69529 -0 00494 1 55017

PSCHL 25 -0,06109 1,48879 1,42770 1,69782 -0 01102 1 63673

OFFSC 24 -0,16927 1,48270 1,31343 1,70851 -0 01448 1 53924

TMDAY 23 -0,18183 1,47752 1,29569 1,70166 -0 01679 1 51983

FSI2E 22 -0,19029 1,47299 1,28270 1,69468 -0 01836 1 50439

FHIST 21 -0,19682 1,47025 1,27342 1,68784 -0 01792 1 49102

CLSYR 20 -0,21669 1,46741 1,25072 1,70827 -0 01788 1 49157

FQUAL 19 -0,04329 1,46137 1,41808 1,80406 -0 02253 1 76077

TCIGS 18 -0,01912 1,45829 1,43917 1,79756 -0 02252 1 77843

UNMPL 17 -0,05797 1,45547 1,39750 1,79199 -0 02222 1 73402

CSMR 16 -0,07654 1,45325 1,37670 1,78518 -0 02119 1 70863

BTSCO 15 -0,07838 1,45150 1,37313 1,77784 -0 01959 1 69947

CPHNE 14 -0,10320 1,45090 1,34770 1,77571 -0 01668 1 67251

GESTA 13 -0,00661 1,44765 1,44104 1,78137 -0 01708 1 77476

PRHLT 12 -0,00086 1,44731 1,44645 1,77445 -0 01382 1 77358

PCHCM 11 -0,00268 1,44699 1,44431 1,76724 -0 01057 1 76456

WhUM 10 -0,00973 1,44688 1,43714 1,76146 -0 00710 1 75173

PMENT 9 -0,00575 1,44674 1,44099 1,75470 -0 00368 1 74895

OCCRT 8 0,01530 1,44667 1,46196 1,76742 -0 00020 1 78272

HNOED 7 0,06583 1,44645 1,51228 1,79120 0 00315 1 85703

BTHWT 6 0,15476 1,44579 1,60055 1,80936 0 00603 1 96412

PPART 5 0,37937 1,44441 1,82378 1,85545 0 00816 2 23481

CHINT 4 1,12210 1,44228 2,56438 2,04447 0 01009 3 16657

HSOC 3 4,90704 1,43231 6,33935 2,38684 0 00000 7 29388
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The constraint which holds b* close to its full model value

can also be seen to operate for the GFp criterion. It does not have

such a marked effect at the initial steps, because the maximum

negative value of the Est (bias2-1 term is minus the variance of the

estimated bias, and this can be shown to decrease systematically

towards zero as the number of terms in the model increases. Thus

the maximum negative contribution of this term towards GFp is much

smaller at the first step of the backwards elimination procedure,

than at the first step of forwards selection. The values of b* are

plotted in Figure 7.3.

Negative values of VSRp are not found for backwards selection

by GFp, and this procedure produces models with much lower RMSP than

forward selection on either GFp criterion. Cp values less than p

were found for the school-adjusted data, although never as low as

Figure 7.3 : Values of b*, backward elimination with GFp.
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for forward selection. The lowest Cp for table 7.5 was 10.2 when

p=8. This presumably occurs because the selection of models which

introduce a very small bias in b* will also pick out terms which are

unrelated to y. These features were not found for backward

selection by G' Fp which still seeks negative values of V2Rp, and

does not find models with low RMSP.

The minimum values of the criteria tend to occur either at the

very end of the procedure, or close to the end. As the variance

part of the criteria is strictly decreasing, the minimum value seems

to depend on there being a model with a low value of Est(bias2) (or

a negative value in the case of G'p> among the last few considered.

Figure 7.4 : Values of b*, backward elimination with G' Fp.
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7.3 Selection by minimising GRp.

The results for a stepwise procedure based on minimising GRp

are given in tables 7.7 and 7.8. They share many of the same

features as the procedure based on selecting low values of GFp,

while differing in being more likely to select variables which

predict outcome.

For the unadjusted data the minimum of GRp is achieved at the

9th step, although a value which is almost as low occurs at the 17th

step. The value of GRp which is achieved (1. 38) is higher than the

lowest value (1.33) which was found in the forward selection

procedure. For the school-adjusted data the minimum is found at the

11th step (1.50) and this is also higher than the lowest value

(1.46) found for the forward selection based on minimising the

residual sum-of-squares.

The tendency to select models with exactly the same blood-lead

coefficient as the full model is found here, as it was for GFp.

This is illustrated in Figure 7. 5, where it can be seen to operate

less strongly than for selection by GFp.

Negative values of VSRp are also selected preferentially, and

this is particularly obvious for the school-adjusted data. In

neither case are models selected which give low values of the

prediction MSE criteria Cp and Sp.
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Table 7.7: Results of forward
the minimum value of GR|-,, unadj

stepwise procedure based on choosing
usted data.

Variable p estimated VFp
entered bias2

PV0C 3 -0 22884 1,45593 1

CHINT 4 -0 20761 1,45643 1

CLSYR 5 -0 22576 1,45890 1

MS0C 6 -0 22427 1,45918 1

BTHWT 7 -0 21933 1,45948 1

HNDEQ 8 -0 21852 1,45948 1

PPART 9 -0 21690 1,45951 1

CPHNE 10 -0 22000 1,45981 1

OCCRT 11 -0 22244 1,46016 1

WHUM 12 -0 22191 1,46017 1

PCHCM 13 -0 22236 1,46020 1

CSMR 14 -0 22253 1,46216 1

PMENT 15 -0 22233 1,46232 1

PRHLT 16 -0 22144 1,46295 1

UNMPL 17 -0 21915 1,46534 1

FQUAL 18 -0 18408 1,46834 1

OFFSC 19 -0 20824 1,47650 1

TCISS 20 -0 20608 1,47869 1

FHIST 2! -0 20298 1,48148 1

FSI2E 22 -0 20095 1,48382 1

BTSC0 23 -0 19644 1,48829 1

GESTA 24 -0 17653 1,49115 1

SEX 25 -0 18667 1,49737 1

THDAY 26 -0 18109 1,50367 1

MVSCL 27 -0 17274 1,51203 1

B0R0 28 -0 15149 1,52182 1

PSCHL 29 -0 14006 1,53003 1

KDHIS 30 -0 13952 1,54424 1

FS0C 31 -0 09115 1,56468 1

PHAT 32 -0 02433 1,57787 1

MQUAL 33 -0 07755 1,59256 1

STHGT 34 0 24231 1,65514 1

AGE 35 -0 00000 1,68477 1

V 1 r p V2Rp Grp

1,76797 0,02554 1,53912

1,65177 0,02107 1,44416

1,63023 0,02026 1,40448

1,61348 0,01706 1,38920

1,60365 0,01401 1,38431

1,60120 0,01072 1,38268

1,59886 0,00746 1,38196

1,60105 0,00453 1,38105

1,60271 0,00163 1,38027

1,60278 -0,00164 1,38088

1,60704-0,00490 1,38469

1,61146-0,00606 1,38893

1,61803-0,00922 1,39570

1,62440-0,01189 1,40296

1,62944 -0,01264 1,41029

1,59663-0,01242 1,41256

1,59188 -0,00691 1,38363

1,59846-0,00788 1,39238

1,60477 -0,00824 1,40179

1,61090-0,00909 1,40995

1,61758 -0,00766 1,42115

1,60359-0,00787 1,42706

1,60489 -0,00459 1,41821

1,61118-0,00124 1,43009

1,61798 0,00431 1,44523

1,62099 0,01138 1,46951

1,60751 0,01657 1,46745

1,61254 0,02826 1,47302

1,61639 0,04655 1,52524

1,57176 0,05543 1,54742

1,57235 0,06709 1,49479

1,55747 0,12665 1,79978

1,53396 0,15082 1,53396

Gfp

22709

24882

23314

23490

24014

24096

24261

23981

23772

23826

23784

23963

23999

24151

24619

28426

26826

27261

27850

28287

29185

31462

31070

32259

33929

37034

38997

40472

47353

55354

51501

89745

68477



Table 7.8 : Results of forward stepwise procedure
the minimum value of GRp, school-adjusted data.

based on choosing

Variable p estimated VrP
entered bias2

PMAT 20 -0,17812 1,60653

FQUAL 21 -0,24864 1,61040

CHINT 22 -0,19679 1,61141

CLSYR 23 -0,24919 1,61510

BTHWT 24 -0,25107 1,61518

HNDED 25 -0,25014 1,61521

PPART 26 -0,24782 1,61535

BORD 27 -0,24908 1,61843

WMUM 28 -0,24760 1,61894

PVOC 29 -0,21929 1,62210

CPHNE 30 -0,23973 1,62709

FHIST 31 -0,23979 1,62709

MSOC 32 -0,23924 1,62730

PRHLT 33 -0,23854 1,62892

MQVAL 34 -0,22746 1,63080

SEX 35 -0,22617 1,63781

PSCHL 36 -0,21473 1,64310

CSMR 37 -0,21939 1,64790

PCHCH 38 -0,21700 1,64984

OCCRT 39 -0,21456 1,65315

BTSCO 40 -0,21058 1,65713

PMENT 41 -0,20560 1,66017

UNMPL 42 -0,20300 1,66465

TCIGS 43 -0,19336 1,67232

TMDAY 44 -0,18184 1,68053

GESTA 45 -0,16187 1,68883

OFFSC 46 -0,15303 1,70484

FSOC 47 -0,14723 1,72053

MVSCL 48 -0,13311 1,73439

FSI2E 49 -0,11224 1,75499

MDHIS SO -0,06908 1,78201

AGE 51 0,26239 1,79182

STHGT 52 -0,00000 1,86778

GFp V 1 Bp ^2Rp GRp

42841 2 00454 -0 00357 1,82642

36176 1 88630 -0 00276 1,63766

41462 1 81857 -0 00531 1,62178

36591 1 79475 -0 00490 1,54556

36411 1 78439 -0 00852 1,53331

36506 1 77917 -0 01218 1,52903

36753 1 77854 -0 01573 1,53072

36935 1 77803 -0 01610 1,52895

37133 1 78324 -0 01933 1,53564

40282 1 74790 -0 01923 1,52862

38736 1 74327 -0 01756 1,50354

38730 1 74951 -0 02130 1,50972

38806 1 75651 -0 02487 1,51727

39038 1 76338 -0 02695 1,52483

40334 1 75896 -0 02859 1,53150

41164 1 75364 -0 02481 1,52746

42837 1 74356 -0 02283 1,52882

42852 1 74658 -0 02155 1,52719

43284 1 75400 -0 02336 1,53701

43859 1 76106 -0 02373 1,54650

44655 1 76872 -0 02342 1,55814

45457 1 77483 -0 02410 1,56923

46166 1 77997 -0 02328 1,57697

47896 1 78719 -0 01911 1,59383

49869 1 79468 -0 01438 1,61284

52696 1 78386 -0 00945 1,62199

55181 1 77933 0 00342 1,62630

57330 1 78503 0 01592 1,63780

60128 1 79280 0 02653 1,65969

64275 1 80075 0 04427 1,68851

71292 1 80547 0 06869 1,73638

05421 1 73372 0 07185 1,99612

86778 1 72436 0 14342 1,72436
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Figure 7.5 : Values of b*, forward selection by GR(>.
Unadjusted School-adjusted
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.The random effects criterion can be modified to avoid negative

estimates by forcing the values of Est (bias2' and of V2Rp to zero

whenever they become negative. This gives a new criterion which we

will call G'Rp. The results for forward selection by this criterion

are given in table 7.9 for the unadjusted data.

Selection to minimise G'Rp gives an order of inclusion of

the variables closer to the order for the minimisation of the

residual sum-of-squares. This was particularly true at the initial

steps where the Cp fell consistently. After about step 10 the value
, eta

of Cp oscillated about the line Cp=p, butAnot fall far below it.

However, the term STHEIGHT was still excluded until near the end
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Table 7.9 : Results of forward stepwise procedure based on choosing
the minimum value of G'Rp, unadjusted data.

Variable p estimated
entered bias2

VFP Gpp V 1 Rp V2RP Grp

PVOC 3 -0 22884 1,45593 1,22709 1,76797 0,02554 1 53912

CHINT 4 -0 20761 1,45643 1,24882 1,65177 0,02107 1 44416

PMAT S -0 11342 1,46443 1,35101 1,57786 0,02566 1 46445

FQUAL 6 -0 21144 1,46960 1,25815 1,54437 0,02748 1 33293

GESTA 7 -0 18422 1,47424 1,29002 1,51914 0,02877 1 33493

AGE B -0 10304 1,48794 1,38490 1,47823 0,03891 1 37518

PSCHL 9 -0 18117 1,49650 1,31534 1,46725 0,04421 1 28609

WMUtt 10 -0 18400 1,49668 1,31267 1,46614 0,04128 1 28214

HNDED 11 -0 18297 1,49670 1,31373 1,46591 0,03822 1 28294

CPHNE 12 -0 17824 1,49702 1,31879 1,46555 0,03546 1 28732

PPART 13 -0 18136 1,49731 1,31595 1,46766 0,03272 1 28630

PCHCM 14 -0 18115 1,49731 1,31616 1,47076 0,02970 1 28961

CSMR 15 -0 16633 1,49968 1,33335 1,47258 0,02901 1 30625

PMENT 16 -0 16771 1,49974 1.33203 1,47723 0,02606 1 30952

SEX 17 -0 07235 1,50989 1,43753 1,47266 0, 03300 1 40030

MSQC 18 -0 08000 1,51030 1,43030 1,47754 0,03040 1 39754

BTHUT 19 -0 07162 1,51073 1,43911 1,48255 0,02779 1 41092

OCCRT 20 -0 06063 1,51156 1,45093 1,48783 0,02557 1 42720

UNMPL 21 -0 04230 1,51304 1,47074 1,49281 0,02398 1 45051

FSI2E 22 -0 05753 1,51505 1,45752 1,49810 0,02290 1 44057

FHIST 23 -0 04574 1,51617 1,47043 1,50371 0,02092 1 45796

MQUAL 24 -0 11889 1,52532 1,40643 1,50239 0,02688 1 38350

OFFSC 25 -0 02728 1,53294 1,50566 1,49922 0,03123 1 47194

TCIGS 26 -0 00984 1,53585 1,52601 1,50511 0,03102 1 49527

PRHLT 27 0 00519 1,53889 1,54408 1,51121 0,03094 1 51641

FSOC 28 -0 05591 1,55559 1,49968 1,51495 0,04449 1 45905

6TSC0 29 -0 04043 1,55984 1,51941 1,52109 0,04562 1 48066

THDAY 30 0 00037 1,56755 1,56792 1,52642 0,05020 1 52679

MVSCL 31 0 00972 1,57557 1,58529 1,53293 0,05513 1 54265

STHGT 32 0 00911 1,63229 1,64140 1,51933 0,10782 1 52844

CLSYR 33 -0 02404 1,64857 1,62453 1,52202 0,12076 1 49797

BORD 34 -0 01806 1,65820 1,64014 1,52844 0,12735 1 51038

MDHIS 35 -0 00000 1,68477 1,68477 1,53396 0,15082 1 53396
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because of the increase it gives in V2Rp. The selection of models

with low, negative values of V2Rp is avoided, as might be expected,

because of the modification which sets this component to zero.

The minima of G'Rp occurred at the 10th and 12th step for the

unadjusted and school-adjusted data. Selection on this criterion

appears to select on the basis of minimum residual sum-of-squares,

from among the possible models which have zero estimates for the

squared bias contribution and a low value of V2Rp. The values of b*

are shown in figure 7.6.

Figure 7.6 : Values of b*, forward selection by G* Rp>.
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Backward elimination based on GRp behaved differently from

forward selection. The same features were found as for Grp,

described above. Selection towards negative values of V2Rp no

longer operated. The order of the variables was closer to those

which minimised the residual sum-of-squares than was the case for

forward selection on this criterion, and the lowest value of Cp was

only very slightly larger than the lowest value found in chapter 6

(6. 10 compared to 5.99 at p=15 for unadjusted and 25.08 compared to

24.63 at p=34 for school-adjusted data). A lower value of the GRp

is found for the backwards than the forwards procedure. The results

for the unadjusted data are given in Table 7.10, and values of b*

are plotted in figure 7.7.

Figure 7.7 : Values of b*, backward selection by GRp.
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Table 7.10 : Results of backward stepwise procedure based on
choosing the minimum value of GRp, unadjusted data.

Variable p estimated
entered bias2

VrP Sep VlRp V2RP 6Rp

MDHIS 35 -0 01806 1,65820 1,64014 1,52844 0 12735 1,51038

FSOC 34 -0 04505 1,63842 1,59338 1,52463 0 11083 1,47959
BORD 33 -0 05689 1,62743 1,57054 1,51819 0 10290 1,46130

MVSCL 32 -0 06620 1,61742 1,55123 1,51178 0 09597 1,44559

TMDAY 31 -0 07721 1,60720 1,53000 1,50626 0 08889 1,42905
BTSCO 30 -0 08058 1,60297 1,52239 1,50006 0 08771 1,41948

OCCRT 29 -0 08271 1,60073 1,51802 1,49372 0 08848 1,41102

MQUAL 28 -0 08421 1,59254 1,50832 1,49361 0 08372 1,40939

CLSYR 27 -0 10426 1,57795 1,47369 1,49159 0 07247 1,38732

TCI6S 26 -0 10548 1,57486 1,46938 1,48558 0 07241 1,38010

PPART 25 -0 10954 1,57396 1,46442 1,48272 0 07466 1,37318

PCHCM 24 -0 10956 1,57392 1,46436 1,47653 0 07756 1,36697

PRHLT 23 -0 10915 1,57315 1,46399 1,47112 0 07976 1,36196

FSIZE 22 -0 11072 1,57289 1,46216 1,46788 0 08257 1,35715

FNIST 21 -0 11058 1,57168 1,46111 1,46243 0 08430 1,35185

PMENT 20 -0 11057 1,57168 1,46112 1,45726 0 08722 1,34669

BTHWT 19 -0 10985 1,57132 1,46147 1,45204 0 08975 1,34219

M80C 18 -0 10997 1,57132 1,46135 1,44793 0 09268 1,33796

WMUM 17 -0 11254 1,57101 1,45848 1,44771 0 09556 1,33517

UNMPL 16 -0 11016 1,57026 1,46010 1,44561 0 09786 1,33545
CSMR 15 -0 09898 1,56643 1,46745 1,44388 0 09715 1,34491
PSCHL 14 -0 11806 1,55606 1,43800 1,45498 0 09079 1,33691
SEX 13 -0 13341 1,54924 1,41583 1,45879 0 08740 1,32539

HNDEO 12 -0 13107 1,54904 1,41798 1,46047 0 09048 1,32941

CPHNE 11 -0 13087 1,54904 1,41818 1,46208 0 09376 1,33121

GESTA 10 -0 12487 1,54565 1,42078 1,48728 0 09513 1,36241

OFFSC 9 -0 14432 1,53771 1,39339 1,49217 0 09051 1,34785

FQUAL 8 -0 11597 1,53312 1,41716 1,52329 0 09085 1,40732
PMAT 7 -0 11035 1,52512 1,41477 1,57869 0 08879 1,46835

STHGT 6 -0 02018 i,47230 1,45212 1,59633 0 03468 1,57615

AGE 5 -0 20761 1,45643 1,24882 1,65177 0 02107 1,44416

CHINT 4 -0 22884 1,45593 1,22709 1,76797 0 02554 1,53912

PVOC 3 4 90704 1,43231 6,33935 2,38684 0 00000 7,29388
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By contrast, the G'Rp procedure selects rather similar

models whether forward or backwards stepwise procedures are used,

especially for the models with few covariates. The results for

backwards elimination are given in table 7.11 for the unadjusted

data, which can be compared to table 7.9 for forward selection. The

values of b* are plotted in figure 7.8, these can be seen to be

similar to the mirror images of figure 7.6, as the same terms are

retained in the backwards elimination models as were entered into

the forwards procedure. The backwards procedures based on G' Rp

tends to select models with lower RMSP than the equivalent forward

procedures, with Cp now falling somewhat below p, but not as low as

for backwards elimination with GRp.

Figure 7.8 : Values of b*, backward selection by G'Rp.
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Table 7. 11 : Results of backward stepwise procedure based on
choosing the minimum value of G'R(-., unadjusted data.

Variable p estimated VPP Gfp V 1 Rp V2RP GRp
entered bias2
MDHIS 35 -0 01806 1,65820 1 64014 1,52844 0, 12735 1,51038

FSOC 34 -0 04505 1,63842 1 59338 1,52463 0,11083 1,47959
BORD 33 -0 05689 1,62743 1 57054 1,51819 0, 10290 1,46130
CLSYR 32 -0 05869 1,61303 1 55434 1,51587 0,09185 1,45718

HVSCL 31 -0 07145 1,60266 1 53121 1,50947 0,08457 1,43802

THDAY 30 -0 06911 1,59346 1 52435 1,50381 0,07849 1,43470
BTSCO 29 -0 06771 1,58869 1 52098 1,49770 0,07679 1,42999

STHGT 28 0 00519 1,53889 1 54408 1,51121 0,03094 1,51641
PRHLT 27 -0 00984 1,S3S8S 1 52601 1,50511 0,03102 1,49527
TCIGS 26 -0 02728 1,53294 1 50566 1,49922 0,03123 1,47194

OCCRT 25 -0 03368 1,53156 1 49788 1,49305 0,03293 1,45937
UNMPL 24 -0 05914 1,52893 1 46978 1,48824 0,03340 1,42910
MSOC 23 -0 06454 1,52834 1 46380 1,48236 0, 03586 1,41781

FHIST 22 -0 07249 1,52767 1 45518 1,47688 0,03823 1,40438
BTHWT 21 -0 07830 1,52739 1 44909 1,47178 0,04098 1,39348
PCHCM 20 -0 07310 1,52715 1 45405 1,46683 0,04374 1,39373
PMENT 19 -0 06921 1,52708 1 45786 1,46252 0,04667 1,39331
FSI2E 18 -0 04968 1,52597 1 47629 1,45945 0,04860 1,40977
OFFSC 17 -0 13263 1,51800 1 38537 1,46152 0,04389 1,32888

HQUAL 16 -0 06339 1,50967 1 44627 1,46361 0,03878 1,40022
CSMR 15 -0 11100 1,50647 1 39546 1,46288 0,03867 1,35188

SEX 14 -0 18136 1,49731 1 31595 1,46766 0, 03272 1,28630
PPART 13 -0 17824 1,49702 1 31879 1,46555 0,03546 1,28732
CPHNE 12 -0 18297 1,49670 1 31373 1,46591 0, 03822 1,28294

HNDED 11 -0 18400 1,49668 1 31267 1,46614 0,04128 1,28214
WMUM 10 -0 18117 1,49650 1 31534 1,46725 0,04421 1,28609
PSCHL 9 -0 10304 1,48794 1 38490 1,47823 0,03891 1,37518

AGE 8 -0 18422 1,47424 1 29002 1,51914 0,02877 1,33493

GESTA 7 -0 21144 1,46960 1 25815 1,54437 0,02748 1,33293

FQUAL 6 -0 11342 1,46443 1 35101 1,57786 0,02566 1,46445

PMAT 5 -0 20761 1,45643 1 24882 1,65177 0,02107 1,44416

CHINT 4 -0 22884 1,45593 1 22709 1,76797 0,02554 1,53912

PVOC 3 4 90704 1,43231 6 33935 2,38684 0,00000 7,29388
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7.4 Summary of the results of using the Gp criteria for selection.

Several features of these procedures can be identified, which

suggest that they may be unsuitable either to drive a selection

procedure, or as the estimator of the MSE after such a procedure.

The first such feature is the tendency for the criteria to

select models which give exactly the same b* as the full model.

This is at its worst for forwards selection by GFp or GRp, but less

marked when these criteria are used for backward elimination. This

is likely to be undesirable because it may introduce noise by

selecting variables which by chance give low values of the bias2

term; it will also give a systematic downward bias to the values of

Gp after selection; and it makes the whole procedure seem irrelevant

if all one ends up with is the full model estimate. The modified

criteria G' Fp and G'Rp are less affected.

Secondly, we find evidence of selection towards negative

values of V^RP,. This is most marked for G' Fp where both forward and

backward selection have this feature. It is also seen for forward

selection on GFp and GRp. The absolute effect of this term is not

large for these data, compared with the other terms in the criteria.

However, other data sets where X* is more strongly related to the

other covariates might show this feature to a larger extent. Again,

this may lead to problems because of the noise introduced by

irrelevant selection procedures, and the resultant undet—estimates

of the Gp.
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Finally, in common with the procedures examined in chapter 6,

we may have undei—estimation of the residual variance. The models

which were most affected by this here were backwards elimination by

GFp or GRp (especially the former). Backward selection by G'Rp also

produced low values of the residual variance, but for forward

selection by G' Rp the value of RMSP did not fall far below its value

for the full model.

The minima of the GFp criteria were always achieved for models

with very few covariates. That for the GRp criteria occurred with

about nine covariates included when the criteria themselves were

used for selection, but for larger models when GFp, was used for

selection. This is because the procedures which are driven by GFp

do not necessarily select models with low residual sums of squares.

7.5 Selection for the maximum change in bp*.

In observing what happens to the various GP, criteria during

the process of variable selection, the argument has strayed from the

original derivation of the criteria as estimators of the MSE of

b*. It is clear from the results above that this property is most

unlikely to hold when the criteria themselves are used to select

variables.

The natural statistic to observe when we are concerned with

estimating 3* is its estimate as plotted in figures 7. 1 to 7.8,

above. If variables are selected which ensure that we include in

the model every term which is likely to alter this estimate
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substantially, then we may obtain reduced models which are of the

type we are seeking, and we may also be able to use the Gp criteria

to estimate the MSE of b* from such models. The advantage of forward

selection by this criteria, rather than the Gp, is that the

procedure driven by changes in b* does not make use of the value of

the b* estimate for the full model. Thus it will not be forced to

select terms for which est(bias2) is negative. The same would not

be true for backward selection by minimising the changes in b*, so

this is not reported here.

The values of the various criteria for such selection

procedures are given in tables 7. 12 and 7. 13, and the changes in b*

are plotted in figure 7.9. The values of the squared absolute

change in b* are also given as A2b*. This criterion could be used

to form a stopping rule if the procedure was stopped once A2b*

changed by less than a small fraction of VRp, or V<3P.
ft

Figure 7. 9 : Values of b*, selection by maximum change in b*.
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Table 7. 12 : Results of selection by maximum change in b*,
unadjusted data.

Variable p est(bias)
entered

2 A(b*)2 SFp ^ 1 Bp rf^Rp 6RP

AGE 3 8,1968 71,74928 1,44491 9,64179 2 30474 0 01561 10,50162

MQUAL 4 -0, 1595 7,27307 1,48211 1,32259 1 74827 0 05352 1 58876

STHGT 5 0,2598 0,72392 1,53108 1,79096 1 71239 0 10706 1 97227

PMAT 6 -0,1425 0,36814 1,54089 1,39832 1 60980 0 10812 1 46723

OFFSC 7 -0,0911 0,06122 1,54909 1,45796 1 59447 0 11268 1 50334

FSOC 8 -0,1236 0,06108 1,55987 1,43626 1 58429 0 12030 1 46068

PVOC 9 -0,0726 0,03507 1,56229 1,48969 1 54807 0 11676 1 47547

PSCHL 10 0,0267 0,02196 1,57347 1,60017 1 54857 0 12529 1 57527

6ESTA 11 0,1648 0,02277 1,57674 1,74160 1 53419 0 12418 1 69904

SEK 12 0,0795 0,00902 1,58160 1,66111 1 53492 0 12595 1 61444

MDHIS 13 0,0145 0,01282 1,60055 1,61506 1 53920 0 14280 1 55370

CISYR 14 -0,0116 0,00645 1,61840 1,60673 1 54444 0 15861 1 53277

PPART 15 0,0300 0,00562 1,61942 1,64946 1 53408 0 15513 1 56412

CSMR 16 0,0012 0,00456 1,62780 1,62906 1 53877 0 16085 1 54003

FQVAL 17 -0,0254 0,00434 1,62854 1,60309 1 52737 0 15695 1 50191

HNOED 18 -0,0395 0,00275 1,63013 1,59060 1 52839 0 15520 1 48886

TMDAY 19 -0,0361 0,00151 1,64158 1,60545 1 53433 0 16415 1 49820

CPHNE 20 -0,0263 0,00189 1,64220 1,61589 1 53135 0 16094 1 50504

TCIGS 21 -0,0074 0,00224 1,64679 1,63938 1 53623 0 16265 1 52882

CHINT 22 -0,0321 0,01029 1,64724 1,61509 1 47151 0 15285 1 43936

BORD 23 -0,0294 0,00570 1,65528 1,62579 1 47546 0 15778 1 44597

UNMPL 24 -0,0275 0,00101 1,65610 1,62857 1 47775 0 15540 1 45023

FSIZE 25 -0,0258 0,00081 1,65891 1,63307 1 48306 0 15529 1 45722

mm 26 -0,0232 0,00222 1,65984 1,63664 1 48180 0 15263 1 45859

MVSCL 27 -0,0084 0,00065 1,67182 1,66338 1 48789 0 16162 1 47945

PRHLT 28 -0,0097 0,00029 1,67250 1,66275 1 49284 0 15934 1 48309

PMENT 29 -0,0105 0,00022 1,67297 1,66243 1 49770 0 15681 1 48716

FHIST 30 -0,0086 0,00035 1,67583 1,66716 1 50367 0 15673 1 49500

BTSCO 31 -0,0050 0,00012 1,67968 1,67461 1 50998 0 15766 1 50491

BTHWT 32 -0,0045 0,00018 1,68018 1,67564 1 51527 0 15514 1 51073

PCHCM 33 -0,0042 0,00009 1,68053 1,67629 1 52091 0 15249 1 51667

MSOC 34 -0,0023 0, 00002 1,68238 1,67999 1 52740 0 15139 1 52501

OCCRT 35 -0,0000 0,00001 1,68477 1,68477 1 53396 0 15082 1 53396
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Table 7. 13 : Results of selection by maximum change in b*,
school-adjusted data.

Variable p est(bias)2
entered

A(b*>2 V Fp Sfp V 1 Rp ^2Rp Grp

A6E 20 0 09468 45 01846 1 61860 1 71327 2,25050 0 01286 2 34517

STHGT 21 0 01175 1 05651 1 68464 1 69639 2,20615 0 09833 2 21790

FSOC 22 1 13789 0 49127 1 70066 2 83855 2,11190 0 11046 3 24979

PMAT 23 0 22027 0 27382 1 70477 1 92505 1,89540 0 09978 2 11567

OFFSC 24 -0 08582 0 13559 1 71903 1 63321 1,87100 0 11080 1 78518

PVOC 25 0 08594 0 05360 1 72102 1 80697 1,78715 0 10405 1 87309

MDHIS 26 -0 03075 0 03133 1 74378 1 71303 1,78996 0 12521 1 75921

GESTA 27 0 09720 0 02604 1 74714 1 84435 1,77087 0 12353 1 86807

CLSYR 28 -0 02112 0 02731 1 75576 1 73464 1,76741 0 12860 1 74629

SEX 29 -0 07999 0 02222 1 76456 1 68457 1,76614 0 13396 1 68615

FQUAL 30 -0 10131 0 01698 1 76598 1 66467 1,73195 0 12891 1 63064

PSCHL 31 -0 06312 0 02289 1 77459 1 71148 1,73002 0 13385 1 66691

UNMPL 32 -0 08381 0 01172 1 77973 1 69591 1,72938 0 13522 1 64557

TCIGS 33 -0 05648 0 00851 1 78652 1 73005 1,73236 0 13858 1 67588

CSMR 34 -0 06863 0 00851 1 79490 1 72626 1,73619 0 14364 1 66756

MVSCL 35 -0 03079 0 00627 1 81615 1 78536 1,74261 0 16241 1 71182

MQUAL 36 -0 00222 0 00519 1 81872 1 81650 1,74287 0 16103 1 74065

BTSCO 37 -0 01948 0 00254 1 82072 1 80123 1,74584 0 15928 1 72636

CPHNE 38 -0 03174 0 00197 1 82123 1 78949 1,73944 0 15513 1 70770

HNDED 39 -0 04003 0 00305 1 82333 1 78330 1,74173 0 15341 1 70170

BTHUT 40 -0 04123 0 00200 1 82608 1 78485 1,74665 0 15258 1 70543

PRHLT 41 -0 03988 0 00154 1 82760 1 78773 1,75058 0 15037 1 71070

PCHCM 42 -0 03692 0 00116 1 82821 1 79129 1,75124 0 14692 1 71432

PPART 43 -0 03789 0 00167 1 82978 1 79189 1,75498 0 14471 1 71709

TMDAY 44 -0 02541 0 00047 1 84133 1 81592 1,76252 0 15317 1 7371 1

FSI2E 45 -0 01506 0 00056 1 84959 1 83453 1,77002 0 15821 1 75496

CHINT 46 -0 01799 0 00206 1 84968 1 83169 1,69243 0 14732 1 67444

BORD 47 -0 00668 0 00310 1 85672 1 85004 1,69825 0 15077 1 69157

WMUM 48 -0 00960 0 00131 1 85728 1 84767 1,69693 0 14713 1 68733

MSOC 49 -0 00926 0 00030 1 85836 1 84910 1,70342 0 14467 1 69415

PMENT 50 -0 00931 0 00002 1 85841 1 84910 1,70932 0 14110 1 70001

OCCRT 51 -0 00006 0 00004 1 86772 1 86766 1,71691 0 14690 1 71685

FHIST 52 -0 00000 0 00000 1 86778 1 86778 1,72436 0 14342 1 72436
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Very different variables are selected from those seen by any

of the previous procedures, with terms being entered which increase

the term V2Rf;, (the opposite of what happened in many of the

procedures described above). The models considered do not have low

values of RMSP until after the variable CHLDINT is included. This

occurs at steps 20 and 23 for the unadjusted and school-adjusted

data. The results for the Gp criteria suggest that the procedure may

give a modest improvement over the full model for the fixed effects

criterion if it is stopped after the first few steps, but an

improvement for the random effects criterion is not found until

after CHILDINT enters, and thus is only very small. For the random

effects model some modification of this procedure might be required

to make sure that all the terms which predict outcome strongly come

into the model early.

7. 6 Including variables which are related to blood lead.

Some studies (eg Needleman et al 1979) have used a strategy of

controlling for only those variables which are related to the

exposure being studied (here blood lead). The discussion and review

in chapters 3 and 4 suggests that this will tend to underestimate

the effect of the exposure.

One possible strategy is to include those covariates whose

univariate associations with blood lead reach a certain level of

significance. The covariates which are included by using p<0.05 and

p<0.01 for the adjusted and unadjusted data are given in table 7.14,
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along with the resulting value for the lead coefficient and its t-

value.

Table 7. 14: Selecting covariates related to blood lead.

Unadjusted data

p-value Covariates b*: t-ratio

0.05 STHEIGHT MQUALIF FSOC PVOC FQUALIF AGEINT -2.33 -1.79

0.01 STHEIGHT MQUALIF FSOC PVOC FQUALIF -1.78 -1.36

School-adjusted data

p~value Covariates b* t-ratio

0.05 STHEIGHT FSOC MEDHIST MOVESCHL PVOC AGEINT -2.67 -1.88

0.01 STHEIGHT FSOC -2.13 -1.41

These values are much lower in absolute value than any

achieved in any of the stepwise procedures described above (data not

shown for most of these). None of the other models examined gave a

t-ratio which was less extreme than -2.0, while all of these four

do. To understand why this is so we can examine the values for the

various MSE criteria and their components for these models.
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Table 7.15: Components of Gp for models in table 7. 14..

Unadjusted data

p-value RMSp, Est(bias)2 vFR VIRp v2Rp aRp

0. 05 115. 5 0. 5801 1. 5424 2. 1226 1. 5963 0. 1021 2. 2785

0. 01 118. 4 1. 7949 1. 5215 3. 3164 1. 6326 0.0847 3. 5122

School-adjusted data

p-value RMSP Est(bias)2 vRP Gf p VIRp VaRp QRp

LOOO 114. 7 1. 1730 1. 7427 2. 1957 1. 8872 0.1360 3. 1962

0. 01 133. 2 2.6441 1. 6873 4. 3315 2. 1747 0.1002 4. 9190

Apart from the bias term the other main difference from the

other models examined so far is the larger values of RMS,-, and hence

of V1Rp. This is because all the other methods discussed have been

influenced by the relationship between y and the other covariates,

whereas this method ignores y in the variable selection. Also, as

for the selection of variables which will change b*' these models

have relatively large values of V.^Rf;,.
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Chapter 8

A review of models examined, and a new model

8. 1 Introduction

This chapter is really a continuation of chapter 4, in that it

extends the range of models considered by looking at models where X*

is considered as a realisation of a random variable. The need to

consider such models was a result of studying the empirical patterns

of results which appeared in the last chapter. The consideration of

how the strategies described in the previous chapters should be

evaluated by simulation helps to clarify which models are really

appropriate.

8.2 Components of the Gp criteria under fixed and random models.

In chapters 6 & 7 the value of the GP, criteria were

investigated for a selection of sub-models. Although certain

patterns emerged, they were complex, and suggested a need to look at

the component parts of the criteria.

The Gp criteria can be built up in terms of the following :

n - number of observations

k - parameters in full model, including constant and X*
sk2 - residual mean square of Y from regression with X* and X

S** - sum of squares of X*
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and for the particular sub-model considered

p - number of parameters

sp2 - residual mean square of Y
- residual sum of squares of X* from the regression with the
other covariates in the model

Ab*2 - squared difference of estimate of 3* from full model value

Bold type in this section will indicate a quantity which is

different for different sub-models. The first three such quantities

are the number of parameters, two quantities which relate

respectively to the relationships of Y to all the covariates in the

model, and of X* to the other covariates. The fourth quantity Ab*2

depends on the preceding ones, and also on the relationship between

X* and Y. Ab*2 will be zero if either

= S**k or sp2(n-p) = sk2(n-k),

although it can also be zero when these equalities do not hold.

We can write

G,,p = Ab*2 - (S***-1 - S„p-')sk2 + S*»p-'sk2 (8. 1)

and

GRp = Ab*2 - (S***-1 - S**p~1 >sk2 + S^-'Sp2 (8.2)

The random-effects model allows us to divide the term

S:**p-1 Sp2 into two parts. This interpretation is not available for

Gi-P> but in chapters 6 & 7 we saw that one of these two parts

appeared to be an influence on selection, when GRp was driving the
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selection procedure. Also, for neither the fixed nor random effects

model was it possible to consider the distributional properties of

the term (S.*,^-1 - >sk2' which is the expected value of the

squared bias when the true bias is zero. But this quantity also

seemed to be an important element in the selection procedures. To

achieve both these aims, we need to consider X* as the realisation

of a random variable, and introduce yet another regression model,

which reduces to the model described in section 4.2 conditional on

the observed values of X*.

8. 2 A model with random y and x*

Consider the X variables (except for x*:) as fixed effects, and

suppose that y and x* are each defined in terms of the random

quantities sy and c* as follows :

y = X 5 + ev

x* = X 5* + e* (8.3)

Let the joint distribution of sy and e* be such that

E(ev | e* = e») = e* 0*.

and the distribution of ey conditional on e_ = e* is independent of

e* with variance a2. Then we can write
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E(y | £* = e:«) = X 5 + e* P*

= X 5 + (X* - X 5*) P*

= X (5 - 8* p*> + X* p*

which has the desired form with the vector <5 - 5* p*) being

equivalent to the vector p introduced in chapter 3 and used in the

fixed-effects model in section 4.2.

Now estimation of P* is exactly equivalent to estimation from

the fixed effects model. However we can derive it from first

estimating 5 and 5*, by d* and d, from 8.3, as follows

d = (X* X)-1 X'Y

d* = (X'X)-1 X' X*.

The residuals ev and e* become

ey = ( 1 - X(X'XJ-'X') Y and

e:t; = ( 1 - X(X'X) -^') X*

and the estimate of P:f: can be obtained from the regression of ev on

e*.

This gives

b* = EX*' < 1-X <X* X)-'1 X* > <1-X(X' Xl-'X' > X*]-1

X*' <1-X(X' XJ-'X" ) <1-<X' XJ-'X' ) Y
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= EX*' (1-X(X'X)~1X') X*]-' X*' <1-X(X« XJ-'X" ) Y

with variance C X*' (1-X(X'X)-1 X') X*]"1 cr2 (8. 4)

This result can be compared with the same expression derived from

the usual matrix inversion procedures in section 4.2. Now for the

model considered here (8. 4) is a realisation of a function of x*

which is

Cx*' Cl-XCX' Xl-'X' ) x*]-' cr2 (8.5)

The term [X*1 (1-X(X" X)X' ) X*] is just S:**k and its expectation

will be (n - (k-D) a*2 = (n-k + 1) cr*2 , where a*2 is the variance

of e* in 8. 3. When e* and ey are assumed to be bivariate normal,

then will be distributed as a*2 times a xz variable with

(n-k+1) degrees of freedom. Now the expectation of the inverse of a

quantity with a xz distribution with v degrees of freedom is l/(v-

2). Thus

E( cr2) = o2 / C a:t:2 (n-k-1) ] (8.6)

For the case when all the 8* are zero the estimate of (8.6) can be

obtained by estimating a*2 from the marginal distribution of X*. In

this case S„:;*2 is distributed as ex*2 times x2 with (n-1) degrees of

freedom. Thus the expected value of 1/S**2 is 1/1a*2 (n-3) 3 and

(n-3)/S**2 is an unbiassed estimate of l/o*2. Substituting this

into 8. 6 gives

a2 (n-3) /CS**2 (n-k-1) J (8.7)
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which is of the same form as 4.12. The same argument follows

through for a sub-matrix of X, when all the 5* corresponding to the

sub-matrix of X included in the model are zero, except that k is

replaced by the number of covariates p in the model.

The case when the 5* are non-zero is different, because a*2

has to be estimated from the partial residuals, which takes us back

to 8. 4. If we attempt to get an expression for the expectation of

8.5 in terms of the parameters 5*, a*2 and the fixed quantities X

the distribution theory gets complicated, because we have a quantity

with a non-central x2 distribution in the denominator. Unlike the

case for the previous random effects model, we do not get a simple

expression which falls into two parts one of which is 8. 7. However,

the variance for non-zero 5* will be strictly greater than 8.6 and

expression 8.7, with o2 replaced by s,.2 becomes V1Fp, the first part

of the variance element of GPP, with the second part (V2PP) being

obtained by subtraction.

It is possible to extend this model to allow the covariates in

the regression model to be realisations of random variables, with

the conditions necessary for the regression model to be valid. This

leads to another justification of the terms V1RP and V2RP, which

does not require multivariate normality for y and the other

covariates, but does require bivariate normality for y and x*.

The fact that we can derive the same sub-division of the

variance term in the MSE criteria from two quite different

regression models is encouraging. It suggests that it may have
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general validity which may go beyond precise model assumptions, so

we can hope that it may be a robust procedure.

The model which assumes bivariate normality for y and x* also

enables us to compute an expectation for the variance of Ab*2, for

the case when all the 5* for the terms omitted from the model are

zero. This applies to both the fixed-effects model and the random-

effects model, because conditioning on all the covariates is

necessary to estimate the bias.

The term for the variance of Ab*2 is (S*^-1 - )o2, the

estimate of which is subtracted from Ab*2 in 8. 1 and 8.2. If the

6* for the terms omitted from the model are all zero, then S**,. and

<S**k - will be independently distributed as ct;+:2 times x2

distributions with degrees of freedom (n-k) and (k-p). Thus

where A and B are independent x^s with (n-k) and (k-p) degrees of

freedom, respectively. We can obtain an approximation to the

expectation of this by a Taylor's theorem expansion as

E (B/A . 1/(A+B)) « E(B/A) Etl/(A+B)l + covEB/A . 1/(A+B)3

the last term can be evaluated similarly as

(S**k-' - S^p"1) = B / [A (A + B) a*2] (8. 8)

E (B) var(A) var (B)
covEB/A. 1 / (A+B) 3 -. . . (8. 9)

E(A)2 E E(A)+E (A) ]2 E(A) E E(A)+E(B)12.
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Because B/A is the ratio of independent y2s and (A+B) is y2 with n-p

degrees of freedom, we know the values of everything in these

expressions and find that 8.9 reduces to zero, giving

(k-p)
E(S:t:^.k 1 - 1 ) a

(n-k-2) (n-p-2) ct**2.

Similarly, we would expect the stochastic properties of 8.8 to be

similar to those of x2k-p divided by (n-k-2)(n-p-2) cj**2. We can

approximate the variance by Taylor's expansion replacing A and B by

their expected values in the following expressions

var(B/[A(A+B)]> ~ var(A) (B(2A+B)/[A2(A+B)2])2 + var(B) {1/(A+B>2}2

» 2A (B(2A+B)/[A2(A+B)2])2 + 2B {1/(A+B)2)2

» 2B { (A3+4A2B+2AB2+B®)/A3 > / (A+B)*.

This is not quite as simple as we might have hoped. But when n >> k

and p the term in O « 1 and (A+B) « A, giving

variB/tA(A+B>]> « 2B /[ A2 (A+B)2]

w 2(k-p) / [ (n-k)(n-p) ]2 and thus

var (S***-1 - S^^p"1) « 2 (k-p) {(n-k-2)(n-p-2) a*.*2)2,

which is the same as the variance of X2k-p divided by (n-k-2)(n-p-

2) 0**2, justifying the approximation suggested above.

For the case when the 5* for the omitted covariates are not

all zero, the quantity B will be a non-central y2, and so the
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expression for the variance of the estimated bias will be

stochastically greater than in the case when the 5* are all zero.

This result explains the behaviour of the expected (bias)2

term in chapters 6 & 7. This achieved much larger negative values

for small values of p, because of the larger values which were

achieved by (S*:t:k_1 - S^p-1) when p was much less than k.

8.3 Comparison of models

Which of the models considered so far is appropriate for

epidemiological studies, in general, and for the lead study in

particular? We have seen above that the two formulations which we

have proposed for a model where the covariates, other than X*, are

random lead to exactly the same expressions for the MSE criterion

and for its constituent parts. The same is true for the two fixed-

effect models. Thus the major decision is whether these other

covariates should be treated as fixed or random. Clearly, once the

sample has been selected, the inferences which we are interested in

are those which are conditional on the observed Xs. However, if we

attempt to model the sampling situation (say by simulation) the use

of this model would suggest that we could repeat the study many

times over with exactly the same choice of X. This is unrealistic.

If we could do this, the Xs would be under experimental control and

we could ensure that no confounding took place.

I have no doubt that a proper evaluation of the MSE criteria

and their uses should have a random X model as its basis. The
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disadvantage such a model is that the lack of normality for some of

real covariates makes it difficult to produce simulated data which

will have similar properties to experimental data. By contrast, it

is easy to simulate the fixed effects model by taking the values of

X as fixed and generating fitted values of Y from a regression

equation. The difficulty with the fixed-effects model simulations

is that we cannot be sure that their properties are generalisable to

other sets of Xs, rather than being due to the particular pattern of

X variables which happens to have been generated for this study. On

the other hand, a procedure which appeared to perform very badly for

a fixed-effects model would seem unlikely to do well when judged

against the more difficult test of a random-effects model.

In the chapter which follows I will start by evaluating

various procedures by simulations on the fixed-effects model. The

more promising of these will then be evaluated for a random-effects

model in the following chapter.

A secondary decision, which has to be taken in setting up

these simulations, is whether to model X* as a random or as a fixed-

effect, Following the argument above, a random model would seem

more sensible because we could not select children on the basis of

their blood lead. Thus the random-effect simulations will also

consider X* as a random variable. For the model with fixed Xs,

however, the X* will be taken as fixed also.
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Chapter 9

Simulations for a fixed-effects model

9. 1 Properties of the simulated data

To simulate a fixed-effects model, the values of log blood

lead and the 33 covariates were taken as fixed. The blocking

factor, "school", was ignored in these simulations. The estimated

values ( b* and b) of the coefficients for the full model fitted to

the real data, ignoring the blocking factor "school", were taken to

correspond to the population values in the simulation. Thus, in

this chapter, the parameter values p and p* have known values. For

each simulation, values for the outcome variable (BASC) were

generated by adding a random normal residual, with variance equal to

the estimated residual variance from the full model, to each of the

501 fitted values of the vector Xp , The value of a2 is thus

also a known quantity.

Because we know the parameter values for this model we can

calculate the true value of the MSE of estimation of b*, as it is

estimated for any sub-model. I will use the expression "true MSE"

to refer to this quantity. From expression 4. 1 the true MSE is

just the first element of

o-^P'P)-1 + (P'Pl-'P'Q P^Pq'Q'P (P'P)-1
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For the full model, the last term drops out and this expression

simply reduces to the estimated variance of p* from the regression,

using the original data. For any sub-model, we showed in chapter 4

that the difference between the full model estimate of p* and its

sub-model estimate bp* is just the first element of (P1 P)-1 P' QbQ,

where bQ is the estimate of the omitted Ps from the full model.

Thus the second term in the true MSE is just the square of the

difference between the full model and sub-model estimates of P*,

again using the original data. The first term is also easily

evaluated for sub models, and has as its known value the expression

which we denoted by VFp in chapter 4. This is the estimate of the

variance of b*;p from the sub-model, with the residual variance from

the sub-model replaced by the full model residual variance.

The values of the true MSE are given in table 8. 1 for the sub¬

models chosen in a forward stepwise procedure; see chapter 6. Only

5 of the 31 models which are considered between the model with lead

only, and the full model have values of the true MSE which are

greater than the value of 1.6848 for the full model. Because the

variance term is strictly increasing with p, the models with the

lowest true MSE occur for small p; here the best one is for only one

additional covariate. However, bad values can also occur for small

p, because of large values of the bias term.
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Table 9. 1: True MSE values for simulated data

Covariates Bias term Variance term Total

None 5.1589 1. 4323 6. 5912
+PVOC 0.0000 1. 4559 1. 4559
+CHILDINT 0.0208 1. 4564 1.4772
+PMAT 0. 1070 1.4644 1. 5714
+AGEINT 0.6316 1.4780 2.1096

+FQUALIF 0. 2795 1. 4834 1.7629
+GESTAT 0.0939 1. 4879 1. 5818
+PARSCHL 0.0071 1. 4965 1. 5036
+STHEIGHT 0.2440 1. 5514 1. 7954
+SEX 0. 1021 1. 5584 1.6605
+OFFSCHL 0.0300 1. 5656 1. 5956
4WORKMUM 0.0400 1. 5659 1.6059
+CARPHONE 0.0416 1. 5660 1. 6076
+HANDED 0.0265 1. 5667 1. 5932

+MQUALIF 0. 0830 1. 5735 1. 6565
+CONSUMER 0.0453 1. 5775 1.6228
+PARPART 0.0564 1. 5780 1. 6344
+FSOC 0.1150 1. 5895 1. 7045
+FAMSIZE 0.1402 1. 5908 1.7310
+CLASSYR 0.0639 1. 6072 1.6711
+UNEMPLOY 0. 0451 1.6088 1. 6539
+PARMENT 0. 0450 1.6088 1. 6583
+PARHLTH 0. 0401 1. 6092 1. 6493
4MEDHIST 0.0139 1. 6334 1.6473
4PARCHC0M 0.0153 1. 6336 1. 6489
4BRTHWT 0. 0150 1.6336 1. 6486
4TIMEDAY 0.0053 1. 6451 1. 6504
4FAMHIST 0. 0027 1.6486 1.6513
4BRTHSC0 0.0008 1. 6536 1. 6544
4T0TCIGSD 0.0000 1. 6587 1.6587
4BIRTH0RD 0.0001 1. 6683 1. 6684
4M0VESCHL 0. 0001 1. 6805 1. 6806
4MS0C 0. 0000 1. 6824 1. 6824
full model 0. 0 1. 6848 1. 6848

If inferences about g* were made from the best model found here,

that including PVOC only, the improvement in true MSE would be

1.6848/1.4559, a 16% improvement over inferences based on the full

model. To be sure of going beyond the area where a very poor model

would be selected it would be necessary to chose a model with a

larger p, and modest improvements in efficiency of the order of 10%

or even of 5% might be a more realistic goal.
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Of course, only one subset of each size has been examined here.

To go beyond this, I have looked at the values for the true MSE for

all subsets of sizes 1,2,3,4, and 32,31,30,29 from the 33 possible

covariates. The results are summarised in table 9.2. They give the

percentage of all subsets which have a lower MSE than the full

model, as well as the percentages which give improvements of at

least 5% and at least 10% over the full model ( true MSE less than

MSEfull divided by 1.05 or 1. 10).

Table 9.2: True value of MSE for all subsets.

No of No(%) with MSE MSE best MSE worst

p-2 subsets < 1.6848 < 1.6046 < 1.5316 subset subset

1 33 4 (12%) 3 ( 9%) 1 ( 3%)

2 528 108 (20%) 88 (17%) 44 ( 8%)

3 ' 5456 1448 (27%) 1156 (21%) 680 (12%)

4 40920 12633 (31%) 10021 (24%) 6167 (15%)

1.4559 9.8819

1.4559 11.8254

1.4561 13.1453

1.4546 14.3181

29 40920 17058 (42%) 364 ( 1%) 0 ( 0%) 1.5623 3.6344

30 5456 2387 (44%) 22 ( WU) 0 ( 0%) 1.5726 3.1460

31 528 246 (47%) 0 ( 0%) 0 ( 0%) 1.6072 2.6519

32 33 18 (55%) 0 ( 0%) 0 ( 0%) 1.6667 1.9959

The model selected by the stepwise procedure in table 9. 1

happened (fortuitously, I think) to, be the model with one covariate

which gives the lowest MSE. Enumeration of all subsets, however,
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gives a subset of size 4 which has a lower MSE. The larger models

have a higher percentage of the subsets showing some improvement,

but to a much lesser extent than the smaller models. The best

subset with one covariate omitted gives an improvement of only 1. 1%

in the ratio of MSEs. I have not proceeded to look at subsets of

intermediate size. A full enumeration of these would take vast

amounts of computing, and a sampling procedure would be complicated.

9. 2 Simulation results: initial test of 50 data sets

The same simulated data were used to test all the procedures

described in chapters 6 and 7. Initially 50 sets of data were

generated, as described above, and the various stepwise procedures

were applied to each of them. The estimate of the variance of (3*

for the full model for these simulated data will, of course, be

different from the known value of this variance. The object of the

simulations is to compare the results obtained after the selection

procedures with one another and with those from the full model. To

do this correctly the paired nature of the data from the different

simulations must be taken into account. An initial test of the

simulated data was to compare the results from the full model with

those from the best model with only one covariate (PVOC only). For

this case we know what the correct answer should be. The results

of comparing the full model to that with PVOC only are described

here, and exemplify the way in which calculations will be done in

the next section.
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In order to estimate the MSE we need to estimate the variance

and the squared bias of the b* which are obtained from the

regression/selection procedure. I will consider the squared bias

term first. Although the true value of the coefficient is known,

we can obtain a better estimate of the bias by comparing the values

of b* from the sub-model, with the estimates of b* for the full

model from the same simulated data. Using run 2 of the simulated

data (table 9.3) as an illustration, we get the following results.

The mean b* for the model with PVOC only is -3. 1661, compared to the

known true value of 6* which is—3. 18. This gives an estimated bias

of +0.014 with s. e. 0. 166. Now, using the differences between the

estimates for the full and reduced model, we obtain an estimated

bias of +0.047 with a standard error of 0.077, which is less than

half the standard error of the estimate which uses only the data

from the reduced model. This reduction in variance comes about

because of the high correlation between the estimates from the full

and reduced models calculated for the same data; in this case the

value of the correlation (r) is 0.9105. Thus we will always use the

estimate of the bias from the paired data.

Table 9.3: Simulation results ( 3 sets each with m = 50)

model mean(b*) variance(b*) r est. MSE ( 95% conf int)

full
run 1 -3. 3464 1. 8891 * 1. 6848 * *

run 2 -3. 2134 1.7420 * 1. 6848 * *

run 3 -3. 0981 1. 6556 * 1. 6848 * *

PVOC onlv
run 1 -3. 2920 1. 5874 . 9468 1. 41 (1. 24, 1. 61)
run 2 -3. 1661 1. 3812 . 9105 1. 34 (1. 04, 1. 78)
run 3 -3.0850 1. 6534 . 9335 1. 64 (1. 45, 1. 95)
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To estimate of the squared bias, we must square the estimated

bias and subtract the square of its standard error. Here this

procedure would lead to a negative quantity, so we estimate the

squared bias at zero, but for the run 1 data it was just positive

and has been added into the estimate of MSE. For this particular

model we know that the true value of the bias is almost zero.

A similar procedure is used to estimate the ratio of the

variances of two estimation procedures, and hence to obtain an

estimate of the variance for the reduced model. The ratio of the

two variances for run 2 is 0.7929. Now if we assume, as appears

reasonable from plots of the results, that the joint distribution of

the estimates of fl* is bivariate normal we can use a result for the

ratio of multivariate normal variances due to Pitman (1939).

If the ratio of the two variances is denoted by L, the number of

observations by m, the correlation of the two sets of estimates by

r, and the quantity K is

K = 1 + 12 (1-r2) / (m-2)) t2*. rri_2,

where t^, rn_2 is the two-sided a point of the t distribution with m-2

degrees of freedom, then a (1-a) confidence interval for the

variance ratio is

< If K - CK2-!)") , If K + (K2-l>*> ).
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For the run 2 data the value of K, for ot = 0.05, becomes 1.0287 and

thus a 95% confidence interval for the variance ratio becomes

(0.62, 1.06).

A wider confidence interval is obtained by using the simulation

results for the reduced model only. The ratio of the estimate of

the variance from the sub-model to its known value for the full

model is 1.34/1.6848 = 0.795 with a confidence interval

<0.57,1. 11), obtained in the usual way from the percentage points of

In this case, the true value of 0. 86 lies well within both

confidence intervals. Because of its narrower interval we will

always use the estimate of the variance ratio from the paired data.

For full optimality it must be possible to combine the information

from both sources by some method such as maximum likelihood.

However, in the estimators which follow the correlations are larger

than in this example, so we will be ignoring very little information

by using the paired-data estimate of the mean and the variance

rat io.

An estimate of the variance for the reduced model is obtained

by multiplying the ratio and its confidence interval, from the

paired data, by the known variance of 1.6848 for the full model.

This gives 1.34 (1.04, 1.78) for a MSE whose true value we know to

be 1.46. In the general case one would obtain the estimated MSE

from this by adding in the estimated squared bias. However, this is

estimated as zero here. Also, the variance of the estimate of the

squared bias is so much less than the variance of the estimated
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variance that it can be treated as a known quantity. This can be

seen from a Taylor's approximation to the variance of the squared

bias from the figures above, which gives (2 x 0. 047)2 x (0.077)2 =

0.000052, which will make no noticeable contribution to the

confidence interval for the MSE. This was also true for all other

models considered in this chapter. Thus the confidence interval for

the estimated MSE is simply obtained by adding the estimated squared

bias to the confidence intervals for the estimated variance.

The results for three runs of the test data are given in table

9.3. If we were to use these results to evaluate the variance of

the reduced model, a confidence interval based on only 50

observations would be unsatisfactorily wide. However, the same

number of simulations gave satisfactory results for some of the

other estimators below. The width of the confidence interval for

the MSE depends crucially on the correlation r. Values of r close

to 1 give narrow confidence intervals. For each estimation

procedure an initial run of 50 simulations was done to determine r

and hence to calculate the number of simulations required to give a

95% confidence interval with a ratio of 1. 10 from one end to the

other. A value of 1.001 for (K! is required for this, and so the

number of simulations required is obtained as

m - 2 t2 (1 - r2> / (0. 001).

For PV0C only from the run 2 data this would be 1368. We will see

below that this was larger than was required for any of the other

estimation procedures evaluated here. These further simulations
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were not carried out for PVOC only, because this model was only

investigated as a test of the simulated data for a case where the

answer is already known.

9.3 Simulation results for a forward stepwise procedure

The simulated data were first run through a stepwise regression

procedure which selected, at each step, the variable which gave the

greatest improvement in the residual mean square of Y. Two stopping

rules were evaluated. The first was to stop the selection procedure

when the F-to-enter statistic for the next variable no longer

exceeds 4. This is equivalent to stopping when the next variable is

no longer formally significant at the 5% level. The second rule

continued the stepwise procedure until the F-to-enter statistic no

longer exceeded 2, a procedure which will give a model close to that

with the minimum value of CP,. Although it cannot be guaranteed,

without doing a full search of the subsets, that the model chosen

will be the very best in terms of Cp, it is very likely that the

model from the stepwise procedure will be close to it; see chapter

6 for a discussion of this. For the first 50 simulations, stopping

at an F of 4 included between 8 and 17 covariates, with a median of

12, whereas stopping at an F of 2 included from 12 to 21 covariates

with a median of 16. The results for the MSB of b* are given in

table 9. 4.
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Table 9.4: Simulation results for forward stepwise procedure
minimising the residual sum of squares of Y ( m = 50).

stopping mean(b*) variance(b*) r est est. < 95% conf int)
rule (bias)2 MSE

full -3. 3464 1. 8891 * * 1. 6848 * *

F=4 -3. 1930 1. 7203 . 9683 . 0212 1. 555 1. 406 1. 721
%of full model 92. 3% (83. 4%102. 2%)

T1 t! ro -3. 2086 1. 8734 . 9849 . 0179 1. 6886 1. 574 1. 811
%of full model 100. 2% (93. 4%107. 5%)

The wide confidence intervals for the MSE prevent any firm

conclusion being drawn. The required sample sizes, calculated as

suggested above, are of the order of 500 and 250. Thus a further

450 simulations were run and the combined results of these, along

with the initial 50, are given in table 9.5.

Table 9.5: Simulation results for forward stepwise procedure
minimising the residual sum of squares of Y ( m =500).

st opping
rule

mean(b*) variance(b*) r est

(bias)2
est. (
MSE

95% conf int)

full -3. 2023 1.6631 * * 1. 6848 * *

F=4 -3. 0617 1.6709 .9652
%of full

. 0196
model

1. 7124
101. 6%

1. 6348 1. 7936
(97. 0%106. 5%)

F=2 -3. 0941 1.6734 .9841
%of full

. 0120
model

1.707(1.654, 1.762)
101.3% (98. 2%104. 6%)

These further results show, that for these data, the estimates

based on the reduced models from minimising the residual sum-of-

squares confer little advantage in terms of the MSE of b*. In
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fact, it is possible that all the computations involved in stepwise

or search procedures may even increase the MSE of b*, compared to

its full model estimate.

A further problem is that, for both of these stopping rules, the

estimated variance from the final model, calculated as though it

were the correct one, is an underestimate of its true value. The

mean value of the estimated final model variances from the two

stopping rules are 92.1% and 92.5% of the full model value

(estimated here with a standard error of <0.5%). The value of GFp,

calculated for the final model gives similar results

9.4 Simulations for forward stepwise procedures based on minimising

the Gp criteria

The same set of 50 sets of simulated data were used and were

analysed by stepwise procedures which selected, at each step, the

variable which gave the lowest value of the criterion being tested.

For these initial 50 simulations the stepwise procedure was

continued until all variables were included, and then the estimate

of P:+: was computed from the model chosen at the step which gave the

lowest value of the Gp criterion. Results for the MSE of b*: are in

table 9. 6.

There were two fixed effects model criteria. One was Gpp, as

defined in chapter 4, and the other, Gpp' was derived from it by

setting the term for the expected bias to zero whenever its estimate

was negative. Similarly, the two random effects models were GRp and
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GRc,' where the latter was derived from the former by setting the

estimated bias term and the term to zero if they had negative

est imat es.

The GFp criterion selected models with anything between 1 and 7

covariates, but there was no pattern as to which ones were chosen.

It can be seen that this procedure selected a model which gave a

value almost identical to the value of b* for the full model

calculated from the simulated data - but not, of course, the true

value of p*. Because of the high value of r, we have a very tight

confidence interval for the MSE of estimates derived after this

procedure and we can see that it offers no advantage over the full

model. Thus, the suspicions mentioned in chapt er 7 were justified.

Table 9.5: Simulation results for forward stepwise procedures based
on minimising the various Gp criteria < m = 50)

criterion mean(b*) variance(b:* ) r est est.( 95% conf int)
(bias)2 MSE

full -3. 3464 1.8891 * * 1.6848 * *

GRp -3.3432 1. 8816 . 9999 . 0000 1.678(1.672, 1.684)
'/.of full model 99. 6% (99. 27.100. 0%)

Gi--P" -3. 5912 1. 9818 . 9880 . 0590 1.8266(1.718, 1.942)
'/.of full model 108.4%(102. 0%115. 3%)

GRp -3. 3367 1. 8784 . 9996 . 0001 1.675(1.656, 1.695)
'/.of full model 99. 4% (98. 3%100. 6%)

Grp' -3. 527 1. 9243 . 9865 . 0317 1.748(1.637, 1.867)
'/.of full model 103.7% (97. 1%110. 8%)
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The GFp' is performing significantly worse than the full model.

It selected models with very few covariates. All but 4 of the 50

simulations gave a model with just one additional covariate.

However it selects models which we know have a small value of the

true MSE of b*. The most commonly selected was FQUALIF (28 times)

which has gives a model with MSE of 1.554, followed by PVOC (11

times) which has the lowest MSE of 1. 456.

How can a procedure which selects good models give an estimate

of b* worse than the full model? It is wrong to think that a set of

models selected from a stepwise algorithm will behave like a mixture

of the corresponding models, selected at random. There will be a

correlation between the model which happens to be selected and the

value obtained for the estimate of b* from the same data. It must

be some mechanism such as this which accounts for these results. I

will call this increase in variance, over what would be expected

from a mixture of the corresponding models, "selection variance"

since it is the additional variation introduced by the variable

selection process. The mechanism by which it had operated here

became clear when the detailed results of the simulations were

examined. The models which selected FQUALIF alone had a mean bias

which was considerably greater than the true value of the bias for

this model when it is selected at random (which is a known quantity

here). The results in chapter 6 showed that this procedure selected

values which had very low values of their correlation with blood

lead. Thus the variable FQUALIF will be selected when its

correlation with blood lead is low, and on these occasions it will
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move the estimate of p* a shorter distance from the null model to

the full model than it would on the other occasions.

Like GFp,, GRf;, selected models which gave values almost

identical to the estimate for the full model, although these were

different models with a larger number of covariates included

(ranging from 8 to 16 additional covariates). The results,

although with a slightly wider confidence interval, are equally

useless.

The GRpj criterion produces results which are less strongly

correlated with the full model, and hence the MSE has a slightly

wider confidence interval. It selected models with between 9 and 20

covariates. Although the results did not appear promising, a

further 200 simulations were run to give a better estimate of the

MSE. On this occasion the stepwise procedure was stopped at the

first local minimum of the criteria. For the first 50 simulations

this procedure would give the minimum value on every occasion. The

results for the total of 250 simulations are given in table 9.6.

They confirm the suggestion in the first 50 simulations, that the

sub-model estimates are just a little worse than the full model

estimates. Again we must suspect that some kind of selection

variance is being introduced, although on a lesser scale than for

G,V •
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Table 9. 6: Simulation results for forward stepwise procedures based
on minimising GRp,' criteria C m = 250)

criterion mean(b*> variance (b*:) r est est. ( 95% conf int)
(bias)2 MSE

full -3.1854 891 * * 1.6848 * *

GRp' -3.3889 43 .9885 .0413 1.737(1.692, 1.784)
%of full model 103. 1%(100. 4%105. 9%)

Thus we can conclude that forward stepwise selection using any

of the Gp criteria will give estimates, for this set of simulated

data, which are no better, and can even be worse, than using the

full model, and selection variance may be an explanation for this.

9.5 Simulations for backward stepwise procedures based on minimising

the Gp criteria.

The same 50 sets of simulated data were used to test the

backwards stepwise procedures driven by Gp. Results are in

table 9. 7.

Table 9.7: Simulation results for backwards stepwise procedures
based on minimising the various Gp criteria ( m = 50)

criterion mean(b*) variance (b*) r est est. ( 95% conf int)
(bias)2 MSE

full -3.3464 1.8891 * * 1.6848 * *

GFp -3.3965 1.8971 .9936 .0020 1.694(1.618, 1.774)
%of full model 100.5% (96.0%105. 3%)

GFp' -3.7599 1.9157 .9964 .1707 1.879(1.821, 1.340)
%of full model 111.5%(108. 1%115. 1%)

(continued on next page)
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Table 9.7 continued

criterion mean(b*) variance(b*:) r est est. ( 95% conf int)
(bias)2 MSE

GRp -3.3276 1.8716 .9994 .0003 1.669(1.645, 1.693)
%of full model 99.1% (97. 6%100. 5%)

GRp' -3.3464 1.8655 .9839 .00691.680 (1.562,1.807)
%of full model 99.7.0% (92. 7% 107. 3%)

The results for GPp', GRp and GRp' are very similar to those for

forward selection. The models selected by Grp give estimates of (3*

which are less highly correlated with the full model than was the

case for the forward selection procedure. When the backwards

algorithm for GFp was studied in chapter 6, the criterion was

reduced as covariates were dropped from the model, but at the last

few steps it tended to oscillate because those variables which

caused it to increase had to be included. Similar patterns were

found for the simulated data, and it could be seen that the final

model selected was the one from the last few steps which came

closest to the full model. Sometimes none of the last few steps

gave a model which was very close. In contrast, the forward

procedure was able to find a model with the same value as the full

model more easily. This explains the difference between the forward

and backward results for this criterion. The same difference was

not evident for the other criteria because they selected models with

more covariates.
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None of these procedures look very promising as methods of

selecting sub-models. As for the forward procedures, the only one

which appears possible is GRp,', and a further 150 simulations were

run for this model. Results for the complete set of 200 are given

in table 9.8. They are very similar to those for the forward

procedure with the same criterion, and are no more encouraging.

Table 9.8: Simulation results for backward stepwise procedures
based on minimising GRp,' criteria ( m = 200)

criterion mean(b*) variance (b*:) r est est. ( 95% conf int)
(bias)2 MSE

full -3.1841 1.7647 * * 1.6848 * *

GBp' -3.2994 1.8277 .9844 0.0130 1.7580(1.697,1.8209)
%of full model 104. 3%(100. 7%, 108. 1%)

9.6 Selecting models which change the estimate of P*

The same set of simulated data was used to evaluate the

procedure of selecting covariates to enter or remove from the model

by their influence on the estimate of p*:. A forward and backward

procedure were each investigated. In the forward procedure,

starting with the model which contained lead only, the covariate

which entered the model at each step was the one which produced the

greatest absolute change in b*. The backwards procedure started

with the full model and, at each step, dropped the covariate which

produced the smallest change in the estimate b*:. Stopping criteria

were defined for the squared change in b* in terms of the variance

of b*:. The forward procedure was stopped when the largest squared

change in b* for the next step was less than C times the variance of

b* for the full model. Similarly, the backward procedure was
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stopped when no covariate could be excluded which would produce a

change iof less than this amount. Six :stopping criteria were

evaluated - C = 0. 4, 0. 2, 0. 1, 0. 05,0.01 and 0.001. Results are

given in table 9. 9.

Table 9. 9: Simulation results
absolute change in

for !

b* (m
stepwise procedures driven by the
= 50)

Stopping
rule (C)

mean(b* ) variance(b*■;) r est

(bias)2
est.( 95% conf int)
MSE

full -3. 3464 1. 8891 * * 1.6848 * *

f orward select ion
0. 4 -2.5341 1. 6870 . 9522 . 6563

%of full model
2. 161 (1. 983, 2. 363)
128. 3%(117. 7%140. 3%)

0. 2 -2.8868 1. 7042 . 9651 . 2086 1.729(1.573, 1.902)
102.6% (93. 4%112. 9%)

0. 1 -3.1186 1. 6845 . 9709 . 0497 1.5521 (1.411, 1.707)
92. 1%(83. 8%, 101. 3%)

0. 05 -3. 2111 1. 5639 . 9726 . 0161 1.4109(1.284, 1.551)
83. 7% (76. 2%, 92.0%)

0. 01 -3. 1164 1. 7047 . 9858 . 0518 1.577(1.471, 1.680)
93. 3% (87. 3% 99. 7%)

0. 001 -3. 2924 1. 8584 . 9984 . 0028 1.660(1.623, 1.699)
98. 5% (96. 3%100. 8%)

backward elimination
0. 001 -3.3117 1. 8551 . 9984 . 0011 1.656(1.618, 1.694)

98. 3% (96. 0%100. 6%)

0. 01 -3. 1671 1. 6671 . 9885 . 0312 1.518(1.429, 1.613)
90. 1%(84. 8%, 95. 7%)

0. 05 -3. 177 1. 5651 . 9705 . 0265 1.422(1.292, 1.567)
84. 4%(76. 7%, 93.0%)

0. 1 -3. 095 1. 6876 . 9703 .0611 1. 724
93, 0% (84. 5%102. 3%)

0. 2 -2.825 1. 6588 . 9636 . 2691 1.749(1.594, 1.921)
103. 8%(94. 6%, 114. 0%)

0. 4 -2. 552 1. 5753 . 9350 . 6259 2.031(1.839, 2.253)
120. 5%(109. 1%, 133. 7%)
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This begins to look a bit more hopeful. Backward and forward

procedures give similar results. The larger values of C (0.4,0.2)

give biassed results with a larger MSE, but stopping at values of C

of 0. 1,0.05 and 0.01 seems to be an improvement over the full model.

However, these results would estimate that at a value of C=0.05 the

efficiency of this procedure has become better than would be

possible for any sub-model. This suggests that this set of

simulations may be over-estimating the benefits of this procedure,

and the post-hoc choice of a value for C may have helped to

exaggerate its advantages. A further set of 100 simulations were

run, and their results (not including the first 50) are given in

table 9. 10. Only the forward stepwise results are shown, as forward

and backwards procedures gave very similar results.

Table 9.10: Simulation results for stepwise procedures driven by
the absolute change in b* - second set of simulations - (m = 100).

Stopping mean(b*) variance (b*:) r est est. ( 95% conf int)
rule (C) (bias)2 MSE

full -3.0460 1.9331 * * 1.6848 * *

forward selection
0.4 -2.2799 1.7898 .9058 .5808 2.141(1.894, 2.430)

7.of full model 128. 3%(112. 4%144. 2%)

0. 2 -2.6932 1.8202 .9428 .1215 1.708(1.484, 1.907)
102.6% (88. 1%113. 2%)

0. 1 -2.8840 1.9034 .9378 .0221 1.681(1.463, 1.932)
99. 7% (86. 8%, 114. 67.)

0. 05 -3.0223 1.8500 .9565 .0000 1.612(1.432, 1.815)
95. 7% (85. 07., 107. 7%)

0. 01 -2.9009 1.9250 .9804 .0208 1.698(1.552, 1.818)
100.8% (92. 0%107. 9%)

0.001 -3.0372 1. 9464 9980 . 0000 1.696(1.653, 1.740)
100.6% (98. 1%103. 3%)



This second set of results is less favourable to the selection

procedure. There are similarities in that the first two values of C

give biassed estimators which are worse than the full model, and the

final value of C is too close to the full model to give much

improvement. However the apparent benefit of the three middle

values is much less evident. To resolve this, a final series of 100

simulations were run, this time evaluating only the values 0. 1, 0.05

and 0.01 for C. Results are in table 9. 11.

Table 9.11: Simulation results for stepwise procedures driven by
the absolute change in b* - third set of simulations - Cm = 100)

Stopping
rule (C)

mean(b*) variance(b* ) r est

(bias)2
est. ( 95% conf int)
MSE

full -2. 9283 1.6712 * * 1.6848 * *

forward select ion

0. 1 -2. 7031 1.7116 9526 . 0491 1.774(1.629, 1.933)
105. 37,(96. 5%, 114. 8%)

0. 05 -2. 7962 1.6367 9625 . 0162 1.666(1.542, 1.800)
98. 9%(91. 57,, 106. 9%)

0. 01 -2. 7445 1.6712 9822 . 0332 1.718(1.630, 1.811)
102. 07, (96. 7%107. 5%)

These results are more in line with the second set of 100 than with

the first set of 50. Table 9. 12 gives the combined estimate of MSE

relative to the full model for all 250 simulations.
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Table 9. 12: Simulation results for forward stepwise procedures
driven by the absolute change In b* - combined rusults - (m = 250)

Stopping rule (C) est. MSE relative to full model ( 95% conf int)

0. 1 100. 4% ( 93. 5%, 107. 0%)

0. 05 94. 6% ( 88. 9%, 100. 3% )

0.01 99.8% < 95.8%, 103.8% )

The combined results suggest that a stopping rule of 0.05 may

be giving a slight advantage, but it is not great. This may have

come about because of the particular covariates which these data

select at this value of the stopping criterion, rather than any

particular virtue of the value 0.05 for C in the more general case.

9.7 Conclusions

The results in this chapter have shown that none of the methods

proposed for selecting sub-models could be recommended to reduce the

MSE of estimation for (3*:, for data with structure like that of the

Edinburgh Lead Study. Some methods produce increased MSEs compared

with the full model (Gp,,-,'), whereas others (t statistics, C^.) may

tend to underestimate the variance of the regression coefficient.

Several of the methods give results which are so highly correlated

with the full model values as to be indistinguishable from them.

These results may be true for all data sets, or else they may

reflect the fact that the potential for improved estimation from

sub-models in the Lead Study data was not very great. There can be
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three possible reasons why sub-models will not produce good

estimates in terms of the MSE of (3* :

(1) The sub-model estimates all have a large bias.

(2) The covariates are not strongly dependent on X*

(3) The sample size is too large.

The first reason does not apply to the Lead Study data, because we

have seen that there are many sub-models with negligible bias.

However, both the other two conditions apply, as we saw in chapters

5, 6 and 7.

The squared multiple correlation between X* and the other

covariates can be used to assess the potential for reducing the

variance of b* in sub-models. For a fixed-effect model, the

maximum possible reduction in variance for a sub-model, compared to

the full model, is the ratio S**k2/S:t*2. This is just (1-R*2)

where R*2 is the multiple correlation of X* with all the other

covariates. Here this multiple correlation is only 0. 15, so the

variance can reduce by a factor of, at most, 0.85.

We saw in chapters 4 and 8 that the variance of b* for the

reduced model can be expressed as a sum of two parts, V, which

depends only on the increase in the residual degrees of freedom for

the reduced model, and V2 whose expected value increases with the

population parameter corresponding to the multiple correlation R*2.

For the Lead Study data the minimum value of V,, for the model with

no covariates except blood lead, is just (501-35-1)/(501-3) = 0.93
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times the equivalent quantity for the full model. The difference

between this factor and the overall factor of 0.85 is a measure of

the decrease in variance in sub-models which arises because of the

genuine correlations between X* and the other covariates.

This result is closely related to the quantity "adjusted R*2"

which is often computed for multiple regressions ( eg in GENSTAT

output). The value for adjusted R*2 for the relationship between X*

and the other covariates is

R*2BdJ = 1 - <1 - R*2) (n-1) / (n-p+1).

Its advantage over the unadjusted R*2 is that it gives a consistent

estimate of the corresponding population parameter; however, like

the quantity V2, it can take negative values.

The value of R*2 can be used to assess the potential for

improved estimation from sub-models, with a high value indicating

that sub-models may be better than the full model. If a low value

of R*2adJ is obtained from a higher value of the unadjusted R*2,

then the improved estimation from sub-models is a consequence of the

increase in residual degrees of freedom. If both the adjusted and

unadjusted R*2 are high, a strong association between X* and the

covariates would appear to be the reason for the improved estimation

from sub-models. For the Lead Study data we have R*2 = 0. 15 and

R*2*,^ = 0.09, so there is very little overall potential for

variance reduction because both of the conditions (2) and (3) apply.
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However, if the sample size were reduced the performance of sub¬

models relative to the full model would be enhanced. If the Lead

Study had included 200, 100, 75, or 50 children then the minimum

value of V, would have been .83,. 66, .54 or .30 times its value

for the full model.

These results are all derived for the fixed-effects model,

which assumes that the variances of all the estimates of b* are

expressions which contain the residual variance from the full model.

For a random-effects model similar results apply, but for sub-models

the expression for the variance contains the residual variance from

the sub-models.

The effects of reducing the sample size are investigated in the

next chapter, by selecting sub-samples from the set of 501 points.

Only three of the procedures discussed in this chapter are evaluated

on these reduced samples. These are the methods which gave values

different from the full model, and which did not show any

undesirable features in this chapter. The methods are selection by

the residual sum-of-squares, by GRp' and by the absolute change in

the b* estimate. By selecting sub-models from the 501 cases we can

also go at least some way towards having a full random effects model

for the other covariates, and we can evaluate some of the theory

developed in chapter 4.
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Chapter 10

Random sub-samples from the X variables;

simulation results

10.1 Introduction

The Lead Study data were also used as the basis for the

simulation experiments reported in this chapter. Random sub-

samples, with replacement, were taken from the 501 rows of the X

matrix. Sub-samples of 200, 100, 75 and 50 were investigated. For

each sub-sample, values of BASC were generated in the same manner as

in the last chapter, assuming that the true conditional relationship

between BASC and the covariates (including X*) was the same as that

estimated from the real data for the full model. Because we are

generating a different set of covariates for each simulation, we now

have a random-effects model. The expected value of the estimate of

p* from a sub-model, averaged over all selections from X, will be

the same as in the model in the previous chapter. However, for any

given selection of X and X*, the expected value of the conditional

estimate will differ from this value. It is the variance of these

differences, across different selections of X variables, that

accounts for the difference in the MSE criteria GFp and GRp between

fixed- and random-effect models. Because sampling from the X

matrix is with replacement, we can derive the properties of

estimates from reduced models (assuming model selection without

reference to the data) in a straightforward way.
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This formulation is more likely to be applicable to real

epidemiological data than is the fixed-effects model in the last

chapter. However, the properties of the estimators from the two

models are linked, as we will see below.

10.2 Properties of the simulated data

As in the last chapter, I will start by evaluating the estimates

of p* for the simulated data, with the model which contains only log

blood lead and the parent's vocabulary score (PVOC).

If the sample contains nsub members, the the expected value of

the sums of squares and products of X and X* about their means will

be (n=LJt,-l) / (500) times the corresponding full model values.

Similarly, the term (chapter 8), which is the residual sum-of-

squares from the regression of X* with the (p-2) covariates, will

have an expected value for the sub-sample of

(nault,- (p-2)-l) / (501-(p-2)-l) = (nstJt:,-p+l) / (502-p) times the

equivalent quantity calculated for the same sub-model from all the

data. We must remember that p is the total number of covariates

including a constant and lead. Thus to first order in (nsultl- p+1)
-I

the term will have an expected value for a sub-sample of size
-I

nsub which is (502-p) / (nsut,-p+l) times the fixed quantity S**k for

the full model.

For a particular choice of X and X*1 in a sub-sample we can

calculate the bias in the estimate (b*^) of p* for the sub-model

from the expression (P* P)_1 P'PQ. The matrices P and Q are the
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matrices of selected and unselected covariates with nBPt, rows, and

the coefficients are fixed for the simulation. This allows us to

calculate the true conditional regression coefficient for any sub¬

model at each simulation (b*tr.p<a.). The variance of the value of b*

estimated from the sub-model about b*trijer will be the variance term

from GFp, (VFp = SS:t:*p2 o2rull). We have fixed a2full in the

simulations, and we can calculate SS«.*P2 in terms of the X values

for the covariates in the sub-model, so we can calculate VFp, at

each simulation, for any sub-model.

Now the value of b*±ru)e; will vary from one simulation to the

next in such a way that the total variance of the residuals from the

true regression line will, on average, be cr2p. The quantity o2p is

a mixture of the random normal deviate added to the regression, and

the variance introduced by the sub-sampling of the X matrix. It's

value is just the residual-mean-square from the reduced model for

the real data. Thus the total variance of b*p will be the variance

term from GRp, (VRp = SS**P2 o2p). Again we can compute this for

any sub-model, and sub-samples of any size.

Thus we can calculate the terms VRp and VFp for any sub-model

and choice of sub-samples of the 501 observations, in terms of the

quantity S:t:*p2 calculated for the sub-sample. Since we have an

expression for the sub-sample expectation of SS*^P2 in terms of the

same quantity for the full data, we can calculate expectations for

these quantities (to order 1/ (nSLlb - p +1)) for any sub-model The

expectations of these variances for different values of nspP, for

the model which contains PVOC only, are given in table 10. 1. We
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know that the bias of this model with respect to the true value of

P* is practically zero.

Table 10. 1 Theoretical values for the variances of b*p
(values from 500 simulations given in brackets).

P+ 1 Vprp, VRp

FULL MODEL

<b*k>

PVOC ONLY

(b*p)

501

200

100

75

50

501

200

100

75

50

467

166

66

41

16

499

198

98

73

48

1. 685

4. 777

(4.795)

12.240
(13.182)

20.028
(23. 430)

55.945
(61. 088)

1. 456

3. 654
(3. 378)

7. 475
(7. 748)

10.070

(10.553)

15. 747

(16.92)

1. 685

4. 777

12.240

20.028

55.945

1. 794

4. 534
(4. 640)

9. 208

(9.315)

12.405
(12.943)

20.725
(21.120)

For the complete data set, b*p for the model with PVOC only no

longer has a lower variance than b*k, the estimate from full model,

when judged as a random-effects model. For a sample size of 200

the variances of b*p t*k are comparable , but for smaller

sample sizes the variance of b*:p is smaller than b*k. The benefit

of the reduced model is less for the random-effects model than it
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would be for the corresponding fixed-effects model. However, we

noticed in chapters 6 and 7 that lower values of the random-effects

criteria were obtained for models with more covariates, for which

the residual-mean-square was considerably reduced compared with the

single variable model considered here. For example, if we consider

some of the models selected in chapter 7 (table 7. 9) in procedures

which selected by low values of the G. Rp procedure, we can find a

model with p=10 which gives a derived value of VBp of 3.88 and a

very small bias for samples of size 200, which is a MSE of 81% of

the full model variance.

As a test of the simulated data, and the above approximations,

500 sets of simulated data were constructed at each of these sample

sizes and the estimates of {3* for the full and reduced model were

calculated for each one. For each set of simulated data the value

of b*tnuie. was calculated from the selected rows of the X matrix.

This allowed estimates of the term VBl-,, as the variance of the

differences between b*p and b:%riJ€i. The results are also given in

table 10.1. Each variance estimate has a standard error of +/- 6%

due to sampling error from the set of 500. It can be seen that the

results are in very good agreement with the derived values. There

is a possible exception for small values of (n„UJb-p+1) when the

derived values tend to give a under-estimates of the variance of

the estimators.

By calculating the value b*true we can consider the variation

of the estimator about its mean value in two parts
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Ar = b*p, - b**riJH. and Ax = b*trLJB, - 3*

which correspond to the variation conditional on fixed X, and the

variation due to different choices of X. For the simulations

considered here these two components appeared to be independent,

with the largest correlation between them being -0.067. However, we

might not expect this to hold for models where the covariates are

selected with reference to the data.

A practical problem which occurred in these simulations was that

some sub-samples had one or two covariates which had the same value

for all members of the sample. The covariate UNEMPLOY was the one

for which this happened most frequently. There were 125/500 such

sets for = 50, 33/500 for nsub = 75 and 6/500 for n3Llb = 100.

It was, of course, impossible to fit all the covariates to such

data. The covariates which had no variation were simply excluded

from the model. Less commonly, two covariates from the sub-sample

had exactly the same values (or values which differed by a constant)

for all members of the sub-sample. In this case only one of the two

could be included in the regression. These procedures are exactly

what would be done if such data were encountered in practice, and do

not present any theoretical problems. The main disadvantage of

this feature of the data was the extra computing required to exclude

the appropriate variables automatically from each simulation.
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10.3 Comparison of the three selection procedures.

Further simulated data were used to investigate the properties of

the three variable selection procedures which are still worthy of

consideration. As in the last chapter runs with m=50 were tried

initially, but the sub-model estimates were found to correlate less

strongly with the full sample estimates for the smaller sub-sample

sizes, and the simulations were thus continued to give a total

number m=500. An exception was the set of simulations driven by

G' Rp. These were the most time-consuming, because it was necessary

to extract the variance estimate and calculate the rather

complicated expression for G' Rp, for every covariate being considered

for inclusion in the model. Problems arose with computer runs which

exceeded the maximum time permitted. Since the properties of the

procedures became clear after 250 simulations, no further runs were

done at this stage. Each of the three procedures used a different

set of random sub-samples and of randomly generated residuals.

Results for the full model and sub-model estimates of P* are in

tables 10. 2 to 10. 4. The mean value, over all the simulations, of

the estimated variance of b*^, calculated for the selected sub-model

(as if it were the correct one) is also tabulated. No backward

selection procedures were considered. Selection by RMS and by G' Hp

gave similar models for either the backwards or forwards procedures,

conditional on the fixed Xs. It would be expected to perform

similarly here too, so the considerable extra computation which

would be required to simulate the backwards procedures was not

considered worthwhile. A backwards procedure was not considered for
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the selection by the maximum change in b*:, as it would have very

different properties. Forward selection to minimise the RMS with

stopping rules at F=4 and F=2 is considered first.

Table 10.2 : Simulation results for forward stepwise procedures
by RMS, and F-to-enter of 2 or 4 (m=500>.

mean(se) MSE (MSE/var(b*k)) est im.

,var(b*k )var(b*p) r b*:p-b*k b*p % (95% C. I) var (b*p)

F = 4

200 5. 12 5. 30 . 87 . 02 (. 05) 5. 30 103%(94%-112%) 3. 94

100 13. 40 10. 52 . 78 . 10(. 10) 10. 52 79% (7l%-88%) 7, 92

75 23. 65 15. 32 . 75 . 02 (. 14) 15. 32 65% (57%-73%) 10. 23

50 69. 31 28. 27 . 56 . 50 (. 31) 28. 42 41% (35%-48%) 15. 03

F = 2

200 5. 12 5. 14 . 93 . 04 (. 04) 5. 14 100%(94%-107%) 3. 93

100 13. 40 10. 94 . 87 . 19 (. 08) 10. 97 82% (75%-89%) 7. 67

75 23. 65 17. 85 . 83 . 23 (. 12) 17. 88 76% (68%-84%) 9. 82

50 69. 31 35. 53 . 69 . 47 (. 73) 35. 53 51% (45%-58%) 13. 65

For nSub = 200, the results are like those for the full model,

in that the sub-model estimates are no better than the estimates

from models which include all the covariates. However, for n^t, =

100,75 and 50 the selection procedures give estimates of (3%, which

have lower MSE than the full model estimates. The most extreme

differences are seen for the lowest sample sizes. The stopping rule

of F<4 (equivalent to stopping at a nominal p-value of 0.05) gave

better results than F<2 (equivalent to Cp). The estimate of the

variance of the estimator at the end of the selection procedure is
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much lower than It should be. This Is true even when the sub-model

gives no Improvement In estimation, but is even more marked for the

small sample sizes which give improved estimates of b*.

Table 10.3 : Simulation results for forward stepwise procedures
for a minimum value of G'Rp (m=250>.

mean(se) MSE (MSE/var(b*k)) est im.

nSubVar(b*k ) var (b*p) r b*p-b*k b*p % (95% C. I) var(b*p)

200 5. 32 5. 36 . 95 --. 10 (, 05) 5. 37 101%(93%-109%) 3. 84

100 13.73 10. 88 . 91 . 06(. 09) 10. 88 79% (71%-88%) 7. 62

75 20,51 14. 22 . 87 , 01 (. 14) 14. 22 69% (61%-78%) 10. 04

50 70.38 36. 89 . 82 . 09 (. 31) 36. 89 52% (45%-60%) 14. 60

The results for selection by G'Rp are very similar to those for

the forward stepwise procedure driven by the residual-mean-square of

the ability scores. They also share the same feature of under¬

estimating the variance of b*p, with a very similar pattern to the

results in table 10.2. This is perhaps not too surprising when we

look back at the detailed study in chapter 7. It was seen there

that G' Rp was selecting variables on the basis of a low value of the

residual-mean-square, from among the variables which did not

introduce appreciable bias and did not have a strong relationship

with blood lead. As these two conditions would not exclude many

variables from the lead study data, the patterns are fairly similar.

However, this might not be the case for other data sets where there

are more sub-models which would give biassed estimates of (1*, and

where the correlations between X* and the other covariates were

st ronger.
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Table 10.4 : Simulation results for forward stepwise procedures
by maximum absolute change in b*p (m=500>.

mean(se) MSE (MSE/var(b*k)) estim.
nsubvar (b*k ) var (b*,-,) r b*p-b*k b*p % (95% C.I) var(b*,-.)

C = 0. 1

200 4. 67 4. 60 . 86 . 15 (. 05) 4. 61 99%(91%-108%) 4. 78

100 13. 96 11. 09 . 80 . 14 (. 10) 11. 10 79% (71%-88%) 10. 00

75 22. 11 15. 38 . 71 . 19 (. 15) 15. 39 70% <62%-80%) 14. 12

50 69. 75 25. 43 . 43 . 45 (. 34) 25. 51 36% (31%-42%) 22. 32

C = 0. 05

200 4. 67 4. 74 . 90 . 14 (. 04) 4. 76 102%(94%-110%) 4. 71

100 13. 96 11. 41 . 84 . 12 (. 09) 11. 42 82% (74%-90%) 9. 86

75 22. 11 17. 24 . 79 . 23 (. 13) 17. 28 78% (70%-87%) 14. 01

50 69. 75 29. 93 . 57 . 44(. 30) 30. 03 43% (37%-50%) 22. 17

C = 0. 01

200 4. 67 4. 63 . 96 . 08 (. 03) 4. 64 99% (94%-104%) 4. 68

100 13. 96 12. 74 . 94 . 09 (. 06) 12. 74 91% (86%-97%) 10. 79

75 22. 11 20. 53 . 93 . 03 (. 08) 20. 53 93% (85%-97%) 15. 22

50 69. 75 46. 99 . 81 . 47 (. 22) 47. 16 68% (6l%-75%) 26. 86

Again there is benefit in estimating from the sub-model except

when naut, = 200. The best results are obtained when the stopping

criterion C = 0. 1 and 0.05. The value of 0.01 for C give worse

results, more highly correlated with the full model value. The

under—estimate of the variance of b*p is much less marked than for

the previous two procedures. This is particularly the case for

C=0. 1 where the variance estimates are only about 10% lower than

their estimates from the simulation.
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The variance of the quantities Ar (the difference between the

b*p and the true conditional estimate of P for the sub-model) and

the correlation between Af and A« were calculated for all these

simulations. Also, for each sub-model selected the true value of the

conditional variance of b*p was computed. These quantities are

tabulated in table 10.6, which also gives the range of values of p

for the sub-models selected by each stepwise procedure. The column

"true" contains the mean of the true values of the conditional

variance for the sub-model for each set of simulations.

Table 10. 5 : Components of the variance of b*p.

Selection nKLJt, var (b^'p) var(Ar) (true) var(Ax) cor(AfAx) median and

procedure range of p

RMS F= 4 200 5. 30 4. 28 (3. 94) 0. 80 . 06 6 2-11
F= 2 5. 14 4. 45 (4. 14) 0. 60 . 03 11 7-16

G1 Rp 5. 36 4. 47 (3. 96) 0. 83 . 02 9 5-14

change in b
C = 0. 1 4. 60 4. 04 (4. 11) 0. 69 -. 04 4 1-8
C = 0. 05 4. 74 4. 10 (4. 23) 0. 53 . 04 6 2-10
C = 0. 01 4. 63 4. 40 (4. 61) 0. 26 -. 01 11 7-17

RMS F=4 100 10. 52 8. 37 (8. 12) 2. 02 . 02 4 1-13
F=2 10. 94 9. 11 (8.71) 1. 63 . 03 9 4-17

G'Rf> 10. 88 8. 50 (8. 52) 1. 92 . 06

change in b
C = 0. 1 11. 09 9. 77 (8. 66) 1. 38 -.01 3 1-7
C = 0. 05 11. 41 9. 99 (9. 11) 1. 13 . 04 5 2-10
C = 0. 01 12. 74 12. 07(10. 80) 0. 64 . 00 9 6-20

RMS F=4 75 15. 32 11. 65(10. 82) 3. 08 . 05 4 1-13
F=2 17. 86 14. 12 (11. 85) 2. 57 . 10 7 2-15

G'rp 14. 22 10. 92(11. 67) 2. 99 . 03

change in b
C = 0. 1 15. 38 14. 02(12. 18) 2. 00 -. 06 3 1-7
C = 0. 05 17. 24 15. 09(13. 11) 1. 70 . 04 5 1-12
C = 0. 01 20. 53 19. 18(16. 79) 1. 03 . 04 11 6-23

RMS F=4 50 28. 27 20. 11 (16. 91) 5. 34 . 13 3 1-10
F=2 35. 54 27. 63(19, 70) 4. 50 . 15 7 3-18

G' Rp 36. 89 24. 99(19. 25) 7. 41 . 17

change in b
C = 0. 1 25. 43 22. 51 (19. 07) 4. 45 -. 08 3 0-7
C = 0. 05 29. 93 26. 28(21. 08) 3. 87 -.01 4 0-12
C = 0. 01 46. 99 44. 81 (34. 87) 2. 11 . 00 11 4-29
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The component of variance A.* is always considerably smaller than

Af. As we would expect it is lowest for the models which contain

the largest number of covariates, and relatively larger for models

with few covariates. Selection by the maximum change in b* tends to

give lower values of A.,., at corresponding values for p. This at

first seems counter-intuitive. Since this procedure does not make

explicit use of information about the residual sums-of squares, it

might be expected that it would omit from the model some variables

which are good predictors of the outcome (BASC), and hence this

"random-effects" component of the variance would be inflated.

However this does not seem to be the case, and the forward stepwise

procedure driven by the maximum absolute change in b* seems to hold

promise for the random-effects model, as well as for the fixed-

effects model.

It is also interesting to note that there is little, if any,

evidence of dependence between the two components Ar and Ax. Thus

the variance of the estimate of P* from the fixed effects model

will be an independent contribution to the total variance, and for

these data the dominant contribution. Thus we would not expect that

any procedures which performed badly for the fixed effect

simulations to do better when evaluated for a random-effects model.

The extent to which the column "true" is lower than the column

var(Af) is a measure of the extent to which selection variance is

operating for the conditional estimates. There is considerable

sampling error in the comparison of these quantities from the

simulated data, and it must be remembered that the different
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stopping criteria within a selection procedure do not provide

independent estimates. Taken together, however, they suggest that

selection variance may increase the variance of the estimators by

from 20*4 (at nKLJt, = 50) to somewhere between 5*4 and 10% (at larger

sample sizes).

10.4 Further simulations for sub-samples of 75.

To obtain a more precise comparison of the three selection

procedures the results for naut, = 75 were repeated on a common set

of simulated data for all three procedures. This was a set of 404

simulations which were the first 404 of the 500 given above for

selection by the change in b*. This curious choice of number

corresponded to the time when the simulations driven by G' Rp, ran out

of computer time. Results are given in table 10.7.

The simulations were extended to cover a wider range of stopping

criteria ( F and C) for the procedures which minimise the RMS and

the absolute change in b*:, respectively. Also, as a further check,

two of the models which gave poor results on the fixed effects

simulations were evaluated for the same data.

Testing the estimators on the same data also allows us to

evaluate their correlations. Apart from correlations within

procedures, between different levels of the stopping rule, the

highest correlation was 0.90 between the G' BP. procedure and the RMS

with F=2. The other correlations ranged between .56 and this value.
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Table 10.6 : Comparison of estimators of b* for n„ut( = 75 (m = 404).

Model var(b*)est(var(b*>) r bias(se) MSE (95*4 C. I. )

Full 23. 24 22. 66 * * 100%

RMS

TJ tl CO <s> 16. 82 14. 17 . 60 -. 81 (. 20) 75% (64% - 88%)
F=20 14. 85 12. 74 . 63 -. 13 C. 19) 64% (55% - 75%)
F=10 14. 88 11. 92 . 74 . 02 (. 16) 64% (56% - 73%)
F=8 15. 14 11. 57 . 73 . 06(. 16) 65% (56% -73%)
F=6 15. 36 11. 08 . 70 . 16 (. 17) 66% (57% - 79%)
F=5 15. 29 10. 78 . 72 . 22 (. 17) 66% (58% - 78%)
F=4 15. 81 10. 44 . 74 . 26 (. 16) 68% (60% - 78%)
F=2 18. 12 9. 97 . 83 . 24 (. 14) 78% (70% - 87%)

G'Rp 17. 03 10. 02 . 89 . 05 <. 10) 73% (67% - 80%)

change in b*
C=l. 0 19. 56 15. 94 . 40 -. 23 (. 23) 67% (56% - 80%)
C=0. 8 18. 63 15. 75 . 43 -. 50 (. 27) 81% (68% - 96%)
C=0. 6 17. 32 15. 27 . 47 -. 23<. 23) 71% (56% - 80%)
C=0. 4 14. 47 14. 87 . 55 . 14(. 20) 62% (53% - 74%)
C=0. 2 13. 90 14. 33 . 65 . 21 (. 18) 59% (51% - 69%)
C =0. 1 15. 50 14. 35 . 72 . 25 (. 17) 67% (58% - 77%)
C=0.05 17. 35 14. 03 . 80 . 30(. 14) 75% (67% - 85%)
C=0. 01 21. 47 15. 16 . 94 . 13 (. 08) 92% (86% - 98%)

GPp 20. 61 13. 39 . 94 -. 17(. 05) 89% (83% - 95%)

G'rp 15. 98 13. 57 . 82 -1. 09 (. 14) 74% (66% - 83%)

The stopping rule for the RMS procedure could be increased

considerably, effectively requiring rather extreme significant

levels before a covariate is entered, without detriment to the MSE.

Examination of the details of the simulations showed that the values

of 6, 8 and 10 for F gave a majority of models with just a single

covariate, though by no means always the same one. It was not until

F= 20, and to an even greater extent at F=30, that some simulations

had no covariates, which gave estimates with a negative bias and a

worse variance.
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The simulations fay the maximum absolute change in b* began to

get worse and have a negative bias when C had values of 0.6 and

larger. The values 0,2 and 0.4 for C performed rather better than

the previous best value of 0. 1.

The procedures based on the two GFiz, procedures did badly. The

results for GFp were very much as expected, giving a high

correlation with the true value, and much less improvement in

variance than were found for the other procedures. The G' Fp, results

were rather different from those for the fixed-effect simulations.

For the fixed-effect simulations (for the full sample) this

procedure gave a small negative bias and an increase in variance

compared to the full model. Here it gives a large bias, and a

relatively small variance which together make it's MSE quite modest.

However, despite the reasonable MSE value, other less biassed

procedures would always be preferred.

To confirm the results which compare the RMS procedure with

the change in b* procedure, each procedure was evaluated for the 500

sets of simulated data presented for the other procedure in tables

10.2 and 10.4. This gave a total of 1000 simulations for comparing

the two procedures. The results were very similar to those

presented above. On average, the procedure of selecting by changes

in b* gave slightly smaller variances, but this could have been the

result of sampling errors from the simulations. The second set of

data also gave estimated variances for b* which were severely

biassed for the RMS procedure, but apparently unbiassed for

selection by changes in b*, when C has the values 0. 1, 0.2 and 0.4.
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The joint distribution of these 1000 estimates was examined, and

no irregular features were apparent. The histograms of the

estimates of b* for the full model and for the best of the covariate

selection procedures (changes in b* with C=0.2) are illustrated in

figure 10.1. They also serve to remind us that with this sample

size, a study of the effects of lead on children's ability would

contribute very little, on its own, to increase our knowledge. Thus

its most likely use would be as a contribution to a meta-analysis.

This would put a greater weight on obtaining unbiassed estimates

than a simple MSE criterion would imply.

Figure 10. 1 Histograms of b* estimates for the full model, and for
selection by maximum changes in b* with C=0. 2, n„uto=75, m=1000.

Each dot represents 3 points

full model

Each dot represents 4 points

--+ + + + + +—

-18.0 -12.0 -6.0 0.0 6.0 12.0

sub-model
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10.4 Provisional recommendations

What strategy is suggested by these results? If I were to be

presented with another data set tomorrow, with structure similar to

that of the Lead Study data, how would I proceed?

The first step would be to calculate the proportion of the

variance of X* which could be explained by all the potential

confounders. If this quantity is less than 20% then it is unlikely

that any sub-model will give improved estimates, and one should

proceed to estimate from the full model. This rule does not make

direct reference to sample size. However, by using the simple ratio

of the residual sum-of-squares due to the regression to the total

sum-of-squares (not corrected for degrees of freedom) the proportion

of variance explained will be larger as the residual degrees of

freedom are reduced. If the covariates and X* are independent the

expected value of this percentage would be lOOx(p-2)/(n-p+1).

If this percentage exceeds 20%, then I would provisionally

suggest a selection procedure based on the maximum change in b* ,

with a stopping criteria of C=0. 1. The variance estimate which one

obtained after such a procedure might not be too bad. The procedure

of selecting by the lowest RMS might perform just as well, but one

would not want to rely on the variance estimates obtained after such

a procedure. The variance estimates could be corrected a re¬

sampling procedure (eg Efrom 1979), but this would be complicated,

and would involve re-computing the stepwise procedure for each

bootstrap sample (Efron & Gong 1983, Snappinn & Knoke 1989).
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To what extent is the success of this procedure, in this

chapter, a consequence of the special structure of the lead study

data ? What features might cause it to go wrong ? There are

several possibilities which were not true for the Lead Study data.

Firstly, there may be no real models with small biases. We would

hope that the selection procedure would not exclude any covariates

for such data, but this needs to be tested. Secondly, we might be

in a situation where the benefit of the sub-model is due to there

being covariates which are correlated with X* but not with Y, rather

than to a reduction in the residual degrees of freedom. Would the

procedure work so well here, and still give unbiassed variance

estimates? The final substantive chapter attempts to cover a little

of this ground. However, the number of possible parameter

combinations is so great that it cannot possibly be comprehensive.

Detailed examination of the structure of the covariates from other

epidemiological studies might provide useful insight into the

features one should be looking for, but this is beyond the scope of

this thesis.
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Chapter 11

Simulations for multivariate normal data

11. 1 Generation of the simulated data

To get a wider view of the variable selection procedure, data

for y, x* and x were generated with a multivariate normal

distribution. The model used is a special case of both random-

effects models introduced in chapter 4 and in chapter 8. It is

convenient to use the notation introduced for this model in

section 4.5. In particular we can write the sample sums of

squares and products matrix of X* and X, about their means, as

k Sk *
(11. 1)

where S** = X (X* -X*)2 is a scalar, and S^, are calculated
similarly as the vector and matrix of sums-of-squares and cross

products for X and X:+:. All summations are over the n observations.

For convenience, in the algebra which follows, I have reorganised

the layout of this matrix to put Skk in the top left hand corner.

Where x and x* are multivariate normal, this sample sums of

squares and products matrix will have a Wishart distribution with a

variance-covariance matrix, which will be denoted by
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£|<k Zk* I

^»
(11.2)

where Zk* is a vector. From this distribution for the independent

variables, the vector Y is predicted as a function of X and X* by

the equation

Y = |3p+ X* P* + X P + £y,

where ey is also normally distributed with mean zero. The joint

distribution of Y, X* and X is then also multivariate normal with a

variance-covariance matrix

Zkk * £ky

^ k

£yk Oy* Oyy

The vector of quantities t Zyk , ay* 3 is readily calculated by

multiplying the inverse of the matrix 11.2 into the vector

C p , P* 3, and the quantity cryy is determined from the variance of

the ey and the other parameters.

In simulating data from this distribution one can, without loss

of generality, take all the means to be zero and all the diagonal

elements of 11.3 to be 1. Any variance-covariance matrix can be

reduced to this form by a scale and location transformation. Also,

since one can reverse the scoring of any of the Xs, the convention
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will be adopted that the regression coefficients P and 3* will

always be positive or zero.

The first step in setting up the simulated data was to

compute the matrix 11.3 from the following quantities which could be

changed to alter the parameters of the problem

(1) the off-diagonal elements of Xkk, which are the correlations
between the covariates;

<2) the correlations Xk:« between x* and the other covariates;

(3) the regression coefficients p and P*.

This completely defines the matrix 11.3, which is easily

calculated as described above. I found this approach to the

simulation more convenient than defining the matrix 11.3 as the

starting point. It helped to keep the value of P and p* at the

same values for different sets of simulations and alter the degree

of confounding by adjusting the correlations.

Once the matrix 11.3 has been computed it is easy to generate

multivariate normal data with this covariance structure (Morgan

1984). Several options are available, some of which involve

generating the sums of squares and products directly from the

Wishart distribution (eg Smith & Hocking 1972) . This choice might

have used less computer time, but since the time for the generation

of the random variables was only a small fraction of the time

required to compute the stepwise procedures, the option of

generating X, X* and Y as vectors was chosen. These vectors were

first filled with independent normal random variables with mean zero
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and variance 1. A Choleski factorisation of the matrix 11.3 was

then used to obtain a lower triangular matrix (Z) which was

multiplied into the matrix [ X, X*, Y1 to give a set of vectors with

the desired covariance structure.

Since we know the true values of all the parameters of this

problem we can calculate the true regression coefficients for the

full sample, and also the bias and variance of the estimate of P*

for any specified sub-model. These quantities are easily calculated

from the expressions in chapters 4 & 8. In the notation introduced

above with the quantities IPp, Pp and Z*:p being the sub-matrix and

sub-vectors corresponding to the covariates retained in the model,

we obtain the following expressions for the mean and variance of

the estimate of P* for the sub-set

Mean(b*) = last element of

Ip*

-1

,

(11. 4)

and from the expression 8.6, the expected value of the variance of

b* from the sub-set is

/ I cr*2 (n - p -1) 1

where crrMlc,a is the residual variance of y from the sub-model and

cr*2 is the residual variance of x* from its regression with the p

covariates in the model. These two quantities can be written as
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= i - y y _1 y1 *"pp

and

1 -

cr** !

3U £P* -1

1, <T*y

The changes in the expected mean and variance of P* for

subsets, were explored for various choices of the parameters. A

selection was made which gave features which were similar to the

patterns that can occur in real multiple regressions and which might

be good tests of the stepwise procedures. In particular, when some

selection procedures seemed to be performing reasonably well, I

tried them out on data which might be likely to make them go wrong.

Although there was some arbitrariness in this procedure, the initial

sets of parameters were selected before any of the simulations of

the stepwise procedures were run. Also, I report here on all the

tests on simulated data which I have performed, and have not

selected runs from among a larger set which favour one particular

procedure.

11.2 Data where sub-sets give almost no advantage.

As a severe test of the variable selection procedures, some data

were generated for which there were few sub-models which gave an

improved MSE compared to the full model. In addition to X*, 10

covariates were chosen, each of which had a correlation of 0.5 with

all the others and a correlation of 0.4 with X*. The prediction

equation was chosen to give p* and all the elements of P a value of

0. 1. Two sample sizes of 30 and 100 were considered. Because all
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the x's have the same distribution, models with any fixed number of

the covariates included will all have the same properties. These

are tabulated in table 11. 1.

Table 11.1 Properties of estimation of 3* from sub--models

No covariates Mean(b* ) Variance(b*) MSE(b*) Residual
variance of y

n=30
0 0. 5000 0. 0278 0. 1875 0.7500
1 0. 3143 0. 0260 0. 0720 0.5689
2 0. 2356 0.0250 0. 0434 0.4922
3 0. 1921 0. 0247 0. 0331 0.4498
4 0. 1645 0.0247 0. 0289 0. 4229
5 0. 1455 0. 0251 0. 0271 0. 4043
6 0.1315 0. 0256 0. 0266 0.3907
7 0. 1208 0.0264 0. 0268 0. 3803
8 0. 1124 0. 0274 0. 0275 0.3721
9 0. 1056 0. 0285 0. 0285 0.3655

10 0. 1000 0. 0299 0. 0299 0.3600

n= 100
0 0.5000 0. 0077 0. 1677 0.7500
1 0.3143 0. 0071 0. 0530 0.5689
2 0. 2356 0.0066 0. 0250 0.4922
3 0. 1921 0.0063 0. 0148 0.4498
5 0. 1455 0.0061 0. 0103 0. 4043
6 0.1315 0.0060 0. 0081 0. 3907
7 0. 1208 0.0059 0.0069 0.3803
8 0. 1124 0.0059 0. 0063 0. 3721
9 0. 1056 0. 0058 0. 0060 0.3655
10 0.1000 0.0058 0. 0058 0.3600

When n is 100 there are no sub-sets with a lower MSE than the full

model, and for n=30 only subsets with between 4 and 9 covariates

have an improved MSE, and none of these is much better than the full

model. In both cases all subsets with a few covariates are severely

biassed. Thus, one would not expect any sub-set selection method to

give much improvement over the full model - and there is the

potential for them to do much worse. Notice also that the

relationship between x* and the covariates is quite strong with an
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expected value forR*2 of .55 when n=30 and .36 when n=100, so my

provisional recommendations would suggest that there was potential

for sub-set selection. The expected value of the adjusted R*2 in

both cases is 0.59. Thus the benefit from subsets is largely due to

the correlation between X* and X when n=100, and is not large enough

to overcome the bias in the sub-models. However when it is

augmented by the advantage from increased residual degrees of

freedom when n=30, there are modest advantages for some sub-models.

The results for 200 sets of simulated data analysed by the

three subset selection procedures are in table 11.2. A stopping

rule of F=4 was used for selection by the residual mean square, and

of C=0. 1 for selection by the maximum absolute change in b* (from

now on referred to as A(b*>). In this and subsequent tables

approximate values for the s.e. s of the mean and variance estimates

are included with every table. Usually these were rather similar

for the different methods, and the largest value for any method has

been included in the tables.
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Table 11.2 Estimates of P* after variable selection (m=200)
P* =0. 1, P =. 1, !**=. 5, = .4.

Method mean(b*) var(b*) MSE(b*) est. no covariates
var. median & range

n=30

Full 0. 1049 0. 0286 0.0286 10
RMS 0. 1676 0. 0279 0. 0325 0. 0165 2 ( 1 -4 )
G' Rp 0. 1370 0.0287 0. 0301 0. 0167 3 ( 1 -8 )

A (b*) 0. 1034 0.0252 0. 0252 0. 0237 3 ( 1 -6 )

s. e. • 01 . 003

n= 100

Full 0. 0927 .00590 .00590 10

RMS 0. 1390 .00801 .01024 0.0052 4 ( 1 - 6 )

G' Rp 0. 1050 . 00613 .00628 0. 0054 5. 5( 1 - 8 )
A(b*) 0. 1091 . 00625 .00651 0. 0062 3 ( 1 - 6 )

s. e. • 005 . 0007

These results show A(b:*) as the clear winner. The two other

procedures give biassed estimates when n=30 with MSEs larger than

the full model. The ratio of MSEs for A(b*) relative to the full

model for n=30 is 0.881 with a 95% confidence interval of

(0.804,0.965) calculated by the methods of the previous chapter.

When n=100 RMS still performs badly, although selection by G'Rp,

would give acceptable estimates. Both RMS and G'Rp under-estimate

the variance of the estimates after selection, whereas the variance

estimates from A(b*) seem acceptable. The ratio of MSEs for A(b*)

relative to the full model is 1. 10 with a 95% confidence interval of

(1.00,1.20). This suggests that the A(b*) procedure may be
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performing slightly worse than the full model, which is not

surprising for these data where all sub-sets are worse than the full

model. However, the price in terms of increased MSE is not great.

11.3 Data with a diagonal covariance matrix.

If all the correlation and regression coefficients are zero,

then the variance matrix (11.3) becomes the unit matrix. This is

the case most favourable to variable selection, because all the sub¬

models are better than the full model, and no bias is introduced.

Simulated data were generated for this case. Again 10 covariates

were considered, at the two sample sizes of 30 and 100. Results are

in the first two sections of table 11.3.

Table 11.3 Estimates of p* after variable selection (m=200),
all covariances and regression coefficients zero

Method mean(b*> var(b*) MSE(b*) est. no covariates
var. median & range

n=30

Full
RMS

G'RP
A (b*)

10 covariates
(true value)

0.0068 0.0562 (0.0588)
0.0101 0.0348 0.0348 0.0335
0.0036 0.0451 0.0451 0.0326
0.0041 0.0382 0.0382 0.0368

10
0(0-3)
2(0-7)
0(0-5)

s. e. 015 004

n=100 10 covariates
(true value)

Full -0.0173 .0116 (.0115) 10
RMS -0.0091 .0106 .0107 0.0101 0 ( 0 - 4 )

G'Rp -0.0102 .0110 .0111 0.0100 1 ( 0 - 5 )
A (b*) -0.0093 .0107 .0107 0.0103 0 ( 0 - 3 )

s. e. .007 .001

-214-



Table 11.3 continued

Method mean(b*) var(b*) MSE(b*) est. no covariates
median & rangevar.

n=90 30 covariates

Full -0.0015
RMS -0.0015
G' Rp -0. 0007
A(b*> -0.0015

(true value)
.0204 (0.0175) 10
.0144 .0144 0.0106
.0160 .0160 0.0102
.0142 .0142 0.0113

1 ( 0 - 8 )
4 ( 0 - 12)
0 ( 0 - 2 )

s. e. . 008 . 001

The variable selection procedures perform better than the full

model, although the potential for improvement is not great when

n=100, because the true variance for the model with no covariates

is only 0.0099, compared with 0.0110 for the full model. The G. rp

criterion includes a few more covariates, and so does a little worse

than the other two. The variance estimates from the reduced models

showed little evidence of a downwards bias, with the possible

exception of the G' when n=30.

To test for problems with selection variance for data with

this covariance structure, a further set of simulated data were

generated for 30 covariates and a sample size of 90. Results are

also in table 11.3. Estimation of b* from the reduced models is,

once again, a great improvement on the full model. At first sight

there appears to be some under—estimation of the residual variance.

However, we know that the true full-model variance of b* for these

data should be 0.0175 and for sub-models with 0,1 and 2 covariates

the true variances are 0.0115, 0.0116 and 0.0118. This suggests

that the estimates of b* from this particular set of simulated data

have, by chance, a larger sample variance than expected. Taking
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this into account there is little evidence of under-estimation of

the variance of b*.

11.4 No bias in b*, but dependence between x and x*

A set of parameters were sought which would result in sub¬

models with low MSEs because of dependence between the x variables

and x*, but no dependence between x and y. The parameters

evaluated in section 11.3 gave better estimates from the reduced

models because of the additional residual degrees of freedom.

These parameters will give improved estimation from sub-models

because of the larger conditional variance of x*.

The true value of P:+: was 0.2, and the ps for a set of ten

covariates were zero. The covariates correlated at 0.3 (first

simulation) or at 0.6 (second simulation) with x*, and at 0.4 with

each other. The sample size was fixed at 200, large enough for the

effect of reduced residual degrees of freedom to be unimportant.

All the estimates of p* for sub-models are unbiassed. The variances

of the estimates of p* from sub-models (selected without reference

to the data) are given in table 11,4.
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Table 11.4 Variance of sub-model estimates of P*, no bias but
dependence between x and x*

Number of variance(b*), when correlations (x, x*) are
covariates 0.3 0.6

0 . 0049 . 0049
1 . 0054 . 0077
2 . 0056 . 0101
3 . 0058 . 0124
4 . 0059 . 0144
5 . 0060 . 0162
6 . 0061 . 0180
7 . 0062 . 0195

8 . 0063 . 0210
9 . 0063 . 0223
10 . 0064 . 0236

The correlation of 0. 6 between x and x* gives much greater

advantage to the sub- model estimators. The results of the three

stepwise procedures for the simulated data are given in table 11.5.

Table 11.3 Estimates of P* after variable selection (m=200>
no bias but dependence between x and x*

Method mean(b*) var(b*) est. no covariates
var. median & range

n=200 10 covariates
correlat ion (x, x*)= 0.3

Full . 1930 0.0069 (0. 0064) 10

RMS . 1952 0.0059 0. 0050 0 ( 0 -3 )

G'rp . 1948 0.0059 0. 0050 0 ( 0 -4 )
A(b*> . 1954 0.0068 0. 0055 1 ( 0 -3 )

s. e. . 005 . 0006

n=200 10 covariates

correlation(x, x*)=0. 6

Full . 1866 0.0255 <0.0236) 10
RMS . 1935 0. 0121 0. 0059 0 ( 0 -3 )

G'Rp . 1967 0. 0111 0. 0058 0 ( 0 -5 )
A(b*) . 1912 0. 0221 0. 0119 3 ( 0 -7 )

s. e. .01 . 002
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For these parameters the RMS and G' Rp methods give lower

variances for b* than does A(b*:). The latter gives a variance

comparable to that of the full model. For the second set of

simulated data, for which the correlation between the x's and x* are

0.6, all the methods tend to underestimate the variance of b*.

These results are what one might expect. Since the x's are

unrelated to y, RMS and G' select few covariates. The A(b*>

method selects more variables because the high correlations between

the xs and x* give a range of values of b*, some of which will

exceed the value for the stopping rule.

The under-estimated variances of b* for these data must be a

consequence of some mechanism other than the under-estimation of the

residual variance, since they occur for all three procedures and the

scope for under-estimating the residual variance is much less for

data with this larger sample size.

The population values of the multiple correlations between x*

and the ten covariates are . 19 and . 78 for the two sets of simulated

data. These are the quantities which would be estimated by R*2a,cij.

The corresponding values for the expected values of R*2 are 0.23 and

0.79. The population multiple correlation between x* and the ten

covariates for the data in section 11.2 was only .31, although the

expected values of the proportions of variance explained were

larger at . 55 and . 36 because of the smaller sample numbers.
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11.5 More data which give biassed estimates

To test the A(b*:) procedure, a covariance structure was

generated was devised which I felt might give the greatest problems

to this procedure. The parameters were identical to those in the

previous section (11.4), which already gave some problems for this

method, except for the values for the regression coefficients for

the other x's which were all taken as 0.05. These small values were

selected to make it difficult for individual x's to meet the

inclusion criterion for changes in b*. The same two values of the

correlations between x* and the other x's were chosen for a sample

size of 200 and 10 covariates. In addition, a third set of data

WCLS generated with 20 covariates and a correlation of 0. 6 between

each of them and x*.

The true value of (3* was 0.2, and the mean values of b* for

omitting all the covariates from the three data sets were 0.35, 0.50

and 0.80. The results for the three selection procedures are in

table 11.4. No subsets, for any of the three data sets, had a MSE

for b* which was less than 97% of that for the full model, and many

had values much larger than that for the full model. The third set

of data was the most extreme.
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Table 11.4 Estimates of P* after variable selection (m=200>
more biassed data with dependence between x and x*

Method mean(b*) var(b*) MSE(b*) est. no covariates
var. median & range

n=200 10 covariates
correlation(x, x*) = 0.3

Full . 1937 0. 0056 10
RMS . 2243 0. 0057 0.0063 0.0046 2 ( 1 -4 )

G'Rp . 2090 0.0059 0.0060 0. 0047 3 ( 1 -7 )

A(b*> .2135 0.0053 0.0055 0. 0048 2 ( 1 -3 )

s. e. . 005 . 0006

n=200 10 covariates

correlation(x, x*:) 1! O o>
Full . 1884 0. 0192 10
RMS . 3499 0. 0158 0. 0383 0.0059 1 ( 0 -5 )

G'Rp . 2746 0. 0210 0.0266 0. 0058 3 ( 0 -8 )
A (b*> . 2401 0. 0177 0.0193 0. 0102 4 ( 1 -7 )

s. e. . 01 . 002

n=200 20 covariates

correlation^, x*) It o CT>
Full . 2097 0. 0089 10

RMS . 4219 0. 0158 0.0650 0.0047 1 ( 0 -5 )

G'Rp . 3894 0. 0196 0.0555 0.0065 3 ( 0 -8 )
A <b*) . 2810 0. 0141 0.0205 0. 0062 4 ( 1 -7 )

s. e. . 01 . 002

The results resemble those of section 11.2, in that A(b*>

gives better results than the other procedures. However, it no

longer gives unbiassed estimates of the variance of b*, and for the

third set of data it gives values which are much worse than using

the full model.
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11.6 Simulations designed to resemble the Lead Study data

The final set of simulations were designed to have a data

structure which was similar to the Lead Study data. The regression

coefficient for X* was 0.2, and 20 covariates were included which

were divided into three groups. The first group were 10 covariates

which had no correlations with either X* or Y. The second group of

6 had regression coefficients of 0. 1, and correlations of 0. 1 with

X* and of 0. 5 with each other. The third group of 4 covariates had

regression coefficients of 0. 1, and correlations of -. 1 with X* and

of . 3 with each other. Every variable in the second group had the

same correlation of -.2 with every variable in the third group. The

model with no covariates here would give a mean estimate of |8* of
0.22. Sample sizes of 200, 100,50 and 30 were investigated.

The results were very similar to those for the samples from the

Lead Study data investigated in chapter 10. For n=200, there was no

advantage in any of the sub-set selection procedures. For the

smaller sample sizes the selection procedures all gave better

results than the full model. For the smallest sample size of 30

this was a reduction by a factor of 0.35 in the MSE of b*. The

three methods gave comparable results except for n=30 when the G.Rp,

did less well than the other two, but still much better than the

full model. The RMS and G.p^p Qave uincle*-rers-fcirri«.-ti£-s of

■v/ar-ianc- of t,* n=100, 50 and 30. There was some evidence of

underestimation of the variance for the Ac-,*) method at n=30 and

n=50, but to a much lesser extent than for the other two methods.

For example, for n=30 Ac-,*) underestimated the variance by a factor
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of 0.74, while the factors for the other two methods were 0.33 and

0. 44.

Detailed tables of results are not included because the

purpose of the simulations was to confirm the results of the

previous chapter. The same conclusions applied as were reached in

chapter 10. The main benefit for sub-set selection is at reduced

sample sizes, and the preferred method is Art,*) because it is less

prone to underestimation of the variance of the estimates.

11.6 Summary and conclusions

The A(b*> procedure, which appeared the most useful in the

last chapter, still seems to be the best of the stepwise procedures

which I have tried. However, the results in this chapter suggest

that its benefits may only apply when the reduced variance of the

sub-models is a consequence of an increase in the residual degrees

of freedom. The other two stepwise procedures gave better results

for the case when no bias was introduced by the covariates, but

there was a reduction in the variance for the sub-models as a

result of the association between x* and the other covariates.

However, this was at the expense of over-optimistic variance

estimates. Also, both RMS and G'Rp, gave disastrous results for

models which were rather similar to the zero-bias model, but where

an association between the x's and y gave biassed estimates of b*:.

In the real world, one would not know when this was occurring. The

A(b*) method performed rather better in this situation, but it could
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still give biassed estimates when there was a large degree of

confounding, and it also gave under-estimates of the variance of b*.

For some data with this structure A(b*) can give results which

are worse than the full model. The particular covariance structure

for which this arose was rather strange, with 20 covariates all

equally and weakly related to y, and a sample size of 200. Smaller

sample sizes, with the same structure gave satisfactory results.

Also, the A(b*> procedure is not free from problems of

underestimated variances, although these are less severe than for

the other two procedures considered. It is difficult to generalise

from the formal structure of these artificially generated data sets

to the real world. A more fruitful approach might be to investigate

other real data sets - but I must leave this to others. However,

the results are sufficiently worrying to suggest an amendment to the

provisional recommendations from the last chapter.

11.7 Final recommendations

If a study is large enough for the number of covariates to be

small compared with the residual degrees of freedom, then no sub-set

selection should be attempted. Compared with my previous

suggestion, this will exclude those cases where improved sub-models

might come about because of strong relationships between x*: and x,

Covariates which are strongly related to x* may be suspect in other

respects. They might be possible sources of over-control, and thus

should not be included in the regression because they are causally

related to x*. I suggest that such variables should be identified
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and examined, but they should not be excluded via a stepwise

procedure unless the condition on sample size is fulfilled.

This recommendation is very similar to the one made for

clinical trials by Schluchter & Forsythe (1985) and discussed in

chapter 3. They suggest that no stepwise procedures should be used

unless the sample size is small relative to the number of

covariates, although their work applies to much smaller sample sizes

and numbers of covariates than have been considered here.

It is difficult to make a definite ruling about when the

number of covariates is large enough for subset selection to be

worthwhile. This may depend on the absolute number of covariates

being considered. For the range of 10 - 30 covariates considered in

this thesis, a suitable rule might be to attempt no selection

unless the residual degrees of freedom are less than three times

the number of covariates. This is probably somewhat cautious,

because there were examples of benefit from sub-set selection with

more residual degrees of freedom. However, it will give some

protection against things going as badly wrong as they did for the

last data set in section 11.5.

A well-designed study should have more residual degrees of

freedom than are required by this rule. It is important to have

additional degrees of freedom to check for such features as

interactions and linearity of effects. If we refer back to the list

of lead studies in table 2.1, however, we see that two of the five
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studies listed there could be candidates for variable selection on

the basis of such a rule.

If variable selection is to be attempted, then the A(b*) rule

is the best of the those I have evaluated here. It has a

considerable number of advantages. It is simple to compute, and is

intuitively reasonable. Another advantage is that is immediately

generalisable to other regression techniques such as logistic

regression and regression methods in survival analysis. Stepwise

methods are used extensively in this area, usually based on the

deviance statistic. The consequences for statistical inference, and

estimation of the use of stepwise procedures for these techniques,

remains to be explored.

Another possible approach to increasing the residual degrees

of freedom would be to reduce the dimensions of the X variables by a

method such as cluster analysis or principal component analysis.

Something similar to this was done by Gardner (1973) for a problem

with 61 observations and over 100 covariates. A potential

advantage of such an approach is that it does not use information on

the relationship between the covariates and X* and Y to reduce the

degrees of freedom, so inferences from such reduced models may be

more valid. The method used by Gardner, however, did a preliminary

selection of the covariates on their correlations with Y, which

might lead to an underestimate of the residual-mean-square.

Such methods might run into difficulty where a set of

variables are highly correlated, and yet have different
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relationships with X* and/or Y. Examination of the correlation

matrices for the Lead Study data in tables 5.5 and 5.5 suggest that

this is relatively uncommon, although one can identify possible

problems. A method such as principal components may have additional

benefits over sub-set selection when covariates are subject to

errors of measurement. Further exploration of these topics lies

beyond the scope of this thesis. However, the results I have

obtained here would suggest that no such procedures are likely to be

of benefit, compared to the full model, unless the sample size is

small relative to the number of covariates.
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Notation and abbreviations

This list excludes certain notation which was used only for
intermediate quantities within derivations. The matrix X has
different meanings for the random-effects and fixed-effects
models, and these are listed separately below along with their
implications for related quantities.

Fixed and random effects models

n number of observations

k number of covariates in full model, including a
constant and X* (ie no of additional covariates+2>

p number of covariates in a sub-model, including a
constant and X* (ie no of additional covariates+2)

q number of omitted covariates (q=k-p)

y random variable for the outcome variable

Y n-vector of observations of y

cr2 variance of y conditional on fixed values of all k
covariates

s2 estimate of o2 from the full model

X* n-vector of observed values of the variable of

special interest

P* coefficient of X* in the linear equation for y as
a function of all k covariates

b* estimate of p* from the model including all
covariates

b:% estimate of p* from the model including only p
covariates

RSSful i, RSSp, residual sums of squares of Y from the full and
sub-model regressions

RMSful!, RMSF, corresponding mean squares

Fixed Effects Model only

X nxk matrix of observed values of the k covariates,
including a constant and X*

P regression coefficient corresponding to X in the
linear prediction equation y=XP, for y
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gp p-vector of regression coefficients for the
covariates included in a sub-model ( a sub-vector
of p>

bp estimate of Pp

S:++. sample sum of squares of X* about its sample mean

GFp, G'Fp Mean-square-error criteria for P*

VFp variance part of GRp

ViFpi V2l-p components of the above

Cp Mallows mean-square-error criterion for prediction

Random effects model only

x random vector of p-2 covariates

X nx(k-2) matrix of observed values of x

po. P regression coefficients corresponding to a
constant and X in the linear prediction equation
y- Po + X*P* + Xp, for y

Pp <p-2)-vector of regression coefficients for the
covariates included in a sub-model ( a sub-vector
of p)

bp estimate of pp

Xp nx(p-2) matrix of observed values of the xs
corresponding to 3P

x*! random variable corresponding to X*

X**, X*p, Xpp components of the variance co-variance matrix of
x* and x0

r

S**, S:*p, Spp sample sum-of-squares-and-products matrix for
x* and x^

A**, K*.p> App inverse of the matrix formed from S**;, S*p, Spp

o2p variance of y conditional on the p covariates in
the model

GRp, G'Rp Mean-square-error criteria for P*:

VRp variance part of GRp

^iRi=.iVaRp components of the above

Sp Mean-square-error criterion for prediction
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Random and fixed effects models

P nxp matrix of observed values of covariates
included in the model, including a constant and X*

Q nxq matrix of excluded covariates

Pq sub-vector of 3 corresponding to Q

b.~, estimate of Pq

sp2 residual-mean-square of Y for the model with p
covariates (same as RMSP)

MSEP mean-square-error of the estimate of {5* from a
sub-model containing p covariates

S;t..*p residual sum of squares of X* for the regression
with the other p-1 covariates included in the
model

R*2 multiple correlation between X* and all the other
k-1 covariates which could be included in the
model

Ab* difference between the estimates b* for the full
and reduced models

m number of simulations

r observed correlation of two estimators evaluated
for the same set of simulated data

Stepwise procedures

RMS selection by the minimum value of the residual
sum-of-squares

Gp-p etc selection for the minimum value of the various Gp
criteria

A(b:*) selection of the model which gives the greatest
(for forward procedures) or smallest (backward
procedures) change in the estimate of £*•
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