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Abstract 
 

 

 

 

 

 

A review covering the literature until April 2008 concerning organometallic 

reactions to funcionalise oxazoles is described. A protocol for the functionalisation 

of the oxazole 2- and 4-positions using the Suzuki coupling reaction is described. 2-

Aryl-4-trifloyloxazoles undergo rapid, microwave-assisted coupling with a range of 

aryl and heteroaryl boronic acids in good to excellent yields. The methodology is 

similarly effective using 4-aryl-2-chlorooxazoles as the coupling partner and has 

been extended to the synthesis of a novel class of homo- and heterodimeric 4,4-

linked dioxazoles. In addition, a regioselective Suzuki-Miyaura cross-coupling of 

2,4-dihalooxazoles followed by a Stille coupling has been successfully developed. 

The procedure affords convergent syntheses of trisoxazoles in high yield and in a 

minimum number of steps. Furthermore, C-2 direct arylation of oxazoles is 

discussed. This methodology is extended to the synthesis of C2-C4’ linked bis and 

tris oxazoles of the type found in the Ulapualide A family of natural products. 
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1.1 Introduction1,2 
 

 

 

 

 

 

Hantzsch first discovered oxazoles in 1887.3 Since then, this particular 

heterocyclic family has hugely expanded and oxazoles are found today in a myriad 

of applications. They play an important role in areas such as natural products, 

medicinal chemistry and material sciences. Oxazoles are numbered around the ring 

starting at the oxygen atom and they are named 1,3-oxazoles designating the position 

of the heteroatoms in the ring (Figure 1). 

 

 

 

 

 

 

 
Figure 1. 1,3-oxazole. 

 

The acidities for each C-H bond of the ring have been measured experimentally 

and also calculated theoretically.1 Due to the combined inductive effect of both 

oxygen and nitrogen atoms of the ring, the acidity of each proton decreases in the 

order C2 > C5 > C4. However, some exceptions are known depending on the 

substitution of the ring. The acidity of C2-H is estimated to be pKa ~ 20 and the 

basicity for oxazole itself is estimated at pKb ~ 1 making it a weakly basic 

heterocycle.1 

Oxazoles show particular resonances in both 1H and 13C NMR spectra. Typical 

values for 1H-NMR will range between 7.00 and 8.00 ppm depending on the 

N

O
1

2

3 4

5

1
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substituents. The 13C-NMR will display resonances usually between 120 and 140 

ppm. 

Although oxazoles possess a sextet of π-electrons, most of its reactivity indicates 

that the delocalisation is quite incomplete, having but little aromatic character. A 

clear indication of this is that they are known to be suitable dienes or dienophiles in 

the Diels-Alder reaction, evidencing the natural reactivity of the double bonds rather 

than the delocalised electrons of the ring. Electrophilic aromatic substitution of the 

ring is known but the chemistry of oxazoles found in the literature is dominated by 

their tendency to undergo ring opening rather than preserve its cyclic aromatic form.2 

Despite its tendency to give open ring products, most oxazole synthesis involves the 

cyclisation of acyclic precursors and subsequent oxidation to obtain oxazoles. By far 

the most common approach is the dehydration of β-hydroxyamides affording 

oxazolines, which can be oxidised to give the corresponding oxazoles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Scheme 1. Alvarez’s synthesis of bis-oxazole 4 via cyclisation/oxidation sequence. 
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This approach is usually referred to as synthesis of oxazoles from peptide 

precursors, but many more methods based on similar principles are known.4 A recent 

example of this strategy is Alvarez’s total synthesis of the IB-01211 natural product.5 

Peptide 2 was used early in the synthesis as a precursor of bis-oxazole 4 using a 

cyclisation-oxidation sequence (Scheme 1). 

 

The synthesis of cyclic compounds from acyclic precursors has several 

disadvantages. The most obvious drawback is that the synthesis of these acyclic 

intermediates can be highly complicated, depending on the desired final substitution 

of the target oxazole. In certain cases, it may not be successful due to the difficulties 

encountered in the elaboration of too complex precursors. On the other hand, even if 

the synthesis of the required linear precursors has been successful, the usually harsh 

conditions employed in the dehydration/oxidation sequence may render it 

incompatible with such rich functionalised starting materials. Furthermore, the 

application of selective protecting groups is necessary, sometimes several times, 

resulting in lengthy synthetic sequences.  

 

An illustration of this particular drawback is the efficient but lengthy preparation 

of tris-oxazole by Panek and co-workers en route to the total synthesis of the natural 

product Mycalolide A (Scheme 2).6 Condensation between cinnanamide 5 and ethyl 

bromopyruvate 6 using Hantzsch-type conditions gave the corresponding hydroxyl 

oxazoline. This condensation was immediately followed by dehydration with TFAA 

affording the functionalised oxazole 7 in 83 % yield. Then, conversion of the ethyl 

ester to the corresponding amide followed by a second Hantzsch reaction gave bis-

oxazole 9. The upper end of 9 was elaborated in a 3 step oxidative sequence to give 

the corresponding aldehyde, which by reduction gave the primary alcohol 10 in an 

overall yield of 62 %. Amidation of the ester followed by protection of the alcohol 

provided bis-oxazole 11 in 90 % yield. Finally, 11 was subjected to a third Hantzsch 

reaction (2 steps) to give the advanced intermediate tris-oxazole 12 in 86% yield 

(Scheme 2, 12 steps in total). 
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Scheme 2. Panek’s synthesis of tris-oxazole 12. 

 

 

From a lead discovery perspective in medicinal chemistry, the synthesis of acyclic 

precursors for later cyclisation can also be a drawback. Prior to cyclisation, the 

making of a diversified set of acyclic starting materials is required, early stage rather 

than the late stage diversification (Figure 2). In the optimisation process of a drug 

candidate, changes to the basic structure of the drug are usually required. Due to the 

presence of multiple functional groups, which are often incompatible with the 

existing synthetic methods, this necessarily implies early modifications in the 

synthesis. In many cases, the modifications need to be performed on very basic 
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building blocks, which, in turn, may alter or even completely modify the already 

planned/optimised medicinal synthetic route. This is economically unfavourable and 

also time consuming for the industry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Early stage vs late stage diversification. 

 

An alternative is to prepare the oxazole heterocycle at an early stage in the 

synthesis and to carry out subsequent functionalisations on each position of the ring. 

Oxazoles themselves exhibit rich and varied reactivity, which allows for 
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functionalisations at each ring atom. Because of their low aromatic character, they 

display reactions of both aromatic substitution and reactions of double bonds. 

Electrophilic aromatic substitutions, including bromination, nitration and Friedel-

Crafts reaction, are known and they preserve the aromaticity of the ring. Additions 

across the C4-C5 double bond that disrupt aromaticity are also common.2 

Although the oxazole ring is considered electron-rich when compared to benzene 

(6 π electrons for 5 atoms in the ring), the 1,3-disposition of the heteroatoms makes 

the C2 position electrophilic. This gives oxazoles the unique ability to react with 

electrophiles and also with nucleophiles. Indeed, nucleophilic additions at C2 and 

subsequent transformations into other heterocycles are well established.1,2 Formal [3 

+ 2] cycloadditions of oxazoles with dipolarophiles are also related to this 

electrophilic behaviour.2 As mentioned earlier, the 1,3 disposition of heteroatoms is 

also responsible for the observed differential proton acidities around the ring. This 

rich acid-base chemistry allows for selective deprotonation reactions and subsequent 

functionalisations at each of the carbon atoms. Nucleophilic aromatic substitution 

reactions on halooxazoles, alkoxyoxazoles and also oxazole sulfones give substituted 

oxazoles as well as ring-opening adducts, depending on the nucleophiles used. 

This reactivity provides the means to obtain a countless number of acyclic 

products, partially oxidised oxazoles such as oxazolines and oxazolones and even 

other classes of heterocycles. However, although this vast field related to oxazoles is 

of interest, this chapter will cover exclusively organometallic reactions to 

functionalise oxazoles giving products with the aromatic ring remaining fully intact.  

 

 

1.2 Stochiometric organometallic reactions of oxazoles 
 

 

The first metallo-oxazoles synthesised were mercury derivatives and they are 

attributed to Shvaika and Klimisha, who studied these compounds in 1966.7,8 

Mercuration of oxazoles was achieved through an electrophilic reaction using 

Hg(OAc)2. The authors found that room temperature conditions were enough to 

mercurate the C5-H of oxazoles, whereas more drastic conditions were needed to 



Chapter 1. Organometallic Reactions of Oxazoles 

 22

mercurate C2-H and C4-H. In a first step, mercury (II) aceto oxazole species 14 were 

obtained from substituted oxazoles 13, and in a second step, using sodium stannite 

the oxazol-yl substituted mercury derivatives 15 and 16 were synthesised. The 

synthesis of these compounds is shown in Table 1.7 

 

 
Table 1. Synthesis of mercurioxazole derivatives. 

 

 

 

 

 

 

 

Entry oxazole 13 product 14 
Yield of 14 

(%) 
Product 15 or 16 

Yield (%) of 15 or 

16  

1 N

OPh

Ph  
N

OPh

Ph

Hg(OAc)

 
92 N

OPh

Ph

Hg
N

O Ph

Ph  
60 

2 
N

OPh
Ph

 
N

OPh

Hg(OAc)

Ph

 
92 O

N
Hg

O

N

Ph

Ph
Ph

Ph  

68 

3 
N

OMe
Ph

 
N

OMe

Hg(OAc)

Ph

 
22 - - 

4 N

O
Ph

Ph  
N

O(AcO)Hg

Ph

Ph 80 - - 

 

 

In the same year, in a subsequent communication, the same authors described the 

preparation of halogenoxazoles 17 from in situ preparation of mercuriooxazole 

derivatives 14 previously described (Table 2).8 

 
 

N

O Hg(OAc)2, rt

or Hg(OAc)2
Acetic acid, reflux

N

O Na2SnO2

N

O
Hg N

O
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O
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O

N
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R1, R2 R1, R2
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Table 2. Synthesis of halogenooxazoles from mercurial derivatives. 

 

 

 

 

 

 
Entry Oxazole 13 Halogen Product 17 Yield of 17(%) 

1 N

OPh

Ph  
Br2 N

O
Br

Ph

Ph

 
72 

2 N

OPh

Ph  
I2 N

O
I

Ph

Ph

 
64 

3 
N

OPh
Ph

 
Br2 N

O
Ph

Br

Ph

 
80 

4 
N

OPh
Ph

 
I2 N

O
Ph

I

Ph

 
85 

5 
N

OMe
Ph

 
Br2 N

O
Ph

Br

Me

 
65 

6 
N

OMe
Ph

 
I2 N

O
Ph

I

Me

 
55 

7 N

O
Ph

Ph  
I2 N

O
Ph

Ph

I

 
60 

 

 

Lithiation of oxazoles 

 

 

Lithiation of oxazoles is the most studied metallation reaction of oxazoles and has 

been extensively used to functionalise positions 2, 4 and 5 of the ring.9,2 In 1968, 

Bowie and co-workers first demonstrated that 2-unsubstituted oxazoles 18 could be 

metallated by butyllithium in C2-H. The resulting lithiated species were trapped with 

deuterium oxide (Scheme 3).10 

N

O
(AcO)Hg

R1, R2

Br2, I2, CCl4
N

O
X

R1, R2

X = Cl, Br, I

14 17

N

O Hg(OAc)2, rt

or Hg(OAc)2
Acetic acid, reflux

R1, R2

13
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Scheme 3. Lithiation of 2-unsubstituted oxazoles 18 followed by deuteration quenching. 

 

In 1975, Schröder and co-workers showed evidence for an equilibrium between 

the C2-lithiated oxazole 20 and its ring-opened lithium enolate 21. The choice of the 

trapping agent determined the product obtained; deuterium oxide and benzaldehyde 

gave the C2 products 19c-d and 23 in good to excellent yields, whereas TMSCl only 

gave the acyclic form in very good yield (Scheme 4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Scheme 4. Equilibrium between ring-opening and oxazole forms for C2-lithiated oxazoles. 
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The equilibrium disclosed by Schröder illustrated that the use of 2-lithiooxazoles 

would be quite problematic in synthesis. When 2-lithiooxazole was combined with 

DMF at -75 °C and the mixture was allowed to rise to room temperature, the 

expected aldehyde on C2 was obtained quantitatively. However, reaction of this 

product with a second equivalent of lithiooxazole did not provide the C2 product this 

time, instead, reaction on C4 giving the unsymmetrical bis(oxazolyl)methanol 25 was 

observed (Scheme 5).11 

 

 

 

 

 

 
Scheme 5. Difference in reactivity of lithiated oxazoles. 

 

 

In the early days,9 reactivity at the 4-position of lithioxazoles had been generally 

found to occur with reactive electrophiles such as aldehydes. Less reactive 

electrophiles such as DMF, benzophenone and ethyl formate gave 2-substituted 

products 19. In contrast, electrophiles such as iodobutane, benzyl bromide or ethyl 

carbonate did not react at all even after prolonged time reactions at room 

temperature. Butyllithium, lithium diisopropylamide (LDA), LHMDS and other 

bases have been successfully used to lithiate C2-H of oxazoles, and, despite the 

difficulties many 2-substituted products 19 and also 4-substituted oxazoles 27 have 

been prepared accordingly. These earlier results are summarised in Tables 3 and 4.9 

N

O 1. n-BuLi, THF, -60 οCH

2. DMF, rt N

OOHC

N

O
Li

N

O O

N
OH

1 24 25
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Table 3. Synthesis of 2-substituted oxazoles from oxazol-2-yllithium derivatives. 

 

 

 

 

 
Entry R1 R2 E. Reagent E Yield of 19 (%) Ref. 

1 H H D2O D 90 11 
2 H H DMF CHO 50a 11 

3 H H 
N

O

 N OH  
19 12 

4 Ph H D2O D 90 13 

5 Ph H 
HCONMe(pyrid

-2-yl) 
CHO 61 14 

6 Ph H 
PhCONMe(pyri

d-2-yl) 
PhCO 18 14 

7 Ph H Me3SiCl Me3Si 50c 15 
8 C6H4OMe H Me3SiCl Me3Si 35c 15 

9 H Me PhCHO Ph CH(OH) 30 15, 16 

10 H Me Me3SiCl Me3Si 60c 16 

11 H Me Me3SiCl Me3Si 60 15, 17 

14 Me Me D2O D 100 18 
15 CO2Et Me CCl4 Cl 29 19 
16 CO2Et Me Br2 Br 21 19 

17 CO2Et Me I2 I 42 19 

18 Ph Me D2O D - 10a 

19 Me Ph D2O D - 10a 

20 Ph Ph PhCHO PhCH(OH) 67 13 

22 H Me 
N

O

 N

OH

 
36 20 

23 H H 
N

O

 N

OH

 
19 20 

aVariable yields after work-up due to volatility of product. bMinor product, isolated only at ambient temperature or above; the 

major product is the 4-substituted isomer (Table 4). cAfter distillation of a mixture of acyclic and cyclic compounds.  

 

 

 

 

N

O
R1

R2

H 1. Lithium base

2. Electrophilic Reagent
N

O
R1

R2

E

18 19
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Table 4. Synthesis of 4-substituted oxazoles from oxazol-4-yllithium derivatives. 

 

 

 

 

 
Entry R1

 R2
 E. Reagent E Yield (%) Ref. 

1 H H CHOC4H9 CH(OH)C4H9 28a 11 

2 H H O
O

Me
Me

OHC  

O
O

Me
Me

(HO)HC  
65a 11 

3 H H PhCHO PhCH(OH) 20a,b 11 

4 H H Thiazol-2-ylCHO thiazol-2-yl CH(OH) 65a 11 

5 H H Thiazol-4-ylCHO thiazol-4-yl CH(OH) 62a 11 

7 Ph Ph TMSO(CH2)6I TMSO(CH2)6 45 21 

8 Ph Ph 
TBDMSO(CH2)8

Br 
TBDMSO(CH2)8 60 21 

9 Ph Ph DMF CHO 50 20 

10 Ph Ph PhCOCl PhCO 73 20 

11 Ph Ph C5H11CHO C5H11CH(OH) 82 20 

12 Ph Ph 
TBDMSO(CH2)3

CHO 

TBDMSO(CH2)3CH(

OH)d 47 21 

13 Ph Ph PhCHO Ph CH(OH) 94, 70 21 

14 Ph Ph Me2CO Me2C(OH) 80 21 

15 Ph Ph Me3SiCl Me3Si 83, 92 23,24 

16 Ph Ph Et3SiCl Et3Si 71 

20Error! 

Bookmark 

not 

defined. 

17 

C6H4

OMe-

4 

C6H4OMe-

4 
D2O D 50 21 

aThese aldehydes react via generation of the oxazol-2-yllithium. bAt room temperature PhCH2OH is formed in 34% yield along 

with a trace amount (2%) of the corresponding 2-isomer (amount depends on the temperature).  

 

Hughes and co-workers carried out a study of the equilibrium of the 2-lithioxazole 

species 29 and the acyclic isocyanoenolate species 30 using 1H-NMR and 13C-NMR 

spectroscopy. The authors stated that the predominant form under the reaction 

N

O
R1

H

R2
1. Lithium base

2. Electrophilic Reagent
N

O
R1

E

R2

26 27
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conditions was the acyclic form 30, as found by NMR comparison and also 

deuterium quenches type of experiments. Interestingly, it was observed that different 

deuterated products 33-36, including C2, C4, C2/C4 products, were obtained 

depending on the acidity of the deuterating agent, the substitution of the oxazole at 

C5 and also the reaction times, suggesting that a fast equilibrium was operating on 

the quenches (Scheme 6). Furthermore, if the mixture was transmetallated at -78 °C 

with ZnCl2 and the resulting organozinc species quenched with D4-acetic acid, then, 

85% of deuterium incorporation was found to occur at C2, therefore, suggesting that 

transmetallation to zinc shifted the equilibrium to the cyclic 2-zincated oxazole 

species (Scheme 6).22  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Scheme 6. Hugues’ study of the formic equilibrium of 2-lithiooxazoles species. 
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A few years later, the Boche group extensively investigated the equilibrium 

dilemma using 13C-NMR, IR, single-crystal X-ray and molecular orbital calculations. 

They soon confirmed the results previously reported by Hugues. These authors 

concluded that the acyclic species of the lithiation of 1,3-oxazole and other derivates 

were predominant in solution up to 95 ± 5%. In addition, on the related benzoxazole 

system 37, which had been treated with n-BuLi at -78 °C followed by addition of 

ZnCl2, the authors also found the cyclic 2-zincated benzoxazole  38 present in the 
13C-NMR spectrum. This group succeeded in crystallising a dimer of 38 from THF 

and reported the results of their solid-state structure elucidation. In a second related 

study, using molecular orbital calculations, the authors studied oxazole structures and 

found complete concordance with the previously reported experimental results. The 

cyclic species 20 were considerably less stable than 21, owing to the oxophilic nature 

of Li+, whereas the more covalent C-Zn contributed to the enhanced stability of 38 

versus 37 (Scheme 7).23  

 

 

 

 

 

 

 

 

 

 

 
Scheme 7. Studies on lithioxazoles and benzoxazole by the Boche group. 

 

 

In 1996, Vedejs and co-workers reported a practical solution to the electrocyclic 

ring-opening problem of 2-lithiooxazoles. Suppression of the electrocyclic pathway 

could be achieved via Lewis acid complexation. Accordingly, the electron pair of the 

N

OH

N

OLi +M-O

CN
R1 R1

R1

R2

n-BuLi

95:
R2 R2

N

O
H

1. n-BuLi, THF, -78 οC

2. excess ZnCl2, Et2O N

O
ZnCl

37 38
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nitrogen atom of the ring of 20 was prevented from developing into the isonitrile 

species 21, therefore, ensuring that only C2 products 19 would be obtained. In 

addition, the authors anticipated that complexation of 18 should enhance the acidity 

of C2-H (Scheme 8).24 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Scheme 8. Suppression of the electrophilic ring-opening pathway by Lewis acid complexation. 

 

 

This methodology resulted in a practical method for the funcionalisation of 

oxazoles at C2, including electrophiles that would normally couple to C4 (such as 

aldehydes), and also alkyl electrophilic reagents that gave substantially lower yields 

if no complexation was used (Table 4). 
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H Lithium base

N

O
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Li LiO R1

R2N+
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1. E+
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18 20 21
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Table 4. Functionalisation of oxazoles at C2 using borane pre-complexation. 

 

 

 

 

 

 
Entry R1 E Electrophile Yield of 41 (%) 

1 Ph PhCH(OH) PhCHO 94a 

2 Ph PhCH(OH) PhCHO 88, 81 

3 Ph PhCH(OH) PhCHO 90b 

4 Ph PhCH2CH2(OH) PhCH2CH2CHO 84 

5 H PhCH(OH) PhCHO 70b 

6 CH2CH2CH(CH3)OTBS PhCH(OH) PhCHO 84 

7 Ph Me3Si Me3SiCl 78c 

8 Ph Cl C2Cl6
d 86 

9 Ph 
5-phenyloxazol-2-

yl 
C2Cl6

e 79 

10 Ph CH3 CH3I 74 

11 Ph PhCH2CH2Otf PhCH2CH2OTf 65 
aReaction using LiTMP as the base. bReaction using s-BuLi as the base. cYield of the borane complex prior to decomplexation. 
d2 equivalents were used. c0.5 equivalents were used. 

 

 

Using the ambivalent reactivity of oxazoles, Vedejs and Luchetta developed a 

very useful methodology to regioselectively iodinate oxazoles at C4 (Table 5).  

 
Table 5. Synthesis of 4-iodooxazoles. 
 

 

 

 

 
Entry R Yield of 42 + 43 (%) [43:42] [(42 + 43):44] 

1 p-tolyl 73 32:1 15:1 

2 Ph 67 32:1 52:1 

N

O
R

1. LHMDS
   DMPU/THF, -78 οC

2. I2 N

O R
N

O
R

N

O
RI

I I

I
+ +

28 42 43 44

N

O
R1

H

H
1. BH3, THF, -78 οC
2. n-BuLi

3. E+

4. HOAC/ EtOH

N

O
R1

H

E

28 41
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3 CO2Et 44 5.3:1 6.3:1 

4 (CH2)2Ph 43 > 49:1 4:1 

5 (CH2)2Ph 64a > 49:1 99:1 

6 (CH2)3OTBS 34 > 49:1 1:1 

7 (CH2)3OTBS 63a > 49:1 99:1 
aAfter iodine addition, the crude mixture was treated with n-BuLi at -78 °C until a phenantroline endpoint was detected. 

 

 

When lithiating 5-phenyloxazole and quenching the reaction mixture with I2 a 

complex mixture of C2, C4, C2-C4 products 42-44 was initially obtained with 

LHMDS being selective towards the C4-I product 43 compared to C2-I product 42 in 

a [3:1] ratio. Switching to n-Buli inverted this ratio in favour of the C2-I product 42, 

and adding some acetonitrile as a co-solvent increased in 40% the amount of 2,4-

diiodooxazole 44. It was found that addition of DMPU prior adding the base to the 

reaction gave consistently C4-I/C2-I species in a [97:3] along with 5% of 2,4-

diiodooxazole 44. This methodology was extended to prepare a series of 4-iodo-5-

substituted oxazoles (Table 5). Furthermore, it was also discovered that the use of 

1,2-diiodoethane (without DMPU) gave exclusively C2-I products.25 

 

Vedejs’ method has been recently extended to the synthesis of 4-bromooxazoles 

45. As part of a medicinal chemistry program, Li and co-workers needed specifically 

a 4-iodo-5-substituted type of oxazoles. However, Vedej’s method did not provide 

good yields or good selectivity on their substrate. As a result, the authors 

investigated selective C4 brominations under similar conditions. In their studies, they 

found that DMPU could be replaced by the cheaper DMF and using NBS as the 

brominating agent, after optimisation, an excellent 87 % yield of 4-bromo derivative 

with less than 0.2 % of the 2-bromo species could be isolated. The method was 

extended to synthesis of a series of 4-bromo-5-substituted oxazoles in high yields 

(Table 6).26 
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Table 6. Selective 4-bromination of 5-substituted oxazoles. 

 

 

 

 

 

 
Entry R1 Product 45 Yield of 45 (%) 

1 N

N
N

 

N
N
N

N

O

Br  

87 

2 
Cl

 
N

O

Br Cl  
82 

3 
O2N

 
N

O

Br

O2N

 

78 

4 
S

 
N

O

Br

S

 
87 

5 
NC

 
N

O

Br

CN

 
78 

 

 

Williams and McClymont published interesting work based on the varied 

reactivity of lithiooxazoles. These authors investigated the alkylation and acylation 

of 5-(1,3-dithian-2-yl)oxazole 47 generated from the lithiation of 5-(1,3-dithian) 

oxazole 46. Initially, it was shown through deuterium incorporation studies that 

deprotonation using excess LHMDS occurred firstly at C2-H and secondly at the 

dithiane carbon atom. Thus, they found that alkylating agents usually afforded 

exclusively the side chain analogues 48; however, reactive electrophiles such as 

CH3I and TMSCl afforded complex mixtures of C- and O-alkylated products with 

secondary halides being unreactive. On the other hand, acylation did not produce the 

expected products. Instead, rearrangement products corresponding to 4,5-

disubstituted oxazoles 52 and 53 were isolated. These results were mechanistically 

N

O
1. LHMDS, -15 οC to -70 οC
    DMF

2. NBS N

O

Br

R1 R1

28 45
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explained via deprotonation and formation of the dianion species, which through 

equilibrium with the isocyanovinyllithium alkoxides could give C4 acylation. 

Cyclisation through both carbonyl groups would give the observed products (Scheme 

9).  

This reaction represents the first example of a base-induced at low temperature 

Cornforth rearrangement. A selection of examples with different acylating reagents 

used in this reaction is shown in Table 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Scheme 9. Lithiation of 5-(1,3-dithian)oxazole. 
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Table 7. Acylation of 5-(1,3-dithian-2-yl)oxazole. 

 

 

 

 

 

 
Entry Electrophile Product 52 or 53 Yield (%) 

1 O

O

Cl

 

N

O

S

S
O

O

 

55 

2 
O

H3CO CN  
N

O S

S

O OCH3  

84 

3 
O

CN
 

N

O S

S

O

N

O

S

S
O

1.8           :            1  

98 

 

 

More recently, Mongin and co-workers have reported the deprotonation of the 

parent 1,3-oxazole and the related benzoxazole using lithium magnesates (Scheme 

10).  

 

 

 

 

 

 

 

 

 

 

 
Scheme 10. Deprotonation of 1,3-oxazole and reaction with electrophiles. 
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These organometallics are more attractive than the lithium species because they can 

be generated at room temperature and react with electrophiles giving C2 products 

exclusively, without the assistance of Vedejs’ borane pre-complexation. 

Furthermore, they can also be used in cross coupling reactions (see next section). 

The authors conducted NMR studies on the lithium magnesates species of 

benzooxazole and the parent oxazole observing rapid conversion to the more stable 

acyclic isocyano enolate. However, the isolation of 2-subsituted benzoxazoles and 

oxazoles prompted them to interpret these results with two possible explanations. 

Either the equilibration between the open and closed structures was faster than the 

trapping of the acyclic form with the closed isomer being more reactive (Scheme 10), 

or the open isomer could react with the electrophile via an intramolecular type 

reaction (Scheme 11).27 

 

 

 

 

 

 
Scheme 11. Intramolecular type of mechanism to obtain 2-substituted oxazoles 56. 

 

 

Although lithiation at the C5-H position of the ring is easier because no ring-

opening complications are present, comparatively few reports based on the 

metalation of oxazoles at this position have emerged in the literature. These results 

are summarised in Table 8.  

 

Metalation at C5-H is generally not possible on unsubstituted C2-H oxazoles 

unless special activation, such as by an ester functionality, is present at C4 position 

rendering C5-H more acidic than C2-H (for example entry 1, Table 8).28,29 To assist 

this problem, Shafter and Molinski have recently described a general method for the 

preparation of 5-substituted oxazoles without substitution on the 2-position.30 The 

O

CN

(RO)2LiMg

E+N

O

1. 1/3 equiv
    Bu3MgLi
    THF, rt, 2h

2. E+ N

OE

E = I;  70%  56a
E = CH(OH)-4-anisyl, 61%  56b1 57
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authors blocked C2 of the ring with a methylthio group, which was stable under n-

BuLi in THF/TMEDA at -78 ºC. The obtained oxazole-5-yllithium derivatives were 

reacted with a variety of electrophiles and, following reductive desulfurisation gave 

5-substituted oxazoles in 59-68% yield (Table 9). 

 

 
Table 8. Synthesis of substituted oxazoles from oxazol-5-yllithium derivatives. 

 

 

 

 

 
Entry R1 R2 Reagent E Yield (%) Ref. 

1 Me CO2H D2O D 92, 77 28, 29 

2 Me CO2H MeI Me ~ 10 28, 29 

3 Me CO2H Me3SiCl SiMe3 86 31 
4 Me CO2Me D2O D 99, 92 28, 29 

5 Me CO2Bu-t Me3SiCl SiMe3 62 32 
6 Ph Ph MeI Me 85 33 
7 Ph Ph Me3SiCl SiMe3 88 33 

 
Table 9. Synthesis of 5-substituted oxazoles.  

 

 

 

 

 
Entry Electrophile Yield of 61 (%) Yield of 62 (%) 

1 benzaldehyde 84 68 

2 p-anisaldehyde 85 -a 

3 p-bromobenzaldehyde 84 -a 

4 2-naphptaldehyde 77 60 

5 2-furaldehyde 72 -a 

6 citral 83 -a 

N

OH3CS
1. n-BuLi
THF/TMEDA, -78 οC

2. Electrophile N

OH3CS
E

RaNi

C2H5OH N

O
E

60 61 62

N

O
H

R2

R1
1. Lithium base

2. Electrophilic Reagent
N

O
E

R2

R1

58 59
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7 decylaldehyde 73 60 

8 pivaldehyde 69 59 

9 2,3-o-isopropylidene-D-glyceraldehyde 60 -a 

10 3-methyl-2-butanone 39 -a 

11 cyclohexanone 53 60 

12 benzoyl chloride 38 -a 

13 pivaloyl chloride 71 -a 

a Experiment not carried out. 

 

Halogen/lithium exchange reactions are rare due to the general scarcity of 

halogenated oxazoles. Bowie and co-workers were probably the first group to report 

lithium/halogen exchange reactions for oxazoles. They first reported the lithiation of 

a 5-bromooxazole derivative and its subsequent quenching with D2O (Entry 1, Table 

10).10a In a later publication, a 4-bromooxazole was deuterated in similar conditions 

(Entry 2, Table 10).10b Arao and co-workers chose 5-bromooxazoles to conveniently 

functionalise the 5-position of 2-substituted oxazoles in generally high yields 

(Entries 3-11, Table 10).34,39 

 
Table 10. Synthesis of substituted oxazoles from lithium/halogen exchange reactions. 

 

 

 

 

 
Entry Halogenated oxazole 63 Electrophile Product 64 Yield (%) Ref. 

1 N

OMe

Ph

Br

 
D2O N

OMe

Ph

D

 
- 10a 

2 N

OPh

Br

Ph

 
D2O N

OPh

D

Ph

 
- 10b 

3 N

OPh

H

Br

 
H2O N

OPh

H

H

 
88 34 

4 N

OPh

H

Br

 
D2O N

OPh

H

D

 
84 34 

N

O 1. Lithium base

2. Electrophilic Reagent
N

OR2

R1, R2

X
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63 64



Chapter 1. Organometallic Reactions of Oxazoles 

 39

5 N

OPh

H

Br

 
MeI N

OPh

H

Me

 
73 34 

6 N

OPh

H

Br

 
EtI N

OPh

H

Et

 
70 34 

7 N

OPh

H

Br

 
PhCH2Br N

OPh

H

CH2Ph

 
72 34 

8 
N

O

H

Br

Cl

 

H2O 
N

O

H

H

Cl

 

84 34 

9 
N

O

H

Br

Cl

 

D2O 
N

O

H

D

Cl

 

80 34 

10 
N

O

H

Br

t-Bu

 

H2O 
N

O

H

H

t-Bu

 

85 34 

11 
N

O

H

Br

t-Bu

 

D2O 
N

O

H

D

t-Bu

 

86 34 

 

 

Very recently, Stanetty and co-workers have published the first halogen dance 

reaction of oxazoles, resulting in a general methodology for the synthesis of 2-

phenyl-4-bromo-5-substituted oxazoles (Table 11).35  

 

Lithiation of oxazoles has even been applied to natural products synthesis. Crews 

and co-workers, in their preparation of bengazole A, an antihelminthic agent isolated 

from marine sponges, employed a lithiooxazole and an oxazole substituted at C5 with 

the aldehyde functionality. In this way, the required C2 and C’5 substitution of the 

natural product was obtained; however, the synthesis was racemic, nonstereospecific 

and no yield was provided for this transformation (Scheme 12).36 
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Table 11. Halogen dance reaction on 2-phenyl-5-bromooxazole. 

 

 

 

 

 

 
Entry Electrophile E Yield of 67 (%) 

1 H2O H 60 

2 Benzaldehyde PhCH(OH) 78 

3 TMSCl TMS 68 

4 Cl3CH2CH2Cl3 Cl 68 

5 Br2 Br 30 

6 1,2-dibromoethane Br 11 

7 1,2-dibromo-1,1,2,2-tetrachloroethane Br 76 

8 I2 I 66 

9 DMF CHO 58 

10 CO2 COOH 63 

11 Cyclohexanone C6H10OH 69 

 

 

 

 

 

 

 

 

 

 

 
Scheme 12. Key step in Crews’ synthesis of bengazole A. 
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Shioiri and co-workers have also contributed to the synthesis of bengazole A. In a 

similar approach, they lithiated 4-substituted oxazoles followed by condensation with 

5-oxazol-ylaldehyde in modest to medium yields. Attempts to improve the yield of 

this transformation either using Lewis acid complexation, alternate bases, or through 

the use of co-solvents for the reaction were unsuccessful (Scheme 13).37 

 

 

 

 

 

 

 

 
Scheme 13. Synthesis of the bengazole’s A core. 

 

Molinski and co-workers made use of the ambivalent reactivity of oxazole with 

the first report of a C4 direct condensation with aldehydes in natural products 

synthesis. They synthesised the core of bengazole A using a large excess of 2-

lithiooxazole 74 and aldehyde 72, producing the desired target in low yield and as a 

[1:1] mixture of epimers (73a and 73b). The low yield observed was attributed to the 

low reactivity of 74 and the formation of side products such as competing β-

elimination and products from the enolisation of 72 (Scheme 14).38  

 

 

 

 

 

 

 

 

 
Scheme 14. Molinski’s synthesis of advanced intermediate 73. 
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Also in the context of natural product synthesis, the group of Williams described a 

regioselective metalation on 2,4’-bis-oxazole 75. As reported, lithiation was 

accomplished regioselectively on C5-H due to heteroatom complexation and an 

internally directed deprotonation. This hypothesis was supported by semi-empirical 

calculations using AM1 and PM3 Hamiltonians, which confirmed the proposed 

pathway to have the lowest energy. The obtained lithiated bis-oxazole was reacted 

with several electrophiles, some of these results are shown in Table 11.39  

 

 
Table 11. Regioselective lithiation studies on 2,4’-bis-oxazole followed by electrophilic quenching. 

 

 

 

 

 
Entry Electrophile E Yield of 76 (%) 

1 CH3I CH3 63 

2 (CH3)3SiCl (CH3)3Si 83 

3 NCS Cl 50 

4 C6H5CHO C6H5CHOH 85 

5 (CH3)2CHCHO (CH3)2CHCHOH 84 

 

 

Other metallooxazoles have been prepared from lithiated oxazoles by 

transmetalation reactions. For example, Anderson and co-workers reported a general 

methodology to synthesise 2-acyl-5-phenyloxazoles 80 inaccessible by other 

protocols. Transmetallation from Li to Zn using ZnCl2 and then to copper using CuI 

was necessary because the organozinc species were unreactive towards the acid 

chlorides employed (Scheme 15).40  
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Scheme 15. Synthesis of bimetallic species 79 to generate 2-acyl-5-phenyloxazoles 80. 

 

 

This methodology was applied to the synthesis of 2-acyl-5-phenyloxazoles in 

generally good yield. Table 16 summarises these results. 

 
Table 16. Synthesis of 2-acyl-5-phenyloxazoles. 

 

 

 

 

 

 
Entry RCOCl Yield of 80 (%) 

1 C6H5COCl 70 

2 4-CH3O-C6H4COCl 65 

3 4-NO2-C6H4COCl 80 

4 C6H5CH=CHCOCl 58 

5 CH3(CH2)2COCl 67 

6 CH3CHCOCl 67 

7 (CH3)3CCOCl 64 
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Dondoni and co-workers have prepared 2-stannyloxazoles from the corresponding 

lithio derivates and have used them as precursors to 2-acyl and 2-aryl oxazoles. Most 

examples cover palladium catalysed Stille reactions; however, coupling with 

conventional acylating agents has also been disclosed (Scheme 16).41 

 

 

 

 

 

 
Scheme 16. Acylation of 2-trimethyltin-4-methyloxazole 81. 

 

 

 

1.3 Transition metal-catalysed cross-coupling reactions of 

Oxazoles. 
 

 

Transition metal-mediated carbon-carbon bond formation is arguably the single 

biggest advance to have taken place in organic synthesis over the past thirty years. 

Coupling two sp2 carbons together was almost an impossible transformation, and 

now it is carried out routinely in both academic laboratories and industrial 

processes.42 Heterocyclic cross-coupling reactions, however, remain considerably 

more under-developed. Primary classes of heterocycles containing one heteroatom 

have been extensively studied compared to heterocycles with more than one 

heteroatom.43 This is especially true for oxazoles since the number of cross-

couplings reported is very low. The last few years have produced, however, a 

significant increase in the number of cross-coupling reactions involving the oxazole 

heterocyclic system. Although other metals have also been used, cross-coupling 

reactions catalysed by palladium complexes have dominated the field. Construction 

of substituted oxazoles as well as poly-oxazoles has been achieved through the use of 
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palladium catalysed cross-coupling reactions. Appropriately functionalised oxazoles 

can participate in transition metal catalysed cross-coupling reactions, being either the 

organometallic reagent or the coupling partner. Halo-, OTf-, or SCH3-substitued type 

of oxazoles have been used as the coupling partners. 

 

In 1984, Pridgen, using a nickel catalysed cross-coupling methodology of 

Grignard reagents with 2-(methylthio)-4,5-diphenyloxazole, reported the first 

transition metal catalysed cross-coupling reactions involving oxazoles. This 

pioneering methodology was quite effective and is particularly useful to prepare 2-

alkyl-4,5-diphenyloxazoles in good yields, usually difficult to obtain by other 

methods. This methodology is shown in Table 17.44 

 

 
Table 17. Nickel catalysed cross-coupling reactions of Grignard reagents with 2-methylthio-4,5-

diphenyloxazole 83.  
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Since then, the field has been expanding rapidly and now several protocols have 

been developed for the Stille, Sonogashira, Heck, Suzuki, Negishi as well as direct 

arylation methods. 

 

1.3.1 Stille couplings 

 

In 1987, the first Stille coupling of oxazoles was reported by the Dondoni group. 

They carried out an exhaustive study on several variously substituted 2-

trimethylstannyl oxazoles. Lithiation of 4-methyloxazoles followed by quenching 

with trimethyltin chloride or tributyltin chloride provided the required 2-

stannyloxazoles, which were coupled under standard Stille conditions with a variety 

of aryl halides and also heteroaryl halides. A selection of examples is shown in Table 

18.17  

 

 
Table 18. Synthesis of 2-aryl-4-methyloxazoles using the Stille coupling. 
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4 H 
Br  

N

O

Me  

92 
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6 Me 
F

Br

 N
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Me
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7 Me 
Me

Br

 N

O

Me

Me

Me

 

70 

 

 

In 1994, as part of a program to evaluate indole derivatives as anti-emetic agents, 

chemists from the Lilly Company reported the Stille coupling between oxazole 

stannane 89 and the complex heterocycle 87 (Scheme 17).45 

 

 

 

 

 

 

 

 
Scheme 17. Stille coupling between indole 87 and 2-stannyl-oxazole 89. 

 

In 1995, in model studies towards the synthesis of the natural product 

hennoxazole A, Barrett and Kohrt considered the Stille coupling to connect the 2,4’-

linked bis-oxazole entity contained in the natural product. The authors prepared 2-

iodooxazole 91 in 90% yield from lithiation of oxazole 90 and subsequent quenching 

with I2. Under standard Stille conditions, 91 was coupled to phenyltrimethyltin and 

gave the coupling product 92 in 50% yield. Attempts to convert iodooxazole 91 to 
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the organostannane coupling partner failed. Alternatively, triflate 93 was coupled 

with hexamethyldistannane in the presence of PdCl2(PPh3)2 and gave the 

stannyloxazole 94, which underwent palladium catalysed coupling with the 

corresponding 2-iodooxazole 91 in 70 % yield (Scheme 18). This report represents 

the first synthesis of a bis-oxazole moiety using a transition metal catalysed cross-

coupling methodology.46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Scheme 18. Model studies towards the synthesis of hennoxazole A. 

 

A year later, this time in model studies towards the total synthesis of dimethyl 

sulfomycinamate, Kelly and co-workers also reported the use of oxazoles triflates as 

coupling partners in Stille couplings. Palladium catalysed coupling between triflate 

96 with a variety of organostannes gave the coupling products 97 in excellent yields 

(Table 19).47 
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investigated the palladium catalysed Stille reaction of stannyl styrene 99 with 5-

bromooxazole 98 obtaining excellent results (Scheme 20).48  

 

 

 

 

 

 

 

 
Scheme 20. Model studies towards the synthesis of Diazonamide A. 

 

 
Table 19. Synthesis of 2,4-disubstituted oxazoles using the Stille reaction on oxazole triflate 96. 
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4 C CPh  N

O

H3CO

Ph  

92 

 

 

Towards the synthesis of the complex macrocyclic natural product phorboxazole 

A, Panek and Schaus also employed oxazole triflates as coupling partners in their 

synthetic methodology to produce 4-vinyloxazoles. They carried out, in a one pot 

transformation, a series of carboalumination reactions catalysed by Cp2ZrCl2 of 

terminal alkynes, followed by Pd(PPh3)4 catalysed coupling reaction with triflate 93 

with good overall results in the coupling yields (Table 20). 

 

 
Table 20. Carboalumination reactions on terminal alkynes followed by palladium catalysed coupling 

of oxazole triflate 93. 
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Sadly, this strategy failed when applied to the actual natural product. The authors 

decided to reconsider their approach by carrying out standard Stille couplings on E-

alkenes instead. This new methodology gave excellent results for the model 

substrates and 60 % yield when applied to the phorboxazole A fragment. However, 

in order to achieve good rates of reaction, a modification of the stannane substitution 

was necessary (Table 21).49 

 

 
Table 21. Stille coupling of E-alkenes with triflate 93. 
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Smith and co-workers reported a novel methodology to synthesise 2-substituted-

4-trifloyloxazoles, including 2-alkyl type of substituents, inaccessible by the existing 

methods in the literature. The chemistry of these novel oxazoles triflates was initially 

explored through metalation reactions and also lateral reactions (Scheme 21). 

Surprisingly, these authors observed that lithiation of triflate 98 with t-BuLi and 

quenching with valerolactone afforded alcohol 100 as the exclusive product in 64 % 

yield. Lithiation on the C2 methyl group was not observed, the lithiation on C5 was 

assumed to be both the thermodynamic and kinetic product of lithiation, presumably 

due to the directing effect of the C4-OTf group. In addition, in order to demonstrate 

further utility of the triflate group, they carried out Stille couplings using vinyl 

tributyltin under standard Stille conditions that gave the coupling products in 78 % 

and 90 % yield respectively (Scheme 21).50  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Scheme 21. Synthetic studies on 2-substituted-4-trifloy-oxazoles. 
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fragments of the macrolide precursor, the Stille coupling was efficiently applied. 

Impressively, this is probably the most challenging palladium-catalysed coupling 

involving an oxazole heterocycle to be found in the literature. It was carried out 

under standard Stille conditions and yielded the desired adduct in 72 % yield 

(Scheme 22).51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Scheme 22. Key step in Smith’s total synthesis of phorboxazole A. 
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In order to make the total synthesis more scalable and also more convergent, the 

same group has recently proposed a second-generation total synthesis, which also 

includes a Stille reaction to couple the main fragments together. However, this time 

the roles in the reaction were inverted turning the oxazole into the nucleophile and 

the alkene into the electrophilic partner. Under the milder Liebeskind conditions, the 

fragments were coupled in 68 % yield at room temperature (Scheme 23).52 

 

 

 

 

 

 

 
Scheme 23. Stille coupling on Smith’s second generation total synthesis of phorboxazole A. 

 

 

Clapham and Sutherland have been interested in synthesising a variety of 4-

functionalised-2,5-diphenyloxazoles to evaluate their scintillation efficiencies for use 

as reporter tags in molecular recognition systems. The mild conditions usually 

employed in the Stille reaction made it their ideal choice for constructing these 

structures. They could efficiently introduce vinyl, allyl or aryl substituents using 4-

bromo-2,5-diphenyl as the electrophilic partner; however, it failed to produce the 

styrene-containing 2,5-diphenyloxazoles (Scheme 24). 

 

 

 

 

 

 

 
Scheme 24. Stille couplings on 4-bromo-4,5-diphenyloxazole 111. 
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As an alternative, the authors sought to swap the roles in the reaction by 

synthesising 2,5-diphenyl-4-trialkylstannanyloxazole 114, and use them as the 

nucelophilic partners in the Stille coupling. In contrast with Barrett’s difficulties in 

preparing 2-oxazolylstannane via direct lithium halogen exchange and 

transmetalation to tin, good yields were found on the lithiation and subsequent 

quenching of the reaction mixtures with trialkylstannyl chlorides of 113 (Scheme 

25). 

 

 

 

 

 

 
Scheme 25. Lithiation of 2,5-diphenyloxazole 113 and transmetalation to trialkyltin derivatives 114. 

 

 

The authors examined the coupling of 4-stannyloxazole 115a with a range of 

electrophiles and observed a dramatic effect when using stochiometric CuO in the 

rates of the reactions and also in the yield of the products obtained. Table 22 

summarises these results.53  

 
Table 22. CuO-enhanced Stille couplings of 2,5-diphenyl-4-tributylstannanyloxazole 115a with 

various electrophiles.  
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Very recently, towards the total synthesis of the oxazole-containing natural 

product Ajudazol A, Taylor and co-workers have described an impressive Stille 

coupling as the key step to connect the diene-rich side chain with the C2 carbon of 

the oxazole unit. After the synthesis of the side chain, the Stille coupling with 2-

(tributylstannyl)oxazole was investigated and, due to thermal stability issues with the 

long side chain, milder conditions were required. A range of palladium catalysts was 

examined, and the best combination proved to be PdCl2(PPh3)2 in DMF at 50 °C, 

which gave the required adduct in a 60 % yield (Scheme 26).54  

 

 

 

 

 

 

 

 
Scheme 26. Stille coupling as the key step in Taylor’s synthesis of a fragment of Ajudazol A. 
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1.3.2 Negishi couplings 

 

As described earlier, Hughes and co-workers transmetallated lithiooxazole 29 

with ZnCl2 and, subsequently, they described the first Negishi couplings on the 

oxazole heterocyclic system. They performed their couplings at room temperature 

using pre-reduced Pd2(PPh3)2Cl2 with DIBAL-H and found good reactivity for most 

aryl iodides. Due to a competitive decomposition side reaction of the intermediate 

organozinc complex, aryl bromides were not effective substrates.22 

 

 
Table 23. Negishi coupling on C2 of oxazoles. 
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Following Hughes pioneering report, Anderson and co-workers enlarged the field 

describing a general synthesis of 2-substituted- and 2,5-disubstituted-oxazoles also 

using oxazol-2-ylzinc chlorides in the context of the Negishi reaction. The scope of 

the reaction was expanded to aryl iodides and aryl triflates, the latter being the most 
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reactive, aryl bromides proved to be less reactive. The best conditions found included 

5 mol % of PdCl2(PPh3)2 pre-reduced with 10 mol % of n-BuLi in refluxing THF. 

Representative examples are shown in Table 24.55  

 

Table 24. Negishi couplings on C2 of oxazoles. 
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2 H 4-CH3CO-C6H4 OTf 67 

3 Ph 1- napthyl Br 38 

4 H 1- napthyl I 65 

5 Ph 1- napthyl OTf 67 

6 Ph 2-CH3-C6H4 I 68 

7 Ph 4-CH3O-C6H4 I 64 

8 Ph 4-NO2-C6H4 I 56 

9 H 
CO2Et

OTf

 
OTf 84 

10 H 
N H

N(n-Prop)2

Bz

I

 

I 52 

 

 

Very similarly, in order to evaluate 2-(4-methoxyphenyl)oxazole as a nonlinear 

optical chromophore, Miller and co-workers prepared this compound from 2-

bromooxazole and (4-methoxyphenyl)zinc chloride in the presence of Pd(PPh3)4 and 

isolated the desired coupling product in 75 % yield.56 

 

In a different context, Vedejs and Luchetta prepared a bis-oxazole structure by 

coupling 2-oxazolzinc species, generated from lithiation of 121 followed by 

transmetallation to zinc, to 4-iodo-5-substituted oxazole 122 using Pd2(dba)3 as the 
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palladium source and trifuranylphosphine (TFP) as the ligand. The desired product 

123 was obtained in a 50 % yield (Scheme 27).25 

 

More recently, Reeder and co-workers have reported an improved methodology 

based on Anderson’s work. Interestingly, better yields and faster reaction rates were 

obtained when changing to solid ZnCl2 instead of the ether solutions usually 

employed for the transmetallation step from lithium to zinc species. Furthermore, the 

same authors described a scalable procedure allowing for the preparation of larger 

amounts of products (over 1 Kg).57 

 

 

 

 

 

 

 

 

 
Scheme 27. Negishi coupling between 4-iodooxazole 122 and 121. 

 

 

1.3.3 Sonogashira couplings and Heck reactions 

 

 

The Yamanaka group reported the first Sonogashira along with the first Heck 

couplings of oxazoles in 1987. They described the palladium catalysed reactions of 

bromooxazoles 123 and 125 with terminal alkynes and also alkenes in medium to 

excellent yields (Scheme 28).58 
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acetylide in situ, this protocol avoids the need for a stochiometric amount of metal, 

making the Sonogashira reaction an ideal choice to functionalise heterocyclic 

systems.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Scheme 28. Sonogashira and Heck couplings on bromooxazoles. 

 

 

The authors reported the synthesis of several oxazole triflates to effect 

functionalisations on C2 and also on C4 of the ring. Due to stability issues of 2-

trifloyl oxazoles, as well as competitive homo-coupling of alkynes, the authors 

investigated and developed three different sets of conditions in order to comply with 

the most sensitive substrates. Furthermore, the compatibility of the alkyne 

functionality was also investigated and good reactivity was observed with a wide 

variety of functional groups. A selection of examples is shown in Table 25.59 
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R =

CO2EtR = 65%  124b

Ph
or

CN or Pd(OAc)2, PPh3, Et3N

PhR =

CNR = 50%  126b

123

125

Ph
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Table 25. Sonogashira couplings of funcionalised trifloyl oxazoles 127 with terminal alkynes. 

 

 

 

 

Entry Oxazole triflate Alkyne Methoda Product 128 
Yield of 

128 (%) 

1 N

OPh

OTf  
HC C(CH2)2Ph  A 

N

OPh

Ph  

86 

2 N

OTfO

Ph  
HC C(CH2)2Ph  C N

O

Ph

Ph

 
76 

3 N

OTfO

OBn
2  

HC C(CH2)2Ph  C N

O

OBn

2

Ph

 

83 

4 
N

OPh
OTf

 
HC C(CH2)2Ph  A 

N

OPh

Ph  
89 

5 N

OPh

OTf  
HC C-nPent  A N

OPh

npent  

71 

6 N

OPh

OTf  
HC C-TMS  A N

OPh

TMS  

69 

7 N

OPh

OTf  
HC C(OH)Me2  A 

N

OPh

Me Me

OH

 

42 

8 N

OTfO

Ph  
HC CCH2OBn  B 

N

OPh

OBn  
54 

9 N

OTfO

Ph  
HC CCH2OTBS  B 

N

OPh

OTBS  
75 

10 N

OTfO

Ph  HC C
HN

O

OMe

 
C 

N

O

Ph

HN

OMeO

 

71 

aMethod A: 5 % Pd(PPh3)4, 10 % CuI, 1.1 equiv. of alkyne, 5 equiv. of Et3N, 0.1 M DMF, 65 °C. Method B: 5 % Pd(PPh3)4, 10 

% CuI, 1.1 equiv. of alkyne, 5 equiv. of 2,6-Lutidine, 0.1 M DMF, rt. Method C: 5 % Pd(PPh3)4, 10 % CuI, 1.1 equiv. of 

alkyne, 5 equiv. of 2,6-Lutidine, 0.1 M 1,4-dioxane, rt. 

N

O

OTf
R

alkyne

N

O

R'
R

conditions A, B or C

127 128
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The same authors applied this methodology to the synthesis of the C1’-C11’ 

oxazole-containing side chain of Leucascandrolide A in 84% yield (Scheme 29).60 

 

 

 

 

 

 

 
Scheme 29. Synthesis of the C1’-C11’ oxazole-containing side chain of Leucascandrolide A 

 

 

1.3.4 Suzuki couplings 

 

 

As part of a medicinal chemistry program, chemists at Neurogen required a 

flexible and high yielding route to access variously substituted oxazoles. They 

reported the Stille, Suzuki, Negishi and Sonogashira couplings of different 

organometallic species to 2-, 4- and 5-halo-oxazoles. The couplings were carried out 

under standard conditions and yielded the corresponding substituted oxazoles in 

generally high yields. A selection of examples in the context of the Suzuki reaction is 

shown in Table 26.61,62 

 

Taylor and co-workers have carried out extensive regioselective Stille and Suzuki 

couplings on 4-bromomethyl-2-chlorooxazole 133. Good selectivity was found to 

occur at the 4-bromomethyl position, and subsequent coupling of the isolated product 

134 at the 2-chloro-position gave a medium yield of the desired 2,4-disubstituted 

oxazole 135. Optimisation studies led to the development of a general methodology 

to synthesise 2,4-disubstituted oxazoles in generally good yields. The Suzuki 

couplings employed in this strategy are shown in Table 27.63  

 

N

OTfO

OTBDPS

2

N

O

OTBDPS

2

HN

MeO O
Pd(PPh3)4, CuI

2,6-lutidine, dioxane
rt, 84%

OMe

ON
H

CHC129 130
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Table 26. Suzuki coupling of halooxazoles. 

 

 

 

 

 
Entry halooxazole ArB(OH)2 Product 132 Yield of 132(%) 

1 
N

O
Cl

EtO2C  
PhB(OH)2 N

O
Ph

EtO2C  
87 

2 
N

O
Ph

Br

EtO2C  
PhB(OH)2 

N

O
Ph

Ph

EtO2C  
93 

3 
N

O
Ph

Br

EtO2C  

B(OH)2

MeO
OMe  N

O
Ph

EtO2C

MeO

MeO

 

91 

4 
N

O
Ph

Br

Ph

 
PhB(OH)2 

N

O
Ph

Ph

Ph

 
89 

5 
N

O
Ph

Br

EtO2C  

B(OH)2
NH2

 N

O
Ph

EtO2C

NH2

 

78 

 
Table 27. Suzuki couplings on 2-chlorooxazoles 134. 

 

 

 

 

 
Entry 2-chlorooxazole 134 R’B(OH)2 Product 135 Yield of 135 (%) 

1 
N

O
Cl

Ph  
PhB(OH)2 

N

O
Ph

Ph  
97 

2 
N

O
Cl

Ph  
PhB(OH)2 N

O
Ph

Ph  
81 

3 
N

O
Cl

Ph  

S

B(OH)2  
N

O

Ph

S

 
60 

4 
N

O
Cl

Ph  

S

B(OH)2  
N

O

Ph

S

 
67 

 

N

O
Ar(BOH)2, Pd(PPh3)4

aq. K2CO3

Hal
R1, R2

N

O

Ar
R1, R2

131 132

N

O
R'(BOH)2, PdCl2(PPh3)2

aq. Na2CO3

N

O
Cl

DME, 80 οC
R'

R R

134 135
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Very recently, Inoue and co-workers have reported the synthesis of the first 

oxazol-4-ylboronates from triflate oxazoles using Miyaura’s borylation conditions 

and also from 5-methyl-4-bromo-2-phenyloxazole using conventional borylation 

conditions (Scheme 30). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Scheme 30. Synthesis of the first oxazole-4-ylboronates. 

 

These reagents in combination with various aryl halides were used in standard 

Suzuki reactions, giving medium to excellent yields of the desired coupling products 

(Table 28).64 

 

Shortly afterwards, the same authors disclosed a two-step strategy for the 

synthesis of C2-C4 linked poly-oxazole using the Suzuki-Miyaura reaction. Their 

tactic was based on a repetitive procedure involving bis-oxazole 139 containing the 

appropriate pinacol boronic ester functionality on C4 and also a silyl group on C2 

susceptible to electrophilic displacement by a halide source. Boronic ester 139  was 

synthesised from the corresponding triflate 138 using Miyaura’s conditions in 42 % 

yield (Scheme 31). 

N

O
Pd2(dba)3.CHCl3
PCy3, pinB-Bpin

KOAc, dioxane
Reflux, 2h

Ph

OTf

N

OPh

B
O

O

75 %

N

O
n-BuLi, (iPrO)3B
THF at -78 οC

Pinacol, AcOH

Ph

Br

N

OPh

B
O

O

55 %
Me

Me

93 136a

137 136b
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Table 28. Suzuki couplings of oxazol-4-ylboronates 136. 

 

 

 

 

 

 

 
Entry R Halide Product 137 Yield of 137(%) 

1 H 
Br

EtO2C  
N

O
Ph

CO2Et  

83 

2 H 
Br

MeO  
N

O

Ph
OMe  

56 

3 H 
Br

Me  
N

O

Ph

Me  
54 

4 H 
Br

MeMe  N

O

Ph
Me

Me

 
65 

5 H 
N Br  N

O

Ph
N  

73 

6 H N

O

Cl
EtO2C

 N

O

Ph O

N CO2Et

 
71 

7 H 
N

SBr

 N

O

Ph S

N

 
80 

8 Me 
Br

 N

O

Ph

Me

 
98 

9 Me N

O

Cl
EtO2C

 N

O

Ph

Me

O

N CO2Et

 
84 

10 Me 
N

SBr

 N

O

Ph

Me

S

N

 
88 

 

N

OPh

B
O

O

R
Ar-X

Pd(PPh3)4 5%

K2CO3, DMF
100 οC

N

OPh

Ar

R

136 137
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Scheme 31. Synthesis of oxazol-4-ylboronate 139. 

 

Accordingly, oxazole-4-ylboronate 139 was coupled with 2-chlorooxazole 140 

under standard Suzuki conditions and gave tris-oxazole 141. Nucleophilic 

displacement of the TBS group by TBAF/I2 gave 142 with the required 

functionalisation on C2 essential to carry out the next iterative Suzuki coupling. As 

before, palladium catalysed cross-coupling of iodide 142 with 139 provided the 

pentakis-oxazole structure 143 in 31% yield (Scheme 32).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Scheme 32. Synthesis of pentakis-oxazoles 143 using the Suzuki-Miyaura reaction. 
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O
Pd2(dba)3

.CHCl3
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NTBS N
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NTBS
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N

O
Cl

RO2C
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Dioxane, reflux
N
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N

O

CO2R

N

O

O
N

I

N

O

CO2R

I2, TBAF
THF, rt
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P(o-tolyl)3

K2CO3

Dioxane, reflux

N

O
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O

NTBS
O

O

N

O
O

N

N
O

CO2R

O
N

ON

TBS

139

140

141
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R = Et           84%

R =
O

O
75%

R = Et           75%

R =
O

O
80%

R = Et           31%

R =
O

O
63%
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The authors remarked that as the number of oxazoles increased per iteration, the 

yields also decreased for each coupling. This problem was attributed to the low 

solubility of the longer poly-oxazoles in organic solvents. As a result, in order to 

improve their solubility, it was decided to modify the ester part of the poly-oxazoles 

using solketal esters rendering it more soluble in organic media. Switching to a 

different ester proved successful and tris-oxazole and penta-oxazole structures could 

be obtained this time in 75 % and 63 % yield respectively (Scheme 32).65 

 

Alternatively, even numbered poly-oxazoles could also be carried out with the 

existing method. Thus, carboalkylation of triflate 138 was carried out by treatment 

with Pd(PPh3)4 in the presence of a large excess of ethanol or solketal, 2 equivalents 

of triethylamine and carbon monoxide in DMF at 100 °C, providing the desired 

esters 144 in 99 % and 63 % yield respectively (Scheme 33).  

 

 

 

 

 

 

 

 
Scheme 33. Carboethoxylation of triflate 138. 

 

Immediately after deprotection of the silyl group, and using the same sequence as 

before, tetra-oxazole and also hexa-oxazole structures were obtained in medium to 

good yields (Scheme 34). 

As an extension of their C4 selective bromination, Li and co-workers carried out 

some Suzuki couplings on 4-bromo-5-substituted oxazoles in generally medium to 

excellent yields (Table 29).  

R = Et           99%

R =
O

O
63%

N

O
Pd(PPh3)4

Et3N, ROH, CO

DMF, 100 οCOTf

O

NTBS N

O

CO2R

O

NTBS

138 144
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Scheme 34. Synthesis of tetra- and hexa-oxazoles using the Suzuki-Miyaura reaction. 

 

As demonstrated by Mongin and co-workers, other metals than tin, zinc or boron 

can undergo palladium catalysed cross-coupling reactions of oxazoles. As shown 

earlier, lithium magnesates are suitable for hydrogen magnesium exchange reactions 

on oxazole and benzoxazole at room temperature, and can also be coupled to 

aromatic halides in the presence of PdCl2(dppf) as shown in Scheme 35.27 

 

 

 

 

 

 
Scheme 35. Palladium catalysed cross-coupling reactions of in situ generated 

lithiummagnesates oxazoles with aryl halides. 

N

O 1. 1/3 equiv Bu3MgLi
    THF, rt, 2h

2. Ar-X, reflux, 18 h
    PdCl2(dppf) 3%
3. H2O

N

OAr

Ar = 2-pyridil,   53 %  150a
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O
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O
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Table 29. Suzuki couplings on 4-bromooxazoles derivatives. 

 

 

 

 

 

 
Entry R1 Product 149 Yield of 149 (%) 

1 N

NN

 

N

NN

NO

FF

F
 

92 

2 
NO2

 
N

O
NO2  

61 

3 S
 NO

S

 

54 

 

 

1.3.5 Direct arylations 

 

 

Direct arylations are scarcer compared to other cross-coupling such as the 

Sonogashira or the Stille reactions, and comparatively many more direct arylations 

on the related benzoxazole have been reported. However, some examples in the 

recent literature have been disclosed. 

 

As part of a program to extensively investigate the direct arylation of heterocyclic 

halides and aromatic heterocycles, the Ohta group, in 1992, became the first to report 

the direct coupling of aromatic halides with oxazoles on C5-H. They reported the 

coupling reactions between chloropyrazines 150 and 1,3-oxazole 1 in the presence of 

Pd(PPh3)4 and AcOK, which gave the coupling products 151a-c in good yields 

(Scheme 36).66  

N

O
R1

Br

Pd(dppf)Cl2.CH2Cl2
CsF, K2CO3, RB(OH)2

Water, 2-methylTHF, 75 οC
N

O
R1

R

148 149
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Scheme 36. Direct arylation of chloropyrazines 150 and 1,3-oxazole 1. 

 

In 1998, Miura and co-workers disclosed a study to investigate the effects of base 

and additives on the palladium-catalysed direct arylation of azoles, including 

imidazoles, thiazoles and oxazoles with aryl iodides and bromides. In particular, the 

authors studied the C5-H phenylation of 2-phenyloxazole, 1-benzyl-2-methyl-1H-

imidazole and 2-methylthiazole under various conditions and concluded that the 

reactions using phenyl iodide in combination with K2CO3 were less efficient than 

those using phenyl bromide. Additionally, CuI promoted the reaction in the case of 

thiazoles; however, no benefit was observed for oxazoles or imidazoles (Scheme 37).  

 

 

 

 

 

 

 

 
Scheme 37. Phenylation studies on C5 of 2-phenyloxazole. 

 

In 2003, as an alternative to the Suzuki coupling, Hodgetts and Kershaw 

investigated the inter- and intramolecular direct coupling of a small number of 

oxazoles. Under Pd(OAc)2 and PPh3 with Cs2CO3 in DMF at 140 °C, aryl iodides 

and bromides gave very good yields of the coupling products, whereas aryl chlorides 

could not be coupled efficiently. The authors realised that in order to increase the 

yield of the reaction for aryl chlorides longer reactions were needed; however, 

N

O
+

N

N

Cl

R

R

Pd(PPh3)4, AcOK

DMA, reflux N

N R

R
O

N

R = Me;   72%  151a 
R = Et;     80%  151b
R = i-Bu;  68%  151c

1 150

N

OPh

Ph-X

Pd(OAc)2; PPh3

CsCO3 or K2CO3
N

OPh
Ph

X = I;   Cs2CO3   79%  
X = I;   K2CO3     66%
X = Br; K2CO3     90%

150b 113
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decomposition of the palladium complexes was also observed for prolonged reaction 

times. To circumvent this problem, PPh3 was replaced with the bulkier ligand P(o-

tol)3 based on the assumption that sterically demanding ligands form more stable 

PdL2 complexes and that quaternization of the phosphorous by the aryl halide is 

minimized. This initiative proved very successful and gave the desired coupling 

product in 78 % yield (Scheme 38).62 

 

 

 

 

 

 

 
aP(o-Tol)3 was used instead of PPh3. 

 
Scheme 38. Direct arylation of oxazole 152 with aryl halides. 

 

Under the same conditions, intramolecular direct arylation of 154 was also 

successful and provided the desired adduct in a good 63 % (Scheme 39). 

 

 

 

 

 

 

 
Scheme 39. Intramolecular direct arylation of oxazole 154. 

 

 

More recently, Hoarau and co-workers have reported a rigorous study of the 

regioselective palladium catalysed phenylation of ethyl 4-oxazolecarboxylate 156, 

which was chosen as a substrate for the model system due to its ready accessibility 

and the existence of two reactive sites at C2 and C5 permitting selective phenylation 

N

O

Ph

Pd(OAc)2, PPh3
Cs2CO3, DMF 140 οC

O

NH
I

N
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O

N
O
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154 155
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CO2Et
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O2N

X

N
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X = Br  80%
X = Cl  31 %, 78%a

152 153

O2N



Chapter 1. Organometallic Reactions of Oxazoles 

 72

under proper choice of experimental conditions. In a typical experiment, ethyl ester 

156 was combined with phenyliodide, Pd(OAc)2, PPh3 and Cs2CO3 in refluxing 

dioxane for 18h, producing a mixture of C2, C5, C2/C5 phenylation products 157-159 

(Scheme 40).67  

 

 

 

 

 

 
Scheme 40. Phenylation of ethyl-4-oxazolecarboxylate. 

 

 

Interestingly, under these conditions a switch to DMF as the solvent provided C2 

product 157 exclusively in a moderate 40 % yield. After this, the authors decided to 

keep the original conditions while screening different bulky electron-rich ligands. 

They obtained high yields of C2 phenlylated product 157 using Buchwald’s 2-

(dicyclohexylphosphino)-biphenyl ligand and also with the carbene 1,3-bis-

(mesitylimidazol)carbene (IMes). After some studies on the influence of 

catalyst/ligand ratio and the effect of the solvent, it was concluded that the C2 phenyl 

derivative 157 was always obtained as the major product. In particular, 157 could be 

obtained in an excellent 86 % yield for the arylation carried out in toluene as the 

reaction solvent and using P(o-Tol) as the palladium ligand. The authors attributed 

this selectivity to steric hindrance being the most significant factor operating in the 

regiocontrol process.67 

 

 

Bellina and co-workers have studied the direct arylations of imidazoles, thiazoles 

and also oxazoles using a palladium catalysed with copper-mediated procedure. They 

obtained the C2 arylation product of 1 in 23 % yield after 48h reaction at 140 °C in 

DMF and in 74 % yield after 74h using excess of 1 (Scheme 41).68 
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Scheme 41. Palladium catalysed copper-mediated direct arylation of 1,3-oxazole 1. 

 

Based on the observation that copper salts can affect regioselectivity the 

palladium catalysed electron-rich heterocycle arylation, Daugulis and Do have 

recently reported an interesting copper catalysed direct arylation of heterocycle C-H 

bonds.69 The authors stated that most efforts in cross-coupling methodologies are 

directed towards the replacement of aryl iodides with cheaper aryl chlorides but, in 

fact, it is more cost efficient to replace the expensive palladium complexes with 

copper-based catalysts. It was presumed that using a stronger base instead of the 

commonly employed cesium or potassium carbonates should generate the 

organocopper species and the best results were obtained by using aryl iodides in 

combination with LitBuO in DMF or other polar solvents at high temperatures. 

Several heterocycles were efficiently arylated using this methodology, including 1,3-

oxazole 1 in 59 % yield (Scheme 42). In addition, the authors carried out some 

mechanistic investigations and concluded that the reaction could proceed, either via a 

copper-assisted benzyne type of mechanism, or by heterocycle deprotonation 

followed by lithum/copper transmetallation and reaction with the aryl iodide species 

giving the observed products.69 

 

 

 

 

 
Scheme 42. Copper-catalysed direct phenylation of 1,3-oxazole on C2. 
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Very recently, Greaney and co-workers have reported a silver-mediated mild 

direct arylation method to arylate thiazoles and also oxazoles. The authors found 

that, when using water as the reaction solvent, excellent conversion and a notable 

increase in the rates of the reaction was observed.70  

This method was applied to the development of a general methodology to couple 

oxazoles at C5 including the synthesis of natural products, a selection of examples is 

shown in Table 30.71  

 

 
Table 30. C5 Ag-mediated, on water direct arylation of 2-substituted oxazoles. 

 

 

 

 

 

 

 
Entry R1 Product 163 Yield of 163 (%) 

1 H 
N

O

H

 

92 

2 H 
N

O

H
Me

 

83 

3 H 
N

O

H

CF3  

80 

4 OMe 
N

O

MeO

 

83 

5 OMe 
N

O

MeO
Me

 

98 

6 OMe 
N

O

MeO

CF3  

98 

N

O

Ag2CO3
Pd(dppf)Cl2.DCM 5%

N

O
PPh3 10 %
H2O, 60 οC

R1 R1

R2

I
R2

162 163
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7 CH3 
N

O

H3C

 

92 

8 CH3 
N

O

H3C
Me

 

90 

9 CH3 
N

O

H3C

CF3  

90 
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2.1 Introduction 
 

 

 

 

 

 

The 2,4-substitution pattern found in naturally occurring oxazoles has resulted in 

the development of great variety of condensation methods often involving the 

preparation of appropriately substituted acyclic amides and their subsequent 

dehydrative cyclisation.1 An alternative strategy is to prepare the oxazole heterocycle 

at an early stage and, using palladium chemistry, carry out subsequent 

functionalisations at each position. In recent years, this idea has been exemplified in 

the development of Stille,2 Sonogashira,3 Negishi,4 and direct arylation methods5 for 

the functionalisations of oxazoles. By contrast, at the start of this work, the Suzuki-

Miyaura coupling had seen relatively little application.6 The limited availability of 

known halogenated oxazoles and the scarcity of oxazole boronic acids or esters in 

the literature before 2006 has certainly influenced the number of Suzuki couplings of 

oxazoles reported. 

 

Among metal-mediated cross-coupling reactions, the palladium-catalysed cross-

coupling reaction between different types of organoboron compounds and various 

organic electrophiles, such as halides and triflates, in the presence of a base provides 

a powerful and general methodology for the formation of carbon-carbon bonds. The 

coupling reaction offers several advantages: ready and wide availability of 

commercially available organoboron compounds; mild reaction conditions; water 

stability; toleration of a broad range of functional groups; good regio- and 

stereoselectivity; small quantities of catalysts; application to one-pot synthesis; non 

toxic reaction boron sub-products; and easy separation of inorganic boron 

compounds.7 
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As a popular choice, the Suzuki reaction has been used extensively to 

functionalise many heterocyclic systems. The heteroatoms commonly associated 

with heterocycles are known to exert an influence in the coordination sites of the 

metal catalysts, very often inhibiting them and affecting dramatically the outcome of 

reactions.8  

 

 

2.2 Catalytic cycle7,9 
 

 

The cross-coupling reaction of organoboron compounds follows an analogous 

catalytic cycle to main palladium cross-coupling reactions (Stille, Negishi and 

Sonogashira) (Scheme 1). 

 

(a) Formation of the active species from palladium precursors. 

(b) Oxidative addition of organic halides or other electrophiles to a Palladium (0) 

complex yielding R-Pd-X species 1. 

(c) Transfer of the organic group between R-Pd-X 1 and R’B(OH)3
- 2 species to 

generate Pd complex 3. 

(d) Reductive elimination of 3 to give the product R-R’ and to regenerate the Pd (0) 

complex. 

 

(a) The generation of catalytically active species Pd(0) from the corresponding 

palladium precursors has been rate-limiting in several cases. Several authors have 

shown that, even when the same phosphine or carbene ligand is used in a particular 

reaction, the source of palladium has an important influence on the catalytic rates.9  

 

(b) The insertion of palladium (0) species into an aryl halide or triflate bond is called 

oxidative addition. Several studies have been carried out to establish the effect of 

different ligands on the oxidative addition step of the catalytic cycle. Sterically 

demanding ligands have the ability to stabilise low-coordination palladium 

complexes, which because of their low electron count are more reactive. In addition, 
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electron-donating ligands generate an electron-rich metallic complex, which 

undergoes faster oxidative addition reactions. The different rates observed for aryl 

halides and triflates are I > Br > OTf > Cl.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Scheme 1. Catalytic cycle for the cross-coupling of organoboron compounds catalysed by Pd. 

 

 

(c) The transmetalation step is the less well-understood phase in the catalytic cycle. 

Current studies indicate that there are three possible processes, paths A-C (Scheme 

1) for transferring the organic group on the boron species to the oxidative addition 

product 1. The addition of inorganic bases has been shown to accelerate dramatically 

this transfer. It has been observed that boronic acids do not react with R-Pd-X 

species, but in control experiments it has been shown that ate complexes such as 

Bu4BLi or Ph4BNa readily undergo the palladium catalysed coupling reaction in the 

absence of a base. This suggests that quaternary boron anions enhance the 

nucleophilicity of the organic group; hence the transfer to the electrophilic R-Pd-X 
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species is faster. The transmetalation rates for 1 are I < Br < Cl, in reverse order to 

the oxidative addition step (path A). Another possibility is the ligand exchange 

between R-Pd-X and a base R”O- to form oxo-palladium (II) species 4, which 

undergoes rapid transmetalation with boronic acids without the aid of a base (path 

B). It is known that the halogen or triflate group on R-Pd-X 1 is readily displaced by 

an alkoxy, hydroxy, or acetoxy anion to provide a basic R-Pd-OR” complex, but 

other routes to these species are also feasible (path C). As they are highly dependent 

on the organoboron reagents and the reaction conditions used, it is not obvious in 

most reactions which transmetalation process is predominant.7d 

 

(d) The final step in the catalytic cycle is called reductive elimination. It is generally 

accepted that this step is faster when palladium is coordinated to electron 

withdrawing and sterically demanding ligands. It has been shown that, for very bulky 

ligands, sterics are the main factor dominating over electronic effects. Thus, even 

very electron rich bulky ligands will facilitate the reductive elimination step.7,9 

 

 

2.3 Suzuki coupling of oxazoles. 
 

 

The C2 and C4 positions on the oxazole ring were chosen with a view of 

developing a versatile Suzuki methodology for the generation of a range of 2,4-

arylated and heteroarylated oxazoles. The C4 position was first attempted and known 

oxazole triflates were chosen as suitable electrophiles. The synthesis of oxazoles 

triflates from oxazolones, first introduced by Barrett10 and Kelly11 in the context of 

the Stille reaction, enables the regiocontrolled installation of an electrophile 

functional group for subsequent palladium cross coupling. This strategy avoids 

potential regioselectivity problems inherent to direct halogenation at the oxazole 4-

position and has been employed successfully in several Stille and Sonogashira 

oxazole cross-coupling reactions.12 Consequently, in order to diversify the method, 

three electronically different 2-aryl-4-trifloyl oxazoles 8a-c were chosen and 

prepared (Scheme 2). 
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Accordingly, amides 5a-c were condensated with chloroacetyl chloride giving the 

corresponding chloroimides in good yields (71 to 76 %) after re-crystallisation from 

toluene. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Scheme 2. Synthesis of 2-aryl-4-trifloyloxazoles 8a-c. 

 

 

Deprotonation with NaH followed by thermal cyclisation provided oxazolones 7a-

c in 34% to 59% yield after column chromatography. Finally, standard triflation 

using triflic anhydride and triethylamine gave triflates 8a-c in medium to excellent 

yields. Triflates 8a-c are stable and crystalline solids that can be stored for several 

months at -20 °C.  
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In order to set the reaction parameters, a model system and a range of conditions 

were first explored for the optimisation of the Suzuki coupling of triflate 8a and 

tolylboronic acid 9a (Table 1).  

 

 
Table 1. Optimisation of Suzuki coupling of triflate 8a with tolylboronic acid.a 

 

 

 

 

 

 
Entry Catalyst Base Time Solvent Yield of 10a(%)g 

1 PdCl2(dppf) K3PO4 48 h 1,4 dioxane Traces 

2 PdCl2(dppf) NaOH 20 h 1,4 dioxane 0 

3 PdCl2(dppf) KOtBu 20 h 1,4 dioxane 0 

4 Pd(PPh3)4 NaOH 16 h aq dioxane Traces 

5 Pd(PPh3)4 NaOH 16 h CH3CN Traces 

6 PdCl2(PPh3)2 Na2CO3 2M 48 h THFd 16 

7 PdCl2(PPh3)2 Na2CO3 2M 16 h 1,4 dioxane 48 

8 Pd(OAc)2, PCy3
b KF 72 h THF Traces 

9 Pd(OAc)2, PCy3
c KF 72 h THF 36 

10 PdCl2(PPh3)2 Na2CO3 2M 20 min 1,4 dioxanee 94 

11 PdCl2(PPh3)2
f Na2CO3 2M 40 min 1,4 dioxanee 67 

aConditions: 5mol% catalyst loading, 3 equiv of base, reflux. b1 mol % of Pd(OAc)2 and 1.2 mol % of PCy3. c5 mol % of 

Pd(OAc)2 and 6 mol % of PCy3. dReaction was carried out at 60 °C. eMicrowave irradiation at 150 °C for 20 min. f1 mol % 

catalyst loading. gIsolated yield after SiO2 chromatography. 

 

 

It was immediately clear that the substrate 8a could not tolerate bases such as 

KOtBu or NaOH often employed in the reaction (Table 1, entries 1-5), as extensive 

degradation of the triflate was observed with very little coupled product 10a being 

observed. Use of a Na2CO3 (aqueous, 2M) with PdCl2(PPh3)4 as catalyst provided the 

first signs of a successful reaction. Refluxing in THF for 2 days, using aqueous 

N

O

OTf

8a

Conditionsa
N

O
Ph Ph

9a

B(OH)2

10a
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Na2CO3 as a base, produced 10a in 16% yield (entry 6), which could be improved to 

48% by switching to the higher-boiling point solvent 1,4-dioxane (Table 1, entry 7).  

The combination of a Pd(OAc)2/PCy3 catalyst system with potassium fluoride as a 

base, reported to be effective for the Suzuki coupling of aryl triflates under mild 

conditions,13 proved ineffective with the oxazole substrate producing a low yield of 

coupled product after prolonged reflux with a slow rate reaction observed (Table 1, 

entries 8 and 9). In order to achieve higher temperatures than the solvents boiling 

point, microwave heating was then considered. It was observed that 20 min 

irradiation at 150 °C in 1,4-dioxane (Table 1, entry 10) produced the desired 4-tolyl 

oxazole 10a in an excellent 94% yield. The catalyst loading could be reduced to 1% 

but at the expense of a longer reaction time and a decrease in yield (Table 1, entry 

11). 

The methodology was extended to the synthesis of a range of 2,4-disubstituted 

oxazoles (Table 2).  

 

 
Table 2. Suzuki coupling of oxazolyl 4-triflates. 

 

 

 

 

 

 
Entry Boronic acid/ester Product Yield (%)a 

1 
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94 
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3 

B(OH)2
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10c
CF3  

87 
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12 

B(OH)2

9h

F

 

N

O

10l
F

MeO

 

85 

13 
B

O

O

9i  

N

O

10m  

0 

14 

B(OH)2

9j  

N

O

10n  

0 

aIsolated yield after SiO2 chromatography. 

 

 

Excellent reactivity was observed for a variety of electron-deficient and electron-

rich aryl boronic acids (Table 2, entries 1-12), ortho-substituted aryl boronic acids 

(entry 4), as well as heteroaromatic picacol boronic esters (entries 8-10), with yields 

being uniformly good to excellent. The reaction was tolerant of alternative aryl 

groups in the 2-position, with electron-donating (Table 2, entries 7, 10 and 12) and 

electron-withdrawing groups (Table 2, entry 5) producing high yields of 4-

substituted oxazoles. The scope of the reaction was limited to aryl and heteroaryl 

substituents with no products were formed for the couplings between vinyl pinacol 

boronic ester 9i or cyclohexyl boronic acid 9j with triflate 8a (entries 13 and 14). 

 

Having established a robust protocol for Suzuki coupling at the 4-position, 

arylation at the 2-position was next investigated. A similar strategy was first adopted 

for the preparation of the Suzuki electrophile by synthesising the known 4-phenyl-4-

oxazalin-2-one 11 (Scheme 3).3c  



Chapter 2. Suzuki Couplings of Oxazoles 

 90

 

 

 

 

 

 

 

Scheme 3. Synthesis of 4-phenyl-4-oxazalin-2-one 11. 

 

 

Accordingly, nucleophilic attack of 2-hydroxyacetophenone in basic media to 

phosgene gave the corresponding chloroformate, which in situ was converted to 

carbamate using aqueous ammonia. In situ cyclisation followed by dehydration 

provided the oxazolone 11 in 62% after column chromatography.  

 

Attempts to convert 11 to the known 2-trifloyl oxazole 12 were successful; 

however, it was quite thermally unstable and decomposed immediately when 

exposed to high temperatures. The synthetically equivalent nonaflate 13 proved 

slightly more robust and could be isolated and purified by column chromatography. 

However, when subjected to the reaction conditions for Suzuki coupling, it likewise 

rapidly decomposed (Scheme 4). 

 

 

 

 

 

 

 
Scheme 4. Synthesis of triflate 12 and nonaflate 13. 

 

 

Efforts to transform 11 into alternative Suzuki electrophiles using POBr3, 

(Ph)3PBr2, or (Ph)2POCl were unsuccessful. As an alternative to the triflate group at 
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the 2-position, it was decided to prepare 2-chlorooxazoles, readily synthesised by 

Vedejs’ protocol of oxazole lithiation and subsequent trapping with 

hexachloroethane, a method that avoids ring-opening complications of the 

lithiooxazole. As a result, chlorooxazole 15 was prepared from the known 4-

phenyloxazole in 66% yield after column chromatography (Scheme 5).14  

 

 

 

 

 

 
Scheme 5. Synthesis of chlorooxazole 15. 

 

 

The 2-chloro-4-phenyloxazole 15 proved to be an excellent substrate for Suzuki 

coupling under the optimised conditions. A range of boronic acids could be coupled 

to the chloride in generally excellent yields (Table 3, entries 1-5). 

 

 
Table 3. Synthesis of 2,4-disubstituted oxazoles from 15. 
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aIsolated yields after SiO2 column chromatography. 

 

 

 

 

 

2.4 Synthesis of bis-oxazoles using the Suzuki-Miyaura reaction. 
 

 

With an arylation methodology in place for the oxazole 2- and 4- positions, the 

coupling of two oxazole units to make a bis-oxazole was envisaged. Since no 

examples of this type of strategy had been reported before the start of this work, this 

reaction would represent the first steps in the development of a general Suzuki 

coupling methodology. The challenge was to successfully synthesise an oxazole 

boronic acid, a class of compound rarely described in the literature before 2006.6c,g,h,i  

 

A first preparation of an oxazole boronic ester was attempted on oxazole 14. 

Following the conditions described by Brown and co-workers, 4-phenyloxazole 14 

was selectively lithiated on C2 and the resulting anion was quenched with B(i-OPr)3 
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Unfortunately, only starting material could be recovered from the reaction mixture 

(Scheme 6).15 

 

 

 

 

 
Scheme 6. Attempts to borate 14 on C2. 

 

 

In order to obtain the desired oxazole boronic ester, the Miyaura reaction was next 

considered. This reaction, developed by Miyaura and co-workers, describes the 

palladium catalysed cross-coupling reaction of alkoxydiboron reagents with 

haloarenes and aryl triflates giving aryl boronic esters. The catalytic cycle for this 

reaction is presented in Scheme 7.16  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Scheme 7. Catalytic cycle for the Miyaura reaction. 
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The catalytic cycle for the Miyaura reaction is related to path B of the Suzuki 

reaction. Oxidative addition of Pd (0) on 1 followed by displacement of X (halogen 

or triflate group) by OAc- gives the reactive intermediate R-Pd-OAc 3. 

Transmetalation of 3 occurs readily with diboron species and, following reductive 

elimination, the product 5 is formed along with Pd (0) that completes the cycle. The 

high reactivity of the (acetoxo)palladium (II) species 3 is attributed to the high 

reactivity of the Pd-O bond and the high oxophilicity of the boron center.16d 

 

Following the original conditions, chlorooxazole 15 was treated with Bis-

pinacolato diboron, PdCl2(dppf)/dppf and NaOAc in 1,4-dioxane (Scheme 8). 

 

 

 

 

 

 

 

 
Scheme 8. Attempt to borylate on C2 using the Miyaura reaction. 

 

 

Unfortunately, none of the desired oxazole boronic ester was formed. Instead, a 

quantitative yield of oxazole 14 could be isolated from the reaction mixture. The 

carbon-boron bond can be susceptible to protonolysis when adjacent to a heteroatom, 

leading to stability problems and handling difficulties. When subjected to similar 

conditions, this protodeboronation effect has also been observed in the borylation of 

2-chloropyridine.16c 

 

The C4 position of the oxazole was next addressed. Miyaura’s original conditions 

were applied to triflate 8a (Scheme 9).  
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Scheme 9. Synthesis of oxazole boronic ester 17. 

 

This time, the desired boronic ester 17 was obtained in 72% yield after re-

crystallisation.  

 

It was later realised that bis-oxazoles could be generated by in situ formation of 

boronic ester followed by one-pot Suzuki coupling. Accordingly, triflate 8a was 

treated with bis-pinacolatodiboron under microwave-accelerated Miyaura conditions 

until the starting material had disappeared by TLC. The same reaction vessel was 

then re-charged with 5 mol% of PdCl2(PPh3)2, aqueous sodium carbonate, and an 

additional equivalent of the triflate 8a (Scheme 10).  

 

 

 

 

 

 

 

 

 

 
Scheme 10. Synthesis of 4,4-bis-oxazole 18a. 
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As a result, 4,4-bis-oxazole 18a could be isolated in a 58% yield after column 

chromatography. 

 

The same one-pot procedure could be applied to triflates 8b and 8c producing the 

homodimers 18b and 18c in good yield, as well as the cross-coupling of triflates 8a 

and 8b to give the heterodimer 18d in 39% yield (Scheme 11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Scheme 11. 4,4-bis-oxazoles 18b-d. 

 

 

2.5 Conclusions 
 

 

A protocol for the arylation of the oxazole 2- and 4-positions using the Suzuki 

reaction was successfully developed. Firstly, the 4-position of the oxazole was 

investigated. A set of three electronically different oxazolyl 4-triflates was 

synthesised and a range of conditions was investigated for the construction of the 

model system. The best conditions involved PdCl2(PPh3)4 and aqueous Na2CO3 in 

1,4-dioxane combined with the use of microwave irradiation which resulted in the 
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formation of the coupling product in excellent yield. Accordingly, a range of 2,4-

diarylated oxazoles could be synthesised efficiently. Secondly, the 2-position of the 

oxazole was explored. A versatile 2-chlorooxazole was chosen as a suitable 

electrophile coupling succesfully to boronic acids and esters under the discovered 

Suzuki conditions. This methodology was further extended to the synthesis of a 

range of 2,4-disubstituted oxazoles in high yields. 

 

The use of microwave heating was clearly influential in the success of the 

reaction. Not only was it beneficial in terms of yield of products obtained but also in 

the reactions time. In order to obtain synthetically useful yields, most palladium 

cross-coupling reactions on heterocyclic systems found in the literature necessarily 

require 24 hours or more of reaction times.8 On the other hand, in order to achieve 

faster reaction rates, microwave irradiation heats the reaction vessels well above the 

solvent boiling point. In the presented study, each reaction was heated 150 °C for 20 

minutes reaction. This is clearly a limitation because thermally sensitive 

electrophiles will decompose before any product is formed. This exact scenario 

happened when applying oxazoyl-2-triflates and its synthetically equivalent 

nonaflate, which completely decomposed before producing any coupled products. 

Fortunately, another more thermally robust chlorooxazole was found as an 

alternative. 

 

The method presented has been able to couple a good range of aryl and heteroaryl 

boronic acids or ester. However, despite the clear success, the scope of the method is 

limited to these type of examples. In order to expand the methodology, cyclohexyl 

boronic acid and triflate 8a were combined and subjected to the above conditions 

without any product being formed. Equally, vinyl pinacol boronic ester did not 

couple efficiently with 8a under these conditions. These later results necessarily 

restrict the method to only aryl and heteroaryl substituents.  

 

The methodology was extended to the synthesis of bis-oxazoles. At the start of 

this work, no examples had been published regarding the synthesis of oxazole 

boronic acids or esters. Two borylation methods were explored, first on 2-position 
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and then on 4-position of the oxazole. Borylation on C2 repeatedly failed with the 

two methods explored. The first method involved classic selective lithiation of the 

oxazole on C2-H, followed by quenching the reaction mixture with tri-isopropyl 

borate. No products were formed and no information could be extracted from the 

experiment. However, using the second method, the Miyaura reaction, a very fast 

protodeboronation was observed restricting, under these conditions, the use of C2 

oxazole boron species as nucleophiles in the Suzuki reaction. Later, in a related 

study, Inoue and co-workers also pointed out this lack of success in the borylation on 

2-position of oxazoles.6a Fortunately, borylation on C4 was successful using the 

Miyaura reaction on triflate 8a. Although the boronic ester obtained could be isolated 

and purified in good yield, one pot procedure was considered more attractive. As a 

result, four novel 4,4’-dioxazoles structures could be synthesised for the first time. 

These represent the first steps in the development of a general Suzuki coupling 

strategy for the synthesis of poly-oxazoles (see Chapter 3). 
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Experimental Procedures Chapter 2 
 

 

 

 

 

 

General 
 

1H-NMR and 13C NMR spectra were recorded on Brüker dpx360 (360 MHz) and 

dpx250 (250 MHZ) instruments. Microwave reactions were carried out in a Smith 

Synthesizer Microwave (300 W). Melting point measurements were obtained from a 

Gallenkamp melting point apparatus and are uncorrected. Electrospray high-

resolution mass spectrometry was performed by the EPSRC National Mass 

Spectrometry Service Centre, Swansea, using a Finnigan MAT 900 XLT double 

focusing mass spectrometer. FAB HRMS was carried out by the University of 

Edinburgh School of Chemistry mass spectrometry service using a Kratos MS50 

instrument. The data is recorded as the ionisation method followed by the calculated 

and measured masses. TLC was performed on Merck 60F254 silica plates and 

visualised by UV light. The compounds were purified by wet flash chromatography 

using Merck Kieselgel 60 (particle size 35-70) silica under a positive pressure. 1,4 

Dioxane was distilled over sodium and benzophenone prior use. Triethylamine and 

2,6 lutidine were distilled over CaH2 prior to use. All other chemicals were 

purchased from a chemical supplier and used as received. Et2O and THF were dried 

by passage through activated alumina columns using a solvent purification system 

from www.glasscontour.com. Anhydrous DMF was purchased from Aldrich. DMPU 

was distilled over CaH2 under high vacuum. Cs2CO3 was bought anhydrous from 

Aldrich and used without special precautions. All other reagents were purchased 

from a chemical supplier and used as received. 
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2-Phenyloxazol-4-yl trifluoromethanesulfonate 8a 

 

 

 

 

 

2-Phenyloxazol-4-yl trifluoromethanesulfonate 8a was synthesised according to an 

established procedure:12d 2-Phenyl-4-oxazolone 7a (3.00 g, 18.62 mmol, 1 equiv) was 

dissolved in DCM (75 mL, 0.25 M) and cooled to -78 ºC. To the solution was added Et3N 

(5.3 mL, 37.24 mmol, 2 equiv), then slowly Tf2O (4.8 mL, 27.93 mmol, 1.5 equiv). After 

warming to rt over 20 min, the reaction was quenched with H2O (100 mL), extracted 3× (150 

mL) into DCM. The organic layers were combined, washed with brine (200 mL), dried over 

MgSO4, filtered and concentrated in vacuo. Purification by flash chromatography (silica, 

hexanes/ethyl acetate 1%) gave the desired trifloyloxazole (4.90 g, 90% yield) as a white 

solid (mp < 25 ºC). This compound gave spectral data in good agreement to that previously 

reported.12d 1H-NMR (CDCl3, 250 MHz) δ 7.39-7.42 (3H, m), 7.65 (1H, s), 7.91-8.01 (2H, 

m). 

 

2-(4-Fluorophenyl)oxazol-4-yl trifluoromethanesulfonate 8c 

 

 

 

 

 

 

2-(4-Fluorophenyl)oxazol-4-yl trifluoromethanesulfonate 8c was synthesised using Panek’s 

method with minor modifications:12d In a dry round bottom flask equipped with a reflux 

condenser were combined 4-flurobenzamide (10 g, 70.4 mmol, 1 equiv) and chloroacetyl 

chloride (8.5 mL, 105.6 mmol, 1.5 equiv) and toluene (100 mL). The mixture was heated to 

110 ºC for 2 h until disappearance of the starting material by thin layer chromatography. 

Then, the mixture was allowed to cool down slowly and the chloroimide crystallised in the 

flask. Filtration, washing with hexane and drying in air yielded the chloroimide 6c (11.708 g, 

77% yield) as white needles; The chloroimide product 6c was then added to a mixture of 

sodium hydride (2.370 g, 59.24 mmol, 1.1 equiv, 60% suspension in oil) and 1,4 dioxane 
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(0.06 M) at 0 ºC. After stirring for 30 min, the mixture was warmed to rt and refluxed for 12 

h. The mixture was filtered through celite and concentrated in vacuo. Purification by flash 

chromatography (silica, hexane/ethyl acetate 4:6) gave the desired oxazolone 7c (3.310 g, 

34% yield) as a white solid; The pure oxazolone 7c (3.240 g, 18.13 mmol, 1 equiv) was then 

dissolved in 50 mL of dry DCM and the solution cooled to -78 ºC. To the solution was added 

Et3N (5.1 mL, 36.26 mmol, 2equiv) and Tf2O (4.7 mL, 27.19 mmol, 1.5 equiv). After 

warming to rt over 1 h, the reaction was quenched with H2O (50 mL) then extracted 3 × (150 

mL) into DCM. The organic layers were combined, dried over MgSO4, filtered and 

concentrated in vacuo. Purification by flash chromatography (silica, hexanes/ethyl acetate 

9:1) gave the desired trifloyloxazole 8c (5.027 g, 89% yield) as a yellow solid (mp < 21 ºC); 
1H-NMR (CDCl3, 360 MHz) δ 7.13-7.18 (2H, m), 7.72 (1H, s), 7.98-8.03 (2H, m); 13C-

NMR (CDCl3, 90 MHz) δ 116.58 (CH, d, J= 16.3 Hz), 118.97 (quat, d, J= 319.3 Hz), 122.82 

(quat, d, J= 3.2 Hz), 126.71 (CH), 129.17 (CH, d, J= 11.9 Hz), 146.32 (quat), 159.21 (quat), 

165.04 (quat, d, J= 253.2 Hz); HRMS (ES) calculated for C10H5F4NO4S; 311.9948, found 

311.9946. 

 

 2-(4-Methoxyphenyl)oxazol-4-yl trifluoromethanesulfonate 8b 

 

 

 

 

 

 

2-(4-methoxyphenyl)oxazol-4-yl trifluoromethanesulfonate 8b was synthesised according to 

the established procedure and gave spectral data in good agreement to that previously 

reported.11 1H-NMR (CDCl3, 250 MHz) δ 3.81 (3H, s), 6.95 (2H, d, J = 9Hz), 7.61 (1H, s), 

7.95 (2H, d, J = 9 Hz). 

 

 

4-Phenyloxazol-2-yl nonafluorobutanesulfonate 6 
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4-Phenyl-2-oxazolone12d 7a (100 mg, 0.62 mmol, 1 equiv) was dissolved in DCM (8 mL, 

0.25M) and cooled to -78 ºC. To the solution was added 2,6-lutidine (0.14 mL, 1.24 mmol, 2 

equiv) followed by dropwise addition of Nf2O (0.29 mL, 0.93 mmol, 1.5 equiv). After 

warming to rt over 20 min, the reaction was quenched with H2O, extracted 3 × (50 mL) into 

DCM. The organic layers were combined, washed with brine (150 mL), dried over MgSO4, 

filtered and concentrated in vacuo. Purification by flash chromatography (silica, 

hexanes/DCM 7:3) gave the desired nonaflate 13 (230 mg, 84% yield) as a pale yellow oil; 
1H-NMR (CDCl3, 360 MHz) δ 7.37-7.45 (3H, m), 7.68-7.71 (2H, m), 7.79 (1H, s); 13C-

NMR (CDCl3, 90 MHz) δ 125.44 (CH), 128.87 CH), 129.09 (CH), 129.26 (quat), 132.70 

(CH), 141.68 (quat), 150.11 (quat); 19F-NMR (CDCl3, 250 MHz): -127.0 (2F, m), -121.9 

(2F, m), -108.0 (2F, t, J= 13.4 Hz), -81.8 (3F, t, J= 9.6 Hz). 

 

General procedure for the synthesis of 2,4 diaryl-oxazoles through Suzuki coupling of 

2-aryl-oxazol-4-yl trifluoromethanesulfonates with aryl boronic acids: The following 

procedure for the preparation of 10a is representative.  

 

2-Phenyl-4-p-tolyloxazole 10a 

 

 

 

 

 

 

A microwave vial was charged with 2-phenyloxazol-4-yl trifluoromethanesulfonate 8a (100 

mg, 0.34 mmol, 1 equiv), 4-tolylboronic acid 9a (52 mg, 0.37 mmol, 1.1 equiv), 

PdCl2(PPh3)2 (5 mol%), sodium carbonate (0.53 mL 2M, 1.06 mmol, 3 equiv) and 1,4 

dioxane (5 mL). The vial was sealed and stirred until complete dissolution of the boronic 

acid occurred. The mixture was then irradiated for 20 minutes at a pre-selected temperature 

of 150 ºC in a Smith synthesiser. The vial was then automatically cooled with air jet cooling 

and the crude reaction mixture filtered through a pad of celite® and washed thoroughly with 

acetone. The organic layers were concentrated in vacuo and the residue was purified by flash 

chromatography (silica, hexanes/DCM 6:4) to give the coupled product 10a (75 mg, 94% 

yield) as a white solid; mp = 110-111 ºC; 1H-NMR (CDCl3, 250 MHz): δ 2.44 (3H, s), 7.31-

7.35 (2H, m), 7.46-7.49 (3H, m), 7.75-7.77 (2H, m), 7.98 (1H, s), 8.18-8.16 (2H, m); 13C-

N

O
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NMR (CDCl3, 63 MHz) δ 21.31 (CH3), 125.50 (CH), 126.46 (CH), 127.54 (quat), 128.26 

(quat), 128.71 (CH), 129.40 (CH), 130.29 (CH), 132.98 (CH), 137.91 (quat), 142.00 (quat), 

161.78 (quat); HRMS (ES) calculated for C16H13NO 236.1070; found 236.1069. 

 

4-(3-Nitrophenyl)-2-phenyloxazole 10b 

 

 

 

 

 

 

Prepared according to the general procedure. Purification by flash chromatography (silica, 

hexanes/DCM 5:5) gave the coupled product 10b (83 mg, 92% yield) as a white solid; mp = 

161-163 ºC; 1H-NMR (CDCl3, 250 MHz): δ 7.57-7.60 (3H, m), 7.69 (1H, dd, J= 8.0 Hz, J= 

8.0 Hz), 8.21-8.25 (5H, m), 8.75 (1H, s); 13C-NMR (CDCl3, 63 MHz) δ 120.32 (CH), 122.54 

(CH), 126.47 (CH), 126.84 (quat), 128.74 (CH), 129.60 (CH), 130.69 (CH), 131.20 (CH), 

132.83 (quat), 134.43 (CH), 139.91 (quat), 148.53 (quat), 162.29 (quat); HRMS (ES) 

calculated for C15H10N2O2 267.0764; found 267.0761. 

 

2-Phenyl-4-(4-(trifluoromethyl)phenyl)oxazole 10c 

 

 

 

 

 

 

Prepared according to the general procedure. Purification by flash chromatography (silica, 

hexanes/DCM 6:4) gave the coupled product 10c (86 mg, 87% yield) as a white solid; mp = 

144-145 ºC;. 1H-NMR (CDCl3, 250 MHz): δ 7.39-7.42 (3H, m), 7.59 (2H, d, J= 8.5 Hz), 

7.82 (2H, d, J= 8.5 Hz), 7.94 (1H, s), 8.01-8.05 (2H, m); 13C-NMR (CDCl3, 90 MHz) δ 

125.47 (quat), 125.66 (CH), 125.73 (CH), 126.28 (quat), 127.14 (CH), 128.3 (quat, q, J= 

277.4 Hz), 128.69 (CH), 128.80 (quat), 130.66 (CH), 134.42 (CH), 140.77 (quat), 162.26 

(quat); HRMS (ES) calculated for C16H10NOF3 290.0787; found 290.0788.  
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2-Phenyl-4-o-tolyloxazole 10d 

 

 

 

 

 

 

Prepared according to the general procedure. Purification by flash chromatography (silica, 

hexanes/DCM 5:5) gave the coupled product 10d (73 mg, 91% yield) as a white solid; mp = 

67-68 ºC; 1H-NMR (CDCl3, 250 MHz): δ 2.50 (3H, s), 7.22-7.30 (3H, m), 7.46-7.49 (3H, 

m), 7.81 (1H, s), 7.93 (1H, d, J= 6.5 Hz), 8.11-8.15 (2H, m); 13C-NMR (CDCl3, 63 MHz) δ 

22.72 (CH3), 126.05 (CH), 126.47 (CH), 127.47 (quat), 127.93 (CH), 128.66 (CH), 128.71 

(CH), 130.31 (quat), 130.38 (CH), 131.76 (CH), 135.20 (CH), 135.54 (quat), 140.97 (quat), 

160.88 (quat); HRMS (ES) calculated for C16H13NO 236.1070; found 236.1071. 

 

 

2-(4-Fluorophenyl)-4-p-tolyloxazole 10e 

 

 

 

 

 

 

Prepared according to the general procedure. Purification by flash chromatography (silica, 

hexanes/DCM 5:5) gave the coupled product 10e (61 mg, 75% yield) as a white solid; mp = 

140-141 ºC; 1H-NMR (CDCl3, 250 MHz): δ. 2.45 (3H, s), 7.18-7.31 (4H, m), 7.76 (2H, d, J 

= 1.6 Hz), 7.96 (1H, s), 8.13-8.19 (2H, m); 13C-NMR (CDCl3, 63 MHz) δ.21.29 (CH3), 

115.87 (CH, d, J= 22 Hz), 123.89 (quat), 125.48 (CH), 128.15 (quat), 128.57 (CH, d, J= 8.6 

Hz, 129.41 (CH), 132.97 (CH), 137.98 (quat), 142.03 (quat), 160.95 (quat), 164.02 (quat, d, 

J= 249.3 Hz); HRMS (FAB) calculated for C16H12ONF 254.09812; found 254.09861. 

 

 

4-(4-Methoxyphenyl)-2-phenyloxazole 10f 17 
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Prepared according to the general procedure. Purification by flash chromatography (silica, 

hexanes/DCM 6:4) gave the coupled product 10f (76 mg, 89% yield) as a white solid. This 

compound showed identical spectral data to that previously reported; mp = 105-106 ºC; 1H-

NMR (CDCl3, 250 MHz): δ 4.04 (3H, s), 7.16 (2H, d, J = 8.9 Hz), 7.65-7.67 (3H, m), 7.94 

(2H, d, J = 8.9 Hz), 8.06 (1H, s), 8.10-8.14 (2H, m); 13C-NMR (CDCl3, 63 MHz) δ 55.28 

(CH3), 114.12 (CH), 123.80 (quat), 126.43 (CH), 126.90 (CH), 127.54 (quat), 128.70 (CH), 

130.26 (CH), 132.37 (CH), 141.74 (quat), 159.51 (quat), 161.73 (quat). 

 

2-(4-Methoxyphenyl)-4-p-tolyloxazole 10g 

 

 

 

 

 

 

 

Prepared according to the general procedure. Purification by flash chromatography (silica, 

hexanes/DCM 2:8) gave the coupled product 10g (68 mg, 82% yield) as a white solid; mp = 

130-131 ºC; 1H-NMR (CDCl3, 360 MHz): δ 2.44 (3H, s), 3.90 (3H, s), 7.03 (2H, d, J = 8.5 

Hz), 7.29 (2H, d, J = 8.5 Hz), 7.76 (2H, d, J = 8.1 Hz), 7.92 (1H, s), 8.11 (2H, d, J = 11.8 

Hz); 13C-NMR (CDCl3, 90 MHz) δ 21.27 (CH3), 55.31 (CH3), 114.08 (CH), 120.38 (quat), 

125.45 (CH), 128.10 CH), 128.41 (quat), 129.34 (CH), 132.44 (CH), 137.74 (quat), 141.76 

(quat), 161.27 (quat), 161.83 (quat); HRMS (ES) calculated for C17H15NO2 266.1176; found 

266.1176. 

 

 

4-(Furan-3-yl)-2-phenyloxazole 10h 
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Prepared according to the general procedure. Purification by flash chromatography (silica, 

hexanes/DCM 5:5) gave the coupled product 10h (57 mg, 79% yield) as a yellow solid; mp 

= 81-82 ºC; 1H-NMR (CDCl3, 360 MHz): δ 6.65 (1H, s), 7.45-7.48 (4H, m), 7.76 (1H, s), 

7.90 (1H, s), 8.06-8.09 (2H, m); 13C-NMR (CDCl3, 90 MHz) δ 108.37 (CH), 117.20 (quat), 

126.47 (CH), 127.27 (quat), 128.73 (CH), 130.44 (CH), 133.08 (CH), 134.98 (quat), 139.92 

(CH), 143.60 (CH), 161.90 (quat); HRMS (ES) calculated for C13H9NO2 212.0706; found 

212.0706. 

 

3-(2-Phenyloxazol-4-yl)pyridine 10i 

 

 

 

 

 

 

Prepared according to the general procedure. Purification by flash chromatography (silica, 

hexanes/DCM 5:5) gave the coupled product (55 mg, 73% yield) as a yellow solid; mp = 92-

93 ºC; 1H-NMR (CDCl3, 360 MHz): δ 7.38(1H, m), 7.36-7.39 (3H, m), 8.04 (1H, s), 8.10-

8.16 (3H, m), 8.57 (1H, m), 9.05 (1H, m); 13C-NMR (CDCl3, 90 MHz) δ 124.80 (CH), 

127.61 (CH), 128.13 (quat), 128.44 (quat), 129.88 (CH), 131.76 (CH), 134.25 (CH), 135.11 

(CH), 140.10 (quat), 147.80 (CH), 149.83 (CH), 163.47 (quat); HRMS (ES) calculated for 

C14H10N2O 223.0866; found 223.0867. 

 

 

3-(2-(4-Methoxyphenyl)oxazol-4-yl)pyridine 10j 
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Prepared according to the general procedure. Purification by flash chromatography (silica, 

EtOAc) gave the coupled product 10j (70 mg, 89% yield) as a white solid; mp = 120-122 ºC; 
1H-NMR (DMSO, 250 MHz): δ 3.79 (3H, CH3), 7.06 (2H, d, J = 8.8 Hz), 7.46 (1H, m), 7.58 

(2H, d, J = 4.1 Hz), 7.95 (1H, d, J = 8.8 Hz) 8.17 (1H, m), 8.73 (1H, s), 9.03 (1H, bs); 13C-

NMR (DMSO, 63 MHz) δ 55.35 (CH3), 114.55 (CH), 119.07 (quat), 12.88 (CH), 126.82 

(quat), 127.90 (CH), 132.51 (CH), 135.74 (CH), 138.05 (quat), 146.32 (CH), 148.78 (CH), 

161.27 (quat), 161.44 (quat); HRMS (ES) calculated for C15H12N2O2 253.0972; found 

253.0972. 

 

4-(3-Fluorophenyl)-2-phenyloxazole 10k 

 

 

 

 

 

 

Prepared according to the general procedure. Purification by flash chromatography (silica, 

hexanes/DCM 6:4) gave the coupled product 10k (74 mg, 91% yield) as a white solid; mp= 

71-72 ºC; 1H-NMR (CDCl3, 250 MHz): δ 6.92 (1H, m), 7.28-7.40 (6H, m), 7.87 (1H, s), 

8.00-8.04 (2H, m); 13C-NMR (CDCl3, 63 MHz) δ 112.60 (CH, d, J = 23 Hz), 114.87 (CH, d, 

J = 21 Hz), 121.16 (CH), 126.51 (CH), 127.24 (quat), 128.76 (CH), 130.19 (CH), 130.53 

(CH), 133.90 (quat), 141.02 (quat), 163.35 (quat, d, J = 245 Hz), 162.03 (quat); HRMS (ES) 

calculated for C15H10NOF 240.0819; found  240.0818.  

 

 

 

 

 

• 4-(3-Fluorophenyl)-2-(4-methoxyphenyl)oxazole  10l 
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Prepared according to the general procedure. Purification by flash chromatography (silica, 

hexanes/DCM 2:8) gave the coupled product 10l (71 mg, 85% yield) as a white solid; mp = 

87-88 ºC; 1H-NMR (CDCl3, 250 MHz): δ 3.77 (3H, s), 6.89 (3H, m), 7.28 (1H, m), 7.46-

7.49 (2H, m), 7.82 (1H, s), 7.95 (2H, d, J = 7.4 Hz); 13C-NMR (CDCl3, 63 MHz) δ 55.35 

(CH3), 112.54 (CH, d, J = 22.9 Hz), 114.16 (CH), 114.75 (CH, d, J = 21.1 Hz), 121.10 

(quat), 121.14 (CH), 128.20 (CH), 130.21 (CH, d, J = 0.2 Hz), 133.37 (CH), 133.48 (quat), 

140.70 (quat), 161.49 (quat), 162.11 (quat), 163.13 (quat, d, J = 245.3 Hz); HRMS (ES) 

calculated for C16H12FNO2 270.0925; found 270.0928. 

 

 

General procedure for the synthesis of 2,4 diaryl-oxazoles through Suzuki coupling of 

2-chloro-4-phenyl-oxazole with aryl boronic acids. The procedure for compound 16a is 

representative: 

 

4-Phenyl-2-o-tolyloxazole 16a  

 

 

 

 

 

 

A microwave vial was charged with 2-chloro-4-phenyl oxazole (100 mg, 0.55 mmol, 1 

equiv), o-tolylboronic acid (83 mg, 0.61 mmol, 1.1 equiv), PdCl2(PPh3)2 (5 mol%), sodium 

carbonate (0.82 mL 2 M, 1.65 mmol, 3 equiv) and 1,4 dioxane (5 mL). The vial was sealed 

and stirred until complete dissolution of the boronic acid occurred. The mixture was then 

irradiated for 20 minutes at a pre-selected temperature of 150 ºC in a Smith synthesiser. The 

vial was then cooled with air jet cooling and the crude reaction mixture filtered through a 

pad of celite® and washed thoroughly with acetone. The organic layers were concentrated  in 

vacuo and the residue was purified by flash chromatography (silica, hexanes/DCM 7:3) to 

give the coupling product as a yellow oil 16a (104 mg, 80% yield); 1H-NMR (CDCl3, 250 

MHz) δ 2.54 (3H, s), 7.07-7.13 (3H, m), 7.17-7.23 (3H, m), 7.59-7.63 (2H, m), 7.75 (1H, s), 

7.83 (1H, m); 13C-NMR (CDCl3, 63 MHz) δ 21.99 (CH3), 125.57 (CH), 125.89 (CH), 

126.42 (quat), 127.99 (CH), 128.69 (CH), 128.84 (CH), 129.97 (CH), 131.22 (quat), 131.56 

(CH), 132.95 (CH), 137.64 (quat), 141.55 (quat), 162.24 (quat); HRMS (ES) calculated for 

C16H13NO 236.1070; found 236.1070.  

N

O
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2-(3-Fluorophenyl)-4-phenyloxazole 16b 

 

 

 

 

 

Prepared according to the general procedure. Purification by flash chromatography (silica, 

hexanes/DCM 6:4) gave the coupled product 16b (106 mg, 80% yield) as a white solid; mp 

= 70-72 ºC; 1H-NMR (CDCl3, 250 MHz) δ 7.41 (1H, m), 7.63-7.70 (4H, m), 8.06-8.20 (5H, 

m); 13C-NMR (CDCl3, 63 MHz) δ 113.42 (CH, d, J = 23.8 Hz), 117.28 (CH, d, J = 21.2 Hz), 

122.13 (CH, d, J = 3.0 Hz), 125.31 (quat), 125.57 (CH), 128.19 (CH), 128.76 (CH), 130.47 

(CH, d, J = 8.1 Hz), 130.80 (quat), 133.69 (CH), 135.35 (quat), 142.14 (quat), 163.83 (quat, 

d, J = 244.7 Hz); HRMS (ES) calculated for C15H10NOF 240.0819; found 240.0819. 

 

4-Phenyl-2-p-tolyloxazole 16c 

 

 

 

 

 

 

Prepared according to the general procedure. Purification by flash chromatography (silica, 

hexanes/DCM 6:4) gave the coupled product 16c (113 mg, 88% yield) as a white solid with 

identical spectral data to that previously published;18 1H-NMR (CDCl3, 250 MHz) δ 2.41 

(3H, s), 7.25-7.44 (5H, m), 7.82-8.02 (4H, m), 7.94 (1H, s). 
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3-(4-Phenyloxazol-2-yl)pyridine 16d 

 

 

 

 

 

 

Prepared according to the general procedure. Purification by flash chromatography (silica, 

hexanes/Et2O 4:6) gave the coupled product 16d (111 mg, 91% yield) as a white solid with 

identical spectral data to that previously published;19 1H-NMR (CDCl3, 250 MHz) δ 7.27-

7.46 (4H, m), 7.79-7.82 (2H, m), 7.99 (1H, s), 8.34-8.37 (1H, m), 8.67 (1H, d, J = 4 Hz), 

9.33 (1H, bs). 

 

 

2-(Furan-3-yl)-4-phenyloxazole 16e 

 

 

 

 

 

Prepared according to the general procedure. Purification by flash chromatography (silica, 

hexanes/DCM 5:5) gave the coupled product 16e (95 mg, 82%) as a white solid; mp = 78-79 
ºC; 1H-NMR (CDCl3, 250 MHz) δ 6.49-6.85(1H, m), 7.25-7.29 (3H, m), 7.39 (1H, m), 7.68 

(2H, d, J = 5.0 Hz), 7.77 (1H, s), 8.18 (1H, s); 13C-NMR (CDCl3, 63 MHz) δ 108.62 (CH), 

115.46 (quat), 125.55 (CH), 128.06 (CH), 128.68 (CH), 130.89 (quat), 132.58 (CH), 141.54 

(quat), 142.64 (CH), 143.85 (CH), 157.09 (quat); HRMS (ES) calculated for C13H9NO2 

212.0706; found 212.0704. 
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General procedure for the synthesis of 4,4-dioxazoles: The following procedure for the 

preparation of compound 18a is representative. 

 

2-Phenyl-4-(2-phenyloxazol-4-yl)oxazole 18a 

 

 

 

 

 

 

 

 

2-Phenyl-4-(2-phenyloxazol-4-yl)oxazole was prepared in a 2 step one pot procedure: A 

microwave vial was charged with 2-phenyloxazol-4-yl trifluoromethanesulfonate 8a (119 

mg, 0.41 mmol, 1.2 equiv), bis(pinacolato)diboron (116 mg, 0.45 mmol, 1.3 equiv), 

PdCl2(dppf) (3 mol%), dppf (3 mol%), sodium acetate (102 mg, 1.22 mmol, 3 equiv) and 1,4 

dioxane (5 mL). The mixture was then irradiated in a Smith synthesiser for 20 minutes at a 

pre-selected temperature of 150 ºC. After the reaction the vial was cooled with air jet cooling 

to room temperature. The vial was opened and 2-phenyloxazol-4-yl 

trifluoromethanesulfonate 8a (100 mg, 0.34 mmol, 1 equiv), PdCl2(PPh3)4 (5 mol%) and 

sodium carbonate 2M (0.53 mL, 1.06 mmol, 3 equiv) were added to the reaction mixture. 

The vial was resealed and the mixture was again irradiated for 20 minutes at a pre-selected 

temperature of 150 ºC. The vial was cooled with air jet cooling and the crude mixture was 

filtered through a pad of celite® with thorough acetone washing. The organic layers were 

concentrated  in vacuo and the residue was purified by flash chromatography (silica, 

hexanes/DCM 5:5) to give the bis-oxazole product 18a (57 mg, 58% yield) as a white solid; 

mp = 110-111 ºC; 1H-NMR (CDCl3, 360 MHz): δ 7.46-7.50 (6H, m), 8.08-8.13 (6H, m); 
13C-NMR (CDCl3, 90 MHz) δ 126.58 (CH), 127.19 (quat), 128.78 (CH), 130.60 (CH), 

134.75 (quat), 134.99 (CH), 162.16 (quat). HRMS (ES) calculated for C18H12N2O2 

289.0972; found 289.0971.  
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2-(4-Fluorophenyl)-4-(2-(4-fluorophenyl)oxazol-4-yl)oxazole 18b 

 

 

 

 

 

 

 

 

Prepared according to the general procedure. Purification by flash chromatography (silica, 

hexanes/EtOAc 8:2) gave a white solid which was further purified by trituration from hexane 

to afford the dioxazole product 18b (72 mg, 69% yield) as a white solid; mp = 258-259 ºC; 
1H-NMR (DMSO, 360 MHz): 7.40-7.45 (4H, m), 8.07-8.11 (4H, m), 8.59 (2H, s); 13C-

NMR (DMSO, 90 MHz) δ  115.55 (CH, d, J = 22.0 Hz), 122.82 (q, d, J = 2.7 Hz), 128.18 

(CH, d, J = 9.0 Hz), 133.60 (quat), 135.59 (CH), 160.12 (quat), 163.15 (quat, d, J = 247.0 

Hz);  HRMS (ES) calculated for C18H10N2O2F2 325.0783; found 325.0783. 

 

• 2-(4-Methoxyphenyl)-4-(2-(4-methoxyphenyl)oxazol-4-yl)oxazole 18c 

 

 

 

 

 

 

 

Prepared according to the general procedure. Purification by flash chromatography (silica, 

hexanes/EtOAc 7:3) gave the dioxazole product 18c (78 mg, 61% yield) as a white solid; 

mp=180 ºC (decomp.); 1H-NMR (CDCl3, 250 MHz): 3.88 (CH3, s), 6.99 (4H, d, J = 10.0 

Hz), 8.04 (4H, d, J = 10.0 Hz), 8.07 (2H, s). 13C-NMR (CDCl3, 63 MHz) δ 55.39 (CH3), 

114.17 (CH), 120.01 (quat), 128.26 (CH), 134.37 (CH), 134.57 (quat), 161.51 (quat), 

162.20 (quat). HRMS (ES) calculated for C20H16N2O4 349.1183; found 349.1187. 
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2-(4-Fluorophenyl)-4-(2-phenyloxazol-4-yl)oxazole 18d 

 

 

 

 

 

 

 

 

Prepared according to the general procedure. Purification by flash chromatography (silica, 

hexanes/EtOAc 9:1) gave the dioxazole product 18d (44 mg, 38% yield) as a white solid; mp 

= 184-186 ºC; 1H-NMR (CDCl3, 250 MHz): 7.13-7.20 (2H, m), 7.46-7.49 (3H, m), 8.06-

8.13 (6H, m); 13C-NMR (CDCl3, 90 MHz) δ 115.92 (CH, d, J = 22 Hz), 123.48 (quat), 

126.54 (CH), 127.09 (quat), 128.66 (CH), 128.72 (CH), 128.75 (CH), 128.94 (quat), 130.57 

(CH, d, J = 2.7 Hz), 134.60 (q, d, J = 10.0 Hz), 135.04 (CH), 161.35 (quat), 162.24 (quat), 

164.2 (quat, d, J = 250 Hz); HRMS (FAB) calculated for C18H11N2O2F 307.08828; found 

307.08821. 
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Chapter 3  
 

 

 

Regioselective palladium catalysed cross-couplings of 

oxazoles. Synthesis of Tris-oxazoles. 
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3.1 Introduction 
 

 

 

 

 

 

Directed insertion on multiply halogenated heterocycles to perform cross-

coupling reactions at specific carbons of the ring is commonly referred to as 

regioselective cross-coupling.1 In heterocyclic chemistry, the same principle has 

been applied not only in the context of cross-coupling reactions, but also for 

example, in directed metallation methods and also in halogen/metal exchange 

reactions. Catalytic cross-coupling reactions are synthetically more attractive 

because they only require sub-stochiometric amounts of catalysts whereas equimolar 

amounts of reductive metal complexes are needed if directed metalation or 

halogen/metal exchange reactions want to be employed. As an illustration of this 

approach, a Sonogashira regioselective cross-coupling in Nicolaou’s approach to 

epothilone E and analogues, is shown in Scheme 1.2 

 

The difference of electrophilicity of the carbon atoms in 2,4-dibromothiazole 1 

makes C-2 more electrophilic due to the proximity of the oxygen and nitrogen atoms. 

The reason for this effect is because it is the only position that gives a low energy 

anion. In the oxidative addition step Pd0 acts as a nucleophile and will preferentially 

attack the most electron-deficient position of the ring. This is of course, for cross-

coupling reactions where the oxidative addition is the rate-determining step, showing 

a high preference in favour of the most electrophilic position. Moreover, the 

oxidative addition step may be influenced by coordination of the metal to a 

heteroatom of the heterocycle. This is especially true for N-containing heterocycles 

where the basic nitrogen atom may direct the coupling to the ortho position of the 

ring.  
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Scheme 1. Regioselective Sonogashira cross-coupling on 2,4-dibromothiazole 1. 

 

 

Many examples of regioselective cross-coupling reactions have been reported for 

the majority of the heterocyclic systems, however this particular strategy on oxazoles 

is extremely rare.1 Hodgetts and Kershaw have reported the Suzuki reaction of 2,5-

dibromooxazole 21 with 1 equivalent of phenylboronic acid 22 to give a complex 

mixture products (Scheme 2).  

 

 

 

 

 

 

 

 

 

 

 
Scheme 2. Suzuki reaction on 2,5-dibromooxazole 21 with phenyl boronic acid 22. 
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Analysis of the crude reaction mixture by 1H-NMR and LC-MS indicated the 

presence of mono- and disubstituted coupled products as well as products arising 

from the debromination of the coupled species and of the starting material (Scheme 

2).3 The most likely reason for the lack of examples in oxazoles is the extraordinary 

low availability of poly-halogenated oxazoles. In fact, only the already mentioned 

2,5-dibromooxazole and 2,4-diiodo-5-substituted oxazoles have been reported so far, 

the former being described as unwanted reaction sub-products with no synthetic 

application.4  

Adding selectively one substituent in the presence of several halogens in the 

heterocycle has the great advantage of avoiding the subsequent necessary step to re-

halogenate the molecule after the substituent has been introduced. Particularly in 

natural product synthesis this synthetic step may be difficult or even impossible to 

perform in the presence of other functional groups, making the regioselective 

approach an attractive alternative. On the other hand, poly-halogenations of 

heterocycles are sometimes more easily controlled than mono-halogenations 

rendering this technique even more convenient in synthesis.  

 

 

3.2 Aims 
 

 

Several natural products, such as Telomestatin5 or Ulapualide A,6 contain three or 

more successive C2-C4’ linked poly-oxazole units instead of a single oxazole (Figure 

1). This particular archetype is a consequence of their biosynthetic assembly from 

serine or threonine residues.7 These compounds have fascinating structures, show a 

wide range of biological properties, and therefore make ideal targets for the synthetic 

chemist.8  

In oxazoles, position C4 is specifically difficult to halogenate, due to C-2 and C-5 

being more conveniently accessed due to their nucleophilicity and their natural 

reactivity towards electrophilic halogenating agents. In 1999 Vedej’s and co-workers 

described a method to selectively iodinate C4 of 5-substituted oxazoles. 
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Figure 1. Poly-oxazole-containing natural products. 

 

 

As covered in Chapter 1, 2,4-diiodooxazoles had been described in that work as 

unwanted reaction products.4 In this context, it was envisaged they could be 

precursors of tris-oxazoles. Due to their unique 2,4-di-functionalisation, it was 

expected they would undergo preferential oxidative addition of Pd0 at the more 

reactive C2 position, followed by Suzuki-Miyaura cross-coupling with an oxazol-4-

ylboronate 4. The C4-I bond would be left intact for a second cross-coupling with a 

2-metallo-oxazole 6 (Scheme 3). 

 

 

 

 

 

 

 

 

 
Scheme 3. Regioselective palladium catalysed strategy for the synthesis of tris-oxazoles. 

H

O

N

Me

OAc

Me

O OMe O OMe N
O

N O

N

O

O

OH

O

O
N

O N

O

N
O

N

O
N

ON

O
N

S

N

Telomestatin

Ulapualide A

N
O N

O

N

O

R2Suzuki coupling Stille coupling

N

O

B
O

O

N

OBu3Sn
N

O
R2

I I
3

5

4

R1

R3

R1

R3

6



Chapter 3. Regioselective Palladium Catalysed Cross-Couplings of Oxazoles. 

 122

The regioselective palladium catalysed cross-coupling chosen was the Suzuki-

Miyaura reaction for two reasons; previous results had been successful in the 

synthesis of 4,4-dioxazoles (Chapter 2).9 Also because of the relatively facile 

accessibility and excellent stability of the known oxazol-4-ylboronates 4, which are 

synthesised in four steps from available starting materials and were amenable to 

multi-gram scale necessary to perform optimisation studies.  

Borylation on C2 was required in order to use the Suzuki-Miyaura reaction in the 

second coupling. However, all attempts to borylate on C2 have failed (see Chapter 

2).10  

As a result, the Stille reaction was considered a good alternative since oxazol-2-

ylstannanes are known nucleophile partners in palladium catalysed oxazole cross-

coupling reactions. They are easily accessed via selective C-2 metalation with strong 

lithium bases, and subsequent quenching of the acyclic isocyano enolate lithium salt 

with Bu3SnCl or Me3SnCl to give the ring closed form.11 

 

 

3.3 Models A and B 
 

 

In order to simplify the approach and to define the reaction parameters, it was 

elected to break down the proposed regioselective tri-oxazole synthesis into two 

parts, examining each C-C bond formation separately on mono-iodooxazoles prior to 

using the bis-iodooxazoles 5 (models A and B).  

 

Model A was chosen as a simplified version of the Suzuki reaction. Iodooxazole 7 

was chosen as the electrophile having only one reactive site on C-2, therefore 

regioselective issues should be avoided (Equation 1). 
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Model B was chosen for the Stille reaction, using a simpler electrophile such as 4-

iodo-5-phenyloxazole 9 (Equation 2).  

 

 

 

 

 

 

 

Both iodooxazoles 7 and 9 can be prepared in multigram quantities, enabling 

comfortable optimisation of the reactions.  

 

3.3.1 Model A: Suzuki-Miyaura reaction 

 

A range of conditions for Suzuki coupling of oxazol-4-ylboronate 4a and 

iodooxazole 7 were explored, the results are shown in Table 1.  

 
Table 1. Model A. Suzuki Reaction between oxazol-4-ylboronate 4a and 2-iodo-5-phenyloxazole 7.a 

 

 

 

 

 

 
Entry Time Solvent Pd source Base Temp Additives Yield of 8 (%) 

1 2h DMF Pd(PPh3)4 K2CO3 100 ºC none 49 

2 4 d THF Pd(PPh3)4 No base rt 1,1 eq of CuTc 
complex 

mixture 

3 4 d THF Pd2(dba)3 KF rt 
10% 

[(tBu)3PH]BF4 

complex 

mixture 

4 
20 

min 
Dioxane PdCl2(PPh3)2 

aq 

Na2CO3 

2M 

150 ºC 

μwaves 
none 34 

5 20 DMF Pd(PPh3)4 K2CO3 150 ºC none 79 
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min μwaves 

6 
20 

min 
DMF Pd2(dba)3 K2CO3 

150 ºC 

μwaves 
PCy3 87 

Conditions: 1.1 equiv of 3, 1 equiv of 6, 3 equiv of base, 3mL of solvent. 
 

 

Standard Suzuki-Miyaura conditions at 100 °C in DMF gave bis-oxazole 8 in 49% 

yield (entry 1). Milder conditions such as the ones developed by Liebeskind,12 and 

also Fu,13 gave a complex mixture of products that could not be separated (entries 2 

and 3 respectively). It was quickly found that the use of microwave irradiation not 

only shortened reaction times but also increased the yields dramatically; the best of 

all was a combination of Pd2(dba)3 5% with PCy3 10% in DMF giving the desired 

product 8 in an excellent 87% of isolated material (entries 4, 5 and 6). 

 

3.3.2 Model B: Stille reaction 

 

According to a known procedure oxazol-2-ylstannane 6a was then synthesised by 

treating 5-phenyloxazole 11 with nBuLi at -78 °C, and quenching the reaction 

mixture with Bu3SnCl which gave 6a in quantitative crude yield (Scheme 4).14  

 

 

 

 

 
Scheme 4. Synthesis of stannane 6a 

 

Stannane 6a had stability limitations, being very sensitive to hydrolysis and 

although it could to be stored at -10 °C for short periods of time, it was best to use 

freshly prepared.15 A range of conditions was examined for the Stille coupling 

between 2-oxazoyl stannane 6a and iodooxazole. The optimisation results for model 

B are shown in Table 2.  

 

N

O Ph
1.nBuLi, Et2O,-78 °C, 40 min

2. ClSnBu3; 
30 min at -78 °C then 30 min at rt

N

O PhBu3Sn
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Standard conditions proved to be successful, but only a moderate yield of 10 was 

obtained even after two days under reflux conditions (entry 1). Fu’s 

trialkylphosphonium salt13 at room temperature, under microwaves irradiation or in 

combination with Cu2O only led to complex mixtures or slow reaction rates (entries 

2, 3, 5 and 8). The ligand tri-furylphosphine (TFP) in conjunction with Pd2(dba)3 and 

Cu2O gave a modest 35% of isolated 10, but a slow reaction rate was obtained if 

combined with Cu(OAc)2 (entries 4 and 6 respectively). Liebskind’s copper-

mediated Stille coupling under mild conditions16 gave a slow reaction rate in our 

system (entry 7). After considerable optimisation search, it was finally realised that 

higher yields could be achieved if higher loadings (3 equivalents) of stannane 6a 

where used in the reaction. Hence, the best of all combinations appeared to be same 

catalyst system used for model A. Finally, Pd2(dba)3 5% and PCy3 10% in DMF and 

under microwave irradiation gave an excellent 87% yield of bis-oxazole 10 after 

column chromatography (entry 10).  

 

 
Table 2. Model B. Optimisation of Stille coupling between 2-oxazoyl stannane 6a and 4-iodo-5-

phenyloxazole 9. 

 

 

 

 

 

 

Entry Time Solvent 
Palladium 

source 
Base Temp. Additives 

Yield of 

10a (%) 

1 
2 

days 
DME PdCl2(PPh3)2 none Reflux none 42 

2 3h NMP Pd2(dba)3 CsF RT 
12%  

[(tBu)3PH]BF4 
slow 

3 5' NMP Pd2(dba)3 CsF 
150 ºC, 

μwaves 

12%  

[(tBu)3PH]BF4 

Complex 

mixture 

4 2h NMP Pd2(dba)3 No base 100 ºC 
10% TFP and 1eq 

Cu2O 
35 

N

O PhBu3Sn

N
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5 
4 

days 
NMP Pd2(dba)3 KF rt 

20%  

[(tBu)3PH]BF4 and 

1eq Cu2O 

slow 

6 
2 

days 
NMP Pd2(dba)3 none rt 

20% TPF and 1eq 

CuAc2 
26 

7 
4 

days 
NMP none none none 1.5 eq CuTC slow 

8 
10 

min 
DMF Pd2(dba)3 CsF 

150 ºC, 

μwaves 

10%  

[(tBu)3PH]BF4 

Complex 

mixture 

9b 
20 

min 
DMF Pd2(dba)3 none 

150 ºC, 

μwaves 
10% PCy3 54 

10c 5 min DMF Pd2(dba)3 none 
150 ºC, 

μwaves 
10% PCy3 87 

a Isolated yields. b 1.5 equiv. of stannane 3 were used.c 3 equiv. of stannane 3 were used. 
 

 

 

3.4 Regioselective Suzuki coupling. Preliminary results. 
 

 

With the idea of merging both models A and B into the synthesis of tris-oxazoles, 

2,4-diiiodo-5-phenyloxazole 5a was synthesised in 2 steps from the known 5-

phenyloxazole17 11 by Vedejs’ selective 4-iodination in 65% yield followed by C-2 

iodination using 1,2-diiodoethane to give diiodooxazole 5a in quantitative yield 

(Scheme 5).4 

 

 

 

 

 

 
Scheme 5. Synthesis of 2,4 diiodo-5-phenyloxazole 5a 
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In a preliminary experiment, Suzuki coupling between oxazol-4-ylboronate 4a 

and diiodooxazole 5a was regioselective on C-2 giving the desired dioxazole 12 in 

46% yield using Pd2(dba)3/PCy3 and 50% yield if Pd(PPh3)4 was used (Scheme 6).  

 

 

 

 

 

 

 

 

 

 

 
Conditions: 1equiv. of 3 and 11, 2 equiv. of K2CO3, 5 min at 150 ºC (microwave irradiation). aPd2(dba)3 5%, PCy3 10%, 
bPd(PPh3)4 5%. 

Scheme 6. Regioselective coupling between oxazol-4-ylboronate 4a and 2,4-diiodooxazole 5a.a 

 

 

Careful analysis of the reaction mixture by HPLC and LC-MS revealed the 

formation of trimer 13 (presumably the palladium catalysed product of the reaction 

between 12 and boronic ester 4a), 14 (protodeboronation of 4a) and homo-coupled 

15 probably dimerised from boronic ester 4a. The main concern was that under the 

reaction conditions the desired 12 was also reacting with the boronic ester 4a and 

consequently decreasing the yield of 12. It was sought to decrease reactivity of 12 by 

modifying its precursor 5a. Thus, if a Br atom would be selectively placed in C-4 

instead of I, then oxidative addition on newly formed 12 would be diminished and 

therefore the yield should be improved. It was necessary to develop the synthesis of 

such a compound because there are no examples in the literature of hybrid bis-

halooxazoles. Selective C-4 bromination on 5-phenyloxazole 11 was carried out 

using a modification of Vedejs’ procedure and 4-bromo-5-phenyloxazole 16 was 

obtained in a good 69% yield after column chromatography. Then, iodination on C-2 
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using LHMDS and 1,2-diiodoethane gave the desired bis-halooxazole 17 in an 

excellent 86% after re-crystallisation (Scheme 7). 

 

 

 

 

 

 

 

 
Scheme 7. Synthesis of 2-iodo-4-bromo-5-phenyloxazole 

 

 

Initial attempts at regioselective Suzuki-Miyaura coupling of 17 with boronic 

ester 4a using Pd2(dba)3/PCy3 produced the bis-oxazole in a disappointing 22% 

yield. However, 50% yield was obtained when Pd(PPh3)4 was used instead (Scheme 

8). 

 

 

 

 

 

 

 
Scheme 8. Regioselective Suzuki coupling between oxazol-4-ylboronate 4a and 2,4-dihalooxazole 17. 

 

 

This result points to the ability of the bulkier and electron-rich PCy3 ligand to 

facilitate oxidative addition, eroding the selectivity in this system.  

Further optimisation of this reaction was carried out using statistical experimental 

design (see below). 

 

 

N

O
Ph

1. LHMDS/DMPU/THF
1h at -78 ºC

2. Neat Br2
15 min at -78 ºC

then RT

N

O
Ph

Br

69%

1. LHMDS/THF
1h at -78 ºC

2. 1,2-diiodoethane (s)
15 min at -78 ºC then RT

N

O
Ph

Br

I

86% 
after recrystallisation

16 1711

N

O
Ph

Br

I

17

N

OPh

B
O

O

4a

+
N

O

Ph N

O Ph

BrK2CO3, DMF
microwave irradiation

18

22%a or 50%b

Pd Catalyst

aPd2(dba)3 5% and PCy3 10%, 150 °C µwaves. bPd(PPh3)4 5%, 150 °C µwaves.



Chapter 3. Regioselective Palladium Catalysed Cross-Couplings of Oxazoles. 

 129

3.5 Statistical Experimental Design of Experiment 
 

 

3.5.1 Introduction 

 

Experiments in general, whatever the discipline or methodology, involve 

changing controlled parameters or input factors and recording the output responses 

or dependant variables. In the case of a chemical transformation input factors may be 

temperature, concentration or reagent equivalents. Typical output responses are those 

thought to be a meaningful reflection of the progress of the process such as the yield 

of product. 

 

The established methodology for performing optimisation of experiments is to 

vary one single factor while keeping all other factors as fixed and under control as is 

experimentally possible. Response is then measured as a function of the variable to 

generate a simple mathematical model from which predictions may be made. The 

method assumes each factor acts independently on the response and ignores the 

effect of any interactions between two or more factors. By varying only one factor at 

a time the effect of a factor is estimated at set conditions so no information on 

possible interactions is available.  

 

There is an alternative methodology to performing experiments, which can 

generate data more rich in information because experiments are planned using a 

more mathematical approach, which appears to contradict the traditionally accepted 

ideas. Using statistics and structured Design of Experiment (DoE), multiple variables 

are changed simultaneously in a structured, predetermined way and the response 

recorded. By analysing the data not only can the effect of single factors on the 

response be estimated but information on interactions, curvature and uncertainty can 

all be quantified. Definite decisions can be made based on conclusions general to the 

process rather than specific conditions. Designs of Experiment are often used for 

screening studies to investigate a large number of factors thought to influence the 

response. In addition to main effects, the factorial design gives information on 
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interactions of factors. By changing multiple factors at the same time it is possible to 

determine how the effects on response of varying one factor change at different 

levels of another factor.  

 

Each factor investigated in DoE is evaluated at two levels; high and low. Reaction 

space is the imaginary area bound by the extremes (high and low) of the factors of 

interest. When three factors for example are arbitrarily chosen, a cube represents the 

reaction space. The xyz axes correspond to different levels of the continuous factors 

and so the corners of the cube represent different combinations of high and low 

factor levels. Eight experiments from the reaction space give rise to eight possible 

terms: x0 -intercept term, x1, x2, x3  are the main effects, x1x2, x1x3, x2x3 are the 2 

factor interaction terms and x1x2x3 the 3 factor interaction. The model thus generated 

is of the form: 

3211233223311321123322110 xxxbxxbxxbxxbxbxbxbby +++++++=  

 

Where y is the response and b represent the coefficients. In coded form these 

coefficients generated are directly related to the significance of each factor. Having 

run the experiments and recorded the responses a design matrix is set up which in 

coded form merely assigns a sign (+ or -) to each coefficient in the model. The 

interaction of temp and time for example (x1x2) is given sign (-*- = +). Using a 

software package such as DX6 the coded coefficients are calculated using matrix 

algebra almost instantaneously. 18  

 

3.5.2 Fractional factorial designs 

 

One of the drawbacks of a full-factorial design is the large number of 

experimental runs required as the number of factors is increased. When investigating 

factors at two levels the number of experiments for a full factorial design is 2n where 

n is the number of factors in the design. In the case of an 8 factor design there will be 

256 factorial points and an additional factor gives 512. Clearly, it soon becomes 

implausible to run full factorial experiments, especially when efficiency is one of the 

main premises for carrying out an experimental design in the first place. Very often 
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all these extra experiments give no additional useful information on main effects or 

possible interactions. Most of this additional resource is wasted in estimating 

extremely unlikely higher order interactions. Two factor interactions are common 

and quite conceivable. Three factor interactions are unlikely to have any real 

significance but four factor and higher interactions are barely worth a second 

thought. Very often in screening designs a large number of factors are investigated 

with the aim of identifying the significant few for further more detailed studies. All 

that is required is an estimate of the main effects and possible two factor interactions.  

The solution to this problem is fractionation of the design. The number of 

experiments may be reduced by ½, 1/8, 1/16, etc… in a systematic way so there is 

sufficient information in the design matrix to provide estimates of the main effects.  

 

The DX-6 software automatically fractionates designs and uses a clear graphical 

diagram to assist in the selection of such designs. Figure 1 shows a screen shot of the 

software with the available design options. Full factorial designs are shown as white 

designs – all model terms calculated independently yet a great deal of useless 

information is gathered. Green designs provide estimates for all main effects and two 

factor interactions independently – very safe designs. Yellow and red designs be 

performed but with a higher risk of missing important information of the system 

(Figure 1).  

 

 
 

Figure 1. Screen shot from DX-6 software 
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3.6 Case Study: Regioselective Suzuki-Miyaura coupling 
 

 

In order to further optimise and also to acquire a deeper understanding of the 

reaction parameters the regioselective Suzuki-Miyaura coupling was subjected to a 

statistical design of experiment.19 The aim of the study was to investigate the main 

factors that would cause variations in the formation of bis-oxazole 18, and also to 

understand the main factors related with the formation of trimer 13, 

protodeboronated 14, and homocoupled 15 (Scheme 9).  

 

 

With this information it would be possible to increase the yield effectively and 

also to have a better understanding of the robustness of this process.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Scheme 9. Case study: regioselective Suzuki-Miyaura cross-coupling. 
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3.6.1 Choice of independent factors 

 

Five factors were considered as part of the factorial design and they were chosen 

according to the current reaction conditions and varied correspondingly as high and 

low factor levels.  

 

• Factor A: Boronic ester stochiometry: it was understood from the 

preliminary results that the stochiometry of boronic ester 4a was key in the 

reaction conditions because it was involved in the formation of all the 

unwanted side products. A factor range between 1 equivalent (the 

minimum) to 1.9 equivalents as a synthetically acceptable maximum was 

considered. 

 

• Factor B: Catalyst loading: In cross-coupling reactions, catalyst loading is 

of major importance affecting the yield of products dramatically. As a 

general guideline, loadings of catalyst of 5 mol% are considered to be 

average in catalyst turn over, 10 mol% or more being poor, and 1% or less 

excellent. 

 

• Factor C: Equivalents of base: The base in the Suzuki-Miyaura reaction is 

known to activate the boron species and is of vital importance, its 

stochiometry is usually between 2 to 5 equivalents. No base in the reaction 

conditions usually leads to very slow reaction rates. On the other hand, 

base sensitive substrates may suffer from it specially if it is in large 

excess. Therefore information regarding the effect of the base in the 

formation of products in the reaction would be of great value. The range 

factor for the base was chosen to be from 1 to 5 equivalents. 

 

• Factor D: Concentration/Dilution: Concentration is also an important 

parameter in chemistry in general. The range factor for the concentration 

was taken from 40 volumes (low factor, highly diluted) to 10 volumes 

(high factor, concentrated). 



Chapter 3. Regioselective Palladium Catalysed Cross-Couplings of Oxazoles. 

 134

 

• Factor E: Temperature: Microwave irradiation was used to heat the 

reaction vessels and from the preliminary results we observed good 

conversion at 150 °C at short reaction times (between 1 to 5 min), so the 

range factor was chosen from 130 °C to 150 °C and the time the vessel 

was irradiated was fixed to one minute. 

 
Table 3. Choice of independent factors 

 
Factor Units Low Mid High 

Boronate stochiometry (A) equivalents 1.1 1.5 1.9 

Catalyst Loading (B) mol% 1.0% 5.0% 9.0% 

Equivalents of base (C) equivalents 1 3 5 

Concentration/Dilution (D) volumes 40 25 10 

Temperature (E) ° C 130 140 150 

 

 

3.6.2 Analysis and preliminary results for 1st fractional experiment. 

 

If every combination of the high and low factor levels were investigated (full 

factorial design) there would be 25 = 32 experiments. Performing a full factorial 

design would need a large amount of boronic ester 4a, which is synthesised in 4 steps 

from available starting materials. Synthesis of 4a in large scale was difficult to 

pursue and in consequence an approach where a lower amounts of 4a were needed 

was considered more attractive. It was decided that ¼ fractional (red design) would 

be sufficient to provide estimates of the main effects and the two factor interactions. 

The fractionated design was planned as a single block of 8 factorial points with the 

inclusion of 2 centre points to estimate curvature and pure error.  

 

The experiments were carried out in an automated microwave reactor were the 

temperature and time reaction were pre-programmed. The yield response for product 

18 was determined by HPLC areas comparison using an authentic sample of 18. The 

results for the ¼ fractional factorial design are depicted in Table 4. 
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Table 4. ¼ Fractional Factorial Design for the regioselective Suzuki reaction 

 

 

 

 

 

aThe sample was irradiated on a microwave reactor for 1 min at the indicated temperature bObtained by comparison of HPLC 

areas with an authentic sample of 18. 

Entry 4a Pd(PPh3)4  K2CO3 Concentration Temperaturea Yield of 18b  

1 1.10 equiv 1 mol% 1 equiv 40 Volumes 150 °C 31% 

2 1.90 equiv 1 mol% 1 equiv 10 Volumes 130 °C 67% 

3 1.10 equiv 9 mol% 1 equiv 10 Volumes 150 °C 73% 

4 1.90 equiv 9 mol% 1 equiv 40 Volumes 130 °C 69% 

5 1.10 equiv 1 mol% 5 equiv 40 Volumes 130 °C 57% 

6 1.90 equiv 1 mol% 5 equiv 10 Volumes 150 °C 45% 

7 1.10 equiv 9 mol% 5 equiv 10 Volumes 130 °C 74% 

8 1.90 equiv 9 mol% 5 equiv 40 Volumes 150 °C 40% 

9 1.50 equiv 5 mol% 3 equiv 25 Volumes 140 °C 69% 

10 1.50 equiv 5 mol% 3 equiv 25 Volumes 140 °C 68% 
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Analysis for the formation of 18 

 

Half Normal plots are commonly used to graphically present correctly coded 

coefficients for easy assessment of significance.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Half –Normal plot for the analysis of yield of 18 

 

They are based on the assumption that randomly chosen numbers should form a 

normal distribution. Insignificant effects whose variation is due to random causes 

alone should fall in an approximate straight line at the centre of the graph. Large 

effects, which are unlikely to be due to random variation should fall further to the 

right away from the straight line. In this case factor E (temperature) is the most 

significant factor (Figure 2). 

 

 

These significant factors can be studied individually using one factor plots that give a 

reasonable idea of the effect of a factor versus the response 
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• Temperature: From the one factor plot it was deduced that the optimal yields 

should be obtained at temperatures around 130 °C (Figure 3). 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. One factor plot for yield of 18 Vs temperature. 

 

Following the temperature the most significant factors affecting the formation of 

18 were catalyst loading and the concentration. 

 

Concentration: From the one factor plot it was deduced that concentration decreases 

the yield of desired 18 (Figure 4).  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. One factor plot for yield of 18 Vs concentration. 
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• Catalyst loading: It was deduced that high catalyst loading would increase the 

formation of 18 (one factor plot not shown).  

 

Analysis of homocoupled 15 

 

Analysis of the half-normal plot shown that it was clear that the most important 

factor for the formation of homocoupled 15 is the equivalents of boronic ester 3 used 

in the reaction (Figure 5).  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. Half –Normal plot for the analysis of formation of 15 

 

 

Other parameters are also having an effect on the formation of this sideproduct 

however in a lot less importance. 
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• Formation of homocoupled 15 increases with the number of equivalents of 

boronic acid added in the reaction.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. One factor plot for formation of 15 Vs boronic ester stochiometry 

 

Analysis for protodeboronated 14 

 

The half-normal plot shows clearly that the only important parameter affecting the 

formation of 14 is the boronic ester 4a stochiometry (Figure 7). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. Half-Normal plot for the formation of protodeboronated 14 
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• The one plot factor for this parameter shows formation of 14 is related to high 

amounts of boronic ester used in the reaction. 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. One factor plot for formation of 14 Vs boronic ester 4a stochiometry. 

 

Analysis of trimer 13 

 

The half-normal plot shows that the main parameters affecting the formation of 

unwanted 13 are the boronate stochiometry followed by the equivalents of base and 

the temperature of the reaction. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9. Half-Normal plot for the formation of trimer 13. 
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3.6.3 2nd Fractional Design of experiment. 

 

 

With all the information gathered from the first design it was possible to 

concentrate on the factors that predominantly affected the yield of desired 18 while 

keeping the non important ones at a constant. It was understood that the boronic ester 

4a stochiometry and the equivalents of base were not affecting the yield formation of 

18 and therefore low levels of these should be used in the reaction conditions. 

Although being an important factor in the formation of 18, the catalyst stochiometry 

was maintained constant at a general 5 mol% making the process synthetically more 

attractive.  

In order to increase the yield of 18 a second fractional design of experiments was 

carried out. The second set of experiments was performed with only concentration 

and temperature as the variables of the system. The results are shown in Table 5.  

 

 
Table 5. Results for the 2nd Design of Experiment 

 

 

 

 

 

 

Entry 

Concentration 

(Volumes) Temperature  (°C)a HPLC Yield (%)b Isolated Yield of 18c 

1 20 120 69%  

2 15 130 78%  

3 10 120 66%  

4 15 130 73%  

5 10 140 77% 81% 

6 20 140 76% 65% 
Conditions: 1.2 equiv. of 4a, 1. equiv of 17, 5 mol% of Pd(Ph3)4, 2 equiv. of K2CO3 were used. aThe sample was irradiated 

on a microwave reactor for 1 min at the indicated temperature bObtained by comparison of HPLC areas with an authentic 

sample of 18. cYield after purification by column chromatography. 
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Under these conditions, 6 additional experiments were carried out. Compared to 

the first design the concentration range and also the temperature range were 

narrowed. The HPLC yields obtained for 18 were uniformly good under this set of 

conditions (entries 1-6). To compare the theoretical values obtained by HPLC, two of 

the reactions mixture were purified and bis-oxazole 18 was isolated in a very good 

81% yield at a reaction temperature of 140 °C and a concentration of 10 volumes 

(entry 5). 

 

The half-normal plot shown below points out clearly that the main effect under 

the new set of conditions is the temperature of the reaction being the concentration 

factor not important (Figure 10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10. Half-Normal plot for the formation of product 18 

 

 

On the other hand the one factor plot shows the optimum temperature for the 

formation of 18 is 140 °C (Figure 11). 
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Figure 11. One factor plot for the yield of 18 Vs the temperature. 

 

 

3.6.4 Conclusions 

 

 

The Suzuki-Miyaura regioselective coupling on 2-iodo-4-bromo-5-phenyloxazole 

17 has been studied with two fractional designs of experiments. In the first design 10 

selected experiments were carried out and important information regarding the 

influence of each parameter in the process was acquired. The main effects are 

temperature, catalyst loading and concentration, directly affecting the formation 18. 

As a preliminary result it was found that better yields of 18 should be obtained 

within the following range: 

 

• Temperature should be kept at around 130 °C. 

• The reaction should be as concentrated as possible (ca 10 volumes). 

• Stochiometry of boronic ester 4a or the base are not important in the 

formation of 18. 
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In the second design 6 additional experiments were carried out. Insignificant 

parameters were kept constant and at low values. Temperature and concentration 

ranges were narrowed therefore more accurate information could be extracted from 

the experiments. The results show a good distribution of yields of 18 for all the 

experiments conducted. The ideal range of conditions found for this reaction is the 

following: 

 

• Concentration: Should be kept between 10 and 20 volumes. 

• Temperature: under these conditions the optimal temperature found was 140 

°C for 1 min using microwave irradiation. 

• Boronic ester 4a: 1.2 equivalents. 

• 2-iodo-4-bromo-5-phenyloxazole 17: 1 equivalent. 

• Catalyst loading (Pd(PPh3)4): 5 mol% (or more). 

• Equivalents of base (K2CO3): 2 equivalents. 

 

 

This non-conventional optimisation has not only increased the yields of the 

desired product, but also it has given an idea of the robustness of the process. Very 

specific ranges of temperature and concentration need to be taken in order to achieve 

higher yields. Also a minimum of 5 % mol catalyst has to be used in order to attain a 

good yield of 18. Outside these limits consistency cannot be obtained therefore under 

these parameters the process is not very robust. On the other hand small variations of 

boronic ester stochiometry 4a or the equivalents of base will not affect the yield of 

18 making the process more robust under these parameters.  
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3.7 Synthesis of Tris-Oxazoles 
 

 

With both models A and B optimised the synthesis of tris-oxazoles was attempted. 

Either 12 and 18 were used as electrophiles under the model B conditions. The 

results are outlined in Scheme 10. 

 

 

 

 

 

 

 

 
Scheme 10. Stille couplings for the formation of tris-oxazoles. 

 

 

Clean formation of the desired tris-oxazoles using the optimised Stille coupling 

conditions developed previously. Tris-oxazole 19 was obtained in good 60% yield 

from substrate 12 and 75% yield from substrate 18 after column chromatography. 

Coupling was also successful for the simple stannane 6b, producing tris-oxazole 20 

in 73% yield using the same procedure (Scheme 10). 

 

 

3.8 Scope and Final Conclusions 
 

 

It has been proved for the first time that regioselective Suzuki-Miyaura cross-

coupling reactions can be conducted on 2,4-dihalooxazoles species. Furthermore, the 

halogen left intact on position C-4 can be used in an immediate second Stille 

coupling to allow the formation of tris-oxazoles. In order to optimise both the Suzuki 

coupling and the Stille reaction, each C-C bond formation was examined separately 
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on mono-iodooxazoles to define the reaction parameters prior to using the bis-

halooxazoles. Screening studies were carried out with the finding of high yielding 

conditions for both reactions. After this, preliminary results were obtained for the 

regioselective Suzuki reaction and a statistical design of experiment was carried out 

to get an understanding of important reaction parameters affecting the yield of the 

coupling product. This methodology has allowed the finding of a range of conditions 

where good yields of coupled product could be obtained along with information of 

the process robustness. Finally, application of the Stille conditions developed before 

provided the desired tris-oxazoles in good yields. The method clearly benefits from 

convergence allowing variations on the oxazole substituent at an early stage of the 

synthesis. In addition, the proposed synthesis provides high level of complexity in a 

minimum number of steps avoiding the preparation of complicated precursors. 

 

 

The main drawbacks are probably related to the first palladium insertion where 

oxazole boronic esters were needed. The scarce availability of these in the literature 

compared to other heterocycles certainly restricts its application into other systems or 

natural product synthesis. Moreover, many oxazole-containing natural products have 

unsubstituted C-5 patterns.8 The presented method uses 5-phenyloxazole 11 which 

can be iodinated selectively on C-4 using Vedejs’ methodology.4 This is clearly a 

limitation because C-5 substitution on the oxazole is needed prior the halogenating 

step and therefore full control over the C-5 position would be necessary in order to 

apply the method into more complex systems. Finally, the Stille coupling required 

three equivalents of stannane in order to achieve high yields in the coupling product. 

This is economically and also in terms of waste disposal very undesirable. 
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3.9 Experimental procedures Chapter 3 
 

 

5-Phenyl-2-tributylstannanyl-oxazole 6a 

 

 

 

 

This compound was synthesised according to Dondoni’s procedure.11 5-

Phenyloxazole17 11 (500 mg, 3.447 mmol, 1equiv) was dissolved in dry diethyl ether 

(30 mL) and cooled to -78 °C. nBuLi [1,6 M in hexanes] (2.58 mL, 4.136 mmol, 1.2 

equiv) was added dropwise under nitrogen to the resulting solution and stirred for 40 

min at -78 °C. Then, ClSnBu3 (0.93 mL, 3.447 mmol, 1 equiv) was added slowly to 

the reaction mixture and stirred additionally for 30 min at -78 °C. After this time, the 

cool bath was removed and the reaction mixture was allowed to warm to rt for about 

30 min. The Et2O was then removed by rotary evaporation and the obtained crude 

was re-dissolved in hexane (50 mL), filtered through basic celite and the solvent 

removed under vacuo to yield 1.508 g of crude 5-Phenyl-2-tributylstannanyl-oxazole 

6a as a red oil. Further purification, and complete characterisation were not 

successful. This compound was used without further purification in the next step. 1H-

NMR (360 MHz, CDCl3) δ 0.91 (9H, t, J = 7.33 Hz), 1.22-1.27 (6H, m), 1.31-1.42 

(6H, m), 1.59-1.68 (6H, m), 7.27-7.28 (1H, m), 7.39-7.41 (3H, m), 7.65-7.67 (2H, 

m). 13C-NMR (90 MHz, CDCl3) δ 10.73 (CH3), 13.63 (CH2), 27.10 (CH2), 28.80 

(CH2), 122.05 (CH), 124.35 (CH), 127.95 (CH), 128.76 (quat), 128.78 (CH), 153.66 

(quat), 172.48 (quat). 
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5,2’-Diphenyl-[2,4’]bioxazolyl 8 

 

 

 

 

A 5 mL microwave vial was charged with oxazol-4-ylboronate 4a (66 mg, 0.242 

mmol, 1.1 equiv), 2-iodo-5-phenyloxazole4 (60 mg, 0.220 mmol, 1 equiv), Pd2(dba)3 

(10 mg, 5 mol%), PCy3 (5 mg, 10 mol%), K2CO3 (92 mg, 0.660 mmol, 3 equiv) and 

3 mL of anhydrous DMF. The microwave vial was then sealed, and the resulting 

mixture was stirred at rt aproximately 5 min before it was irradiated for 5 min at a 

pre-selected temperature of 150 °C in a Smith Synthesiser. The vial was then cooled 

with air jet cooling, it was opened and poured into a mixture of Et2O (20 mL) and 

brine (20 mL). The organic phase was separated and the aqueous layer extracted with 

Et2O (2x). The organic layers were combined, dried over MgSO4 and filtered. The 

organic solvent was removed in vacuo and the residue was purified by flash column 

chromatography (silica, hexane/EtOAc 8:2) to give the coupled product 8 (55 mg, 

87% yield) as a light yellow solid. Mp = 162-164 °C. 1H-NMR (360 MHz, CDCl3) δ 

7.34-7.49 (7H, m), 7.73 (2H, dd, J1 = 8.4 Hz, J2 = 1.1 Hz), 8.15-8.18 (2H, m), 8.31 

(1H, s). 13C-NMR (90 MHz, CDCl3) δ 123.10 (CH) 124.30 (CH), 126.46 (quat), 

126.78 (CH), 127.46 (quat), 128.60 (CH), 128.76 (CH), 128.83 (CH), 130.98 (CH), 

131.67 (quat), 138.00 (CH), 151.36 (quat), 154.62 (quat), 162.64 (quat).  HRMS 

(ESI) calculated for C21H13N3O3 355.0951 found 355.0949.  
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5,5’-Diphenyl-[2,4’]bioxazolyl 10 

 

 

 

 

 

 

 

 

A 5 mL microwave vial was charged with 4-iodo-5-phenyloxazole4 (100 mg, 0.369 

mmol, 1 equiv), oxazol-4-ylstannane 6a (481 mg, 1.107 mmol, 3 equiv), Pd2(dba)3 

(17 mg, 5 mol%), PCy3 (10 mg, 10 mol%), and 5 mL of anhydrous DMF. The 

microwave vial was then sealed, and the resulting mixture was stirred at rt for about 

5 min before it was irradiated 5 min at a pre-selected temperature of 150 °C in a 

Smith Synthesiser. The vial was then cooled with air jet cooling and was opened and 

poured into a mixture of 10 mL of saturated KFaq and 20 mL of EtOAc and stirred 

for 30 min. After this time the organic layer was separated and the aqueous layer was 

extracted with EtOAc (2x). The organic layers were combined, dried under Mg2SO4 

and filtered through CELITE. The solvent was removed in vacuo and the residue was 

purified by flash column chromatography (silica doped with 10% KF, hexane/Et2O 

6:4) to give the coupled product 10 (56 mg, 87% yield) as a white solid. Mp = 102-

104 °C. 1H-NMR (360 MHz, CDCl3) δ 7.42-7.54 (7H, m), 7.74-7.76 (m, 2H), 8.04 

(1H, s), 8.29-8.31 (2H, m). 13C-NMR (90 MHz, CDCl3) δ 123.08 (CH), 124.20 (CH), 

126.93 (quat), 127.29 (CH), 127.39 (quat), 128.40 (CH), 128.48 (CH), 128.73 (CH), 

128.84 (quat), 129.77 (CH), 149.74 (CH), 150.03 (quat), 151.29 (quat), 154.91 

(quat). HRMS (ESI) calculated for C18H12N2O2 289.0972 found 289.0974. 

 

 

 

 

 



Chapter 3. Regioselective Palladium Catalysed Cross-Couplings of Oxazoles. 

 150

 

2,4-Diiodo-5-phenyl-oxazole 5a 

 

 

 

 

 

 

 

2,4-Diiodo-5-phenyl-oxazole 5a was synthesised according to Vedej’s protocol with 

minor modifications.4 4-Iodo-5-phenyloxazole (100 mg, 0.369 mmol, 1 equiv) was 

dissolved in 10 mL of dry THF and cooled to -78 ºC. LHMDS (1M in THF, 0.41 

mL, 0.41 mmol, 1.11 equiv) was added slowly and the reaction mixture was stirred 

one hour at -78 ºC. Then, solid 1,2-diiodoethane (121 mg, 0.420 mmol, 1.15 equiv) 

was added and the reaction mixture temperature was raised to rt. After 1h at rt, the 

reaction was quenched with a mixture of 50 mL of Et2O + 10 mL of aqueous 

Na2S2O3 (10%). The organic layer was washed with water (2x) and dried over 

MgSO4, which, after removal of the solvent yielded 148 mg (quantitative yield) of 

the desired 5a as a light yellow solid. This compound has been previously 

described.4 1H-NMR (360 MHz, CDCl3) δ 7.43-7.47 (3H, m), 7.91 (2H, d, J = 7.42 

Hz). 

 

4-Iodo-5,2’-diphenyl-[2,4’]bioxazolyl 12. 

 

 

 

 

 

 

A 5 mL microwave vial was charged with oxazol-4-ylboronate 4a (60 mg, 0.220 

mmol, 1 equiv), 2,4-diiodo-5-phenyloxazole 5a (87 mg, 0.220 mmol, 1 equiv),  
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Pd2(dba)3 (10 mg, 5 mol%), PCy3 (6 mg, 10 mol%), K2CO3 (92 mg, 0.660 mmol, 3 

equiv) and 4 mL of anhydrous DMF. The microwave vial was then sealed, and the 

resulting mixture was stirred at rt for about 5 min before it was irradiated 10 min at a 

pre-selected temperature of 150 °C in a Smith Synthesiser. The vial was then cooled 

with air jet cooling, it was opened and poured into a mixture of Et2O (20 mL) and 

brine (20 mL). The organic phase was separated and the aqueous layer extracted with 

Et2O (2x). The organic layers were combined, dried over MgSO4 and filtered. The 

organic solvent was removed in vacuo and the residue was purified by flash column 

chromatography (silica, hexane/EtOAc 9:1) to give the coupled product 12 (42 mg, 

46% yield) as a yellow solid. Mp = 157-159 °C. 1H NMR (360 MHz, CDCl3) δ 7.40-

7.51 (6H, m), 8.06 (2H, d, J = 7.2 Hz), 8.16 (2H, dd, J1 = 7.2 Hz, J2 = 1.1 Hz), 8.34 (1H, s). 
13C-NMR (90 MHz, CDCl3) δ 79.34 (quat), 126.22 (CH), 126.40 (quat), 126.89 

(CH), 128.64 (CH), 128.83 (CH), 129.23 (CH), 130.94 (quat), 131.15 (CH), 138.67 

(CH), 150.20 (quat), 155.64 (quat), 162.87 (quat), (one quaternary centre not found). 

HRMS (ESI) calculated for C18H11N2O2I  413.9860 found 413.9859. 

 

 

5, 5’, 2’’-Triphenyl-[2, 4’, 2’, 4’’] teroxazole 19 

 

 

 

 

 

 

This compound can be synthesised from 12 or from 18.  

A 5 mL microwave vial was charged with bis-oxazole 18 (100 mg, 0.272 mmol, 1 

equiv), oxazol-4-ylstannane 4a (354 mg, 0.816 mmol, 3 equiv), Pd2(dba)3 (12 mg, 5 

mol%), PCy3 (8 mg, 10 mol%), and 1 mL of anhydrous DMF. The microwave vial 

was then sealed, and the resulting mixture was stirred at rt for about 5 min before it 

was irradiated 15 min at a pre-selected temperature of 150 °C in a Smith Synthesiser. 

The vial was then cooled with air jet cooling, it was opened and poured into a 

mixture of 30 mL of saturated KFaq and 30 mL of EtOAc and stirred for 30 min.  
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After this time the organic layer was separated and the aqueous layer was extracted 

with EtOAc (2x). The organic layers were combined, dried under Mg2SO4 and 

filtered through CELITE. The solvent was removed in vacuo and the residue was 

purified by flash column chromatography (silica doped with 10% KF, hexane/Et2O 

6:4) to give the coupled product 17 (88 mg, 75% yield) as yellow oil. 1H NMR (360 

MHz, CDCl3) δ 7.42-7.54 (10H, m), 7.74 (2H, dd, J1 = 8.4 Hz, J2 = 1.3 Hz), 8.17-

8.20 (2H, m), 7.74-8.32 (2H, m), 8.47 (1H, s). 13C-NMR (90 MHz, CDCl3) δ 123.25 

(CH), 124.43 (CH), 125.53 (quat), 126.45 (quat), 126.89 (CH), 127.05 (quat), 127.60 

(quat), 127.68 (CH), 128.50 (CH), 128.63 (CH), 128.85 (CH), 128.87 (CH), 129.93 

(CH), 131.13 (CH), 138.01 (quat), 139.23 (CH), 150.07 (quat), 151.59 (quat), 154.15 

(quat), 155.04 (quat), 162.82 (quat). HRMS (ESI) calculated for C27H17N3O3 

431.1264; found 431.1266.  

 

 

4-Bromo-5-phenyloxazole 16 

 

 

 

 

4-Bromo-5-phenyloxazole 16 was synthesised using Vedej’s protocol4 with 

modifications. 5-Phenyloxazole17 (5,000 g, 34.471 mmol, 1 equiv) was dissolved in 

50 mL of dry THF and 40 mL of DMPU (non anhydrous) and cooled to -78 ºC. 

LHMDS (1M in THF, 55mL, 55 mmol, 1.6 equiv) was added slowly with a syringe. 

The reaction mixture was stirred 1h at -78 ºC and then neat bromine (2.1 mL, 41.365 

mmol, 1.2 equiv) was added drop wise to the reaction mixture, which was stirred for 

an additional 30 min at -78 ºC. The reaction mixture was then poured into a mixture 

of 200 mL of TBME + 200 mL of aqueous Na2S2O3 (10%) at rt. The two layers were 

separated and the organic phase was washed 3 times with distilled water, dried over 

magnesium sulphate and concentrated in vacuo. The residue was purified by flash 

chromatography (hexanes/TBME 10:0.5 to 10:1) and gave the desired bromooxazole 

16 (5.318 g, 69% yield) as a white solid. Mp 60-61 °C. 1H-NMR (360 MHz, CDCl3)  

O

N
Br

Ph
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δ 7.37-7.86 (3H, m), 7.86 (1H, s), 7.92-7.95 (2H, m). 13C-NMR (90 MHz, CDCl3) δ 

110.90 (quat), 125.51 (CH), 126.69 (quat), 128.75 (CH), 129.06 (CH), 146.66 (quat), 

149.58 (CH). HRMS (ESI) calculated for C9H6
79BrNO 223.9705 found 223.9709.  

 

 

2-Iodo-4-Bromo-5-phenyloxazole 17 

 

 

 

 

 

2-Iodo-4-Bromo-5-phenyloxazole 17 was synthesised using Vedej’s protocol4 with 

minor modifications. 4-Bromo-5-phenyloxazole 16 (5,000 g, 22.315 mmol, 1 equiv) 

was dissolved in 70 mL of dry THF and cooled to -78 ºC. LHMDS (1M in THF, 27 

mL, 27 mmol, 1.21 equiv) was added slowly and the reaction mixture stirred one 

hour at -78 ºC. Then, solid 1,2-diiodoethane (7.624 g, 26.778 mmol, 1.2 equiv) was 

added and the reaction mixture and the temperature raised to rt. After 10 min 

complete consumption of the starting material was observed by HPLC and the 

reaction was quenched with a mixture of 200 mL of TBME + 200 mL of aqueous 

Na2S2O3 (10%). The two layers were separated and the organic phase was washed 3 

times with distilled water (100 mL), dried over magnesium sulphate and 

concentrated in vacuo to give an orange solid which was re-crystallised from toluene 

to afford 6.698g (86% yield) of pure bis-halooxazole 17 as a white solid. Mp = 104-

106 ºC.1H-NMR (360 MHz, CDCl3) δ 7.37-7.48 (3H, m), 7.85-7.88 (2H, m). 13C-

NMR (90 MHz, CDCl3) δ 99.31 (quat), 112.48 (quat), 125.31 (CH), 125.92 (quat), 

128.73 (CH), 129.39 (CH), 153.06 (quat). HRMS (ESI) calculated for C9H5NO 
79BrI 365.8594; found 348.8597. 
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4-Bromo-5,2'-diphenyl-[2,4']bioxazolyl 18 

 

 

 

 

 

A 5 mL microwave vial was charged with oxazol-4-ylboronate 4a (72 mg, 0.265 

mmol, 1.2 equiv), 2-iodo-4-bromo-5-phenyloxazole 17 (77 mg, 0.221 mmol, 1 

equiv), Pd(PPh3)4 (13 mg, 5 mol %), K2CO3 (92 mg, 0.660 mmol, 3 equiv) and 1 mL 

of anhydrous DMF. The microwave vial was then sealed, and the resulting mixture 

was stirred at rt for about 5 min before it was irradiated 10 min at a pre-selected 

temperature of 150 °C in a Smith Synthesiser. The vial was then cooled with air jet 

cooling, it was opened and poured into a mixture of Et2O (20 mL) and brine (20 mL). 

The organic phase was separated and the aqueous layer extracted with Et2O (2x). The 

organic layers were combined, dried over MgSO4 and filtered. The organic solvent 

was removed in vacuo and the residue was purified by flash column chromatography 

(silica, hexane/EtOAc 9:1) to give the coupled product 18 (65 mg, 81% yield) as a 

white solid Mp = 139-152 ºC. 1H-NMR (360 MHz, CDCl3) δ 7.36-7.50 (6H, m), 

8.00-8.02 (2H, m), 8.13-8.15 (2H, m), 8.31 (1H, s). 13C-NMR (90 MHz, CDCl3) δ 

112.30 (q), 125.47 (CH), 126.25 (q), 126.50 (q) 126.79 (CH), 128.64 (CH), 128.76 

(CH), 128.94 (CH), 130.87 (q), 131.09 (CH), 138.67 (CH), 146.24 (q), 153.70 (q), 

162.77 (q). HRMS (ESI) calculated for C18H11N2O2
79Br 365.9998; found 366.0001.  
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5’, 2’’,-Diphenyl-[2,4’;2’,4’’] teroxazole 20 

 

 

 

 

 

Prepared as compound 19. A 5 mL microwave vial was charged with bis-oxazole 18 

(100 mg, 0.272 mmol, 1 equiv), 2-(Tributylstannyl)oxazole14 17 (314 mg, 0.816 

mmol, 3 equiv), Pd2(dba)3 (12 mg, 5 mol%), PCy3 (8 mg, 10 mol%), and 1 mL of 

anhydrous DMF. Work up as 19. The crude obtained was purified by flash 

chromatography (Silica, hexane/EtOAc 8:2) to give the couple product 20 (63 mg, 

60% yield) as white solid. Mp = 179-182 ºC. 1H-NMR (360 MHz, CDCl3) δ 7.32 

(1H, s), 7.44-7.52 (6H, m), 7.79 (1H, s), 8.14-8.17 (2H, m), 8.35-8.37 (2H, m), 8.44 

(1H, s). 13C-NMR (90 MHz, CDCl3) δ 125.37 (quat), 126.42 (quat), 126.81 (CH), 

126.86 (quat), 127.51 (CH), 128.28 (CH), 128.47 (CH), 128.79 (CH), 129.84 (CH), 

131.05 (CH), 131.06 (quat), 138.82 (CH), 139.10 (CH), 149.91 (quat), 153.98 (quat), 

155.78 (quat), 162.73 (quat). HRMS (ESI) calculated for C21H13N3O3 355.0951 

found 355.0949.  
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Design of experiments experimental data 

 

 

 

The following procedure is identical for each reaction vessel. Reaction 1 (1st 

fractional design of experiment) is representative: A 5 mL microwave vial was 

charged with oxazol-4-ylboronate 4a (66 mg, 0.243 mmol, 1.1 equiv), 2-iodo-4-

bromo-5-phenyloxazole 17 (77 mg, 0.221 mmol, 1 equiv), Pd(PPh3)4 (3 mg, 1 mol 

%), K2CO3 (31 mg, 0.221 mmol, 3 equiv) and 2.6 mL of anhydrous DMF (40 vol).  

 

Once each vessel had been charged with the reactants, they were sealed and 

irradiated for 1 min at the indicated temperature (150 °C for Reaction 1) in a Smith 

Synthesiser (Biotage). After this time, each vessel was opened and its contents 

diluted to 250 mL with distilled water. HPLC samples of each reaction were 

accordingly prepared. The HPLC yield was obtained by comparing the HPLC areas 

with an authentic sample of 18 of known concentration:  

 

HPLC yield for reaction 1 is representative:  

HPLC area of 18: 265 

HPLC area standard 1 (18): 1341 (Conc Std1 0.505 mg/mL) 

Molecular weight product: 367.2 g/mol 

Number of moles starting material: 0.221 mmol 

HPLC yield reaction 1: 31% yield 
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1st fractional design of experiment data: 

 

 

 

 Boronic 
ester   Catalyst 

loading  Base 
equivalents   

Reaction Mass (mg) mmol equiv Mass 
(mg) mol% mass mmol equiv 

1 66 0.243 1.10 3 1% 31 0.221 1 
2 114 0.420 1.90 3 1% 31 0.221 1 
3 66 0.243 1.10 23 9% 31 0.221 1 
4 114 0.420 1.90 23 9% 31 0.221 1 
5 66 0.243 1.10 3 1% 153 1.105 5 
6 114 0.420 1.90 3 1% 153 1.105 5 
7 66 0.243 1.10 23 9% 153 1.105 5 
8 114 0.420 1.90 23 9% 153 1.105 5 
9 90 0.332 1.50 13 5% 92 0.663 3 

10 90 0.332 1.50 13 5% 92 0.663 3 
 

 

 

 

 

 Concentration Temp Response  DMF 

Reaction Volumes º C Yield % Area of P 
(HPLC) Volume (ml) 

1 40 150 31% 265 2.6 
2 10 130 67% 577 1.1 
3 10 150 73% 632 0.7 
4 40 130 69% 591 4.6 
5 40 130 57% 492 2.6 
6 10 150 45% 389 1.1 
7 10 130 74% 636 0.7 
8 40 150 40% 342 4.6 
9 25 140 69% 595 2.2 

10 25 140 68% 590 2.2 
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2nd Fractional design of experiment 

 

 

 

 

  Boronic 
ester   Catalyst 

loading  Base 
equivalents   

Std Run Mass 
(mg) mmol equiv Mass 

(mg) Mol % Mass (mg) mmol equiv 

3 1 72 0.265 1.20 13 5% 62 0.442 2 
5 2 72 0.265 1.20 13 5% 62 0.442 2 
1 3 72 0.265 1.20 13 5% 62 0.442 2 
6 4 72 0.265 1.20 13 5% 62 0.442 2 
2 5 72 0.265 1.20 13 5% 62 0.442 2 
4 6 72 0.265 1.20 13 5% 62 0.442 2 

 

 

 

 

 

 

  Concentration Temp Response   DMF 

Std Run Volumes ºC Yield % Area of P 
(HPLC) 

Isolated 
Yield Volume (mL) 

3 1 20 120 69% 597  1.4 
5 2 15 130 78% 674  1.1 
1 3 10 120 66% 571  0.7 
6 4 15 130 73% 630  1.1 
2 5 10 140 77% 668 81% 0.7 
4 6 20 140 76% 659 65% 1.4 
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Direct Arylation of oxazoles at C-2. Synthesis of tris-

oxazole fragment of Ulapualide A 
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4.1 Introduction 
 

 

 

 

 

 

Aromatic and heteroaromatic compounds are often found in pharmaceuticals and 

important biologically active compounds. For a long time, synthetic organic chemists 

have focused on the development of a variety of methods for the construction of such 

motifs. Many methods have been developed, however a rapidly expanding one is 

through the use of transition metal mediated reactions.1 Typically, these 

transformations have been carried out with stochiometric quantities of a transition 

metal that have allowed high yielding transformations under excellent selectivity and 

high functional group tolerance. Although outstanding improvements have 

incorporated these processes into industrial applications, disposal of stochiometric 

activating agents is still a major concern for industry. In addition, preparation of pre-

activated aryl substrates is time-consuming and an economically inefficient process. 

Apart from the difficulty associated with the preparation, the instability of 

organometallics is also of particular concern for heteroaromatics.2 

 

A more advanced variant is the direct coupling of non-activated aryl C-H bonds 

with activated arene (usually an aryl halide) in the presence of catalysts; typically 

palladium, rhodium or ruthenium have been used (Scheme 1).3  

 

 

 

 

 

 

 
Scheme 1. Direct coupling of nonactivated aryl C-H bond with aryl halides. 
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H
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The ligands used with the transition metal catalyst are usually phosphines, and 

they vary depending on the aryl halide. More reactive aryl iodides are commonly 

associated with electron-rich monodentate phosphines such as PPh3. However, in 

order to obtain useful synthetic yields, aryl bromides and chlorides necessarily need 

more sterically bulky and more electron rich ligands such as trialkyl phosphines, 

Buchwald’s biphenyl phosphines or the popular N-heterocyclic carbenes.4  

 

A base is usually required in direct arylation reactions. The exact role of the base 

still remains a mystery for most systems. Inorganic bases such as K2CO3, Cs2CO3, 

KOAc, t-BuOK and CsOPiv are usually employed. A solvent is also commonly used 

in direct arylations, being polar/aprotic the most common ones; although non-polar 

solvents such as toluene and xylene have successfully been used. 

 

 

4.2 Mechanism of C-H insertion 
 

 

Conventionally, direct arylation of arenes is proposed to occur via oxidative 

addition of the transition metal into the aryl halide followed by one of the carbon-

carbon bond forming steps (Scheme 2):3 

 

(a) Electrophilic aromatic substitution at the metal (SEAr). 

(b) Concerted SE3 process. 

(c) σ-Bond metathesis. 

(d) Heck-type process through a formal β-hydride elimination. 

(e) C-H bond oxidative addition 

 

Although these processes have been observed in different systems, the exact 

mechanism is deeply dependent on the substrate, transition metal, solvent, base and 

ligand used.3  
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Scheme 2. Mechanisms of C-H insertion. 

 

 

Regioselectivity  

 

Direct arylation reactions can be performed in either an intramolecular or an 

intermolecular fashion (Scheme 3). 
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Scheme 3. Intramolecular Vs intermolecular direct arylation. 

 

 

Intermolecular reactions are a greater challenge than intramolecular 

transformations because the catalyst has a higher degree of freedom when reacting 

with the C-H bond. Factors that influence the regioselectivity of the intermolecular 

direct arylation are related to the electronics of the arene and also through the use of 

a directing group. 

 

In the case of azoles, and more particularly oxazoles, Ab initio calculations have 

revealed that the HOMO, indicating the most electron rich site, resides on C2 and C5 

carbons of the oxazole ring. Arylation should then occur at these two positions.5 It is 

currently believed that the direct arylation at C5 involves an electrophilic palladation 

of the azole ring (Scheme 5, equation 1). However, it is the arylation at the C2 carbon 

that has generated more controversy in the assignment of a mechanism. Miura and 

co-workers demonstrated the effect of copper in the arylation on C2 of various 

azoles, with the finding that arylation on C2 could be promoted with the use of CuI. 

The control experiments indicated that the arylation required both the palladium and 

copper species to obtain reasonable yields of C2 arylated products. Given that the 

hydrogen attached on C2 is more acidic, the authors hypothesised that the 

deprotonated form seemed to enable arylation (Scheme 4).6 
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Scheme 4. Direct arylation of various azole promoted by CuI. 

 

 

On the other hand, Hoarau and co-workers found that phenylation on C2 of 4-oxazole 

carboxylate with palladium and CuI as a co-catalyst made the reaction fail, whereas 

the use exclusively of palladium catalysts in conjunction with sterically bulky 

ligands gave excellent C2 arylation products. Rather than electronic or directing 

group factors, regioselectivity was assigned to a less hindered position of the oxazole 

ring (see Chapter 1).5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Scheme 5. Mechanistic pathways for the direct arylation of oxazole in C-5 and benzoxazole in C-2. 
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More recently, Zhuravlev and co-workers have disclosed mechanistic studies on 

the C2 phenylation of the related benzoxazole system. An anionic mechanism 

involving deprotonation at C2 was shown to be operative in contrast to the SEAr 

mechanism usually invoked for direct arylation of π-excessive heterocycles (Scheme 

5, equation 2).7 These results have been exemplified by Daugulis who has recently 

reported a general copper-catalysed method for the C2 phenylation of a variety of 

heterocycles including 1,3 oxazole in 59% yield (see Chapter 1).8 The authors 

proposed that using copper salts and stronger bases than those usually employed in 

direct arylations could efficiently promote C2 reactions. Preliminary mechanistic 

studies suggested that the reaction proceeded either via a copper-assisted benzyne 

type mechanism, or by the anionic/deprotonation mechanism previously introduced 

by Zhuravlev. 

 

 

4.3 C2-Direct arylation of oxazoles 
 

 

In Chapter 3, tris-oxazole structures were achieved using a regioselective Suzuki-

Miyaura reaction followed by a Stille coupling. This idea was conceived because of 

the existence of consecutive C2-C4 linked oxazole sequences, which are found in a 

variety of structurally complex, biologically active natural products. Therefore, 

control over the synthesis of the C2-C4 linkage would potentially lead towards the 

synthesis of poly-oxazoles as found in natural products. Although noumerous 

methods exist in the literature for the synthesis of poly-oxazoles, no reports have yet 

been disclosed using a direct arylation methodology.9,10 It was envisaged that direct 

arylation on C2 of oxazoles could be the beginning of a robust methodology to 

control the C2-C4 bond of poly-oxazoles.  

The direct arylation of oxazoles at C2-H is a relatively unexplored area in the 

literature with only a handful of examples to be found (see Chapter 1). At the start, 

preliminary studies were conducted in a series of simple systems. Literature reaction 

conditions were first explored on the direct phenylation of 5-phenyloxazole (Table 

1). 
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Table 1. Preliminary studies on the C2 phenylation of 5-phenyloxazole. 

 

 

 

 

 

 
Entry Catalyst Temp (°C) Solvent Base Reaction time Yield of 6aa 

1 PdCl2(dppf)/PPh3 60 °C Water Ag2CO3 17h 77% 

2 HBPb 110 °C Toluene Cs2CO3 20h traces 

3 CuI 140 °C DMF LiOtBu 30 min 92% 
a Isolated yield after column chromatography. b HBP = Hermann-Beller palladacycle.12 

 

 

The mild conditions developed by Greaney and co-workers for the direct arylation 

of C2 substitued azoles at the electron rich C5 position11 proved to be successful in 

this reaction and gave 77% yield of bis-arylated product 6a as isolated material 

(entry 1). Surprisingly, the Hermann-Beller palladacycle12 in toluene only gave 

traces of 6a after extensive heating (entry 2). Daugulis’ conditions8 proved to be 

extremely efficient and gave and excellent 92% of 6 after 30 minutes at 140 °C. The 

scope of this arylation reaction was next investigated. A range of 2,5-disubstituted 

oxazoles was synthesised according to C2 direct arylation of 5-substituted oxazoles 4 

with a variety of aryl iodides 5. Greaney’s conditions were chosen due to their 

mildness and more likely application in natural systems (Table 2, entries 1-14). 
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O
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I
conditions

N

O

4a 5a 6a
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Table 2. C2 Direct arylation of 5-substituted oxazoles with aryliodides. 
 

 

 

 

 

 
Entry Ar-X Product Yield of 6 (%)a 

1 
I

 N

O
Ph

6a  

77 

2 
I

MeO  N

O
Ph

6b

MeO

 

89 

3 
I

NC  N

O
Ph

6c

NC

 

82 

4 
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I  
N

O
Ph

6d

S

 

66 

5 
I

Me  N

O
Ph

6e

Me

 

87 

6 
I  

N

O
Ph

6f  

73 

7 
I

F3C  
N

O
Ph

6g

F3C

 

62 

8 
I

EtO2C  N

O
Ph

6h

EtO2C
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9 
I

Me  N

O
CO2Et

6i

Me

 

67 

10 
I

NC  N

O
CO2Et

6j

NC

 

48 

11 
F

I

 N

O
Ph

F

6k  

29 

12 

I

NO2  N

O
Ph

6l

NO2

 

0 

13 
Br

Cl  N

O
Ph

6m

Cl

 

0 

14 
N

O
Ph

I

 N

O
Ph

O

N

Ph

6n  

0 

aIsolated yield after column chromatography. 

 

Good general reactivity was observed for a range of aryl iodides, affording good 

to excellent yields of the 2,5-diarylated products (Table 2, entries 1-10). Electron-

rich (entries 2, 5 and 9) aryl iodides reacted smoothly in clean transformations. Most 

electron-poor aryl iodides reacted well (entries 3, 7, 8 and 10), surprisingly though, 

some of them did not meet the same expectations (entries 11 and 12). It was 

observed that 3-iodothiophene was a productive coupling partner, producing arylated 

oxazole 6d in 66% yield despite the presence of several reactive C-H bonds in its 

structure (entry 4). On the other hand, 2-iodo-5-phenyl oxazole was inert under the 

reaction conditions (entry 14). The electron poor oxazole 4b was effective in the 

reaction, giving a good 67% yield of product 6i when combined with 4-iodotoluene 

and an acceptable 48% yield of product 6j if coupled with 4-iodobenzonitrile (entries 
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9 and 10). Direct arylation was attempted on an aryl bromide; however no product 

could be formed under these conditions (Table 2, entry 13). 

 

 

It was then decided to perform some reactions on unsubstituted C5 oxazoles to 

observe any regioselective difficulties. The following experiments were carried out: 

4-substituted oxazoles 7a-b were phenylated under Greaney conditions (Scheme 4). 

 

 

 

 

 

 

 
Scheme 4. Direct phenylation of 4-substituted oxazoles. 

 

 

In both experiments, a mixture of mono- and bis-arylated products 8 and 9 was 

observed. These results show the conditions to be highly reactive because of their 

propensity to over-arylate all the compounds present in the reaction mixture.  

 

By analogy to Hoarau’s results,5 oxazole 7b was submitted to direct arylation 

conditions using the Hermann-Beller palladacycle (HBP) in toluene with cesium 

carbonate as a base which resulted in the formation of the C2 coupling product 10a 

exclusively in a moderate 48% yield as isolated material. The same conditions 

proved successful with 3- and 4-iodopyridine, which also resulted in the formation of 

the C2 products 10o and 10p in 35% and 29% yield respectively (Scheme 5). 
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Scheme 5. Direct arylation of 4-oxazolecarboxylate 7b. 

 

 

4.4 Synthesis of poly-oxazoles. Synthesis of the tris-oxazole 

fragment of Ulapualide A. 
 

 

Coupling of two electron-rich heteroaromatics via direct arylation poses a 

greater synthetic challenge because the products formed usually contain reactive C-H 

bonds that may compete with the starting material to undergo further arylation, 

producing mixtures of products. The electron-rich oxazole C5 position is of particular 

concern, as it is frequently found unsubstituted in natural products and is thus liable 

to compete with C2 for arylation. The proposed strategy for tris-oxazole synthesis is 

shown in Scheme 6. 

 

 

The direct arylation approach in principle enables a highly efficient route. Starting 

from the known 4-oxazole carboxylate 7b and the protected 4-iodooxazole 12, the 

target heterocycle 11 could be assembled using just two reactions, direct arylation 

and deprotection, each repeated once. As demonstrated by Hoarau the C4 carboxylic 

ester on 7b should retard any SEAr arylation at C5, whilst promoting coupling at C2.  
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Scheme 6. Proposed strategy for the synthesis of tris-oxazoles via direct arylation (PG = 

Protecting group). 
 

 

Oxazole 7b was conveniently synthesised using the method of Schöllkopf and co-

workers (Scheme 7).13 

 

 

 

 

 
 

Scheme 7. Synthesis of ethyl 4-oxazolecarboxylate 7b. 

 

 

In this reaction, formic acid can be activated using the coupling agent carbonyl 

diimidazole. Once activated, nucleophilic attack of ethyl isocyanoacetate followed 

by thermal cyclisation provided oxazole 7b in a good 65% yield of isolated material. 
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Following the proposed strategy in Scheme 6, oxazoles corresponding to 12 have 

not been reported in the literature. Iodination at the oxazole 4-position has been 

reported by Vedejs, who demonstrated that 5-substituted oxazoles undergo selective 

4-iodination when lithiated in the presence of DMPU and iodine.14 It was intriguing 

to see if 4-iodooxazole 16 could be accessed directly from the parent 1,3 oxazole 14 

using the same reaction conditions. The resulting 4-iodooxazole could then be further 

functionalised at the C2 position (Table 3). 

 

 
Table 3. 2,4 diiodination of 1,3 oxazole 

 

 

 

 

 

 

 
Entry Reaction timea Yield of 15 (%)b 

1 5 minutes Tracesc 

2 30 minutes 24 

3 24 hours 38 

4 7 days 64 

5 14 days 77 
Conditions: 2 equiv of LHMDS and 2 equiv of I2 were used. aReaction time after addition of I2. bIsolated yields after column 

chromatography. c1 equiv of LHMDS and 1 equiv of I2 were used. 

 

 

A first experiment was carried out following the original conditions and, 

surprisingly, none of the expected 4-iodooxazole 16 was observed. Instead, small 

amounts of 2,4-diiodooxazole 15 could be isolated as the only product along with 

unreacted 14 (Table 3, entry 1). We realised that diiodo compound 15 would be 

useful if the more reactive C2 iodide could be manipulated regioselectively. The 

yield of 9 could be improved to 77% using prolonged reaction times and 2 

equivalents of both LHMDS and I2 (Table 2, entries 2-5). Vedejs and co-workers 
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have also observed this increase in yields after a prolonged reaction time in the C2 

chlorination of oxazoles using hexachloroethane as the chlorinating agent.14 The 

election of the protecting group was based on the precedents developed by Miller 

and co-workers. This group had found a dramatic difference in the reactivity of C2 

metalated oxazoles between silyl triflates and silyl chlorides. It had been reported 

that C2 silylation of 1,3-oxazole 14 was accomplished by treatment with n-BuLi 

followed by quenching with silyltriflates yielding >99:1 C-silylated oxazole B versus 

isocyanenol silylether A (Scheme 8).15 

 

 

 

 

 

 

 

 

 

 

 

 
Scheme 8. Silylation of 1,3-oxazole with silyl triflates and silyl chlorides. 

 

 

Additionally, it had been noted that the TIPS (triisopropyl) derivative was a stable 

and practical protecting group throughout aqueous workups (non acidic) and column 

chromatography.  

 

The requisite protecting group was successfully installed at C2 of 15 via selective 

lithiation and quenching with TIPS-OTf producing the 2-silyl-4-iodooxazole 12a in 

an excellent 89% yield. (Scheme 9). 
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Scheme 9. Selective TIPS-silylation of diiodooxazole 15. 

 

 

With ester 7b and iodide 12a in hand, the first direct arylation was attempted. A 

wide range of conditions was examined for this reaction (Table 4). 

 

 
Table 4. Optimisation of conditions for the direct coupling of 7b with 12a. 

 

 

 

 

 
Entry Catalyst Ligand Solvent Yield of 17 (%)c 

1a PdCl2(dppf) PPh3 Water traces 

2b CuI none DMF 0 

3 Pd(OAc)2 P(o-Tol)3 Toluene 38 

4 Pd(OAc)2 P(o-Tol)3 DMF 0 

5 Pd(OAc)2 IMes Toluene Complex mixture 

6 Pd(OAc)2 X-PHOS Toluene Complex mixture 

7 PEPPSI-IPr none Toluene 51 

8 PEPPSI-IPr none 1,4-dioxane 60 

9 PEPPSI-IPr none DMF 40 

10 HBP none Toluene 81 

11 HBP none 1.4-dioxane 46 

12 HBP none DMF 14 
HBP = Herman-Beller palladacycle. Conditions: 1 equiv of 12a and 1.2 equiv of 7b, 5 mol % of catalyst and 10 % mol of 

ligand, 1 mL of solvent, 2 equiv of Cs2CO3 and 110 °C in a sealed tube were used. a2 equiv of Ag2CO3 and 60 °C were used. 
b10 mol % of CuI. 

 

N

O

I

I

15

1. n-BuLi, -78οC, THF

2. TIPS-OTf, rt
N

O

I

TIPS

12a

89%

N

O

I

TIPS

12a

N

O

CO2Et

+

7b

conditions
N

O

TIPS
N

O

CO2Et
17



Chapter 4. Direct Arylation of Oxazoles at C-2 

 177

Disappointingly, previously successful C2 direct arylation conditions on water 

proved to be ineffective for iodide 12a, giving only traces of the desired bis-oxazole 

17 with a slow reaction rate being observed (entry 1). The copper-catalyzed arylation 

conditions recently described by Daugulis8 were likewise unsuccessful with 

complete degradation of 12a being observed after 30 min at 140 °C (entry 2). The 

first successful coupling was observed using Pd(OAc)/P(o-Tol)3 in toluene, which 

gave bis-oxazole 17 in a modest 38% yield (entry 3). Switching to the more polar 

DMF, a common direct arylation solvent, under the same system completely 

degraded 12a after 30 min at 110 °C (entry 4). The use of very bulky/electron rich 

Imes or XPHOS ligands only led to inseparable complex mixtures (entries 5 and 6).  

 

A substantially better catalyst for this reaction proved to be the N-heterocyclic 

carbene based palladium complex PEPPSI-IPr,16 which gave modest to good yields 

in DMF, toluene and 1,4-dioxane (entries 9, 7 and 8 respectively). Finally, it was 

found that the Herman-Beller palladacycle12 in toluene gave a very good 81% yield 

of the bis-oxazole (entry 10). Lower yields were obtained if 1,4-dioxane or DMF 

were used as solvents in the reaction (entries 11 and 12). 

 

Deprotection of 17 was slow and low yielding under the reported acid 

conditions,17 but successful using aqueous TBAF solution giving bis-oxazole 13 in 

83% yield after 5 min at rt (Scheme 10). 

 

 

 

 

 

 
Scheme 10. Deprotection of silylated 17 using aqueous TBAF. 

 

 

With an efficient route to bis-oxazole 13 established, synthesis of tris-oxazole 11 

was first attempted. The second arylation was also performed using the Hermann-
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Beller catalyst and, successfully, afforded tris-oxazole 18 in a 41% yield. 

Concentration of the reaction mixture and longer reaction times proved benefitial and 

tris-oxazole 18 could be isolated in 57 % of isolated product (Scheme 11).  
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Scheme 11. Synthesis of tris-oxazole 18 via direct arylation. 

 

 

Facile deprotection with aqueous TBAF gave the tris-oxazole fragment found in 

Ulapualide A in 85% yield (Scheme 12). 

 

 

 

 

 
Scheme 12. Synthesis of tris-oxazole fragment of Ulapualide A. 

 

 

Removal of the TIPS protecting group was carried out as a second step; however, 

as an alternative, after the arylation reaction the reaction mixture could be quenched 

with aqueous TBAF (1M) to obtain deprotected 13 or 11 in a one pot procedure (see 

Conclusions, Scheme 13). 
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4.5 Conclusions 
 

 

The tris-oxazole fragment found in the Ulapualide A family of natural products 

was synthesised in four steps using a C2 direct arylation method.  

At the start, literature conditions were explored and a general C2 direct arylation 

was successfully applied to the synthesis of 2,5-diarylated oxazoles. It is interesting 

to analyse some of the preliminary results. As shown in the introduction, in oxazoles, 

direct arylation should occur at the C2 and C5 carbons of the oxazole ring. Many 

more conditions have proved successful for the direct arylation of oxazoles on C5 

compared to C2.3c In fact, before this work only three reports on C2 direct arylation 

had been disclosed. The first report by Hoarau using ethyl 4-oxazolecarboxylate, 

followed by Belina’s using the unsubstitued 1,3 oxazole18 and then Daugulis also 

with the parent 1,3 oxazole. No reports have shown successful C2 direct arylation on 

5-phenyloxazole for example. A priori, this should be an easy transformation 

because C5 is blocked and since C4 is not nucleophilic enough only C2 may be 

arylated. In fact, this arylation is not as straightforward as it may seem. In Table 1, 

three different reaction conditions were applied to the phenylation of 5-phenyl 

oxazole.  

 
Table 1. Preliminary studies on the C2 phenylation of 5-phenyloxazole. 

 

 

 

 

 

 
Entry Catalyst Temp (°C) Solvent Base Reaction time Yield of 6aa 

1 PdCl2(dppf)/PPh3 60 °C Water Ag2CO3 17h 77% 

2 HBPb 110 °C Toluene Cs2CO3 20h traces 

3 CuI 140 °C DMF LiOtBu 30 min 92% 
a Isolated yield after column chromatography. b HBP = Hermann-Beller palladacycle.12 
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Surprisingly, the Herman-Beller palladacycle did not catalyse the reaction at all. 

The reason behind this behaviour is due to electronics of the ring since steric 

hindrance is unlikely in this case. If the oxazole ring is C4 substituted with a 

carboxylic ester then C2 phenylation occurs in a decent 48% yield (Scheme 4).  

 

 

 

 

 

 

 

 
Scheme 4. Direct arylation of 4-oxazolecarboxylate 7b. 

 

This suggests that some activation of the ring in 7b might be operating in favour 

of the anionic mechanism shown by Zhuralev.7 On the other hand, Daugulis’ 

conditions did work very well, the use of a strong base deprotonates C2-H facilitating 

the ring opening of the oxazole to give to coupling product in high yield (Table 1, 

entry 3). These results confirm the anionic mechanism to be operative and more 

favourable than the electrophilic aromatic substitution in the C2 direct arylation of 

oxazoles. 

 

Tris-oxazole construction began with the synthesis of a key intermediate 4-

iodooxazole 12a equipped with a silyl protecting group in C2. This compound was 

obtained from 2,4-diiodooxazole. This later compound is a remarkably useful 

building block in oxazole synthesis because it combines the 2,4-disubstitution pattern 

and also an unsubstituted C5 carbon. Those features are commonly found in oxazole-

containing natural products.19 Despite the obvious qualities of such intermediate, no 

synthetic equivalents have been yet released to the scientific community. This is 

hardly surprising because several synthetic equivalents are well known in the related 
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1,3-thiazole system, illustrating the disparity in reactivity between oxazoles and 

thiazoles.20  

 

The first coupling was carried out through the examination of a range of different 

conditions and, as a result, bis-oxazole intermediate 13 could be synthesised 

efficiently. Finally, after a facile deprotection reaction, the same sequence was 

applied to 13 which, after the same deprotection conditions, gave the desired 

fragment of the natural product Ulapualide A. It has been noted that removal of the 

protecting group could be carried out as an extension of the work up, after the 

arylation reactions rendering the overall synthesis to just two steps (Scheme 13). 

 

 

 

 

 

 

 

 

 

 

 

 
Scheme 13. Overall synthesis of the tris-oxazole fragment contained in Ulapualide A. 

 

Given that bis-oxazole 13 has 3 potentially reactive C-H bonds, in addition to the 

3 reactive C-H bonds of the product 18, all potentially competing in the reaction 

mixture, the medium yield obtained for the second arylation was accepted as a 

reasonable result. The fact that it is possible to obtain high levels of complexity such 

as tris-oxazoles structures in a minimum number of synthetic steps makes this 

method highly desirable. On the other hand, only catalytic amounts of metallic 

complexes are needed to carry out the transformations avoiding the activation of 

coupling partners with stochiometric amounts of metals. 
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4.6 Future work 
 

 

Many recently discovered natural products contain the oxazole heterocycle ring 

system. Appart from other applications, these natural compounds are potentially 

pharmacological interesting substances, therefore, technological developments to 

synthesise them will possibly benefit the society in a long-term basis. 

 

 

 

 

 

 

 

 

 

 
Figure 1. Oxazole-contaning natural products. 

 

From the very beginning, this work has focused on the intention of developing an 

understanding on how to funcionalise oxazoles via palladium cross-couplings 

reactions, always having in mind the goal of applying these results into natural 

substances. Because most of these fascinating natural substances are found in a poly-

oxazole form, the project has concentrated on the creation of oxazole-oxazole bonds 

in various positions of its ring for the synthesis of bis- or tris-oxazoles as contained 

in several natural products. In this context, the best results have been obtained with 

direct arylations, and this is where future work should focus in.  

Positions C2-H and C5-H have been successfully arylated, however without 

activation or forcing conditions the more electron-deficient C4-H still remains a 

challenge. On Chapter 1 interesting chemistry regarding the ring-opening of oxazoles 

when treated with lithium bases was disclosed. Early results pointed that 

electrophiles react either on positions 2 or 4 depending on the conditions used. On 
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the other hand, Daugulis8 and Zhuralev7 have recently shown a ring-opening 

pathway for the arylation on C2 of azoles. Under the right conditions it is very likely 

that direct arylation could be directed to position 4 of the ring (Scheme 14). 

 

 

 

 

 

 

 

 

 

 

 
Scheme 14. Direct arylation of oxazoles on C4-H 

 

 

The use of a lithium strong base would induce the ring-opening of the oxazole, the 

electrophile would consist on the oxidative addition product of an aryl halide with a 

palladium catalyst and additives like DMPU, DMF should provide means to arylate 

the 4 position. 

After controlling the 4-position the synthetic chemist will have two different tools 

based on direct arylation to assemble poly-oxazoles and, in this way, challenging 

molecules such as Telomestain or IB-01211 could be efficiently synthesised (Figure 

1). 
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4.7 Experimental procedures Chapter 4 
 

 

Representative procedure for the direct arylation of 5-substituted oxazoles with 

aryl iodides on water: 2,5-Diphenyloxazole 6a 

 

 

 

 

 

A 5 mL microwave vial was charged with 5-phenyloxazole21 (50 mg, 0.345 mmol, 1 

equiv), phenyliodide (86 mg, 0.414 mmol, 1.2 equiv), PdCl2(dppf)·DCM (14 mg, 5 

mol %), Ag2CO3 (190 mg, 0.690 mmol, 2 equiv) and PPh3 (9 mg, 10 mol %). A 

magnetic stirrer bar was added and the mixture of solids was gently stirred for a few 

seconds to ensure all solids were well mixed. Distilled water (2 mL) was added and 

the vial was covered with a serum cap. The vial and its contents were then heated 

and stirred in a pre-heated oil bath at 70 °C for 16 h. After this time the reaction 

mixture was cooled down to rt and poured into a mixture of brine (20 mL) and DCM 

(10 mL). The vial was thoroughly rinsed with an additional 20 mL of DCM. The 

organic layer was separated, and the aqueous phase extracted twice with DCM. The 

organic layers were combined, dried over magnesium sulphate, filtered and 

concentrated in vacuo. The residue was purified by flash chromatography (silica, 

hexane/EtOAc 9:1) to afford the coupled product 6a as a white solid (56 mg, 77 % 

yield). This compound is known.22 1H-NMR (360 MHz, CDCl3) δ 7.35 (1H, m), 

7.52-7.43 (6H, m), 7.74-7.72 (2H, m), 8.13-8.11 (2H, m). 13C-NMR (90 MHz, 

CDCl3), δ 161.13 (quat), 151.24 (quat), 130.31 (CH), 128.92 (CH), 128.80 (CH), 

128.42 (CH), 128.00 (quat), 127.43 (quat), 126.26 (CH), 124.18 (CH), 123.43 (CH). 

 

 

 

N
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5-Phenyl-2-(4-methoxyphenyl)oxazole 6b 

 

 

 

 

 

Synthesized according to the general procedure. The residue was purified by flash 

chromatography (silica, hexane/EtOAc 9:1) to afford the coupled product 6b as a 

white solid (77 mg, 89 % yield). This compound is known.22 1H-NMR (360 MHz, 

CDCl3) δ 3.88 (3H, s), 7.00 (1H, dd, J1 = 8.2 Hz, J2 = 2.5 Hz), 7.33-7.45 (6H, m), 

7.63 (1H, m), 7.70 (2H, d, J = 7.63). 13C-NMR (90 MHz, CDCl3) δ 55.32 (CH3), 

110.85 (CH), 116.68 (CH), 118.65 (CH), 123.31 (CH), 124.09 (CH), 127.85 (quat), 

128.35 (CH), 128.50 (quat), 128.81 (CH), 129.81 (CH), 151.19 (quat), 159.78 (quat), 

160.91 (quat). 

 

5-Phenyl-2-(4-cyanophenyl)oxazole 6c 

 

 

 

 

 

Synthesized according to the general procedure. The residue was purified by flash 

chromatography (silica, hexane/EtOAc 8.5:1.5) to afford the coupled product 6c as a 

white solid (70 mg, 82 % yield). Mp = 174-175 °C. 1H-NMR (360 MHz, CDCl3) δ 

7.38 (1H, d, J = 6.4 Hz), 7.49-7.44 (3H, m), 7.76-7.70 (4H, m), 8.18 (2H, d, J = 7.3 

Hz). 13C-NMR (90 MHz, CDCl3) δ 113.37 (quat), 118.31 (quat), 124.00 (CH), 

124.35 (CH), 126.47 (CH), 127.31 (quat), 128.99 (CH), 128.99 (CH), 131.04 (quat), 

132.57 (CH), 152.39 (quat), 159.06 (quat). HRMS (ESI) calculated for C13H10N2O3 

242.06859; found 242.06849. 
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5-Phenyl-2-thiophene-3-yl-oxazole 6d 

 

 

 

 

 

 

Synthesized according to the general procedure. The residue was purified by flash 

chromatography (silica, hexane/EtOAc 9:1) to afford the coupled product 6d as a 

white solid (52 mg, 66 % yield). Mp = 38-41 °C. 1H-NMR (360 MHz, CDCl3) 7.33-

7.45 (5H, m), 7.67-7.71 (3H, m), 7.99 (1H, dd, J1 = 3.0 Hz, J2 = 1.2 Hz). 13C-NMR 

(90 MHz, CDCl3) δ 122.97 (CH), 124.04 (CH), 125.21 (CH), 125.88 (CH), 126.67 

(CH), 127.84 (quat), 128.30 (CH), 128.84 (CH), 129.36 (quat), 150.49 (quat), 158.11 

(quat). HRMS (ESI) calculated for C13H9NOS 227.0399; found 227.0402.  

 

5-Phenyl-2-p-tolyl-oxazole 6e 

 

 

 

 

 

 

Synthesized according to the general procedure. The residue was purified by flash 

chromatography (silica, hexane/EtOAc 9:1) to afford the coupled product 6e as a 

white solid (71 mg, 87 % yield). This compound is known.22 1H-NMR (360 MHz, 

CDCl3) 2.51 (3H, s), 7.45-7.37 (3H, m), 7.56-7.51 (3H, m), 7.81 (2H, 7.81, dd, J1 = 

8.2 Hz, J2 = 1.2 Hz), 8.10 (2H, d, J = 8.2 Hz).13C-NMR (90 MHz, CDCl3) δ 21.47 

(CH3), 123.23 (CH), 124.00 (CH), 124.63 (quat), 126.13 (CH), 127.98 (quat), 128.20 

CH), 128.80 (CH), 129.43 (CH), 140.52 (quat), 150.80 (quat), 161.26 (quat). 
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5-Phenyl-2-naphtalen-1-yl-oxazole 6f 

 

 

 

 

 

 

 

Synthesized according to the general procedure. The residue was purified by flash 

chromatography (silica, hexane/EtOAc 9.8:0.2) to afford the coupled product 6f as a 

white solid (68 mg, 73 % yield). This compound is known.22 1H-NMR (360 MHz, 

CDCl3) 7.37 (1H, t, J = 7.4 Hz), 7.48 (2H, t, J = 7.6 Hz), 7.56-7.60 (3H, m), 7.69 

(1H, ddd, J1 = 8.5 Hz, J2 = 6.8 Hz, J3 = 1.4 Hz), 7.79 (2H, dd, J1 = 8.3 Hz, J2 = 1.1 

Hz), 7.92 (1H, J = 8.2 Hz), 7.97 (1H, d, J = 8.2 Hz), 8.31 (1H, dd, J1 = 7.3 Hz, J2 = 

1.2 Hz), 9.37 (1H, d, J = 8.6 Hz). 13C-NMR (90 MHz, CDCl3) δ 123.99 (CH), 

123.86 (quat), 124.26 (CH), 124.91(CH), 126.13 (CH), 126.23 (CH), 127.52 (CH), 

127.69 (CH), 127.95 (quat), 128.43 (CH), 128.52 (CH), 128.91 (CH), 130.12 (quat), 

131.11 (CH), 133.92 (quat), 150.90 (quat), 160.98 (quat). 

 

 

5-Phenyl-2-(3-trifluoromethyl-phenyl)-oxazole 6g 

 

 

 

 

 

 

Synthesized according to the general procedure. The residue was purified by flash 

chromatography (silica, hexane/EtOAc 9.2:0.8) to afford the coupled product 6g as a 

white solid (62 mg, 62 % yield). Mp= 125-128 °C. 1H-NMR (360 MHz, CDCl3)  
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7.36 (1H, J = 7.4 Hz), 7.46-7.48 (3H, m), 7.60 (1H, t, J = 7.8 Hz), 7.71 (3H, t, J = 

8.0 Hz), 8.27 (1H, d, J = 7.8 Hz), 8.36 (1H, s). 13C-NMR (90 MHz, CDCl3) δ 123.04 

(CH, d, J = 3.67 Hz), 123.59 (CH), 123.76 (CF3, J = 272.45 Hz), 124.30 (CH), 

126.66 (CH, d, J = 3.49 Hz), 127.58 (quat), 128.17 (quat), 128.76 (CH), 128.97 

(CH), 129.24 (CH), 129.38 (CH), 131.42 (quat, q, J = 65.63 Hz), 151.91 (quat), 

159.63 (quat). HRMS (ESI) calculated for C16H10F3NO 289.07090; found 

289.07082. 

 

4-(-5-Phenyl-oxazol-2-yl)-benzoic acid ethyl ester 6h 

 

 

 

 

 

 

 

Synthesized according to the general procedure. The residue was purified by flash 

chromatography (silica, hexane/EtOAc 9:1) to afford the coupled product 6h as a 

white solid (81 mg, 80 % yield). Mp = 116-117 °C. 1H-NMR (360 MHz, CDCl3) 

1.41 (3H, t, J = 7.1 Hz), 4.40 (2H, q, J = 7.1 Hz), 7.34 (1H, t, J = 7.3 Hz), 7.41-7.46 

(3H, m), 7.70 (2H, d, J = 7.1 Hz), 8.13 (4H, s). 13C-NMR (90 MHz, CDCl3) δ 14.25 

(CH3), 61.16 (CH2), 123.77 (CH), 124.24 (CH), 125.92 (CH), 127.59 (quat), 128.66 

(CH), 128.88 (CH), 129.94 (CH), 130.96 (quat), 131.62 (quat). HRMS (ESI) 

calculated for C18H15N1O3 293.10464; found 293.10434. 
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2-p-Tolyl-oxazole-5-carboxylic acid ethyl ester 6i 

 

 

 

 

 

 

 

Synthesized according to the general procedure. The residue was purified by flash 

chromatography (silica, hexane/EtOAc 9:1) to afford the coupled product 6i as an oil 

(55 mg, 67 % yield). 1H-NMR (360 MHz, CDCl3) δ 1.40 (3H, t, J = 7.1 Hz), 2.40 

(3H, s), 4.40 (2H, q, J = 7.1 Hz), 7.28 (2H, dd, J1 = 8.6 Hz, J2 = 0.6 Hz), 7.81 (1H, 

s), 8.02 (2H, d, J = 8.2 Hz). 13C-NMR (90 MHz, CDCl3) δ 14.27 (CH3), 21.58 

(CH3), 61.36 (CH2), 123.66 (quat), 127.16 (CH), 129.59 (CH), 135.30 (CH), 141.98 

(quat), 142.14 (quat), 157.91 (quat), 164.44 (quat). HRMS (ESI) calculated for 

C13H13NO3 231.08899; found 231.08898. 

 

2-(4-Cyano-phenyl)-oxazole-5-carboxylic acid ethyl ester 6j 

 

 

 

 

 

 

 

Synthesized according to the general procedure. The residue was purified by flash 

chromatography (silica, hexane/EtOAc 9:1) to afford the coupled product 6j as a 

white solid (41 mg, 48% yield). Mp = 115-116 °C. 1H-NMR (360 MHz, CDCl3) δ 

1.41 (3H, t, J = 7.1 Hz), 4.42 (2H, q, J = 7.1 Hz), 7.78 (2H, d, J = 8.7 Hz), 7.86 (1H, 

s), 8.24 (2H, d, J = 8.7 Hz). 13C-NMR (90 MHz, CDCl3) δ 14.23 (CH3), 61.76  
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(CH2), 114.86 (quat), 117.95 (quat), 127.55 (CH), 130.06 (quat), 132.67 (CH), 

135.33 (CH), 143.17 (quat), 157.44 (quat), 161.96 (q). HRMS (ESI) calculated for 

C13H10N2O3 242.0686; found 242.0687. 

 

 

Synthesis of 2,4-diarylated products 10a, 10o and 10p. The synthesis of 10p is 

representative. 

 

2-Pyridin-4-yl-oxazole-4-carboxylic acid ethyl ester 10p. 

 

 

 

 

A 5 mL microwave type vial was charged with 50 mg of 4-iodopyridine (50 mg, 

0.236 mmol, 1 equiv), 4-oxazolecarboxylate13 7b (40 mg, 0.283 mmol, 1.2 equiv), 

Hermann’s palladacycle (11 mg, 5 mol %), Cs2CO3 (155 mg, 0.472 mmol, 2 equiv) 

and anhydrous toluene (2 mL). The vial was equipped with a magnetic stirrer bar, 

sealed and flushed with N2. The vial and its contents were heated and stirred in a 

preheated oil bath at 110 °C for 16 h. After this time the vial was cooled to rt and the 

reaction mixture was filtered through CELITE®. After filtration, the solvent was 

removed in vacuo. The residue was purified by flash column chromatography (silica, 

EtOAc) to give the coupled product 10p as a yellow solid (15 mg, 29% yield). Mp = 

109-110 °C. 1H-NMR (360 MHz, CDCl3) δ 1.41 (3H, t, J = 7.13 Hz), 4.43 (2H, q, J 

= 7.13 Hz), 7.95 (2H, dd, J1 = 4.50 Hz, J2 = 1.65 Hz), 8.34 (1H, s), 8.77 (2H, dd, J1 = 

4.50 Hz, J2 = 1.55 Hz). 13C-NMR (90 MHz, CDCl3) δ 14.28 (CH3), 61.57 (CH2), 

120.31 (CH), 133.29 (q), 135.24 (q), 144.54 (CH), 150.66 (CH), 160.13 (q), 160.81 

(q). HRMS (ESI) calculated for C11H10N2O3 218.0686; found 218.0683. 
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2-Pyridin-3-yl-oxazole-4-carboxylic acid ethyl ester 10o. 

 

 

 

 

Synthesised as 10o. Starting from 3-iodopyridine. The residue was purified by flash 

column chromatography (silica, Hexanes/EtOAc 8:2) to give the coupled product 

10o as a yellow solid (15 mg, 29% yield). Mp = 97-98 °C. 1H-NMR (360 MHz, 

CDCl3) δ 1.405 (3H, t, J = 7.14 Hz), 4.43 (2H, q, J = 7.14 Hz), 7.42 (1H, ddd, J1 = 

8.04 Hz, J2 = 4.86 Hz, J3 = 0.82 Hz), 8.32 (1H, s), 8.37-8.41 (1H, m), 8.72 (1H, dd, 

J1 = 4.86 Hz, J2 = 1.66 Hz), 9.32 (1H, dd, J1 = 2.15, J2 = 0.70 Hz). 13C-NMR (90 

MHz, CDCl3) δ 14.29 (CH3), 61.48 (CH2), 122.74 (q), 123.59 (CH), 134.10 (CH), 

134.93 (q), 144.11 (CH), 147.95 (CH), 151.79 (CH), 160.14 (q), 160.99 (q). HRMS 

(ESI) calculated for C11H10N2O3 218.0686; found 218.0682. 

 

 

2-Phenyl-oxazole-4-carboxylic acid ethyl ester 10a. 

 

 

 

 

 

Synthesised as 10o. Starting from phenyliodide. The residue was purified by flash 

column chromatography (silica, Hexanes/EtOAc 9:1) to give the coupled product 

10a as a yellow solid (25 mg, 48% yield). This coumpound is known.23 1H-NMR 

(360 MHz, CDCl3) δ 1.32 (3H, t, J = 7.13 Hz), 4.40 (2H, q, J = 7.13 Hz), 7.43-7.45 

(3H, m), 8.08 (2H, dd, J1 = 7.51 Hz, J2 = 2.10 Hz), 8.25 (1H, s). 13C-NMR (90 MHz, 

CDCl3) δ 14.21, 61.22, 126.32, 126.74, 128.75, 131.00, 134.61, 143.62, 161.30, 

162.30. 
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2,4-Diiodooxazole 15 

 

 

 

 

The compound was synthesised according to Vedejs’ procedure with modifications.14 

1,3-Oxazole (1.00 mL, 14.900 mmol, 1 equiv) was dissolved into a mixture of 

anhydrous THF (6.4 mL), anhydrous DMPU (5.2 mL), and cooled to -78 ºC. 

LHMDS (32.80 mL, 1M in THF, 2.2 equiv) was then added dropwise and stirred for 

1 h. After this time, solid iodine (7.600 g, 29.800 mmol, 2 equiv) was added to the 

reaction mixture and stirred for an additional 30 min at -78 ºC. The cooling bath was 

then removed and the reaction mixture was left to warm to rt and stirred for 14 days 

under a low positive pressure of N2. The reaction mixture was then poured into a 

mixture of aqueous Na2S2O3 (10%, 100 mL) and diethyl ether (100 mL). The organic 

layer was washed with brine (100 mL) and dried over MgSO4. After filtration, the 

solvent was removed in vacuo. The residue was purified by flash chromatography 

(silica, hexanes/EtOAc, 9:1) to give the title compound 15 (3.701 g, 77 % yield) as a 

white solid. Mp = 98-100 ºC. 1H-NMR (360 MHz, CDCl3) δ 7.76 (1H, s). 13C-NMR 

(90 MHz, CDCl3) δ 83.12 (quat), 101.56 (quat), 148.93 (CH). HRMS (ESI) 

calculated for C3H1NOI2 320.8142; found 320.8145. 

 

 

4-Iodo-2-triisopropylsilanyl-oxazole 12a 

 

 

 

 

2,4-Diiodooxazole 15 (500 mg, 1.558 mmol, 1 equiv) was dissolved in dry THF (15 

mL) and cooled to -78 ºC. n-BuLi (1.17 mL, 1.870 mmol, 1.2 equiv) was added 

dropwise to the cooled solution and the mixture was stirred for 20 min. 
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Triisopropylsilyl trifluoromethanesulfonate (0.44 mL, 1.636 mmol, 1.05 equiv) was 

then added slowly and the reaction mixture was stirred an additional 10 min at -78 

ºC. At this point the cooling bath was removed and the reaction mixture was stirred 

for an additional 30 min at room temperature. The reaction mixture was quenched 

with water (50 mL) and diluted with diethyl ether (50 mL), the organic layer was 

washed with brine (50 mL), dried over MgSO4, filtered and concentrated in vacuo. 

Purification by flash chromatography (hexanes/DCM, 8:2) yielded 487 mg (yield 

89%) of the desired product 15 as a light yellow oil. 1H-NMR (360 MHz, CDCl3) δ 

1.11 (18H, d, J = 7.2 Hz), 1.34-1.46 (3H, m), 7.79 (1H, s). 13C-NMR (90 MHz, 

CDCl3) δ 10.90 (CH), 18.28 (CH3), 81.83 (quat), 144.47 (CH), 171.00 (quat). 

HRMS (ESI) calculated for C9H8N2O4 351.0510; found 351.0500. Further 

purification can be obtained by Kügelrohr distillation (recommended for the direct 

couplings). 

 

 

2’-Isopropylsilanyl-[2,4’]-bioxazolyl-4-carboxylic acid ethyl ester 12 

 

 

 

 

 

A 5 mL microwave type vial was charged with 50 mg of 12a (50 mg, 0.142 mmol, 1 

equiv), 4-oxazolecarboxylate13 7b (25 mg, 0.177 mmol, 1.2 equiv), Hermann’s 

palladacycle (7 mg, 5 mol %), Cs2CO3 (93 mg, 0.284 mmol, 2 equiv) and anhydrous 

toluene (1 mL). The vial was equipped with a magnetic stirrer bar, sealed and flushed 

with N2. The vial and its contents were heated and stirred in a preheated oil bath at 

110 °C for 16 h. After this time the vial was cooled to rt and the reaction mixture 

poured into a mixture of water (20 mL) and Et2O (30 mL). The organic phase was 

separated and the aqueous layer was re-extracted twice with Et2O. The organic layers 

were combined, dried over magnesium sulphate and after filtration the solvent was 

removed in vacuo. The residue was purified by flash column chromatography (silica, 

hexane/EtOAc 9:1) to give the coupled product 17 as a yellow oil (42 mg, 81%  
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yield). 1H-NMR (360 MHz, CDCl3) δ 1.18 (18H, d, J = 7.50 Hz), 1.38 (3H, t, J = 

7.14 Hz), 1.40-1.49 (3H, m), 4.45 (2H, q, J = 7.14 Hz), 8.27 (1H, s), 8.52 (1H, s). 
13C-NMR (90 MHz, CDCl3) δ 10.91 (CH), 14.27 (CH3), 18.28 (CH3), 61.33 (CH2), 

129.63 (quat), 134.41 (quat), 141.98 (CH), 143.44 (CH), 156.42 (quat), 161.08 

(quat), 170.52 (quat). HRMS (ESI) calculated for C18H28N2O4Si 364.1813; found 

364.1809.  

 

 

 [2,4’]Bioxazolyl-4-carboxylic acid ethyl ester 13 

 

 

 

 

 

A 10 mL round bottom flask was charged with 17 (97 mg, 0.266 mmol, 1 equiv), 

THF (5 mL) and aqueous TBAF (1 M, 0.41 mL, 0.410 mmol, 1.5 equiv). The 

reaction mixture was stirred for 5 min at rt, then diluted with water and extracted 

thrice with DCM. The organic phase was washed with saturated aqueous NH4Cl, 

brine (2 ×) and dried over magnesium sulphate, which after filtration and 

concentration in vacuo gave bis-oxazole 13 as a white solid (88 mg, 83% yield). Mp 

= 117-119 ºC. 1H-NMR (360 MHz, CDCl3) δ 1.34 (3H, t, J = 7.1 Hz), 4.36 (2H, q, J 

= 7.1 Hz), 7.98 (1H, s), 8.26 (1H, s), 8.37 (1H, s). 13C-NMR (90 MHz, CDCl3) δ 

14.17 (CH3), 61.33 (CH2), 129.48 (quat), 134.48 (quat), 139.65 (CH), 143.62 (CH), 

151.78 (CH), 151.78 (CH), 155.33 (quat), 160.79 (quat). HRMS (ESI) calculated for 

C9H8N2O4 208.0479; found 208.0480. 

Alternatively, compound 13 can be prepared by re-diluting the dry crude from the 

previous step with 5 mL of THF, adding TBAF (0.14 mL, 1M in THF, 1.0 equiv) 

and stirring 5 min at rt. The mixture was then diluted with DCM and washed with 

NH4Cl and brine (2 ×), dried over magnesium sulphate and after filtration the solvent 

was removed in vacuo. The residue was purified by flash column chromatography 

(silica, hexane/EtOAc 1:1) to give the coupled product 13 as a white solid (21 mg, 

71% yield, 2 steps). 
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2’’-Triisopropylsilanyl-[2,4’;2’,4’’] teroxazole-4-carboxylic acid ethyl ester 18 

 

 

 

 

 

 

A 5 mL microwave type vial was charged with 50 mg of 12a (50 mg, 0.142 mmol, 1 

equiv), 13 (35 mg, 0.170 mmol, 1.2 equiv), Herman’s palladacycle (7 mg, 5 mol%), 

Cs2CO3 (93 mg, 0.284 mmol, 2 equiv) and anhydrous toluene (2 mL). The vial was 

equipped with a magnetic stirrer bar, sealed and flushed with N2. The vial and its 

contents were then heated and stirred in a preheated oil bath at 110 °C for 48 h. After 

this time the vial was cooled to rt and the reaction mixture was poured into a mixture 

of water (20 mL) and Et2O (30 mL). The organic phase was separated and the 

aqueous layer was re-extracted twice with Et2O. The organic layers were combined, 

dried over magnesium sulfate and after filtration the solvent was removed in vacuo. 

The residue was purified by flash column chromatography (silica, hexane/EtOAc 

8:2) to give the title compound 18 (25 mg, 41% yield) as a yellow oil. 1H-NMR (360 

MHz, CDCl3) δ 1.14 (18H, d, J = 7.48 Hz), 1.38 (3H, t, J = 7.13 Hz), 1.46-1.55 (3H, 

m), 4.41 (2H, q, J = 7.13 Hz), 8.30 (1H, s), 8.42 (1H, s), 8.53 (1H, s). 13C-NMR (90 

MHz, CDCl3) δ 10.91 (CH3), 14.29 (CH), 18.28 (CH3), 61.40 (CH2), 129.57 (quat), 

130.64 (quat), 134.61 (quat), 139.19 (CH), 141.94 (CH), 143.65 (CH), 155.52 (quat), 

156.87 (quat), 160.88 (quat), 170.68 (quat). HRMS calculated for C21H29N3O5Si 

432.1949; found 432.1945. 
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 [2, 4’;2’; 4’’] Teroxazole-4-carboxylic acid ethyl ester 11 

 

 

 

 

 

 

A 10 mL round bottom flask was charged with 18 (50 mg, 0.116 mmol, 1 equiv), 

THF (4 mL) and aqueous TBAF (1 M, 0.17 mL, 0.170 mmol, 1.5 equiv). The 

reaction mixture was stirred for 5 min at rt, diluted with water and extracted thrice 

with DCM. The organic phase was washed with aqueous saturated NH4Cl, brine (× 

2) and dried over magnesium sulphate, which after filtration and concentration gave 

tris-oxazole 11 as a white solid (27 mg, 85% yield). Mp = 207-208 °C. 1H-NMR 

(360 MHz, CDCl3) δ 1.39 (3H, t, J = 7.1 Hz), 4.42 (2H, q, J = 7.1 Hz), 8.03 (1H, d, J 

= 0.9 Hz), 8.31 (1H, s), 8.41 (1H, d, J = 0.9 Hz), 8.43 (1H, s). 13C-NMR (90 MHz, 

CDCl3) δ 14.28 (CH3), 61.45 (CH2), 129.58 (quat), 130.87 (quat), 134.69 (quat), 

139.41 (CH), 139.69 (CH), 143.75 (CH), 151.93 (CH), 155.30 (quat), 155.89 (quat), 

160.86 (quat). Mp = 209-211 °C. HRMS calculated for C12H9N3O5 275.0537; found 

275.0531. 

Alternatively, compound 11 can be prepared by re-diluting the dry crude from the 

previous step with 5 mL of THF, adding TBAF (0.14 mL, 1M in THF 1.0 equiv) and 

stirring 5 min at rt. The mixture was then diluted with DCM and washed with NH4Cl 

and brine (2 ×), dried over magnesium sulphate and after filtration the solvent was 

removed in vacuo. The residue was purified by flash column chromatography (silica, 

hexane/EtOAc 3:7) to give the coupled product 11 as a white solid (20 mg, 51% 

yield, 2 steps). 
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1H NMR and 13CNMR of 2-Phenyl-4-p-tolyloxazole 10a 
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1H and 13C NMR of 4-(3-Nitrophenyl)-2-phenyloxazole 10b 
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1H and 13C NMR of 2-Phenyl-4-(4-(trifluoromethyl)phenyl)oxazole 10c 
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1H and 13C NMR of 2-Phenyl-4-o-tolyloxazole 10d 
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1H and 13C NMR of 2-(4-Fluorophenyl)-4-p-tolyloxazole 10e 
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1H and 13C NMR of 2-(4-Methoxyphenyl)-4-p-tolyloxazole  10g 
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4-(Furan-3-yl)-2-phenyloxazole 10h 
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1H and 13C NMR of 3-(2-(4-Methoxyphenyl)oxazol-4-yl)pyridine 10j 
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4-(3-Fluorophenyl)-2-phenyloxazole 10k 
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1H and 13C NMR of 4-(3-Fluorophenyl)-2-(4-methoxyphenyl)oxazole  10l 
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1H and 13C NMR of 4-Phenyl-2-o-tolyloxazole 16a 
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1H and 13C NMR of 2-(3-Fluorophenyl)-4-phenyloxazole 16b 
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1H and 13C NMR of 2-(Furan-3-yl)-4-phenyloxazole 16e 
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1H and 13C of 2-Phenyl-4-(2-phenyloxazol-4-yl)oxazole 18a 
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1H and 13C NMR of 2-(4-Fluorophenyl)-4-(2-(4-fluorophenyl)oxazol-4-yl)oxazole 

18b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix A. Spectroscopy data for Chapter 2 

 215

 
1H and 13C NMR of 2-(4-Methoxyphenyl)-4-(2-(4-methoxyphenyl)oxazol-4-

yl)oxazole 18c 
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1H and 13C NMR of 2-(4-Fluorophenyl)-4-(2-phenyloxazol-4-yl)oxazole 18d 
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1H and 13C NMR for 5,2’-Diphenyl-[2,4’]bioxazolyl 8 
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1H and 13C NMR for 5-Phenyl-2-tributylstannanyl-oxazole 6a 
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1H and 13C NMR for 4-Iodo-5,2’-diphenyl-[2,4’]bioxazolyl 12 
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1H and 13C NMR for 5, 5’, 2’’-Triphenyl-[2, 4’, 2’, 4’’] teroxazole 19 
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1H and 13C NMR for 4-bromo-5-phenyloxazole 16 
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1H and 13C NMR for 2-iodo-4-bromo-5-phenyloxazole 17 
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1H and 13C NMR for 4-Bromo-5,2'-diphenyl-[2,4']bioxazolyl 18 
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1H and 13C NMR for 5’, 2’’,-Diphenyl-[2,4’;2’,4’’] teroxazole 20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 226

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix C 

 

 

Spectroscopic Data for  Chapter 4 

 



Appendix C. Spectroscopic data for Chapter 4 

 227

 
1H-NMR (CDCl3) and 13C-NMR (CDCl3) for 2,5-diphenyloxazole 6a. 
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1H-NMR (CDCl3) and 13C-NMR (CDCl3) for 5-phenyl-2-(4-Methoxy-phenyl) 

oxazole) 6b. 
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1H-NMR (CDCl3) and 13C-NMR (CDCl3) for 4-(5-Phenyl-oxazol-2-yl)-benzonitrile 

6c. 
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1H-NMR (CDCl3) and 13C-NMR (CDCl3) for 5-Phenyl-2-thiophene-3-yl-oxazole 6d. 
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1H-NMR (CDCl3) and 13C-NMR (CDCl3) for 5-Phenyl-2-p-tolyl-oxazole 6e. 
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1H-NMR (CDCl3) and 13C-NMR (CDCl3) for 2-Naphtalen-1-yl-5-phenyl-oxazole 6f. 
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1H-NMR (CDCl3) and 13C-NMR (CDCl3) for 5-phenyl-2-(3-triofluoromethyl-

phenyl)-oxazole 6g. 
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1H-NMR (CDCl3) and 13C-NMR (CDCl3) for 4-(-5-Phenyl-oxazol-2-yl)- benzoic 

acid ethyl ester 6h. 
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1H-NMR (CDCl3) and 13C-NMR (CDCl3) for 2-p-Tolyl-oxazole-5-carboxylic acid 

ethyl ester 6i. 
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1H-NMR (CDCl3) and 13C-NMR (CDCl3) for 2-(4-Cyano-phenyl)-oxazole-5-

carboxylic acid ethyl ester 6j. 
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1H-NMR (CDCl3) and 13C-NMR (CDCl3) for 2-Pyridin-4-yl-oxazole-4-carboxylic 

acid ethyl ester 10p. 
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1H-NMR (CDCl3) and 13C-NMR (CDCl3) for 2-Pyridin-3-yl-oxazole-4-carboxylic 

acid ethyl ester 10o. 
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1H-NMR (CDCl3) and 13C-NMR (CDCl3) for 2,4-diiodooxazole 15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

N
I

I



Appendix C. Spectroscopic data for Chapter 4 
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1H-NMR (CDCl3) and 13C-NMR (CDCl3) for 4-iodo-2-triisopropylsilanyl-oxazole 

12a. 
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Appendix C. Spectroscopic data for Chapter 4 
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1H-NMR (CDCl3) and 13C-NMR (CDCl3) for 2’-isopropylsilanyl-[2,4’]-bioxazolyl-

4-carboxylic acid ethyl ester 17. 
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Appendix C. Spectroscopic data for Chapter 4 

 242

1H-NMR (CDCl3) and 13C-NMR (CDCl3) for [2,4’]Bioxazolyl-4-carboxylic acid 

ethyl ester 13. 
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Appendix C. Spectroscopic data for Chapter 4 
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1H-NMR (CDCl3) and 13C-NMR (CDCl3) for 2’’-Triisopropylsilanyl-[2,4’;2’,4’’] 

teroxazole-4-carboxylic acid ethyl ester 18. 
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1H-NMR (CDCl3) and 13C-NMR (CDCl3) for [2, 4’;2’; 4’’] Teroxazole-4-

carboxylic acid ethyl ester 11. 
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ABSTRACT

A protocol for the functionalization of the oxazole 2- and 4-positions using the Suzuki coupling reaction is described. 2-Aryl-4-trifloyloxazoles
undergo rapid, microwave-assisted coupling with a range of aryl and heteroaryl boronic acids in good to excellent yields. The methodology
is similarly effective using 4-aryl-2-chlorooxazoles as the coupling partner and has been extended to the synthesis of a novel class of homo-
and heterodimeric 4,4-linked dioxazoles.

The oxazole heterocycle is a fundamental ring system found
throughout chemistry in areas such as natural products,
pharmaceuticals, agrochemicals, peptidomimetics, and poly-
mers.1 Naturally occurring oxazoles are usually found with
a 2,4-substitution pattern,2 a consequence of their biosynthetic
assembly from serine residues, although 2,5-substituted
oxazole natural products are known.3

A variety of venerable condensation methods are known
for oxazole synthesis, often involving the preparation of
appropriately substituted acyclic amides and their subsequent
dehydrative cyclization.4 Although tried and tested, the
frequently harsh reaction conditions characteristic of the
classical methods can make them unsuitable for the synthesis
of multifunctional oxazoles of the type found in natural
products. From a lead discovery perspective in medicinal
chemistry, which frequently requires the rapid synthesis of
diverse heterocycles, the preparation of oxazoles using

condensation reactions can be a drawback, as it necessitates
the synthesis of diversified acyclic precursors prior to
cyclization, i.e., early stage rather than late stage diversifica-
tion. An alternative strategy is to prepare the oxazole
heterocycle at an early stage and carry out subsequent
functionalizations at each position using palladium cross-
coupling chemistry. This idea has been exemplified in the
development of Stille,5 Sonogashira,6 Negishi,7 and direct

† University of Edinburgh.
‡ GlaxoSmithKline.
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arylation methods8 for the functionalization of oxazoles in
recent years. The Suzuki coupling, by contrast, has seen
relatively little application:9 Hodgetts described the coupling
of phenyl boronic acid to 2-, 4-, and 5-halo-oxazoles,10 of
2-aminophenyl boronic acid to 5-halo-oxazoles, and of 3,4-
dimethoxyphenyl boronic acid to 2-bromooxazole; Taylor
has examined the coupling of phenyl and 3-thiophene boronic
acid to two 2-chloro oxazoles.11 We chose to examine the
functionalization of the oxazole 2- and 4-positions with a
view of developing a versatile Suzuki methodology for the
generation of a range of arylated and heteroarylated oxazoles.

We began by preparing 2-phenyl-4-trifloyloxazole,2a,
from oxazolone1 to study Suzuki coupling at the oxazole
4-position (Scheme 1). The synthesis of trifloyl oxazoles

from oxazolones, first introduced by Barrett5b and Kelly5c

in the context of the Stille reaction, enables the regiocon-
trolled installation of an electrophile functional group for
subsequent palladium cross-coupling. This strategy avoids
potential regioselectivity problems inherent to direct halo-
genation at the oxazole 4-position and has been employed
successfully in several Stille and Sonagashira oxazole cross-
coupling reactions.5g-i,6b-d Triflate 2 is a crystalline solid that
can be stored for several months at-20 °C.

A range of conditions were examined for the Suzuki
coupling of 2a with tolylboronic acid (Table 1). It was
immediately clear that the substrate could not tolerate strong
bases such as KOtBu or NaOH often employed in the reaction
(Table 1, entries 1-5), as they caused extensive degradation
of the triflate with very little coupled product (3a) being
observed. Use of a weaker base with PdCl2(PPh3)2 as catalyst
provided the first signs of a successful reaction; refluxing
in THF for 2 days using aqueous Na2CO3 as base produced
3a in 16% yield (Table 1, entry 6), which could be improved
to 48% by switching to the higher-boiling solvent dioxane
(Table 1, entry 7).

The combination of a PCy3/Pd(OAc)2 catalyst system with
potassium fluoride as base, reported to be effective for the

Suzuki coupling of aryl triflates under mild conditions,12

proved ineffective with the oxazole substrate producing a
low yield of coupled product after prolonged reflux (Table
1, entries 8 and 9). The beneficial effect of combining a weak
base with higher reaction temperatures led us to examine
the reaction under microwave heating. We were pleased to
observe that irradiation in dioxane for 20 min at 150°C
(Table 1, entry 10) produced the desired 4-tolyl oxazole in
an excellent 94% yield. The catalyst loading could be reduced
to 1% but at the expense of a longer reaction time and a
decrease in yield (Table 1, entry 11).

The methodology was extended to the synthesis of a range
of 2,4-disubstituted oxazoles (Table 2). We were pleased to
observe excellent reactivity for a variety of electron-deficient
and electron-rich aryl boronic acids (Table 2, entries 1-12),
ortho-substituted aryl boronic acids (Table 2, entry 4), as
well as heteroaromatic pinacol boronic esters (Table 2, entries
8-10) with yields being uniformly good to excellent. The
reaction was tolerant of alternative aryl groups in the
2-position, with electron-donating (Table 2, entries 7, 10,
and 12) and electron-withdrawing groups (Table 2, entry 5)
producing high yields of 4-substituted oxazoles.

Having established a robust protocol for Suzuki coupling
at the 4-position, we then turned our attention to the
2-position. We initially investigated a similar strategy for
the preparation of the Suzuki electrophile by synthesizing
4-phenyl-4-oxazalin-2-one46b and attempting to convert it
to the known 2-trifloyl oxazole5 (Scheme 2). Although the
triflate could be prepared and isolated as described by
Panek,6b it was quite thermally unstable and decomposed

(8) (a) Aoyagi, Y.; Inoue, A.; Koizumi, I.; Hashimoto, R.; Tokunaga,
K.; Gohma, K.; Komatsu, J.; Sekine, K.; Miyafuji, A.; Kunoh, J.; Honma,
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Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M.Bull. Chem. Soc. Jpn.
1998, 71, 467-473. (c) Hoarau, C.; Du Fou de Kerdaniel, A.; Bracq, N.;
Grandclaudon, P.; Couture, A.; Marsais, F.Tetrahedron Lett.2005, 46,
8573-8577.
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Buzon, R. A., Sr.; Castaldi, M. J.; Li, Z. B.; Ripin, D. H. B.; Tao, Y. PCT
Int. Appl. WO 2004020438 A2 20040311, 2004;Chem. Abstr.2004, 140,
235721. (c) Tanaka, T.; Hirai, K.; Takemura, C.; Kita, H. Japanese Patent
JP 2005223238 A2 20050818, 2005;Chem. Abstr.2005, 143, 239833.
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(b) Hodgetts, K. J.; Kershaw, M. T.Org. Lett.2003, 5, 2911-2914.

(11) Young, G. L.; Smith, S. A.; Taylor, R. J. K.Tetrahedron Lett.2004,
45, 3797-3801.

(12) Littke, A. F.; Dai, C.; Fu, G. C.J. Am. Chem. Soc.2000, 122, 4020-
4028.

Table 1. Optimization of Suzuki Coupling of Triflate2a with
Tolylboronic Acida

entry catalyst base time solvent yieldg

1 PdCl2(dppf) K3PO4 48 h dioxane traces
2 PdCl2(dppf) NaOH 20 h dioxane 0%
3 PdCl2(dppf) KOtBu 20 h dioxane 0%
4 Pd(PPh3)4 NaOH 16 h aq dioxane traces
5 Pd(PPh3)4 NaOH 16 h CH3CN traces
6 PdCl2(PPh3)2 Na2CO3, 2 M 48 h THFd 16%
7 PdCl2(PPh3)2 Na2CO3, 2 M 16 h dioxane 48%
8 Pd(OAc)2, PCy3

b KF 72 h THF traces
9 Pd(OAc)2, PCy3

c KF 72 h THF 36%
10 PdCl2(PPh3)2 Na2CO3, 2 M 20 min dioxanee 94%
11 PdCl2(PPh3)2

f Na2CO3, 2 M 40 min dioxanee 67%

a Conditions: 5 mol % catalyst loading, 3 equiv of base, reflux.b 1% of
Pd(OAc)2 and 1.2% of PCy3. c 5% of Pd(OAc)2 and 6% of PCy3. d Reaction
was carried out at 60°C. e Microwave irradiation at 150°C for 20 min.f 1
mol % catalyst loading.g Isolated yield after SiO2 chromatography.

Scheme 1. Synthesis of 2-Phenyl-4-trifloyloxazole
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immediately when exposed to the high temperatures of our
Suzuki reactions.

The nonaflate6 proved slightly more robust and could be
isolated and purified by column chromatography. However,
when subjected to the reaction conditions for Suzuki
coupling, it likewise rapidly decomposed. Efforts to trans-
form 4 into alternative Suzuki electrophiles using POBr3,
(Ph)3PBr2, or (Ph)2POCl were unsuccessful. As an alternative

to the triflate group at the 2-position, we decided to prepare
2-chloro oxazoles, readily synthesized by Vedejs’ protocol
of oxazole lithiation and subsequent trapping with hexachlo-
roethane, a method that avoids ring-opening complications
of the lithiooxazole.13 The 2-chloro-4-phenyloxazole8 proved
to be an excellent substrate for Suzuki coupling under our
optimized conditions. A range of boronic acids could be
coupled to the chloride in generally excellent yields (Table
3, entries 1-5).

With an arylation methodology in place for the oxazole
2- and 4-positions, we were interested in extending the
reaction to the coupling of two oxazole units to make a
dioxazole. This reaction would represent the first steps in
the development of a general Suzuki coupling strategy for
the synthesis of polyoxazoles. The challenge here is to
successfully synthesize an oxazole boronic acid, a class of
compound rarely described in the literature.9c,14The carbon-
boron bond can be susceptible to protonolysis when adjacent
to a heteroatom, leading to stability problems and handling

(13) Atkins, J. M.; Vedejs, E.Org. Lett.2005, 7, 3351-3354.

Scheme 2. Activation of the Oxazole 2-Position

Table 2. Suzuki Coupling of Oxazolyl 4-Triflates

a Isolated yield after SiO2 chromatography.b Pinacolato boronic ester used in coupling.

Org. Lett., Vol. 8, No. 12, 2006 2497



difficulties.15,16 As a result, we decided to examine the in
situ generation of boronic esters and their subsequent one-
pot Suzuki coupling. Accordingly, we treated triflate2awith
bispinacolatodiboron under microwave-accelerated Miyaura
conditions until the starting material had disappeared by TLC
(Scheme 3). The same reaction vessel was then recharged
with 5 mol % of PdCl2(PPh3)2, aqueous sodium carbonate,
and an additional equivalent of the triflate2a. We were

pleased to observe that microwave heating to 150°C for 20
min produced the novel homodimeric dioxazole10 in 58%
yield.

The Suzuki-Miyaura reaction could also be applied to
the 2-(p-fluorophenyl)- and 2-(p-methoxyphenyl)-substituted
oxazole triflates2b and 2c producing the homodimers11
and12 in good yield, as well as the cross-coupling of triflates
2a and2b to give the heterodimer13 in 39% yield.

To conclude, we have developed a protocol for the
arylation of the oxazole 2- and 4-positions using the Suzuki
coupling. The method is quick, versatile, works in high yield,
and has been applied to the preparation of a new class of
dimeric 4,4-linked dioxazoles. Future work will develop
Suzuki coupling strategies for polyoxazole synthesis.
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(16) Attempted Miyaura borylation of 4-phenyl-2-chlorooxazole,8, gave
a quantitative yield of 4-phenyloxazole, indicating that rapid protodebor-
onation may restrict the use of 2-halo-oxazoles as nucleophiles in the
Suzuki-Miyara reaction under these reaction conditions.

Table 3. Synthesis of 2,4-Disubstituted Oxazoles from8

a Isolated yield after SiO2 chromatography.b Pinacolato boronic ester
used in coupling.

Scheme 3. Synthesis of 4,4-Dioxazoles Using the
Suzuki-Miyaura Reaction
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A regioselective Suzuki-Miyaura cross-coupling of 2,4-
dihalooxazoles followed by a Stille coupling has been
successfully developed. The procedure affords convergent
syntheses of trisoxazoles in high yield and in a minimum
number of steps.

Naturally occurring polyoxazoles commonly display a 2-4
substitution pattern, a consequence of their biosynthetic as-
sembly from serine residues.1 In certain natural products, such
as telomestatin2 or ulapualide A,3 three or more successive C2-
C4′ linked polyoxazoles are present rather than single oxazole
units. These compounds have fascinating structures, show a wide
range of biological properties, and therefore make ideal targets
for the synthetic chemist.4

A plethora of methods have been developed for the construc-
tion of C2-C4′ linked polyoxazoles. Although these methods
differ greatly in their synthetic strategy, they share a common
linear approach, involving a high number of consecutive steps
each time an oxazole ring needs to be introduced.5,6 An
alternative approach is to employ the palladium-catalyzed cross-
coupling of appropriately functionalized oxazole units, a chal-

lenging reaction that has appeared only rarely in the literature.
The first example was reported in 1995 by Barrett, using a Stille
coupling to prepare a bisoxazole in an approach to the natural
product Hennoxazole A.7 Since that time, bisoxazole synthesis
has been reported by Vedejs using a Negishi coupling8 and by
our own group9 and that of Inoue10 using the Suzuki-Miyaura
reaction of oxazoyl boronate esters. Inoue has recently extended
this work to the production of some challenging pentakis and
hexakis polyoxazole structures.11 However, the linearity of this
approach combined with a lengthy preparation of a common
boronic ester intermediate necessarily restricts its scope. Given
recent developments in azole cross-coupling reactions,12 we were
interested in developing our own method based on a convergent
approach to the synthesis of trisoxazoles.

2,4-Diiodooxazoles3, known in the literature from work of
Vedejs,8 would be expected to undergo preferential oxidative
addition of Pd0 at the more reactive C2 position, followed by
Suzuki-Miyaura cross-coupling with an oxazol-4-ylboronate
2 (Scheme 1). The C4-I bond would be left intact for a second
cross-coupling with a 2-metallo-oxazole4, forming the trisox-
azole 1. Selective cross-coupling on dihaloazoles is a well
precedented strategy but has yet to be applied to polyoxazole
synthesis.13

We elected to break down the proposed regioselective
trisoxazole synthesis into two parts, examining each C-C bond
formation separately on monoiodooxazoles to define the reaction
parameters, prior to using the diiodooxazoles3. Accordingly,
we began by examining a simplified version of the proposed
Suzuki-Miyaura reaction, using 2-phenyl-oxazol-4-yl boronate
ester2a and 2-iodo-5-phenyloxazole5, both of which can be
prepared in multigram quantities8,10(Table 1). Standard Suzuki-
Miyaura conditions at 100°C in DMF produced dioxazole6 in
49% yield (entry 1). Milder conditions such as those developed
by Liebeskind14 and Fu15 gave a complex mixture of products
that could not be separated (entries 2 and 3 respectively). It
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SCHEME 1. Cross-Coupling Strategy for the Synthesis of
Trisoxazoles
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was quickly found that the use of microwave irradiation not
only shortened reaction times but also increased the yields
dramatically, a combination of Pd2(dba)3 (5 mol %) with PCy3
(10 mol %) in DMF giving the desired product6 in an excellent
87% isolated yield (entry 6). With a good yield of the Suzuki-
Miyaura coupling in hand, we turned out attention to the second
cross-coupling. We settled on a Stille coupling as the method
of choice,16 given that oxazol-2-ylstannanes are known nucleo-
philes in Pd-catalyzed oxazole cross-coupling reactions.17

We synthesized oxazol-2-ylstannane4a by trapping 5-phe-
nyloxazole withn-BuLi at -78 °C and quenching the reaction
mixture with Bu3SnCl. The resulting stannane did not store well
and was best used freshly prepared.18 The optimization results
for the Stille reaction are shown in Table 2. Standard conditions
provided a moderate yield of8 after 2 days reflux in DME (entry
1). Milder Stille catalyst systems were not effective for this
substrate: Fu’s (tBu)3PHBF4 salt15 used at room temperature,
under microwave irradiation or in combination with Cu2O, only
led to complex mixtures or slow reaction rates (entries 2, 3, 5,
and 8). The ligand trifurylphosphine (TFP) in combination with
Pd2(dba)3 and Cu2O gave a modest 35% of isolated8, but a
slow reaction rate if combined with Cu(OAc)2 (entries 4 and 6,
respectively). Liebeskind’s copper-mediated Stille coupling19

gave a slow reaction rate in our system (entry 7). After
considerable optimization, we realized that higher yields could
be achieved if higher loadings (3 equiv) of stannane4a where
used in the reaction. Hence, the best of all combinations
appeared to be same catalyst system used for the Suzuki-
Miyaura coupling in Table 1: Pd2(dba)3 (5 mol %) and PCy3
(10 mol %) in DMF and under microwave irradiation gave an
excellent 87% yield of isolated8 (entry 9).

To merge the two reactions into a trisoxazole synthesis, we
synthesized diiodooxazole3aaccording to Vedejs’ selective C-4
iodination8 procedure followed by C2 iodination using 1,2-
diiodoethane.18 As planned, the Suzuki-Miyaura coupling was
regioselective for C2 and gave the desired dioxazole9 in 46%
isolated yield when using Pd2(dba)3/PCy3 (50% yield if Pd-
(PPh3)4 was used) (Scheme 2). Careful analysis of the crude
reaction mixture by HPLC and LC-MS revealed the formation
of trimer 10 (presumably the Pd-catalyzed product of the
reaction between9 and starting material2a), 11 (protodebor-
onation of2a), and12 (homo-coupled2a) as side products.

We sought to reduce the formation of unwanted trisoxazole
10 by modifying the diiodo compound3a. Thus, we envisaged
that if a Br atom would be selectively placed at C4 instead of
I, oxidative addition on newly formed9 would be diminished
and therefore the yield should be improved. No examples exist
in the literature of hybrid dihalooxazoles. We successfully
managed to selectively brominate 5-phenyloxazole20 13on C-4

(16) In agreement with Inoue (ref 11), attempts at oxazole C2 borylation
for potential Suzuki-Miyaura coupling have not been successful.

(17) (a) Dondoni, A.; Fantin, G.; Fogagnolo, M.; Medici, A.; Pedrini, P.
Synthesis1987, 693-696. (b) Krebs, O.; Taylor, R. J. K.Org. Lett.2005,
7, 1063-1066.

(18) See Supporting Information for details.
(19) Allred, D. G.; Liebeskind, L. S.J. Am. Chem. Soc.1996, 118, 2748-

2749.

TABLE 1. Suzuki-Miyaura Coupling between Oxazol-4-ylboronate 2a and 2-Iodo-5-phenyloxazole 5a

entry time solvent palladium source base temperature additives yield of6 (%)b

1 2 h DMF Pd(PPh3)4 K2CO3 100°C none 49
2 4 days THF Pd(PPh3)4 none rt CuTC (1.1 equiv) complex mixture
3 4 days THF Pd2(dba)3 KF rt [(tBu)3PH]BF4 (0.1 equiv) complex mixture
4 20 min dioxane/H2O PdCl2(PPh3)2 Na2CO3 2M 150°C, microwave none 34
5 20 min DMF Pd(PPh3)4 K2CO3 150°C, microwave none 79
6 20 min DMF Pd2(dba)3 K2CO3 150°C, microwave PCy3 (0.1 equiv) 87

a Conditions: 1.1 equiv of2a, 1 equiv of5, 3 equiv of base, 5 mol % of Pd, 3 mL of solvent.b Isolated yields.

TABLE 2. Stille Coupling between Oxazol-2-ylstannane 4a and 4-Iodo-5-phenyloxazole 7a

entry time solvent palladium sourcea base temperature additives yield of8 (%)b

1 2 days DME PdCl2(PPh3)2 none reflux none 42
2 3 h NMP Pd2(dba)3 CsF rt [(tBu)3PH]BF4 (0.12 equiv) traces
3 5 min NMP Pd2(dba)3 CsF 150°C, microwave [(tBu)3PH]BF4 (0.12 equiv) complex mixture
4 2 h NMP Pd2(dba)3 none 100°C TFP (0.1 equiv) and Cu2O (1 equiv) 35
5 4 days NMP Pd2(dba)3 KF rt [(tBu)3PH]BF4 (0.2 equiv) and

Cu2O (1 equiv)
traces

6 2 days NMP Pd2(dba)3 none rt TPF (0.2 equiv) and Cu(OAc)2 (1 equiv) 26
7 4 days NMP None none rt CuTC (1.5 equiv) traces
8c 20 min DMF Pd2(dba)3 none 150°C, microwave PCy3 (0.1 equiv) 54
9d 5 min DMF Pd2(dba)3 none 150°C, microwave PCy3 (0.1 equiv) 87

a 5 mol % of Pd.b Isolated yields.c 1.5 equiv of stannane4a was used.d 3 equiv of stannane4a was used.
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using a modification of Vedejs’ procedure,8 obtaining 4-bromo-
5-phenyloxazole14 in a good 69% yield after column chro-
matography. Then, iodination using LHMDS and 1,2-diiodo-
ethane gave the desired dihalooxazole15 in excellent yield (86%
after recrystallization) (Scheme 3).

Initial attempts at regioselective Suzuki-Miyaura coupling
of 15 with 2a using Pd2(dba)3/PCy3 produced the dioxazole16
in a disappointing 21% yield. However, a switch to Pd(PPh3)4

proved effective, producing the bromo dioxazole16 in a very
good 81% yield (Scheme 4). This result points to the ability of
the bulkier and electron-rich PCy3 ligand to facilitate oxidative
addition, eroding the selectivity in our system.

Finally, we were pleased to observe clean formation of the
desired trisoxazoles using the optimized Stille coupling condi-
tions developed previously. Trisoxazole17was obtained in 60%
yield from iodide9 and stannane4a and 75% yield using the
bromide 16. Coupling was also successful for the simple
stannane4b, producing trisoxazole18 in 73% yield using the
same procedure (Scheme 5).

To conclude, we have developed a novel and regioselective
Suzuki-Miyaura reaction for the synthesis of 2,4-bisoxazoles
followed by a second palladium-catalyzed Stille coupling, which
has produced trisoxazole structures. The method is convergent
and avoids the synthesis of complicated precursors giving a high
level of complexity in a minimum number of steps.

Experimental Section

4-Bromo-5-phenyloxazole 14.Synthesized using Vedejs pro-
tocol8 with modifications. 5-Phenyloxazole20 13 (5.00 g, 34.47
mmol, 1 equiv) was dissolved in 50 mL of dry THF and 40 mL of

DMPU and cooled to-78 °C. LHMDS (1 M in THF, 55 mL, 55.0
mmol, 1.6 equiv) was added slowly with a syringe. The reaction
mixture was stirred 1 h at-78 °C, and then neat bromine (2.1 mL,
41.37 mmol, 1.2 equiv) was added dropwise to the reaction mixture,
which was stirred for an additional 30 min at-78 °C. The reaction
mixture was then poured into a mixture of TBME (200 mL) and
aqueous Na2S2O3 (10%, 200 mL) at room temperature. The two
layers were separated, and the organic phase was washed three times
with distilled water, dried over magnesium sulfate, and concentrated
in vacuo. The residue was purified by flash chromatography
(hexanes/TBME 10:0.5 to 10:1) and gave the desired bromooxazole
14 (5.32, 69% yield) as a white solid. Mp) 60-61 °C. 1H NMR
(360 MHz, CDCl3) δ 7.37-7.86 (3H, m), 7.86 (1H, s), 7.92-7.95
(2H, m). 13C NMR (90 MHz, CDCl3) δ 110.9 (quat), 125.5 (CH),
126.7 (quat), 128.8 (CH), 129.1 (CH), 146.7 (quat), 149.6 (CH).
HRMS (ESI) calculated for C9H6BrNO 223.9705, found 223.9709.

2-Iodo-4-bromo-5-phenyloxazole 15.Synthesized using Vedejs’
protocol8 with minor modifications. 4-Bromo-5-phenyloxazole14
(5.00 g, 22.32 mmol, 1 equiv) was dissolved in 70 mL of dry THF
and cooled to-78 °C. LHMDS (1 M in THF, 27 mL, 27 mmol,
1.21 equiv) was added slowly, and the reaction mixture stirred for
1 h at-78 °C. Then, solid 1,2-diiodoethane (7.62 g, 26.78 mmol,
1.2 equiv) was added, and the reaction mixture allowed to warm
to room temperature. After 10 min complete consumption of the
starting material was observed by HPLC, and the reaction was
quenched with a mixture of TBME (200 mL) and aqueous Na2S2O3

(10%, 200 mL). The two layers were separated, and the organic
phase washed three times with distilled water, dried over magnesium
sulfate, and concentrated in vacuo to give an orange solid which
was recrystallized from toluene to afford the desired dihalooxazole
15 (6.70 g, 86% yield) as a white solid. Mp) 104-106 °C. 1H
NMR (360 MHz, CDCl3) δ 7.37-7.48 (3H, m), 7.85-7.88 (2H,
m). 13C NMR (90 MHz, CDCl3) δ 99.3 (quat), 112.5 (quat), 125.3
(CH), 125.9 (quat), 128.7 (CH), 129.4 (CH), 153.1 (quat). HRMS
(ESI) calculated for C9H5NOBrI 348.8594, found 348.8597.

4-Bromo-5,2′-diphenyl-[2,4′]bisoxazole 16.A 5 mL microwave
vial was charged with oxazol-4-ylboronate2a10 (72 mg, 0.27 mmol,
1.2 equiv), 2-iodo-4-bromo-5-phenyloxazole15 (77 mg, 0.22 mmol,
1 equiv), Pd(PPh3)4 (13 mg, 5 mol %), K2CO3 (92 mg, 0.66 mmol,
3 equiv), and anhydrous DMF (1 mL). The microwave vial was
then sealed, and the resulting mixture was stirred at room
temperature for about 5 min before irradiation at a preselected
temperature of 150°C in a Smith synthesizer for 10 min. The vial
was then cooled with air jet cooling, opened, and poured into a
mixture of Et2O (20 mL) and brine (20 mL). The organic phase
was separated, and the aqueous layer extracted twice with Et2O.
The organic layers were combined, dried over MgSO4, and filtered.
The organic solvent was removed in vacuo, and the residue was
purified by flash column chromatography (silica, hexane/EtOAc
9:1) to give the coupled product16 (65 mg, 81% yield) as a white
solid. Mp ) 149-152 °C. 1H NMR (360 MHz, CDCl3) δ 7.36-
7.50 (6H, m), 8.00-8.02 (2H, m), 8.13-8.15 (2H, m), 8.31 (1H,
s). 13C NMR (90 MHz, CDCl3) δ 112.3 (q), 125.5 (CH), 126.3 (q),
126.5 (q) 126.8 (CH), 128.6 (CH), 128.8 (CH), 128.9 (CH), 130.9
(q), 131.1 (CH), 138.7 (CH), 146.2 (q), 153.7 (q), 162.8 (q). HRMS
(ESI) calculated for C18H11N2O2Br 365.9998, found 366.0001.

5, 5′, 2′′-Triphenyl-[2, 4 ′, 2′, 4′′] teroxazole 17. A 5 mL
microwave vial was charged with dioxazole16 (100 mg, 0.27 mmol,

(20) Prepared according to: Van Leusen, A. M.; Hoogenboom, B. E.;
Siderius, H.Tetrahedron Lett.1972, 23, 2369-2372.

SCHEME 2. Regioselective Coupling between Oxazol-4-yl-
boronate 1 and 2,4-Diiodooxazole 2

SCHEME 3. Synthesis of 2-Iodo-4-bromo-5-phenyloxazole
15 via Selective C4 Bromination on 5-Phenyloxazole

SCHEME 4. Regioselective Coupling between Oxazol-4-yl-
boronate 2a and 2,4-Dihalooxazole 15

SCHEME 5. Stille Couplings for the Formation of
Trisoxazoles

J. Org. Chem, Vol. 73, No. 8, 2008 3305



1 equiv), oxazol-4-ylstannane3 (354 mg, 0.82 mmol, 3 equiv), Pd2-
(dba)3 (12 mg, 5 mol %), PCy3 (8 mg, 10 mol %), and anhydrous
DMF (1 mL). The microwave vial was then sealed, and the resulting
mixture stirred at room temperature for 5 min before irradiation at
a preselected temperature of 150°C in a Smith synthesizer for 15
min. The vial was then cooled with air jet cooling, opened, poured
into a mixture of saturated aqueous KF (30 mL) and EtOAc (30
mL), and stirred for 30 min. After this time the organic layer was
separated and the aqueous layer was extracted twice with EtOAc.
The organic layers were combined, dried over Mg2SO4, and filtered
through celite. The solvent was removed in vacuo, and the residue
was purified by flash column chromatography (silica doped with
10% KF, hexane/Et2O 6:4) to give the coupled product17 (88 mg,
75% yield) as a yellow oil.1H NMR (360 MHz, CDCl3) δ 7.42-
7.54 (10H, m), 7.74 (2H, dd,J1 ) 1.3 Hz, J2 ) 8.4 Hz), 8.17-
8.20 (2H, m), 7.74-8.32 (2H, m), 8.47 (1H, s).13C NMR (90 MHz,
CDCl3) δ 123.3 (CH), 124.4 (CH), 125.5 (quat), 126.5 (quat), 126.9
(CH), 127.1 (quat), 127.6 (quat), 127.7 (CH), 128.5 (CH), 128.6
(CH), 128.9 (CH), 128.9 (CH), 129.9 (CH), 131.1 (CH), 138.0
(quat), 139.2 (CH), 150.1 (quat), 151.6 (quat), 154.2 (quat), 155.0
(quat), 162.8 (quat). HRMS (ESI) calculated for C27H17N3O3

431.1264, found 431.1266.
5′, 2′′,-Diphenyl-[2,4′;2′,4′′]teroxazole 18. Prepared as for

compound17 from bisoxazole16 (100 mg, 0.27 mmol, 1 equiv),

2-(tributylstannyl)oxazole17 (314 mg, 0.82 mmol, 3 equiv), Pd2-
(dba)3 (12 mg, 5 mol %), PCy3 (8 mg, 10 mol %), and 1 mL of
anhydrous DMF. The crude product was purified by flash chro-
matography (silica, hexane/EtOAc 8:2) to give the desired product
18 (63 mg, 60% yield) as a white solid. Mp) 179-182 °C. 1H
NMR (360 MHz, CDCl3) δ 7.32 (1H, s), 7.44-7.52 (6H, m), 7.79
(1H, s), 8.14-8.17 (m, 2H), 8.35-8.37 (2H, m), 8.44 (1H, s).13C
NMR (90 MHz, CDCl3) δ 125.4 (quat), 126.4 (quat), 126.8 (CH),
126.9 (quat), 127.5 (CH), 128.3 (CH), 128.5 (CH), 128.8 (CH),
129.8 (CH), 131.1 (CH), 131.1 (quat), 138.8 (CH), 139.1 (CH),
149.9 (quat), 154.0 (quat), 155.8 (quat), 162.7 (quat). HRMS (ESI)
calculated for C21H13N3O3 355.0951, found 355.0949.
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ABSTRACT

The synthesis of bis- and trisoxazoles via direct arylation is discussed. A variety of aryl groups can be installed at the 2-position of 5-aryl and
5-carboxy-substituted oxazoles under mild conditions using palladium catalysis on water. The direct arylation method can be extended to the
synthesis of bis- and trisoxazoles if 2-triisopropylsilyl-4-iodooxazole is used as the electrophile in the arylation.

Consecutive C2-C4′ linked oxazole sequences are found
in a variety of structurally complex, biologically active
natural products.1 Examples include the bisoxazole hennox-
azole A2 (antiherpes simplex virus activity), the antifungal
trisoxazole ulapualide A,3 and the potent telomerase inhibitor
telomestatin, containing seven linked oxazoles and a thia-
zoline4 (Figure 1). The C2-C4′ linkage pattern found in
polyoxazole sequences is a result of their biosynthetic
assembly from serine residues.5 Consequently, the bio-
mimetic cyclocondensation of peptide precursors is a popular
approach to the polyoxazole motif in natural product
synthesis, although numerous other methods exist.6,7

We have recently described a Suzuki-Miyaura cross-
coupling route to the synthesis of bis- and trisoxazole
structures.8,9 While the approach was successful for several

phenylated trisoxazoles, it was constrained in terms of
substrate scope by the requirement for a stoichiometric
organometallic as the nucleophilic coupling partner, a
particularly problematic issue given the instability and
preparation difficulties associated with certain azolyl or-
ganometallics (e.g., oxazoly-2-boronic acids).10 A more
advanced approach would be to employ transition-metal-

† University of Edinburgh.
‡ GlaxoSmithKline.
(1) Yeh, V. S. C. Tetrahedron 2004, 60, 11995–12042.
(2) Ichiba, T.; Yoshida, W. Y.; Scheuer, P. J.; Higa, T.; Gravalos, D. G.

J. Am. Chem. Soc. 1991, 113, 3173–3174.
(3) Rosener, J. A.; Scheuer, P. J. J. Am. Chem. Soc. 1986, 108, 846–

847.
(4) Shin-ya, K.; Wierzba, K.; Matsuo, K.; Ohtani, T.; Yamada, Y.;

Furihata, K.; Hayakawa, Y.; Seto, H. J. Am. Chem. Soc. 2001, 123, 1262–
1263.

(5) (a) Roy, R. S.; Gehring, A. M.; Milne, J. C.; Belshaw, P. J.; Walsh,
C. T. Nat. Prod. Rep. 1999, 16, 249–263.

Figure 1. Oxazole containing natural products.

ORGANIC
LETTERS

XXXX
Vol. xx, No. x

10.1021/ol800869g CCC: $40.75  XXXX American Chemical Society
Published on Web 06/10/2008



catalyzed direct arylation for oxazole-oxazole coupling,
whereby the stoichiometric organometallic is dispensed with
and the heteroaryl is arylated at the position of a C-H
bond.11

The idea is shown in Scheme 1 for synthesis of the
trisoxazole unit from ulapualide A: starting from the known12

oxazole 4 containing an electron-withdrawing carboxylate
at the 4-position and the protected 4-iodooxazole 3, the target
heterocycle 1 could be assembled using just two reactions,
direct arylation, and deprotection, each repeated once. The
route would thus be extremely quick, iterative, and offer the
potential for convergency.

The chemistry proposed in Scheme 1 presents a number
of challenges to direct arylation chemistry. Oxazole-oxazole
arylation has not been reported and will require the develop-
ment of a C2 selective reaction using the novel bifunction-
alized oxazole 3. Compound 3 has C2 protected with a group
that must be stable to the arylation conditions and can be
easily cleaved to produce bisoxazole 2 for the second
arylation. More importantly, the coupling of two electron-
rich heteroaromatics via direct arylation poses a greater
synthetic challenge than is usually encountered because the
products formed contain reactiVe C-H bonds that may
compete with the starting material to undergo further
arylation, producing mixtures of products. For the system at
hand, the electron-rich oxazole C5 position is of particular
concern, as it may compete with C2 for arylation.

We began by examining the direct arylation of the oxazole
2-position using simple aryl iodides. We have recently
developed a mild and general palladium-catalyzed method

for the arylation of C2-substituted thiazoles at the electron-
rich C5 position.13 We were interested in being able to apply
this method to the C2 position of oxazoles with the aim of
building up more complexity toward the synthesis of C2-C4′
linked bis- and trisoxazoles of the type found in natural
products. The arylation of oxazoles at C2 is a relatively
unexplored area in the literature.14 Recent work from Piguel
describes microwave-accelerated arylation of the oxazole C2
position using palladium catalysis in the presence of a
stoichiometric amount of copper.15 Hoarau has reported a
careful study on the regioselective C2 phenylation of ethyl
4-oxazolecarboxylate with iodobenzene.16 Mechanistic stud-
ies from Zhuravlev on the C2 arylation of the related
benzoxazole system have implicated an anionic cross-
coupling mechanism involving deprotonation at C2 as being
operative,17 in contrast to the SEAr mechanism usually
invoked for direct arylation of π-excessive heterocycles.

We began by applying our on water arylation conditions
to the synthesis of 2,5-disubstituted oxazoles via C2 direct
arylation of 5-substituted oxazoles 5 with a range of aryl
iodides 6 (Table 1, entries 1-12). Using a reaction system
of PdCl2(dppf)/PPh3 and silver carbonate on water at 60 °C,
we were pleased to observe good reactivity for a range of
aryl iodides, affording good to excellent yields of the 2,5-
diarylated products. The reaction was effective for both
electron-rich (entries 2, 5, 9-11) and poor (entries 3, 7, 8,
and 12) aryl iodides, producing clean transformations in each
case. We were pleased to observe that 3-iodothiophene was
a productive coupling partner, producing arylated oxazole
7d in a good 66% yield despite the presence of several
reactive C-H bonds in its structure. The electron-poor
oxazole 5d was effective in the reaction, giving a good 67%
yield of product 7k when combined with 4-iodotoluene and
an acceptable 48% yield of product if coupled with 4-iodo-
benzonitrile (entries 11 and 12).

We then turned our attention to the synthesis of a protected
oxazolyl-4-iodide (3 in Scheme 1) that would function as
an electrophile in our proposed polyoxazole direct arylation
route. Oxazoles corresponding to 3 have not been previously
described in the literature. Iodination at the oxazole 4-position
has been reported by Vedejs, who demonstrated that 5-sub-
stituted oxazoles undergo selective 4-iodination when lithi-
ated in the presence of DMPU and iodine.9c We were
intrigued to see if we could access 4-iodooxazole 10 directly

(6) Riego, E.; Hernández, D.; Albericio, F.; Álvarez, M. Synthesis 2005,
1907–1922.

(7) Recent examples: (a) Hernández, D.; Vilar, G.; Riego, E.; Librada,
M.; Cañedo, L. M.; Cuevas, C.; Albericio, F.; Álvarez, M. Org. Lett. 2007,
9, 809–811. (b) Pattenden, G.; Ashweek, N. J.; Baker-Glenn, C. A. G.;
Walker, G. M.; Yee, J. G. K. Angew. Chem., Int. Ed. 2007, 46, 4359–
4363. (c) Chattopadhyay, S. K.; Biswas, S.; Pal, B. K. Synthesis 2006,
591-600, 1289–1294. (d) Chattopadhyay, S. K.; Biswas, S. Tetrahedron
Lett. 2006, 47, 7897–7900. (e) Marson, C. M.; Saadi, M. Org. Biomol. Chem.
2006, 4, 3892–3893. (f) Atkins, J. M.; Vedejs, E. Org. Lett. 2005, 7, 3351–
3354. (g) Deeley, J.; Pattenden, G. Chem. Commun. 2005, 797–799.

(8) (a) Ferrer Flegeau, E.; Popkin, M. E.; Greaney, M. F. J. Org. Chem.
2008, 73, 3303–3306. (b) Ferrer Flegeau, E.; Popkin, M. E.; Greaney, M. F.
Org. Lett. 2006, 8, 2495–2498.

(9) For other oxazole-oxazole cross-couplings, see: (a) Araki, H.; Katoh,
T.; Inoue, M. Tetrahedron Lett. 2007, 48, 3713–3717. (b) Araki, H.; Katoh,
T.; Inoue, M. Synlett 2006, 555–558. (c) Vedejs, E.; Luchetta, L. M. J.
Org. Chem. 1999, 64, 1011–1014. (d) Barrett, A. G. M.; Kohrt, J. T. Synlett
1995, 415–416.

(10) Li, J. J.; Gribble, G. W. Palladium in Heterocyclic Chemistry- A
guide to the synthetic chemist; Pergamon Press: 2000.

(11) Recent reviews: (a) Seregin, I. V.; Gevorgyan, V. Chem. Soc. ReV.
2007, 36, 1173–1193. (b) Alberico, D.; Scott, M. E.; Lautens, M. Chem.
ReV. 2007, 107, 174–238. (c) Satoh, T.; Miura, M. Chem. Lett. 2007, 36,
200–205. (d) Campeau, L.-C.; Fagnou, K. Chem. Commun. 2006, 1253–
1264.

(12) Henneke, K. W.; Schöllkopf, U.; Neudecker, T. Liebigs. Ann. Chem.
1979, 1370–1387.

(13) (a) Ohnmacht, S. A.; Mamone, P.; Culshaw, A. J.; Greaney, M. F.
Chem. Commun. 2008, 1241–1243. (b) Turner, G. L.; Morris, J. A.; Greaney,
M. F. Angew. Chem., Int. Ed. 2007, 46, 7996–8000.

(14) (a) Bellina, F.; Calandri, C.; Cauteruccio, S.; Rossi, R. Tetrahedron
2007, 63, 1970–1980. (b) Do, H.-Q.; Daugulis, O. J. Am. Chem. Soc. 2007,
129, 12404–12405.

(15) Besselièvre, F.; Mahuteau-Betzer, F.; Grierson, D. S.; Piguel, S. J.
Org. Chem. 2008, 73, 3278–3280.

(16) Hoarau, C.; Kerdaniel, A. D. F.; Bracq, N.; Grandclaucon, P.;
Couture, A.; Marsais, F. Tetrahedron Lett. 2005, 46, 8573–8577.

(17) Sánchez, R. S.; Zhuravlev, F. A. J. Am. Chem. Soc. 2007, 129,
5824–5825.

Scheme 1. Proposed Strategy for the Synthesis of Trisoxazoles
via Direct Arylation (PG ) Protecting Group)
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from the unsubstituted parent 1,3-oxazole 8 using the same
reaction conditions. The resulting 4-iodooxazole could then
be further functionalized at the C2 position (Table 2).

A first experiment was carried out following the original
conditions, and surprisingly, none of the expected 4-iodo-
oxazole 10 was observed. Instead, small amounts of 2,4-
diiodooxazole 9 could be isolated as the only product along
with unreacted 8 (entry 1). The yield of 9 could be improved
to 77% using prolonged reaction times and 2 equiv of both
LHMDS and I2 (Table 2, entries 2-5).18 2,4-Diiodooxazole
9 was isolated as a stable crystalline solid which could be
stored at room temperature without noticeable decomposition
for several weeks. The requisite protecting group was
successfully installed at C2 via selective lithiation and
quenching with TIPS-OTf,19 producing the 2-triisopropyl-
silyl-4-iodooxazole 11 in an excellent 89% yield (Scheme
2).

With iodide 11 in hand, we were ready to perform the
first oxazole-oxazole arylation. Using 4-oxazolecarboxylate,
4, as the coupling partner, we anticipated that the C4 electron-
withdrawing group would retard any SEAr arylation at C5,
while promoting a deprotonation mechanism at C2. Hoarau
and co-workers have demonstrated that C2 over C5 regio-
selectivity is possible in the phenylation of 4 using bulky
ligands.16 A wide range of conditions was examined for the
direct arylation of 4 with iodide 11 (Table 3). Disappoint-
ingly, our previously successful C2 direct arylation conditions
on water proved to be ineffective for iodide 11, giving only
traces of the desired bisoxazole with a slow reaction rate

(18) This increase in yields after a prolonged reaction time has been
observed in a similar context. See ref 7f.

(19) Miller, R. A.; Smith, R. M.; Karady, S.; Reamer, R. A. Tetrahedron
Lett. 2002, 935–938.

Table 1. C2 Direct Arylation of 5-Substituted Oxazoles with
Aryliodidesa

a Conditions: oxazole (1 equiv) and aryl iodide (1.2 equiv). b Isolated
yield after SiO2 column chromatography.

Table 2. 2,4-Diiodination of 1,3-Oxazolea

entry reaction timeb yield of 9 (%)c

1 5 min tracesd

2 30 min 24
3 24 h 38
4 7 days 64
5 14 days 77

a Conditions: 2 equiv of LHMDS and 2 equiv of I2. b Reaction time
after addition of I2. c Isolated yields after silica gel column chromatography.
d 1 equiv of LHMDS and 1 equiv of I2 were used.

Scheme 2. Synthesis of Key Building Block 11
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being observed (entry 1). The copper-catalyzed arylation
conditions recently described by Daugulis14b were likewise
unsuccessful with complete degradation of 11 being observed
after 30 min at 140 °C (entry 2). The first successful coupling
was observed using Pd(OAc)/P(o-Tol)3 in toluene, which
gave bisoxazole 12 in a modest 38% yield (entry 3).
Switching to the more polar DMF, a common direct arylation
solvent, under the same system completely degraded 11 after
30 min at 110 °C (entry 4). The use of very bulky/electron-
rich Imes or XPhos ligands only led to inseparable complex
mixtures (entries 5 and 6).

A substantially better catalyst for the arylation proved to
be the N-heterocyclic carbene-based palladium complex
PEPPSI-IPr,20 which gave moderate to good yields in
toluene, 1,4-dioxane, and DMF (entries 7, 8, and 9). Finally,
to our delight, we found that the Herrmann-Beller palla-
dacycle21 in toluene gave a very good 81% yield of the
bisoxazole (entry 10).

Deprotection of 12 was slow and low yielding under acidic
conditions22 but successful upon brief exposure to aqueous
TBAF solution at room temperature, giving the bisoxazole
2 in 71% yield over the two steps (Scheme 3). With an

efficient route to bisoxazole 2 established, synthesis of
trisoxazole 1 was attempted. We were pleased to find that a
second direct arylation using the same catalyst system was
successful, affording the protected trisoxazole in 57% yield.
Facile deprotection with aqueous TBAF gave trisoxazole 1
in 51% yield over the two steps, representing an overall six-
step preparation from commercially available 1,3-oxazole in
25% overall yield.

This is the quickest synthesis of trisoxazoles reported to
date,6 although the research groups of Vedejs7f (eight steps,
39%) and Panek23 (13 steps, 26%) have described higher
yielding routes. The modularity and speed of the direct
arylation approach offers significant benefits and should
compliment existing methods for polyazole synthesis.

In conclusion, we have developed arylation methods for
the C2 position of oxazoles and applied them to the synthesis
of bis- and trisoxazoles. Using commercially available 1,3-
oxazole as a starting point, the trisoxazole structure found
in the ulapualide family of natural products has been prepared
in six steps.
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Table 3. Direct Arylation of 4 with 11: Optimization Dataa

entry catalyst ligand solvent yield of 12 (%)b

1c PdCl2(dppf) PPh3 water traces
2d CuI none dmf 0
3 Pd(OAc)2 P(o-Tol)3 toluene 38
4 Pd(OAc)2 P(o-Tol)3 dmf 0
5 Pd(OAc)2 IMes toluene complex mixture
6 Pd(OAc)2 X-PHOS toluene complex mixture
7 PEPPSI-IPr none toluene 51
8 PEPPSI-IPr none 1,4-dioxane 60
9 PEPPSI-IPr none DMF 40
10 HBP none toluene 81

a HBP ) Hermann-Beller palladacycle. Conditions: 1 equiv of 11 and
1.2 equiv of 4, 5 mol % of catalyst and 10 mol % of ligand, 1 mL of
solvent, 2 equiv of Cs2CO3, and 110 °C in a sealed tube. b Isolated yield
after silica/gel column chromatography. c Ag2CO3 (2 equiv) at 60 °C. d CuI
(10 mol %) at 140 °C.

Scheme 3. Synthesis of the Trisoxazole Moiety Found in
Ulapualide A
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A regioselective Suzuki-Miyaura cross-coupling of 2,4-
dihalooxazoles followed by a Stille coupling has been
successfully developed. The procedure affords convergent
syntheses of trisoxazoles in high yield and in a minimum
number of steps.


Naturally occurring polyoxazoles commonly display a 2-4
substitution pattern, a consequence of their biosynthetic as-
sembly from serine residues.1 In certain natural products, such
as telomestatin2 or ulapualide A,3 three or more successive C2-
C4′ linked polyoxazoles are present rather than single oxazole
units. These compounds have fascinating structures, show a wide
range of biological properties, and therefore make ideal targets
for the synthetic chemist.4


A plethora of methods have been developed for the construc-
tion of C2-C4′ linked polyoxazoles. Although these methods
differ greatly in their synthetic strategy, they share a common
linear approach, involving a high number of consecutive steps
each time an oxazole ring needs to be introduced.5,6 An
alternative approach is to employ the palladium-catalyzed cross-
coupling of appropriately functionalized oxazole units, a chal-


lenging reaction that has appeared only rarely in the literature.
The first example was reported in 1995 by Barrett, using a Stille
coupling to prepare a bisoxazole in an approach to the natural
product Hennoxazole A.7 Since that time, bisoxazole synthesis
has been reported by Vedejs using a Negishi coupling8 and by
our own group9 and that of Inoue10 using the Suzuki-Miyaura
reaction of oxazoyl boronate esters. Inoue has recently extended
this work to the production of some challenging pentakis and
hexakis polyoxazole structures.11 However, the linearity of this
approach combined with a lengthy preparation of a common
boronic ester intermediate necessarily restricts its scope. Given
recent developments in azole cross-coupling reactions,12 we were
interested in developing our own method based on a convergent
approach to the synthesis of trisoxazoles.


2,4-Diiodooxazoles3, known in the literature from work of
Vedejs,8 would be expected to undergo preferential oxidative
addition of Pd0 at the more reactive C2 position, followed by
Suzuki-Miyaura cross-coupling with an oxazol-4-ylboronate
2 (Scheme 1). The C4-I bond would be left intact for a second
cross-coupling with a 2-metallo-oxazole4, forming the trisox-
azole 1. Selective cross-coupling on dihaloazoles is a well
precedented strategy but has yet to be applied to polyoxazole
synthesis.13


We elected to break down the proposed regioselective
trisoxazole synthesis into two parts, examining each C-C bond
formation separately on monoiodooxazoles to define the reaction
parameters, prior to using the diiodooxazoles3. Accordingly,
we began by examining a simplified version of the proposed
Suzuki-Miyaura reaction, using 2-phenyl-oxazol-4-yl boronate
ester2a and 2-iodo-5-phenyloxazole5, both of which can be
prepared in multigram quantities8,10(Table 1). Standard Suzuki-
Miyaura conditions at 100°C in DMF produced dioxazole6 in
49% yield (entry 1). Milder conditions such as those developed
by Liebeskind14 and Fu15 gave a complex mixture of products
that could not be separated (entries 2 and 3 respectively). It
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SCHEME 1. Cross-Coupling Strategy for the Synthesis of
Trisoxazoles
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was quickly found that the use of microwave irradiation not
only shortened reaction times but also increased the yields
dramatically, a combination of Pd2(dba)3 (5 mol %) with PCy3
(10 mol %) in DMF giving the desired product6 in an excellent
87% isolated yield (entry 6). With a good yield of the Suzuki-
Miyaura coupling in hand, we turned out attention to the second
cross-coupling. We settled on a Stille coupling as the method
of choice,16 given that oxazol-2-ylstannanes are known nucleo-
philes in Pd-catalyzed oxazole cross-coupling reactions.17


We synthesized oxazol-2-ylstannane4a by trapping 5-phe-
nyloxazole withn-BuLi at -78 °C and quenching the reaction
mixture with Bu3SnCl. The resulting stannane did not store well
and was best used freshly prepared.18 The optimization results
for the Stille reaction are shown in Table 2. Standard conditions
provided a moderate yield of8 after 2 days reflux in DME (entry
1). Milder Stille catalyst systems were not effective for this
substrate: Fu’s (tBu)3PHBF4 salt15 used at room temperature,
under microwave irradiation or in combination with Cu2O, only
led to complex mixtures or slow reaction rates (entries 2, 3, 5,
and 8). The ligand trifurylphosphine (TFP) in combination with
Pd2(dba)3 and Cu2O gave a modest 35% of isolated8, but a
slow reaction rate if combined with Cu(OAc)2 (entries 4 and 6,
respectively). Liebeskind’s copper-mediated Stille coupling19


gave a slow reaction rate in our system (entry 7). After
considerable optimization, we realized that higher yields could
be achieved if higher loadings (3 equiv) of stannane4a where
used in the reaction. Hence, the best of all combinations
appeared to be same catalyst system used for the Suzuki-
Miyaura coupling in Table 1: Pd2(dba)3 (5 mol %) and PCy3
(10 mol %) in DMF and under microwave irradiation gave an
excellent 87% yield of isolated8 (entry 9).


To merge the two reactions into a trisoxazole synthesis, we
synthesized diiodooxazole3aaccording to Vedejs’ selective C-4
iodination8 procedure followed by C2 iodination using 1,2-
diiodoethane.18 As planned, the Suzuki-Miyaura coupling was
regioselective for C2 and gave the desired dioxazole9 in 46%
isolated yield when using Pd2(dba)3/PCy3 (50% yield if Pd-
(PPh3)4 was used) (Scheme 2). Careful analysis of the crude
reaction mixture by HPLC and LC-MS revealed the formation
of trimer 10 (presumably the Pd-catalyzed product of the
reaction between9 and starting material2a), 11 (protodebor-
onation of2a), and12 (homo-coupled2a) as side products.


We sought to reduce the formation of unwanted trisoxazole
10 by modifying the diiodo compound3a. Thus, we envisaged
that if a Br atom would be selectively placed at C4 instead of
I, oxidative addition on newly formed9 would be diminished
and therefore the yield should be improved. No examples exist
in the literature of hybrid dihalooxazoles. We successfully
managed to selectively brominate 5-phenyloxazole20 13on C-4


(16) In agreement with Inoue (ref 11), attempts at oxazole C2 borylation
for potential Suzuki-Miyaura coupling have not been successful.
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7, 1063-1066.


(18) See Supporting Information for details.
(19) Allred, D. G.; Liebeskind, L. S.J. Am. Chem. Soc.1996, 118, 2748-


2749.


TABLE 1. Suzuki-Miyaura Coupling between Oxazol-4-ylboronate 2a and 2-Iodo-5-phenyloxazole 5a


entry time solvent palladium source base temperature additives yield of6 (%)b


1 2 h DMF Pd(PPh3)4 K2CO3 100°C none 49
2 4 days THF Pd(PPh3)4 none rt CuTC (1.1 equiv) complex mixture
3 4 days THF Pd2(dba)3 KF rt [(tBu)3PH]BF4 (0.1 equiv) complex mixture
4 20 min dioxane/H2O PdCl2(PPh3)2 Na2CO3 2M 150°C, microwave none 34
5 20 min DMF Pd(PPh3)4 K2CO3 150°C, microwave none 79
6 20 min DMF Pd2(dba)3 K2CO3 150°C, microwave PCy3 (0.1 equiv) 87


a Conditions: 1.1 equiv of2a, 1 equiv of5, 3 equiv of base, 5 mol % of Pd, 3 mL of solvent.b Isolated yields.


TABLE 2. Stille Coupling between Oxazol-2-ylstannane 4a and 4-Iodo-5-phenyloxazole 7a


entry time solvent palladium sourcea base temperature additives yield of8 (%)b


1 2 days DME PdCl2(PPh3)2 none reflux none 42
2 3 h NMP Pd2(dba)3 CsF rt [(tBu)3PH]BF4 (0.12 equiv) traces
3 5 min NMP Pd2(dba)3 CsF 150°C, microwave [(tBu)3PH]BF4 (0.12 equiv) complex mixture
4 2 h NMP Pd2(dba)3 none 100°C TFP (0.1 equiv) and Cu2O (1 equiv) 35
5 4 days NMP Pd2(dba)3 KF rt [(tBu)3PH]BF4 (0.2 equiv) and


Cu2O (1 equiv)
traces


6 2 days NMP Pd2(dba)3 none rt TPF (0.2 equiv) and Cu(OAc)2 (1 equiv) 26
7 4 days NMP None none rt CuTC (1.5 equiv) traces
8c 20 min DMF Pd2(dba)3 none 150°C, microwave PCy3 (0.1 equiv) 54
9d 5 min DMF Pd2(dba)3 none 150°C, microwave PCy3 (0.1 equiv) 87


a 5 mol % of Pd.b Isolated yields.c 1.5 equiv of stannane4a was used.d 3 equiv of stannane4a was used.
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using a modification of Vedejs’ procedure,8 obtaining 4-bromo-
5-phenyloxazole14 in a good 69% yield after column chro-
matography. Then, iodination using LHMDS and 1,2-diiodo-
ethane gave the desired dihalooxazole15 in excellent yield (86%
after recrystallization) (Scheme 3).


Initial attempts at regioselective Suzuki-Miyaura coupling
of 15 with 2a using Pd2(dba)3/PCy3 produced the dioxazole16
in a disappointing 21% yield. However, a switch to Pd(PPh3)4


proved effective, producing the bromo dioxazole16 in a very
good 81% yield (Scheme 4). This result points to the ability of
the bulkier and electron-rich PCy3 ligand to facilitate oxidative
addition, eroding the selectivity in our system.


Finally, we were pleased to observe clean formation of the
desired trisoxazoles using the optimized Stille coupling condi-
tions developed previously. Trisoxazole17was obtained in 60%
yield from iodide9 and stannane4a and 75% yield using the
bromide 16. Coupling was also successful for the simple
stannane4b, producing trisoxazole18 in 73% yield using the
same procedure (Scheme 5).


To conclude, we have developed a novel and regioselective
Suzuki-Miyaura reaction for the synthesis of 2,4-bisoxazoles
followed by a second palladium-catalyzed Stille coupling, which
has produced trisoxazole structures. The method is convergent
and avoids the synthesis of complicated precursors giving a high
level of complexity in a minimum number of steps.


Experimental Section


4-Bromo-5-phenyloxazole 14.Synthesized using Vedejs pro-
tocol8 with modifications. 5-Phenyloxazole20 13 (5.00 g, 34.47
mmol, 1 equiv) was dissolved in 50 mL of dry THF and 40 mL of


DMPU and cooled to-78 °C. LHMDS (1 M in THF, 55 mL, 55.0
mmol, 1.6 equiv) was added slowly with a syringe. The reaction
mixture was stirred 1 h at-78 °C, and then neat bromine (2.1 mL,
41.37 mmol, 1.2 equiv) was added dropwise to the reaction mixture,
which was stirred for an additional 30 min at-78 °C. The reaction
mixture was then poured into a mixture of TBME (200 mL) and
aqueous Na2S2O3 (10%, 200 mL) at room temperature. The two
layers were separated, and the organic phase was washed three times
with distilled water, dried over magnesium sulfate, and concentrated
in vacuo. The residue was purified by flash chromatography
(hexanes/TBME 10:0.5 to 10:1) and gave the desired bromooxazole
14 (5.32, 69% yield) as a white solid. Mp) 60-61 °C. 1H NMR
(360 MHz, CDCl3) δ 7.37-7.86 (3H, m), 7.86 (1H, s), 7.92-7.95
(2H, m). 13C NMR (90 MHz, CDCl3) δ 110.9 (quat), 125.5 (CH),
126.7 (quat), 128.8 (CH), 129.1 (CH), 146.7 (quat), 149.6 (CH).
HRMS (ESI) calculated for C9H6BrNO 223.9705, found 223.9709.


2-Iodo-4-bromo-5-phenyloxazole 15.Synthesized using Vedejs’
protocol8 with minor modifications. 4-Bromo-5-phenyloxazole14
(5.00 g, 22.32 mmol, 1 equiv) was dissolved in 70 mL of dry THF
and cooled to-78 °C. LHMDS (1 M in THF, 27 mL, 27 mmol,
1.21 equiv) was added slowly, and the reaction mixture stirred for
1 h at-78 °C. Then, solid 1,2-diiodoethane (7.62 g, 26.78 mmol,
1.2 equiv) was added, and the reaction mixture allowed to warm
to room temperature. After 10 min complete consumption of the
starting material was observed by HPLC, and the reaction was
quenched with a mixture of TBME (200 mL) and aqueous Na2S2O3


(10%, 200 mL). The two layers were separated, and the organic
phase washed three times with distilled water, dried over magnesium
sulfate, and concentrated in vacuo to give an orange solid which
was recrystallized from toluene to afford the desired dihalooxazole
15 (6.70 g, 86% yield) as a white solid. Mp) 104-106 °C. 1H
NMR (360 MHz, CDCl3) δ 7.37-7.48 (3H, m), 7.85-7.88 (2H,
m). 13C NMR (90 MHz, CDCl3) δ 99.3 (quat), 112.5 (quat), 125.3
(CH), 125.9 (quat), 128.7 (CH), 129.4 (CH), 153.1 (quat). HRMS
(ESI) calculated for C9H5NOBrI 348.8594, found 348.8597.


4-Bromo-5,2′-diphenyl-[2,4′]bisoxazole 16.A 5 mL microwave
vial was charged with oxazol-4-ylboronate2a10 (72 mg, 0.27 mmol,
1.2 equiv), 2-iodo-4-bromo-5-phenyloxazole15 (77 mg, 0.22 mmol,
1 equiv), Pd(PPh3)4 (13 mg, 5 mol %), K2CO3 (92 mg, 0.66 mmol,
3 equiv), and anhydrous DMF (1 mL). The microwave vial was
then sealed, and the resulting mixture was stirred at room
temperature for about 5 min before irradiation at a preselected
temperature of 150°C in a Smith synthesizer for 10 min. The vial
was then cooled with air jet cooling, opened, and poured into a
mixture of Et2O (20 mL) and brine (20 mL). The organic phase
was separated, and the aqueous layer extracted twice with Et2O.
The organic layers were combined, dried over MgSO4, and filtered.
The organic solvent was removed in vacuo, and the residue was
purified by flash column chromatography (silica, hexane/EtOAc
9:1) to give the coupled product16 (65 mg, 81% yield) as a white
solid. Mp ) 149-152 °C. 1H NMR (360 MHz, CDCl3) δ 7.36-
7.50 (6H, m), 8.00-8.02 (2H, m), 8.13-8.15 (2H, m), 8.31 (1H,
s). 13C NMR (90 MHz, CDCl3) δ 112.3 (q), 125.5 (CH), 126.3 (q),
126.5 (q) 126.8 (CH), 128.6 (CH), 128.8 (CH), 128.9 (CH), 130.9
(q), 131.1 (CH), 138.7 (CH), 146.2 (q), 153.7 (q), 162.8 (q). HRMS
(ESI) calculated for C18H11N2O2Br 365.9998, found 366.0001.


5, 5′, 2′′-Triphenyl-[2, 4 ′, 2′, 4′′] teroxazole 17. A 5 mL
microwave vial was charged with dioxazole16 (100 mg, 0.27 mmol,


(20) Prepared according to: Van Leusen, A. M.; Hoogenboom, B. E.;
Siderius, H.Tetrahedron Lett.1972, 23, 2369-2372.


SCHEME 2. Regioselective Coupling between Oxazol-4-yl-
boronate 1 and 2,4-Diiodooxazole 2


SCHEME 3. Synthesis of 2-Iodo-4-bromo-5-phenyloxazole
15 via Selective C4 Bromination on 5-Phenyloxazole


SCHEME 4. Regioselective Coupling between Oxazol-4-yl-
boronate 2a and 2,4-Dihalooxazole 15


SCHEME 5. Stille Couplings for the Formation of
Trisoxazoles


J. Org. Chem, Vol. 73, No. 8, 2008 3305







1 equiv), oxazol-4-ylstannane3 (354 mg, 0.82 mmol, 3 equiv), Pd2-
(dba)3 (12 mg, 5 mol %), PCy3 (8 mg, 10 mol %), and anhydrous
DMF (1 mL). The microwave vial was then sealed, and the resulting
mixture stirred at room temperature for 5 min before irradiation at
a preselected temperature of 150°C in a Smith synthesizer for 15
min. The vial was then cooled with air jet cooling, opened, poured
into a mixture of saturated aqueous KF (30 mL) and EtOAc (30
mL), and stirred for 30 min. After this time the organic layer was
separated and the aqueous layer was extracted twice with EtOAc.
The organic layers were combined, dried over Mg2SO4, and filtered
through celite. The solvent was removed in vacuo, and the residue
was purified by flash column chromatography (silica doped with
10% KF, hexane/Et2O 6:4) to give the coupled product17 (88 mg,
75% yield) as a yellow oil.1H NMR (360 MHz, CDCl3) δ 7.42-
7.54 (10H, m), 7.74 (2H, dd,J1 ) 1.3 Hz, J2 ) 8.4 Hz), 8.17-
8.20 (2H, m), 7.74-8.32 (2H, m), 8.47 (1H, s).13C NMR (90 MHz,
CDCl3) δ 123.3 (CH), 124.4 (CH), 125.5 (quat), 126.5 (quat), 126.9
(CH), 127.1 (quat), 127.6 (quat), 127.7 (CH), 128.5 (CH), 128.6
(CH), 128.9 (CH), 128.9 (CH), 129.9 (CH), 131.1 (CH), 138.0
(quat), 139.2 (CH), 150.1 (quat), 151.6 (quat), 154.2 (quat), 155.0
(quat), 162.8 (quat). HRMS (ESI) calculated for C27H17N3O3


431.1264, found 431.1266.
5′, 2′′,-Diphenyl-[2,4′;2′,4′′]teroxazole 18. Prepared as for


compound17 from bisoxazole16 (100 mg, 0.27 mmol, 1 equiv),


2-(tributylstannyl)oxazole17 (314 mg, 0.82 mmol, 3 equiv), Pd2-
(dba)3 (12 mg, 5 mol %), PCy3 (8 mg, 10 mol %), and 1 mL of
anhydrous DMF. The crude product was purified by flash chro-
matography (silica, hexane/EtOAc 8:2) to give the desired product
18 (63 mg, 60% yield) as a white solid. Mp) 179-182 °C. 1H
NMR (360 MHz, CDCl3) δ 7.32 (1H, s), 7.44-7.52 (6H, m), 7.79
(1H, s), 8.14-8.17 (m, 2H), 8.35-8.37 (2H, m), 8.44 (1H, s).13C
NMR (90 MHz, CDCl3) δ 125.4 (quat), 126.4 (quat), 126.8 (CH),
126.9 (quat), 127.5 (CH), 128.3 (CH), 128.5 (CH), 128.8 (CH),
129.8 (CH), 131.1 (CH), 131.1 (quat), 138.8 (CH), 139.1 (CH),
149.9 (quat), 154.0 (quat), 155.8 (quat), 162.7 (quat). HRMS (ESI)
calculated for C21H13N3O3 355.0951, found 355.0949.
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