TENSOR PRODUCTS OF BANACH SPACES

by Hamish K. Milne

Presented for the degree of

Doctor of Philosophy in Mathematics

Mathematical Institute
University of Edinburgh

July

1974.



ACKNOWLEDGEMENTS

I should like to express my thanks to my supervisor,
Dr. A. M. Davie, whose constant help and encouragement
have been greatly appreciated. I am also grateful to
Professor F. F. Bonsall who made it possible for me to
come to Edinburgh. Finally, I should like to thank the

Carnegie Trust, who provided my Scholarship.



ABSTRACT

Chapter one consists of a general discussion of

tensor products.

Chapter two is concerned with the relationship between
tensor products and the approximation property. In
Theorem 2.1 we give an equivalent condition to the
approximation property which is due to Grothendieck.
In Theorem 2.5 we prove that every complex Banach space
is isometrically isomorphic to a complemented subspace
of a uniform algebra. From this, we prove in Theorem 2.6
that there exists a uniform algebra not having the
approximation property. Tomiyama has shown that if A and B
are semi-simple commutative Banach algebras, and either
A or B has the approximation property, then A é B is
semi-simple. In Theorem 2.8 we establish a converse to
this result, namely that if A is a commutative Banach algebra
not having the approximation property, then there is a uniform
algebra B such that A 5 B is not semi-simple. We next
discuss the e-product and the slice product, and their

relationships with the injective tensor product and with



the approximation property. Then, in Theorem 2.11,
we prove that a uniform algebra A has the approximation
property if and only if A é B = A +%B for all uniform

algebras B.

In chapter three we consider injective algebras.
Using techniques similar to those used in the proof of
Theorem 2.5, we give a proof in Theorem 3.2 of
Varopoulos's characterisation of injective commutative
Banach—-algebras. This states that a commutative Banach-
algebra A is injective if and only if there exists a
uniform algebra B, a bounded algebra homomorphism h of
B onto A, and a bounded linear operator j of A into B

such that hoj =1 In Theorem 3. 4 we prove a

A
sharpening of Varopoulos's result that a normed-algebra
is injective if and only if its injective tensor product

with any normed-algebra is a normed-algebra.

Chapter four is concerned with the question,
also considered in chapter three, of whether the injective
tensor product of two normed-algebras is a normed-algebra.
We show that this is the case for the tensor product
1 é 1 (where p or g € 2), and for the tensor product

P q
of two Banach-algebras which are:ﬂl spaces.



In chapter five we consider measures orthogonal
to injective tensor products of uniform algebras, and
we obtain an analogue of Cole's decomposition theorem
for orthogonal measures to the bidisc algebra.
Through a general study of bands, we set up the
decomposition in Lemma 5.4, and prove that this
decomposition is of the form we want in Theorem 5.7.

This then gives us our main result in Theorem 5.8.



CHAPTER ONE

In this chapter we discuss some of the basic properties
of tensor products of normed spaces and Banach spaces. All

the results of this chapter are well-known.

Definition: If X and Y are vector spaces over k (where k is
the real or complex field), let Sp(XxY¥) denote the vector
space over k which has the elements of XxY as a basis.

Let J be the subspace of Sp(XxY) generated by the elements:

(ox + Bx,;y)-a(x,y)-B(x}y),
and (x,ay + By')-o(x,y)-B(x,¥"),

where x, x'eX, y, y'eY¥, and o, Bek. We define the tensor
product X ® Y of X and Y to be the vector space Sp(XxY)/J.

We write x ® v for (x,y) + J.

We have: (ox + Bx'")® y = a(x ® y) + B(x' ® y)
and x ® (ay + By') = a(x ® y) +B(x ® y')
where x, x'eX, y, v'eY, and o,Bek. Also x ® y = O if and only

if x = 0 or y = 0.



If X and Y are algebras over k, then X ® Y becomes an
algebra under the multiplication:
m n m
; Loy B Rexd! @ Yi¥is
1T ga1d T gegey F3T T
X ® Y is then commutative if X and Y are, and it has a 1 if

both X and Y have a 1.

Crossnorms on X ® Y

We now take X and Y to be normed spaces. We shall denote
the closed unit ball of X by Ball X, and the topological dual
of X by X*. If o is a norm on X ® Y, we shall denote the space

(X ® Y,a) by X 8 Y.

Definition: If o is a norm on X ® Y, then o is said to be a

crossnorm if || xey|| A = || x| || y|| for all xeX, yeY.
n
Definition: If o is a norm on X ® Y such that for each I £, @ 95
i=1
(IEEXEN Iz |
e X* @ Y* z E f (x g, (v.) | <=
R ™ 1 h 2 X. @ a Ih{ll T =1 13 ]
] =17

then o' is a norm on X*® Y*, called the associate of a.

There are two important crossnorms on X ® Y which we shall

.

be concerned with, and which we now define.



Definition : The projective norm vy on X ® Y is given by :

N1
=

n
il y = sne 02 1yl = =

; X8 y,,x,€ X,y € ¥}.

The injective norm A on X ® Y is given by :
n

Iz [ y= sup |z f(xi)g(yi)] if z =
fe Ball X*i=1 i
ge Ball Y*

xi® V-

3

1

Yy and A are both crossnorms on X ® ¥, and XA € y. Y is the
greatest crossnorm on X ® Y, for if o is any crossnorm,

n n
and z € X ® Y, then if z =i£lxi® yi,[[z||asi£l||xi® vill o

fa }

='Zl||xi | ly; [| . Hence we have Hz||ac | z |
i=

'YC
Also A is the least crossnorm whose associate is a
crossnorm, for if o is a crossnorm, then its associate o'

is a crossnorm if and only if o > A. To see this, suppose

that ¢ 3 A. Then for f € X*, g & Y*,

n
£l lgll =n sup | £ £(x)g(yy) |
lhilxia vl 4&1 i=1

n
| TE(x;)g(yy) |

> n sup
|| £ X0 yi|]aél i=1
i=1

3 sup | £(x)g(y) |

IIx ey || <1

Il 11 gll -



So o' is a crossnorm. Now if a' isngiven to be a crossnorm,

b ; <
then (£l Nlall=llg'eg ||, | EFxIevpl
n
”iilxie Yy [Ll
so ||2 x;® ¥, |h > Z £(x;)9(yy ) | for all £ and g.
i=1 1 =1
£l 1l gl

Therefore o > A.

Also the injective norm on X* ® Y* is the associate
n
of the projective norm on X ® Y. For if I fi® 94€ X* @ Y*,

i=1
Iz | | 1 |
then L £.8 g, > up £, x)g, (¥)
i=1, * % k' |k ® ylksl i=1
: [
= su T £ (x)g;
x| <1 =
= z £, (x)¥(g;) |
i P
Ye Ball Y**
= sup [ Z ¢ (£5) ¥ (gy ) |
¢e Ball X** i=1
Ye Ball Y**
n
=l 3 58 gyl
i=1
n m m
and {iI. T £, (x4) g, (vy } =& g, | z £, (x5)9; (v ) |
i=1lj=1 j=1 i=1
ITl
< I (=gl 1l vy ||||z £,@ gy ll;-
3-— =1
n
| B
Therefore ||i£lfi® gi|k,s [l 1§1f .® g, |h , and we have y'=)\.



If X and Y are normed algebras, then X @Y Y is a normed

n m
algebra, for if z; = L X ® Yy and z, = I x! @ y ’
i=1 j=1 3
n m
Il z1z2 ] r I |l xgxl ||]lyiy I
= 3=
n
Al xg I vy ||X'||||YJ
i=1 ]—l
Hence ||Z122||Y6 IIz;][Y||zz|]Y. (For the purposes of this

chapter and chapter 2, we shall take all Banach algebras
and normed algebras to satisfy |[kiz2]|| < || zl|| || z2|] for all
z; and 2, in the algebra). In general, multiplication in

X ® Y is not bounded with respect to the injective norm,

This will be discussed in chapters 3 and 4.

We now take X and Y to be Banach spaces. We denote the

Cantor-Meray completion of X ®Y Y by X ® Y. Any element z

of X ® Y may be represented as z = b xi® Yy where
i=1
x;eX, y; €Y, and iEleiHHyiH < o , Also
=il = tneC B llxg I llygll o2 = € xie )

~

The dual of X ® Y is isometrically isomorphic to B(X ,Y*) under

<¢,¥ x,8 y;> = 7 ¢ (x;) (y;), where ¢ € B(X,Y*),
i=1 i=1

x;€ X, y; € Y and i§i|xi||Hyi||<w.

If X 'and Y are Banach algebras, then X ® Y becomes a

Banach algebra when the multiplication on X ®YY is extended



by continuity.

We denote the completion of X ®.Y by X & Y.

A
There are a number of useful operators between different
tensor products. Since the associate of the projective norm
is the injective norm, we see that the linear mapping

Y: X*@Y* > (X ® Y)* given by

¥

n

n
YOEZ£;, @ g,)i
wOTE 4 i=13=1

i=1 j=1
is isometric.

Similariy , there is a bounded linear mapping of X*é X*
into (X ® Y)*,

If X, X2, ¥, and ¥, are Banach spaces, there is a
bounded linear mapping £ : B(X;,X»2) ® B(Y;,Y,) =

B(X1® Y;,X28 Ys) such that

E(TS,0T)(Ffx.0@y.) =% ¥ 5,(x.)8 T, (y.)
i=1 * T og=1 9 I i=19=1 -3

and || g(®) (z) || < [[FILII 2]l .

At this point we give a lemma which will be required in

the next chapter.

Lemma 1.1 Let X be a Banach space, and let E be a complemented

subspace of X such that there exists a projection P of X onto



E of norm 1. Let Y be any Banach space, and let I : E-» X
be the inclusion mapping. Then the mapping £ = £(I ® I&)

E®Y > X® Y is an isometry.

Proof: Let g = E(P 8 I,) : X ® Y >E ® Y. Then lIE]] <
[z ® Ll = s
Similarly || g||] <« 1. But if z eE ® ¥, || z||Y =

|| gof (2) |k < ||f(z)[k . Hence f is isometric.

10



CHAPTER TWO

In this chapter we shall give some results concerning

the relationship between tensor products and the

approximation property.

Definition: If X is a Banach space, then X has the
approximation property if the identity function on X, IX’
belongs to the closure of the finite rank operators in the

topology of uniform convergence on compact sets.

So X has the approximation property if and only if
there exists a net {Pa} of finite rank operators in B(X)

such that Pa > IX uniformly on compact subsets of X.

Most of the standard separable Banach spaces such as
the disc algebra, Lpr Hp; C(K) (where K is compact Hausdorff),
and spaces of continuously differentiable functions are
known to have the approximation property. It is not known
whether B(H) or H have the approximation property. P.Enflo

has recently constructed a Banach space which fails to have

11



the approximation property (see [7] and [81]).

We shall give first a rather technical result due to
Grothendieck ([1]) which we shall require later in the
chapter. If E and F are Banach spaces, then there is a
natural bounded linear mapping O :E 8 F » B(E*,F)

such that e(izleimfi) (e*) = izle*(ei)fi .

Theorem 2.1 Let E be a Banach space. Then the following

statements are equivalent :

(1) E has the approximation property.

(2) The mapping E & E* - B(E*,E*) is one to one.

(3) The mapping E & F - B(E*,F) is one to one for all Banach
spaces F.

(4) The mapping F & E » B(F*,E) is one to one for all Banach

spaces F.

Proof : It is easy to see that (3) is equivalent to (4), and
that (3) implies (2). We show first that (1) implies (3). Let

z = izlei{afi e E& F, with i§l|lei||||fi|| < o, Suppose that

[+2]

* = %* * 1
jE1€ (ei)fi O for all e* ¢ E*X, There is a net {Pa} of
finite rank operators in B(E) such that Pa 1 IE (where T is

the topology of uniform convergence on compact sets).

Now for each o, izle*an(ei)fi =0 ,



o) iglPa(ei)a.fi:O, for if the range of Pa has a basis

n
{xl,xz,...xn}, and Pa(ei) = jglﬁijxj' there exists e%E:E*
such that e%(xj,)==6j g1 where 8§ is the Kronecker §.So
r
oo
iélsijfi = 0. Therefore £
121Pg(€g) ®E; = 51140185 5%5 8%,
n w
We have that ileei”HfiH < », So there is a sequence
oo}
{};} such that 1;>0, A;+0, and c = g2yl ey [ £ 7xy <o
Let K ={ chje./|le;ll s i=1,2,..... JU{O}. K is compact,so

if € >0 there exists an oy such that if a >0, , then

Il B, (x) - x|| €« € for all x in K.
o0 (=] [
so || ;2,P (ey) mf - ,1,e;® fiH < 42l P (e;) -ei|| [l fiI]
£
L llegll 1N £l esery

€. Therefore z = 0.

In order to show that (2) implies (1) we shall require

two lemmas.
Lemma 2.2 Let K be a compact subset of a Banach space E.
Then K is contained in the closed convex cover of a sequence

in E which converges to zero.

Proof: For xeE and € >0, let B(x,e) denote the open e-ball

1:3



with centre x. Since K is compact, there exists a finite set

-1
Spo in E such that KC:SJgSGB(So,3 ). Again,since K is compact

there exists a finite set S; in E such that

1

et -2 . -
Ka_SugslB(so+sl,3 ) and S;<B(0,3 7).

Similarly there exists a finite set S; such that
2

-l -
- = .
K Su’slitszB(sa+s1+sz,3 ) and Sy B(0O,3

).
Continuing in this fashion, we construct finite sets S3,Su;...
such that SnC B(0,37®), and each point of K has distance

less than 3--11_l

from So+sl+.....+Sn.

Let s = {o0}u2sp,ly4s:U8S2J «eee.. Then S is a sequence
converging to zero. If sieSi for' i'=0,1;2%+«hwan ; then
so+siHi cath4el (527070 Fihu2se 4 Rl F i 32 B oW E e

& co(s) :

Hence So+Sl+.....+SnCco(S) ; and KCTol(s)

Lemma 2.3 Let E be a Banach space. Then there is a natural

linear mapping C: E ﬁE*On—FO (B(E) ,T)* such that
T (iglei Ewi) (T) = iglwi(T(ei))

where 121” e;ll l|v;ll <= andT eB(E) .

Proof : We may certainly define ¢ : E&E* > (B(E),|| .|| )*

by ciZie;@y,) (T) = ,2,0,(T(ey)) .
We show that the range of ¢ is (B(E),t)*.Let =z = izlei&wi
Belong to ERE* with izl” e; I I v;ll < = . As before, let

14



{Ai} be a positive sequence such that li -+ 0 and

(9]
Il

B llegll llvgl/ay < = mhen
l=

K

{ceiki/Hei]l: i=1,2....} v {0} is compact, and

|| T(x)||] ¢ 1 for all xeK implies

gz ()] = | T v, (Tie]

i=1l

F vl llzeep |

"

n

E llwyll 1 ey lhage
Fr=

=11=. " 8g & {z) el (BIERE)E.
Now let ¢e(B(E),T)*. There exists a compact K such that
if |Ir(x)]] < 1 for all x € K then [¢(T)| ¢ 1. There exists
a sequence {xn} in E such that x  + O and such that K is

contained in the closed convex cover of {xn}. So for TeB(E),

|¢(T)| ¢ sup || T(x)]|| = sup||T(xn)l[.
x € K 1

In particular, T(xn) = 0 for all n implies that ¢ (T) = O.
So we may define a continuous linear functional Yy on the

subspace {{T(xn)}: T ¢ B(E)} of cO(E) by w({T(an})= ¢ (T) .

(If L is one of the usual sequence spaces and F is any Banach

space, we define L(F) = {{fn}wfi F :][{fn}||= ![{|]fn||}|h<m}).
n=

By the Hahn-Banach Theorem we may extend ¥ to y'e (cO(E))*,
which is isometrically isomorphic to 1; (E*). Therefore

there exists {wn} e 1, (E*) with ¢(T) = ¢'({ Txn}} -

15



o ~
_f Vi (T(x;))¥ T e B(E). Letz= Ix, 84y, ¢E®E*,
f=]. i=1

Then ¢ = t(z), and the lemma is proved.
We now show (2) implies (1).

Suppose ¢ € (B(E),Tt)* and ¢(T) = O for all finite rank T
in B(E). We show that ¢(IE) = 0, and the result follows by a
corollary to the Hahn-Banach Theorem. By the lemma above,

there exists z €eE @ E* such that £(z) = ¢. Suppose that

z= % e,®,., then ¢(T) = % ¢, (T(e.,)). For e* ¢ E*X, y e¢E ,

NG e | e i

i=1 {=1
let T(x) = e*(x)y. T is finite rank, and

o=9(r) =¥ e*(e)v; (v) ,

i=1
={e) 0 = .Z e*(ei)wi .
i=1
By (2) we have z = 0, therefore ¢(IE) = ¥ Y. (e,)=0.
=1 *

Corollary 1If E* has the approximation property, then the
mapping E ® E¥ » B(E*,E*) is one to one by (4), so E has the

approximation property.

Theorem 2.4 Let E be a Banach space. Then E has the

approximation property if and only if for all Banach spaces

16



X and Y and T € B(X,Y) with T one to one, S(IE® T) : E® X -+

~

E ® Y is one to one.

Proof: The forward implication follows from an argument

similar to that in the first part of the proof of Theorem 2,1.
For the backwards implication, suppose that E is a

Banach space satisfying the conditions of the theorem, and

let F be any Banach space. Let T be the natural embedding

of F in C(K), where K = Ball F*., ©So T(f) (k) = k(f)

where £ € F and k € K. C(K) has the approximation property,

therefore the mapping E é C(K) - B(E*,C(K)) is one to one.We

have that the mapping E é Fis B é C(K) is one to one, and so the

mapping E é F - B(E*,F) is one to one, and so E has the

approximation property.

Throughout this thesis we shall be very concerned with

uniform algebras, which we now define.
Definition: Let X be a compact Hausdorff space. A uniform
algebra on X is a norm - closed subalgebra of C(X) which

separates the points of X and contains the constants.

If we take k =R , then by the Stone-Weierstrass Theorem,

the only real uniform algebra on a compact Hausdorff space

17



X is C(X) itself. 1In any results or discussion
involving uniform algebras, therefore, we shall normally

assume that the underlying field k is the complexes.

Theorem 2.5 Let Y be a Banach space, and let X be the closed

unit ball of ¥*, with the weak* topology. Then there is a
uniform algebra A on X which has a complemented subspace
isometrically isomorphic to Y and such that the projection

has norm 1.

Proof: Let R be the subalgebra of C(X) generated by the
function 1 and the functions Gy(y e Y) given by

Gy(x) = x(y) (x € X). Let A be the closure of R in
C(X). Define S :Y—+A by S(y) = GY . Then

| s(¥)|| = sup |x(y)| = || yl|] . So S is an isometric
X € X

isomorphism of Y onto S(Y). Define P : R+S(Y) by

P(1) =0

P(G.) = G Y

(Y) y (y € Y)

P i =0 if > 2 gy
(Gy1 Gyz Gyn) if n (yle ) »

extending by linearity. ' We show that P is bounded.
Let g € R with || g|| < 1. There exist ¥i1, Y2,....7,€ ¥

such that g = Q(G_, ,G._ ,....G_ ) where Q is a polynomial
Yi' Y2 In

18



in n variables. Suppose

n

Q(w) = a, +i£laiwi + higher order terms (w= (w1,....wn)).

Fix x € X, and for ¢ € C let ¢(z) = g(gx). Then |[¢(z) | < 1

for |z| & 1. We have

n 2
p(g) = a+ (iilaiX(yi))c + i YE A s ea
2
Now ¢'(0) = (1/2wi) /S ¢ (¢)/r dc.
lz|=1
n
Therefore [¢'(0)| ¢ 1. But ¢'(0) = I a;x(y,). Thus we have
i=1l

n

| £ a;G, || < 1, that is|| P(g) || € 1. Therefore P is bounded
i=1 * i

with norm 1, and so P has a bounded extension P from A

onto S(Y). P is clearly a projection.

Corollary If Y is a real Banach space, then Y is isometrically
real-isomorphic to a real-complemented linear subspace of

a complex Banach space, such that the projection has norm 1.
Hence Y is isometrically real-isomorphic to a real-complemented
subspace of a complex uniform algebra, such that the

projection has norm 1.

Theorem 2.6 There is a uniform algebra not having the

approximation property.

19



Proof: We have, by [7]or [8], that there exists a Banach
space not having the approximation property. So the result
follows from Theorem 2.5 above, and the fact that if Y is a
Banach space which has the approximation property then any
complemented subspace of Y has the approximation property.

To see this fact, suppose that E is the complemented subspace
of Y, with projection P. Let {Pa} be a net of finite rank
operators in B(Y) such that Pa+ IY uniformly on compact
subsets of Y. Then Popa|E+ IE uniformly on compact subsets

of B

We shall now consider projective tensor products of
commutative Banach algebras (complex). We shall use the
following result due to Tomiyama ([3]) (If A is a commutative

Banach algebra, we denote the carrier space of A by @A).

Theorem 2.7 If A and B are commutative Banach algebras, then

there is a homeomorphism ¥ :¢Ax @B - ¢A®B such that

XUPY( 2 £4 8 gg) = b 0(£;)¥(gy), i_E_l”fi” lgsll <= .

~

Proof: If ¢ ¢ @A, Y € @B, then certainly x(¢,¥) € ¢A®B i

~

A®B”
and b € B such that 6(a ® b) # 0. Define ¢ (f)=6(af ® b)/

Suppose now 6 € ¢ 8 # 0, therefore there exist a € A

20



8(a ® b) (feAr). If a', b' satisfy 6(a' ® b') # 0, then we get

6(a'f ® b'")/ 6(a' ® b') = 6(af ® b)/ 6(a ® b) by cross

multiplication, so ¢ is independent of the choice of a and b.

Now ¢ (£) ¢ (£')

6(af ® b) 6(af' ® b)/6(a ® b) 6(a ® b)

]

6 (aff' ® b?%)/0(a? ® b?) = ¢ (ff").

Similarly , we may define a multiplicative linear functional

Y on B by ¥ (g)
¢ (£)y(g)

6(a ® bg)/6(a ® b). Then

f(af ® b)b6(a ® bg)/6(a ® b)é(a ® b)

= 6(f ® g)6(a® ® b*)/6(a’® b?) = 6(f ® g).
Therefore ¢ and y are non-zero and so belong to @A and @B
respectively, and 6 = x(¢,¥). Sox is onto. Also if
¢, ¢'E¢A, and V,y'e ¢B' and y(dprv') = x(¢,0¥), then
o' (E)Y'(g) = ¢(£)Y(g) for all £ and g. So if we take
g, € B such that w'(go) # 0 we get ¢'(f) = ad(f) (f € A)
where o is a constant. Since ¢ and ¢' are multiplicative,
o =1, and so ¢' = ¢ and Y' = Y. Hence Y is one to one.
To show that y is continuous, let (¢a,wu) be a net in
@Ax @B converging to (¢,¥). Therefore ¢a(f) + ¢ (£) and
wa(g) + ¥ (g) for all £ and g and so x(¢a,wa)(f ® g)
= ¢a(f)¢a(g) + ¢(f) v(g)= x(¢,¥) (f ® g). Hence X(¢u'wa}(z)
+ x(o,0) (z) (z eA.é B), so X is continuous. To show that ¥
is bicontinuous it is enough now to show that each point

(¢,¥) of ¢, x &, is contained in a compact set whose x-image

B

is a neighbourhood of ¥ (¢,y). Suppose then that (¢,y)e @A x &

21
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Take £ € A, g € B such that |¢ (f)y(g)]| > 1. Then the set

{8 & Oy |6 (£ ® g)| > 1} is a neighbourhood of ¥ (¢,V)

and is contained in X (K x L), where K = {¢'e 9,: o' (£) | 31/ ]| 9|}
and L = {y'e o,: lv' (@) ] = 1/ £]]}

are compact. So ¥ is a homeomorphism.
We now have the following result, the first part of
which is due to Tomiyama ([3]). We observe that if

A ® B is semi-simple, then A and B are semi-simple.

Theorem 2.8 (1). If A and B are semi-simple commutative

Banach algebras, and either A or B has the approximation
property, then A 5 B is semi-simple.

(2). If A is a commutative Banach algebra not having the
approximation property, then there is a uniform algebra B

such that A ® B is not semi-simple.

Proof: (l). Suppose that A and B are semi-simple, and either

A or B has the approximation property. Let F = by fi ® gy o+

i=1
izlllfillllgi I <=, f; € A, g; € B. Suppose that
6(F) =0 ¥ 6 € 9, o 5. Therefore
iElY(fi)G(gi) =0V yed,,6cd,

22



For 6 ¢ 0., let h.= §(g;)£, € A. Then for all y € ¢

r r
B S =1 A

s(gy)y(£;) = O.

Y (hg) = E
J__

1
Since A is semi-simple, h6: O. Now fix ¢ e A*, and define

G =izl¢(fi)gi € B. For each § ¢ @B,

§(G) = E ¢(fi)5(gi) = ¢(h5) = 0.
i=1
Since B is semi=simple, G = 0, therefore

.E ¢(fi)gi =0 ¥ ¢ € A*,
i=1

The mapping A ® B - B(A*,B) is one to one, so F must equal O.

~

Thus A ® B is semi=simple.

(2) Let A be a commutative Banach algebra which fails to have
the approximation property. Then for some Banach space E,
the mapping A é E - B(A*,E) is not one to one. There exist a
uniform algebra B, a projection P on B of norm 1, and a

linear isometry S of E onto P(B). By Lemma 1.1, the mapping

n : A®E~>A®DB is isometric. There exists
z =3 a; ® e; in A ® E with z # 0, and such that

i=1

¥ ¢(a;)e; =0 ¥ ¢ € A*. Let F = n(z) =
i=1 i

Il o8

a, ® S(e.).
1 1 i

Then F # 0, but we have
£ o(a)v(s(e;)) =vos( £ o(a)e)=0¥ ¢ e 0,0 € op.
i=1 i=1

~

Hence 6 (F) = O ¥ 6 ¢ QAéB’ therefore A ® B is not semi-simple.

23



We shall now study the notions of e-products and slice
products, and their relationship with the injective tensor

product.

The e-Product

The definition and results of this section are due to
Waelbroeck in [6]. Before giving the definition of the

ge-product, we state the following theorem.

Theorem Let X and Y be Banach spaces. Then the following
Banach spaces are isometrically isomorphic:

(1) The space of linear functions from X* into Y whose
restrictions to Ball X* are weak* continuous.

(2) The space of linear functions from Y* into X whose
restrictions to Ball Y* are weak* continuous.

(3) The space of bilinear functionals on X* X Y* whose
restrictions to Ball X*x Ball Y* are weak* continuous.

The norm in (1), (2) and (3) is the supremum on Ball X¥*,

Ball Y* and Ball X* x Ball Y* respectively.

Definition: Let X and Y be Banach spaces. Then we define the

e-product XeY to be the Banach space (1) above.
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We imbed the injective tensor product of two Banach

spaces in the e-product. Define £: X ®,Y + Xe¥ by

A
n n
E( D %00 ) lE)y = T E(X,)ys X X,v.¢€ Y;fe X*.
j=1 & i j=1 L1714 - * !

le@ I & =12 I

Then E(Z x, ® yv.) || = sup I £(x.)v.|| = Bie X8 ¥,
i=1 * 1 f g Ball x*i=1 1 1 i=1 * 11 A

Thus £ is a linear isometry. We identify X ®, Y with its

A
image in X € ¥, and identify X ® Y with the closure of

X® Y in X € Y. In fact £(X ® Y¥) is the set of finite

rank elements in X € Y.

Theorem 2.9 Let X be a Banach space. Then X has the

approximation property if and only if X ® ¥ = X ¢ Y for all

Banach spaces Y.

Proof: Suppose first that X has the approximation property,
and let Y be any Banach space. Let u belong to X € ¥, and
suppose that u : ¥* - X. Lete> 0. Then u (Ball ¥Y*) is
compact in X, so there exists a finite rank P in B(X) such that

sup || Plu(g)) -u(g)]] < e .
geBall Y*

Therefore |Pou =- ul|| < e, and Pyju is finite rank in X € Y.

Hence X ®h Y is dense in X € ¥, and so X ® ¥ = X g Y.

Now suppose that X ® Y = X € Y for all Banach spaces

Y. Let K be compact in X. Define Y to be the norm closure
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Therefore X é Y =X e Y. Define u in
n

(f € X*¥). There exists I x.0 vy.
=

in C(K) of X*]K.

X € ¥ by u(f) = f|K

in X ® ¥ such that

n
||£(.>:lxi & yi) = ul|| €« ¥, and we may suppose that
l=

n
z I[xi||= 1. Also for each i there is an f, in X* such that
i=1

n
| £ 1~ vilk <% . Let P(x) =,L,f, (x)x; for X in X. Then

P is finite rank, and |P(x) -x|| <€ 1 for x in K. Hence
by one of the definitions of the topology of compact

convergence, X has the approximation property.

The Slice Product

If X and Y are compact Hausdorff spaces, then we may identify

C(X) ® C(Y) with C(X x Y). For define I' : C(X) 8,C(¥)>C (Xx ¥)

n n
by T (z fi ® gi){x,y) =.Z

£, (x)g; (y),
i=1 tml g o0

1

n n
|| T (2 £, 8 gi)|| sup| I fi(x)gi(y)l
i=1 xeX i=1
yeYy

n
= sup z f.(x)g.H
xeX[]i=l + l

n
sup | T £, (x)¥(g,) |
xeX i=17% l
Y € Ball (C(Y))*
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Il

n
sup || ;2,9 (g )£, ||
p € Ball (C(Y))*

n
= I iélfi ® gi[

)
So I' is isometric and is an algebra homomorphism. We extend
I' to C(X) é C(Y) and extend multiplication on C(X) GAC(Y} to
C(X) é C(Y) so that T' remains an isometric algebra
homomorphism. Then T (C(X) ® C(Y)) is a closed subalgebra
of C(X % Y) which contains the function 1, separates the
points of X x ¥, and is closed under complex conjugation

(if kX = C). Hence by the Stone-Weierstrass Theorem, we

have T(C(X) ® C(Y)) = C(XXY)

If A and B are uniform algebras on compact Hausdorff
spaces X and Y respectively, then we may similarly imbed
A ® B homomorphically and isometrically in C(X x Y), and

we thus get that A ® B is a uniform algebra on X X Y.

Definition: If X is a compact Hausdorff space, and B is a
Banach space, C(X,B) is the set of continuous functions from

X into B.

-

C(X,B) is then a Banach space under the norm |[[f|| = sup]|[f (x) |
XeX
If B is a Banach algebra, then C(X,B) is a Banach algebra
under pointwise multiplication, and is commutative if B is

commutative.
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If A is a uniform algebra on X, and B is any Banach
algebra, we may define A : A @A B +aQiX ;B) by
n n
a'&zlfi@ bi)(x) =i£lfi(x}bi,fi € A, bi € Band x € X.
As before, A is isometric and an algebra homomorphism, and

A ® B is therefore a Banach algebra.

Now take X and Y to be fixed compact Hausdorff spaces.
Por h e CX xY) and x € X, define h_e C(Y) by hx(y):h(x,y).
Define h¥ ¢ CEX) by hy(x) = h(x,y). We may define an isometric

(algebra) isomorphism of C(X X ¥) onto C(X,C(Y)) by A(h) {x)ﬁhx.

Then || A (h)|| = sup||h || = sup|h(x,y)| =|| |
X eX X eX
vyey

Similarly C®xY) is isometrically (algebra) isomorphic to

c(y,ck)).

Definition: If A and B are uniform algebras on X and Y
respectively, then the slice product A +%B is the space
{hecxyY) :h, e B ¥xeX and he A ¥ye Y}.

We may define Q :A € B » A #B by

Q(u) (x,v) = u(¢x)(y) where x ¢ X,y € Y,u € A € B, and

¢

55 is the evaluation functional at x, so ¢x(f)= FENE e, A)

We then have the following result, relating the slice product

and the e-product (Proposition 15, [4]).
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Theorem 2.10 If A and B are uniform algebras, then

Q) defined above is an isometric isomorphism of A € B with

A B (as Banach spaces).

Proof: For u in A ¢ B, the mapping x - u(¢x) belongs to
C(X,Cc(Y)), so by the remarks above, the mapping (x,y) -
u(¢x}(y) belongs to C(X x Y). If h = Q(u), hx; u(¢x] € B
for each x in X. If y belongs to Y, the mapping

¢ > u(p)(y) 1is a linear functional on A* with weak¥*
continuous restriction to Ball A*, Therefore there exists
an £ in A such that ¢ (f) = u(¢) (v) (¢ € A*). Then

h(x,y) (x e X).

Il

£(x) = ¢ (£) = u(o)(y)

Hence hY = £ ¢ A, and h = Q(u) belongs to A4t B.

Now || Q()]||= sup |u{¢x){y)| = Sup!]u(¢x)|
xeX xeX
veY

= sup || u(¢)|| by the bipolar theorem
¢ € Ball A¥*

= |lull.
So 2 is isometric. Now let h belong to A HB. Define

u € B(A*,C(Y)) by u(¢)(y) = ¢(h¥) (¢ € A*,ye¥). Since
the mapping y =+ hY belongs to C(Y,A), we get by compactness
that the restriction of u to Ball A* is weak* continuous.
We now show the range of u is contained in B. If x e X,

u(¢x) = hxs B. The set Ball A* N u ! (B) is weak* closed

in Ball A*, and therefore in A*. Ball A* N u~!(B) contains
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{¢X: x € X} and therefore contains the (weak*) closed
convex circled cover of {¢x: x € X}, which equals Ball A*
by the bipolar theorem. Hence the range of uc B, and so
u belongs to A € B. We have Q(u) (x,y) =u(¢x}(y) =

¢X(hy) = h(x,y), therefore Q is onto.

(In fact the above result holds more generally,
for we have not used the uniform algebra properties of
A and B. We may define the slice product of any two closed
subspaces of C(X) and C(Y), (with k = C or R), and we still

get the slice product equals the e-product).

The equivalence of the slice product and the e-product
for uniform algebras now allows us to establish a
relationship between the slice product of uniform algebras
and the approximation property. If A and B are uniform
algebras on X and Y respectively, then by our remarks at
the beginning of this section, we may regard A é B as a

subspace (in fact a subalgebra) of C(X x ¥Y) .Then we have:

Theorem 2.l11 Let A be a uniform algebra. Then A has the

approximation property if and only if A ® B = A B for all

uniform algebras B.
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Proof: If A has the approximation property, and B is any
uniform algebra, then A é B=A¢eB=A% B. Now suppose
A is a uniform algebra satisfying the given conditions.
Let E be any Banach space. There exists a uniform algebra
B with a projection P of norm 1, and an isometric
isomorphism S of E onto P(B). Let u belong to A € E,

and let € > 0. Define u; in A € B by u; = Sou. Now

A® B =A%HB=A ¢ B, hence there exists
n
I £, g, in A 8 B such that
PR R i
i=1
n
|z £, g. - w1]|] < € . Therefore,
: i i
i=1
2 -1
ILE £,0 5 JP(g;)- wl] & &,
i=1
Thus A @A E is dense in A £ E, and so we have that A has

the approximation property.
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CHAPTER THREE

Injective Algebras

In this chapter and chapter 4 it will be convenient
to generalise Banach algebras and normed algebras so that

multiplication may be bounded by a constant other than 1.

Definition: If A is a normed space (a Banach space) and
an algebra over k, then A is a (K)-normed algebra
((K)-Banach algebra) if

lab || < &|la || ||b]l (a,b e a).If such a K
exists,we say A is a normed-algebra (a Banach-algebra),

With this definition, a (K)-normed algebra A may always

be re-normed (by || .|]|'" = K|| .|| ) to become a (1)-normed

algebra, so A is isomorphic to a (1)-normed algebra.

Definition: If A is a normed-algebra, then A is said to be
K-injective (K > 0) if

n n
12 =70l K[ Z 2,8 wylh G403y € A

A is said to be injective if it is K-injective for some K.
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Then A is K-injective if and only if the natural mapping

of A al A into A is bounded with norm <€ K.

Every uniform algebra is l-injective, for if A is a

T1
uniform algebra on X, and I fi@ gi € A @k A,
i=1
12 £,.9,] | = |
il I = sup T Eo(®)agy(x)
gl T ey Ci=l % 7

< sup |2¢(f Y (gy) |
¢,¥ eBall A*i=1

Il

n
Iliil £;0 gi” A

Also the space 1l; with pointwise multiplication is

n
l-injective, for if I x(r)®y(r)£ ll@l 3 AR

r=1
“(r)(r)
let aij z 5 e and let Ty be a scalar of modulus 1
r=1
such that y,a,; = |a,;|. Let m ¢ P and let A= {-1,1}". Then
|z N |
% . P TR LY 3| Z T+ AV Gii@aen Oy
Sely 4,4=1 ~ + 13°3 aeAi,j g
m
m
|Z v1354% 8585 |= 27 £ ]a .
i,9=11 19 1 jop id
m m
Hence there exists SeA such that I laj;1 <] Z y;8,2 1]53|
A=l i,j=1
n
< sup | = ¢(X(r))¢(y
b & Bald il 2=l
ECOTRC NI 3 5Bl )
Therefore || I x =2 laj;l« [l 2 x"ey % |l, sand so
r=1 i=1 * r=1

1, is injective.
The space 11 with convolution multiplication is not
injective. Also for 1 < p< w,lp with pointwise multiplication

is not injective (1_ is a uniform algebra). Also the
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Banach algebra cP[0,1] of all functions on [0,1] with

continuous derivatives of order p (normed by

P .
Il £]] =1 Sup|f(3)(t)|, where I = [0,1] ) is injective.
1=0 teI

If A is a K-injective normed-algebra, then for

X 1Y 024 € A, and i = 1,2,...n,

n n

| = x.(v.z.,)|| ¢« X sup | = ¢1(x;)y.z.||
j=1 *+ "% 1 ¢1e Ball A* i=1 it %
2 n
< K° sup | I ¢a(x;)02(y;)0s(z;)].
¢1,92,03 € Ball A*i=1
In general,
+ ThalT) (r) r-1 & (1) (r)

[l izl ;7 eeeexyg | € KW Tsup | = O1(x; 7 ) et (x5 ) | .

¢1,.¢r€Ball A*i=]1

Commutative Injective Algebras

We shall now consider injective commutative Banach-

algebras. We shall require a standard symmetrisation result.

Theorem 3.1 Let X be a vector space, let XqrXpe oo o X € X

and let ¢l'¢2""¢n € X'. Then if Sn is the group of

permutations on n letters, and K = {1,2,....n} and the

cardinality of a set Q is |Q],

_ n-|Q[7
...¢n(x1T ) = L(=1) J IR (b ¢J(xr).

z¢1(x ) ,
€ S ) n  QcK, ¥=1 Jef

m
n
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Proof : If ¥ is a non-empty finite set and Y, is a proper

subset, then

T (-l)]Q[= O. To see this it is enough to
QCY
Q0Y,

assume Y; is empty and show E(—Dtgl = 0 (where the summation
Qcy

is over all subsets of Y, including the empty set). If|Y|= 1,
this holds. If |Y| > 1, choose y € Y and let z = Y \{y}.

Then z (_1)|9|= E(-l)lﬂ]+ E(~1Jn|+l. The result then
QCYy QCT ACZ

follows by induction.

The right hand side of the equation in the statement

of the theorem equals n-| 0]
Z _l . . . . .-
CcK : ) Jlr]2r--3ijl(X1) ¢jn(xn)
n el
n-|%|
= £ e by T v (XL) e, X z =1L )
dreiantaalen My ) pandyy () B D)
QD{jl?jz;..jn}
Now z (-1)n-|ﬂ| =1 if {jl,...jn} is a permutation of Kn

RQCK
QD{jlrﬁZr-'jn}

0 otherwise

So the right hand side of the equation equals

(%) » which equals the left hand side.
T .V n

T ¢ (X1)eead
E Sn n

m

We now establish a characterisation of injective

commutative Banach-algebras which was proved by Varopoulos in [9].

35



We use techniques akin to those used in the proof of Theorem 2.5.
For the purposes of this result we do not require that a

uniform algebra must have an identity, and we take the scalar

field to be the complexes.

Theorem 3.2 Let A be a commutative Banach-algebra. Then A

is injective if and only if there exists a uniform algebra B,
a bounded algebra homomorphism h of B onto A, and a linear (bounded)
operator j :A = B such that hoj = IA' the identity function

from A onto itself.

Proof : Suppose A satisfies the conditions above, and let
n

i=§ xi® Yy € A 81 A. Then
n n )
||i§lxlyi|| = |l iilh(J(xi)J(Yi))H
n
< thlllliilj(xi)j(yi>H
n
< |[|n]]  sup | 2 63 (xy))0" (3yy)) |
$,0'e Ball B¥i=1
(since B is a uniform algebra)
' n
< ||nll [13IF sup | Z o) (y)].
¥,P'eBall A*i=1

Hence A is injective.

Suppose now that A is K-injective. Let

m,keP , and let X eA for i = 1,2,...k, r=1,2,...m. Then
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k k

ml ]| spe besemk, || = || z x,
g, i 1m|| ”izl TES Fhm e |
m
i k
< K" tsup *|_E z cp;(xim)...qu(xi1T ) |
¢1,..¢ms Ball A lzlﬂES m
m
k
m-1 - o
€ K sup |z r (-1)™ @] I a(o® 0y (3, ) |
¢jeBall A*ji=]1 chm r=1 JEN"] ir
k m
m_m-1
L G sup |2 1( 5Egds/m) (x|
QCKm ¢je Ball A* i=l r=1 i
k
m. m-1_m
m
€ K 2 sup B% 5 ¢{xi1)....¢(xim}[.

¢eBall Axi=l1

Now mm/m!< em, hence
k e 1 k
H B % acox. . )] & Be)™™ sup | I

$=1, BA = ¢eBall A*i=

11

G5, ¥ owealilEs )
1

It follows that if P is a polynomial in n variables,

and P is homogeneous of degree m, then if x,, X2 pe0eX € A,
I Pxiyeeeax )]« (2)"8™ " sup [P (6(x1)sen,d(x )]
¢eBall A%

Now let Y =) Ball A*, where A =4eK, and let Y have the weak*
topology. Let B be the closed subalgebra of C(Y) generated
by the functions Gx(x € A) given by GX(B) =0 (x) (B eY).
Let P be a polynomial in n variables with no constant term, and
let X1see0¥y belong to A. Suppose P = P; + Paot....+ P,
where Pi is homogeneous of degree i (r = degree of P). Then

I[Pi(GXI,...,GXn)ll = gggl Pi(e(xI),..,G(xn)J|

r .
< sup sup| I P (0(x1),..,0(x)))]
6eY|a|sl j=1

(by the Cauchy coefficient inequalities)
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Il

sup = sup |[P( aB(x1),...,00 (x ))|
6eY |a|gl

Il

| AP S )

n
Also HP (X1,00u,x) )Vl € ((2e)iki™ Lok )sup| P, (Mg (x1) ,. 20 (x)) |
¢eBall Ta*
h i
= (1 /K2 }llpi«;XI,...,Gxn)l .

Thus [IP(x1,...x 3] g E HP (X15000,x) ||
i=1

s(lm)zuﬂ)HP § GyyreeesGy )|l

1= n

)

X
n

< AR[PG, ,....6
Hence we may define h :B =+ A by

h(P(GXl,...,GXn)} = P(x;l,...,xn), extending by

continuity. h is bounded and is clearly an algebra homomorphism.
Define j :A + B by j(x) = Gx(x € A). Then

[l 3 (x) H'

sup [A¢ (x)| = A]| x|]|] (x e A). So j is
peBall A%

linear and bounded, and clearly hoj = IA .

Corollary If A is a K-injective commutative Banach-algebra

with an identity lA’ then we may assume that the uniform algebra
B in the statement of the theorem has a one. For if in the
above proof we take B' to be the closed subalgebra of C(Y)

generated by the functions Gx and the function 1, and we take
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Q to be any polynomial in n variables, with

Q=05+ Qy +... ¢+ Q. (Qi homogeneous of degree i) then

r
[l Qxy,enex )] < iio|[Qi(xl,.....,xn ) |

r .
< o 1,0+ tlmizlu/zlﬂlgi(exi,.,Gxn} I
< (Ul 1,ll+ 1m1le6, ,..,6, ).
1 n
We may therefore define in an analogous fashion a bounded
algebra homomorphism h' of B' onto A and a bounded
linear j' :A - B' such that h'oj' = I,.

Q-algebras

Definition : A commutative Banach-algebra A is a Q-algebra
if it is isomorphic to a quotient algebra B/I where B is

a uniform algebra and I is a closed ideal in B.
Equivalently, there is a bounded (algebra) homomorphism of
B onto A. (Again we do not require that a uniform algebra

must have a one).

For a study of Q-algebras, see [1l].
From Theorem 3.2, we have that every injective commutative

Banach-algebra is a Q-algebra. Not all Q-algebras are injective,

for example, lp(l< p <w) is a Q-algebra, but is not injective.
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We now return to general normed-algebras (not necessarily
complex, commutative or Banach). We shall show that a normed-
algebra A is injective if and only if A ®A B is a normed-
algebra for every normed-algebra B. This was proved by
Varopoulos in [10]. 1In this paper Varopoulos showed that
if A is a l-injective normed-algebra and B is a
(1) -normed algebra, then A ®l B is a (K)-normed algebra
for some K (for a commutative Banach—-algebra A over C
this already follows from Theorem 3.2). In fact the following

is true.

Theorem 3.3 If A is a l-injective normed-algebra, and B

is a (1)-normed algebra, then A ®A B is a (l1)-normed algebra
(and so A ® B is a (l1)-Banach algebra when multiplication

is extended by continuity from A ®k B).

n m
Proof : Let z; = L Xy ® Yy = I a,® b, belong to A ®, B.
L5 =g a1y
i=1 j=1
For Y € Ball B¥*,
n n
Il = Zxaw(yb)||< sup | Z z¢(x}¢(am(yb)|
i=1 j=1 ¢,0'e Balla* i=1 j=1
n m
< sup |z = ¢(x;)¢! (ay )Y, b3|
¢,¢'e Ball A*i=1 j=1
< sup HE ¢ (x;)yy I ”E ¢'(a )b Il

$,0"'e Ball A*i=1

Hence || z1z2]] < || 21 | 1] z21] -
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Corollary If A is K-injective, and B is an (L) -normed algebra,

then A @A B is a (KL)-normed algebra.

In order to establish the converse result, we wish to
show that if A is a non-injective normed-algebra, then

there exists a normed-algebra B such that A ®A B is not a

normed-algebra, i.e. for each K>0 A ®, B is not (K)-normed.

A
It is sufficient to show that if A is not injective then
for each K>O0 there exists a (l)-normed algebra B such that
A ®, B is not (K)-normed. For if {Bn} is a sequence of

(1) -normed algebras such that A 81 Bn is not (n)-normed, let

1,({8)}) = {{p )} _; :b e B ,neP,| {b} = sﬁp” b || < =}.

lw({Bn}) is a (1)-normed algebra under pointwise operations.

By Lemma 1.1, the natural imbedding of A ®, B in A gklw({Bn})
r
a. ® bi+ z a; ® {0,0,...O,bi,.)(aie A,bie Bm)

- i=1

given by
i

el

is isometric. This imbedding is an algebra homomorphism,
hence since A ®, B is not (m) -normed, A ®, l@({Bn}J is not

(m) -normed. So A ®, 1m({Bn} ) is not a normed-algebra.

Theorem 3.4 Let A be a normed-algebra and let K > O. Then

A is K-injective if and only if A ©,B is a (K) -normed algebra

for each (l)-normed algebra B.
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Proof : We already have the forward implication. The following

proof of the reverse implication was pointed out to me by

Dr. A.M. Iavie.

Suppose that A is not K-injective. Then there exists
n

n n

Z X8 y. €6 A®A such that I x.v.||> K|l Z ®

ey cne IRETARRI XA
We may assume without loss of generality that the sets

{Xi} and {yi} are both linearly independent, and

n” n

2 Hall € basa Bl aadl.o€ A

i=1 * i=y il
n n

Choose L >K such that | z x.v.|l>L]|| 2 x.® v.|| .
1=l 2

Let B be the algebra over k of polynomials in 2n

indeterminates z;, Z2,.. .zn,W1 e .wn.

n n
Let H={1}U{ £ ¢(x.)z, : ¢ € Ball A*}U{ I ¢(y,)w, : peBall A*}.
i 2 il 2 ; = Bk
i=1l i=1
Let N be the convex circled semigroup in B generated by H.So
m m
N ={ Z Akhl‘k’hékl..h(k) a8 v, 1 |2l % 13,
k=1 S ] k=1
For each i=1,2,..n, there exists ¢ € A* such that
¢ (x3) = Gij(j=1,2,...n). Hence z; /|| ¢|| e HC N.
Similarly some positive multiple of w,e N. Hence N absorbs

the monomials, and therefore N absorbs all polynomials,

i.e. N is absorbent.
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If, for p € B, o(p) denotes the sum of the moduli of
the coefficients of p, then o(h) € 1 for h ¢ H, so
g{hiho s hr) €1 for hje H, and hence o(u) €< 1 for u & N.
Thus if p € B is non-zero, o(p) > 0, so some positive multiple
of p does not belong to N. Hence the Minkowski functional
of N is a norm, given by
I|p|]N = inf{A > 0 :p/AeN} (p e B).
Since N is closed under multiplication, || pall Il pll Il all

So (B

N) is a (l1)-normed algebra. (Also B is commutative

and ||1||N ¢ 1 since 1 € N, therefore H1||N= 1,1.e.B is unital).

Now if A 81 B is a (K)=-normed algebra, then

n n
|| & E x;7:8 z;w. ||« K[| I x;@ z.|| |l Z y® Wy [
i=lj=1 J e i=1 * * j_l
= K sup || E¢(xl)z | sup || : Yyl
¢eBall A* i=1 PYeBall A*j=1
£ K.
n
Hence if ¢eBall A* || I E ¢ (x4 v )z4 Wy || €« K < L. Therefore
i=1l j=1
n n .
z T ¢(x.y.)z.w. € L.N. Therefore there exist
i1 §=1 el R

¢k,wk e Ball A* (k=1,2,..m) such that

n n m n
£ DH(E, RE Yz, V5 = LI Al z ¢y (x3)24 ) ( Z wk(y }w ) and
i=1l j=1 k=1 l-l j=1
[\ | ¢ 1. Equating coefficients of z;w, in this polynomial

k—l
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identity, we get ¢{xiyi) =L

N3

k=1
n m n
So Il ya) =TT X P (x. )y, (y.). Therefore
= R T kg MRtV )
0, <51 | z
¢( .Z, x,y. )|« L £ |A su | z ¢ ‘
£ , sup ¢ (x)Y(y,)|.
ARLIRSE k=1 & ¢eBall a*i=1 1 = 1
YeBall A*
n n
L
Hence ||i£lxiyi||€ [[izlxia yi]h , and we have a

contradiction, so A @l B is not a (K)-normed algebra.

Corollary Since the algebra B of the above proof is
commutative and unital, and since the algebra lm({Bn})
is commutative and unital if each Bn is, we have that

if A ®,B is a normed algebra for each commutative unital

A

B, then A is injective.
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CHAPTER FOUR

In this chapter we shall again be concerned with the
question of whether the injective tensor product of two
normed-algebras is a normed-algebra. We prove that this is
the case for the tensor product lp@k lq(where either p or g
< 2), and for the injective tensor product of two Banach-

algebras which are 4, spaces.

Tensor Products of lp Spaces

In this section 1p will always have pointwise multiplication
and p will be > 1. We already know that the Banach algebras
1, and 1 are l-injective, hence 1; Gllq and 1_ Y lq

are (1)-normed algebras for every d.

Now let 1 € p,gq < » . Let p' and q' satisfy 1,% + 1/b.=l
= lAq-p 1,&,, We may represent an element of lp@l lq uniquely as

an infinite scalar matrix as follows .

n
Let z = 1 x(r)a y{r)e 1 @A 5

p q

r=1
n

o (r) ()

i =0 X, PR
Define (aij}i,j=l by a4 i Y5
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Then we have z = § (% a elilg e(j)), it

i=1 §=1 13
Il z]|,= sup £ ($¢.a,.v. i
A $eBall 1_, l=l j=?l 13930 |- e write 2 #laggde
PeBall 13.
- Ul (i) 1
If alsow =% u'""Q v nd w ~ e i - (k) (k)
1o and w (blj), l‘e'bij kzlui : Vj i
n m
(r) (k) (£)_(kK)_ , 2 (). (r),, ™ (x
X L X, u) tyy twi™e { Box AL )y (k) y o
ot gt L T3 4 Lo ¥y MBSO agab, g
Hence z.w~ (a..b..). . .
igrdgrd i

We: now require the theory of finite tensor algebras in

order to establish our result for lp® qu.

Finite Tensor Algebras (§2,[11] )

If m and n are positive integers, we denote by Km
the set {1,2,....,m}, and by K; its n-fold Cartesian product.

Let C; denote the m'-dimensional vector space of all scalar

valued functions on K;. We write C_ for C%.

3 B - [ C;, then we have

a(B1,B2 sererBp)= - a(ay,..,a )6 e
o g (a1,..,an)gK3 n’ "ai1B1 o Bn

where 8 is the Kronecker 6. Thus we may define the tensor

algebra norm on C; by
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i o8
lell y = inf{ 5°| A | . i
v {r=ll el 1alB1,.08,) =

[ e R ]

a8 By (8 )

r=1

(r) : r
where Are k and fi £ Cm with |f£ )(a}|s 1 (aaKm),
l¢ i € n,l € r g ro}.
We may identify C; with its own dual by defining

<a,b> = I _a(B)b(R) (a,be C%).
BEK; m)

This gives us the dual norm on C;

I all y« = supl|<a,b>| :b ¢ C;,Hb|lvé 1}

sup{|Z g(BYEL (B).£2(Ba)ouu f (B )] :£,e C with

BEKm

|£4 () | € 1 (o ek ) for 1 < i < n}.

In Theorem 1.1 of [12], Littlewood gave estimates for these

norms in the case n = 2. He showed that if a € C;, then

5 C ain 2 ¢
3 []a[|v* > L ((Z |a,. |3 (writing a,. for a(i,j)).
i=lesd=ldats ]
2
Hence |R[| ; = sup {[<a,b>| »e Cm,!|b|b* <1 }
;E m m m m 2 %
£=3% gupl| E~, T «dg:b;2| 2B iZs]bis| )% 1}

i=1 §=1 3 i=1 =1 *J

m 2
3% sup ( I |a..|);5 by the Cauchy-Schwartz
iek j=1 *J
m
inequality and the fact that for each i

m
IZ)%=| a"le for some {xj}a Ball 1,. The inequality

)% is called Littlewood's inequality.
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thtlewood also showed that if a ¢ Czlr then

Fhae

24 3% Ha|| b E ? |a..|%) . Hence
i=1 j=1 *J

e lly = sup {[<a, b>| b e[ by, < 1)
% m

2%3% sup {IX agibils (2 6 ™

3=l AN s (TR

m o1

2%3% (8 |8l 3%

L= 5 A

LAY

) &1}

by HOlder's inequality.

These results may be extended to CE for general n,

and we get for a.ecg,

2
|| all v < bg%p ¢ 4B |a(81p-r8n)! )%

BIEKmBZr-an E Km

3(1'1 1)/2 (n+1)/2n(z Ia(BJIZH/(n 1))(1'1-1)/21'1

and a £
I all oo

We now apply these ideas to tensor products of 1p spaces.

Theorem 4.1 Let 1 < p < », 1 € g £ 2. Then lp@l 1q is a

(3%)—normed algebra, and lp ® lq is a (3%)—Banach algebra.

Proof: Let p' and q' satisfy 1/p + 1/p' =1 =1/9 + 1/9'.

Let z, and z, belong to 1P Qllq and let z ~(alj) z, ~(bij).

Then z;z.|| = sup | £«
1212, peBall 1z, i=
peBall 1p
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So it is enough to show that if m ¢ P ,4 e Ball lp. and
Yy € Ball lq' then
= %
z
i,j l¢lalj 14 j| < 3%|| z1]| || 2z2]] , since then
mi mo
|i£1 jil b5a4s ijw | < 3 |]z1|1|122|| for all m;,mz2,¢ and ¥
G iven € > 0, there exist scalars Ar,fir) and gér}

(L<r<n, ieK) with |fir)| <l ,Igir)| < 1, such that

= Z Aig f(r) jr) for 1<i,j «<m and

ij —1

E I (S |

r=1
2
¢ 37 sup ( Z | Byl }% by Littlewood's inequality
ier.  3=1
m
. m
< 3° sup sup | ¢ bi.6.|since Ball 1,C Ball 1 _,
ieK 6 e Ball 1,,3=1 JJ d
L m
< 3% sup | £ yb,.6.|
ye Ball 1_, 1,3—1 1373
§e Ball 1P
¢ 3% || -z
n m
(e} (2]
Now |Z ¢;ay W] =] R P OF: V|
llrj_l 13 l:] j r:l i'j=ll lJ rd :I ‘-']
n m
(r) (r)
¢ 5 (Al ] BogEs Ay aga 0|
il i,j=li : R B s | J
n
<z [ a, b =zl
r=1

since each ]f(r)| <1 & |g(r)|£ L.
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It therefore follows that
m

%
[ Eatmugbagbsl € 2 lall =l

%

The constant 3% of the above result need not be the

best possible. 1In fact 12®l12 can be shown to be a (1)-normed

algebra.

4 _ Spaces
i

The definitions and background results as given here

are taken from [13].

Definition: For p ¥ 1 and n € P we shall denote by lg
the space of sequences {xr} in lp such that x. = O for rant+l.
If X and Y are Banach spaces, then d(X,Y) =
inf{|| || || T} : TeB®,Y) with T invertible}.
So if X and Y are not isomorphic, dX ,Y) = «.
A Banach space X is called an Lp,a space (ls pg «,l<0 < «)
if for every finite dimensional subspace B of X there is a
finite dimensional subspace E of X containing B, such that

d(E,lg)é o, where n = dimension of E. X is called an-a"_p

space if it is an Lp & space for some a <.
r
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For every positive measure space (Y0 ) I Lp(u,E) is an
space for each o >1 (1 € p € »). 1In particular 1_ is an
Lp,a space for each o >1, although if p # 2 1p is not an
LPrl space. Also if K is compact Hausdorff, C(X) is an

L, o Space for each o >1. Conversely, every infinite-
r

dimensional LP o Space (for 1 € p < ») has a complemented
r

subspace isomorphic to lp. Also there are no infinite-

dimensional Lp 1 Spaces for 1 ¢ p <» and p ¥ 2.
r

Every Hilbert space is an L2 1 Space, and every L2 5
I I

o

space is isomorphic to a Hilbert space. These and other basic

properties of Lp o Spaces are to be found in [14].
r

Definition : Let X and Y be Banach spaces, let T € BX,Y)

and let 1 € p <», Put

; n
aP(T) = inf{c>0 :(_ElllT(xi)Hp)l/p

1=

n
cCusup (. Z |¢;(}-IJ._}|P)]'/p Vxl,..xne . g - < B

¢eBall X *i=1

IE ap(T)< ©, we say T is p-absolutely summing.

The main result which we shall require is Grothendieck's

inequality, which was proved in [15]. Our statement of the

result is as in Theorem 2.1 of [13]%




Theorem 4.2 Let (aij) 1,52y be a scalar matrix, and let

M > O satisfy | = i 2584ty | € M ¥ scalars s; and tj with
i,j=

|Si| < 1 and |tj1 Kasls

Theg if Xyr¥grees xn,yl,yz,...yn € any inner product space H,
| Z a,.(x.,v.)| € K Msup|| x. || su .
LTI ool || suel ;|

Here K is Grothendieck's constant. If k =IR, then

K € sinh w2 and if k = C, K € 2 sinh 72
As a corollary to this result we have

Theorem 4.3 Let (a. 3)1 3 be an infinite scalar matrix such
n

that| = s;t:| « M whenever |sy| ¢ 1 and[t | 1
1,551 174

for~i,1 ="1,27 - and n € P: @ Let (xki)k,i be an infinite

matrix such that ( % |xk ] % ¢ for each ie P. Then

k=1

(% ¢ ¥ | nN% < xcm.

k=1 j=1 i=1 ki3

Erom this theorem it immediately follows that if

r L] .
z = Eob(r)@ c(r) belongs to l;@lll, and ¢ is the isometric
r=1

imbedding of 1:8,1l:in B(1_,11), so that Z(z) (x) =

r . 2 :
ZO< ) b(r)> c(r) (xe 1), then T =¢ (z) is 2-absolutely summing

r=1
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and a,(T) € K Hzlll. For let x(l),x(z),...x(m)sl

E
= 39 3.5} (x) o
If a,, = I b e, then z i BT
i] r=1 =+ J i[j=laljslt]ls |IZ[IA
whenever |si| <1 and |tj]< land ne P. Now
m 2 m r
Cz Q™ h % o 35 ) pE) L )ty
k=1 k=1r=1
m r
= (2 (%1% pE ) )k
k=1 j=1 r=1 J
m - e 2
=z (8| Exa [))?
k=1 j=1 i=1 +J
m 2
< K |[z]| ,sup (2 |x£k) | )*
i k=1
o (k) 5
&€ K || z]] sup (I |<¢,x 2 e K

ApeBall 1; k=1
(In fact by Theorem 4.3 of [13], if X is any L, ,Space and Y
r

is any L space with 1 € p € 2, then every T € B(X,Y) is

P8
2-absolutely summing).

The next result is due to Pietsch. Our proof is effectively
that in [13] . (The underlying field may as usual be either

IR or Q).

Theorem 4.4 Let X and Y be Banach spaces, and let Te B(X,Y) be

2-absolutely summing. Let L = Ball X*. Then there is a
probability measure u on L and an operator S: L, (u) = Y
such that [[S]| = a,(T) and T = §_J I, where I :X~> C(L)

is the canonical isometry I(x) (¢) = ¢(x) (x€X,$ eL) and
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J  2:C(L) = Lz{u) is the formal identity mapping.

Proof : Let W

2
{az(T) .
1

13
|

2
| I(xi)l :
i

|

2
iIT(xi)H
=lf xig X; nEJP}u

Then WCTCH%(L) (the space of continuous real valued functions

on L). Let N = {fs:CﬁQ{L) :sup £ (¢)<1l}. W and N are convex,
¢ eL

and N is open. It follows by the separation theorem and the
Riesz representation theorem that there exists a real regular

Borel measure v on L such that

J fdvg 1 (feN)

L

and J £dv 21 (few).
L

If £ ECIR(L) is non-negative, then for X >0 -f/Ae N, hence
[ fdv 3=\, so [ fdvsz O. Thus v is a positive measure.
L s

If £ e CR(L) and|| £]| < 1,|/ fdv| ¢ 1. Hence || v|| €1, and
L
there exists o with 0< o <« 1 and a probability measure u on L

such that v =ayu.

Now if x € X and T(x) # O, let

g = az(T)z | T (x) |2/H T(x)l[zaW. Then 1 stgdv stgdp.

2
Therefore |]T(x)H2 < az(T)zf |T(x)]|“dp and so
L

|| T(x)|| < a2(T)l] JOI(X)H2 (x € X).
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Thus there exists Q ¢ B(JI(X),Y) such that O(JI(x)) =T(x) (x € X)

and || Q|| € a,(T) . N g T 2 23 2
2 - Now I (%< [lall*s || o1(x,) ||
i=1 * i=1 5
n
= llelf 5 £ |zex,)|2au
Li=1 .
2 s 2
< lall? il 2 1roey)12.
l=
Hence || Q]| = a,(T). In the Hilbert space L, () there is a

projection P of norm one onto JI(X). Let S = QOP. Then

[| s]] = |[Q||= a2(T) and SOJOI(X) = T(x) (xeX).

Theorem 4.5 Let X and Y be (l)-Banach algebras, such that

X is an Ll,a space and Y is an Ll,B space. Then X ®,Y is a

(K20°B®)-normed algebra and X @ Y is a (K2a®g?)-Banach algebra.

s t
ZOX(S) @Y(s) ; zow(t) @z(t) e X8Y, each with
g=] t=1

norm € 1. Let o'>a,B8'>R.There exists a finite dimensional

(s)

Proof : Let

subspace XO of X containing x and w(t) for each s and t,

and an isomorphism U of 1fmo) with Xo (mo = dim XO) such
that || U||=1 and || U™}|| € a'. There exists a finite
dimensional subspace X; of X containing U(e(i)).U(e(k)) for
ik = 1,2,..m0 and an isomorphism U; of lfml) with X; such
that || U;|| = 1 and [|UI1|[s o'. There exists a finite
dimensional subspace YO of Y containing y(s) and z(t) for
each s and t,and an isomorphism V of lfno) with Y (no =

dim Y ) such that [| v]] = 1 and ||V-l||£ B'. There exists a
(r)}

: ] . ( .
finite dimensional subspace Y1 of Y containing V(e Iy vie

. n .
1,2,..n_ and an isomorphism Vi of 1010 Lien %

for 3;x = 5
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such that HV|| =1 and|W:l||g g,

Let UL(x(®)) = a(8), y1 (y(8)) _ p(s) 1 (6),_ (8)

2 (t) . 4 VE)} » .
and V (z ) = d (s=l,2,..so, t=l,2,..to). Define a5 ke by

m 1 i
(et =vtwe™uEe®) @x =1,2,..m).
Define bjrn by
n .
; -yl (3) (r) . i
{bjrn}r].:l Vl {V (e )' v(e )) (J 1 = 1,2,...1'10)-
S t
Now [ 2% 2% x(5) (Bl yts).z(t)H
s=1 t=1
s t
= sup | #° £° e(x(S].w(t))n(y(s).z(t))|
0 e Ball X*s=1 t=1
neBall Y*
g E m_,m, n _n,
= sup |~z Eoeoﬂx b ai( §) (t){alkm} )N Y i ;s)d(t)b]rn}n ) |
8 € Ball X*s=1 t=1 ~ 1i,k=1 J,xr=1
n e Ball Y*
s t m n & -
< sup | g2 2 118 ! is)cﬁt)aikm 2 v b; )d( )bjrnl
¢,VeBall lms=l t 1 i,k,m=1 j,r,n= l
m
= sup | 22 = ykr<T(f(k)),g(r) > |
¢,peBall 1 k=1 r= 1
& n
where ¥y = 1% {t)d( ) and f(k}s 120 , g(r)e LR
kr Cx
t=1
I.ﬂl
are given by fik) = B ¢maikm (i,k = 1,2, mo)
m=1
nl
ggr) = I “WPY.b. (3,r = 1,2, ..no}
J I'].:l n jrn
s
= 10 <u,a'® 5p®) (he1y):

and TeB(l_,l1) is given by T(u) = :
s

56



For each k and i |f(k)l =|§}
R - 524 e

m=1
m,
Flag | stnce s cnania,
= ot we®). ue®))
< U Tue®y 1 | ue™)
< oa'.
Thus IE(k)llw € o' for each k, and similarly Ilg(r)||m€ B!

for each r. By the remarks following Theorem 4.3, T is

s
2-absolutely summing with a, (T) < K|| 70 a(s)® b(5)||k
s=1

€ Ka'B's
By Theorem 4.4 there exists a Hilbert space H, and operators
S e B(H,1;) with || s||= a,(T) and R € B(1 ,H) with || R|| < 1,
such that T = SOR . We have
<T(f(k)),g(r)> » <SOR(f(k)),g(r)>
®(£®)),5%(gF))) where s* is the

adjoint of S. Also if |o.| €1 (k= 1,2,..m,)

and !T [ < 1 (r:lpzr---n )
‘m, n TEaheqe) )
| 2% EonrUkTrI ¢~ 2% "o @t || 5 4 a"B'
k=1 r=1 t=1

Hence by Grothendieck's inequality,

m n
| E? oppa@¥e™ 5|
k=1 r=1
m n
= | 1 1%y, ®e™), s*(g ")) |
k=1 r=1

(r))”

< Ko'B' sup||R(f(k})]|sup||S*{g
k r
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< Ko'B'a' az(T)B'

3 3
< Kza' B

“ SO tO (S) (t} ( ) (t} -
Hence B 0 ox Ty e ¢S 2
s=1 t=1 ! : I|€ = eB

’

and the proof is complete.

[+ 4]
Suppose now that 1;, = {{x }

atasem €%, € K ¥ |xn|< w}

n=0
and let 1, be equipped with any bounded multiplication.
By our remarks at the beginning of this section, 1; is an

L space for each a > 1, and it follows that 1, Sk 1y 1is

l,a
a normed-algebra. In particular, if 1; is equipped with
convolution multiplication, then 1, ®, l,is a (x2) -normed

algebra.

However 1; ®A 1, with convolution multiplication is not
a (l)-normed algebra. For as in the first section of this

chapter we may represent an element of 1i 8, l:by an

. 3 L] 3 3 m L3
infinite matrix (aij)i,j=o' Then if w ~ (aij) and z "tbij)'
W.zZ ~ (aij)*(bij) where * represents matrix convolution.
First take k = R,
FL 18 o F1 B B 9 . |

let w.|]1l -1 0O . and let 2 <= ] O O 0O 0O .

0O O Ie O=1y O :»

i § 0O 0 O
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Then ||w[| y= 2 = || z]| ,.
(3 1.3 3 @8 "
s T

Now W.Z ~ 1 1 -1 -1

Qe i

L =L =l I o .

0O 0O 0 O

Therefore ”W-Z|IA= 8

Now take k to be the complex field

=
1 1 1 ©
Let z 1 w w2 o 3.1,w#1.Then ||z, || ,= 4
et z; - d,w=l,w#2, 11 5= 4.
O 0 O
1 o0 1 o0 1 O O

Let z, -~ 1 0

o O

o O

Then ||z, || =l Zl”f__4 and
1 2. L ¥ % L 1 1 1 @ 5
1 w wol w w 1 w w2 0 ..

i 1 1 w W W W2 w Wz 0 h

o 0o 0 0 0 00 O O
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By our remarks on finite tensor algebras, we have
/3 ||Zizzllk > 9Y4 = 18,

We may similarly construct za’z“""'zn.€11®h 1,

such that ||Zi||k = Hz;”l =4 and
/3| z122....zn||l s 37202 wow if 1,8,11 is (1)-normed,
then 3N0/2 o /34D 4 e, 18™ ¢ 3.16™ for all n. This

is a contradiction.

60



CHAPTER FIVE

In this chapter we shall discuss measures orthogonal to
injective tensor products of uniform algebras. Throughout
this chapter the scalar field will be C.

Brian Cole has shown that if A is the bidisc algebra
(the space of continuous functions on 32 which are analytic
in &2, where A is the open unit ball in C), then any measure
u which is orthogonal to A has a unique decomposition

H=0+T+vV
where o is concentrated on E x T, with E o-compact and
m(E) = 0, T is concentrated on T x F, with F o-compact
and m(F) = 0, and v << a representing measure for some point
of &2, and o,t and v are orthogonal to A. Here m represents
Lebesgue measure on the unit circle T.

In [16], Otto Bekken obtained a Cole-type decomposition
of orthogonal measures for the algebras A(U x V) and R(Kqx K2).
By A(U x V) we mean the algebra of continuous functions on
U xV which are analytic in U x V, where U and V are bounded
R(le KZ) is the uniform closure on

open subsets of C.

K. x K. of the rational functions with singularities off

1 2
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le K2 ;, Where Kl and K2 are compact sets in C.

Bekken's results state that if M is a measure orthogonal to

A(U x V) then yu has a unique decomposition

W=0+T+ Vv where 0,1t and v are orthogonal to A(U x V)
and 0 is concentrated on E x 9V, with E a nullset for A(UJ*,
T 1is concentrated on 3U x F, with F a nullset for A(V)l,

and v belongs to the band of measures generated by the

representing measures for points of U x V.

If u is a measure orthogonal to R(le K2) then y has
a unique decomposition

H=0+T+ v where 0,7 and v are orthogonal to
R(le K2) and o is concentrated on E X KZ' with E a nullset
for R(Kl)l,

T is concentrated on Kl x F,with F a nullset for R(KZ)L,
and v belongs to the band of measures generated by the
representing measures for Ql X QZ’ where Qi is the set of
non-peak points for R(K,).

We shall obtain an analogous decomposition for the
injective tensor product of a uniform algebra fulfilling
certain conditions, with A(U), where U is bounded and open

in Cc. (A(U) is the space of continuous functions on U

which are analytic in U, regarded as a uniform algebra on 23U).

If A is a uniform algebra on a compact Hausdorff space

X, we denote the space of (regular Borel complex) measures
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on X by M(X). We denote the set of measures orthogonal to A

4L
by A . A Borel set E in X is a nullset for Al

X
L E A

if for every
Up= 0O, where uE is the restriction of N to E.

If ¢ € ¢A' we write M¢ for the set of representing measures
for ¢. We say a measure py is completely singular if it is

singular to M, for every ¢ €¢_.

o A

We say a subset E of X is a peak set for A if there
exists £ € A such that f(x) =1 (x ¢ E) and |f(x)|<l(x € X \E).
A point x of X is called a peak point for A if {x} is a peak
set for A. A peak set E satisfying A[E = C(E) is called a

peak interpolation set.

We now state two results from the theory of uniform
algebras. The first result is a simplified form of Lemma 2.2.7

of [161].

Lemma 5.1 Let A be a uniform algebra on a compact Hausdorff

space X. Let ¢l,¢2,...qna @A have representing measures
AL IR S Let E be an F0 set such that M¢i(E) = 0

for i = 1,2,...m. Then there is a sequence {fn}n=l in A
such that ||fn|]< 1, £+ 1 pointwise on E, and £+ O

weak* in L_ (ui) for each i.

Theorem 5.2 (Theorem 2.12.7, [17]1). Let A be a uniform algebra

et E be a closed subset

on a compact metric space X, and 1

1
of X. E is a peak set for A if and only if HgE A for each
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XL
p € A . E is a peak interpolation set if and only if bg = 0.
Al
for all ueA .

We now discuss the theory of bands.

Definition: Let X be a compact Hausdorff space. A norm-closed
linear subspace M of M(X) is a band if whenever u € M

and X <<|u|, A e M.

For an arbitrary subset S of M(X), we write S' for the
set of measures singular to every measure in S. We easily
have that S' is a band.

The following result is well known.

Theorem 5.3 Let S be a band. Then M(X) =S & S'.

Proof: Let peM(X). Let K = sup {|u](6): My € S}. Choose

= U . Then
UFn e

F + K. Let F
F_ such that ane S and |yl( ) Al

Hp << ? lan|/2n e S. And |u| (F) > Iu!(Fn) for all n, therefore

n—-
li| (F) = K. Also if ug € S, Mg (; g*° lugl + lugl e s. Hence

lul (Y 6) = |u|(F), so [u][(GNF) = O. Now let y € S.

4
There exists a subset H of X such that u, << |y | and Uy g [y ].

- 1
80 PR ES & P p =9t 5O g ™™ ¥ 5 B0G TS Up ¥l p B S+s'.
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Corollary If S is a band, then §'' = S. For if pes'!

we have u=v % n where Ve §, «n 38" Then n= u-ves''

Therefore n= 0 and uesS.

Corollary If S is an arbitrary subset of M(X), 8'' is the

smallest band containing 8§.

Now let A and B be uniform algebras on compact metric
spaces X and Y respectively. Let C = A ® B, regarded as a
uniform algebra on X x Y. Let §, = A e M(X x¥): X is

is a

L
concentrated on E x Y, E a nullset for A" }. Then =

band, and

S;' = {X e M(X x ¥Y): |A|(E x ¥Y) = 0 for all nullsets E for A }.

1
We observe that if A is concentrated on E x Y, when E is a
nullset for Al, then we may suppose without loss of generality
that E is o-compact. For there is a o-compact subset § of

E x Y such that |[A|((E x ¥Y)\Q) = 0. Then if p is the projection
of X x Y onto X, p(R) is o-compact and Qcp(R) x Y « E x Y.

So A is concentrated on p(f2) x Y.

We also define a band

XL
: 1 is concentrated on X x F, F a nullset for B },

S, = {u e M(X x ¥)
then

X1
Sy'={u e M(XxY) : |u] (x x F) = 0 forall nullsets F for B }.
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We now have M(X) = Sl ® g

1

d = 1

an M(X) =5, 0 S,
so  M(X) =s, + By b 485 ¥ 1 8,")

and in fact

LINEe LY,

L L 1 A
Lemma5.4C=(CnSlJ$(Cn82)$(C/]Sl 5

Proof: Suppose A ¢ Cl/\ Sl’ U e Clxﬁ S,yve ctn Sl'/ﬁ Sz'
and A + yu + v = 0,

Suppose A is concentrated on E x Y, E o-compact and a nullset
for Al and u is concentrated on X x F, F o-compact and a
nullset for Bl. Then|v|((E x ¥Y) U (X x F)) = 0, and so v= O.
Now we have A= -u is concentrated on E x F. There exist

closed sets En and Fn such that E x F = éil En X Fn.

For each n, E is a peak interpolation set for A, and F
is a peak interpolation set for B. Therefore E xF is a
peak interpolation set for C, and so a nullset for Cl.
Therefore |A|(E  x F ) = 0, and hence x| (E x F) = 0.

So A=p = 0.
Now let Ql = QA%““PA be the non-peak points for A,

and let Q, = ¢, ™\Pp be the non-peak points for B. Let M

be the band generated by the representing measures for points

66



of Ql X Q2. We wish to find conditions such that

X i ’ 1
cnN S, N Sz' will equal C N M. We always have the following.

Lemma 5.5 (Lemma 3.1.7, [16]). M c Sl'/W 82'.

Proof: We show that if vy is a representing measure for a

point (¢,V¥) in Ql X Q2, then v esl'/\ Sz'.

- 5
Let E be a nullset for A . We may suppose E is o-compact.

Let E =

"I Cs

Ei' where Ei is compact. Each Ei is a peak
1

interpolation set for A. Let £ ¢ A peak on E..
Then ¢ (f )2 = rf %9 1 av » v(Ei X Y). Since ¢ is a
non-peak point, ¢(f)n + 0. Hence \J(Ei x Y) = 0 for each i,

and so V(E x ¥Y) = 0 and v eSl'. Similarly v € 82'.

Definition: If A is a uniform algebra on a compact Hausdorff

space, then ¢and ¥ € ¢, are in the same part if |o-v]| < 2.

Definition: If A is a uniform algebra on a compact Hausdorff
space X, then a band Mc M(X) is a reducing band for A if

J‘ 3
whenever ueA decomposes U = ua+ Mg relative to ¥,

&
uaand M E A .

Now take A to be a uniform algebra on a compact Hausdorff

t of
space X, and let R be a Borel subset of ¢A‘\ PA, the se
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non-peak points for A. We denote by Mp the band of measures

generated by the representing measures for points of R.

Lemma 5.6 (Proposition 2.1.12,[16]). With A,X and R as above,

MR is a reducing band for A.

XL
Proof: Let u € A have Glicksberg-Wermer decomposition
Ho=Hg + IS Mo where Ho is completely singular and
n=1
n << ln where An is a representing measure for some non-

n

peak point ¢, € @A. The un's are pairwise mutually singular
and M, € AJ, n=0,1,2,.... . Let D consist of those indices
n for which ¢ belongs to the same part as some point in R.
For each n € D, there exists a representing measure ¥ for

a point in R such that A << v = (Corollary 6:1<2,; [171).

Let u_ = I M, € Mp e For each n ¢ D, An is singular to
n €D

all representing measures for points in R (Theorem 822 L3701

so u € MR'. Let ug = u + g b, € MR' . The decomposition
ngD

= ua+uS is the decomposition of u relative to MR and

L
i ing.
My and Mg E A , so Mp 1s reducing
We can now obtain our decomposition in the desired form.

Theorem 5.7 Let A be a uniform algebra on a compact metric

space X, such that A has no completely singular annihilating



ER
measures except zero, A is (norm) separable, and A has

countably many non peak point parts. Let Q be the set of
non-peak points for A. Let U be a bounded open subset of the
complex plane, and let C = AéA(U) . Let v EC'L satisfy

[V](E x 3U) = 0 if E is a nullset for Al,

[V[(X x F) = 0 if F is a nullset for A(U) .

Then \)EM=MQxU.
Proof : Since M is a reducing band for C, we may assume that
v € M'. We show first that if g €¢ A and h € C(3U), then
Jg(x)h(z)dv(x,z) = 0 .

By Lemma 1.1 of [18], C(3U) is the closed linear span of
A(U) and the functions l/(z-zo) (zO eU). It is therefore
enough to show that

fg(xlﬂz—zo)dv(x,z) =0 (geAa, z, eU) .

Define X € M(X) by A(E) = [ l/(z—zOJdv(x,z) ¢
E x 93U

Then if E is a nullset for Al, A(E) = 0. Since A has no
non-zero completely singular annihilating measures and
countably many non-trivial parts, it follows that ks:MQ.
Hence there exist o4 > 0,and ¢i,€Q with representing measures
u; such that X <<y =izlaiui and izlai < = , There exists

k € Ll(u,X) such that di = kdu .

Therefore izlai flk(x)]dui(xJ = [|k(x)|du(x) < = .
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Given € > 0O, there exists n e P such that

$ o, k(x)|du, (x) < e )
i=n_+1 % : i

Now let T € M(3U) be a representing measure for Z -

Then W, ® T eM(Xx9U) is a representing measure for (¢i,zo).

v is orthogonal to M{¢ z.) for 1 =1,2,4is n_. It follows
i’%o

from Lemma 2.7.4 of [17]that there exists an F, set E in

X x 39U such that v is concentrated on E, and M(¢ % )(E) = @
| B o

for i = l,2,....no. By Lemma 5.1, there is a sequence

{£,} in C such that an|| < 1, £ ~» 1 pointwise on E,

and fn > 0 weak* in Lm{ui ® 1) for i::l,z,...,no

Now the function g(x)(fn(x,z) - fn(x,zo))/(z-zo) is in C.

Therefore [ g (x) fn(x,z)/(z-zo)dv(x,z)
XxoU

= f g(x) £f_(x,z_)/(z-z_)dv(x,2z)
Xx9U B @ ?

= 1 g(x) £ (x,2,)d)(x).
X

Since v is concentrated on E,
fg(x) fn(x,z)/(z—zo)dv(x,z)+ fg(X)/(z-zO)dv(x,Z).

But | fxg(x) fn(x,zo)dk(x)l

- |iilaifxg(x)k(x)fn(x,zo)dui(x)]
n
Ezai|fBU( fxg(x)k(x)féx,z)dui(x))dT(Z)|+||9|‘€/||g”

1

+ 0O+ E .
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It follows that fg(x)/(z—zo)dv = 0 , and hence
Jg(x)h(z)dv = 0 for all gea, h'eC{al)..
We now disintegrate v, and we get

J F(x,z)dvix,z) =.f (I Fix,
XxU oo Fxizhdn, (x))do (2).

The mapping z+n, is weak* measurable, and ¢ is the compression
of |v| onto 83U, i.e. o(F) = |v|(XxF) for each Borel set F.

L
Therefore o(F) = O for all nullsets F for A(U) ,and so

o € MU. We now have

I g(x)dnz(x))h(z)dc(z] = 0 for all geA, heC(3U).
U X

L
It follows that n, €A for o-almost all z, since A is separable.

X1
Since A 1is separable, we may choose a countable

L o n
dense set {p_:n eP} in A . Let vy = £ (127w || ) [n_|
n el n n

J- . 3
e M Then if y € A , and E is a Borel set, Y(E) = O implies

Q.

|un|(E) = 0 for all ne® , and so u(E) = 0. Therefore
AL

U << v for all peA .

We thus have that nz << y for o- almost all z. Now

define H by dnz(x) = H(x,z)dy(x) . Also define h such

that h(x,z)H(x,z) = |H(x,z)| -and |n(x,z)| =1 .
Then [ (/ |H(x,z)]|dy(x))do(z)
U X
= [ h(x,z)dnz(x))dotz)
3u X
= f h(X;Z)dV(X;Z) ol A
XxaU
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And dv(x,z) = H(x,z)dy(x)do(z)

’

so V << Yy®0o g M,

Combining this result with Lemmas 5.4 and 5.5, we

now have

Theorem 5.8 Let A be a uniform algebra on a compact metric
space X, such that A has no completely singular annihilating
measures except zero, A"L is (norm) separable, and A has
countably many non-trivial parts. Let Q be the set of
non-peak points for A. Let U be a bounded open set in the
complex plane, and let C = PxéAAU). Then any measure u in
Cl has a unique decomposition

u=0+71T+ Vv , where o, and v ECL,
0 is concentrated on E x 3U, with E a nullset for Al,
T is concentrated on X x F, with F a nullset for A(U)l,

and v belongs to the band of measures generated by the

representing measures for points of Q x U.
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