TENSOR PRODUCTS OF BANACH SPACES

by Hamish K. Milne

Presented for the degree of Doctor of Philosophy in Mathematics

Mathematical Institute	
University of Edinburgh	
1974.	

ACKNOWLEDGEMENTS

I should like to express my thanks to my supervisor, Dr. A. M. Davie, whose constant help and encouragement have been greatly appreciated. I am also grateful to Professor F. F. Bonsall who made it possible for me to come to Edinburgh. Finally, I should like to thank the Carnegie Trust, who provided my Scholarship.

ABSTRACT

Chapter one consists of a general discussion of tensor products.

Chapter two is concerned with the relationship between tensor products and the approximation property. In Theorem 2.1 we give an equivalent condition to the approximation property which is due to Grothendieck. In Theorem 2.5 we prove that every complex Banach space is isometrically isomorphic to a complemented subspace of a uniform algebra. From this, we prove in Theorem 2.6 that there exists a uniform algebra not having the approximation property. Tomiyama has shown that if A and B are semi-simple commutative Banach algebras, and either A or B has the approximation property, then $A \hat{\otimes} B$ is semi-simple. In Theorem 2.8 we establish a converse to this result, namely that if A is a commutative Banach algebra not having the approximation property, then there is a uniform algebra B such that $A \hat{\otimes} B$ is not semi-simple. We next discuss the ε-product and the slice product, and their relationships with the injective tensor product and with
the approximation property. Then, in Theorem 2.11, we prove that a uniform algebra A has the approximation property if and only if $A \stackrel{\otimes}{\otimes} B=A \# B$ for all uniform algebras B.

In chapter three we consider injective algebras. Using techniques similar to those used in the proof of Theorem 2.5, we give a proof in Theorem 3.2 of Varopoulos's characterisation of injective commutative Banach-algebras. This states that a commutative Banachalgebra A is injective if and only if there exists a uniform algebra B, a bounded algebra homomorphism h of B onto A, and a bounded linear operator j of A into B such that $h_{o} j=I_{A}$. In Theorem 3.4 we prove a sharpening of Varopoulos's result that a normed-algebra is injective if and only if its injective tensor product with any normed-algebra is a normed-algebra.

Chapter four is concerned with the question, also considered in chapter three, of whether the injective tensor product of two normed-algebras is a normed-algebra. We show that this is the case for the tensor product $I_{p} \check{\otimes}^{I_{q}}$ (where p or $q \leqslant 2$), and for the tensor product of two Banach-algebras which are \mathcal{L}_{1} spaces.

In chapter five we consider measures orthogonal to injective tensor products of uniform algebras, and we obtain an analogue of Cole's decomposition theorem for orthogonal measures to the bidisc algebra. Through a general study of bands, we set up the decomposition in Lemma 5.4, and prove that this decomposition is of the form we want in Theorem 5.7. This then gives us our main result in Theorem 5.8.

In this chapter we discuss some of the basic properties of tensor products of normed spaces and Banach spaces. All the results of this chapter are well-known.

Definition: If X and Y are vector spaces over k (where k is the real or complex field), let $S p(X \times Y)$ denote the vector space over k which has the elements of $X \times Y$ as a basis. Let J be the subspace of $S p(X \times Y)$ generated by the elements:

$$
\begin{aligned}
& \quad(\alpha x+\beta x \prime y)-\alpha(x, y)-\beta(x \prime y), \\
& \text { and }\left(x, \alpha y+\beta y^{\prime}\right)-\alpha(x, y)-\beta\left(x, y^{\prime}\right),
\end{aligned}
$$

where $x, x^{\prime} \varepsilon X, y, y^{\prime} \varepsilon Y$, and $\alpha, \beta \varepsilon k$. We define the tensor product $X \otimes Y$ of X and Y to be the vector space $\operatorname{Sp}(X \times Y) / J$. We write $x \otimes y$ for $(x, y)+J$.

We have: $\left(\alpha x+\beta x^{\prime}\right) \otimes y=\alpha(x \otimes y)+\beta\left(x^{\prime} \otimes y\right)$

$$
\text { and } x \otimes\left(\alpha y+\beta y^{\prime}\right)=\alpha(x \otimes y)+\beta\left(x \otimes y^{\prime}\right)
$$

where $x, x^{\prime} \varepsilon X, y, y^{\prime} \varepsilon Y$, and $\alpha, \beta \varepsilon k$. Also $x \otimes y=0$ if and only if $\mathrm{x}=0$ or $\mathrm{y}=0$.

If X and Y are algebras over k, then $X \otimes Y$ becomes an algebra under the multiplication:

$$
\left(\sum_{i=1}^{n} x_{i} \otimes y_{i}\right) \cdot\left(\sum_{j=1}^{m} x_{j}^{\prime} \otimes y_{j}^{\prime}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} x_{i} x_{j}^{\prime} \otimes y_{i} y_{j}^{\prime}
$$

$\mathrm{X} \otimes \mathrm{Y}$ is then commutative if X and Y are, and it has a 1 if both X and Y have a 1.

Crossnorms on $X \otimes Y$

We now take X and Y to be normed spaces. We shall denote the closed unit ball of x by Ball x, and the topological dual of X by X^{*}. If α is a norm on $X \otimes Y$, we shall denote the space $(X \otimes Y, \alpha)$ by $X \otimes_{\alpha} Y$.

Definition: If α is a norm on $X \otimes Y$, then α is said to be a crossnorm if $\|x \otimes y\|_{\alpha}=\|x\|\|y\|$ for all $x \varepsilon X, y \in Y$.

Definition: If α is a norm on $X \otimes Y$ such that for each $\sum_{i=1}^{n} f_{i} \otimes g_{i}$ $\varepsilon X^{*} \otimes Y^{*},\left\|\sum_{i=1}^{n} f_{i} \otimes g_{i}\right\|_{\alpha}=\prod_{j=1}^{m} \sup _{j} \otimes y_{j} \|_{\alpha} \leqslant l\left|\sum_{i=1}^{n} \sum_{j=1}^{m} f_{i}\left(x_{j}\right) g_{i}\left(y_{j}\right)\right|<\infty$, then α^{\prime} is a norm on $X * \otimes Y^{*}$, called the associate of α.

There are two important crossnorms on $X \otimes Y$ which we shall be concerned with, and which we now define.

Definition : The projective norm γ on $X \otimes Y$ is given by :

$$
\|z\|_{\gamma}=\inf \left\{\sum_{i=1}^{n}\left\|x_{i}\right\|\left\|y_{i}\right\|: z=\sum_{i=1}^{n} x_{i} \otimes y_{i}, x_{i} \varepsilon x, y_{i} \varepsilon Y\right\} .
$$

The infective norm λ on $\mathrm{X} \otimes \mathrm{Y}$ is given by :

$$
\|z\| \underset{\substack{f \varepsilon \text { Ball } \\ g \varepsilon \text { Ball } y^{*}}}{ } \sin _{i=1}^{n} f\left(x_{i}\right) g\left(y_{i}\right) \mid \text { if } z=\sum_{i=1}^{n} x_{i}^{\otimes} y_{i} .
$$

γ and λ are both crossnorms on $X \otimes Y$, and $\lambda \leqslant \gamma . \gamma$ is the greatest crossnorm on $X \otimes Y$, for if α is any crossnorm, and $z \varepsilon X \otimes Y$, then if $z=\sum_{i=1}^{n} x_{i} \otimes y_{i},\|z\|\left\|_{\alpha}^{\leqslant} \sum_{i=1}^{n}\right\| x_{i} \otimes y_{i} \|_{\alpha}$ $=\sum_{i=1}^{n}\left\|x_{i}\right\|\left\|y_{i}\right\|$. Hence we have $\|z\|_{\alpha^{*}}\|z\|_{\gamma}$.

Also λ is the least crossnorm whose associate is a crossnorm, for if α is a crossnorm, then its associate α ' is a crossnorm if and only if $\alpha \geqslant \lambda$. To see this, suppose that $\alpha \geqslant \lambda$. Then for $f \varepsilon X^{*}, g \varepsilon Y^{*}$,
$\|f\|\|g\|=\left\|_{i=1}^{n} \sum_{i=1} \sup _{i} y_{i}\right\| \|_{\lambda} \leqslant 1 \sum_{i=1}^{n} f\left(x_{i}\right) g\left(y_{i}\right) \mid$

$$
\Rightarrow \| \sum_{\sum x_{i} \otimes y_{i} \|_{\alpha} \leqslant l}\left|\sum_{i=1}^{n} f\left(x_{i}\right) g\left(y_{i}\right)\right|
$$

$$
i=1
$$

$$
=\|f \otimes g\|_{\alpha^{\prime}}
$$

$$
\geqslant \| \sup _{x \otimes y \|_{\alpha^{<l}}|f(x) g(y)|}
$$

$$
=\|f\|\|g\| .
$$

So α^{\prime} is a crossnorm. Now if α ' is ${ }_{n}$ given to be a crossnorm, then

$$
\|f\|\|g\|=\|f \otimes g\|_{\alpha} \geqslant \frac{\left|\sum_{i=1} f\left(x_{i}\right) g\left(y_{i}\right)\right|}{\left\|\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\|_{\alpha}}
$$

so $\left\|\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\|_{\alpha} \geqslant \frac{\left|\sum_{i=1}^{n} f\left(x_{i}\right) g\left(y_{i}\right)\right|}{\|f\|\|g\|}$
Therefore $\alpha \geqslant \lambda$.

Also the injective norm on $X^{*} \otimes Y^{*}$ is the associate of the projective norm on $X \otimes Y$. For if $\sum_{i=1}^{n} f_{i} \otimes g_{i} \varepsilon X * \otimes Y$, then $\quad\left\|\sum_{i=1}^{n} f_{i} \otimes g_{i}\right\|_{\gamma^{\prime}} \geqslant \sup _{\|x \otimes y\|_{\gamma} \leqslant 1}\left|\sum_{i=1}^{n} f_{i}(x) g_{i}(y)\right|$
$=\sup _{\|x\| \leqslant 1}\left\|\sum_{i=1}^{n} f_{i}(x) g_{i}\right\|$
$=\sup _{\psi \in \text { Ball }}^{\| * *}\left|\sum_{i=1}^{n} f_{i}(x) \psi\left(g_{i}\right)\right|$
$=\sup _{\substack{\phi \varepsilon \text { Ball } X^{* *} \\ \psi \varepsilon \text { Ball } Y^{* *}}} \sum_{i=1}^{n} \phi\left(f_{i}\right) \psi\left(g_{i}\right) \mid$
$=\left\|\sum_{i=1}^{n} f_{i} \otimes g_{i}\right\|_{\lambda}$.
And $\left|\sum_{i=1}^{n} \sum_{j=1}^{m} f_{i}\left(x_{j}\right) g_{i}\left(y_{j}\right)\right| \leqslant \sum_{j=1}^{m}\left|\sum_{i=1}^{n} f_{i}\left(x_{j}\right) g_{i}\left(y_{j}\right)\right|$ $\leqslant \sum_{j=1}^{m}\left\|x_{j}\right\|\left\|y_{j}\right\| \cdot\left\|\sum_{i=1}^{n} f_{i} \otimes g_{i}\right\|_{\lambda}$.
Therefore $\left\|\sum_{i=1}^{n} f_{i} \otimes g_{i}\right\|_{\gamma}, \leqslant\left\|\sum_{i=1}^{n} f_{i} \otimes g_{i}\right\|_{\lambda}$, and we have $\gamma^{\prime}=\lambda$.

If X and Y are normed algebras, then $X \otimes_{\gamma} Y$ is a normed algebra, for if $z_{1}=\sum_{i=1}^{n} x_{i} \otimes y_{i}$ and $z_{2}=\sum_{j=1}^{m} x_{j}^{\prime} \otimes y_{j}^{\prime}$,

$$
\begin{aligned}
\left\|z_{1} z_{2}\right\| & \leqslant \sum_{i=1}^{n} \sum_{j=1}^{m}\left\|x_{i} x_{j}^{\prime}\right\|\left\|y_{i} y_{j}^{\prime}\right\| \\
& \leqslant \sum_{i=1}^{n}\left\|x_{i}\right\|\left\|y_{i}\right\| \cdot \sum_{j=1}^{m}\left\|x_{j}^{\prime}\right\|\left\|y_{j}^{\prime}\right\| .
\end{aligned}
$$

Hence $\quad\left\|z_{1} z_{2}\right\|_{\gamma} \leqslant\left\|z_{1}\right\|_{\gamma}\left\|z_{2}\right\|_{\gamma}$. (For the purposes of this chapter and chapter 2 , we shall take all Banach algebras and normed algebras to satisfy $\left\|z_{1} z_{2}\right\| \leqslant\left\|z_{1}\right\|\left\|z_{2}\right\|$ for all z_{1} and z_{2} in the algebra). In general, multiplication in $X \otimes Y$ is not bounded with respect to the injective norm. This will be discussed in chapters 3 and 4.

We now take X and Y to be Banach spaces. We denote the Cantor-Meray completion of $X \otimes_{\gamma} Y$ by $X \hat{\otimes} Y$. Any element Z of $X \hat{\otimes} Y$ may be represented as $z=\sum_{i=1}^{\infty} x_{i} \otimes y_{i}$ where
$x_{i} \varepsilon X, y_{i} \varepsilon Y$, and $\sum_{i=1}^{\infty}\left\|x_{i}\right\|\left\|y_{i}\right\|<\infty$. Also

$$
\|z\|=\inf \left\{\sum_{i=1}^{\infty}\left\|x_{i}\right\|\left\|y_{i}\right\|: z=\sum_{i=1}^{\infty} x_{i} \otimes y_{i}\right\}
$$

The dual of $X \hat{\otimes} Y$ is isometrically isomorphic to $B(X, Y *)$ under

$$
\left\langle\phi, \sum_{i=1}^{\infty} x_{i} \otimes y_{i}\right\rangle=\sum_{i=1}^{\infty} \phi\left(x_{i}\right)\left(y_{i}\right), \text { where } \phi \varepsilon B(X, Y *),
$$

$x_{i} \varepsilon X, y_{i} \varepsilon Y$ and $\sum_{i=1}^{\infty}\left\|x_{i}\right\|\left\|y_{i}\right\|<\infty$.
If X and Y are Banach algebras, then $X \hat{\otimes} Y$ becomes a Banach algebra when the multiplication on $X \otimes_{\gamma} Y$ is extended
by continuity.
We denote the completion of $\mathrm{X} \otimes_{\lambda} \mathrm{Y}$ by $\mathrm{X} \ddot{\otimes} \mathrm{Y}$.

There are a number of useful operators between different tensor products. Since the associate of the projective norm is the injective norm, we see that the linear mapping
$\Psi: X * \hat{\otimes} Y * \rightarrow(X \hat{\otimes} Y) *$ given by
$\Psi\left(\sum_{i=1}^{n} f_{i} \otimes g_{i}\right)\left(\sum_{j=1}^{\infty} x_{j} \otimes y_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{\infty} f_{i}\left(x_{j}\right) g_{i}\left(y_{j}\right)$,
is isometric.
Similariy, there is a bounded linear mapping of $X * \hat{\otimes} Y *$ into (X ® Y)*.

If X_{1}, X_{2}, Y_{1} and Y_{2} are Banach spaces, there is a bounded linear mapping $\xi: B\left(X_{1}, X_{2}\right) \hat{\otimes} B\left(Y_{1}, Y_{2}\right) \rightarrow$
$B\left(X_{1} \hat{\otimes} Y_{1}, X_{2} \hat{\theta} Y_{2}\right) \quad$ such that
$\xi\left(\sum_{i=1}^{\infty} S_{i} \otimes T_{i}\right)\left(\sum_{j=1}^{\infty} x_{j} \otimes y_{j}\right)=\sum_{i=1 j=1}^{\infty} \sum_{i}^{\infty} S_{i}\left(x_{j}\right) \otimes T_{i}\left(y_{j}\right)$
and

$$
\|\xi(F)(z) \quad\|_{\gamma} \leqslant\|F\|_{\gamma}\|z\|_{\gamma} .
$$

At this point we give a lemma which will be required in the next chapter.

Lemma 1.l Let X be a Banach space, and let E be a complemented subspace of X such that there exists a projection P of X onto

E of norm 1. Let Y be any Banach space, and let $\mathrm{I}: \mathrm{E} \rightarrow \mathrm{X}$ be the inclusion mapping. Then the mapping $f=\xi\left(I \otimes I_{Y}\right)$: $\mathrm{E} \hat{\otimes} \mathrm{Y} \rightarrow \mathrm{X} \hat{\otimes} \mathrm{Y}$ is an isometry.

Proof: Let $g=\xi\left(P \otimes I_{Y}\right): X \hat{\otimes} Y \rightarrow E \hat{\otimes} Y$. Then $\|f\| \leqslant$ $\left\|I \otimes I_{Y}\right\|=1$.
Similarly $\|g\| \leqslant 1$. But if $z \varepsilon E \hat{\otimes} Y,\|z\|_{\gamma}=$

$$
\|g o f(z)\|_{\gamma} \leqslant\|f(z)\|_{\gamma} . \text { Hence } f \text { is isometric. }
$$

In this chapter we shall give some results concerning the relationship between tensor products and the approximation property.

Definition: If X is a Banach space, then X has the approximation property if the identity function on X, I_{X}, belongs to the closure of the finite rank operators in the topology of uniform convergence on compact sets.

So X has the approximation property if and only if there exists a net $\left\{P_{\alpha}\right\}$ of finite rank operators in $B(X)$ such that $P_{\alpha} \rightarrow I_{X}$ uniformly on compact subsets of X.

Most of the standard separable Banach spaces such as the disc algebra, $L_{p}, H^{p} ; C(K)$ (where K is compact Hausdorff), and spaces of continuously differentiable functions are known to have the approximation property. It is not known whether $B(H)$ or H^{∞} have the approximation property. P.Enflo has recently constructed a Banach space which fails to have
the approximation property (see [7] and [8]).

We shall give first a rather technical result due to Grothendieck ([1]) which we shall require later in the chapter. If E and F are Banach spaces, then there is a natural bounded linear mapping $\theta: E \hat{\otimes} \rightarrow B\left(E^{*}, F\right)$ such that $\theta\left(i{ }_{i}{ }_{\underline{E}}^{1} e_{i} \otimes f_{i}\right)\left(e^{*}\right)={ }_{i}{ }_{E_{1}}^{\infty} e^{*}\left(e_{i}\right) f_{i}$.

Theorem 2.1 Let E be a Banach space. Then the following statements are equivalent :
(1) E has the approximation property.
(2) The mapping $E \hat{\otimes} \mathrm{E}^{*} \rightarrow \mathrm{~B}\left(\mathrm{E}^{*}, \mathrm{E}^{*}\right)$ is one to one.
(3) The mapping $E \hat{\otimes} \mathrm{~F} \rightarrow \mathrm{~B}\left(\mathrm{E}^{*}, \mathrm{~F}\right)$ is one to one for all Banach spaces F.
(4) The mapping $F \hat{\otimes} E \rightarrow B\left(F^{*}, E\right)$ is one to one for all Banach spaces F.

Proof : It is easy to see that (3) is equivalent to (4), and that (3) implies (2). We show first that (1) implies (3). Let $z={ }_{i}{\underset{\underline{E}}{1}}_{\infty}^{E_{i}} e_{i} \otimes f_{i} \in E \hat{\otimes} F$, with ${ }_{i} \stackrel{\sum}{=}_{i}\left\|e_{i}\right\|\left\|f_{i}\right\|<\infty$. Suppose that $i_{i} \underline{E}_{1}^{\infty} e^{*}\left(e_{i}\right) f_{i}=0$ for all $e^{*} \varepsilon E^{*}$. There is a net $\left\{P_{\alpha}\right\}$ of finite rank operators in $B(E)$ such that $P_{\alpha} \xlongequal{f} I_{E}$ (where τ is the topology of uniform convergence on compact sets).

Now for each $\alpha,{ }_{i} \sum_{\underline{E}} 1{ }^{*}{ }_{0}{ }_{0} P_{\alpha}\left(e_{i}\right) f_{i}=0$,
so $\quad{ }_{i} \stackrel{E}{=}_{1} P_{\alpha}\left(e_{i}\right) \otimes f_{i}=0$, for if the range of P_{α} has a basis $\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$, and $P_{\alpha}\left(e_{i}\right)={ }_{j}{ }_{j}^{n} \sum_{1} \beta_{i j} x_{j}$, there exists $e_{j}^{*} \varepsilon E^{*}$ such that $e_{j}^{*}\left(x_{j}\right)=\delta_{j, j}$, where δ is the Kronecker δ. So ${ }_{i} \stackrel{D}{\underline{E}}_{1} \beta_{i j}{ }^{f}{ }_{i}=0$. Therefore

$$
\begin{aligned}
\sum_{i=1}^{\infty} P_{\alpha}\left(e_{i}\right) \otimes f_{i} & =j \sum_{j}^{n} \sum_{i} \stackrel{\sum}{=}_{1}^{\infty} \beta_{i j} x_{j} \otimes f_{i} \\
& =j{ }_{j}^{n} \sum_{1} x_{j} \otimes{ }_{i} \sum_{1}^{\infty} \beta_{i j} f_{i}=0 .
\end{aligned}
$$

We have that ${ }_{i} \underline{\underline{E}}_{1}\left\|e_{i}\right\|\left\|f_{i}\right\|<\infty$. So there is a sequence $\left\{\lambda_{i}\right\}$ such that $\lambda_{i}>0, \lambda_{i}>0$, and $c={ }_{i} \sum_{E_{1}}\left\|e_{i}\right\|\left\|f_{i}\right\| / \lambda_{i}<\infty$. Let $K=\left\{c \lambda_{i} e_{i} /\left\|e_{i}\right\|: i=1,2, \ldots \ldots\right\} \cup\{0\}$. K is compact, so if $\varepsilon>0$ there exists an α_{0} such that if $\alpha \geqslant \alpha_{0}$, then $\left\|P_{\alpha}(x)-x\right\| \leqslant \varepsilon$ for all x in K.
So $\quad\left\|i{ }_{i} \stackrel{D}{=}_{1} P_{\alpha}\left(e_{i}\right) \otimes f_{i}-{ }_{i} \stackrel{\sum}{=}_{1} e_{i} \otimes f_{i}\right\| \leqslant{ }_{i}{ }^{\infty} \underline{E}_{1}\left\|P_{\alpha}\left(e_{i}\right)-e_{i}\right\|\left\|f_{i}\right\|$
$\leqslant{ }_{i} \stackrel{\sum}{=}_{1}\left\|e_{i}\right\|\left\|f_{i}\right\| \varepsilon / c \lambda_{i}$
$=\varepsilon$. Therefore $z=0$.

In order to show that (2) implies (1) we shall require two lemmas.

Lemma 2.2 Let K be a compact subset of a Banach space E . Then K is contained in the closed convex cover of a sequence in E which converges to zero.

Proof: For $\mathrm{x} \varepsilon \mathrm{E}$ and $\varepsilon>0$, let $\mathrm{B}(\mathrm{x}, \varepsilon)$ denote the open ε-ball
with centre x. Since K is compact, there exists a finite set So in E such that $K \subset \bigcup_{S_{0} \varepsilon S_{0}} B\left(S_{0}, 3^{-1}\right)$. Again, since K is compact there exists a finite set S_{1} in E such that

$$
K \subset \mathcal{S}_{0}, \mathrm{~s}_{1} B\left(\mathrm{~s}_{0}+s_{1}, 3^{-2}\right) \quad \text { and } \mathrm{s}_{1} \subset \mathrm{~B}\left(0,3^{-1}\right)
$$

Similarly there exists a finite set S_{2} such that

$$
K \subset S_{0}, S_{1}, S_{2} B\left(s_{0}+s_{1}+s_{2}, 3^{-3}\right) \quad \text { and } \quad S_{2} \subset B\left(0,3^{-2}\right)
$$

Continuing in this fashion, we construct finite sets S_{3}, S_{4}, \ldots such that $S_{n} \subset B\left(0,3^{-n}\right)$, and each point of K has distance less than 3^{-n-1} from $S_{0}+S_{1}+\ldots .+S_{n}$.
Let $S=\{0\} \cup 2 S_{0} \cup 4 S_{1} \cup 8 S_{2} \cup \ldots \ldots$ Then S is a sequence converging to zero. If $s_{i} \varepsilon S_{i}$ for $i=0,1,2, \ldots . . n$, then $s_{0}+s_{1}+\ldots .+s_{n}=2^{-n-1} \cdot 0+\frac{1}{2} \cdot 2 s_{0}+\frac{1}{4} \cdot 4 s_{1}+\ldots .+2^{-n-1} \cdot 2^{n+1} \cdot s_{n}$ $\varepsilon \quad \mathrm{Co}(\mathrm{S})$.
Hence $S_{0}+S_{1}+\ldots .+S_{n} \subset \mathrm{Co}(\mathrm{S})$, and $\mathrm{K} \subset \overline{\mathrm{Co}}(\mathrm{S})$.

Lemma 2.3 Let E be a Banach space. Then there is a natural linear mapping $\quad \zeta: E \hat{y_{M}} \mathrm{E}^{\circ} \stackrel{\text { nto }}{\rightarrow}(\mathrm{B}(\mathrm{E}), \tau)$ * such that

$$
\zeta\left({ }_{i} \stackrel{\sum}{=1}_{\infty} e_{i} \otimes \psi_{i}\right)(T)={ }_{i} \stackrel{=}{=}_{1} \psi_{i}\left(T\left(e_{i}\right)\right)
$$

where $\sum_{i=1}^{\infty}\left\|e_{i}\right\|\left\|\psi_{i}\right\|<\infty$ and $T \varepsilon B(E)$.

Proof : We may certainly define $\zeta: E \hat{\otimes} E * \rightarrow(B(E),\|\|)$. by

$$
\zeta\left(\sum_{i} \sum_{1} e_{i} \otimes \psi_{i}\right)(T)=\sum_{i=1}^{\infty} \psi_{i}\left(T\left(e_{i}\right)\right)
$$

We show that the range of ζ is ($B(E), \tau)$ *. Let $z={ }_{i} \sum_{1}^{\infty} e_{i} \otimes \psi_{i}$ Belong to E国* with $\sum_{i=1}^{\infty}\left\|e_{i}\right\|\left\|\psi_{i}\right\|<\infty$. As before, let
$\left\{\lambda_{i}\right\}$ be a positive sequence such that $\lambda_{i} \rightarrow 0$ and

$$
\begin{aligned}
& c=\sum_{i=1}^{\infty}\left\|e_{i}\right\|\left\|\psi_{i}\right\| \lambda_{i}<\infty \text {. Then } \\
& K=\left\{c e_{i} \lambda_{i} /\left\|e_{i}\right\|: i=1,2 \ldots\right\} \cup\{0\} \text { is compact, and }
\end{aligned}
$$

$$
\|T(x)\| \leqslant l \text { for all } x \varepsilon K \text { implies }
$$

$$
\begin{aligned}
|\zeta(z)(T)| & =\left|\sum_{i=1}^{\infty} \psi_{i}\left(T\left(e_{i}\right)\right)\right| \\
& \leqslant \sum_{i=1}^{\infty}\left\|\psi_{i}\right\|\left\|T\left(e_{i}\right)\right\| \\
& \leqslant \sum_{i=1}^{\infty}\left\|\psi_{i}\right\|\left\|e_{i}\right\| \lambda_{i} c \\
& =1 \cdot \text { So } \zeta(z) \varepsilon(B(E), \tau) *
\end{aligned}
$$

Now let $\phi \varepsilon(B(E), \tau)$. There exists a compact K such that if $\mid T(x) \| \leqslant 1$ for all $x \varepsilon K$ then $|\phi(T)| \leqslant l$. There exists a sequence $\left\{x_{n}\right\}$ in E such that $x_{n} \rightarrow O$ and such that K is contained in the closed convex cover of $\left\{x_{n}\right\}$. So for $T \varepsilon B(E)$,

$$
|\phi(T)| \leqslant \sup _{x \in K}\|T(x)\| \leqslant \sup _{n}\left\|T\left(x_{n}\right)\right\|
$$

In particular, $T\left(X_{n}\right)=0$ for all n implies that $\phi(T)=0$. So we may define a continuous linear functional ψ on the subspace $\left\{\left\{T\left(x_{n}\right)\right\}: T \in B(E)\right\}$ of $c_{o}(E)$ by $\psi\left(\left\{T\left(x_{n}\right)\right\}\right)=\phi(T)$. (If L is one of the usual sequence spaces and F is any Banach space, we define $L(F)=\left\{\left\{f_{n_{n=1}}\right\}^{\infty} \subset F:\left\|\left\{f_{n}\right\}\right\|=\left\|\left\{\left\|f_{n}\right\|\right\}\right\|_{L}(\infty\}\right)$. By the Hahn-Banach Theorem we may extend ψ to $\psi^{\prime} \varepsilon\left(C_{o}(E)\right)^{*}$, which is isometrically isomorphic to $l_{1}\left(E^{*}\right)$. Therefore there exists $\left\{\psi_{n}\right\} \varepsilon I_{1}\left(E^{*}\right)$ with $\phi(T)=\psi^{\prime}\left(\left\{T x_{n}\right\}\right)=$

$$
\sum_{i=1}^{\infty} \psi_{i}\left(T\left(x_{i}\right)\right) \forall T \in B(E) \text {. Let } z=\sum_{i=1}^{\infty} x_{i} \otimes \psi_{i} \in E \hat{\otimes} E^{*} .
$$

Then $\phi=\zeta(z)$, and the lemma is proved.

> We now show (2) implies (1).

Suppose $\phi \varepsilon(B(E), \tau)$ * and $\phi(T)=0$ for all finite rank T in $B(E)$. We show that $\phi\left(I_{E}\right)=0$, and the result follows by a corollary to the Hahn-Banach Theorem. By the lemma above, there exists $z \in E \hat{\otimes} E^{*}$ such that $\zeta(z)=\phi$. Suppose that $z=\sum_{i=1}^{\infty} e_{i} \otimes \psi_{i}$, then $\phi(T)=\sum_{i=1}^{\infty} \psi_{i}\left(T\left(e_{i}\right)\right)$. For $e^{*} \varepsilon E^{*}, y \in E$, let $T(x)=e^{*}(x) y . \quad T$ is finite rank, and

$$
0=\phi(T)=\sum_{i=1}^{\infty} e^{*}\left(e_{i}\right) \psi_{i}(y),
$$

so

$$
0=\sum_{i=1}^{\infty} e^{*}\left(e_{i}\right) \psi_{i} .
$$

By (2) we have $z=0$, therefore $\phi\left(I_{E}\right)=\sum_{i=1}^{\infty} \psi_{i}\left(e_{i}\right)=0$.

Corollary If E* has the approximation property, then the mapping $E \hat{\otimes} E^{*} \rightarrow B\left(E^{*}, E^{*}\right)$ is one to one by (4), so E has the approximation property.

Theorem 2.4 Let E be a Banach space. Then E has the approximation property if and only if for all Banach spaces
X and Y and $T \varepsilon B(X, Y)$ with T one to one, $\xi\left(I_{E} \otimes T\right): E \hat{\otimes} X \rightarrow$ $\mathrm{E} \hat{\otimes} \mathrm{Y}$ is one to one.

Proof: The forward implication follows from an argument similar to that in the first part of the proof of Theorem 2.1.

For the backwards implication, suppose that E is a Banach space satisfying the conditions of the theorem, and let F be any Banach space. Let T be the natural embedding of F in $C(K)$, where $K=$ Ball $F *$. So $T(f)(k)=k(f)$ where $f \varepsilon F$ and $k \varepsilon K$. $C(K)$ has the approximation property, therefore the mapping $E \hat{\theta} C(K) \rightarrow B\left(E^{*}, C(K)\right)$ is one to one. We have that the mapping $E \hat{\otimes} F \rightarrow E \hat{\otimes} C(K)$ is one to one, and so the mapping $E \hat{\otimes} F \rightarrow B(E *, F)$ is one to one, and so E has the approximation property.

Throughout this thesis we shall be very concerned with uniform algebras, which we now define.

Definition: Let X be a compact Hausdorff space. A uniform algebra on X is a norm - closed subalgebra of $C(X)$ which separates the points of X and contains the constants.

If we take $k=\mathbb{R}$, then by the Stone-Weierstrass Theorem, the only real uniform algebra on a compact Hausdorff space
X is $C(X)$ itself. In any results or discussion involving uniform algebras, therefore, we shall normally assume that the underlying field k is the complexes.

Theorem 2.5 Let Y be a Banach space, and let X be the closed unit ball of Y^{*}, with the weak* topology. Then there is a uniform algebra A on X which has a complemented subspace isometrically isomorphic to Y and such that the projection has norm 1 .

Proof: Let R be the subalgebra of $C(X)$ generated by the function 1 and the functions $G_{Y}(y \in Y)$ given by $G_{Y}(x)=x(y) \quad(x \in X)$. Let A be the closure of R in $C(X)$. Define $S: Y \rightarrow A$ by $S(y)=G Y$. Then

$$
\|S(y)\|=\sup _{x \varepsilon}|x(y)|=\|y\| \text {. So } S \text { is an isometric }
$$

isomorphism of Y onto $S(Y)$. Define $P: R \rightarrow S(Y)$ by

$$
\begin{aligned}
& P(1)=0 \\
& P\left(G_{Y}\right)=G_{Y} \quad(Y \varepsilon Y) \\
& P\left(G_{Y_{1}} \cdot G_{Y_{2}} \cdots \cdots \cdot G_{Y_{n}}\right)=0 \text { if } n \geqslant 2\left(y_{i} \varepsilon Y\right),
\end{aligned}
$$

extending by linearity. We show that P is bounded. Let $g \varepsilon R$ with $\|g\| \leqslant 1$. There exist $Y_{1}, Y_{2}, \ldots y_{n} \varepsilon Y$ such that $g=Q\left(G_{Y_{1}}, G_{y_{2}}, \ldots G_{y_{n}}\right)$ where Q is a polynomial
in n variables. Suppose

$$
Q(\omega)=a_{0}+\sum_{i=1}^{n} a_{i} \omega_{i}+\text { higher order terms }\left(\omega=\left(\omega_{1}, \ldots \omega_{n}\right)\right) .
$$

Fix $\mathrm{x} \in \mathrm{X}$, and for $\zeta \varepsilon \mathrm{C}$ let $\phi(\zeta)=g(\zeta \mathrm{x})$. Then $|\phi(\zeta)| \leqslant 1$ for $|\zeta| \leqslant 1$. We have

$$
\phi(\zeta)=a_{0}+\left(\sum_{i=1}^{n} a_{i} x\left(y_{i}\right)\right) \zeta+(\quad) \zeta^{2}+\ldots \ldots
$$

Now $\phi^{\prime}(0)=(1 / 2 \pi i) \int_{\zeta=1} \phi(\zeta) / \zeta^{2} d \zeta$.
Therefore $\left|\phi^{\prime}(0)\right| \leqslant 1$. But $\phi^{\prime}(0)=\sum_{i=1}^{n} a_{i} x\left(y_{i}\right)$. Thus we have $\left\|\sum_{i=1}^{n} a_{i} G_{y_{i}}\right\| \leqslant 1$, that is $\|P(g)\| \leqslant 1$. Therefore P is bounded with norm 1 , and so P has a bounded extension \bar{P} from A onto $S(Y)$. \bar{P} is clearly a projection.

Corollary If Y is a real Banach space, then Y is isometrically real-isomorphic to a real-complemented linear subspace of a complex Banach space, such that the projection has norm 1. Hence Y is isometrically real-isomorphic to a real-complemented subspace of a complex uniform algebra, such that the projection has norm 1 .

Theorem 2.6 There is a uniform algebra not having the approximation property.

Proof: We have, by [7]or [8], that there exists a Banach space not having the approximation property. So the result follows from Theorem 2.5 above, and the fact that if Y is a Banach space which has the approximation property then any complemented subspace of Y has the approximation property. To see this fact, suppose that E is the complemented subspace of Y, with projection P. Let $\left\{P_{\alpha}\right\}$ be a net of finite rank operators in $B(Y)$ such that $P_{\alpha} \rightarrow I_{Y}$ uniformly on compact subsets of Y. Then $\left.P_{o} P_{\alpha}\right|_{E}{ }^{+} I_{E}$ uniformly on compact subsets of E .

We shall now consider projective tensor products of commutative Banach algebras (complex). We shall use the following result due to Tomiyama ([3]) (If A is a commutative Banach algebra, we denote the carrier space of A by Φ_{A}).

Theorem 2.7 If A and B are commutative Banach algebras, then there is a homeomorphism $X: \Phi_{A} \times \Phi_{B} \rightarrow \Phi_{A} \hat{\otimes} B$ such that

$$
x(\phi, \psi)\left(\sum_{i=1}^{\infty} f_{i} \otimes g_{i}\right)=\sum_{i=1}^{\infty} \phi\left(f_{i}\right) \psi\left(g_{i}\right), \sum_{i=1}^{\infty}\left\|f_{i}\right\|\left\|g_{i}\right\|<\infty .
$$

Proof: If $\phi \in \Phi_{A^{\prime}} \psi \varepsilon \Phi_{B}$, then certainly $\chi(\phi, \psi) \in \Phi_{A \hat{B}}$. Suppose now $\theta \in \Phi_{A \hat{\otimes} B} \cdot \theta \neq 0$, therefore there exist a εA and $b \in B$ such that $\theta(a \otimes b) \neq 0$. Define $\phi(f)=\theta(a f \otimes b) /$
$\theta(a \otimes b)(f \varepsilon A)$. If a^{\prime}, b^{\prime} satisfy $\theta\left(a^{\prime} \otimes b^{\prime}\right) \neq 0$, then we get

$$
\theta\left(a^{\prime} f \otimes b^{\prime}\right) / \theta\left(a^{\prime} \otimes b^{\prime}\right)=\theta(a f \otimes b) / \theta(a \otimes b) \text { by cross }
$$

multiplication, so ϕ is independent of the choice of a and b . Now $\phi(f) \phi\left(f^{\prime}\right)=\theta(a f \otimes b) \theta\left(a f^{\prime} \otimes b\right) / \theta(a \otimes b) \theta(a \otimes b)$

$$
=\theta\left(a^{2} f f^{\prime} \otimes b^{2}\right) / \theta\left(a^{2} \otimes b^{2}\right)=\phi\left(f f^{\prime}\right) .
$$

Similarly, we may define a multiplicative linear functional ψ on B by $\psi(g)=\theta(a \otimes \mathrm{bg}) / \theta(\mathrm{a} \otimes \mathrm{b})$. Then

$$
\begin{aligned}
\phi(f) \psi(g) & =\theta(a f \otimes b) \theta(a \otimes b g) / \theta(a \otimes b) \theta(a \otimes b) \\
& =\theta(f \otimes g) \theta\left(a^{2} \otimes b^{2}\right) / \theta\left(a^{2} \otimes b^{2}\right)=\theta(f \otimes g) .
\end{aligned}
$$

Therefore ϕ and ψ are non-zero and so belong to Φ_{A} and Φ_{B} respectively, and $\theta=\chi(\phi, \psi)$. So χ is onto. Also if $\phi, \phi^{\prime} \varepsilon \Phi_{A^{\prime}}$ and $\psi, \psi^{\prime} \varepsilon \Phi_{B^{\prime}}$ and $\chi\left(\phi^{\prime} \psi^{\prime}\right)=\chi(\phi, \psi)$, then $\phi^{\prime}(f) \psi^{\prime}(g)=\phi(f) \psi(g)$ for all f and g. So if we take $g_{0} \varepsilon B$ such that $\psi^{\prime}\left(g_{0}\right) \neq 0$ we get $\phi^{\prime}(f)=\alpha \phi(f)(f \varepsilon A)$ where α is a constant. Since ϕ and ϕ^{\prime} are multiplicative, $\alpha=1$, and so $\phi^{\prime}=\phi$ and $\psi^{\prime}=\psi$. Hence χ is one to one. To show that χ is continuous, let $\left(\phi_{\alpha}, \psi_{\alpha}\right)$ be a net in $\Phi_{A} \times \Phi_{B}$ converging to (ϕ, ψ). Therefore $\phi_{\alpha}(f) \rightarrow \phi(f)$ and $\psi_{\alpha}(g) \rightarrow \psi(g)$ for all f and g and so $\chi\left(\phi_{\alpha}, \psi_{\alpha}\right)(f \otimes g)$ $=\phi_{\alpha}(f) \psi_{\alpha}(g) \rightarrow \phi(f) \psi(g)=\chi(\phi, \psi)(f \otimes g)$. Hence $\chi\left(\phi_{\alpha}, \psi_{\alpha}\right)(z)$ $\rightarrow X(\phi, \psi)(z)(z \in A \hat{\otimes} B)$, so X is continuous. To show that X is bicontinuous it is enough now to show that each point (ϕ, ψ) of $\Phi_{A} \times \Phi_{B}$ is contained in a compact set whose χ-image is a neighbourhood of $X(\phi, \psi)$. Suppose then that $(\phi, \psi) \varepsilon \Phi_{A} \times \Phi_{B}$.

Take $f \varepsilon A, g \varepsilon B$ such that $|\phi(f) \psi(g)|>1$. Then the set $\left\{\theta \in \Phi_{A \hat{A} B}:|\theta(f \otimes g)|>1\right\}$ is a neighbourhood of $\chi(\phi, \psi)$ and is contained in $\chi(K \times L)$, where $K=\left\{\phi^{\prime} \varepsilon \Phi_{A}:\left|\phi^{\prime}(f)\right| \geqslant 1 /\|g\|\right\}$

$$
\text { and } L=\left\{\psi^{\prime} \varepsilon \Phi_{B}:\left|\psi^{\prime}(g)\right| \geqslant 1 /\|f\|\right\}
$$

are compact. So χ is a homeomorphism.

We now have the following result, the first part of which is due to Tomiyama ([3]). We observe that if $A \hat{\otimes} B$ is semi-simple, then A and B are semi-simple.

Theorem 2.8 (1). If A and B are semi-simple commutative Banach algebras, and either A or B has the approximation property, then $A \hat{\otimes} B$ is semi-simple.
(2). If A is a commutative Banach algebra not having the approximation property, then there is a uniform algebra B such that $A \hat{\otimes} B$ is not semi-simple.

Proof: (1). Suppose that A and B are semi-simple, and either A or B has the approximation property. Let $F=\sum_{i=1}^{\infty} f_{i} \otimes g_{i}$, $\sum_{i=1}^{\infty}\left\|f_{i}\right\|\left\|g_{i}\right\|<\infty, f_{i} \varepsilon A, g_{i} \varepsilon B$. Suppose that $\theta(F)=0 \quad \forall \theta \varepsilon \Phi_{A} \hat{\otimes} B$. Therefore

$$
\sum_{i=1}^{\infty} \gamma\left(f_{i}\right) \delta\left(g_{i}\right)=0 \forall \gamma \varepsilon \Phi_{A}, \delta \varepsilon \Phi_{B}
$$

For $\delta \varepsilon \Phi_{B^{\prime}}$ let $h_{\delta}=\sum_{i=1}^{\infty} \delta\left(g_{i}\right) f_{i} \varepsilon A$. Then for all $\gamma \varepsilon \Phi_{A}$,

$$
\gamma\left(h_{\delta}\right)=\sum_{i=1}^{\infty} \delta\left(g_{i}\right) \gamma\left(f_{i}\right)=0 .
$$

Since A is semi-simple, $h_{\delta}=0$. Now fix $\phi \varepsilon A *$, and define $G={ }_{i} \sum_{1}^{\infty} \phi\left(f_{i}\right) g_{i} \varepsilon B$. For each $\delta \varepsilon \Phi_{B^{\prime}}$

$$
\delta(G)=\sum_{i=1}^{\infty} \phi\left(f_{i}\right) \delta\left(g_{i}\right)=\phi\left(h_{\delta}\right)=0
$$

Since B is semi-simple, $G=0$, therefore

$$
\sum_{i=1}^{\infty} \phi\left(f_{i}\right) g_{i}=0 \forall \phi \varepsilon A^{*} .
$$

The mapping $A \hat{\otimes} B \rightarrow B\left(A^{*}, B\right)$ is one to one, so F must equal 0 . Thus $A \hat{\otimes}$ B is semi-simple.
(2) Let A be a commutative Banach algebra which fails to have the approximation property. Then for some Banach space E, the mapping $A \hat{\otimes} E \rightarrow B(A *, E)$ is not one to one. There exist a uniform algebra B, a projection P on B of norm 1, and a linear isometry S of E onto $P(B)$. By Lemma l.l, the mapping $\eta: A \hat{\otimes} \mathrm{E} \rightarrow \mathrm{A} \hat{\otimes} \mathrm{B}$ is isometric. There exists $z=\sum_{i=1}^{\infty} a_{i} \otimes e_{i}$ in $A \hat{\otimes} E$ with $z \neq 0$, and such that $\sum_{i=1}^{\infty} \phi\left(a_{i}\right) e_{i}=0 \forall \phi \varepsilon A^{*} . \quad$ Let $F=\eta(z)=\sum_{i=1}^{\infty} a_{i} \otimes S\left(e_{i}\right)$.

Then $F \neq 0$, but we have
$\sum_{i=1}^{\infty} \phi\left(a_{i}\right) \psi\left(S\left(e_{i}\right)\right)=\psi_{0} S\left(\sum_{i=1}^{\infty} \phi\left(a_{i}\right) e_{i}\right)=0 \forall \phi \varepsilon \Phi_{A}, \psi \varepsilon \Phi_{B}$.
Hence $\theta(F)=O \forall \theta \varepsilon \Phi_{A \hat{\theta}^{\prime}}$, therefore $A \hat{\otimes} B$ is not semi-simple.

We shall now study the notions of ε-products and slice products, and their relationship with the injective tensor product.

The ε-Product

The definition and results of this section are due to Waelbroeck in [6]. Before giving the definition of the ε-product, we state the following theorem.

Theorem Let X and Y be Banach spaces. Then the following Banach spaces are isometrically isomorphic:
(1) The space of linear functions from X * into Y whose restrictions to Ball X * are weak* continuous.
(2) The space of linear functions from Y^{*} into X whose restrictions to Ball Y^{*} are weak* continuous.
(3) The space of bilinear functionals on $X^{*} \times Y^{*}$ whose restrictions to Ball X*x Ball Y* are weak* continuous. The norm in (1), (2) and (3) is the supremum on Ball X^{*}, Ball Y* and Ball $\mathrm{X}^{*} \times$ Ball Y * respectively.

Definition: Let X and Y be Banach spaces. Then we define the ε-product $X \varepsilon Y$ to be the Banach space (1) above.

We imbed the injective tensor product of two Banach spaces in the ε-product. Define $\xi: X \otimes_{\lambda} Y \rightarrow X \varepsilon Y$ by

$$
\begin{aligned}
\xi\left(\sum_{i=1}^{n} x_{i} \otimes y_{i}\right)(f) & =\sum_{i=1}^{n} f\left(x_{i}\right) y_{i}, x_{i} \varepsilon x, y_{i} \varepsilon Y, f \varepsilon X^{*} . \\
\text { Then } \left.\| \underset{i=1}{\xi} x_{i} \otimes y_{i}\right) \| & =\sup _{\varepsilon}\left\|_{i=11}^{n} \sum_{i=1}^{n} f\left(x_{i}\right) y_{i}\right\|=\left\|\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\| \lambda
\end{aligned}
$$

Thus ξ is a linear isometry. We identify $X \otimes_{\lambda} Y$ with its image in $\mathrm{X} \varepsilon \mathrm{Y}$, and identify $\mathrm{X} \stackrel{\otimes}{\otimes} \mathrm{Y}$ with the closure of $X \otimes Y$ in $X \varepsilon Y$. In fact $\xi(X \otimes Y)$ is the set of finite rank elements in $\mathrm{X} \varepsilon \mathrm{Y}$.

Theorem 2.9 Let X be a Banach space. Then X has the approximation property if and only if $X \check{\otimes} \mathrm{Y}=\mathrm{X} \varepsilon \mathrm{Y}$ for all Banach spaces Y.

Proof: Suppose first that X has the approximation property, and let Y be any Banach space. Let u belong to $X \varepsilon Y$, and suppose that $u: Y^{*} \rightarrow X$. Let $\varepsilon>0$. Then $u\left(B a l l Y^{*}\right)$ is compact in X, so there exists a finite rank P in $B(X)$ such that

$$
\sup _{g \varepsilon \text { Ball } Y^{*}}\|P(u(g))-u(g)\|<\varepsilon .
$$

Therefore $\left\|\mathbb{P}_{\mathrm{o}} \mathrm{u}-\mathrm{u}\right\|<\varepsilon$, and $\mathrm{P}_{\mathrm{O}} \mathrm{u}$ is finite rank in $\mathrm{X} \varepsilon \mathrm{Y}$. Hence $X \otimes_{\lambda} Y$ is dense in $X \varepsilon Y$, and so $X \mathscr{\otimes} Y=X \varepsilon Y$. Now suppose that $X \check{\otimes} \hat{\otimes}=X \varepsilon Y$ for all Banach spaces Y. Let K be compact in X. Define Y to be the norm closure
in $C(K)$ of $\left.X *\right|_{K}$. Therefore $X \otimes \forall Y=X \varepsilon Y$. Define u in $X \in Y$ by $u(f)=\left.f\right|_{K}\left(f \varepsilon X^{*}\right)$. There exists $\sum_{i=1}^{n} X_{i} \otimes y_{i}$ in $\mathrm{X} \otimes \mathrm{Y}$ such that

$$
\left\|\xi\left(\sum_{i=1}^{n} x_{i} \otimes y_{i}\right)-u\right\| \leqslant \frac{1}{2}, \quad \text { and } w e \text { may suppose that }
$$

$\sum_{i=1}^{n}\left\|x_{i}\right\|=1$. Also for each i there is an f_{i} in X^{*} such that $\left|\left|f_{i}\right|_{K}-y_{i} \|_{K} \leqslant \frac{1}{2}\right.$. Let $P(x)=\sum_{i} \sum_{1} f_{i}(x) x_{i}$ for x in x. Then P is finite rank, and $\mid \mathbb{P}(x)-x \| \leqslant 1$ for x in K. Hence by one of the definitions of the topology of compact convergence, x has the approximation property.

The Slice Product

If X and Y are compact Hausdorff spaces, then we may identify $C(X) \stackrel{\otimes}{C}(Y)$ with $C(X \times Y)$. For define $\Gamma: C(X) \otimes_{\lambda} C(Y) \rightarrow C(X \times Y)$

$$
\begin{aligned}
\text { by } \left.\sum_{i=1}^{n} f_{i} \otimes g_{i}\right)(x, y)= & \sum_{i=1}^{n} f_{i}(x) g_{i}(y) \\
\left.\| \sum_{i=1}^{n} f_{i} \otimes g_{i}\right) \|= & \sup _{x \in X}\left|\sum_{i=1}^{n} f_{i}(x) g_{i}(y)\right| \\
= & \sup _{x \in X}\left\|\sum_{i=1}^{n} f_{i}(x) g_{i}\right\| \\
= & \sup _{x \in X}\left|\sum_{i=1}^{n} f_{i}(x) \psi\left(g_{i}\right)\right| \\
& \psi \varepsilon \operatorname{Ball}(C(y)) *
\end{aligned}
$$

$$
\begin{aligned}
& =\quad \sup \left\|_{i} \sum_{1}^{n} \psi\left(g_{i}\right) f_{i}\right\| \\
& \psi \varepsilon \operatorname{Ball}(\mathrm{C}(\mathrm{Y})) \text { * } \\
& =\quad\left\|\sum_{i=1}^{n} f_{i} \otimes g_{i}\right\|_{\lambda}
\end{aligned}
$$

So Γ is isometric and is an algebra homomorphism. We extend Γ to $C(X) \stackrel{\otimes}{\otimes} C(Y)$ and extend multiplication on $C(X) \otimes_{\lambda} C(Y)$ to $C(X) \stackrel{\otimes}{C}(Y)$ so that Γ remains an isometric algebra homomorphism. Then $\Gamma(C(X) \check{\otimes} C(Y))$ is a closed subalgebra of $C(X \times Y)$ which contains the function l, separates the points of $X \times Y$, and is closed under complex conjugation (if $k=C$). Hence by the Stone-Weierstrass Theorem, we have $\Gamma(C(X) \stackrel{\otimes}{\otimes} C(Y))=C(X \times Y)$

If A and B are uniform algebras on compact Hausdorff spaces X and Y respectively, then we may similarly imbed $\mathrm{A} \stackrel{\otimes}{\otimes} \mathrm{B}$ homomorphically and isometrically in $\mathrm{C}(\mathrm{X} \times \mathrm{Y})$, and we thus get that $A \stackrel{\otimes}{\otimes} B$ is a uniform algebra on $X \times Y$.

Definition: If X is a compact Hausdorff space, and B is a Banach space, $C(X, B)$ is the set of continuous functions from X into B .
$C(X, B)$ is then a Banach space under the norm $\|f\|=\sup _{x \in X}\|f(x)\|$. If B is a Banach algebra, then $C(X, B)$ is a Banach algebra under pointwise multiplication, and is commutative if B is commutative.

If A is a uniform algebra on X, and B is any Banach algebra, we may define $\Delta: A \otimes_{\lambda} B \rightarrow C(X, B)$ by
$\Delta\left(\sum_{i=1}^{n} f_{i} \otimes b_{i}\right)(x)=\sum_{i=1}^{n} f_{i}(x) b_{i}, f_{i} \varepsilon A, b_{i} \varepsilon B$ and $x \varepsilon X$. As before, Δ is isometric and an algebra homomorphism, and $A \stackrel{\otimes}{\otimes} B$ is therefore a Banach algebra.

Now take X and Y to be fixed compact Hausdorff spaces. For $h \in C(X \times Y)$ and $x \in X$, define $h_{x} \in C(Y)$ by $h_{X}(y)=h(x, y)$. Define $h^{Y} \varepsilon C(X)$ by $h^{Y}(x)=h(x, y)$. We may define an isometric (algebra) isomorphism of $C(X \times Y)$ onto $C(X, C(Y))$ by $\Lambda(h)(x)=h_{x}$. Then $\|\Lambda(h)\|=\sup _{x \in X}\left\|h_{x}\right\|=\sup _{x \in X}|h(x, y)|=\|h\|$.

Similarly $C(X \times Y)$ is isometrically (algebra) isomorphic to $C(Y, C(X))$.

Definition: If A and B are uniform algebras on X and Y respectively, then the slice product A \#B is the space $\left\{h \in C(X \times Y): h_{X} \varepsilon B \forall x \varepsilon X\right.$ and $\left.h^{Y} \varepsilon A \forall Y \varepsilon Y\right\}$.

We may define $\Omega: A \varepsilon B \rightarrow A \# B$ by
$\Omega(u)(x, y)=u\left(\phi_{X}\right)(y)$ where $x \varepsilon X, y \in Y, u \varepsilon A \varepsilon B$, and ϕ_{X} is the evaluation functional at x, so $\phi_{X}(f)=f(x)(f \varepsilon A)$.

We then have the following result, relating the slice product and the ε-product (Proposition 15, [4]).

Theorem 2.10 If A and B are uniform algebras, then Ω defined above is an isometric isomorphism of $A \varepsilon B$ with A \#B (as Banach spaces).

Proof: For u in $A \in B$, the mapping $x \rightarrow u\left(\phi_{X}\right)$ belongs to $C(X, C(Y))$, so by the remarks above, the mapping $(x, y) \rightarrow$ $\mathrm{u}\left(\phi_{\mathrm{X}}\right)(\mathrm{y})$ belongs to $\mathrm{C}(\mathrm{X} \times \mathrm{Y})$. If $\mathrm{h}=\Omega(\mathrm{u}), \mathrm{h}_{\mathrm{x}}=\mathrm{u}\left(\phi_{\mathrm{X}}\right) \varepsilon \mathrm{B}$ for each x in x. If y belongs to Y, the mapping $\phi \rightarrow u(\phi)(y)$ is a linear functional on A* with weak* continuous restriction to Ball A*. Therefore there exists an f in A such that $\phi(f)=u(\phi)(y)\left(\phi \varepsilon A^{*}\right)$. Then $f(x)=\phi_{X}(f)=u\left(\phi_{x}\right)(y)=h(x, y) \quad(x \in X)$. Hence $h^{Y}=f \varepsilon A$, and $h=\Omega(u)$ belongs to $A \# B$.

Now

$$
\begin{aligned}
&\|\Omega(u)\|=\sup _{x \in X}^{y \in Y} \\
&\left|u\left(\phi_{X}\right)(y)\right|=\sup _{x \in X}\left\|u\left(\phi_{X}\right)\right\| \\
&=\sup _{\phi \in \operatorname{BaIl} A^{*}}\|u(\phi)\| \text { by the bipolar theorem } \\
&=\|u\| .
\end{aligned}
$$

So Ω is isometric. Now let h belong to A \#B. Define $u \in B\left(A^{*}, C(Y)\right)$ by $u(\phi)(y)=\phi\left(h^{Y}\right)\left(\phi \varepsilon A^{*}, Y \in Y\right)$. Since the mapping $y \rightarrow h^{Y}$ belongs to $C(Y, A)$, we get by compactness that the restriction of u to Ball A* is weak* continuous. We now show the range of u is contained in B. If $x \varepsilon X$, $u\left(\phi_{x}\right)=h_{x} \varepsilon B$. The set Ball $A^{*} \cap u^{-1}(B)$ is weak* closed in Ball A*, and therefore in A^{*}. Ball $A * \cap u^{-1}(B)$ contains
$\left\{\phi_{\mathrm{X}}: \mathrm{x} \varepsilon \mathrm{X}\right\}$ and therefore contains the (weak*) closed convex circled cover of $\left\{\phi_{\mathrm{X}}: \mathrm{x} \varepsilon \mathrm{X}\right\}$, which equals Ball A^{*} by the bipolar theorem. Hence the range of $u \subset B$, and so u belongs to $A \in B$. We have $\Omega(u)(x, y)=u\left(\phi_{x}\right)(y)=$ $\phi_{x}\left(h^{Y}\right)=h(x, y)$, therefore Ω is onto.
(In fact the above result holds more generally, for we have not used the uniform algebra properties of A and B. We may define the slice product of any two closed subspaces of $C(X)$ and $C(Y)$, (with $k=C$ or \mathbb{R}), and we still get the slice product equals the ε-product).

The equivalence of the slice product and the ε-product for uniform algebras now allows us to establish a relationship between the slice product of uniform algebras and the approximation property. If A and B are uniform algebras on X and Y respectively, then by our remarks at the beginning of this section, we may regard $A \otimes B$ as a subspace (in fact a subalgebra) of $C(X \times Y)$.Then we have:

Theorem 2.11 Let A be a uniform algebra. Then A has the approximation property if and only if $A \mathscr{\otimes} B=A \# B$ for all uniform algebras B.

Proof: If A has the approximation property, and B is any uniform algebra, then $A \stackrel{\otimes}{\otimes} B=A \varepsilon B=A \# B$. Now suppose A is a uniform algebra satisfying the given conditions. Let E be any Banach space. There exists a uniform algebra B with a projection P of norm 1 , and an isometric isomorphism S of E onto $P(B)$. Let u belong to $A \varepsilon E$, and let $\varepsilon>0$. Define u_{1} in $A \varepsilon B$ by $u_{1}=S_{o} u$. Now $A \check{\otimes} B=A \# B=A \varepsilon B$, hence there exists

$$
\begin{aligned}
& \sum_{i=1}^{n} f_{i} \otimes g_{i} \text { in } A \otimes B \text { such that } \\
& \left\|_{i=1}^{n} f_{i} \otimes g_{i}-u_{1}\right\|<\varepsilon . \quad \text { Therefore, } \\
& \left\|\sum_{i=1}^{n} f_{i} \otimes S_{o}^{-1} P\left(g_{i}\right)-u\right\|<\varepsilon .
\end{aligned}
$$

Thus $A \otimes_{\lambda} E$ is dense in $A \varepsilon E$, and so we have that A has the approximation property.

CHAPTER THREE

Injective Algebras

In this chapter and chapter 4 it will be convenient to generalise Banach algebras and normed algebras so that multiplication may be bounded by a constant other than 1 .

Definition: If A is a normed space (a Banach space) and an algebra over k, then A is a (K)-normed algebra ((K)-Banach algebra) if $\|a b\| \leqslant k\|a\|\|b\| \quad(a, b \varepsilon A)$. If such $a K$ exists, we say A is a normed-algebra (a Banach-algebra).

With this definition, a (K) -normed algebra A may always be re-normed (by $\|.\|^{\prime}=k\|$.$\|) to become a (1) -normed$ algebra, so A is isomorphic to a (1)-normed algebra.

Definition: If A is a normed-algebra, then A is said to be K-injective ($\mathrm{K} \geqslant 0$) if

$$
\left\|\sum_{i=1}^{n} x_{i} y_{i}\right\| \leqslant k\left\|\sum_{i=1}^{n} x_{i}^{\otimes} y_{i}\right\|_{\lambda}\left(x_{i}, y_{i} \varepsilon A\right)
$$

A is said to be injective if it is K-injective for some K.

Then A is K-injective if and only if the natural mapping of $A \otimes_{\lambda} A$ into A is bounded with norm $\leqslant K$.

Every uniform algebra is l-injective, for if A is a uniform algebra on X, and $\sum_{i=1} f_{i} \otimes g_{i} \varepsilon A \otimes_{\lambda} A$,

$$
\begin{aligned}
\left\|\sum_{i=1}^{n} f_{i} \cdot g_{i}\right\| & =\sup _{x \in X}\left|\sum_{i=1}^{n} f_{i}(x) g_{i}(x)\right| \\
& \leqslant \sup _{i} \sum_{i}^{n} \phi\left(f_{i}\right) \psi\left(g_{i}\right) \mid \\
& =\left\|\sum_{i=1}^{n} f_{i} \otimes g_{i}\right\| \lambda .
\end{aligned}
$$

Also the space l_{1} with pointwise multiplication is l-injective, for if $\sum_{r=1}^{n} x^{(r)} \otimes y^{(r)} \varepsilon l_{1} \otimes_{\lambda} l_{1}$, let $a_{i j}=\sum_{r=1}^{n} X_{i}^{(r)} y_{j}^{(r)}$, and let γ_{i} be a scalar of modulus 1 such that $\gamma_{i} a_{i i}=\left|a_{i i}\right|$. Let $m \varepsilon \mathbb{P}$ and let $\Delta=\{-1,1\}^{m}$. Then $\sum_{\delta \varepsilon \Delta}\left|\sum_{i, j=1}^{m} \gamma_{i} \delta_{i} a_{i j} \delta_{j}\right| \geqslant\left|\sum_{\delta \varepsilon \Delta i, j=1}^{m} \gamma_{i} \delta_{i} a_{i j} \delta_{j}\right|$

$$
=\left|\sum_{i, j=1}^{m} \gamma_{i} a_{i j} \sum_{\& \Sigma \Delta} \delta_{i} \delta_{j}\right|=2^{m} \sum_{i=1}^{m}\left|a_{i i}\right|
$$

Hence there exists $\delta \varepsilon \Delta$ such that $\sum_{i=1}^{m}\left|a_{i i}\right| \leqslant\left|\sum_{i, j=1}^{m} \gamma_{i} \delta_{i} a_{i j} \delta_{j}\right|$

$$
\leqslant\left.\sup _{\phi, \psi}\right|_{\varepsilon \text { Ball }} \sum_{\sum_{\infty}}^{\mathrm{n}} \phi\left(\mathrm{x}^{(r)}\right) \psi\left(\mathrm{y}^{(r)}\right) \mid
$$

Therefore $\quad\left\|\sum_{r=1}^{n} x^{(r)} y^{(r)}\right\|=\sum_{i=1}^{\infty}\left|a_{i i}\right| \leqslant\left\|\sum_{r=1}^{n} x^{(r)} \otimes y^{(r)}\right\|_{\lambda}$, and so I_{1} is injective.

The space l_{1} with convolution multiplication is not injective. Also for $1<p<\infty, l_{p}$ with pointwise multiplication is not injective (l_{∞} is a uniform algebra). Also the

Banach algebra $C^{\mathrm{P}}[0,1]$ of all functions on $[0,1]$ with
continuous derivatives of order p (normed by
$\|f\|=\sum_{j=0}^{p} \sup _{t \in I}\left|f^{(j)}(t)\right|$, where $I=[0,1]$) is injective.

If A is a K-injective normed-algebra, then for
$x_{i}, y_{i}, z_{i_{n}} \varepsilon A$, and $i=1,2, \ldots n$,
$\left\|\sum_{i=1}^{n} x_{i}\left(y_{i} z_{i}\right)\right\| \leqslant \sup _{\phi 1 \varepsilon \operatorname{Ball} A *}^{A^{*}} \sum_{i=1}^{n} \phi_{1}\left(x_{i}\right) y_{i} z_{i} \|$

$$
\leqslant \quad K_{\phi_{1}, \phi_{2}, \phi_{3} \varepsilon} \sup _{\varepsilon} \sum_{\sum_{i=1}^{n} \phi_{1}\left(x_{i}\right) \phi_{2}\left(y_{i}\right) \phi_{3}\left(z_{i}\right) \mid . ~}^{\text {A }}
$$

In general,
$\left\|\sum_{i=1}^{n} x_{i}^{(1)} \ldots x_{i}^{(r)}\right\| \leqslant K^{r-1} \sup _{\phi_{1}, . \phi_{r} \varepsilon B a l l}\left|\sum_{A * i=1}^{n} \phi_{1}\left(x_{i}^{(1)}\right) \ldots \phi_{r}\left(x_{i}^{(r)}\right)\right|$.

Commutative Injective Algebras

We shall now consider injective commutative Banachalgebras. We shall require a standard symmetrisation result.

Theorem 3.1 Let x be a vector space, let $x_{1}, x_{2} \ldots x_{n} \varepsilon x^{\prime}$, and let $\phi_{1}, \phi_{2}, \ldots \phi_{n} \varepsilon X^{\prime}$. Then if S_{n} is the group of permutations on n letters, and $K_{n}=\{1,2, \ldots . n\}$ and the cardinality of a set Ω is $|\Omega|$,

Proof : If Y is a non-empty finite set and Y_{1} is a proper subset, then

$$
\begin{aligned}
& \sum(-1)|\Omega|=0 \text {. To see this it is enough to } \\
& \Omega \subset Y \\
& \Omega \supset Y_{1}
\end{aligned}
$$

assume Y_{1} is empty and show $\sum_{\Omega \subset Y}(-1)^{|\Omega|}=0$ (where the summation is over all subsets of Y, including the empty set). If $|Y|=1$, this holds. If $|Y|>1$, choose $y \varepsilon Y$ and let $Z=Y \backslash\{y\}$. Then $\sum_{\Omega \subset Y}(-1)|\Omega|=\sum_{\Omega \subset Z}(-1)|\Omega|+\underset{\Lambda \subset Z}{\sum(-1)}|\Lambda|+1$. The result then follows by induction.

The right hand side of the equation in the statement of the theorem equals

$$
\sum_{\Omega \subset K_{n}}(-1)^{n-|\Omega|} j_{1} \sum_{\varepsilon j_{2}}, \ldots j_{n}^{\phi} j_{1}\left(x_{1}\right) \cdots \phi_{j_{n}}\left(x_{n}\right)
$$

$=j_{1}, j_{2}, \sum_{n} j_{n} \varepsilon K_{n} \phi_{j_{1}}\left(x_{1}\right) \ldots \phi_{j_{n}}\left(x_{n}\right) \sum_{\Omega \subset K_{n}}(-1)^{n-|\Omega|}$. $\Omega \supset\left\{j_{1}, j_{2}, \ldots j_{n}\right\}$

Now $\quad \sum_{\Omega \subset K_{n}}(-1)^{n-|\Omega|}=1$ if $\left\{j_{1}, \ldots j_{n}\right\}$ is a permutation of K_{n} $\Omega \supset\left\{j_{1}, \eta_{2}, \ldots j_{n}\right\}=0 \quad$ otherwise

So the right hand side of the equation equals $\pi \sum_{\varepsilon}^{\sum} \phi_{n}^{\pi_{1}}\left(x_{1}\right) \ldots \phi_{\pi_{n}}\left(x_{n}\right)$, which equals the left hand side.

We now establish a characterisation of injective commutative Banach-algebras which was proved by Varopoulos in [9].

We use techniques akin to those used in the proof of Theorem 2.5. For the purposes of this result we do not require that a uniform algebra must have an identity, and we take the scalar field to be the complexes.

Theorem 3.2 Let A be a commutative Banach-algebra. Then A is injective if and only if there exists a uniform algebra B, a bounded algebra homomorphism h of B onto A, and a linear (bounded) operator $j: A \rightarrow B$ such that $h_{o} j=I_{A}$, the identity function from A onto itself.

Proof : Suppose A satisfies the conditions above, and let n $\sum_{i=1} x_{i} \otimes y_{i} \in A \otimes_{\lambda} A$. Then

$$
\begin{aligned}
& \left\|\sum_{i=1}^{n} x_{i} y_{i}\right\|=\left\|\sum_{i=1}^{n} h\left(j\left(x_{i}\right) j\left(y_{i}\right)\right)\right\| \\
& \leqslant\|h\|\left\|\sum_{i=1}^{n} j\left(x_{i}\right) j\left(y_{i}\right)\right\| \\
& \leqslant\|h\|_{\phi, \phi^{\prime} \varepsilon \text { Ball } \sup ^{*} \sum_{i=1}^{n} \phi\left(j\left(x_{i}\right)\right) \phi^{\prime}\left(j\left(y_{i}\right)\right) \mid} \\
& \text { (since } B \text { is a uniform algebra) } \\
& \leqslant\left.\|h\|\|j\|^{2} \sup _{\psi, \psi^{\prime} \varepsilon \text { Ball }}\right|_{A * i=1} ^{n} \sum_{i}^{n}\left(x_{i}\right) \psi^{\prime}\left(y_{i}\right) \mid .
\end{aligned}
$$

Hence A is injective.

Suppose now that A is K-injective. Let $m, k \in \mathbb{P}$, and let $x_{i r} \varepsilon A$ for $i=1,2, \ldots k, r=1,2, \ldots m$. Then

$$
\begin{aligned}
& m!\left\|\sum_{i=1}^{k} x_{i_{1}} \ldots x_{i m}\right\|=\left\|\sum_{i=1}^{k} \sum_{k} \sum_{S_{m}} x_{i \pi_{1}} \ldots \ldots x_{i \pi_{m}}\right\|
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant K^{m-1} \sup _{\phi_{j} \varepsilon \operatorname{Bail1} A * i=1} \sum_{\Omega \subset K_{m}}^{k}(-1)^{m-|\Omega|} \sum_{r=1}^{m}\left(j \sum_{\varepsilon_{\Omega} \phi_{j}}\right)\left(x_{i r}\right) \mid
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant\left.\mathrm{m}^{\mathrm{m}} \mathrm{~K}^{\mathrm{m}-1} 2^{\mathrm{m}} \sup _{\phi \varepsilon \text { Bail }}\right|_{A * i=1} ^{k} \phi\left(\mathrm{x}_{\mathrm{i}_{1}}\right) \ldots . . \phi\left(\mathrm{x}_{\mathrm{im}}\right) \mid .
\end{aligned}
$$

Now $\mathrm{m}^{\mathrm{m}} / \mathrm{m}!\mathrm{s} \mathrm{e}^{\mathrm{m}}$, hence

$$
\left.\left\|\sum_{i=1}^{k} x_{i,} \ldots x_{i m}\right\| \leqslant\left.(2 e)^{m} K^{m-1} \sup _{\phi \varepsilon B a l l}\right|_{A * i=1} ^{k} \sum_{i 1} x_{1}\right) \ldots \phi\left(x_{i m}\right) \mid .
$$

It follows that if P is a polynomial in n variables, and P is homogeneous of degree m, then if $x_{1}, x_{2}, \ldots x_{n} \varepsilon A$,

$$
\left\|P\left(x_{1}, \ldots x_{n}\right)\right\| \leqslant\left.(2 e)^{m_{K}} K^{m-1} \sup _{\phi \in B a 11}\right|_{A^{*}}\left|P\left(\phi\left(x_{1}\right), \ldots, \phi\left(x_{n}\right)\right)\right| .
$$

Now let $\mathrm{Y}=\lambda$ Ball A^{*}, where $\lambda=4 \mathrm{eK}$, and let Y have the weak* topology. Let B be the closed subalgebra of $C(Y)$ generated by the functions $G_{X}(x \in A)$ given by $G_{X}(\theta)=\theta(x)(\theta \in Y)$.
Let P be a polynomial in n variables with no constant term, and let x_{1}, \ldots, x_{n} belong to A. Suppose $P=P_{1}+P_{2}+\ldots+P_{r}$ where P_{i} is homogeneous of degree $i(r=$ degree of $P)$. Then

$$
\begin{aligned}
\left\|P_{i}\left(G_{x_{1}}, \ldots, G_{x_{n}}\right)\right\| & =\sup _{\theta \varepsilon Y}\left|P_{i}\left(\theta\left(x_{1}\right), \ldots, \theta\left(x_{n}\right)\right)\right| \\
& =\sup _{\theta \varepsilon Y|\alpha| \leqslant 1} \sup \sum_{j=1}^{r} \alpha^{j} P_{j}\left(\theta\left(x_{1}\right), \ldots, \theta\left(x_{n}\right)\right) \mid
\end{aligned}
$$

(by the Cauchy coefficient inequalities)

$$
\begin{aligned}
& =\sup _{\theta \varepsilon Y}\left|\alpha \sup _{1 \leqslant 1}\right| P\left(\alpha \theta\left(x_{1}\right), \ldots, \alpha \theta \quad\left(x_{n}\right)\right) \mid \\
& =\left\|P\left(G_{x_{1}} \ldots, G_{x_{n}}\right)\right\| .
\end{aligned}
$$

Also $\left\|P_{i}\left(x_{1}, \ldots, x_{n}\right)\right\| \leqslant\left((2 e)^{i} K^{i-1} / \lambda^{i}\right) \sup _{\phi \varepsilon \text { Ball }} P_{i_{A} *}\left(\lambda \phi\left(x_{1}\right), \ldots \lambda \phi\left(x_{n}\right)\right) \mid$

$$
=\left(1 / K 2^{i}\right)\left\|P_{i}\left(G_{x_{1}}, \ldots, G_{x_{n}}\right)\right\|
$$

Thus $\left\|P\left(x_{1}, \ldots x_{n}\right)\right\| \leqslant \sum_{i=1}^{r}\left\|P_{i}\left(x_{1}, \ldots, x_{n}\right)\right\|$

$$
\begin{aligned}
& \leqslant(1 / K) \sum_{i=1}^{r}\left(1 / 2^{i}\right)\left\|P_{i}\left(G_{x_{1}}, \ldots ., G_{x_{n}}\right)\right\| \\
& \leqslant(1 / K)\left\|P\left(G_{x_{1}}, \ldots, G_{x_{n}}\right)\right\| .
\end{aligned}
$$

Hence we may define $h: B \rightarrow A$ by

$$
h\left(P\left(G_{x_{1}}, \ldots, G_{x_{n}}\right)\right)=P\left(x_{1}, \ldots, x_{n}\right) \text {, extending by }
$$

continuity. h is bounded and is clearly an algebra homomorphism. Define $j: A \rightarrow B$ by $j(x)=G_{x}(x \in A)$. Then

$$
\|j(x)\|=\sup _{\phi \varepsilon \text { Ball } A^{*}}|\lambda \phi(x)|=\lambda\|x\| \quad(x \in A) . \text { So } j \text { is }
$$

linear and bounded, and clearly $h_{o} j=I_{A}$.

Corollary If A is a K-injective commutative Banach-algebra with an identity l_{A}, then we may assume that the uniform algebra B in the statement of the theorem has a one. For if in the above proof we take B^{\prime} to be the closed subalgebra of $C(Y)$ generated by the functions G_{x} and the function l, and we take

Q to be any polynomial in n variables, with

$$
Q=Q_{0}+Q_{1}+\ldots+Q_{r}\left(Q_{i}\right. \text { homogeneous of degree i) then }
$$

$$
\left\|Q\left(x_{1}, \ldots x_{n}\right)\right\| \leqslant \sum_{i=0}^{r}\left\|Q_{i}\left(x_{1}, \ldots \ldots, x_{n}\right)\right\|
$$

$$
\leqslant\left\|Q_{0} I_{A}\right\|+(1 / K) \sum_{i=1}^{r}\left(1 / 2^{i}\right)\left\|Q_{i}\left(G_{x_{1}}, \ldots, G_{x_{n}}\right)\right\|
$$

$$
\leqslant \quad\left(\left\|I_{A}\right\|+1 / K\right)\left\|Q\left(G_{x_{1}}, \ldots, G_{x_{n}}\right)\right\| .
$$

We may therefore define in an analogous fashion a bounded algebra homomorphism h^{\prime} of B^{\prime} onto A and a bounded linear $j^{\prime}: A \rightarrow B^{\prime}$ such that $h^{\prime}{ }_{o} j^{\prime}=I_{A}$.

Q-algebras

Definition : A commutative Banach-algebra A is a Q-algebra if it is isomorphic to a quotient algebra B / I where B is a uniform algebra and I is a closed ideal in B. Equivalently, there is a bounded (algebra) homomorphism of B onto A. (Again we do not require that a uniform algebra must have a one).

For a study of Q-algebras, see [ll].

From Theorem 3.2, we have that every injective commutative Banach-algebra is a Q-algebra. Not all Q-algebras are injective, for example, $l_{p}(1<p<\infty)$ is a Q-algebra, but is not injective.

We now return to general normed-algebras (not necessarily complex, commutative or Banach). We shall show that a normedalgebra A is injective if and only if $A \otimes_{\lambda} B$ is a normedalgebra for every normed-algebra B. This was proved by Varopoulos in [10]. In this paper Varopoulos showed that if A is a l-injective normed-algebra and B is a (1)-normed algebra, then $A \otimes_{\lambda} B$ is a (K)-normed algebra for some K (for a commutative Banach-algebra A over C this already follows from Theorem 3.2). In fact the following is true.

Theorem 3.3 If A is a l-injective normed-algebra, and B is a (l)-normed algebra, then $A \otimes_{\lambda} B$ is a (1)-normed algebra (and so $A \stackrel{\vee}{\otimes}$ B is a (l)-Banach algebra when multiplication is extended by continuity from $A \otimes_{\lambda} B$).

Proof : Let $z_{1}=\sum_{i=1}^{n} x_{i} \otimes y_{i}, z_{2}=\sum_{j=1}^{m} a_{j} \otimes b_{j}$ belong to $A \otimes_{\lambda} B$. For $\psi \in$ Ball B^{*},

$$
\begin{aligned}
& \left\|\sum_{i=1}^{n} \sum_{j=1}^{m} x_{i} a_{j} \psi\left(y_{i} b_{j}\right)\right\| \leqslant \sup _{\phi, \phi^{\prime} \varepsilon \operatorname{BallA*}}\left|\sum_{i=1}^{n} \sum_{j=1}^{m} \phi\left(x_{i}\right) \phi^{\prime}\left(a_{j}\right) \psi\left(y_{i} b_{j}\right)\right| \\
& \leqslant \sup _{\phi, \phi^{\prime} \varepsilon \operatorname{Ball} A *}\left\|_{i=1}^{n} \sum_{j=1}^{m} \phi\left(x_{i}\right) \phi^{\prime}\left(a_{j}\right) y_{i} b_{j}\right\| \\
& \leqslant \sup _{\phi, \phi^{\prime} \varepsilon \operatorname{Ball} A *^{*}=1}^{n} \sum_{i=1}^{n} \phi\left(x_{i}\right) y_{i}\| \| \sum_{j=1}^{m} \phi^{\prime}\left(a_{j}\right) b_{j} \| \\
& =\left\|z_{1}\right\|\left\|z_{2}\right\| \text {. } \\
& \text { Hence } \\
& \left\|z_{1} z_{2}\right\| \leqslant\left\|z_{1}\right\|\left\|z_{2}\right\| .
\end{aligned}
$$

Corollary If A is K-injective, and B is an (L)-normed algebra, then $A \otimes_{\lambda} B$ is a (KL)-normed algebra.

In order to establish the converse result, we wish to show that if A is a non-injective normed-algebra, then there exists a normed-algebra B such that $A \otimes_{\lambda} B$ is not a normed-algebra, i.e. for each $K>0 A \otimes_{\lambda} B$ is not (K)-normed. It is sufficient to show that if A is not injective then for each $K>0$ there exists a (1)-normed algebra B such that $A \otimes_{\lambda} B$ is not (K)-normed. For if $\left\{B_{n}\right\}$ is a sequence of (1)-normed algebras such that $A \otimes_{\lambda} B_{n}$ is not (n) -normed, let $I_{\infty}\left(\left\{B_{n}\right\}\right)=\left\{\left\{b_{n}\right\}_{n=1}^{\infty}: b_{n} \varepsilon B_{n}, n \in \mathbb{P},\left\|\left\{b_{n}\right\}\right\|=\sup _{n}\left\|b_{n}\right\|<\infty\right\}$. $l_{\infty}\left(\left\{B_{n}\right\}\right)$ is a (1)-normed algebra under pointwise operations. By Lemma l.l, the natural imbedding of $A \otimes_{\lambda} B_{m}$ in $A \otimes_{\lambda} l_{\infty}\left(\left\{B_{n}\right\}\right)$ given by $\sum_{i=1}^{r} a_{i} \otimes b_{i} \rightarrow \sum_{i=1}^{r} a_{i} \otimes\left(0,0, \ldots 0, b_{i},.\right)\left(a_{i} \varepsilon A, b_{i} \varepsilon \quad B_{m}\right)$ is isometric. This imbedding is an algebra homomorphism, hence since $A \otimes_{\lambda} B_{m}$ is not (m)-normed, $A \otimes_{\lambda} l_{\infty}\left(\left\{B_{n}\right\}\right)$ is not (m)-normed. So $A \otimes_{\lambda} l_{\infty}\left(\left\{B_{n}\right\}\right)$ is not a normed-algebra.

Theorem 3.4 Let A be a normed-algebra and let $K \geqslant 0$. Then A is K-injective if and only if $A \otimes_{\lambda} B$ is a (K)-normed algebra for each (1)-normed algebra B.

Proof: We already have the forward implication. The following proof of the reverse implication was pointed out to me by Dr. A.M. Lavie.

Suppose that A is not K-injective. Then there exists
$\sum_{i=1}^{n} x_{i} \otimes y_{i} \in A \otimes \otimes_{\lambda} A \quad$ such that $\left\|\sum_{i=1}^{n} x_{i} y_{i}\right\|>k\left\|_{i=1}^{n} x_{i} \otimes y_{i}\right\| \lambda$.
We may assume without loss of generality that the sets $\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}$ are both linearly independent, and $\sum_{i=1}^{n}\left\|x_{i}\right\| \leqslant 1$ and $\sum_{i=1}^{n}\left\|y_{i}\right\| \leqslant 1$.
Choose $L>K$ such that $\quad\left\|\sum_{i=1}^{n} x_{i} y_{i}\right\|>L\left\|\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\|$.
Let B be the algebra over k of polynomials in $2 n$ indeterminates $z_{1}, z_{2}, \ldots z_{n}, w_{1}, \ldots w_{n}$.

$$
\text { Let } H=\{1\} \cup\left\{\sum_{i=1}^{n} \phi\left(x_{i}\right) z_{i}: \phi \varepsilon \text { Ball } A *\right\} \cup\left\{\sum_{i=1}^{n} \psi\left(y_{i}\right) w_{i}: \psi \varepsilon \text { Ball } A *\right\} .
$$

Let N be the convex circled semigroup in B generated by H. So
$N=\left\{\sum_{k=1}^{m} \lambda_{k^{\prime}} h_{1}^{(k)} h_{2}^{(k)} \ldots h_{r_{k}}^{(k)}: h_{j}^{(k)} \varepsilon H, \sum_{k=1}^{m}\left|\lambda_{k}\right| \leqslant l\right\}$.
For each $i=1,2, \ldots n$, there exists $\phi \varepsilon A *$ such that $\phi\left(x_{j}\right)=\delta_{i j}(j=1,2, \ldots n) . \quad$ Hence $z_{i}\|\phi\| \varepsilon H \subset N$.
Similarly some positive multiple of $w_{i} \varepsilon N$. Hence N absorbs the monomials, and therefore N absorbs all polynomials,
i.e. N is absorbent.

If, for $p \varepsilon B, \sigma(p)$ denotes the sum of the moduli of the coefficients of p, then $\sigma(h) \leqslant l$ for $h \varepsilon H$, so $\sigma\left(h_{1} h_{2} \ldots h_{r}\right) \leqslant 1$ for $h_{j} \varepsilon H$, and hence $\sigma(u) \leqslant l$ for $u \varepsilon N$. Thus if $p \in B$ is nonzero, $\sigma(p)>0$, so some positive multiple of p does not belong to N. Hence the Minkowski functional of N is a norm, given by

$$
\|p\|_{N}=\inf \{\lambda>0: p / \lambda \varepsilon N\} \quad(p \varepsilon B)
$$

Since N is closed under multiplication, $\|p q\|\left\|_{N} \leqslant p\right\|_{N}\|q\| N$. So ($B,\|.\|_{N}$) is a (l)-normed algebra. (Also B is commutative and $\|l\|_{N} \leqslant l$ since $1 \varepsilon \mathbb{N}$, therefore $\|l\|_{N}=1$,i.e.B is unital). Now if $A \otimes_{\lambda} B$ is a (K)-normed algebra, then

$$
\begin{aligned}
\left\|\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} y_{j} \otimes z_{i} w_{j}\right\| & \leqslant k\left\|\sum_{i=1}^{n} x_{i} \otimes z_{i}\right\|\left\|\sum_{j=1}^{n} y_{j}^{\otimes} w_{j}\right\| \\
& =K \sup _{\phi \varepsilon \operatorname{Ball} A^{*}}^{\left\|\sum_{i=1}^{n} \phi\left(x_{i}\right) z_{i}\right\| \sup _{\psi \varepsilon B a l l}\left\|A_{j=1}^{n} \psi\left(y_{j}\right) w_{j}\right\|} \\
& \leqslant K .
\end{aligned}
$$

Hence if ϕ Ball $A^{*},\left\|\sum_{i=1}^{n} \sum_{j=1}^{n} \phi\left(x_{i} Y_{j}\right) z_{i} W_{j}\right\| \leqslant K<L$. Therefore $\sum_{i=1}^{n} \sum_{j=1}^{n} \phi\left(x_{i} y_{j}\right) z_{i} W_{j} \varepsilon$ L.N. Therefore there exist $\phi_{\mathrm{k}}, \psi_{\mathrm{k}} \in$ Ball A* $(\mathrm{k}=1,2, \ldots \mathrm{~m})$ such that $\sum_{i=1}^{n} \sum_{j=1}^{n} \phi\left(x_{i} y_{j}\right) z_{i} w_{j}=L \sum_{k=1}^{m} \lambda_{k}\left(\sum_{i=1}^{n} \phi_{k}\left(x_{i}\right) z_{i}\right)\left(\sum_{j=1}^{n} \psi_{k}\left(y_{j}\right) w_{j}\right)$ and $\sum_{k=1}^{m}\left|\lambda_{k}\right| \leqslant 1$. Equating coefficients of $z_{i} W_{i}$ in this polynomial
identity, we get $\phi\left(x_{i} y_{i}\right)=L \sum_{k=1}^{m} \lambda_{k} \phi_{k}\left(x_{i}\right) \psi_{k}\left(y_{i}\right)$.
So $\quad \sum_{i=1}^{n} \phi\left(x_{i} y_{i}\right)=L \sum_{k=1}^{m} \lambda_{k} \sum_{i=1}^{n} \phi_{k}\left(x_{i}\right) \psi_{k}\left(y_{i}\right)$. Therefore
$\left|\phi\left(\sum_{i=1}^{n} x_{i} y_{i}\right)\right| \leqslant L \sum_{k=1}^{m}\left|\lambda_{k}\right| \sup _{\phi^{\prime} \varepsilon B a l l}\left|\sum_{i=1}^{n} \phi^{\prime}\left(x_{i}\right) \psi^{\prime}\left(y_{i}\right)\right|$.廿' 'Ball A*
Hence $\quad\left\|\sum_{i=1}^{n} x_{i} y_{i}\right\| \leqslant L\left\|\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\|_{\lambda}$, and we have a contradiction, so $A \otimes_{\lambda} B$ is not a (K)-normed algebra.

Corollary Since the algebra B of the above proof is commutative and unital, and since the algebra $l_{\infty}\left(\left\{B_{n}\right\}\right)$ is commutative and unital if each B_{n} is, we have that if $A \otimes_{\lambda} B$ is a normed algebra for each commutative unital B, then A is injective.

CHAPTER FOUR

In this chapter we shall again be concerned with the question of whether the injective tensor product of two normed-algebras is a normed-algebra. We prove that this is the case for the tensor product $l_{p}{ }_{\lambda}{ }_{\lambda} l_{q}$ (where either p or q (2), and for the injective tensor product of two Banachalgebras which are \mathcal{L}_{1} spaces.

Tensor Products of I_{p} Spaces

In this section l_{p} will always have pointwise multiplication and p will be $\geqslant 1$. We already know that the Banach algebras I_{1} and I_{∞} are 1 -injective, hence $I_{1} \otimes_{\lambda} I_{q}$ and $I_{\infty} \otimes_{\lambda} l_{q}$ are (1)-normed algebras for every q.

Now let $l \leqslant p, q<\infty$. Let p^{\prime} and q^{\prime} satisfy $l / p+1 / p^{\prime}=1$ $=1 / q_{q}+1 / q^{\prime}$. We may represent an element of $l_{p} \otimes_{\lambda} l_{q}$ uniquely as an infinite scalar matrix as follows .

$$
\text { Let } z=\sum_{r=1}^{n} x^{(r)} \otimes y^{(r)} \varepsilon I_{p} \otimes \lambda l_{q}
$$

Define $\left(a_{i j}\right)_{i, j=1}^{\infty}$ by $a_{i j}=\sum_{r=1}^{n} x_{i}^{(r)} y_{j}^{(r)}$.

Then we have $z=\sum_{i=1}^{\infty}\left(\sum_{j=1}^{\infty} a_{i j} e^{(i)} \otimes e^{(j)}\right)$, and

$$
\|z\|_{\lambda}=\sup _{\substack{\phi \varepsilon B a l l \\ \psi \in B a l l \\ l_{q^{\prime}}^{\prime}}} \sum_{i=1}^{\infty}\left(\sum_{j=1}^{\infty} \phi_{i} a_{i j} \psi_{j}\right) \mid . \text { We write } z \sim\left(a_{i j}\right)
$$

If also $w=\sum_{k=1}^{m} u^{(k)} \otimes v^{(k)}$ and $w \sim\left(b_{i j}\right)$, i.e. $b_{i j}=\sum_{k=1}^{m} u_{i}^{(k)} \cdot v_{j}^{(k)}$,
$\sum_{r=1}^{n} \sum_{k=1}^{m} x_{i}^{(r)} u_{i}^{(k)} y_{j}^{(r)} v_{j}^{(k)}=\left(\sum_{r=1}^{n} x_{i}^{(r)} y_{j}^{(r)}\right)\left(\sum_{k=1}^{m} u_{i}^{(k)} v_{j}^{(k)}\right)=a_{i j} b_{i j}$. Hence $z_{0} W_{\sim}\left(a_{i j} b_{i j}\right)_{i, j}$.

We now require the theory of finite tensor algebras in order to establish our result for $l_{p}{ }^{\otimes} \lambda^{1} l_{q}$.

Finite Tensor Algebras ($\$ 2,[11])$

If m and n are positive integers, we denote by K_{m} the set $\{1,2, \ldots ., m\}$, and by K_{m}^{n} its n-fold Cartesian product. Let C_{m}^{n} denote the m^{n}-dimensional vector space of all scalar valued functions on K_{m}^{n}. We write C_{m} for C_{m}^{1}.

If $a \varepsilon C_{m}^{n}$, then we have

$$
a\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)=\sum_{\left(\alpha_{1}, \ldots, \alpha_{n}\right) \varepsilon K_{m}^{n^{a}}}{ }^{a\left(\alpha_{1}, \ldots, \alpha_{n}\right) \delta_{\alpha_{1} \beta_{1}} \ldots \delta_{\alpha_{n}} \beta_{n}}
$$

where δ is the Kronecker δ. Thus we may define the tensor algebra norm on C_{m}^{n} by
$\|a\|_{V}=\inf \left\{\sum_{r=1}^{r}{ }^{\mathrm{O}}\left|\lambda_{r}\right|: a\left(\beta_{1}, \ldots, \beta_{n}\right)=\sum_{r=1}^{r}{ }_{r=1}^{o} \lambda_{r} f_{1}^{(r)}\left(\beta_{1}\right) \ldots f_{n}^{(r)}\left(\beta_{n}\right)\right.$
where $\lambda_{r} \varepsilon k$ and $f_{i}^{(r)} \varepsilon C_{m}$ with $\left|f_{i}^{(r)}(\alpha)\right| \leqslant I\left(\alpha \varepsilon K_{m}\right)$,
$\left.l \leqslant i \leqslant n, l \leqslant r \leqslant r_{0}\right\}$.
We may identify C_{m}^{n} with its own dual by defining

$$
\langle a, b\rangle=\sum_{\beta \varepsilon K_{m}^{n}} \mathrm{a}(\beta) b(\beta) \quad\left(a, b \varepsilon C_{m}^{n}\right) .
$$

This gives us the dual norm on C_{m}^{n}

$$
\begin{aligned}
\|a\| V_{*}= & \sup \left\{|\langle a, b\rangle|: b \in C_{m}^{n},\|b\| V_{V} 1\right\} \\
= & \sup \left\{\left|\sum_{\beta \varepsilon K_{m}^{n}}^{n}(\beta) f_{1}\left(\beta_{1}\right) \cdot f_{2}\left(\beta_{2}\right) \ldots f_{n}\left(\beta_{n}\right)\right|: f_{i} \varepsilon C_{m}\right. \text { with } \\
& \left.\left|f_{i}(\alpha)\right| \leqslant 1\left(\alpha \varepsilon K_{m}\right) \text { for } 1 \leqslant i \leqslant n\right\} .
\end{aligned}
$$

In Theorem 1.1 of [12], Littlewood gave estimates for these norms in the case $n=2$. He showed that if a εC_{m}^{2}, then

$$
\left.3^{\frac{1}{2}}\|a\|_{V^{*}} \geqslant \sum_{i=1}^{m}\left(\sum_{j=1}^{m}\left|a_{i j}\right|^{2}\right)^{\frac{1}{2}} \quad \text { (writing } a_{i j} \text { for } a(i, j)\right)
$$

$\begin{aligned} \text { Hence }\|a\|_{V} & =\sup \left\{|\langle a, b\rangle| \underset{\sim}{b} \varepsilon c_{m}^{2},\|b\|_{V} * \leq 1\right\} \\ & \leqslant 3^{\frac{1}{2}} \sup \left\{\left|\sum_{i=1}^{m} \sum_{j=1}^{m} a_{i j} b_{i j}\right|: \sum_{i=1}^{m}\left(\sum_{j=1}^{m}\left|b_{i j}\right|^{2}\right)^{\frac{1}{2}} \leqslant 1\right\}\end{aligned}$
$=3^{\frac{1}{2}} \sup _{i \varepsilon K_{m}}\left(\sum_{j=1}^{m}\left|a_{i j}\right|^{2}\right)^{\frac{1}{2}}$ by the Cauchy-Schwartz
inequality and the fact that for each i
$\left(\sum_{j=1}^{m}\left|a_{i j}\right|^{2}\right)^{\frac{1}{2}}=\left|\sum_{j=1}^{m} a_{i j} x_{j}\right|$ for some $\left\{x_{j}\right\} \in$ Ball 1_{2}. The inequality
$\|a\|_{V} \leqslant \begin{array}{r}\frac{1}{2} \\ i \\ i\end{array} \sup _{m}\left(j K_{j} \sum_{i}\left|a_{i j}\right|^{2}\right)^{\frac{1}{2}}$ is called Littlewood's inequality.

Littlewood also showed that if a $\varepsilon \mathrm{C}_{\mathrm{m}}^{2}$, then $2^{\frac{3}{4}} 3^{\frac{1}{2}}\|a\|_{V *} \geqslant\left(\sum_{i=1}^{m} \sum_{j=1}^{m}\left|a_{i j}\right|^{\frac{4}{3}}\right)^{\frac{3}{4}}$. Hence
$\|a\|_{V}=\sup \left\{|\langle a, b\rangle|: b \varepsilon c_{m}^{2},\|b\|_{V^{*}} \leqslant I\right\}$
$\leqslant 2^{\frac{3}{4}} 3^{\frac{1}{2}} \sup _{i, j=1}^{\left.\left\{\left|\sum_{i j} b_{i j}\right|:\left(\sum_{i, j=1}^{m}\left|b_{i j}\right|^{\frac{4}{3}}\right)^{\frac{3}{4}} \leqslant l\right\}, ~\right)}$
$\leqslant 2^{\frac{3}{4}} 3^{\frac{1}{2}}\left(\sum_{i, j=1}^{m}\left|a_{i j}\right|^{4}\right)^{\frac{1}{4}} \quad$ by Hölder's inequality.

These results may be extended to C_{m}^{n} for general n, and we get for $a \varepsilon C_{m}^{n}$,
$\|a\|_{V} \leqslant 3^{(n-1) / \sup ^{2}} \underset{\left.\beta_{1} \varepsilon K_{m} \beta_{2}, \ldots, \beta_{n} \in K_{m}\left|a\left(\beta_{1}, \ldots, \beta_{n}\right)\right|^{2}\right)^{\frac{1}{2}}}{ }$

We now apply these ideas to tensor products of l_{p} spaces.

Theorem 4.1 Let $1 \leqslant p<\infty, l \leqslant q \leqslant 2$. Then $l_{p} \otimes_{\lambda} l_{q}$ is a $\left(3^{\frac{1}{2}}\right)$-normed algebra, and $l_{p} \stackrel{\otimes}{\otimes} l_{q}$ is a $\left(3^{\frac{1}{2}}\right)$-Banach algebra.

Proof: Let p^{\prime} and q^{\prime} satisfy $1 / p+1 / p^{\prime}=1=1 / q+1 / q^{\prime}$. Let z_{1} and z_{2} belong to $l_{p} \otimes_{\lambda} l_{q}$ and let $z_{1} \sim\left(a_{i j}\right), z_{2} \sim\left(b_{i j}\right)$. Then $\left\|z_{1} z_{2}\right\|=\sup _{\phi \varepsilon B a 11}\left|\sum_{p^{\prime}}^{\infty}\left(\sum_{j=1}^{\infty} \phi_{i} a_{i j} b_{i j} \psi_{j}\right)\right|$. $\psi \in$ Ball $l_{q}^{p}{ }^{\prime}$

So it is enough to show that if $m \varepsilon \mathbb{P}, \phi \varepsilon$ Ball l_{p}, and $\psi \varepsilon$ Ball $l_{q^{\prime}}$ then
$\sum_{i, j=1}^{m} \phi_{i} a_{i j} b_{i j} \psi_{j} \left\lvert\, \leqslant 3^{\frac{1}{2}}\left\|z_{1}\right\|\left\|z_{2}\right\|\right.$, since then
$\left|\sum_{i=1}^{m_{1}} \sum_{j=1}^{m_{2}} \phi_{i} a_{i j} b_{i j} \psi_{j}\right| \leqslant 3^{\frac{1}{2}}\left\|z_{1}\right\|\left\|z_{2}\right\|$ for all m_{1}, m_{2}, ϕ and ψ.
Given $\quad \varepsilon>0$, there exist scalars $\lambda_{r}, f_{i}^{(r)}$ and $g_{i}^{(r)}$
(1 $\leqslant r \leqslant n$, i εK_{m}) with $\left|f_{i}^{(r)}\right| \leqslant 1,\left|g_{i}^{(r)}\right| \leqslant 1$, such that
$b_{i j}=\sum_{r=1}^{n} \lambda_{r} f_{i}^{(r)} g_{j}^{(r)}$ for $l \leqslant i, j \leqslant m$ and
$\sum_{r=1}^{n}\left|\lambda_{r}\right|-\varepsilon \leqslant\left\|\left(b_{i j}\right)_{i, j=1}^{m}\right\| V$
$\leqslant 3^{\frac{1}{2}} \sup _{i \varepsilon K_{m}}\left(\sum_{j=1}^{m}\left|b_{i j}\right|^{2}\right)^{\frac{1}{2}} \quad$ by Littlewood's inequality
$\left.\leqslant\left. 3^{\frac{1}{2}} \sup _{i \in K_{m}} \quad \delta \varepsilon \sup _{m}\right|_{m} ^{m} \sum_{q^{\prime}}^{m=1} b_{i j} \delta_{j} \right\rvert\,$ since Ball $l_{2} \subset$ Ball $l_{q^{\prime}}$
$\leqslant 3^{\frac{1}{2}} \sup _{\gamma \varepsilon \operatorname{Ball} l_{p},}\left|\sum_{i, j=1}^{m} \gamma_{i} b_{i j} \delta_{j}\right|$
$\begin{array}{lll}\gamma \varepsilon & \text { Ball } \\ \delta \varepsilon & p_{1} \\ p^{\prime} \\ \prime\end{array}$
$\leqslant 3^{\frac{1}{2}}\left\|z_{2}\right\|$.

$$
\begin{aligned}
\text { Now }\left|\sum_{i, j=1}^{m} \phi_{i} a_{i j} b_{i j} \psi_{j}\right| & =\left|\sum_{r=1}^{n} \sum_{i, j=1}^{m} \phi_{i} a_{i j} \lambda_{r} f_{i}^{(r)} g_{j}^{(r)} \psi_{j}\right| \\
& \approx \sum_{r=1}^{n}\left|\lambda_{r}\right| \cdot\left|\sum_{i, j=1}^{m} \phi_{i} f_{i}^{(r)} a_{i j} g_{j}^{(r)} \psi_{j}\right| \\
& \leqslant\left(\sum_{r=1}^{n}\left|\lambda_{r}\right|\right)\left\|z_{1}\right\|
\end{aligned}
$$

since each $\left|f_{i}^{(r)}\right| \leqslant 1 \&\left|g_{j}^{(r)}\right| \leqslant 1$.

It therefore follows that

$$
\left|\sum_{i, j=1}^{m} \phi_{i} a_{i j} b_{i j} \psi_{j}\right| \leqslant 3^{\frac{1}{2}}\left\|z_{1}\right\|\left\|z_{2}\right\|
$$

The constant $3^{\frac{1}{2}}$ of the above result need not be the best possible. In fact $I_{2} \otimes_{\lambda} I_{2}$ can be shown to be a (I)-normed algebra.
\mathcal{L}_{p} Spaces

The definitions and background results as given here are taken from [13].

Definition: For $p \geqslant 1$ and $n \varepsilon \mathbb{P}$ we shall denote by l_{p}^{n} the space of sequences $\left\{x_{r}\right\}$ in l_{p} such that $x_{r}=0$ for $r \geqslant n+1$. If X and Y are Banach spaces, then $d(X, Y)=$ $\inf \left\{\|T\|\left\|T^{-1}\right\|: T \varepsilon B(X, Y)\right.$ with T invertible $\}$.
So if X and Y are not isomorphic, $d(X, Y)=\infty$.
A Banach space X is called an $L_{p, \alpha}$ space ($1 \leqslant p \leqslant \infty, 1 \leqslant \alpha<\infty$) if for every finite dimensional subspace B of X there is a finite dimensional subspace E of X containing B, such that $d\left(E, 1_{p}^{n}\right) \leqslant \alpha$, where $n=$ dimension of $E . \quad X$ is called an \mathcal{L}_{p} space if it is an $L_{p, \alpha}$ space for some $\alpha<\infty$.

For every positive measure space $(\mu, \Sigma), L_{p}(\mu, \Sigma)$ is an $L_{p ; \alpha}$ space for each $\alpha>1(1 \leqslant p \leqslant \infty)$. In particular l_{p} is an $I_{p, \alpha}$ space for each $\alpha>1$, although if $p \neq 2 I_{p}$ is not an $L_{p, 1}$ space. Also if K is compact Hausdorff, $C(K)$ is an $L_{\infty, \alpha}$ space for each $\alpha>1$. Conversely, every infinitedimensional $L_{p, \alpha}$ space (for $l \leqslant p<\infty$) has a complemented subspace isomorphic to l_{p}. Also there are no infinitedimensional $L_{p, l}$ spaces for $l \leqslant p<\infty$ and $p \neq 2$.

Every Hilbert space is an $L_{2,1}$ space, and every $L_{2, \alpha}$ space is isomorphic to a Hilbert space. These and other basic properties of $L_{p, \alpha}$ spaces are to be found in [14].

Definition : Let X and Y be Banach spaces, let $T \varepsilon B(X, Y)$ and let $1 \leqslant p<\infty$. Put

$$
\begin{aligned}
a_{p}(T) & =\inf \left\{C>0:\left(\sum_{i=1}^{n}\left\|T\left(x_{i}\right)\right\| p\right) 1 / p\right. \\
& \left.\leqslant C \sup _{\phi \varepsilon \operatorname{Ball} x *}\left(\sum_{i=1}^{n}\left|\phi\left(x_{i}\right)\right|^{p}\right)^{1 / p} \forall x_{1}, \ldots x_{n} \varepsilon x, n \in \mathbb{P}\right\} .
\end{aligned}
$$

If $a_{p}(T)<\infty$, we say T is p-absolutely summing.

The main result which we shall require is Grothendieck's inequality, which was proved in [15]. Our statement of the result is as in Theorem 2.1 of [13].

Theorem 4.2 Let $\left(a_{i j}\right)_{i, j=1}^{n}$ be a scalar matrix, and let $M>0$ satisfy $\left|\sum_{i, j=1} a_{i j} s_{i} t_{j}\right| \leqslant M \forall$ scalars s_{i} and t_{j} with $\left|s_{i}\right| \leqslant 1$ and $\left|t_{j}\right| \leqslant 1$.
Then if $x_{1}, x_{2}, \ldots x_{n}, y_{1}, y_{2}, \ldots y_{n} \quad \varepsilon$ any inner product space H, $\left|\sum_{i, j=1} a_{i j}\left(x_{i}, y_{j}\right)\right| \leqslant \underset{i}{\operatorname{Msup}}\left\|x_{i}\right\| \sup _{j}\left\|y_{j}\right\|$.

Here K is Grothendieck's constant. If $k=I R$, then $K \leqslant \sinh \pi / 2$ and if $k=C, K \leqslant 2 \sinh \pi / 2$

As a corollary to this result we have :
$\frac{\text { Theorem } 4.3}{n}$ Let $\left(a_{i j}\right)_{i, j}$ be an infinite scalar matrix such that $\left|\sum_{i, j=1}^{n} a_{i j} s_{i} t_{j}\right| \leqslant M$ whenever $\left|s_{i}\right| \leqslant 1$ and $\left|t_{j}\right| \leqslant 1$
for $i, j=1,2, \ldots n$ and $n \in \mathbb{P}$. Let $\left(x_{k i}\right)_{k, i}$ be an infinite matrix such that $\left(\sum_{k=1}^{\infty}\left|x_{k i}\right|^{2}\right)^{\frac{1}{2}} \leqslant C$ for each $i \varepsilon \mathbb{P}$. Then
$\left(\sum_{k=1}^{\infty}\left(\sum_{j=1}^{\infty}\left|\sum_{i=1}^{\infty} x_{k i} a_{i j}\right|\right)^{2}\right)^{\frac{1}{2}} \leqslant K C M$.

From this theorem it immediately follows that if $z=\sum_{r=1}^{r} O_{b}(r) \otimes c^{(r)}$ belongs to $I_{1} \otimes_{\lambda} I_{1}$, and ζ is the isometric
imbedding of $I_{1} \otimes_{\lambda} I_{1}$ in $B\left(1_{\infty}, I_{1}\right)$, so that $\zeta(z)(x)=$

$$
\sum^{r} O_{x}, b^{(r)}>\hat{C}^{(r)}\left(x \varepsilon l_{\infty}\right) \text {, then } T=\zeta(z) \text { is 2-absolutely summing }
$$

$$
r=1
$$

and $a_{2}(T) \leqslant k\|z\|_{\lambda}$. For let $x^{(1)}, x^{(2)}, \ldots x^{(m)} \varepsilon l_{\infty}$. If $a_{i j}=\sum_{r=1}^{r o} b_{i}^{(r)} c_{j}^{(r)}$ then $\left|\sum_{i, j=1}^{n} a_{i j} s_{i} t_{j}\right| \leqslant\|z\|_{\lambda}$
whenever $\left|s_{i}\right| \leqslant 1$ and $\left|t_{j}\right| \leqslant 1$ and $n \varepsilon \mathbb{P}$. Now

$$
\begin{aligned}
& \left(\sum_{k=1}^{m}\left\|T\left(x^{(k)}\right)\right\|^{2}\right)^{\frac{1}{2}}=\left(\sum_{k=1 r=1}^{m} \sum_{\sum_{0}}^{r_{0}}<x^{(k)}, b^{(r)}>C^{(r)} \|^{2}\right)^{\frac{1}{2}} \\
& =\left(\sum_{k=1}^{m}\left(\sum_{j=1}^{Q}\left|\sum_{r=1}^{r_{0}}<x^{(k)}, b^{(r)}>C_{j}^{(r)}\right|\right)^{2}\right)^{\frac{1}{2}} \\
& =\left(\sum_{k=1}^{m}\left(\sum_{j=1}^{\infty}\left|\sum_{i=1}^{\infty} x_{i}^{(k)} a_{i j}\right|\right)^{2}\right)^{\frac{1}{2}} \\
& \leqslant K\|z\| \sup _{i}\left(\sum_{k=1}^{m}\left|x_{i}^{(k)}\right|^{2}\right)^{\frac{1}{2}} \\
& \leqslant k\|z\|_{\lambda_{\phi \varepsilon \text { Ball }} \sup _{1}\left(\sum_{k=1}^{m}\left|<\phi, x^{(k)}>\right|^{2}\right)^{\frac{1}{2}} . ~}^{\text {. }}
\end{aligned}
$$

(In fact by Theorem 4.3 of [13], if X is any $L_{\infty, \alpha}$ space and Y is any $L_{p, \beta}$ space with $1 \leqslant p \leqslant 2$, then every $T \varepsilon B(X, Y)$ is 2-absolutely summing).

The next result is due to Pietsch. Our proof is effectively that in [13]. (The underlying field may as usual be either \mathbb{R} or C).

Theorem 4.4 Let X and Y be Banach spaces, and let $T \varepsilon B(X, Y)$ be 2-absolutely summing. Let $L=B a l l X *$. Then there is a probability measure μ on L and an operator $S: L_{2}(\mu) \rightarrow Y$ such that $\|S\|=a_{2}(T)$ and $T=S_{O} J_{O} I$, where $I: X \rightarrow C(L)$ is the canonical isometry $I(x)(\phi)=\phi(x)(x \in X, \phi \varepsilon L)$ and
$J: C(L) \rightarrow L_{2}(\mu)$ is the formal identity mapping.

Proof : Let $W=\left\{a_{2}(T)^{2} \sum_{i=1}^{n}\left|I\left(x_{i}\right)\right|^{2}: \sum_{i=1}^{n}\left\|T\left(x_{i}\right)\right\|^{2}\right.$

$$
\left.=1, x_{i} \varepsilon X, n \in \mathbb{P}\right\}
$$

Then $W \subset C_{\mathbb{R}^{\prime}}$ (L) (the space of continuous real valued functions on L). Let $N=\left\{f \in C_{\mathbb{R}}(L): \sup _{\phi \in L} f(\phi)<l\right\} . W$ and N are convex,
and N is open. It follows by the separation theorem and the Riesz representation theorem that there exists a real regular Bore measure v on L such that

```
\intfdvs l (f&N)
    L
```

and $\int f d \nu \geqslant 1$ ($f \varepsilon W$).
L
If $f \varepsilon C_{\mathbb{R}}(L)$ is non-negative, then for $\lambda>0-f \lambda \varepsilon N$, hence $\int f d \nu \geqslant-\lambda$, so $\int f d v \geqslant 0$. Thus v is a positive measure. L L
If $f \in C_{\mathbb{R}^{(L)}}$ and $\|f\|<1,\left|\int_{L} f d \nu\right| \leqslant 1$. Hence $\|\nu\| \leqslant 1$, and there exists α with $0<\alpha \leqslant 1$ and a probability measure μ on L such that $v=\alpha \mu$.

Now if $x \in X$ and $T(x) \neq 0$, let
$g=a_{2}(T)^{2}|I(x)|^{2} /\|T(x)\|^{2} \varepsilon W$. Then $1 \leqslant \int_{L} g d \nu \leqslant \int_{L} g d \mu$. Therefore $\|T(x)\|^{2} \leqslant a_{2}(T)^{2} \int_{L}|I(x)|^{2} d \mu \quad$ and so

$$
\|T(x)\| \leqslant a_{2}(T)\left\|J_{0} I(x)\right\|_{2} \quad(x \in X)
$$

Thus there exists $Q \varepsilon B(\overline{J I(X)}, Y)$ such that $Q(J I(x))=T(x)(x \in X)$ and $\|Q\| \leqslant a_{2}(T)$. Now $\sum_{i=1}^{n}\left\|T\left(x_{i}\right)\right\|^{2} \leqslant\|Q\|^{2} \sum_{i=1}^{n}\left\|J I\left(x_{i}\right)\right\|^{2}$

$$
=\|Q\|^{2} \int_{\mathrm{Li}=1}^{\mathrm{E}}\left|I\left(\mathrm{x}_{\mathrm{i}}\right)\right|^{2} \mathrm{~d} \mu
$$

$$
\leqslant\|Q\|^{2}\left\|\sum_{i=1}^{n}\left|I\left(x_{i}\right)\right|^{2}\right\| .
$$

Hence $\|Q\|=a_{2}(T)$. In the Hilbert space $L_{2}(\mu)$ there is a projection P of norm one onto $\overline{J I(X)}$. Let $S=Q_{0} P$. Then $\|S\|=\|Q\|=a_{2}(T)$ and $S_{O} J_{O} I(x)=T(x)(x \in X)$.

Theorem 4.5 Let X and Y be (1)-Banach algebras, such that X is an $L_{1, \alpha}$ space and Y is an $L_{1, \beta}$ space. Then $X \otimes_{\lambda} Y$ is a $\left(K^{2} \alpha^{3} \beta^{3}\right)$-normed algebra and $X \check{\otimes} Y$ is a $\left(K^{2} \alpha^{3} \beta^{3}\right)$-Banach algebra.

Proof : Let $\sum_{s=1}^{S} X^{(s)} \otimes y^{(s)}, \sum_{t=1}^{t} O_{W}(t) \otimes z^{(t)} \varepsilon X \otimes_{\lambda} Y$, each with norm $\leqslant 1$. Let $\alpha^{\prime}>\alpha, \beta^{\prime}>\beta$.There exists a finite dimensional subspace X_{0} of X containing $x^{(s)}$ and $w^{(t)}$ for each s and t, and an isomorphism U of $I_{1}^{\left(m_{0}\right)}$ with $X_{0}\left(m_{0}=\operatorname{dim} X_{0}\right)$ such that $\|U\|=1$ and $\left\|U^{-1}\right\| \leqslant \alpha^{\prime}$. There exists a finite dimensional subspace X_{1} of X containing $U\left(e^{(i)}\right) \cdot U\left(e^{(k)}\right)$ for $i, k=1,2, \ldots m_{0}$ and an isomorphism U_{1} of $l_{1}^{\left(m_{1}\right)}$ with X_{1} such that $\left\|U_{1}\right\|=1$ and $\left\|U_{1}^{-1}\right\| \leqslant \alpha^{\prime}$. There exists a finite dimensional subspace Y_{0} of Y containing $y^{(s)}$ and $z^{(t)}$ for each s and t, and an isomorphism V of $I_{1}^{\left(n_{0}\right)}$ with $Y_{0}\left(n_{0}=\right.$ $\operatorname{dim} Y_{0}$) such that $\|v\|=1$ and $\left\|v^{-1}\right\| \leqslant \beta^{\prime}$. There exists a finite dimensional subspace Y_{1} of Y containing $V\left(e^{(j)}\right) \cdot V\left(e^{(r)}\right)$ for $j, r=1,2, \ldots n_{0}$ and an isomorphism V_{1} of $l_{1}^{\left(n_{1}\right)}$ with X_{1}
such that $\left\|v_{1}\right\|=1$ and $\left\|v_{1}^{-1}\right\|$ ₹ β^{\prime}.

$$
\text { Let } U^{-1}\left(x^{(s)}\right)=a^{(s)}, V^{-1}\left(y^{(s)}\right)=b^{(s)}, U^{-1}\left(w^{(t)}\right)=c^{(t)}
$$

and $V^{-1}\left(z^{(t)}\right)=d^{(t)}\left(s=1,2, \ldots s_{0}, t=1,2, \ldots t_{0}\right)$. Define $a_{i k m}$ by
$\left\{a_{i k m}\right\}_{m=1}^{m_{1}} \quad=U_{1}^{-1}\left(U\left(e^{(i)}\right) \cdot U\left(e^{(k)}\right)\right)\left(i, k \quad=1,2, \ldots m_{o}\right)$.
Define $b_{j r n}$ by
$\left\{b_{j r n}\right\}_{n=1}^{n_{1}}=V_{1}^{-1}\left(V\left(e^{(j)}\right) . V\left(e^{(r)}\right)\right)\left(j, r=1,2, \ldots n_{o}\right)$.
Now $\left\|\sum_{s=1}^{S} \sum_{t=1}^{t} \sum^{(s)} \cdot w^{(t)} \otimes y^{(s)} \cdot z^{(t)}\right\|$
$\eta \varepsilon$ Ball Y^{*}
 $\eta \varepsilon$ Ball Y *

$=\left.\sup _{\phi, \psi \varepsilon \text { Ball }}\right|_{l_{\infty}} \sum_{k=1}^{\mathrm{m}} \sum_{\sum_{r=1}^{\mathrm{O}} \hat{\gamma}_{k r}<T\left(f^{(k)}\right), g^{(r)}>\mid}$
where $\gamma_{k r}=\sum_{t=1}^{t} o_{k} C_{k}^{(t)} d_{r}^{(t)}$, and $f^{(k)} \varepsilon 1_{\infty}^{m_{o}}, g^{(r)} \varepsilon 1_{\infty}^{n_{0}}$
are given by

$$
\begin{aligned}
& f_{i}^{(k)}=\sum_{m=1}^{m_{1}} \phi_{m} a_{i k m}\left(i, k=1,2, \ldots m_{o}\right) \\
& g_{j}^{(r)}=\sum_{n=1}^{n_{1}} \psi_{n} b_{j r n}\left(j, r=1,2, \ldots n_{o}\right)
\end{aligned}
$$

and $T \in B\left(I_{\infty}, l_{1}\right)$ is given by $T(u)=\sum_{s=1}^{S}<u, a^{(s)}>b^{(s)}\left(u \in l_{\infty}\right)$.

For each k and $i,\left|f_{i}^{(k)}\right|=\left|\sum_{m=1}^{m_{1}} \phi_{m}{ }_{i k m}\right|$

$$
\begin{aligned}
& \leqslant \sum_{m=1}^{m_{1}}\left|a_{i k m}\right| \quad \text { since } \phi \varepsilon \text { Ball } l_{\infty} \\
& =\left\|U_{1}^{-1}\left(U\left(e^{(i)}\right) \cdot U\left(e^{(k)}\right)\right)\right\| \\
& \leqslant\left\|U_{1}^{-1}\right\|\left\|U\left(e^{(i)}\right)\right\|\left\|U\left(e^{(k)}\right)\right\| \\
& \leqslant \alpha^{\prime} .
\end{aligned}
$$

Thus $\left\|F^{(k)}\right\|_{\infty} \leqslant \alpha^{\prime}$ for each k, and similarly $\left\|g^{(r)}\right\|_{\infty} \leqslant \beta^{\prime}$ for each r. By the remarks following Theorem 4.3, T is 2-absolutely summing with $a_{2}(T) \leqslant k\left\|\sum_{s=1}^{S} a^{(s)} \otimes b^{(s)}\right\|_{\lambda}$

$$
\leqslant K \alpha^{\prime} \beta^{\prime} .
$$

By Theorem 4.4 there exists a Hilbert space H, and operators $S \varepsilon B\left(H, I_{1}\right)$ with $\|S\|=a_{2}(T)$ and $R \varepsilon B\left(l_{\infty}, H\right)$ with $\|R\| \leqslant 1$, such that $T=S_{o} R$. We have

$$
\begin{aligned}
\left\langle T\left(f^{(k)}\right), g^{(r)}\right\rangle & =\left\langle S_{O} R\left(f^{(k)}\right), g^{(r)}\right\rangle \\
& =\left(R\left(f^{(k)}\right), S^{*}\left(g^{(r)}\right)\right) \text { where } S^{*} \text { is the }
\end{aligned}
$$

adjoint of S . Also if $\left|\sigma_{k}\right| \leqslant 1\left(k=1,2, \ldots m_{o}\right)$ and $\mid \tau_{r_{m}} \leqslant n_{n}\left(r=1,2, \ldots n_{o_{t}}\right)$

$$
\left|\sum_{k=1}^{r_{m}^{o}} \sum_{r=1}^{n} \gamma_{k r} \sigma_{k} \sigma_{r}\right| \leqslant\left\|\sum_{t=1}^{\sum_{c}^{o}} c^{(t)} \otimes d^{(t)}\right\|_{\lambda} \leqslant \alpha^{\prime} \beta^{\prime} .
$$

Hence by Grothendieck's inequality,

$$
\begin{aligned}
&\left|\sum_{k=1}^{\mathrm{m}} \sum_{r=1}^{\mathrm{n}} \gamma_{k r}<T\left(f^{(k)}\right), g^{(r)}>\right| \\
&=\quad\left|\sum_{k=1}^{\mathrm{m}} \sum_{r=1}^{\mathrm{n}} \gamma_{k r}\left(R\left(f^{(k)}\right), S^{*}\left(g^{(r)}\right)\right)\right| \\
& \leqslant \quad K \alpha^{\prime} \beta^{\prime} \sup _{k}\left\|R\left(f^{(k)}\right)\right\| \sup _{r}\left\|S^{*}\left(g^{(r)}\right)\right\|
\end{aligned}
$$

$\leqslant K \alpha^{\prime} \beta^{\prime} \alpha^{\prime} a_{2}(T) \beta^{\prime}$
$\leqslant \quad K^{2} \alpha^{\prime}{ }^{3} \beta^{\prime}{ }^{3}$
Hence $\left\|\sum_{S=1}^{S} \sum_{t=1}^{t} X^{(s)}{ }_{W}{ }^{(t)} \otimes y^{(s)} z^{(t)}\right\| \leqslant K^{2} \alpha^{3} \beta^{3}$, and the proof is complete.

Suppose now that $l_{1}=\left\{\left\{x_{n}\right\}_{n=0}^{\infty}: x_{n} \varepsilon k, \sum_{n=0}^{\infty}\left|x_{n}\right|<\infty\right\}$ and let l_{1} be equipped with any bounded multiplication. By our remarks at the beginning of this section, l_{1} is an $L_{1, \alpha}$ space for each $\alpha>1$, and it follows that $I_{1} \otimes_{\lambda} I_{1}$ is a normed-algebra. In particular, if l_{1} is equipped with convolution multiplication, then $l_{1} \otimes_{\lambda} l_{1}$ is a $\left(K^{2}\right)$-normed algebra.

However $l_{1} \otimes_{\lambda} l_{1}$ with convolution multiplication is not a (1)-normed algebra. For as in the first section of this chapter we may represent an element of $l_{1} \otimes_{\lambda} l_{1}$ by an infinite matrix $\left(a_{i j}\right)_{i, j=0}^{\infty}$. Then if $w \sim\left(a_{i j}\right)$ and $z \sim\left(b_{i j}\right)$, $\mathrm{w} . \mathrm{z} \sim\left(\mathrm{a}_{\mathrm{ij}}\right) *\left(\mathrm{~b}_{i j}\right)$ where * represents matrix convolution. First take $k=\mathbb{R}$,
let $w_{\sim}\left[\begin{array}{cccc}1 & 1 & 0 & . \\ 1 & -1 & 0 & . \\ 0 & 0 & & \\ \cdot & \cdot & \end{array}\right] \quad$ and let $z \sim\left[\begin{array}{ccccc}1 & 0 & 1 & 0 & . \\ 0 & 0 & 0 & 0 & . \\ 1 & 0 & -1 & 0 & . \\ 0 & 0 & 0 & & \\ . & \cdot & . & & \end{array}\right]$.

Then $\|w\|_{\lambda}=2=\|z\|_{\lambda}$.

Now w. z ~

$$
\left[\begin{array}{rrrrrr}
1 & 1 & 1 & 1 & 0 & \cdot \\
1 & -1 & 1 & -1 & 0 & \cdot \\
1 & 1 & -1 & -1 & 0 & \cdot \\
1 & -1 & -1 & 1 & 0 & \cdot \\
0 & 0 & 0 & 0 & & \\
0 & 0 & \cdot & \cdot & &
\end{array}\right]
$$

Therefore $\|w \cdot z\|_{\lambda}=8$.
Now take k to be the complex field
Let $z_{1} \sim\left[\begin{array}{cccc}1 & 1 & 1 & 0 \\ 1 & w & w^{2} & 0 \\ 0 & 0 & 0 & \cdot \\ \cdot & \cdot & \cdot & \end{array}\right], w^{3}=1, w \neq 1$. Then $\left\|_{1}\right\|_{\lambda}=4$.

Let $z_{2} \sim\left[\begin{array}{cccccccccc}1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & \cdot \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdot \\ 1 & 0 & 0 & w & 0 & 0 & w^{2} & 0 & 0 & \cdot \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdot \\ . & \cdot & \cdot & . & . & . & . & . & . & \end{array}\right]$
Then $\left\|z_{2}\right\|_{\lambda}=\left\|z_{1}\right\|_{\lambda}=4$ and
$\begin{array}{lllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & .\end{array}$ $1 \quad \mathrm{w} \quad \mathrm{w}^{2} 1 \mathrm{w} \mathrm{w}^{2} 1 \mathrm{w} \quad \mathrm{w}^{2} 0 \ldots$
$z_{1} \cdot z_{2}$ ~

By our remarks on finite tensor algebras, we have $\sqrt{3}\left\|\mathrm{z}_{1} \mathrm{z}_{2}\right\|_{\lambda} \geqslant 9 \sqrt{4}=18$.

We may similarly construct $z_{3}, z_{4}, \ldots, z_{n} \varepsilon l_{1} \otimes_{\lambda} l_{1}$
such that $\left\|z_{i}\right\|_{\lambda}=\left\|z_{1}\right\|_{\lambda}=4$ and
$\sqrt{3}\left\|z_{1} z_{2} \ldots z_{n}\right\|_{\lambda} \geqslant 3^{n} 2^{n / 2}$. Now if $l_{1} \otimes_{\lambda} l_{1}$ is (l)-normed,
then $\quad 3^{n} 2^{n / 2} \leqslant \sqrt{3} 4^{n}$, i.e. $18^{n} \leqslant 3.16^{n}$ for all n. This is a contradiction.

In this chapter we shall discuss measures orthogonal to injective tensor products of uniform algebras. Throughout this chapter the scalar field will be C.

Brian Cole has shown that if A is the bidisc algebra (the space of continuous functions on $\bar{\Delta}^{2}$ which are analytic in Δ^{2}, where Δ is the open unit ball in C), then any measure μ which is orthogonal to A has a unique decomposition

$$
\mu=\sigma+\tau+\nu
$$

where σ is concentrated on $E x T$, with $E \sigma$-compact and $m(E)=0, \tau$ is concentrated on $T \times F$, with $F \sigma$-compact and $m(F)=0$, and $\nu \ll$ a representing measure for some point of Δ^{2}, and σ, τ and ν are orthogonal to A. Here m represents Lebesgue measure on the unit circle T.

In [16], Otto Bekken obtained a Cole-type decomposition of orthogonal measures for the algebras $A(U \times V)$ and $R\left(K_{1} \times K_{2}\right)$. By $A(U \times V)$ we mean the algebra of continuous functions on $\bar{U} x \bar{V}$ which are analytic in $U X V$, where U and V are bounded open subsets of C. $R\left(K_{1} \times K_{2}\right)$ is the uniform closure on $K_{1} \times K_{2}$ of the rational functions with singularities off
$K_{1} \times K_{2}$, where K_{1} and K_{2} are compact sets in C. Bekken's results state that if μ is a measure orthogonal to $A(U \times V)$ then μ has a unique decomposition
$\mu=\sigma+\tau+\nu$ where σ, τ and ν are orthogonal to $A(U \times V)$ and σ is concentrated on $E x \partial V$, with E a nullset for $A(U)^{\perp}$,
τ is concentrated on $\partial U x F$, with F a nullset for $A(V)^{\perp}$, and v belongs to the band of measures generated by the representing measures for points of $U \mathrm{X} V$.

If μ is a measure orthogonal to $R\left(K_{1} \times K_{2}\right)$ then μ has a unique decomposition

$$
\mu=\sigma+\tau+\nu \quad \text { where } \sigma, \tau \text { and } \nu \text { are orthogonal to }
$$ $R\left(K_{1} \times K_{2}\right)$ and σ is concentrated on $E \times K_{2}$, with E a nullset for $R\left(K_{1}\right)^{\perp}$,

τ is concentrated on $K_{1} \times F$, with F a nullset for $R\left(K_{2}\right)^{\perp}$, and v belongs to the band of measures generated by the representing measures for $Q_{1} \times Q_{2}$, where Q_{i} is the set of non-peak points for $R\left(K_{i}\right)$.

We shall obtain an analogous decomposition for the injective tensor product of a uniform algebra fulfilling certain conditions, with $A(U)$, where U is bounded and open in C. (A(U) is the space of continuous functions on \bar{U} which are analytic in U, regarded as a uniform algebra on ∂U).

If A is a uniform algebra on a compact Hausdorff space x, we denote the space of (regular Borel complex) measures
on X by $M(X)$. We denote the set of measures orthogonal to A by A^{\perp}. A Borel set E in X is a nullset for A^{\perp} if for every $\mu \varepsilon A^{\perp} \quad \mu_{E}=0$, where μ_{E} is the restriction of μ to E. If $\phi \varepsilon \Phi_{A}$, we write M_{ϕ} for the set of representing measures for ϕ. We say a measure μ is completely singular if it is singular to M_{ϕ} for every $\phi \varepsilon \Phi_{A}$.

We say a subset E of X is a peak set for A if there exists $f \in A$ such that $f(x)=1(x \varepsilon E)$ and $|f(x)|<l(x \varepsilon X \backslash E)$. A point x of X is called a peak point for A if $\{x\}$ is a peak set for A. A peak set E satisfying $\left.A\right|_{E}=C(E)$ is called a peak interpolation set.

We now state two results from the theory of uniform algebras. The first result is a simplified form of Lemma 2.2.7 of [16].

Lemma 5.1 Let A be a uniform algebra on a compact Hausdorff space $\mathrm{X} . \operatorname{Let} \phi_{1}, \phi_{2}, \ldots \phi_{\mathrm{m}}{ }^{\varepsilon} \quad \Phi_{\mathrm{A}}$ have representing measures $\mu_{1}, \mu_{2}, \ldots \mu_{m}$ Let E be an F_{σ} set such that $M_{\phi_{i}}(E)=0$ for $i=1,2, \ldots m$. Then there is a sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ in A such that $\left\|f_{n}\right\| \leqslant 1, \quad f_{n} \rightarrow 1$ pointwise on E, and $f_{n} \rightarrow 0$ weak* in $L_{\infty}\left(\mu_{i}\right)$ for each i.

Theorem 5.2 (Theorem 2.12.7, [17]). Let A be a uniform algebra on a compact metric space X, and let E be a closed subset of X. E is a peak set for A if and only if $\mu_{E} \varepsilon A^{\perp}$ for each
$\mu \varepsilon A^{\perp}$. E is a peak interpolation set if and only if $\mu_{E}=0$. for all $\mu \in A^{\perp}$.

We now discuss the theory of bands.

Definition: Let X be a compact Hausdorff space. A norm-closed linear subspace M of $M(X)$ is a band if whenever $\mu \varepsilon M$ and $\lambda \ll|\mu|, \lambda \varepsilon M$.

For an arbitrary subset S of $M(X)$, we write S^{\prime} for the set of measures singular to every measure in S. We easily have that S^{\prime} is a band.

The following result is well known.

Theorem 5.3 Let S be a band. Then $M(X)=S \oplus S^{\prime}$.

Proof: Let $\mu \varepsilon M(X)$. Let $K=\sup \left\{|\mu|(G): \mu_{G} \varepsilon S\right\}$. Choose F_{n} such that $\mu_{F_{n}} \varepsilon S$ and $|\mu|\left(F_{n}\right) \rightarrow K$. Let $F=\bigcup_{n=1}^{\infty} F_{n}$. Then $\mu_{F} \ll \sum_{n=1}^{\infty}\left|\mu_{F_{n}}\right| / 2^{n} \varepsilon S$. And $|\mu|(F) \geqslant|\mu|\left(F_{n}\right)$ for all n, therefore $|\mu|(F)^{n=1}=K$. Also if $\mu_{G} \varepsilon S, \mu_{F} \cup G^{\ll}\left|\mu_{F}\right|+\left|\mu_{G}\right| \varepsilon$ s. Hence $|\mu|(F \cup G)=|\mu|(F)$, so $|\mu|(G \backslash F)=0$. Now let $\gamma \varepsilon$ S. There exists a subset H of X such that $\mu_{H} \ll|\gamma|$ and $\mu_{X \backslash H}{ }^{\perp}|\gamma|$. So $\mu_{H} \varepsilon S \& \mu_{H \backslash F}=0$. So $\mu_{X \backslash F}{ }^{\perp} \gamma$, and $\mu=\mu_{F}+\mu_{X \backslash F} \varepsilon S+S^{\prime}$.

Corollary If S is a band, then $S^{\prime \prime}=S$. For if $\mu \varepsilon S^{\prime \prime}$ we have $\mu=\nu+\eta$ where $\nu \varepsilon S, \eta \varepsilon S^{\prime}$. Then $\eta=\mu-\nu \varepsilon S^{\prime \prime}$. Therefore $\eta=0$ and $\mu \varepsilon S$.

Corollary If S is an arbitrary subset of $M(X), S^{\prime \prime}$ is the smallest band containing S.

Now let A and B be uniform algebras on compact metric spaces X and Y respectively. Let $C=A \stackrel{\sim}{\otimes} B$, regarded as a uniform algebra on $\mathrm{X} \times \mathrm{Y}$. Let $\mathrm{S}_{1}=\{\lambda \varepsilon \mathrm{M}(\mathrm{XX} \mathrm{Y}): \lambda$ is concentrated on $E X Y, E$ a nullset for $\left.A^{\perp}\right\}$. Then S_{1} is a band, and
$S_{1}^{\prime}=\left\{\lambda \varepsilon M(X \times Y):|\lambda|(E \times Y)=0\right.$ for all nullsets E for $\left.A^{\frac{1}{1}}\right\}$. We observe that if λ is concentrated on $E x Y$, when E is a nullset for A^{\perp}, then we may suppose without loss of generality that E is σ-compact. For there is a σ-compact subset Ω of E $\mathrm{x} Y$ such that $|\lambda|((E \mathrm{X} Y) \backslash \Omega)=0$. Then if p is the projection of X x Y onto $\mathrm{X}, \mathrm{p}(\Omega)$ is σ-compact and $\Omega \subset \mathrm{p}(\Omega) \mathrm{X} \mathrm{Y} \subset \mathrm{E} \mathrm{X} \mathrm{Y}$. So λ is concentrated on $p(\Omega) x Y$.

We also define a band
$S_{2}=\left\{\mu \varepsilon M(X \times Y): \mu\right.$ is concentrated on $X \times F, F$ a nullset for $\left.B^{\perp}\right\}$. then
$S_{2}^{\prime}=\left\{\mu \varepsilon M(X \times Y):|\mu|(X \times F)=0\right.$ for all nullsets F for $\left.B^{\perp}\right\}$.

We now have $M(X)=S_{1} \oplus S_{1}{ }^{\prime}$

$$
\begin{array}{ll}
\text { and } & M(X)=S_{2} \oplus S_{2}^{\prime} \\
\text { so } & M(X)=S_{1}+S_{2}+\left(S_{1}^{\prime} \cap S_{2}^{\prime}\right)
\end{array}
$$

and in fact

Lemma $5.4 \quad C^{\perp}=\left(C^{\perp} \cap S_{1}\right) \oplus\left(C^{\perp} \cap S_{2}\right) \oplus\left(C^{\perp} \cap S_{1}^{\prime} \cap S_{2}^{\prime}\right)$.

Proof: Suppose $\lambda \varepsilon C^{\perp} \cap S_{1}, \mu \varepsilon C^{\perp} \cap S_{2}, \nu \varepsilon C^{\perp} \cap S_{1}{ }^{\prime} \cap S_{2}^{\prime \prime}$ and $\lambda+\mu+\nu=0$.

Suppose λ is concentrated on $E \mathrm{X} Y, \mathrm{E} \sigma$-compact and a nullset for A^{\perp} and μ is concentrated on $X \times F, F \sigma$-compact and a nullset for B^{\perp}. Then $|\nu|((E \times Y) U(X \times F))=0$, and so $v=0$. Now we have $\lambda=-\mu$ is concentrated on $\mathrm{E} \times \mathrm{F}$. There exist closed sets E_{n} and F_{n} such that $E \times F=\bigcup_{n=1}^{\infty} E_{n} \times F_{n}$. For each n, E_{n} is a peak interpolation set for A, and F_{n} is a peak interpolation set for B. Therefore $E_{n} \times F_{n}$ is a peak interpolation set for C, and so a nullset for C^{1}. Therefore $|\lambda|\left(E_{n} \times F_{n}\right)=0$, and hence $|\lambda|(E \times F)=0$. So $\lambda=\mu=0$.

Now let $Q_{1}=\Phi_{A} \backslash P_{A}$ be the non-peak points for A, and let $Q_{2}=\Phi_{B}>P_{B}$ be the non-peak points for B. Let M be the band generated by the representing measures for points
of $Q_{1} \times Q_{2}$. We wish to find conditions such that $\mathrm{C}^{\perp} \cap \mathrm{S}_{1}{ }^{\prime} \cap \mathrm{S}_{2}^{\prime}$ will equal $\mathrm{C}^{\perp} \cap \mathrm{M}$. We always have the following.

Lemma 5.5 (Lemma 3.1.7, [16]). $\mathrm{M} \subset \mathrm{S}_{1}{ }^{\prime} \cap \mathrm{S}_{2}{ }^{\prime}$.

Proof: We show that if ν is a representing measure for a point (ϕ, ψ) in $Q_{1} \times Q_{2}$, then $v \in S_{1}{ }^{\prime} \cap S_{2}{ }^{\prime}$.
Let E be a nullset for A^{\perp}. We may suppose E is σ-compact. Let $E=\bigcup_{i=1}^{\infty} E_{i}$, where E_{i} is compact. Each E_{i} is a peak interpolation set for A. Let $f \varepsilon A$ peak on E_{i}. Then $\phi(f)^{n}=\int f^{n} \otimes 1 d \nu \rightarrow \nu\left(E_{i} x Y\right)$. Since ϕ is a non-peak point, $\phi(f)^{n} \rightarrow 0$. Hence $\nu\left(E_{i} X Y\right)=0$ for each i, and so $\nu(\mathrm{E} X \mathrm{Y})=0$ and $\nu \varepsilon \mathrm{S}_{1}{ }^{\prime}$. Similarly $\nu \varepsilon \mathrm{S}_{2}{ }^{\prime}$.

Definition: If A is a uniform algebra on a compact Hausdorff space, then ϕ and $\psi \in \Phi_{A}$ are in the same part if $\|\phi-\psi\|<2$.

Definition: If A is a uniform algebra on a compact Hausdorff space X, then a band $M \subset M(X)$ is a reducing band for A if whenever $\mu \varepsilon A^{\dagger}$ decomposes $\mu=\mu_{a}+\mu_{s}$ relative to M, μ_{a} and $\mu_{s} \varepsilon A^{\perp}$.

Now take A to be a uniform algebra on a compact Hausdorff space X, and let R be a Bore subset of $\Phi_{A} \backslash P_{A}$, the set of
non-peak points for A. We denote by M_{R} the band of measures generated by the representing measures for points of R.

Lemma 5.6 (Proposition 2.1.12,[16]). With A, X and R as above, M_{R} is a reducing band for A.

Proof: Let $\mu \varepsilon A^{\perp}$ have Glicksberg-Wermer decomposition $\mu=\mu_{0}+\sum_{n=1}^{\infty} \mu_{n}$ where μ_{0} is completely singular and $\mu_{n} \ll \lambda_{n}$ where λ_{n} is a representing measure for some nonpeak point $\phi_{n} \varepsilon \Phi_{A}$. The μ_{n} 's are pairwise mutually singular and $\mu_{n} \varepsilon A^{\perp}, n=0,1,2, \ldots$. . Let D consist of those indices n for which ϕ_{n} belongs to the same part as some point in R. For each $n \in D$, there exists a representing measure ν_{n} for a point in R such that $\lambda_{n} \ll \nu_{n}$ (Corollary 6.1.2, [17]). Let $\mu_{a}=\sum_{n \varepsilon D} \mu_{n} \varepsilon M_{R}$. For each $n \notin D, \lambda_{n}$ is singular to all representing measures for points in R (Theorem 6.2.2,[17]), so $\mu_{n} \quad \varepsilon M_{R}^{\prime}$. Let $\mu_{S}=\mu_{0}+\sum_{n \neq D} \mu_{n} \quad \varepsilon M_{R}{ }^{\prime}$. The decomposition $\mu=\mu_{a}+\mu_{s}$ is the decomposition of μ relative to M_{R} and μ_{a} and $\mu_{s} \varepsilon A^{\perp}$, so M_{R} is reducing.

We can now obtain our decomposition in the desired form.

Theorem 5.7 Let A be a uniform algebra on a compact metric space X, such that A has no completely singular annihilating
measures except zero, A^{\perp} is (norm) separable, and A has countably many non peak point parts. Let Q be the set of non-peak points for A. Let U be a bounded open subset of the complex plane, and let $C=A \check{\otimes} A(U)$. Let $v \in C^{\perp}$ satisfy

$$
\begin{aligned}
& |\nu|(E \times \partial U)=0 \text { if } E \text { is a nullset for } A^{\perp}, \\
& |\nu|(X \times F)=0 \text { if } F \text { is a nullset for } A(U)^{\perp} .
\end{aligned}
$$

Then $\quad \nu \varepsilon M=M_{Q \times U} \cdot$

Proof : Since M is a reducing band for C, we may assume that $\nu \varepsilon M^{\prime}$. We show first that if $g \varepsilon A$ and $h \varepsilon C(\partial U)$, then

$$
\int g(x) h(z) d v(x, z)=0 .
$$

By Lemma 1.1 of [18], $C(\partial U)$ is the closed linear span of $A(U)$ and the functions $l /\left(z-z_{0}\right)\left(z_{0} \varepsilon U\right)$. It is therefore enough to show that

$$
\int g(x) /\left(z-z_{0}\right) d v(x, z)=0\left(g \varepsilon A, z_{o} \varepsilon U\right)
$$

Define $\lambda \varepsilon M(X)$ by $\lambda(E)=\int \quad l /\left(z-z_{0}\right) d \nu(x, z)$. Ex $\partial \mathrm{U}$
Then if E is a nullset for $A^{\perp}, \lambda(E)=0$. Since A has no non-zero completely singular annihilating measures and countably many non-trivial parts, it follows that $\lambda \varepsilon M_{Q}$. Hence there exist $\alpha_{i} \geqslant 0$, and $\phi_{i} \varepsilon Q$ with representing measures μ_{i} such that $\lambda \ll \mu=\sum_{i=1}^{\infty} \alpha_{i} \mu_{i}$ and $\sum_{i=1}^{\infty} \alpha_{i}<\infty$. There exists $k \in L_{1}(\mu, X)$ such that $d \lambda=k d \mu$.

Therefore

$$
i \sum_{i=1}^{\infty} \alpha_{i} \int|k(x)| d \mu_{i}(x)=\int|k(x)| d \mu(x)<\infty .
$$

Given $\varepsilon>0$, there exists $n_{0} \varepsilon \mathbb{P}$ such that

$$
\sum_{i=n_{0}^{+1}}^{\infty} \alpha_{i} \delta|k(x)| d \mu_{i}(x)<\varepsilon /\|g\|
$$

Now let $\tau \varepsilon M(\partial U)$ be a representing measure for z_{o}. Then $\mu_{i} \otimes \tau \varepsilon M(X x \partial U)$ is a representing measure for (ϕ_{i}, z_{o}). ν is orthogonal to $M_{\left(\phi_{i}, z_{o}\right)}$ for $i=1,2, \ldots n_{o}$. It follows from Lemma 2.7.4 of [17]that there exists an F_{σ} set E in $X x \quad \partial U$ such that ν is concentrated on E, and $M_{\left(\phi_{i}, z_{o}\right)}(E)=0$ for $i=1,2, \ldots . n_{0}$. By Lemma 5.1, there is a sequence $\left\{f_{n}\right\}$ in C such that $\left\|f_{n}\right\| \leqslant l, f_{n} \rightarrow l$ pointwise on E, and $f_{n} \rightarrow 0$ weak* in $L_{\infty}\left(\mu_{i} \otimes \tau\right)$ for $i=1,2, \ldots, n_{0}$.

Now the function $g(x)\left(f_{n}(x, z)-f_{n}\left(x, z_{0}\right)\right) /\left(z-z_{0}\right)$ is in C. Therefore $\int_{X x \partial U} g(x) f_{n}(x, z) /\left(z-z_{o}\right) d \nu(x, z)$

$$
\begin{aligned}
& =\int_{X x \partial U} g(x) f_{n}\left(x, z_{o}\right) /\left(z-z_{0}\right) d v(x, z) \\
& =\int_{X} g(x) f_{n}\left(x, z_{o}\right) d \lambda(x)
\end{aligned}
$$

Since v is concentrated on E,

$$
\int g(x) f_{n}(x, z) /\left(z-z_{0}\right) d v(x, z) \rightarrow \quad \int g(x) /\left(z-z_{0}\right) d v(x, z)
$$

But $\left|\int_{X} g(x) f_{n}\left(x, z_{o}\right) d \lambda(x)\right|$
$=\left|\sum_{i=1}^{\infty} \alpha_{i} \int_{X} g(x) k(x) f_{n}\left(x, z_{o}\right) d \mu_{i}(x)\right|$
$\leqslant \quad \sum_{i=1}^{n} \alpha_{i}\left|\delta_{\partial U}\left(\int_{X} g(x) k(x) f_{n}(x, z) d \mu_{i}(x)\right) d \tau(z)\right|+\|g\| \varepsilon /\|g\|$
$\rightarrow 0+\varepsilon$.

It follows that $\int g(x) /\left(z-z_{0}\right) d \nu=0$, and hence

$$
\int g(x) h(z) d \nu=0 \text { for all } g \varepsilon A, h \varepsilon C(\partial U) .
$$

$$
\begin{aligned}
& \text { We now disintegrate } v \text {, and we get } \\
& \int_{X x \partial U} F(x, z) d v(x, z)=\int_{\partial U}\left(\int_{X} F(x, z) d \eta_{z}(x)\right) d \sigma(z) .
\end{aligned}
$$

The mapping $z \rightarrow \eta_{z}$ is weak* measurable, and σ is the compression of $|\nu|$ onto ∂U, i.e. $\sigma(F)=|\nu|(X \times F)$ for each Bore set F. Therefore $\sigma(F)=O$ for all nullsets F for $A(U)^{\perp}$, and so $\sigma \varepsilon M_{\mathrm{U}}$. We now have

$$
\int_{\partial U}\left(\int_{X} g(x) d \eta_{z}(x)\right) h(z) d \sigma(z)=0 \text { for all } g \varepsilon A, h \in C(\partial U) .
$$

It follows that $\eta_{z} \varepsilon A^{1}$ for σ-almost all z, since A is separable. Since A^{\perp} is separable, we may choose a countable dense set $\left\{\mu_{n} ; n \in \mathbb{P}\right\}$ in A^{\perp}. Let $\gamma=\sum_{n=1}^{\infty}\left(1 / 2^{n}\left\|\mu_{n}\right\|\right)\left|\mu_{n}\right|$ εM_{Q}. Then if $\mu \varepsilon A^{\perp}$, and E is a Bore set, $\gamma(E)=0$ implies $\left|\mu_{n}\right|(E)=0$ for all $n \varepsilon \mathbb{P}$, and so $\mu(E)=0$. Therefore $\mu \ll \gamma$ for all $\mu \varepsilon A^{\perp}$.

We thus have that $n_{z} \ll \gamma$ for $\sigma-$ almost all z. Now define H by $d \eta_{z}(x)=H(x, z) d \gamma(x)$. Also define h such that $h(x, z) H(x, z)=|H(x, z)|$ and $|h(x, z)|=1$. Then $\int_{\partial U}\left(\int_{X}|H(x, z)| d \gamma(x)\right) d \sigma(z)$

$$
\begin{aligned}
& =\int_{\partial U}\left(\int_{X} h(x, z) d n_{z}(x)\right) d \sigma(z) \\
& =\int_{X x \partial U} h(x, z) d \nu(x, z)<\infty .
\end{aligned}
$$

And $d \nu(x, z)=H(x, z) d \gamma(x) d \sigma(z)$, so $\quad \nu \ll \gamma \otimes \sigma \varepsilon M$.

Combining this result with Lemmas 5.4 and 5.5 , we now have

Theorem 5.8 Let A be a uniform algebra on a compact metric space X, such that A has no completely singular annihilating measures except zero, A^{\perp} is (norm) separable, and A has countably many non-trivial parts. Let Q be the set of non-peak points for A. Let U be a bounded open set in the complex plane, and let $C=A \check{\otimes} A(U)$. Then any measure μ in C^{\perp} has a unique decomposition

$$
\mu=\sigma+\tau+\nu, \text { where } \sigma, \tau \text { and } \nu \varepsilon C^{\perp}
$$

σ is concentrated on $E x$, with E a nullset for A^{\perp}, τ is concentrated on $X \times F$, with F a nullset for $A(U)^{\perp}$, and v belongs to the band of measures generated by the representing measures for points of $Q \times U$.

REFERENCES

1. A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. (1966).
2. R. Schatten, A theory of cross spaces, Ann. Math. Studies, 26 (1950).
3. J. Tomiyama, Tensor products of commutative Banach algebras, Tôhoku Math. J., 12 (1960),147-154
4. K. Bierstedt, Function Algebras and a theorem of Mergelyan for vector-valued functions, Various Publications Series No.9, Aarhus University, l-lO.
5. L. Schwarz, Théorie des distributions à valeurs vectorielles, 1, Ann. Inst. Fourier, 7 (1957),1-142.
6. L. Waelbroeck, Duality and the injective tensor product, Math. Ann.,163 (1966), 122-126.
7. P. Enflo, A counterexample to the approximation problem in Banach spaces, Acta Math., 130 (1973), 309-317.
8. A.M. Davie, The approximation problem for Banach spaces, Bull. London Math. Soc., 5 (1973), 261-266.
9. N.Th. Varopoulos, Sur les quotients des algèbres uniformes, C.R. Acad. Sci. Paris, 274 (A) (1972), 1344.
10. N.Th. Varopoulos, Sur le produit tensoriel des algèbres normées, C.R. Acad. Sci. Paris, 276 (A) (1973),1193-1195.
11. A.M. Davie, Quotient algebras of uniform algebras, J. London Math. Soc. (2), 7 (1973), 31-40.
12. J.E. Littlewood, on bounded bilinear forms in an infinite number of variables, Quart. J. Math. Oxford, 1 (1930) 164-174.
13. J. Lindenstrauss and A. Pelczynski, Absolutely summing operators in \mathcal{L}_{p} spaces and their applications, Studia Math., 29 (1968), 275-326.
14. J. Lindenstrauss and Lior Tzafriri, Classical Banach spaces, Springer, New York, 1973.
15. A. Grothendieck, Resumé de la théorie metrique des produits tensoriels topologiques, Bol. Soc. Mat. Sao Paulo, 8 (1956), l-79.
16. O.B. Bekken, Products of algebras on plane sets, U.C.L.A. thesis, 1972.
17. T.W. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, New Jersey, 1969.
18. A.M. Davie, Bounded approximation and Dirichlet sets, J. Funct. Analysis, 6 (1970), 460-467.
