
TENSOR PRODUCTS OF BANACH SPACES 

by Hamish K. Milne 

Presented for the degree of 

Doctor of Philosophy in Mathematics 

Mathematical Institute 

University of Edinburgh July 1974. 



ACKNOWLEDGEMENTS 

I should like to express my thanks to my supervisor, 

Dr. A. M. Davie, whose constant help and encouragement 

have been greatly appreciated. I am also grateful to 

Professor F. F. Bonsall who made it possible for me to 

come to Edinburgh. Finally, I should like to thank the 

Carnegie Trust, who provided my Scholarship. 



ABSTRACT 

Chapter one consists of a general discussion of 

tensor products. 

Chapter two is concerned with the relationship between 

tensor products and the approximation property. In 

Theorem 2.1 we give an equivalent condition to the 

approximation property which is due to Grothendieck. 

In Theorem 2.5 we prove that every complex Banach space 

is isometrically isomorphic to a complemented subspace 

of a uniform algebra. From this, we prove in Theorem 2.6 

that there exists a uniform algebra not having the 

approximation property. Tomiyama has shown that if A and B 

are semi -simple commutative Banach algebras, and either 

A or B has the approximation property, then A ® B is 

semi -simple. In Theorem 2.8 we establish a converse to 

this result, namely that if A is a commutative Banach algebra 

not having the approximation property, then there is a uniform 

algebra B such that A ® B is not semi -simple. We next 

discuss the c- product and the slice product, and their 

relationships with the injective tensor product and with 
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the approximation property. Then, in Theorem 2.11, 

we prove that a uniform algebra A has the approximation 

property if and only if A ® B = A # B for all uniform 
algebras B. 

In chapter three we consider injective algebras. 

Using techniques similar to those used in the proof of 

Theorem 2.5, we give a proof in Theorem 3.2 of 

Varopoulos's characterisation of injective commutative 

Banach- algebras. This states that a commutative Banach- 

algebra A is injective if and only if there exists a 

uniform algebra B, a bounded algebra homomorphism h of 

B onto A, and a bounded linear operator j of A into B 

such that hoj = IA. In Theorem 3.4 we prove a 

sharpening of Varopoulos's result that a normed -algebra 

is injective if and only if its injective tensor product 

with any normed- algebra is a normed -algebra. 

Chapter four is concerned with the question, 

also considered in chapter three, of whether the injective 

tensor product of two normed- algebras is a normed- algebra. 

We show that this is the case for the tensor product 
N./ 

1 ® lq (where p or q 4 2), and for the tensor product 

of two Banach- algebras which are Li spaces. 
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In chapter five we consider measures orthogonal 

to injective tensor products of uniform algebras, and 

we obtain an analogue of Cole's decomposition theorem 

for orthogonal measures to the bidisc algebra. 

Through a general study of bands, we set up the 

decomposition in Lemma 5.4, and prove that this 

decomposition is of the form we want in Theorem 5.7. 

This then gives us our main result in Theorem 5.8. 
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CHAPTER ONE 

In this chapter we discuss some of the basic properties 

of tensor products of normed spaces and Banach spaces. All 

the results of this chapter are well -known. 

Definition: If X and Y are vector spaces over k (where k is 

the real or complex field), let Sp(XxY) denote the vector 

space over k which has the elements of XxY as a basis. 

Let J be the subspace of Sp(XxY) generated by the elements: 

(ax + ßx;y) -a (x,y) -ß (x;y) , 

and (x,ay + ßy') -a (x,y) -ß (x,y') , 

where x, x'cX, y, y'cY, and a, ßsk. We define the tensor 

product X ® Y of X and Y to be the vector space Sp(XxY) /J. 

We write x 0 y for (x,y) + J. 

We have: (ax + ßx') ® y = a (x ® y) + (3,(x' ® y) 

and x 0 (ay + ßy') = a (x ® y) +ß (x 0 y') 

where x, x'cX, y, y'EY, and a,ßsk. Also x ® y = O if and only 

if x = O or y = O. 
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If X and Y are algebras over k, then X 0 Y becomes an 

algebra under the multiplication: 

n m n m 
( E x.® y. ) . ( E x! ® y! )= E E x.x! ® y.y! . 

i=1 
1 1 

j=1 J J i=lj=1 1 J 1 J 

X 0 Y is then commutative if X and Y are, and it has a i if 

both X and Y have a 1. 

Crossnorms on X 0 Y 

We now take X and Y to be normed spaces. We shall denote 

the closed unit ball of X by Ball X, and the topological dual 

of X by X. If a is a norm on X O Y, we shall denote the space 

(X ® Y,a) by X ®aY. 

Definition: If a is a norm on X ® Y, then a is said to be a 

crossnorm if 11 x®yH a= H x11 H yH for all xEX, yeY. 

n 
Definition: If a is a norm on X ® Y such that for each E fi0 

gi 
i =1 

n n m 
c X* ® Y*, E f.0 g.1L,= m sup IE E f.(xj)g(yj)I <, 

i=1 
1 1 

IJElxj® yjIL4li=1 j=1 
1 1 

then a' is a norm on X *® Y *, called the associate of a. 

There are two important crossnorms on X ® Y which we shall 

be concerned with, and which we now define. 
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Definition : The projective norm y on X ® Y is given by: 
n n 

IIzIIY =inf {E IIxiIIllYill z= Exi ®yi,xieX,yicY }. 
i =1 i =1 

The injective norm X on X ® Y is given by: 

n 
n 

H z II 
x= sup I E f(x)g(y) 

I 

if z = E xi® yi. 
f e Ball X * i=1 i=1 
ge Ball Y* 

Y and A are both crossnorms on X ® Y, and A y. y is the 

greatest crossnorm on X 0 Y, for if a is any crossnorm, 
n n 

and z e X ® Y, then if z=iElxi® 
yi' II z II a il II xi® yi II a 

n 
= E I I xi I I I I 

Yi 
I I Hence we have 

II z I I a4 I I z I 

i=1 

Also X is the least crossnorm whose associate is a 

crossnorm, for if a is a crossnorm, then its associate a' 

is a crossnorm if and only if a A. To see this, suppose 

that a A. Then for f e X *, g e Y *, 
n 

IIfII IIgli = n sup I E f(xi)g(yi)I 
I I 

E xi® y.11 
I 

1 i =1 
i =l 

n 
n sup 

I Ef (xi) g(Yi) I 

I I 
E xi® yi I I a 1 i=1 

i=1 

= Ii f® g II a, 

I I xsup Y 11 1 I f (x) g(Y) I 

a 

= IIfil IIgII 
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So a' is a crossnorm. Now if a' isngiven to be a crossnorm, 

then H fIi II gll =ll f® g IL,a Ijlf(xi)g(yi) 1 

n n 
so II E xi® yil a I E f(xi)g(yi) 

I 

i=1 i=1 

II f Il lI gII 

Therefore a X. 

11 E xi® yi Iu 
i=1 

for all f and g. 

Also the injective norm on X* ® Y* is the associate 
n 

of the projective norm on X ® Y. For if E fi® giE X* ® Y *, 
i =1 

n n 
then H E f.® g. I, . sup I E f. (x)g. (y) I 

i=1 1 
ly41 i=1 

1 1 

n 
= su II E fi f(x)g. H 

I I 
xl 41 i=1 

n 

= IIsXI 
I iElf i (x) U (gi) I 

ipE Ball Y** 
n 

= sup 
I E I (fi) l (gi) I 

(PE Ball X ** i =1 
tPE Ball Y ** 

n 
= H Efi® gill . 

n m m n 
And I E E f. (x)g (Y.) 

I 

E I E f. (x)g (y) I 

i=1j=l 
1 J 1 J 

j=1 i=1 
1 J 1 

m n 
jElII xj II II Yj II IliElfi® gillx 

n n 
Therefore I 

I E f i® gi I l, ,4 I I E f.0 gi I la , and we have y' =a . 

i=1 i=1 



If X and Y are normed algebras, then X ® Y is a normed 
n m 

algebra, for if z1 = E x. ®y.1 and z2 =E x' ® y', 
i=1 1 

n m 
II z1z2 E E ll xx' 

II H YY! II 

i=1 j=1 1 3 ? 3 

n m 

iE111 xi ll II Yi ll j:111 x311 II Y; II 

Hence 
IIz1z21IY4 

11z111y11 z211 ,,. (For the purposes of this 

chapter and chapter 2, we shall take all Banach algebras 

and normed algebras to satisfy 
l lz 1 z 2 l l 11 z111 11 z211 for all 

z1 and z2 in the algebra). In general, multiplication in 

X ® Y is not bounded with respect to the injective norm. 

This will be discussed in chapters 3 and 4. 

We now take X and Y to be Banach spaces. We denote the 

Cantor-Meray completion of X ®Y Y by X ® Y. Any element z 

A 

of X 0 Y may be represented as z = E x.® y where 
i=1 

xie X , yi e Y, and É 
I l xi I I I I Yi I I < °° . Also 

i=1 

I I 
zu 

1 = inf{ 11 xi 11 11 Yi I 1 

: z = É xi® y1}. 
i=1 i=1 

The dual of X ® Y is isometrically isomorphic to B(X,Y *) under 

<(1),É xi® yi> = É (x.) (Y.), where e B (X,Y *) , 

i =1 i =1 

xie X, yi c Y and !II xi 
1l 11170 <°° 

i =1 

If X and Y are Banach algebras, then X ® Y becomes a 

Banach algebra when the multiplication on X 01Y is extended 
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by continuity. 

We denote the completion of X ®XY by X 0 Y. 

There are a number of useful operators between different 

tensor products. Since the associate of the projective norm 

is the injective norm, we see that the linear mapping 

T: X * ®Y* (X ® Y)* given by 

n n 
T( E fi ® g.)( E x.0 y.) = E E f. (x.)g (y) . 

i=1 j=1 > > i=1j=1 i 3 i j 

is isometric. 

Similarly , there is a bounded linear mapping of X *® Y* 

into (X ® Y) *. 

If X1r X2, Y1 and Y2 are Banach spaces, there is a 

bounded linear mapping : B (X1 ,X2) 0 B (Y1 ,Y2) - 
B(X1® Y1,X2® Y2) such that 

ES 0 T.)( 
co 

x. ® T.(y.) y.) = 
co co S(x.)® Ti(yj 

j=1 > > i=1j=1 

and II E (F) (z) F z IIy. 

At this point we give a lemma which will be required in 

the next chapter. 

Lemma 1.1 Let X be a Banach space, and let E be a complemented 

subspace of X such that there exists a projection P of X onto 



E of norm 1. Let Y be any Banach space, and let I : E-> X 

be the inclusion mapping. Then the mapping f = (I ® rY) : 

E ® Y -> X ® Y is an isometry. 

Proof: Let g = E (P ® IY) : X ® Y } E ® Y. Then Hf il 6 

III ®rYll = 1. 

Similarly 
II g I I 

G 1. But if z eE O Y, 
I I z l, = 

II gof(z) Ily 4 
II 
f(z)Hy . Hence f is isometric. 

10 



CHAPTER TWO 

In this chapter we shall give some results concerning 

the relationship between tensor products and the 

approximation property. 

Definition: If X is a Banach space, then X has the 

approximation property if the identity function on X, IX, 

belongs to the closure of the finite rank operators in the 

topology of uniform convergence on compact sets. 

So X has the approximation property if and only if 

there exists a net {Pa} of finite rank operators in B(X) 

such that Pa } IX uniformly on compact subsets of X. 

Most of the standard separable Banach spaces such as 

the disc algebra, Lp, Hp; C(K) (where K is compact Hausdorff), 

and spaces of continuously differentiable functions are 

known to have the approximation property. It is not known 

whether B(H) or Hm have the approximation property. P.Enflo 

has recently constructed a Banach space which fails to have 
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the approximation property (see [7] and [8]). 

We shall give first a rather technical result due to 

Grothendieck ([1]) which we shall require later in the 

chapter. If E and F are Banach spaces, then there is a 

natural bounded linear mapping 0 : E 6 F -> B(E*,F) 

such that 0(iE1 ei 1E0 fi) (e *) iEle* (ei)fi 

Theorem 2.1 Let E be a Banach space. Then the following 

statements are equivalent : 

(1) E has the approximation property. 

(2) The mapping E a E *- rB(E *,E *) is one to one. 

(3) The mapping E a F } B(E *,F) is one to one for all Banach 

spaces F. 

(4) The mapping F E B(F *,E) is one to one for all Banach 

spaces F. 

Proof : It is easy to see that (3) is equivalent to (4), and 

that (3) implies (2). We show first that (1) implies (3). Let 

z = iÉlei o fi e E a F, with 1 1 I ei l Il fill < Suppose that 

i :le *(ei)fi = 0 for all e* CE*. There is a net {Pa} of 

finite rank operators in B(E) such that Pa IE (where T is 

the topology of uniform convergence on compact sets). 

Now for each a, iÉle *oPa(ei)fi = 0 , 
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so . Pa (ei) ®, fi =0, for if the range of Pa has a basis 

and P (e) = E ßx , there exists e* EE* 
a i j1 ij j 

such that e(xj,) = Sj,j,. where S is the Kronecker S.So 

iElßijfi 
= O. Therefore 

n 
iElPa (ei) 

21 
fi = jliElßijxj fi 

n 00 

= jElxj o iElßijf i = 0 . 

We have that i I I ei I I I I f l l < co . So there is a sequence 

{ai} such that Xi > O, 
Xi 

-.O, and c = i l Ii eill II fill /Xi <c°. 

Let K = { cX1ei /II e. II : i=1,2, } U {0 }. K is compact,so 

if E>0 there exists an ao such that if a)ao , then 

Pa(x) - xII .< e for all x in K. 

So II iÉlPa (ei) fi- iÉlei fi II Pa (ei) II 

4 irl II ein II 
fi 

II 
E/cai 

= E. Therefore z = O. 

In order to show that (2) implies (1) we shall require 

two lemmas. 

Lemma 2.2 Let K be a compact subset of a Banach space E. 

Then K is contained in the closed convex cover of a sequence 

in E which converges to zero. 

Proof: For x E E and c > 0, let B (x, E) denote the open e -ball 
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with centre x. Since K is compact, there exists a finite set 
_1 

So in E such that K Csó SoB (so ,3 ) . Again,since K is compact 

there exists a finite set S1 in E such that 
KC- U B(so +sl,3 -2) and Sic B(0,3 -1). sorsi 

Similarly there exists a finite set S2 such that 
K C- U B(so +sl +s2,á 3) and S2 B(0,3 -2). SoSlS2 

Continuing in this fashion., we construct finite sets S3rS4,... 
such that Sn B(0,3 -n), and each point of K has distance 

less than 3_n_1 from So +S1+ +Sn. 

Let S = {0} U 2So U 4S1 U 8S2 U Then S is a sequence 

converging to zero. If si E Si for i = 0,1,2, n , then 

so+si+ +s = 2_n -1.0 + .2so + á.4s1+ + 2- 
n- 1.2n +l.sn 

Hence So +S1+ 

co (S) . 

+SnCco(S) , and KCco(S) . 

Lemma 2.3 Let E be a Banach space. Then there is a natural 
linear mapping : E it E *on} o (B (E) , T) * such that 

(idei 183 iUi) (T) = iElUi (T (ei) ) 

where illl ei II II 1PiII < and T E B (E) . 

Proof : We may certainly define : E ffi E* + (B (E) , II . II ) 

by (Ee ("i) (T) = if1lPi (T (ei) ) 

We show that the range of is (B (E) ,T) *.Let z = ideii 
belong to E e E* with if i II ei II II ii II < - As before, let 
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{A.1 be a positive sequence such that Xi -> O and 

c = É 
II eili H vilVai < `° 

i=1 

K = {ceai/IIeiI1: i = 1,2....} u {o} is compact, and 

II T (x) 
II 

< 1 for all x E K implies 

I (z) (T) = I E i (T (ei) ) I 

i=1 

< i IIViII IIT(ei)II 
i=1 

I I 11)i H I I I ei I Va ic 
i=1 

Then 

= 1 . So C (z) E (B (E) ,T) *. 

Now let VE(B(E),T) *. There exists a compact K such that 

if I11 (x) II < 1 for all x E K then V (T) I < 1. There exists 

a sequence {xn} in E such that xn } 0 and such that K is 

contained in the closed convex cover of {xn }. So for TEB(E), 

I 
V (T) I < sup H T(x) II ` sup lJ T (xn) II 

x E K 

In particular, T(xn) = O for all n implies that c(T) = O. 

So we may define a continuous linear functional Von the 

subspace {{T(xn)}: T E B(E)1 of co (E) by 11)({T(xn)1)= V (T) . 

(If L is one of the usual sequence spaces and F is any Banach 

space, we define L(F) = { {fn }e° C F : 
II 
{f} II = II 

{ II 
fnll } IL<c°}) 

n =1 

By the Hahn -Banach Theorem we may extend V to Vic (co(E)) *, 

which is isometrically isomorphic to 11(E *). Therefore 

there exists {Vn} E 11(E*) with (1) (T) = 11)'({ Txn }) = 
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É b. (T(x.) )i3 T e B(E) . Let z = É x. ® . e E 0 E*. 
i=1 1 1 i=1 

1 

Then cp = C(z), and the lemma is proved. 

We now show (2) implies (1). 

Suppose cp e (B (E) ,T) * and (P (T) = O for all finite rank T 

in B(E). We show that (HÍE) = O, and the result follows by a 

corollary to the Hahn -Banach Theorem. By the lemma above, 

there exists z EE ® E* such that C(z) = (I). Suppose that 

z = E ei ®4i, then 4(T) = E tpi (T ( e ) ) . For e* s E *, y E E , 

i =1 i =1 

let T(x) = e* (x) y. T is finite rank, and 

O = cp (T) = E e* (ei) ipi (y) , 

i =1 

so O = E e* (ei) lpi 
' 

i=1 

By (2) we have z = O, therefore (IE) = E 11) (ei)=0. 
i=1 

Corollary If E* has the approximation property, then the 

mapping E 0 E* -} B(E *,E *) is one to one by (4), so E has the 

approximation property. 

Theorem 2.4 Let E be a Banach space. Then E has the 

approximation property if and only if for all Banach spaces 

16 



X and Y and T e B(X,Y) with T one to one, E(IE® T) : E ® X } 

E ® Y is one to one. 

Proof: The forward implication follows from an argument 

similar to that in the first part of the proof of Theorem 2.1. 

For the backwards implication, suppose that E is a 

Banach space satisfying the conditions of the theorem, and 

let F be any Banach space. Let T be the natural embedding 

of F in C(K), where K = Ball F*. So T (f) (k) = k(f) 

where f e F and k e K. C(K) has the approximation property, 

therefore the mapping E ® C(K) B (E *,C (K)) is one to one.We 

havé that the mapping E ® F -> E ® C (K) is one to one, and so the 

mapping E ® F } B(E *,F) is one to one, and so E has the 

approximation property. 

Throughout this thesis we shall be very concerned with 

uniform algebras, which we now define. 

Definition: Let X be a compact Hausdorff space. A uniform 

algebra on X is a norm - closed subalgebra of C(X) which 

separates the points of X and contains the constants. 

If we take k = IR , then by the Stone -Weierstrass Theorem, 

the only real uniform algebra on a compact Hausdorff space 
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X is C(X) itself. In any results or discussion 

involving uniform algebras, therefore, we shall normally 

assume that the underlying field k is the complexes. 

Theorem 2.5 Let Y be a Banach space, and let X be the closed 

unit ball of Y *, with the weak* topology. Then there is a 

uniform algebra A on X which has a complemented subspace 

isometrically isomorphic to Y and such that the projection 

has norm 1. 

Proof: Let R be the subalgebra of C(X) generated by the 

function 1 and the functions Gy(y e Y) given by 

Gy (x) = x(y) (x e X) . Let A be the closure of R in 

C (X) . Define S :Y ; A by S(y) = Gy . Then 

s(y)H s(y)H = sup i x (y) I= I I 
y I I So S is an isometric 

x e X 

isomorphism of Y onto S (Y) . Define P : R } S (Y) by 

P(1) = O 

P(G) = Gy (y E Y) 

P 
(GY1 

.Gy2 .....Gy ) = O if n 2 (yie Y) 

n 

extending by linearity. ' We show that P is bounded. 

Let g e R with IIgfl < 1. There exist Y1r y2,'n6 Y 
such that g = Q(Gy1,Gy2,....Gy ) where Q is a polynomial 

n 
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in n variables. Suppose 

n 
Q(w) = ao + 

. 

E a.w. + higher order terms (w= (wi,....wn)). 
i =1 

Fix x e X, and for e C let (HO = g (rx) . Then (c) 1 c 1 

for 10 4 1. We have 

ri 2 

CHO = ao+ ( E aix (yi ) ) + ( ) + 
i=1 

2 

Now (1)' (0) = (1 /2Tri) f (0A d ?. 
10=1 

n 
Therefore 1(1)'(0)1 4 1. But (1)'(0) = E aix(y.). Thus we have 

i =1 

H E a.G 4 1, that is ll P(g) H 1. Therefore P is bounded 
i =1 1 Yi 

with norm 1, and so P has a bounded extension P from A 

onto S(Y). P is clearly a projection. 

Corollary If Y is a real Banach space, then Y is isometrically 

real -isomorphic to a real -complemented linear subspace of 

a complex Banach space, such that the projection has norm 1. 

Hence Y is isometrically real- isomorphic to a real- complemented 

subspace of a complex uniform algebra, such that the 

projection has norm 1. 

Theorem 2.6 There is a uniform algebra not having the 

approximation property. 
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Proof: We have, by [7]or [8], that there exists a Banach 

space not having the approximation property. So the result 

follows from Theorem 2.5 above, and the fact that if Y is a 

Banach space which has the approximation property then any 

complemented subspace of Y has the approximation property. 

To see this fact, suppose that E is the complemented subspace 

of Y, with projection P. Let {Pa} be a net of finite rank 

operators in B(Y) such that Pa-r IY uniformly on compact 

subsets of Y. Then POPa!E -> IE uniformly on compact subsets 

of E. 

We shall now consider projective tensor products of 

commutative Banach algebras (complex). We shall use the 

following result due to Tomiyama ([3]) (If A is a commutative 

Banach algebra, we denote the carrier space of A by OA). 

Theorem 2.7 If A and B are commutative Banach algebras, then 

there is a homeomorphism x :SAX 
(1)B } (I)A ®B 

such that 

X (,iP) ' f ® g) = ! f) g) , I gi I 

< °° 

i =1 i =l i =l 

Proof: If e (DA, e (I) then certainly X (q),'P) E (1)A ®B 

Suppose now 8 E (1)23,13. 8 o, therefore there exist a e A 

and b e B such that 8(a 0 b) O. Define q (f) =8 (af ® b) / 
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8(a ® b) (f e A) . If a', b' satisfy 0(a' 0 b') O, then we get 

O (a' f ® b') / 8(a' 0 b') = O (af ® b) / 6(a ® b) by cross 

multiplication, so 0 is independent of the choice of a and b. 

Now (f) (f') = O (af 0 b) 6 (af' 0 b) /6 (a 0 b) 6(a ® b) 

= O (a2ff' ® b2) /O (a2 ® b2) = Off'). 

Similarly , we may define a multiplicative linear functional 

1 P on B by i (g) = O (a ® bg) /O (a ® b) . Then 

0(f)0g) = O (af ® b) 6 (a ® bg) /8 (a ® b) 6 (a ® b) 

= 6(f ® g) O (a2 ® b2)/0(a20 b2) = 6(f 0 g) . 

Therefore cß and i are non -zero and so belong to 0A and OB 

respectively, and O = X4,P). Sox is onto. Also if 

0, 0160A, and 1p,i's (DB, and X (q) VP') = X (q9 ,iP) then 

0' (f) 1p' (g) = 0(f)11)(g) for all f and g. So if we take 

go s B such that V(go) O we get 0'(f) = a4 (f) (f s A) 

where a is a constant. Since cß and 0' are multiplicative, 

a = 1, and so 0' = and 1P' = . Hence x is one to one. 

To show that x is continuous, let (fia, a) be a net in 

0AX B converging to (q,4) . Therefore a (f) } (f) and 

1Pa (g) } (g) for all f and g and so X (0a, a) (f ® g) 

= (Pa (f )1Pa (g) (1) 
(f) 1P (g) = >,(f O g) . Hence X (q)a,1Pa) (z) 

} X (4 , iP) (z) (z s A ® B) , so x is continuous. To show that X 

is bicontinuous it is enough now to show that each point 

(0,) of 0A X B is contained in a compact set whose x-image 

is a neighbourhood of x(04). Suppose then that (0,11)) e A X OB. 
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Take f e A, g e B such that 1(1)(f)i(g)I > 1. Then the set 

{e e CD 

A ®B : 
le (f ® g) I > 1} is a neighbourhood of x (q),ß,) 

and is contained in x(K x L), where K = We OA: kb' (f) >1 /11gII} 

and L = We cDB: IV(g)i > 1 /II fil } 

are compact. So x is a homeomorphism. 

We now have the following result, the first part of 

which is due to Tomiyama ([3]). We observe that if 

A ® B is semi -simple, then A and B are semi -simple. 

Theorem 2.8 (1). If A and B are semi -simple commutative 

Banach algebras, and either A or B has the approximation 

property, then A ® B is semi -simple. 

(2). If A is a commutative Banach algebra not having the 

approximation property, then there is a uniform algebra B 

such that A ® B is not semi -simple. 

Proof: (1). Suppose that A and B are semi -simple, and either 

A or B has the approximation property. Let F = E fi ® gi , 

i =1 

IIfiIIIIgiII< - 
i=1 

, fi e A, gi e B. Suppose that 

0(F) =0 y 6 e 0 
A ® B . 

Therefore 

y(fi)d(gi) = 0V Y e(DA,S e(DB. 
i=1 
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For 6 c 0B, let hs= E 6(gi)fi E A. Then for all y E 
A 

, 

1=1 

y(ha) = E S(gi)Y(fi) = O. 
ï=1 

Since A is semi -simple, h6= O. Now fix q) E A *, and define 

G ill 
(P(fi)gi E B. For each 6 E 0B, 

6(G) = É cp(fi)6(gi) = ((hs) = O. 
i =1 

Since B is semi -simple, G = 0, therefore 

E q (fi)gi = O V q) E A *. 
i =1 

The mapping A ® B B(A *,B) is one to one, so F must equal O. 

Thus A ® B is semi -simple. 

(2) Let A be a commutative Banach algebra which fails to have 

the approximation property. Then for some Banach space E, 

the mapping A ® E --} B(A *,E) is not one to one. There exist a 

uniform algebra B, a projection P on B of norm 1, and a 

linear isometry S of E onto P(B). By Lemma 1.1, the mapping 

: A® E -> A 0 B is isometric. There exists 

z = E ai 0 e in A ® E with z # 0, and such that 
i=1 

(i.3(1) ( 
= O V 45 E A*. Let F = n (z) = É a. ® S (e. ) . 

i=1 
1 1 

i=1 
1 1 

Then F # O, but we have 

lElq) (ai)iU (S (ei)) =iUoS (lZlq) (ai) ei)= 0 V (1) 
E (DA'' E 4)B. 

Hence 0(F) = 0 V A E 0A ®B, therefore A ® B is not semi -simple. 
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We shall now study the notions of c- products and slice 

products, and their relationship with the injective tensor 

product. 

The c- Product 

The definition and results of this section are due to 

Waelbroeck in [6]. Before giving the definition of the 

c- product, we state the following theorem. 

Theorem Let X and Y be Banach spaces. Then the following 

Banach spaces are isometrically isomorphic: 

(1) The space of linear functions from X* into Y whose 

restrictions to Ball X* are weak* continuous. 

(2) The space of linear functions from Y* into X whose 

restrictions to Ball Y* are weak* continuous. 

(3) The space of bilinear functionals on X* x Y* whose 

restrictions to Ball X *x Ball Y* are weak* continuous. 

The norm in (1), (2) and (3) is the supremum on Ball X *, 

Ball Y* and Ball X* x Ball Y* respectively. 

Definition: Let X and Y be Banach spaces. Then we define the 

e- product XcY to be the Banach space (1) above. 
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We imbed the injective tensor product of two Banach 

spaces in the e- product. Define : X ®xY XeY by 

n n 
E( E xi 0 yi) (f) =.E f (xi)yi ,xie X,yie Y,fe X. 

i=1 i=1 
n n n 

Then 
II 
uy xi ® yi) II = sup II 

E f(xi) yi II = H E x. ® yi 
II a 

i=1 f e Ball X*i=1 i=1 

Thus E is a linear isometry. We identify X ®x Y with its 

image in X c Y, and identify X ® Y with the closure of 

X 0 Y in X e Y. In fact UX ® Y) is the set of finite 

rank elements in X e Y. 

Theorem 2.9 Let X be a Banach space. Then X has the 

approximation property if and only if X ® Y = X e Y for all 

Banach spaces Y. 

Proof: Suppose first that X has the approximation property, 

and let Y be any Banach space. Let u belong to X e Y, and 

suppose that u : Y* } X. Let e> O. Then u (Ball Y *) is 

compact in X, so there exists a finite rank P in B(X) such that 

sup. II P(u(g)) -u(g) II < e . 

g e Ball Y* 

Therefore IIPou - u I I < e, and Pou is finite rank in X e Y. 

Hence X ® Y is dense in X e Y, and so X ® Y = X e Y. 

Now suppose that X ® Y = X e Y for all Banach spaces 

Y. Let K be compact in X. Define Y to be the norm closure 
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in C(K) of X*iK. Therefore X ® Y = X E Y. Define u in 
n 

X E Y by u(f) = (f c X*) . There exists E xi® yi 
i=1 

in X ® Y such that 

n 
H E( E xi 0 yi ) u 

i I 
2, and we may suppose that 

i =1 

n 
E 

lI xiii = 1. Also for each i there is an fi in X* such that 
i =1 

f i l K yi l 7{ 1/2 Let P(x) =iElf (x) xi for x in X. Then 

P is finite rank, and i1 (x) -x 
Ii 

1 for x in K. Hence 

by one of the definitions of the topology of compact 

convergence, X has the approximation property. 

The Slice Product 

If X and Y are compact Hausdorff spaces, then we may identify 

c(x) ® C(Y) with C(X x Y) . For define r : c(x) ®xC (Y)+C (Xx Y) 

n n 
by r (E fi ® gi) (x,y) = E fi (x)gi (y) 

i=1 i=1 

n n 
II r(E f. ® g1 ) lI 

= supl E f. (x)g 
1 
(y) I 

1=1 1 xEX i=1 1 

yEY 

= sup ii E fi(x)giii 
)(Ex i=1 

n 

= sup i E fi(x)V(gi) I 

xEX i =1 
E Ball (C (Y) ) * 
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= sup H iLlogi)fill 
11) c Ball (C (Y) ) * 

n 
_ 

II 
iElfi ® 

So r is isometric and is an algebra homomorphism. We extend 

P to C(X) ® C(Y) and extend multiplication on C(X) ®xC (Y) to 

C(X) ® C(Y) so that r remains an isometric algebra 

homomorphism. Then r(c(x) ® C(Y)) is a closed subalgebra 

of C(X X Y) which contains the function 1, separates the 

points of X X Y, and is closed under complex conjugation 

(if k = C). Hence by the Stone -Weierstrass Theorem, we 
V 

have I' (C (X) 0 C (Y) ) = C (X X Y) 

If A and B are uniform algebras on compact Hausdorff 

spaces X and Y respectively, then we may similarly imbed 
V 

A ® B homomorphically and isometrically in C(X X Y), and 

we thus get that A ® B is a uniform algebra on X X Y. 

Definition: If X is a compact Hausdorff space, and B is a 

Banach space, C(X,B) is the set of continuous functions from 

X into B. 

C(X,B) is then a Banach space under the norm 
I 

If 
II 
= sup l If (x) 11 . 

xcX 
If B is a Banach algebra, then C(X,B) is a Banach algebra 

under pointwise multiplication, and is commutative if B is 

commutative. 
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If A is a uniform algebra on X, and B is any Banach 

algebra, we may define A : A ®x B } C (X ,B) by 
n n 

A 

i® bi) (X) =1Elfi (x) bi,fi E A, bi E B and x EX. 

As before, A is isometric and an algebra homomorphism, and 
N./ 

A 0 B is therefore a Banach algebra. 

Now take X and Y to be fixed compact Hausdorff spaces. 

For h E C (X x Y) and x E X , define hxE C(Y) by hx (y) =h (x,y) . 

Define by E C (X) by hY (x) = h (x,y) . We may define an isometric 

(algebra) isomorphism of C (X x Y) onto C (X ,C (Y)) by A(h) (x) =hx. 

Then 
I I A (h) 

I l = sup 
l l 

h 
I I = sup l h (x,y) I'II h I I 

X EX X EX 
yEY 

Similarly C(XxY) is isometrically (algebra) isomorphic to 

C(Y,C(X)). 

Definition: If A and B are uniform algebras on X and Y 

respectively, then the slice product A +1-13 is the space 

{h E C(X xY) : hx E B Y XE X and hl'E A VyE Y }. 

We may define Q : A E B; A* B by 
Q(u) (x,y) = u() (y) where x E X,y E Y,u E A E B, and 

cpx is the evaluation functional at x, so cpx (f) = f (x) (f E A) . 

We then have the following result, relating the slice product 

and the E- product (Proposition 15, [4]). 
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Theorem 2.10 If A and B are uniform algebras, then 

Q defined above is an isometric isomorphism of A E B with 

A 
II 
B (as Banach spaces) . 

Proof: For u in A E B, the mapping x -> u(q)x) belongs to 

C(X,C(Y)), so by the remarks above, the mapping (x,y) 4 

u (fix) (y) belongs to C(X X Y) . If h = Q (u) , hx= u (cpx) E B 

for each x in X. If y belongs to Y, the mapping 

cp 4 u(4)(y) is a linear functional on A* with weak* 

continuous restriction to Ball A *. Therefore there exists 

an f in A such that cp (f) = u 4) (y) ( q) E A *) . Then 

f(x) = cpx (f) = u (fix) (y) = h(x,y) (x E X) . 

Hence hY = f E A, and h = Q(u) belongs to A* B. 

Now 
Il 
Q(u) 

II 
= sup lu(cPx) (y) I 

= suplí u(q)x) H 
xEX xEX 
yEY 

= sup 
II 
u() II 

by the bipolar theorem 
4) E Ball A* 

= Hull 

So Q is isometric. Now let h belong to A *B. Define 

u E B (A *,C (Y) ) by u (cp ) (y) = q5 (h') (4 E A *,y E Y) . Since 

the mapping y 4 by belongs to C(Y,A), we get by compactness 

that the restriction of u to Ball A* is weak* continuous. 

We now show the range of u is contained in B. If x E X, 

u (cpx) = hxE B. The set Ball A* (1 u--1 (B) is weak* closed 

in Ball A *, and therefore in A *. Ball A* rl u -1(B) contains 
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{fi: x c X} and therefore contains the (weak *) closed 

convex circled cover of {cpx: x e X }, which equals Ball A* 

by the bipolar theorem. Hence the range of u c B, and so 

u belongs to A e B. We have Q(u) (x,y) =u(x) (y) = 

(Px(hy) = h(x,y), therefore S2 is onto. 

(In fact the above result holds more generally, 

for we have not used the uniform algebra properties of 

A and B. We may define the slice product of any two closed 

subspaces of C (X) and C (Y) , (with k = C or ]R) , and we still 

get the slice product equals the c-product). 

The equivalence of the slice product and the c-product 

for uniform algebras now allows us to establish a 

relationship between the slice product of uniform algebras 

and the approximation property. If A and B are uniform 

algebras on X and Y respectively, then by our remarks at 

the beginning of this section, we may regard A ® B as a 

subspace (in fact a subalgebra) of C(X x Y) .Then we have: 

Theorem 2.11 Let A be a uniform algebra. Then A has the 
%." 

approximation property if and only if A ® B = A *B for all 

uniform algebras B. 
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Proof : If A has the approximation property, and B is any 

uniform algebra, then A ® B = A c B = A* B. Now suppose 

A is a uniform algebra satisfying the given conditions. 

Let E be any Banach space. There exists a uniform algebra 

B with a projection P of norm 1, and an isometric 

isomorphism S of E onto P(B). Let u belong to A e E, 

and let e > O. Define ul in A e B by ui = Sou. Now 

A ® B = A *B = A e B, hence there exists 

n 
E f.0 g. in A® B such that 

i=1 
n 

E fi® g - u111 < e. 
i=1 
n 

H E fi® S óP(gi)- um < E. 

i=1 

Therefore, 

Thus A ®X E is dense in A e E, and so we have that A has 

the approximation property. 
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CHAPTER THREE 

Injective Algebras 

In this chapter and chapter 4 it will be convenient 

to generalise Banach algebras and normed algebras so that 

multiplication may be bounded by a constant other than 1. 

Definition: If A is a normed space (a Banach space) and 

an algebra over k, then A is a (K)- normed algebra 

((K) -Banach algebra) if 

ab II 6 K I I a II 1 1 1 4 (a,b e A) . If such a K 

exists,we say A is a normed -algebra (a Banach -algebra). 

With this definition, a (K)- normed algebra A may always 

be re- normed (by I I . I I' = K I I .H I ) to become a (1) -normed 

algebra, so A is isomorphic to a (1)- normed algebra. 

Definition: If A is a normed -algebra, then A is said to be 

K-injective (K O) if 
n n 

IIlElxiYi II K II l® Yi II a (xi,yi e A) 

A is said to be injective if it is K- injective for some K. 
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Then A is K- injective if and only if the natural mapping 

of A ®a A into A is bounded with norm 4 K. 

Every uniform algebra is 1- injective, for if A is a 
n 

uniform algebra on X, and E fi® g. e A ®x A, 

n n 
E f..gill = sup 

1 E fi(x)gi(x) 1 

i =1 XEX i =1 
n 

4 sup 
1 E (1) (fiWgi) 1 

(1),iU eBall A*i=1 

= 11E fi® gilla. 
i=1 

Also the space 11 with pointwise multiplication is 
n 

1- injective, for if E x(r) ®y(r)e 11 ® 11 

r =1 

let ai. and let yi be a scalar of modulus 1 

r =1 

such that yiaii = la..1. 
Let m e II) and let A= {- 1,1 }m. Then 

m m 
E l E y.S.a..S.ll E E y.S.a..S.l 

1 1j 
SeAi,j=1 1 1 1 

SEA i,j=1 
1 

m m 
= l E y.a..E S . S . I = 

2111 
E la.. 

I. 
i,j=11 136eA 1 

3 i=1 
11 

m m 
Hence there exists SEA such that E la..l 41 E y.S.a.jSjl 

i=1 
11 

i ,j= 11 1 1 

n 
4 sup 

l 

E (I)(x(r))4U(y(r)) 1. 
cl),II) e Ball 1.r=1 

Therefore ll E x(r)y(r) 
61 

= E laiil 11 E x(r)® Y(r) 11a ,and so 
r=1 i=1 r=1 

11 is injective. 

The space 11 with convolution multiplication is not 

injective. Also for 1 < p< ,l with pointwise multiplication 

is not injective (l. is a uniform algebra). Also the 
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Banach algebra CpC0,1] of all functions on [0,1] with 

continuous derivatives of order p (normed by 
p 

(j) 
II f II =E sup 

I 
f (t) I , where I = [0,1] ) is injective. 

j =0 tEI 

If A is a K- injective normed- algebra, then for 

xi,yi,zi E A, and i = 1,2,...n, 
n 

II E x. (y. z. ) 
II 

K sup II E1 (x. )y. z. II 

i=1 
i i i 

(Pic Ball A* i=1 

2 
K sup 

I E (xi)(P2(17ikb3(zi)I. 
Ch/42,(h E Ball A*i=1 

In general, 
n 

(1) (r) r-1 n (1) (r) 
II 

E xi . . . .xi 
II 

K sup 
I E (xi ) . . .r (xi ) 1 . 

i=1 i,.rEBall A*i=1 

Commutative Injective Algebras 

We shall now consider injective commutative Banach- 

algebras. We shall require a standard symmetrisation result. 

Theorem 3.1 Let X be a vector space, let x1,x2....xnE X, 

and let (19142,... (Pn E X'. Then if Sn is the group of 

permutations on n letters, and Kn= {l,2,....n} and the 

cardinality of a set 0 is 1 S2 I , 

E (Wx (x ) = E(- 1)n -IQl11 (E (1).)(x r). 

Tr E Sn in 
n 7n 52c Kn r =1 jcQ3 
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Proof If Y is a non -empty finite set and Y1 is a proper 

subset, then 

E (- 1)101= 0. To see this it is enough to 
OcY 
QDY1 

assume Y1 is empty and show E( -1)IQ' = 0 (where the summation 
QCY 

is over all subsets of Y, including the empty set). IflYI= 1, 

this holds. If IYI > 1, choose y e Y and let Z = Y\ {y }. 

Then E (-1)121= I(-1) I 

S2 

I+ E(-1J111+1 The result then 
QCY QcZ AcZ 

follows by induction. 

The right hand side of the equation in the statement 

of the theorem equals 
n-I( 

S2cK 
(-1) J1j21.jñjl (x1)...jn(xn) 

n E S2 

= E . (x1).... (x ) E (-1)n-I0 
j1,j2,..jnEKn J1 Jn n QcK 

S{JlnJ2,.Jn} 

Now E ( -1)n 
-ICI 

= 1 

CK 
QD {j1,512,..jn} = O 

if {jl,...jn} is a permutation of Kn 

otherwise 

So the right hand side of the equation equals 

E (1) (x1)..4, (x1) .. ,R (xn) , which equals the left hand side. 
Tr E S 

71 
n 

We now establish a characterisation of injective 

commutative Banach -algebras which was proved by Varopoulos in [9]. 
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We use techniques akin to those used in the proof of Theorem 2.5. 

For the purposes of this result we do not require that a 

uniform algebra must have an identity, and we take the scalar 

field to be the complexes. 

Theorem 3.2 Let A be a commutative Banach -algebra. Then A 

is injective if and only if there exists a uniform algebra B, 

a bounded algebra homomorphism h of B onto A, and a linear(bounded) 

operator j :A B such that hoj = IA, the identity function 

from A onto itself. 

Proof : Suppose A satisfies the conditions above, and let 
n 
E xi® yi E A ®x A. Then 

i =1 
n n 

I I E xiyi II = II E h (j (xi) j (yi) ) II 

i=1 i=1 

4 
I I h I I I I E j (xi) j(yi) I I 

i=1 

4 
II h II sup I E (j (xi) )q)' (j (yi) ) I 

q),(p'E Ball B*i=1 

(since B is a uniform algebra) 
n 

4 I I h I I I I j 112 sup 
I E (xi) V (yi) I . 

iU,VEBall A*i=1 

Hence A is injective. 

Suppose now that A is K- injective. Let 

m,kE]P , and let xir EA for i = 1,2,...k, r= 1,2,...m. Then 
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k k 
m: IllElxi i. . . .xim11 = 

II E E x. . . . .x. 
- i=1 TrES 

i 
1 

i.rm I I 

m 
4 Km-isup 

I E E (1) i (x . ) . . . (x i ) 
I i,..mE Ball A* i=1TreS l7 l m ff 

m 

m-1 k m 
4 K sup IE E (-1)m-I1 II( E)(x ) 

I EBall A*i=1 S2cKm r=1 3EQ 3 ir 

k m mmKm-1 
E sup I, E 

E 
/n) 

(xir) I ScK E Ball A* i=1 r=1 j EZ 
j 

m j 

m m-1 m k 
m K 2 

EBall A I il (xi i ) 
. . . . (xim) 

1 ' 

Now mm/m:4 em, hence 
k 

m m-1 
II E x . ..x. 

II 
4 (2e) K sup 

I E (x. (x. ) 
1 im ii im i=1 cpEBall A*i=1 

It follows that if P is a polynomial in n variables, 

and P is homogeneous of degree m, then if xl, x2,...xns A, 

II P(xi,....xn) 11 E (2e) 
m 
x 
m -1 

sup IP(4(xi),...,(1)(xn)) I. 

cpsBall A* 

Now let Y =X Ball A *, where X =4eK, and let Y have the weak* 

topology. Let B be the closed subalgebra of C(Y) generated 

by the functions Gx (x E A) given by Gx (6) =0(x) (6 E Y) 

Let P be a polynomial in n variables with no constant term, and 

let x1,..,xn belong to A. Suppose P = P1 + P2 +....+ Pr 

where P1 is homogeneous of degree i (r = degree of P). Then 

II 
Pi(Gx1,....Gx )H = supl p. (e(x1),..,e(xn)) I 

6EY 
r 

4 sup supl E a3 P.(0(xl),..,0(x ))I 
6EYJal, 1 j =1 3 

n 

(by the Cauchy coefficient inequalities) 
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= sup sup IP( a0(xi),...,a8 (xn)) 
OcY Ialkl 

= II P (Gxí ....,Gx 
)H 

n 

Also IIPi(xl,...,xn) II ((2e)iKi-1/Xi)suPl P (a4(xl),..a4)(x )) I 

cpeBall 1A* n 

= (1/K21) II Pi(Gx1,...,Gx ) II 
n 

r 
Thus 

II 
P(xl,...xn) 

II s E IIPi (xi ,...,xn) II 
i=1 

r 

(1/10 E(1/Z1) II P. (G ,...,G ) II 
i=1 xi xn 

(l,4) 
II P (Gx1 , . . .,Gx )II. 

n 

Hence we may define h :B -} A by 

h (P (Gx1 , ...,Gx )) = P (xl , ... ,xn) , extending by 

continuity. h is bounded and is clearly an algebra homomorphism. 

Define j :A -; B by j (x) = Gx(x e A) . Then 

j (x) II = sup 
I 

X(1) (x) I = X II x II (x e A) . So j is 
4eBall A* 

linear and bounded, and clearly hod = IA . 

Corollary If A is a K- injective commutative Banach- algebra 

with an identity 1A, then we may assume that the uniform algebra 

B in the statement of the theorem has a one. For if in the 

above proof we take B' to be the closed subalgebra of C(Y) 

generated by the functions G and the function 1, and we take 
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Q to be any polynomial in n variables, with 

Q = Qo + Q1 + .. + Qr (Qi homogeneous of degree i) then 

II Q(xl,...xn) lJ E 
II Qi(xl, ,xn ) II 

i =0 
r 

11 Qo1All+ (1/K) E (1/21)IIQi(Gx ,Gx ) ll 
i=l 1 n 

< (II lAll+ 1/K) II Q(Gx ,..,G )Il. 

1 n 

We may therefore define in an analogous fashion a bounded 

algebra homomorphism h' of B' onto A and a bounded 

linear j' :A B' such that h'oj' = IA. 

Q- algebras 

Definition : A commutative Banach -algebra A is a Q- algebra 

if it is isomorphic to a quotient algebra B/I where B is 

a uniform algebra and I is a closed ideal in B. 

Equivalently, there is a bounded (algebra) homomorphism of 

B onto A. (Again we do not require that a uniform algebra 

must have a one). 

For a study of Q- algebras, see [11]. 

From Theorem 3.2, we have that every injective commutative 

Banach- algebra is a Q- algebra. Not all Q- algebras are injective, 

for example, l(l< p <co) is a Q- algebra, but is not injective. 
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We now return to general normed- algebras (not necessarily 

complex, commutative or Banach). We shall show that a normed - 

algebra A is injective if and only if A ex B is a normed - 

algebra for every normed- algebra B. This was proved by 

Varopoulos in C10]. In this paper Varopoulos showed that 

if A is a 1- injective normed -algebra and B is a 

(1)- normed algebra, then A ex B is a (K)- normed algebra 

for some K (for a commutative Banach- algebra A over C 

this already follows from Theorem 3.2). In fact the following 

is true. 

Theorem 3.3 If A is a 1- injective normed -algebra, and B 

is a (1)- normed algebra, then A ex B is a (1)- normed algebra 

(and so A e B is a (1)- Banach algebra when multiplication 

is extended by continuity from A ex B). 

n m 

Proof : Let z1 = E xi e yi,z2 = E aje bj belong to A ex B. 

i =1 j =1 

For tp E Ball B *, 

n m n m 

II 
E E x.a. (y.b. ) 

I 

< sup I E E (x)' (a)U(Yib) I 

i=1 j=1 l3 l3 (1),(1)16 Ba11A* i=1 j=1 
i j 

n m 

sup II E E if, (xi) (a ) Yibj I I 

,'E Ball A*i=1 j=1 
n m 

sup II Eit.(xi) Yi I I I I E(1)' (aj )b.3 II 

(1),(1)16 Ball A*1=1 j=1 

= II 
Z1 

II IIz2II 

IIZ1z2II II Z1 II IIz2II Hence 
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Corollary If A is K- injective, and B is an (L)- normed algebra, 

then A eX B is a (KL)- normed algebra. 

In order to establish the converse result, we wish to 

show that if A is a non -injective normed- algebra, then 

there exists a normed -algebra B such that A ex B is not a 

normed -algebra, i.e. for each K >0 A ex B is not (K)- normed. 

It is sufficient to show that if A is not injective then 

for each K >0 there exists a (1)- normed algebra B such that 

A eX B is not (K)- normed. For if {Bn} is a sequence of 

(1)- normed algebras such that A ex Bn is not (n)- normed, let 

1 ( {Bn }) = { {bn }n 
=1 

: bns Bn,n e IP , II {bn} II = sup 11 ball < }, 

1( {Bn }) is a (1)- normed algebra under pointwise operations. 

By Lemma 1.1, the natural imbedding of A ex Bm in A exl( {Bn }) 
r r 

given by E - ai 0 biEai 0 (0,0,...0,bi,.)(aie A,bie Bm) 

i=1 

is isometric. This imbedding is an algebra homomorphism, 

hence since A eX Bm is not (m)- normed, A 
X 
1( 

{Bn 
}) is not 

(m)- normed. So A eX l( {Bn} ) is not a normed -algebra. 

Theorem 3.4 Let A be a normed -algebra and let K 0. Then 

A is K- injective if and only if A ®xB is a (K)- normed algebra 

for each (1)- normed algebra B. 
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Proof : We already have the forward implication. The following 

proof of the reverse implication was pointed out to me by 

Dr. A.M. Davie. 

Suppose that A is not K- injective. Then there exists 
n n n 
E xie yi e A ®XA such that 

D I E xiyi 
l l> K I I E xi® yi 

I I a . 
i =1 i =1 i =1 

We may assume without loss of generality that the sets 

{xi} and {yi} are both linearly independent, and 

n n 
II xi1I c 1 and Ell y.11 1. 

i =1 i =1 

Choose L > K such that 
n n 

I I 
E xiYi 

i l> L I I E xi® Yi I I 
i=1 i=1 

Let B be the algebra over k of polynomials in 2n 

indeterminates zl, z2i...zn,w1,....wn. 

n n 
Let H = {1}U { E cp(x)z. : e Ball A*}U{ E 1)(y.)w. : IyeBall A*}. 

i 
i=1 i=1 

Let N be the convex circled semigroup in B generated by H.So 

N ={ E a h1 (k) 
h2k) 
. h(k) :h. E H, E I a I 1} . 

k=1 k rk 
3 k=1 

k 

For each i= 1,2,..n, there exists q EA* such that 

cp(x.) = 5..(j= 1,2,...n). Hence zi /II 4 e HC N. 

Similarly some positive multiple of wie N. Hence N absorbs 

the monomials, and therefore N absorbs all polynomials, 

i.e. N is absorbent. 
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If, for p E B, c(p) denotes the sum of the moduli of 

the coefficients of p, then c(h) 4 1 for h E H, so 

c (h1h2 ... hr) 41 for h,E H, and hence a(u) 6 1 for u E N. 

Thus if p E B is non -zero, c(p) > 0, so some positive multiple 

of p does not belong to N. Hence the Minkowski functional 

of N is a norm, given by 

II PH N = inf {X > 0 : p/A EN} (p E B) . 

Since N is closed under multiplication, 
I I Pell' N1' P I I N I I g I I N 

So (B, 11. 11 N) is a (1) -normed algebra. (Also B is commutative 

and 
II 
1H N 4 1 since 1 E N, therefore DA 

II N= l,i.e.B is unital) . 

Now if A ®X B is a (K)- normed algebra, then 

n n n n 

II 
E E x.y.® z.w. II 4 KII E x.® z. II il E y.® w. II 

i=1j=1 1 J J i=1 1 1 j=1 J J 

n n 
= K sup 

II Ecp (xi) zi I l 

sup II E v (Y ) w 
I I 

EBall A* i=1 VEBall A*j=1 J J 

4 K. 

n n 

Hence if cpEBall A*, II E E Oxiyj ) ziwj II 4 K < L. Therefore 
i=1 j=1 

n n 
E E Oxiy.)ziw. E L.N. Therefore there exist 

i =1 j =1 

(Pk,Vk E Ball A* (k= 1,2,..m) such that 

n n 
E Ecp(x.y.)z.w. = L E a( E k(xi)zi) ( EVk(y )w.) and 
i=1 j=1 J k=1 k i=1 j=l J J 

E IXk 4 1. Equating coefficients of ziwi in this polynomial 

k =1 
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identity, we get (xiyi) = L E yk (xi)Ipk (yi) k =1 
n m n 

So E cp (xiyi) = L E ak E k (xi)k (yi) 
i=1 k=1 i=1 

Therefore 

n m n 
I(1) ( iEl xiyi) I4 L E IXkl sup I E'(xi)'(yi) I. 

k=1 (VeBall A*i=1 
tyÉBall A* 

n n 
Hence 11 E xiyi 

I I4 L I I 

E xi® yi I a , and we have a 
i=1 i=1 

contradiction, so A ®x B is not a (K)- normed algebra. 

Corollary Since the algebra B of the above proof is 

commutative and unital, and since the algebra 1( {Bn }) 

is commutative and unital if each Bn is, we have that 

if A ®XB is a normed algebra for each commutative unital 

B, then A is injective. 
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CHAPTER FOUR 

In this chapter we shall again be concerned with the 

question of whether the injective tensor product of two 

normed- algebras is a normed -algebra. We prove that this is 

the case for the tensor product 1p ®X 1q(where either p or q 

4 2), and for the injective tensor product of two Banach- 

algebras which are L1 spaces. 

Tensor Products of 1p Spaces 

In this section 1p will always have pointwise multiplication 

and p will be 1. We already know that the Banach algebras 

11 and 1. are 1- injective, hence 11 ®2,lq and lco ®x 1q 

are (1)- normed algebras for every q. 

Now let 1 4 p,q < °° . Let p' and q' satisfy l/p + 1 /10, =1 

= 1/4 + 1 /q,. We may represent an element of lP lq uniquely as 

an infinite scalar matrix as follows . 

n 
Let z = E x(r)® y(r)E 1p ®X lg. 

r =1 
n 

(r) (r) 
Define (aij)i,j =1 by aiJ rElXi yj 
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Then we have z = É ( É a. e (1) ® e ( j)) and 
i =1 j =1 13 

II zII= sup IÉ (!,;b a, 
) I. We write z -(a..). eBall 1 , i=1 j=11 13 > 1j 

1PeBall lq, 

m m 
If also w =E ® u(k) v(k) and w (bij) , i.e.bij= E 

uik) 
k=1 k=1 

n m 
E E xr) uk) yr) vk) _( E x(r) (r) 

m 
(k) (k) 

r=1 k=1 1 1 J 7 1 Yj )( Eu. vj )= aijbij . 
r=1 k=1 

Hence z.w- (a13 ..b1..)1. 

We now require the theory of finite tensor algebras in 

order to establish our result for 1p® lq. 

Finite Tensor Algebras ( §2,[117 ) 

If m and n are positive integers, we denote by Km 

the set {l,2,....,m }, and by Km its n -fold Cartesian product. 

Let Cm denote the mn- dimensional vector space of all scalar 

valued functions on Km. We write Cm for Cm. 

If a c Cm, then we have 

a(ß1,ß2 ,...,ßn)= E a(a1,',an) S ..S 

(a1,,an)6Km 
a1ß1 an ßn 

where S is the Kronecker S. Thus we may define the tensor 

algebra norm on Cm by 
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r 

IaII V 
= inf 

{rEll arI a(ßi ßn) = Eo arfir) (ßi)...f(r) (ßn) 
r =1 

where are k and fir e Cm with 
I f (r) (a)14 1 (aeKm) , 

14 i 4 n,1 4 r S ro }. 

We may identify Cm with its own dual by defining 

<a,b> = E a(ß)b(ß) (a,bc Cm) . 
ßeKm 

This gives us the dual norm on Cm n 

II 
all v* = sup{ 1 <a,b> I : b e C ,IlbII 

y4 
1} 

= sup{ E R(ß)f1 .f2(S2)....fnon) I 
: fie Cm with 

ßeKm 

I fi (a) 6 1 (a e Km) for 1 4 i 4 n} . 

In Theorem 1.1 of [12], Littlewood gave estimates for these 

norms in the case n = 2. He showed that if a e Cm, then 

m m 
2 

31/21l a l l V* >. E ( E I aij I) 2 (writing aij for a (i, j )). 
i=1 j=1 

2 

Hence Ha II y = sup { 
I 

<a,b> I ±e Cm II b lv* gl } 

m in m m 2 
. 

4 32 sup{ I 
E E a..b.. I E( E Ib.. I) 24 1} 

i =1 j =1 
13 1J i =1 j =1 13 

m 2 3, 

= 32 sup ( E 
I 

ai .I ) 2 by the Cauchy- Schwartz 
isKm j =1 J 

inequality and the fact that for each i 

M 2 in 
( E Iai.I )2 =I E aijx d for some 

{xj 
}e Ball 12. The inequality 

j =1 J j =1 
m 2 

I I 

a l l 

V 
4 32 sup (.E 

1 
I aij I ) 2 is called Littlewood's inequality. 

i eK m 
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Littlewood also showed that if a e Cm, then 

2432 

Hall *3( E E laijl3)4 . Hence 
i=1 j=1 

Ila lIv = sup { I<a, b>1 : b e Cm, 
ll bll < 1} 

m 
: 2432 sup {IE_ aibijl. 

( E Ibijl3) 
agl} 

1,7-1 i,j=1 
3 m a i 

< 2432 ( E 
Iai I 

)4 by Hölder's inequality. 
i,j=1 

These results may be extended to Cm for general n, 

and we get for a e Cm, 

(n -z) /2 
II all 3 sup ( E 

2 

la(ß, ,s ) I ) 2 V ßieKmn s Km 
n 

and 
II all < 3(n- 

1) /2n(n +1) /2n(E la(ß) I2n /(n -1)) (n -1) /2n 
V 3sKm 

We now apply these ideas to tensor products of 1p spaces. 

Theorem 4.1 Let 1 4 p < co, 1 4 q < 2. Then 1p0 lq is a 

(32)- normed algebra, and 1p ® 1q is a (32)- Banach algebra. 

Proof: Let p' and q' satisfy 1/p + 1 /p' = 1 = 1/q + l /q'. 

Let z1 and z2 belong to 1p ®xlq and let zl- (aij),z2 -(bij). 

Then I 

I 

ziz2 
II 
= sup I É ( E fiai .bi 

cPsBall 1 , i =1 j =1 

eBall lq, 
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So it is enough to show that if m c IP ,(1) c Ball 1p, and 

V e Ball l, then 

m 

I ,-liaijbiJV 
j 

1 

4 3211 zl II II z2 II , since then 

ml m2 

I 

E E iaijbijVj I 31/211 zi 
11 11 Z211 for all ml ,m2,V and V . 

i=1 j=1 

G iven e > 0, there exist scalars X ,fir) and 
r) 

(1 4 r 4 n, i c Km) with lf(r)1 41 ,Igir)1 4 1, such that 

n 
b.. = E X fir)g(r) for l4i,j 4m and 

r =1 

n 
E lx I- e c I I(bij ) l, 

j=111 v 
r=1 

M 2 

4 32 sup ( E 1 b..I )2 by Littlewood's inequality 
i c Km j=1 13 

m 

4 3- sup sup 1 E b..S.Isince Ball 12C Ball 
i eKm d E Ball 1 

q 
,j=1 13 3 

M 
C 32 sup I E Ybii6 I 

Ye Ball 1 , i,j = 
dc Ball lq, 

6 32 
II z2 II 

m n m 

Now i lE=llai3biiViI I 
E 

E 
laijrfir)gJr) 

VjI 

r=1 i,j=1 
n 

4 

rE1 lxr1,1 

m 

J-ifir)aijg'r)jI -1 

EIarI)Ilzlll 
r=1 

since each 
1 fir) 

I41 & 
Igr)14 1. 
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It therefore follows that 

I i,j=la3b133 
1 6 32 H zi H z2 

The constant 32 of the above result need not be the 

best possible. In fact 12 ®X12 can be shown to be a (1)- normed 

algebra. 

4. Spaces 

The definitions and background results as given here 

are taken from [13]. 

Definition: For p 1 and n e IP we shall denote by lP 

the space of sequences {xr} in 1p such that xr = O for rn+l. 

If X and Y are Banach spaces, then d(X,Y) = 

inf{ II T H H T -1 II :T e B (X ,Y) with T invertible}. 

So if X and Y are not isomorphic, d(X,Y) = co. 

A Banach space X is called an L space (1p co,la < co) 

Pia 

if for every finite dimensional subspace B of X there is a 

finite dimensional subspace E of X containing B, such that 

d(E,1n)4 a, where n = dimension of E. X is called an áp 

space if it is an L space for some a <. 
Pia 
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For every positive measure space (p,E), L(p,E) is an L 
P 

space for each a >1 (1 4 p , co). In particular 1p is an 

Lp,a space for each a >1, although if p 2 1p is not an 

L space. Also if K is compact Hausdorff, C(K) is an p,1 

L space for each a >1. Conversely, every infinite- 

dimensional L space (for 1 4 p < co) has a complemented p,a 

subspace isomorphic to l. Also there are no infinite - 

dimensional L 
p,l 

spaces for 1 F p <co and p ' 2. 

Every Hilbert space is an L2,1 space, and every L2,a 

space is isomorphic to a Hilbert space. These and other basic 

properties of L spaces are to be found in [14]. 
p,a 

Definition : Let X and Y be Banach spaces, let T e B (X ,Y) 

and let 1 4 p <co. Put 

a 

n 

ap(T) = ìnf{C>0 :( E H T(xì) H P)1/P 

i=1 
n 

4 C sup ( E xi) 
IP)1/P Vx,..xne X,ne F}. 

cpeBall X *i=1 

If ap(T)< co, we say T is p- absolutely summing. 

The main result which we shall require is 
Grothendieck's 

inequality, which was proved in [15]. Our statement of the 

result is as in Theorem 2.1 of [13]. 
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Theorem 4.2 Let 
(ai.)i,j =1 be a scalar matrix, and let 

M > 0 satisfy I E aijsitj1 < M V scalars si and t with 
i,j =1 

Isil < 1 and ltjl ' 1. 

Then if xl,x2,... xn,yl,y2,...yn E any inner product space H, 

I E 
a 

(x,y) 1 
4 K Msup xi sup y j 

i,j=1 ij 
ij 

i J 

Here K is Grothendieck's constant. If k = IR , then 

K < sinh 7V2 and if k = C, K < 2 sinh Tr,2 

As a corollary to this result we have : 

Theorem 4.3 Let (a.. )i,j be an infinite scalar matrix such 
n 

that I E aijsitjl < M whenever Isil 1 andltjI < 1 

i,j =1 

for i,j = 1,2,...n and n c P. Let (xki)k,i be an infinite 

2 

matrix such that ( É Ixkil )24 C for each ¡El). Then 

k =1 

( É ( ! I É x k.a. 1) 
2 

)2 < K C M. 
ij 

k =1 j =1 i =1 

From this theorem it immediately follows that if 

r 
z = Eob(r)0 c(r) belongs to 11 ®Xl1, and is the isometric 

r=1 

imbedding of 11®x11 in B (i,11) , so that (z) (x) = 

ro 
E < x, b (r) > c (r) (xs 1.) , then T =Oz) is 2- absolutely summing 

r =1 
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and a2(T) 6 K IIzII 
x. 

For let x(1),x(2)(m)E1w 
r 
o r) r) If a = b c. then I E ast I. II zit 

i 
i,j=1 

whenever Isil cl and Itjl4 1 and n E P. Now 

( E I I T(x)fl 2 ) 2 = ( E 11 Eo <x (k) ,b (r) >c (r) 
II 

2)1/2 

k=1 k=lr=1 

_ ( E ( I Eo <x (k) ,b (r) >c (r) 
I) ) Z 

k=1 j=1 r=1 
m 

_( E( É I É x!k)a.jl)2) 
k=1 j=1 i=1 

i i 

K 
I I z I Ix sup ( E I xik) 

2 

) z 
i k=1 

m 
K H zII sup ( E I<cp 

.x(k) >I20 
X(1)EBall 11 k=1 

(In fact by Theorem 4.3 of 113], if X is any Lco et space and Y 

is any L 
pi43. 

2- absolutely summing). 

space with 1 .< p 2, then every T E B(X,Y) is 

The next result is due to Pietsch. Our proof is effectively 

that in 113] .(The underlying field may as usual be either 

]R or C) . 

Theorem 4.4 Let X and Y be Banach spaces, and let TE B(X,Y) be 

2- absolutely summing. Let Z = Ball X *. Then there is a 

probability measure p on L and an operator S: L2 (p) -* Y 

such that 
II s II = a2(T) and T = SoJoI, where I :X÷ C(L) 

is the canonical isometry 1(x) (q)) = 4(x) (x EX ,(1) EL) and 
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J : C(L) -> L2 (u) is the formal identity mapping. 

n 
Proof : Let W = {a2 (T) 2 E 

I 

I (xi) 
I 

2 ZII 
T (xi) II 

2 

i=1 i=1 

= 1, xiE X , n E]P} . 

Then W C C (L) (the space of continuous real valued functions 

on L) . Let N = {f E C (L) : sup f (q))<1). W and N are convex, 
cp EL 

and N is open. It follows by the separation theorem and the 

Riesz representation theorem that there exists a real regular 

Borel measure v on L such that 

I fdv4 i (fEN) 
L 

and I fdv .1 (fEW) . 

L 

If f E C (L) is non -negative, then for X >0 -f AE N, hence 

I fdv -a, so f fdv 3 0. Thus v is a positive measure. 

L L 

If f E Cm(L) andll fll < 1,1I 
L 
fdvl 4 1. Hence II vll 41, and 

there exists a with 0< a 4 1 and a probability measure p on L 

such that v = ap . 

Now if x E X and T(x) 0, let 

g = a 
2 
(T) 

2 
II(x) 12 /II T (x) II 2EW. Then 1 4f gdv 4f gdp. 

Therefore 
ll 

T(x)II 24 a 
2 
(T) 

2 
f I I (x) l 2du and so 

I I T ( x ) I l 

a2(T) 
I I 

J01(x)112 (x E X ) . 
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Thus there exists Q E B (JI (X) ,Y) such that Q (JI (x)) =T(x) (x EX) 

and 
I I Q I I a2 (T) . Now E 

I I T (xi) 112 6I Q I 12 n II JI (xi)11 2 
i=1 i =1 

= II QII2 f I I (xi) I2du 
Li =1 _ 

HQII2H E II(xi)I211 
i =1 

Hence I 

I 

Q 
I I 

= a2 (T) . In the Hilbert space L2 (u) there is a 

projection P of norm one onto JI(X). Let S = QOP. Then 

I I S I I = I I Q I I = a2(T) and SoJoI (x) = T(x) (x E X) . 

Theorem 4.5 Let X and Y be (1)- Banach algebras, such that 

X is an Ll,a space and Y is an L1ß space. Then X ®XY is a 

(K2a3ß3)- normed algebra and X 0 Y is a (K2a3133)- Banach algebra. 

Proof : Let Eox(s) ®y(s) , Eow(t) ®z (t) E X ®X Y, each with 
s =1 t =1 

norm 6 1. Let a' >a,ß' >ß.There exists a finite dimensional 

subspace X0 of X containing x(s) and w(t) for each s and t, 

and an isomorphism U of 1(mo) with X (m = dim X ) such 
1 o O o 

that 
I I U I I= 1 and 

I I U -1 I I al- There exists a finite 

dimensional subspace X1 of X containing U(e(1)).U(e(k)) for 

i,k = 1,2,..mo and an isomorphism U1 of 11 m1) with Xi such 

that 
II 
U1 II = 1 and II 

U11 
II 4 a'. There exists a finite 

dimensional subspace Yo of Y containing y(s) and z(t) for 

each s and t,and an isomorphism V of lino) with Yo (no = 

dim Yo) such that 
I 

I VII = 1 and II 
v-11[ v. There exists a 

finite dimensional subspace Y1 of Y containing V(e(j)).V(e(r)) 

for j,r = 1,2,..no and an isomorphism Vi of 11 
(n1) 

with X1 

55 



such that PM = 1 and I lVi- 
l R', 

Let 171(x(s)) = a(s), V-1 (y(s)) _ b(s),u 1(w(t))_ c(t) 
and V (z (t) ) = d(t) (s=1,2,..s0 , t=1,2,..to) . Define aikm by 

{ai km}m, m=1 

Define bjrn by 

= U, 1 (U (e (1) ) .U(e(k) ) ) (i,k = 1,2, . . .mo) . 

n, 
{bjrn}n_1 = V 1 (V (e ( j ) ) . V (e (r) ) ) ( j ,r = 1 , 2 , . . . n ) . 

Now 
so 

E° x (s) .w(t)® y (s) .z (t) 
s=1 t=1 

s t 
= sup E° E° 6(x(s).w(t))n(y(s).z(t))1 

e e Ball X* s=1 t=1 
n e Ball Y* 

= sup 1 E° E°A II( E°ma (s) c (t) {a. }) n V( E 

n o nb ís) d(t) }) 
O e Ball X *s=1 t=1 ° i,k=1 i k ikm m oj ,r=1 r rn n 

n e Ball Y* 
s to mo (s) (t) no (s) (t) sup E E E mai ck aikmjE nbj dr bjrn 

,iUeBall 1s=1 t=1 i,k,m=1 r,n=1 
m n 

sup Eo E°ykr <T ( f (k)) ,g (r) 
q,,eBall 1k =1 r =1 

where ykr = E °crt)drt), and f(k)e 1m° , g(r)e ln° 
co 

t =1 
m, 

are given by f. = E (La ikm (i,k = 1,2,...mo) 
m =1 

g 
(r) n' = E nbjrn (j,r = 1,2,...no) 

n=1 

and T e B (1.41) is given by T (u) = E° <u,a (s) >b (s) (u e l) . 

s=1 
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m, 

For each k and i, If(()! =IT' a, 

m =1 m ikml 

m, 

E la 

m=1 ikm I 

since c Ball lm 

= II U, 1(U (e (1)) . U (e (k))) 
I I 

G 
II u 1 II II U (e (i)) II II U (e (k4 

S a'. 

Thus Ilf (k) II m 4 a' for each k, and similarly 
II g (r) II 00 4 ß 

for each r. By the remarks following Theorem 4.3, T is 

2- absolutely summing with a2(T) 4 K II E° a' s) ® b' s) 
ll 

s =1 

4 K a'ß'. 

By Theorem 4.4 there exists a Hilbert space H, and operators 

S c B(H,11) with 
II S II = a2(T) and R c B (l,H) with 

II Rfl 4 1, 

such that T = S 
o 
R . We have 

<T (f (k)) ,g (r) > = <S 
o 
R (f (k)) ,g (r) > 

= (R (f (k)) ,S* (g (r))) where S* is the 

adjoint of S. Also if Iakl 41 (k= 1,2,..mo) 

and IT I . 1 (r = 1,2,...n 
o 

) 

n 
I rE° E y Q T I I °E° 

c(t)0 d(t) 
II 

a' ß' 
m 

k=1 r=1 
kr k r t=1 

Hence by G rothendieck's inequality, 
m n 
E° E°y <T (f (k) ) ,g (r) 

>1 

k=1 r=1 
kr 

= I 

E° E°ykr (R (f (k) ) , 
S* (g (r) ) ) I 

k=1 r=1 

6 Ka' ß ' sup 
I I R (f (k) ) II 

sup 
II S* (g (r) ) II 

k r 
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K a' ß' a' a2(T) ß' 
3 3 

K2a' ß' 

Hence 
so 

E° x(s)w(t)® y(s) z(t) 
K2 a33 s=1 t=1 

and the proof is complete. 

CO 

Suppose now that 11 = { {xn }n =0 :xn c k, E Ixnl< co} 

n =0 

and let 11 be equipped with any bounded multiplication. 

By our remarks at the beginning of this section, 11 is an 

L1,a space for each a > 1, and it follows that 11 ®X 11 is 

a normed- algebra. In particular, if 11 is equipped with 

convolution multiplication, then 11 ®x leis a (K2)- normed 

algebra. 

However 11 ®x 11 with convolution multiplication is not 

a (1)- normed algebra. For as in the first section of this 

chapter we may represent an element of 11 ®a 11by an 

infinite matrix 
(a..) i, . o. 

-. Then if w - (aid) and z (bid) , 

w.z - (aid) *(bid) where * represents matrix convolution. 

First take 
M... 

k = IR , 

-, 
1 1 0 . 

1 0 1 0 

let w 1 -1 0 . and let z 0 0 0 0 

0 0 1 0 -1 0 

0 0 0 
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Then 11w11 x= 2= 11 z11 x. 

1 1 1 1 0 

Now w.z -. 

1 -1 1 -1 0 

1 1 -1 -1 0 

1 -1 -1 1 0 

0 0 0 0 

Therefore 11 w. z 1 1 

x= 
8. 

Now take k to be the complex field 

Let z1 - 

Let z2 - 

Then 11z211 x=11z 

z1.z2 

1 

1 

1 

w 

1 0 

w2 0 

. 

. w3=1,w 1.111hen 11z1 

0 0 0 

1 0 0 1 0 0 1 0 0. 
0 0 0 0 0 0 0 0 0. 
1 0 0 w 0 0 w 

20 
0 . 

0 0 0 0 0 0 0 0 0. 

4 and 

1 1 1 1 1 1 1 1 1 0. 
1 w w2 1 w w2 1 w w2 0 

1 1 1 47 w w w 2 w 
2 

4,= 2 0 . 

1 w w2 w w2 1 w2 1 w 0 . 

0 0 0 0 0 0 0 0 0 
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By our remarks on finite tensor algebras, we have 

H ziz2ll 9/ = 18. 

We may similarly construct z3rz4,...,zn E 11®X 11 

such that 
l l 

z 
l l 

= 
I I 

z 1 
l l 

= 4 and 

/Tll z1z2....znll x 
n n/2 

3 2 . Now if 11 ®x11 is (1)- normed, 

then 3n2n/2 C /T 4n , i.e. 18n 4 3.16n for all n. This 

is a contradiction. 
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CHAPTER FIVE 

In this chapter we shall discuss measures orthogonal to 

injective tensor products of uniform algebras. Throughout 

this chapter the scalar field will be C. 

Brian Cole has shown that if A is the bidisc algebra 
2 

(the space of continuous functions on T which are analytic 

in A2, where A is the open unit ball in C), then any measure 

p which is orthogonal to A has a unique decomposition 

j1 = 6 + T + V 

where a is concentrated on E x T, with E o- compact and 

m(E) = 0, T is concentrated on T x F, with F a- compact 

and m(F) = 0, and v « a representing measure for some point 

of A2, and a,T and v are orthogonal to A. Here m represents 

Lebesgue measure on the unit circle T. 

In [16], Otto Bekken obtained a Cole -type decomposition 

of orthogonal measures for the algebras A(U x V) and R(Klx K2). 

By A(U x V) we mean the algebra of continuous functions on 

U x V which are analytic in U x V, where U and V are bounded 

open subsets of C. R(Klx K2) is the uniform closure on 

K1 x K2 of the rational functions with singularities off 
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K1x K2 , where K1 and K2 are compact sets in C. 

Bekken's results state that if p is a measure orthogonal to 

A(U x V) then p has a unique decomposition 

p = a + T + v where ,T and v are orthogonal to A(U x V) 

and a is concentrated on E x DV, with E a nullset for A(U) 1, 

T is concentrated on DU x F, with F a nullset for A(V)1, 

and v belongs to the band of measures generated by the 

representing measures for points of U x V. 

If p is a measure orthogonal to R(K1x K2) then p has 

a unique decomposition 

p = a + T + v where a,T and v are orthogonal to 

R(K1x K2) and a is concentrated on E x K2, with E a nullset 

for R(K1) , 

T is concentrated on K1 x F,with F a nullset for R(K2) , 

and v belongs to the band of measures generated by the 

representing measures for Ql x Q2, where Qi is the set of 

non -peak points for R(Ki). 

We shall obtain an analogous decomposition for the 

injective tensor product of a uniform algebra fulfilling 

certain conditions, with A(U), where U is bounded and open 

in C. (A(U) is the space of continuous functions on U 

which are analytic in U, regarded as a uniform algebra on 8U). 

If A is a uniform algebra on a compact Hausdorff space 

X, we denote the space of (regular Borel complex) measures 
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on X by M(X). We denote the set of measures orthogonal to A 

by A . A Borel set E in X is a nullset for Al if for every 

u E A uE= O, where uE 
is the restriction of p to E. 

If e (DA, we write M(1) for the set of representing measures 

for qt,. We say a measure u is completely singular if it is 

singular to Mcp for every c ecA. 

We say a subset E of X is a peak set for A if there 

exists f e A such that f(x) = 1 (x e E) and f (x)! <1(x e X , E) . 

A point x of X is called a peak point for A if {x} is a peak 

set for A. A peak set E satisfying AIE = C(E) is called a 

peak interpolation set. 

We now state two results from the theory of uniform 

algebras. The first result is a simplified form of Lemma 2.2.7 

of [16]. 

Lemma 5.1 Let A be a uniform algebra on a compact Hausdorff 

space X. Let (P142,-41116 (DA have representing measures 

Let E be an Fa set such that M (E) = 0 
Ti 

for i = 1,2,...m. Then there is a sequence {fn }n in A 

such that 
II 
fnil< 1, fn } 1 pointwise on E, and fn 3 0 

weak* in L. (pi) for each i. 

Theorem 5.2 (Theorem 2.12.7, [17]). Let A be a uniform algebra 

on a compact metric space X, and let E be a closed subset 

1 

of X. E is a peak set for A if and only 
if PEE A for each 
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u E A. E is a peak interpolation set if and only if u = O. 
a 

for all peA . 

We now discuss the theory of bands. 

Definition: Let X be a compact Hausdorff space. A norm -closed 

linear subspace M of M(X) is a band if whenever p e M 

and X «IuI, X E M. 

For an arbitrary subset S of M(X), we write S' for the 

set of measures singular to every measure in S. We easily 

have that S' is a band. 

The following result is well known. 

Theorem 5.3 Let S be a band. Then M(X) = S ® S'. 

Proof: Let u e M (X) . Let K = sup {IuI (G) : PG e S/. Choose 

Fn such that uF e S and 
I 

ui(Fn) 4 K. Let F = U F. Then 

n n =l 

uF « ' ITF I /2n e S. And IuI (F) IuI(Fn) for all n, therefore 

Iu1(F) - n = K. Also if uG 
E S, uF G« IuFI + INGI e S. Hence 

IuI (F U G) = IuI (F), so IuI (GNF) = O. Now let y e S. 

There exists a subset H of X such that pH 
« I y I and uX N H 1Iyl 

So uH e S & uH \F = O 
. So uX'F y , and u= uF + uX,,.F e Si-SI. 
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Corollary If S is a band, then S" = S. For if TIES" 
we have u= v + n where v e S, 

Therefore n= O and u eS. 

fl E S'. Then n= u-v E S''. 

Corollary If S is an arbitrary subset of M(X), S" is the 

smallest band containing S. 

Now let A and B be uniform algebras on compact metric 

spaces X and Y respectively. Let C = A ® B, regarded as a 

uniform algebra on X x Y. Let S1 = {X e M(X x Y): X is 

concentrated on E x Y, E a nullset for A }. Then S1 is a 

band, and 

S1' = {X E M(X x Y) : I X I (E x Y) = 0 for all nullsets E for A- }. 

We observe that if X is concentrated on E x Y, when E is a 

1 
nullset for A , then we may suppose without loss of generality 

that E is o- compact. For there is a a- compact subset SZ of 

E x Y such that IXI((E x Y) \3Z) = O. Then if p is the projection 

of X x Y onto X , p(Q) is o- compact and Qcp ( Q ) x Y c E x Y. 

So X is concentrated on p(Q) x Y. 

We also define a band 

S2 = {p e M(X x Y) : p is concentrated on X x F, F a nullset for B } 

then 
1 

S2'_ {p e M(X x Y) : 1p1 (X x F) = 0 forall nullsets F for B }. 
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We now have 

and 

so 

and in fact 

M(X) = S1 ® 

M(X) = S2 ® S 
2 

' 

M(X) = S1 + S2 + (S1' /1 S2' ) 

1 1 1 1 
Lemma 5.4 C = (C n S1) ® (C /1 S2) ® (C/1 Sl' /1 S2' ) . 

1 1 Proof: Suppose a e C r 1 S1, u e C /1 C1 r1 S1' 11 S2' 

and X + p + v = O. 

Suppose X is concentrated on E x Y, E a- compact and a nullset 
1 

for A and p is concentrated on X x F, F a- compact and a 

1 
nullset for B . ThenlvI((E x Y) U (X x F)) = O, and so v= O. 

Now we have X= -p is concentrated on E x F. There exist 

closed sets En and Fn such that E x F = Ú En x Fn. 
n =1 

For each n, En is a peak interpolation set for A, and Fn 
n 

is a peak interpolation set for B. Therefore En x Fn is a 

1 peak interpolation set for C, and so a nullset for C. 

Therefore X (E 
n 

x Fn) = 0, and hence IX (E x F) = 0. 

So X= p = O. 

Now let Q1 = OA \ PA be the non -peak points for A, 
and let Q2 = OB \ PB be the non -peak points for B. Let M 

be the band generated by the representing measures for points 
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of Ql x Q2. We wish to find conditions such that 
1 1 

C n Sl'/1 S2' will equal C /1 M. We always have the following. 

Lemma 5.5 (Lemma 3.1.7, C16]) . M c S1,/1 S2'. 
' 

Proof: We show that if v is a representing measure for a 

point (q),ip) in Q1 x Q2, then v E S11 /1 S2'. 

Let E be a nullset for A . We may suppose E is ci- compact. 

Let E = 0 E., where Ei is compact. Each E. is a peak 
i =1 1 

interpolation set for A. Let f E A peak on Ei . 

Then w )n = ff ne i dv } v (E. x Y) . Since is a 

non -peak point, cp (f)n -} O. Hence v (Ei x Y) = 0 for each i, 

and so v (E x Y) = 0 and v E Si' . Similarly v E S2'. 

Definition: If A is a uniform algebra on a compact Hausdorff 

space, then and i E 0A are in the same part if lip -q)11 < 2. 

Definition: If A is a uniform algebra on a compact Hausdorff 

space X, then a band Mc M(X) is a reducing band for A if 

whenever PEA decomposes u = ua+ us relative to M, 

uaand use A . 

Now take A to be a uniform algebra on a compact Hausdorff 

space X, and let R be a Borel subset of (DA \ PA, the set of 
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non -peak points for A. We denote by MR the band of measures 

generated by the representing measures for points of R. 

Lemma 5.6 (Proposition 2.1.12,[16]). With A,X and R as above, 

MR is a reducing band for A. 

Proof: Let p e A have Glicksberg -Wermer decomposition 

u =uo + E un where uo is completely singular and 
n =1 

un « an where An is a representing measure for some non - 

peak point cpn e (DA. The pn's are pairwise mutually singular 

and un e A , n= 0,1,2,.... . Let D consist of those indices 

n for which (I) belongs to the same part as some point in R. 

For each n e D, there exists a representing measure vn for 

a point in R such that An « vn (Corollary 6.1.2, C17]). 

Let pa= E pn e MR. For each n g D, Xn is singular to 
n eD 

all representing measures for points in R (Theorem 6.2.2,[17]), 

so pn e MR'. Let us = p + E un e MR' . The decomposition 
o 

ngD 

u = ua +us is the decomposition of p relative to MR and 

p 
a 

and us E A , so M is reducing. 

We can now obtain our decomposition in the desired 
form. 

Theorem 5.7 Let A be a uniform algebra on a compact metric 

space X, such that A has no completely 
singular annihilating 
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measures except zero, A is (norm) separable, and A has 

countably many non peak point parts. Let Q be the set of 

non -peak points for A. Let U be a bounded open subset of the 

complex plane, and let C = A ®A (U) . Let v E C satisfy 
1 IVI(E x aU) = 0 if E is a nullset for A, 

Ivi (X x F) = 0 if F is a nullset for A(U) . 

Then v E M= MQ x U' 

Proof : Since M is a reducing band for C, we may assume that 

v E M'. We show first that if g E A and h E C(3U), then 

fg(x)h(z)dv(x,z) = 0 . 

By Lemma 1.1 of [18], C(aU) is the closed linear span of 

A(U) and the functions 1 /(z -zo) (zo eU). It is therefore 

enough to show that 

fg(x)/(z-zo)dv(x,z) = 0 (g EA, zo EU) . 

Define X e M(X) by a (E) = t 1/(z-zo) dv (x,z) . 

ExaU 

Then if E is a nullset for A , X(E) = O. Since A has no 

non -zero completely singular annihilating measures and 

countably many non -trivial parts, it follows that X EMQ . 

Hence there exist a. . O,and (1). e with representing measures 

p 
i 

such that X « u =iIlaiui and iElai < 00 .There exists 

k e L1(p,X) such that dX = kdp . 

Therefore jiai f 
I 

k (x) I dui (x) = f 
I 

k (x) I dp (x) < 00 . 
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Given e > 0, there exists no E JP such that 

a . 
I l k (x) 

I du . (x) < c/ 
I I g II 

i =no +1 1 1 

Now let T E M(aU) be a representing measure for zo. 

Then p. ® T EM(XxaU) is a representing measure for (cpi,z0). 

v is orthogonal to M(cp 
z 

for i = 1,2,... no. It follows 
l' o 

from Lemma 2.7.4 of C17]that there exists an F 
a 

set E in 

X x aU such that v is concentrated on E, and M(cp )(E) = O 

i' o 

for i = 1,2,....no. By Lemma 5.1, there is a sequence 

{fn} in C such that 'Ifni! 1, fn ' 1 pointwise on E, 

and fn -> O weak* in L(ui ® T) for i = 1,2,...,no. 

Now the function g(x) (fn (x, z) - fn (x, zo)) / (z -zo) is in C. 

Therefore f g(x) fn (x, z) / (z -zo)dv (x,z) 

XxaU 

= I g(x) fn(x,zo)/(z-zo)dv(x,z) 
XxáU 

= I g(x) fn (x, zo) da (x) . 

X 

Since v is concentrated on E, 

Ig(x) fn(x,z)/(z-zo)dv(x,z)} Ig(x)/(z-zo)dv(x,z) . 

But I 
f g(x) fn (x, zo) da (x) I 

X 

= I 

co 

a.t g(x)k(x)fn(x,zo)dui(x) I 

i=1 1 X 

Eai 
I IaU ( IXg (x) k(x) fx, z) aui (x) ) dT (z) I+ I1 g II E/ II g I I 

1 

-} O + E 
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It follows that fg(x) /(z -zo)dv = 0 , and hence 

fg(x)h(z)dv = 0 for all g6A, hEC(aU). 

We now disintegrate v, and we get 

I F(x,z)dv(x,z) = f (f F(x,z)driz (x) )da (z) 
XxaU aU X 

The mapping z fl is weak* measurable, and a is the compression 

of Iv! onto 3U, i.e. a(F) = iv (X XF) for each Borel set F. 

J. 
Therefore a(F) = 0 for all nullsets F for A(U) ,and so 

a E M. We now have 

f (f g(x)dnz(x))h(z)da(z) = 0 for all gEA, hEC(aU). 
aU X 

It follows that nz E A for 0- almost all z, since A is separable. 

Since A is separable, we may choose a countable 
03 

dense set {p :n EIP } in A. Let y = E (1/2 
n11 

un I 
I 

) hint I 
n =1 

E MQ. Then if p E A , and E is a Borel set, y(E) = O implies 

I u n I 
(E) = O for all n E IP , and so u (E) = O. Therefore 

1 u« y for all u E A . 

We thus have that nz « y for a- almost all z. Now 

define H by dnz 
(x) = H (x, z) dy (x) Also define h such 

that h(x,z)H(x,z) = IH(x,z) 
i 

-and Ih(x,z) 
I 

= 1 . 

Then I (f IH(x,z) Idy(x))da(z) 
aU X 

= I (f h(x,z)dnz(x))d0(z) 
DU X 

= f h(x,z)dv(xz) < 
CO 

. 

XxaU 
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And dv(x,z) = H(x,z)dy(x)dc(z) 

so v « y®6 e M. 

Combining this result with Lemmas 5.4 and 5.5, we 

now have 

Theorem 5.8 Let A be a uniform algebra on a compact metric 

space X, such that A has no completely singular annihilating 
1 

measures except zero, A is (norm) separable, and A has 

countably many non -trivial parts. Let Q be the set of 

non -peak points for A. Let U be a bounded open set in the 

complex plane, and let C = A ®A(U). Then any measure p in 

1 
C has a unique decomposition 

J. u= Q -FT , where cr , T and v e C , 

a is concentrated on E x DU, with E a nullset for A , 

T is concentrated on X x F, with F a nullset for A(U) , 

and v belongs to the band of measures generated by the 

representing measures for points of Q x U. 
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