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Abstract 

The effectiveness of activity-based learning has been discussed by many authors 

over the past 4,000 years. Despite the suggested strength of a 'hands-on' approach, 

learning in secondary school mathematics classes has become abstract and ana-

lytic. Students are taught out-of-context and are seldom given the opportunity to 

act upon their educational experiences. 

To evaluate the effectiveness of practical activities in classroom situations, ma-

terials were developed by the author. These concerned areas from the mathematics 

syllabus of the first and second years of secondary school. Data were collected from 

urban and rural schools in both Greece and Scotland. The students' performance 

on the practical activities was investigated in terms of the cognitive difficulty of 

the introduced mathematical concepts. Culture was also investigated as a differ-

entiating factor in the performance and attitudes of the students. 

The results of the study indicated a differentiation in performance and at-

titudes between students of the two countries, in favour of the Greek students. 

In some tasks first grade students performed better than the second grade ones, 

in both countries. Cultural differences, as these are reflected in the educational 

systems, indicated the existence of a 'classroom culture'. This 'classroom cul-

ture' appears as the ethos of a school class, created and sustained by the teacher 

and the students. In this respect more similarities were found between Greece 

and Scotland rather than differences. These similarities address the formation 

of values in the mathematics classroom about the nature of mathematics, about 
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understanding mathematics, about the role of the teacher and about education in 

general. 
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Chapter 1 

Practical Activities in Mathematics 

Learning 

1.1 A Historical Retrospective 

Eastern mathematics started in countries with big river-valleys (Egypt, Babylonia, 

India, China) serving the economic and technological needs of the time (Struik 

1982, Gheverghese 1992). The Ahmes and Moscow papyri (1650 BC and 1850 

BC) give evidence of the problems that most concerned the Egyptians: distri-

butions of loaves and wine, remuneration of temple personnel, feeding animals, 

land surveying, mensuration, volumes of granaries and pyramids, astronomical 

calculations. Some of these practical problems, though, presented theoretical in-

terests that were pursued by the scholars of the time. The algebra was rhetorical 

(verbally expressed, detailed instructions) so that any theoretical motivation was 

hidden behind rules for computation (Gheverghese 1992). The Egyptian scholars, 

responsible for the teaching of mathematics, encouraged learning through play 

and with activities that corresponded to the practical character of the subject 

(Yannicopoulos 1989). 

Babylonian mathematics represented a practical tool as well, rather than an 

intellectual pursuit. Problems were similar to those handled by the Egyptians 

(Struik 1982). There was a small elite class that developed a non-practical pursuit 

of mathematical science. The rhetorical algebra of the Egyptians became synco-

pated, with abbreviations for recurring quantities and operations (Gheverghese 

1 
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1992). The extent to which the teaching methods of the priests, responsible for 

the teaching of sciences, were practically based is doubtful (Freudenthal 1973). 

Struik (1982) suggests that the rationale of the Indian and Chinese mathematics 

teaching had a similar orientation to that of the Egyptians and the Babylonians. 

The transcending of the utilitarian origins of mathematics appears most clearly 

in Ancient Greece. The question of 'why?' was added to that of 'how?' of the East 

(Struik 1982). A knowledge of mathematics became a prerequisite for the study 

of philosophy, as the Greeks were striving to identify fundamental principles that 

would bring some order in the 'chaos' of existence. All activities have an end, a 

completion (teleological dimension of activity, Danassis 1985a). In mathematics, 

being a theoretical science (Aristotle, in Apostle 1952), this end is found in the 

simple activity of knowing, of the acquisition of scientific truth (Burnet 1905). On 

the other hand, practical sciences are closely related to the actual construction 

of a product beyond the activity itself. Then knowledge is sought in so far as it 

is useful to that construction (opcit). Despite the ideological orientation given 

to mathematics, its practical applications were also appreciated. For Aristotle, 

theoretical philosophy acquired value and interest only if it was related to practical 

philosophy (Danassis 1985a). 

In the two great schools of antiquity, Plato's Academy (387 BC - 529 AD) and 

Aristotle's Lyceum (335 BC - 86 BC), mathematics was taught beginning from 

physical objects (Anapolitanos 1985, Yannicopoulos 1989). Plato, despite the 

clear theoretical and philosophical orientation of his Academy, believed that the 

abstraction of real knowledge could be achieved either directly from the awakening 

of the senses, or indirectly through the stimulation of imagination using the So-

cratic dialectic method (Anapolitanos 1985). In Aristotle's Lyceum the prevailing 

belief was that the building of the intellect was impossible without the experience 

of objects (Yannicopoulos 1989). This belief was reflected in the empiriocratic and 

scientific character of his school. Moreover Plato advised the teachers of the time 

to use play as a method for teaching, as the Egyptians were doing (opcit). In the 

Republic he says that knowledge that is imposed never takes root in the soul of a 

child (Yannicopoulos 1983). A similar view was adopted by Aristotle in his Ethics 
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(opcit). The teaching practice though, despite these suggestions, relied heavily on 

memorisation (Yannicopoulos 1989). 

In contrast, the Roman view was that the development of human nature should 

be guided by tradition rather than reason (Wilkins 1914). Education took place in 

the home, based essentially on apprenticeship. After the second half of the third 

century BC and during the Hellenistic period (until 313 AD), the Greek influence 

became apparent. The teaching of mathematics was largely performed by Greeks. 

Roman education was still based though in the teaching of the 'trivium' (gram-

mar, rhetoric, logic) with the 'quadrivium' having a secondary role (arithmetic, 

geometry, music, astronomy). As Cicero reported (1st century BC), geometry and 

arithmetic had many practical applications in land surveying, in military applica-

tions, in navigation and astronomy (Bonner 1977). Quintilian (1st century AD) 

suggested that what enters through the ears stirs the mind less vividly than what 

is presented to the trusty eyes (in Horace's words, opcit). Teaching methods in 

mathematics then concerned practical demonstrations, counting using fingers and 

calculi (counters), abacuses (reckoning boards), group-tutoring, tutoring by older 

students, singing and play (Wilkins 1914, Bonner 1977). 

During the Byzantine years and until the fall of the empire to the West in 

1204 AD, the dominant pedagogical ideas were those of Basil the Great, Gregory 

Nazianzen and John Chrysostom (4th century AD). Greatly influenced by Chris-

tianity, they believed that the best teaching was achieved through experiences 

closely related to the learner's own interests and past experience (Yannicopoulos 

1983). In Chrysostom's words "You cannot teach as effectively by words as you 

can by objects", "Nothing is less constructive than teaching by words only; for this 

is not suitable for a teacher but for a hypocrite" (writer's translation, opcit: 190-

191). Consolidation for each subject was achieved by frequent repetitions and by 

application of the learned knowledge in everyday life experiences. 

During the 'Dark Ages' (4th to 13th century) human energy was absorbed 

in the struggle for survival (Ulich 1963). Intellectual activity revolved around 

learning Latin, liturgical observance and rudiments of the seven liberal arts (triv-

ium and quadrivium) from few and second hand sources (Freeman 1985, Ulich 
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1963). Teaching took place in monastic, parish or cathedral schools with methods 

based on memorisation. Non-school learning involved apprenticeship to prepare 

the youth for their occupations. The spirit that dominated the thinking of this 

period is captured in the words of Hrabanus Maurus (priest, 776- 856 AD) and 

his view about arithmetic: 

'.. those eager to cultivate arithmetic are right because in large 

measure it turns the mind from the fleshly desires and furthermore 

awakens the wish to comprehend what with God's help we can merely 

receive with the heart." (Ulich 1963: 178) 

Geometry for Maurus was also a way to appreciate the well ordered arrange-

ment of the world by the "almighty creator" (opcit). 

The writings of the great Fathers of Christianity reached the West with the first 

emigration of Byzantine scholars during the ninth century and with the Crusades 

(Yannicopoulos 1983). The learning preserved by the Arabs also transmitted, 

slowly, to the Western Europe during the transition period from 540 to 1500 AD 

(Burton 1988). During the Renaissance years learning was based on memorisation, 

with understanding as a desirable but secondary aim (Freeman 1985). 

Some influences from classical Greece and from the Byzantine scholars can be 

detected in the work of John Locke (1632-1704). He was an advocate of empirical 

knowledge (Aristotelian perspective). The materials for this knowledge are to be 

acquired through our senses (Danassis 1985b). Even more influences can be found 

in Comenius' ideas (1592-1670), who believed in learning through the senses with 

the use of teaching aids (Laurie 1899). The familiar should be combined with the 

pleasant and should be presented to as many of the senses as possible (Danassis 

1985b, Freudenthal 1973). 

"And in order that everything may be imprinted the more easily, 

let the senses be applied to the subject as often as possible - e.g. let 

hearing be joined with vision and the hand with speech. 
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"For the beginning of knowledge is from pure sense, not from words; 

truth and certitude are testified to by the evidence of the senses." (Di-

dactica Magna, Laurie 1899: 125, 146) 

We find a continuation of these pedagogical ideas during the 18th century in 

the works of Rousseau, Pestalozzi and Froëbel. They all suggested the training of 

the senses and the transition from concrete to abstract in learning (Kramer 1976, 

Danassjs 1985b). Pestalozzj and Froëbel actually developed a series of toys or ap-

paratus ('gifts' as Froëbel called them), to heighten the awareness of relationships 

between things and to stimulate learning through play (Kramer 1976, Exarchakos 

1988). 

At about the same time the pioneering (and successful) work of Itard and 

Seguin with feeble-minded children had its foundations on similar principles. They 

nourished a respect for individuality in learning and acknowledged that the build-

ing of the intellect can begin with physical movement, 'the education of action' 

(Kramer 1976). The contribution of Froêbel in the development of pedagogical 

thinking can be seen as the bridge between the work of Pestalozzi and Montessori. 

Montessori's ideas on 'auto-education' marked the passage to the 20th century, 

along with those of Dewey and the development of his 'theory of experience'. 

Montessori strongly believed that the tendency to establish relations is innate to 

all children and underlies sense perception (Hunt 1912). She spoke about the 

'hunger of the senses' and advocated that pedagogical exercises should not leave 

the child inactive, preventing him/her from controlling the material (Montessori 

1912). The materials that she used were to some extent a development of those 

used by Itard, Seguin, Fro-Ebel and Pestalozzi (two and three dimensional shapes, 

of differing sizes, colours, matched into holes, blindfolded activities, etc.). Decroly, 

another educator of this time, approached the formation of knowledge in the same 

way as Pestalozzi (Exarchakos 1988). 

Dewey's theory of experience followed the belief that education was a devel-

opment within, by and for experience (Dewey 1963). Not all experiences, though, 

are genuinely or equally educative. He identified experiences of educative value 
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according to the principles of continuity and interaction. Continuity refers to the 

suggestion that each activity takes up something from things that happened in 

the past and also modifies in some way the quality of things which come after. 

This suggestion presupposes the specification of a direction in which growth de-

rived from experiences should progress. What is done by the educator during the 

experience - words used, tone of voice, equipment, books, apparatus, toys, games 

played, etc, constitute the objective conditions under which experiences are had. 

The internal conditions of an experience are what goes on 'within' the individuals 

having the experience - personal needs, desires, purposes, conditions of the expe-

rience. Every experience has an 'active' side which changes to some degree the 

objective conditions under which experiences are had. The interaction principle 

suggests that the objective conditions (interactions between the individual and 

objects and other persons) should be subordinated to the internal ones. Experi-

ence is truly experience only if these conditions are assigned equal 'rights'. With 

his theory of experience Dewey aimed at an ultimate freedom of the intelligence, 

that is to say "freedom of observation and of judgement exercised in behalf of pur-
poses that are intrinsically worthwhile" (Dewey 1963: 61). To resume Dewey's 

suggestions: 

"Anything that can be called a study, whether arithmetic, history, 

geography, or one of the natural sciences, must be derived from the 

materials which at the outset fall within the scope of ordinary life-
experience. 

"Finding the materials for learning within experience is the first 

step. The next step is the progressive development of what is already 

experienced into a fuller and richer and also more organised form, a 

form that gradually approximates that in which subject-matter is pre-

sented to the skilled, mature person." (opcit: 73-74) 

The more recently developed theories of learning were built upon the ideas of 

Dewey and his predecessors. Piaget saw acting upon our experiences as the only 

way to learn about our world. Manipulating objects in a concrete and action- 
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oriented context is the first step of the internalisation of actions. By reducing 

the perceptual and motor supports we increase the level of internalization and 

the strength of abstraction (Flavell 1963). Abstraction for Piaget "is only a kind 

of trickery and deflection of the mind if it does not constitute the crowning stage 

of a series of previously uninterrupted concrete actions" (Labinowicz 1980: 181). 

Acting upon our experiences involves transforming them within the mind, so to 

fit the existing cognitive structure and adjusting the mind to the new experiences 

(Sutherland 1992). The former mechanism provides continuity and stability, while 

the latter is akin to novelty and change. Learning is seen as the process of balanc-

ing between these two mechanisms. It is through successive, essentially discontin-

uous equilibrations that organised systems of actions are formed, as the learner's 

intellect develops from the stage of sensory-motor operations to the stage of formal 

operations (Flavell 1963). 

Ausubel (1968, 1985) and Skemp (1986) saw learning, like Piaget, as a pro-

cess of interpreting unfamiliar incoming information and fitting it into a schema. 

In this way great emphasis is placed on the existing cognitive structure of the 

learner. The interaction between the incoming and potentially meaningful ma-

terial and the established knowledge (in the form of schemata) causes changes 

to both. Therefore, what is actually stored in memory may not be exactly as it 

was when the process had started. Furthermore, the accommodating schema (or 

schemata) may not have the same composition as it had before the assimilation of 

the new material. Ausubel et al. suggested that sitting still and listening does not 

rule out thinking (Entwistle 1988). Therefore the materials used to introduce a 

new concept do not always have to be of concrete-empirical nature. They can take 

the form of primary ideas, as in the acquisition of 'secondary concepts' (Ausubel 

1968, Skemp 1986). Returning to Piaget's work, it has to be stressed that he 

considered that the manipulation of objects was critical to the later development 

of logical thinking only up to the twelfth year of age, when the stage of formal 

operations begins (Labinowicz 1980). 

The work of the American psychologist Bruner concerning the process of learn-

ing, corresponds in many ways to the ideas introduced by Piaget. He opposed, 
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however, Piaget's belief that learning is subordinate to biological development 

(Liebeck 1984). Bruner (1967) suggested that the process of learning and of intel-

lectual growth is the translation of our experiences in the world into increasingly 

more elaborate and powerful modes of representation. Our actions within an ex-

perience (or experiences) are the means for the formation of the initial mode of 

representation, the 'enactive'. As soon as the existence of objects involved in our 

actions ceases to depend upon these actions, we begin to operate in an 'iconic' 

mode of representation. Objects become visual or sensory representations that 

summarise our actions on the objects. When the final mode of representation is 

reached, the 'symbolic', some kind of language is formed to represent, internalise 

and manipulate actions. This language is used as an instrument of thought rather 

than as language per se (Bruner 1967). Bruner (1965) emphasised the importance 

for the learner of grasping the structure of an idea in a way that permits many 

other things to be related to it meaningfully. Reaching this structure requires the 

provision of opportunities to operate in the modes described by the model. He 

believed in giving visible embodiments to ideas and in the use of models to lead 

the learner through the different modes of representing ideas. Falling back on ini-

tial experiences can provide help, when symbolic representations fail the learner 

in solving a problem. By-passing the first two modes of representation then, may 

deprive him/her of the ability to fall back on these formative experiences. 

Liebeck (1984) suggested a similar theory of learning to that of Bruner. How-

ever, she emphasised the importance of spoken words to represent and communi-

cate our actions, by introducing a fourth stage in the model between the enactive 

and symbolic stages (Experience - Language - Picture - Symbol). This approaches 

Skemp's definition of 'logical understanding', that is the difference between being 

convinced oneself and being able to convince others (Skemp 1976, 1979, Byers & 

Herscovics 1977). Bruner had indicated the importance of language "Intellectual 

growth involves an increasing capacity to say to oneself and others, by means of 

words or symbols, what one has or what one will do" (Bruner 1967: 5). 

An approach to learning from a different perspective, specific to mathematics, 

was introduced by Dienes (1960, 1963, 1964, 1973). He saw the process of learning 
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through increasingly more structured play activities. By "fiddling around" with 

the provided material the child adapts to a certain environment ('free play' stage). 

From free play the child begins to realise some constraints or regularities (rules of 

the game) on which relevant mathematical structures will depend (second stage). 

The child is then introduced to perceptually different activities based on a common 

structure (principle of 'multiple embodiment'). The underlying structure is thus 

extracted from these various activities (third stage). In the fourth and fifth stages, 

representations (auditory or visual) and language are introduced, to reflect upon 

and discuss the abstracted structure. Finally (sixth stage) the child draws on 

what has been abstracted from the activities and by analytic thinking proceeds 

to further generalisations (Dienes 1973). To provide the maximum amount of 

experience of the learned knowledge, Dienes suggested further activities following 

the principles of 'mathematical variability' (all possible variables vary keeping the 

concept intact) and of 'contrast' (use of non-exemplars to ensure that situations 

not addressed by the concept will be identified as such) (Dienes 1960, 1964). 

Contemporary views on mathematics learning suggest that knowledge is con-

structed by the learner through an active learning process. This corresponds to 

Ausubel's assimilation theory (constructivism, Jaworski 1991). Knowledge "is not 

out there in the world waiting to be discovered" (opcit: 11), contrary to what Plato 

and Gibson suggested by saying that knowledge is actually discovered through a 

process of learning to perceive what has always been there (Anapolitanos 1985, 

Miller 1989). Constructivism accounts for the individuality of knowledge and 

draws attention to the fact that teaching is more like developing shared knowl-

edge rather than giving it to the students (Jaworski 1991). 

Pine (1992) and Mason (1992) proposed models of learning which are an amal-

gamation of Bruner's thoughts, based on constructivist philosophy. The process 

of concept building passes through levels of growing understanding about the con-

cept. Manipulation of objects (physical or mental) gives an insight into a sense 

of structure, which further becomes more articulate and detached from the initial 

experiences with the objects. Even though at each level the learner can perform 

without reference to experiences from past levels, understanding may break down. 
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The learner then would have to draw from these lower level experiences and skills 

to find help. This 'folding back' feature of the model is essential if understanding 

is to continue its growth. If lower level references do not exist, or are not adequate 

to provide ideational scaffolding (Ausubel's term, 1968), understanding is bound 

to cease at the level that the difficulty emerged. It might be substituted for by 

the use of some rule or technique. 

1.2 The Present Situation 

Mathematics has been addressed for millennia as a theoretical science, partly be-

cause of its nature and partly because of the objectives of those who have pursued 

mathematics ('lovers' of wisdom, seeking to discover eternal truths, Apostle 1952). 

Arithmetic and geometry though, started as practical sciences serving the needs of 

everyday life. Sympathies for abstraction developed as soon as mathematics moved 

beyond the purposes for which it was initially invented. Despite that, practical 

applications have never been divorced from the mathematical disciplines (arith-

metic, geometry, astronomy, musical theory). In addition, many contributors to 

pedagogical thinking in the past 4,000 years suggest that pedagogical exercises 

should not leave the child inactive, preventing the learner from controlling the 

material. 

Instruction in mathematics, though, followed the pattern of teaching the young 

by telling 'out of context' rather than showing 'in context' (Bruner 1967). The 

great problem of mathematics education then seems to be, as Freudenthal (1973) 

suggests, the gap between the use of mathematics and the aim of learning math-

ematics. This gap seems to widen in secondary education. Is the aim of learning 

mathematics 'to think logically'? Is that aim valueless if logical thinking can only 

be applied in the mathematics classroom? Is it worthwhile, then, to teach only 

through 'sentences' disregarding Dewey's suggestions that learning should be a 

development within, by and for experience? How can we shorten the distance be- 
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tween a "useless aim" and an "aimless use" in the field of mathematics instruction 
(opcit)? 

In life outside school, mental work is distributed over several individuals and 

the use of 'tools' expand people's mental power. In contrast, in schools learn-

ing and performing become individualised and the focus is on symbolic activities 

(Resnick 1987, 1989). Bruner suggested the use of devices for "vicarious" expe-
rience to substitute for experiences taking place in everyday life. Giving visible 

embodiments to ideas and making provision for sequential programs can promote 

students' understanding of basic ideas and structures in mathematics (opcit). This 

approach in teaching could meet the cognitive and affective needs of the students, 

if we are to accept that learning progresses from concrete to more abstract knowl-

edge. It satisfies both children's need for movement (hunger of the senses) and 

innate disposition for learning (growth of intellect). 

In contrast to the suggestions supporting this way of learning mathematics, 

practical activities are used only sporadically with older children. This decision 

seems to be supported by arguments that draw not particularly on their effective-

ness in promoting learning but on functional difficulties caused by their use as 

a teaching aid. As Desforges said "Teachers, of course, will not teach what they 
do not value and cannot teach what they do not know" (1985: 93). We could go 

even further and suggest that sometimes teachers cannot teach what they already 

know. Based on these views, arguments against the use of practical activities will 
be discussed next. 

To 'not value' practical activities can be translated as not valuing them as 

an approach to learning or as an approach in teaching. Either of the views of 

course may lead to the other. Some may advocate that practical activities are 

not essential in secondary education since learning becomes formal and analytic. 

This very argument implies that understanding comes at a higher level. We can 

suggest then that difficulties faced at these higher levels can only be dealt with 

by the use of tricks or techniques provided by the teacher instead of by folding 

back to past experience. The implicit knowledge acquired from practical work, at 

the initial levels of understanding, cannot be taught didactically at a later stage 
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(Giles 1981). Obtaining the correct answers then replaces understanding. Not 

to value practical activities is also closely related to beliefs about the nature of 

mathematics. If mathematics is to be addressed only as a theoretical and highly 

abstract subject, then such a view may have some validity. However, this still 

would not divorce these abstract tools from their practical origins. 

For those who 'value' and therefore use practical activities in the classroom, 

there is the danger of perceiving similar but essentially different activities as prac-

tical. James (1985) distinguished activity-based learning from the "rides with 
tools for ticks" approach. In the latter students are using 'tools' while working 

but they are still tuned into the teacher's way of doing things. They have to 

follow a path that the teacher and the 'tools' have set for them. 'Tools' become 

techniques for reaching the correct answers (the 'ticks'). Discussion is not usually 

encouraged and students may fail to appreciate the mathematical and everyday 

life implications of those practical activities. In another, similar approach, practi-

cal activities may be used as a 'fun' activity. This definitely redirects students and 

teachers from the real nature of the approach, perceiving them as 'not mathemat-

ics' but as play. Learning from such activities is mainly incidental. It seems then 

as if teachers cannot teach what they already know, not always though because 

of their inadequacy. 

We can suggest that there are also teachers who 'value' practical activities as 

a way of learning but are hesitant in using them for 'security' reasons. Leinhardt 

and Greeno described teaching as a cognitive skill, which actually requires '.. a 
complex knowledge structure composed of interrelated sets of organised actions" 
[schemata] (1986: 75). Practically-introduced tasks may hide unexpected difficul-

ties in their progress (cognitive and functional), which could impose a 'threat' to 

these 'teaching schemata'. The teacher then may decide to adopt a teaching style 

that would 'secure' the students' success (Freudenthal 1973) and his/her author-

ity in the classroom (the 'informer' and the 'problem solver', non-pupil initiated 

activities, Khale 1987). 

Closely related to this security feeling are the difficulties that may occur in 

the use of practical activities. Equipment needs to be prepared beforehand, which 
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may take a lot of the teacher's time. Equipment needs to be cheap so that the 

schools can afford it. Assistance might be needed during the sessions using the 

practical activities, to allocate the materials and make sure that each student 

has the appropriate support and challenge. There is pressure on teachers to have 

calm and quiet classes. Students should be lively and interested (not too lively 

and therefore disruptive), conscientious, little trouble in the class, etc (Walden & 

Walkerdine 1985). Practical activities encourage talking and active participation 

by students. This could be contrary to the commonly accepted organisation of a 

class. Other difficulties may concern the evaluation of the outcomes, since it is 

likely that they will be long- rather than short-term. All the discussed difficulties 

are heightened by the large number of students in a class. In science classes the 

numbers of students are limited to make practical activities easier for the teachers 

to manage. This is not the case in maths classes. The students themselves can 

play a role in overcoming such organisational difficulties by adopting a purpose for 

learning (Dewey 1963). To transcend over and above the requirements of a task 

is to pursue cognitive processes that have learning as a goal (intentional learning, 

Bereiter & Sca.rdamalia 1989). The formation of such an attitude can be promoted 

by activity-based teaching. A further objection to practical activities is that they 

are time-consuming in an already full schedule for preparing the students for their 

final examinations. 

To address the second part of Desforges' citation, teachers will not teach with 

practical activities if they do not know how to. Most secondary school mathemat-

ics teachers are trained within a period of one year. Their classroom training takes 

place in schools, where the situation may coincide with the one described. More-

over many teachers are not aware of already existing teaching materials and it is 

difficult for teachers to produce their own materials due to time limitations. If we 

do not use practical activities on the grounds of their being time-consuming (the 

burden of completing the syllabus), we have to reconsider the criteria for success 

in mathematics learning. Are we aiming to teach an isolated subject, with tasks 

that are neither unusually extensive nor profound? Should we prefer teaching 

that aims to promote life-long learning and portrays honestly the nature of the 
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subject? The earlier aim concerns short-term achievements and provides cheap 

success (Freudenthal 1973). Time in this case is important, since this is an aim 

that can be achieved only during the school-years. The latter aim though, con-

cerns a will for life-long learning where time is irrelevant since learning continues 

after school. 

1.2.1 Creating a Learning Environment 

So what should we choose? The 'realistic' but possibly sterile approach, or the 

more 'unrealistic' and maybe metaphysical one? There is not always 'one' an-

swer. There are though answers that serve the needs of situational and intrinsic 

factors. One of the disasters of education was described by Dewey (1963) as the 

'either-or' philosophy. It is not then a matter of choosing between the two ends 

of the argument. There is rather a need for finding a balance between the situa-

tional factors of teaching mathematics and the intrinsic ones that account for the 

individuality of the learner. It is not a matter of teaching everything we possibly 

can within a prescribed period of time, in a way convenient to us. It is rather a 

matter of providing experiences (as already described) and support, so to promote 

understanding and build positive attitudes towards mathematics and learning in 

general. 



Chapter 2 

Focusing on Certain Mathematical Areas 

2.1 Stranding the Concept of Similarity 

The theme of the first part of this chapter will be the similarity of rectangles. 

Similarity will be discussed in general along with studies pinpointing the difficulty 

and importance of the concept. We shall identify its relations to other topics in 

mathematics and also distinguish rectangle-similarity from the broader concept of 

similarity. The complexity, difficulty and importance of all the related concepts 

will be established through a number of researches and surveys. We shall quote 

theories concerning the development of these concepts and we shall conclude with 

a summary of teaching approaches towards them. 

In order to trace the origin of the idea of similarity we have to investigate the 

very early experiences in our childhood (Williams & Shuard 1991). Long before 

children can think in terms of similarity, they can make judgements on whether 

figures possess similar relationships. Van den Brink and Streefland (1979) suggest 

that 6 to 8 year-olds can deal with similarity as an operative equivalence while they 

are trying to order the visual perceptive reality. Researchers like Freudenthal and 

Dudwell (opcit) suggest that congruences and similarities are ways of processing 

our visual perceptions and they are built into our central nervous system. So in 

order to seek the similarity of figures we have to seek for the actual perception 

of the figures (Piaget & Inhelder 1956). Piaget called the perceptual activity of 

recognising two shapes as similar "transposition" and regarded it as one of the 

fundamental properties of perception (opcit). Perceptual transposition then is 

15 
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the initial form of the concept of similarity. We have a long development though 

before we reach the point where figures, similar to a given one, can be constructed 

operationally, that is, to acquire a geometric sense of the similarity concept. 

Similarity assists in perceiving, categorising and organising the world around 

us. How does it fit though in the mathematics curriculum? As Lappan and 

Even (1988) indicate, similarity is an important topic in geometry, since it is 

basic in understanding other topics like the geometry of indirect measurement, 

proportion and ratio, scale drawing, modelling and the nature of growing (shapes 

etc). Piaget and Inhelder (1956) suggest that similarity tasks are easier than 

tasks involving proportion. Therefore, as Friedlander (in Lappan & Even 1988) 

says, geometrical similarity is a concept that may lead to an understanding of 

proportionality. Similarity also relates closely to equivalent fractions (Hart 1984). 

Teachers in the Second TEA Study of Mathematics (Garden & Robitaille 1989) 

rated similarity of plane figures as an important topic for 13-year-olds (see also 

Hüsen 1967). Along with its importance in the mathematics curriculum, similarity 

is regarded as a difficult concept. Evidence from research studies and achievement 

surveys support this view (Robitaille 1989, Robitaille & Taylor 1989, Lappan & 

Even 1988, Cresswell & Cubb 1987, Hart 1978, 1981c, 1987, 1989, Hüsen 1967). 

The most popular items in these studies though involved applications to similar 

triangles and indirect measurement. 

2.1.1 Similarity, of Rectangles 

The similarity of rectangles as a topic deserves to be examined separately, due to 

its peculiarity compared to the tasks discussed previously. 

Transposition of similar shapes can be done according to overall shape, di-

mensional relations or angles. Intuitive understanding of similar figures involves 

such comments as 'having the same shape', while a more analytic and powerful 

understanding has to do with 'angle size is preserved', 'all lengths are multiplied 

by a constant', or 'ratios of corresponding sides are equal' (Lappan & Even 1988). 
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With rectangles there are no angles to compare. It may seem then that identi-

fying similar rectangles is a simpler task than that of triangles, since in rectangles 

one need to focus only on two cues (size and sides' proportions). This may be 

the case when a formal understanding of similarity has been acquired. For a child 

though who is perceiving similarity intuitively, comparing rectangles for their sim-

ilarity is a complex task. The ratio of the sides has to be estimated and no help 

can come from any correlative change in angle (Piaget & Inhelder 1956). 

A distinction has to be made between tasks involving perceptual comparison 

of rectangles and pictorial construction. In the first case intelligence is governed 

by perception, therefore we speak of a perceptual estimation. In the second case 

perception is governed by intelligence and we speak then of an intellectual con-

struction (opcit). In the research reports reviewed by the author, items on similar 

rectangles involve intellectual constructions. The child has the length and breadth 

of the original rectangle (either given or needing to be measured) and has to en-

large it by a ratio (either given or has to be calculated) (Hart 1978, 1981b, 1988, 

Lappan & Even 1988, Clarkson 1989). These tasks were proved to be difficult for 

12 to 15-year-olds when the enlargement ratio was other than 2:1. 

2.1.2 Strategies on Rectangle-Similarity Tasks 

Clarkson (1989) analysed students' responses (12 to 13 years of age) on enlarge-

ment tasks (not limited to rectangles). He suggested a number of strategies that 

students use when confronted with such tasks. A summary of these strategies 

adapted to the case of rectangles follows: 

. Linear Scale Factor: the child multiplies the sides of the original rectangle 

by the scale factor to find the lengths of the sides of the wanted rectangle 

• Addition Scale Factor: the child finds the increase in length for one side to 

determine the scale factor, eg. a side of 3 units becomes 9, which is two 

times bigger than 3, so scale factor is 2 
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• Area: the child has doubts as to whether an enlargement is concerned with 

a linear or an area scale factor, so s/he finds the scale factor by using the 

areas of the original and the enlarged rectangle 

Area/Addition: this is a combination of area and addition strategies, eg. 

areas of 5 and 20 units, 20-5 is 15, 5 into 15 is 3, so scale factor is 3 

• Border: the child regards the original rectangle as being in the corner or the 

middle of the wanted one, and tries to complete the missing part 

• Enlarge One Side Only: it involves "centration" to one dimension. Piaget 

and Inhelder (1965) suggested that the longer the rectangle is, relative to 

the height, the more rectangular it appears to a child. Therefore the general 

tendency is to make the wanted rectangle too long to be similar to the 

original. 

We shall come upon some of these strategies later on, when similarity will be 

discussed in relation to the development of proportional reasoning. 

2.1.3 Similarity and Measuring 

Measuring is closely related to similarity. Students have to measure sides of shapes 

(especially in practical tasks) in order to identify and apply enlargement ratios. 

Findings coming from National and International surveys revealed that not all 

students of 9 to 15 years of age use a ruler competently (Hart/CSMS 1981a, 

AAP/SED 1983, 1989, Johnson/CSMS 1989, Dickson et al. 1991, EMU/SEAC 

1991; NCES 1991, Lapointe et al./IAEP 1992, SOED/IAEP 1992, Semple 1992). 

Most common errors relate to the failure to count units correctly (i.e. placing 

properly the zero point, rounding lengths that do not align with an indication). 

Measuring mistakes can affect students' performance on similarity tasks and hinder 

also the strategies used (Clarkson 1989). 
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2.1.4 A Word About Terminology 

Hart (1981a) draws attention to the terminology used in similar figures tasks. In 

interviews with students she found that the word 'similar' means little to many 

children. Due to its everyday life use it tends to mean 'approximately the same'. 

Piaget and Inhelder (1956) in their clinical interviews on similarities and propor-

tions used the expressions 'which one is the daddy of the little one and looks most 

like it' with the youngest children, and 'looks like' or 'is the same shape but bigger' 

with older children. Teachers that took part in Clarkson's (1989) study used terms 

like 'times', 'bigger', 'much bigger', 'times as long'. Williams and Shuard (1991) 

are closer to an expression 'of the same shape but larger'. Hart (1981b) cautions 

that words like 'bigger', 'larger' do not automatically infer multiplication. They 

may infer addition and lead students to adopt erroneous strategies. She suggested 

the expression 'times larger' to avoid such misunderstandings. 

2.1.5 Proportion, Ratio and Similarity 

From a perspective of a network model of memory, learning involves both the 

acquisition of concepts and the construction of hierarchical relations among these 

concepts (J.L. McDonald 1989, Branca 1980). As Vergnaud (1988) suggests no 

single concept refers to only one type of situation and no single situation can be 

addressed and analysed with only one concept. 

"Each concept should be seen as a triplet of sets: C:=(S,I,S), where 

C is the concept, S a set of situations that make this concept mean-

ingful, I is a set of invariants (objects, properties and relationships) 

that can be recognised and used by the subjects to analyse and master 

these situations, and S is a set of symbolic representations that can be 

used to point and represent these invariants and therefore represent the 

situations and procedures to deal with them." (Vergnaud 1988: 141) 

The previous quotation suggests the complexity, and therefore difficulty, of 

studying a single concept. A way of dealing with this difficulty is by studying 
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conceptual fields (Vergnaud 1983, 1989). These are comprehensive systems and 

are defined as a set of situations, the mastering of which requires the mastery 

of several concepts of different nature. Therefore in order to study similarity we 

should examine the concept from the perspective of other associated concepts as 

well. 

2.1.6 Ratio and Proportion 

Ratio and proportion are widely studied concepts. The earliest research evidence 

comes from Winch around 80 years ago (Karplus et al. 1983a). Researchers agree 

both on their importance and difficulty (eg Lovell & Butterworth 1966, Wollman 

& Lawson 1978, Noelting 1980a, Turner 1982, Hart 1978, 1984, 1985, Tournia.ire 

& Pubs 1985, Lesh et al. 1988). This belief is supported by international surveys 

of performance on mathematics (see studies in §2.1.2, §2.1.3). 

Ratio (a/b) is the numeric relationship between two entities (Hart 1988) or in 

other words a numerical expression of how much there is of (a) refers to the first 

quantity and (b) to the second, while the value of a/b is the numerical expression 

of the comparison. Quantities can be extensive, intensive or scalar. Extensive 

quantities represent "how much of a quantity is associated with a given object" 

(Lesh et al. 1988: 109). For example 45 degrees for an angle, 45 degrees of 

temperature, 45 gallons of petrol. Fractions are a special kind of extensive quan-

tities (internal ratio). "Intensive are the quantities that are ordinarily not either 

counted or measured directly" (Schwartz 1988: 42). They are the 'per' quantities 

and express how much of a quantity is related to a unit of another quantity (rates 

are such quantities - external ratio). Scalar quantities are a type of intensive 

quantities, where the two quantities are measured in the same unit (eg weight of 

sugar/weight of all recipe's ingredients) (Lesh et al. 1988). When ratio is seen as 

a correspondence between two sets (Skemp 1987), this correspondence can involve 

ordered pairs of any of the previous types of quantities. 
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The Investigation of British Secondary School Mathematics textbooks (in Hart 

1978, 1981a) indicated the following aspects as being basic to ratio: 

"- doubling or halving 

- multiplication by an integer 

- given a rate per unit apply this rate 

- find the rate per unit and then apply it 

- enlarge drawing in ratio 2:1, 8:2, 5:8, etc. 

- find a ratio a:b using an intermediate quantity, c, i.e. given 

relationships a to c, 6 to c 

- using a fractional multiplier 

- simple percentages 

fractions... 

similar triangles." (Hart 1978: 4) 

Other manifestations of ratio can also be found in the following activities 

(adapted from Streefiand 1984: 336): 

. comparing magnitudes not only of the same kind but also of different kinds, 

such as length and number 

• considering mixtures of intensive quantities 

• recipes as a separate theme from mixtures 

• distinguishing internal and external ratios 

• stressing the ratio in the operator (5 from x to 5x, 1/5 from y to (1/5)xy). 

Ratio then is a concept that 'participates' in many classroom activities. Its 

relationship to similarity and proportion is strong and development of proportional 

reasoning relies much on ratio activities, as we shall see. 
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Proportion involves the equivalence of two ratios (a/b = c/d) (Skemp 1987, 

Hart 1988). Therefore to make a proportional judgement two ratios have to be 

recognised as being equal or as belonging to the same equivalence class. For Lesh 

et al. proportional reasoning is "reasoning about the holistic relationship between 

two rational expressions such as rates, ratios, quotients and fractions" (1988: 43). 

They continue, saying: 

"Proportional reasoning is a form of mathematical reasoning that 

involves a sense of co-variation and of multiple comparisons and the 

ability to mentally store and process several pieces of information. Pro-

portional reasoning is very much concerned with inference and predic-

tion and involves qualitative and quantitative methods of thought..." 

Proportional reasoning also involves: 

'.. mental assimilation and synthesis of the various complements 

of those expressions and an ability to infer the equality or inequality of 

pairs or series of such expressions based on this analysis and synthesis. 

It also involves the ability to generate successfully missing components 

regardless of numerical aspects of the problem situation." (opcit: 93) 

This quotation from Lesh et al. encapsulates the meaning of the concept of 

proportion. As Tournithre and Pubs (1985) suggest most people can use propor-

tion in familiar contexts. Various difficulties arise though even in the definition 

of proportion. In mathematical discourse it refers to an equality of ratios as we 

stated earlier. In everyday life context though proportion is more closely related 

to other quotient terms than the mathematical. "Proportion is a part considered 

in respect to the whole" (Collins Dictionary). It is easy therefore to confuse pro-

portions with fractions, since the subtle difference resides in the reference of the 

denominator (Ohisson 1988). Proportions also may appear as percentages or even 

as the probability of an event. 

Lesh et al. (1988) characterised proportion as a 'watershed' concept, which 

is justified by the previous discussion. It is expected then that students will face 
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difficulties with proportions, since misunderstandings from related concepts may 

result in adopting erroneous strategies when dealing with proportion tasks. 

2.1.7 The Development of Proportional Reasoning 

It is suggested that the development of proportional reasoning is slow and the con-

cept is acquired late (Tourniaire & Pubs 1985, Hart 1984, Lovell & Butterworth 

1966, Lunzer & Purnphrey 1966). Renner (in Hart 1984) investigated freshmen in 

four American universities and found that students had a basic deficiency in prob-

lems requiring ratio or proportion of any kind. Capon and Kuhn (1979) suggested 

that many adults do not exhibit mastery of the concept of proportion at all. It 

is essential then to examine proportional reasoning further in order to reveal the 

reasons for such a slow and late development. 

Studies in proportional reasoning have employed different methodologies and 

tasks. Students were asked either to find from the given data an additional value 

for an extensive quantity, or to compare the two values of the intensive variable 

computed by the data (missing value and comparison problems correspondingly) 

(Karplus et al. 1983b). In some tasks students had to simply provide an answer, 

in others they were asked explanations on their strategy (Tourniaire & Pubs 

1985). Finally physical tasks have been employed, especially by Piaget (Inhelder 

& Piaget 1958), like the beam and projection of shadows experiments. These latter 

tasks have been criticized for their potential in assessing proportional reasoning, 

since they require the understanding of some physical principle in addition to 

understanding proportions (Karplus et al. 1983a). 

Piaget suggests (Piaget & Inhelder 1956, Inhelder & Piaget 1958) that propor-

tional reasoning characterises formal thinking. Therefore, proportional reasoning 

is integrally linked to other reasoning patterns that may be used under different 

circumstances and at various levels. In the beginning only qualitative comparisons 

can be made (until the second year of age). At the intuitive level comparisons be-

tween terms are possible. The child has to reach the level of concrete operations in 

order to involve joint multiplication or division of terms and equivalence classes. 
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At the level of formal operations equivalencies are mentally reconstructed before 

comparison can take place (Noelting 1980a). Bryant and Lawrence though showed 

that young children can logically connect two discrete perceptual experiences by 

contrasting a common identity element, eg. colour, size or proportion (in Muller 

1978). Errors occur only because children fail to make the correct initial analysis, 

e.g. on size instead of proportion. 

Case (in Karplus et al. 1983a) suggested that the gradual growth in the ef-

fectiveness of working memory may account for the development of proportional 

reasoning. Karplus et al. (opcit) reject the Piagetian theory suggesting that pro-

portional reasoning constitutes an independent entity and Noelting (1980b) deals 

with proportional reasoning in separation from other cognitive operations. 

Suarez (in Karplus et al. 1983a) investigated proportions as linear functions, 

where the slope of the function is one value of the intensive variable [y=(a/b) xx]. 

Vergnaud (1983) sees proportion as an isomorphism of measures, which is a struc-

ture that consists of a simple proportion between two measure-spaces Ml and M2 

(values of the intensive variable) (see also Lamon 1990). These approaches have 

been criticized as dealing only with arithmetic relations between sets of numbers, 

ignoring the relations between the variables represented by the numbers (Karplus 

et al. 1983a). 

From the previous evidence it is clear that the development of proportional 

reasoning is hierachical. Initially proportionality is mastered in small and re-

stricted classes of tasks. As children become more competent, they restructure 

their strategies and the classes to which these strategies apply to are gradually 

extended (restructuring theory/ adaptive restructuring, Noelting 1980b) . The 

change that takes place from one stage to the next is both qualitative and quanti-

tative. Children restructure their strategies in order to comply with new situations 

but within each stage strategies are extended to a variety of applications of the 

new situation. 

Children's strategies in solving proportional problems (a/b=c/d) fall into two 

large categories: the with-in and the between strategies. In the former, students 
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find the ratio of corresponding (extensive) quantities (a to c, b to d), while in the 

latter they find the rates representing the values of the intensive quantity (a/b 

to c/d) (Tourniaire & Pubs 1985). Correct strategies involve multiplicative and 

building-up strategies. In multiplicative strategies a relation is obtained between 

two terms of the proportion, either following the with-in or between approach, 

and then is extended to the remaining terms (opcit). The building-up strategies 

are more elementary (Hart 1981b) and involve finding parts of the answer which 

will be added together eventually. 

Erroneous strategies may involve either using an inappropriate strategy or mis-

using a correct one (Tourniaire & Pubs 1985). One of the most commonly used 

inappropriate strategies is the additive strategy or strategy of constant difference 

(Hart 1981b). Students concentrate on the difference between the extensive quan-

tities that form the intensive variable. Another commonly used error strategy is 

that of ignoring part of the data and concentrating on one term of the proportion 

only (centration) (Piaget and Inhelder 1956). Erroneous strategies may also be 

used as fall back strategies when children are working on difficult tasks. For exam-

pie a child capable of using the multiplicative method with integer ratios may fail 

to do so with non-integer ratios. In such a case the child employs an 'elementary' 

strategy (eg additive method). 

The strategies mentioned correspond to different levels of development of pro-

portional reasoning. Starting from additive methods we progress to the stage of 

logical proportions which is characterised by understanding all four terms of a 

proportion (for a further discussion see Tourniaire & Pubs 1985). 

2.1.8 Variables Affecting Performance on Proportion Tasks 

Variables that affect performance on proportion tasks fall into two categories. The 

task-centred variables and the student-centred ones (Tourniaire & Pubs 1985). A 

summary of these variables follows. 

Hart (1981b) and Noelting (1980a, b) suggest that the presence of integer ratios 

make the task easier. Rupley (in Karplus et al. 1983a) adds that the place of the 
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number to be found in the proportion and the inclusion of numerical values larger 

than 30 increase task difficulty. The presence of a unit makes a problem easier 

(Hart 1981b), while comparing unequal ratios is more difficult than comparing 

equal ones (Karplus et al. 1983a, b). Other variables, besides structural, concern 

the context of the task (see Tourniaire & Pubs 1985). The familiarity of the 

context, the presence of intensive or extensive quantities and the way a task is 

mediated, all affect students' performance. 

Karplus et al. (1983a) suggested that the number of schemes one can 'attend 

to' at one time (M-capacity) is related to performance on proportion tasks. The 

extent to which a child can apply his/her understanding of proportions in differ-

ent contexts, is related to success in proportion tasks (FDI, Field Dependence-

Independence). Field independent students tend to perform better (Tourniaire 

& Pubs 1985). Other variables that seem to correlate positively with success 

in proportion tasks are intelligence (Hart 1981b), attitudes towards mathematics 

and students' metacognitive abilities (in Tourniaire & Pubs 1985, Karplus et al. 

1983a). 

2.1.9 Teaching Approaches to Ratio and Proportion 

Since learning cannot be isolated from teaching, we now examine some teaching 

approaches which try to build proportional reasoning. Ratio and proportion are 

concepts that require a lengthy learning process before they are mastered. The 

usual approaches followed by school teachers are criticized as impoverished and 

overconcise (see Streefland 1985). The concepts are taught in isolation from other 

concepts, there is lack of visualisation (opcit) and there is no transfer of knowledge 

from math-classrooms to other disciplines and to everyday situations (Carraher et 

al. 1984). 

The most common methods taught for solving problems in ratio and proportion 

are the 'unitary method' (find how much it is for one unit), the 'rule-of-three' or 

'cross multiplication' (Hart 1984) to test for the equality of ratios, converting 

unequal ratios to fractions with a common denominator in order to compare them 
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(Karplus et al. 1983a). The teaching of these methods have been widely criticized, 

especially the cross multiplication method (Carraher et al. 1984, Lesh et al. 1988). 

The rule-of-three is a method poorly understood by the students, is seldom used 

as a solution method (Hart 1984, 1981b, Streefland 1985) and in cases where it is 

used it can destroy instead of facilitate proportional reasoning. 

Training studies have employed group (eg. Lunzer & Pumphrey 1966), in-

dividual (eg Woliman & Lawson 1978, Nesher & Sukenik 1991) and classroom 

(eg Carraher et al. 1984, Hart 1981b, 1984) approaches. Lunzer and Pumphrey 

(1966) used an approach working with Cuisenaire rods. Woliman and Lawson 

(1976) compared an active method (Cuisenaire rods, series of geometric shapes, 

etc) to a verbal method (textbook, discussion with the experimenter) and found 

that active-method students outperform other students, in most tasks. Nesher 

and Sukenik (1991) taught students of 7, 8, and 9 years of age the concept of 

ratio in a formal way and had satisfactory results. Hart (1981b) suggests that 

through attempting practical problems students may abandon erroneous strate-

gies (additive strategy). Lamon (1990) supports the view that concrete activities 

are important in abstracting the concept of ratio. Hart (1984) and Szetela (1980) 

introduced the use of calculators to remove from students the demand of having to 

perform computations as well as think through a solution. The calculator-based 

instruction groups achieved higher scores than the students that did not use a 

calculator but the difference was significant only in less familiar problems. 

Hart (1981b) suggests that visual confrontation with erroneous responses may 

eradicate constant-difference strategies (a-b difference results in gross distortions 

from the correct answer). Streefland (1984) suggested an interdisciplinary ap-

proach and a spiral curriculum to account for a long term development through 

sound connections with other concepts. He also suggested (1985) the use of vi-

sual models (sector diagram, ratio table) to support the learning process and to 

broaden the applicability of the newly acquired knowledge. Lovell and Butter-

worth suggested that differences may exist in the development of proportional 

reasoning across cultures, since "the form of thinking skills practised and valued 
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by society seems to make a difference to the ease with which formal thought can 

be elaborated" (1966: 8). 

The general notion though coming from the previous studies is that teaching 

approaches should take into account the students' initial, intuitive methods and 

introduce formal strategies and algorithms after having revealed the inadequacy 

of their own methods. Through conflict (confrontation with limitations of their 

methods) and reflection, the development of consciousness and therefore a more 

formal proportional reasoning can be achieved (Streefland 1984). 

The importance of similarity in our everyday life and in the mathematics cur-

riculum are well established. Ratio and proportion are among the concepts closely 

related to similarity. They require a long term and hierarchical development, based 

both on qualitative and quantitative changes. We find though that these concepts 

are taught in isolation, with no reference to everyday life situations. Therefore we 

would propose a teaching approach that takes into account everyday life applica-

tions of these concepts and appreciates the strength of a more active, practical 

perspective. 

Rectangle-similarity has to be considered separately due to its peculiarity com-

pared to similarity of other shapes. Difficulties can arise from the perception 

(features) of a rectangle (eg length-breadth confusion). Such aspects that may 

hinder performance on similarity tasks have to be 'disclosed', identified and reme-

died through this approach. For this approach to be applicable in many cases, it 

should also take into consideration students' individual differences in the cognitive 

and affective domains. It remains to be seen whether such a teaching approach 

can be achieved. 
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2.2 Haptic Exploration of Geometric Shapes 

Denmark and Kepner (1980) reported that 74 per cent of the teachers that took 

part in their survey agreed on the importance of students being able to recall prop-

erties of simple geometric shapes. National and International surveys of mathe-

matical performance revealed that secondary students cannot identify and name 

shapes like the kite, rhombus, trapezium, parallelogram and triangle (AAP 1983, 

Chicago Project in Hoffer 1983, APU 1980 in Dickson et al., 1984; NAEP 1980 

in Dickson et al. 1984). Students' performance is even poorer when it comes to 

items involving the understanding of features and properties of shapes. For in-

stance, only 14 per cent of the 13 year olds could select correctly the necessary 

conditions for a figure to be a rectangle (NAEP 1980 in Dickson et al. 1984). 

These findings suggest perhaps that the approach to the teaching of geometric 

shapes is faulty. 

In the following section haptic exploration will be suggested as a different 

approach for the teaching of geometric shapes. By haptic exploration we mean 

the intentional and conscious movements of our hands about an object (Weber 

1978). The importance of visualisation and action will be addressed along with 

the limitations of visual perceptions in the formation of geometric meaning in 

general. An account of touch modality and the development of haptic exploration 

strategies will follow, in relation to the development of geometric thought. Views 

on coding of perceptual information and on mental representations of concepts 

will be discussed in an effort to distinguish the perceptual, cognitive and other 

possible factors that characterise the haptic exploration of shapes. 

2.2.1 Visual Limitations and Geometric Thought 

Much learning of geometric meanings involves the use of diagrams (Dickson et 

al., 1984). Bishop observed "one problem with geometry is that it is impossible 

to draw a generalised diagram" (1983: 180). Whenever we draw a diagram of a 
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geometrical object, for instance, there is a loss of information. The restitution 

of the meaning of what the diagram represents comes due to a common (to some 

extent) geometrical culture (Parzysz 1988). Restitution comes only after geometric 

meaning has been acquired. This 'limitation' of geometry is accentuated by the 

way concepts are introduced. The formation of a geometric concept has to be 

based on a number of critical attributes of the concept (Hershkowitz 1989). 

These critical attributes are the features and properties that characterise and 

differentiate the particular concept from all the others. When concepts are in-

troduced by a few examples, some of them tend to be more popular than others 

(Roth 1986). Prototype examples constrain students' knowledge of a concept to 

these cases that are more often addressed in a book or by a teacher, neglecting 

particular cases. 

Moreover, prototype examples may 'attach' additional, non-critical attributes 

to a concept (eg orientation effects), in the same way as they 'detach' other at-

tributes (eg being able to draw an isosceles and a right-angled triangle but not 

a right-angled isosceles one). Being taught in this receptive way, students may 

attempt to idealise any task at hand by transforming it into a special case, or 

seeking non-critical attributes to support their reasoning (Hoffer 1983). 

Fisher suggests that "the additional non-critical attribute of a prototypical ex-

ample draws our attention because it is visually strong and usually registers our 

minds spontaneously", in addition to the fact that prototypical examples are usu-

ally presented before any other example (in Hershkowitz 1989: 73-74). 

This view proposes a visual limitation which facilitates the misleading poten-

tial of prototypical examples. Indeed, as Eysenk and Keane (1990) suggest, visual 

stimuli are often incomplete and ambiguous. It is suggested that such simple il-

lusions as centration (the extent to which vision is centred on one point, side, 

relationship, rather than on another), diminishes very little in the course of devel-

opment (Piaget & Inhelder 1956). 

The effect of these visual-perceptual limitations cannot be ameliorated by the 

provision of information obtained in other ways. Hershkowitz (1989) provided her 
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subjects (students and teachers) with the verbal definition of isosceles and right-

angled triangles. Despite these verbal cues the subjects' identification ability of 

the concepts did not change. Michotte (1991) suggests that such conflicts between 

perceptual evidence and information obtained from other sources can be resolved 

only by knowledge. Knowledge in our case is related to initial learning of a concept 

and the 'exposure' of the concept's critical attributes. 

2.2.2 Circumventing Visual Limitations 

Visualisation, or spatial ability, or spatial perception is, in part, an intuitive feel for 

one's surroundings and the objects in them (Del Grande 1990). It is this intuitive 

character of visualisation that creates difficulties when it comes to addressing 

the actual abilities from which is constituted. For the purposes of geometry we 

can define visualisation as the ability to interpret figural information (the figural 

language of geometry) and the ability to carry out visual processing (manipulating 

figural stimuli, associating them with previous experiences, translation of non-

figural stimuli into visual terms) (Bishop 1983, Del Grande 1987). 

The ability to carry out visual processing places emphasis on the process and 

not on the nature of the stimulus. The stimulus does not have to be figural to be 

processed visually (Bishop 1983, Dickson et al. 1984). This 'versatility' of visu-

alisation increases its applicability and therefore its importance. Initially, visual 

processing can help to discard geometry's visual limitations by the recognition and 

discrimination of a concept's critical attributes and by not being deceived by the 

additive ones (eg mental rotation). Furthermore, it can facilitate performance in 

geometry by the visualisation of the elements of a concept or concepts, providing 

support for deductive reasoning (Hershkowitz 1989). 

Not all people employ visual processing in their mathematical thinking (in gen-

eral) to the same extent but visualisation is to some extent a trainable skill. Such 

a training should be approached in an 'active' way (Bishop 1983, Del Grande 1987, 

1990). This implies that the individual perceives stimuli referring to the concept 
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with other senses apart from vision, eg by touching, manipulating, constructing, 

drawing etc. 

Apart from its role in the development of visualisation, action plays an impor-

tant role in the formation of geometrical concepts themselves. There is always a 

correlation between the concept and the aspects of the actual activity addressed 

by the concept (Lakoff & Johnson 1980). In other words, a concept fits an expe-

rience or a whole reference of experiences. These experiences define the concept 

in terms of interactional properties, which precede its inherent properties (Piaget 

& Inhelder 1956, Lakoff & Johnson 1980). These interactional properties may 

have to do with motor activity, purpose, function, size, etc. Taking for example 

the concept of a geometric shape, the 'affordances' are discovered initially by the 

individual by using his/her motor skills. The recognition of the shape just by its 

internal geometry follows, drawing on an abstraction of all the past experiences 

concerning this particular shape, in the same way that a natural number is the 

characteristic property of a certain collection of sets (Skemp 1986). 

It follows that visualisation and action can ameliorate misunderstandings im-

posed on geometric thought by the limitations of vision and of inadequate teaching. 

Haptic exploration of geometric shapes incorporates both visualisation and action. 

It relates to the perception of these shapes using tactile-kinesthetic information 

without the assistance of any visual input (Pick 1980, Schiff 1980). It involves 

the translation of the haptically-obtained stimuli into a spatial image of a visual 

kind (Piaget & Inhelder 1956, Weber 1978) (but see later discussion on mental 

representations of concepts). For the shape to be identified (ie named), some kind 

of match is sought between this spatial image and the already existing representa-

tions (concepts) in the individual's mind. In the case of recognising an unfamiliar 

geometric shape, the visual image is usually compared to simultaneously or con-

tinuously perceived visual stimuli (the shape is recognised from a set of visually 

displayed shapes). 

From the descriptions of identification and recognition processes, it is obvious 

that visual processing ability and action play an important role in the haptic ex-

ploration of geometric shapes. Action is what actually provides the individual with 
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the required information, that after being processed visually will lead to a mental 

representation of the shape. Moreover the evocation of the mental representations 

of already acquired concepts suggests that possible misunderstandings could be 

detected. Piaget and Inhelder (1956) considered haptic exploration as the border-

line between perception and mental representation of concepts. The perceptual 

stimuli can act as remediation agents, assuming that haptic exploration strategies 

of the individual are sufficient to provide him/her with accurate information. 

Thus there is evidence to support the view that haptic exploration of geometric 

shapes may provide opportunity for training of visual processing skills and to sup-

port an 'active' approach in teaching geometry. Combining the positive elements 

of these two aspects of geometric thought, haptic exploration can provide us with 

a comprehensive way of circumventing some visual limitations in the teaching of 

geometry. 

2.2.3 Touch Modality and Haptic Perception 

The sense of touch has an essential role in exploratory and manipulatory activities. 

These activities require the integration of motor and sensory activities. Active 

exploration of shapes involving the sense of touch is performed by moving our 

hands and fingers about the object. The glabrous skin (soles of our feet, palms of 

our hands and on the smooth surfaces of our toes and fingers) is 'equipped' with 

a number of mechanosensitive receptors (four types of sensory units). Two types 

of these units are responsible for spatial discrimination, allowing localisation of 

stimuli (local sign). These types of sensory units occur in high densities at the 

fingertips as compared to other parts of our palm. The other two types of units 

respond to indentations, protuberances, stretching of the skin and tangential forces 

in the skin created when manipulating an object (vibratory stimulation, intensity 

of stimulus). These types of receptors have a much lower density compared to the 

previous units and are allocated uniformly in all parts of the palm (Pick 1980, 

Valibo 1987). 
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In addition to the previous information, the individual perceives also proprio-

ceptive and efferent information (Pick 1980). Proprioceptive information concerns 

the position and movement of the body, particularly those parts involved in active 

exploration. This information is gathered by kinesthetic, vestibular' and visual 

receptors (Sugden & Keogh 1990). Efferent information is available because the 

individual signals consciously an action plan to perform the exploration. The 

action plan and the exploration while performed may be altered because of the 

gathered proprioceptive information (see §3.3). 

2.2.4 The Development of Haptic Exploration Strategies 

Abravanel (1981) suggests that when a shape is explored, a series of sequential 

steps are required for the shape to be identified or recognised. Initially the indi-

vidual has to be aware that exploration should be attuned not in manipulating the 

object (mere performance) but to perceiving its shape. A generic identification 

of the principal form characteristics follows, which is supplemented by strategic 

exploration of features and relations, leading to an integrated percept. Thereafter, 

gross or fine comparisons can be made with the mental representation or the visual 

stimuli. 

These sequential steps are regulated by developmental changes. Children of 

3-4 years perceive exploration of shapes as mere performance. They tend to grope 

the object, pat it with their fingers in a more or less meaningful manner. Recogni-

tion of the shape usually arises as a matter of accident. By the 5th or 6th year of 

age children use both hands to manipulate and/or explore the object. They seem 

to attend to the major features of the object but their strategies are more sys-

tematic, starting to discover relationships among features (Williams 1983, Piaget 

& Inhelder 1956, Abravanel 1981). After the age of 6 exploration becomes me-

thodical. Movements of the two hands are coordinated, they move in succession, 

'This is information about the position and movement of the head in relation to the 
body (Sugden & Keogh 1990) 
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having one or more reference points. Reference points involve systematic return 

to these points, so that the movements can be reversed and therefore repeated 

and more easily integrated (Piaget & Inhelder 1956, Pick 1980). By the age of 

9 children's fingers become also organs of perception, increasing the efficiency of 

the strategies. Moreover, children start to use strategies that involve simultane-

ous information pickup, besides the non-mobile and sequential scanning strategies 

(Millar 1981, Abravanel 1981). It is suggested that blind people explore objects 

in ways that are likely to provide unified percepts, which in general lead to more 

accurate mental representation of the shape (Abravanel 1981). 

The perception and memory of individual objects are heavily influenced by 

their relations to their surroundings. Visual and tactile experiences with objects 

can provide the individual with external frames of reference. The activation of 

an external frame of reference in haptic exploration of objects can assist the per-

ceiver. To constitute, though, a step of an exploring strategy, an external frame 

of reference has to be evoked intentionally. This means that the individual has to 

be capable of deductive inference (Bryant 1974). 

It is suggested that perceiving shape and length by the means of haptic explo-

ration may enclose qualitative differences (Bryant 1978, Weber 1987, Abravanel 

1981). The exploration strategies for length follow a development analogous to 

those for shape. The coding though of stimuli from haptic perception of length 

may be of more quantitative nature (absolute coding). On the contrary, shape 

perception involves relative coding, which makes it a more elaborate and tedious 

process. Absolute values assist intra- but not inter-tactile explorations. In the 

latter cases relative values are more successful. Thus internal geometry of a shape 

involves the relationships between the shape's characteristics as well as the char- 

acteristics themselves. One cannot give absolute values to such characteristics and 

relations (Bryant 1974). 
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2.2.5 The Development of Haptic Exploration Strategies 

and Geometric Thought 

The development and refinement of haptic exploration strategies correspond to 

the development of the tactile-kinesthetic system in young children. Additionally, 

haptic exploration strategies reflect in some way the geometric thinking of children. 

In the van-Hieles model of the development of geometric thought, the child 

moves from a global recognition of shapes (level 1) to a more analytic appreciation 

of the shapes' internal geometry (level 2). The emergence of interrelationships 

of characteristics both within shapes and amongst shapes follows (level 3). The 

ability for deductive reasoning (level 4) and the construction of theory in complete 

absence of concrete models (level 5) are the final stages in the model (Dickson et 

al. 1983). 

Usiskin addresses the difficulty in classifying, reliably, a student according to 

the model. Students may move back and forth while they are in transition from 

one level to the next. Moreover, there may well be students performing at different 

levels for different concepts (Burger & Shaugnessy 1986). These findings suggest 

that assigning ages to each level of the model would be a difficult task and possibly 

of no practical value. 

From the above description we find a correlation between the development of 

geometric thought and the strategies employed in haptic exploration of shapes. A 

more-or-less global exploration strategy would agree with the first and second lev-

els of geometric thought. From the appreciation of the interrelationships between 

a shape's characteristics (level 3), more analytic and methodological strategies are 

developed. When the child reaches the level of deductive reasoning, simultaneous 

perception of information and external frames of reference are employed to enrich 

and improve exploring strategies. 
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2.2.6 Perception of Geometric Shapes and Mental Pro-

cesses 

We discussed earlier the ways in which the individual can gather the tactile-

kinesthetic information that will lead to an identification or recognition of ge-

ometric shapes. How do these perceptions translate into a mental representation? 

How do we decide whether this mental representation matches the corresponding 

concept in our mind? Can we identify haptically a shape that has been abstracted 

initially only by visual stimuli? Roth (1986) observed that geometric figures seem 

to be well defined 'in themselves'. That is, a conceptual rule exists that defines 

the necessary and sufficient characteristics of the geometric shape. Most concepts 

in geometry though are conjunctive and their formation depends on the number 

of critical attributes of its concept (Hershkowitz 1989). Therefore: 

"In mathematics a definition does not serve to explain to people 

what is meant by a certain word. In mathematics definitions are links 

in deductive chains but how can you forge such a link unless you know 

in which it should fit?" (Freunenthal 1973: 416) 

What is actually coded then in these representations? Bruner and his col-

leagues suggested that individual concepts are represented by lists of properties 

or features, which actually define the concept (Roth 1986). Rosch though argued 

that in some categories some of its members are more typical than others (opcit). 

This view is in accord with the earlier discussion on prototype phenomenon and 

suggests that a list of features simply typifies rather than defines a certain cate-

gory. An alternative view is provided by the Gestalt approach, where the whole 

is more than the sum of its parts and shape identification depends on the overall 

shape of a perceptual stimulus rather than on its individual features (Eysenk & 

Keane 1990). 

All the previous approaches neglect the fact that people know many things 

about the relationships between the features of a shape. These relationships should 

be coded in mental representations and can be identified as 'higher order' features 
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characterising a concept (Roth 1986). These higher order features, are the means 

of forging the links within a chain and between chains. There may well be, then, 

different representations of one concept. These may serve the needs of differ-

ent tasks (drawing, verbal response), different contexts (maths-classes, everyday 

world) and depend heavily on the individual's knowledge (opcit). 

The form in which such representations are stored mentally is unknown as yet. 

Piaget (1956) and Weber (1978) believed that physical tactual features, encoun-

tered when exploring shapes, are coded as images or in terms of spatial features 

in exactly the same way as in vision. It would be an oversimplification, though, 

to assume that all people, always, process perceptual stimuli as images. Mental 

representations can be symbolic or distributed (Eysenk & Keane 1990). 

Symbolic representations can be either analogical (nondiscrete, implicit, modal-

ity specific), or propositional (language-like, discrete, explicit, amodal). As Millar 

(1981) suggested though, it is next to impossible to distinguish totally between 

these two forms of representation. Furthermore it was suggested that 'verbal' and 

'non-verbal' representational systems are interconnected by referential links, or 

that a special, spatial medium exists where representations are constructed by in-

formation coming from image and propositional files. An alternative consideration 

of the issue came from Johnson-Laird. He introduces mental models as represen-

tation of concepts, which can be wholly analogical, or partly analogical and partly 

propositional, which also are distinct from but related to images (images are con-

sidered as mental models 'viewed' from a particular perspective/angle) (Eysenk 

& Keane 1990). 

Distributed representations of concepts account for a computational model of 

mental processes, consisting of networks of neuron-like units (connectionist ap-

proach). According to this view, information about a shape is stored in modality-

specific units that are all interrelated with multiple synaptic connections. Con-

cepts are represented by a pattern (or many equivalent patterns) of activation of 

neuronal networks. Each unit has an activation level which distinguishes whether 

the information stored in it will be disclosed and used or not during a certain task. 

An activation pattern then 'excites' only those units that hold useful information 
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for the task at hand (Anderson 1990). As Hinton et al. suggest, it is possible that 

all the previous models complement each other. We can accept that symbolic rep-

resentation may characterise higher levels of cognition, while lower levels may be 

represented in a distributed fashion (to account for the mechanical and eruptive 

fashion of mental processes) (Eysenk & Keane 1990). 

Since there is no consensus, either on how perceptions are coded or on how 

these codes are represented mentally, it is not surprising that there are many the-

ories about shape identification. 'Template' theories suggest that for a shape to 

be identified a best match has to be achieved between the perceptual information 

and the mental representations stored in the mind. Each template corresponds to 

one shape and it is obvious that a shape cannot be identified if no corresponding 

template exists in the mind from past experience (Anderson 1990). 'Feature' the-

ories suggest that shapes are recognised after a feature analysis of the perceptual 

input. These features are combined and compared against information stored in 

memory (Eysenk & Keane 1990). Finally, 'prototype' theories seek for a match 

between the basic or most crucial elements of a set of stimuli and information from 

past experience (Roth 1986). 

Recognition of shapes does not rely on stored mental representations to the 

same extent as identification (Anderson 1990). The perceptual information gath-

ered from haptic exploration is compared directly to an existing visual image. 

This process is more a function of cross modal communication of information and 

is considered to be more successful than identification (recall of concept). 

2.2.7 Visual and Tactile-Kinesthetic Systems Integration 

'Unity vs. separateness' of sensory modalities has been a long lasting argument in 

the field of perception (Gregory 1974). Molyneux, more than two centuries ago, 

"asked his celebrated question whether a blind man, made to see, would recognise 

by sight alone an object that he had hitherto perceived only through touch" (Millar 

1981: 281). Knowledge is perceptually based but can it be classified as being 

either visually based or tactually based? 
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Many researchers agreed to the 'unity' of sensory modalities. Information re-

tained in the nervous system is thought to be represented without specific reference 

to one single modality (Abravanel 1981). In 'separateness' theories a translation 

medium is required to relate the otherwise different and separate forms of informa-

tion. Neurophysiology findings tend to suggest that modalities are complementary 

and convergent. "At higher levels of the nervous system space is represented by 

overlapping integrated inputs from number of different modalities rather than in 

independent visual, auditory and somesthetic spaces" (Jones 1981: 110). 

Therefore we should consider representations of a certain shape derived from 

visual and tactile-kinesthetic systems as equivalent. The organ differences between 

vision and haptics however preclude complete isomorphisms of the activities used 

for information gathering. Under normal conditions vision is dominant over hap-

tics (Matlin 1988). Vision is considered to be more holistic 2  as compared to a se-

quential gathering of information by the haptic subsystem. A haptic exploration 

strategy that allows simultaneous information pickup can smooth this inherent 

difference between the two systems. Gregory (1974) reported the difficulty that 

a blind person had, after having his sight restored, in identifying relatively unfa-

miliar objects until he had explored them by hand. Moreover, blind and sighted 

individuals perform similarly in recognising haptically unfamiliar shapes (Millar 

1981). This evidence suggest that the term 'cross-modal' should not be used in 

a 'blanket manner'. The development of intersensory integration relies heavily 

upon intrasensory development and vice versa. Until the age of 5-7 visual-visual 

recognition of shapes is the most advanced, with visual-tactile and tactile-visual 

following and tactile-tactile being the least advanced. By the age of 9-11, as tac-

tual perception becomes more efficient, intravisual recognition is the most efficient 

with the other conditions being equally advanced (Williams 1983, Jones 1981). 

2Except for very small objects or those fixated at a distance great enough to produce 

a small retinal image, visual forms are not considered unified (Abravanel 1981). 
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Moreover, as Williams suggests, intersensory integration takes place at three 

levels. The first level "involves simple, low level or automatic integration of ba-

sic sensory information". The next level "involves the higher order integration 
of perceptual features of stimulus information" and finally "a cognitive-conceptual 
integration process that involves the transfer of ideas or concepts across modali-
ties" (1983: 142). It is reasonable to suggest that intersensory experiences can 

refine mental representations and remedy possible misunderstandings. Therefore, 

a fusion of the visual and tactile-kinesthetic systems can be obtained through 

intermodal and particularly intramodal experiences. 

Evidence reveals students' discomfort with tasks relating to an understanding 

of features and properties of geometric shapes. Haptic exploration of geometric 

shapes may provide an approach suitable for identifying and remedying possible 

misunderstandings in the mental representations of these shapes. This approach 

can improve visualisation skills and assist in the development of geometric and 

deductive thinking. The mental process of exploring geometric shapes haptically 

is complex. This complexity is reflected in a lack of consensus about the ways in 

which physical features are coded mentally, the form that they take when repre-

sented mentally and the extent to which sense modalities are integrable. 

There are still, other agents that can determine behaviour in haptic exploration 

tasks which have not been addressed in the previous text. For sensory stimuli to be 

perceived they first have to be noticed. During the haptic exploration of geometric 

shapes by the individual, surface and material variables are sensed as well as the 

geometric variables of the object. Moreover, sound and olfactory senses and other 

external distractions may interfere with concentration on the appropriate tactile 

stimuli (Pick 1980, Matlin 1988). 

Attention on the appropriate stimuli is closely related to the intentions of the 

individual. Tactile shape perception necessarily involves conscious deliberation. 

Therefore there should be a relationship between the individual's goals and the 

information extracted from the haptic exploring task (Gibsonian theory, Miller 

1989). Knowledge and memory are also important since they influence the ease 

with which mental representations are retrieved from the mind (Roth 1986, Schiff 
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1980). Personality factors may differentiate performance in haptic exploration 

tasks (Schiff 1980). These factors lead an individual to perform a wide variety 

of perceptual tasks in a certain fashion. If, then, haptic exploration of geometric 

shapes is to be adopted for enriching geometric experiences, a consideration of all 

the previous factors has to be undertaken. 



Chapter 3 

Practical Activities and Motor Skills 

Working on practical activities demands a certain level of motor-control com-

petency. Materials accompanying a practical activity have to be handled with 

dexterity. In the following text we shall describe a movement situation in general 

terms and motor skills development will be addressed. We shall investigate the 

interaction of a student's developmental stage of motor functioning with perfor-

mance on a practical activity. Other factors affecting movement performance will 

be considered as well. 

3.1 Describing a Movement Situation 

By the term 'movement' we mean any body movement. A movement skill is an or-

ganised sequence of movements initiated to achieve a certain outcome. Movement 

skills are "goal directed, organised, adaptive and involve input and direction from 

sensory, perceptual and cognitive processes" (Sugden & Keogh 1990: 1). We are 

mostly interested in 'fine control' movements of the hand and especially of a func-

tional asymmetry form (both hands make different movements in a coordinated 

and complementary manner) (Keogh & Sugden 1985). 

A movement situation is characterised by the mover and the environment in 

which the movement takes place. The mover carries a repertoire of resources to 

43 
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cope with the requirements of the task and the environmental conditions (physical 

and social) (opcit). The actual movement is.produced by the neuromotor system, 

since every movement involves muscular contractions. The mover's resource reper-

toire functions under the constraints of the biological and psychological conditions 

existing when the neuromotor system produces the movement (Laszlo & Bairstow 

1985). Biological conditions refer to the current state of the individual's phys-

iological systems, neuromuscular system, nonmuscie tissue and bone structure. 

Psychological conditions refer to the perceptual, cognitive and emotional systems. 

We see then that movement performance is regulated by endogenous and heteroge-

neous conditions. There is a constant interplay between these conditions and the 

task's requirements. Finally each movement situation is characterised by a level 

of demand which characterises the challenge that faces the individual (Keogh & 

Sugden 1985). 

3.2 The Development of Motor Skills 

Performing in a movement situation requires processing of body and environ-

ment information. As individuals grow older they become more proficient in their 

processing abilities and their sensory modalities are further refined. The best per-

formance is achieved when the task's requirements match or are congruent to the 

individual's processing abilities. Every movement task is assigned an M-demand 

which is the demand on the individual's mental space. Performers with the same 

mental space structure may still perform differently according to the actual men-

tal space that are able to use. Individuals, then, should be classified not only 

by their chronological age but also by their processing abilities (Keogh & Sugden 

1985). Attention is conceived of as being a very limited mental resource (Anderson 

1990). It implies withdrawal from some things in order to deal effectively with 

others (Klein 1976). Therefore, when young children are confronted with a novel 

motor task, some kind of time sharing takes place to compensate for the atten-

tional capacity limitation. Moreover, as children grow older, they develop more 
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efficient strategies for selecting and organising a task's relevant variables (Keogh 

& Sugden 1985). 

Another information processing faculty is memory, which also improves with 

age during school years. Addressing memory not merely as remembering and 

forgetting it is related to knowing, knowing how to know and knowing about 

knowing (Sugden & Keogh 1990). Short term motor memory limitations require 

the use of control operations (eg rehearsal) to maintain the attended information. 

Very young children seem to have few and unsophisticated processing strategies, 

which become refined with age and are used more spontaneously (Keogh & Sug-

den 1990, Laszlo & Bairstow 1985). Contrary to the study of short term motor 

memory, studying long term movement retention is a difficult task. Little research 

has been undertaken with children. Research with adults has proved that con-

tinuous everyday tasks (like swimming) are particularly resistant to decay. The 

tasks that are affected by time are the discrete tasks (eg using an instrument) 

(Keogh & Sugden 1990). It is suggested that important components of a skill may 

be learned without actually performing the movement (Suzuki method for violin, 

Keele & Summers 1976). This stresses the importance of mental strategies in the 

learning of a movement. 

Along with the development of the individual's processing abilities, sensory 

modalities develop with age as well. This development takes place both in an 

intrasensory and in an intersensory sense. Studies with 12 to 14 year olds sug-

gest that children with more advanced development of tactile-kinesthetic abilities 

perform better on conceptual and intellectual functioning tasks (Williams 1983). 

There is little doubt also about the role that vision plays, especially in the de-

velopment of fine motor skills. Full development of fine motor skills involves the 

regulation of movement patterns by visual information (opcit). The individual's 

ability to use or combine simultaneous information from different senses appears 

to be rather important. Even though some relationships between modalities are 

developed by the first year of life, development continues in childhood and even 

in adulthood. The level of intersensory development seems to be more impor- 
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taut in the acquisition or refinement of fine motor skills (Laszlo & Bairstow 1985, 
Williams 1983). 

3.3 Learning and Movement 

Fowler and Turvey (1978) suggest that learning a movement skill involves the dis-

covery of an optimal self-organisation in the sense of organising the neuromotor 

system in coordinative structures. Any particular movement pattern is then as-

signed with a relative "attractiveness" for solving a particular movement problem 

(Whiting 1980). This attractiveness may be considered as a mere personal prefer-

ence or may be determined by the actual production of success or of economy in 

effort. 

Models of learning in movement tasks fall into two categories whether or not 

feedback information is used (Adams 1976). 'Open-loop' models have no feed-

back or mechanisms for error regulation and therefore no compensatory capa-

bility. 'Closed-loop' models have feedback, error detection and error correction 

as key elements. Classroom learning activities can be better addressed by closed-

loop models because of the appreciation ascribed to feedback. Even in well learned 

tasks, performance cannot become independent of feedback information. On the 

other hand, there are studies suggesting that reliance on feedback increases as a 

skill becomes well learned (Laszlo & Bairstow 1985). 

Every movement task has a goal which initiates the learning process. According 

to the closed-loop models sensory and kinesthetic input, along with instructions, 

are attended to and stored in short term motor memory (Keogh & Sugden 1985). 

Long term motor memory is then sought for relevant information from past motor 

experiences and a plan of action is created. The motor programming unit then se-

lects and activates the relevant muscles required for the performance of the specific 

movement (Laszlo & Bairstow, 1985). It is suggested that as the efferent outflow 

reaches the muscles, an efferent copy the plan of action is also sent to a comparison 

centre (Keele & Summers 1976). There, kinesthetic and other sensory feedback is 
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compared to the efferent copy. In that way the success of the movement is being 

assessed while performed and corrections of the efferent outflow and efferent copy 

may follow. 

Closed-loop models have been criticized on a number of issues. They face 

storage problems, since for every movement a reference of correctness must exist 

against which the movement must be compared. These models also seem to treat 

performance in novel motor situations inadequately. In relation to the storage 

problem, success in novel movements cannot be justified only by a library of limited 

action plans or references of correctness (Whiting 1980). Finally, a persistent 

problem of theorists in motor control is the detection and correction of errors by 

the mover. In closed-loop models corrections cannot be made before the commands 

for actions are generated (Schmidt 1976). Only then feedback from the efferent 

outflow can be compared against the efferent copy. Thus the only error that the 

performer can detect is the failure, for some reason, to execute the plan of action 

effectively. Also the model cannot explain how the mover deals with an error 

in which the environmental goal is not reached despite the fact that the plan of 

action has been followed successfully (Keogh & Sugden 1985). 

Schmidt's (1976) schema theory provides a possible solution for these problems. 

Schema theory postulates two separate states of memory, one for recall and one 

for recognition. The recall schema is responsible for the generation of impulses to 

the neuromotor system and is built up from past experience, taking into account 

the actual outcome and the response specifications. The initial conditions of the 

movement situation direct the recall schema to this particular movement. The 

recognition schema makes possible the generation of error information about a 

movement and is built up similarly, based on sensory consequences and actual 

outcomes and regulated by the initial conditions of the task. 
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3.4 Factors Affecting Performance and Learning 

of Motor Skills 

Apart from the developmental issues discussed earlier, there are a number of fac-

tors that may affect the learning of motor skills and performance in movement 

situations. The initial instructions and the feedback received after the completion 

of the movement are crucial to the performance in a movement situation. Initial 

instructions can be verbal or demonstrated, or both. They direct attention to 

certain aspects of the task at hand or even indicate strategies for dealing with the 

task. Designated strategies may increase the rate of initial skill acquisition but do 

not facilitate learning in transfer situations (Singer 1980). 

Any event that follows a response is considered as a reinforcer increasing the 

response's probability of occurrence. In motor learning this event is called "knowl-

edge of results" (Kit). Knowledge of results gives information about the goal 

achievement and if given in well defined quantitative, demonstrated terms can 

lead to improved performance (Laszlo & Bairstow 1985). The optimal level of KR. 

becomes more precise with age. Caution is needed though in its use, since extreme 

levels, very imprecise or very precise, can destroy performance on the task (Keogh 

& Sugden 1985). It is suggested that artificial feedback should be used only tem-

porarily in cases where natural feedback resources are impoverished. Individuals 

should be encouraged to use their own mental qualities to evaluate movement 

performance (Keele & Summers 1976). 

Personal and social influences are probably indirect and can either facilitate or 

interfere with the interplay of other factors. Differentiation in task proficiency may 

reflect different opportunities for practising a movement skill or different interests 

and motivation (Laszlo & Bairstow 1985, Keogh & Sugden 1985). Therefore con-

centrating only on what the mover can or cannot perform may be misleading at 

times and may not show what the individual is actually capable of doing. 
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The demand that a movement task may pose to an individual may be either 

on motor control or cognition, or both. During the acquisition of a new skill the 

learner attempts to understand the requirements of the task, with a consequent 

deterioration in motor performance (cognitive stage). As the situation becomes 

more familiar, motor control is refined by the use of KR. (associative stage). The 

movement skill becomes autonomous when the demand for cognitive control is 

further reduced (autonomous stage) (Fitts' stages of learning, Wall 1986). It is 

obvious then that an interplay between motor and cognitive functioning does exist. 

As schema theory suggests, movement memory is cognitive since it is stored as rules 

and principles and can be applied in a range of movement situations. The efficiency 

of an action plan then depends on the amount and quality of information contained 

in the long term motor memory (Singer 1980). The link, though, between motor 

and cognitive functioning is far from being direct, especially after the seventh year 

of age (Williams 1983). It is worthwhile mentioning that fine motor behaviour 

is the most important contributor to whatever relationships exist between these 

modes of functioning, motor and cognitive (Williams 1983). 

3.5 Motor Control Skills In Practical Activities 

Learning situations in mathematics classes, and particularly practical activities, 

require fine movements of a functional asymmetry form. Practical activities can 

be considered as novel movement tasks, that at times require the use of other, 

supposedly well learned skills (eg the use of drawing instruments). 

If we accept Bruner's view about motor behaviour, every movement comprises 

a number of movement units, which are part of a movement vocabulary with 

movement syntax (modularisation) (Sugden & Keogh 1990). Every movement 

unit can be seen as a vector, having as parameters direction, extent, velocity and 

force (Laszlo & Bairstow 1985). All these factors have to be considered before 

the activation of a movement unit. The production of the movement becomes 

even more complicated when the movement requires the release of objects (eg in 
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construction tasks) (Keogh & Sugden 1985). It is then obvious that applying even 

well learned movement units in a novel practical activity reflects a fair amount of 

difficulty. 

The relationship between motor skills and performance in mathematics is an 

area, though, that considerably lacks research. Motor skill learning resembles that 

of cognitive skills. Fine motor movements require the production and execution 

of an action plan. This functioning 'appears' as motor only after the cognitive 

difficulties of mastering the certain skill have been superseded. Attention should 

be drawn to the fact that the quoted research findings attempt to explain how the 

development of motor functioning as a whole correlates with cognitive functioning 

as a whole. This perspective cannot address cases where manual dexterity is 

accompanied by underdeveloped cognitive functioning, or where sound cognitive 

development is impaired with movement skill deficiencies. 

Motor skills are only the means to exploit an activity's potential in practically 

demonstrating mathematical experiences. The research findings on the develop-

ment of motor functioning processes are important. When developing a practical 

activity special care should be given to the demand on motor control skills. There 

is the danger of going beyond the students' level of motor development and simply 

asking too much of them. 

In practical activities there is also a cognitive demand, of a different nature, 

concerning the mathematical (or other) concepts involved in the problem situa-

tion. This cognitive demand may interact further with motor performance. Well 

mastered movement units may be proved inefficient if they cannot be collated to 

form an appropriate action plan (eg the use of drawing instruments in geometric 

construction). Moreover failure to resolve a novel problem situation can temporar-

ily affect the actual motor skills (negative affective predisposition). Therefore the 

cognitive demand or difficulty of the task is of critical importance in the successful 

application of movement skills. 



Chapter 4 

Methodological Background 

4.1 The Greek and the Scottish Educational Sys-

tems: An Outline 

Formal education in Greece begins at the fifth year of age, with children spending 

one year in nursery school (Neipiagogeon). Primary education is completed in six 

years (Demoticon, 6th to 12th years of age), while secondary education covers six 

more years of schooling (12th to 18th years of age). Secondary education is fur-

ther divided, in equal parts, between the Gymnasium (12th - 15th) and Lyceum 

(15th - 18th). Lyceums are mainly of three types: the 'General', the 'Techni-

cal Vocational' and the 'Integrated'. The Integrated Lyceum provides experience 

in a wide range of practical fields. Other types are available as well, emphasis-

ing the teaching of specific subjects (Classical, 'Ecclesiastical', Musical, Physical 

Education). The General Lyceum is usually attended by students intending to 

proceed to university, even though all Lyceums give access to Higher Education 

(universities, technological institutions). The national curriculum is common to 

all schools and the same textbooks are used nationwide (issued free of charge). 

There are no clear suggestions concerning individual pupil differences in ability 

and attainment. Assessment is informal in the first four years of Demoticon. It 

becomes formal but still internal in the last two years, when grades are awarded. 

In general, promotion to the next class is automatic. In secondary education as-

sessment remains internal, except in the last year of Lyceum when students have 

to pass examinations for entrance into Higher Education. Grading is emphasised 
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in these years and students may have to re-sit examinations in September, or even 

repeat the class during the next academic year. 

In Scotland schooling begins at the fifth year of age. Primary education covers 

seven years of schooling (5th to 12th years of age), followed by four to six years of 

secondary education (12th to 16th, 17th or 18th years of age). The curriculum up 

to age 14 is based on guidelines issued by the Scottish Office Education Depart-

ment, with schools having the freedom to shape it according to their particular 

needs. Provisions are made for individual pupil differences in achievement and 

attainment. Assessment is internal until the fourth year of secondary school. At 

the end of the fourth year students sit external examinations that determine their 

later schooling. Some students may leave school after this stage, holding a Scot-

tish Certificate of Education (Standard Grade). The higher achievers continue 

their education for one more year before sitting Higher Grade examinations for 

entrance to university. It is recommended though that they continue their studies 

for one more year (Certificate of Sixth Year Studies) before starting courses at 

the university. For the less academic pupils a wide range of vocational modules is 

available (SCOTVEC modules), which usually head on to Further Education. 

Mathematics syllabuses in Greece are prescriptive, in the sense that the hours 

spent in each area are predetermined. This phenomenon is more apparent in 

Demoticon. There is a discontinuity between primary and secondary school syl-

labuses, with many areas being repeated. Recent recommendations on possible 

reforms addressed the need for continuity in the syllabuses for Demoticon and 

Gymnasium. In Lyceum the syllabus is broken into Algebra and Geometry, each 

being taught in separate classes. Overall, mathematics syllabuses give an impres-

sion of being rather ambitious, with emphasis on arithmetic in early years and 

geometry in later years. In Scotland, mathematics syllabuses are determined in 

each school following the national guidelines. Decisions taken at school level con-

cern the textbooks and other materials to be used, as well as their time allocation 

over the school year. The syllabus is common for all pupils until the third year 

of secondary school, when students are set according to ability and attainment. 

Great emphasis is given, overall, in building problem solving and inquiry skills. 
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4.2 Culture: Making a Difference in the Re-

suits? 

As indicated above the Greek educational system is centrally managed, compared 

to the decentralised management of the Scottish one. This difference is reflected 

in the organisation and functioning of the mathematics classrooms in the two 

countries. The rationale underlying the Greek system is 'equal opportunities for 

everyone' at all levels of education. Mathematics in the classroom is taught for-

mally by talking to the students from the front. Instruction is restricted to the 

textbook provided by the state. Students sit in rows and activities (questioning, 

problem solving) usually engage the whole class. Everyday evaluation is public 

and visible to all students, with academic feedback being immediate in a verbal 

form. Types of academic and behavioural feedback can vary markedly, though, 

among teachers. Homework is assigned to the students for practice and consoli-

dation. Private tuition is common from the early years of secondary education. 

The pervasive extent of this phenomenon ('parapaedia') has created a form of ed-

ucation that runs in spite of and at times may take the role of school in preparing 

students for their examinations. 

On the other side the Scottish educational system is more meritocratic, with 

a. tendency to move the able students faster (the 'learner' educational principle, 

J.I.H. McDonald 1989). Teaching mathematics in classrooms follows an individ-

ualised approach. Students do not often engage in tasks as a whole class and 

usually have fewer chances to receive instruction from their teacher. Evaluation 

is mostly in written form and personal. Educational feedback may be delayed in 

many cases, since students usually work their way through a set of tasks before 

correcting their answers (they are encouraged to correct them by themselves using 

answer-books). Private tuition exists in Scotland but not to the same extent as 

in Greece. 

It is suggested that beliefs about children are the result of history, culture 
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and personal disposition and serve as a grounding rationale for the actions taken 

by parents and educational institutions (Gergen et al. 1990). Since schools are 

considered as institutions responsible for the transmission and construction of 

culture (Eisner 1977c), it is suggested that differences between the mathematics 

classrooms of the two countries are reflected in sociocultural differences. 

Stigler and his colleagues (Stigler et al. 1990, 1987, 1986; Stevenson et al. 

1986) observed Chinese, Japanese and American primary classes and suggested 

that differences in mathematics classrooms, like those existing between Greece and 

Scotland (classroom organisation, functioning), may well be related to differences 

in learning. They also found that parental beliefs about teaching and mothers' 

evaluations of their children's mathematics performance corresponded to the ac-

tions taken by teachers and educators. For example, American mothers attributed 

performance in mathematics to innate abilities of the child and therefore empha-

sise individualised teaching. In contrast, Asian mothers assigned more weight to 

effort and hard work and favoured uniform educational experiences for all students 

in a classroom (Stigler et al. 1990, Stevenson et al. 1986). Gergen et al. further 

suggested that parents' "beliefs about child development may have their origins in 

and be sustained by a substantial array of conventionally related activities" (1990: 

122). They investigated German and American women's beliefs about competition 

in the work place, solidarity of the family and centrality of motherhood. Beliefs 

about these actions correlated with beliefs about social or independence needs of a 

child and about attention to autonomy, emotion and cognition. It is similar beliefs 

that may shape decisions for the setting of educational experiences in schools. We 

should consider, then, the possibility of culturally appropriate, or even acceptable 

teaching methods. These constitute a capitalisation on culturally well-practised 

routines to determine participant structures in the classroom (Brown & Palinc-

sar 1989). Learning in school, then, may correspond to the 'situated' learning of 

personal life outside school, with this approach in learning forming the basis for 

possible curricula (Resnick 1989, Burton et al. 1984, Greenfield 1984). 

When comparing mathematics classrooms across cultures though, surface fea-

tures appear to be more similar than different. The research findings presented 
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above focus on subtle features that may affect decisions in education and there-

fore learning in the classroom. Surface features though may prove to have great 

influence on classroom learning as suggested below. 

Commonalities in characterising classrooms across cultures concentrate on the 

taught subject itself and are reflected in the act of 'educating the young' in general. 

Goodnow suggests "cognitive development is marked by the acquisition of values" 

(1990: 259). Learning in the classroom is in a "collateral" fashion, where the 

formation of knowledge is accompanied by the formation of enduring attitudes, 

likes and dislikes (Dewey 1963). This 'other' knowledge has a sociocultural basis 

and has been described as tacit knowledge (Hundeide 1985), as frameworks of 

interpretation (Gergen et al. 1990) or as implicitly modelled messages (Goodnow 

1990). This knowledge can determine behaviours, problem solving approaches 

and performances in particular contexts (different 'senses' of action). It can also 

attribute significance to certain kinds of problems and shape beliefs about areas 

of knowledge and skill (opcit) and therefore affect learning in a general fashion. 

Bishop (1988) suggests there is no explicit attention paid to values in math-

ematics teaching. He distinguishes between mathematical education that con-

tributes to development of values and mathematical training that treats mathe-

matics as a body of knowledge. This distinction is reflected in the way mathe-

matics is taught in the classroom. Skemp suggested "that there are two effectively 

different subjects being taught under the same name 'mathematics' " ( 1976: 27). 

The factors differentiating between the two subjects are located in and charac-

tensed by the difference between the instrumental and relational understanding 

in mathematics (Skemp 1979, 1976, Byers & Herscovics 1977). This is the differ-

ence between applying appropriate remembered rules and deducing specific rules 

or procedures from more general mathematical relationships. Teaching mathe-

matics out of context and in ways that do not correspond to everyday life learning 

emphasises this latter difference (Resnick 1989, 1987). Mathematics, then, is seen 

as a body of knowledge, separated from real life, a subject in school taught through 

books or by experts (Goodnow 1990). 

There is also a tendency in mathematics classrooms to perceive the ability to 
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cover a large number of problems in a single lesson as characteristic of expert 

teaching (Stigler & Perry 1990, Leinhardt 1986, Leinhardt & Greeno 1986). It 

is suggested that the coherence of text enables or allows the learner to infer re-

lations between events and therefore promotes understanding (Beck & McKeown 

1989). Stigler and Perry, speculating, suggested that "mathematics lessons may 

be easier to comprehend and students likely to learn more, when the episodes that 

comprise the class are coherent" (1990: 345). This speculation is supported by 

Leinhardt and Putnam (1987), who emphasised the recognition and anticipation 

of the components of a lesson as a factor that promotes learning in class ('lesson 

parsing'). To cover a large number of tasks then, in a single lesson, may endanger 

the coherence of the lesson, especially if the transition between activities is not 

clear and if the,amount of time between these is too small (Stigler & Perry 1990). 

Moreover, students may come to believe that homework and test problems are 

impossible tasks if these cannot be solved in a few minutes (less than 12, Schoen-

feld 1988, 1989). Along with the demand for formal records of procedures in the 

classrooms (Desforges 1985), learning activities become concretised and are inter-

preted as jobs to be done (Bereiter & Scardamalia 1989). Various strategies may 

be adopted by the students then in order to avoid work, please or challenge the 

teacher's authority, which do not necessarily lead to learning (Woods 1985). Re-

lated to the issue of coherence of mathematics lessons are the teachers' own beliefs 

about what comprises a coherent lesson. The 'cognitive mediationaj paradigm' for 

research on teaching (Winne & Marx 1982) suggests that there is a "Noticeable 

lack of one-to-one correspondence between instructional stimuli that the teachers 

identified and the cognitive processing that these cued for the students" (opcit: 513, 

Ben-Chaim et al. 1990). Therefore what teachers perceive as a coherent lesson 

may not coincide with the students' perceptions about lesson coherence. Mes-

sages mediated by the teacher should be as clear as possible so as to smooth the 

mismatch between instructional stimuli and students' cognitive responses. 

Reflecting upon the arguments discussed above, we could suggest that a 'class-

room culture' exists and heavily determines learning in the classrooms. This 'class-

room culture' appears to have a uniform pattern across different cultures, mainly 
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due to their common characteristics. Schooling seems to be closely associated 

with modernisation, economic growth and national aspirations. There is a danger 

of education being reduced to training, with academic success being arbitrarily 

related to life success (Resnick 1987). This reflects the more widespread subsump-

tion of culture by civilisation (Marcuse 1984). In reality though, the 'classroom 

culture' is the ethos of a group created and sustained by the participants in the 

educational experience. Dewey (1963) suggested that the teachers can readily al-

ter only the objective conditions of an educational experience. This of course may 

require modifications of internal conditions and more specifically the teachers' pos-

sible predisposition towards learning and teaching. Teachers' initiatives can form 

the scaffold for students to build positive attitudes towards mathematics, if these 

are not sacrificed for immediate, short-term success. Teachers provide a model 

in the classroom whether they intend to or not. If, then, teachers are seen more 

as a model and less as an instructor, it is possible that students' beliefs about 

mathematics and learning will be altered or enriched. 

4.3 Materials Used in the Study 

The practical activities used in this research are the 'Feely Box' (FB), the 'Same 

Shape As' (SSA) and the 'Drawing and Geometric Constructions' (DGC) activi-

ties. 

The FB activities are based on an idea introduced by Geoff Giles. The feely 

box is a cardboard cubic box with two holes cut on opposite sides. Students are 

asked to explore haptically objects placed in the feely box. Seeing the object 

while exploring it is considered 'cheating'. In the FB activity the objects are two 

and three dimensional and some composite shapes. The first three worksheets 

(1.1-1.3) involve identifying, sketching and discussing properties of these shapes 

(edges, vertices, faces, characteristic properties of each shape). Worksheet 1.4 in- 

volves recognising composite shapes, while worksheet 1.5 introduces some work on 

perimeter, area and proportion. The final worksheet of the activity (1.6) requires 
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students to draw two dimensional shapes on dotty and isometric paper following 

the instructions given (see Appendix A). 

The SSA sequence of activities use rectangles to introduce the simplest ideas 

about similarity. Due to the colloquial meaning of the, word 'similar' the term 

'same shape' is used. The activity starts with an example sheet displaying pairs 

of rectangles that have or do not have the same shape. This sheet encourages the 

students to start thinking about the relationship which characterises same-shaped 

rectangles. Worksheets 5.1 to 5.3 provide the foundation for the succeeding activ-

ities by requiring the students to identify and construct same-shaped rectangles. 

Worksheet 5.4 provides students with a practical way of investigating the 'same-

ness' of rectangles, while 5.5 leads students to a more formal definition/explanation 

of 'sameness' of rectangles. The ratio test (worksheet 5.5 - ratio of length to 

breadth) has some potential for misleading the students, since it does not apply 

to other shapes. This has to be stressed at some stage during the SSA sequence of 

activities. The activities that follow (worksheets 5.6-5.10) reinforce the concepts 

and skills acquired during the preceding worksheets. They extend into aspects of 

problem solving and provide the opportunity for students to discover and appre-

ciate the aesthetic and practical aspect of A (the standardised A-sizes of sheets of 

paper) and golden rectangles. The worksheets also provide practice for number, 

ratio work, enquiry and drawing skills (see Appendix B). 

The DGC activities consists of two collections of activities ('Be a Geomet-

ric Constructor' and 'Balancing Polygons'). They are accompanied by a booklet 

('Measuring and Drawing Library') with illustrated information and hints on the 

use of measuring and drawing instruments. The work included in worksheet 1.6 of 

the FB activity is also considered as an extension of the DGC activity. All these 

activities require accurate use of drawing and measuring instruments (compasses, 

set square, ruler, protractor) and the ability to follow instructions. Aspects of 

problem solving are reinforced by the worksheets on geometric constructions. Fi-

nally most worksheets have an outcome that is pleasing to the eye and can be 

intriguing mathematically due to the simplicity and generality of the construction 

(see Appendix C). 
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The material was developed over a period of six months (September 1991 to 

February 1992). These activities were designed to conform with the 5-14 Scot-

tish Guidelines for Mathematics consulting also the Greek Mathematics Syllabus. 

More specifically, problem-solving and inquiry, multiply and divide, round num-

bers, ratio, measure and estimate, perimeter and formulae, range of shapes (Levels 

D and E). Drawing skills and the use of calculators (calculating, checking, inves-

tigation, problem solving) are also reinforced. 

A group of teachers from Scottish secondary schools was set up by the Ed-

inburgh Centre for Mathematical Education (ECME), under the name 'Practical 

Work in S1/S2'. Members of ECME participated in this group as well. The pre-

liminary meeting took place in June 1991. The main objective at that time was 

to collect views and thoughts on practical work in Si and S2 and identify areas of 

difficulty in mathematics which may benefit from some practical activities. These 

suggestions were taken into consideration in the development of the material. They 

concerned the acceptability of the learning approach, the appropriateness of the 

use of language (enough but not too many words, appropriate for the students' 

level of understanding) and the demand for simple and readily available apparatus 

accompanying the activities. 

The 'Practical Work in S1/S2' group remained active for one year. Over this 

period the FB and the SSA activities were tried in schools in Edinburgh, Greece 

and Dumfries and Galloway. The author was present at these schools during the 

sessions with the practical activities. Other schools, apart from these mentioned, 

tried the material without providing any feedback. Inappropriate sequencing of 

the tasks for each activity was detected, along with mistakes in the layout of. the 

worksheets. In May 1992 a workshop was offered to other teachers of Lothian 

Region. The FB, SSA and DGC activities were introduced during this workshop 

along with other material. Susan MacGillivray (Annan Academy) led the work on 

the FB activity following a group approach. Jim McGregor (Whitburn Academy) 

led the work for the SSA and DGC activities using a mixed approach (stations 

and individualised learning approaches). The three activities were also offered as 
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a part of a workshop at the Mathematics Teaching Conference 1992 in Edinburgh 

by Ann Aughwane (St. Georges School, Edinburgh). 

4.4 Methodology 

The evaluation of educational material necessitates decisions on possible method-

ological rationales. Such decisions cannot be taken before taking account of the 

complexity and subtlety of the phenomenon studied. Studying attitudes of stu-

dents and teachers towards an innovatory learning approach implies studying class-

rooms as a fusion of intentional worlds that participants carry with them and live 

within the school. 

Intentional worlds draw their existence from the people who live in them and 

who are, in their turn, influenced by intentional objects (feelings, beliefs, atti-

tudes, concepts, percepts and so forth, Shweder 1990). In the learning environ-

ment of a classroom such worlds are those constituting the learning milieu, a nexus 

of cultural, social, institutional and psychological variables (Parlett & Hamilton 

1972). It would be unrealistic to suggest that an educational study can analyse 

all these parameters. We can only hope to address and illuminate an array of 

questions (Stake 1977b, 1967, Parlett & Hamilton 1972, Eisner 1977b, Centre for 

New Schools 1977). These questions form the issues that the research is dealing 

with. Such a "thick description" of the study's ambitions implies continuing open-

ness and responsiveness to the kaleidoscopic nature of a classroom setting. An 

explicit statement of aims and objectives made too early may hide an intention 

to discover respective outcomes, excluding from the expected outcomes-spectrum 

those that become apparent later in the study (Atkin 1977a, Eisner 1977a, Parlett 

& Hamilton 1972, Stenhouse 1977). 

This suggests that methodological steps should follow an understanding of the 

framework within which participants interpret their thoughts, feelings and actions. 

Since all thinking is thinking about something (Chamberlin 1974), one direction for 

reaching people's perceptions and mental states about intentional objects would 



Chapter 4. Methodological Background 	 61 

be to study the consciousness which participants have of them (phenomenological 

approach). Such an intentional analysis, as Husserl (1969, in Chamberlin 1974) 
suggests: 

has to place before its own eyes as instances certain pure con-

scious events, to bring these to complete clearness, and within this 

zone of clearness subject them to analysis and the apprehension of their 

essence, to follow up the essential connections that can be clearly un-

derstood, to grasp what is momentarily perceived in faithful conceptual 

expressions, of which the meaning is prescribed by the object perceived 

or in some way transparently understood." (Chamberlin 1974: 128) 

Intentional analysis is an intuitive analysis striving to give meaning to explicit 

and implicit data. It is not a construction of meaning. It is a description of 

reality drawing its determination from the situation that it describes and is further 

determined by keeping at a distance everything that does not account for this 

determination (Chamberlin 1974). 

The philosophy of evaluation just described provides a direction, not a stance. 

Means of reaching a determination of reality, then, vary according to the particu-

lar conditions of the study. Any condition existing prior to teaching and learning 

which may relate to outcomes has to be identified. Observations and discussion 

with the participants could provide a profile of such information. This approach 

can also familiarise the researcher/observer with the environment and the partic-

ipants and vice versa. Data from the many encounters of students and teachers 

with the materials, of students with students, of students with teachers, of students 

and teachers with the researcher/observer follow.. Recordings of such encounters, 

interviewing the participants after the completion of the study or administer-

ing a questionnaire can assist in penetrating the immediate perceived situation 

(Stake 1977a, Parlett & Hamilton 1972). The teaching material is also judged 

by the students' actual performance on the materials. Numerical data, though, 

are not of chief importance here. It is the nature or an underlying structure of 

the students' responses and blunders that is important in evaluating this teaching 
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material (Scriven 1967). Moreover, the possibility of an educational study find-

ing a universal truth may well be characterised as utopian. It would be better 

to speak in terms of analogies applicable to some other situations, an approach 

that is tangential to an intentional analysis. In this way we shift our attention 

from things and minds to the relations between the experiencing subject and the 

experienced objects (Moore, 1917 in Chamberlin 1977). 

Subjectivity in intentional analysis/description is a feature as in all studies con-

ducted by humans. ' . . the thinker never thinks from any starting-point but from 

the one constituted by what he is." (Merleau-Ponty, 1970 in Chamberlin 1977). 

One characteristic of intentional worlds is that they are both different and the 

same for different subjects. This addresses the fact that individuals may perceive 

certain features of these worlds as the same and others as different, according to 

their will, emotions, experiences or knowledge (Lauer, 1958 in Chamberlin 1977). 

Our aim with an honest description of such worlds is to establish 'commonness' 

of meaning by investigating, collectively, the intersubjectivities of the participants 

(Pramling 1983, Chamberlin 1977). Moreover, a 'thick description' of the re-

search can demonstrate the evaluator's presuppositions, making him/her account 

for them and expose them for what they are (House 1977). 

This report will strive to follow the ideas discussed above. A main objective is 

to evaluate the 'hands-on' method of learning mathematics, taking into account 

the participants' intentional worlds. This implies the need to identify possible 

cultural differences that might illuminate the differences which have occurred in 

the data collected from the two countries. Students' performance on the materials 

will also be seen in conjunction with the imposed cognitive demand of the concepts 

involved in the process. 



Chapter 5 

The Study and Its Results 

5.1 Describing the Study 

The research took place in two phases. The first phase concerns work done in 

Greece during March and April of 1992. The practical activities were used in four 

Gymnasiums in urban and rural geographic areas of Greece. These schools were 

'chosen' by means of personal acquaintances with teachers or head teachers. A let-

ter was sent to all schools explaining the objectives of the research and describing 

the practical activities. 

Patras is a city of about 300,000 inhabitants, one of the bigger ports. Pa-

tras Experimental Gymnasium, the only High School in the city affiliated to the 

University of Patras, was the first school visited. Students at this school are ran-

domly selected but an application is required beforehand. They usually come 

from middle-upper class families and their parents are mostly well educated. The 

three year groups at the Gymnasium had 180 students allocated in six classes, 

two for each grade. A rural school, Vlachokerasias Gymnasium, was next to be 

visited. Viachokerasias is a small village of 1000 inhabitants. The school serves 

the needs of a wider area. It has Demoticon and Gymnasium classes. The number 

of students has decreased over the past years, resulting in the closure of the De-

moticon classes as from the current school year. During the term of the study the 

Gymnasium had 40 students, one class at each grade. Most students came from 

families of farmers or other manual occupations mainly of low to average level of 

education. 

63 
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Patras and Vlachokerasias are both in the southern part of the mainland. The 

remaining two schools were located in the middle area of the Greek mainland, 

on the eastern side. Volos is another big port with a strong cultural heritage, 

especially in education. The city's population is around 120,000. The Ninth 

Gymnasium of Volos was the third school visited, a school of 270 students and three 

classes in each grade. Due to its location at the centre of the city most students 

came from middle-upper class families with well educated backgrounds. The last 

school that took part in this phase of the research was the Second Gymnasium 

of Almyros, a school accommodating a total of 220 students in three classes for 

every grade. Almyros is a small town of around 10,000 inhabitants, 30 km S-SW 

of Volos. The school is close to the edge of the town, with students coming from 

a wide range of family backgrounds (from lower to middle class). 

The second phase of the research concerns work done in Scotland during 

November and December 1992 and February and March 1993. Four schools were 

chosen in order to match the sizes of the Greek schools and also to provide a 

good mixture of urban and country settings. A letter was sent to all schools with 

details of the objectives of the research and the research materials. In three a 

preliminary visit preceded the actual sessions on the practical activities. This was 

not practicable at the fourth school, Tobermory High School. The purpose of 

this contact was to meet the teachers, organise the later formal visits and become 

familiar with the school's environment. Sanquhar Academy was the first school 

visited. The school is situated at the one end of the town, serving a population 

of about 10,000. There were 130 students in Secondary 1 (Si) and Secondary 2 

(S2) allocated in three classes for each grade (only the first two Secondary years 

are quoted so to obtain a more objective comparison with the sizes of the Greek 

Gymnasiums). The economy is based on farming and other manual occupations 

with an evident unemployment problems. Tobermory High School was the other 

school visited before Christmas. Tobermory is a fishing village being at the north 

part of the Isle of Mull, west of the Scottish mainland. It was the only Secondary 

school on the island, with 60 students in Si and S2 (two classes in each grade). 

After Christmas of 1992 1 visited two more schools. Selkirk High School, 
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in the small town of Selkirk near the Scottish Borders, serves the needs of a 

wider area with a population of 10,000 having 200 students in Si and S2 (four 

Secondary 1 and three Secondary 2). The community is organised around farming 

and industry with some unemployment problem. Drummond Community High 

School was the last school taking part in the research. It is in Edinburgh, the 

capital of Scotland (620,000 inhabitants). The school has a strong multicultural 

identity, serving a community with many minorities (mainly Asian). It has also a 

role in Adult Education, providing the opportunity for adults to take up classes in 

various subjects. The first two grades are comprised of six classes, three in each 

grade, accommodating 130 students. 

Apart from Vlachokerasias, the Greek Gymnasiums were accommodated in 

two-floored, fairly modern buildings. At Patras and Volos three more schools 

shared the same building (another Gymnasium and two Lyceums). This phe-

nomenon is common for urban Greek schools due to the small number of schools 

as compared to the number of students. Gymnasiums and Lyceums have to ro-

tate their timetable from morning to evening every week: The schools had a large 

playground, with courts for popular sports, where students spend their breaks. I 

followed each school's timetable for at least three days. During that time I lived in 

the community served by the school. During these days I had the chance to observe 

first and second year classes, studying other subjects as well as mathematics. 

Greek school days start with a prayer, which all students have to while attend 

lined up in the playground. Announcements by the Head Teacher follow if nec-

essary and then students enter their classrooms. The teacher follows after a few 

minutes, while one student usually waits for him/her at the door. All subjects 

are taught in the same classroom, the homeroom of each class. The number of 

students in each class varies from 13 at Vlachokerasia.s Gymnasium to 34 at Volos 

(the number of students in a class cannot exceed 35). Students sit in twos allocated 

in rows, with the teacher's desk usually in front of one of the side rows. In two of 

the schools (Volos and Almyros) the teacher's desk was placed on a podium. One 

of the students in each class is given the task of filling in the 'absences book' for 

every session. This student is the student that graduated the previous year with 



Chapter 5. The Study and Its Results 	 66 

the highest overall mark. Teachers have to sign the absences book at some stage 

during the session. All these books are stored in the head teacher's room after 

the end of the school day. There were no resource materials in the classrooms 

apart from blackboard-drawing instruments. Any materials were usually kept at 

the Head Teacher's room and teachers had to borrow them for each period. At 

Viachokerasias Gymnasium a set of geometric shapes was also available that was 

locked inside a cupboard. Volos Gymnasium owned an overhead projector but 

teachers never used it. As a teacher explained they did not know how to oper-

ate it and also it was not convenient to carry it up and down stairs. No posters 

concerning mathematics were displayed on the walls. A portrait of Christ was 

hanging above the blackboard, a characteristic of all Greek classrooms. 

Each day's schedule consists of (at most) six sessions of 45 minutes each. A 

five to ten minute break separates two consecutive sessions, during which students 

have to leave their classroom. Only two students remain in the classroom tidying 

up the desks, cleaning the blackboard and ventilating the room by opening the 

windows (these two students change every week). During the breaks students 

may engage in popular sports in the playground while teachers patrol the building 

in order to prevent misbehaviour. Each school had two mathematics teachers, 

except from Vlachokerasias which had one. Patras Gymnasium had a separate 

room as a library for the teachers. The other schools had reference books in the 

teachers' common room. At Volos students were running a borrowing library with 

a small number of books, none about mathematics. All the teachers were friendly, 

particularly at Volos and Almyros. They were willing to answer any of my queries 

and were interested to know about the objectives of my research. 

In the mathematics sessions teaching usually followed three phases. Question-

ing on the previous day's lesson (oral and blackboard assessment), presenting the 

next lesson and finally working on applications from the school book and giving 

out homework. The style of teaching can be described as the standard, 'talking 

to the whole class' style. The teacher spends most of the time talking to the 

students, defining and initiating activity mainly by asking questions. Students' 

activity was limited to raising arms to answer a question or to performing a task 
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on the board. At Patras and at Vlachokerasias Gymnasiums and for one of the 

teachers at Volos, the questioning had in no sense the characteristics of a dialogue. 

It was too formal, merely a matter of waiting for the correct answer. Mistakes 

were not discussed. Correction came only through verbalising the correct answer, 

either by the teacher or by a student. Explaining was reduced to rephrasing the 

answer which had already been given. There was no exposition in groups nor to 

any individual. The sessions were not coherent since the transition from one topic 

to another was swift and not clear. In general teachers appeared to be remote 

from the students due to a lack of feedback (either cognitive or psychological). 

Their authority over the class was merely positional and sapiential. Comments to 

students were sarcastic at times. At Patras, the teacher's sapiential authority was 

challenged by the older students, with students showing a clear satisfaction. Dur-

ing the sessions students at Patras engaged in irrelevant activities, especially those 

sitting in the back desks of each row. At Vlachokerasias and Volos students spoke 

only when teacher permitted it. At some stage of the session the teacher inspected 

the students' jotters where they keep their homework. This inspection was not 

meticulous though. Homework was given in the end of each session, usually after 

the bell had gone. It consisted of exercises from the school book. 

The other teacher at Volos Gymnasium and the teacher at Almyros favoured a 

discussion with the students. They did not give the impression of assessing them. 

They were not just seeking a correct response. On the contrary they seemed inter-

ested in exploring students' understanding (tolerant of blunders, giving adequate 

time for students to think after a question, rephrasing a question, giving hints). 

New concepts, definitions, rules arose naturally from the discussion, a fact that 

made their teaching smooth and coherent. Dictating to the class was used for 

reducing the chances for misconceptions and only after students had expressed 

their own opinions on the discussed concept. Exposition to individuals often oc-

curred during the sessions and checking the students' jotters was an activity with 

an educational value placed upon it. Homework was given again after the bell had 

rung. The students' participation was strong, even amazing, during the sessions. 

At times students were 'begging' for the teacher's permission to answer a ques- 
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tion. The teacher always made an effort to provide equal opportunities for every 

student in participating in the session's progress. The climate of both classes was 

relaxed and understanding, teachers were polite and friendly and it seemed that 

their positional and sapiential authorities were also well established. 

In Scotland, the only school that was accommodated in an old building was 

Drummond Community High School. It was also the only school that had a large 

playground attached to its premises. I followed each school's timetable for at least 

one week, living close to the school for all these days. I had the opportunity to 

attend first and second year classes in various subjects. At Tobermory and Selkirk 

I did not have the chance to attend any mathematics sessions. 

The schools' timetables were very different. The number of sessions for a 

day varied from six at Tobermory and Selkirk to eight at Sanquhar and nine 

at Drummond. Sessions lasted from 40 to 55 minutes, with a long lunch break 

and one short break during the morning. Students had to change classroom in 

between sessions since rooms are assigned to teachers and subjects (departments). 

The first event of the day is registration. Each teacher is responsible for one class 

and during registration time s/he keeps a record of the absentees and makes any 

announcements. Teachers look for absentees every session thereafter and report 

them to the school's administration office. Students usually have to line up outside 

the classroom waiting for the teacher to allow them to take their seat. In all 

mathematics classes they were sitting in rows of two. The teacher's desk was at 

the front at the same level as the students. The classes were well equipped. A 

BBC computer and an overhead projector were in most rooms besides the separate 

facilities for computer studies. 

Posters were displayed on the walls with some of the students' work as well. 

Drawing and writing instruments, calculators, even jotters are provided for the 

students. School books do not belong to the students but they are allowed to take 

them home if the circumstances demand it. All schools had libraries with a large 

selection of books, journals and periodicals for students to borrow or consult for 

their projects. Tobermory and Selkirk High Schools even had CD-ROM facilities 

in their library. Libraries could also be used as study rooms. Students are allowed 
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to leave the school during breaks. Schools provide proper lunches for students and 

teachers. The mathematics departments visited each had three teachers except 

for Tobermory which had two. These teachers were teaching all grades, from Sec-

ondary 1 to Secondary 6. All teachers were friendly and cooperative, contributing 

to a warm and relaxed school environment. Sanquhar and Selkirk schools were 

particularly welcoming. 

In three of the schools the second year students were placed in classes by 

ability (top, middle and bottom). Setting was a characteristic of the mathematics 

departments only. Students are assessed towards the end of their first year. This 

setting is also determined by the overall behaviour of the students. Tobermory 

High School was the only school that did not follow this setting approach. Teaching 

in all schools was individualised. Every year's mathematics syllabus, for each 

grade, is organised by the staff of the school's mathematics department following 

the general guidelines of the Scottish 5-14 Curriculum. Students work at their 

own pace on material that their teacher has assigned to them. Interaction between 

students and the teacher was limited. There were times when teachers addressed 

the whole class to introduce a new aspect of a topic or clarify a difficult point. 

Teachers, in general, initiated activity by assigning work to the students or by 

directing them to the place where the material was stored in the room. Otherwise 

the interaction between students and the teacher was limited. Students were 

supposed to consult the answers booklet after they had completed their work. 

Usually they had to move to the teacher's desk to show them their work or to a 

ask a question. At classes with 'weak' students, a support teacher might be in the 

room helping them individually with their work. Interaction between students was 

limited as well. They were not allowed to speak during the lesson, even though 

they could move around the class if they wanted to find something concerning their 

work. Group work was also not favoured by the teachers (for this particular age), 

mainly for discipline reasons. Students never had homework assigned to them by 

the teacher. They only had to complete a revision sheet, at home, as soon as 

they had finished a topic of the syllabus. The teachers' authority in the class was 

positional and sapiential, with their behaviour becoming informal only towards 
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the end of each session. Talking to the students at times resembled giving definite 

orders (apart from Tobermory and one teacher at Selkirk). Work in each session 

stops five minutes before the bell to give students time to tidy up the material 

used and prepare for the next session. 

5.2 The Results 

The following results concern observations made during and alter the sessions 

on the practical activities. These were drawn from participant observation, from 

recorded data (portable tape recorder), from information coming from taped in-

terviews with groups of students (in Greece interviews took place only at Patras 

and Viachokerasias), from student questionnaires (see Appendix D) and from dis-

cussions with the teachers. In addition an analysis of the completed worksheets 

on the activities is presented. 

In total 203 Greek students participated (average age 13), 99 Gymnasium 1 

(Gi) and 104 Gymnasium 2 (G2) and 313 Scottish students (average age 12.5), 133 

Secondary 1 (Si) and 180 Secondary 2 (S2). They worked in groups of two to four 

members. In Greek schools groups of four were more common due to the smaller 

number of copies of the materials. On the other hand, groups of four, or even 

three, were the exception in Scotland. In Greece the author was alone with the 

class, except in two cases. In Scotland there were classes where two other teachers 

were assisting. Students in each class were given, at random, one of the three 

activities to work on. There were cases of students starting on a different activity 

alter completing the one initially assigned to them. In Sanquhar Academy the Si 

students tried both the SSA and FB activity during different sessions. There were 

also isolated cases of students who demanded to change activity, from the SSA to 

the FB. For these reasons the number of completed worksheets for all activities 

exceed the number of students that participated in the research. 

Not all students completed the activities that were assigned to them within 

the arranged time limit, especially the SSA activity. There were also cases where 
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students, for various reasons, did not complete some of the worksheets, or tasks 

on a worksheet, resulting in non-uniform data. Moreover, the students did not 

work on the activities for the same amount of time. In Greece, where in all schools 

sessions are of 45 minutes, most students worked during four sessions spread over 

two days (180 minutes). In three classes though they worked for three sessions 

(135 minutes). A similar difficulty appeared in Scotland due to variations in the 

duration of sessions from school to school. In Sanquhar and Drummond students 

worked for four sessions (140 minutes) and in the other two schools for three 

sessions (150 minutes). Therefore the only way to analyse the students' responses 

was to work with each worksheet separately and then try to give a profile for each 

activity. Each worksheet is further divided according to the tasks that comprise it. 

The success rates given for each task of every worksheet are calculated according 

to the number of students that actually worked on this task. The results for each 

activity and each worksheet follow. All the presented success rates are rounded. 

5.2.1 The 'Same Shape As' Activities 

After a very low success rate in the first worksheet (5.1) during the pilot study, 

an example sheet 5.0 was added to the activity. The purpose of that sheet was to 

provide students with examples of rectangles that do and do not have the 'same' 

shape. The abstraction of the concept of 'sameness' was assisted by a discussion in 

each group. During these discussions on 'rectangle-sameness' the most common 

response of the students concerned the area of the rectangles. Two rectangles 

were the same if the smaller one could fit a certain number of times in the larger 

one. This certain number of times had to be, preferably, an integer. In the 

second example of the second part of 5.0 students could not distinguish length 

from breadth of the rotated rectangle. In the third example they could not extend 

the definition for 'rectangle-sameness' (multiply both sides by the same number) 

to non-integer numbers. They would rather add to the sides of the small rectangle 

in order to reach the length and breadth of the large rectangle. In isolated cases 
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students thought that two rectangles are the 'same' if they have exactly the same 

size. 

Worksheet 5.1: Overall 68 Greek (29 GI and 39 G2) and 144 Scottish stu-

dents (78 Si and 66 S2) worked on 5.1. The success rate for the first and second 

parts of the worksheet for each country and each grade is given below. 

Class J A-part B-part 

Gi 41% 86% 

G2 49% 72% 

Si 21% 49% 

.F 	S2 20% 42% 

These success rates were higher than those in the pilot study. The success rate 

in the second part of the worksheet though was higher than the one in the first 

part in both studies. In 121 cases (21 in Greece and 100 in Scotland) students 

perceived rectangle no.7 (an 1.5 enlargement) as not having the 'same' shape 

as the given one. Most of the remaining incorrect responses concerned additive 

strategies, centration to one side, while the rest may be characterised as careless 

mistakes (possibly mis-measurement of the rectangles' sides). 

Worksheet 5.2: 68 Greek (29 Gi and 39 G2) and 143 Scottish students (78 

Si and 65 S2) completed this worksheet. The success rates for the first, second 

and third parts of the worksheet follow: 

Class] A-part] B-part] C-part 

Gi 100% 100% 93% 

G2 92% 87% 87% 

Si 96% 91% 91% 

S2 100% 99% 94% 

Mistakes concerned incorrect counting of the unit squares, especially for those 

who attempted a big enlargement, centration to one of the rectangles' sides and 

additive strategies. 
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Worksheet 5.3: This worksheet was completed by 65 Greek (26 Gi and 39 

G2) and 143 Scottish students (78 Si and 65 S2). The success rates for the three 

parts of the worksheet follow: 

Class A-part j B-part C-part 

Gi 92% 96% 77% 

G2 100% 87% 69% 

Si 94% 96% 82% 

S2 100% 92% 71% 

In the third part of the worksheet most students reduced the given rectangle 

three times. From those who attempted a ±2 reduction some failed giving a 3units 

x 4units or 3units x 5units rectangle. Other incorrect responses concerned additive 

strategies and centration to one of the sides. 

Worksheet 5.4: 63 Greek (23 Gi and 40 G2) and 141 Scottish students (77 

51 and 64 S2) worked on this worksheet. The success rates for the use of the string 

test with the rectangles of sets i and 2 are shown below: 

Class Set _1]_Set 2 

Gi 78% 100% 

G2 95% 93% 

Si 82% 72% 

IL 	S2 70% 56% 

In the first question on the worksheet the rate of success was 52%, 75% for 

the Greek students (Gi, G2 respectively) and 22%, 27% for the Scottish (Si, S2 

respectively). In this question students were advised to find a way to compare 

the rectangles of set i for their 'sameness'. The most common strategies were 

by measuring or superimposing the sides of the rectangles. From the students' 

responses to this first question, we can infer whether they perceived 'sameness' 

as an equivalence property of rectangles. About one third of the students had 

written the 'same' rectangles in pairs. For example '1-2, 1-3, 1-5' instead of '1, 2 1  

3, 5'. 
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Worksheet 5.5: This worksheet was completed by 53 Greek (16 Gi and 37 

G2) and 142 Scottish students (78 Si and 64 S2). Following are the percentages 

of students who measured the sides of the rectangles in sets 3 and 4 accurately 

and of those that identified the ratio test. 

Class] Measi Testi Meas2 

Gi 88% 63% 94% 75% 

G2 87% 78% 62% 84% 

Si 54% 51% 72% 73% 

11 	S2 63% 1 	56% 1 	67% 78% 

It was clear from the students' responses to the first question that they used 

the string test of worksheet 5.4, to find the 'same' rectangles of set 3. The success 

rates in using this test were slightly better than those of 5.4, especially for the 

Scottish students. We can also infer that almost all students had appreciated by 

this stage 'sameness' of rectangles as an equivalence property, apart from some 

Gi Greek and S2 Scottish students. The percentage success in the fourth part of 

the worksheet is bigger than that of the third part (except for Gi students). This 

was caused by students who identified the ratio test but inaccurate measurements 

kept them from giving a complete answer. 

Worksheet 5.6: 55 Greek (21 Gi and 34 G2) and 123 Scottish students (66 

Si and 57 S2) worked on this worksheet. Students had to use the string test 

and the ratio test for the A3, A4, A5 and A6 rectangles. On the back of the 

worksheet, they had to give the ratio of any A-rectangle and work out a problem 

and the Temple of Zeus tasks. The success rates on these follow: 

Class String Ratio J_A-ratio Problem] Zeus 

Gi 81% 71% 87% 73% 53% 

G2 82% 38% 91% 91% 47% 

Si 65% 43% 79% 42% 16% 

S2 61% 60% 75% 65% 22% 
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Worksheet 5.7: The number of students who worked on this worksheet was 

limited. Only 9 Gi and 19 G2 Greek students and 28 Si and 24 S2 Scottish. 

Omitting this worksheet was a deliberate decision due to time constraints. The 

success rate reached 90% for the Greek students for both grades and 32% for the 

51 and 58% for the S2 in Scotland. 

Worksheet 5.8: 34 Greek students (6 Gi and 28 G2) and 66 Scottish (25 Si 

41 S2) started this worksheet. This number decreased for the subsequent tasks 

on the sheet, as this worksheet was as far as some students reached. The success 

rates for the pentalpha measurements, the calculation of the golden ratio, the 

tasks on Parthenon and Epidaurus and the final calculations with the golden ratio 

are listed below: 

II _Class Pental. G.R. I  Parthenon Epidaurus Decimals •fl 
Gi 100% 100% 100% 100% 100% 

G2 64% 100% 88% 44% 68% 

Si 60% 61% 78% 44% 38% 

.F 	S2 61% 44% 85% 35% 33% 

On the Epidaurus task, when students are asked to name the ratio that they 

found, 26% of the students failed to identify it as the golden ratio. There were 

also cases of students who calculated the golden ratio on the front page correctly 

but failed to do so on the task at the back of the sheet. They found for example 

ratios of 1.81... or 2.1... which did not raise any queries. 

Worksheet 5.9: Only 12 G2 students completed this worksheet in Greece 

and 2 Si and 10 S2 in Scotland. From all those students 20 found the correct 

rectangle but only 8 of them named the ratio and the rectangle they had found as 

the golden ratio and golden rectangle. 

In the first steps of the activity students faced difficulties in abstracting the 

rule for 'sameness' of rectangles. The strategies adopted by students coincide with 

those discussed in §2.1.2. Area and additive strategies, centration to one of the 

rectangle's sides, fall back strategies when facing difficult tasks (1.5 enlargement). 
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Their persistence with these strategies is worth mentioning, even after these were 

shown to be defective by the examples used. The students' difficulty (especially in 

Scotland), in verbalising their thoughts was evident. Even at the stage when all 

the examples in 5.0 had been discussed, they could not state the rule for 'sameness' 

in their own words. 

Students were expected to face difficulties with this activity because of the un-

familiarity of the concept introduced. There were many cases, though, where diffi-

culties arose from misconceptions concerning past knowledge ('length and breadth' 

confusion, working with decimal numbers). In worksheet 5.1 students were not 

confident in applying the rule for 'rectangle-sameness'. They needed support and 

immediate feedback on their answers. The choice of the order of the examples in 

5.0 and in the tasks in 5.1 did not prove efficient (examples on lack of rectangle-

sameness before examples of the concept). This did not interfere with the abstrac-

tion of the target concept, since the initial discussion in each group first addressed 

the examples of the concept. No comments can be made though for the affect that 

this had on the students' later performance. 

Students did not need much help with worksheets 5.2 and 5.3. The amount 

of time spent completing these worksheets was small compared to the time spent 

on sheets 5.0 and 5.1. The Greek students may have had difficulties in counting 

the unit squares on the grid due to the poor quality of the xerox copies. Also, in 

the second part of 5.3 there was a typing mistake, naming the side of the wanted 

rectangle as 'breadth' instead of 'length'. There was no indication though that 

it caused difficulties to the students. These two weaknesses of the materials were 

corrected in the copies used in Scotland. The students' responses in the third part 

of worksheet 5.3 were yet another indication of their unfamiliarity in working with 

decimal numbers. Most of those who attempted to decrease the given rectangle 

two times failed to do so, ending up with a length of 4 or 5 units. 

In worksheet 5.4 the students' main difficulty was to accept the fact that the 

string should not, necessarily, have to pass from all the rectangles' vertices. They 

needed help in placing the rectangles in the lid and in drawing the diagonals for 

each rectangle of set 1. A common response was that of drawing a crooked line 
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connecting the vertices of all rectangles instead of drawing their diagonals. Many 

of them failed to accept 'sameness' as an equivalence property of rectangles. We 

observe though that in worksheet 5.5 almost all overcame this misunderstanding, 

probably because of the use of the string test. Even though students measure-

ments in 5.5 were fairly accurate, not all of them observed that the ratios of the 

same shaped rectangles were equal or nearly equal. One reason for this may be 

that many of the students kept all the decimal places displayed on the calculator. 

Some responses were fax from the wanted answer: "they all are decimal numbers", 

"they all start from 1", "they have the same number of digits". These responses 

may reflect the students' unfamiliarity in working with decimal numbers and some 

lack of intuitive thought. Interestingly, some groups argued about whether divid-

ing two measurements in millimetres will give the same result as dividing the same 

measurements in centimetres. Students also had difficulties in going from millime-

tres (markings on the rulers) to centimetres and in deciding how many decimal 

places to keep in their ratios. For those who decided to cut the decimal places, 

rounding to the nearest ten was not always their immediate choice. 'Length and 

breadth' confusion was apparent in this worksheet, despite the instructions given 

during earlier worksheets. The term 'ratio' was often mispronounced by Scottish 

students. 

In the first task on worksheet 5.6 students had to improvise in order to use 

the string test for the A-shaped rectangles. The string from 5.4 was too short 

to be used with these rectangles, so they used a metre ruler or two ordinary 

rulers placed together. Students seemed to expect all ratios of the 'A-rectangles' 

to be close to 1.41. Some of these rectangles were not cut accurately resulting 

in incorrect ratios. Some students corrected their measurements accordingly in 

order to obtain a ratio close to 1.41! The request to measure in millimetres for 

better accuracy created difficulties once more as did the rounding of the ratios 

found. The 'length and breadth' confusion appeared on this worksheet as well but 

not often. In the problem of question 6, students could not easily use the fact 

that the rectangle was an A-rectangle. Moreover, choosing the correct operation 

caused confusion for most students, even though the answer was in a bubble. In 
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general, students failed to exploit the clues that were given in bubbles throughout 

the whole activity. "Oh ... is this all we had to do?", they might say. Possibly they 

were not familiar with that technique, or perhaps they could not believe that the 

task itself provided them with clues for solving it. Greater difficulties occurred 

on the Temple of Zeus task. Students failed to identify the marked rectangle 

as a clue, so they could not easily apply the ratio of 1.41 to find an A-shaped 

rectangle. In addition to that, identification of the correct operation combined 

with the need for accurate measuring resulted in a low success rate (especially in 

Scotland). Worksheet 5.6 was also a first indication that multi-stepped worksheets 

have a potential for exposing the students' inadequate grasp of the concepts. This 

conclusion is drawn from the failure of students to use and combine information 

given or found in the earlier tasks of the worksheet (identify the 'A-ratio' and use 

it in question 6 and Temple of Zeus task). 

In worksheet 5.7 problems were caused by the extended instructions. Even 

Greek students, who eventually achieved a high success rate on this worksheet, 

needed support. This support mainly concerned the supervision of the reading of 

the instructions together with providing a summary of the text. Some students 

did not actually realise that they had to work on the rectangle at the bottom of 

the page and were placing the mapping pins on the drawn diagrams. Difficulties 

arose from the motor-coordination of the cross form as well, more evident with the 

Scottish students. In Greece the two arms of some of the cross forms did not cross 

at 90 deg due to faulty construction. Answers then close to the wanted response 

were considered as correct. 

Worksheet 5.8 is another multi-stepped sheet. Students faced difficulties in 

measuring, in using results from earlier tasks on the sheet (Epidaurus task, cal-

culations with golden ratio) and in working with decimal numbers (calculations 

with golden ratio). Students had difficulties in using the calculator, especially Gi 

and Si students. They did not know how to find the square root of a number 

and the most common mistake was to key the calculation in the following order: 

(1 + J5 - 2). We have to bear in mind here that Greek students are not familiar 
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with the use of the calculator and in Scotland not all teachers favour the use of 

calculators in Si. 

Worksheet 5.9 is a rather complex one since it requires elements from most 

of the past worksheets (string and ratio tests, golden rectangles). Moreover the 

translation of the small rectangle from the right side of the large rectangle to its 

bottom left corner is a further conceptual step. Apart from these hurdles, students 

faced difficulty mainly in coordinating their motor skills to perform the required 

moves with the cardboard rectangles. Worksheet 5.10 was not completed by any 

of the students. 

The success rates of worksheet 5.1 indicate that a significant number of first 

year students did not have a complete understanding of 'sameness'. Especially 

in the first part of the worksheet, the success rates are the lowest in the activity. 

The tasks of enlarging and reducing rectangles in worksheets 5.2 and 5.3 and the 

guessing task in 5.4, could be considered as foundation activities for the concept of 

'rectangle-sameness'. The high success rates in these worksheets then contradict 

the low performance on 5.1. Is this because students had not abstracted the 

rule of 'sameness' or is it also due to the fact that the tasks in 5.1 were hard to 

tackle? We should consider here the interference from students' other difficulties 

and misconceptions and the effects of multi-tasked worksheets. Students seemed 

to have grasped the string and ratio tests, since they used them in subsequent 

tasks (worksheets 5.5, 5.6, 5.9). 

The tasks involving measuring and ratio work proved demanding, especially 

for the Scottish students. There were students that used unorthodox methods of 

measuring (measuring the sides of the rectangles by finding the distance between 

two points of opposite sides that seemed to be at the same level; taking the 

measurements keeping the ruler and the rectangle up in the air). In problem-

solving and 'forming-conclusions' tasks (set 1 of 5.4, set 3 of 5.5, question 6 and 

Zeus Temple in 5.6, calculations with the golden ratio in 5.8) students were not 

very successful, especially the Scottish. Motor difficulties were also evident in 

manipulating the accompanying material in worksheets 5.4, 5.7 and 5.9. There 

were indications that the Scottish students did not appreciate the illustrations from 
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Ancient Greek architecture. For example in one recording a student says: "Here is 

a picture of something... "referring to the picture of Parthenon in Athens. We also 

notice that the Zeus Temple and Epidaurus tasks received the lowest success rates 

of all the tasks in Scotland. This attitude may be justified by the unfamiliarity of 

the names and the context. In contrast, in cases where the author had the chance 

to give information about these illustrations, students seemed to enjoy it. 

Students, then, were fairly successful on the tasks directly related to the con-

cept of 'rectangle-sameness' (worksheets 5.2, 5.3 and the first question on 5.4). 

There was poorer performance on worksheets where secondary cognitive demands 

interfere with the concept of 'sameness' (past difficulties and misconceptions, 

multi-tasked worksheets), especially for the Scottish students. Keeping in mind 

that the number of Scottish students that participated in the research was double 

the number of Greek students, the results show a differentiation in performance 

between Greek and Scottish students in almost all of the tasks. Tasks involving 

measuring and ratio work proved particularly difficult for the Scottish students. 

In problem-solving and 'forming-conclusions' tasks (set 3 of 5.5, problem and Zeus 

Temple in 5.6, calculations with the golden ratio in 5.8) students were not very 

successful, especially in Scotland. We would normally expect second year stu-

dents to do better than the first year students, as this is the philosophy of any 

curriculum. A differentiation exists, though, between the performance of first and 

second year students, in both countries, in favour of the former in several of the 

tasks. Second year students may simply have found the tasks not to their level of 

competency and therefore did not invest in them their best effort. Care has to be 

taken to give students tasks which are appropriate to their level of competence. 

Only a small number of students addressed the difficulties discussed above in 

the recorded interviews and in the questionnaires. More specifically, about half 

of the students mentioned vaguely that they had some difficulty with the SSA 

activity. Only one sixth of them explicitly mentioned their difficulties (example 

sheet 5.0, worksheets 5.1, 5.4, 5.5, 5.6-Zeus Temple, 5.7). These observations, 

compared to the presented success rates, indicate that students were not fully 

aware of the choices they were making or of the level of their competency. When 
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students were asked to describe what they learned from doing the activity, almost 

half of them answered that they learned something new and consolidated past 

knowledge. The other half of the students simply referred to a certain task of the 

activity. This indicated that 'sameness' of rectangles was not what many of the 

students recalled as the main recurring concept of the activity. Their enjoyment 

of working on the SSA activity shows in the following table: 

Response Greece Scotland 

Did not Enjoy 0% 5% 

Enjoyed A Little 2% 16% 

So-So 2% 36% 

Enjoyed Much 30% 31% 

Enjoyed Very Much 66% 12% 

Two thirds of the Greek students, then, enjoyed the activity very much, as 

compared to one fifth of the Scottish. The main reasons for liking the activity 

were the group work, the practical aspect of the activity, the fact that there 

was no marking, lost sessions from the day's schedule, it was easy to cope with 

and because they liked the new teacher. Often responses were of the kind: "It 

was better than school maths". The main reason for not liking the activity was 

the fact that they became bored with all the measuring and calculations. They 

acknowledged that there was an interesting discovery at the end of each worksheet 

but it took too long to reach it. They offered as an alternative outdoor measuring 

instead of measuring cardboard rectangles. Other responses suggested that the 

activity was not challenging enough or that they could not see why they had to 

know about 'same' rectangles. 

These responses have to be examined with caution, taking into consideration 

the 'Hawthorne effect' of any innovatory program, that is, the tendency for an 

innovatory program to produce results that overestimate its long term effectiveness 

(see Ausubel 1968). Greek students, being less experienced in group-work, in 

manipulating materials, in working with calculators, may be more 'vulnerable' to 

such an effect. Even the change from having their teacher and following the day's 
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schedule might lead to misleading conclusions about the program's impact on the 

students. Scottish students on the other hand, are more used to this style of 

learning, as described by the 5-14 Mathematics Document. This was not the case, 

though, in some schools, where practical and calculator (for the Si students) work 

was limited and group work was not favoured (mainly for behaviour reasons). 

5.2.2 The 'Feely Box' Activity 

The data from this activity appear to be more uniform than those of the SSA 

activity. Almost all students that worked on the FB activity completed worksheets 

1.1 to 1.5. A different kind of difficulty arose though, since not all students worked 

with the same number of shapes for each worksheet. Thus the data is not directly 
/ 

comparable even for students of the same class. For this reason, emphasis will 

be placed on the students' blunders and not on their success rates. The results 

follow (for 1.6 see the DGC activity). Percentages for each shape are calculated 

according to the number of students who worked with that particular shape. 

Worksheet 1.1: This worksheet was completed by 86 Greek (45 Gi and 

41 G2) students and 185 Scottish (86 51 and 99 S2). On average, the Scottish 

students worked with seven shapes as compared to six for Greek students. The 

percentages of students who completed this worksheet with absolute success (sides, 

vertices and names) were very low. Only 4% and 3% for the Gi and Si students 

respectively and 46% and 10% for the G2 and S2 ones. All these percentages rise 

above 50% if we consider only the responses to the 'sides' and 'vertices' columns. 

All together 45 students (19 Greek and 16 Scottish) perceived the inverted kite 

as having three sides and 158 students (49 and 109) as having three vertices. 

Other difficulties concerned naming the shapes. The following table shows these 

difficulties for each country and grade. Percentages correspond to the incorrect 

responses: 
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Shape Gi] G2 Si S2 

Square - - - 5% 

Rectangle - - - 3% 

Parallelogram 21% 21% 32% 26% 

Trapezium 18% - 91% 81% 

Isosc. Trapez. 10% - 97% 87% 

Rhombus - 3% 24% 14% 

Kite 72% 18% 8% 11% 

Inverted Kite  1 80% 47% 60% 38% 

In Scotland a large part of the above error rates are due to students who did 

not attempt to name certain shapes. This was not the case in Greece. Most 

students did not know the name of the inverted kite. They were encouraged to 

describe it or name it after something familiar with the same shape. The most 

common responses were "triangle with a bit missing", "broken triangle", "triangle 

with two triangles on the bottom", "arrow", "boomerang", "rocket". All these were 

considered as correct responses and were given mainly in the further observations 

column. Incorrect responses referred to this shape as a triangle. Interesting are 

the large number of Scottish students who failed to name the two trapezia. Most 

of them tried to describe these shapes with the help of other familiar objects 

(roof of a house, plant pot, thing an elephant stands on, etc). This time such 

responses were not considered as correct, since these two shapes were known to 

them. The 'further observations' column caused some confusion to the students 

due to the lack of definite instructions. With familiar shapes students followed a 

descriptive approach based on one or two of the shape's characteristic properties. 

For shapes where they could not remember the name, they tried to describe the 

physical appearance. The Scottish students were more efficient at that. Less 

than ten students, from both countries, gave a complete description of the shapes. 

With unfamiliar shapes a 'fall back' strategy was often adopted, changing to an 

inappropriate descriptive approach based on the material the shapes were made 

of (eg one side smooth, one side rough). 
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Worksheet 1.2: In Greece 87 students worked on this sheet (46 GI and 41 

G2) and in Scotland 184 (89 Si and 95 S2). On average the Greek students worked 

with five shapes and the Scottish with six shapes. Students were asked to produce 

a simple sketch of each shape they 'felt'. On that basis sketches were rated for 

their accuracy as poor, fair and good. Percentages for each category follow. These 

numbers are subject to the writer's interpretation of the students' drawings. 

0 _Class Poor J Fair] Good 

Gi 41% 24% 35% 

G2 22% 32% 46% 

Si 22% 65% 15% 

F7S2 10% 63% 27% 

In many of the students' sketches (around half of them), it was evident that 

they had not discriminated between two of the triangles, the equilateral and right-

angled isosceles. The regular hexagons and pentagons were poorly sketched. In 

general students tended to sketch small figures with not particularly straight lines. 

Worksheet 1.3: This worksheet was completed by 83 Greek students (43 

Gi and 40 G2) and 190 Scottish (90 Si and 100 S2). Students worked with five 

solids on average. As in 1.1, the percentages of students with complete success on 

the sheet (edges, vertices, faces, names) was very lower for the Scottish students. 

Only 3% and 4% for the Si and S2 students respectively and 21% and 50% for 

the Gi and G2 ones. Ignoring the responses to the 'names' column these success 

rates become 14%, 22%, 77% and 85% respectively, still considerably low for the 

Scottish students. In the 'edges' and 'faces' columns students faced difficulties 

with the cylinder. They could not decide on the number of faces and edges, with 

many students answering that a cylinder has no edges. The Scottish students were 

also not very successful in giving the correct number of faces for the cube and the 

prism (one fourth to one third of them). Most of the difficulties, once more, 

appeared in naming the shapes. These follow, with percentages corresponding to 

the incorrect responses: 
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Shape G1   G2 Si I 	S2 

Cube 5% - 16% 22% 

Cuboid 24% 11% 38% 36% 

Cylinder 15% 3% 20% 10% 

Triang. Prism 34% 20% 30% 26% 

Sq. Based Pyram. 36% 16% 15% 11% 

Tetrahedron 41% 24% 31% 33% 

The error rates for the cube and the cuboid are surprisingly high. Students 

named them after their corresponding two dimensional shape. The shapes that 

attracted the most diverse responses were the cylinder and the prism. Some names 

given for these shapes follow: 

• cylinder: circular based cylinder, sphere, cone, tube, circular prism, circular 

cube, circle. 

• prism: rectangular based pyramid, tent, 'Toblerone', rectangle-triangle. 

These names reveal that students based their responses on the shapes' charac-

teristics, improvising on the names of other shapes with equivalent features to the 

one in question. The Euler column was completed by almost all students. Suc-

cess depended on whether students had their previous numbers correct. Actually 

the success rates resemble those given before for the 'edges', 'vertices' and 'faces' 

columns. 

Worksheet 1.4: In Greece 80 students worked on this worksheet (40 Gi and 

40 G2) and in Scotland 191 (87 Si and 104 S2). The success rates were very high 

as the following table shows: 

Class Gi G2 Si S2 

70% 90% 94% 96% 

From the 26 incorrect responses, 24 concerned the L-shaped solids. Due to 

faulty construction, one of the L shapes did not correspond exactly to its figure on 
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the worksheet. Many students asked about this while working on the sheet and 

were directed accordingly. It can be argued, though, that some of the blunders 

might have been due to this faulty construction. 

Worksheet 1.5: This worksheet was completed by 80 Greek students (40 

from each grade) and 176 Scottish ones (80 Si and 96 S2). The success rates for 

the three parts of the worksheet follow: 

II _Class  J Seq.A Seq.B] Seq.0 

Gi 95% 94% 20% 

G2 100% 85% 80% 

Si 86% 80% 20% 

S2 89% 85% 1  28% 

In finding the relationship between the two cuboids, the most common incorrect 

responses referred to the solids' common geometrical characteristics: "they have 

the same number of sides, edges,... their edges are parallel", and so on. 

Overall students faced difficulties in remembering the names of certain shapes. 

These were shapes that students do not meet very often (parallelogram, trapezia, 

rhombus, prism, tetrahedron). The students' unfamiliarity with these shapes was 

indicated by their bad spelling and pronunciation of their names. In Scotland 

only a few students spelled the names of all shapes correctly. Most students were 

confused by the inverted kite in worksheet 1.1. These students failed to identify the 

fourth vertex of the shape, possibly because it was not something that 'pricks' as 

vertices usually do. Moreover, many of their responses concerned a 3-sided shape 

with four vertices, or a 4-sided shape with three vertices. This was an indication 

of how easily students' logical thought failed when confronted with unfamiliar 

problems. 

The percentages of the students, especially in Scotland, that had difficulty in 

naming the cuboids in worksheet 1.3 was surprisingly high. In the same worksheet 

students found it more difficult to count the faces of the solids than to count the 

edges or the vertices. The high success rates in worksheet 1.4 are explained by the 
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nature of the task. It involved recognition of shapes that were at present, drawn 

on the sheet. Discomfort was evident when students had to sketch the shapes 

they were exploring haptically (worksheet 1.2). Most of them kept their figures 

small in size, obviously to give the appearance of better accuracy. Students failed 

to discriminate between the equilateral and the right-angled isosceles triangles in 

this worksheet. Finally, the low success rates in the third part of worksheet 1.5 

may indicate students' difficulty in problem-solving and forming-conclusions. 

In exploring the shapes students used both their hands, either placing the 

shape in the palm of their hand or tracing it with their fingers. Their strategies 

were exploratory with fast movements, keeping their hands in the air. They used 

vertices as reference points but they used external frames of reference only in an 

accidental fashion. In worksheet 1.5 they usually superimposed the shapes of each 

sequence to compare them for their perimeter or area. Students did not have many 

queries while working on this activity. In Scotland students did not understand 

the terminology used on the worksheets, more specifically the term 'vertices' to 

name the corners of a shape. Also there was no consensus between schools about 

the terms used. For some schools faces meant sides and sides meant edges and 

for other schools the opposite. To overcome the delay caused by the big number 

of students in a group, the Greek students formed two groups within groups of 

four and explored half of the shapes keeping their hands under the desk. Then 

they would exchange their shapes with the other half. Students, generally, found 

the work pleasant and not very demanding. Most of them completed worksheets 

1.1 to 1.5 within the two thirds of the time available (one and a half to two 

hours). When students were asked what they had learned from the activity, most 

of them described what they had done in the activity. A large number of Greek 

students replied that they recalled relevant past knowledge from working, though, 

on something different. Their enjoyment gained from working on the activity 

appears on the next table: 
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Response Greece Scotland 

Did not Enjoy 0% 1% 

Enjoyed A Little 4% 7% 

So-So 4% 30% 

Enjoyed Much 22% 30% 

Enjoyed Very Much 70% 32% 

The most popular reasons given for enjoying the activity were the practical 

aspect of the activity, working in a group, its easiness and the fact that it was 

better than the usual work in mathematics. There were students, though, who 

expressed clearly their discomfort at the cognitive difficulty of the tasks, suggesting 

that they were too easy. Some of the students who made these comments had 

blunders in their responses. This may indicate the students' frivolous approach to 

a new learning situation. Some students also felt bored after some time, because 

as they said they were just 'feeling' shapes. They proposed having various shapes, 

two-dimensional and three-dimensional accompanying every worksheet. 

5.2.3 The 'Drawing and Geometric' Constructions Activ-

ities 

In Greece 47 students started working on the 'Be a Geometric Constructor' and 

'Balancing Polygons' sequences of activities and 16 in Scotland. The actual num-

ber of students who worked on these activities, though, is much bigger. That is 

because students from the FB activity continued on these activities after complet-

ing worksheet 1.6. The tasks of the 'Balancing Polygons' sequence that involve 

balancing were not tried in Scotland. The acetate shapes were not robust enough 

to use in the classroom. Also some students found it tricky passing the thread 

through the holes. 

Only 23 Greek students tried worksheet 1.6 (they were directed to the DGC 

activities) and 141 Scottish. Most of them faced difficulties when they had to draw 

in directions other than the horizontal and vertical. The triangles, the rhombus, 
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the kite, the pentagon and the hexagon were the hardest to draw. Very few of the 

students used drawing instruments other than a ruler, most of them in Greece. 

At each step they concentrated on the length of the side to draw next but not on 

the angle determining the direction of the side. Whether they followed the given 

instructions then was a matter of chance. The following quotation is revealing: 

"The ones with diagonal lines, they end up the wrong size". 

The students' responses on the ease or difficulty of drawing on the two kinds of 

papers were interesting. Some noticed that shapes like the square, the pentagon 

and the circles are hard to draw on isometric paper and shapes like the pentagon, 

the hexagon, the rhombus, the kite and the circles are hard to draw on squared 

paper. Others responded that all shapes were easy to draw on both papers. These 

answers contradicted their actual performance, since most of the students had 

faced difficulties. Possibly students ignored the fact that they did not only have 

to draw a number of shapes but they had to draw them following the given instruc-

tions. Otherwise we would have to suggest that the students unfamiliarity with 

some tasks is the reason for their inability to judge their own performance. From 

these answers we can also conclude that students failed to exploit the properties 

of the isometric paper. On the squared paper they also counted the distance of 

a diagonal of a unit square as one unit of length. We have to note here that the 

Greek students at least were not familiar with drawing on squared or on isometric 

paper. 

The 'Measuring and Drawing Library' booklet preceded the allocation of the 

'Be a Geometric Constructor' and 'Balancing Polygons' sequences of activities. 

Students simply riffled through the pages and did not use it afterwards. Some of 

the students' queries while working on the tasks had their answers in the book-

let. Either the students had not studied the booklet thoroughly or they had not 

understood its instructions. 

Students were mostly accurate in the triangles' constructions and the bisect-

ing of a line. The construction that created most of the difficulties was the one 

for finding the centre of a circle. Some of the problems caused might have been 

by the distortion of the circle due to photocopying. Students' quality of drawing 
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was at high levels, especially that of the Greek students. But even though they 

were competent in the actual use of the drawing instruments, their measurements 

were not absolutely correct. In other words, they could cope with completing the 

construction but they could not follow the given instructions for the lengths in 

these constructions. Moreover, in cases where the students were not positively 

sure about the outcome, they preferred to reproduce the given illustrations in the 

instructions. This was common for the Pascal's line and less common for Pap-

pus', where they chose the points in the way they were marked on the diagrams 

in the instructions. In Scotland, many students had difficulties in reading the in-

structions. This was less common in Greece. An interesting situation was created 

while students were working on the construction of a regular hexagon. In this task 

students are asked at some stage to measure the distance between certain vertices 

of the hexagon. Distance for most of them was a line of a certain length. So to 

measure the distance between two vertices they first drew the line to connect these 

two points. Students also had difficulties in going from millimetres to centime-

tres. Finally, the students' inability to use information from past constructions 

was evident in, for example, the construction of a perpendicular on the worksheet 

of constructing two parallel lines. 

In general, students used the drawing instruments adeptly, particularly the 

Greek students. Lines were straight, arcs were competently drawn but the out-

come did not always match the wanted one. Either students did not manage to 

follow the instructions, or they did not double-check their constructions. The for-

mer may indicate unfamiliarity in drawing and the latter an improper working 

approach. The students' difficulties in relating information from worksheets al-

ready completed to the one at hand is in accordance with the improper working 

approach. Students enjoyed working on the constructions, to judge from their 

comments and their teachers' remarks. It was a novel task, or maybe as they 

themselves said a task that they are not usually given the opportunity to work 

on. They felt challenged by the accuracy that the tasks required and by the large 

number of the worksheet. They also seemed to enjoy, to some extent, the narrative 

that accompanied each worksheet. 
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5.3 Further Observations 

The organisation of the classes in Greece for the practical activities was more or 

less the same in all schools. Students formed groups by themselves and then they 

were assigned to one of the activities at random. The author was alone in all 

except two of the classes. The students were very demanding when asking for the 

next worksheet. Some of them preferred to ask the author for explanation before 

even reading the instructions, saying "teacher knows better". For these reasons the 

task of providing the groups with each worksheet along with the accompanying 

material seemed too much for one person to tackle. On the other hand in Scotland 

much help was given by the teacher of each class and quite often by a third teacher. 

In every school in Scotland the organisation of the class during the sessions on 

the practical activities was affected by the suggestions of the class' teacher. In 

Sanquhar classes were divided into two large groups, according to the activity 

students were working on. These groups occupied separate rooms with a teacher 

responsible for each one of them. At Tobermory and Selkirk High Schools these 

two large groups occupied different areas of one room. The same arrangement 

was made at Drummond, with the difference that students working on the same 

activity were sitting around the same table. Also one teacher was responsible 

for each table and each activity. Students in Scotland were less demanding than 

Greek students. They still preferred to hear the instructions from the teacher but 

not to the same extent as in Greece. 

Students tended to seek approval for their answers before proceeding with 

the next task. This was more evident at some schools in Scotland, despite the 

individualised, self-paced teaching approach. In general, group work was favoured 

by the vast majority of the students, as they indicated in the questionnaires. They 

acknowledged the social aspects in group work and its advantages in coping with 

difficult tasks. These remarks, though, should be interpreted with caution, because 

in many groups discussion was akin to chatting and cooperation was limited to 

simply reading the instructions together. There were cases in Scotland where 
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students in a group needed encouragement before they even started talking to 

each other. This reflected the discipline demanded by the mathematics teachers. 

It seems that the students were not accustomed to group work, either in Greece or 

in Scotland. Those students who opposed working in groups did so because their 

group members were cheating or because they did not like them. There were also 

some students who stated that they enjoyed group work but they would rather 

work individually. 

Students seemed very worried at times about the confidentiality of their work, 

mainly because they were afraid that their teachers might see it. The author 

made it clear that the sessions on the practical activities was not an assessment 

and their teachers would not have access to any of the collected material. Despite 

this comment, many students, especially Greek, decided to use nicknames on 

their worksheets. Due to the demands of the sessions, unattended recordings 

were the only possible option for capturing students' discussions. The students 

though, were fascinated by the tape-recorder and ended up expending much of 

their energy in saying silly things to it. The following recurring behaviour was 

recorded by the tape-recorder. Students appeared to adopt a different behaviour 

when they were facing a teacher and when they were hiding in anonymity. When a 

teacher approached them, they always had some question to ask about the task on 

which they were working on. As soon as the teacher had moved away from their 

desk, they would start chatting again. This immature attitude was the students' 

response to the 'no-talk, just-work' discipline rationale of most of the mathematics 

classes. Pretend that you are working (asking questions is an indication of doing 

so) when the teacher looks at you and chat whenever you find the chance. 

In Greece students remained at their seats, working, even during the breaks 

between the sessions. The situation at Vlachokerasias was amazing, where stu-

dents worked through all four sessions in one day, some of them without having 

any breaks. In Greece, the classrooms with the practical activities was an attrac-

tion for the rest of the school's students. Students kept asking questions about 

the materials and were trying to persuade the author to try them in their classes 

as well. All students were curious about the materials. In Greece the calculators 
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attracted most attention. Some of the students even treated them as 'sacred' ob-

jects. Teachers, not only of mathematics, were very interested to know about the 

materials and the objectives of the project. Greek teachers wanted to know about 

teaching practice in Scotland and the other way round. No mathematics teacher 

in Greece, though, requested any details about the activities before trying them 

in their classes. Only one of them had some interaction with the materials, by 

helping to its allocation and clearing up queries whenever he could. On the con-

trary, Scottish teachers were actively involved during the sessions, usually taking 

charge of the 'feely box' activity. Their comments on the practical activities were 

encouraging. They said many of their students performed better than expected 

(judging by the amount of work they completed and their attitude during the ses-

sions). Teachers at the Mathematics Teaching conference in Edinburgh also liked 

the activities. Their main worries concerned the organisation of such sessions and 

the cost and availability of the materials. 

When students were asked on the questionnaires to propose possible areas in 

mathematics suitable for practical activities, their responses covered, more or less, 

the mathematics syllabus of the first two High School grades. These proposals 

might indicate the working area for many research projects but also the many 

difficulties that students face and the need for help. The students' comments 

in the interviews concerning mathematics and their school experiences with this 

subject were revealing. In Greece only 21 students were interviewed as compared 

to 87 in Scotland. The interviews were unstructured discussions. They took place 

in groups, as this was proved anxiety-relieving for the students. 

The similarity of students responses concerning the description of a typical 

mathematics session is remarkable. These descriptions coincide with those given 

at an earlier stage by the author (see 5.1). Students' studying habits were fairly 

similar. Provided that they had homework (rare for the Scottish students), they 

read the school book and then tried to solve the problems set. The answer-books, 

in both countries, play a misleading role at this point. Students in Greece are 

tempted and usually copy the answers from the books without understanding being 

involved. Similarly in Scotland, students correct their work by themselves at the 
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end of each booklet. They tick the correct answers and change the incorrect ones. 

Understanding why some answers are correct and others are not is not essential 

at this stage. It is when students have to pass a revision sheet that teacher and 

students might be surprised by the performance of the latter. 

In Greece all tasks come from the school book and in Scotland mostly from the 

booklets. Students expressed clearly that they would like a change in that process, 

with more practical work and more everyday applications. Moreover, they would 

Eke teachers to be less strict, allow them to do some group work and let them 

speak amongst themselves during mathematics classes. The relationship between 

students and their mathematics teachers is a matter of concern. The teacher 

reprerents positional authority and in the best of cases sapiential authority as 

well. Most students do not see their teacher as a friend and this gradually leads 

to an avoidance of him/her. This situation may easily lead to cognitive as well 

as affective difficulties. As many students commented, consulting their teacher 

was not their first choice when they needed help. They would prefer to ask their 

parents about their homework, or ask a classmate 'who knows', instead of asking 

their teacher. The result are misunderstandings and, especially in Greece, this 

signals the phenomenon of parapaedia. In addition, students with well educated 

parents are likely to have better chances in schooling, since help is more readily 

available to them. Related to this issue may be the students' difficulty in seeing 

themselves as future mathematics teachers or even as teachers. 

Of all the different types of assessment used, the blackboard has the most 

pitfalls for the students' ego (used only in Greece). It is during this type of assess-

ment that students' performance is there to be judged by teacher and students. 

Even friends can be malicious at such times. Competitiveness, jealousy, etc, can 

produce unkind comments about a student's performance, abilities, even about 

his/her personality. The author observed similar attitudes from some teachers 

during the observation sessions. It seems then that this type of assessment has 

undesirable effects, mainly because of the way it is used in the classroom. In 

general, Greek students sounded more frustrated about their interactions with 

their teacher, while the Scottish were more frustrated about the teaching and 
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the tasks they were experiencing. This is possibly because the teaching style in 

Greece is more interactive between teachers and students, while the Scottish is 

individualised and more content oriented. 

The students in general did not like mathematics very much and a reason for 

that was its difficulty. Students who could cope well generally liked it. All of 

them anticipated its essential role in finding a job later in their lives. They could 

not find, though, everyday examples of its use other than involving money. Such 

a utilitarian approach is revealing of the bad view of the subject students are 

receiving in class. Some students even said that 'grocery' mathematics (money 

give-and-take) is not mathematics, as it is too easy. Despite all the unfavourable 

comments about mathematics and about the way it is taught, it was surprising to 

hear from the Greek students the demand for more mathematics sessions, more 

time to cope with their difficulties, more time to interact with their teacher in 

and outside the classroom. They also suggested the establishment of mathematics 

libraries within each school, where students could study their homework, find 

books to read and get help with their queries. These remarks came from students 

at Patras High School, where students might have learned about foreign schools 

from their well educated parents. 

The students' effort to please the author on the one side and not to expose their 

teacher on the other was evident. This was obvious at times from the contradictory 

responses to different but related questions. 



Chapter 6 

Discussion and Conclusions 

The main intention of the study was to investigate the effectiveness of practical 

work in lower secondary school mathematics learning. This called for the consider-

ation of students' performance on the developed materials and students' attitudes 

towards the suggested approach. The effectiveness of the practical activities was 

investigated in terms of the cognitive difficulty associated with the concepts that 

these introduce. 

Caution should be exercised in judging the extent to which the collected data 

allows for a direct comparison between Greece and Scotland. This refers both to 

the quantitative and the qualitative results of the study. The sample from Greece 

was much smaller. The time that students worked on the practical activities was 

not equal. It appears that Greek students had the chance to work on the activities 

for more time than the Scottish students. The conditions, though, in the Greek 

classrooms during the sessions using practical activities caused considerable de-

lays. Also the mathematics syllabuses and the students' educational experiences 

in the two countries do not correspond. The Greek students' experience of non-

traditional teaching methods is very limited. This fact allows us to suggest a 

greater influence of the Hawthorne effect on the students' attitudes and perfor-

mance. Other inadequacies may refer to the author, who played the roles of both 

the researcher and the evaluator. The language and the cultural barrier may also 

have restrained him from meeting the demands of the research that took place in 

96 
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Scotland. All these issues should be kept in mind, along with the methodological 

rationale of the study (see §4.4). These issues then, may not weaken the study's 

potential for investigating its main objectives. On the contrary, they emphasize 

the complexity of establishing a commonness of meaning in the learning milieu. 

The results of the study indicate a differentiation between the performance 

and the attitudes of the Greek and the Scottish students, in favour of the Greeks. 

Overall, students faced difficulties in multi-stepped worksheets. They failed to 

make use of information from earlier tasks on the worksheet or from past work-

sheets. Interference from secondary cognitive demands also considerably affected 

their performance. It seems then, that the practical activities played a part in 'ex-

posing' students' past misunderstandings. Their discomfort in tasks that required 

intuitive thinking and problem solving skills was evident. They also seemed to 

lack what Dewey (1963) called the "stop and think" quality. In other words, they 

did not pay much attention to the task's context, as this was described by the 

instructions. They were satisfied by reaching 'an' answer for the task at hand, 

without being interested in checking their answer and comparing it to their ear-

lier responses. Moreover, tasks with illustrations from Ancient Greek architecture 

failed to draw students attention to the aesthetic projections of the discussed con-

cepts, especially the Scottish. This was possibly due to an unfamiliarity with 

the archaeological sites in the illustrations and possibly with the relationship that 

mathematics has with the arts. 

Other students' difficulties were related to language and motor control skills. 

Inability to express their thoughts verbally characterised most of the students 

(especially in Scotland). Many students faced reading difficulties, especially in 

worksheets with extended instructions. This was accentuated by many students' 

preference (especially in Greece) for listening to the instructions from the teacher 

rather than trusting their own abilities. Also, most of the students in Scotland 

pronounced and spelled the names of shapes and concepts incorrectly. Shapes 

like the parallelogram, the trapezium, the isosceles triangle, the tetrahedron, are 

shapes (and names) that students do not come upon often in their school and 

everyday life. Possibly language worked to the advantage of the Greek students, 
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since most of these names have Greek origins. Everyday words and metaphors 

may be used by Scottish mathematics teachers (to a lesser extent in Greece), 

to compensate for this unfamiliarity. These expressions can vary among schools 

around the country. They may provide a "vivid and memorable" way of interpret-

ing and describing knowledge (Lopez-Real 1989, 1990). Their meanings, though, 

are not always exploited in the classroom (opcit). It is suggested then, that they 

may have proved to be a disadvantage for the Scottish students, since there are 

the dangers of over-simplification and confusion between the different meanings 

that these metaphors have in everyday life and in the mathematics classroom (see 

Fielker 1988). Irrespective of these reasons, the percentages of Scottish students 

especially but also of Greek students, who failed to name solids like the cube, the 

cuboid and the cylinder were worrying. These are familiar solids, that appear 

early in the primary school syllabuses in both countries. 

In tasks that required dexterous use of equipment, several students required 

adult help. Instead of the equipment helping them to overcome the cognitive 

demands of the tasks, the opposite occurred. Either the motor-skills demand 

was merely beyond them or they lacked the appropriate practice. The latter is 

supported by the haptic exploration strategies that students used in the 'feely 

box' activities, which in general were unsystematic. Motor skills difficulties may 

account for some students' poor drawing and sketching skills. 

There was also a differentiation in performance, in several tasks, between first 

and second grade students, in favour of the former. Enjoyment was closely related 

to the cognitive difficulty imposed by the tasks in the activities. There were stu-

dents who liked the activities because they were 'easy' and others who did not like 

them because they were 'too hard'. There were few who did not like the activities 

because they were not challenged by the tasks. No clear conclusion can, then, be 

drawn from the differentiation in the performance between the students of the two 

grades (see later discussion on students' strategies). In general all students rated 

their experience on the practical activities as better than the school mathemat- 

ics, even those students who did not enjoy working on them very much. In the 

interviews they specified that they liked the 'hands-on' aspect of the activities. 
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Another indication of students' preference for practical work can be seen from the 

higher enjoyment that they received from the 'feely box' activities, as compared 

to the 'same shape as' ones. Practical work is more clear and vivid in the 'feely 

box' activities, since all worksheets are accompanied with equipment which is also 

pleasing to the eye. The possibility of Hawthorne effects exists then, even for 

the Scottish students. There is an obvious danger of students being influenced 

by characteristics, irrelevant to the the nature of the method: being allowed to 

discuss with their classmates, working in groups, avoiding the usual work, inter-

acting with a new person (the researcher). These characteristics, important in 

activity-based learning, make it more difficult to judge the method's potential in 

learning mathematics. 

The underlying rationale of the Greek and the Scottish educational system 

appears to be challenged by reality, as revealed by the results of the study. In 

Greece many students turn to private tuition (parapaedia) to compensate for in-

adequacies of the educational system. Being able to afford a private tutor in 

mathematics or not contradicts the alleged equality of opportunities for all stu-

dents. The meritocratic rationale of the Scottish educational system seems to 

be challenged by the performance and attitudes of the students in lower ability 

classes. Furthermore, despite the differences in the educational systems of the two 

countries (mathematics syllabuses, functioning and organisation of mathematics 

classes), the differences in the students' performance were not significant (the ac-

tual success rates). In addition, the difficulties that the students faced during the 

practical activities were more similar than different. Bearing in mind the lim-

itations of the study (see opening discussion), this prompts the demand for an 

appreciation of how fundamentally different educational systems may lead to sim-

ilar performance outcomes. It raises the need for open-mindedness among those 

who work in the field of mathematics, irrespective of their role. By subjecting 

educational ideas and rationales to cross-cultural comparison and criticism, social 

and cultural generalisations may be discovered, which may in turn lead to more 

refined educational systems. 

Students adopted strategies, in an effort to look as if they were working on and 
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interested in the assigned tasks. Other strategies also indicated avoidance of work 

(eg delaying asking for the next worksheet). We can suggest that the first year 

students may be more likely to adopt strategies for pleasing the teacher with their 

performance and attitude. In order to come to terms with a new environment, the 

more appropriate strategy is a cooperative rather an opposing one. On the other 

hand, second year students appeared more challenging towards authority figures. 

This may explain, to some extent, differences in performance between first and 

second year students. Students' evident worries, as expressed to the author, about 

the confidentiality of their work and behaviour indicate differences in behaviour 

during educational experiences. The persons that are involved in these experiences 

and their behaviour. The organisation and nature of these educational experiences 

seem to interact with the people that are involved in these experiences and greatly 

affect their behaviour. 

The tasks that students are asked to work on in the mathematics classroom, 

are not perceived by the students to correspond to their personal experiences and 

interests. Despite these remarks they could not find everyday uses of mathematics 

other than in money transactions. Their beliefs about the nature of mathematics 

corresponded with the formal and analytic way in which the discipline is taught in 

high school. Also their aspirations about learning mathematics chiefly concerned 

its applications in possible future occupations. In most cases interactions with the 

teacher were limited to receiving instructions. Interactions with other students 

were also limited, almost non-existent in Greek classrooms. This may explain the 

observed difficulties in communicating their mathematical ideas verbally and also 

the unfamiliarity with functioning in a group. Understanding was hidden behind 

the effort of reaching an answer, preferably the correct one. The phenomenon of 

the wrong use of the answers-books was worrying. Many students (especially in 

Greece) said that they preferred to ask their parents, or a friend 'who knows', 

when facing difficulties with homework or other assignments. Teachers are seen 

as distant authority figures. Students said that they would prefer them to be less 

strict, more caring, allowing and encouraging discussion. They added that they 

would not like them to be very tolerant of bad behaviour and performance, since 
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this was also perceived as not caring enough for the students. All the pedagogical 

ideas that suggest the teacher should be a 'model' for the student in and out of the 

classroom (encouraging the formation of values and attitudes about the discipline, 

about learning and about life), seem to be overlooked by reducing the teachers' 

role to giving instructions. 

The above discussion does not apply to all the observed mathematics class-

rooms, since a few of them were functioning in a relaxed and caring atmosphere 

(see §4.1). For this reason, even classrooms within a country were not directly 

comparable. It was part of the intention of the study to investigate differentia-

tion in performance and attitudes between urban and rural high schools. Only 

in one first grade class in Greece (at Viachokerasias Gymnasium) was students' 

performance significantly lower than in the other schools. This low performance 

was paired with students' low motivation for learning (not only in mathematics 

classes). It was also found that in classes with authoritarian teachers students 

received the practical activities very warmly. Moreover, despite the fact that 

some classes were classified as lower ability, students' achievement and behaviour 

surprised their teachers in a positive way. 

Considering, then, the students' behaviour in the mathematics classrooms dur-

ing the study, we observe common characteristics which give evidence for what 

was described earlier as 'classroom culture' (see §4.2). These common charac-

teristics mirror the acquisition of values in the mathematics classroom about the 

nature of the discipline itself, about mathematics understanding, about work in 

the mathematics classroom, about the role of the teacher and about education in 

general. Schooling nowadays seems to be characterised by an 'industrial' ethic. 

Teaching used to be addressed as a 'vocation'. The compartmentalised structure 

of school, though, with a clear prescription of rules and regularities, based upon 

efficiency and effectiveness, has made the roles of teachers and students resemble 

those of contract-workers. If education is perceived merely as a job to be done, it 

is expected that 'workers' will try to bring this job to an end with the least pos-

sible effort. Learning then is likely to be an incidental outcome of schooling. The 

values acquired in the mathematics classrooms nowadays mark the widespread 
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subsumption of culture by civilisation. Civilisation, of course, is not a reprehen-

sible characteristic of human race. It is reprehensible, though, to limit students' 

aims to short-term aspirations, even if these have to do with everyday life pursuits. 

To transcend above the utilitarian, everyday life activities (not to reject them), 

does not necessarily mean to indulge in a theoretical pursuit of mathematics. This 

may form the means but not the end. Short term values appear to be strong but 

not unalterable or lacking the need for enrichment. This of course may require 

re-evaluation of beliefs about the aims and use of mathematical education. 

Should we stop thinking only in terms of 'producing' future mathematicians, 

or even in terms of teaching better mathematics to our students? Should our aim 

be to teach to students as much 'mathematics' as possible during their schooling 

career? It is deceitful to suggest that acquisition of skills and techniques is a 

preparation for the students' future life. Nor is sterile mathematical knowledge 

that confines the learner to the discipline of mathematics alone a preparation for 

future life, even if this knowledge is learned in a meaningful way. Would it be 

better to think in terms of teaching for 'better' people and cultivate the ability to 

make decisions in later life? This approach would also reflect an honesty about the 

nature and use of mathematics in the process of life. Learning, in general, should 

be an open-ended activity/experience and not dependent on instruction. The aim 

of mathematics education should be the 'end' of dependency on instruction. This 

corresponds to the meaning that Aristotle gave to the word 'end' of an action as 

the acquisition of an "agatho" (possession, quality), with all actions leading to the 

acquisition of the ultimate agatho, that of the "politiki techni" (the 'art' of forming 

social groups) as described in Plato's myth about Protagoras. It envisages an 

adult independent of pedagogic relations, being able to survive in and contribute 

to his/her culture, considering the existing societal and historical situation. It is 

wrong then to perceive education as schooling and the role of mathematics teachers 

as that of instructing the young about mathematics. Schooling should provide the 

students with opportunities that would bring a fusion to the Apollonian and the 

Dionysian modes of life. It should engage students in experiences that would 

'unravel' and cultivate their potential qualities and prepare them for 'political' 
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life. Teachers should be seen as models for life (they are anyway) and not only 

as authority figures or as bearers of knowledge. This would require freeing the 

teachers from contract-like demands and the development of curricula that would 

appreciate teachers' initiative and personal qualities. 

The following words by Nietzsche (1872 in Breazeale 1979: 16) sound so con-

temporary, summarising the above discussion: 

"The Greeks as discoverers, voyagers and colonizers. They knew 

how to learn: an immense power of appropriation. Our age should not 

think that it stands so much higher in terms of its knowledge drive - 

except that in the case of the Greeks everything was life! With us it 

remains knowledge!" 

Aiming for a mathematical knowledge drive, then, may alienate its owner from 

life, if this drive is limited to the mere acquisition of knowledge. 

It would be 'convenient' to suggest that activity-based learning can secure in-

tentional learning of mathematics and also serve the former objective. The results 

of this study suggest though, that practical activities deserve serious consideration 

in the field of mathematics learning. The extent to which they can promote learn-

ing is something that cannot be evaluated by a single study. To pretend so would 

be to abide by the short-term aims that characterise mathematics learning and 

education overall nowadays. Their potential in disclosing past misunderstandings 

(even about familiar concepts), is an indication of their value as a teaching aid. 

As fax as the formation of values is concerned, we have to accept that this process 

takes place in the classroom irrespective of the kind of values that are formed. It 

is an ethical issue then, that of determining what 'kind' of values these should be 

and what purposes they should serve for the learner and for the society. Possibly, 

it would be more 'honest' for the learners if they were aware both of the utilitar-

ian role of education and the imaginary one. Practical activities, by encouraging 

deliberate action, interpersonal communication and functioning in a group and 

activity-based learning can play a role in educating 'political' human beings. By 

demanding interaction with the teacher they can promote the formation of values. 
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Why then are practical activities not used in secondary school mathematics 

classes? What can be the reasons for this? Do teachers not value them as a way 

of learning mathematics, or is it simply that they are not convinced about their 

use as an efficient teaching aid? How can the process of value-formation in the 

classroom be described in detail? Is there a need to re-evaluate the role of the 

teacher? Is there a need to re-evaluate the role of mathematics education and 

that of education in general? Is it 'egotistic' to direct our effort to mathematics 

education only, or would it be more honest, if we think in terms of a metaphysical 

appreciation of schooling, to strive to cultivate the whole individual? What is the 

role that parents can play in this process? These are some questions that future 

research may try to address. 



Appendix A 

The 'Feely Box' Activities 

The worksheets of the 'feely box' activities follow , including worksheet 1.6. 
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FEELING SHAPES / PART A 	WORKSHEET 1.1 
	

YOUR NAME: 

YOUR SCHOOL: 

Place box A in the feely box. 

Put your hands in the feely box and pick one 
shape from the box. 

For each shape of box A, follow steps 3-5. 

Identify certain properties (sides, vertices), 

and name the shape that you are touching. 

Copy your answers on your worksheet and write 

down any further observations. 

S. Check your answers by looking at the shape 

afterwards. 

No. of No. of 
SIDES VERTICES NAME 	ORSPRUATTIiI.J 

FIRST SHAPE 

SECOND SHAPE 

THIRD SHAPE 

FOURTH SHAPE 

FIFTH SHAPE 

SIXTH SHAPE 

SEVENTH SHAPE 

USE THE BACK OF THE PAGE IF YOU NEED TO DRAW ANYTHING. 
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FEELING SHAPES / PART C 
	

WORKSHEET 1.3 	YOUR NAME: 

YOUR SCHOOL: 

Place box C in the feely box. 

Put your hands in the feely box and pick up 

one solid shape from the box. 

For each solid shape of box C, follow steps 3-4. 

Identify certain properties (faces, edges, 

vertices), and name the shape that you are 

touching. 

Copy your answers on your worksheet, and 

check them afterwards by looking at the 

solid shape. 

	

No. of 	No. of 	No. of 
FACES (F) VERTICES (V) EDSES (E) 	NAME 	(F)+(V1-(F%. 

1st SOLID 

2nd SOLID 

3rd SOLID 

4th SOLID 

5th SOLID 

6th SOLID 

What do you observe about the last column? 

(No. of faces) + (No. of vertices) - (No. of edges) = C:) 
USE THE BACK OF YOUR PAGE IF YOU NEED MORE SPACE. 
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FEELING SHAPES / PART D 	WORKSHEET 1.4 	YOUR NAME: 

YOUR SCHOOL: 

Place box C in the feely box. 

For each solid shape of box 0 follow steps 2-4. 

Put your hands in the feely box and pick up 
one solid shape. 

Identify the solid shape that you are 

touching from a range of solid shapes drawn 

on your worksheet. 

Check your answer by looking at the solid 

chap, afterwards. Tick the circle if you had 

it right, or cross it if you had it wrong. 

• 

.C .....  
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FEELING SHAPES / PART E 	WORKSHEET 1.5 
	

YOUR NAME: 

YOUR SCHOOL: 

Place sequence A in the feely box (a square, a 

triangle and a trapezium). Ignore the thickness 

of the material. 

Try to order them, by marking first on the 

worksheet the one with the smaller perimeter. 

Check your answers by looking (or measuring) at the 

the shapes. 

/ 	
SHAPE 1. 	SHAPE 2 	SHAPE 3 - 

SEQUENCEA 	 II 	II 	I 
Now use sequence $ (two squares and a 

parallelogram). Try to order them by marking first 

on your worksheet the one with the smallest area. 

Chech your answers by looking (or measuring) at the 

shapes. 

	

SHAPE 1 	SHAPE 2 	SHAPE 3 

SEQUENCEBII 	 H 	II 
Now put sequence C (two cuboids) in the feely box. 

Can you identify ay relation between the dimensions 

of the two solids? 

Copy your answer in any form you like (sketch, 

words, numbers), and check it by looking at the 

solids afterwards. 

USE THE BACK OF YOUR PACE IF YOU NEED MORE SPACE. 
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FEELING SHAPES / PART F 	WORKSHEET 1.6 	YOUR NAME: 

YOUR SCHOOL: 

Draw the following shapes on squared paper according to the 

instructions. Use whatever drawing instrument you need. 

squares side of 4 units 

rectangles side of 4 and 6 units 

rhombus: side of 4 units 

kite: sides of 3 and 5 units 

tarpezium: top side of 4 and bottom side of 7 units 

parallelogram: sides of 4 and 6 units 

pentagon: side of 3 units 

hexagons side of 3 units 

equilateral triangles side of 5 units 

circle, half-circle and quarter circle 3 radius of 3 units 

Are there any shapes that are hard to draw? Can you describe 

why? 	 - 	 - 

Now try to draw the same shapes on isometric paper following 

the same instructions. Are there any shapes that can be 

drawn more easily on the isometric paper? Are there any 

shapes that are hard to draw on both papers? (squared and 

isometric). 

1.?¼. 
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The 'Same Shape As' Activities 

The worksheets of the 'same shape as' rectangles activities follow. 

/ 

112 



113 

E 
E 
LEE  
EE 
FE 

TE 

EE 
riff 

E 

EE 
E 
E 

I 
R 
EE 
E 

FE 
E 

TAT 

Appendix B. The 'Same Shape As' Activities 

SAME SHAPED RECTANGLES 
	

EXAMPLE SHEET 

All rectangles are the ease kind of shape, but not all 

rectangles have the some shape. 
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SAME SHAPED RECTANGLES 	 WORKSHEET 5.1 	 EE 
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.i ULJ ILJ IL.i ILJ ILJ 11a it..i 11 •ii ii..a s&.a ii 	si 

i9ma 	 STRING TEST 	 WORKSHEET 5.4 

II 	 Your name $ 

—I 	 Your School i 

Decide on which of the rectangles in sat 1 have the 

sae shape. 

91 
 1 	 c::::D RECTN4BLES OF THE SAME SHAPE $ 

Fit a piece of paper in the bottom left corner of 

the box. 

Place the smallest rectangle of set I in 

the bottam left corner of the box (like in fig-1). 

Follow the sides of the rectangle with your pencil, 

to draw the sae rectangle on the paper. 

Repeat step 3 for each rectangle in sat 1. 

Draw on the paper the ease diagonal for all 

rectangles. What do you notice? 

5. Place the rectangles in ..t 2 as in step 3. Use a 

piece of string instead of drawing their diagonals. 

Which rectangles in sat 2 have the saws shape ? 

C= 
back cover for SET1 and SET2 re 

61 	 R 
iiii1ii .rAi 
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Lj  

1L ILJ 1L 

uI 	RATIO TEST WORKSHEET 5.5 

Your name $ 

Your School i 

E 

E 

E 

D.cide on which of the rectangles in ..t 3 

have the we shape. 

RECTANGLES OF THE BAlE SHAPE 

 

Find the length and the breadth for each rectangle 

in eat 3, to complete the following table. 

LENGTH 	BREADTH 
RECTANGLE A 

RECTANGLE B 

RECTANGLE C 

RECTANGLE D 

Divide the length by the breadth for each 

rectangle, to find the ratio of length to 
breadth. 

RATIO A 	lL o oIEI3) 
RATIO B 	1 
RATIO c F- 

 RATIO D [ 

What do you notice about the ratio, of the 

rectangle, in eat 3? 

C== 
E 

E 

51 

1i 

E  E 

E  E 

I -Er: 

HE 

E 

E 

11  

r 

lA. 



.1. i. €r 

J LJ §L=J It= 1=1 V 	 " It"—  I 

U11 	 EE: 
Si. 	Find the length and the breadth for each rectangle 

in set 4, to coeplete the following table. 

51 	 LENGTH BREADTH 	 IEEE 
— RECTANGLE A 

RECTANGLE B 

— 

11 
RECTANGLE C 

RECTANGLE 0 

— RECTANGLE E 
— 

Find the ratio of length over breadth for each 

rectangle in set 4, to co.pl.te the following 

table. 

9Q OTH+BADTH 

RATIO A 

- RATIO B 

RATIO C 

RATIO D E  
RATIO E _ 

_ Can you decide which rectangles in sot 4 have the 

J] 
 

same chap., just by comparing their ratios from 

— 
 

stop 6? 

EE 
— RECTANGLES OF THE SANE SHAPE i 

() B1  [ 

[ 

E 
E 

E15 E31 

EE 

I R5  
i 

E 
Iff: 
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ILJ ILJ ILJ ILJ ILJ ILJJLJ IL.I ILJ ILJ_jjjJ ii.a ML=4 i 	1L1 

— 	 A - RECTANGLES 	WORKSHEET 5.6 	YOUR NAME 

YOUR SCHOOL. 

Begin with two Shoat each of 43, 44, 45, and 46 paper. 

51 	I. Chuck that . 

1 

	

	a. 2 piecesof A4 laid aid, by aide is thesmas as one
pi.c. of 43 

b. 2 Pieces of 45 laid sidi by aide is the same ,  as one 
piece of 44 

c • 2 pieces of 46 laid side by side is the am.e as ow. 

place of 45 

2. How many piucus of AS are the same as one piece of 43?(J 

How many Pieces of 46 are the sa.s as one piece of A3?() 

J] 
 El  

- 	3. U.s the Ostring t.t". Do thus. shoots (43, 44, 45, & 
46), have the am.. shape? 

YES/NO 

4 • Now chuck your answer using the Oratlo taat • Measure 
-• 

 

the aides of the rectangles (in aillim.ttr.s for bettor 
accuracy). Work out the ratio of the length to the 

- breadth for each size. 

El 
jj 	 SIZE 	LBIIBTH 	BREADTH LENeTh._ADTh 

43 	49.0 	1.41 - 

45  

46  

MIWIllYpES 	MILLIM1T*3 

Are your ratios equal (or nearly equal)? 

EE 
EE 
EE 
EE 
E 
1; 

f. 

E 

E 

HE 

T.A.1 
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Us uiriuiiiiiri 

lE 
An A-shaped rectangle has breadth 141c. What is its 

length? 	 0 

MM 	4C LZNGTH=BMZADTH  

Identity any A-shaped rectangle on the Temple at Zeus in 

Olympia, Greece (the marked rectangle is a clue). 

L=jILJ 2L=A  I&L It=  I1i 1La Iia ILa §L=jJL.a 11i 11= 

5. An A-shaped rectangle will have the ratio 
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.i IL.I ILJ IL.I ILiILi 1LI 11$ 1LJ1L.1 lI_J 1J I1 $1.=J 	•J 	 II.1 IL. 

— 

Gou*,.i 	RATIO 	 WORKSHEET 5.8 	YOUR NAME E 
—  YOUR SCHOOL. - 

The pentagram (or pentatph.a, 5 A's in the 

Greek), was thought to be a magic chars 

A 	sAc 

E 
to ward off evil spirits 	The ratio of - 

the lengths of its parts is called the 

GOLDEN RATIO. 

LENGTH OF AD rE 
— LENGTH OF AC  1101111111 

E  E-:7 
LENBTHUFAC  

- 	 - LENGTH OF AD 

61 This special number was used in the design of sacred building.. 

jj 
Its exact value is (i+i)+2. 	Work out this value on your EE calculator, and write down your answer with two decimal places 

Here is a picture of the Parthenon in Athens .  

.bIIjfl ___ EIN 

un uu in. on • iii 	ii 1 

16  

Pleasure the length and the breadth of the marked rectangle, and 
work out their ratio. 

LENGTH - 

BREADTH  -8 

LZNCM +18 
I  8~~— 

rm+al  RATIO 	

r; 

— 

E 
	

Iq 

1A 
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OWN 	 B 

INVESTIGATION 	WORKSHEET 5.9 	YOUR PIEs  

	

- 	 YOUR SCHOOL. i 

91 

	

MEN 	
We wish to find a r.ctangle which have the special property 

that when wuw add an a square we do not change its shape! 
MEN 

	

WME 	
19 91 

MEN 
S 	+ 	=f6=34PRs 	

•• 	• 

JJ _______ 	I 	 th. some ohs" 

MEN 

	

an 	TRvm OUT (sEE P€XT SHEET): 	 [I 
Slide the rectangular piece of cardboard under the square 

j5 
 

one, in the direction that the arrows indicate (use the lid 

fro. the string test). New 

	

MIM- 	a) Stop when the side of the square has reached the line CO 

	

Bi 	drawn an the rectangle (sue fig.i). For CDFE to be the 

	

MON- 	wanted rectangle, it should have the seae shape as ABEF 

rectangle. You can chuck that using the string tests 
MOM 

	

J] 	I • Find a rectangle from group A that has exactly the  

	

19 	
some shape and size as CEFE. 

2. Fit this rectangle at the bottom left corner of 

rectangle AEF. 

	

. 	 Now use the string test. 

I. then COFE the wanted rectangle? 

	

- 	b) Slide the square until Its side has reached the line 514 drawn 

J1 on the rectangle (see fig.2).  

Is than BIFE the wanted rectangle? 

n1 iEIIr 1A.T 



SOLUTION : 	 r[ 
Keep on trying for other positions of the square. When you 	I IC  
have found the wanted rectangle, measure its length and 

breadth and work out their ratio C 

RATIO 	LENGTH + BREADTH CD +O - CDcP4  

[ 
What is the name of that ratio? 

rE 
How would you name than the rectangle that we were looking 

for? C= 	Lc 
Now find out about foolscap" paper!  

rm 
IC 

Ec 

Ec 

IC 
EG 

EC 

rG 



BI 

i!iii 

Appendix B. The 'Same Shape As' Activities 	 124 

B 	 C 	 El 

El 

jo 
Ei 

fi9.1 



- - - 

- 

— VA•U • 
::EV1 9UUUI1U 

• _•.Iu 	I._._•!_. 

OR 	.1 

Iflfl 	 ann - — n nmflflflt SflSWWW U 0 UflU flU - p 

fl• _ ..UfiNIUUUUUuUuIuUUUW1 	UU..U.I*•I1 .flU.uUUa•UIuaa•Is•uUEIIduIflU 

••• 

I
..0 II I.I.UU.UU..UU..UU.USSflUPflflUUIUI aUuCUIUUUIU•aUUUUUSIUUUUIUUIUU 

••U 
••UI 
i...0 IUU UUU(UUSI.I••UUSUU IIU 	...••.•I 
.... , I:.U..U.UUIU..III.J..U...U.IUUIU1UIIUU UUi.,..U.SmUU.I...I.1•,1UUUU1111 
•••U lu C.IIU.dUU........JI I Ufl IUfl 	,g.......aauaU...1..Uuu••UN••

am •• •111•1y••1 •U•IBUUPd 1Ifl.UUI•U•UIUUUUSIU U...IU..fl....U..IUUUIUIUUIUflS 

and  ...fi..Uflfl......flu..J..u.Iu......a..1U.U11IaI ..al.U.....I...aiUUaJ..u.flU..flI• 
u.s. .515... U.uU5UUUI 	

.....fl..u.fl.u..s..asI .....u...uU..U.I..UIUU.UUUUUUm5U 

i.... I_I.l!U.....flUfl•USUUIUUUI•UU••uuu•uufiUUA•I1SSJI I.... UIuIuIIUIZ•IUIISUI••5U1• 

•.... .......fl 	 ••UUII••U 
u_Ui IU_S2tIiSSfl••i 	......iUU 	.. ....I.. 
...• u,...u.I......uu..I...a.a.IU 	 uUis 

I.... 	
..i.Iuu•uuUuUIUuuIU•UIC11U5&UU 

us_i IUi•UUdUUiUIUUUIUU•UIIU__UI_iIUSIUUiIiUIIUU .u.u.uu...u..u..uu.u.uuu..Iui•1• 
•uUI I•iUCiIuiUUIiUIU• 	

U IIUUIUUU•2 ....UUU.i.I.UuU..UU.1iN1ir 

•UU• ...U.U.....U..i.UURU IISi 	U ••UISU 

us.
u..•. .uu.aIUiu•UUUUuUUiUUUI•U 	 •UU 	SUUUI 

 ...t i.UuuIU5uUUUUIUUU 	5fiIUUI• 	.iU.UUfli UiSaUii•IiUU•5UUUUUUiUUUUU•U• 

IUUuI uuuu.....u.....lUu..U.li.U.UUuUU.uiUuUUiesUiU•U•U 
uu.I ..u.u.i1u1iUUU 1 ••Ufl ..fl.iUUU5UUUUUUUiuuIUUU1UUhiUU 

1 55 a ...u.U.IUflUUu•UiUUftii 	..S.IU•IUU•• .u....u.uU.UUUUaUuIuUUIIUUUhiiU 

UuSI 	
iu•iIIUU5I•UUUUU••••. 

.4•.ua .....UusUUUUuUU••• 	
ii. I.u.UU.Ui. .UUUUU.i .......i.U.UUUUUU•iUUIiUl15U1iUU 

I.... ,....aa.......uUi..uiIU_.U1UUi1U5Ui5u1
1tfl i.Ii.UIUU_U•UUUUU•U19UUiuihu1fhU 

•-
n---------  fl5UUUUUIUUUII3i1UU .U.UI5IUUU• ..U..........UUU5UiUUI?rUUWUI 

J.a ...ua..ai•ruuuuuuuUuUUuiUUflUi 	
UUJUSUUI•I .I.UU.U•flS55UiUiUiIUUPUU5fi 

5 uU•UUUUUUUUUiUI• 	.UaUiUWWUU ga...fl.._Uu...r.w piiitUUUiU 

Un

U i•UUUIi.W•UU 	 flu 	II UUUU ..WS...U.U...1....U..IUUUSICUUU 
• .....uU._.ua.uuM.sa_sufl.a3l5uU•U1u1iWfl1155I U..i5U5UU.3i5UJUI$IUUUUUUi 
U •uflaflu_Uu_U_U 	SU1UIUUSU 	..WUUUUU i.,SUi.55Ufl•UUUUUIIUiUWfl  .__...._.._......u.0 auu5UuU5UuUUIu•UaflU UiU 

- 	 - 	 nfleflflas•  =NNE  a 
 lfluU

• 	 ffn~ MR 
mums on" 

W112ummoom 

oggenwi .aa ______ n __ 
- - 
	 - . 

IN 

	
U 	 HHomens 

 
i5i .. •flfl

i$aEflUflU5UUU..UUUU••••• 	.W...UU...W....U.U.U.•UU••W 

 .u.a.a.flfluus•awuIup1UflU 	•UflUUIUI UP5flUUU•UaU•UU•UUIUUUNuIIUU 
V UU••UUUUaU5•I•U•IUIuUUI•5Ufl 

1. 

 
;, 4101 

 taSasa 	 aS UU -  



Appendix C 

The 'Drawing and Geometric 

Constructions' Activities 

The worksheets that comprise the 'drawing and geometric constructions' activities 
follow. See also back cover for the 'Measuring and Drawing Library' booklet. 

126 
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B J GC OX(TRIL  (  

All you have,  to do to b.ca.. a "geometric constructor", 

is to be able to draw geometric shap.s using only a 

straight.dge and a pair of compasses. 

That is. 

In sose,  construction, though we shall allow sos 

cheating, by using a ruler instead of a straightedge! 

/ 
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To CONSTRUCT A PERPENDICULAR TO A CERTAIN POINT OF A LINE 

Having the line drawn beside, I want to 

construct the perpendicular to that line 	 A 
at the point A.. 

I adjust the compass., to any radius, 

not a very long one, and I draw a circle 

with centre A. 

I mark with B and C the points where 
	 A 

the circle meets the line. 

I adjust the compasses to any radius, 

longer than before, and I draw two 

circles with centres B and C. 

I mark with D the point where the,e 

circles meet, and I draw a line to 

connect D with A. 

Then AD is perpendicular to the initial line 

(check with your protractor or a set square). 

NOW IT IS YOUR TLNa construct a perpendicular to the line 

drawn blow at the point A, following the previous steps, 

labelling the points B, C, and D used in your construction. 

A 

CHECK YOUR CONSTRUCTION USING A SET SQUARE OR A PROTRACTOR' 

1'.A.l: 
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To CONSTRUCT A PERPENDICULAR TO A LINE FROM AN OUTSIDE POINT 

Having the line drawn beside, i 	 A 

want to construct the perpendicular 

to that line that passes from A. 

With centre A I draw a circle to 

take C and B (any radius will do 	 A,  

as long as the circle meets the 

line at two points). 

Keeping the came radius I draw two 

circles with centres B and C. 

I mark D the point where they meet. 

I connect A with D with a line. 

'I 
Then AD is perpendicular to the initial line 	P 

(check with a protractor or a set square). 

NOW IT IS YOUR TLN, construct a perpendicular to the line 

draw below that passes from A, labelling the points S. C, D, 

and E used in your construction. 

DECK YOUR CONSTRUCTION US INS A SET SQUARE OR A PROTRACTOR' 
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To BISECT A L 

Given a line AD, 

I adjust the compass.s to a radius 

longer than half the of AD. 

With centres A and B I draw two 

circles and I mark C and D the points 

that thus. meet. 

I draw a line to connect C with D, 

and I mark II the point where this line 

meets line AD. 

Than the lengths of AM and BM are equal 

(chuck with your ruler). 

Line CD is called the bisector of AD. 

C. 

NOW IT IS YOUR TURNs bisect line AD labelling the points C, 

D. and II used in your construction. 

A 

CHECK YOUR CONSTRUCTION WITH A RULER 

3 

T.AOr. 



A 

/ 
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To TRANSLATE AN ANGLE 

I want to translate the <BCA shown. ' 

I draw a line and I mark a point 

D on it. D will be the vertex of 

the new angle. 

With centres A and D I draw two 

circles of the same,  radius (any 

length will do). 

I mark the points B, C, and E. 

I adjust the compasses to the 

distance between B and C. With 

that as a radius and centre E I 

draw a circle. 

I mark F the point where circles 

meet. I draw a line to connect 

0 and F. 

Than <EDF and <SAC are equal (check it with your protractor). 

NOW IT IS YOUR TURNZ translate the angle given below, 

labelling the points B, C, E, and F used in your 

construction. 

A 

0 

CHECK YOUR CONSTRUCT ION USING A PROTRACTOR' 

Al 

T.A.T. 
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To CONSTRUCT AN EQUILATERAL TRIANGLE 

 

C 

I draw a line AS which will be 

one side of the triangle. Then 

I adjust the compasses to a radius 

equal to the length of AD. 

With centres A and B I draw two 

circles with the,  previous radius. 

I mark C one point where the circles 

..et, and I draw lines to connect 

C with A and B. 

Then ABC is an equilateral triangle 

(check the sides with your ruler and 

the angles with your protractor). 

NOW IT IS YOUR TURNz construct an equilateral triangle for 

the given line AD. 

A 

CHECK YOUR CONSTRUCTION WITH YOUR RULER AND PROTRACTOR' 

5 

T.A.T. 
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To CONSTRUCT AN ISOSCELES TRIANGLE 

I draw a line AS which will be the 

base of the triangle. I adjust 

the compasses to a radius longer 

than the length of AB. 

With centres A and B I draw two 

circles with the previous radius. 

I mark C one point where the circles 

meet, and I draw lines to connect 

it with A and B. 

 

A 	 B 

Than ABC is an isosceles triangle 

(check with a ruler and a protractor). 

NOW IT IS YOUR TURN, construct an isosceles triangle for the 

given base 45. 

A 

CHECK YOUR CONSTRUCTION WITH A RULER AND PROTRACTOR 

6 

T.A.T.  
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To CONSTRUCT A RIGHT-ANGLED TRIANGLE 

1. 	I draw any line and I mark a point 

A on it. 

2. I adjust the compass.s to any 

radius, not very long, and I draw 

a circle with centre A. 

3. I mark with B and D the points 

where the circle meets the line. 

4. I adjust the compass., to any 

radius, longer than before, and 

I draw two circles with centres 

B and D. 

5. I mark with C one point where the 

circles meet, and I draw lines 

to connect it with A and B. 

I- 

Than ABC is a right-angled triangle (check with your 

protractor and a met square). 

NOW IT IS YOUR TURNI construct a right-angled triangle 

labelling the points B, D and C used in your construction. 

A 

DECK YOUR CONSTRUCTION WITH A PROTRACTOR NW A SET SQUARE!  

T.A.T. 
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To CONSTRUCT A SCALENE TRIANGLE 
(with sides 6,4, & 3cc) 

I use the ruler to draw a line 

6cm long. l name its ends A&B. 

With the help of a ruler, I 

adjust the compasses to a radius 

of 4cm, and I draw a circle 

with centre A. 

I adjust the compass.s to a 

radius of 3cm, and I draw a 

circle with centre B. 

I mark with a C one pint where 

the circles meet, and I draw 

lines to connect it with A & B. 
/ 

Then ABC is a scalene triangle of sides 6, 4, and 3cm 

(check the sides using your ruler). 

NOW IT IS YOUR TU1u construct a scalene triangle of sides 

8, 6, and 3cm. 

Fo 

135 

CHECK YOUR CONSTRUCTION UBINS A RULER' 

T.A.T. 



A 

B 

Appendix C. The 'Drawing and Geometric Constructions' Activities 	136 

To CONSTRUCT A REGULAR IXAGON 

I draw a circle of any radius and 

I mark a point A on it. 

Leaving the compasses adjusted to 

the radium of the circle and 

starting from A s  I mark point. 

B, C, 0, E, and F. 

I connect A with B, B with C,..., 

and F with A. 

Than AECDEF is a regular hexagon 

(check the mides and the angle.). 

Compare the diagonal. AC and AD to the mide of the hexagon. 

LENGTH A8l.C)C)VI LENGTH AC- 
(.:)cm 

LENGTH ADi.)CW 

NOW IT IS YOUR Tt4i construct a regular hexagon AUCDEF with 

a mide of your choice. 

LENGTH AB_()(..v. LENGTH ACE()Cvft LENGTH 

DECK YOUR CONSTRUCTION USING A RULER AND PROTRACTOR! 

ci 

T.A.T. 
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To CONSTRUCT Two PARALLEL Lirits 

I want to construct a line parallel 

to the line drawn beside. 

I mark two points on the line, 

A and B. 

I construct a perpendicular 

to the point A of the line. 

I construct a perpendicular 

to the point B of the line, 

using exactly the same radii 

as for the point A. 

I draw a line passing through 

C and D. 

Then the the line that pass., through C 

and 0 is parallel to that passing tram 

A and B (check with a set square and 

a ruler). 

A )  

NOW IT 18 YOUR TURN, construct a parallel line to the line 

drawn below labelling the points A, B, C, and D used in your 

construction. 

CHECK YOUR CONSTRUCT I ON USI NB BET SQUARE AND RULER' 

10 

7.AT. 
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To FM THE CENTRE OF A CIRCLE 

I want to find the centre of the 

circle drawn beside. 

L. 	I draw any line that ee.te the 

circle in two point., A and B. 	 / 

I bisect the line AB. 	 / 

I mark C and D the points 

where the bisector of AD meets 

the circle. 

I bisect the line CD. 

I mark E the point where the 

two bisectors, of AD and CD, meet. 

Then E is the centre of the circle 

(check with your compasses and ruler). 

NOW IT IS YOUR TURNs find the centre of the following circle 

labelling the point. A, B, C, D. and E used in your construction. 

CHECK YOUR CONSTRUCTION USING A RULER AND COMPASSES' 

11 

T.A.Y. 
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THALES OF MILETUS 

Thales was a great Greek mathematician that lived between 624 

and 547 S.C. He was renown for his interest in Astronomy. 

They say that once he fell into a well while star gazing!! 

He was so eager to know what goes on in the heavens that he 

could not see what was straight in front of his very feet. 

eD JF 

Draw the lines on the sketch between E (eye)  and S(star), 

between E (eye)  and W (well), and between F (foot) and N 

(well). 

Measure the lines ES, EN, and FW carefully, and mark their 

lengths on the the following lines appropriately. 

ES 4J  cm 	EN .:c. 	FU MCDCA 

CHECKS 	if your measurements are accurate, then you should 

have i 

(LENGTH ES) - (LENGTH EN) + (LENGTH FW) 

139 

LM- 
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THE BERMUDA TRIANGLE 

The "Bermuda Triangle" is an infamous 

location in the Atlantic Ocean, west 

of the U.S.A. 

Many tragic accidents have happened 

there, all unexplained. 

To draw the "Bermuda Triangle" follow 

the next steps: 

Draw a line AS 10cm long. 

Knowing that the angle at B 

is 70, draw a line BC 14cm long. 

Draw AC. 

If your drawing is accurate, AC should be 14.2cm long. 

IJ; 
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BILLIARDS 

Billiard, is a game similar to 

snooker. Two white ball, and 

a red one are on the table. 

In order to score a point, a 

player has to sake his ball 

hit the two other ball.. 

On the table shown, the player 

aims to hit ball B first, hoping 

to hit E eventually. 

Using a ruler and protractor 

copy the pith of the ball A. 

- - 	- 

4 

/ 
/ 

/ 
/ 

/ 

14 
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TREASURE 	HUNT 

You are on a treasure-hunt trip. A 

is the point where the boat left you. ,ee4Ths ,aL1 
The "hunting" starts from point B Ih'eeuo' lefl&wàII 

beside the palm tree. JI4walgi 
/Thenbar 6V right a'4 

Follow the directions written on the i 	lioo siçs. lavv * 
papyrus to reach the treasure. /' áflh'b1K 

I lko 4ps. Tsv1 439Wt I 
I 	a w.aI1 iic 	I 

Note that Ice represents 100 steps ! Ti I5 	LtØ M&t.thC I 

f 	et,fèL.J 

been used only in Greece - 
wrong instructions 

A 

142 

'5 y'.. 

T A 1' 
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5-G0N AND 6-G0N MAGIC 

By drawing all the diagonals from each vertex of the 

following pentagon, you should be able to create a second 

Pentagon within the first one. 

Repeat the process to create a third pentagon within the 

second. Repeat the proc. 

/ 

Follow the ease process for the hexagon below, 

96 

T.A.Tb 
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PENTAGRAM 

The pentagram, or star-pentagon, 

was used as a symbol of recoqnitiou 

between the members of the school 

of Phythagoras in Ancient Greece. 

Notice how the sides of the three 

triangles interweave to give the 

pentagra. symbol. 

Usm the space below to draw a 

pentagram of your own. 

IT 

tAT. 
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THE VERNIER RULER 

The Vernier ruler is one that can help us measure more easily 

and with better accuracy the length of various lines. 

Its scale is different than that of the ordinary rulers. Ten 

units on the Vernier scale represent a length of 9 units on 

the ordinary scale. 

ORDINARY SCALE. , 	i 	i 	. 	-U 	 • 	I 
o 	i 	2 	3 	4 	5 	6 	 a 	q 	10 

VERNIER 8C..E z F. 	 , 	. 	. 	. 	, 	. 
o 	.4 	nL 	3 	4 	5 	64 	26 	' 	10 

A Vernier ruler is used together with an ordinary ruler to 

find the length of a line. 	For the following line for 

instances 

I place the ordinary ruler at 

40  3 .- the one side of the line. 	The 

length of the line is a little 

' more than 7cm. 

I place the Vernier ruler at 
8 

the other side of the line, so 

VLANIILA P.04AIL 	
that the zero (0) mark is 

exactly beside the and of the 
6 

line. 

s I look along the Vernier 

ruler, and I stop where the 
4 

mark on the Vernier scale is 

3 exactly beside a mark on the 

ordinary scale. 	Here it is 3. 
I Than the length of the line is 

0001"MLY Pinto 1 
7.3cm (check with an ordinary 

ruler). 
0 ul 

NOW IT IS YOUR TURNs use an ordinary ruler and a Vernier 

ruler, as before, to find the length of the lines on the 

separate sheet. 

to 

T.A.T. 





C 

I 
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NAUTILUS SHELL 

Often we find a strong relationship 

between beauty and mathematics. That 

applies not only to artistic creations 

but to natural beauty as well. 

An example of the relationship between 

mathematics and natures beauty is the 

shell of the chambered nautilus, a 

creature that leaves in the B. Pacific. 

The shape of the nautilus shell is a 

spiral. We can draw a spiral like the 

nautilus shell as follows. 	 F 

1 start with a certain rectangle 

ADM, and I mark off a square ABEF. 

With centre F and radius AF I draw a 

circle. 	
0 

From rectangle ECDF I mark off a 	A 

square ECBH. 

With centre H and radius HE I 

draw a circle. 

From rectangle BIFD I mark off 

a square DBLI. 

With centre I and radius 18 I 

draw a circle. 

B 

E 

I continue with rectangle IJFH in the 
	 / 

same manner. 

1% 	 N _- 

NOW IT IS YOUR TURN, start with rectangle ABCD (on a 

separate sheet) and draw a spiral, labelling the points E, F, B, 

H, I, and J used in your drawing. 

EIi 

T.A.T. 
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I/ BALANCING 	POLYGONS 	YOUR NAME: 

YOUR SCHOOL: 

In this activity you are going to - 	find the point on a plane figure 
about which it  will balance. 

(see figure beside) 64 ((I• 

Start with the square, below. 	Draw the diagonals and mark 

the point where they meet. 	This point is called the 

ceritroid of the square. fip 
AM A 

do 
64

Place the acetate square carefully on top of the drawn one, 

so that it matches exactly. Suspend the square by passing a 

fig thread through the hole on the acetate that corresponds to 

the centroid • Now suspend the square using the other 

two holes in turn. Describe with a sketch what happened. 

THREAD THROUGH CENTROID 	 THREAD THROUGH OTHER HOLES 

fig 	 69 
fig 	 ig 
fig 	 fig 
69 	 ap 
AP 
A9 

ii1 



Iki 
It$IL 

A In the same way you can balance a hexagon Draw the 	 au 1V 	diagonals to connect opposite vertices only, to find the 

Centroid of the following hexagon. Check that it balances 	69 
;. 	with the acetate hexagon 

69 
fig 	

/___\\ 

fig / 	 \ 
reguLav-

*- hexo, 

fig 	/ ig 
fig 	N /Ag 

09 69 	1/ 

 

Ag ig 
fig ig 
ig fig 
ig ig 
Ag 69 
fig fig 
69 ig 
Ag ig 
Ag fig 
fig 69 
69 fig 
69 69 
69 09 
Ag 3 
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64 
The situation becomes a bit more tricky when it comes in 

balancing a triangle or a regular pentagon. 

For the first triangle below draw carefully the lines that 

A 	connect each vertex with the mid-point of the opposite side. 

These lines are called medians. If you have drawn them 	 69 
A 	carefully you will have found that the medians have met in a 

single point. This point is called the centroid of the 	ig 
triangle. Now check that it balances with the acetate 	 69 triangle. Try it again with the second triangle. 	

69 xe A 

\ 	 I 

Now find in the same way the c.ntroid of the following 

regular pentagon, and then try to balance the acetate one. 

VVNN  

NN  
7 

Another name for the centroid is "centre of gravity, since 

we use this point to balance shapes. 

CX 

nI1I 



ff 	 aq 
ANOTHER WAY OF BALANCING POLYGONS 

M 	 ag 
There is a more general way of finding the 

centre of gravity. Start with a pentagon A, 

that has two holes marked close to its 

vertices and four marked inside. (( 

QIJ~01' Mang the pentagon from one of the holes  
close to its vertices, using the thread with 

- 
the paper clip tied at its one and (to Keep 

it straight). Mark the hole(s) inside the 

pentagon which the thread passed across. 

Hung the pentagon from a different hole 

close to the pentagon' s sides, and mark the 

hole(s) inside the pentagon from which the 

thread passed across. 

There is one hole from which the thread 

passed across both times. 	This Is the centroid. 

Check it by balancing as before. 

This process will work for other shapes as well. 

the shapes B and C (a hexagon and an heptagon). 

Try it with 

Did you manage to balance the hexagon with the first 

Did you manage to balance the heptagon with the 

turn? 

first turn? 

ETiI2 
>>> 	Discuss with your friends why this whanginga  process <<< 

>)> 	works 	Write your ideas below .  
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fig 
-2/TRIANGLE'S 	MEETING 	POINTS 	YOLJRP4APIE: 

fi; 	 YOUR SCHOOL: 69 
Every triangle has a special group of "meeting points. 	In 69 
the "balancing polygons" activity we found one such "meeting 

point", the centroid. 	Here are some more: Ag 
ig A/ For the following triangle use a set square to draw through 

each vertex the line that is perpendicular to the opposite 

A 	aid.. 	The., lines are called the altitudes of the triangle. 

The point where the altitude meets the opposite aid, is 

called the 	foot of the altitude. 

foot

e Ii 
If your drawing is accurate, the three altitudes will meet 
in one point. 	This point is celled the orthocentre of the 

triangle. 

Try it again with another triangle. 

\ 
Ii! 

Lci 

mv 



>>> Discuss where in the orthocentre for a 

<<< 	
aq 

fig 

>>> Discus, where is the orthocentre for an <<< 

>>> equilatera triangle. 	 <<< 	 fig 

fig 
fig 

>>> Discuss where is the orthocentre when the 	<<< 	 fig 
>>> triangle has an obtuse angle. 

right-angled triangle. 

- 

. 	rri 	r ri 	i 	 £ 
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OB/ For the following triangle draw the bisector of each angle. 

TThat jg the line that divides the angle into two smaller, 

equal angles. 

Use your protractor and a ruler to draw the angle bisectors. 

If your drawing is accurate, the three angle bisectors will 

meet in one point called the incentre of the triangle. 	It 

has a special 	 With the incuntre property. 	 as centre we can 

draw a circle that touches each side of the triangle at one 

point. 	We call that circle the inscribed circle of the 

triangle. 	Try it with the previous triangle. 

For the triangle below find the incentre and then draw the 

inscribed circle. 



ig c/ For the following triangle use a set square to draw the 	
Ag 

perpendicular bisector to each side. That is the 

perpendicular that starts from the oid-point of the side. 

rølkil 
tI ., 

 lot 

/

,---.—--' 

4he 

bec#ar4o 

of 

If your drawing is accurate, all three perpendicular 

bisectors will meet in one point called the circuecentre of 

the triangle. 	With this point as centre we can draw a circle 

that passes through the vertices of the triangle. 	W. call 

that circle the circumscribed circle. 	Try it with the 

previous triangle. 

then draw For the triangle below find the circuacentre and 

the circumscribed circle. 

fli! 

A IRA IRA HA HAIRAR4 HARARABARAIJARA RAMA HA HA BAR 
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ff 69 >>> 	Discuss where is the centroid, the orthocentre, 	<<< 
the incentre, and the circumcentre of an 	 <<< 69 
equilateral triangle. 

LJ 

fig 
fig 

fig 
fi;>>> 	 the 	 <<< fig Discuss where is the centroid, 	orthoc.ntr., 

the incuntre, and the circu.centre of an 	 <<< fig 
isosceles triangle. 	 <CC 

fig 

[III 
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MY TRIANGLE'S MEETING POINTS 	YOUR NAME: 

YOUR SCHOOL.: 

For the following triangle find the orthocentre, the centroid ' 
fig 

and the circumcentre. 	Mark them with A, B, and C. V 

/ 

If your drawing is accurate, all three points A, B, and C 

will lie on a straight line. 

This line is called the Eul.rs line, because Euler, a great 

mathematician of the 10th century, was the first to prove 

that these three points lie on a straight line. 

nil!,  
Now try again with the triangle at the back of the page. 

I'r 

.4. 

4. 

IIIL,] I 



A 
/\ 
/ \ 

\ 
\ 	 fig 
\ 
\ 	 ig 
\ 	fig 
\ 	ig 
\ 	ig 
\ 
\ 

ig 
fig 
ig 
ig 
fig 
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4/ 	PAPPUSS LINE 	 YOUR NAME:  

YOUR SCHOOL: 

- lived 23 centuries ago. A famous piece 

of his work is the Pappus line. 	 19 
Begin with two parallel lines, drawn 

with the help of a set square and a ruler. J  
Mark three points A, B, C; D, E, F on each 

line, and draw the lines AE, AF, SD, SF, 	 F 

and CE. CD, a 	

The lines, AE and SD meet at 8 

AF and CD meet at H 

SF and CE most at I 

For accurate drawing, points 8, H, and I 

lie on a straight line, the Pappus line 

(check with your ruler) 	 A-C9 
NOW IT 18 YOUR TURN, draw two parallel lines using a ruler 	19 
and a set square, and follow the previous steps labelling the 

points A, B, C, D, E, F, 9, H, and I on your drawing. 	 19 

ARE POINTS 8, H, AND I ALL ON THE SANE LINE? CHECK WITH A RULER. 

I 
j 

Pappus was a great Greek geometer who 
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ig 	5/ PASCALS LINE 	 YOUR NAME: 	fig 
ll • 	 YOUR SCHOOL: 	

64 
.. L 
	

Draw any circle, and mark 6 points' A 
V 

69 
on it A, B, C, D, E, and F. 

Draw the following lines: 
.c 

AE, ES, SD, DF, FC, and CA. 

The lines: AE and FD meet at 6 

F 

FC and BE meet at H 

SD and AC meet at I A 

For accurate drawing the points 3, 
F 

lg.Z 

a H, and I all lie on the same line 

(check with your ruler). fig 
109 That line is the Pascals line, one 

of the most famous in mathematics. 
E fig 

A 9 09 
69

NOW IT IS YOUR TURN: 	draw a circle 

steps labelling the points A, B, C, 
and follow the previous 

D, E, F, 	3, H, and I on 69 
69 your drawing. 

ARE POINTS 0, H, AND I ALL ON THE SAME LINE? 
CHECK WITH YOUR RULER .  

CX 
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YOUR NAME: 
6/ 	QUADRILATERAL 	MAGIC 

YOUR SCHOOL: 

Start with any quadrilateral ABCD. 

Mark the mid points of its sides 

I 	 them with lines as in and 	connect 

the figure.  B 

Mark the mid points of the sides 

V of the new quadrilateral and 

connect the. as in the figure. 

A Notice 

Keep on repeating the same work. 

that after some steps the 

V  quadrilateral looks more and more 

 

like a square. 

fig and 
fig Actually after many steps you will 

UP with a square!' 

fig NOW IT IS YOUR TURNI 	start from a quadrilateral ABCD, and 

fig by repeating the previous process try to reach to a square. 

n A 92 
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7/ BEAM TRIANGLES 	YOUR NAME: 	 09 
69 	 69 

YOUR SCHOOL: 

69  Draw three lines starting from the 0 
same point 0, that look like a beam 1 -  Ag 
of light. 

V Draw then a triangle ABC with its 

vertices lying on each of the beam 	 Akz\ 
lines . 

fig Then for any triangle DEF, having its 	 / 
vertices lying on each of the beam 	 / AP lines, find the points: 	 / 

Aq 
0 69 

I: the point where sides AS and DE meet 

if I extend them. 

Is the point where sides AC and DF meet 

if I extend them. 	
A 

K: the point where sides BC and EF meet 

if I extend them. 

For accurate drawing points I, J, and K 

V 	lie on the 	line, 	Desargues same 	as 	 showed 

in the 17th century. 

(check with your ruler) 

fig 
NOW IT IS YOUR TURN, 	follow the previous process for the 

V 	beam lines drawn below, labelling the points A, B, C, D, E, fig 
F, I, 	3, and K on your drawing. - 	Q 	 - 

AD 
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8/DRAWING A HEART 	 YOUR NAME: 	 64 
YOUR SCHOOL: 

ulu 
INSTRUCTIONS: 

1. 	Start with a circle of radius 

about 3cm, and take a point 	 (' T 

 Take another point A on the 

circle and with centre A and 

radius AC draw a circle. 

 Take another point B on your 	0 	
fiq2. 

J 	circle (the shaded one), 

and draw a circle with centre B 

and radius BC. 

cis .3 
 Repeat for many points all 

By 

around your initial circle. 

drawing carefully all the circles 

you will and up with a drawing like 

figure gure 3  

To draw a heart then, all you have to 

is 

like 

to enclose the drawing with a line 

in figure 4. 

Use the back of the page to draw a heart. 

The initial circleis drawn for you. 

I" 

ut 
A. 

Ii) 



fig 

fig 

fig 
Ig4J fig 

fig 

Z 	,J) 

fig 
fig 0 
Ag OP 
Ap fig 
Aq . 60 
69 hy 
fig 64 

fip 
II 
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69 	MAKING A MOSAIC 	 YOUR NAME: 

ill , 
	 YOUR SCHOOL: 	 64 

ii 
	 69 

7 0  

._I —'4!-------------------------------------  I_I 

.IA 

— • 	 ijT 1pregular1 . P TT I' 	 • 

(equilateral triangle, square, 

fill a plane creating various 

patterns. 	 j5ZZ-87-NA 

- 

V 	

•IUUU_UIIUIUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUIUUUUUUUUUUUUUUUUIUUUUUUUUUUU•IU•1 
• — 1 

a 

£VV*VAV 7

these patterns shoom 

!: 

- V 	

aVaVa L 	 - 

- 	 -. 	

- 

LI 	

page 
	. 	

. 	
. 	

a making mosaics and pavements. 
. 	 I V 

• I 

own pattern and colour it. 

On a separate 

 aj• 

I In the and you

different  patterns 
	 4  1 . group 
	 tf 

46 

I 	

a 

I.. 

• 	 I! • 
LI 	

. 

'*AV4?U 
'1 

ill • 

	 I I  .  — 	— — 
	a 	 a IRA a a 	 a a — — 
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Students' Questionnaire 
V TV •• 	/ !c 	

j' d 

tR 	
YOUR NAME: 

AGE: 

SCHOOL & GRADE: 
ON WHICH ACTIVITY DID YOU WORK: 	 I  RD 
>>> Describe what do you think 

YOU learned from the activity / 	
you worked on. 

)))Were 	 ry Points that se0flied easy or difficu lt, or  

that had Pistakes? * 
>>> How much did you enjoy working on  these  activities, e NOT AT ALL: 

AR!?: 

SO So: 

e 	A LOT: 

VERY MUCH: 

Can you explain your answer? 

E : - >)> Did you like working- in groups? please explain. 

>> 

	suggest Other areas : mathematics that Could be 	W 
taught or amt.d by some practical activity 

Z EEO,  
CIII. 
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