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Abstract

The effectiveness of activity-based learning has been discussed by many authors
over the past 4,000 years. Despite the suggested strength of a ‘hands-on’ approach,
learning in secondary school mathematics classes has become abstract and ana-
lytié. Students are taught out-of-context and are seldom given the opportunity to

act upon their educational experiences.

To evaluate the effectiveness of practical activities in classroom situations, ma-
terials were developed by the author. These concerned areas from the mathematics
syllabus of the first and second years of secondary school. Data were collected from
urban and rural schools in both Greece and Scotland. The students’ performance
on the practical activities was investigated in terms of the cognitive difficulty of
the introduced mathematical concepts. Culture was also investigated as a differ-

entiating factor in the performance and attitudes of the students.

The results of the study indicated a differentiation in performance and at-
titudes between students of the two countries, in favour of the Greek students.
In some tasks first grade students performed better than the second grade ones,
in both countries. Cultural differences, as these are reflected in the educational
systems, indicated the existence of a ‘classroom culture’. This ‘classroom cul-
ture’ appears as the ethos of a school class, created and sustained by the teacher
and the students. In this respect more similarities were found between Greece
and Scotland rather than differences. These similarities address the formation

of values in the mathematics classroom about the nature of mathematics, about
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understanding mathematics, about the role of the teacher and about education in

general.
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Chapter 1

Practical Activities in Mathematics

Learning

1.1 A Historical Retrospective

Eastern mathematics started in countries with big river-valleys (Egypt, Babylonia,
India, China) serving the economic and technological needs of the time (Struik
1982, Gheverghese 1992). The Ahmes and Moscow papyri (1650 BC and 1850
BC) give evidence of the problems that most concerned the Egyptians: distri-
butions of loaves and wine, remuneration of temple personnel, feeding animals,
land surveying, mensuration, volumes of granaries and pyramids, astronomical
calculations. Some of these practical problems, though, presented theoretical in-
terests that were pursued by the scholars of the time. The algebra was rhetorical
(verbally expressed, detailed instructions) so that any theoretical motivation was
hidden behind rules for computation (Gheverghese 1992). The Egyptian scholars,
responsible for the teaching of mathematics, encouraged learning through play
and with activities that corresponded to the practical character of the subject
(Yannicopoulos 1989).

Babylonian mathematics represented a practical tool as well, rather than an
intellectual pursuit. Problems were similar to those handled by the Egyptians
(Struik 1982). There was a small elite class that developed a non-practical pursuit
of mathematical science. The rhetorical algebra of the Egyptians became synco-

pated, with abbreviations for recurring quantities and operations (Gheverghese

1
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1992). The extent to which the teaching methods of the priests, responsible for
the teaching of sciences, were practically based is doubtful (Freudenthal 1973).
Struik (1982) suggests that the rationale of the Indian and Chinese mathematics
teaching had a similar orientation to that of the Egyptians and the Babylonians.

The transcending of the utilitarian origins of mathematics appears most clearly
in Ancient Greece. The question of ‘why?’ was added to that of ‘how?’ of the East
(Struik 1982). A knowledge of mathematics became a prerequisite for the study
of philosophy, as the Greeks were striving to identify fundamental principles that
would bring some order in the ‘chaos’ of existence. All activities have an end, a
completion (teleological dimension of activity, Danassis 1985a). In mathematics,
being a theoretical science (Aristotle, in Apostle 1952), this end is found in the
simple activity of knowing, of the acquisition of scientific truth (Burnet 1905). On
the other hand, practical sciences are closely related to the actual construction
of a product beyond the activity itself. Then knowledge is sought in so far as it
is useful to that construction (opcit). Despite the ideological orientation given
to mathematics, its practical applications were also appreciated. For Aristotle,
theoretical philosophy acquired value and interest only if it was related to practical
philosophy (Danassis 1985a).

In the two great schools of antiquity, Plato’s Academy (387 BC - 529 AD) and
Aristotle’s Lyceum (335 BC - 86 BC), mathematics was taught beginning from
physical objects (Anapolitanos 1985, Yannicopoulos 1989). Plato, despite the
clear theoretical and philosophical orientation of his Academy, believed that the
abstraction of real knowledge could be achieved either directly from the awakening
of the senses, or indirectly through the stimulation of imagination using the So-
cratic dialectic method (Anapolitanos 1985). In Aristotle’s Lyceum the prevailing
belief was that the building of the intellect was impossible without the experience
of objects (Yannicopoulos 1989). This belief was reflected in the empiriocratic and
scientific character of his school. Moreover Plato advised the teachers of the time
to use play as a method for teaching, as the Egyptians were doing (opcit). In the
Republic he says that knowledge that is imposed never takes root in the soul of a
child (Yannicopoulos 1983). A similar view was adopted by Aristotle in his Ethics
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(opcit). The teaching practice though, despite these suggestions, relied heavily on

memorisation (Yannicopoulos 1989).

In contrast, the Roman view was that the development of human nature should
be guided by tradition rather than reason (Wilkins 1914). Education took place in
the home, based essentially on apprenticeship. After the second half of the third
-century BC and during the Hellenistic period (until 313 AD), the Greek influence
became apparent. The teaching of mathematics was largely performed by Greeks.
Roman education was still based though in the teaching of the ‘trivium’ (gram-
mar, rhetoric, logic) with the ‘quadrivium’ having a secondary role (arithmetic,
geometry, music, astronomy). As Cicero report.ed (1st century BC), geometry and
arithmetic had many practical applications in land surveying, in military applica-
tions, in navigation and astronomy (Bonner 1977). Quintilian (1st century AD)
suggested that what enters through the ears stirs the mind less vividly than what
is presented to the trusty eyes (in Horace’s words, opcit). Teaching methods in
mathematics then concerned practical demonstrations, counting using fingers and
calculi (counters), abacuses (reckoning boards), group-tutoring, tutoring by older

students, singing and play (Wilkins 1914, Bonner 1977).

During the Byzantine years and until the fall of the empire to the West in
1204 AD, the dominant pedagogical ideas were those of Basil the Great, Gregory
Nazianzen and John Chrysostom (4th century AD). Greatly influenced by Chris-
tianity, they believed that the best teaching was achieved through experiences
closely related to the learner’s own interests and past experience (Yannicopoulos
1983). In Chrysostom’s words “You cannot teach as effectively by words as you
can by objects”, “Nothing is less constructive than teaching by words only; for this
is not suitable for a teacher but for a hypocrite” (writer’s translation, opcit: 190-
191). Consolidation for each subject was achieved by frequent repetitions and by

application of the learned knowledge in everyday life experiences.

During the ‘Dark Ages’ (4th to 13th century) human energy was absorbed
in the struggle for survival (Ulich 1963). Intellectual activity revolved around
learning Latin, liturgical observance and rudiments of the seven liberal arts (triv-

ium and quadrivium) from few and second hand sources (Freeman 1985, Ulich
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1963). Teaching took place in monastic, parish or cathedral schools with methods
based on memorisation. Non-school learning involved apprenticeship to prepare
the youth for their occupations. The spirit that dominated the thinking of this
period is captured in the words of Hrabanus Maurus (priest, 776- 856 AD) and

his view about arithmetic:

“..those eager to cultivate arithmetic are right because in large
measure it turns the mind from the fleshly desires and furthermore
awakens the wish to comprehend what with God’s help we can merely
receive with the heart.” (Ulich 1963: 178)

Geometry for Maurus was also a way to appreciate the well ordered arrange-

ment of the world by the “almighty creator” (opcit).

The writings of the great Fathers of Christianity reached the West with the first
emigration of Byzantine scholars during the ninth century and with the Crusades
(Yannicopoulos 1983). The learning preserved by the Arabs also transmitted,
slowly, to the Western Europe during the transition period from 540 to 1500 AD
(Burton 1988). During the Renaissance years learning was based on memorisation,

with understanding as a desirable but secondary aim (Freeman 1985).

Some influences from classical Greece and from the Byzantine scholars can be
detected in the work of John Locke (1632-1704). He was an advocate of empirical
knowledge (Aristotelian perspective). The materials for this knowledge are to be
acquired through our senses (Danassis 1985b). Even more influences can be found
in Comenius’ ideas (1592-1670), who believed in learning through the senses with
the use of teaching aids (Laurie 1899). The familiar should be combined with the
pleasant and should be presented to as many of the senses as possible (Danassis
1985b, Freudenthal 1973).

“And in order that everything may be imprinted the more easily,
let the senses be applied to the subject as often as possible - e.g. let

hearing be joined with vision and the hand with speech.
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“For the beginning of knowledge is from pure sense, not from words;
truth and certitude are testified to by the evidence of the senses.” (Di-
dactica Magna, Laurie 1899: 125, 146)

We find a continuation of these pedagogical ideas during the 18th century in
the works of Rousseau, Pestalozzi and Froébel. They all suggested the training of
the senses and the transition from concrete to abstract in learning (Kramer 1976,
Danassis 1985b). Pestalozzi and Froébel actually developed a series of toys or ap-
paratus (‘gifts’ as Froébel called them), to heighten the awareness of relationships
between things and to stimulate learning through play (Kramer 1976, Exarchakos
1988).

At about the same time the pioneering (and successful) work of Itard and
Seguin with feeble-minded children had its foundations on similar principles. They
nourished a respect for individuality in learning and acknowledged that the build-
ing of the intellect can begin with physical movement, ‘the education of action’
(Kramer 1976). The contribution of Froébel in the development of pedagogical
thinking can be seen as the bridge between the work of Pestalozzi and Montessori.
Montessori’s ideas on ‘auto-education’ marked the passage to the 20th century,
along with those of Dewey and the development of his ‘theory of experience’.
Montessori strongly believed that the tendency to establish relations is innate to
all children and underlies sense perception (Hunt 1912). She spoke about the
‘hunger of the senses’ and advocated that pedagogical exercises should not leave
the child inactive, preventing him/her from controlling the material (Montessori
1912). The materials that she used were to some extent a development of those
used by Itard, Seguin, Froébel and Pestalozzi (two and three dimensional shapes,
of differing sizes, colours, matched into holes, blindfolded activities, etc.). Decroly,
another educator of this time, approached the formation of knowledge in the same
way as Pestalozzi (Exarchakos 1988).

Dewey’s theory of experience followed the belief that education was a devel-
opment within, by and for experience (Dewey 1963). Not all experiences, though,

are genuinely or equally educative. He identified experiences of educative value
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according to the principles of continuity and interaction. Continuity refers to the
suggestion that each activity takes up something from things that happened in
the past and also modifies in some way the quality of things which come after.
This suggestion presupposes the specification of a direction in which growth de-
rived from experiences should progress. What is done by the educator during the
experience - words used, tone of voice, equipment, books, apparatus, toys, games
played, étc, constitute the objective conditions under which experiences are had.
The internal conditions of an experience are what goes on ‘within’ the individuals
having the experience - personal needs, desires, purposes, conditions of the expe-
rience. Every experience has an ‘active’ side which changes to some degree the
objective conditions under which experiences are had. The interaction principle
suggests that the objective conditions (interactions between the individual and
objects and other persons) should be subordinated to the internal ones. Experi-
ence is truly experience only if these conditions are assigned equal ‘rights’. With
his theory of experience Dewey aimed at an ultimate freedom of the intelligence,
that is to say “freedom of observation and of judgement ezercised in behalf of pur-
poses that are intrinsically worthwhile” (Dewey 1963: 61). To resume Dewey’s

suggestions:

“Anything that can be called a study, whether arithmetic, history,
geography, or one of the natural sciences, must be derived from the
materials which at the outset fall within the scope of ordinary life-
ezperience.

“Finding the materials for learning within ezperience is the first
step. The next step is the progressive development of what is already
ezperienced into a fuller and richer and also more organised form, a
form that gradually approzimates that in which subject-matter is pre-

sented to the skilled, mature person.” (opcit: 73-74)

The more recently developed theories of learning were built upon the ideas of
Dewey and his predecessors. Piaget saw acting upon our experiences as the only

way to learn about our world. Manipulating objects in a concrete and action-



Chapter 1. Practical Activities in Mathematics Learning T

oriented context is the first step of the internalisation of actjons. By reducing
the perceptual and motor supports we increase the level of internalization and
the strength of abstraction (Flavell 1963). Abstraction for Piaget “is only a kind
of trickery and deflection of the mind if it does not constitute the crowning stage
of a series of previously uninterrupted concrete actions” (Labinowicz 1980: 181).
Acting upon our experiences involves transforming them within the mind, so to
fit the existing cognitive structure and adjusting the mind to the new experiences
(Sutherland 1992). The former mechanism provides continuity and stability, while
the latter is akin to novelty and change. Learning is seen as the process of balanc-
ing between these two mechanisms. It is through successive, essentially discontin-
uous equilibrations that organised systems of actions are formed, as the learner’s
intellect develops from the stage of sensory-motor operations to the stage of formal
operations (Flavell 1963). |

Ausubel (1968, 1985) and Skemp (1986) saw learning, like Piaget, as a pro-
cess of interpreting unfamiliar incoming information and fitting it into a schema.
In this way great emphasis is placed on the existing cognitive structure of the
learner. The interaction between the incoming and potentially meaningful ma-
terial and the established knowledge (in the form of schemata) causes changes
to both. Therefore, what is actually stored in memory may not be exactly as it
was when the process had started. Furthermore, the accommodating schema (or
schemata) may not have the same composition as it had before the assimilation of
the new material. Ausubel et al. suggested that sitting still and listening does not
rule out thinking (Entwistle 1988). Therefore the materials used to introduce a
new concept do not always have to be of concrete-empirical nature. They can take
the form of primary ideas, as in the acquisition of ‘secondary concepts’ (Ausubel
1968, Skemp 1986). Returning to Piaget’s work, it has to be stressed that he
considered that the manipulation of objects was critical to the later development
of logical thinking only up to the twelfth year of age, when the stage of formal

operations begins (Labinowicz 1980).

The work of the American psychologist Bruner concerning the process of learn-

ing, corresponds in many ways to the ideas introduced by Piaget. He opposed,
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however, Piaget’s belief that learning is subordinate to biological development
(Liebeck 1984). Bruner (1967) suggested that the process of learning and of intel-
lectual growth is the translation of our experiences in the world into increasingly
more elaborate and powerful modes of representation. Our actions within an ex-
perience (or experiences) are the means for the formation of the initial mode of
representation, the ‘enactive’. As soon as the existence of objects involved in our
actions ceases to depend upon these actions, we begin to operate in an ‘iconic’
mode of representation. Objects become visual or sensory representations that
summarise our actions on the objects. When the final mode of representation is
reached, the ‘symbolic’, some kind of language is formed to represent, internalise
and manipulate actions. This language is used as an instrument of thought rather
than as language per se (Bruner 1967). Bruner (1965) emphasised the importance
for the learner of grasping the structure of an idea in a way that permits many
other things to be related to it meaningfully. Reaching this structure requires the
provision of opportunities to operate in the modes described by the model. He
believed in giving visible embodiments to ideas and in the use of models to lead
the learner through the different modes of representing ideas. Falling back on ini-
tial experiences can provide help, when symbolic representations fail the learner
in solving a problem. By-passing the first two modes of representation then, may

deprive him/her of the ability to fall back on these formative experiences.

Liebeck (1984) suggested a similar theory of learning to that of Bruner. How-
ever, she emphasised the importance of spoken words to represent and communi-
cate our actions, by introducing a fourth stage in the model between the enactive
and symbolic stages (Experience - Language - Picture - Symbol). This approaches
Skemp’s definition of ‘logical understanding’, that is the difference between being
convinced oneself and being able to convince others (Skemp 1976, 1979, Byers &
Herscovics 1977). Bruner had indicated the importance of language “Intellectual
growth involves an increasing capacity to say to oneself and others, by means of

words or symbols, what one has or what one will do” (Bruner 1967: 5).

An approach to learning from a different perspective, specific to mathematics,
was introduced by Dienes (1960, 1963, 1964, 1973). He saw the process of learning
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through increasingly more structured play activities. By “fiddling around” with
the provided material the child adapts to a certain environment (‘free play’ stage).
From free play the child begins to realise some constraints or regularities (rules of
the game) on which relevant mathematical structures will depend (second stage).
The child is then introduced to perceptually different activities based on a common
structure (principle of ‘multiple embodiment’). The underlying structure is thus
extracted from these various activities (third stage). In the fourth and fifth stages,
representations (auditory or visual) and language are introduced, to reflect upon
and discuss the abstracted structure. Finally (sixth stage) the child draws on
what has been abstracted from the activities and by analytic thinking proceeds
to further generalisations (Dienes 1973). To provide the maximum amount of
experience of the learned knowledge, Dienes suggested further activities following
the principles of ‘mathematical variability’ (all possible variables vary keeping the
concept intact) and of ‘contrast’ (use of non-exemplars to ensure that situations

not addressed by the concept will be identified as such) (Dienes 1960, 1964).

Contemporary views on mathematics learning suggest that knowledge is con-
structed by the learner through an active learning process. This corresponds to
Ausubel’s assimilation theory {constructivism, Jaworski 1991). Knowledge “is not
out there in the world waiting to be discovered” (opcit: 11), contrary to what Plato
and Gibson suggested by saying that knowledge is actually discovered through a
process of learning to perceive what has always been there (Anapolitanos 1985,
Miller 1989). Constructivism accounts for the individuality of knowledge and
draws attention to the fact that teaching is more like developing shared knowl-

edge rather than giving it to the students (Jaworski 1991).

Pirie (1992) and Mason (1992) proposed models of learning which are an amal-
gamation of Bruner’s thoughts, based on constructivist philosophy. The process
of concept building passes through levels of growing understanding about the con-
cept. Manipulation of objects (physical or mental) gives an insight into a sense
of structure, which further becomes more articulate and detached from the initial
experiences with the objects. Even though at each level the learner can perform

without reference to experiences from past levels, understanding may break down.
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The learner then would have to draw from these lower level experiences and skills
to find help. This ‘folding back’ feature of the model is essential if understanding
is to continue its growth. If lower level references do not exist, or are not adequate
to provide ideational scaffolding (Ausubel’s term, 1968), understanding is bound
to cease at the level that the difficulty emerged. It might be substituted for by

the use of some rule or technique.

1.2 The Present Situation

Mathematics has been addressed for millennia as a theoretical science, partly be-
cause of its nature and partly because of the objectives of those who have pursued
mathematics (‘lovers’ of wisdom, seeking to discover eternal truths, Apostle 1952).
Arithmetic and geometry though, started as practical sciences serving the needs of
everyday life. Sympathies for abstraction developed as soon as mathematics moved
beyond the purposes for which it was initially invented. Despite that, practical
applications have never been divorced from the mathematical disciplines (arith-
metic, geometry, astronomy, musical theory). In addition, many contributors to
pedagogical thinking in the past 4,000 years suggest that pedagogical exercises
should not leave the child inactive, preventing the learner from controlling the

material.

Instruction in mathematics, though, followed the pattern of teaching the young
by telling ‘out of context’ rather than showing ‘in context’ (Bruner 1967). The
great problem of mathematics education then seems to be, as Freudenthal (1973)
suggests, the gap between the use of mathematics and the aim of learning math-
ematics. This gap seems to widen in secondary education. Is the aim of learning
mathematics ‘to think logically’? Is that aim valueless if logical thinking can only
be applied in the mathematics classroom? Is it worthwhile, then, to teach only
through ‘sentences’ disregarding Dewey’s suggestions that learning should be a

development within, by and for experience? How can we shorten the distance be-
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tween a “useless aim” and an “aimless use” in the field of mathematics instruction
(opcit)?

In life outside school, mental work is distributed over several individuals and
the use of ‘tools’ expand people’s mental power. In contrast, in schools learn-
ing and performing become individualised and the focus is on symbolic activities
(Resnick 1987, 1989). Bruner suggested the use of devices for “vicarious” expe-
rience to substitute for experiences taking place in everyday life. Giving visible
embodiments to ideas and making provision for sequential programs can promote
students’ understanding of basic ideas and structures in mathematics (opcit). This
approach in teaching could meet the cognitive and affective needs of the students,
if we are to accept that learning progresses from concrete to more abstract knowl-
edge. It satisfies both children’s need for movement (hunger of the senses) and

innate disposition for learning (growth of intellect).

In contrast to the suggestions supporting this way of learning mathematics,
practical activities are used only sporadically with older children. This decision
seems to be supported by arguments that draw not particularly on their effective-
ness in promoting learning but on functional difficulties caused by their use as
a teaching aid. As Desforges said “Teachers, of course, will not teach what they
do not value and cannot teach what they do not know” (1985: 93). We could go
even further and suggest that sometimes teachers cannot teach what they already
know. Based on these views, arguments against the use of practical activities will

be discussed next.

To ‘not value’ practical activities can be translated as not valuing them as
an approach to learning or as an approach in teaching. Either of the views of
course may lead to the other. Some may advocate that practical activities are
not essential in secondary education since learning becomes formal and analytic.
This very argument implies that understanding comes at a higher level. We can
suggest then that difficulties faced at these higher levels can only be dealt with
by the use of tricks or techniques provided by the teacher instead of by folding
back to past experience. The implicit knowledge acquired from practical work, at

the initial levels of understanding, cannot be taught didactically at a later stage
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(Giles 1981). Obtaining the correct answers then replaces understanding. Not
to value practical activities is also closely related to beliefs about the nature of
mathematics. If mathematics is to be addressed only as a theoretical and highly
abstract subject, then such a view may have some validity. However, this still

would not divorce these abstract tools from their practical origins.

For those who ‘value’ and therefore use practical activities in the classroom,
there is the danger of perceiving similar but essentially different activities as prac-
tical. James (1985) distinguished activity-based learning from the “rules with
tools for ticks” approach. In the latter students are using ‘tools’ while working
but they are still tuned into the teacher’s way of doing things. They have to
follow a path that the teacher and the ‘tools’ have set for them. ‘“Tools’ become
techniques for reaching the correct answers (the ‘ticks’). Discussion is not usually
encouraged and students may fail to appreciate the mathematical and everyday
life implications of those practical activities. In another, similar approach, practi-
cal activities may be used as a ‘fun’ activity. This definitely redirects students and
teachers from the real nature of the approach, perceiving them as ‘not mathemat-
ics’ but as play. Learning from such activities is mainly incidental. It seems then
as if teachers cannot teach what they already know, not always though because

of their inadequacy.

We can suggest that there are also teachers who ‘value’ practical activities as
a way of learning but are hesitant in using them for ‘security’ reasons. Leinhardt
and Greeno described teaching as a cognitive skill, which actually requires ..a
complez knowledge structure composed of interrelated sets of organised actions”
[schemata] (1986: 75). Practically-introduced tasks may hide unexpected difficul-
ties in their progress (cognitive and functional), which could impose a ‘threat’ to
these ‘teaching schemata’. The teacher then may decide to adopt a teaching style
that would ‘secure’ the students’ success (Freudenthal 1973) and his/her author-

ity in the classroom (the ‘informer’ and the ‘problem solver’, non-pupil initiated
activities, Khale 1987).

Closely related to this security feeling are the difficulties that may occur in

the use of practical activities. Equipment needs to be prepared beforehand, which
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may take a lot of the teacher’s time. Equipment needs to be cheap so that the
schools can afford it. Assistance might be needed during the sessions using the
practical activities, to allocate the materials and make sure that each student
has the appropriate support and challenge. There is pressure on teachers to have
calm and quiet classes. Students should be lively and interested (not too lively
and therefore disruptive), conscientious, little trouble in the class, etc (Walden &
Walkerdine 1985). Practical activities encourage talking and active participation
by students. This could be contrary to the commonly accepted organisation of a
class. Other difficulties may concern the evaluation of the outcomes, since it is
likely that they will be long- rather than short-term. All the discussed difficulties
are heightened by the large number of students in a class. In science classes the
numbers of students are limited to make practical activities easier for the teachers
to manage. This is not the case in maths classes. The students themselves can
play a role in overcoming such organisational difficulties by adopting a purpose for
learning (Dewey 1963). To transcend over and above the requirements of a task
is to pursue cognitive processes that have learning as a goal (intentional learning,
Bereiter & Scardamalia 1989). The formation of such an attitude can be promoted
by activity-based teaching. A further objection to practical activities is that they
are time-consuming in an already full schedule for preparing the students for their

final examinations.

To address the second part of Desforges’ citation, teachers will not teach with
practical activities if they do not know how to. Most secondary school mathemat-
ics teachers are trained within a period of one year. Their classroom training takes
place in schools, where the situation may coincide with the one described. More-
over many teachers are not aware of already existing teaching materials and it is
difficult for teachers to produce their own materials due to time limitations. If we
do not use practical activities on the grounds of their being time-consuming (the
burden of completing the syllabus), we have to reconsider the criteria for success
in mathematics learning. Are we aiming to teach an isolated subject, with tasks
that are neither unusually extensive nor profound? Should we prefer teaching

that aims to promote life-long learning and portrays honestly the nature of the
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subject? The earlier aim concerns short-term achievements and provides cheap
success (Freudenthal 1973). Time in this case is important, since this is an aim
that can be achieved only during the school-years. The latter aim though, con-
cerns a will for life-long learning where time is irrelevant since learning continues
after school.

1.2.1 Creating a Learning Environment

So what should we choose? The ‘realistic’ but possibly sterile approach, or the
more ‘unrealistic’ and maybe metaphysical one? There is not always ‘one’ an-
swer. There are though answers that serve the needs of situational and intrinsic
factors. One of the disasters of education was described by Dewey (1963) as the
‘either-or’ philosophy. It is not then a matter of choosing between the two ends
of the argument. There is rather a need for finding a balance between the situa-
tional factors of teaching mathematics and the intrinsic ones that account for the
individuality of the learner. It is not a matter of teaching everything we possibly
can within a prescribed period of time, in a way convenient to us. It is rather a
matter of providing experiences (as already described) and support, so to promote
understanding and build positive attitudes towards mathematics and learning in

general.



Chapter 2

Focusing on Certain Mathematical Areas

2.1 Stranding the Concept of Similarity

The theme of the first part of this chapter will be the similarity of rectangles.
Similarity will be discussed in general along with studies pinpointing the difficulty
and importance of the concept. We shall identify its relations to other topics in
mathematics and also distinguish rectangle-similarity from the broader concept of
similarity. The complexity, difficulty and importance of all the related concepts
will be established through a number of researches and surveys. We shall quote
theories concerning the development of these concepts and we shall conclude with

a summary of teaching approaches towards them.

In order to trace the origin of the idea of similarity we have to investigate the
very early experiences in our childhood (Williams & Shuard 1991). Long before
children can think in terms of similarity, they can make judgements on whether
figures possess similar relationships. Van den Brink and Streefland (1979) suggest
that 6 to 8 year-olds can deal with similarity as an operative equivalence while they
are trying to order the visual perceptive reality. Researchers like Freudenthal and
Dudwell (opcit) suggest that congruences and similarities are ways of processing
our visual perceptions and they are built into our central nervous system. So in
order to seek the similarity of figures we have to seek for the actual perception
of the figures (Piaget & Inhelder 1956). Piaget called the perceptual activity of
recognising two shapes as similar “4ransposition” and regarded it as one of the

fundamental properties of perception (opcit). Perceptual transposition then is

15
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the initial form of the concept of similarity. We have a long development though
before we reach the point where figures, similar to a given one, can be constructed

operationally, that is, to acquire a geometric sense of the similarity concept.

Similarity assists in perceiving, categorising and organising the world around
us. How does it fit though in the mathematics curriculum? As Lappan and
Even (1988) indicate, similarity is an important topic in geometry, since it is
basic in understanding other topics like the geometry of indirect measurement,
proportion and ratio, scale drawing, modelling and the nature of growing (shapes
etc). Piaget and Inhelder (1956) suggest that similarity tasks are easier than
tasks involving proportion. Therefore, as Friedlander (in Lappan & Even 1988)
says, geometrical similarity is a concept that may lead to an understanding of
proportionality. Similarity also relates closely to equivalent fractions (Hart 1984).
Teachers in the Second IEA Study of Mathematics (Garden & Robitaille 1989)
rated similarity of plane figures as an important topic for 13-year-olds (see also
Hisen 1967). Along with its importance in the mathematics curriculum, similarity
is regarded as a difficult concept. Evidence from research studies and achievement
surveys support this view (Robitaille 1989, Robitaille & Taylor 1989, Lappan &
Even 1988, Cresswell & Cubb 1987, Hart 1978, 198ic, 1987, 1989, Hiisen 1967).
The most popular items in these studies though involved applications to similar

triangles and indirect measurement.

2.1.1 Sirhilarity. of Rectangles

The similarity of rectangles as a topic deserves to be examined separately, due to

its peculiarity compared to the tasks discussed previously.

Transposition of similar shapes can be done according to overall shape, di-
mensional relations or angles. Intuitive understanding of similar figures involves
such comments as ‘having the same shape’, while a more analytic and powerful
understanding has to do with ‘angle size is preserved’, ‘all lengths are multiplied

by a constant’, or ‘ratios of corresponding sides are equal’ (Lappan & Even 1988).
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With rectangles there are no angles to compare. It may seem then that identi-
fying similar rectangles is a simpler task than that of triangles, since in rectangles
one need to focus only on two cues (size and sides’ proportions). This may be
the case when a formal understanding of similarity has been acquired. For a child
though who is perceiving similarity intuitively, comparing rectangles for their sim-
ilarity is a complex task. The ratio of the sides has to be estimated and nobhelp

can come from any correlative change in angle (Piaget & Inhelder 1956).

A distinction has to be made between tasks involving perceptual comparison
of rectangles and pictorial construction. In the first case intelligence is governed
by perception, therefore we speak of a perceptual estimation. In the second case
perception is governed by intelligence and we speak then of an intellectual con-
struction (opcit). In the research reports reviewed by the author, items on similar
rectangles involve intellectual constructions. The child has the length and breadth
of the original rectangle (either given or needing to be measured) and has to en-
large it by a ratio (either given or has to be calculated) (Hart 1978, 1981b, 1988,
Lappan & Even 1988, Clarkson 1989). These tasks were proved to be difficult for

12 to 15-year-olds when the enlargement ratio was other than 2:1.

2.1.2 Strategies on Rectangle-Similarity Tasks

Clarkson (1989) analysed students’ responses (12 to 13 years of age) on enlarge-
ment tasks (not limited to rectangles). He suggested a number of strategies that
students use when confronted with such tasks. A summary of these strategies

adapted to the case of rectangles follows:

o Linear Scale Factor: the child multiplies the sides of the original rectangle
by the scale factor to find the lengths of the sides of the wanted rectangle

e Addition Scale Factor: the child finds the increase in length for one side to
determine the scale factor, eg. a side of 3 units becomes 9, which is two

times bigger than 3, so scale factor is 2
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o Area: the child has doubts as to whether an enlargement is concerned with
a linear or an area scale factor, so s/he finds the scale factor by using the

areas of the original and the enlarged rectangle

o Area/Addition: this is a combination of area and addition strategies, eg.
areas of 5 and 20 units, 20-5 is 15, 5 into 15 is 3, so scale factor is 3

o Border: the child regards the original rectangle as being in the corner or the

middle of the wanted one, and tries to complete the missing part

e Enlarge One Side Only: it involves “centration” to one dimension. Piaget
and Inhelder (1965) suggested that the longer the rectangle is, relative to
the height, the more rectangular it appears to a child. Therefore the general
tendency is to make the wanted rectangle too long to be similar to the

original.

We shall come upon some of these strategies later on, when similarity will be

discussed in relation to the development of proportional reasoning.

2.1.3 Similarity and Measuring

Measuring is closely related to similarity. Students have to measure sides of shapes
(especially in practical tasks) in order to identify and apply enlargement ratios.
Findings coming from National and International surveys revealed that not all
students of 9 to 15 years of age use a ruler competently (Hart/CSMS 1981a,
AAP/SED 1983, 1989, Johnson/CSMS 1989, Dickson et al. 1991, EMU/SEAC
1991; NCES 1991, Lapointe et al./IAEP 1992, SOED/IAEP 1992, Semple 1992).
Most common errors relate to the failure to count units correctly (i.e. placing
properly the zero point, rounding lengths that do not align with an indication).
Measuring mistakes can affect students’ performance on similarity tasks and hinder
also the strategies used (Clarkson 1989).
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2.1.4 A Word About Terminology

Hart (1981a) draws attention to the terminology used in similar figures tasks. In
interviews with students she found that the word ‘similar’ means little to many
children. Due to its everyday life use it tends to mean ‘approximately the same’.
Piaget and Inhelder (1956) in their clinical interviews on similarities and propor-
tions used the expressions ‘which one is the daddy of the little one and looks most
like it’ with the youngest children, and ‘looks like’ or ‘“is the same shape but bigger’
with older children. Teachers that took part in Clarkson’s (1989) study used terms
like ‘times’, ‘bigger’, ‘much bigger’, ‘times as long’. Williams and Shuard (1991)
are closer to an expression ‘of the same shape but larger’. Hart (1981b) cautions
that words like ‘bigger’, ‘larger’ do not automatically infer multiplication. They
may infer addition and lead students to adopt erroneous strategies. She suggested

the expression ‘times larger’ to avoid such misunderstandings.

2.1.5 Proportion, Ratio and Similarity

From a perspective of a network model of memory, learning involves both the
acquisition of concepts and the construction of hierarchical relations among these
concepts (J.L. McDonald 1989, Branca 1980). As Vergnaud (1988) suggests no
single concept refers to only one type of situation and no single situation can be

addressed and analysed with only one concept.

“Fach concept should be seen as a triplet of sets: C:=(S,1,8), where
C is the concept, S a set of situations that make this concept mean-
ingful, I is a set of invariants (objects, properties and relationships)
that can be recognised and used by the subjects to analyse and master
these situations, and S is a set of symbolic representations that can be
used to point and represent these invariants and therefore represent the

situations and procedures to deal with them.” (Vergnaud 1988: 141)

The previous quotation suggests the complexity, and therefore difficulty, of

studying a single concept. A way of dealing with this difficulty is by studying
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conceptual fields (Vergnaud 1983, 1989). These are comprehensive systems and
are defined as a set of situations, the mastering of which requires the mastery
of several concepts of different nature. Therefore in order to study similarity we
should examine the concept from the perspective of other associated concepts as

well.

2.1.6 Ratio and Proportion

Ratio and proportion are widely studied concepts. The earliest research evidence
comes from Winch around 80 years ago (Karplus et al. 1983a). Researchers agree
both on their importance and difficulty (eg Lovell & Butterworth 1966, Wollman
& Lawson 1978, Noelting 1980a, Turner 1982, Hart 1978, 1984, 1985, Tourniaire
& Pulos 1985, Lesh et al. 1988). This belief is supported by international surveys

of performance on mathematics (see studies in §2.1.2, §2.1.3).

Ratio (a/b) is the numeric relationship between two entities (Hart 1988) or in
other words a numerical expression of how much there is of (a) refers to the first
quantity and (b) to the second, while the value of a/b is the numerical expression
of the comparison. Quantities can be extensive, intensive or scalar. Extensive
quantities represent “how much of a quantity is associated with a given object”
(Lesh et al. 1988: 109). For example 45 degrees for an angle, 45 degrees of
temperature, 45 gallons of petrol. Fractions are a special kind of extensive quan-
tities (internal ratio). “Intensive are the quantities that are ordinarily not either
counted or measured directly” (Schwartz 1988: 42). They are the ‘per’ quantities
and express how much of a quantity is related to a unit of another quantity (rates
are such quantities - external ratio). Scalar quantities are a type of intensive
quantities, where the two quantities are measured in the same unit (eg weight of
sugar/weight of all recipe’s ingredients) (Lesh et al. 1988). When ratio is seen as
a correspondence between two sets (Skemp 1987), this correspondence can involve

ordered pairs of any of the previous types of quantities.
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The Investigation of British Secondary School Mathematics textbooks (in Hart
1978, 1981a) indicated the following aspects as being basic to ratio:

“~ doubling or halving

- multiplication by an integer

— given a rate per unit apply this rate

- find the rate per unit and then apply it

— enlarge drawing in ratio 2:1, 3:2, 5:3, etc.

- find a ratio a:b using an intermediate quantity, c, i.e. given
relationships a to ¢, b to ¢

~ using a fractional multiplier

— simple percentages ...

... Jractions. ..

... similar triangles.” (Hart 1978: 4)

Other manifestations of ratio can also be found in the following activities
(adapted from Streefland 1984: 336):

e comparing magnitudes not only of the same kind but also of different kinds,

such as length and number
e considering mixtures of intensive quantities
e recipes as a separate theme from mixtures
o distinguishing internal and external ratios

o stressing the ratio in the operator (5 from x to 5x, 1/5 from y to (1/5)xy).

Ratio then is a concept that ‘participates’ in many classroom activities. Its
relationship to similarity and proportion is strong and development of proportional

reasoning relies much on ratio activities, as we shall see.
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Proportion involves the equivalence of two ratios (a/b = c/d) (Skemp 1987,
Hart 1988). Therefore to make a proportional judgement two ratios have to be
recognised as being equal or as belonging to the same equivalence class. For Lesh
et al. proportional reasoning is “reasoning about the holistic relationship between
two rational ezpressions such as rates, ratios, quotients and fractions” (1988: 43).

They continue, saying:

“ Proportional reasoning is a form of mathematical reasoning that
involves a sense of co-variation and of multiple comparisons and the
ability to mentally store and process several pieces of information. Pro-
portional reasoning is very much concerned with inference and predic-

tion and involves qualitative and quantitative methods of thought ...”
Proportional reasoning also involves:

“..mental assimilation and synthesis of the various complements
of those expressions and an ability to infer the equality or inequality of
pairs or series of such ezpressions based on this analysis and synthesis.
It also involves the ability to generate successfully missing components

regardless of numerical aspects of the problem situation.” (opcit: 93)

This quotation from Lesh et al. encapsulates the meaning of the concept of
proportion. As Tourniaire and Pulos (1985) suggest most people can use propor-
tion in familiar contexts. Various difficulties arise though even in the definition
of proportion. In mathematical discourse it refers to an equality of ratios as we
stated earlier. In everyday life context though proportion is more closely related
to other quotient terms than the mathematical. “Proportion is a part considered
in respect to the whole” (Collins Dictionary). It is easy therefore to confuse pro-
portions with fractions, since the subtle difference resides in the reference of the
denominator (Ohlsson 1988). Proportions also may appear as percentages or even

as the probability of an event.

Lesh et al. (1988) characterised proportion as a ‘watershed’ concept, which

is justified by the previous discussion. It is expected then that students will face
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difficulties with proportions, since misunderstandings from related concepts may

result in adopting erroneous strategies when dealing with proportion tasks.

2.1.7 The Development of Proportional Reasoning

It is suggested that the development of proportional reasoning is slow and the con-
cept is acquired late (Tourniaire & Pulos 1985, Hart 1984, Lovell & Butterworth
1966, Lunzer & Pumphrey 1966). Renner (in Hart 1984) investigated freshmen in
four American universities and found that students had a basic deficiency in prob-
lems requiring ratio or proportion of any kind. Capon and Kuhn (1979) suggested
that many adults do not exhibit mastery of the concept of proportion at all. It
is essential then to examine proportional reasoning further in order to reveal the

reasons for such a slow and late development.

Studies in proportional reasoning have employed different methodologies and
tasks. Stﬁdents were asked either to find from the given data an additional value
for an extensive quantity, or to compare the two values of the intensive variable
computed by the data (missing value and comparison problems correspondingly)
(Karplus et al. 1983b). In some tasks students had to simply provide an answer,
in others they were asked explanations on their strategy (Tourniaire & Pulos
1985). Finally physical tasks have been employed, especially by Piaget (Inhelder
& Piaget 1958), like the beam and projection of shadows experiments. These latter
tasks have been criticized for their potential in assessing proportional reasoning,
since they require the understanding of some physical principle in addition to

understanding proportions (Karplus et al. 1983a).

Piaget suggests (Piaget & Inhelder 1956, Inhelder & Piaget 1958) that propor-
tional reasoning characterises formal thinking. Therefore, proportional reasoning
is integrally linked to other reasoning patterns that may be used under different
circumstances and at various levels. In the beginning only qualitative comparisons
can be made (until the second year of age). At the intuitive level comparisons be-
tween terms are possible. The child has to reach the level of concrete operations in

order to involve joint multiplication or division of terms and equivalence classes.
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At the level of formal operations equivalencies are mentally reconstructed before
comparison can take place (Noelting 1980a). Bryant and Lawrence though showed
that young children can logically connect two discrete perceptual experiences by
contrasting a common identity element, eg. colour, size or proportion (in Muller
1978). Errors occur only because children fail to make the correct initial analysis,

e.g. on size instead of proportion.

Case (in Karplus et al. 1983a) suggested that the gradual growth in the ef-
fectiveness of working memory may account for the development of proportional
reasoning. Karplus et al. (opcit) reject the Piagetian theory suggesting that pro-
portional reasoning constitutes an independent entity and Noelting (1980b) deals

with proportional reasoning in separation from other cognitive operations.

Suarez (in Karplus et al. 1983a) investigated proportions as linear functions,
where the slope of the function is one value of the intensive variable [y=(a/b)xx].
Vergnaud (1983) sees proportion as an isomorphism of measures, which is a struc-
ture that consists of a simple proportion between two measure-spaces M1 and M2
(values of the intensive variable) (see also Lamon 1990). These approaches have
been criticized as dealing only with arithmetic relations between sets of numbers,

ignoring the relations between the variables represented by the numbers (Karplus
et al. 1983a).

From the previous evidence it is clear that the development of proportional
reasoning is hierachical. Initially proportionality is mastered in small and re-
stricted classes of tasks. As children become more competent, they restructure
their strategies and the classes to which these strategies apply to are gradually
extended (restructuring theory/ adaptive restructuring, Noelting 1980b) . The
change that takes place from one stage to the next is both qualitative and quanti-
tative. Children restructure their strategies in order to comply with new situations
but within each stage strategies are extended to a variety of applications of the

new situation.

Children’s strategies in solving proportional problems (a/b=c/d) fall into two

large categories: the with-in and the between strategies. In the former, students
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find the ratio of corresponding (extensive) quantities (a to ¢, b to d), while in the
latter they find the rates representing the values of the intensive quantity (a/b
to ¢/d) (Tourniaire & Pulos 1985). Correct strategies involve multiplicative and
building-up strategies. In multiplicative strategies a relation is obtained between
two terms of the proportion, either following the with-in or between approach,
and then is extended to the remaining terms (opcit). The building-up strategies
are more elementary (Hart 1981b) and involve finding parts of the answer which

will be added together eventually.

Erroneous strategies may involve either using an inappropriate strategy or mis-
using a correct one (Tourniaire & Pulos 1985). One of the most commonly used
inappropriate strategies is the additive strategy or strategy of constant difference
(Hart 1981b). Students concentrate on the difference between the extensive quan-
tities that form the intensive variable. Another commonly used error strategy is
that of ignoring part of the data and concentrating on one term of the proportion
only (centration) (Piaget and Inhelder 1956). Erroneous strategies may also be
used as fall back si;rategies when children are working on difficult tasks. For exam-
Ple a child capable of using the multiplicative method with integer ratios may fail
to do so with non-integer ratios. In such a case the child employs an ‘elementary’

strategy (eg additive method).

The strategies mentioned correspond to different levels of development of pro-
portional reasoning. Starting from additive methods we progress to the stage of
logical proportions which is characterised by understanding all four terms of a

proportion (for a further discussion see Tourniaire & Pulos 1985).

2.1.8 Variables Affecting Performance on Proportion Tasks

Variables that affect performance on proportion tasks fall into two categories. The
task-centred variables and the student-centred ones (Tourniaire & Pulos 1985). A

summary of these variables follows.

Hart (1981b) and Noelting (1980a, b) suggest that the presence of integer ratios
make the task easier. Rupley (in Karplus et al. 1983a) adds that the place of the
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number to be found in the proportion and the inclusion of numerical values larger
than 30 increase task difficulty. The presence of a unit makes a problem easier
(Hart 1981b), while comparing unequal ratios is more difficult than comparing
equal ones (Karplus et al. 1983a, b). Other variables, besides structural, concern
the context of the task (see Tourniaire & Pulos 1985). The familiarity of the
context, the presence of intensive or extensive quantities and the way a task is

mediated, all affect students’ performance.

Karplus et al. (1983a) suggested that the number of schemes one can ‘attend
to’ at one time (M-capacity) is related to performance on proportion tasks. The
extent to which a child can apply his/her understanding of proportions in differ-
ent contexts, is related to success in proportion tasks (FDI, Field Dependence-
Independence). Field independent students tend to perform better (Tourniaire
& Pulos 1985). Other variables that seem to correlate positively with success
in proportion tasks are intelligence (Hart 1981b), attitudes towards mathematics
and students’ metacognitive abilities (in Tourniaire & Pulos 1985, Karplus et al.
1983a).

2.1.9 Teaching Approaches to Ratio and Proportion

Since learning cannot be isolated from teaching, we now examine some teaching
approaches which try to build proportional reasoning. Ratio and proportion are
concepts that require a lengthy learning process before they are mastered. The
usual approaches followed by school teachers are criticized as impoverished and
overconcise (see Streefland 1985). The concepts are taught in isolation from other
concepts, there is lack of visualisation (opcit) and there is no transfer of knowledge

from math-classrooms to other disciplines and to everyday situations (Carraher et
al. 1984).

The most common methods taught for solving problems in ratio and proportion
are the ‘unitary method’ (find how much it is for one unit), the ‘rule-of-three’ or
‘cross multiplication’ (Hart 1984) to test for the equality of ratios, converting

unequal ratios to fractions with a common denominator in order to compare them
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(Karplus et al. 1983a). The teaching of these methods have been widely criticized,
especially the cross multiplication method (Carraher et al. 1984, Lesh et al. 1988).
The rule-of-three is a method poorly understood by the students, is seldom used
as a solution method (Hart 1984, 1981b, Streefland 1985) and in cases where it is

used it can destroy instead of facilitate proportional reasoning.

Training studies have employed group (eg. Lunzer & Pumphrey 1966), in-
dividual (eg Wollman & Lawson 1978, Nesher & Sukenik 1991) and classroom
(eg Carraher et al. 1984, Hart 1981b, 1984) approaches. Lunzer and Pumphrey
(1966) used an approach working with Cuisenaire rods. Wollman and Lawson
(1976) compared an active method (Cuisenaire rods, series of geometric shapes,
etc) to a verbal method (textbook, discussion with the experimenter) and found
that active-method students outperform other students, in most tasks. Nesher
and Sukenik (1991) taught students of 7, 8, and 9 years of age the concept of
ratio in a formal way and had satisfactory results. Hart (1981b) suggests that
through attempting practical problems students may abandon erroneous strate-
gies (additive strategy). Lamon (1990) supports the view that concrete activities
are important in abstracting the concept of ratio. Hart (1984) and Szetela (1980)
introduced the use of calculators to remove from students the demand of having to
perform computations as well as think through a solution. The calculator-based
instruction groups achieved higher scores than the students that did not use a

calculator but the difference was significant only in less familiar problems.

Hart (1981b) suggests that visual confrontation with erroneous responses may
eradicate constant-difference strategies (a-b difference results in gross distortions
from the correct answer). Streefland (1984) suggested an interdisciplinary ap-
proach and a spiral curriculum to account for a long term development through
sound connections with other concepts. He also suggested (1985) the use of vi-
sual models (sector diagram, ratio table) to support the learning process and to
broaden the applicability of the newly acquired knowledge. Lovell and Butter-
worth suggested that differences may exist in the development of proportional

reasoning across cultures, since “the form of thinking skills practised and valued
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by society seems to make a difference to the ease with which formal thought can
be elaborated” (1966: 8).

The general notion though coming from the previous studies is that teaching
approaches should take into account the students’ initial, intuitive methods and
introduce formal strategies and algorithms after having revealed the inadequacy
of their own methods. Through conflict (confrontation with limitations of their
methods) and reflection, the development of consciousness and therefore a more

formal proportional reasoning can be achieved (Streefland 1984).

The importance of similarity in our everyday life and in the mathematics cur-
riculum are well established. Ratio and proportion are among the concepts closely
related to similarity. They require a long term and hierarchical development, based
both on qualitative and quantitative changes. We find though that these concepts
are taught in isolation, with no reference to everyday life situations. Therefore we
would propose a teaching approach that takes into account everyday life applica-
tions of these concepts and appreciates the strength of a more active, practical

perspective.

Rectangle-similarity has to be considered separately due to its peculiarity com-
pared to similarity of other shapes. Difficulties can arise from the perception
(features) of a rectangle (eg length-breadth confusion). Such aspects that may
hinder performance on similarity tasks have to be ‘disclosed’, identified and reme-
died through this approach. For this approach to be applicable in many cases, it
should also take into consideration students’ individual differences in the cognitive
and affective domains. It remains to be seen whether such a teaching approach

can be achieved.
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2.2 Haptic Exploration of Geometric Shapes

Denmark and Kepner (1980) reported that 74 per cent of the teachers that took
part in their survey agreed on the importance of students being able to recall prop-
erties of simple geometric shapes. National and International surveys of mathe-
matical performance revealed that secondary students cannot identify and name
shapes like the kite, rhombus, trapezium, parallelogram and triangle (AAP 1983,
Chicago Project in Hoffer 1983, APU 1980 in Dickson et al., 1984; NAEP 1980
in Dickson et al. 1984). Students’ performance is even poorer when it comes to
items involving the understanding of features and properties of shapes. For in-
stance, only 14 per cent of the 13 year olds could select correctly the necessary
conditions for a figure to be a rectangle (NAEP 1980 in Dickson et al. 1984).
These findings suggest perhaps that the approach to the teaching of geometric
shapes is faulty.

In the following section haptic exploration will be suggested as a different
abproa.ch for the teaching of geometric shapes. By haptic exploration we mean
the intentional and conscious movements of our hands about an object (Weber
1978). The importance of visualisation and action will be addressed along with
the limitations of visual perceptions in the formation of geometric meaning in
general. An account of touch modality and the development of haptic exploration
strategies will follow, in relation to the development of geometric thought. Views
on coding of perceptual information and on mental representations of concepts
will be discussed in an effort to distinguish the perceptual, cognitive and other

possible factors that characterise the haptic exploration of shapes.

2.2.1 Visual Limitations and Geometric Thought

Much learning of geometric meanings involves the use of diagrams (Dickson et
al., 1984). Bishop observed “one problem with geometry is that it is impossible

to draw a generalised diagram” (1983: 180). Whenever we draw a diagram of a
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geometrical object, for instance, there is a loss of information. The restitution
of the meaning of what the diagram represents comes due to a common (to some
extent) geometrical culture (Parzysz 1988). Restitution comes only after geometric
meaning has been acquired. This ‘limitation’ of geometry is accentuated by the
way concepts are introduced. The formation of a geometric concept has to be

based on a number of critical attributes of the concept (Hershkowitz 1989).

These critical attributes are the features and properties that characterise and
differentiate the particular concept from all the others. When concepts are in-
troduced by a few examples, some of them tend to be more popular than others
(Roth 1986). Prototype examples constrain students’ knowledge of a concept to
these cases that are more often addressed in a book or by a teacher, neglecting

particular cases.

Moreover, prototype examples may ‘attach’ additional, non-critical attributes
to a concept (eg orientation effects), in the same way as they ‘detach’ other at-
tributes (eg being able to draw an isosceles and a right-angled triangle but not
a right-angled isosceles one). Being taught in this receptive way, students may
attempt to idealise any task at hand by transforming it into a special case, or

seeking non-critical attributes to support their reasoning (Hoffer 1983).

Fisher suggests that “the additional non-critical attribute of a prototypical ez-
ample draws our attention because it is visually strong and usually registers our
minds spontaneously”, in addition to the fact that prototypical examples are usu-

ally presented before any other example (in Hershkowitz 1989: 73-74).

This view proposes a visual limitation which facilitates the misleading poten-
tial of prototypical examples. Indeed, as Eysenk and Keane (1990) suggest, visual
stimuli are often incomplete and ambiguous. It is suggested that such simple il-
lusions as centration (the extent to which vision is centred on one point, side,
relationship, rather than on another), diminishes very little in the course of devel-
opment (Piaget & Inhelder 1956).

The effect of these visual-perceptual limitations cannot be ameliorated by the

provision of information obtained in other ways. Hershkowitz (1989) provided her
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subjects (students and teachers) with the verbal definition of isosceles and right-
angled triangles. Despite these verbal cues the subjects’ identification ability of
the concepts did not change. Michotte (1991) suggests that such conflicts between
perceptual evidence and information obtained from other sources can be resolved
only by knowledge. Knowledge in our case is related to initial learning of a concept

and the ‘exposure’ of the concept’s critical attributes.

2.2.2 Circumventing Visual Limitations

Visualisation, or spatial ability, or spatial perception is, in part, an intuitive feel for
one’s surroundings and the objects in them (Del Grande 1990). It is this intuitive
cha.ra.cti;:r of visualisation that creates difficulties when it comes to addressing
the actual abilities from which is constituted. For the purposes of geometry we
can define visualisation as the ability to interpret figural information (the figural
language of geometry) and the ability to carry out visual processing (manipulating
figural stimuli, associating them with previous experiences, translation of non-
figural stimuli into visual terms) (Bishop 1983, Del Grande 1987).

The ability to carry out visual processing places emphasis on the process and
not on the nature of the stimulus. The stimulus does not have to be figural to be
processed visually (Bishop 1983, Dickson et al. 1984). This ‘versatility’ of visu-
alisation increases its applicability and therefore its importance. Initially, visual
processing can help to discard geometry’s visual limitations by the recognition and
discrimination of a concept’s critical attributes and by not being deceived by the
additive ones (eg mental rotation). Furthermore, it can facilitate performance in
geometry by the visualisation of the elements of a concept or concepts, providing

support for deductive reasoning (Hershkowitz 1989).

Not all people employ visual processing in their mathematical thinking (in gen-
eral) to the same extent but visualisation is to some extent a trainable skill. Such
a training should be approached in an ‘active’ way (Bishop 1983, Del Grande 1987,

1990). This implies that the individual perceives stimuli referring to the concept
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with other senses apart from vision, eg by touching, manipulating, constructing,

drawing etc.

Apart from its role in the development of visualisation, action plays an impor-
tant role in the formation of geometrical concepts themselves. There is always a
correlation between the concept and the aspects of the actual activity addressed
by the concept (Lakoff & Johnson 1980). In other words, a concept fits an expe-
rience or a whole reference of experiences. These experiences define the concept
in terms of interactional properties, which precede its inherent properties (Piaget
& Inhelder 1956, Lakoff & Johnson 1980). These interactional properties may
have to do with motor activity, purpose, function, size, etc. Taking for example
the concept of a geometric shape, the ‘affordances’ are discovered initially by the
individual by using his/her motor skills. The recognition of the shape just by its
internal geometry follows, drawing on an abstraction of all the past experiences
concerning this particular shape, in the same way that a natural number is the

characteristic property of a certain collection of sets (Skeinp 1986).

It follows that visualisation and action can ameliorate misunderstandings im-
posed on geometric thought by the limitations of vision and of inadequate teaching.
Haptic exploration of geometric shapes incorporates both visualisation and action.
It relates to the perception of these shapes using tactile-kinesthetic information
without the assistance of any visual input (Pick 1980, Schiff 1980). It involves
the translation of the haptically-obtained stimuli into a spatial image of a visual
kind (Piaget & Inhelder 1956, Weber 1978) (but see later discussion on mental
representations of concepts). For the shape to be identified (ie named), some kind
of match is sought between this spatial image and the already existing representa-
tions (concepts) in the individual’s mind. In the case of recognising an unfamiliar
geometric shape, the visual image is usually compared to simultaneously or con-
tinuously perceived visual stimuli (the shape is recognised from a set of visually

displayed shapes).

From the descriptions of identification and recognition processes, it is obvious
that visual processing ability and action play an important role in the haptic ex-

ploration of geometric shapes. Action is what actually provides the individual with
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the required information, that after being processed visually will lead to a mental
representation of the shape. Moreover the evocation of the mental representations
of already acquired concepts suggests that possible misunderstandings could be
detected. Piaget and Inhelder (1956) considered haptic exploration as the border-
line between perception and mental representation of concepts. The perceptual
stimuli can act as remediation agents, assuming that haptic exploration strategies

of the individual are sufficient to provide him/her with accurate information.

Thus there is evidence to support the view that haptic exploration of geometric
shapes may provide opportunity for training of visual processing skills and to sup-
port an ‘active’ approach in teaching geometry. Combining the positive elements
of these two aspects of geometric thought, haptic exploration can provide us with
a comprehensive way of circumventing some visual limitations in the teaching of

geometry.

2.2.3 Touch Modality and Haptic Perception

The sense of touch has an essential role in exploratory and manipulatory activities.
These activities require the integration of motor and sensory activities. Active
exploration of shapes involving the sense of touch is performed by moving our
hands and fingers about the object. The glabrous skin (soles of our feet, palms of
our hands and on the smooth surfaces of our toes and fingers) is ‘equipped’ with
a number of mechanosensitive receptors (four types of sensory units). Two types
of these units are responsible for spatial discrimination, allowing localisation of
stimuli (local sign). These types of sensory units occur in high densities at the
fingertips as compared to other parts of our palm. The other two types of units
respond to indentations, protuberances, stretching of the skin and tangential forces
in the skin created when manipulating an object (vibratory stimulation, intensity
of stimulus). These types of receptors have a much lower density compared to the
previous units and are allocated uniformly in all parts of the palm (Pick 1980,
Vallbo 1987).
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In addition to the previous information, the individual perceives also proprio-
ceptive and efferent information (Pick 1980). Proprioceptive information concerns
the position and movement of the body, particularly those parts involved in active
exploration. This information is gathered by kinesthetic, vestibular' and visual
receptors (Sugden & Keogh 1990). Efferent information is available because the
individual signals consciously an action plan to perform the exploration. The
action plan and the exploration while performed may be altered because of the

gathered proprioceptive information (see §3.3).

2.2.4 The Development of Haptic Exploration Strategies

Abravanel (1981) suggests that when a shape is explored, a series of sequential
steps are required for the shape to be identified or recognised. Initially the indi-
vidual has to be aware that exploration should be attuned not in manipulating the
object (mere performance) but to perceiving its shape. A generic identification
of the principal form characteristics follows, which is supplemented by strategic
exploration of features and relations, leading to an integrated percept. Thereafter,
gfoss or fine comparisons can be made with the mental representation or the visual

stimuli.

These sequential steps are regulated by developmental changes. Children of
3-4 years perceive exploration of shapes as mere performance. They tend to grope
the object, pat it with their fingers in a more or less meaningful manner. Recogni-
tion of the shape usually arises as a matter of accident. By the 5th or 6th year of
age children use both hands to manipulate and/or explore the object. They seem
to attend to the major features of the object but their strategies are more sys-
tematic, starting to discover relationships among features (Williams 1983, Piaget
& Inhelder 1956, Abravanel 1981). After the age of 6 exploration becomes me-

thodical. Movements of the two hands are coordinated, they move in succession,

!This is information about the position and movement of the head in relation to the
body (Sugden & Keogh 1990)
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having one or more reference points. Reference points involve systematic return
to these points, so that the movements can be reversed and therefore repeated
and more easily integrated (Piaget & Inhelder 1956, Pick 1980). By the age of
9 children’s fingers become also organs of perception, increasing the efficiency of
the strategies. Moreover, children start to use strategies that involve simultane-
ous information pickup, besides the non-mobile and sequential scanning stra.ﬁegies
(Millar 1981, Abravanel 1981). It is suggested that blind people explore objects
in ways that are likely to provide unified percepts, which in general lead to more

accurate mental representation of the shape (Abravanel 1981).

The perception and memory of individual objects are heavily influenced by
their relations to their surroundings. Visual and tactile experiences with objects
can provide the individual with external frames of reference. The activation of
an external frame of reference in haptic exploration of objects can assist the per-
ceiver. To constitute, though, a step of an exploring strategy, an external frame
of reference has to be evoked intentionally. This means that the individual has to

be capable of deductive inference (Bryant 1974).

It is suggested that perceiving shape and length by the means of haptic explo-
ration may enclose qualitative differences (Bryant 1978, Weber 1987, Abravanel
1981). The exploration strategies for length follow a development analogous to
those for shape. The coding though of stimuli from haptic perception of length
may be of more quantitative nature (absolute coding). On the contrary, shape
perception involves relative coding, which makes it a more elaborate and tedious
process. Absolute values assist intra- but not inter-tactile explorations. In the
latter cases relative values are more successful. Thus internal geometry of a shape
involves the relationships between the shape’s characteristics as well as the char-
acteristics themselves. One cannot give absolute values to such characteristics and
relations (Bryant 1974).
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2.2.5 The Development of Haptic Exploration Strategies
and Geometric Thought

The development and refinement of haptic exploration strategies correspond to
the development of the tactile-kinesthetic system in young children. Additionally,

haptic exploration strategies reflect in some way the geometric thinking of children.

In the van-Hieles model of the development of geometric thought, the child
moves from a global recognition of shapes (level 1) to a more analytic appreciation
of the shapes’ internal geometry (level 2). The emergence of interrelationships
of characteristics both within shapes and amongst shapes follows (level 3). The
ability for deductive reasoning (level 4) and the construction of theory in complete
absence of concrete models (level 5) are the final stages in the model (Dickson et
al. 1983).

Usiskin addresses the difficulty in classifying, reliably, a student according to
the model. Students may move back and forth while they are in transition from
one level to the next. Moreover, there may well be students performing at different
levels for different concepts (Burger & Shaugnessy 1986). These findings suggest
that assigning ages to each level of the model would be a difficult task and possibly

of no practical value.

From the above description we find a correlation between the development of
geometric thought and the strategies employed in haptic exploration of shapes. A
more-or-less global exploration strategy would agree with the first and second lev-
els of geometric thought. From the appreciation of the interrelationships between
a shape’s characteristics (level 3), more analytic and methodological strategies are
developed. When the child reaches the level of deductive reasoning, simultaneous
perception of information and external frames of reference are employed to enrich

and improve exploring strategies.



Chapter 2. Focusing on Certain Mathematical Areas 37

2.2.6 Perception of Geometric Shapes and Mental Pro-

cesses

We discussed earlier the ways in which the individual can gather the tactile-
kinesthetic information that will lead to an identification or recognition of ge-
ometric shapes. How do these perceptions translate into a mental representation?
How do we decide whether this mental representation matches the corresponding
concept in our mind? Can we identify haptically a shape that has been abstracted
initially only by visual stimuli? Roth (1986) observed that geometric figures seem
to be well defined ‘in themselves’. That is, a conceptual rule exists that defines
the necessary and sufficient characteristics of the geometric shape. Most concepts
in geometry though are conjunctive and their formation depends on the number
of critical attributes of its concept (Hershkowitz 1989). Therefore:

“In mathematics a definition does not serve to ezplain to people
what is meant by a certain word. In mathematics definitions are links

in deductive chains but how can you forge such a link unless you know
in which it should fit?” (Freunenthal 1973: 416)

What is actually coded then in these representations? Bruner and his col-
leagues suggested that individual concepts are represented by lists of properties
or features, which actually define the concept (Roth 1986). Rosch though argued
that in some categories some of its members are more typical than others (opcit).
This view is in accord with the earlier discussion on prototype phenomenon and
suggests that a list of features simply typifies rather than defines a certain cate-
gory. An alternative view is provided by the Gestalt approach, where the whole
is more than the sum of its parts and shape identification depends on the overall
shape of a perceptual stimulus rather than on its individual features (Eysenk &
Keane 1990).

All the previous approaches neglect the fact that people know many things
about the relationships between the features of a shape. These relationships should

be coded in mental representations and can be identified as ‘higher order’ features
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characterising a concept (Roth 1986). These higher order features, are the means
of forging the links within a chain and between chains. There may well be, then,
different representations of one concept. These may serve the needs of differ-
ent tasks (drawing, verbal response), different contexts (maths-classes, everyday

world) and depend heavily on the individual’s knowledge (opcit).

Thé form in which such representations are stored mentally is unknown as yet.
Piaget (1956) and Weber (1978) believed that physical tactual features, encoun-
tered when exploring shapes, are coded as images or in terms of spatial features
in exactly the same way as in vision. It would be an oversimplification, though,
to assume that all people, always, process perceptual stimuli as images. Mental

representations can be symbolic or distributed (Eysenk & Keane 1990).

~ Symbolic representations can be either analogical (nondiscrete, implicit, modal-
ity specific), or propositional (language-like, discrete, explicit, amodal). As Millar
(1981) suggested though, it is next to impossible to distinguish totally between
these two forms of representation. Furthermore it was suggested that ‘verbal’ and
‘non-verbal’ representational systems are interconnected by referential links, or
that a special, spatial medium exists where representations are constructed by in-
formation coming from image and propositional files. An alternative consideration
of the issue came from Johnson-Laird. He introduces mental models as represen-
tation of concepts, which can be wholly analogical, or partly analogical and partly
propositional, which also are distinct from but related to images (images are con-
sidered as mental models ‘viewed’ from a particular perspective/angle) (Eysenk
& Keane 1990).

Distributed representations of concepts account for a computational model of
mental processes, consisting of networks of neuron-like units (connectionist ap-
proach). According to this view, information about a shape is stored in modality-
specific units that are all interrelated with multiple synaptic connections. Con-
cepts are represented by a pattern (or many equivalent patterns) of activation of
neuronal networks. Each unit has an activation level which distinguishes whether
the information stored in it will be disclosed and used or not during a certain task.

An activation pattern then ‘excites’ only those units that hold useful information
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for the task at hand (Anderson 1990). As Hinton et al. suggest, it is possible that
all the previous models complement each other. We can accept that symbolic rep-
resentation may characterise higher levels of cognition, while lower levels may be
represented in a distributed fashion (to account for the mechanical and eruptive

fashion of mental processes) (Eysenk & Keane 1990).

Since there is no consensus, either on how perceptions are coded or on how
these codes are represented mentally, it is not surprising that there are many the-
ories about shape identification. ‘Template’ theories suggest that for a shape to
be identified a best match has to be achieved between the perceptual information
and the mental representations stored in the mind. Each template corresponds to
one shape and it is obvious that a shape cannot be identified if no corresponding
template exists in the mind from past experience (Anderson 1990). ‘Feature’ the-
ories suggest that shapes are recognised after a feature analysis of the perceptual
input. These features are combined and compared against information stored in
memory (Eysenk & Keane 1990). Finally, ‘prototype’ theories seek for a match
between the basic or most crucial elements of a set of stimuli and information from
past experience (Roth 1986).

Recognition of shapes does not rely on stored mental representations to the
same extent as identification (Anderson 1990). The perceptual information gath-
ered from haptic exploration is compared directly to an existing visual image.
This process is more a function of cross modal communication of information and

is considered to be more successful than identification (recall of concept).

2.2.7 Visual and Tactile-Kinesthetic Systems Integration

‘Unity vs. separateness’ of sensory modalities has been a long lasting argument in
the field of perception (Gregory 1974). Molyneux, more than two centuries ago,
“asked his celebrated question whether a blind man, made to see, would recognise
by sight alone an object that he had hitherto perceived only through touch” (Millar
1981: 281). Knowledge is perceptually based but can it be classified as being
either visually based or tactually based?
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Many researchers agreed to the ‘unity’ of sensory modalities. Information re-
tained in the nervous system is thought to be represented without specific reference
to one single modality (Abravanel 1981). In ‘separateness’ theories a translation
medium is required to relate the otherwise different and separate forms of informa-
tion. Neurophysiology findings tend to suggest that modalities are complementary
and convergent. “At higher levels of the nervous system space is represented by
overlapping integrated inputs from number of different modalities rather than in

independent visual, auditory and somesthetic spaces” (Jones 1981: 110).

Therefore we should consider representations of a certain shape derived from
visual and tactile-kinesthetic systems as equivalent. The organ differences between
vision and haptics however preclude complete isomorphisms of the activities used
for information gathering. Under normal conditions vision is dominant over hap-
tics (Matlin 1988). Vision is considered to be more holistic? as compared to a se-
quential gathering of information by the haptic subsystem. A haptic exploration
strategy that allows simultaneous information pickup can smooth this inherent
difference between the two systems. Gregory (1974) reported the difficulty that
a blind person had, after having his sight restored, in identifying relatively unfa-
miliar objects until he had explored them by hand. Moreover, blind and sighted
individuals perform similarly in recognising haptically unfamiliar shapes (Millar
1981). This evidence suggest that the term ‘cross-modal’ should not be used in
a ‘blanket manner’. The development of intersensory integration relies heavily
upon intrasensory development and vice versa. Until the age of 5-7 visual-visual
recognition of shapes is the most advanced, with visual-tactile and tactile-visual
following and tactile-tactile being the least advanced. By the age of 9-11, as tac-
tual perception becomes more efficient, intravisual recognition is the most efficient

with the other conditions being equally advanced (Williams 1983, Jones 1981).

?Except for very small objects or those fixated at a distance great enough to produce

a small retinal image, visual forms are not considered unified (Abravanel 1981).
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Moreover, as Williams suggests, intersensory integration takes place at three
levels. The first level “nvolves simple, low level or automatic integration of ba-
sic sensory information”. The next level “nvolves the higher order integration
of perceptual features of stimulus information” and finally “a cognitive-conceptual
integration process that involves the transfer of ideas or concepts across modali-
ties” (1983: 142). It is reasonable to suggest that intersensory experiences can
refine mental representations and remedy possible misunderstandings. Therefore,
a fusion of the visual and tactile-kinesthetic systems can be obtained through

intermodal and particularly intramodal experiences.

Evidence reveals students’ discomfort with tasks relating to an understanding
of features and properties of geometric shapes. Haptic exploration of geometric
shapes may provide an approach suitable for identifying and remedying possible
misunderstandings in the mental representations of these shapes. This approach
can improve visualisation skills and assist in the development of geometric and
deductive thinking. The mental process of exploring geometric shapes haptically
is complex. This complexity is reflected in a lack of consensus about the ways in
which physical features are coded mentally, the form that they take when repre-

sented mentally and the extent to which sense modalities are integrable.

There are still, other agents that can determine behaviour in haptic exploration
tasks which have not been addressed in the previous text. For sensory stimuli to be
perceived they first have to be noticed. During the haptic exploration of geometric
shapes by the individual, surface and material variables are sensed as well as the
geometric variables of the object. Moreover, sound and olfactory senses and other
external distractions may interfere with concentration on the appropriate tactile
stimuli (Pick 1980, Matlin 1988).

Attention on the appropriate stimuli is closely related to the intentions of the
individual. Tactile shape perception necessarily involves conscious deliberation.
Therefore there should be a relationship between the individual’s goals and the
information extracted from the haptic exploring task (Gibsonian theory, Miller
1989). Knowledge and memory are also important since they influence the ease

with which mental representations are retrieved from the mind (Roth 1986, Schiff
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1980). Personality factors may differentiate performance in haptic exploration
tasks (Schiff 1980). These factors lead an individual to perform a wide variety
of perceptual tasks in a certain fashion. If, then, haptic exploration of geometric
shapes is to be adopted for enriching geometric experiences, a consideration of all

the previous factors has to be undertaken.



Chapter 3

Practical Activities and Motor Skills

Working on practical activities demands a certain level of motor-control com-
petency. Materials accompanying a practical activity have to be handled with
dexterity. In the following text we shall describe a movement situation in general
terms and motor skills development will be addressed. We shall investigate the
interaction of a student’s developmental stage of motor functioning with perfor-
mance on a practical activity. Other factors affecting movement performance will

be considered as well.

3.1 Describing a Movement Situation

By the term ‘movement’ we mean any body movement. A movement skill is an or-
ganised sequence of movements initiated to achieve a certain outcome. Movement
skills are “goal directed, organised, adaptive and involve input and direction from
sensory, perceptual and cognitive processes” (Sugden & Keogh 1990: 1). We are
mostly interested in ‘fine control’ movements of the hand and especially of a func-
tional asymmetry form (both hands make different movements in a coordinated

and complementary manner) (Keogh & Sugden 1985).

A movement situation is characterised by the mover and the environment in

which the movement takes place. The mover carries a repertoire of resources to

43
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cope with the requirements of the task and the environmental conditions (physical
and social) (opcit). The actual movement is.produced by the neuromotor system,
since every movement involves muscular contractions. The mover’s resource reper-
toire functions under the constraints of the biological and psychological conditions
existing when the neuromotor system produces the movement (Laszlo & Bairstow
1985). Biological conditions refer to the current state of the individual’s phys-
iological systems, neuromuscular system, nonmuscle tissue and bone structure.
Psychological conditions refer to the perceptual, cognitive and emotional systems.
We see then that movement performance is regulated by endogenous and heteroge-
neous conditions. There is a constant interplay between these conditions and the
task’s requirements. Finally each movement situation is characterised by a level
of demand which characterises the challenge that faces the individual (Keogh &
Sugden 1985).

3.2 The Development of Motor Skills

Performing in a movement situation requires processing of body and environ-
ment information. As individuals grow older they become more proficient in their
processing abilities and their sensory modalities are further refined. The best per-
formance is achieved when the task’s requirements match or are congruent to the
individual’s processing abilities. Every movement task is assigned an M-demand
which is the demand on the individual’s mental space. Performers with the same
mental space structure may still perform differently according to the actual men-
tal space that are able to use. Individuals, then, should be classified not only
by their chronological age but also by their processing abilities (Keogh & Sugden
1985). Attention is conceived of as being a very limited mental resource (Anderson
1990). It implies withdrawal from some things in order to deal effectively with
others (Klein 1976). Therefore, when young children are confronted with a novel
motor task, some kind of time sharing takes place to compensate for the atten-

tional capacity limitation. Moreover, as children grow older, they develop more
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efficient strategies for selecting and organising a task’s relevant variables (Keogh
& Sugden 1985).

Another information processing faculty is memory, which also improves with
age during school years. Addressing memory not merely as remembering and
forgetting ,it is related to knowing, knowing how to know and knowing about
knowing (Sugden & Keogh 1990). Short term motor memory limitations require
the use of control operations (eg rehearsal) to maintain the attended information.
Very young children seem to have few and unsophisticated processing strategies,
which become refined with age and are used more spontaneously (Keogh & Sug-
den 1990, Laszlo & Bairstow 1985). Contrary to the study of short term motor
memory, studying long term movement retention is a difficult task. Little research
has been undertaken with children. Research with adults has proved that con-
tinuous everyday tasks (like swimming) are particularly resistant to decay. The
tasks that are affected by time are the discrete tasks (eg using an instrument)
(Keogh & Sugden 1990). It is suggested that important components of a skill may
be learned without actually performing the movement (Suzuki method for violin,
Keele & Summers 1976). This stresses the importance of mental strategies in the

learning of a movement.

Along with the development of the individual’s processing abilities, sensory
modalities develop with age as well. This development takes place both in an
intrasensory and in an intersensory sense. Studies with 12 to 14 year olds sug-
gest that children with more advanced development of tactile-kinesthetic abilities
perform better on conceptual and intellectual functioning tasks (Williams 1983).
There is little doubt also about the role that vision plays, especially in the de-
velopment of fine motor skills. Full development of fine motor skills involves the
regulation of movement patterns by visual information (opcit). The individual’s
ability to use or combine simultaneous information from different senses appears
to be rather important. Even though some relationships between modalities are
developed by the first year of life, development continues in childhood and even

in adulthood. The level of intersensory development seems to be more impor-
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tant in the acquisition or refinement of fine motor skills (Laszlo & Bairstow 1985,
Williams 1983).

3.3 Learning and Movement

Fowler and Turvey (1978) suggest that learning a movement skill involves the dis-
covery of an optimal self-organisation in the sense of organising the neuromotor
system in coordinative structures. Any particular movement pattern is then as-
signed with a relative “attractiveness” for solving a particular movement problem
(Whiting 1980). This attractiveness may be considered as a mere personal prefer-
ence or may be determined by the actual production of success or of economy in
effort.

Models of learning in movement tasks fall into two categories whether or not
feedback information is used (Adams 1976). ‘Open-loop’ models have no feed-
back or mechanisms for error regulation and therefore no compensatory capa-
bility. ‘Closed-loop’ models have feedback, error detection and error correction
as key elements. Classroom learning activities can be better addressed by closed-
loop models because of the appreciation ascribed to feedback. Even in well learned
tasks, performance cannot become independent of feedback information. On the
other hand, there are studies suggesting that reliance on feedback increases as a

skill becomes well learned (Laszlo & Bairstow 1985).

Every movement task has a goal which initiates the learning process. According
to the closed-loop models sensory and kinesthetic input, along with instructions,
are attended to and stored in short term motor memory (Keogh & Sugden 1985).
Long term motor memory is then sought for relevant information from past motor
experiences and a plan of action is created. The motor programming unit then se-
lects and activates the relevant muscles required for the performance of the specific
movement (Laszlo & Bairstow, 1985). It is suggested that as the efferent outflow
reaches the muscles, an efferent copy the plan of action is also sent to a comparison

centre (Keele & Summers 1976). There, kinesthetic and other sensory feedback is
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compared to the efferent copy. In that way the success of the movement is being
assessed while performed and corrections of the efferent outflow and efferent copy

may follow.

Closed-loop models have been criticized on a number of issues. They face
storage problems, since for every movement a reference of correctness must exist
against which the movement must be compared. These models also seem to treat
performance in novel motor situations inadequately. In relation to the storage
problem, success in novel movements cannot be justified only by a library of limited
action plans or references of correctness (Whiting 1980). Finally, a persistent
problem of theorists in motor control is the detection and correction of errors by
the mover. In closed-loop models corrections cannot be made before the commands
for actions are generated (Schmidt 1976). Only then feedback from the efferent
outflow can be compared against the efferent copy. Thus the only error that the
performer can detect is the failure, for some reason, to execute the plan of action
effectively. Also the model cannot explain how the mover deals with an error
in which the environmental goal is not reached despite the fact that the plan of
action has been followed successfully (Keogh & Sugden 1985).

Schmidt’s (1976) schema theory provides a possible solution for these problems.
Schema theory postulates two separate states of memory, one for recall and one
for recognition. The recall schema is responsible for the generation of impulses to
the neuromotor system and is built up from past experience, taking into account
the actual outcome and the response specifications. The initial conditions of the
movement situation direct the recall schema to this particular movement. The
recognition schema makes possible the generation of error information about a
movement and is built up similarly, based on sensory consequences and actual

outcomes and regulated by the initial conditions of the task.
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3.4 Factors Affecting Performance and Learning
of Motor Skills

Apart from the developmental issues discussed earlier, there are a number of fac-
tors that may affect the learning of motor skills and performance in movement
situations. The initial instructions and the feedback received after the completion
of the movement are crucial to the performance in a movement situation. Initial
instructions can be verbal or demonstrated, or both. They direct attention to
certain aspects of the task at hand or even indicate strategies for dealing with the
task. Designated strategies may increase the rate of initial skill acquisition but do

not facilitate learning in transfer situations (Singer 1980).

Any event that follows a response is considered as a reinforcer increasing the
response’s probability of occurrence. In motor learning this event is called “knowl-
edge of results” (KR). Knowledge of results gives information about the goal
achievement and if given in well defined quantitative, demonstrated terms can
lead to improved performance (Laszlo & Bairstow 1985). The optimal level of KR
becomes more precise with age. Caution is needed though in its use, since extreme
levels, very imprecise or very precise, can destroy performance on the task (Keogh
& Sugden 1985). It is suggested that artificial feedback should be used only tem-
porarily in cases where natural feedback resources are impoverished. Individuals
should be encouraged to use their own mental qualities to evaluate movement

performance (Keele & Summers 1976).

Personal and social influences are probably indirect and can either facilitate or
interfere with the interplay of other factors. Differentiation in task proficiency may
reflect different opportunities for practising a movement skill or different interests
and motivation (Laszlo & Bairstow 1985, Keogh & Sugden 1985). Therefore con-
centrating only on what the mover can or cannot perform may be misleading at

times and may not show what the individual is actually capable of doing.
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The demand that a movement task may pose to an individual may be either
on motor control or cognition, or both. During the acquisition of a new skill the
learner attempts to understand the requirements of the task, with a consequent
deterioration in motor performance (cognitive stage). As the situation becomes
more familiar, motor control is refined by the use of KR (associative stage). The
movement skill becomes autonomous when the demand for cognitive control is
further reduced (autonomous stage) (Fitts’ stages of learning, Wall 1986). It is
obvious then that an interplay between motor and cognitive functioning does exist.
As schema theory suggests, movement memory is cognitive since it is stored as rules
and principles and can be applied in a range of movement situations. The efficiency
of an action plan then depends on the amount and quality of information contained
in the long term motor memory (Singer 1980). The link, though, between motor
and cognitive functioning is far from being direct, especially after the seventh year
of age (Williams 1983). It is worthwhile mentioning that fine motor behaviour
is the most important contributor to whatever relationships exist between these

modes of functioning, motor and cognitive (Williams 1983).

3.5 Motor Control Skills In Practical Activities

Learning situations in mathematics classes, and particularly practical activities,
require fine movements of a functional asymmetry form. Practical activities can
be considered as novel movement tasks, that at times require the use of other,

supposedly well learned skills (eg the use of drawing instruments).

If we accept Bruner’s view about motor behaviour, every movement comprises
a number of movement units, which are part of a movement vocabulary with
movement syntax (modularisation) (Sugden & Keogh 1990). Every movement
unit can be seen as a vector, having as parameters direction, extent, velocity and
force (Laszlo & Bairstow 1985). All these factors have to be considered before
the activation of a movement unit. The production of the movement becomes

even more complicated when the movement requires the release of objects (eg in
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construction tasks) (Keogh & Sugden 1985). It is then obvious that applying even

well learned movement units in a novel practical activity reflects a fair amount of
difficulty.

The relationship between motor skills and performance in mathematics is an
area, though, that considerably lacks research. Motor skill learning resembles that
of cognitive skills. Fine motor movements require the production and execution
of an action plan. This functioning ‘appears’ as motor only after the cognitive
difficulties of mastering the certain skill have been superseded. Attention should
be drawn to the fact that the quoted research findings attempt to explain how the
development of motor functioning as a whole correlates with cognitive functioning
as a whole. This perspective cannot address cases where manual dexterity is
accompanied by underdeveloped cognitive functioning, or where sound cognitive

development is impaired with movement skill deficiencies.

Motor skills are only the means to exploit an activity’s potential in practically
demonstrating mathematical experiences. The research findings on the develop-
ment of motor functioning processes are important. When developing a practical
activity special care should be given to the demand on motor control skills. There
is the danger of going beyond the students’ level of motor development and simply

asking too much of them.

In practical activities there is also a cognitive demand, of a different nature,
concerning the mathematical (or other) concepts involved in the problem situa-
tion. This cognitive demand may interact further with motor performance. Well
mastered movement units may be proved inefficient if they cannot be collated to
form an appropriate action plan (eg the use of drawing instruments in geometric
construction). Moreover failure to resolve a novel problem situation can temporar-
ily affect the actual motor skills (negative affective predisposition). Therefore the
cognitive demand or difficulty of the task is of critical importance in the successful

application of movement skills.
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Methodological Background

4.1 The Greek and the Scottish Educational Sys-

tems: An Outline

Formal education in Greece begins at the fifth year of age, with children spending
one year in nursery school (Neipiagogeon). Primary education is completed in six
years (Demoticon, 6th to 12th years of age), while secondary education covers six
more years of schooling (12th to 18th years of age). Secondary education is fur-
ther divided, in equal parts, between the Gymnasium (12th - 15th) and Lyceum
(15th - 18th). Lyceums are mainly of three types: the ‘General’, the ‘Techni-
cal Vocational’ and the ‘Integrated’. The Integrated Lyceum provides experience
in a wide range of practical fields. Other types are available as well, emphasis-
ing the teaching of specific subjects (Classical, ‘Ecclesiastical’, Musical, Physical
Education). The General Lyceum is usually attended by students intending to
proceed to university, even though all Lyceums give access to Higher Education
(universities, technological institutions). The national curriculum is common to
all schools and the same textbooks are used nationwide (issued free of charge).
There are no clear suggestions concerning individual pupil differences in ability
and attainment. Assessment is informal in the first four years of Demoticon. It
becomes formal but still internal in the last two years, when grades are awarded.
In general, promotion to the next class is automatic. In secondary education as-
sessment remains internal, except in the last year of Lyceum when students have

to pass examinations for entrance into Higher Education. Grading is emphasised
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in these years and students may have to re-sit examinations in September, or even

repeat the class during the next academic year.

In Scotland schooling begins at the fifth year of age. Primary education covers
seven years of schooling (5th to 12th years of age), followed by four to six years of
secondary education (12th to 16th, 17th or 18th years of age). The curriculum up
to age 14 is based on guidelines issued by the Scottish Office Education Depart-
ment, with schools having the freedom to shape it according to their particular
needs. Provisions are made for individual pupil differences in achievement and
attainment. Assessment is internal until the fourth year of secondary school. At
the end of the fourth year students sit external examinations that determine their
later schooling. Some students may leave school after this stage, holding a Scot-
tish Certificate of Education (Standard Grade). The higher achievers continue
their education for one more year before sitting Higher Grade examinations for
entrance to university. It is recommended though that they continue their studies
for one more year (Certificate of Sixth Year Studies) before starting courses at
the university. For the less academic pupils a wide range of vocational modules is

available (SCOTVEC modules), which usually head on to Further Education.

Mathematics syllabuses in Greece are prescriptive, in the sense that the hours
spent in each area are predetermined. This phenomenon is more apparent in
Demoticon. There is a discontinuity between primary and secondary school syl-
labuses, with many areas being repeated. Recent recommendations on possible
reforms addressed the need for continuity in the syllabuses for Demoticon and
Gymnasium. In Lyceum the syllabus is broken into Algebra and Geometry, each
being taught in separate classes. Overall, mathematics syllabuses give an impres-
sion of being rather ambitious, with emphasis on arithmetic in early years and
geometry in later years. In Scotland, mathematics syllabuses are determined in
each school following the national guidelines. Decisions taken at school level con-
cern the textbooks and other materials to be used, as well as their time allocation
over the school year. The syllabus is common for all pupils until the third year
of secondary school, when students are set according to ability and attainment.

Great emphasis is given, overall, in building problem solving and inquiry skills.
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4.2 Culture: Making a Difference in the Re-

sults?

As indicated above the Greek educational system is centrally managed, compared
to the decentralised management of the Scottish one. This difference is reflected
in the organisation and functioning of the mathematics classrooms in the two
countries. The rationale underlying the Greek system is ‘equal opportunities for
everyone’ at all levels of education. Mathematics in the classroom is taught for-
mally by talking to the students from the front. Instruction is restricted to the
textbook provided by the state. Students sit in rows and activities (questioning,
problem solving) usually engage the whole class. Everyday evaluation is public
and visible to all students, with academic feedback being immediate in a verbal
form. Types of academic and behavioural feedback can vary markedly, though,
among teachers. Homework is assigned to the students for practice and consoli-
dation. Private tuition is common from the early years of secondary education.
The pervasive extent of this phenomenon (‘parapaedia’) has created a form of ed-
ucation that runs in spite of and at times may take the role of school in preparing

students for their examinations.

On the other side the Scottish educational system is more meritocratic, with
a tendency to move the able students faster (the ‘learner’ educational principle,
J.LH. McDonald 1989). Teaching mathematics in classrooms follows an individ-
ualised approach. Students do not often engage in tasks as a whole class and
usually have fewer chances to receive instruction from their teacher. Evaluation
is mostly in written form and personal. Educational feedback may be delayed in
many cases, since students usually work their way through a set of tasks before
correcting their answers (they are encouraged to correct them by themselves using
answer-books). Private tuition exists in Scotland but not to the same extent as

in Greece.

It is suggested that beliefs about children are the result of history, culture
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and personal disposition and serve as a grounding rationale for the actions taken
by parents and educational institutions (Gergen et al. 1990). Since schools are
considered as institutions responsible for the transmission and construction of
culture (Eisner 1977c), it is suggested that differences between the mathematics

classrooms of the two countries are reflected in sociocultural differences.

Stigler and his colleagués (Stigler et al. 1990, 1987, 1986; Stevenson et al.
1986) observed Chinese, Japanese and American primary classes and suggested
that differences in mathematics classrooms, like those existing between Greece and
Scotland (classroom organisation, functioning), may well be related to differences
in learning. They also found that parental beliefs about teaching and mothers’
evaluations of their children’s mathematics performance corresponded to the ac-
tions taken by teachers and educators. For example, American mothers attributed
performance in mathematics to innate abilities of the child and therefore empha-
sise individualised teaching. In contrast, Asian mothers assigned more weight to
effort and hard work and favoured uniform educational experiences for all students
in a classroom (Stigler et al. 1990, Stevenson et al. 1986). Gergen et al. further
suggested that parents’ “beliefs about child development may have their origins in
and be sustained by e substantial array of conventionally related activities” (1990:
122). They investigated German and American women’s beliefs about competition
in the work place, solidarity of the family and centrality of motherhood. Beliefs
about these actions correlated with beliefs about social or independence needs of a
child and about attention to autonomy, emotion and cognition. It is similar beliefs
that may shape decisions for the setting of educational experiences in schools. We
should consider, then, the possibility of culturally appropriate, or even acceptable
teaching methods. These constitute a capitalisation on culturally well-practised
routines to determine participant structures in the classroom (Brown & Palinc-
sar 1989). Learning in school, then, may correspond to the ‘situated’ learning of
personal life outside school, with this approach in learning forming the basis for
possible curricula (Resnick 1989, Burton et al. 1984, Greenfield 1984).

When comparing mathematics classrooms across cultures though, surface fea-

tures appear to be more similar than different. The research findings presented
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above focus on subtle features that may affect decisions in education and there-
fore learning in the classroom. Surface features though may prove to have great

influence on classroom learning as suggested below.

Commonalities in characterising classrooms across cultures concentrate on the
taught subject itself and are reflected in the act of ‘educating the young’ in general.
Goodnow suggests “cognitive development is marked by the acquisition of values”
(1990: 259). Learning in the classroom is in a “collateral” fashion, where the
formation of knowledge is accompanied by the formation of enduring attitudes,
likes and dislikes (Dewey 1963). This ‘other’ knowledge has a sociocultural basis
and has been described as tacit knowledge (Hundeide 1985), as frameworks of
interpretation (Gergen et al. 1990) or as implicitly modelled messages (Goodnow
1990). This knowledge can determine behaviours, problem solving approaches
and performances in particular contexts (different ‘senses’ of action). It can also
attribute significance to certain kinds of problems and shape beliefs about areas

of knowledge and skill (opcit) and therefore affect learning in a general fashion.

Bishop (1988) suggests there is no explicit attention paid to values in math-
ematics teaching. He distinguishes between mathematical education that con-
tributes to development of values and mathematical training that treats mathe-
matics as a body of knowledge. This distinction is reflected in the way mathe-
matics is taught in the classroom. Skemp suggested “that there are two effectively
different subjects being taught under the same name ‘mathematics’ ” (1976: 27).
The factors differentiating between the two subjects are located in and charac-
terised by the difference between the instrumental and relational understanding
in mathematics (Skemp 1979, 1976, Byers & Herscovics 1977). This is the differ-
ence between applying appropriate remembered rules and deducing specific rules
or procedures from more general mathematical relationships. Teaching mathe-
matics out of context and in ways that do not correspond to everyday life learning
emphasises this latter difference (Resnick 1989, 1987). Mathematics, then, is seen
as a body of knowledge, separated from real life, a subject in school taught through
books or by experts (Goodnow 1990).

There is also a tendency in mathematics classrooms to perceive the ability to
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cover a large number of problems in a single lesson as characteristic of expert
teaching (Stigler & Perry 1990, Leinhardt 1986, Leinhardt & Greeno 1986). It
is suggested that the coherence of text enables or allows the learner to infer re-
lations between events and therefore promotes understanding (Beck & McKeown
1989). Stigler and Perry, speculating, suggested that “mathematics lessons may
be easier to comprehend and students likely to learn more, when the episodes that
comprise the class are coherent” (1990: 345). This speculation is supported by
Leinhardt and Putnam (1987), who emphasised the recognition and anticipation
of the components of a lesson as a factor that promotes learning in class (‘lesson
parsing’). To cover a large number of tasks then, in a single lesson, may endanger
the coherence of the lesson, especially if the transition between activities is not
clear and if the amount of time between these is too small (Stigler & Perry 1990).
Moreover, students may come to believe that homework and test problems are
impossible tasks if these cannot be solved in a few minutes (less than 12, Schoen-
feld 1988, 1989). Along with the demand for formal records of procedures in the
classrooms (Desforges 1985), learning activities become concretised and are inter-
preted as jobs to be done (Bereiter & Scardamalia 1989). Various strategies may
be adopted by the students then in order to avoid work, please or challenge the
teacher’s authority, which do not necessarily lead to learning (Woods 1985). Re-
lated to the issue of coherence of mathematics lessons are the teachers’ own beliefs
about what comprises a coherent lesson. The ‘cognitive mediational paradigm’ for
research on teaching (Winne & Marx 1982) suggests that there is a “Noticeable
lack of one-to-one correspondence between instructional stimuli that the teachers
identified and the cognitive processing that these cued for the students” (opcit: 513,
Ben-Chaim et al. 1990). Therefore what teachers perceive as a coherent lesson
may not coincide with the students’ perceptions about lesson coherence. Mes-
sages mediated by the teacher should be as clear as possible so as to smooth the

mismatch between instructional stimuli and students’ cognitive responses.

Reflecting upon the arguments discussed above, we could suggest that a ‘class-
room culture’ exists and heavily determines learning in the classrooms. This ‘class-

room culture’ appears to have a uniform pattern across different cultures, mainly
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due to their common characteristics. Schooling seems to be closely associated
with modernisation, economic growth and national aspirations. There is a danger
of education being reduced to training, with academic success being arbitrarily
related to life success (Resnick 1987). This reflects the more widespread subsump-
tion of culture by civilisation (Marcuse 1984). In reality though, the ‘classroom
culture’ is the ethos of a group created and sustained by the participants in the
educational experience. Dewey (1963) suggested that the teachers can readily al-
ter only the objective conditions of an educational experience. This of course may
require modifications of internal conditions and more specifically the teachers’ pos-
sible predisposition towards learning and teaching. Teachers’ initiatives can form
the scaffold for students to build positive attitudes towards mathematics, if these
are not sacrificed for immediate, short-term success. Teachers provide a model
in the classroom whether they intend to or not. If, then, teachers are seen more
as a model and less as an instructor, it is possible that students’ beliefs about

mathematics and learning will be altered or enriched.

4.3 Materials Used in the Study

The practical activities used in this research are the ‘Feely Box’ (FB), the ‘Same
Shape As’ (SSA) and the ‘Drawing and Geometric Constructions’ (DGC) activi-

ties.

The FB activities are based on an idea introduced by Geoff Giles. The feely
box is a cardboard cubic box with two holes cut on opposite sides. Students are
asked to explore haptically objects placed in the feely box. Seeing the object
while exploring it is considered ‘cheating’. In the FB activity the objects are two
and three dimensional and some composite shapes. The first three worksheets
(1.1-1.3) involve identifying, sketching and discussing properties of these shapes
(edges, vertices, faces, characteristic properties of each shape). Worksheet 1.4 in-
volves recognising composite shapes, while worksheet 1.5 introduces some work on

perimeter, area and proportion. The final worksheet of the activity (1.6) requires
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students to draw two dimensional shapes on dotty and isometric paper following

the instructions given (see Appendix A).

The SSA sequence of activities use rectangles to introduce the simplest ideas
about similarity. Due to the colloquial meaning of the word ‘similar’ the term
‘same shape’ is used. The activity starts with an example sheet displaying pairs
of rectangles that have or do not have the same shape. This sheet encourages the
students to start thinking about the relationship which characterises same-shaped
rectangles. Worksheets 5.1 to 5.3 provide the foundation for the succeeding activ-
ities by requiring the students to identify and construct same-shaped rectangles.
Worksheet 5.4 provides students with a practical way of investigating the ‘same-
ness’ of rectangles, while 5.5 leads students to a more formal definition /explanation
of ‘sameness’ of rectangles. The ratio test (worksheet 5.5 - ratio of length to
breadth) has some potential for misleading the students, since it does not apply
to other shapes. This has to be stressed at some stage during the SSA sequence of
activities. The activities that follow (worksheets 5.6-5.10) reinforce the concepts
and skills acquired during the preceding worksheets. They extend into aspects of
problem solving and provide the opportunity for students to discover and appre-
ciate the aesthetic and practical aspect of A (the standardised A-sizes of sheets of
paper) and golden rectangles. The worksheets also provide practice for number,

ratio work, enquiry and drawing skills (see Appendix B).

The DGC activities consists of two collections of activities (‘Be a Geomet-
ric Constructor’ and ‘Balancing Polygons’). They are accompanied by a booklet
(‘Measuring and Drawing Library’) with illustrated information and hints on the
use of measuring and drawing instruments. The work included in worksheet 1.6 of
the FB activity is also considered as an extension of the DGC activity. All these
activities require accurate use of drawing and measuring instruments (compasses,
set square, ruler, protractor) and the ability to follow instructions. Aspects of
problem solving are reinforced by the worksheets on geometric constructions. Fi-
nally most worksheets have an outcome that is pleasing to the eye and can be
intriguing mathematically due to the simplicity and generality of the construction

(see Appendix C).
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The material was developed over a period of six months (September 1991 to
February 1992). These activities were designed to conform with the 5-14 Scot-
tish Guidelines for Mathematics consulting also the Greek Mathematics Syllabus.
More specifically, problem-solving and inquiry, multiply and divide, round num-
bers, ratio, measure and estimate, perimeter and formulae, range of shapes (Levels
D and E). Drawing skills and the use of calculators (calculating, checking, inves-

tigation, problem solving) are also reinforced.

A group of teachers from Scottish secondary schools was set up by the Ed-
inburgh Centre for Mathematical Education (ECME), under the name ‘Practical
Work in S1/S2’. Members of ECME participated in this group as well. The pre-
liminary meeting took place in June 1991. The main objective at that tiirne was
to collect views and thoughts on practical work in S1 and S2 and identify areas of
difficulty in mathematics which may benefit from some practical activities. These
suggestions were taken into consideration in the development of the material. They
concerned the acceptability of the learning approach, the appropriateness of the
use of language (enough but not too many words, appropriate for the students’
level of understanding) and the demand for simple and readily available apparatus

accompanying the activities.

The ‘Practical Work in S1/S2’ group remained active for one year. Over this
period the FB and the SSA activities were tried in schools in Edinburgh, Greece
and Dumfries and Galloway. The author was present at these schools during the
sessions with the practical activities. Other schools, apart from these mentioned,
tried the material without providing any feedback. Inappropriate sequencing of
the tasks for each activity was detected, along with mistakes in the layout of the
worksheets. In May 1992 a workshop was offered to other teachers of Lothian
Region. The FB, SSA and DGC activities were introduced during this workshop
along with other material. Susan MacGillivray (Annan Academy) led the work on
the FB activity following a group approach. Jim McGregor (Whitburn Academy)
led the work for the SSA and DGC activities using a mixed approach (stations

and individualised learning approaches). The three activities were also offered as
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a part of a workshop at the Mathematics Teaching Conference 1992 in Edinburgh
by Ann Aughwane (St. Georges School, Edinburgh).

4.4 Methodology

The evaluation of educational material necessitates decisions on possible method-
ological rationales. Such decisions cannot be taken before taking account of the
complexity and subtlety of the phenomenon studied. Studying attitudes of stu-
dents and teachers towards an innovatory learning approach implies studying class-
rooms as a fusion of intentional worlds that participants carry with them and live

within the school.

Intentional worlds draw their existence from the people who live in them and
who are, in their turn, influenced by intentional objects (feelings, beliefs, atti-
tudes, concepts, percepts and so forth, Shweder 1990). In the learning environ-
ment of a classroom such worlds are those constituting the learning milieu, a nexus
of cultural, social, institutional and psychological variables (Parlett & Hamilton
1972). It would be unrealistic to suggest that an educational study can analyse
all these parameters. We can only hope to address and illuminate an array of
questions (Stake 1977b, 1967, Parlett & Hamilton 1972, Eisner 1977b, Centre for
New Schools 1977). These questions form the issues that the research is dealing
with. Such a “hick description” of the study’s ambitions implies continuing open-
ness and responsiveness to the kaleidoscopic nature of a classroom setting. An
explicit statement of aims and objectives made too early may hide an intention
to discover respective outcomes, excluding from the expected outcomes-spectrum
those that become apparent later in the study (Atkin 1977a, Eisner 1977a, Parlett
& Hamilton 1972, Stenhouse 1977).

This suggests that methodological steps should follow an understanding of the
framework within which participants interpret their thoughts, feelings and actions.
Since all thinking is thinking about something (Chamberlin 1974), one direction for

reaching people’s perceptions and mental states about intentional objects would
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be to study the consciousness which participants have of them (phenomenological
approach). Such an intentional analysis, as Husserl (1969, in Chamberlin 1974)

suggests:

“...has to place before its own eyes as instances certain pure con-
scious events, to bring these to complete clearness, and within this
zone of clearness subject them to analysis and the apprehension of their
essence, to follow up the essential connections that can be clearly un-
derstood, to grasp what is momentarily perceived in faithful conceptual
expressions, of which the meaning is prescribed by the object perceived

or in some way transparently understood.” (Chamberlin 1974: 128)

Intentional analysis is an intuitive analysis striving to give meaning to explicit
and implicit data. It is not a construction of meaning. It is a description of
reality drawing its determination from the situation that it describes and is further
determined by keeping at a distance everything that does not account for this
determination (Chamberlin 1974).

The philosophy of evaluation just described provides a direction, not a stance.
Means of reaching a determination of reality, then, vary according to the particu-
lar conditions of the study. Any condition existing prior to teaching and learning
which may relate to outcomes has to be identified. Observations and discussion
with the participants could provide a profile of such information. This approach
can also familiarise the researcher/observer with the environment and the partic-
ipants and vice versa. Data from the many encounters of students and teachers
with the materials, of students with students, of students with teachers, of students
and teachers with the researcher/observer follow.. Recordings of such encounters,
interviewing the participants after the completion of the study or administer-
ing a questionnaire can assist in penetrating the immediate perceived situation
(Stake 1977a, Parlett & Hamilton 1972). The teaching material is also judged
by the students’ actual performance on the materials. Numerical data, though,
are not of chief importance here. It is the nature or an underlying structure of

the students’ responses and blunders that is important in evaluating this teaching
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material (Scriven 1967). Moreover, the possibility of an educational study find-
ing a universal truth may well be characterised as utopian. It would be better
to speak in terms of analogies applicable to some other situations, an approach
that is tangential to an intentional analysis. In this way we shift our attention
from things and minds to the relations between the experiencing subject and the

experienced objects (Moore, 1917 in Chamberlin 1977).

Subjectivity in intentional analysis/description is a feature as in all studies con-
ducted by humans. “..the thinker never thinks from any starting-point but from
the one constituted by what he is.” (Merleau-Ponty, 1970 in Chamberlin 1977).
One characteristic of intentional worlds is that they are both different and the
same for different subjects. This addresses the fact that individuals may perceive
certain features of these worlds as the same and others as different, according to
their will, emotions, experiences or knowledge (Lauer, 1958 in Chamberlin 1977).
Our aim with an honest description of such worlds is to establish ‘commonness’
of meaning by investigating, collectively, the intersubjectivities of the participants
(Pramling 1983, Chamberlin 1977). Moreover, a ‘thick description’ of the re-

search can demonstrate the evaluator’s presuppositions, making him/her account

for them and expose them for what they are (House 1977).

This report will strive to follow the ideas discussed above. A main objective is
to evaluate the ‘hands-on’ method of learning mathematics, taking into account
the participants’ intentional worlds. This implies the need to identify possible
cultural differences that might illuminate the differences which have occurred in
the data collected from the two countries. Students’ performance on the materials
will also be seen in conjunction with the imposed cognitive demand of the concepts

involved in the process.
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The Study and Its Results

5.1 Describing the Study

The research took place in two phases. The first phase concerns work done in
Greece during March and April of 1992. The practical activities were used in four
Gymnasiums in urban and rural geographic areas of Greece. These schools were
‘chosen’ by means of personal acquaintances with teachers or head teachers. A let-
ter was sent to all schools explaining the objectives of the research and describing

the practical activities.

Patras is a city of about 300,000 inhabitants, one of the bigger ports. Pa-
tras Experimental Gymnasium, the only High School in the city affiliated to the
University of Patras, was the first school visited. Students at this school are ran-
domly selected but an application is required beforehand. They usually come
from middle-upper class families and their parents are mostly well educated. The
three year groups at the Gymnasium had 180 students allocated in six classes,
two for each grade. A rural school, Vlachokerasias Gymnasium, was next to be
visited. Vlachokerasias is a small village of 1000 inhabitants. The school serves
the needs of a wider area. It has Demoticon and Gymnasium classes. The number
of students has decreased over the past years, resulting in the closure of the De-
moticon classes as from the current school year. During the term of the study the
Gymnasium had 40 students, one class at each grade. Most students came from
families of farmers or other manual occupations mainly of low to average level of

education.

63
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Patras and Vlachokerasias are both in the southern part of the mainland. The
remaining two schools were located in the middle area of the Greek mainland,
on the eastern side. Volos is another big port with a strong cultural heritage,
especially in education. The city’s population is around 120,000. The Ninth
Gymnasium of Volos was the third school visited, a school of 270 students and three
classes in each grade. Due to its location at the centre of the city most students
came from middle-upper class families with well educated backgrounds. The last
school that took part in this phase of the research was the Second Gymnasium
of Almyros, a school accommodating a total of 220 students in three classes for
every grade. Almyros is a small town of around 10,000 inhabitants, 30 km S-SW
of Volos. The school is close to the edge of the town, with students coming from

a wide range of family backgrounds (from lower to middle class).

The second phase of the research concerns work done in Scotland during
November and December 1992 and February and March 1993. Four schools were
chosen in order to match the sizes of the Greek schools and also to provide a
good mixture of urban and country settings. A letter was sent to all schools with
details of the objectives of the research and the research materials. In three a
preliminary visit preceded the actual sessions on the practical activities. This was
not practicable at the fourth school, Tobermory High School. The purpose of
this contact was to meet the teachers, organise the later formal visits and become
familiar with the school’s environment. Sanquhar Academy was the first school
visited. The school is situated at the one end of the town, serving a population
of about 10,000. There were 130 students in Secondary 1 (S1) and Secondary 2
(S2) allocated in three classes for each grade (only the first two Secondary years
are quoted so to obtain a more objective comparison with the sizes of the Greek
Gymnasiums). The economy is based on farming and other manual occupations
with an evident unemployment problems. Tobermory High School was the other
school visited before Christmas. Tobermory is a fishing village being at the north
part of the Isle of Mull, west of the Scottish mainland. It was the only Secondary
school on the island, with 60 students in S1 and S2 (two classes in each grade).

After Christmas of 1992 I visited two more schools. Selkirk High School,
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in the small town of Selkirk near the Scottish Borders, serves the needs of a
wider area with a population of 10,000 having 200 students in S1 and S2 (four
Secondary 1 and three Secondary 2). The community is organised around farming
and industry with some unemployment problem. Drummond Community High
School was the last school taking part in the research. It; is in Edinburgh, the
capital of Scotland (620,000 inhabitants). The school has a strong multicultufa.l
identity, serving a community with many minorities (mainly Asian). It has also a
role in Adult Education, providing the opportunity for adults to take up classes in
various subjects. The first two grades are comprised of six classes, three in each

grade, accommodating 130 students.

Apart from Vlachokerasias, the Greek Gymnasiums were accommodated in
two-floored, fairly modern buildings. At Patras and Volos three more schools
shared the same building (another Gymnasium and two Lyceums). This phe-
nomenon is common for urban Greek schools due to the small number of schools
as compared to the number of students. Gymnasiums and Lyceums have to ro-
tate their timetable from morning to evening every week: The schools had a large
playground, with courts for popular sports, where students spend their breaks. I
followed each school’s timetable for at least three days. During that timeI lived in
the community served by the school. During these days I had the chance to observe

first and second year classes, studying other subjects as well as mathematics.

Greek school days start with a prayer, which all students have to while attend
lined up in the playground. Announcements by the Head Teacher follow if nec-
essary and then students enter their classrooms. The teacher follows after a few
minutes, while one student usually waits for him/her at the door. All subjects
are taught in the same classroom, the homeroom of each class. The number of
students in each class varies from 13 at Vlachokerasias Gymnasium to 34 at Volos
(the number of students in a class cannot exceed 35). Students sit in twos allocated
in rows, with the teacher’s desk usually in front of one of the side rows. In two of
the schools (Volos and Almyros) the teacher’s desk was placed on a podium. One
of the students in each class is given the task of filling in the ‘absences book’ for

every session. This student is the student that graduated the previous year with
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the highest overall mark. Teachers have to sign the absences book at some stage
during the session. All these books are stored in the head teacher’s room after
the end of the school day. There were no resource materials in the classrooms
apart from blackboard-drawing instruments. Any materials were usually kept at
the Head Teacher’s room and teachers had to borrow them for each period. At
Vlachokerasias Gymnasium a set of geometric shapes was also available that was
locked inside a cupboard. Volos Gymnasium owned an overhead projector but
teachers never used it. As a teacher explained they did not know how to oper-
ate it and also it was not convenient to carry it up and down stairs. No posters
concerning mathematics were displayed on the walls. A portrait of Christ was

hanging above the blackboard, a characteristic of all Greek classrooms.

Each day’s schedule consists of (at most) six sessions of 45 minutes each. A
five to ten minute break separates two consecutive sessions, during which students
have to leave their classroom. Only two students remain in the classroom tidying
up the desks, cleaning the blackboard and ventilating the room by opening the
windows (these two students change every week). During the breaks students
may engage in popular sports in the playground while teachers patrol the building
in order to prevent misbehaviour. Each school had two mathematics teachers,
except from Vlachokerasias which had one. Patras Gymnasium had a separate
room as a library for the teachers. The other schools had reference books in the
teachers’ common room. At Volos students were running a borrowing library with
a small number of books, none about mathematics. All the teachers were friendly,
particularly at Volos and Almyros. They were willing to answer any of my queries

and were interested to know about the objectives of my research.

In the mathematics sessions teaching usually followed three phases. Question-
ing on the previous day’s lesson (oral and blackboard assessment), presenting the
next lesson and finally working on applications from the school book and giving
out homework. The style of teaching can be described as the standard, ‘talking
to the whole class’ style. The teacher spends most of the time talking to the
students, defining and initiating activity mainly by asking questions. Students’

activity was limited to raising arms to answer a question or to performing a task
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on the board. At Patras and at Vlachokerasias Gymnasiums and for one of the
teachers at Volos, the questioning had in no sense the characteristics of a dialogue.
It was too formal, merely a matter of waiting for the correct answer. Mistakes
were not discussed. Correction came only through verbalising the correct answer,
either by the teacher or by a student. Explaining was reduced to rephrasing the
answer which had already been given. There was no exposition in groups nor to
any individual. The sessions were not coherent since the transition from one topic
to another was swift and not clear. In general teachers appeared to be remote
from the students due to a lack of feedback (either cognitive or psychological).
Their authority over the class was merely positional and sapiential. Comments to
students were sarcastic at times. At Patras, the teacher’s sapiential authority was
challenged by the older students, with students showing a clear satisfaction. Dur-
ing the sessions students at Patras engaged in irrelevant activities, especially those
sitting in the back desks of each row. At Vlachokerasias and Volos students spoke
only when teacher permitted it. At some stage of the session the teacher inspected
the students’ jotters where they keep their homework. This inspection was not
meticulous though. Homework was given in the end of each session, usually after

the bell had gone. It consisted of exercises from the school book.

The other teacher at Volos Gymnasium and the teacher at Almyros favoured a
discussion with the students. They did not give the impression of assessing them.
They were not just seeking a correct response. On the contrary they seemed inter-
ested in exploring students’ understanding (tolerant of blunders, giving adequate
time for students to think after a question, rephrasing a question, giving hints).
New concepts, definitions, rules arose naturally from the discussion, a fact that
made their teaching smooth and coherent. Dictating to the class was used for
reducing the chances for misconceptions and only after students had expressed
their own opinions on the discussed concept. Exposition to individuals often oc-
curred during the sessions and checking the students’ jotters was an activity with
an educational value placed upon it. Homework was given again after the bell had
rung. The students’ participation was strong, even amazing, during the sessions.

At times students were ‘begging’ for the teacher’s permission to answer a ques-
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tion. The teacher always made an effort to provide equal opportunities for every
student in participating in the session’s progress. The climate of both classes was
relaxed and understanding, teachers were polite and friendly and it seemed that

their positional and sapiential authorities were also well established.

In Scotland, the only school that was accommodated in an old building was
Drummond Community High School. It was also the only school that had a large
playground attached to its premises. I followed each school’s timetable for at least
one week, living close to the school for all these days. I had the opportunity to
attend first and second year classes in various subjects. At Tobermory and Selkirk

I did not have the chance to attend any mathematics sessions.

The schools’ timetables were very different. The number of sessions for a
day varied from six at Tobermory and Selkirk to eight at Sanquhar and nine
at Drummond. Sessions lasted from 40 to 55 minutes, with a long lunch break
and one short break during the morning. Students had to change classroom in
between sessions since rooms are assigned to teachers and subjects (departments).
The first event of the day is registration. Each teacher is responsible for one class
and during registration time s/he keeps a record of the absentees and makes any
announcements. Teachers look for absentees every session thereafter and report
them to the school’s administration office. Students usually have to line up outside
the classroom waiting for the teacher to allow them to take their seat. In all
mathematics classes they were sitting in rows of two. The teacher’s desk was at
the front at the same level as the students. The classes were well equipped. A
BBC computer and an overhead projector were in most rooms besides the separate

facilities for computer studies.

Posters were displayed on the walls with some of the students’ work as well.
Drawing and writing instruments, calculators, even jotters are provided for the
students. School books do not belong to the students but they are allowed to take
them home if the circumstances demand it. All schools had libraries with a large
selection of books, journals and periodicals for students to borrow or consult for
their projects. Tobermory and Selkirk High Schools even had CD-ROM facilities

in their library. Libraries could also be used as study rooms. Students are allowed
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to leave the school during breaks. Schools provide proper lunches for students and
teachers. The mathematics departments visited each had three teachers except
for Tobermory which had two. These teachers were teaching all grades, from Sec-
ondary 1 to Secondary 6. All teachers were friendly and cooperative, contributing
to a warm and relaxed school environment. Sanquhar and Selkirk schools were

particularly welcoming.

In three of the schools the second year students were placed in classes by
ability (top, middle and bottom). Setting was a characteristic of the mathematics
departments only. Students are assessed towards the end of their first year. This
setting is also determined by the overall behaviour of the students. Tobermory
High School was the only school that did not follow this setting approach. Teaching
in all schools was individualised. Every year’s mathematics syllabus, for each
grade, is organised by the staff of the school’s mathematics department following
the general guidelines of the Scottish 5-14 Curriculum. Students work at their
own pace on material that their teacher has assigned to them. Interaction between
students and the teacher was limited. There were times when teachers addressed
the whole class to introduce a new aspect of a topic or clarify a difficult point.
Teachers, in general, initiated activity by assigning work to the students or by
directing them to the place where the material was stored in the room. Otherwise
the interaction between students and the teacher was limited. Students were
supposed to consult the answers booklet after they had completed their work.
Usually they had to move to the teacher’s desk to show them their work or to a
ask a question. At classes with ‘weak’ students, a support teacher might be in the
room helping them individually with their work. Interaction between students was
limited as well. They were not allowed to speak during the lesson, even though
they could move around the class if they wanted to find something concerning their
work. Group work was also not favoured by the teachers (for this particular age),
mainly for discipline reasons. Students never had homework assigned to them by
the teacher. They only had to complete a revision sheet, at home, as soon as
they had finished a topic of the syllabus. The teachers’ authority in the class was

positional and sapiential, with their behaviour becoming informal only towards
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the end of each session. Talking to the students at times resembled giving definite
orders (apart from Tobermory and one teacher at Selkirk). Work in each session
stops five minutes before the bell to give students time to tidy up the material

used and prepare for the next session.

5.2 The Results

The following results concern observations made during and after the sessions
on the practical activities. These were drawn from participant observation, from
recorded data (portable tape recorder), from information coming from taped in-
terviews with groups of students (in Greece interviews took place only at Patras
and Vlachokerasias), from student questionnaires (see Appendix D) and from dis-
cussions with the teachers. In addition an analysis of the completed worksheets

on the activities is presented.

In total 203 Greek students participated (average age 13), 99 Gymnasium 1
(G1) and 104 Gymnasium 2 (G2) and 313 Scottish students (average age 12.5), 133
Secondary 1 (S1) and 180 Secondary 2 (S2). They worked in groups of two to four
members. In Greek schools groups of four were more common due to the smaller
number of copies of the materials. On the other hand, groups of four, or even
three, were the exception in Scotland. In Greece the author was alone with the
class, except in two cases. In Scotland there were classes where two other teachers
were assisting. Students in each class were given, at random, one of the three
activities to work on. There were cases of students starting on a different activity
after completing the one initially assigned to them. In Sanquhar Academy the S1
students tried both the SSA and FB activity during different sessions. There were
also isolated cases of students who demanded to change activity, from the SSA to
the FB. For these reasons the number of completed worksheets for all activities

exceed the number of students that participated in the research.

Not all students completed the activities that were assigned to them within

the arranged time limit, especially the SSA activity. There were also cases where
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students, for various reasons, did not complete some of the worksheets, or tasks
on a worksheet, resulting in non-uniform data. Moreover, the students did not
work on the activities for the same amount of time. In Greece, where in all schools
sessions are of 45 minutes, most students worked during four sessions spread over
two days (180 minutes). In three classes though they worked for three sessions
(135 minutes). A similar difficulty appeared in Scotland due to variations in the
duration of sessions from school to school. In Sanquhar and Drummond students
worked for four sessions (140 minutes) and in the other two schools for three
sessions (150 minutes). Therefore the only way to analyse the students’ responses
was to work with each worksheet separately and then try to give a profile for each
activity. Each worksheet is further divided according to the tasks that comprise it.
The success rates given for each task of every worksheet are calculated according
to the number of students that actually worked on this task. The results for each

activity and each worksheet follow. All the presented success rates are rounded.

5.2.1 The ‘Same Shape As’ Activities

After a very low success rate in the first worksheet (5.1) during the pilot study,
an example sheet 5.0 was added to the activity. The purpose of that sheet was to
provide students with examples of rectangles that do and do not have the ‘same’
shape. The abstraction of the concept of ‘sameness’ was assisted by a discussion in
each group. During these discussions on ‘rectangle-sameness’ the most common
response of the students concerned the area of the rectangles. Two rectangles
were the same if the smaller one could fit a certain number of times in the larger
one. This certain number of times had to be, preferably, an integer. In the
second example of the second part of 5.0 students could not distinguish length
from breadth of the rotated rectangle. In the third example they could not extend
the definition for ‘rectangle-sameness’ (multiply both sides by the same number)
to non-integer numbers. They would rather add to the sides of the small rectangle

in order to reach the length and breadth of the large rectangle. In isolated cases
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students thought that two rectangles are the ‘same’ if they have exactly the same

size.

Worksheet 5.1: Overall 68 Greek (29 G1 and 39 G2) and 144 Scottish stu-
dents (78 S1 and 66 S2) worked on 5.1. The success rate for the first and second

parts of the worksheet for each country and each grade is given below.

Class | A-part | B-part

G1 41% 86%
G2 49% 2%
S1 21% 49%
52 20% 42%

These success rates were higher than those in the pilot study. The success rate
in the second part of the worksheet though was higher than the one in the first
part in both studies. In 121 cases (21 in Greece and 100 in Scotland) students
perceived rectangle no.7 (an 1.5 enlargement) as not having the ‘same’ shape
as the given one. Most of the remaining incorrect responses concerned additive
strategies, centration to one side, while the rest may be characterised as careless

mistakes (possibly mis-measurement of the rectangles’ sides).

Worksheet 5.2: 68 Greek (29 G1 and 39 G2) and 143 Scottish students (78
S1 and 65 S2) completed this worksheet. The success rates for the first, second
and third parts of the worksheet follow:

" Class | A-part | B-part | C-part
| o1 100%] 100%| 93%
G2| 92%| 8™%| 8%
si| 96%| 9%| 9%
| s2| 100% | 99%| 9a%

Mistakes concerned incorrect counting of the unit squares, especially for those

who attempted a big enlargement, centration to one of the rectangles’ sides and

additive strategies.
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Worksheet 5.3: This worksheet was completed by 65 Greek (26 G1 and 39
G2) and 143 Scottish students (78 S1 and 65 S2). The success rates for the three

parts of the worksheet follow:

Class | A-part | B-part | C-part

Gl 92% 96% 7%
G2 100% 87% 69%
S1 94% 96% 82%
S2 100% 92% 1%

In the third part of the worksheet most students reduced the given rectangle
three times. From those who attempted a +2 reduction some failed giving a 3units
x 4units or 3units x Sunits rectangle. Other incorrect responses concerned additive

strategies and centration to one of the sides.

Worksheet 5.4: 63 Greek (23 G1 and 40 G2) and 141 Scottish students (77
S1 and 64 S2) worked on this worksheet. The success rates for the use of the string

test with the rectangles of sets 1 and 2 are shown below:

Class | Set 1 | Set 2

Gl1| 78% | 100%
G2 95% | 93%
S1| 8% | 72%
82| 0% | 56%

In the first question on the worksheet the rate of success was 52%, 75% for
the Greek students (G1, G2 respectively) and 22%, 27% for the Scottish (S1, S2
respectively). In this question students were advised to find a way to compare
the rectangles of set 1 for their ‘sameness’. The most common strategies were
by measuring or superimposing the sides of the rectangles. From the students’
responses to this first question, we can infer whether they perceived ‘sameness’
as an equivalence property of rectangles. About one third of the students had
written the ‘same’ rectangles in pairs. For example ‘1-2, 1-3, 1-5’ instead of ‘1, 2,
3, 5.



Chapter 5. The Study and Its Results 74

Worksheet 5.5: This worksheet was completed by 53 Greek (16 G1 and 37
G2) and 142 Scottish students (78 S1 and 64 S2). Following are the percentages
of students who measured the sides of the rectangles in sets 3 and 4 accurately

and of those that identified the ratio test.

Class | Measl | Testl | Meas2 | Test2
Gl 88% | 63% 94% 75%
G2 87% | 18% 62% | 84%

S1 54% | 51% 2% 3%
S2 63% | 56% 67% 8%

It was clear from the students’ responses to the first question that they used
the string test of worksheet 5.4, to find the ‘same’ rectangles of set 3. The success
rates in using this test were slightly better than those of 5.4, especially for the
Scottish students. We can also infer that almost all students had appreciated by
this stage ‘sameness’ of rectangles as an equivalence property, apart from some
G1 Greek and 52 Scottish students. The percentage success in the fourth part of
the worksheet is bigger than that of the third part (except for G1 students). This
was caused by students who identified the ratio test but inaccurate measurements

kept them from giving a complete answer.

Worksheet 5.6: 55 Greek (21 Gl and 34 G2) and 123 Scottish students (66
S1 and 57 52) worked on this worksheet. Students had to use the string test
and the ratio test for the A3, A4, A5 and A6 rectangles. On the back of the
worksheet, they had to give the ratio of any A-rectangle and work out a problem

and the Temple of Zeus tasks. The success rates on these follow:

Class | String | Ratio | A-ratio | Problem | Zeus

Gl 81% | 1% 87% 3% | 53%
G2 82% | 38% 91% 91% | 47%
S1 65% | 43% 79% 42% | 16%

S2 61% 60% 5% 65% | 22%
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Worksheet 5.7: The number of students who worked on this worksheet was
limited. Only 9 G1 and 19 G2 Greek students and 28 S1 and 24 S2 Scottish.
Omitting this worksheet was a deliberate decision due to time constraints. The
success rate reached 90% for the Greek students for both grades and 32% for the
S1 and 58% for the S2 in Scotland.

Worksheet 5.8: 34 Greek students (6 G1 and 28 G2) and 66 Scottish (25 S1
41 §2) started this worksheet. This number decreased for the subsequent tasks
on the sheet, as this worksheet was as far as some students reached. The success
rates for the pentalpha measurements, the calculation of the golden ratio, the
tasks on Parthenon and Epidaurus and the final calculations with the golden ratio

are listed below:

Class | Pental. | G.R. | Parthenon | Epidaurus | Decimals
Gl 100% | 100% 100% 100% 100%

G2 64% | 100% 88% 44% 68%

S1 60% | 61% 8% 44% 38%

| 52 61% | 44% 85% 35% 33%

On the Epidaurus task, when students are asked to name the ratio that they
found, 26% of the students failed to identify it as the golden ratio. There were
also cases of students who calculated the golden ratio on the front page correctly
but failed to do so on the task at the back of the sheet. They found for example

ratios of 1.81...or 2.1... which did not raise any queries.

Worksheet 5.9: Only 12 G2 students completed this worksheet in Greece
and 2 S1 and 10 S2 in Scotland. From all those students 20 found the correct
rectangle but only 8 of them named the ratio and the rectangle they had found as

the golden ratio and golden rectangle.

In the first steps of the activity students faced difficulties in abstracting the
rule for ‘sameness’ of rectangles. The strategies adopted by students coincide with
those discussed in §2.1.2. Area and additive strategies, centration to one of the

rectangle’s sides, fall back strategies when facing difficult tasks (1.5 enlargement).
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Their persistence with these strategies is worth mentioning, even after these were
shown to be defective by the examples used. The students’ difficulty (especially in
Scotland), in verbalising their thoughts was evident. Even at the stage when all
the examples in 5.0 had been discussed, they could not state the rule for ‘sameness’

in their own words.

Students were expected to face difficulties with this activity because of the un-
familiarity of the concept introduced. There were many cases, though, where diffi-
culties arose from misconceptions concerning past knowledge (‘length and breadth’
confusion, working with decimal numbers). In worksheet 5.1 students were not
confident in applying the rule for ‘rectangle-sameness’. They needed support and
immediate feedback on their answers. The choice of the order of the examples in
5.0 and in the tasks in 5.1 did not prove efficient (examples on lack of rectangle-
sameness before examples of the concept). This did not interfere with the abstrac-
tion of the target concept, since the initial discussion in each group first addressed
the examples of the concept. No comments can be made though for the affect that

this had on the students’ later performance.

Students did not need much help with worksheets 5.2 and 5.3. The amount
of time spent completing these worksheets was small compared to the time spent
on sheets 5.0 and 5.1. The Greek students may have had difficulties in counting
the unit squares on the grid due to the poor quality of the xerox copies. Also, in
the second part of 5.3 there was a typing mistake, naming the side of the wanted
rectangle as ‘breadth’ instead of ‘length’. There was no indication though that
it caused difficulties to the students. These two weaknesses of the materials were
corrected in the copies used in Scotland. The students’ responses in the third part
of worksheet 5.3 were yet another indication of their unfamiliarity in working with
decimal numbers. Most of those who attempted to decrease the given rectangle

two times failed to do so, ending up with a length of 4 or 5 units.

In worksheet 5.4 the students’ main difficulty was to accept the fact that the
string should not, necessarily, have to pass from all the rectangles’ vertices. They
needed help in placing the rectangles in the lid and in drawing the diagonals for

each rectangle of set 1. A common response was that of drawing a crooked line
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connecting the vertices of all rectangles instead of drawing their diagonals. Many
of them failed to accept ‘sameness’ as an equivalence property of rectangles. We
observe though that in worksheet 5.5 almost all overcame this misunderstanding,
probably because of the use of the string test. Even though students measure-
ments in 5.5 were fairly accurate, not all of them observed that the ratios of the
same shaped rectangles were equal or nearly equal. One reason for this may Be
that many of the students kept all the decimal places displayed on the calculator.
Some responses were far from the wanted answer: “they all are decimal numbers”,
“they all start from 17, “they have the same number of digits”. These responses
may reflect the students’ unfamiliarity in working with decimal numbers and some
lack of intuitive thought. Interestingly, some groups argued about whether divid-
ing two measurements in millimetres will give the same result as dividing the same
measurements in centimetres. Students also had difficulties in going from millime-
tres (markings on the rulers) to centimetres and in deciding how many decimal
places to keep in their ratios. For those who decided to cut the decimal places,
rounding to the nearest ten was not always their immediate choice. ‘Length and
breadth’ confusion was apparent in this worksheet, despite the instructions given
during earlier worksheets. The term ‘ratio’ was often mispronounced by Scottish

students.

In the first task on worksheet 5.6 students had to improvise in order to use
the string test for the A-shaped rectangles. The string from 5.4 was too short
to be used with these rectangles, so they used a metre ruler or two ordinary
rulers placed together. Students seemed to expect all ratios of the ‘A-rectangles’
to be close to 1.41. Some of these rectangles were not cut accurately resulting
in incorrect ratios. Some students corrected their measurements accordingly in
order to obtain a ratio close to 1.41! The request to measure in millimetres for
better accuracy created difficulties once more as did the rounding of the ratios
found. The ‘length and breadth’ confusion appeared on this worksheet as well but
not often. In the problem of question 6, students could not easily use the fact
that the rectangle was an A-rectangle. Moreover, choosing the correct operation

caused confusion for most students, even though the answer was in a bubble. In
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general, students failed to exploit the clues that were given in bubbles throughout
the whole activity. “Oh...is this all we had to do?”, they might say. Possibly they
were not familiar with that technique, or perhaps they could not believe that the
task itself provided them with clues for solving it. Gréa.ter difficulties occurred
on the Temple of Zeus task. Students failed to identify the marked rectangle
as a clue, so they could not easily apply the ratio of 1.41 to find an A-shapéd
rectangle. In addition to that, identification of the correct operation combined
with the need for accurate measuring resulted in a low success rate (especially in
Scotland). Worksheet 5.6 was also a first indication that multi-stepped worksheets
have a potential for exposing the students’ inadequate grasp of the concepts. This
conclusion is drawn from the failure of students to use and combine information
given or found in the earlier tasks of the worksheet (identify the ‘A-ratio’ and use

it in question 6 and Temple of Zeus task).

In worksheet 5.7 problems were caused by the extended instructions. Even
Greek students, who eventually achieved a high success rate on this worksheet,
needed support. This support mainly concerned the supervision of the reading of
the instructions together with providing a summary of the text. Some students
did not actually realise that they had to work on the rectangle at the bottom of
the page and were placing the mapping pins on the drawn diagrams. Difficulties
arose from the motor-coordination of the cross form as well, more evident with the
Scottish students. In Greece the two arms of some of the cross forms did not cross
at 90 deg due to faulty construction. Answers then close to the wanted response

were considered as correct.

Worksheet 5.8 is another multi-stepped sheet. Students faced difficulties in
measuring, in using results from earlier tasks on the sheet (Epidaurus task, cal-
culations with golden ratio) and in working with decimal numbers (calculations
with golden ratio). Students had difficulties in using the calculator, especially G1
and S1 students. They did not know how to find the square root of a number
and the most common mistake was to key the calculation in the following order:

(1+ /5 +2). We have to bear in mind here that Greek students are not familiar
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with the use of the calculator and in Scotland not all teachers favour the use of

calculators in S1.

Worksheet 5.9 is a rather complex one since it requires elements from most
of the past worksheets (string and ratio tests, golden rectangles). Moreover the
translation of the small rectangle from the right side of the large rectangle to its
bottom left corner is a further conceptual step. Apart from these hurdles, students
faced difficulty mainly in coordinating their motor skills to perform the required
moves with the cardboard rectangles. Worksheet 5.10 was not completed by any
of the students.

The success rates of worksheet 5.1 indicate that a significant number of first
yéa.r students did not have a complete understanding of ‘sameness’. Especially
in the first part of the worksheet, the success rates are the lowest in the activity.
The tasks of enlarging and reducing rectangles in worksheets 5.2 and 5.3 and the
guessing task in 5.4, could be considered as foundation activities for the concept of
‘rectangle-sameness’. The high success rates in these worksheets then contradict
the low performance on 5.1. Is this because students had not abstracted the
rule of ‘sameness’ or is it also due to the fact that the tasks in 5.1 were hard to
tackle? We should consider here the interference from students’ other difficulties
and misconceptions and the effects of multi-tasked worksheets. Students seemed
to have grasped the string and ratio tests, since they used them in subsequent
tasks (worksheets 5.5, 5.6, 5.9).

The tasks involving measuring and ratio work proved demanding, especially
for the Scottish students. There were students that used unorthodox methods of
measuring (measuring the sides of the rectangles by finding the distance between
two points of opposite sides that seemed to be at the same level; taking the
measurements keeping the ruler and the rectangle up in the air). In problem-
solving and ‘forming-conclusions’ tasks (set 1 of 5.4, set 3 of 5.5, question 6 and
Zeus Temple in 5.6, calculations with the golden ratio in 5.8) students were not
very successful, especially the Scottish. Motor difficulties were also evident in
manipulating the accompanying material in worksheets 5.4, 5.7 and 5.9. There

were indications that the Scottish students did not appreciate the illustrations from
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Ancient Greek architecture. For example in one recording a student says: “Here is
a picture of something. .. ” referring to the picture of Parthenon in Athens. We also
notice that the Zeus Temple and Epidaurus tasks received the lowest success rates
of all the tasks in Scotland. This attitude may be justified by the unfamiliarity of
the names and the context. In contrast, in cases where the author had the chance

to give information about these illustrations, students seemed to enjoy it.

Students, then, were fairly successful on the tasks directly related to the con-
cept of ‘rectangle-sameness’ (worksheets 5.2, 5.3 and the first question on 5.4).
There was poorer performance on worksheets where secondary cognitive demands
interfere with the concept of ‘sameness’ (past difficulties and misconceptions,
multi-tasked worksheets), especially for the Scottish students. Keeping in mind
that the number of Scottish students that participated in the research was double
the number of Greek students, the results show a differentiation in performance
between Greek and Scottish students in almost all of the tasks. Tasks involving
measuring and ratio work proved particularly difficult for the Scottish students.
In problerirl-solving and ‘forming-conclusions’ tasks (set 3 of 5.5, problem and Zeus
Temple in 5.6, calculations with the golden ratio in 5.8) students were not very
successful, especially in Scotland. We would normally expect second year stu-
dents to do better than the first year students, as this is the philosophy of any
curriculum. A differentiation exists, though, between the performance of first and
second year students, in both countries, in favour of the former in several of the
tasks. Second year students may simply have found the tasks not to their level of
competency and therefore did not invest in them their best effort. Care has to be

taken to give students tasks which are appropriate to their level of competence.

Only a small number of students addressed the difficulties discussed above in
the recorded interviews and in the questionnaires. More specifically, about half
of the students mentioned vaguely that they had some difficulty with the SSA
activity. Only one sixth of them explicitly mentioned their difficulties (example
sheet 5.0, worksheets 5.1, 5.4, 5.5, 5.6-Zeus Temple, 5.7). These observations,
compared to the presented success rates, indicate that students were not fully

aware of the choices they were making or of the level of their competency. When
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students were asked to describe what they learned from doing the activity, almost
half of them answered that they learned something new and consolidated past
knowledge. The other half of the students simply referred to a certain task of the
activity. This indicated that ‘sameness’ of rectangles was not what many of the
students recalled as the main recurring concept of the activity. Their enjoyment

of working on the SSA activity shows in the following table:

" Response | Greece | Scotland
Did not Enjoy 0% 5%
Enjoyed A Little 2% 16%
So-So 2% 36%

Enjoyed Much 30% 31%
Enjoyed Very Much 66% 12%

Two thirds of the Greek students, then, enjoyed the activity very much, as
compared to one fifth of the Scottish. The main reasons for liking the activity
were the group work, the practical aspect of the activity, the fact that there
was no marking, lost sessions from the day’s schedule, it was easy to cope with
and because they liked the new teacher. Often responses were of the kind: “It
was better than school maths”. The main reason for not liking the activity was
the fact that they became bored with all the measuring and calculations. They
acknowledged that there was an interesting discovery at the end of each worksheet
but it took too long to reach it. They offered as an alternative outdoor measuring
instead of measuring cardboard rectangles. Other responses suggested that the
activity was not challenging enough or that they could not see why they had to

know about ‘same’ rectangles.

These responses have to be examined with caution, taking into consideration
the ‘Hawthorne effect’ of any innovatory program, that is, the tendency for an
innovatory program to produce results that overestimateits long term effectiveness
(see Ausubel 1968). Greek students, being less experienced in group-work, in
manipulating materials, in working with calculators, may be more ‘vulnerable’ to

such an effect. Even the change from having their teacher and following the day’s
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schedule might lead to misleading conclusions about the program’s impact on the
students. Scottish students on the other hand, are more used to this style of
learning, as described by the 5-14 Mathematics Document. This was not the case,
though, in some schools, where practical and calculator (for the S1 students) work

was limited and group work was not favoured (mainly for behaviour reasons).

5.2.2 The ‘Feely Box’ Activity

The data from this activity appear to be more uniform than those of the SSA
activity. Almost all students that worked on the FB activity completed worksheets
1.1 to 1.5. A different kind of difficulty arose though, since not all students worked
with the same number of shapes for each worksheet. Thus the data is not directly
comparable evé/n for students of the same class. For this reason, emphasis will
be placed on the students’ blunders and not on their success rates. The results
follow (for 1.6 see the DGC activity). Percentages for each shape are calculated

according to the number of students who worked with that particular shape.

Worksheet 1.1: This worksheet was completed by 86 Greek (45 G1 and
41 G2) students and 185 Scottish (86 S1 and 99 S2). On average, the Scottish
students worked with seven shapes as compared to six for Greek students. The
percentages of students who completed this worksheet with absolute success (sides,
vertices and names) were very low. Only 4% and 3% for the G1 and S1 students
respectively and 46% and 10% for the G2 and S2 ones. All these percentages rise
above 50% if we consider only the responses to the ‘sides’ and ‘vertices’ columns.
All together 45 students (19 Greek and 16 Scottish) perceived the inverted kite
as having three sides and 158 students (49 and 109) as having three vertices.
Other difficulties concerned naming the shapes. The following table shows these
difficulties for each country and grade. Percentages correspond to the incorrect

responses:
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II Shape | G1 | G2| S1| S2
Square - - -1 5%
Rectangle - - -1 3%
Parallelogram | 21% | 21% | 32% | 26%
Trapezium | 18% -191% | 81%
Isosc. Trapez. | 10% -197% | 87%
Rhombus -1 3% | 24% | 14%

Kite | 72% | 18% | 8% | 11%

Inverted Kite | 80% | 47% | 60% | 38%

In Scotland a large part of the above error rates are due to students who did
not attempt to name certain shapes. This was not the case in Greece. Most
students did not know the name of the inverted kite. They were encouraged to
describe it or name it after something familiar with the same shape. The most
common responses were “triangle with a bit missing”, “broken triangle”, “riangle
with two triangles on the bottom”, “arrow”, “boomerang”, “rocket”. All these were
considered as correct responses and were given mainly in the further observations
column. Incorrect responses referred to this shape as a triangle. Interesting are
the large number of Scottish students who failed to name the two trapezia. Most
of them tried to describe these shapes with the help of other familiar objects
(roof of a house, plant pot, thing an elephant stands on, etc). This time such
responses were not considered as correct, since these two shapes were known to
them. The ‘further observations’ column caused some confusion to the students
due to the lack of definite instructions. With familiar shapes students followed a
descriptive approach based on one or two of the shape’s characteristic properties.
For shapes where they could not remember the name, they tried to describe the
physical appearance. The Scottish students were more efficient at that. Less
than ten students, from both countries, gave a complete description of the shapes.
With unfamiliar shapes a ‘fall back’ strategy was often adopted, changing to an
inappropriate descriptive approach based on the material the shapes were made

of (eg one side smooth, one side rough).
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Worksheet 1.2: In Greece 87 students worked on this sheet (46 G1 and 41
G2) and in Scotland 184 (89 S1 and 95 S2). On average the Greek students worked
with five shapes and the Scottish with six shapes. Students were asked to produce
a simple sketch of each shape they ‘felt’. On that basis sketches were rated for
their accuracy as poor, fair and good. Percentages for each category follow. These

numbers are subject to the writer’s interpretation of the students’ drawings.

" Class | Poor | Fair | Good

| 1| a%|24%| 35%

G2 | 22% | 32% | 46%
I s 22%|6s%| 15%
| s2| 10%|63%| 2%

In many of the students’ sketches (around half of them), it was evident that
they had not discriminated between two of the triangles, the equilateral and right-
angled isosceles. The regular hexagons and pentagons were poorly sketched. In

general students tended to sketch small figures with not particularly straight lines.

Worksheet 1.3: This worksheet was completed by 83 Greek students (43
G1 and 40 G2) and 190 Scottish (90 S1 and 100 S2). Students worked with five
solids on average. Asin 1.1, the percentages of students with complete success on
the sheet (edges, vertices, faces, names) was very lower for the Scottish students.
Only 3% and 4% for the S1 and S2 students respectively and 21% and 50% for
the G1 and G2 ones. Ignoring the responses to .the ‘names’ column these success
rates become 14%, 22%, 77% and 85% respectively, still considerably low for the
Scottish students. In the ‘edges’ and ‘faces’ columns students faced difficulties
with the cylinder. They could not decide on the number of faces and edges, with
many students answering that a cylinder has no edges. The Scottish students were
also not very successful in giving the correct number of faces for the cube and the
prism (one fourth to one third of them). Most of the difficulties, once more,
appeared in naming the shapes. These follow, with percentages corresponding to

the incorrect responses:
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Shape | G1| G2| S1| S2

Cube | 5% -116% | 22%

Cuboid | 24% | 11% | 38% | 36%

Cylinder | 15% | 3% | 20% | 10%

Triang. Prism | 34% | 20% | 30% | 26%

Sq. Based Pyram. | 36% | 16% | 15% | 11%
Tetrahedron | 41% | 24% | 31% | 33%

The error rates for the cube and the cuboid are surprisingly high. Students
named them after their corresponding two dimensional shape. The shapes that
attracted the most diverse responses were the cylinder and the prism. Some names

given for these shapes follow:

e cylinder: circular based cylinder, sphere, cone, tube, circular prism, circular

cube, circle.

e prism: rectangular based pyramid, tent, ‘Toblerone’, rectangle-triangle.

These names reveal that students based their responses on the shapes’ charac-
teristics, improvising on the names of other shapes with equivalent features to the
one in question. The Euler column was completed by almost all students. Suc-
cess depended on whether students had their previous numbers correct. Actually
the success rates resemble those given before for the ‘edges’, ‘vertices’ and ‘faces’

columns.

Worksheet 1.4: In Greece 80 students worked on this worksheet (40 G1 and
40 G2) and in Scotland 191 (87 S1 and 104 S2). The success rates were very high

as the following table shows:

[class[ G1] 2] s1] s2]
l 70% | 90% | 94% | 96% |

From the 26 incorrect responses, 24 concerned the L-shaped solids. Due to

faulty construction, one of the L shapes did not correspond exactly to its figure on
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the worksheet. Many students asked about this while working on the sheet and
were directed accordingly. It can be argued, though, that some of the blunders

might have been due to this faulty construction.

Worksheet 1.5: This worksheet was completed by 80 Greek students (40
from each grade) and 176 Scottish ones (80 S1 and 96 S2). The success rates for
the three parts of the worksheet follow:

Class | Seq.A | Seq.B | Seq.C

G1 95% 94% 20%
G2 | 100% 85% 80%
S1 86% 80% 20%
S2 89% 85% 28%

In finding the relationship between the two cuboids, the most common incorrect
responses referred to the solids’ common geometrical characteristics: “they have

the same number of sides, edges,. .. their edges are parallel”, and so on.

Overall students faced difficulties in remembering the names of certain shapes.
These were shapes that students do not meet very often (parallelogram, trapezia,
rhombus, prism, tetrahedron). The students’ unfamiliarity with these shapes was
indicated by their bad spelling and pronunciation of their names. In Scotland
only a few students spelled the names of all shapes correctly. Most students were
confused by the inverted kite in worksheet 1.1. These students failed to identify the
fourth vertex of the shape, possibly because it was not something that ‘pricks’ as
vertices usually do. Moreover, many of their responses concerned a 3-sided shape
with four vertices, or a 4-sided shape with three vertices. This was an indication
of how easily students’ logical thought failed when confronted with unfamiliar

problems.

The percentages of the students, especially in Scotland, that had difficulty in
naming the cuboids in worksheet 1.3 was surprisingly high. In the same worksheet
students found it more difficult to count the faces of the solids than to count the

edges or the vertices. The high success rates in worksheet 1.4 are explained by the
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nature of the task. It involved recognition of shapes that were at present, drawn
on the sheet. Discomfort was evident when students had to sketch the shapes
they were exploring haptically (worksheet 1.2). Most of them kept their figures
small in size, obviously to give the appearance of better accuracy. Students failed
to discriminate between the equilateral and the right-angled isosceles triangles in
this worksheet. Finally, the low success rates in the third part of worksheet 1.5

may indicate students’ difficulty in problem-solving and forming-conclusions.

In exploring the shapes students used both their hands, either placing the
shape in the palm of their hand or tracing it with their fingers. Their strategies
were exploratory with fast movements, keeping their hands in the air. They used
vertices as reference points but they used external frames of reference only in an
accidental fashion. In worksheet 1.5 they usually superimposed the shapes of each
sequence to compare them for their perimeter or area. Students did not have many
queries while working on this activity. In Scotland students did not understand
the terminology used on the worksheets, more specifically the term ‘vertices’ to
name the corners of a shape. Also there was no consensus between schools about
the terms used. For some schools faces meant sides and sides meant edges and
for other schools the opposite. To overcome the delay caused by the big number
of students in a group, the Greek students formed two groups within groups of
four and explored half of the shapes keeping their hands under the desk. Then
they would exchange their shapes with the other half. Students, generally, found
the work pleasant and not very demanding. Most of them completed worksheets
1.1 to 1.5 within the two thirds of the time available (one and a half to two
hours). When students were asked what they had learned from the activity, most
of them described what they had done in the activity. A large number of Greek
students replied that they recalled relevant past knowledge from working, though,
on something different. Their enjoyment gained from working on the activity

appears on the next table:
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Response | Greece | Scotland

Did not Enjoy 0% 1%
Enjoyed A Little 1% %
So-So 4% 30%

Enjoyed Much 22% 30%
Enjoyed Very Much 70% 32%

The most popular reasons given for enjoying the activity were the practical
aspect of the activity, working in a group, its easiness and the fact that it was
better than the usual work in mathematics. There were students, though, who
expressed clearly their discomfort at the cognitive difficulty of the tasks, suggesting
that they were too easy. Some of the students who made these comments had
blunders in their responses. This may indicate the students’ frivolous approach to
a new learning situation. Some students also felt bored after some time, because
as they said they were just ‘feeling’ shapes. They proposed having various shapes,

two-dimensional and three-dimensional accompanying every worksheet.

5.2.3 The ‘Drawing and Geometric’ Constructions Activ-

ities

In Greece 47 students started working on the ‘Be a Geometric Constructor’ and
‘Balancing Polygons’ sequences of activities and 16 in Scotland. The actual num-
ber of students who worked on these activities, though, is much bigger. That is
because students from the FB activity continued on these activities after complet-
ing worksheet 1.6. The tasks of the ‘Balancing Polygons’ sequence that involve
balancing were not tried in Scotland. The acetate shapes were not robust enough
to use in the classroom. Also some students found it tricky passing the thread

through the holes.

Only 23 Greek students tried worksheet 1.6 (they were directed to the DGC
activities) and 141 Scottish. Most of them faced difficulties when they had to draw

in directions other than the horizontal and vertical. The triangles, the rhombus,
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the kite, the pentagon and the hexagon were the hardest to draw. Very few of the
students used drawing instruments other than a ruler, most of them in Greece.
At each step they concentrated on the length of the side to draw next but not on
the angle determining the direction of the side. Whether they followed the given
instructions then was a matter of chance. The following quotation is revealing:

“The ones with diagonal lines, they end up the wrong size”.

The students’ responses on the ease or difficulty of drawing on the two kinds of
papers were interesting. Some noticed that shapes like the square, the pentagon
and the circles are hard to draw on isometric paper and shapes like the pentagon,
the hexagon, the rhombus, the kite and the circles are hard to draw on squared
paper. Others responded that all shapes were easy to draw on both papers. These
answers contradicted their actual performance, since most of the students had
faced difficulties. Possibly students ignored the fact that they did not only have
to draw a number of shapes but they had to draw them following the given instruc-
tions. Otherwise we would have to suggest that the students unfamiliarity with
some tasks is the reason for their inability to judge their own performance. From
these answers we can also conclude that students failed to exploit the properties
of the isometric paper. On the squared paper they also counted the distance of
a diagonal of a unit square as one unit of length. We have to note here that the
Greek students at least were not familiar with drawing on squared or on isometric

paper.

The ‘Measuring and Drawing Library’ booklet preceded the allocation of the
‘Be a Geometric Constructor’ and ‘Balancing Polygons’ sequences of activities.
Students simply riffled through the pages and did not use it afterwards. Some of
the students’ queries while working on the tasks had their answers in the book-
let. Either the students had not studied the booklet thoroughly or they had not

understood its instructions.

Students were mostly accurate in the triangles’ constructions and the bisect-
ing of a line. The construction that created most of the difficulties was the one
for finding the centre of a circle. Some of the problems caused might have been

by the distortion of the circle due to photocopying. Students’ quality of drawing
y
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was at high levels, especially that of the Greek students. But even though they
were competent in the actual use of the drawing instruments, their measurements
were not absolutely correct. In other words, they could cope with completing the
construction but they could not follow the given instructions for the lengths in
these constructions. Moreover, in cases where the students were not positively
sure about the outcome, they preferred to reproduce the given illustrations in the
instructions. This was common for the Pascal’s line and less common for Pap-
pus’, where they chose the points in the way they were marked on the diagrams
in the instructions. In Scotland, many students had difficulties in reading the in-
structions. This was less common in Greece. An interesting situation was created
while students were working on the construction of a regular hexagon. In this task
students are asked at some stage to measure the distance between certain vertices
of the hexagon. Distance for most of them was a line of a certain length. So to
measure the distance between two vertices they first drew the line to connect these
two points. Students also had difficulties in going from millimetres to centime-
tres. Finally, the students’ inability to use information from past constructions
was evident in, for example, the construction of a perpendicular on the worksheet

of constructing two parallel lines.

In general, students used the drawing instruments adeptly, particularly the
Greek students. Lines were straight, arcs were competently drawn but the out-
come did not always match the wanted one. Either students did not manage to
follow the instructions, or they did not double-check their constructions. The for-
mer may indicate unfamiliarity in drawing and the latter an improper working
approach. The students’ difficulties in relating information from worksheets al-
ready completed to the one at hand is in accordance with the improper working
approach. Students enjoyed working on the constructions, to judge from their
comments and their teachers’ remarks. It was a novel task, or maybe as they
themselves said a task that they are not usually given the opportunity to work
on. They felt challenged by the accuracy that the tasks required and by the large
number of the worksheet. They also seemed to enjoy, to some extent, the narrative

that accompanied each worksheet.
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5.3 Further Observations

The organisation of the classes in Greece for the practical activities was more or
less the same in all schools. Students formed groups by themselves and then they
were assigned to one of the activities at random. The author was alone in all
except two of the classes. The students were very demanding when asking for the
next worksheet. Some of them preferred to ask the author for explanation before
even reading the instructions, saying “teacher knows better”. For these reasons the
task of providing the groups with each worksheet along with the accompanying
material seemed too much for one person to tackle. On the other hand in Scotland
much help was given by the teacher of each class and quite often by a third teacher.
In every school in Scotland the organisation of the class during the sessions on
the practical activities was affected by the suggestions of the class’ teacher. In
Sanquhar classes were divided into two large groups, according to the activity
students were working on. These groups occupied separate rooms with a teacher
responsible for each one of them. At Tobermory and Selkirk High Schools these
two large groups occupied different areas of one room. The same arrangement
was made at Drummond, with the difference that students working on the same
activity were sitting around the same table. Also one teacher was responsible
for each table and each activity. Students in Scotland were less demanding than
Greek students. They still preferred to hear the instructions from the teacher but

not to the same extent as in Greece.

Students tended to seek approval for their answers before proceeding with
the next task. This was more evident at some schools in Scotland, despite the
individualised, self-paced teaching approach. In general, group work was favoured
by the vast majority of the students, as they indicated in the questionnaires. They
acknowledged the social aspects in group work and its advantages in coping with
difficult tasks. These remarks, though, should be interpreted with caution, because
in many groups discussion was akin to chatting and cooperation was limited to

simply reading the instructions together. There were cases in Scotland where
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students in a group needed encouragement before they even started talking to
each other. This reflected the discipline demanded by the mathematics teachers.
It seems that the students were not accustomed to group work, either in Greece or
in Scotland. Those students who opposed working in groups did so because their
group members were cheating or because they did not like them. There were also
some students who stated that they enjoyed group work but they would rather
work individually.

Students seemed very worried at times about the confidentiality of their work,
mainly because they were afraid that their teachers might see it. The author
made it clear that the sessions on the practical activities was not an assessment
and their teachers would not have access to any of the collected material. Despite
this comment, many students, especially Greek, decided to use nicknames on
their worksheets. Due to the demands of the sessions, unattended recordings
were the only possible option for capturing students’ discussions. The students
though, were fascinated by the tape-recorder and ended up expending much of
their energy in saying silly things to it. The following recurring behaviour was
recorded by the tape-recorder. Students appeared to adopt a different behaviour
when they were facing a teacher and when they were hiding in anonymity. When a
teacher approached them, they always had some question to ask about the task on
which they were working on. As soon as the teacher had moved away from their
desk, they would start chatting again. This immature attitude was the students’
response to the ‘no-talk, just-work’ discipline rationale of most of the mathematics
classes. Pretend that you are working (asking questions is an indication of doing

so) when the teacher looks at you and chat whenever you find the chance.

In Greece students remained at their seats, working, even during the breaks
between the sessions. The situation at Vlachokerasias was amazing, where stu-
dents worked through all four sessions in one day, some of them without having
any breaks. In Greece, the classrooms with the practical activities was an attrac-
tion for the rest of the school’s students. Students kept asking questions about
the materials and were trying to persuade the author to try them in their classes

as well. All students were curious about the materials. In Greece the calculators
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attracted most attention. Some of the students even treated them as ‘sacred’ ob-
jects. Teachers, not only of mathematics, were very interested to know about the
materials and the objectives of the project. Greek teachers wanted to know about
teaching practice in Scotland and the other way round. N/o mathematics teacher
in Greece, though, requested any details about the activities before trying them
in their classes. Only one of them had some interaction with the materials, by
helping to its allocation and clearing up queries whenever he could. On the con-
trary, Scottish teachers were actively involved during the sessions, usually taking
charge of the ‘feely box’ activity. Their comments on the practical activities were
encouraging. They said many of their students performed better than expected
(judging by the amount of work they completed and their attitude during the ses-
sions). Teachers at the Mathematics Teaching conference in Edinburgh also liked
the activities. Their main worries concerned the organisation of such sessions and

the cost and availability of the materials.

When students were asked on the questionnaires to propose possible areas in
mathematics suitable for practical activities, their responses covered, more or less,
the mathematics syllabus of the first two High School grades. These proposals
might indicate the working area for many research projects but also the many
difficulties that students face and the need for help. The students’ comments
in the interviews concerning mathematics and their school experiences with this
subject were revealing. In Greece only 21 students were interviewed as compared
to 87 in Scotland. The interviews were unstructured discussions. They took place

in groups, as this was proved anxiety-relieving for the students.

The similarity of students responses concerning the description of a typical
mathematics session is remarkable. These descriptions coincide with those given
at an earlier stage by the author (see §5.1). Students’ studying habits were fairly
similar. Provided that they had homework (rare for the Scottish students), they
read the school book and then tried to solve the problems set. The answer-books,
in both countries, play a misleading role at this point. Students in Greece are
tempted and usually copy the answers from the books without understanding being

involved. Similarly in Scotland, students correct their work by themselves at the
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end of each booklet. They tick the correct answers and change the incorrect ones.
Understanding why some answers are correct and others are not is not essential
at this stage. It is when students have to pass a revision sheet that teacher and

students might be surprised by the performance of the latter.

In Greece all tasks come from the school book and in Scotland mostly from the
booklets. Students expressed clearly that they would like a change in that process,
with more practical work and more everyday applications. Moreover, they would
like teachers to be less strict, allow them to do some group work and let them
speak amongst themselves during mathematics classes. The relationship between
students and their mathematics teachers is a matter of concern. The teacher
reprerents positional authority and in the best of cases sapiential authority as
well. Most students do not see their teacher as a friend and this gradually leads
to an avoidance of him/her. This situation may easily lead to cognitive as well
as affective difficulties. As many students commented, consulting their teacher
was not their first choice when they needed help. They would prefer to ask their
parents about their homework, or ask a classmate ‘who knows’, instead of asking
their teacher. The result are misunderstandings and, especially in Greece, this
signals the phenomenon of parapaedia. In addition, students with well educated
parents are likely to have better chances in schooling, since help is more readily
available to them. Related to this issue may be the students’ difficulty in seeing

themselves as future mathematics teachers or even as teachers.

Of all the different types of assessment used, the blackboard has the most
pitfalls for the students’ ego (used only in Greece). It is during this type of assess-
ment that students’ performance is there to be judged by teacher and students.
Even friends can be malicious at such times. Competitiveness, jealousy, etc, can
produce unkind comments about a student’s performance, abilities, even about
his/her personality. The author observed similar attitudes from some teachers
during the observation sessions. It seems then that this type of assessment has
undesirable effects, mainly because of the way it is used in the classroom. In
general, Greek students sounded more frustrated about their interactions with

their teacher, while the Scottish were more frustrated about the teaching and
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the tasks they were experiencing. This is possibly because the teaching style in
Greece is more interactive between teachers and students, while the Scottish is

individualised and more content oriented.

The students in general did not like mathematics very much and a reason for
that was its difficulty. Students who could cope well generally liked it. All of
them anticipated its essential role in finding a job later in their lives. They couid
not find, though, everyday examples of its use other than involving money. Such
a utilitarian approach is revealing of the bad view of the subject students are
receiving in class. Some students even said that ‘grocery’ mathematics (money
give-and-take) is not mathematics, as it is too easy. Despite all the unfavourable °
comments about mathematics and about the way it is taught, it was surprising to
hear from the Greek students the demand for more mathematics sessions, more
time to cope with their difficulties, more time to interact with their teacher in
and outside the classroom. They also suggested the establishment of mathematics
libraries within each school, where students could study their homework, find
books to read and get help with their queries. These remarks came from students
at Patras High School, where students might have learned about foreign schools

from their well educated parents.

The students’ effort to please the author on the one side and not to expose their
teacher on the other was evident. This was obvious at times from the contradictory

responses to different but related questions.



Chapter 6

Discussion and Conclusions

The main intention of the study was to investigate the effectiveness of practical
work in lower secondary school mathematics learning. This called for the consider-
ation of students’ performance on the developed materials and students’ attitudes
towards the suggested approach. The effectiveness of the practical activities was
investigated in terms of the cognitive difficulty associated with the concepts that

these introduce.

Caution should be exercised in judging the extent to which the collected data
allows for a direct comparison between Greece and Scotland. This refers both to
the quantitative and the qualitative results of the study. The sample from Greece
was much smaller. The time that students worked on the practical activities was
not equal. It appears that Greek students had the chance to work on the activities
for more time than the Scottish students. The conditions, though, in the Greek
classrooms during the sessions using practical activities caused considerable de-
lays. Also the mathematics syllabuses and the students’ educational experiences
in the two countries do not correspond. The Greek students’ experience of non-
traditional teaching methods is very limited. This fact allows us to suggest a
greater influence of the Hawthorne effect on the students’ attitudes and perfor-
mance. Other inadequacies may refer to the author, who played the roles of both
the researcher and the evaluator. The language and the cultural barrier may also

have restrained him from meeting the demands of the research that took place in

96
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Scotland. All these issues should be kept in mind, along with the methodological
rationale of the study (see §4.4). These issues then, may not weaken the study’s
potential for investigating its main objectives. On the contrary, they emphasize

the complexity of establishing a commonness of meaning in the learning milieu.

The results of the study indicate a differentiation between the performance
and the attitudes of the Greek and the Scottish students, in favour of the Greeks.
Overall, students faced difficulties in multi-stepped worksheets. They failed to
make use of information from earlier tasks on the worksheet or from past work-
sheets. Interference from secondary cognitive demands also considerably affected
their performance. It seems then, that the practical activities played a part in ‘ex-
posing’ students’ past misunderstandings. Their discomfort in tasks that required
intuitive thinking and problem solving skills was evident. They also seemed to
lack what Dewey (1963) called the “top and think” quality. In other words, they
did not pay much attention to the task’s context, as this was described by the
instructions. They were satisfied by reaching ‘an’ answer for the task at hand,
without being interested in checking their answer and comparing it to their ear-
lier responses. Moreover, tasks with illustrations from Ancient Greek architecture
failed to draw students attention to the aesthetic projections of the discussed con-
cepts, especially the Scottish. This was possibly due to an unfamiliarity with
the archaeological sites in the illustrations and possibly with the relationship that

mathematics has with the arts.

Other students’ difficulties were related to language and motor control skills.
Inability to express their thoughts verbally characterised most of the students
(especially in Scotland). Many students faced reading difficulties, especially in
worksheets with extended instructions. This was accentuated by many students’
preference (especially in Greece) for listening to the instructions from the teacher
rather than trusting their own abilities. Also, most of the students in Scotland
pronounced and spelled the names of shapes and concepts incorrectly. Shapes
like the parallelogram, the trapezium, the isosceles triangle, the tetrahedron, are
shapes (and names) that students do not come upon often in their school and

everyday life. Possibly language worked to the advantage of the Greek students,
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since most of these names have Greek origins. Everyday words and metaphors
may be used by Scottish mathematics teachers (to a lesser extent in Greece),
to compensate for this unfamiliarity. These expressions can vary among schools
around the country. They may provide a “vivid and memorable” way of interpret-
ing and describing knowledge (Lopez-Real 1989, 1990). Their meanings, though,
are not always exploited in the classroom (opcit). It is suggested then, that they
may have proved to be a disadvantage for the Scottish students, since there are
the dangers of over-simplification and confusion between the different meanings
that these metaphors have in everyday life and in the mathematics classroom (see
Fielker 1988). Irrespective of these reasons, the percentages of Scottish students
especially but also of Greek students, who failed to name solids like the cube, the
cuboid and the cylinder were worrying. These are familiar solids, that appear

~ early in the primary school syllabuses in both countries.

In tasks that required dexterous use of equipment, several students required
adult help. Instead of the equipment helping them to overcome the cognitive
demands of the tasks, the opposite occurred. Either the motor-skills demand
was merely beyond them or they lacked the appropriate practice. The latter is
supported by the haptic exploration strategies that students used in the ‘“feely
box’ activities, which in general were unsystematic. Motor skills difficulties may

account for some students’ poor drawing and sketching skills.

There was also a differentiation in performance, in several tasks, between first
and second grade students, in favour of the former. Enjoyment was closely related
to the cognitive difficulty imposed by the tasks in the activities. There were stu-
dents who liked the activities because they were ‘easy’ and others who did not like
them because they were ‘too hard’. There were few who did not like the activities
because they were not challenged by the tasks. No clear conclusion can, then, be
drawn from the differentiation in the performance between the students of the two
grades (see later discussion on students’ strategies). In general all students rated
their experience on the practical activities as better than the school mathemat-
ics, even those students who did not enjoy working on them very much. In the

interviews they specified that they liked the ‘hands-on’ aspect of the activities.
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Another indication of students’ preference for practical work can be seen from the
higher enjoyment that they received from the ‘feely box’ activities, as compared
to the ‘same shape as’ ones. Practical work is more clear and vivid in the ‘feely
box’ activities, since all worksheets are accompanied with equipment which is also
pleasing to the eye. The possibility of Hawthorne effects exists then, even for
the Scottish students. There is an obvious danger of students being influenced
by characteristics, irrelevant to the the nature of the method: being allowed to
discuss with their classmates, working in groups, avoiding the usual work, inter-
acting with a new person (the researcher). These characteristics, important in
activity-based learning, make it more difficult to judge the method’s potential in

learning mathematics.

The underlying rationale of the Greek and the Scottish educational system
appears to be challenged by reality, as revealed by the results of the study. In
Greece many students turn to private tuition (parapaedia) to compensate for in-
adequacies of the educational system. Being able to afford a private tutor in
mathematics or not contradicts the alleged equality of opportunities for all stu-
dents. The meritocratic rationale of the Scottish educational system seems to
be challenged by the performance and attitudes of the students in lower ability
classes. Furthermore, despite the differences in the educational systems of the two
countries (mathematics syllabuses, functioning and organisation of mathematics
classes), the differences in the students’ performance were not significant (the ac-
tual success rates). In addition, the difficulties that the students faced during the
practical activities were more similar than different. Bearing in mind the lim-
itations of the study (see opening discussion), this prompts the demand for an
appreciation of how fundamentally different educational systems may lead to sim-
ilar performance outcomes. It raises the need for open-mindedness among those
who work in the field of mathematics, irrespective of their role. By subjecting
educational ideas and rationales to cross-cultural comparison and criticism, social
and cultural generalisations may be discovered, which may in turn lead to more

refined educational systems.

Students adopted strategies, in an effort to look as if they were working on and
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interested in the assigned tasks. Other strategies also indicated avoidance of work
(eg delaying asking for the next worksheet). We can suggest that the first year
students may be more likely to adopt strategies for pleasing the teacher with their
performance and attitude. In order to come to terms with a new environment, the
more appropriate strategy is a cooperative rather an opposing one. On the other
hand, second year students appeared more challenging towards authority figures.
This may explain, to some extent, differences in performance between first and
second year students. Students’ evident worries, as expressed to the author, about
the confidentiality of their work and behaviour indicate differences in behaviour
during educational experiences. The persons that are involved in these experiences
and their behaviour. The organisation and nature of these educational experiences
seem to interact with the people that are involved in these experiences and greatly

affect their behaviour.

The tasks that students are asked to work on in the mathematics classroom,
are not perceived by the students to correspond to their personal experiences and
interests. Despite these remarks they could not find everyday uses of mathematics
other than in money transactions. Their beliefs about the nature of mathematics
corresponded with the formal and analytic way in which the discipline is taught in
high school. Also their aspirations about learning mathematics chiefly concerned
its applications in possible future occupations. In most cases interactions with the
teacher were limited to receiving instructions. Interactions with other students
were also limited, almost non-existent in Greek classrooms. This may explain the
observed difficulties in communicating their mathematical ideas verbally and also
the unfamiliarity with functioning in a group. Understanding was hidden behind
the effort of reaching an answer, preferably the correct one. The phenomenon of
the wrong use of the answers-books was worrying. Many students (especially in
Greece) said that they preferred to ask their parents, or a friend ‘who knows’,
when facing difficulties with homework or other assignments. Teachers are seen
as distant authority figures. Students said that they would prefer them to be less
strict, more caring, allowing and encouraging discussion. They added that they

would not like them to be very tolerant of bad behaviour and performance, since
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this was also perceived as not caring enough for the students. All the pedagogical
ideas that suggest the teacher should be a ‘model’ for the student in and out of the
classroom (encouraging the formation of values and attitudes about the discipline,
about learning and about life), seem to be overlooked by reducing the teachers’

role to giving instructions.

The above discussion does not apply to all the observed mathematics class-
rooms, since a few of them were functioning in a relaxed and caring atmosphere
(see §4.1). For this reason, even classrooms within a country were not directly
comparable. It was part of the intention of the study to investigate differentia-
tion in performance and attitudes between urban and rural high schools. Only
in one first grade class in Greece (at Vlachokerasias Gymnasium) was students’
performance significantly lower than in the other schools. This low performance
was paired with students’ low motivation for learning (not only in mathematics
classes). It was also found that in classes with authoritarian teachers students
received the practical activities very warmly. Moreover, despite the fact that
some classes were classified as lower ability, students’ achievement and behaviour

surprised their teachers in a positive way.

Considering, then, the students’ behaviour in the mathematics classrooms dur-
ing the study, we observe common characteristics which give evidence for what
was described earlier as ‘classroom culture’ (see §4.2). These common charac-
teristics mirror the acquisition of values in the mathematics classroom about the
nature of the discipline itself, about mathematics understanding, about work in
the mathematics classroom, about the role of the teacher and about education in
general. Schooling nowadays seems to be characterised by an ‘industrial’ ethic.
Teaching used to be addressed as a ‘vocation’. The compartmentalised structure
of school, though, with a clear prescription of rules and regularities, based upon
efficiency and effectiveness, has made the roles of teachers and students resemble
those of contract-workers. If education is perceived merely as a job to be done, it
is expected that ‘workers’ will try to bring this job to an end with the least pos-
sible effort. Learning then is likely to be an incidental outcome of schooling. The

values acquired in the mathematics classrooms nowadays mark the widespread
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subsumption of culture by civilisation. Civilisation, of course, is not a reprehen-
sible characteristic of human race. It is reprehensible, though, to limit students’
aims to short-term aspirations, even if these have to do with everyday life pursuits.
To transcend above the utilitarian, everyday life activities (not to reject them),
does not necessarily mean to indulge in a theoretical pﬁrg.uit of mathematics. This
may fbrm the means but not the end. Short term values appear to be strong but
not unalterable or lacking the need for enrichment. This of course.may require

re-evaluation of beliefs about the aims and use of mathematical education.

Should we étop thinking only in terms of ‘producing’ future mathematicians,
or even in terms of teaching better mathematics to our students? Should our aim
be to teach to students as much ‘mathematics’ as possible during their schooling
career! It is deceitful to suggest that acquisition of skills and techniques is a
preparation for the students’ future life. Nor is sterile mathematical knowledge
that confines the learner to the discipline of mathematics alone a preparation for
future life, even if this knowledge is learned in a meaningful way. Would it be
better to think in terms of teaching for. ‘better’ peoplei and cultivate the ability to
make decisions in later life? This approach would also reflect an honesty about the
nature and use of mathematics in the process of life. Learning, in general, should
be an open-ended activity/experience and not dependent on instruction. The aim
of mathematics education should be the ‘end’ of dependency on instruction. This
corresponds to the meaning that Aristotle gave to the word ‘end’ of an action as
the acquisition of an “agatho” (possession, quality), with all actions leading to the
acquisition of the ultimate agatho, that of the “politiki techni” (the ‘art’ of forming
social groups) as described in Plato’s myth about Protagoras. It envisages an
adult independent of pedagogic relations, being able to survive in and contribute
to his/her culture, considering the existing societal and historical situation. It is
wrong then to perceive education as schooling and the role of mathematics teachers
as that of instructing the young about mathematics. Schooling should provide the
students with opportunities that would bring a fusion to the Apollonian and the
Dionysian modes of life. It should engage students in experiences that would

‘unravel’ and cultivate their potential qualities and prepare them for ‘political’
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life. Teachers should be seen as models for life (they are anyway) and not only
as authority figures or as bearers of knowledge. This would require freeing the
teachers from contract-like demands and the development of curricula that would

appreciate teachers’ initiative and personal qualities.

The following words by Nietzsche (1872 in Breazeale 1979: 16) sound so con-

temporary, summarising the above discussion:

“The Greeks as discoverers, voyagers and colonizers. They knew
how to learn: an immense power of appropriation. Our age should not
think that it stands so much higher in terms of its knowledge drive -
except that in the case of the Greeks everything was life! With us it

remains knowledge!”

Aiming for a mathematical knowledge drive, then, may alienate its owner from

life, if this drive is limited to the mere acquisition of knowledge.

It would be ‘convenient’ to suggest that activity-based learning can secure in-
tentional learning of mathematics and also serve the former objective. The results
of this study suggest though, that practical activities deserve serious consideration
in the field of mathematics learning. The extent to which they can promote learn-
ing is something that cannot be evaluated by a single study. To pretend so would
be to abide by the short-term aims that characterise mathematics learning and
education overall nowadays. Their potential in disclosing past misunderstandings
(even about familiar concepts), is an indication of their value as a teaching aid.
As far as the formation of values is concerned, we have to accept that this process
té.kes place in the classroom irrespective of the kind of values that are formed. It
is an ethical issue then, that of determining what ‘kind’ of values these should be
and what purposes they should serve for the learner and for the society. Possibly,
it would be more ‘honest’ for the learners if they were aware both of the utilitar-
ian role of education and the imaginary one. Practical activities, by encouraging
deliberate action, interpersonal communication and functioning in a group and
activity-based learning can play a role in educating ‘political’ human beings. By

demanding interaction with the teacher they can promote the formation of values.
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Why then are practical activities not used in secondary school mathematics
classes? What can be the reasons for this? Do teachers not value them as a way
of learning mathematics, or is it simply that they are not convinced about their
use as an efficient teaching aid? How can the process of value-formation in the
classroom be described in detail? Is there a need to re-evaluate the role of the
teacher? Is there a need to re-evaluate the role of mathematics education and
that of education in general? Is it ‘egotistic’ to direct our effort to mathematics
education only, or would it be more honest, if we think in terms of a metaphysical
appreciation of schooling, to strive to cultivate the whole individual? What is the
role that parents can play in this process? These are some questions that future

research may try to address.
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The ‘Feely Box’ Activities

The worksheets of the ‘feely box’ activities follow , including worksheet 1.6.

/
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FEELING SHAPES / PART A WORKSHEET 1.1 YOUR NAME:
YOUR SCHOOL :

1. Place box A in the feely box.
2. Put your hands in the feely box and pick one
shape from the box.

For each shape of bax A, follow steps 3-5.

3. ldentify certain properties (sides, vertices),
and name the shape that you are touching.

4, Copy your answers on your worksheet and write
down any further observations.

S. Check your answers by looking at the shape

*\*\ \*\",\ \‘\ \,‘ ,‘, T

afterwards.
No. of No. of
SIDES VERTICES NAME OBSERVATIONS

FIRST SHAPE

%Y

SECOND SHAPE

i

THIRD SHAPE

' .*\_

FOURTH SHAPE

FIFTH SHAPE
r

SIXTH SHAPE

SEVENTH SHAPE
= USE THE BACK OF THE PAGE IF YOU NEED TO DRAW ANYTHING.
AN AT
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FEELING SHAPES / PART B WORKSHEET 1.2 YOUR NAME:
YOUR SCHOOL :
1. Place box A in the feely box.
2. Put your hands in the feely box and pick up one
shape from the box.
For each shape of box B, follow steps 3-4.
3. Using squared paper, sketch the shape that you
are touching.
4. Check your answers by looking at the shape
afterwards. If that shape is different than
yours, sketch the right one beside.
YOUR SKETCH RIGHT ANSWER (IF DIFFERENT)
-
-

LY

"

N
4
A
'

5

)
»

b

. e e e,
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FEELING SHAPES / PArRT C WORKSHEET 1.3 YOUR NAME:
. - YOUR SCHOOL :

1. Place box C in the feely box.
2. Put your hands in the feely box and pick up
one solid shape from the box.

For each solid shape of box C, follow steps 3-4.

3. Identify certain properties (faces, edges,

touching.

4, Copy your answers on your worksheet, and
check them afterwards by looking at the
solid shape.

o

>

>

’_‘_ vertices), and name the shape that you are
>

>,

%

No. of No. of No. of
FACES (F) VERTICES (V) EDSES (E) NAME (F)+(V)—(E)=

" ist SOLID

; 2nd SOLID

-

, 3rd SOLID

:‘ 4th SOLID
Sth soL1D

R

. éth SOLID

What do you observe about the last column?
(No. of faces) + (No. of vertices) - (No. of edges) =Q

USE THE BACK OF YOUR PAGE IF YOU NEED MORE SPACE.

AN, AN AT

-, * R -~
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$.0.%.9.%.0.9. 5.2 2. N

FEELING SHAPES / PaRrT D WORKSHEET 14 YOUR NAME :

YOUR SCHOOL :

1.

For each solid shape of box D follow Steps 2-4.

2.

3.

Place box C in the feely box.

Put your hands in the feely box and pick up
one solid shape.

Identify the solid shape that you are
touching from a range of solid shapes drawn

on your worksheet.

Check your answer by looking at the solid
shape afterwards. Tick the circle if you had

it right, or cross it if you had it wrong.

B - . .

- . . . .

‘-—

NN\

ol o
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200 %% <

FEELING SHAPES / ParT E WORKSHEET 15 YOUR NAME:
YOUR SCHOOL :

1. Place sequence A in the feely box (a square, a
triangle and a trapezium). Ignore the thickness
of the material.

2. Try to order them, by marking first on the
worksheet the one with the smaller perimeter.

3. Check your answers by looking (or measuring) at the

the shapes.

g SHAPE 1 SHAPE 2 SHAPE 3

SEQUENCE A:

4, Now use sequence B (two squares and a

F

parallelogram). Try to order them by marking first
on your worksheet the one with the smallest area.
S. Chech your answers by looking (or measuring) at the

shapes.

"%

- SHAPE 1 SHAPE 2 SHAPE 3
SEQUENCE B:

- Now put sequence C (two cuboids) in the feely box.
Can you identify ay relation between the dimensions
of the two solids?

=
7. Copy your answer in any form you like (sketch,

w words, numbers), and check it by looking at the

. solids afterwards.

=y

I

o

"

USE THE BACK OF YOUR PAGE IF YOU NEED MORE SPACE.

e T e e . T L e T T e e AN
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< T W N

FEeLING SHAPES / PART F WORKSHEET 16 YOUR NAME:
YOUR SCHOOL:

Draw the following shapes on squared paper according to the

instructions. Use whatever drawing instrument you need.

square: side of 4 units

rectangles side of 4 and é units

rhombus: side of 4 units

kite: sides of 3 and 5 units

tarpezium: top side of 4 and bottom side of 7 units
parallelogram: sides of 4 and 6 units

pentagon: side of 3 units

hexagon: side of 3 units

equilateral triangle: side of 5 units

circle, half-circle and quarter circle 3 radius of 3 units

Are there any shapes that are hard to draw? Can you describe
why?

Now try to draw the same shapes on isometric paper following
the same instructions. Are there any shapes that can be
drawn more easily on the isometric paper? Are there any
shapes that are hard to draw on both papers? (squared and

isometric).

% N o Y T Y e AT

. ", I W o e .
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The ‘Same Shape As’ Activities

The worksheets of the ‘same shape as’ rectangles activities follow.

112
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SAME SHAPED RECTANGLES ExArMPLE SHEET

All rectangles are the same kind of shape, but not all
rectangles have the same shape.

For instance, the following pairs of rectangles do not
have the samse shape:

But the following pairs do have the same shape:

i) Lr.ai@_l[ G o s s s S e s ) e s ] e ] U

G)|

Elelolcliciciclieicicicichiclichiz TA7_5
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e I:.Ill:lll:.l't:gu:n.l:l.:.a.u;a.g—_llc.nellz;.-_a.h_.l_-:-

SAME SHAPED RECTANGLES WORKSHEET 5.1

Your Namse 3
Your School 13

1. Here are some rectangles. Tick with an X thoses
rectangles which do NOT have the saase shape as 13

1= ] s o s ey ey e e =

2. Here are some more rectangles. Mark with a \/
those rectangles which have the sase shape as 13

5] {loff [a]

HER

L] i) =] M) ey

g [=]] [l=]]
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= =1 =T 1 ] ] [T ] (S T T Y TS

ENLARGING RECTANGLES WORKSHEET 52

Your Name 1
Your School 3

1. _Complete the rectangle, so to have the same shape
as the given one.

i dnd ek

B e B s 0,

h.. 4. .
e S &

) I S . |

2. Complete the rectangle, so to have the sase shape
as the given one.

i

5]

3. Enlarge the given rectangle as many times as you

2l Ll B8] S e e s T TS s Tl ] Taf taf ol s i

want.

5]

U el

15

L] L]

G|

S]] [=]] [ta]] [la]
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It
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ReEDUCING RECTANGLES WORKSHEET 53

Your S8chool

E

[E

'Your Name 3 3
[C

E

1. Complete the rectangle so to have the sase shape as
the given one.

3 K 2 A I G T
KR % X N Bk S R A - B —

. ¥ AT T R ke -
= i - a B b

- PR EES I .ok - E
. . ¥ - . .. 3 ‘.

2. Complete the rectangle so to have the sase shape as E
the given one.

=0 ST P N N JRY

L
o 174 -
~t- 1t N ' E
3
v |- g .
e

Eljss|E|=E|s|s|sy=|E|Eipsipsys
(I
:

=

:
T = |E
h P -
& e (% 9

3. Reduce th‘. ot;u‘n- YP.C-.tlﬂol..lI aany tlﬁ- as you-‘ T
want.

| 8] [$s]] [S]] {ta]] [ e Tl Tl Tis]] k]
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EJ'I:I.%LI:IIEEF‘@.@.&».J—HQLQE et bt Gt

Strng  Tesy WORKSHEET 54

—————————

Your name 3
Your School 1

1. Decide on which of the rectangles in set 1 have the

same shape.
RECTANGLES OF THE SAME SHAPE

2. Fit a piece of paper in the bottom left corner of
the box.

3. Place the smallest rectangle of set 1 in
the bottom left corner of the box (like in fig.l1l).
Follow the sides of the rectangle with your pencil,
to draw the same rectangle on the paper.

fig. 1

4, Repsat step 3 for sach rectangle in set 1.

3. Draw on the paper the sase diagonal for all
rectangles. What do you notice?

3. Place the rectangles in set 2 as in step 3. Use a
piece of string instead of drewing their diagonals.
Which rectangles in set 2 have the same shape ?

SO

(see back cover for SET1 and SET2 recténgles)

= 75 13 = = 1 i e e e e U ) i T R

@ﬂ@ﬂ@u@u@lmugu@mg|@u@|@@gm@u@|m@u@| (Sl e e,
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£

RaTiO TEST WORKSHEET 55

S ————

Your name 1
Your School 3

1. Decide on which of the rectangles in set 3
have the samse shape.

RECTW.ESW"ESNEMIC:D

2. Find the length and the breadth for each rectangle
in set 3, to complete the following table.

LENSBTH BREADTH

RECTANBLE A
RECTANBLE B
RECTANBLE C
RECTANBLE D

3. Divide the length by the breadth for each
rectangle, to find the ratio of length to

breadth.
- LENGTH + DREADTH ]
RATIO A 00 0

RATIO B
RATIO C
RATIO D

4. What do you notice about the ratios of the
rectangles in set 37

1a] [ ] ] Tl 2] ] 0 ] 0 el e e ) a0 e ) = ) i) e

] 5] [a]] [a]

0 T Tl o (1 [ Tl T Tl el [ el [ [l ] IR A



L ehdaded

C

] (=] = = [ [ =2 =] (=1 2 =) = =) =

S. Find the length and the breadth for each rectangle
in set 4, to complete the following table.
LENSTH BREADTH

RECTANGLE A
RECTANGLE B
RECTANGLE C
RECTANBLE D
RECTANGLE E

6. Find the ratio of length over breadth for each
rectangle in set 4, to complete the following

table.
"
00 0 é LENGTH + BREADTH
RATIO A

RATIO B
RATIO C
RATIO D
RATIO E

7. Can you decide which rectangles in set 4 have the

same shape, just by comparing their ratios froa
step 6 ?

RECTANGLES OF THE SAME SHAPE 1 CD

] e s ) e ) O e e (s ) e ) ) e ) e s e s

jl

T T T o e 12 e 1 e T o Il
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SETY - RATIO TesT




SET4 - RATIO TesT
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A - RECTANGLES WORKSHEET 56 YOUR NAME:
YOUR SCHOOL 1

Begin with two sheet each of A3, A4, AS, and A4 paper.

1. Check that

a. 2 pieces of A4 laid side by side is the sase as one
piece of A3

b. 2 pieces of AS laid side by side is the sase as one
piece of A4

C. 2 pieces of A6 laid side by side is the same as one
piece of A3

How esany pieces of A3 are the same as one piece of A:?C:)

How many pieces of A6 are the sase as one piece of AS?Q

3. Use the “"string test". Do these sheets (A3, A4, A3, &

Ab), have the same shape?

4, Now check your answer using the “ratio test®. Measure
the sides of the rectangles (in millimitres for better
accuracy). Work ocut the ratio of the length to the
breadth for each size.

L]l 1] Tsa] () e e ] ) e )

LS Vok o

S1ZE LENGBTH BREADTH LENSTH+BREADTH A1

A3 420 | 29%¥ 1.4 —
A4
A3
Ab
MILLIMITRES MILLIMITRES
Are your ratios equal (or nearly equal)? YES /7 NO

Al Sijisjsijis)s|sisjsijisjs)=)ms

3]
G)
G]
G]
G]
g]
G]
™

o

>
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An A-shaped rectangle will have the ratio

LENBTH+BREADTH = C:)

An A—shaped rectangle has breadth i4imm. What is its
length?
9 o o

Q- gnmmn:-nmum x RATIO

&

N
.

Identify any A~shaped rectangle on the Temple of Zeus in
Olympia, Greece (the msarked rectangle is a clue).

length

]| L) ) ) ) e e e ) ) o e e ey o ) e e e, e e s
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It

| I J 1 )=
WORKSHEET 5.7 YOUR NAME 3
YOUR SCHOOL 3

A - RECTANGLES .

S S I SRR
1. Fix this piece of paper to a drawing board. ! i — T N
2. Check that the length AB equals the length BC. S_.—e= s
3. Put in msapping pins at A and B. Take ' .

the cardboard cross form and place it =

S0 that two adjacent aras rest on the —tr

two pins at A and B (see figure 1).

4, Slide the cross farm about, keeping it
in contact with the pins at A and B.
Points P and Q are the points where
the other two aras of the cross cut the

ENEIEIEIEIEIE

vertical lines through A and C.
Notice how these points, P & Q, move
when you slide the cross about.

S. Now find the position of the cross, so
that the points P and G are at the
same height (see figure 2).

6. Mark these positions of P and Q. Remove
and draw the line PQ.

7. Is the rectangle ACGP A-shaped? Qoo m

‘(ul‘q_ lth,' _r.t.xp_ goglt)
L

EEIEIEIEN

o - B SR Bt I | wliie g
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GOLDEN RaTIO WorRKSHEET 5.8 YOUR NAME:
YOUR SCHOOL 1

The pentagram (or pentalpha, 3 A’s in the

Breek), was thought to be a sagic charm

to ward off evil spirits. The ratio of

the lengths of its parts is called the A 8 c
BOLDEN RATIO.

LENBTH OF AD _
LENBTH OF AC
LENGTH OF AC _ CD
LENGTH OF AB
/
This special nuaber was used in the design of sacred buildings.

Its exact value is (1+v5)+2. WNork ocut this value an your
calculator, and write down your answer with two decimsal places.

(T

Here is a picture of the Parthenon in Athens.

"

|§I|ll!SJIIl!ilIllEI||lE|||lEI||lE=J||lEI|||El||lEl||lE|||lEl||\E“

B NI oL il S TS & K

o Ll - - - -
,.!_:::u.,:_x“ L:m«;__ ﬂ

LENGTH =
BREADTH

isilisilsilsilisi

.u..JfEﬂIimllimll ailElElEIEIEIEIEIEIEIEIEIEENEIETEGIsns
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It

Here is a view of the theatre at Epidaurcus in Breece, and a
cross—section.

N ~— <

Measure the lengths AB and CD, and wark out their ratio.

@.>o

LENBTHAB-Q LEN&?HCD-Q m*rxo-

What does this ratio reminds you of?

Calculate for once more the value of ';ib. Write down your

answer keesping all the decimal places on your calculator:

(GOLDEN RATIO)=

Now multiply the previous value with itself and write down
your answer keeping all decimal places on your calculator:

(QOLDEN RATIO) X (GQOLDEN RATIO)=

Now devide number 1 by the value of the golden ratio and
write down your answer keeping all decimal places again:

1 <+ (GOLDEN RATIO):=

wWhat do you observe comparing the 3 values that you
calculated?

] e e ] s e o s o o s e e e o e s o ol el el ESHS



Appendix B. The ‘Same Shape As’ Activities

b)

[ Tt=]] [t e ] {] {is]] [ ] ] af [af =] o] la]] ] ]| o]l ]l sl ff [Eff ] )] ] {lo

3)

L9 1o} o 10§ 00§10 ) BELO BELT ) RO RELD BT QL B L gy

INVESTIGATION YOUR NAME 3

YOUR SCHOOL 3

WORKSHEET 5.9

We wish to fqu a rectangle which have the special property
that when wew add on a square we do not change its shape'

s +| Re Ra = Jj Rs and R, R_ have

the same shape

AAAAN

- TrRvmg OUT (SEE NEXT SHEET) :

S8lide the rectangular piece of cardboard under the square
aone, in the direction that the arrows indicate (use the 1lid
froa the string test).

Stop whan the side of the square has reached the line CD
drasn on the rectangle (see fig.1). For CDFE to be the

wanted rectangle, it should have the sase shape as ABEF

rectangle. You can check that using the string test:

1. Find a rectangle fros group A that has exactly the
sane shape and size as CDFE. i

2. Fit this rectangle at the bottom left corner of
rectangle ABEF.
Now use the string test.

Is then CDFE the wanted rectangle?

Slide the square until its side has reached the line 6M drawn
on the rectangle (see fig.2).

Is then GHFE the wantsd rectangle? @

(=TT I LST) T

123
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i

Keep on trying for other positions of the square. When yocu
have found the wanted rectangle, measure its length and
breadth and work cut their ratio.

RATIO = LENGTH + BREADTH BQ +Q - ch\
What is the nase of that ratio? {:::D

How would you name then the rectangle that we were looking

Now find out about *"foolscap® paper!

15|15
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&1 {61 &) [] [&] (6] [6] [6] 6] (6 [ (61 6] 5[5 (6] [ZE8)
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DrawinGg GOLDEN RECTANGLES WOoRKSHEET 5.10 YOUR NAME :
YOUR SCHOOL 3

1. Fix this piece of paper to a drawing board. A 9 a

2. Put in sapping pins at B and D. Take the '~ Tt

cardboard cross and place it so that two . -

adjacent arms rest on two pins at B & D. : - o
3. Slide the cross form about, keeping it e
in contact with the pins at B and D. ' £-° “9.1
Points P and G are the points where the
other two arms of the cross cut the
extended sides AD & BC. Notice how
these points, P & G, move when you slide
‘the cross form about. . -
4. d Now find the position of the cross, so 8= —t
that the points P and Q are at the sase (4 1 4 a2
vertical line (see figure 2).
3. Mark these positions of P and Q. Resove the cross fora

and draw the line PG.
6. Is the rectangle ABPG a golden rectangle? m

7. Now use the back of this page, to draw any golden
rectangle following the saae t.cl'niqu.
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Appendix C

The ‘Drawing and Geometric

Constructions’ Activities

The worksheets that comprise the ‘drawing and geometric constructions’ activities
follow. See also back cover for the ‘Measuring and Drawing Library’ booklet.
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Be A GeoMeTRIC CONSTRUCTOR

All you have to do to become a “geosetric constructor”,
is to bs able to draw geometric shapes using only a
straightedge and a pair of compasses.

That iss

$§
b
5
®
%
=
VA

Lo

In some constructions though we shall allow sose
cheating, by using a ruler instead of a straightedge!
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To CoNsTRUCT A PERPENDICULAR TO A CERTAIN Pomt oF A Line

Having the line drawn beside, I want to
construct the perpendicular to that line A
at the point A. .

1. I adjust the compasses to any radius,

not a very long one, and I draw a circle ) "-\
with centre A. B'l \
2. I mark with B and C the points where ' A Je

ZRREIERRATRNY

the circle seets the line.
3. I adjust the compasses to any radius,

.
P

longer than before, and I draw two
circles with centres B and C.

4, I mark with D the point where these
circles meet, and I draw a line to ! : \
connect D with A. 5\ A }C

RN E RS

R

e s A e T R T B e R E ]

Then AD is perpendicular to the initial line
(check with your protractor or a set sqQuare) .

R o R e B O S S S~ SO TR

NOW IT IS YOUR TURN: construct a parpandicular to the line
dramn bolow at the point A, following the previous steps,
labelling the points B, C, and D used in your construction.

3

AR RN

REceitEs e

NgR

Bt St

A

CHECK YOUR CONSTRUCTION USING A SET SGUARE OR A PROTRACTOR !

ST AT 3

€

[OY PSSR

B SIOBCEHs

25
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NN ANV A A
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To CONSTRUCT A PERPENDICULAR TO A LINE FROM AN OUTSIDE POINT

.

Having the line drawn beside, I A

want to construct the perpendicular
to that line that passes from A.

1. With centre A 1 draw a circle to
take C and B (any radius will do A,
as long as the circle meets the

IS~

BN

#i3

line at two points).

-~
~

2. Keeping the same radius I draw two \ i

B SR 2R

circles with centres B and C. B - i - C
I mark D the point where they meet. ,
3. I connect A with D with a line. i

|

38

R N SR S AR R AR T NG
SRR Y

e

Then AD is perpendicular to the initial line
(check with a protractor or a set square).

NOW IT I8 YOUR TURN: construct a perpendicular to the line
drawn below that passes from A, labelling the points B, C, D,
and E used in your construction.

e A

AR PRI AR

?5’34”

N
N

iR e i o Pt S I et P AR 2 2

3
w
N
B
W
&
Kol
o
R
o
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B
o
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W
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e
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n
A
§
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e,
b

CHECK YOUR CONSTRUCTION USING A SET SBGUARE OR A PROTRACTOR!

bEd 1
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To Bisect A Leve

Given a line AB,
1. I adjust the compasses to a radius C.
longer than half the of AB. 1
2. With centres A and B 1 draw two '
circles and I mark C and D the points
that these mseet.

A _ 8
3. I draw a line to connect C with D, "
and I mark M the point where this line .
meets line AB. R
N
Then the lengths of AM and BM are equal 0

(check with your ruler).
Line CD is called the bisector of AB.

S

NOW IT IS YOUR TURN: bisect line AB labelling the points C,
D, and M used in your construction.

|

S o O T RN

£
=z

3

CHECK YOUR CONSTRUCTION WITH A RULER!

FrEn
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To TRANSLATE AN ANGLE

/
I want to translate the <BCA shown.

1. I draw a line and 1 mark a point ‘//C/
D on it. D will be the vertex of A \
the new angle.

2. With centres A and D I draw two
Circles of the same radius (any 7Y

EERyid

length will do).

I mark the points B, C, and E.
3. I adjust the compasses to the F

distance between B and C. With

that as a radius and centre E 1

~
£

PRI AN RIS

e 2320

e
b

B35t

Tysginl

draw a circle.

4, 1 mark F the point where circles
seet. I draw a line to connect
D and F.

BN

B4

Then <EDF and <BAC are equal (check it with your protractor).

NOW IT IS YOUR TURN: translate the angle given below,
labelling the points B, C, E, and F used in your

R
&
)
¥
P
2
i
r

..(_’,

construction.

ST Rl g AR AR St e et

¥

ORI RIS

Y
o

3

o
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et i S R 624

CHECK YOUR CONBTRUCTION USINS A PROTRACTOR!
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To CONSTRUCT AN EQUILATERAL TRIANGLE

one side of the triangle. Then

I adjust the compasses to a radius 4

equal to the length of AB. /
2. With centres A and B I draw two

circles with the previocus radius.

1. I draw a line AB which will be /

3. I mark C one point whare the circles

meet, and 1 draw lines to connect
C with A and B. : ‘

Then ABC is an equilateral triangle
(check the sides with your ruler and
the angles with your protractor).

»
”

NOW IT IS YOUR TURN: construct an equilateral triangle for
the given line AB.

2,

bhe-— 32

bt gttty

CHECK YOUR CONSTRUCTION WITH YOUR RULER AND PROTRACTOR!
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To CONSTRUCT AN ISOSCELES TRIANGLE

1. 1 draw a line AB which will be the
base of the triangle. I adjust
the compasses to a radius longer
than the length of AB.

2. With centres A and B I draw two
circles with the previous radius.

3. I mark C one point where the circles
seet, and I draw lines to connect

it with A and B.

Than ABC is an isosceles triangle
(check with a ruler and a protractor).

FESES ST AREIINY

i

given base AB.

A R R N R P PR R A3

CHECK YOUR CONSTRUCTION WITH A RULER AND PROTRACTOR'!

AL ST AN AN,
7AW A

t:\\v“ \\\ LA\, \\
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ISR AN ERL T AR R RS RIERR AN RN S AN
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NOW IT IS YOUR TURN: construct an isosceles triangle for the

it
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T —— ——
BY
p
::
% To CONSTRUCT A RIGHT-ANGLED TRIANGLE
i 1. I draw any line and I mark a point
A on it.

2. I adijust the compasses to any
radius, not very long, and 1 draw
& circle with centre A.

8 3. I mark with B and D the points
;' where the circle meets the line.
v 4. I adjust the compasses to any

radius, longer than before, and

1 draw two circles with centres

B and D.

3. I mark with C one point where the
circles meet, and 1 draw lines
to connect it with A and B.

SR

Than ABC is a right-angled triangle (check with your
protractor and a set square).

NOW IT I8 YOUR TURN: construct a right-angled triangle
labelling the points B, D and C used in your construction.

HERESARESBY

gt atit e £

CHECK YOUR CONSTRUCTION WITH A PROTRACTOR AND A SET SQUARE!

A
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To CONSTRUCT A ScALENE TRIANGLE

(with sides 6,4, & 3ca)

1. I use the ruler to draw a line
6Ccm long. I name its ends A & B.

2. With the help of a ruler, I
adjust the compasses to a radius
of 4cm, and I draw a circle
with centre A.

3. I adjust the compasses to a

radius of 3cm, and ] draw a

circle with centre B.

4, I mark with a C one pint where
the circles seet, and I draw
lines to connect it with A & B.

Then ABC is a scalene triangle of sides 6, 4, and 3ca
(check the sides using your ruler).

NOW IT IS YOUR TURN: construct a scalene triangle of sides
8, 6, and 3cm.
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bR SR RIS

CHECK YOUR CONSTRUCTION USING A RULER!
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To CONSTRUCT A REGULAR HEXAGON

1. 1 draw a circle of any radius and
I mark a point A on it.

2. Leaving the compasses adijusted to
the radius of th. circle and
starting from A; I mark points
B, C, D, E, and F.

3. I connect A with B, B with C,...,
and F with A. €

Than ABCDEF is a regular hexagon
(check the sides and the angles).
Compare the diagonals AC and AD to the side of the hexagon.

LENGTH Aa-Oa» LENBTH A(:-Om LENBTH nn-Q‘m

NOW IT IS YOUR TURN: construct a regular hexagon ABCDEF with
& side of your choice.

;'
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LENGTH AD—QCM LENBTH N:Om LENGTH AD-QM

CHECK YOUR CONSTRUCTION USINS A RULER AND PROTRACTOR!
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B O R o B T

f A O R R A

%

To ConsTRUCT Two PARALLEL LINES

(4
1
I want to construct a line parallel i
to the line drawn beside.
1. I mark two points on the line, i Y
A and B. ' A L

2, I construct a perpendicular
to the point A of the line.

3. I construct a perpendicular (= D
to the point B of the line, 7N I

using exactly the samse radii

oz 24

"y

R
3-523
o
KA
-~
B

e
<

SERVEER
>

as for the point A. :
I draw a line passing through Y i 5
C and D. 4 A

N
>
e sl
——
®r—
~

Then the line that passes through C
and D is parallel to that passing from
AR and B (check with a set square and

a ruler).

SR Rt St AU

NOW IT IS YOUR TURNs construct a parallel line to the line
drawn below labelling the points A, B, C, and D usad in your
construction.

3R IR SIS
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AREYINENS

CHECK YOUR CONSTRUCTION USINS SET SGUARE AND RULER'
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To FD THE CENTRE OF A CIRCLE

I want to find the centre of the

circle drawn beside.

H
‘0
1. I draw any line that asets the .,-/’T s
circle in two points, A and B. / \ _
2. I bisect the line AB. : S

I mark C and D the points
where the bisector of AB meets
the circle.
3. I bisect the line CD.
I mark E the point where the
two bisectors, of AB and CD, meet.

Then E is the centre of the circle
(check with your compasses and ruler).

NOW IT IS YOUR TURN: find the centre of the following circle
labelling the points A, B, C, D, and E used in your construction.
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CHECK YOUR CONSTRUCTION USING A RULER AND COMPASSES!
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THALES OF MwLETUS

Thales was a great Greek mathematician that lived between 624
and 347 B.C. He was renown for his i‘;ttar.st in Astronoamy.
They say that once he fell into a well while star gazing!'!
He was so eager to know what goes on in the heavens that bhe
could not see what was straight in front of his very feet.

. ) 2
€2
: \&

: O ED

Draw the lines on the sketch between E (eye) and 8 (star),
between E (eye) and W (u.ll). and between F (foot) and W
(well). '

Measure these lines ES, EW, and FW carefully; and mark their
lengths on the the following lines appropriately.

“(Den e -C}. SEAR

R R R T

PR B R A At BS s A g

o

s € o
X b
» E §1:
ALV o
h F
s o
~ E
3\ CHECK : if your measurements are accurate, then you should

,: have 1 X
b
& (LENGTH ES) = (LENGTH EW) + (LENSBTH FW) o

et $H
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THE BermMuUDA TRIANGLE

The “Bermuda Triangle" is an infamous
location in the Atlantic Ocean, west
of the U.S.A.

Many tragic accidents have happened

there, all unexplained.

To draw the “Bermuda Triangle® follow
the next steps:

1. Draw a line AB 10cm long.
2. Knowing that the angle at B

is 70, draw a line BC 14cm long.
3. Draw AC.

If your drawing is accurate, AC should be 14.2cm long.
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BILLIARDS

Billiards is a game similar to r
snooker. Two white balls and '/D\ T
! ~N
a red one are on the table. / .
. /
In order to score a point, a
player has to make his ball 12 S
hit the two other balls. S
P \\
..‘- C/
7 On the table shown, the player /
% aims to hit ball B first, hoping P4
h’f, to hit € eventually. pa
2. /
7/
Using a ruler and protractor :
copy the path of the ball A. w,,./’“’©
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Ry ey oo QUG XX 43 Y hr R bt e
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TREASURE HuUNT

You are on a treasure—hunt trip. A
is the point where the boat left you.
The “hunting" starts from point B
begside the palm tree.

Follow the directions written on the
papyrus to reach the treasure.

Nt ©
When you reach the palm
*;:: m zg left and walk

s .
&m&uﬂlfﬁg:L;L
Then burm 60° rightand
wdl® 1100 s3e0s. Turm 1e®
1 ‘hf ?i’ﬁ* wallk
1500 sieps. Tiwn 4357 left
and wilk 1520 skeps.
Twrn 1550 left dndwalk
16a0

How spma've vich- enjoy life!

! Note that lce represents 100 steps !

been used only in Greece -
wrong instructions
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7 WALZNIoalllr 7, O o
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5-GoNn AND 6-Gon  Macic

By drawing all the diagonals from each vertex of the
following pentagon, you should be able to create a second
pentagon within the first one.

Repeat the process to create a third pentagon within the

second. Repeat the process to

ey
x

Follow the same process for the hexagon below:
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..................................

PENTAGRAM

The pentagram, or star-pentagon,

between the mesbers of the school
of Phythagoras in Ancient Greece.

was used as a symbol of recognition / \

Notice how the sides of the three
triangles interweave to give the
pentagram syabol.

Use the space below to draw a
pentagram of your own.
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THE VERNIER RULER

The Vernier ruler is one that can help us seasure more easily
and with better accuracy the length of various lines.

Its scale is different than that of the ordinary rulers. Ten
units on the Vernier scale represent a length of 9 units on

the ordinary scale.

b ORDINARY SCALES 11— T ——T——T——
o 4 2 3 a4 s 6 ¥ a8 a 0
i VERNIER SCALE: —F+— F—7—T—T— 71— 7+—71—7+—

f’:::f 0O A a 3 4 5 6 ¥ 8 9 1

A Vernier ruler is used together with an ordinary ruler to

w tind the length of a line. For the following line for

‘,v”‘ instance: ]

g [] :4 1 place the ordinary ruler at
5 — o HH3 — the one side of the line. The
T 1L, length of the line is a little
‘g) T more than 7ce.

“;’Q s H 11 I place the Vernier ruler at
5 i oﬂ the other side of the line, so
N ’ Veawia Rous  that the zero (0) mark is

# exactly beside the snd of the
\S\ € line.

iN s I look along the Vernier

‘\;\": . ruler, and I stop where the

) mark on the Vernier scale is
}“ 3 exactly beside a mark on the
é\ ordinary scale. Here it is 3.
o Vet Then the length of the line is
g OADINARY AR ' 7.3cm (check with an ordinary
>§' ruler).

:{" 0

3: NOW IT IS YOUR TURN: use an ordinary ruler and a Vernier

i ruler, as before, to find the length of the lines on the

separate sheet.

------- BOS0S O A COAVAL VL AL SN AN, !
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NauTLUS SHELL

Often we find a strong relationship
between beauty and mathematics. That
applies not only to artistic creations
but to natural beauty as well.

An example of the relationship between
mathematics and nature’'s beauty is the
shell of the chasmbered nautilus, a

creature that leaves in the 8. Pacific.

The shape of the nautilus shell is a
spiral. We can draw a spiral like the
nautilus’ shell as follows:

-
m
Ry

1. I start with a certain rectangle
ABCD, and I mark off a square ABEF.
With centre F and radius AF [ draw a

LRI SR R

o
P
w
3
W
w.
e
&
88
w
P
w
o
o
w
R
&
A
o
W
ol
K
»
»n
X
W
A
wl
AN
an
a
YA

circle. 0 c
2. From rectangle ECDF I mark off a - B o
square ECBH. . v
With centre H and radius HE I ™~ £
draw a circle. k)
.
3. From rectangle 6HFD I mark off \ »
\ P
a square DBIJ. \

With centre I and radius 18 I \

draw a circle. 14 H E
4 .
1 continue with rectangle IJFH in the J ) 4 / %x
‘?\\ sase asanner. ”
W, / a0
¥ ® - ¢ B

NOW IT I8 YOUR TURN: start with rectangle ABCD (on a
separate sheet) and draw a spiral, labelling the points E, F, 8,
H, I, and J used in your drawing.

£

2
2

o
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8.
¥ 3
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| Im mamy cases vavious
| geometric designs have been
mvested. with 'mqgn'cal
/ or supevrwumtural powers -
Religious, HMagic, astrology »
witchevy, superstitions.The
most favourable geomeiric
shapes used ave the reguloy
plseoﬂns (equilatemL tn'amgle,
squave, penrtngom, hexagom,---)-
S’!I'IC of these WQiCOl
geometvic designs ave om
}his page. Hagl‘cal w"ﬂ9$ and
brooches, hovos copic tables,
Holy Tables +hat provide o

~meoms of comeumnication
with the Amaels, Hol1 Sigms

with imscriptions o potect .
~ fvom Demoms. W

Use a sepavate sheet 10
design your owm ~magical design
That will potect you frown
The powes of Evil.
You can even daw hovoscopic w

s, aud tny P predict A
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ne future..-.
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- ¥ BALANCING POLYGONSV YOUR NAME:
YOUR SCHOOL.:

@ ”,
/ 7
@In this activity you are going to .
. . g\""‘\s
@find the point on a plane figure
y

about which it will balance. lee

@ [« =

—

@Stnrt with the square, below. Draw the diagonals and mark
the point where they meet. This point is called the

@centroid of the square.

Place the acetate square carefully on top of the drawn one,
s0 that it matches exactly. Suspend the square by passing a
thread through the hole on the acetate that corresponds to
the centroid. Now suspend the square using the other

two holes in turn. Describe with a sketch what happened.

THREAD THROUGH CENTROID THREAD THROUGH OTHER HOLES

(see figure beside) figuve \/ 1 /

148
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I 7 I 0 W W W W W 9 W L 9 O L L P

h A5 The situation becomes a bit more tricky when it comes in
balancing a triangle or a regular pentagon.

For the first triangle below draw carefully the lines that
connect each vertex with the mid-point of the opposite side.
These lines are called medians. If you have drawn them
carefully you will have found that the medians have met in a
single point. This point is called the centroid of the
triangle. Now check that it balances with the acetate
triangle. Try it again with the second triangle.

Now find in the same way the centroid of the following
regular pentagon, and then try to balance the acetate one.

regulav-

o/ pentagom.

Another name for the centroid is “"centre of qravity", since

we use this point to balance shapes.

149
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ANOTHER WAY OF BALANCING POLYGONS

There is a more general way of finding the %‘:i‘;’
@E centre of gravity. Start with a pentagon A,
- that has two holes marked close to its "
. &
E vertices and four marked inside. (( ofe
R
Hang the pentagon from cne of the holes R Y

close to its vertices, using the thread with é
the paper clip tied at its one end (to keep
it straight). Mark the hole(s) inside the

@ pentagon which the thread passed across.
E Hung the pentagon from a different hole

close to the pentagon’s sides, and mark the

f
i
i
f
f
i
f

hole(s) inside the pentagon from which the o _@
thread passed across. @
@ There is one hole from which the thread @
passed across both times. This is the centroid.

Check it by balancing as before.

This process will work for other shapes as well. Try it with
, the shapes B and C (a hexagon and an heptagon).

' Did you manage to balance the hexagon with the first turn?

(]

Did you manage to balance the heptagon with the first turn?

:

:

:

;

E

E >>> Discuss with your friends why this[;;ing";.}s <<<
:
:
:
:
:
;
]

>>> works. Write your ideas below. <<«
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07 L L 9 7 ) P L R

<1<

2/ TRIANGLE S MEETING PoinNTs YOUR NAME:
YOUR SCHOOL :

<

Every triangle has a special group of “meeting points“. In
the “balancing polygons” activity we found one such “meeting
point®, the centroid. Here are some more:

A/ For the tollowing triangle use a set square to draw through
each vertex the line that is perpendicular to the opposite

side. These lines are called the altitudes of the triangle.
The point where the altitude meets the opposite side is

called the foot of the altitude.

\'\\\‘h'

oV

\ .

= ogl=adi=odi=odi=di=ofi=ofi=ofi=ofi=ofi=sllimadi= ol = odi =

If your drawing is accurate, the three altitudes will seet
in one point. This point is called the corthocentre of the
triangle.

Try it again with another triangle:

f
8
f
f
f
B
8
f
s~ foot of ne @
:
.
f
f
8
.
B
A
i

= sl sdimagia of | = of | = of | = oo
<H<&E-E-EN<El<E) <SS -<E <SS <) <N E1-E - < T &N

o= gl = odi= odi= of | = 58
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For the following triangle draw the bisector of each angle.
That is the line that divides the angle into two smaller,

equal angles.

Use your protractor and a ruler to draw the angle bisectors.

dngle
bigector

If your drawing is accurate, the three angle bisectors will
awet in one point called the incentre of the triangle. It
has a special property. With the incentre as centre we can
draw a circle that touches each side of the triangle at one
point. We call that circle the inscribed circle of the
triangle. Try it with the previous triangle.

For the triangle below find the incentre and then draw the
inscribed circle.

TemafARARARARLARORARARATARMANATATGARAR
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—-C/ For the following triangle use a set square to draw the
perpendicular bisector to each side. That is the
parpandicular that starts from the mid-point of the side.

I1f your drawing is accurate, all three perpendicular
bisectors will meet in one point called the circumcentre of
the triangle. With this point as centre we can draw a circle
that passes through the vertices of the triangle. We call
that circle the circumscribed circle. Try it with the
previous triangle.

the circumscribed circle.
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@@ For the triangle below find the circuscentre and then draw
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¥3/ TRIANGLE s MEETING PoiNTsSs YOUR NAME :

YOUR SCHOOL :

For the following triangle find the orthocentre, the centroid

and the circumcentre. Mark them with A, B, and C.

If your drawing is accurate, all three points A, B, and C
will lie on a straight line.

This line is called the Euler’s line, because Euler, a great

mathematician of the 18th century, was the first to prove
that these three points lie on a straight line.

Now try again with the triangle at the back of the page.

TamamafaRaRamsRORARARADADADADADADAD
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4/ PaAaPPUsS s LINE YOUR NAME: l@_
YOUR SCHOOL: - !@

lived 23 centuries ago. A famous piece

A 8 c
Pappus was a great Greek geometer who - '*i@
of his work is the Pappus’ line. ]

Begin with two parallel lines, drawn

with the help of a set square and a ruler. @
Mark three points A, B, C; D, E, F on each ) E F‘J
line, and draw the lines AE, AF, BD, BF, l@
CD, and CE. A B c

&
@ The lines: AE and BD meet at 6
@ .~ AF and CD meet at H
BF and CE meet at I
@ For accurate drawing, points 6, H, and I
lie on a straight line, the Pappus’ 1line.
@ (check with your ruler)

NOW IT IS YOUR TURN: draw two parallel lines using a ruler
and a set square, and follow the previous steps labelling the
points A; B; C; D, E, F, 8, H, and I on yOuFr drawing.
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7 74 7 L L L 7 L O U B O

5% PAaAscaL’ s LiINE YOUR NAME:
YOUR SCHOOL :

Draw any circle, and mark & points- A
on it A, B, C, D, E, and F. )

4 ' fig1 @
Draw the following lines: . @
AE, EB, BD, DF, FC, and CA. F*
The lines: AE and FD meet at G . ‘0 @
FC and BE meet at H E 8
BD and AC meet at I @
For accurate drawing the points G, 95.2 @
H, and I all lie on the same line
(check with your ruler).
That line is the Pascal’'s line, one E D

Ko

L
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ag
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@@ of the most famous in mathematics.

@@ NOW IT IS YOUR TURN: draw a circle and follow the previous
@@ steps labelling the points A, B, C, D, E, F, G, H, and I on
ay |
Ay
il
a9
fg
fg
fg
il
il
fg

your drawing.

ARE POINTS 6, H, AND I ALL ON THE SAME LINE? @

@@ CHECK WITH YOUR RULER
8o |
49

8o
8
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-

Start with any quadrilateral ABCD.
Mark the mid points of its sides
and [ connect them with lines as in

the figure.

A
Mark the mid points of the sides
of the new quadrilateral and

ccccc ¢t them as in the figure.

Keap on repeating the sane work.
Notice that after some steps the
quadrilateral looks more and more

like a square.

Actunlly after many steps you will

end up with a square!'!

NOW IT IS YOUR TURN: start from a quadrilateral ABCD, and

by repeating the previcus process try to reach to a square.

NYOYOYOYOYOWIvOvIvavRyovavnvaynvavaw

YOUR NAME:
YOUR SCHOOL :
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7/ BeEAaAM TRIANGLES

same point O, that look like a beam
of light.

Draw then a triangle ABC with its
vertices lying on each of the beam
lines.

Then for any triangle DEF, having its
vertices lying on each of the beam

lines, find the points:

I: the point where sides AB and DE meet
if 1 extend them.

‘Ji the point where sides AC and DF meet
if I extend them.

K: the point where sides BC and EF meet

if 1 extend them.
or accurate drawing points I, J, and K

n the 17th century.
check with your ruler)
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F
lie on the same line, as Desargues showed
i

(

F, I, J, and K on your drawing. 0

Ey Draw three lines starting from the

f
f
f
f
f
f
f
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g
g
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YOUR NAME:
YOUR SCHOOL :

.
I
’ s
e
’
K,/

NOW IT IS YOUR TURN: follow the previous proéess for the

0

S

beam lines drawn below, labelling the points A, B, C, D, E,

~AiafaDalabDhDsReisRcDaDARARATATADAD
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8/ DRAWING A HEART YOUR NAME:
YOUR SCHOOL :

INSTRUCTIONS:
1. Start with a circle of radius
about 3cm, and take a point

Oon it.

Take another point A on the
circle and with centre A and

radius AD draw a circle.

N
.

Take another point B on your
initial circle (the shaded one),
and draw a circle with centre B

y

and radius BO.

g

Repeat for many points all
around your initial circle.

By drawing carefully all the circles
you will end up with a drawing like

in figure 3.

To draw a heart then, all you have to
is to enclose the drawing with a line

like in figure 4.

Use the back of the page to draw a heart.
The initial circleis drawn for you.
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-9/ MAKING A MosaAic YOUR NAME :
YOUR SCHOOL :

H<E

Using regular polygons only

(equilateral triangle, square,
pentagon, hexagon,...) we can
fill a plane creating various

patterns.

&8

Some of these patterns shown
on this page have been used for
making mosaics and pavesents.
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On a separate sheet create your
own pattern and colour it.

In the end you can make a poster

with all the different patterns

that your group created. J D’ A
¥
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Appendix D

Students’ Questionnaire

», -y -y vy Wy Wy
Ty % B¥

RS oy BRI B, 2%

WO W

wy

YOUR NAME:

AGE :

SCHOOL & GRADE:

ON WHICH ACTIVITY DID YOU WORK:

Describe what do You think you learned from the activaty
YOU worked on.

>>>
7

Al

>>> Were there any points that seemed easy or difficult, or

that had pistakes?

>>> How much did YOu enjoy working on these activities?
NOT AT aLL:
A BT
so so:
A Lot
VERY MUCH:

Can you explain your answer?

>>> Did you like working in groups? Please explain.
>>> Can you suggest other areas in mathematics that could be

taught or astisted by some practical activity?

<%

I 08990999999998

19999999999 9999988 0800
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