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Abstract

This thesis investigates a range of genealogical appreachmaking quantitative inferences about the

spatial and demographic history of populations with aggian to two insect systems: A local radiation

of high alpine ground beetles (Carabidae) in the gdimashusand major refugial populations of the oak

gall parasitoidCecidostiba fungosgPteromalidae).

i) Summary statistics, which make explicit use of geneaalgnformation are developed. Using simu-

lations their power to detect a history of population grostbhown to be higher than that of standard
measures such as Tajimdsfor single and multilocus data. The improvement arises ftioenfact

that in contrast to pairwise measures, the new statistemarimally confounded with the topology.

ii) A Bayesian method to reconstructing character statasesl to infer the Pleistocene history of popu-

lations of high alpindrechussampled along a single mountain range from mitochondrharclear
data. Despite evidence for some incomplete lineage sqrisgmple model of a series of extreme
founder events out of two refugia during or before the laatigll maximum provides a good fit to

the data.

iii) A large set of exon-primed, intron-spanning (EPIC)iléx developed for Hymenoptera from EST

v)

and genomic data. Amplification success is screened on & afrifymenopteran species associated

with two insect-plant interactions: Oak galls and figs.

Borrowing model-based approaches developed to quespicies divergence, the new EPIC loci are
used to investigate the relationships between three majmean refugia in the oak gall parasitoid
C. fungosaThese analyses reveal strong support for an eastern cgffgative ancestral population
sizes comparable to insect model species and evidencecmtrpopulation divergence during the
last interglacial. The results also suggest that theregisifiéant information in minimal samples

provided a large number of loci are available.

Results for the probability of gene tree topologies amevee for a model of divergence with gene
flow between three populations. | outline how the asymmetri¢he frequency of gene tree topolo-
gies may be used to distinguish incomplete lineage sortmg figration and discuss the results in

the context of next generation sequence data fbommelanogasteand humans and Neanderthals.



Chapter 1

Introduction

Understanding the spatial and demographic history of fijmns and species has been central to evolu-
tionary theory from its very beginning. In fact, geograpfistribution is the only topic to which Darwin
devotes two entire chapters in the Origin of Species (Dar%9). This initial work is either theoret-
ical or based on comparisons of species distributions andiders the implications of geography for
the process of speciation and the factors shaping the catigmosf regional faunas and floras (Darwin,
1859; Wallace, 1876; Jordan, 1905; Holdhaus, 1954). Mddealata provide an independent source of
information about the history of species that has enablselarehers to put many of those early ideas to
the test. For instance, evolutionary biologists have usedience data to ask whether particular climate
episodes have acted as drivers of speciation (e.g. Klinkén&,2997; Knowles, 2001) or to what extent
ecologically linked taxa share spatial histories (e.g. b&@e & Martin, 2006; Hayward & Stone, 2006).
In other cases, such as our own species and its diseaseg,diméto make historical inference from
sequence data is obviously of direct cultural and medidavamce (e.g. Lemegt al, 2009; Greeret al,,
2010). Alternatively, studies aiming at identifying genexler selection may not be directly interested
in population history, but nevertheless rely on realistil models against which the signature of past
selection acting on particular genes can be tested.

Given this broad and varied interest in spatial and demducagstory and the difficulty in choos-
ing between the potentially infinite number of historiedsits perhaps not surprising that the study of
structured populations is a historically divided field (H&yMachado, 2003). This division has — at
least in the past — been a practical one between the study délneoganisms and humans, for which
genetic tools and data are abundant, and non-model organigrich may have very interesting histories

but few available genetic resources to infer them. Howetierge is a deeper, conceptual divide between



phylogeography, which emphasizes the information coethin genealogies, and population genetics,
which sees genealogies as essentially random outcomesetigdrift.

Although the composition of this thesis does by necessitgeethese different traditions, a general
goal throughout has been to bridge the gap between them bsgtigating how genealogical approaches
can be used to improve population genetics inferencesvacalyersahow population genetics methods
and sampling schemes may be applied to make robust phyloa@ug inferences in non-model sys-
tems. While each chapter includes its own specific intradacthe general introduction below outlines
the conceptual differences between population genetidgpaglogeography. It will become clear that
coalescent theory provides an elegant quantitative fraorietihat naturally encompasses both the “tree-
thinking” of phylogeography and the sound, population dieseview of genetic drift. The large number
of recent reviews on this topic (Maddison, 1997; Nichol)2MHey & Machado, 2003; Knowles, 2004,
2009; Machadet al, 2005; Degnan & Rosenberg, 2009; Edwards, 2009; Nielsen &Bmwnt, 2009;

Hickersonet al, 2010) bear witness to the fact that this synthesis is nowuneler way.

1.1 Classic models of population structure

Classic population genetics theory studies the effects wthtion, drift, selection, recombination and
dispersal on allele frequencies. In the simplest case afge laandomly mating population of constant
size with discrete, non-overlapping generations, drift lba described by a single quantity, the effective
population sizeN, (Fisher, 1930; Wright, 1931); for example the variance Ielalfrequency of two
alleles with frequency andg, increases at rate; /2N, per generation (the factor of 2 enters because it
is standard to assume a diploid population). Furthermorandomly chosen gene copy has chance of
1/2N, of going to fixation in the population and, if it does so, takesaveragel N, generations. This
null model, also known as the Wright-Fisher model was exgéenearly on to investigate the effects of
population structure. Perhaps the simplest model of strads the symmetric island model, a set of
subpopulations or demes which are connected to each otleergth migration occurring at rate per
generation. Sewall Wright (1931) derived results for tretribution of allele frequencies under this model
showing that the between population component of the veeian allele frequencied{sr) is inversely
proportional to the scaled migration rat¢ = 2N.m. Wright's famous equilibrium solution foFsr, a
measure of genetic differentiation between populationsdki¥, 1951), has been widely used and abused
(Whitlock & McCauley, 1999) to estimate the number of migesfinom allozyme and microsatellite data.
Because the symmetric island model assumes that demesasécstlly exchangeable (in other words

migrants are equally likely to disperse into any deme), ggloot contain any measure of geographic



distance. More realistic models that capture spatial girednclude models of stepping stone migration
(Wright, 1943; Weiss & Kimura, 1965; Malécot, 1969) and d¢onbusly distributed populations (Wright,
1943). In both cases, migration and hence reproduction are fikely to occur between individuals
from neighboring demes (stepping stone model) or nearkatilmes (geographic continuum), leading to
a pattern of isolation by distance (Wright, 1943). Impotiamrlassic population genetics results for these

models are phrased in terms of allele frequencies as thdatapuevolves forwards in time.

1.2 Phylogeography

In contrast, the field of phylogenetics, which seeks to rstroict the evolutionary relationships between
species and has its roots in systematics, is fundamentatiards-looking. In a seminal paper Avise
(1987) proposed that mitochondrial DNA sequences samjbldidfarent locations within species could
be used to reconstruct genealogies, which in turn shouldfbenative about the underlying geographic
history. Avise’s paper marks the beginning of the field oflplygography and features an illuminating fig-
ure depicting the fundamental connection between deeppéyéogenies and population level pedigrees
through a series of increasing magnifications (Avise, 198ure 1). Although Avise’s expressed hope
was that phylogeography could bridge the gap between sgsiesand population genetics, the field ini-
tially developed largely in isolation from population géins. Phylogeography’s focus on mitochondrial
DNA and its embrace of cladistic methods, which seemed teigeathe obvious tools for the analysis
of trees, if anything deepened the divide. While the emphasithe information contained in genealo-
gies and the adoption of phylogenetic methods (Nei & Kum@@@® to reconstruct them, constituted an
important step, the phylogeographic inference of hisedscenarios itself remained a largely descriptive
exercise. Attempts to formalize this inference include ptaton’s nested-clade phylogeographic analysis
(NCPA), a method that relies on summary statistics to meaberspatial spread of clades in a genealogy
(Templetoret al., 1995). While the significance of the correlation betweenegdogy and geography is
assessed using randomization tests, likely historicalartes are inferred qualitatively and clade by clade

through an inference key, in a process similar to key-baseahiomic identification (Knowles, 2002).

1.3 The neutral coalescent

A few years before the field of phylogeography took off, p@piain geneticists underwent a crucial shift
from thinking in terms of allele frequencies forwards in¢it® considering the ancestry of samples back-

wards in time. This focus on the ancestry of samples, whishirhgortant precursors in Malécot'’s notion



of identity by descent (Malécot, 1969), was driven by the@asing availability of genetic data. Ewens’
sampling formula, describing the frequency distributidralielic types in a sample under the infinite
alleles mutation model (Ewens, 1972), marks the first ste@tds viewing genetic drift backwards in
time. The formulation of the neutral coalescent by Kingma®82) and Hudson (1983) as the mathe-
matical description of the ancestral process of a sampie &&right-Fisher population completes this
transition. In the words of Wakeley (2008), “The demon#brathat a relatively simple ancestral process
exists for a sample was a major advance in population gerietiche elegance and simplicity of the
neutral coalescent is indeed striking. For a sample ldfieages, the chance that a pair shares a common
ancestor (i.e. coalesces), in any generation is given bytingber of possible pair@) =n(n—-1)/2
and the effective population sizZ€.. More precisely, the rate of coalescence is- (Z)/zNe. Scaling
time in units of2N, generations, the times between successive coalescenus ¢ wherei denotes

the number of lineages in each interval, have the followirappbility density function:

(L) = <;) e <;>t (1.1)

The fundamental property of the neutral coalescent is teaeglogies are highly random both in
topology and branch lengths. In fact, since the Wright-&igshodel assumes random mating, all lineages
are equally likely to coalesce and thus all topologies angatby probable. Similarly, the variance in
the time between successive coalescence events, whiamietethe branch lengths of the genealogy,
is considerable. The variance of an exponentially distebwariable isl /\?, so the time until the last
coalescent event has variar®?2. Furthermore, the cumulative distribution function &ff;) is very
wide. For example, there is a 5% chance in total that the soatee of the last pair of lineages takes less
than0.025 x 2N, or more thar8.7 x 2N, generations.

The power and great success of the coalescent is threefodtly At provides a convenient null model
against which patterns observed in sequence data can &e.tesparticular, it is straightforward to derive
the full distribution of two basic measures of the size of aggogy: the time to the most recent common
ancestor of the sample (Tavaré, 1984; Takahata & Nei, 128f)the total size of a genealogy (Tavaré,
1984). The latter, in turn, leads to an expression for thiibigion of the number of segregating sites
under the infinite sites mutation model (Kimura, 1969; Watta, 1975; Tavaré, 1984; Wakeley, 2009).
Secondly, separating the ancestral process from the @meof mutations and focusing on the history
of a sample rather than the entire population, makes it mdhgefficient to simulate sequence data under
arbitrary histories and mutation models (Hudson, 1993220Binally, analytical work has extended the

coalescent to more realistic population histories inaigdeéquilibrium and non-equilibrium models of



structure and changes in population size (Griffiths & Taya@94). In fact, many classic population
genetic results can be easily and perhaps more intuitivetierstood in the language of the coalescent
theory. For instancé’sy can be defined as the relative difference in expected caalesdime between

a pair of genes sampled at random from the population as aeWhohnd a pair sampled from the same
demeTy (Hudsonet al,, 1992; Charlesworthkt al.,, 2003),

(1.2)

For the symmetric island model the expected coalescenesadimm pair sampled from the same deme
is given by the total effective population size, ilg. = 2dN., whered is the number of demes (Slatkin,
1991). The time to coalescence for a pair sampled from thdengmpulation is increased by the time it
takes them to find themselves in the same demeT}:e= Ty + (d — 1)?/2dm. Substituting into eq. 1.2
yields Wrigth’s solution in the limit of large deme numbe@harlesworttet al.,, 2003).

The main result of extending the coalescent to models of latipn structure is the demonstration
that the process is remarkably robust to a variety of corapiios and — in many cases — can be
recovered through simple approximations and rescalindeeligg (1998, 1999) showed that given a large
number of demes, the ancestry of a sample from a symmetaicdsinodel can be separated into two
phases: An initial, instantaneous phase of coalescenceardtion (termed the scattering phase); and
a later phase during which the ancestry follows the neutralascent with a rate that is given by the
number and size of demes and is inversely proportional teatieeof migration between them (collecting
phase). While the effect of island-model population stitetis to increase the effective population
size, more realistic types of structure, in particular thow/olving fluctuations in deme size and local
extinctions, tend to decreadé (Whitlock & Barton, 1997; Wakeley & Aliacar, 2001; Charlesithet al,,
2003). Similar separations of time-scale have been apfdiedore general variants of the island model
(Wakeley, 1999, 2001; Matsen & Wakeley, 2006), metapomranodels (Wakeley & Aliacar, 2001;
Wakeley, 2004a, 2009) and models of populations in a twoedsional continuum (Wilkins, 2004). A
basic result of this theoretical work is that even under nidenhich lineages are most likely to coalesce
in their neighborhood, the majority of the ancestry of a skeygnd hence the backbone of a reconstructed
genealogy, is highly random both in terms of its topology brahch length. Irwin (2002) used coalescent
simulations to show that in species distributed along aalif@bitat such as a shore line or a mountain
range, deep phylogeographic breaks can arise at randommlogavithout barriers to dispersal. This is
particularly worriesome for traditional phylogeographiterence, which readily interprets such breaks

in mitochondrial genealogies as evidence for past hisibeeents or barriers to gene flow. In general,



the basic insight of coalescent theory, that the same lyistor lead to very different genealogies amnck
versa implies that large numbers of genealogies are requiredakenrobust inferences about population
history. The statistical power of analysing a large numbiéod is illustrated by the detailed inferences
about human history that can be made from just a few comp&terges (Chen & Li, 2001; Yang, 2002;
Rannala & Yang, 2003; Pattersehal., 2006; Ebersbherget al, 2007), most strikingly from the recent
Neanderthal sequences (Gregral., 2010).

1.4 Inference methods

Despite the advances in coalescent theory outlined abevijrth results which can be used to analyse
phylogeographic data under realistic models of structasetieen hampered in two ways. Firstly, formu-
lating a model that captures the movement of individualsointinuous space in a way that is consistent
forwards and backwards in time and ensures some form of tgenegjulation (Felsenstein, 1975), has
proven to be a major challenge (Barton & Wilson, 1995; Baebal., 2002; Wilkins, 2004), although
progress has been made recently (Bagbal, 2010). Secondly, even without a full description of ge-
ography, finding the joint distribution of coalescent tinaesl topology is difficult simply because of the
vast number of possible tree topologies even for moderaples. The total number of possible coa-
lescent histories (i.e. trees with time-ordered nodesivisrgby the product over the number of possible
coalescence events at each time intervalJi[&., (’5) (Wakeley, 2008) and thus grows much faster than
exponentially with sample size. For instance, a samplez# &0, may have 2,571,912,000 possible
histories. Coalescent results for models of populatiarcstire are therefore commonly restricted to sam-
ples of size two and even then, analysis can be challengipgrticular for non-equlibrium models. For
example, the full distribution of pairwise coalescencesgmnder the non-equilibrium analog of the sym-
metric island model (i.e. a panmictic population which hasdme subdivided into a set of island-model
demes at some recent time and not reached migration-driftilgdgum) has only been found recently
(Wilkinson-Herbots, 2008). While numerical likelihood theds to estimate parameters under models of
divergence from minimal samples exist (Yang, 2002; Wilkimsderbots, 2008; Wang & Hey, 2010), the
integration over the large number of possible genealogiegfger samples is not tractable analytically
(Felsenstein, 1988; Hey & Nielsen, 2007) and is generalhiex®d using approximate methods such
as Markov chain Monte Carlo simulations (Kuhretral,, 1995; Nielsen & Wakeley, 2001; Rannala &
Yang, 2003; Hey & Nielsen, 2004), importance sampling (i@hi$ & Tavaré, 1994), or summary statis-
tics (Becquet & Przeworski, 2007; Hickersenal, 2007). While these approaches are powerful and

have been successfully applied to make historical infexemt a wide range of organisms (e.g. Kliman



et al, 2000; Jennings & Edwards, 2005; Wethal., 2005; Hickersoret al., 2006; Becquet & Przeworski,
2007; Carstenst al, 2009; Musteet al., 2009; Hey, 2010a) including our own species (Rannala & Yang
2003; Hey, 2005), they are often computationally intenaive the complexity of the algorithms involved
makes it difficult to fathom which features of the data areiinfative about past processes. The situation
is perhaps worst for approximate Bayesian methods (Beaustaal., 2002), which rely on summary
statistics to compare the fit of observed data to simulatmus ultimately, to estimate the posterior dis-
tribution of model parameters. Because statistics areethempirically and arbitrary cut-offs are used
both to decide which simulation replicates are informagilieut the fitted model, and to restrict priors, it
can be very difficult to assess how much information aboutriqudar model there is in the data.

These theoretical difficulties may in part explain the slgatake of coalescent theory by phylogeog-
raphy, despite its obvious implications for the interptietaof genealogies. Inference methods for the
analysis of spatial samples under realistic models of strasimply do not exist and rejecting an unre-
alistic null model such as that of a panmictic Wright-Fishepulation hardly yields much insight into
population history. Moreover, the spatial processes gigdgraphy seeks to understand (e.g. range ex-
pansions and local extinctions) implicitly assume cotiefes across loci, something that is not captured
by standard coalescent models. Perhaps an equally sefistecte has been the practical difficulty of
obtaining sequence data for multiple nuclear loci in mogaaisms. However, progress has been made
in two ways. Firstly, the fact that genealogies differ frame fpopulation or species history, even if this
is tree-like itself, has now been absorbed into phylogesetnd phylogeography (Pamilo & Nei, 1988;
Maddison, 1997; Nichols, 2001; Edwards, 2009). Speciestirgclude as an additional dimension the
effective sizes of all populations involved. This cruciat sf parameters, which determines the rate of
coalescence of genealogies nested within the speciesrideinas the probability of gene tree - species
tree incongruence was missing from Avise’s original figukeige, 1987, figure 1). By making simplify-
ing assumptions about the ancesthak, it is possible to infer properties of the underlying spediee
from a set of time-measured gene trees (Degnan & Salter,, T33fnan & Rosenberg, 2009; Maddison
& Knowles, 2006; Liu & Pearl, 2007; Kubatket al., 2009) or from sequence data directly (Yang, 2002;
Rannala & Yang, 2003; Heled & Drummond, 2009). Secondly,I@iographers now routinely use
coalescent simulations to assess the fit of observed gejiesito simplea priori models, such as con-
trasting models of population divergence (Knowles, 200)e sobering conclusion of most statistical
phylogeographic studies is that the power to distinguigiménetween very simple models is limited (e.g.
Knowles, 2001; DeChaine & Martin, 2006). Finally, rigoroaaluation of the performance of nested-
clade phylogeographic analysis (NCPA) using coalescemilsitions demonstrated a high frequency of
false positives (Knowles, 2002; Panchal & Beaumont, 200Towles, 2008). This together with the



realisation that NCPA lacks any quantitative basis (Knewk902) has led to its abandonment by phylo-
geographers, despite Templeton’s attempt to rebrand NGRA"eocalescent-based method of statistical
inference” (Templeton, 2010).

Nielsen and Beaumont (2009) point out a more subtle but §gsedious problem with NCPA: The
inference key often suggest multiple rather vague answeaised with this subjective choice, researchers
tend to inadvertently settle on scenarios that match thi@r pxpectations thereby over-interpreting the
data. This phenomenon, which is known in psychology as therfedfect (Forer, 1949), may explain why
some studies have found such striking congruence betweanitative inferences made using coalescent
methods and results obtained from NCPA (Sunnutlksd., 2006; Nielsen & Beaumont, 2009). However,
the use of quantitative inference methges seby no means safeguards against the self-delusitan
Forer. This is illustrated by a recent study by Tanabal. (2010) which uses approximate Bayesian
Computation to investigate the demographic history of ao$eteven populations of malaria parasite
(Plasmodium falciparuinsampled from Africa and Asia. Tanaleg¢al. (2010) simulate expansion his-
tories under a one-dimensional stepping stone model and,yske average pairwise diversity within
populations, as a summary statistic to estimate the origéhteming of the expansion. They assume a
uniform prior (with bounds set at 1,000 and 100,000 yeansjHe onset of this expansion and test the
effect of three different mutation rates (assuming a digaag time betweeR. falciparumand its closest
relative the chimpanzee malaria parasiteeichenowof 10,000 years, 2.5 MY and 6 MY). Finding that
the highest mutation rate leads to a very poor fit to the dagsatithors conclude thaf: falciparumhad
already infected humans before the out-of-Africa expam$idowever, in reality there is no information
to separately estimate mutation rate and expansion tinfeesetdata and the poor fit to the high mutation
rate scenario can be entirely explained from the lower gd@amd chosen for the expansion time. Thus,
apart from choosing to exclusively focus on a one-dimeraistepping stone model, subjective choices
are made at various steps in the analysis including the suynstetistic, the cut-offs on the (supposedly
uninformative) priors of model parameters, the acceptaritarion and the three particular mutation rates
investigated. While some of these choices may be justifigivkn prior knowledge of the system, others
are clearly arbitrary. Thus, any model based analysis fédeedifficulty of deciding on a set of plausible
models (Carstenst al., 2009), which are simple enough to be distinguishable uiaglata at hand, but
nevertheless capture relevant aspects of the underlystgrii

The above overview is necessarily incomplete and omits nadirilie historical twist and turns in
the development of spatial and demographic inference msth8uch more arcane history-of-the-field
reasons for the popularity of particular methods can bermingly long-lived despite their arbitrariness

and may be solely driven by the availability of bioinforntatisoftware. For example, phylogeographic
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Figure 1.1: A literature search on Web Of Science returnesté@ies that use summary statistics for de-
mographic inference. The search criterion was any pairegsebination from the following sets of key
words: i) Demography, demographic history/inference,ydajon growth/expansion and ii) summary
statistics, neutrality tests. Studies were classed aslatigugenetic (dark grey bars) or phylogeographic
(light grey bars) depending on whether they featured a i®cocted genealogy and the summary statis-
tics used for demographic inference were recorded: Frohtdefight, Tajima’'sD (Tajima, 1989),H
(Fay & Wu, 2000),D- (Fu & Li, 1993), Fs (Fu, 1996) and the mismatch distribution (Slatkin & Hudson,
1991). Population genetics and phylogeographic studféer dioth with regard to the sampling scheme
and statistics used: Population genetics studies (22)lynain Drosophilaand human populations, typi-
cally have relatively small sample sizes (N=10-30), butys®adata from multiple loci and use Tajima’s
D and D, to evaluate demographic models. Phylogeographic stud®s &re mostly based on a sin-
gle mitochondrial gene sampled for a large number of indigld and most frequently (34) use "visual
inspection of mismatch distributions" or FUg; to assess population growth.

and population genetic studies generally use differentnsary statistics to test for population growth.
While population geneticists prefer statistics that cdesng properties of the underlying genealogy
such as Fu & Li'sD (Fu & Li, 1993), phylogeographers are fond of pairwise misshalistributions
(Fig. 1.1). This is ironic not only because summary sta$stiased on pairwise measures are among the
least powerful, but also because they most fundamentailyrggthe underlying genealogy (Felsenstein,
1992), a fact which is discussed at length in the originagpagtroducing mismatch distributions (Slatkin

& Hudson, 1991). The only explanation for this odd prefeeeiscthat mismatch distributions were first
applied to mitochondrial data (Slatkin & Hudson, 1991; Harging, 1994; Schneider & Excoffier, 1999)
and that convenient software is available to perform sitiada (Schneideet al, 2000). Thus, while
coalescent theory has achieved much in terms of integratiytpgeographic and population genetics

approaches to historical inference, this synthesis iglgléa from complete.



1.5 Thesis outline and aims

This thesis considers the use of genealogies for histdrifalence from a variety of angles and applies
model-based phylogeographic analysis to two contrastisgat systems: a local radiation of dispersal-
limited, high alpine ground beetles (Carabidae, gefreshu3 sampled from a single mountain range
in the Southern Alps; and three major refugial populatiohthe highly dispersive wasgecidostiba
fungosaPteromalidae) parasitizing oak galls.

Chapter 2 focuses on the simplest case of a panmictic pogukaid asks how past population growth,
which distorts genealogies towards a starshape can beddfarost efficiently from sequence data using
summary statistics. Felsenstein (1992) pointed out thiatvjz®e measures, which underly many com-
monly used neutrality tests such as TajimBqTajima, 1989), are inefficient because of their inherent
sensitivity to the topology of the underlying genealogyjatthin a panmictic population is entirely ran-
dom. The challenge therefore is to construct summarieséparate effects of the topology from relevant
branch length information. Using coalescent simulatiardan a history of exponential growth, the power
of standard summary statistics is compared to that of twesyjf new measures which are derived by ex-
plicitly considering the underlying genealogy: i) genegdal ratios based on the number of mutations on
the rootward branches, which, given an outgroup sequemckemferred using a simple algorithm; and
ii) statistics that use properties of a perfectly starsdaggealogy. A likelihood-based method (Griffiths
& Tavaré, 1994) is taken as an upper bound of statistical péave&eomparison.

Chapter 3 is in many ways a traditional phylogeographicystuidvelve populations of high alpine
carabid beetles (gendsechu$ were sampled from the Orobian Alps in Northern Italy. Whilenmits
along the northern ridge of this mountain range were sudedry the icesheet as small ice-free islands
of habitat, so-called sky-islands or nunataks during tilsé déacial maximum, southern areas remained
unglaciated. The aim was to consider how mitochond@aix1 and Cox2 and nuclear REPCK) se-
guence data can be used to infer the spatial history of théd tadiation. Rather than drawing qualitative
inferences from the reconstructed genealogies of the twip tloe fit to two simplea priori models of
population history is assessed: prolonged survival of INoTt populations situ; and recent recolonisa-
tion from Southern populations. Extreme versions of thesaarios make alternative predictions about
the topology of genealogies. While isolation eventualgde to reciprocal monophyly of populations,
a series of extreme founder events results in a pattern eéch@mraphyly, which is informative about
the order of population founding. Bayesian inference megstare used in two ways. Firstly, directional
location state changes in the genealogy are modeled to #nohdst likely sequence of putative founder

events under the recolonisation model. Secondly, the fh@fiata to the two scenarios is quantified by
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testing the expected mono and paraphyly constraints. Bedaunation states are inferred jointly with the
genealogy and mutational parameters, the analysis takesafpgical uncertainty into account. It also
allows us to assess the contribution of incomplete lineagég and migration.

Realizing the power of jointly analysing data from a largentner of loci in a model-based frame-
work motivated the development of intron-spanning prinfersHymenoptera (where intronic regions
can be sequenced straightforwardly in haploid males). @hapdescribes how 40 conserved genes,
mainly ribosomal proteins, were chosen from Hymenopterahiasect EST data to develop degenerate
primers. The aim was to find loci suitable for comparativetiapecies studies of natural Hymenopteran
communities, i.e. which amplify across a wide taxonomigenAmplification success was assessed in
two communities; gall wasps (Cynipidae) and their assedi&thalcid parasitoids; and tropical fig wasps
(Aagonidae) and their associated non-pollinating wasterdphalidea). Taxa were chosen at increasing
distance fronNasoniawhich was used for primer design, i) within Pteromalidaeyithin Chalcidoidae
(Eupelmidae, Eulophidae, Eurytomidae, Ormyridae, Todas), and iii) for a selection of distantly re-
lated gall and fig wasp hosts. To assess the usefulness eflte$or phylogeographic studies, genetic
diversity between major Palearctic refugia was estimatedo species of oak gall parasitoids; fun-
gosaandMesopolobus amaen(Bteromalidae).

In chapter 5, 20 of the new EPIC loci are used to quantify tieésRicene history of the oak gall par-
asitoidC. fungosaThe longitudinal spread of temperate organisms into iafyggpulations in Southern
Europe is generally assumed to predate the last intergl&tnavever few studies have attempted to quan-
tify this process using explicit models and multilocus dafeaximum likelihood and Bayesian methods
methods originally developed to quantify species divecgesre used to infer the order of population
splitting and estimate divergence times and ancestrallptipn sizes for three major refugial popula-
tions (Middle East, the Balkans and Iberia). To determing foantitative inferences can be made most
efficiently from multilocus data, the power of minimal samngl(a single haploid male per population) is
compared with that of more extensive samples of three iddals per population.

The fundamental symmetry in the two incongruent historieden the three population divergence
model translates into symmetries in the expected frequehsite counts which can be easily tested in
genome wide alignments. Chapter 6 extends the three paputhtergence model analytically to include
gene flow involving the older population. Slatkin & Pollack008) showed previously that ancestral
population structure in divergence models can lead to astnies in the frequency of triplet topologies.
Using an analogous matrix approach, the probabilitiesipfetrtopologies are derived for the case of
symmetric and asymmetric migration. Potential applicegiof these results for the analysis of genomic

data fromDrososphila melanogastdObbardet al, 2009) and a recent study on Neanderthal-human
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divergence (Greeat al., 2010) using this model are discussed.
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Chapter 2

Measuring the degree of starshape In
genealogies — Summary statistics and

demographic inference

Published as: Lohse, K. Kelleher, J. (2009).
Genetics Research1 (281-292)

The motivation for studying the impact of past demographysequence data is two-fold. Firstly,
changes in population size are interesting in their owntyighing intimately linked to processes such
as speciation or geographic range shifts. Secondly, thelatd neutral model (SNM) of a randomly
mating Wright-Fisher population of constant size and dicigenerations, hardly ever describes the
patterns of diversity found in natural populations. Thusd&s aiming to detect loci under selection
are faced with the considerable challenge of fitting raalgémographic models against which selection
can be tested (e.g. Glinlat al, 2003; Hambliret al., 2004; Haddrillet al,, 2005; Omettcet al, 2005;
Thornton & Andolfatto, 2006). Since the rate of coalesceisdaversely proportional to the effective
population size, it is clear that demographic changes naastel a detectable signature in genealogies
(Felsenstein, 1992). In general, positive population ghalistorts genealogies towards a starshape with
shorter internal branches, resulting in more low frequevayants and a unimodal rather than multi-
peaked mismatch distribution (Slatkin & Hudson, 1991; Haugting, 1994; Schneider & Excoffier, 1999).

In contrast to selective processes which act on single gewatiants, demography affects the whole
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genome, so one expects to find a concordant signature aom$$djima, 1989; Galtieet al., 2000).

Approaches to demographic inference fall into three braatdgories; (for a review see Emerson
et al, 2001). Firstly, likelihood methods, which are availabdée bottleneck and exponential growth
models, make use of all the information in a sample by intidggaver a large set of likely genealogies
(Griffiths & Tavaré, 1994; Kuhnegt al, 1995). Although optimal in terms of statistical power acdu
racy, likelihood estimation is computationally intensased requires a fully specified alternative model.
Therefore realistic growth histories often remain anabfty intractable. Secondly, there are tree-based
methods, which take the branch length information of a retroted tree as their starting point. Assum-
ing that sequence evolution is clock-like, the number afdiges can be plotted against time and the shape
of this trajectory compared to its neutral expectation (Keal., 1995; Pybu®t al, 2002). Despite their
conceptual appeal, these methods neglect any uncertaititya topology and are thus only as good as
the reconstructed tree they are based on. Furthermore éneyptdeal with recombination by definition.
Finally, there are classical neutrality tests, most of Wido not explicitly consider the genealogy but in-
stead use more immediate aspects of the data such as therfoyggpectrum of mutations, e.g. Tajima’s
D (Tajima, 1989) and F& Li's D (hereafter referred to a3-) (Fu & Li, 1993), the haplotype distribu-
tion, e.g. Fu'sFs (Fu, 1996; Innart al., 2005), or the mismatch distribution, e.g. the raggednasistc
(Slatkin & Hudson, 1991). Compared to likelihood estimatisummary statistics are straightforward to
calculate and their distribution can be simulated undeoatrany growth model.

Considering the zoo of statistics available and their wise, there are surprisingly few studies that
systematically compare their power, and those that do maonisider bottlenecks and single locus data
(Simonseret al, 1995; Fu, 1996; Ramos-Onsins & Rozas, 2002; Depeatlis, 2003; Ramirez-Soriano
et al, 2008). However, joint analysis of multiple loci is not omgcessary to distinguish between selec-
tive and demographic events (Galteral., 2000) but also potentially far more powerful than inferesic
based on a single locus. An added advantage of multi-localysis is that both means and variances of
summary statistics can be used for testing. Variance bastsl were first developed for microsatellite
data (Di Rienzecet al, 1998; Reichet al, 1999) but are now routinely used to analyse sequence data
from multiple loci (Pluzhnikowet al., 2002; Haddrillet al,, 2005; Heuertzt al, 2006) or even species
(Hickersonet al.,, 2006).

A general conclusion that has emerged from simulation etui@ that tests based on the number
and distribution of haplotypes have more power to detedtdymcks than statistics based on the aver-
age pairwise diversityn(), in particular Tajima’'sD (Ramos-Onsins & Rozas, 2002; Innanal., 2005;
Ramirez-Sorianet al,, 2008). Earlier, Felsenstein made a theoretical argunoethé inferiority of pair-

wise measures (Felsenstein, 1992). Their large variamberuneutrality arises both from their sensitivity
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to the last coalescence event and the random genealogiodbty (Tajima, 1983). Under the SNM more
symmetric genealogies are on average associated withrhigdned more ragged mismatch distributions
than asymmetric genealogies. Itis important to realisettisitopological variance is independent of the
already large variance in coalescence times inherent igghealogical process. In other words "despite
their aura of robustness" (Felsenstein, 1992), statisised onr suffer from an unnecessarily large vari-
ance under neutrality, and hence have comparatively lonepoldespite these resultd, and mismatch
distributions continue to be the methods of choice for deraplgic inferences in population genetics and
phylogeography respectively.

Following Felsenstein’s recommendation that "there is Imtacgain from explicitly taking the ge-
nealogical relationship of a sample into account” (Felgns1992), the aim of this study is to consider
how genealogical information can be used for demograplfecémce in a summary statistics framework.
Our premise here is that the mutation rate is sufficienthhhigative to the per site recombination rate
such that non-recombining blocks of sequences can be édeiltified and treated as independent loci.

Given that there is usually not enough information in witkjpecies sequence data to infer the full
topology unambiguously it seems important to ask which phthe topology yields most information.
The first part of the paper introduces some simple measustarshape which are based on the properties
of a rooted genealogy. Using simulations their power to @edchistory of exponential growth is com-
pared to standard neutrality tests for both the single anlti-toaus case. We focus on the exponential
growth model for two reasons. Firstly, although it is a freqtly used demographic model, the power of
summary statistics to detect exponential growth has b#mitivestigated. Secondly, likelihood methods
are available, which can be taken as an absolute "upper badipdwer for comparison. Such a direct

comparison between summary statistics and the optimdiHiad methods is lacking so far.

2.1 Summary Statistics

Several neutrality tests compare two different estimatbthe scaled mutation rate (Tajima, 1989; Fu &
Li, 1993; Fay & Wu, 2000y = 4N.u, wherep is the mutation rate and, the effective population size,

which capture different aspects of the data . Most promigefajima’s D is defined as the difference

betweery estimated ag, andf,, = S/a, (Watterson'sd, wherea,, = Z?;ll % n is the sample size
and S the total number of polymorphic sites in the sample), noizedl by the standard deviation of this
difference. Genealogies from growing populations tygychave relatively more low frequency variants
and hence tend to have a negative

While neutrality tests are commonly based on the frequepegtsum andr, it is instructive to con-
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sider departures from the SNM in terms of their effect on theeglogy. Such tree-thinking necessarily
underlies summaries that make use of outgroup informagi@nD-» has a straightforward genealogical
interpretation. Below two different ways of employing gafwgical information in the construction of

summary statistics are considered.

2.1.1 Genealogical ratios

The rationale behind, is to distinguish between two classes of mutations: Thosadmn terminal
branchesy. and those on internal brancheg,(Fig. 2.1) (Fu & Li, 1993). Suppose that some limited
topological information can be inferred from the data. Irticalar we will for now assume that the place-
ment of the root is known. It is then possible to distinguisitations found on the two rootward branches,
which we shall denoter. Under the infinite sites assumption these are all derivethtioms which are
shared by all individuals in either of the two sub-cladesrdsfiby the root. The advantage of considering
the proximity of mutations to the root rather than the tipsnsfold: Firstly, rootward branches cover a
greater proportion of the time to the most recent commonstacef the sampl€l(y; rc4) and should in
general be more informative about past changes in popuolatze. Under the SNM, on average half of
theThrrc 4 is taken up by the coalescence of the last two linea@gs(Fig. 2.1), whereas in a growing
population, the smaller population size in the past forheddst two lineages to coalescence much more
rapidly. Secondly, the average length of a branch connéot#tk root is less dependent on the sample
size than the average length of a terminal branch.

Ideally, one wants to know the total number of mutations tieate occurred durin@ys, rather than
the number of mutations on both rootward branchgswhich is larger and depends on the topology, i.e.
the order of the first node on the longer of the two branchegfldyama, 1997, Appendix).

One possibility is to only consider the shorter of the twotveard branches which has exactly length
Ts. Thus the number of mutations found on this bramgh,..., overé,, constitutes a very simple measure

of starshape.

X = L (2.1)

Such genealogical ratios have first been employed to stusleffiect of balancing selection on plant
incompatibility loci (Uyenoyama, 1997). Being based on gk random eventX clearly neglects
much of the information contained in the genealogy. Its pag/émited by the probability of observing
Nrmin = 0 Under neutrality. In other words is unlikely to be of much use in the case of a single locus.

Alternatively, one can ignore the uncertainty in node omet take the number of mutations found
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Figure 2.1: Random genealogy of a sample of 10 sequencesrobh@artitions the sample into two
subclades of size 3 and 7. Rootward branches are shown asteotdnal branches as dotted lines,
mutations are represented as crosses. The time interiiahenast coalescence evefit, is shorter than
average under the SNM. In this example= 30, ng = 7, NrRmin = 2 andn, = 14.

on both rootward branches relativeég.

X, = Z—R (2.2)

It is possible to construct various composite measures frmmumber of mutations found on different
parts of the genealogy. Here we only consider one additistadistic, the relative difference between

rootward and terminal mutations.

X2 _ 77R9— e (23)

The X statistics assume some knowledge of the tree topoldugtws usually unknown. Of course
one could use some standard method of tree reconstructibim&ms, z andng,,;, from the most likely
topology. However, not only is it inefficient to reconstrdlee full topology when all that is required
is the placement of the root, conditioning on a single tree anores any topological uncertainty. We
have therefore developed a simple scheme of inferring tbeinoa sample of polarized sequences that
circumvents these problems.

Under the infinite sites assumption a necessary criteriotthi® root-node is that no mutations are
shared between the two subsets on either side. One can sabifvlibth branches connected to the root

carry mutations, i.eyrmin > 0 there exists exactly one bipartition of the sample with ndatianal
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overlap. If however one or both of the rootward branches efgttnealogy carry no mutations there may
be multiple bipartitions that meet this criterion. In th&seng,,;,, = 0 and the tree reconstructed from
such a sample would have an unresolved polytomy at its basec®rporate the topological uncertainty
about the placement of the root we compute the average vhlygaver all partitions that are compatible
with the criterion of no mutational overlap. Note that in tast to most tree reconstruction algorithms
which join similar sequences (i.e. start from the tips doha tree) our scheme is divisive (i.e. it starts
from the root). To avoid having to considering all possibigalbtitions of the sample2(—! — 1), we
make use of the fact that any sequences that share mutativesdbe on the same side of the root. By
first binning sequences that share at least one mutationaweicectly calculate)r and the number of

possible partitions.

2.1.2 Starting from the limiting case

A different approach is to construct summaries which measiepartures from the limiting case of a
perfectly star-shaped genealogy. Star-shaped geneslogie some convenient properties which can be
used for this. Assuming that outgroup information is a\d#éaone can record the number of terminal
mutations in each sequencgbecause lineages are exchangeable, the labeling isaaybjti;. In a
perfectly star-shaped genealogy all mutations must fath eerminal branches by definition. Thus one
expects the number of derived mutations in a sequence to Ibéhkaaverage pairwise diversity, i.e.
E[V;] = w/2. The statisticRy proposed by Ramos-Onsins and Rozas measures the averageicep

from this expectation.
(i (Vi — 5)*/n)"/2

Rop = 5

(2.4)

(Ramos-Onsins & Rozas, 2002, eq. Bhr has proven superior to a wide range of summary statistics in
detecting histories of bottlenecks (Ramos-Onsins & R02@82). However, because of its dependence
onm, one may suspect it to suffer from a large variance underalityt We therefore consider a similar
statistic which uses the observédrather thanr to assess the degree of starshape. Consider the total
number of derived mutations in each sequergg, Given that previous summary statistics suchfas
(Fay & Wu, 2000) have been derived from the unfolded sitetfesgpy spectrum, it may be helpful to note
the connection betweeh; and¢;, the number of derived mutations that oc¢times in the sample here:
YD = Z;‘:—ll 1&;. Using the fact thaE'[D;] = S/n in a star-shaped genealogy we can define a new
statistic.

(i, (Di = 2)%/m)'/?

Rg = 5 (2.5)
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Since under neutrality a large proportion of mutations Wlfound on inner branches, i.e. be shared by
many sequenced;[D;] > S/n. In other words,Rs is such that smaller values are expected under a

history of growth.

2.2 Methods

2.2.1 Summary statistics and demographic model

We carried out coalescent simulationsi (Hudson, 2002) to compare the power of a range of summary
statistics to distinguish between the SNM and a history pbeential growth. In addition t®, Do, Rag

and the new statistics defined abo¥g, (Fu, 1996) andd (Fay & Wu, 2000) were considered.s is
based on the number of haplotypes in the sample and has psgvieen found to be more powerful than
statistics based on the frequency distribution (Fu, 19@8n&s-Onsins & Rozas, 2002). was conceived

as a test for the effect of selection on linked neutral sifey (& Wu, 2000) and is not expected to have
power to detect continuous growth. However, other demdgcagzenarios such as moderate bottlenecks
may perturb genealogies in ways similar to genetic hitcinigikesulting in significant values df.

We assume that the population size has grown exponentidghyrate« to its current sizéVy.
N(t) = Noe™ (2.6)

Following standard practice, this exponential growth &oiporated through a re-scaling of time (Slatkin

& Hudson, 1991). We define a rescaled tifig,; relative toNy anda:

t _at at
e (e —1)
Tron :/ A T 2.7
"7 ), 2N, 2Npax 2.7)

This represents the total amount of genetic drift that hasiwed. It is convenient to define a growth rate
relative toNy asA = 2Nya, which gives:

At
e?No — 1

Tcoal = T (28)

2.2.2 Power test

Critical values corresponding fo= 5% for each statistic were determined from 10 000 replicategkn
gies simulated under the SNM for each of a wide rang# whlues (1-250) (Hudson, 1993; Braverman

et al, 1995; Ramos-Onsinat al, 2007). Genealogies from growing populations were sinedlaton-
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ditional oné. For each replicate the alternative hypothesis of posgiasvth was tested by comparing
the observed value of a statistic to the critical value gitrenobserved. Power was estimated as the
proportion of 10 000 replicate genealogies for which a stiativas below its critical value in a one-tailed
test. Power to reject the SNM was recorded for a large rangam@meter combinations. We compared
the performance of statistics for different growth rat@s<( A < 50), sample sizesn( = 10, 50) and
values ofd (5-50). When varying, we chose a fixed value of = 8. This seems compatible with growth
rates estimated from empirical data. For example, vanatissilent sites in th&dhregion and X-linked
genes irD. pseudoobscuris consistent withd = 7 (Schaeffer, 2002). Whil@ can be arbitrarily high for
mitochondrial data§ = 20 may be unrealistic for nuclear loci in out-crossing specigeerefore, power
was evaluated for a range @éf/alues { — 50) again keeping the growth rate fixedt= 8.

When using means and variances of summary statistics alcr@spower was determined analo-
gously to the single locus case. Critical values of 5% confiéeof means and variances of statistics were
determined from 10 000 replicate sets of loci with the exaches combination of' values. Although
computationally expensive, this avoids making any assimpiabout the distribution of mutation rates
between loci. However, given that mutation rates vary altreggenome, assuming the sathéor all
loci to simulate the alternative history of growth seemseatistic and may lead to overestimation of
power. We checked for the influence of heterogeneity in martaates on power by repeating the mul-
tilocus power tests with values drawn from a gamma distribution with= 2 (Pluzhnikovet al.,, 2002)
and a scale parameter equivalent to a meah-ef20. This combination of growth and mutation rates is
roughly comparable to mutation rate estimates for nucteaith Drosophila melanogastdGaltieret al.,
2000). As before we assumed no recombination within loci el & absence of linkage between loci,

i.e. replicate genealogies were simply treated as mulkiiie

2.2.3 Likelihood method

In practice, both¥ and A are unknown, and their likelihood should, in principle, stirmated jointly.
However, because of the non-independence of these two ptenthis is not a practical option. Fol-
lowing standard practice we alternated between maximuetiikod estimation ofA andé (Griffiths &
Tavaré, 1994). First a maximum likelihood estimate (MLE) fiounder the SNM was estimated using
the program GENETREE (http://www.stats.ox.ac.uk/gsdftware.htm). In a second step this MLE ¢or
was fixed to run a likelihood surface fal. Finally, the MLE value fordA was used to re-evaluafie This
scheme yields two MLEs fof for each replicate, one under the assumption of no growtroaedjiven
the most likely growth rate which were compared in a liketilgatio test (LRT). We did not find that the

MLE estimates forA and# improved upon repeated reevaluation suggesting that éesiognd of esti-
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mation is sufficient for this moderate growth scenario. 100 funs were performed for each likelihood
surface evaluation. Again, the proportion of replicateegdagies for which the null hypothesis could be
rejected was taken as a measure of statistical power. Dine tohg computing time, 100 replicates per

parameter combination were used.

2.3 Results

2.3.1 Single locus

In general, both the likelihood method and summary staistiave low power to detect a history of
moderate 4 < 8) exponential growth fon = 10 (Fig. 2.2). As expected, the likelihood method is most
powerful overall, although its superiority is surprisipgimall. For example, based on the LRT the SNM
is rejected foB0% of genealogies simulated under exponential growtH ef 4. In comparisonRs and
Ry detect this history of growth in 23% of cases (Fig. 2.2).

Consistent with previous resultBg, R, g, and the new measures, are considerably more powerful
than bothD and D, (Ramos-Onsins & Rozas, 2002; Ramirez-Soriahal, 2008). Ford = 20, Fs is
the most powerful statistic. The new measie has consistently higher power th&ha . As expected,

H andX have no power to distinguish between the SNM and the grovgé @@t shown). However, the
other two genealogical ratios perform surprisingly well, has higher power thaP, and the power of
X is between that of?; andRg (Fig. 2.2). The complete lack of power &f for n = 10 is somewhat
surprising. Comparison with the result for= 50 (Fig. 2.3) reveals that its performance is strongly de-
pendent on sample size. We ran additional simulations grmws) and found that for < 15 extremely
negative values ob are more likely under neutrality than under growth resgliim a rejection rate of
the SNM of less thafi%. In other words, when is small, the variance @b under neutrality is too large

to detect exponential growth.

In general, all statistics have considerably higher powenf= 50 (Fig. 2.3). Interestingly, it never
reaches 100% even when growth is extreme={ 50). However, the relative effect of the sample size
on power differs between statistics. For instan&e,improves relatively little in comparison to other
measures. This is to be expected given that even small saagdikely to include the deepest split in
the genealogy of the whole population (Saundsral, 1984). Forn = 10, the power of all statistics
decreases for histories of extreme growth £ 25) (Fig. 2.2). This is due to the overall shortening of

genealogies under rapid growth.
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Figure 2.5: The effect of topological asymmetry on statédtpower (simulation parameters as in 2.2).
Genealogies of Fig. 2.2 were sorted according to the pamthiy the root (shown above plot). Only the
most asymmetrical partition (9, 1) (a) and one other cas8)({fh) are shown. Results for the other three
partitions were very similar to (B). Note that since lineagee exchangeable all asymmetrical partitions
have the same probability, = 2/(n — 1) (Tajima, 1983, eq. 2).

The mutation rate has a relatively small influence on powergdneral the power of all measures
increases witld (Fig. 2.4). However, the trajectories &f; and F's level off while the power of the other
statistics continues to improve with increasing valueg.ofhe power ofFs is limited by the number of
haplotypes (which cannot exceell

To check how statistics are affected by the topologicalararé, genealogies simulated under the
alternative history of growth were sorted according to tipafiition by the root and the proportion of
significant values determined for each topology class. rfeiqu5 clearly shows that the two statistics
based onr, D and R, as well asD, are sensitive to asymmetric topologies. The chance of vivgea
significant value increases markedly with topological asyatry. This effect is most pronounced fbr,
which has no "power" to reject the SNM unless genealogiesameasymmetric and growth is weak. In
contrast, the dependency &f, on the rootward partition is relatively slight and in the opjte direction,

i.e. the chance of rejecting the SNM is smaller for asymroggeinealogies (Fig. 2.5).

2.3.2 Multiple loci

Compared to the relatively subtle effect bétlandn have on statistical power, increasing the number
of loci improves power dramatically. In the mean based thstatistics apart fronD have a power of
close t0100% to detect a history of moderate exponential growth-€ 8) for 10 loci. However, the
relative performance of statistics changes slightly comgao the single locus case. Notahly, has

higher power than all other summary statistics (Fig. 2.6)e Power ofX is slightly lower than that of
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X, (not shown). Analogously to the results for a single locusy@r increases both with more extreme
growth scenarios and larger(not shown).

As one may suspect, the increase in power with the numbercofdaveaker for the variance test.
More importantly, the relative performance of statistegery different. By far the most powerful statistic
in the variance test iX; followed by D and X (Fig. 2.7). This indicates a general trade-off. Statistics
with a high variance under the SNM have comparatively low @aw the single-locus case and the mean
test, but high power in the variance test anck versa

Allowing for heterogeneity in mutation rates between loigeets both the relative performance of
summary statistics and their overall power. As one may expeterogeneity i generally results in
a decrease in power. In the mean based test the Kiretatistics are most affected. However, in the
variance test the performance &f is little affected. This statistic even has slightly higlpemer when
mutation rates vary between loci. This appears to be duegtmdim-normal distribution of; under
growth. Genealogies with more than one possible roottartgenerally have a very low value o&f;,

since we take an average over all possible partitions maghah will be associated witlX'; = 0.

2.4 Discussion

It is important to distinguish between the general lim@as that genealogical and mutational stochastic-
ity impose on demographic inference from genetic data aoblpms associated with particular methods.
Two main conclusions emerge from comparing the performaffitke new "genealogical statistics" to

classical neutrality tests and the LRT.

2.4.1 General limits to demographic inference

The signatures that changes in population size leave inadgies are typically subtle compared to the
randomness of the ancestral process. Thus all methodsdaymolver to distinguish between the SNM
and histories of moderate growth in the single locus casaurprising finding of this study was that the
full likelihood method only works marginally better tharetmost powerful summary statistics. Changes
in N, disproportionally affect the length of the basal branches genealogy. However, because these
rootward branches also contribute most to the variancetah t@e length, inferences based on a single
locus will be weak at best. It is telling that th€ statistics which only consider the last coalescence
events in the history, outperform standard neutralitysté@sthe variance test when multiple realisations

of this event, i.e. loci, are available. As has been arguéarbemost statistical power can be gained by
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increasing the number of loci, which represent independealizations of the ancestral process, rather

than the sample size or the length of sequence (Felsens888; Klimanet al., 2000; Wakeley, 2004b).

2.4.2 Pairwise measures

Independent of the general limits to demographic inferepagwise measures such Bshave particu-
larly low power to infer demography. This has been found Evpyus simulation studies, which consider
other demographic scenarios such as strong bottlenecksapidllogistic growth (Fu, 1996; Ramos-
Onsins & Rozas, 2002; Ramirez-Soriagtoal,, 2008). The fundamental flaw of pairwise measures can
be best understood in terms of the underlying genealogyritrast to selection and population structure,
changes inV, on their own only alter the distribution of branch lengthsheut affecting the topology,
which can be regarded as a random nuisance parameter. \Whifelt topology can rarely be recon-
structed, there is potentially a lot of topological inforiva in sequence data. Thus the challenge that
any efficient inference method has to meet is to separatedhddogical information from the relevant
branch length information whilst taking topological urnteémty into account. Tree-based methods such
as lineage-through time plots clearly fall short of thedatiecause they rely on a fully resolved topology.
Pairwise measures on the other hand simply ignore the codfog effect of the topology (Felsenstein,
1992). It is thus easy to see wiiy has power only when sample sizes are large. While increasing
ple size adds increasingly shorter external branches avéftire little additional information, it does
reduce the chance of extremely asymmetric bipartitionsibydot which are responsible for much of the
variance inr and hence.

Perhaps worryingly, this sensitivity to the topology nolyotnanslates into a loss of statistical power,
but also means that negatievalues may in fact be more informative about the topologisgimmetry
of the genealogy (which may be caused by other non-neuta$pe.g. selection) underlying the sample
than about past growth. In order to distinguish betweenffieets of selection and demography, topology
needs to be separated from branch length information. Opepaph is to explicitly account for the
topology information if possible. For instance one coulded®ine confidence intervals of statistics
conditional on the bipartition by the root if this is knownotsurprisingly, this improves the power DX,
but has little effect on statistics that are not basedrdnot shown). The alternative is to use measures
which are less sensitive to the topologys and other haplotype statistics have previously been shown
to be more powerful than frequency spectrum statisticshisntery reason (Depaulet al, 2003; Innan
et al, 2005). However, it has also been noted thgtsometimes behaves erratically (Fu & Li, 1993;
Ramos-Onsins & Rozas, 2002). As mentioned earlier, its ptsvels off with increasing (Fig. 2.4),

because the sample size sets an upper bound to the numbeiatipas.
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2.4.3 Recombination and topological uncertainty

The X statistics presented here fall somewhere between tred bastbods and classical summary statis-
tics. They exploit the fact that changes in population sigprdportionally affect the relative length of
the deepest branches in the genealogy and make use of tag@blimgormation, without sacrificing the
simplicity of the summary statistics framework. Given tegh power in the multilocus case, how useful
are such genealogical ratios in practice?

Recombination presents a fundamental problem to treedivasthods like theX statistics, which are
defined only for non-recombining sequences. Similarlglifkood methods which can deal with recom-
bination are currently not available. To wrongly reconstitiees from recombining data can potentially
be severely misleading especially in the context of denyagcainference. In fact, genealogical ratios
similar to the ones presented here have been used to shoretbatbination can mimic the effect pop-
ulation growth has on the shape of inferred genealogiesrrat branches will appear relatively shorter
and the tree overall more star-shaped (Schierup & Hein, ZR@tirez-Sorianet al,, 2008). Ideally one
would like to model recombination explicitly when makingndegraphic inferences. However estimates
of recombination rates are usually associated with a largeniainty. Furthermore, it is notoriously
difficult to distinguish between recombination and backtations.

One approach to circumvent these problems is to test fommbowtion beforehand (e.g. using the
four gamete test) and exclude recombinant regions fromnbkysis if necessary. One can then both con-
dition on there being no within-locus recombination andaffto use more powerful statistics such as the
ones presented here. This strategy of identifying nonsmdgioing stretches of sequence is increasingly
used to analyse multilocus data, (e.g. Gakieal., 2000; Jennings & Edwards, 2005). Fortunately, many
organisms appear to have lower recombination rates thaelspdcies such drosophila For instance
in a recent study on Australian birds only six out of thirtgilof intergenic sequence showed evidence
for recombination (Jennings & Edwards, 2005). How profitethis scheme is ultimately depends on the
relative magnitude and distribution of recombination andation rates. Before the genealogical ratios
can be used on multiple loci which have been pruned to exckcmmbinant stretches, both the potential
bias of such pruning and the effect of undetected recomibimatents on the genealogical ratios need
to be properly evaluated. Interestingly, our method offririfigy the root does in itself constitute a test for
recombination and may help to focus on those recombinatients that matter to the statistical test.

A related problem concerns the infinite sites assumptiothoAigh the algorithm we have developed
to compute theX statistics takes topological uncertainty into accountpiing the possibility of back-

mutations may underestimate the length of basal branchesdf & Depaulis, 2003). Although this
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source of error has been ignored here it should in principl@dssible to account for back-mutations
considering that they are independent of the assumptiotieeajenealogical process. In fact, any mu-
tational model can be used to define statistics analogousetgenealogical ratios presented here. The
problem with more complicated mutation models is in estingathe basal topology needed to calculate

these measures.

2.4.4 Conclusions

In summary, the results confirm that only the most extremeadgaphic events leave a sufficient sig-
nature to be detectable in single locus data. Still, instfaithe excessive and often non-quantitative
employment of mismatch distributions, phylogeographidgs could benefit from using more powerful
statistics such aBs and Rz to test demographic hypotheses. Conversely, populatioetips studies of
sequence data from multiple, unlinked loci could benefitrfnasing summary statistics that incorporate
genealogical information explicitly. When outgroup infaation is available and the assumptions of no
within-locus recombination and infinite sites mutations t& justified, simple genealogical ratios are
potentially more powerful than standard statistics. Irirtgkhe relative number of mutations found on
specific parts of the genealogy as a measure of the degrearsfiape, the demographic signal can be
separated from irrelevant and confounding topologicalrimfation. Extensions of this approach are feasi-
ble. For instance, one could consider the covariance bettteenumber of basal and terminal mutations.
Such simple statistics may be profitable for approximatdiliood or Bayesian approaches (Thornton &
Andolfatto, 2006). There remains a need to understand feeteff pruning and undetected recombina-
tion events on tree reconstruction in general and treeebasasures such as the statistics presented

here in particular.
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Chapter 3

Inferring the colonisation of a
mountain range - refugia vs. nunatak

survival in high alpine ground beetles

Published as: Lohse, K., Nicholls, J.A., Stone,
N.G. (2010).Molecular Ecologyin press

Molecular phylogeographic studies have amply demonstrtite profound role of Pleistocene cli-
mate cycles in shaping the history of the fauna and flora imgei{Hewitt, 2000). In general, temperate
organisms survived glacial maxima in refugia south of theeRges, Alps and Carpathians from which
they recolonised more northern areas during interglaclalsontrast, it is less clear how cold-adapted,
alpine organisms responded to Pleistocene climate ch&tgetled by the similarity of alpine species on
different European mountain ranges, Darwin (1859) spéed)&By the time that the cold had reached
its maximum we should have a uniform arctic fauna and floraedog the central parts of Europe.” It
is certainly tempting to assume that the Pleistocene lisibalpine organisms is simply a reversal of
the refugia/expansion dichotomy seen in temperate orgemiwith range contractions into alpine refu-
gia during interglacials followed by recolonisation of lemaltitudes and latitudes during glacial periods.
However, there are good arguments against such a simgcitario. Firstly, many alpine taxa are lo-
cal endemics with poor dispersal abilities. For examplghtalpine insects in otherwise winged taxa
are often flightless (Hodkinson, 2005; Margedfal,, 2007; Schmitt, 2009), which should greatly reduce
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their ability to undergo rapid range shifts. Secondly, entrconditions in high alpine environments are
not necessarily similar to those prevailing in the lowladdsing glacial maxima. For instance, water
is a limiting resource for many high alpine specialists ameldry conditions of the surrounding tundra
during glacial maxima may have prevented large scale csdtioin by alpine elements (Schmitt & He-

witt, 2006). Finally, glacial maxima lasted much longerrthaterglacials, so if extensive admixture of

alpine organisms had occurred during the ice ages, theirespdiversity and geographic structure should
generally be lower than that of temperate organisms, arpdtiewhich there is no evidence.

Two opposing views on the Pleistocene history of alpinesb@herged early in the development of
the field of biogeography. The massif de refuge hypothedishtbat glacial survival of alpine species
was restricted to large refugial areas at the periphery ef&bropean Alps (Holdhaus, 1954), while
the nunatak hypothesis proposessitu survival on small ice-free islands of habitat surroundedhsy
ice-sheet, so-called nunataks or sky islands (Janetst8&, Schmolzer, 1962). Early biogeographic
studies have interpreted distribution patterns of higlnalgpecies both in terms of the massif de refuge
and the nunatak hypotheses. For instance, the absencemiteenaf high alpine groups from the Central
Alps has been taken as evidence for very slow and incompbstig/iacial recolonization originating from
massifs de refuge at the periphery (Schweiger, 1969). Itrast) the extremely insular distributions of
some small soil arthropods in the Central Alps are difficaléxplain without invoking nunatak survival
(Janetschek, 1956).

These two hypotheses also make contrasting predictionst gladterns of genetic diversity within
species. Under the nunatak hypothesis, ancestral varisitiould be more or less sorted into nunatak-
specific lineages (Knowles, 2001). The rate of this proceggedds on effective population sizes and
the time since isolation, the eventual endpoint being reci@ monophyly (Fig. 3.1A). Furthermore, the
nunatak hypothesis predicts that genetic diversity shbeldhighest in previously glaciated areas. In
contrast, under the massifs de refuge hypothesis, glaciations including nunataks were colonised
during the currentinterglacial and, in general, genetiedity should reflect refugial origin and decrease
with distance from the massif de refuge (Fig. 3.1B).

Molecular studies, particularly on high alpine plants,daw far found patterns consistent with both
massif de refuge and nunatak survival, although the mgjofitstudies support the former. A meta-
analysis of allozyme variation in twelve alpine plant spsdadentified multiple, large massifs de refuge
at the periphery of the Alps (Fig. 3.3A) (Schénsweteial, 2002, 2005) as well as putative nunatak
survival in the Central Alps in a few species (Steldikal,, 2002). Similarly, the few molecular studies
on high alpine insects in the European Alps to date (Margrafl., 2007; Paul®t al, 2006; Schmitt &

Hewitt, 2006) have mainly revealed genetic patterns in etipgf glacial survival in large and peripheral
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Figure 3.1: Schematic diagram of extreme population Histajabove) leading to monophyletic or pa-
raphyletic gene trees (below). A) If populations persishauitiple nunataks (1-4) and isolation is long
and/or population sizes are sufficiently small, ancestghtion is sorted and populations in the gene tree
are monophyletic. B) If populations are recolonized paatigllly from a massif de refuge (1) through a
succession of extreme founder events, populations fortedgsaraphyletic clades in the gene tree. Note
that in both A) and B) each location state in the genetree ‘enbylves’ once.
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massifs de refuge, in most cases overlapping with thosedfouplants (Schénswettet al., 2005).

The balance of evidence for nunatak and massif de refugesosns not only important in under-
standing the history of alpine species, it also has impbcatfor their potential to adapt to local envi-
ronments and to each other (Margedfal, 2007). For instance, long-terim situ survival on nunataks
should increase local adapation and may ultimately leadddrmation of new species and communities
(DeChaine & Martin, 2006). While molecular studies of hidpiae taxa to date have generally aimed at
resolving large-scale patterns and focused on widesppesaies (Paulst al., 2006; Schmitt & Hewiitt,
2006; Margrafet al., 2007), investigating the phylogeographic history of ma¢pspecialists with more
restricted ranges should add important resolution abauutiderlying processes. For example, given
the complex topology of mountainous areas, it may be easielentify which geographic features have
acted as barriers to or corridors of dispersal over locdésca

Carabid beetles in the geniisechusare small (2-5mm), generalist predators (Fig. 3.2) thatroff
ample opportunity to examine phylogeographic patterns looal scales. The genus contains more than
1000 currently described species worldwide and both speatiiersity and levels of endemism peak in
mountainous regions (Barr, 1985; Lompe, 2004). The mgjofithe 60 or so Central European species
are alpine or high alpine endemics with restricted rangetheisouthern and northern slopes of the Alps
(Jeannel, 1927; Schénmann, 1937; Focarile, 1949, 1950pkp&004).

Here we focus on a radiation dfechusin the pertyi group in the Orobian Alps in Northern Italy
(Figs. 3.3, 3.2) (Focarile, 1949, 1950). This local radiatdf wingless, high alpine specialists provides
an excellent test case for the nunatak and the massif deerdfygotheses on a local scale. Firstly,
the Orobian Alps constitute a geographically well-defineauntain range with sensible natural limits
for a local sampling scheme: the Lago di Como in the West, thed@hica valley in the East and the
Adda valley in the North (Fig. 3.3B). Secondly, the Orobialp®Aare of particular interest for alpine
biogeography because the maximal extent of the last glax@agheet roughly divides the area in half
(Jackli, 1970) (Fig. 3.3B). Thus, while summits along thethern ridge of the Orobian Alps (pop. 2-11
Fig. 3.3B) were surrounded by the icesheet and isolated &ach other as nunataks, southern summits
such as Grignetta (pop. 1) and Pizzo Presolana (pop. 12) 3B8) remained ice-free (Jackli, 1970)
and could potentially have served as refugia during glan@kima. Currently, high alpin@rechuscan
be found above 1800m around glacial lakes (Jeannel, 192rn8tann, 1937) throughout the entire
Orobian Alps. In essence, this geographic set-up can besdi@s a miniature version of the pattern of
nunataks and peripheral refugia in the Alps at large.

Reciprocal monophyly and polyphyly of populations are extes in a continuum (Rosenberg, 2002).

Basic coalescent theory shows that the time required foraployly to arise after divergence depends on
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Figure 3.2:Trechus brembanudsom Lago Verrobbio (pop. 5 in Fig. 3.3) in the western patiaf Orobian
Alps.

the long-term effective population size and has a very lagg@nce (Tavaré, 1984; Hudson & Turelli,
2003). Thus if populations are large and/or stable, linesggéng may take multiple ice ages or even
predate the Pleistocene (Knowles, 2001). However, papakbf OrobianTrechusare centred around
small glacial lakes and it is difficult to imagine their effee sizes exceeding a few thousand females.
In this case, the chance of monophyly as expected under thatadu hypothesis is > 90% even after
isolation for just a single glacial cycle (Hudson & TureBD03) (Fig. 3.1A). Alternatively, lineage sorting
can occur on a more recent time scale during a range expamsaer the massif de refuge hypothesis
if founder events are involved. In the simplest such caseh @apulation is founded by just a single
lineage without further gene flow between populations legdd a nested series of paraphyletic clades
(Fig. 3.1B).

We sequenced two fragments of mitochondrial DNA (a total 481 bp) and 530 bp of nuclear
sequence for a densely sampled set of populations in thei@r@dps. We applied a recently devel-
oped Bayesian approach (Lemeyal., 2009) that models directional location state changes JLIBC
gene trees. This approach, which was originally used ton@sti migration rates from viral phylogenies
(Lemeyet al, 2009; Ceiridweret al, 2010) was adopted to infer the most parsimonious set of LSC
parameters connecting each population to one putativediErurinder a model of a series of extreme

founder events, this set of LSC parameters determines tiee of population recolonisation and thus the
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Figure 3.3: A) Main peripheral massifs de refuge (I-111) iretWestern Alps inferred from a meta-analysis
of genetic diversity in alpine plants are shown in purpleitirSchonswettest al., 2005); breaks between
refugia are indicated as dotted lines. The Orobian Alps &pated on the western edge of refugium
[1l. Sampling localities of the geographic outgroups ami¢ated in red (outA= Passo di Spluga, outB =
Adamello). B) Sampling localities of Trechus in the Orobisps. Watercourses are indicated in blue,
ridges by thin dashed lines. With the exception of pop. 1 andlldocalities are glacial lakes. The
southern limit of the last glaciation (Jackli, 1970) is icatied as a thick dashed line.
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expected nesting of paraphyletic clades in the gene tree 3FiB). Although this admittedly represents
an extreme and simplistic cartoon of history, it does captiue directional aspect of recolonisation out of
a massif de refuge. The great advantage of both the nunatd&lraod the extreme founder event model
is that the expected monophyly and paraphyly in the genetede tested explicitly to assess the impor-
tance of incomplete lineage sorting and/or migration (kafttvhich lead to polyphyly). We first tested

these constraints jointly for all populations and thenvidtlially for each population. Finally, we used a
Trechusspecific, mutation rate estimate to date the age of the hmtodrial clades compatible with the

extreme founder event model. This stepwise analysis allme address the following questions:

i) To what extent are populations on the northern ridge eitbeprocally monophyletic as expected af-
ter prolonged isolation on nunataks, or paraphyletic agebgu after a process of successive founder

events out of one or multiple massifs de refuge?
ii) Is there evidence for incomplete lineage sorting andiaration in the form of polyphyly?

iii) Do node ages of clades that meet the respective monorappaly criteria under i) predate the last
ice age as expected under the nunatak hypothesis, or anedbtgacial as expected under the massif

de refuge hypothesis?

3.1 Materials and Methods

3.1.1 Sampling

A total of 11 species in theertyigroup have been described from the Orobian Alps, and mas& ha
allopatric distributions restricted to one or a few neighitdeg mountain tops (Daniel & Daniel, 1898;

Jeannel, 1927; Focarile, 1949, 1950). Their taxonomy igdas subtle differences in male genital
morphology, a potentially unreliable set of traits thatd&@een shown to vary even within populations
(Faccini & Sciaky, 2002). Much of the taxonomic work on thi®gp is linked with debates on alpine

biogeography, making it difficult to gauge the extent to wigpecies delimitations were based on vicari-
ance hypotheses rather than morphological charactergifirht place (Jeannel, 1927; Focarile, 1949,
1950). As a result, rather than sampling particular spetiesaim of our sampling scheme was to pro-
vide exhaustive coverage of the Orobian Alps. We sampledreysif ten populations covering the entire

length of the northern ridge as well as two populations ingbeth of the area: Grignetta in the south-

west and Pizzo Presolana in the southeast (Fig. 3.3B, TabjeAdditionally, samples from two nearby
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Table 3.1: Sampling localities, sample siz&5,{, = number of individuals sequenced foox1andCox2
N, = number of individuals sequenced EPCK) and species namagnsu~ocarile (1950).

Code Population Latitude Longitude Alt.  species Nmt Nnuc
outA Passo Spluga 46°30'16"N 9°19'50"E ~ 2115nT. schaumii 11 1
1 Grignetta 45°55'21"N  9°23'22"E  2170mT. pygmaeus 5 2
2 L. Rotondo 46°1'6"N 9°32'17"E 2256m T. brembanus 11 2
3 L. Piazotti 46°1'19"N  9°33'32"E =~ 2224m T. brembanus 9 2
4 L. Ponteranica 46°1'26"N  9°35'36"E =~ 2150mT. brembanus 9 2
5 L. Verobbio 46°2'19"N  9°35'59"E = 2026m T. brembanus 12 2
6 Passo S. Marco 46°2'50"N  9°37’'22"E 1985nil. brembanus 11 2
7 L. Porcile 46°3'42"N  9°43'55"E 2095m T. intrusus 10 2
8 L. Curiosi 46°0'51"N  9°52’31"E ~ 2112m T.insubricus 11 2
9 L. Diavolo 46°2'28"N  9°53'31"E ~ 2141m T.insubricus 11 2
10 L. Cocca 46°3'46"N  10°0'4"E 2108m T.insubricus 11 2
11 L. Cerviera 46°3'34"N  10°3'47"E  2326mT. insubricus 12 2
12 Pizzo Presolana 45°57'26"N  10°4’14"E  2521nT. barii 12 3
12 Pizzo Presolana 45°57'26"N  10°4’14"E  2521nT. magistretti 12 3
outB  Adamelllo (L. Avolo) 46°3'31"N  10°29'50"E 2393m T. tristiculus 3 1

mountain ranges were included as geographic outgrougshaumifrom Passo di Spluga 40 km north
of the Orobian Alps (outA), and. tristiculusfrom the Adamello range 30 km to the west (outB) (Table

3.1, Fig. 3.3A). Adult specimens were collected by hand doikd in 98% ethanol.

3.1.2 Molecular work

A total of 150 individuals were sequenced for two mitochaaldDNA loci (Table 3.1). Whole genomic
DNA was extracted using a simple Chelex protocol (LopezAvaradeet al., 2001; Nichollset al,, 2010).
Primers C1-J-2792a (Bogdanowitetzal,, 1993) and C2B-605 (Simaet al., 1994) were used to amplify
a 773 bp fragment of mitochondrial DNA which includes 180 hpgydochrome c oxidase IqoxJ), 531
bp of cytochrome c oxidase IICox2 and 62 bp of tRNA leucine (Contreras-Diat al., 2007). PCR
conditions followed Moyaet al. (2004). Additionally, the non-overlapping 658 bp ‘barcbilegment of
Cox1lwas amplified using primers HCO/LCO and standard PCR camdit{Folmeet al,, 1994).

A subset of 30 individuals was sequenced for a coding reditimeonuclear locus Phosphoenolpyru-
vate carboxykinasedPEPCK; Table 3.1). This gene has no known paralogs and has proful der
phylogeographic studies of carabid beetles (Sota & Vodleg1; Wild & Maddison, 2008). Primers
Pepck19.5 and Pepck22.5, originally developed for beegs(éeal., 2002), amplified a PCR product in
some individuals. This product was sequenced and usedigndbs following internalTrechusspecific,
primer pair in Primer3plus (Rozen & Skaletsky, 2000): Pépk CGATCAAAACGGTCAACTTCC
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3’) and PepckR (5 AGGTTTTGGGAACGGT TCTT 3’). We used PCR diions given by Ley®t al.
(2002) with an increased annealing temperature of 57 °C. p@Ructs were sequenced in both direc-

tions on an ABI 3730 automated sequencer using BigDye v3eindiry.

3.1.3 Phylogenetic analysis

Complementary ABI traces were aligned in SequenceNavigRtoker, 1997) and checked by eye. Only
unambiguous consensus sequences with an open readingvirareeéncluded in the analysis and all
singleton mutations were double checked in the ABI tracasalRalignments were created using the
Clustal W algorithm (Higgins & Sharp, 1988). Alignment ofthanitochondrial genes arREPCKwas
straightforward. Since the mitochondrion constitutesnglsi, non-recombining locus the two mitochon-
drial fragments were concatenated for all analyses. Foplgiity, the tRNA leucine region, which only
contained a single, uninformative polymorphic site, wasl@ked resulting in a final alignment of 1366
bases for 150 individuals from 12 populations. We testedefadence of recombination iIREPCK by
performing a four-gamete test (Hudson & Kaplan, 1985) in ®Pa&.4.1 (Rozast al., 2003).
Mitochondrial sequences and nuclear alignments were agdlgeparately. Before implementing
phylogeographic models we obtained a minimally paranmegdrimutation model through successive
model simplification and Bayes factor comparisons in BEASIT5:3 (Suchareét al., 2001; Drummond
& Rambaut, 2007; Stonet al., 2009). We began by considering the most complex modelstpfesee
evolution possible given the sequence diversity preseetith sampled locus. These were HKY+I+G
for a combined partition ofsLand 29 codon positions and GTR+I+G fof3codon positions within the
mitochondrial data and GTR+I+G without partitioning EEPCK Standard demographic models imple-
mented in BEAST either assume panmixia (e.g. exponenta'tly) or complete isolation (birth-death),
both of which do not apply to structured populations. To éwany errors resulting from model misspeci-
fication, we used a Bayesian skyline plot, which indireatlydrporates the effects of population structure
by allowing for arbitrary variation in effective populaticize. We also tested the support for a constant
versus relaxed mutation rate model (Table 3.2). We appli€gehusspecific mitochondrial mutation
rate estimate of a mean of 0.0152 substitutions per site pé éduivalent to 3.04% divergence/MY)
calculated for Canary Islanittechusspecies using island ages (Contreras-[@iaal., 2007). Mitochon-
drial analyses were run for 30 million generations with anbur of 20 million, repeated using different
random number seeds and checked for convergence using Vladg Rambaut & Drummond, 2007),

while PEPCK analyses were run for 3 million generations w&itsurn-in of 2 million generations.
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3.1.4 Bayesian inference of relationships among populatis

We used a recently developed Bayesian framework implerdéntBEAST v 1.5.3, described in detail
by Lemeyet al. (2009), to reconstruct the colonization historyTeéchusin the Orobian Alps. This ap-
proach models geographic locations as discrete charaates sevolving’ along a rooted, time-measured
phylogeny. Rates for location state changes (LSC) and &matéscation states in the gene tree are es-
timated simultaneously with phylogenetic model paransatising Markov chain Monte-Carlo (MCMC)
sampling. In contrast to maximum parsimony, this metho@iporates branch length information as
well as uncertainty in gene tree topology (Pagtedl, 2004; Ronquist, 2004). While the original imple-
mentation is limited to reversible LSCs, a recent extensitows the modelling of non-reversible, i.e.
directional LSCs (Ceiridwent al, 2010). Location states were modeled for both data setsriyttioe
mitochondrial DNA data contained enough information teimd putative sequence of extreme founder
events with any confidence.

For a sample oif locations, there ane(n-1)possible directional LSCs. In practice, however, many of
these may not occur in a particular gene tree and the full msdeastically over-parameterized. Lemey
et al.(2009) proposed the use of Bayesian stochastic searclblasielection (BSSVS) to find a minimal
set of LSC parameters. This approach has been introducegjiassion problems as a way of finding
a subset of potential predictors that optimally explaires variance in an multi-dimensional outcome
variable (Kuo & Mallick, 1998), as deterministic model sgastrategies tend not to find the optimal
solution unless all possible subsets are explored whickngglly computationally impractical. BSSVS
achieves model selection by assigning a binary indicateabke to each parameter. Each LSC parameter
has an equal prior probability of being zero, which is givgrabprior distribution on the total number
of nonzero rates. Following Lemet al. (2009), we used a truncated Poisson prior for the number of
nonzero rates initially with a mean &2 and an offset corresponding to the minimal possible number
of rates f — 1 = 13). This puts 50% prior probability on the minimal rate configtion, i.e. the model
strongly favours reduced parameterisation. To assessfinemnce of this prior choice, we performed a
sensitivity analysis by rerunning the BSSVS for larger pneans (Table 3.3).

We used Bayes factors constructed as posterior over prits @dios of indicators (Kass & Raftery,
1995) to assess the support for individual LSC parametéages in the BSSVS (Lemest al., 2009)
and infer the most parsimonious sequence of putative fauexknts using a cut-off of 3 to indicate
positive support. The prior odds ratio for each LSC paramistgiven by the total number of possible
directional LSCsn(n-1); the posterior odds ratio is simply the proportion of getiers of the MCMC

during which the associated binary indicator is 1, i.e. tis&€Lparameter is ‘switched on’. Importantly,
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Table 3.2: Summary of models of sequence evolution evalufite Cox1/Cox2and PEPCK using
BEAST. The models with the highest logarithm of the harman&an of sampled likelihoods are in-
dicated with an asterisk.

Cox1/Cox2
1stand2nd  3rd Clock  In(HML)
HKY+I+G GTR+I+G  strict -3248.10
HKY+I GTR+I+G  strict -3194.98
HKY+G GTR+I+G  strict -3207.80
HKY+1+G GTR+I1+G relaxed -3256.52
HKY+I GTR+I1+G relaxed -3184.67*
HKY+G GTR+I+G relaxed -3190.98
PEPCK

all partitions Clock  In(HML)
GTR+I+G strict -945.54
GTR+G strict -941.70
GTR+I strict -940.93
GTR strict -940.56*
GTR+I relaxed -942.49

by assigning equal prior probability to each LSC paramé@&$SVS avoids making any assumptions
about the genetic relationship of populations based om kheation. Instead, genealogical relationships
can be used to make inferences about likely founder everas.eXxample, if colonisation occurs in a
stepping stone fashion, most posterior probability masthénBSSVS should be on LSC parameters
between neighbouring populations and the most basal piipuia the set corresponds to the origin of
the colonisation process. We chose the population assdaieth the highest posterior indicator in the
BSSVS as the most likely founder of each population. Theltieguset was taken as the most likely

series of putative founder events for further analyses.

3.1.5 Testing topological constraints

One benefit of focusing on the two extreme histories of prgémhnunatak survival and the founder
event model is that deviations from the monophyly and parptriteria implicit in these models can
be easily tested. Another advantage is that in both casetinbeo the most recent common ancestor
(Tmrea) of each population gives a lower estimate of the relevapugadion genetic event (divergence
and founder event respectively). Using BEAST we comparegbalbgically unconstrained model with
models enforcing, i) reciprocal monophyly for all poputetts (prolonged nunatak survival), and ii) all

paraphyly constraints given the putative sequence of feuadents inferred by BSSVS (recolonisation
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out of a massif de refuge). We also performed constrainelysesfor each population individually. In
these cases we either only constrained a particular populsample to be monophyletic, or imposed
monophyly of a population and all populations founded frararider the founder event model. The
harmonic mean of the model likelihood (HML) was taken as ammede of the marginal likelihood
and used to compare topologically constrained models \wighunconstrained model. We used a more
conservative cut-off than Kass & Raftery (1995) af[aHML= -20 to indicate strong evidence against a

particular constraint.

3.2 Results

3.2.1 Phylogenetic analysis

The concatenated mitochondrial alignme@bk1 and Cox2 contained 139 polymorphic sites, 121 of
which were parsimony informative. The best model of seqaenolution was HKY+I for ¥ and 2
codon positions combined and GTR+I+G &t Bositions with a relaxed rate mutation model (Table 3.2).
The alignment oPEPCKcontained 25 polymorphic sites, 17 of which were parsimaifiyrimative. Two
individuals were heterozygous at a single site and fouviddals were heterozygous at three sites. In all
cases it was possible to infer the haplotype phase from ffer@ht homozygotes present in the data. We
found no evidence for recombinationBEPCK The best model of sequence evolution REPCKwas

GTR for all sites and a constant mutation rate (Table 3.2).

3.2.2 Bayesian inference of relationships among populatis

Using a prior mean on the number of non-zero ratee®fBSSVS on the mitochondrial data identified
a set of 16 LSC parameters with a Bayes Factor > 3 among the g@aimns in the Orobian Alps
(Fig. 3.4A, Fig. 3.5). Thirteen of these were between adjapepulation pairs or those with only one
intervening population. Given that all LSC parameters vassgned equal prior probability, that is, the
prior did notincorporate information about geographicatise, this provides support for a stepping stone
model of colonisation. However, BSSVS revealed a markedogfepgraphic divide across the sampled
area with two clusters of populations at the western anceeasind of the mountain range (Fig. 3.5).
Although the number of LSC parameters supported by the dateeeed the minimum of 11 required
to connect all ingroup populations, a cluster of three papahs (L. Verrobio (pop. 5), Passo S. Marco
(pop. 6) and L. Porcile (pop. 7)) in the centre of the northiédge remain without a putative founder.

To identify a minimal, connected set of founder events, wesehthe population with the largest value
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Figure 3.4: Matrices indicating posterior support for dtienal location state change (LSC) parameters
among 12Trechuspopulations in the Orobian Alps. Support for each parametes assessed using
Bayesian stochastic search variable selection (BSVS)@ndmbined mitochondrial da@ox1/Cox2
Posterior support for each possible LSC parameter is itetiday the strength of the shading in the matrix
(locations are ordered from west to east). LSC parametdéhsaMBayes Factor > 3 are indicated by an
asterisk. Most posterior probability is on LSC parametetsveen adjacent populations (cells just below
or above the diagonal). This is true regardless of whethentimber of non-zero rates in the BSSVS is
assumed to be close to the minimunmof 1 by choosing a prior mean of In2 (A), or allowing for a much
larger number of rates using a prior mean of 15 (B). Simildahg minimal set of putative founder events
(cells with thick borders) is insensitive to this parameter
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Figure 3.5: Location state change (LSC) parameters amofigethuspopulations in the Orobian Alps
inferred from mt gene€ox1/Cox2using BSSVS represented as arrows. Shown in red is the mpst pa
simonious minimal set, which can be interpreted as a minmadel of phylogeography of sequential
founder events. The putative founder event connecting latipns 1 and 6 (dotted arrow) was the only
LSC parameter with a Bayes Factor < 3. Additional LSC paransewith high support (BF > 3) in the
BSSVS are shown as black arrows. Note that the most basalléo@wvent (pop. 12 to 1) connecting the
two clusters in the East and West of the Orobian Alps is notvshior clarity. The southern limit of the
last glaciation (Jackli, 1970) is indicated as a thick dadivee.
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Table 3.3: A sensitivity analysis to investigate the impafdhe prior on the number of nonzero rates in
the BSSVS was carried out for the mitochondrial alignm&ux1/Cox2.

Cox1/Cox2
Prior mean Post Median BCI In(HML)
In2 15 14,18 -3283.55
1 16 13,18 -3270.81
5 21 16,25 -3274.31
10 26 20,32 -3279.82
15 31 24,38 -3276.36*

in the corresponding row of the matrix of posterior indicat(Fig.3.5) as the most likely source of each
population (red arrows in figure 4). Enforcing this revertbesconnection between Grignetta (pop. 1) to
Passo S. Marco (pop. 6). All other LSC parameters in the nahgat of the founder event model had a
Bayes Factor > 3.

Rerunning the BSSVS with larger prior means on the numbeoatero rates either had no effect
on our estimate of the marginal likelihood ( In(HML)) or imased it, with changes in the posterior
median value mirroring increases in the prior (Table 3.3 iWerpret this as a reconstruction of the
prior resulting from the limited topological information the data. This is confirmed by inspection of
the matrix of posterior means of indicators (Fig. 3.4), ageasing the prior mean on the number of
nonzero rates uniformly increased the posterior suppodlfd.SCs, reflected by the darker background
in figure 3.4B. However, the set of putative founder evenfisrned for the 12 ingroup populations was

not affected by the prior.

3.2.3 Testing topological constraints

Constraining all populations to be monophyletic (prolahgmlation on nunataks) resulted in a drastic
reduction in marginal likelihood for the mitochondrial d42AINHML=-220, Table 3.4). Similarly, im-
posing the full set of paraphyly constraints inferred unither founder event model also decreased the
overall likelihood (2AInHML=-115, Table 3.4). This indicates that neither a $tnignatak model nor an
extreme founder event model is supported by the data. Buadueonstraints for individual populations,
we found strong evidence against monophyly for five popaitestiand moderate evidence for one popu-
lation (Table 3.4). In contrast, only two populations (La®itti (pop. 3), L. Curiosi (pop. 9)) and one
population (L. Rotondo (pop. 2)) showed strong or moderaidesmce respectively against the paraphyly
constraints of the founder event model. This suggests hia¢ iextreme founder event model provides a

better fit to the data; and ii) some incomplete lineage sgeimd/or migration are required to fully explain
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genealogical relationships.

Although our approach removes the need for qualitativepmétations of gene tree topologies, many
but not all of the putative founder events inferred using BSSire easily confirmed by visual inspec-
tion of the gene trees. Inferred ancestral location stagr® wummarized by computing the maximum
clade credibility tree for each locus (Fig. 3.6). Both mhoadrial genes anBEPCK unambiguously
separated the sample, including the geographic outgranfosdeep western and eastern clades, which
is in agreement with the founding of Grignetta (pop. 1) froizzB Presolana (pop. 12) being the most
basal founder event. Similarly, several of the inferredapué founder events for the eastern popula-
tions clearly correspond to single transitions in ancésbcation state at well supported clades in the
Cox1/Cox2maximum clade credibility tree (e.g. from pop. 12 to 9 andvfrd0 to 11). In contrast, the
series of putative founder events inferred by BSSVS for thetern populations, in particular the basal
status of Grignetta (pop. 1), are less obvious from this. tFéeally, the three populations that violated
the paraphyly criterion under the founder event model walgghyletic in theCox1/CoxZmaximum
clade credibility tree, as expected. Samples from L. Cufjmsp. 9) and L. Rotondo (pop. 2) occurred
in multiple deeply divergent clades, which most likely refieincomplete lineage sorting. In contrast,
only a single individual from the population at L. Piazotibp. 3) was placed away from the majority of
samples from this population into a clade of L. Rotondo (®)psequences (Fig. 3.6). Given the close
proximity of the two locations (L. Rotondo is situated ju§08n uphill from L. Piazotti) this may reflect
a recent migration eventinto the L. Piazottti populatiore 8pect LSCs that occur multiple times in the
gene tree to be associated with higher posterior mean itodicalues in the BSSVS, and this was indeed
the case (see LSCs from pop. 9 to 8 and from 2 to 3 in Fig. 3.4 34).

Under a model of extreme founder events, thygda of each resulting clade can be taken as a lower
estimate of the time of the founder event itself. Medianneates for the Wjrca of the seven northern
ridge populations that were compatible with the implicitagzhyly criterion ranged from 36 KY (17 - 80
KY 95% highest posterior density) at L. Ponteranica (popto4)69KY (238 - 1,087 KY 95% highest
posterior density) at L. Diavolo (pop. 8) (Table 3.4). Inadkes, the lower 95% highest posterior density
bound predates the onset of deglaciation at the end of théckmge 14.5-15 KY ago, suggesting that

Trechuswere present on the northern ridge for at least part of thedasge, if not before.

3.3 Discussion

We used a parameter-rich Bayesian approach to infer the@gégbraphic history of a local radiation of

high alpine ground beetles. We have deliberately focusevorextreme models of population history,
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Figure 3.6: Maximum clade credibility trees for mt gei@sx1/CoxZleft) and the nuclear loclBEPCK
(right). Branches are coloured by location state. Nodels paisterior support >80% are marked as white
dots. Note that both mt and nuclear genetrees show a deepgangraphic break between populations
in the west (W) and east (E) of the Orobian Alps.
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Table 3.4: Estimates of\lrca (median and lower and upper 95% posterior density in KY)Ti@chus
populations in the Orobian Alps under a model of sequentiahfler events (see red arrows in Fig.
3.5). We tested for reciprocal monophyly under the nunataklehand the monophyly implicated by
the founder event model for all populations (last row) anchgaopulation separately in BEAST. Given
are 2AInHML (relative to the unconstrained model) combined frdm two constrained runs for each
populations (* indicates moderate support, ** strong suppgainst the respective mono or paraphyly
constraint) and the Jrca (median and highest posterior density (HPD) intervals) adfhepopulation
obtained without imposing constraints.

Population 2AINHML 2AINHML  median lower 95% upper 95%HP
founder event nunatak  vRca HPD HP

Passo Spluga (outA) n/a -4.6 73 19 232

Grignetta (1) 3.1 -6.9 249 58 580

L. Rotondo(2) -19.4* -41.8** 205 73 394

L. Piazotti (3) -27.8** -27.8** 123 31 285

L. Ponteranica (4) -0.5 -0.5 36 17 80

L. Verobbio (5) 0.3 0.3 111 29 274

Passo S. Marco (6) 5.3 -27.4%* 208 65 404

L. Porcile (7) -6.7 -6.7 41 16 88

L. Diavolo (8) -7.8 -116.4** 569 238 1,087

L. Curiosi (9) -133.6** -133.6** 569 238 1,087

L. Cocca (10) -4.5 -18.8* 103 39 207

L. Cerviera (11) -1.2 -1.2 47 19 91

Pizzo Presolana (12) root -7.3 1,245 626 2,293

L. Avolo n/a -2.1 17 <1 45

all -115.0** -220.4** n/a n/a n/a
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prolonged isolation on nunataks and extreme founder ewgigimating from a massif de refuge. While
these are admittedly simplistic cartoons of history, tlaeivantage is that they make explicit predictions
about the mono- or paraphyly relationships which can bedefsir individual populations and gene trees.
Our results suggest a mixture of nunatak and massif de rgfatierns. On the one hand, half of the
Orobian populations are reciprocally monophyletic as etgubafter prolongeih situ survival on small
nunataks and — more importantly — the ages of the correspgmditochondrial clades would suggest
that northern ridge populations diverged either beforewing) the last ice-age, but not afterwards. On
the other hand, there are multiple lines of evidence forativeal recolonisation originating from two
separate massifs de refuge. Firstly, the data are incobipatith only three of the eleven paraphyly
constraints under the founder event model. This suggeatsdahhough genealogical relationships are
complicated to some extent by incomplete lineage sortirtjaarmigration (see discussion below), the
founder event model provides a reasonable fit to the datehdtitinformation from additional loci it is
impossible to tell whether polyphyly for a particular pogtihn in the mitochondrial tree is due to some
process specific to these populations (e.g. large effeptipeilation size or migration) or simply due to
the randomness of genetic drift. The fact that the only poyyypobserved in the PEPCK maximum clade
credibility tree involves L. Cerviera (pop. 11), a poputatihat is monophyletic in the mitochondrial tree
(Fig. 3.6), points to the latter. Secondly, the data showeardtiirectional signal, the most likely founder
of most populations being a directly adjacent populatiomaly, we found a deep congruent break in
the centre of the Orobian ridge in both mitochondrial andearcdata. Pizzo Presolana (pop. 12), one of
the populations in the unglaciated south, is ancestralibdtte inferred sequence of founder events (Fig.
3.5) and in the eastern clade of the two gene trees (Fig. Bdbjaus constitutes a likely massif de refuge.
In contrast, the ancestral location of the western cladess Well resolved. While Grignetta (pop. 1) is
ancestral both in the inferred series of founder events hadvestern clade of the mitochondrial tree,
Passo S. Marco (pop. 6) is the ancestral location irPtBECKtree (Fig. 3.6).

Taken together, these findings suggests that a model ofistepione type recolonisation originating
from two putative massifs de refuge, although not suppdaedll populations, provides at least a useful
approximation to the history of Orobidmechus

How can this apparent signature of directional recoloiagate reconciled with the estimates of the
Twvrea Of the clades on the Northern ridge all of which are older ttfen current interglacial (Table
3.4)? Since the founder event must predate the corresppiigigca, the results would be compatible
with recolonisation during a previous interglacial (0.230.115 MYA). Such prolonged persistence of
populations in isolation could potentially result in ad#jmn to local environments which in turn has im-

plication for the conservation statustechugpopulations. Alternatively, our molecular clock caliboat
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may be wrong. Recently Het al. (2005) have shown that estimates of molecular rates aredependent
and have attributed this effect to purifying selection,satring error and saturation. Consequently, cal-
ibrations based on old events such as the age of the Canang$sinTrechusmay lead to considerable
overestimate of recent node ages. However, in the preseattba short-term substitution rate would
have to be an order of magnitude higher to affect our conmfusiat Northern ridge populations were
seeded before the currentinterglacial. Another potecdiate for acceleration in substitution rates is pos-
itive selection on mitochondria. Although bacterial engabionts such ag/obachishave been shown to
cause selective sweeps in mitochondria in many arthrogduist & Jiggins, 2005), they are not known
from Carabid beetles. However, there may be other seleptiessures, in particular the need to adapt to
changing temperatures (Dowlirgg al., 2008) acting on mitochondrial genes. Without more infaivea
data from nuclear loci and mutation rate estimates for theengannot rule out this possibility for high

alpineTrechus

3.3.1 Patterns and causes of phylogeographic structure

The extent of phylogeographic structure on this small sisaie stark contrast to the complete lack of
structure in more dispersive, winged insects over similgreater scales (e.g. Nicho#sal, 2010; Stone

& Sunnucks, 1993). It also contrasts with mitochondrial@gdngies of other high alpine radiations in
which incomplete lineage sorting appears to be much morespictad (Knowles, 2001). Similar levels
of genetic structure over scales of 50 km or less have to adyebeen found in giant springtails (Garrick
et al, 2009) suggesting that high alpifieechusrepresent an extreme case of dispersal limitation and/or
small population sizes.

An unexpected finding of this study was the deep phylogeducdpeak in the centre of the Orobian
Alps supported by both mitochondrial DNA and nuclear geeedr Simulation studies have shown that
in one-dimensional habitats, such as mountain rangespgégbraphic breaks can arise by chance with-
out barriers to dispersal (Irwin, 2002). Furthermore, shidbaks are more likely to occur in the centre
of the range as is the case for OrobiEmchuspopulations. However, given the number of sampled in-
dividuals and populations it is improbable for a random plgglographic break to occur congruently in
two independently segregating loci (Kuo & Avise, 2005). $lihe east/west break in Orobi@rechus
most likely reflects a true historic barrier to gene flow. tetingly, the break coincides both with mor-
phological species delimitation$.(brembanusndT. intrususin the west and'. insubricusin the east)
and the watershed between the two main rivers draining tiodi@n Alps, the Serio and Brembo (Fig.
3.3). We therefore hypothesise that glacial range shiftiscatonisation of the northern ridge proceeded

along those watercourses and ultimately originated fromdistinct southern refugia. This seems plau-
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sible, given the strong preference of high alpimechusfor moist, glacial lake microhabitats. Moreover,
genetic structure congruent with water catchment areagptesously been found in other dispersal-
limited taxa (Garriclet al,, 2009). While passive dispersal of high alpifrechusover large distances is
frequently observed during flooding of alpine streams (@gil908), the present analysis suggests that
active movement upstream and along mountain chains is $tasvinteresting that mitochondrial dates
of most populations on the northern ridge are compatibla wilonisation during or before the last ice
age. In all cases, the lower 95% posterior density boundapesdhe onset of the current interglacial.
Note that applying a mutation rate estimate from a tempespéeies is conservative, since one would
expect high alpine specialists to have longer generatinagiand thus slower mutation rates than their
temperate relatives, which, if anything, would push bad&rired node ages.

The deep phylogeographic break observed in Orobrachusis in stark contrast to the large-scale
refugia identified in plants (Schonswettdral., 2005) and suggests that patterns of vicariance and Pleis-
tocene range shifts in alpine organisms may be highly degrgr@h dispersal ability and life history. It
highlights the value of studying dispersal-limited alptaga, which are likely to preserve a signature of

processes operating over local scales.

3.3.2 Locations as states in gene trees

Treating locations as discrete states in gene trees avaay of the problems of fully parameterized
population genetic models of divergence and populationcsire (Hey & Machado, 2003; Knowles,
2004; Wakeley, 2004b). The method is computationally &falet and LSCs inferred from gene trees
can be superimposed onto the geographical map much morigy/ribech the gene trees themselves (Fig.
3.5). The obvious drawback is that the method, if used onits, dacks a population genetic basis
and thus cannot distinguish between different procesdasyaat the population level. This is clearly
not a problem when studying asexual organisms such as simisese histories can be described by a
single phylogeny or - if there is reassortment - a small sgthyfogenies (Lemewgt al., 2009). In this
context directional LSC parameters can be straightforlyanderpreted as migration rates in real time
(Lemeyet al, 2009). However, in sexual organisms gene trees and sjsmpesation trees are clearly
different entities (Tajima, 1983; Pamilo & Nei, 1988) anddsting the history of individual genes is only
indirectly useful for making inferences about the undewyspecies history (Hey & Machado, 2003;
Knowles, 2004). Crucially, different features of the spsdiree may lead to a LSC in the gene tree. For
example, a particular LSC may either be associated withsitu divergence of populations, ii) the sorting
of ancestral polymorphism resulting from such divergerra@)anigration of individuals between them.

It is therefore problematic to equate LSC parameters asraddy BSSVS with any one of the above
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processes without further testing despite multiple studi@ing so (Nepokroeft al, 2003; Allanet al.,
2004; Lamm & Redelings, 2009). While a clear correspondé&eteeen LSCs and migration rates in
the population genetic sense has been established fortmaeslyic island model (Slatkin & Maddison,
1998), the relationship between population genetic pararmiand LSCs remains to be evaluated for more
realistic, non-equilibrium models of structure.

How then can we use estimates of LSCs in gene trees to studyatiom histories? Although desir-
able, analysing fully specified models is currently feasimly for small numbers of populations/species,
and methods incorporating migration and incomplete lieesagting are often restricted to pairs of popu-
lations (Hey & Nielsen, 2004; Becquet & Przeworski, 200 e Rlternative is to use summary statistics
and simulations to distinguish between at least some egtadtarnative scenarios (DeChaine & Martin,
2006; Knowles, 2001). However, this requires making difficboices about the range of models and pa-
rameters to be evaluated and may result in a consideralsleiasformation. For example, the summary
statistic.9, the total number of LSCs in the consensus tree (Slatkin &dvh, 1998), which has been
used to compare phylogeographic models (Knowles, 2001 h@&@ & Martin, 2006), is not informative
about which changes have actually occurred. In other warsjnformation about the directionality of
colonisation or migration is lost.

Given that a major challenge in statistical phylogeograishtp identify a set of relevant models
of history in the first place (Carsters al., 2009; Knowles, 2009), BSSVS should be a useful tool for
reconstructing plausible population relationships theat serve as a starting point for further, model-
based evaluation. It formalizes many of the qualitativeiiahces that researchers commonly make from
'eyeballing’ gene trees and potentially also provides a whgveraging phylogeographic signal across
multiple loci. Given that BSSVS is highly sensitive to LS@atoccur multiple times in the gene tree (as
would be expected from lineage sorting or migration), thprapch is conservative when used to infer
a putative sequence of extreme founder events, which gameisto unique LSCs in the gene tree. The
downside of this is an increased sensitivity to topologigatertainty. For instance, the low power to
infer a founder for the cluster of populations 5-7 and thetemspopulation in general is most likely a
result of topological uncertainty. Likewise, the power ss@ss monophyly or paraphyly decreases with
topological uncertainty. Thus despite the use of BSSVSawide a statistical basis for phylogeographic
inference, resolving population histories in detail idgedquires additional data from multiple, indepen-
dent loci and more realistic population genetic models.e@ithe surprising extent of phylogeographic
structure within a single mountain range revealed by thidyseind the potential insights about the effect
of Pleistocene climate history on alpine diversity, furtdevelopment of loci and models would be a

worthwhile endeavour fofrechusand other high alpine specialists.
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Chapter 4

Developing EPIC primers for chalcid
Hymenoptera from EST and genomic

data

Submitted as: Lohse, K., Sharanowski, B.,
Blaxter, M., Stone, N.G. (2010Molecular

Ecology Resources

Despite the increasing realisation that multilocus dataraquired to adequately resolve histories at
or below the species level (Zhang & Hewitt, 2003; Jennings &vards, 2005; Carstens & Knowles,
2007b), the majority of phylogeographic analyses of nordeh@rganisms are still primarily based on
mitochondrial DNA. Rather than being analysed jointly in adal-based framework, nuclear data are
often presented as an add-on used to ‘corroborate’ quaditaiferences made from mitochondrial ge-
nealogies. One reason for the relatively slow uptake of fbdsed approaches by phylogeographers is
that obtaining a sufficient number of informative loci is ansimerable effort for non-model organisms.
A recent study using multiple loci to estimate divergence maigration across a phylogeographic barrier
(Leeet al, 2009) in a quantitative framework (Nielsen & Wakeley, 20Bey & Nielsen, 2004) found
that stable parameter estimation requires a minimum of fuear loci. The general challenge is to
identify enough loci that have a mutation rate high enoughetoerate a detectable signal of population

level processes, whose evolution is at least approximatelk-like, and for which phylogeographic

54



signal has not been overwritten by the effects of recomtmnatAdditionally, on a practical level, am-
plification across related taxa is desirable both to redueeost of primer development and to facilitate
comparisons across multiple species. In many ways thigadicts the requirement of high levels of in-
traspecific variation. For example, most of the loci comrgarged in phylogenetic analyses or for DNA
barcoding (Folmeet al,, 1994), such as the D2 region of the 28S ribosomal RNA genplifgmeadily
across a wide range of insects (Caztkal,, 2002; Roka®t al, 2002; Stoneet al,, 2009), but show little
or no genetic diversity below the species level (Stetal, 2007). Conversely, anonymous loci generally
provide good resolution in the target species but genedallypot cross-amplify well at all (Jennings &
Edwards, 2005; Carstens & Knowles, 2007a; kegeal., 2009).

Introns in single-copy nuclear genes offer a potential psdaom this conundrum (Creer, 2007).
They evolve faster than coding regions and so are likely ttaio sufficient intraspecific diversity to
reconstruct genealogies, but are flanked by conserved éxense the term EPIC - exon-primed, intron-
crossing - for such loci), which can be used as priming sitesieng amplification across a reasonable
taxonomic range (Lessa, 1992; Palumbi & S., 1994; Creer7R08though intron sequences have been
used in phylogeographic analyses of vertebrates (Giffotch&son, 2008; Petert al., 2008; Leeet al.,
2009) and fruit flies (Wilder & Hollocher, 2003; Das al., 2004), their use in non-model taxa is still rare
and their potential for comparative multispecies studésains to be explored.

Here we develop EPIC loci for phylogeographicinferencehialcidoid parasitoid wasps (Hymenoptera:
Chalcidoidea), species-rich components in most teregstmmmunities and dominant natural enemies of
many insect herbivores (Askew, 1980; Godfray, 1994; Badlesl., 2009). The complications of length
variation in introns, which in diploid organisms often nssigates a time-consuming cloning step, can
be avoided in Hymenoptera simply by using haploid males tuctvsequences can be obtained directly.
Our aim was to identify loci that provide resolution at antblaethe species level whilst amplifying across
a taxonomically diverse set of Chalcidoid taxa, allowindtifacus, multispecies analyses of natural par-
asitoid communities. To avoid having to design and optinpiemers for each species individually, we
took a large scale, genomic approach. The strategy was &apegrimers for a large number of highly
conserved genes using alignments of expressed sequea¢E &) and publicly available genomic data
from Hymenoptera (including the Chalcidoidasonia vitripennispnd other insects. If transcripts have
abundant conserved sites across a wide range of taxa, timriglde ample non-degenerate priming sites
to amplify from disparate taxa.

Amplification success of candidate loci was assessed in tvergk and well-studied, natural com-
munities; herbivorous gall wasps (Hymenoptera; Cynipjdeeoak Quercu3 (Hayward & Stone, 2005)
and fig wasps (Hymenoptera; Aagonidae) (Weiblen, 2002; iddaét al., 2005). Primers were screened
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at increasing taxonomic distance fradasonia(Pteromalidae); i) in different genera of Pteromalidae,
ii) in different families of Chalcidoidae (Eulophidae, Erlmidae, Eurytomidae, Ormyridae, Torymidae)
and iii) for a selection of host taxa in both systems (Cyragidnd Aagonidae respectively). In total this
screening set encompasses a diverse set of taxa includingést species (Aelet al., 2006) as well as
groups frequently used as biological control agents ez, 2007; Mena-Correat al.,, 2009).

The rationale of having a large set of nuclear loci, whicheaist partially co-amplify across these
assemblages, is to maximise overlap of loci used in futurliispecies comparisons and to minimise
potential ascertainment bias that species-specific choideci may introduce. To assess the potential of
these loci for phylogeographicinference, we measuredtigedigersity between major Palearctic refugia

for two widespread Pteromalid parasitoids of oak gaiscidostiba fungosandMesopolobus amaenus

4.1 Methods

4.1.1 Choice of nuclear loci and EST libraries

Putative orthologous gene alignments, developed for arapahylogenomic study of Hymenoptera
(Sharanowsket al., 2010) were used to develop primers. EST alignments werstiearted from cDNA
libraries for six hymenopteran tax&leodiprion sertiferDiprionidae),Campoletis sonorens{gchneu-
monidae) Pelecinus polyturatofPelecinidae)Pristaulacus strangliag¢Aulacidae), an unidentified cer-
aphronid (Ceraphronidae), and an unidentified eucoiliifigifidae). Sequences were also obtained from
public databases (NCBI) from the following tax&tasonia vitripennigHymenoptera: Pteromalidae),
Solenopsis invictéHymenoptera: Formicidaelysiphlebus testacipgslymenoptera: Braconida€lri-
bolium castaneur{Coleoptera: Tenebrionidadylyzus persica¢Hemiptera: Aphididae)cyrthosiphon
pisum{Hemiptera: Aphididae), antocusta migratoria(Orthoptera: Acrididae). All sequences were
compared against three annotated model genoBwesophila melanogastgiDiptera: Drosophilidae),
Bombyx mori(Lepidoptera: Bombycidae), ansbis mellifera(Hymenoptera: Apidae). For details on
cDNA library construction, contig assemblies, orthologtetmination, and alignment protocols, see
methods in Sharanowskt al. (2010).

EST alignments for 76 genes meeting the orthology crite(@raranowskét al., 2010) were filtered
to include at least four hymenopteran taxa. Additionallylycalignments with less than 25% average
difference at non-synonymous sites across all hymenapevare utilized. Although this is an arbitrary
cut-off, restricting the number of non-synonymous chamggsintended to aid primer design by decreas-

ing the amount of degeneracy required to achieve amplifioa@cross a broad range of taxa. The average
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numbers of non-synonymous sites for alignments were alediusing the Nei-Gojobori method (Nei &
Gojobori, 1986) in MEGA 4 (Tamurat al, 2007).

Of the 40 EST alignments meeting the above criteria, 27 wibosomal proteins (RPs). We focused
primarily on introns in ribosomal protein (RP) genes foretreasons: (i) RP genes are typically con-
served across eukaryotes; (ii) most RP genes do generdliycear in multiple copies; and (iii) there
is no evidence to suggest genetic linkage. We also designees spanning introns in 13 conserved
regulatory genes that met the above criteRACK1, SUI, Tctp, Mp20, myofilin, NIp ran, bellwether,
AntSesB, nAcRbeta, magonashi, sansfille, pr¢sable 4.1).

4.1.2 Primer design

EST andDrosophilagenomic sequences were aligned in BioEdit using ClustalWoifipsonet al.,
1994) and checked by eye. Primers were anchored in codingrexions flanking known introns iD.
melanogasterWe chose priming sites that were conserved across Hymerzogind, whenever possible,
across other insect sequences in the alignment. Startihgha priming sequence f&t. vitripennis the
only Chalcid in the set, primer degeneracy incorporatingeobed nucleotide substitutions at increasing
taxonomic distance was built in by eye to increase ampliioaguccess. We set an upper limit of 54-fold
degeneracy and attempted to choose priming sites for whlishilastitutions observed in the alignment
could be built into the degeneracy. If this was not possilvkeprioritised on degeneracy in positions near
the 3’ end. Sequences from the braconid wagestacipe$requently proved too diverged to be included
in the primer degeneracy. If possible multiple, often négtemers were designed for each locus (Table
4.1).

Standard primer characteristics (annealing temperaseaes for dimer formation, self annealing
and 3’ stability) were checked in FastPCR (Kalenetaal., 2009) and Primer3 (Untergassdtral,, 2007)

using default settings.

4.1.3 Screening amplification success

Whole genomic DNA was extracted from specimens stored in 88%nol in 50ul of extraction buffer
containing 5% Chelé®'100 resin (Bio-Rad, Hercules, CA). Primers were tested oeetlspecies of
Pteromalid parasitoids associated with oak g&lsfigngosa, M. amaenus, Caenacis lawtajl three non-
pollinating, parasitic Pteromalid figwaspSy(coscapter sp., Philotrypesis, Walkerellg) sN. vitripennis
the only chalcidoid sequence included in the EST alignmems used as a positive control. We also

tested all primers on one species from each of the remainiegdfhalcidoid families parasitising oak
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galls in the Palearcticforymus affinigTorymidae) Omyrus nitidulugOrmyridae) Eupelmus annulatus
(Eupelmidae)Baryscapus pallidageulophidae) an@urytoma brunniventrisEurytomidae) (Table 4.2).
However, these families are associated with foodwebseemin many insect herbivores (Askew, 1980).
Finally, primers were tested on six species of gall waspsij@gae) and three species of pollinating fig
wasp hosts (Aagonidae) (Table 4.2).

Polymerase chain reactions (PCR) were performed ipnl28actions using the following mix for all
primer combinations: 2.0 ml 10x Bioline PCR buffer, 2.0 uvb@ serum albumin (10 mg/ml), 0.8 ul
MgCI2 (50 mM), 0.16 ul dNTPs (25 mM each), 0.1 ul Taq PolymergsU/ul, Bioline), 0.2 ul of each
primer (20 uM) and 1 ul DNA template.

A generic touchdown PCR protocol was used for all loci: 94 6€3 min, followed by cycles of 94
°Cfor 15 s, an annealing step of 40 s, 72 °C for 3 min and a fiegl at 72 °C for 10 min. The annealing
temperature was varied as follows: The first 10 cycles dseikin 1 °C increments from 65 °C to 55 °C,

followed by 30 cycles each with an annealing step at 55 °C.

4.1.4 Divergence, diversity and information content

To assess the utility of the new EPIC loci for intraspecificdé#s we obtained sequences for two Ptero-
malid taxa C. fungosandM. amaenuy In each species three male individuals, one each frorareifit
Pleistocene refugium in southern Europe (lberia, the Balkand Asia Minor), were sequenced for all
loci that amplified in the initial screen. Sequences were alstained from a single male &. lauta
a species closely related @ fungosa PCR products were sequenced directly in both directiomgus
ABI BigDye chemistry (Perkin ElImer Biosystems, Waltham, Mén ABI 3700 and 3730 sequencers
in the GenePool Edinburgh. Chromatograms were checkeddogrmy complimentary reads aligned us-
ing Sequencher v. 4.8C. fungosa, M. amaenwndC. lautasequences were aligned in Clustalw and
checked by eye. Exonic regions were assigned by comparighrDwmelanogasteprotein sequences
and checked for an open reading frame. To allow comparistimavfrequently used mitochondrial lo-
cus, we sequenced a 689 bp region of the cytochromgbunit 1 geneGoxl) for the above samples
using primers COl_pF2 and COIl_2413d, a modified version 612441 (Simoret al, 1994) (Table
4.1). These primers amplify a fragment largely overlappiregL CO/HCO region o€ox1(Folmeret al,,
1994), but excluding a poly-T repeat at its 5’ end presenthal€idoidea which causes slippage during
PCR resulting in uninterpretable sequence.

The final dataset fo€. fungoseand M. amaenugonsisted of alignments for all loci that amplified
in those species. For each locus average pairwise divérsityn Europe (both inC. fungosaand M.

amaenupand divergenceX) betweerC. fungosand the closely related outgro@plautawas computed
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Table 4.1: Primer sequence, CG identifier, annealing teatper (C) for 26 nuclear loci which amplified a product in at least ohéhe focal taxa
(Table 4.2) andCox1 Degeneracy codes used are standard: N=A, G,CorT;R=Aor&COrT,M=AorC;S=EGorC;W=AorT;K=G
orT; V=NotT,D=NotC, H=NotG, B=NotA.

Locus primer CG Forw (o Rev (o
Ant_sesB 40Fb/Rb 16944 GCCAAYGTYATCMGDTACTTC 61.8 TACKEBTCRAAKGGATAGGA 61.7
bellwether  33Fb/Rb 3612 GAAGAGGAAGTWYGARTTRGGWC 57.5 TRTACCAYTGBCTGAADGG 57.9
magonashi  38F/R 9401 CTACGTCGGHCACAARGGHAART 61.5 TCTTEZDAGRTARTAAAARCATC 60.2
nAcRbeta 39F/R 11348 GAGACBGACATCACBTTCTACAT 59.5 AGNAGAYTTGGCRATGAGY 61.8
nAcRbeta 39Fb/Rb 11348 ATYATGAARTCRAACGTHTGG 60.1 ATGTABVGTGATGTCVGTCTC 59.5
NIp 31F/R 7917 CTYTTRGGWCCAGARGCYAA 59.4 GTDSCAAGDAGATKGSTCC 60.5
pros25 26F/R 5266 GAATATGCYTTRGCHGCNGT 60.2 GTAKGCDCCVBG&GATCAC 62.6
RACK1 18Fb/Rb 7111 GATGGGTYACBCAAATYG 61.9 ATACCTTGACDAUCGRTCC 60
ran 32F/R 1404 TAYATTCARGGMCARTGYGC 61.2 GGRTCCATTGTRATTTGG 60.4
RpL10ab 19F/R 7283 TAYGATCCVCARAAGGACAARC 62.5 AGGAGHCGHGRAATTTRCCR 61.5
RpL12 10F/R 7939 GTGTACAGRCCDAMRATCGT 60 AADCCAGTTGGNARIRTG 61
RpL13a 6F/R 1475 ATGACKGGCTTCAGYRAWAAG 57.1 GACATRAACTIDCTTGTTCCTG 59.4
RpL15 2F/IR 17420 GGGTGCNACTTAYGGHAARC 62.8 GCGMAGYTCACGRYTTDTG 62.8
RpL27a 28Fb/R 15442 CAAYTTYGACAARTACCATCCWG 58.7 CCYTTIGYARRAGTTTGTA 60
RpL37 27F/IR 9091 GAARGGTACNTCVAGYTTTGG 60.1 GACCRGTDCCRRBGTCTTCCT 59.5
RpL37a 36F/R 5827 CGHACVAAGAAGGTTGGAATCAC 59.9 GTYCTYTTGAYCGYTTGC 62.1
RpL39 16F/R 3997 ATGTCGGCHCAYAARACKTT 61.8 CTTBARCTTGGTKYCTCCA 58.6
RpS12 23F/R 11271 ATGGATGTSAAYACMGCMCTS 58.6 AGGGGTHTCEACCRAART 60
RpS15 20Fb/R 8332 GAYCARCTYCTDGAYATGC 61.9 CKACCRTGYTTWAGGYTT 62.5
RpS17 34Fb/Rb 3922 CGCTATYATTCCWASCAARC 60.9 CAATRATRTCRYTCCARAGC 61.9
RpS18 22F/IR 8900 GTYATGTTYGCYATGACNGC 60.1 KRAGRCCCCAGRAGWCG 62.3
RpS23 21F/R 8415 ACVMGVTGGAAGGCYAATCC 58.2 ATGACCYTTACGECRAATCC 58.9
RpS4 11F/R 11276 BAARGCATGGATGTTRGACA 629 GGTCWGGRTADRGIRGT 59.6
RpS8 5F/R 7808 GAAGAGGAAGTWYGARTTRGGWC 575 TTCRTACCAYBETGAADGG 57.9
sansfille 35F/R 4528 CHWTVAAAATGCGTGGWCAAG 60.8 CDGGGAAYGATTRAACARCAT 61.2
SuUl 24F/R 17737 CCTTTGCWGATGCAATCAAG 59.4 CCGTGVACCTTSAXGGDTC 60.5
Tctp 25F/R 4800 AYGAGATGTTCTCNGAYAC 60.1 GATRTCCATDGATTMCCRGT 58.8

Cox1 pF2/2413d n/a ACCIGTDATRATRGGDGGITTYGGDAA GCTADYGEBTAAAAATYTTRATWCCD GT  n/a




using DNAsp (Rozas and Rozas 1995) (Table 4.3Cfdiungosandividuals E1, C1, and W1 were used).
These summaries were calculated separately for each locufaintron (K, 7;,) and synonymous
exon (K, ms) sites.

When choosing loci for intraspecific studies it is cruciabimid ascertainment bias. Selecting loci
based on their diversity in the focal taxon potentially aanfds coalescence variance with differences in
mutation rate between loci. Thus, to obtain a measure ofriméition content based on divergence, we
computed the number of divergent sites betw€erfungosaand C. lautaat each locus normalized by
the mean across loci. BothellwetherandSUI failed to amplify inC. lauta, leaving 18 loci for which

divergence and information content could be computed.

4.2 Results

4.2.1 Screening amplification success

Of the 40 loci tested, 32 successfully amplified a produdtégositive control\. vitripennisand of these
26 yielded a PCR product in at least one other chalcid taxahléT4.2). Amplification success differed
markedly both between different Pteromalid taxa and betw&alcidoid families. For example, fewer
loci amplified in the fig-associated Pteromalids compareH thie species attacking oak galls. Similarly,
only 13 loci amplified inE. annulatugEupelmidae), whereas amplification succesE.ifrunniventris
(Eurytomidae) (24 loci) an@rmyrus nitidulugOrmyridae) (22 loci) was comparable to that in the three
oak gall associated Pteromalid species. Only nine kiat$esB, bellwether, RACK1, ran, RpL15, RpL37,
RpL37a, RpS23, Rppdross-amplified a product in all six Chalcidoid familiesasiated with oak galls.
Amplification success was considerably lower both in theifigae and Aagonidae compared to any
of the Chalcidoid parasitoids, which is expected given thatformer are taxonomically much more
distantly related td&Nasonia(Table 4.2).

Product length varied widely both between Chalcidoid sgeevith some combinations of primer
pairs and taxa yielding PCR products in excess of 1000 bplotog for direct sequencing (Table 4.2).
Similarly, some fragmentsAhtSesBand SUI) were consistently larger in Cynipids than in Chalcids.
Whether this variation is random or reflects genome widestffices in intron length or indeed genome
size itself between hymenopteran taxa remains to be expldiee fact that the majority of the loci which
amplified inT. affiniswere longer in this species and in other Torymid speciesgimotvn) than in any of

the other 5 Chalcidoids, does suggest some general gendateadifference between chalcid families.
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Table 4.2: Amplification success and product sizes of préndeveloped from hymenopteran EST libraries tested on Hgptenan taxa from two

natural communities. Locus names are from FLYBASE accgrtbrtheD. melanogastegenomic region used in the alignment for primer design.

Only primer pairs that amplified in at least one of the testigseare shown. Primer pairs that failed to amplified a PCRIyebin a particular

species are indicated by 0; combinations resulting in iplelthands by D. Sequencing was only attempted in Chalciéadaociated with oak galls
(first three species in Ptermoalidae and second columm)elékxact product size could not be determined due to messgseg at the ends, only
the length of the readable sequence is shown (in bold). Rtaizes in the other taxa were estimated on Agarose gels.

Pteromalidae | Chalcidoidae Cynipidae | Aaggnidae
. _ S E
=1 2 E Q 0 B 3
o 5 E g @ § £ & o g 2
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g S 2 Q s} X S 2 s 5 = s) = = S o I >
o = = - ) P =% e ° s ko] S 0 o
. o} [ [} > = o = I S =1 = c 2 c © D 2 @ o} ©
LOCUS primers | O 8] = ) o = | ) S w o < a < o a a [o &) o
AntSesB 40Fb/Rb| 728 612 592 700 700 750 | 622 639 1257 910 754 850 1500 1500 1500 O 750| O 0 850
bellwether 33Fb/Rb| 576 D 595 600 D D 444 D D 593 D D 0 0 D 0 D D
magonashi  38F/R 350 - - - - - 309 0 0 0 1500 - - - - - - - - -
nAcRbeta 39F/R 289 279 279 350 350 350| 546 0 0 283 618 | O 0 0 0 0 0 1500 O 350
nAcRbeta 39Fb/Rb| 488 485 - 600 600 600 | 502 800 0 0 944 | 0 0 0 0 0 0 0 1100 850
Nlp 31F/R 0 - - - - - 0 499 544 372 400 | - - - - - - - - -
pros25 26F/R 470 472 0 500 500 550 | 658 445 0 0 500 | O 1000 D 0 0 0 0 0 0
Rack1 18Fb/Rb| 862 566 825 850 0 850 1086 882 907 950 892 0 0 0 900 0 0 0 0
Ran 32F/R 499 499 469 600 600 600| 485 491 546 515 573 | 550 1000 500 900 600 1000 600 450 650
RpL10ab 19F/R 968 1028 987 1000 1000 1000| 473 972 1025 O 930 1000 1000 O 1000 1000 1000 O 0 0
RpL12 10F/R D - 0 0 0 0 404 D 0 0 D 750 0 0 0 0 0 0 0 0
RpL13a 6F/R 864 933 0 0 0 0 962 0 0 0 0 0 0 0 0 0 0 0 0 0
RpL15 2Fb/Rb | 652 628 642 700 700 0 527 488 511 525 488 | 0 700 700 0 700 850 | 700 0 0
RpL27a 28Fb/R | 609 554 583 800 650 700| 603 588 0 0 593 | O 0 0 1500 800 800 | O 0 0
RpL37 27F/IR 903 952 628 650 650 650 | D 613 942 546 504 350 400 400 400 D 600 | 900 650 600
RpL37a 36F/R 220 222 232 250 250 250 211 226 223 222 250 | 750 0 0 0 0 0 250 250 250
RpL39 16F/R 585 564 592 0 0 0 663 589 685 0 625 | 0 600 0 0 0 0 600 0 0
RpS12 23F/R 800 - - - - - 0 800 0 0 765 | - - - - - - - - -
RpS15 20Fb/R | 761 765 800 O 650 800 | 514 0 0 0 0 0 0 0 0 650 800 | O 0 0
RpS17 34Fb/Rb| 861 900 0 900 600 800 | 616 0 0 0 0 0 1000 O 1500 O 650 | O 0 0
RpS18 22F/IR 819 843 836 900 1000 1000 1000 1000 O 1500 O 900 D 1000 1000 1000 1500 1500 O 0
RpS23 21F/R 268 268 268 300 300 300| 264 260 303 263 229 | 350 0 D 0 0 300 | 300 300 300
RpS4 11F/R 782 769 761 800 800 800| 806 764 817 844 D 800 0 0 0 0 0 0 800 0
RpS8 5F/R 446 454 460 550 550 0 492 472 477 466 0 700 700 0 700 800 0 550 0 0
sansfille 35F/R 447 450 434 0 0 0 0 0 0 0 472 0 0 0 0 0 0 0 0 0
Sul 24F/R 887 O 831 O 900 0 825 797 884 0 821 | 1500 1500 O 1500 1500 1500 0 900 900
Tctp 25F/R 494 498 462 O 0 0 611 507 0 0 500 | 1000 O 0 0 0 0 0 0 0
Total(*) 26 22 19 17 18 16 | 24 21 14 13 22 13 12 7 9 10 12 | 9 8 9
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Table 4.3: Sampling and rearing information of individuadgd for sequencing.

species code sex host country  locality col. date oak host
out Caenacis lauta Clau32 m  Cynips korsakovi Iran Azerbaijan, Ardabil For.  7/10/04 Q. macranthera
Cl Cecidostibafungosa Cfun0070 m Callirhytis glandium Hungary Szentkut 3/5/02 Q. cerris
Cc2 Cfun0071 m Andric caputmedusae Hungary Matrafured 30/6/02 Q. pubescens
C3 Cfun0079 f  Andricus burgundus Hungary Godollo 8/7/01 Q. cerris
w1 Cfun0139 m Andricus quercustozae Spain vila, Puerto de Villatoro  2/3/06 Q. pyrenaica
W2 Cfun0140 f  Andricus quercustozae Spain vila, Puerto de Villatoro  2/3/06 Q. pyrenaica
W3 Cfun0144 f  Andricus quercustozae Spain vila, Puerto de Villatoro  2/3/06 Q. pyrenaica
E1l Cfun0088 m Andricus lucidus Iran Lorestan, Piran Shahr Oct-04 Q. infectoria
E2 Cfun3510 m Andricus polycerus Iran Kordestan, Marivan 2005 Q. infectoria
E3 Cfun3511 m Andricus insana Iran Kordestan, Marivan 2005 Q. infectoria
Mesopolobus amaenusMama50 m  Pseudoneuroterus macropterudran Mazandaran Oct-04 Q. castaneifolii
Mama51 m Andricus grossulariae Hungary Vitnyéd 10/05/08 C. cerris
Mama55 m  Andricus burgundus Spain Caldes de Malavella 716 Q. suber




4.2.2 Divergence, diversity and information content

Taken across loci, mean per site divergence betwzdangosaandC. lautawas higher at synonymous
exon sites [ =12.4%) than in intronsK;,,= 6.7%). In contrast, average per site diversity was simi-
lar between synonymous sites, (= 0.9%, 1.1%) and intronst{,, = 1.0%, 1.0%) inC. fungosaandM.
amaenusespectively (Table 4.4). Loci differed considerably ieitroverall information content (Table
4.4). InC. fungosahe most informative loci includ&pL37, nAcRbeteaRpL13a, RpS15Perhaps not
surprisingly, those also tended to have rather high diseirsithe introns fr;,,), which in some cases was
comparable to synonymous site diversityGox1l Conversely, the two loci with the lowest diversity in
eitherC. fungosa(RpL39, RpL37por M. amaenugRpS23andRpS§ had low or average information
content (Table 4.4). Generally, averalje was about three times lower for nuclear loci th@ox1and
levels of intraspecific diversity both i@. fungosaandM. amaenusvere much lower than synonymous
diversity in Cox1 Levels of diversity observed at individual loci differedrsiderably betwee@. fun-
gosaand M. amaenudriplets, despite the fact that the mean values were sirfalathe two species.
For exampleRpL39 which is monomorphic irC. fungosahad above average diversity (= 7) in M.
amaenus&nd — on a similar spatial scale — has proven to be informatitke TorymidMegastigmus
stigmatizangNichollset al., 2010). This is expected because genetic diversity at &pkat locus is not

only determined by its mutation rate but also has a largénhsaistacc component, due to genetic drift.

4.3 Discussion

We have shown that EPIC markers can be developed relatiesijyefor non-model organisms using
publicly available EST and genomic data. Our strategy airtg® large number of degenerate primers on
a set of focal taxa avoids time-consuming, species-spd@iR optimization, and efficiently identified
a set of loci of likely value across six families of chalcidgarasitoids and beyond. We emphasize
that numbers of loci available in candidate species withgsé families could probably be increased
by further taxon-specific PCR optimization or an additioclaning step. Although nuclear mutation
rates are on average lower than those of mitochondria, tidgpeevious studies (Lest al., 2009) show
that, because of coalescent and mutational variance, the daes not necessarily hold for levels of
diversity observed at individual loci. We also do not find thramatic difference between mitochondrial
and nuclear divergence which has been reportetl&moniasister species and attributed\éolbachia
induced sweeps (Oliveirat al., 2008). Thus, despite their lower per site mutation ratdfipie EPIC loci
such as the ones developed here, if analyzed jointly, sHmufer more informative about within-species

phylogeographic history than mitochondrial data (see &h&).
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Table 4.4: Basic properties of nuclear loci@ fungoseand M. amaenus Length values exclude indels in ti@& fungosa alignmentDiversity
across three major Pleistocene refugia and divergencesba@® fungosaandC. lautawere calculated for intronsrf,,, K;,,) and synonymous exon
sites (s, K) separately. Also shown are the number of introns (#In) i@ number of polymorphic sitess] in the single triplets and, fo€.
fungosdC. lauta, the relative mutation rate and information content (Info). Loci for which larger samepiforC. fungosawvere obtained for the
Bayesian analyses presented in chapter 5 are shown in bold.

| Length | C.fungosa/C.lauta | Diversity (C. fungosg | Diversity (M. amaenujs

LOCUS primers | #in  Total Intron| K, K; L Info | =, Tin S | 7s Tin S
AntSesB 40fb, 40rb 2 728 156 0.076 0.148 0.984 0.9810.000 0.008 2 0.000 0.024 7
bellwether 33fb, 33rb 1 550 216 n/a n/a n/a n/a | 0.000 0.003 2 n/a n/a n/a
nAcRbeta-64B 39f, 39r, 39fb, 39rb| 2 728 113 0.371 0.227 1.703 2.0390.004 0.000 1 0.000 0.044 10
Rack1 18fb, 18rb 2 560 304 0.087 0.052 0.627 0.5780.000 0.007 3 0.021 0.010 10
Ran 32f, 32r 1 496 202 0.090 0.091 0.802 0.6590.011 0.003 2 0.000 0.009 3
RpL10ab 19f, 19r 2 955 807 0.072 0.043 0.641 1.0010.000 0.003 3 0.044 0.006 9
RpL13a o6f, 6r 2 851 720 0.000 0.097 1.414 1.9750.000 0.019 21 n/a n/a n/a
RpL15 2fb, 2rb 2 617 412 0.233 0.056 1.047 1.0650.000 0.002 2 0.000 0.011 7
RpL27a 28fb, 28r 2 549 338 0.155 0.101 1.309 1.0780.017 0.030 16 0.000 0.007 4
RpL37 27f, 27r 1 869 788 0.017 0.123 1.882 2.6810.033 0.020 24 0.000 0.016 13
RpL37a 36f, 36r 1 220 91 0.408 0.069 1.203 0.4360.000 0.000 O 0.000 0.013 2
RpL39 16f, 16r 1 465 444 0.000 0.086 1.386 1.0550.000 0.000 O 0.000 0.009 7
RpS15 20fb, 20rb 1 756 475 0.073 0.091 1.076 1.3080.058 0.035 30 n/a n/a n/a
RpS18 22f, 22r 2 813 562 0.072 0.052 0.757 1.0110.020 0.005 6 n/a n/a n/a
RpS23 21f, 21r 1 247 79 0.119 0.127 0.926 0.4080.016 0.042 6 0.016 O 1
RpS4 11f, 11r 2 745 431 0.094 0.083 1.040 1.2900.000 0.000 1 0.000 0.008 7
RpS8 5f, 5r 1 458 242 0.060 0.034 0.447 0.3110.029 0.008 6 0.000 0.003 1
sans_fille 35f, 35r 1 446 84 0.140 0.037 0.501 0.3670.017 0.000 2 0.017 0.000 2
SuUlI 24f. 24r 1 823 636 n/a n/a n/a n/a | 0.000 0.006 6 0.000 0.006 6
Tctp 25f, 25r 2 493 148 0.134 0.088 0.826 0.67p0.000 0.014 3 0.040 0.018 8
Total |30 12232 7249 | | 136 | 97
MEAN | 611.6 362.9 | 0.139 0.073 | 0.009 0.010 6.8 | 0.011 0.010 6.1
col |n/a 698 n/a | 0.353 | 0.090 24 | 0.209 54




If patterns of divergence across loci@h fungosandC. lautaare at all representative, the most infor-
mative loci for within-species historical inferences inalitidoids are likely to includ®pL37, nAcRbeta,
RpL13a, RpS15, Rp&hdAntSesBIf, as recent power analyses suggest, between five and a thode
are sufficient to reliably infer ancestral population pagéens in divergence models (Jennings & Edwards,
2005), these EPIC loci should allow multilocus phyloge@inia analysis across a broad taxonomic range
of chalcidoid parasitoids, and in turn, facilitate comgizephylogeographic analysis of natural chalci-
doid assemblages. The observed variation in amplificaticoess between families would suggest that
it may be impossible to use a standard set of loci across ta@itthis may be desirable to avoid con-
founding true differences in species histories with lospseific effects. However, as long as enough loci
per species are sampled to capture the variance in genealtgstory and outgroup comparisons are
used to account for heterogeneity in mutation rates acomssthere is na priori reason against using
only partially overlapping sets of loci in multi-speciesngparisons. Given that the primers developed
here are anchored in highly conserved coding regions arehat partially amplify across a large taxo-
nomic range, they may also prove useful as genomic tools fa&dly in the Hymenoptera and other
Insects. For example, some of the loci employed in this stedy.RpL15, RpL27a, rarhave previously

been used as markers for QTL mapping in Lepidoptera (Paplaoiget al., 2005).

An important question is to what extent introns in highly served genes evolve neutrally. Generally,
our finding of lower levels of divergence in introns compat@dynonymous sites i@. fungosas con-
sistent with previous results from genome wide studieBrosophilasuggesting that introns are under
purifying selection, which may be particularly strong irghly conserved genes (Haddwdt al., 2005;
Halligan & Keightley, 2006). Similarly, negative corrafas between intron length and divergence have
been interpreted as evidence for selective constraintsgudatory elements present in long introns (Hal-
ligan & Keightley, 2006). We tested for this . fungosaand found a negative but non-significant trend
between intron length anl;,, (r =-0.265,p = 0.189). This suggests that any correlation between intron
length and selective constraint, if presentdnfungosais likely to be weak. Thus, it may be difficult
to avoid potential biases arising from selective constsdlty selecting short introns. On the contrary,
since information content is a function of both intron lemgnd K;,,, the most informative loci in the
present set are those containing long introns (Table 4.dyveder, while selective constraints on introns
or linked exons should not lead to systematic biases in agtisrof ancestral population parameters, they
may result in lower information content than that expecteddlectively neutral regions. This has been
demonstrated previously in a study on birds (le¢@l., 2009) which found per site diversity in anony-

mous loci, presumably intergenic DNA, to exceed those iroimg. On the other hand, using EPIC loci
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with known orthology and function for phylogeographic irdace can be viewed as an improvement over
anonymous loci for which orthology and function are gergrahknown (Jennings & Edwards, 2005). In
general, with the increasing volumes of publicly availai@mome data making primer development for
non-model organisms straightforward, multilocus nuctssyuence data will surely become the standard

in studies of population history and phylogeography rathan the exception.
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Chapter 5

Quantifying the Pleistocene history of
the oak gall parasitoid Cecidostiba

fungosa using twenty intron loci

Published in slightly modified form as: Lohse,
K., Sharanowski, B., Stone, N.G. (2010).

Evolution in press

Many western palaearctic taxa have their current centrggenétic diversity to the east of Europe,
suggesting that refugial populations around the Mediteraa basin are ultimately derived from a more
eastern source (Diat al, 1996; Rokast al,, 2003; Justeet al, 2004; Michauxet al, 2004; Culling
et al, 2006; Kochet al., 2006; Challiset al,, 2007; Stonet al,, 2007). Westwards dispersal of such taxa
into southern European refugia is often thought to have wedun the early Pleistocene, if not before
(e.g. Taberleet al,, 1998; Roka®t al., 2003; Justet al,, 2004; Cullinget al, 2006; Challiset al,, 2007)
and of necessity must predate the well-documented latiidange shifts associated with the last iceage
(Taberletet al,, 1998; Hewitt, 1999) by at least one glacial cycle. Howetlee, few studies that have
attempted to estimate the age of this older longitudingletisal are largely qualitative, being based on
a small set of (primarily mitochondrial) gene trees (e.déli¢etet al,, 1998; Hewitt, 1999; Rokast al.,
2003; Justeet al,, 2004; Cullinget al,, 2006; Challiset al, 2007). It has been noted that species differ

considerably in their mitochondrial divergence betwedngia and this has been attributed to species-
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specific responses to Pleistocene climate cycles (Taketrédt 1998). However, an obvious alternative

explanation for the observed lack of interspecific tempoosigruence is that mitochondrial gene trees
are dominated by incomplete lineage sorting, the extentaélvmay be large in general and/or different
between species (Nichols, 2001).

Because polymorphism within ancestral populations mugirate before daughter populations di-
verge, branches of gene trees are necessarily longer thaa tf population trees and a naive inter-
pretation of node ages may severely overestimate popnldii@rgence (Pamilo & Nei, 1988; Maddi-
son, 1997). Similarly, gene tree topologies may be incomgtrwith the order of population divergence
(Tajima, 1983; Pamilo & Nei, 1988; Rosenberg, 2002). Siheamagnitude of both these effects depends
on the size and stability of the ancestral populations {aji1983; Maddison, 1997; Nichols, 2001), they
are likely to be exaggerated when resolving the origins aofd eelationships among - refugial popula-
tions, which are stable by their very nature (Hewitt, 199R)us, assessing the generality of an ‘Out of
the East’ pattern ideally requires replication both at thel of species and loci.

Assemblages of parasitoids associated with oak cynipits gdler unmatched replication at the
species level. In the Western Palaearctic, an estimatedsfi@fies of chalcidoid wasps are obligate
natural enemies of the inhabitants of oak cynipid galls Kast al, 2005; Hayward & Stone, 2005).
Phylogeographic studies on Western Palaearctic oak ggglsvshow their populations to be divided into
three major refugial areas: the Iberian Peninsula in theé,\@entral Europe and the Balkans in the center,
and Asia Minor and Iran in the east (Roketsal, 2001, 2003; Stonet al, 2001; Challiset al., 2007;
Stoneet al,, 2008), broadly paralleling patterns seen in oak phylogguigy (Dumolin-Lapeguet al.,
1997). In the gallwasps, allele frequency data for multiplelear markers support the conclusion that
there has been very little subsequent gene flow between tbgims (Rokagt al,, 2001; Stoneet al,,
2001; Rokat al, 2003; Challiset al,, 2007; Stoneet al,, 2008). Oak gallwasps are thought to have di-
versified in regions to the east of Europe prior to the Ple&te (Stonet al., 2009), and pre-Pleistocene
or early Pleistocene westwards range expansion acrosp&hes been suggested by patterns of genetic
variation in several widespread species (Radza., 2001, 2003; Challigt al., 2007). An obvious ques-
tion is whether gall-associated parasitoids have purqwadhosts from the east. At least two of them, the
torymidsMegastigmus stigmatizarahdM. dorsalis appear to have done so (Hayward & Stone, 2006;
Nichollset al, 2010). The challenge now is to reconstruct longitudin&deisation processes in the West-
ern Palaearctic for a broader taxonomic spread of oak gath@ated parasitoids, to assess the generality
of an ‘Out of the East’ pattern, and to determine whethergitmias dispersed over a similar timescale to
their hosts, or after a delay — so allowing their hosts a nmeasfitenemy free space’ (Hayward & Stone,

2006). One reason for caring which of these scenarios isdriat close phylogeographic concordance
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Figure 5.1: Model of successive population divergence betwmajor Palearctic refugia from East to

West: Asia Minor and Iran (E) Balkans and Central Europe (B3ria (W). With minimal sampling

of one individual per population, topological probabdgiof gene trees are determined by only 2 model
parameters, the time between population divergengas\-7cw) and the effective sizes of the ancestral

population during this timeX cw).

increases the potential for coevolution among communitybers, and such communities are inherently
sensitive to disturbance by species gain (Stone & Sunnd@&s3; Schonrogget al,, 1996a, 1998) or
loss (Lennartsson, 2002; Pauw, 2007).

Here, we use sequence data from 20 intronic loci to study isterly of refugial populations in the
pteromalid parasitoi€ecidostiba fungosa widespread species in oak gall communities (Askew, 1961,
Schénrogget al, 1996a; Baileyet al., 2009). The three-refuge phylogeographic pattern of odllvgsp
communities allows us to compare two analytical methodsazimum likelihood (ML) approach (Yang,
2002), and an analogous, Bayesian approach (Rannala & 2868). Both estimate ancestral population
parameters (population sizes and divergence times) Hifeoi patterns of polymorphism in sequence
data (rather than from gene trees inferred for each locusassume a model of divergence between three
populations (Fig. 5.1). The order of population divergeocthe topology of the population tree can be
viewed as an additional model parameter and the likelihagod®mth methods can be used to compare

statistical support for different topologies. We addréssfollowing, specific questions:

i) Do data forC. fungosasupport an ‘Out of the East’ population history, such thaigeal populations
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in the centre and west of Europe are derived from a shareagtatcpopulation in the centre which

in turn is derived from a common ancestral population furtreest (Fig. 5.1)?
i) When did refugial populations split from each other, druv large were their ancestral populations?

iii) How different are multilocus estimates of populatiowelgence times from gene divergence times

(both nuclear and mitochondrial)?

A strategy of sampling many loci from a single individual paxon has been used extensively to
study divergence between closely related species, incpéatithe Great Apes (Yang, 2002; Jennings
& Edwards, 2005; Pattersoet al, 2006). There are two reasons why such minimal sampling is of
interest. Firstly, going backwards in time, only lineagesttpersist into the ancestral species/population
contribute to estimates of ancestral population pararseteoalescent theory shows that samples taken
from the same species or population quickly coalesce dowsinall number of lineages (Griffiths, 1981;
Tavaré, 1984; Nordborg, 1998) (Fig. 5.2). This means thahédivergence is relatively recent, i.e. less
than N, generations ago, the power gained by increasing within ladipn sampling levels off relatively
rapidly. In contrast, each additional sampled locus presidn independent replicate of the coalescent
process in the ancestral population irrespective of therdence time (Wakeley, 2004b). So if the total
cost of sampling is number of loci x number of sampled indrail$, the optimal sampling scheme is
one of few individuals sequenced at a large number of loatoB8ély, minimal sampling is currently the
only sampling scheme for which a statistically optimal likeod method allowing parameter estimation
directly from site patterns exists (Yang, 2002). In corttrBayesian approaches (Rannala & Yang, 2003)
or gene tree - species tree methods (Degnan & Salter, 19¥f1dDes Rosenberg, 2009; Maddison &
Knowles, 2006; Liu & Pearl, 2007; Kubatket al, 2009) have the advantage that they can deal with
arbitrary sample sizes and numbers of populations. Howévisrcomes at the potential cost of prior
assumptions and/or difficulty in integration over topokajiuncertainty in the gene trees.

These issues are relevant in selecting an appropriate dasign in systems where there is a trade off
between sampling multiple individuals and generating datanultiple loci or species. Ability to obtain
informative population parameters from small numbersdifiiduals is likely to be particularly important
in comparative studies of communities, such as the oak gstés, in which some taxa are rare enough
that increasing sample size is not an option. It is therafisedul to ask how much information about an-
cestral population parameters over phylogeographic tales can be obtained with minimal sampling.
To investigate the influence of sample size, we comparedmmainsampling of a single individual per

population with an extended sample of three individualspgogulation. We then use theoretical expec-
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Figure 5.2: The expected mean number of lineages survivdagescence into an ancestral population
(Tavaré, 1984, equation 5.5) plotted against divergemee (i) in coalescence unit8. generations)
for 4 different sample sizes (from top to bottom, n = 20, 1@®)5Since only surviving lineages contribute
to the estimation of ancestral parameters and their nundaedses rapidly, the expected gain in power
from increasing sample size is limited even if divergenceelatively recent (T < 0.5). The solid lines
show the divergence time estimates (scaled by twice the mmEaopulation sizesVg, Nc and Ny
obtained forC. fungosan this study (priors a).

tations for the number of surviving lineages given the eated divergence history (Fig. 5.2) to consider

the likely gain in power for larger sample sizes in our Disios.

5.1 Methods

5.1.1 Choice of loci

We obtained sequences for 20 newly developed intronic ¢t f fungosand the closely related species
Caenacis lautawhich was used as an outgroup in some analyses. Thesedhaié@d twelve ribosomal
protein genesRpL10ab, RpL13a, RpL15, RpL27a, RpL37, RpL37a, RpL39,RRPE18, RpS23, RpS4,
RpS$§ and eight regulatory geneAiftSesB, bellwether, nAcRbeta-64B, Rackl, Ran, sanSfile,Tctp
(Table 4.1, 4.4), all of which are thought to be single copyagewith no known paralogs in insects. Primer
development and testing is described in detail in chaptiliodor little polymorphism at a particular locus
may arise either as a result of a low mutation rate (so limisignal), or a recent coalescent event (and
so important to demographic inference), or both. Excludiangthat are invariant irC. fungosaesults

in an upward bias in estimates of population divergence.tiffeeavoid such bias, we used all nuclear

loci available forC. fungosaTable 4.4) and tested whether accounting for differencenutation rate
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between loci influenced our estimates. To allow comparidanformation content in the nuclear loci
with a frequently used mitochondrial locus, we sequence®Babp region of the cytochrontesubunit 1

gene CoxJ) using primers COI_pF2 and COI_2413d (Table 4.1).

5.1.2 Molecular methods

Whole genomic DNA was extracted from specimens stored in 88%nol in 50ul of extraction buffer
containing 5% Chele®'100 resin (Bio-Rad, Hercules, CA). To allow for direct seagiag of PCR
products without the need to discriminate between hapéstyp heterozygotes, we used males, which
are haploid in Hymenoptera, whenever possible. The exaeptiere three female. fungosafor which
haplotypes were distinguished by cloning of PCR productsexessary (see below). PCR mixes and
conditions used were as described in chapter 4.

All PCR products showing single amplified bands were segeebulirectly in both directions using
ABI BigDye chemistry (Perkin EImer Biosystems, Waltham, Mz ABI 3700 and 3730 sequencers in
the GenePool Edinburgh. Chromatograms were checked bynelyecmplimentary reads aligned using
Sequencher v. 4.8.

For five loci RpS4, RpL27a, RpL37, RpL15b, nAcRpstjuences from female individuals ©f
fungosacontained putative heterozygous sites or were not readhigleo indels. These PCR products
were cloned using a mini-Prep kit (Qiagen, Valencia, CAyeFelones were sequenced per locus and
individual, one of which was chosen at random for subseqeeaiescent analyses. In one case (sample
C3, locusRpS4 none of the sequenced clones matched the expected prdthikesample was excluded

from the analysis.

5.1.3 Model of population divergence and population samptig strategies

We consider a simple model of divergence between threeipaitafugial populations of. fungosaAsia
Minor and Iran (east, E), Balkans and Central Europe (ce@feand Iberia (west, W).This is analogous
to a model of divergence between three species (Takahala 1995; Yang, 2002) that has been used to
estimate divergence times and ancestral population siZéssiat Apes (Rannala & Yang, 2003; Patterson
et al,, 2006), fruit flies (Villablancaet al., 1998; Liet al,, 1999), birds (Jennings & Edwards, 2005) and
plants (Zhouet al, 2007). The model makes the standard population genettsrgions of random
mating within each population, fixed population sizes betwdivergence events, and no migration after
divergence. The first and last assumptions at least are gegddny multilocus allele frequency data for

the gallwasp hosts in this system (Stone & Sunnucks, 1998a&aid al., 2003; Stonet al., 2008).
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Following recent studies on Hominids and model organisrakdiateet al., 1995; Liet al,, 1999;
Chen & Li, 2001; Rannala & Yang, 2003; Jennings & Edwards,32@®attersoret al, 2006), we ini-
tially adopted a sampling scheme that maximises the numbleicbavailable by using only a single
haploid male from each of the three refugial populatiortetisabove (Table 4.1). To examine the impact
of increased sampling within populations, we generatedxéended dataset, comprising three haploid
sequences per population for 13 loci (hames shown in boldaleT4.4) and a single sequence per
population for the remaining seven loci as before. Impattsidher increases in sample size will be
considered based on the theoretical expectation of the auailsurviving lineages (Fig. 5.2).

We used ML (Yang, 2002) and Bayesian approaches (Rannalang, 2903) (described below) to

i) test whether the most likely order of population divergeiis compatible with an ‘Out of the East’

scenario and

i) estimate divergence times and ancestral populati@ssinder this scenario using the single individ-

ual per population sampling.

To investigate the impact of sample size on parameter estim@ayesian analyses were repeated using

the extended dataset as defined above.

5.1.4 Alignment and mutation rate

C. fungosandC. lautasequences were aligned in ClustalW and checked by eye (Gkabaession nos.
HM208872-HM209026). Exonic regions were assigned by caispa with D. melanogasteprotein
sequences and checked for an open reading frame. Indeks aigimment were treated as missing data.

In the ML and Bayesian analyses all model parameters aredstgl the per site mutation ratg,
Conversion of the scaled time between divergence evehiistp real timest), and of the scaled mutation
rate @) into effective population sizes\(.), therefore requires an estimateoéind its incorporation into
the relationshipsy = 7 andf = 4N, ug, whereg is the average generation time in years. Note that
for haplodiploidsN nq = (9NfNn)/(2N¢ + N,,), whereN; and N,,, are the number of males and
females respectively in a randomly mating population. Assig equal sex ratio and variance in fitness
between sexesy, 4 is 0.75N,_q (Hedrick & Parker, 2003).

To calculate a mean estimateyofor our loci we first estimated a synonymous genome-wide tiosta
rate for the closely related pteromalid wasp geNasoniausing a divergence time of 0.4 MYA between
N. giraulti andN. longicornis(Campbellet al., 1993; Oliveiraet al., 2008; Raychoudhurgt al., 2009)

and a nuclear genome-wide distance at synonymous gitgsof 0.011 between these species (Oliveira

73



et al, 2008). Withy, = K, /2t these values givé.375 x 10~® b/yr. TheNasoniadivergence time was
derived by applying estimates of bacterial silent sitessstuliion rates (Ochman & Wilson, 1987) to
Wolbachiasymbionts infecting the twblasoniaspecies(Raychoudhueyf al., 2009). Although such esti-
mates may have a substantial error @tal., 2005; Pulquério & Nicholls, 2007), it should be noted that
the resulting nuclear substitution rate féasoniais roughly similar not only to the few other molecular
clock calibrations that exist for insects, elgl1 x 10~% b/yr for Hawaiian Drosophilids (calibrated from
island ages (Tamuret al., 2004)), but also agrees with rate estimates derived frotation accumulation
experiments by order of magnitude (Keightletyal,, 2009).

To apply theNasoniamutation rate to our intron-rich (and so partially non-cag)i sequences, we
scaled it by the ratio of the observed average divergeneedesiC. fungosaandC. lautaat synonymous
sites, K, over the average divergence across all skgs,,;. This yields a factor of 0.478, so the total
average substitution rate for our locijs= 1.375 x 10~% x 0.478 = 6.27 x 10~° b/yr. Note that
since this is an average across all sites, it is lower thasubestitution rate for synonymous coding sites.
This calculation incorporates any mutational constraintgitrons and coding sites @. fungosawithout
makinga priori assumptions about intron evolution. We estimated a r@ativtation rate for each locus
as the observeli 1,; at each locus over the averafjg-,;,; (Chen & Li, 2001; Yang, 2002; Jennings &
Edwards, 2005), shown in Table 4.4.

To calculate ancestral effective population sizes we assgiuam average generation timegf 0.5
years forNasoniaandC. fungosa This is reasonable fa€. fungosawhich attacks both sexual spring
galls and asexual autumn galls (Askew, 1961; Schonregge, 1995, 1996a) (as synonyris adana
andC. hilaris), and for temperate populationsigasonia For comparison with mitochondrial node ages
we calculated a mutation rate f@ox1using the Jukes-Cantor corrected distance betiegiraulti and
N. longicornisat this locus and a divergence time of 0.4 MYA as before. Thisg22.3% (Oliveira
et al, 2008) divergence per site and per million years. We contptinis locally calibrated clock with
estimates obtained in previous studies using the commaslyraed arthropod mitochondrial clock of
2.3 % per site and per million years (Brower, 1994). Despitedbvious shortcomings of the ‘Brower
clock’, comparison of relative node ages in this way is vadong as the same calibration is used across

taxa, and a molecular clock assumption is tested and swgzpioreach taxon, as here.

5.1.5 Recombination tests and gene tree reconstruction

Both phylogenetic reconstruction and the coalescent agsalgtescribed below make the crucial assump-
tion of no recombination within loci. We determined the minim number of recombination events

using a four-gamete test in DNAsp (Rozas & Rozas, 1995) ofatigest alignment of each locus. Three
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loci (RpS4, RpS18, RpL1Showed evidence for recombination and were trimmed to dhgebkt non-
recombining block (Galtieet al., 2000; Jennings & Edwards, 2005). Alignments for these Vosie
shortened by 117, 16 and 132 bases respectively as a result.

Although both the ML and Bayesian approaches describedvgde site patterns directly and do not
rely on estimated gene trees, we reconstructed trees talizisihe data and to test the molecular clock
hypothesis which is implicit in both approaches. ML treeseveconstructed for each locus in PAUP*
(Swofford, 2001). For single individual alignments (tgf) this was done using exact searches, while
for the three individual per population alignments branod dound searches were used. Loci varied
considerably in relative intron length and hence in basepmsition. We therefore assumed a single
substitution rate but unequal base frequencies (Felden$&81). To test the support for internal nodes
in each triplet gene tree, 1000 bootstrap replicates wetfenpeed taking a bootstrap value of 70% to
indicate strong nodal support (Hillis & Bull, 1993). We coampd rooting with a strict molecular clock to
rooting withC. lautafor the triplet gene trees (Jennings & Edwards, 2005). Tthérrtest the validity of
the molecular clock assumption, we performed Tajima’s grele of freedom test on each triplet (Tajima,
1993; Jennings & Edwards, 2005; Tamataal, 2007). This nonparametric test is designed for triplet
samples given a known species topology and is simpler and powerful than similar model-based tests
(Tajima, 1993; Nei & Kumar, 2000; Jennings & Edwards, 2005).

5.1.6 Maximum Likelihood analysis

For minimal sampling, only four parameters in the threetpagion divergence model matter: the two di-
vergence timescy andrgcw and the sizes of the two ancestral populatidigy and N g o (Fig. 5.1)
and an exact likelihood approach to inference is possitite. frogram Ne3sML numerically maximises
the likelihood for a given population/species topologyrfya2002). By default the method assumes an
infinite sites mutation model and a molecular clock. Givanlével of polymorphism observed @ fun-
gosa(Table 4.4), this simple model of sequence evolution seqpeo@riate. For example, if diversity at
silent sites (synonymous exon sites and introns) is 0.@i¢®4), the chance of a back mutatior s

per site. Since we are analysing slightly fewer thaf silent sites in total, we expect to see at most a
single backmutation in the entire dataset and can safetyréggmore complicated mutation models.

The likelihood approach of Yang 2002 differs crucially franethods which estimate a species tree
conditional on a set of reconstructed gene trees(Degnanli®rS&a995; Degnan & Rosenberg, 2009;
Maddison & Knowles, 2006; Carstens & Knowles, 2007a; Liu &afe2007; Kubatkeet al,, 2009) in
that it uses the site information directly. The method indégs over all possible gene tree topologies

and branch lengths at each locus and computes the jointkelihibod for a given population history
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(topology and parameter estimates) as the sum over thelelihibods of individual loci (Yang, 2002;
Rannala & Yang, 2003). The advantage of this is that in cehtagene tree species tree approaches
(Liu & Pearl, 2007; Degnan & Rosenberg, 2009; Kuba#tal., 2009), information from unresolved
or poorly resolved loci is incorporated automatically. S8 particularly important in recently diverged
populations. For example, a monomorphic locus resultioghfa recent coalescence event would be
excluded from analyses conditional on gene tree recorigiruas uninformative, resulting in upwardly
biased estimates of divergence time.

We first compared the likelihood of all three possible popatatree topologies. Although assessing
the statistical significance of non-nested models is diffiowa likelihood setting, models may be ranked
by their likelihood (Carstenst al, 2009). Under the ‘Out of the East’ scenario, central andevagop-
ulations are derived from a shared ancestral populatiomarcéntre, which in turn split from a common
ancestral population in the east, i.e. the population tpelbgy is (E, (C, W)) (Fig. 5.1). The two alter-
native topologies are (W, (C, E)), which corresponds to ant ‘6f the West’ scenario, and (C, (E, W),
which is difficult to interpret in the geographic context@f fungosgpopulations, because it is unclear
where the two ancestral populations would be located.

ML analyses under the most likely population history werefqrened for two different mutational
models. The simplest model assumes a single mutation redesaall loci. We reran this analysis using
the relative rates calculated for each locus as describagedable 4.4), thereby accounting for possible

rate heterogeneity (Table 5.2).

5.1.7 Bayesian estimation of divergence times and ancestgopulation sizes

MCMCcoal (Rannala & Yang, 2003) is the Bayesian equivaldérihe ML approach described above.
The program uses Markov chain Monte-Carlo sampling (MCMO3gtimate posterior probabilities for
all model parameters conditional on prior distributiorignultiple individuals per population are sampled
the three population sizes between the present and the ewasttrdivergence event (i.8.g, Nc, Nw)
(Fig. 5.1) are modelled as additional parameters. Notettieaparameterization in MCMCcoal differs
slightly from Ne3sML, as the former uses divergence timésarethan internode intervals.

In a Bayesian framework support for alternative but nortegesodels can be compared using Bayes
factors (Kass & Raftery, 1995). Natural logarithms (In) bé tharmonic mean of sampled likelihoods
(HML) were used to estimate the marginal likelihood of eacpydation tree topology (using prior means
in analysisa described below) and to test support for the ‘Out of the Essthario. Following Kass
and Raftery 1995, values of twice the difference in InHM\BHML) of 2-6, 6-10 and >10 represent

respectively positive, strong and very strong supportierrnodel with higher marginal likelihood.
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Since in the case dE. fungosave have no prior knowledge of the model parameters, we used ex
ponentially distributed priors (shape parametet 1) for all parameters (Jennings & Edwards, 2005).
To check how sensitive posterior estimates are to prioingsttall analyses were performed twice using
different prior means, by adjusting the scale parameter of the gamma distribution (Table 3ii3he
first analysis &), we set prior means to 0.150 MYA and 0.050 MYA feg,cyw and rcw respectively
(6 = 380) and 215,000 for both ancestral population sizes (520). In the second analysis)(the
prior means for all parameters were increased by an orderaghitude (i.e. changing to 38 and 152)
(Table 5.3). Although the individual parameter values at@ti@ry these two sets of priors should be
different enough to assess the robustness of the Bayegiaratsn (Jennings & Edwards, 2005). Given
that incorporating relative mutation rates did not impregémation using the ML method (see Results),
for simplicity all Bayesian analyses were performed assgraisingle mutation rate across all loci. Runs
were continued fol0° generations with a burn-in dfo®> and repeated using different random number

seeds to check for convergence.

5.2 Results

5.2.1 Gene trees

When only a single individual was sampled from each refugigdulation, phylogenetic reconstructions
for eight of the 18 polymorphic nuclear loci supported theit@f the East’ topology (E, (C, W)) (Fig.
5.3A), as did the mitochondrial locu8ox1 (Fig. 5.2D). Of the remaining loci, two supported each of
the two incongruent topologies (Fig. 5.2B, C) and six shoaedinresolved topologyRpL15, RACK1,
ran, Tctp, sansfille, SYI Clock-rooted and outgroup-rooted topologies agreedllaesolved loci, but
bootstrap support was generally weaker for outgroup rgdqfiig. 5.3). Though this is not a formal test,
the majority of resolved gene trees thus support the ‘Out@Bast’ hypothesis (Fig. 5.1). Tajima’s 1-D
test rejected a strict molecular clock for only two out of 2@il(RpS15, RpL 37 Thus the majority of
loci meet the clock assumption implicit in the ML and Bayesigproaches used here.

Increasing sample size to three individuals from each iefgpgpulation resulted in increased varia-
tion in gene tree topology (Fig. 5.4). Despite the many wlvesl nodes in some trees, figure 5.4 reveals
extensive incomplete lineage sorting betwé&zrfungosapopulations, resulting in a ‘forest’ of largely

incongruent gene trees.
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Figure 5.3: ML trees reconstructed for nuclear loci &uk1assuming a strict molecular clock. Boot-
strap proportions for the internal node are shown next tb &ae. Loci with unresolved topologies (< 50
% bootstrap support) are not shown. Eight loci have a togodaggruent with the ‘Out of the East’ hy-
pothesis (E, (C, W)) (A), two each have topology (W, (C, E)) é&d (C, (E, W)) (C). The mitochondrial
locusCoxlis also congruent with ‘Out of the East’ (D). Bootstrap suppsing rooting withC. lautais
indicated with asterisks (* > 50%, ** >70%) below each tree.
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Table 5.1: Comparison of support for alternative poputati@e topologies, using the InL of the maxi-
mum likelihood estimation (NeML3s) and the harmonic mekelihood (INnHML) in the Bayesian analy-
ses. In each case the ‘Out of the East’ topology has the hiikelghood (in bold). Values in parentheses
show the In Bayes factor (InHML) of the ‘Out of the East’ hypothesis relative to altatives. Topolo-
gies which fit significantly worse than the ‘Out of the Eastpbthesis are indicated with asterisks, using
a In Bayes factor (InBF) of 2-6 to indicate positive supp)t 6-10 to indicate strong support (**), and
>10 to indicate very strong support (***), following Kass &iRery (1995).

Out-of-the-East  Out-of-the-West

(E, (C, W) (W, (C, E)) (C, (E;wW)
NeML3s (single triplet) InL -796.94 -799.06 -799.05
MCMCcoal (single triplet) InHML(InBF) -19100.69 -1910286.25)** -19103.06 (4.73)*
MCMCcoal (extd. triplet) INHML(InBF)  -19558.24 -19563.901.324)*** -19559.00(0.76)

5.2.2 Maximum likelihood analyses

The population tree topology (E, (C, W)) had a higher liketl than either of the two alternative topolo-
gies (C, (E, W)) and (W, (C, E)), consistent with the ‘Out oétBast’ hypothesis (Table 5.1). The
maximum likelihood estimates (MLESs) of model parameteestapadly consistent between the variable
rate (18 loci) and single rate mutational models (using #mes18 loci). However, because the variable
rates model has a lower log likelihood, the simpler singte raodel was used in all subsequent analy-
ses including the Bayesian runs. This also allowed the3adliandbellwether,for which no outgroup
sequences could be obtained, to be included in the anatyisegj a total of 20 loci.

Under the ‘Out of the East’ topology (E, (C, W)), the MLE foretiolder population splitting time
between the Iranian population and the ancestor of HungadySpain,rg/cw, is estimated as 0.110
million years ago (MYA, Table 5.2). The MLE fdig,cw corresponds to an ancestral population with
an effective size of 614,000 before this first split. Howevmth the MLE for the time between the
two population splitsygicw - 7w and the population size during that tim¥ ¢,y are close to zero,
suggesting that Iberian and Hungarian populations may kplitalmost immediately after the initial

divergence from the ancestral eastern population (TaBle 5.

5.2.3 Bayesian estimation of divergence times and ancestopulation sizes
Minimal sampling

Bayes factor comparison of InHML (Table 5.1) shows that #@et' of the East’ model fits the data
significantly better then either of the alternative popolatree topologies. The contrasting sets of priors

a andb had little impact on posterior estimates of three of the fmwdel parameters (Table 5.3, Fig.
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Figure 5.4: ML trees for the extended sampling of three iiddigls (labeled 1-3) per population for
twelve nuclear loci an@ox1rooted usingC. lauta RpL37ais monomorphic and not shown. Although on
average, samples from the same population are more clasatgd than those from different populations,

there is extensive lineages sorting, resulting in a ‘fo@gpartially incongruent gene trees.
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Table 5.2: Maximum Likelihood estimates (MLES) of ancdsp@pulation sizes and population diver-
gence times for refugial populations 6f fungosaassuming a population tree topology (E, (C, W)).
CorrespondingV. andr values are shown in brackets. The simplest mutational meseimes a single
rate for all loci. In the variable rates analysis a relativetation rate was computed for each locus from
divergence tcC. lauta

single rate (20 loci) single rate (18 loci)  variable rate3 Idci)

fecw (Nerow) 0.0076979614,000) 0.007995637,000 0.008933712,000)
o (New) 0.000008 1000 0.000002{000  0.000003 {000
veow-yow (Teiow-Tow)  0.00000320.00)  0.0000010.00)  0.0000010.007)
vew (rew) 0.00069240.110  0.0007120.1149  0.0007560.12])
InL -853.486 -794.948 -796.913

5.5A, B and D). Posterior mean ages for the split betweemeagbpulations and the common ancestor of
central and western populationgcw were 0.118 MYA and 0.134 MYA in analysesandb respectively,
with values of 0.043 MYA and 0.046 MYA for the divide betweegntral and western populationg
(Table 5.3). This comparatively long interval between tle tivergence timesr&cyw - Tcw) IS in
apparent contrast to the results of the ML analysis. Howetlier95% credibility intervals for the two
divergence times overlap in both prior settirsgagndb, such that the lower confidence interval feycw

- Tcw includes zero, compatible with divergence between westarhcentral populations occurring
immediately after the initial split from the ancestral eastpopulation. Likewise, the posterior estimate
for the effective size of the population ancestral to aléthrefugial populations\g/cw) was minimally
influenced by the prior (Table 5.3, Fig. 5.5D) (551,000d@nd 585,000 fob).

In contrast, posterior distributions for the effectiveesiaf the population ancestral to central and
western populationsy ¢, differed considerably between prior settirmgandb (197,000 and 698,000)
(Table 5.3, Fig. 5.5C)V cw was also the parameter with the largest variance, the 958tbdity interval
spanning two orders of magnitude (pridss Table 5.3). Notably, with both prior settings, posterior
distributions of Ncw peak at the origin (Fig. 5.5C). This suggests that therdtls information about
Ncw in the data, with posterior distributions largely recousting the prior.

To investigate to what exten¥ ¢y and the interval between population splits/&w - Tcw) are
confounded and whether this could account for the apparifetehce in ML and Bayesian estimates of
these parameters, we carried out a third MCMCcoal run (Taldgepriorsc). When the prior mean for
Ncyw is set to a very low value (2100), the posterior distributionrcyy shifts markedly towards the
right (Fig. 5.5A) such that the two divergence events arienaséd to have happened in close succession
(0.091 and 0.089 MYA) in agreement with the ML results (Teh[2).
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Table 5.3: Prior and posterior means and 95% credibiligrivetls (Cl) for divergence times and ancestral
population sizes in Bayesian analyses using minimal sammolf a single individual per population and
assuming an ‘Out of the East’ population tree topology (E,W@g). CorrespondingV. andr values are
shown in bold below. All analyses{c) assumed exponentially distributed prioss= 1), but differed in
their prior means .The population size inbetween the twerdience eventsy ¢ is the parameter most
sensitive to prior choice and has the widest confidencevater

Parameter (o, B) Prior Mean (95% CI) Posterior Mean (95% ClI)
priors a
Oeicw (1, 380) 0.00271 (0.00011, 0.00968) 0.00691 (0.00239 8301
Ne/cw 216,000 (10,000, 772,000) 551,000 (190,000, 1,459,000)
Ocrw (1, 380) 0.00267 (0.00009, 0.00982) 0.002477 (0.00038,120)
Necw 213,000 (8,000, 783,000) 197,000 (26,000, 580,000)
YEICIW (1,1519)  0.00095 (0.00012, 0.00276) 0.00074 (0.00019139)
TEICIW 0.151 my (0.019 my, 0.440 my) 0.118 my, (0.030 my, 0.221 my)
Ycw (1,1519)  0.000329 (0.00001, 0.00119) 0.00027 (0.0000D0T.6)
TCwW 0.052 my, (0.002 my, 0.189 my) 0.043 my, (0.002 my, 0.121 my)
priors b
Oeicw (1, 38) 0.02664 (0.00083, 0.09691) 0.00734 (0.00464, 2011
Ne/cw 2,124,000, (66,000, 7,726,000) 585,000 (370,000, 894,000
Ocrw (1, 38) 0.02639 (0.00064, 0.09669) 0.00875 (0.00050, ®0pH2
New 2,104,000 (51,000, 7,709,000) 698,000 (40,000, 4,14),000
YEICIW (1, 152) 0.00980 (0.00113, 0.02918) 0.00084 (0.00023,1%6p
TEICIW 1.563(0.180, 4.653) my 0.134 (0.037, 0.249) my
Yemw (1, 152) 0.00326 (0.00008, 0.01198) 0.00029 (0.00001 034D
TCw 0.520 (0.131, 1.910) my 0.046 (0.002, 0.134) my
priors ¢
Oeicrw (1, 380) 0.00257 (0.00004, 0.00961) 0.00741 (0.00485 038
Ne/cw 205,000 (3,000, 766,000) 591,000, (387,000, 868,000)
Ocrw (1, 38000) 0.00003 (0.00001, 0.00009 0.00005 (0.0000000.8)
New 2,100 (1000, 7,000) 5,000, (1,000, 13,000)
YEICIW (1,1519)  0.00096 (0.00011, 0.00277) 0.00057 (0.0001011.0)
TEICIW 0.153 (0.017, 0.442) my 0.091 (0.018,0.177) my
Yemw (1,1519) 0.00033 (0.00001, 0.00122) 0.00056 (0.000101®8)
TCw 0.053 (0.013, 0.195) my 0.089 (0.018,0.172) my
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Table 5.4: Prior and posterior means and 95% credibiligrivals (Cl) for divergence times and ancestral
population sizes in Bayesian analyses of extended sam(®ihdpci, 13 sampled for three individuals
per population) assuming an ‘Out of the East’ populatioe tepology (E, (C, W)). All analyses (a-c)
assumed exponentially distributed priots<1), but differed in their prior means.

Parameter (o, B) Prior Mean (95% CI) Posterior Mean (95% ClI)
priors a

Oeiciw (1, 380) 0.00263 (0.00007, 0.00968) 0.00793 (0.00552 0391

Ne/ciw 210,000 (6,000, 772,000) 632,000 (440,000, 867,000)

Ociw (1, 380) 0.00260 (0.00008, 0.00963) 0.00688 (0.00113 5201

New 207,000 (7,000, 768,000) 579,000 (95,000, 1,280,000)

YEICW (1,1519) 0.00098 (0.00011, 0.00287) 0.00084 (0.00040186)

TE/ICIW 0.156 (0.018, 0.458) my 0.134 (0.064, 0.217) my

Yemw (1,1519) 0.00032 (0.00001, 0.00117) 0.00035 (0.00008035)

TC/w 0.051 (0.002, 0.187) my 0.056 (0.005, 0.136) my

O (1, 380) 0.00267 (0.00010, 0.00973) 0.00481 (0.00203 979D

Ng 213,000 (8,000, 776,000) 383,000 (162,000, 772,000)

Oc (1, 380) 0.00265 (0.00008, 0.00966) 0.00597 (0.001384mpP1

Nc 212,000 (7,000, 770,000) 476,000 (110,000, 1,116,000)

Ow (1, 380) 0.00267 (0.00008, 0.00974) 0.00226 (0.00027 815D

Ny 2113,000 (7,000, 776,000) 180,000 (22,000, 490,000)
priors b

Oeiciw (1, 38) 0.02693 (0.00082, 0.09876) 0.00771 (0.00533, 0010

Ne/ciw 2,148,000, 65,000, 7,875,000) 615,000 (425,000, 845,000)

Ocw (1, 38) 0.02652 (0.00071, 0.09822) 0.01766 (0.00233, A.Pp7

New 2,115,000 (56,000, 7,832,000) 1,416,000 (186,000, 50889,

YEICW (1, 152) 0.00974 (0.00101, 0.02864) 0.00101 (0.00054,1%0D

TEICIW 0.155(0.016, 0.457) my 0.161 (0.086, 0.246) my

Yemw (1, 152) 0.00332 (0.00008, 0.01208) 0.00044 (0.00006 ®@6D

TC/w 0.053(0.013, 0.193) my 0.070(0.009, 0.154) my

O (1, 380) 0.02653 (0.00058, 0.09794) 0.00872 (0.0028262.62

Ng 2,115,000 (46,000, 7,810,000) 695,000 (225,000, 2,100,00

Oc (1, 380) 0.02588 (0.00059, 0.09664) 0.02986 (0.00394,™@.0p

Nc 2,064,000 (47,000, 7,706,000) 2,380,000 (314,000, 7088)),

Ow (1, 380) 0.02642 (0.00081, 0.09737) 0.00433 (0.00046 0.0

Ny 2,107,000 (65,00, 7,765,000) 345,000 (37,000, 1,524,000)
priors ¢

Oeiciw (1, 380) 0.00257 (0.00004, 0.00961) 0.00832 (0.00592, 1291

Ne/ciw 205,000 (3,000, 766,000) 663,000 (472,000, 901,000)

Ociw (1, 38000) 0.00003(0.00001, 0.00009) 0.00005 (0.0000001.5)

New 2,000 ( 1000, 8,000) 4,000, ( 1000, 12,000)

YEICW (1,1519) 0.00096 (0.00011, 0.00277) 0.00069 (0.0003211.0)

TE/ICIW 0.153(0.017, 0.442) my 0.110(0.051, 0.175) my

Yemw (1,1519) 0.00033 (0.00001, 0.00122) 0.00068 (0.000321m9)

TC/w 0.053 (0.013, 0.195) my 0.108 (0.051, 0.174) my

O (1, 380) 0.00266 (0.00009, 0.00975) 0.00444 (0.00179 939D

Ng 212,000 (8,000, 778,000) 354,000 (142,000, 749,000)

Oc (1, 380) 0.00265 (0.00008, 0.00969) 0.00739 (0.00286 5521

Nc 212,000 (7,000, 73?3,000) 590,000 (228,000, 1,237,000)

Ow (1, 380) 0.00267 (0.00008, 0.00971) 0.00343 (0.00130,75p

Ny 213,000 (7,000, 774,000) 274,000 (78,000, 602,000)




A
0.2— 0.2
\.
0.15
N /xy
oy > 5’0,17{ \ LN T e
c ~. c | X -
(] ~ (0] | x =
S o S | S<\ ~
g e 8 | a0
= ~ pud | \ &
L o. ~ Wo.o5H ¢ &%
~. _ y e X
5 y I VR
& \ X\Xx%
. . . . . i N
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Population divergence time T Population divergence time T
C/W E/C/W
C D
0.3 0.3
0.25 0.25
> >
2 ~ 2
o’ e o
> >~ >
o ~. o ~
) ~ o .
L Sy uw *
=% Toxe
~X . _ Tox o
H— =X —
0.5 1 1.5 2 2.5 3 3.5 4 0.5 1 1.5 2 2.5 3 3.5 4
Ancestral effective population size NE/C/W

Ancestral effective population size NC W

Figure 5.5: Prior and posterior distributions of parameterder the ‘Out of the East' model of population
divergence using minimal sampling of a single individual pepulation. Prior distributions for the first
two MCMCcoal analyses are shown as dashed lines (a = mixegldod short dashes between blue
symbols, b = long dashes between red symbols), posterimibdions for the single triplet analysis are
in colour (a =red, b = blue and c = black). Whereagw (B) and Ngiciw (D) are little influenced by
the prior meansN ¢ (C) is extremely sensitive. This parameter is also confednaith 7cpy. When
setting a low prior mean fal ¢y (analysis ¢) the posterior distribution feg,y shifts markedly towards
the right (see black line in A). Note that despite= 1 for all model parameters, the prior distribution for
Te/iciw (B) is not exponential because of the constraigw > Tcw-
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Extended (three individual) sampling

MCMCcoal analyses of the extended (three individual peruatjpn) dataset again gave strongest sup-
port to the ‘Out of the East’ scenario (Table 5.1). While Bayactor comparison strongly rejects the
‘Out of the West’ topology (W, (C, E)), the second alternatiepology (C, (E, W)) does not provide a
significantly worse fit to the data (Table 5.1).

Parameter estimates agree well with those obtained whgramihgle individual per population was
sampled (Table 5.4 and Fig. 5.6). However, increased samglies have some influence on parameter
estimation. First, estimates dfc, are larger and less sensitive to prior settings when timdigiduals
per population are sampled for both prior setandb (Supporting Information Table S3). Second, the
posterior distributions fotcpy are now unimodal, rather than L-shaped with a maximum at thggno
(Fig. 5.6). However, this has little impact on the varian€¢he posterior. For example, the 95% credi-
bility interval for 7cpy is 0.005 - 0.136 MYA (priors) in the analysis of the extended samples of three
individuals per population, compared with 0.002 - 0.121 M¥Aen sampling a single individual (Table
5.3).Taken together this suggests that increasing sarizgl@per population to three haploid individuals
adds some, but not much, power to the estimation of modehpeteas.

Sampling multiple individuals per population we can alstineaste the effective sizes of the three
sampled populations between the present and the first @éneegeventsNg, N¢, Nw. (Table 5.4).
Although estimates of these parameters had fairly wide denfie intervals and were sensitive to prior
settings, their relative magnitude was consistent acnoalyses.N c was always the largest followed by
Ng andNy. Itis also noteworthy that all three estimates were sm#ilen those obtained for ancestral
populations, paralleling the findings of Jennings and Ed&&005 and previous results in Great Ape
studies (Chen & Li, 2001; Yang, 2002; Pattersiral., 2006).

5.2.4 Gene divergence times

Following Jennings & Edwards (2005), we calculated Jukeg@alistances (D) to estimate coalescence
times for each divergence event (D/2) and compared the gealiatance across loci with the estimated
population divergence time and the mitochondr@bx1) node ages for both single and three individual
samples. In both cases nuclear genes sampled from cendralesstern populations diverged on average
almost 0.4 million years (or three glacial periods) priottte estimated population divergence (Fig. 5.7).
Coalescence times estimated @ox1depend on the assumed mutation rate. Applying the caldirati

by Oliveiraet al. (2008) both coalescence times ©ox1(0.013 MY and 0.145 MY respectively) are

younger than the average coalescence at nuclear geneshuelamwithin the 95% credibility interval
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Figure 5.6: Prior and posterior distributions of model paeters under the ‘Out of the East’ scenario
of population history obtained for the extended samplif@I{izi, 13 sampled for three individuals per
population). Prior distributions a and b are shown as dasihed (a = narrow, b = wide), posterior
distributions are in colour (a = red, b = blue and ¢ = black).ttBacw (A) and rgcw (B) are little
influenced by the prior means. Note that in comparison withréigd, the maxima for the posterior
distributions forNcyy are > 0.
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of the estimated population divergence (Table 5.3). Usingwr (1994), mitochondrial coalescence
between the ancestor of central and western samples anddtexresample (1.433 MYA) predates the
average coalescence times for nuclear genes (0.714 MYAdreals the mitochondrial coalescence time
between central and western samples (0.125 MYA) is stillemecent than that for nuclear genes (0.467
MYA) (Fig. 5.7).

5.3 Discussion

We analyzed a large multilocus dataset under the simplesstifie model of divergence between three
populations to make quantitative inferences about theilodimal history ofC. fungosa Reconstructing
the genealogical histories of individual loci leads to aéfst’ of largely incongruent and often poorly
resolved gene trees (Fig. 5.4), which individually contatte information about the underlying popula-
tion history. However, analyzing these data jointly in aleseent framework, the relationship between
major refugial populations a. fungosacan be described as a quantified population tree, whichdeslu
relevant population genetic parameters (Fig. 5.8). Thasdensiderable improvement over previous phy-
logeographic studies in this system, which have largelyntzesed on mitochondrial sequence data and
allozymes (Rokast al,, 2001, 2003; Stonet al., 2001; Challiset al., 2007; Stonet al., 2009) and allows
us to quantify important aspects of the phylogeographiohiof C. fungosa

First, both likelihood and Bayes factor comparisons of gation tree topologies (Table 5.1) support
the ‘Out of the East’ scenario f@. fungosa

Second, both ML and Bayesian estimates for the time of thegopulation split between the east-
ern population and the common ancestral population of akatrd western populationg,cyy fall well
within the late Pleistocene. Likewise, both methods sugtes the more recent divergence between
central and western populationsfy) occurred either during the last interglacial or glacialipe. How-
ever, since the MLE for the time between population sptitsdyw -7cw) is effectively zero and the 95%
credibility intervals for the two divergence times overlall Bayesian analyses, we cannot exclude the
possibility that the two population splits happened in elssccession.

Finally, the present coalescent analyses provide infaamatout the effective sizes of ancestral and
present populations. Although our estimates of both armgsbpulation sizes, in particula¥ cw, have
large confidence intervals and, in the caseNafyy, are sensitive to prior settings (discussed below),
they provide an important comparison with model organishts. example the observed diversity@n
fungosar, = 0.92%, Table 4.3) is comparable with that in non-African popuas ofD. melanogaster

(ms = 1.33%) (e.g. Andolfatto, 2001, Table 3). Similarly, estimates floe effective population sizes
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1). Error bars show 95% confidence limits.
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(right hand scale), and= 7/2Ng,cw generations assuming two generations/yr,g.e= 0.5 (left hand
scale). Note that all blocks have a greater width than heigtih that pairs of lineages sampled from the
same population are more likely to coalesce in their analgstipulation.

of D. melanogasteof 10° (Andolfatto & Przeworski, 2000) and for effective size okthncestor of
D. melanogasteandD. simulansof Ng = 3.9 x 10° (Li et al, 1999) agree with our results f@.
fungosan order of magnitude. If effective population sizeslof are the rule in insect parasitoids, their
longitudinal histories will inevitably involve extensiwiecomplete lineage sorting, strengthening the case
for multilocus approaches for meaningful phylogeograjptfierences.

How do these results compare with those obtained from siggie trees both i€. fungosaand
in other co-distributed oak gall parasitoids and their §®sinC. fungosathe topology of the inferred
population tree (Fig. 5.8) is congruent with both the mayoof resolved nuclear gene trees as well as the
mitochondrial gene tree when a single individual per redligbpulation was sampled (Fig. 5.3). More
generally, the eastern origin &f fungosas consistent with the mitochondrial gene tree for anottader o
gall parasitoid,Megastigmus stigmatizar{slayward & Stone, 2006), with mitochondrial and nuclear
gene trees in the parasitoMlegastigmus dorsalifNicholls et al., 2010) and three species of host gall
wasps (Rokast al, 2003; Challiset al,, 2007; Stonet al., 2007, 2009).

While by definition gene divergence must predate the divergef populations, our results suggest
that the magnitude of this difference is considerabl€.ifungosaand very relevant for our interpretation

of its Pleistocene history. It is noteworthy that the estasdorrg,cy coincide with the last (Eemian)
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interglacial 0.130 - 0.115 MYA, which suggests that divercgebetween refugial populations is as recent
as it possibly can be (given the definition of glacial refQgi/e know from the fossil record that both
oaks (Velichkoet al, 2005) and associated gall wasps species (van der ¢étah 2008; Stoneet al,
2008) known to be attacked Iyecidostibeexpanded their range in Central and Northern Europe during
this period. It is thus plausible for population divergemassociated with westward range expansions of
C. fungosdo have occurred over a similar timescale.

Although the unknown error in the mitochondrial clock and targe discrepancy between different
calibrations (Brower, 1994; Oliveirat al., 2008) make a direct comparison with mitochondrial dates
problematic, it is nevertheless reassuring that the mandhial ages obtained f&. fungosédall within
the 95% credibility interval of (Oliveirat al, 2008) or predate (Brower, 1994) the estimated time of
population divergence (Fig. 5.7), as they should. A mitoxh@l divergence more recent than that
inferred for the population would be inconsistent with theswamed model, and require gene flow be-
tween populations. However, it is noteworthy that regassllef the mitochondrial mutation rate used,
the Coxldivergence times are very different from the average dimecg times at nuclear genes (Fig.
5.7). This demonstrates the extremely large variance ifesoance times and highlights the danger of
over-interpreting node ages of single gene trees. An axhditiproblem with mitochondrial mutation rate
calibrations is that they are likely to be confounded by #ledtive dynamics of bacterial endosymbionts
(Oliveiraet al, 2008), the prevalence of which is known to differ both betw@opulations and closely
related species of Pteromalids (Weinetr@al,, 2009). It is therefore not clear to what extent M@sonia
rate applies t&. fungosaln contrast, the nuclear estimates ftasoniaare broadly consistent with those
obtained for other Insects.

The fact that divergence at a single locus can only providegrer bound of the population di-
vergence time may well explain why mitochondrial dates fbimprevious studies on other species of
European gall parasitoids and their gall wasp hosts (Hay®&eBtone, 2006) are considerably older than
the population divergence estimates@rfungosabtained here. For instance, mitochondrial divergence
between Central European and Iberian clades of the pachMiegastigmus stigmatizafeas been es-
timated at 0.264 MYA (Hayward & Stone, 2006). Mitochondidalergence estimates between Central
Europe and Iberia for gall wasp host species are still okelgr;0.383 MYA inAndricus kollari(Hayward
& Stone, 2006) and 1.6 MYA il\ndricus coriarius sensu strict@halliset al,, 2007). Analyses of mul-
tilocus datasets are clearly required to provide bettémests of population divergence times in these
species. As our results show, the fact that the variancedlesoence time is lower for mitochondrial loci
given their smalletN, may reduce but does not alleviate this problem. This unaeslthe possibility

raised by Nichols (2001) that between-taxon variation iDNA-inferred dates of divergence between
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glacial refugia may well be attributable to coalescentarace rather than taxon-specific differences in
post-glacial dispersal. Rigorous testing of the hypothektaxon-specific variation in divergence times

requires broader application of multilocus approaches.

5.3.1 AncestralN, and sampling

The results of the Bayesian analyses show that estimategef or rather the time between the popu-
lation splits ¢e/cw-Tcw) and the population size during that tim€gcy, are confounded. Considering
that it is the ratio of the two parameters which determinesctiance of coalescence between population
splits (Hudson, 1983; Saitou & Nei, 1986; Yang, 2002), thekes intuitive sense and may explain the
poor ability to estimateVcyy independently. A large variance in ancestialhas also been reported by
most earlier multilocus analyses of divergence models i&hei, 2001; Yang, 2002; Rannala & Yang,
2003). In general, explanations for the low power to estinthis parameter fall into two categories:
violations of the model assumptions; and limited signahia data.

Ignoring within-locus recombination and mutational raggdrogeneity, for example, can in principle
overestimate ancestral population sizes (Setttal., 2000; Yang, 2002; Wall, 2003). However, the few
studies that have incorporated these factors suggeshthahave little influence on estimates of ancestral
N, (Sattaet al., 2000; Yang, 2002; Wall, 2003). Similarly, the fact that &dic results for the variable
mutation model are in agreement with those assuming a siatgedespite large differences in relative
mutation rates (Table 4.4) suggests that any impact of monttheterogeneity between loci is greatly
outweighed by coalescence and mutational variance andftimeran unlikely explanation for the low
power to estimateV .

In general, there are two factors that determine statigtoaer to infer ancestral parameters; i) the
number of lineages that contribute to the estimate (Fig. &2 ii) the mutational information available
to infer their relationships. Both clearly depend on theetsicale of divergence. Relating the estimated
population divergence times (scaled by the mean of cur@mtljation sizes) fo€. fungoséao the theo-
retical expectation for the number of surviving lineages,oan ask how much power could potentially be
gained by further increasing sample sizes. For examplegig2 shows that sampling three instead of a
single individual per population roughly doubles the extpdciumber of eastern lineages that survive into
the common ancestral population, while 16 more individaatésrequired for a further twofold increase.
For the more recent divergencerafw, the increase in the number of surviving lineages from aalukd
samples is of course more substantial (Fig. 5.2). Howelveurianalysis was limited by sample size, we
would expect to see an improvementin parameter estimatapoptional to the increase in the number of

surviving lineages when sampling three individuals. Thet faat this is not the case (i.e. the variance in
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the estimates of three of the four model parameters is éfflected despite the doubling of surviving lin-
eages) suggests that the power to infer ancestral paranietargely limited by the mutational variation
available rather than the sample size. However, our findfreyroarkedly higher posterior mea¥icyy

for the three individual sampling suggests that the estomaif this parameter may indeed be sensitive
to the sample size. This makes intuitive sense if we exteathtbhmber of surviving lineages’ argument
above and consider that only lineages which survive i¥itgy and coalesce before they rea®ecw
contribute to the estimate df . One would therefore expect increased power to estimaggtram-
eter with increasing sample sizes botHdnfungosaand in the bird divergence studied by Jennings and
Edwards 2005. Thorough investigation of the effect of samgpbn statistical power in divergence mod-
els both theoretically and using empirical data is requiceitiform sample designs of future population
genetic and phylogeographic studies. In particular dawsgltng the effects of mutational limitation and
those of sample size (both the number of sampled loci andithgils) would be useful. If mutational
information is not limiting, gene tree - species tree meth(@egnan & Salter, 1995; Degnan & Rosen-
berg, 2009; Maddison & Knowles, 2006; Liu & Pearl, 2007; Ktkoeet al., 2009) should converge to the
same answer as the inference methods used here.

Another way to improve power may be to use outgroup inforamaith the likelihood calculation. At
present Ne3sML and MCMCcoal rely on clock rooting (Yang, 20@vhich, given the small number of
polymorphic sites in some loci, results in large topologicecertainty. Being able to distinguish between
parsimony informative sites and singleton mutations bgnerice to an outgroup should in principle

enhance the power of both approaches.

5.3.2 Assumptions and extensions of the model

Considering the large confidence intervals in parameténasts, it is clear that quantitative inference
of population history is a data-hungry problem, particiyl#rdivergence is recent. It is therefore ques-
tionable how much scope there is to probe more realistic sagighout increasing the amount of data
drastically. In general, inferences of ancestral popoifaiarameters are likely to be much more sensi-
tive to violations of the divergence model than they are tdations of the model of sequence evolution.
Since there are key population processes omitted from #sept analyses that render population history
less tree-like, one could argue that the notion of a ‘poputaree’ as such is an unrealistic description
of phylogeographic history.

Firstly, the model assumes that there is no migration afterdence. While at least in the host gall-
wasps, allele frequency data support this assumption (&atlal., 2001, 2003; Stonet al,, 2001, 2008;

Challiset al, 2007), we cannot exclude the possibility of migration méfterergence forC. fungosa It
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would therefore be interesting to relax this assumptionlbtaj which uses the algorithm of MCMCcoal,
has recently been extended to estimate divergence withatiogrfor more than two populations (Hey,
2010b). However, modelling migration explicitly in a thrpepulation model introduces six additional
parameters. Considering the low divergence betw@efungosgpopulations for our loci, there would
appear to be little power in the data to distinguish betweévergence model with a very recent split as
inferred here and more complicated models involving botkidjence and subsequent gene flow. Clearly,
much larger amounts of data are needed to successfullyrexplmh models. An additional problem
with analysing models of migration is that, in contrast tacstdivergence models, they are sensitive to
unsampled populations (Wilkinson-Herbots, 2008; Loh8892. With the advent of nextgen sequencing
technologies, the volumes of data required to explore daece with gene flow on such recent timescales
should soon be available.

Secondly, the model assumes constant population sizegéetsivergence events. Again, allowing
for changes in population size opens up a myriad of possibterital scenarios and potentially increases
the number of parameters dramatically. Fortunately howetie C. fungosadata allow us to at least
exclude drastic demographic events. For instance, undedalof colonization through extreme founder
events (without subsequent migration), widespread inagamgce between gene trees and population trees
would not be expected. Thus the mere presence of all poggtble tree topologies in our data allows us
to reject this scenario fdC. fungosa

And finally, the model assumes panmixia within populatiomkich may be unrealistic over short
timescales and large geographic areas. Recent theoretida(Slatkin & Pollack, 2008) and simulations
(Becquet & Przeworski, 2009) have demonstrated that sigiolivin ancestral populations can lead to
mis-inference under simple divergence models.

In general, any model-based analysis faces the challengeoafsing models that contain sufficient
realism to capture key features in the data whilst being Ermapough to be useful. We have shown that
in the case ofC. fungosaa simple divergence model between three populations cdaimxpe observed
genetree incongruence and be used to estimate both the andidivergence time of refugial populations
despite the recency of this history. We hope that this studjivates similar analyses of more realistic

models.

5.3.3 Towards a multilocus approach to community phylogeagphy

The close ecological dependence of oak gall parasitoidé@in lhosts and the large number of species
involved make this and similar host-parasitoid commuasitieluable systems in which to study the evo-

lution of ecological interactions (Schonrogegieal., 1995; Hayward & Stone, 2005). Unlike most organ-
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isms for which similar multilocus analyses have been cotetlli et al., 1999; Rannala & Yang, 2003;
Jennings & Edwards, 2005), the ecology of chalcidoid psvals involves intricate interactions with co-
distributed species at different trophic levels. Linkihg extensive information on species composition
and food web structure for these communities (Schonreggé, 1995, 1996a; Bailegt al,, 2009) with
population genetic and phylogeographic inferences atfikeiss level opens up an exciting opportunity
to address novel and general questions about co-evolutthassembly of communities. For instance, do
particular lineages or guilds within trophic levels showliea longitudinal range expansion than others?
And if so, what are the ecological properties of such sp&cieésr example, are they generalists rather
than specialists, and so less likely to go locally extinayiard & Stone, 2006)? Further questions arise
when considering multiple trophic levels. How correlatee phylogeographic histories between hosts
and parasitoids? Is there a general lag between the arfiygdllsvasp (or other herbivore) hosts and
associated parasitoids such that herbivores experiemtmlpef enemy-free space (Hayward & Stone,
2006)? We are currently working on obtaining multilocusadfair co-distributed chalcidoid parasitoid
species and their gallwasp hosts to address these questianguantitative framework. The rarity of
many of the species involved (Schonroggel., 1995, 1996a,b, 1998) means that we will have to make

the most of small sample sizes.
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Chapter 6

Topological probabilities in models of

divergence with gene flow

It s well known that the topology of a neutral locus samplexdhficlosely related populations or species
may be incongruent with the order of divergence of those [atjpums (Hudson, 1983; Tajima, 1983;
Nichols, 2001; Pamilo & Nei, 1988). In the simplest case wtdjence between three species or popula-
tions (A, B, C) with population tree topology (A(B,C), andrdigence at; andr; + 7 (i.e. the model
analysed in the previous chapter), the genealogy of a trgalmple (i.e. a single individual taken from
each population), may have three possible topolo@i€s:)), (c(ab)) and(b(ac)) (Fig. 6.1a). Their prob-
abilities depend on the interval between population splitshe coalescence time scale (Hudson, 1983;
Tajima, 1983; Takahatt al,, 1995), i.eT, = 79/(2N.). This is because incongruent topologies are only
possible if theb andc lineage survive intervat, without coalescence the chance of whichi$?. Once

all lineages find themselves in the common ancestral papaolaach topology has the same chahte
Therefore:

1
Pe(at)) = Plo(acy) = 7€ 7 (6.1)

3¢

Full results for the joint probability of topologies and hch lengths under this simple divergence
model have been derived by Yang (2002) and, assuming iniitée mutations (Kimura, 1969), can be
used to calculate the marginal likelihood of model paransdtem patterns of sequence polymorphism
in a set of loci (see chapter 5). Because this assumes frembaeation between loci but lack of recom-

bination within them and computation time increases lilyeaith the number of loci, analyses using this
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full theory are usually restricted to moderate numbers of &b relatively short length. Alternatively,
model parameters may be estimated from patterns of diyensia genome wide scale. In particular, the
product of the probability of a topology and its expecteetinal branch length leads to an expression
for the expected number of shared derived mutations (oimpargy informative sites) corresponding to

it which in turn can be used to compute point estimates of straleparameters from genomic triplet
alignments. The idea of using genome wide site counts tmagtidivergence times and ancestral popu-
lation sizes was first put forward by Pattersairal. (2006) who studied the divergence between humans,
chimpanzees and gorillas.

A key feature of the three population divergence model isstmametry of the two incongruent his-
tories. Because incongruences can only arise if lineage#selinto the common ancestral population
which is assumed to be panmictic, the two possible incongriopologies must be equiprobable and
hence their expected frequencies are the same (eq. 6.13.syimmetry is a consequence only of the
assumed exchangeability of lineages in the ancestral ptipos and is independent of their effective
population sizes. Furthermore, the symmetry extends tbrdwech length distributions, which also is the
same for(c(ab)) and(b(ac)) genealogies. Thus, in polarized (outgroup rooted) triplgmments, de-
rived mutations shared hyandb (ab sites) and: andc (ac sites), i.e. those corresponding to the internal
branches of the two incongruent topologies, have the samecead frequency.

Perhaps surprisingly, the two studies that have expligitiestigated genome wide frequencies of
either site counts and/or gene tree topologies in intefpédplets, have both found significant asym-
metries (Pattersoat al,, 2006; Pollardet al, 2006). Pattersost al. (2006) have counted site-types in
genomic data of human, chimpanzee and gorilla (rooted wihg-utan). While they observed no sig-
nificant difference in the number of derived mutations stidng human and gorilla (HG) compared to
chimpanzee-gorilla (CG) sites on the autosome, they fowslmjhat excess of HG over CG sites (3,074,
26.2% vs. 2544, 21.8%) in a 964 kb region on the X-chromos@&@imailarly, Pollardet al. (2006) studied
topologies of close to 10 000 genes in a triplet of closelstes] species drosophila D. melanoasteD.
erectaandD. yakubaand found a significant excess of (Dmel,Dere) (23.5%) ovenéDDyak) (18.7%)
gene tree topologies. Moreover this asymmetry is partibutnvincing, given that it is found in other
character types, in particular indels, nucleotide and araiid replacements (Pollaed al., 2006, Fig. 2).

These findings beg the question how such asymmetries cam dFisstly, it is important to note
that assessing the significance of asymmetries in genomie-géta involves making assumptions about
genetic linkage, which tends to increase the variance ioltgpcal frequency (Pollar@t al, 2006).
Two possible causes have been suggested: i) SequencimgRurgess & Yang, 2008); and, perhaps

biologically more interesting, ii) violations of the singpflivergence model.
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Slatkin & Pollack (2008) have shown that certain types aficttire in the ancestral population can
create asymmetries in the frequency of the two incongrogatibgies. They propose a divergence model
with a barrier that persists from the common ancestral pdjmn until the most recent population split
and coincides with the diverging populations (Slatkin &lBok, 2008, Fig. 1) and derive the topological
probabilities under this model. Using results for the expeécoalescence times for the two incongruent
topologies, they show that the asymmetries in topologiegjiencies observed by Pollaztlial. (2006)
can be explained by a very weak barrier with migration at2afen = 9.4 across it. However, an obvious
alternative mechanism by which topological asymmetrigsarése is migration between the populations
themselves. The aim of this chapter is to investigate theceBuch gene flow after divergence has on

topological probabilities.

6.1 Model and derivation

In the following, the basic model of divergence betweenehvepulations is extended by allowing for
gene flow (at raten per generation) between the older population (A) and onén@fmhore recently
diverged populations (B and C) (it is intuitively clear tlggne flow involving B and C cannot create
asymmetries) (Fig. 6.1). Although this model arguably espnts a special case, it is the simplest di-
vergence model in which topological asymmetries due to dlemecan arise. It also applies to some
datasets of particular interest. For example, on an iné@p scale, unidirectional gene flow may be a
realistic scenario for many European taxa suc@@ asingosavhich have colonised major Southern refu-
gia in a process of longitudinal range expansions possdilgvfed by continued gene flow from their
eastern centres of diversity (chapter 5). The model maylasased to describe hybridization between
EuropearHomo sapiensind Neanderthals in Europe and/or Asia (with Afriddnsapienspopulations
as the ingroup) (Greest al,, 2010).

The aimis to derive the probabilities of the three geneakdopologies’ . (ay)): Pis(ac)) ANAP (4 (pc))
under this model. To keep the number of parameters at a mmjme will assume that population sizes
are equal and constant at all times. Furthermore we makeeabtandard simplifying assumptions of
the neutral coalescent, namely large effective populaines and panmixis and focus on two simple
scenarios i) migration in one direction (fromto B) only and ii) symmetric migration (Fig. 6.1b and c).

Following Slatkin & Pollack (2008), the ancestry of a samipétween population divergence events
can be described as a discrete time Markov chain with st@tsitions occurring either due to migration
of lineages between populations (at rat§ or coalescence of pairs of lineages (at rate- 1/2N,)

per generation. The divergence of populations can be mddae sudden change in state space. An
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Figure 6.1: Under a simple model of divergence between thogmilationsA, B, C' with a topology
(A(BC)) (a), incongruent genealogies (shown in grey) can arise aiecbmplete lineage sorting in
the common ancestral population prior tg ¢ 79). With unidirectional (b) or symmetric (c) migration
between A an B the probability of incongruent genealogidh wapology(c(ab)) is increased. In both
cases, the asymmetry in the probability of the two incongttapologies arises as a result of a migration
event duringr; only. Note thatc(ab)) genealogies are expected to be much shorter in c) than in b).

analogous approach has previously been used to find thelpligbaf topologies for a pair of linked loci

in a three population model without migration (Slatkin & Rak, 2006).

6.1.1 Asymmetric migration

Below we consider the case of migration frotrto B (Fig. 6.1b). Note that a model of migration in the
opposite direction (fronB to A) is slightly simpler, since any migration event priortobrings all three
lineages into the same deme. In the context of directionplfation founding (chapter 5), secondary
gene flow from the ancestral to the derived populatiohinfo B or C') is more relevant than migration
in the reverse direction. However, the basic results agpboth cases.

We need a notation that keeps track of both the origin anditeaibns of lineages. Denoting lineages
by their sampling locatioria, b, ¢) and keeping the order of populations fixed, the three passiates
between the present and are: ((a), (b), (¢)), ((ab), (), (¢)) andcoal,, the latter corresponding to
coalescence of theandb lineage. Going backwards in time, the lineage in populaticcannot migrate
or coalesce during the first time interval, but there is a cbahat the lineage sampled B jumps to
A during 7, (which corresponds to a migration event in the oppositectiva forwards in time) and, if
it does, that it coalesces with the resident lineage rempiti a gene tree topolody:(ab)). The starting

configuration at the time of sampling 3., = (1,0,0). We only need to follow the process until the
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first coalescence event, i.e. the state/,,;, is absorbing.

The transition probabilities from the presentoare:

The resulting state probabilities at timgare:

PT‘l = MII-Pstart (62)

Looking into the past, populatior’s andC merge instantaneously at time. During the following
time intervalry, the ancestral process can again be described as a Markowdhiah now has 7 states:
S1 = ((a), (b)), S2 = ((ab),(c)), S3 = ((ac), (b)), S4 = coalagp, S5 = coalye, S6 = coaly. and
S7 = all, the latter corresponding to the case where all 3 lineagddtiemselves in the same deme.
As in the previous interval, coalescence eveists, S5, 56) are absorbing states. Because lineages are
exchangeable and all topologies have the same probaHilit{8ance(S7) is reached, this state is also

absorbing. The matrix of transition probabilities is:

_1—2m—/\ 0
m 1—m-—2A
0 1-—
A
0
0

Mo

|
3 ©o » o 3 o o
o o ©o ~ ©o o o
© o — o o o o
o » ©o © o o o
_ O © © ©o o o

m
0
0
A
0

m

As in the previous interval, the state probabilities at theé #mer, + 7y are given by taking the, th
power ofM and multiplying on the right with the state probabilitieteafthe previous interval, .

P, =M}.P, (6.3)

We can substitute 6.2 into the above and solve to get thepaihhbilities of the various states at time
T1+70, Ps1, Psa... Ps7. Itis straightforward to get from this to the topologicabpabilities. Consider first
all states at which topologies are equiprobable. Becausge-atry all remaining lineages automatically

find themselves in the common ancestral deme, the total pilapa@f reaching exchangeability., is:
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Peq = Pgy1 + Pgo + Pg3 + Pg7 (6.4)
Evaluating the above using the matrix power functioMiathematicaand simplifying gives:

1 .
Peq = (m=X)(m+XN)(2m+N) (2m?(1 =)

=3(1—=m)"m*A +m2(1 = AN)"A = (1 —m)"m?*(1 —2m — )™\

+(1=m) (1 =2m — NN+ (1 —m)™ (m —2X) + m(1 — X)) (1 —m — X\)ON2m + )

We can scale model parameters by, so that coalescence happens at rate 1,Mle= 2N.m,

T; = 7i/2N,. Transforming to continuous time simplifies things slightl

1
Pe — 2M3 =Ty 3 —MTy M2 M2 -1, _ —MT M2 7(2M+1)T0
© T G nar @y e s T ATe e AL *

e~ MTrgmGMINTo 4 (o=MTi(0f — 9) 4 Me~Ti)e (MHDTo (211 4 1))

The probabilities of the three topologies are given as tine sfil /3., and the state corresponding

to the respective coalescent event:

P(c(ab)) = Pgy+ 1/3Pequ =
1
— 6M3_4M3 -1 3M2_2M2 —MTy 7(1+2M)T0—6M
ST D+ DM+ 1) cr ce

+3M€7A{T1 _ 3 + 3efMT1 _ 267MT167(1+2M)T0 + e*(lJrM)T[) (2M + 1)(_2M67MT1

+e M (M +1)))

P(b(ac)) = PSS + 1/3Pequ =
1
— 2M3 -1 M2 —T 2M2 —MTy 7(1+2M)T0
ST+ M 1) e T Me T 2 e e

—2e  MT1o=(+2M)To _ gpre=—MTi 4 ef(M+1)T°(2M + 1) (Me T 4 e My (_2M + 1))
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P(a(bc)) = Psg+ 1/3Pequ -
1
300 —D(M + )(2M + 1)
+487T1€7(1+2M)T0 4 (efMTl (M _ 2) 4 Mele)ef(lJrM)Tg(QMJrl))

(2MB3e= Tt 4 M2 Th — AM2e—T1p—(142M)To _ 3,—MTy

In the limit of M — 0, these reduce to the results for the standard divergencelmaithout gene
flow (eq. 6.1). As in the case of structure in the ancestrabfaijon (Slatkin & Pollack, 2008), these
analytical solutions are somewhat cumbersome and prolodlilmited use analytically. For instance, it
is not possible to get an easy solution for M from the aboveesgions which could be used to estimate
this parameter from observed topological frequencies. é¥aw plotting the probabilities of the three
topologies against the model parameters immediately gifesling for the properties of the model. As
shown in figure 6.2aP.(,;)) increases rapidly witkh/ at the expense aP,;.)) and(c(ab)) becomes
the most likely topology fod/ > 0.5. T} has a similar effect on topological probabilities (Fig. 6.2
Pic(av)) increases with larger values 8. However, in this case, both ,(,.)) and Py (ac)) 9o to0. In
contrast, the dependence of topological probabilitie$pis rather weak (Fig. 6.2c). It may therefore be

useful to investigate topological probabilities in theilisrof 75

e~ WHMTi3eT (1 4 M) + eMTi (1 4 2M)(—2M? + 3T (M? — 1))
3(M —1)(M +1)(2M + 1)
e~ WHMTL N (—3eTr 4 eMTi (1 4 2M))

To — 00, Pe@ab)) —

P,
(b(ac)) 3(M —1)(M +1)(2M + 1)
, e (UMD (_3eTh + eMTiN2(1 4 2M))
N
(abe)) 3(M —1)(M +1)(2M +1)

and,

3—e2MTy _ TioNf — 3M

To — 0, Pie(ar)) —

3—3M
efA'{Tl _ eTlM
Powey = —3—map
e—]\fT] _ eT]M
P(a(bc)) - 3 —-3M

Perhaps unsurprisingly, the upper limit agrees well with éixact solution in the parameter range

where(c(ab)) is the most likely topology (Fig. 6.2a and b).
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Figure 6.2: Analytical solutions (thick lines) for the patilities of the three genealogical topologies (red
= (a(bc)), green= (c(ab)), bluexb(ac))) for the case of asymmetric migration from A to B (Fig. 6.2b)
plotted against the three scaled model paramefdrga), 71 (b) andTj (c). In each case the other two
model parameters respectively are held constaht at 1, 7y = 1 andM = 0.5. For a and b the limits
of Ty — oo are shown as thin lines.

6.1.2 Limit cases

Since we are primarily interested in the emergence of asytngregther than the topological probabilities
as such, it may be illuminating to consider the differendsvieen the probability of the two incongruent
topologies, i.eD = P.(ap)) — Pio(ac))-

Substituting and simplifying yields:

_M2(6*T1 —1)+ Me—(1+M)To (efMTl _ ele) + (efMTl —1)

D = Pg4 — Pgs = 71 (6.5)
In the limit of Ty — oo,
1— efMTl _ M2 _ €7T1M2
D — T (6.6)
in the alternative limit ofl; — 0,
1—e M _ N —e Ty
D¢ c (6.7)

1-M

As can be see from the equations above the two limits diffgriornthe way M enters (quadratically
for To, — oo and linearly forT, — 0). In general, the upper limit agrees with the exact solution

surprisingly well (Fig. 6.3).
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Figure 6.3: The difference in probability between the twooingruent topologies.(as)) — Pb(ac))s
plotted against the scaled migration raté,for 77 = Ty = 1 (thick line). Also shown are solutions for
the two limitsT, — 0 (wide dash below) an@, — oo (narrow dash above).

6.1.3 Symmetric migration

Analogous derivations can be made for the case of symmetgration between populatiod and B
(Fig. 6.1). It is straightforeward to set up the matricesransition probabilities for, andry. Dur-
ing 71 the ancestral process is described by a 5x5 matrix. Thessta (a), (b), (¢)), ((b), (a), (¢)),
((ab), (), (), (), (ab), (¢)) andcoal,p, with starting statePs:q,+ = (1,0,0,0,0)

1—-2m 0 m m 0
0 1—-2m m m 0
My = m m 1—2m— A 0 0 (6.8)
m m 0 1-2m—-X 0
0 0 A A 1

Because migration is symmetric, we do not need to keep trttledocations of lineages during.
All that matters is which pair of lineages finds itself in ttear®e deme and coalesces first. Thus there are
7 possible states during, which can be denoted by a single bracket;= (bc), S2 = (ab), S3 = (ac),
S4 = coalyy, S5 = coaly., S6 = coaly. andS7 = all.
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_1—3m—/\ m m 0 0 0 O_
m 1—-3m—2X\ m 00 0 0
m m 1-3m—-X 0 0 0 O
Mo = 0 A 0 1000 (6.9)
0 0 A 01 0 0
A 0 0 0 01 0
m m m 0 0 0 1

Unlike in the asymmetric cask|, andM; are not upper triangular matrices, so the resulting topolog

ical probabilities are more cumbersome. Substituting @gfoations 6.2, 6.3 and 6.4 and solving gives:

1
P = ————————(27@(64m2(b™ — ™) + Am((d™ — (e — b)) — da (b + 7 — 327
(c(ab) 3(4m+A)a( (64m=(b™ — ™) 4 4m(( )A(e ) —4a(d™ +c )

B2 (2 — (1 = 2m)™ + (1 — 2m) ™ d™)a — (3 +d™)(A(c™ —b™) + a(d™ +c™)))))

1 — T T T T T T
Plo(ac)) m@ CH7) (4mab™ 4 d™ Aab™ — (A X\ — 4m) + (4m + 3\))b™
+4mac™ 4+ d™Xac™ + (AN — 4m) + (dm + 3X))c™))
1 — T T T T T T T
Pawey = m@ A+7)(—32m2p™ + (d — 3)A2(b™ — ™) + 8m(ab™ + (4m + a)c™)

+A(=320F) (1 = 2m) ™ (d™ — 1)a + 4m(3 + d™)(c™ —b™) — (d™ — 3)a(b™ + ™))

wherea = V16m2 + X2, b =2 —4m — X\ —a,c =2 —4m — A+ 4 andd = (1 — 4m — \).

A comparison between figures 6.4 and 6.2, shows that migraas a very similar qualitative effect
to that in the simpler asymmetric migration modeF.(.;)) increases with\/ at the expense of the
probability of the congruent topolog¥,.)) and, to a lesser extent;;,.), (Fig. 6.4a). As before
asymmetries can only arise duringand the dependency op is weak (Fig. 6.4c), even more so than in
the asymmetric migration scenario (Fig. 6.2c). Interegtirfor M — oo the difference in the probability
of the incongruent topologiel is approximately halved in the symmetric case. Although thay seem

counterintuitive, since one would think that the increapedsibility for migration also increases the
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Figure 6.4: Analytical solutions (thick lines) for the padiilities of the three genealogical topologies
(red= (a(bc)), green= (c(ab)), blue<(b(ac))) for the case of symmetric migration between A and B
(Fig. 6.1c) plotted against the three model parameterga), -, (b) andry (c). In each case the other
two model parameters respectively are held constant at 1000, 7, = 1000 andm = 0.0005. These
parameter ranges correspond to those shown in figure 6.2am#iescence time scale.

chance that lineages frorhand B coalesce durings, it can be easily understood considering the events
possible during . In the asymmetric case, coalescence duringiust be preceded by the only possible
migration event (backwards in time the lineage sampled inrBgs into A), so the chance of topology
(c(ab))) increases with the rate of migration until, with very highgmation rates, this jump fron® to

A occurs almost instantaneously. In contrast, with symmetigration, lineages will jump back and
forth between the two demes and in the limit of high migratitwe effective population size during is

effectively doubled.

6.2 Discussion

The main motivation for this analysis was to understandrifiaénce of gene flow on topological proba-
bilities. Compared to the special types of population strecrequired to produce asymmetries (Slatkin
& Pollack, 2008), gene flow after initial divergence seemsdaolgically more relevant mechanism at
least for populations of the same or closely related speti#sle, as in the case of population structure
(Slatkin & Pollack, 2008), the analytical results are cunsbene, important insights can be gained simply
by plotting topological probabilities against the threedelopparameters (Figs. 6.2, 6.4) and investigating
the relevant limits. Firstly, asymmetries in topologicedipabilities can arise as a result of a small amount
of gene flow, but only if the older species/population is imed and only if migration occurs after the

more recent divergence. This makes intuitive sense givanntigration before the more recent diver-
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gence event affects bothandc lineages equally. Gene flow therefore is an unlikely expiangor the
topological asymmetries that have been reported from epétplets such as the human-chimp-gorilla
case (Pattersoet al., 2006) or theéDrosophilatriplet considered by Pollaret al. (2006). Secondly, a sim-
ple expression can be derived for the difference betweeprttzability of the two incongruent topologies
in the case of asymmetric migration (eq. 6.5). This resuliacat least in principle, be used to estimate
migration rates from topological frequencies of intrasfietriplets.

However, the usefulness of such theory obviously dependsoancommon asymmetries actually
are in intraspecific triplets. To explore this, | tested feymmetries in genomic data from thr&e
melanogastepopulations (Africa, Europe and North America) (Obbatdl, 2009). D. melanogaster
is a commensal species which broadly shares our own Out afaAfiistory. However, the colonisation
of North America is thought to have occurred only a few huddrears ago (Stephan & Li, 2006). Two
plausible migration scenarios would result in asymmetnisite counts in opposite directions. Secondary
gene flow between Africa and Europe would lead to an excesslgiqrphic sites shared between Africa
and Europe, and likewise, migration between Africa and Néuanerica would increase the frequency
of polymorphic sites shared by those populations. Both a&ges are possible given Human trading
routes. The raw data (kindly provided by D. Obbard) condigie polymorphism information (both
coding and non-coding sequence) for 287 control genes.aé&tidns from 8 individuals per population
were pooled and SOLEXA sequenced to 100x coverage each dfailetl methods see Obbaetl al.
(2009)). To produce triplet site counts, a single nucleofeér population and polymorphic site was
sampled at random using the observed frequency of the sEgrggites in the sequence pool.

Table 6.1 shows a slight, excess of mutations shared byaframd European populations compared
to sites shared between Africa and N. America (Tab. 6.1)eihe large distance between genes and
the fact that linkage disequilibrium does not extend ovesva fiundred bases iDrosophila one may
for simplicity assume that each polymorphic site has a umggnealogy. However, even when ignoring
linkage of nearby polymorphic sites, the observed diffeedis not significanty? = 0.731, p = 0.392).

In other words, although the data are consistent with lowlteaf migration between Africa and Europe
following the divergence of the N. American population ytladso fit a null model of divergence without
subsequent migration.

The above example illustrates the limited power of deteatingration from topological asymmetries
alone even with a relatively large number of loci sampledssithe genome. In general, genome wide
site counts in triplet alignments, are a rather inefficieaywo extract information about gene flow for
two reasons. Firstly, the presented analysis only dealstafiologies which are of course not observed

directly but rather inferred from the sequence informatiren if each site in the genome had its own
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Table 6.1: Counts of mutations shared between populatios pBD. melanogaster

Population pair site counts
Europe/N. America 3215
Africa/Europe 1889

Africa/N. America 1836

genealogy, the chance of a mutation occurring would stifleshel both on the topology and the branch
lengths of that genealogy. Therefore the expected coalesd@mes for pairs of sequences are more
immediately useful for the analysis of genome wide site ¢auflthough these can been derived for the
present model using existing results for the isolation wiilgration model (Wakeley, 1996; Wilkinson-
Herbots, 2008), the results (not shown) do not lead to a siexgpression fol/ as in the case of migration
across a barrier within the ancestral populations (SlagkPollack, 2008, eq. 9). It is easy to see that
much of the signal about the relative magnitude of inconeplieeage sorting vs. migration is contained
in the joint distribution of branch lengths and topologiesr example, as shown in figure 6.1b, in the case
of asymmetric gene flow, genealogies affected by migratamelon average a longer internal branch than
those involving incomplete lineage sorting with a most rec®@mmon ancestos 7, + ;. This increases
the number of derived mutations shareddgndb. Secondly, in most cases we do not have independent
information about the topology of the population tree whiglisually inferred from the sequence data
as well. This means that if migration rates are high ¢~ 0.5 in figure 6.2) so that the ‘incongruent
topology’ becomes the most likely history, the populatiopdlogy would automatically be mis-inferred,
no matter whether one uses site counts, likelihood methddshwassume no migration (Yang, 2002) or
more realistic approximate methods to fit models of migratind divergence (Hey, 2010b).

However, despite these difficulties, the usefulness ofdnHlytical results for divergence with mi-
gration models is illustrated by a recent genomic study enhiistory of our own species. Greenal.
(2010) use a measure of asymmetry very similar to fheonsidered above to compare the recently
sequenced Neanderthal genome to human genomes samplediffienent populations. They find a sig-
nificant excess of 4% of derived sites shared by Neanderdmal€urasiatdomo sapiensompared to
sites shared by Neanderthals and Afri¢dnsapienswhich they interpret as evidence for hybridisation
between Neanderthals and anciehtsapiensoutside Africa (Greeret al, 2010, SOM 15). However,
the authors do admit that this signal could equally be erplhiby ancestral population structure prior
to the expansion of modern Humans out of Africa. Without audlalytical results for both models it
remains impossible to evaluate to what extent these two lm@@@ be distinguished and estimate the

rate of hybridisation required to explain the data. Presalyp¢éhe comparatively brief period of Human-
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Neanderthal coexistence implies that any hybridisati@mado would have to invoke rather high levels
of gene flow compared to the very weak barriers in ancestralijptions that can lead to asymmetries

(Pollardet al., 2006) provided such structure in our African ancestoriptad over a long timescale.
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Chapter 7

Discussion

Each of the preceding chapters contains its own, extengeeasbsion. Below, | first give a brief summary

of the main findings of the individual chapters and then disdwo general issues that emerge from this
work: The effects of sampling and recombination on histdrinference. Given that coalescent theory
has always been driven by the availability of genetic datse@éms appropriate to view these in the light

of the current revolution in sequencing technology.

7.1 Conclusions

7.1.1 Chapter 2

Chapter 2 shows that the degree of starshape of a genealagylity detectable using summary statistics
and can be taken as a surrogate for the effect of past denfggaap other non-neutral forces. Although
summary statistics such as Tajim@s(Tajima, 1989) and related measures are commonly usedifor th
they are far from ideal (Felsenstein, 1992). Two types ofpdnmew statistics are derived, which are
based on the number of mutations on the rootward branchegeaseid from polarized alignments by
a straightforward algorithm or the properties of a perfestarshaped genealogy respectively. Power
analyses on data simulated under a history of exponentaltgrshow that these measures are equal or
superior to standard neutrality tests. In particular, tumparison reveals that genealogical ratios out-
perform standard summary statistics in tests based on tha ared variance across multiple unlinked
loci. By grouping genealogies according to their (randapplogy, it becomes clear that statistics which
depend on pairwise measures such as Tajitlagse most severely confounded with the topology which

explains their comparatively low power and dependence igelsample sizes. In contrast, genealogical
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ratios efficiently extract information from small numberfsrdividuals. Provided reliable outgroup in-
formation is available these statistics may constituteedulslternative to full likelihood estimation and

standard tests of neutrality and could form the basis for@pmate methods of demographic inference.

7.1.2 Chapter 3

Chapter 3 investigates the phylogeographic history of @t of high alpine ground beetles (genus
Trechu$ on a single mountain range, the Orobian Alps in Northerly ltging sequence data from two
loci. Bayesian stochastic search variable selection (BHWemeyet al., 2009; Ceiridweret al., 2010)

is used to infer the most parsimonious set of directionahtion state changes together with standard
mutational parameters and genealogies. While this inéerénentirely based on the genealogy and as
such blind to the underlying population level processesjramal set of location state changes which
connects all populations has a straightforward and testalérpretation under a model of successive
founder events originating from a refugium. Given the mialrset of location state changes which de-
termines the order of population founding, the paraphylyst@ints implicit in this model can be tested.
Only three of the 12 samplédechuspopulations are incompatible with this scenario. This imaekable
given that the BSSVS approach is highly sensitive to locesiate changes which occur multiple times
in the genealogy as expected from incomplete lineage gpairmigration but not under the founder
event model. It also contrasts with previous phylogeogdiagtiidies on alpine insects, which have found
extensive incomplete lineage sorting (Knowles, 2001; teass& Knowles, 2007a). Furthermore both
mitochondrial and nuclear genealogies support separatgia¢origins for populations on the western
and eastern ends of the Orobian Alps, and mitochondrial agds suggest persistence on the northern
ridge for at least part of the last ice age. The deep phyloggduc structure within Orobiafrechuss in
stark contrast to previous larger-scale phylogeograpbdies particularly on high alpine plants (Schon-
swetteret al, 2005) and suggests that dispersal-limited, high alpitte@pods may have quite different
histories than the more dispersive alpine taxa previousljied. While BSSVS offers a quantitative way
to extract directional information, the analysis also dasimtes the limited power of phylogeographic
sampling schemes of small numbers of loci sampled for madhiyigtuals. In particular, it is not possible

to distinguish between incomplete lineage sorting and atign.

7.1.3 Chapter 4

Chapter 4 describes how exon-primed, intron-crossing@ERici can be developed relatively straight-

forwardly for highly conserved genes using publicly avaliéagenomic data and expressed sequence tags
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(ESTs). Amplification success of degenerate primers deeeldor 40 loci was scored on a diverse panel
of Hymenoptera associated with oak galls and figs. Althougpldication success declines with taxo-
nomic distance from the species used for primer desiasénig, considerable numbers of loci amplify
even in the gall and fig wasp hosts which are very distantbteel toNasonia Estimates of divergence
and diversity within Europe obtained for two PteromalidgsitoidsC. fungosaandM. amaenusuggest
that these loci contain information about their phylogemipic history. Focusing on highly conserved
genes for which degenerate primers can be built circumvbateeed for species specific primer design
or PCR optimisation (Papanicola@t al, 2005) required by alternative markers, in particular 3non
mous loci (Jennings & Edwards, 2005). Furthermore, thesieslmould make it possible in the future to

investigate the history of entire natural communities iruargitative framework.

7.1.4 Chapter 5

In chapter 5 sequence data from 20 of the newly developecautdci are used to infer the historical
relationships of three refugial populations (Middle E&sg, Balkans and Iberia) of the oak gall parasitoid
C. fungosa Previous studies on gall wasps (Rokssal,, 2003; Challiset al, 2007), their oak hosts
(Dumolin-Lapeguest al, 1997) and their chalcid parasitoids (Hayward & Stone, 2006holls et al,,
2010) as well as other temperate taxa (Michatal, 2004; Cullinget al,, 2006; Kochet al., 2006) have
found patterns of genetic diversity consistent with anerasorigin of refugial populations in southern
Europe. This westwards expansion has been estimated tdbgue in the early Pleistocene or before.
Comparing the support for all possible population tree tlogies using likelihood and Bayesian meth-
ods also suggests an ‘Out of the East’ history@orfungosa However, the estimated divergence times
between refugial populations are surprisingly recent@ding with the last (Eemian) interglacial. The
difference between population divergence times deriveshimodel-based analyses and naive interpreta-
tions of mitochondrial node ages can be entirely explaingithe large ancestral population sizes inferred
for C. fungosaGiven that most previous phylogeographic studies ingasitig the longitudinal history of
temperate taxa have ignored this ancestral variation giugial populations of temperate taxa in Europe
are likely to be younger than previously assumed in general.

The comparison of the two sampling schemes shows that thsigriificant information about popu-
lation divergence in minimal samples. This is encouragirtgio ways. In theory, full likelihood methods
(Yang, 2002, 2010; Wang & Hey, 2010) are only tractable fanimal samples. In practice community
wide studies are limited by their ability to include rare cips, so the fact that single specimens are suffi-
cient, provided a large number of loci is sampled, meandtitiese methods can be used to test alternative

models of parasitoid assemblage evolution in the future.
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A problem with the assumed model of divergence is that itigaonigration between populations, an
obvious possibility for refugial populations. Howevemrtiecency of the divergence time estimated3or
fungosaand the limited power to estimate ancesft¥al suggest that much larger numbers of loci would
be needed to fit more parameter-rich isolation with migratimdels (Nielsen & Wakeley, 2001; Hey &
Nielsen, 2004). An interesting alternative history invoty migration is a model of repeated episodes
of gene flow occurring during interglacials (Jesisal, 2006). Although this model is of immediate
interest given the Pleistocene climate cycles, it may bigcdlf to distinguish from a simpler history of
recent divergence without migration. This is because deiegisode of strong migration rapidly erases
any signature of previous historical events. However, Weedcenarios can potentially be distinguished
on a community-wide scale by comparing species with diffedéspersal abilities. If geneflow during
interglacials is important, one would expect to see moremecoalescence times in species with good

dispersal abilities compared to poor dispersers.

7.1.5 Chapter 6

In chapter 6 the three population model used in the previbapter is extended analytically by allow-
ing for migration between the older population and one ofrttuge recently diverged populations. The
probabilities of genealogical topologies are derived fanimal triplet samples using a discrete time
Markov-Chain. Plotting topological frequencies againstdel parameters gives a clear understanding
of the effects of migration. As would be expected intuitivehigration disproportionally increases the
probability and expected frequency of one of the two incaegt topologies(¢(ab)) in Fig. 6.1). This
asymmetry in topological probabilities arises solely fromgration after the more recent divergence
event. The analysis illustrates the difficulty of obtain@wen simple results for realistic, non-equilibrium
models. The analytical difficulty arises directly from tlaek of symmetry in the migration model which
makes it necessary to consider all possible combinatiomaigfation and coalescence events. Thus
increasing the realism of these models (for example by ieggthe simplifying assumption of equal pop-
ulation size for all populations) introduces additionglrametries which will further complicate analysis.
However, since the main motivation for such theoreticalknisithe development of computational meth-
ods for the analysis of sequence data, complexity may naemator example, if expressions for the
probability of full data patterns could be generated autioally (either by using a Matrix approach or
by finding recursions for the moment generating functidmytwould be immediately useful even if they

are complex.
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7.2 Outlook

A common theme throughout this thesis has been the effe@mpbng on statistical power. In chapter
2, the gain in power to infer past demography was shown tordéhirapidly with sample size. Similarly,
the comparison of the two sampling schemes in chapter 4 asid baalescent theory (Takahaghal,,
1995) suggests that the most efficient sampling scheme isfoasingle individual sampled at a great
number of loci. Although the importance of replicating aagdoci has been pointed out by many (e.g.
Felsenstein, 1992, 2006; Wakeley, 2004b; Wang & Hey, 2Qh6je are surprisingly few thorough inves-
tigations of the effect of sampling. Felsenstein (2006 waubthat the accuracy in estimating the scaled
mutation rate in the neutral Wright-Fisher model only irages logarithmically with sample size, but is
proportional to the number of loci. However, he points oatt thhe optimal sampling schemes may differ
between models and recommends that for histories involviiggation “one would want to have larger
sample sizes in each population to detect recent migra(ieelsenstein, 2006). In contrast, Wang &
Hey (2010) conclude that Felsenstein’s reasoning for desipgpulation essentially extends to isolation
with migration (IM) models. Knowing the optimal samplinghsme for parameter estimation under a
particular model matters in two ways. Firstly, sequencingligs now face a genuine choice between se-
guencing a few moderately-sized genomes using next gémesgquencing or obtaining sequences for a
large number of individuals at a handful of selected lochgssanger technology. If historical signal can
be most efficiently extracted from a very large number of Eaxjuenced for a few individuals, even the
most fragmented genome assemblies for two or three indilédeontain vastly more information than
traditional phylogeographic samples. Secondly, many etlieoretical complications that limit current
inference methods disappear for small samples. In paaticlikelihood methods which integrate over
all possible histories and thus break down for moderate kasipes are tractable for pairs and triplets
(Wang & Hey, 2010; Yang, 2010). With the increasing avallgbof genomic data, such exact methods
of historical inference will undoubtedly become more impat in the future, not least because they are
computationally more efficient than schemes based on stionta

However, the analysis of genomic data comes with new chgdlen In particular, recombination
presents a conundrum for historical inference. On the one higenerates crucial replication by un-
coupling the genealogical histories of nearby genomicaregi On the other hand, in practice linkage
patterns can only be inferred incompletely and indireatiyrf polymorphism information, making it dif-
ficult to define blocks of shared ancestry. Almost all methoflkistorical inference assume that the
history of a given locus can be described by a single bifimgajenealogy (Nielsen & Wakeley, 2001,
Yang, 2002; Rannala & Yang, 2003; Hey & Nielsen, 2004). Ireotivords, it is assumed that there is
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no recombination within, but free recombination betweani. IGiven that the rate of recombination is of
the same order as the mutation rate in some organisms, thisigusly a gross oversimplification which
is clearly violated when dealing with large continuous k®of sequence. The ancestry of a sample
of recombining sequences can be described as a graph (@Griffi®91; Wakeley, 2008). Unfortunately,
results for divergence and/or migration models based oartkestral recombination graph are not avail-
able. Thus in practice, the complications of recombinagieavoided by trimming data into supposedly
non-recombining segments (chapters 3,5) based on theygouete test (Hudson & Kaplan, 1985). How-
ever, what effects this has on inference is poorly undedst@® recent simulation study (Strasburg &
Riesenber, 2009) found no bias in parameter estimates timelévl model even for substantial amounts
of recombination as long as loci were trimmed. However, tiisiously throws information away in
two ways. Firstly, shortening sequences reduces the roottinformation available to infer genealo-
gies. Secondly, the pattern of recombination itself corst@mformation about the underlying history. In
particular, the rate of recombination along a genealogyap@rtional to its length and so the scale of
correlation along the genome gives a clock that is indepatrafehe mutation rate. Surprisingly perhaps,
no current IM model uses linkage information. However, a edul Hidden-Markov framework, which
approximates the coalescent with recombination and u$esration from linked sites to infer changes
in topology along the genealogy has been developed forgivere models (Hoboltét al., 2007). Simi-
larly, Hellenthalet al. (2008) have developed a scheme to use recombination to fidelrnbpopulation
founding in humans. In the Neanderthal case (Geteaal, 2010), recent hybridisation should be distin-
guishable from ancient population structure from the Iargftsequence blocks shared by Neanderthals

and Humans.

To conclude, coalescent theory has become indispensallesf@nalysis of sequence data. It pro-
vides a sound quantitative description of the historiesaofigles and the population genetics processes
shaping them which has made the historical divide betwesstltiased phylogeography and frequency
based population genetics obsolete. Thinking in term okgkgies does indeed provide a deeper un-
derstanding of the historical signal in genetic data andllgéeads to new and more powerful ways to
extract this information. However, we have only just begomdalise the full potential of the coales-
cent for historical inference. Massively parallel sequegtechnologies are rapidly closing the practical
gap between the study of model and non-model organisms.e\iliglse genomic datasets promise ever
greater power for historical inferences, the limiting tacs now the availability of appropriate theory
and efficient computational methods. This means that impgoexisting and developing new analytical

methods based on the coalescent will remain a central tgsémflation genetics for decades to come.
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This work will undoubtedly have to tackle many difficult cleadges, some new but many old. How-
ever, the potential rewards are immense. Improving ouitahd see into the past opens up exciting
possibilities for the study of community assembly and wikd new light on our own evolutionary jour-

ney.

115



Appendix

116



Bibliography

Aebi, A., Schénrogge, K., Melika, G., Alma, A., Bosio, G., &chia, A., Picciau, L., Abe, Y., Moriya, S.,
Yara, K., Seljak, G. & Stone, G.N. (2006). Parasitoid retrngint to the globally invasive chestnut gall
waspDryocosmus kuriphilusin Galling Arthropods and Their Associatgsages 103-121. Springer,

Japan.

Allan, G.J., Francisco-Ortega, J., Santos-Guerra, A.rBare E. & Zimmer, E.A. (2004). Molecular
phylogenetic evidence for the geographic origin and diassion of Canary Islandotus(Fabaceae:
Loteae).Molecular Phylogenetics and Evolutipd2(1), 123-138.

Andolfatto, P. (2001). Contrasting patterns of X-linkedlautosomal nucleotide variationD@rosophila

melanogasteandDrosophila simulansMolecular Biology and Evolutioril8(3), 279-290.

Andolfatto, P. & Przeworski, M. (2000). A genome-wide depae from the standard neutral model in

natural populations dbrosophila Genetics156(1), 257-268.

Askew, R.R. (1961). Some bhiological notes on the pterom@igim. Chalcidoidea) gener@aenacis
Forster,CecidostibaThomson andHobbyaDelucchi, with descriptions of two new speciegnto-

mophaga6, 58-67.

Askew, R.R. (1980). The diversity of insect communitiesaéaflmines and plant gallsThe Journal of
Animal Ecology49, 145-152.

Avise, J. (1987). Intraspecific phylogeography: the mitoudrial DNA bridge between population ge-
netics and systematicAnnual Review of Ecology and Systemati& 489-522.

Bailey, R., Schénrogge, K., Cook, J.M., Melika, G., Csoka, Thuroczy, C. & Stone, G.N. (2009). Host
niches and defensive extended phenotypes structure foédasasp communitie?LoS Biology7(8),
€1000179.

117



Barr, T.C.J. (1985). Pattern and process in speciationemhtne beetles in eastern North America
(Coleoptera: Carabidae: Trechinae). In G.E. Ball, editaxonomy, Phytogeny and Zoogeography
of Beetles and Antpages 350-407. Dr W. Junk Publishers, Dordrecht, The Natids.

Barton, N.H., Depaulis, F. & Etheridge, A. (2002). Neutrabkeiton in spatially continuous populations.
Theoretical Population Biology1, 31—48.

Barton, N.H., Kelleher, J. & Etheridge, A.M. (2010). A new d® for extinction and recolonisation in

two dimensions: quantifying phylogeograplsrolution in press

Barton, N.H. & Wilson, 1. (1995). Genealogies and geogragthilosophical Transactions of the Royal
Society of London Series B49, 49-59.

Baudry, E. & Depaulis, F. (2003). Effect of misoriented site neutrality tests with outgroufenetics
165(3), 1619-1622.

Beaumont, M.A., Zhang, W. & Balding, D.J. (2002). Approxim&ayesian computation in population
genetics.Genetics162, 2025-2026.

Becquet, C. & Przeworski, M. (2007). A new approach to esttnparameters of speciation models with

application to apesGenome Researcth7(10), 1505-1519.

Becquet, C. & Przeworski, M. (2009). Learning about modespciation from computational ap-
proachesEvolution 63(10), 2547-2562.

Bogdanowitcz, S.M., Wallner, W.E., Bell, J., O’'Dell, T.M. Barrison, R.G. (1993). Asian gypsy moth
(Lepidoptera: Lymantriidae) in North America: evidencerfrmolecular dataAnnals of the Entomo-

logical Society of Americe86, 710-715.

Braverman, J.M., Hudson, R.R., Kaplan, N.L., Langley, C&iStephan, W. (1995). The hitchhiking
effect on the site frequency spectrum of DNA polymorphis@enetics140(2), 783—796.

Brower, A.V.Z. (1994). Rapid morphological radiation ansheergence among races of the butterfly
Heliconius eratdnferred from patterns of mitochondrial DNA evolutioRroceedings of the National

Academy of Science of the United States of Amge8ita6491-6495.

Burgess, R. & Yang, Z. (2008). Estimation of hominoid an@dgtopulation sizes under Bayesian co-
alescent models incorporating mutation rate variationsegliencing errorsMolecular Biology and
Evolution 25(9), 1979-1994.

118



Campbell, B.C., Steffen-Campbell, J.D. & Werren, J.H. @9®hylogeny of thé&lasonia(Hymenoptera:
Pteromalidae) species complex inferred from an interaalstribed spacer (ITS2) and 28s rDNA se-

quenceslnsect Molecular Biology2, 225-237.

Carstens, B.C. & Knowles, L.L. (2007a). Estimating phylogdrom gene tree probabilities in
MelanoplusggrasshoppersSystematic Biologyp6, 400—411.

Carstens, B.C. & Knowles, L.L. (2007b). Shifting distrilmrts and speciation: species divergence during
rapid climate changeviolecular Ecology16(3), 619-627.

Carstens, B.C., Stoute, H.N. & Reid, N.M. (2009). An infotioa-theoretical approach to phylogeogra-
phy. Molecular Ecology18(20), 4270-4282.

Ceiridwen, J.E., Suchard, M., Lemey, P., Welch, J., Barngrudlton, T.L., Barnett, R. O’Conell, T,
Coxon, P., Monaghan, N., Valdioser, C.E., Baryshnikov,, GRambaut, A., Thomas, M.G., Bradley,
D.G. & Shapiro, B. (2010). Phylogenetic evidence for hylsdtion between brown and polar bears

during the late Pleistocendlature in review

Challis, R.J., Mutun, S., Nieves-Aldrey, J.L., Preuss,Rkas, A., Aebi, A., Sadeghi, E., Tavakoli,
M. & Stone, G.N. (2007). Longitudinal range expansion angpbtic eastern species in the western

palaearctic oak gallwaspndricus coriarius Molecular Ecology16(10), 2003—2014.

Charlesworth, B., Charlesworth, D. & Barton, N. (2003). Hfiiects of genetic and geographic structure

on neutral variationAnnual Review of Ecology, Evolution, and Systemads99-125.

Chen, F.C. & Li, W.H. (2001). Genomic divergences betweemé#ns and other hominoids and the
effective population size of the common ancestor of humanschimpanzeesAmerican Journal of
Human Genetic68(2), 444—-456.

Contreras-Diaz, H.G., Moya, O., Oromi, P. & Juan, C. (200E\olution and diversification of the
forest and hypogean ground-beetle gefreehusin the Canary IslandsViolecular Phylogenetics and
Evolution 42(3), 687-699.

Cook, J.M., Rokas, A., Pagel, M. & Stone, G.N. (2002). Evioluary shift between host oak section and
host-plant organs iAndricusgallwasps.Evolution 56(9), 1821-1830.

Creer, S. (2007). Choosing and using introns in moleculgtqgenetics.Evolutionary Bioinformatics
3, 99-108.

119



Csoka, G., Stone, G.N. & Melika, G. (2005). The biology, egyl and evolution of gallwasps. In
C. Raman, W. Schaefer & T.M. Withers, editoBiology, ecology and evolution of gall inducing
insects pages 573-642. Science Publisher, Enfield, New Hampshire.

Culling, M.A., Janko, K., Boron, A., Vasil'ev, V. P.and CotéM. & Hewitt, G.M. (2006). European
colonization by the spined loackR¢bitis taenia from Ponto-Caspian refugia based on mitochondrial
DNA variation. Molecular Ecology 15, 173—-190.

Daniel, K. & Daniel, J. (1898). Beitrage zur Kenntnis der @ag TrechusClairville. Coleopteren-
Studien 2, 1-16.

Darwin, C. (1859).The origin of species by means of natural selectigwhn Murray, London.

Das, A., Mohanty, S. & Stephan, W. (2004). Inferring the pagian structure and demography of
Drosophila ananassagom multilocus dataGenetics168(4), 1975-1985.

DeChaine, E.G. & Martin, A.P. (2006). Using coalescent s$ation to test the impact of Quaternary

climate cycles on divergence in an alpine plant-insect@ason. Evolution 60(5), 1004-1013.

Degnan, J.H. & Rosenberg, N.A. (2009). Gene tree discomgitylogenetic inference and the multi-
species coalescentrends in Ecology & Evolutior?4(6), 332—340.

Degnan, J.H. & Salter, L.A. (1995). Gene tree distributiansler the coalescent procedsvolution
59(1), 24-37.

Depaulis, F., Mousset, S. & Veuille, M. (2003). Power of mality tests to detect bottlenecks and
hitchhiking. Journal of Molecular Evolution57(0), S190-S200.

Di Rienzo, A., Donnelly, P., Toomajian, C., Sisk, B., Hill, Aetzl-Erler, M.L., Haines, G.K. & Barch,
D.H. (1998). Heterogeneity of microsatellite mutationshivi and between loci, and implications for
human demographic historieGenetics 148(3), 1269-1284.

Din, W., Anand, R., Boursot, P., Darviche, D., Dod, B., JouMarche, E., Orth, A., Talwar, G.,
Cazenave, P.A. & Bonhomme, F. (1996). Origin and radiatibthe house mouse: clues from nu-

clear genesJournal of Evolutionary Biology9, 519-539.

Dowling, D.K., Friberg, U. & Lindell, J. (2008). Evolutiomaimplications of non-neutral mitochondrial
genetic variationTrends in Ecology & Evolutior23(10), 546-554.

120



Drummond, A.J. & Rambaut, A. (2007). BEAST: Bayesian eviolury analysis by sampling trees.
BMC Evolutionary Biology7, 214.

Dumolin-Lapegue, S., Demesure, B., Fineschi, S., Corile, &.Petit, R.J. (1997). Phylogeographic
structure of white oaks throughout the European contin@ehetics146, 1475-1487.

Ebersberger, I., Galgoczy, P., Taudien, S., Taenzer, &zd?] M. & von Haeseler, A. (2007). Mapping
human genetic ancestrilolecular Biology and Evolutior24(10), 2266—2276.

Edwards, S.V. (2009). Is a new and general theory of molesyktematics emerging2volution 63(1),
1-19.

Emerson, B.C., Paradis, E. & Thebaud, C. (2001). Revediaeglemographic histories of species using
DNA sequencesTrends in Ecology & Evolution6(12), 707—716.

Ewens, W.J. (1972). The sampling theory of selectively ra¢atleles. Theoretical Population Biology
3,87-112.

Faccini, S. & Sciaky, R. (2002). Note sulla variabilita madgica dell’edeago infrechus modestus
Putzeys 1874 (Coleoptera, Carabidae, TrechirBellettino del Museo Regionale di Scienze Naturali
di Torino, 21, 103-113.

Fay, J.C. & Wu, C.I. (2000). Hitchhiking under positive Daman selection.Genetics 155(3), 1405—
1413.

Felsenstein, J. (1975). A pain in the torus: some difficaltih models of isoaltion by distancémeri-

can Naturalisf 109(976), 359—368.

Felsenstein, J. (1981). Evolutionary trees from DNA segaena maximum likelihood approaclournal
of Molecular Evolution17, 368-376.

Felsenstein, J. (1988). Phylogenies from molecular sempgennference and reliabilityAnnual Review

of Genetics22(1), 521-565.

Felsenstein, J. (1992). Estimating effective populatiae from samples of sequences: inefficiency of
pairwise and segregating sites as compared to phylogerstiinates.Genetical Researctb9, 139—
147.

Felsenstein, J. (2006). Accuracy of coalescent likelihesiimates: do we need more sites, more se-

quences, or more loci®lolecular Biology and Evolutior23(3), 691-700.

121



Fisher, R.A. (1930)The Genetical Theory of Natural Selectig@larenson, Oxford.

Focarile, A. (1949). 10 contributo alla conoscenza dei lird@@alearctici.Bolletina della Soc. Entomol.

Ital., 89, 71-77.

Focarile, A. (1950). 20 contributo alla concoscenza dechira palearcticiBolletina della Soc. Entomol.
Ital., 29, 52-67.

Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. @4). DNA primers for amplification of
mitochondrial cytochrome c oxidase subunit 1 from divers¢amoan invertebratellolecular Marine

Biology and Biotechnology, 294—-299.

Forer, B. (1949). The fallacy of personal validation - a stasm demonstration of gullibilitfdournal of
Abnormal and Social Psychologd4, 118-123.

Fu, Y.X. (1996). New statistical tests of neutrality for DNd&mples from a populatioGenetics143(1),
557-570.

Fu, Y.X. & Li, W.H. (1993). Statistical tests of neutrality mutations.Genetics133(3), 693—-709.

Galtier, N., Depaulis, F. & Barton, N.H. (2000). Detectingtttenecks and selective sweeps from DNA
sequence polymorphisn&enetics 155(2), 981-987.

Garrick, R.C., Rowell, D.M., Simmons, C.S., Hillis, D.M.u@nucks, P. & Brown, J. (2009). Fine-
scale phylogeographic congruence despite demograpluognaence in two low-mobility saproxylic
springtails.Evolution 62(5), 1103-1118.

Gifford, M.E. & Larson, A. (2008). In situ genetic differeation in a hispaniolan lizard§meiva chryso-

laem3g: a multilocus perspectiveMolecular Phylogenetics and Evolutipf9(1), 277—-291.

Glinka, S., Ometto, L., Mousset, S., Stephan, W. & De Loremxo(2003). Demography and natural
selection have shaped genetic variatioDmsophila melanogasteA multi-locus approachsenetics
165(3), 1269-1278.

Godfray, H.J.C. (1994 )Parasitoids. Behavioural and Evolutionary Ecolodrinceton University Press,

New Jersey.

Green, R.E., Krause, J., Briggs, A.W., Maricic, T., StenZel Kircher, M., Patterson, N., Li, H., Zhai, W.,
Fritz, M.H.Y., Hansen, N.F., Durand, E.Y., Malaspinas, AXnsen, J.D., Marques-Bonet, T., Alkan,
C., Prufer, K., Meyer, M., Burbano, H.A., Good, J.M., SchulR., Aximu-Petri, A., Butthof, A.,

122



Hober, B., Hoffner, B., Siegemund, M., Weihmann, A., NusbhaC., Lander, E.S., Russ, C., Novod,
N., Affourtit, J., Egholm, M., Verna, C., Rudan, P., BrajkovD., Kucan, Z., Gusic, |., Doronicheyv,
V.B., Golovanova, L.V., Lalueza-Fox, C., de la Rasilla, Mortea, J., Rosas, A., Schmitz, R.W.,
Johnson, P.L.F., Eichler, E.E., Falush, D., Birney, E.,IMind, J.C., Slatkin, M., Nielsen, R., Kelso, J.,
Lachmann, M., Reich, D. & Paabo, S. (2010). A draft sequehtesoNeanderthal genom&cience
328(5979), 710-722.

Griffiths, R.C. (1981). The number of heterozygous loci lemmttwo randomly chosen completely linked

sequences of loci in two subdivided population mod#sirnal of Mathematical Biologyl 2, 251-261.

Griffiths, R.C. (1991). The two-locus ancestral graph. \hBasawa & R.I. Taylor, editor§elected Pro-
ceedings of the Symposium of Applied Probabifigges 100-117. Institute of Mathematical Statistics,
Haywards, CA, USA.

Griffiths, R.C. & Tavaré, S. (1994). Sampling theory for maualleles in a varying environmerfhilo-
sophical Transactions: Biological Scien¢&g4(1310), 403-410.

Haddrill, P.R., Thornton, K.R., Charlesworth, B. & Anddli@ P. (2005). Multilocus patterns of nu-
cleotide variability and the demographic and selectiotolnysof Drosophila melanogastgropulations.
Genome Research5(6), 790-799.

Halligan, D.L. & Keightley, P.D. (2006). Ubiquitous sele® constraints in thérosophilagenome

revealed by a genome-wide interspecies compari€@mome Research6(7), 875-884.

Hamblin, M.T., Mitchell, S.E., White, G.M., Gallego, J., Katla, R., Wing, R.A., Paterson, A.H. &
Kresovich, S. (2004). Comparative population geneticdefganicoid grasses: sequence polymor-
phism, linkage disequilibrium and selection in a diversapie of Sorghum bicolarGenetics167(1),

471-483.

Harpending, H.C. (1994). Signature of ancient populati@wgh in a low-resolution mitochondrial DNA
mismatch distributionHuman Biology66(4), 591-600.

Hayward, A. & Stone, G.N. (2005). Oak gall wasp communitiEsolution and ecology.Basic and
Applied Ecology6(5), 435-443.

Hayward, A. & Stone, G.N. (2006). Comparative phylogeobsegcross two trophic levels: the oak gall
waspAndricus kollariand its chalcid parasitoiliegastigmus stigmatizanlolecular Ecology15(2),
479-489.

123



Hedrick, P.W. & Parker, J.D. (2003). Evolutionary geneticsl genetic variation of haplodiploids and
X-linked genesAnnual Review of Ecology and Systemati&{(1), 55-83.

Heled, J. & Drummond, A.J. (2009). Bayesian inference otmsetrees from multilocus datMolecular
Biology and Evolution27(3), 570-580.

Hellenthal, G., A., A. & Falush, D. (2008). Inferring humaml@nisation history using a copying model.
PLoS Genetigs4(5), €1000078.

Heuertz, M., De Paoli, E., Kallman, T., Larsson, H., Jurmanylorgante, M., Lascoux, M. & Gyllen-
strand, N. (2006). Multilocus patterns of nucleotide déigr linkage disequilibrium and demographic
history of norway sprucéPicea abiegL.) Karsf. Genetics174(4), 2095-2105.

Hewitt, G. (2000). The genetic legacy of the Quaternary gesaNature 405, 907-913.

Hewitt, G.M. (1999). Post-glacial re-colonization of Epean biota.Biological Journal of the Linnean
Society68(1-2), 87-112.

Hey, J. (2005). On the number of new world founders: a pofraenetics portrait of the peopling of

the americasPLoS Biology3(6), e193.

Hey, J. (2010a). The divergence of chimpanzee species dspacies as revealed in multipopulation

isolation-with-migration analysed4olecular Biology and Evolutio27, 921-933.

Hey, J. (2010b). Isolation with migration models for moraritiwo populationsMolecular Biology and
Evolution 27, 905-920.

Hey, J. & Machado, C.A. (2003). The study of structured papohs - new hope for a difficult and
divided scienceNature Reviews Genetic4(7), 535-543.

Hey, J. & Nielsen, R. (2004). Multilocus methods for estim@tpopulation sizes, migration rates and
divergence time, with applications to the divergenc®asophila pseudoobscui@ndD. persimilis
Genetics167(2), 747-760.

Hey, J. & Nielsen, R. (2007). Integration within the Feldeirs equation for improved Markov chain
Monte Carlo methods in population geneti€oceedings of the National Academy of Sciences of the
United States of Ameri¢d 04(8), 2785-2790.

Hickerson, M.J., Carstens, B.C., Cavender-Bares, J., daterK.A., Graham, C.H., Johnson, J.B.,
Rissler, L., Victoriano, P.F. & Yoder, A.D. (2010). Phylagggaphy’s past, present, and future: 10
years after Avise 200Molecular Phylogenetics and Evolutigh4(1), 291-301.

124



Hickerson, M.J., Stahl, E. & Takebayashi, N. (2007). msBaypeline for testing comparative phylo-
geographic histories using hierarchical approximate BiayecomputatiorBMC Bioinformatics8(1),
268.

Hickerson, M.J., Stahl, E.A., Lessios, H.A. & Crandall, ROQ6). Test for simulatenous divergence
using approximate Bayesian computati@volution 60(12), 2435—-2453.

Higgins, D.J. & Sharp, P.M. (1988). Clustal: a package fafqgrening multiple sequence alignments.
Gene 73, 273-244.

Hillis, D.M. & Bull, 3.J. (1993). An empirical test of bootstpping as a method for assessing confidence
in phylogenetic analysisSystematic Zoology2, 182-192.

Ho, S.Y.W., Phillips, M.J., Cooper, A. & Drummond, A.J. (H)O Time dependency of molecular rate
estimates and systematic overestimation of recent dimesgggmesMolecular Biology and Evolution
22(7), 1561-1568.

Hobolth, A., Christensen, O.F., Mailund, T. & Schierup, M(B007). Genomic relationships and specia-
tion times of human, chimpanzee, and gorilla inferred froooalescent hidden Markov modé&LoS

Genetics3(2), e7.

Hodkinson, I.D. (2005). Terrestrial insects along elevatjradients: species and community response to
altitude. Biological Reviews80, 489-513.

Holdhaus, K. (1954). Die Spuren der Eiszeit in der Tierweltdpas. Abhandlungen der Zoologisch-
Botanischen Gesellschaft in Wiel8, 1-493.

Hudson, R.R. (1983). Testing the constant-rate neutedkathodel with protein sequence daEaolution
37,203-217.

Hudson, R.R. (1993)The How and Why of Generating Genealogidapan Scientific Societies Press,

Tokyo and Sinauer Associates.

Hudson, R.R. (2002). Generating samples under a WrighteFiseutral model of genetic variation.

Bioinformatics 18, 337—-338.

Hudson, R.R., Boos, D.D. & Kaplan, N.L. (1992). A statsitistest for detecting geographic subdivison.
Molecular Biology and Evolutior®, 138-151.

125



Hudson, R.R. & Kaplan, N.L. (1985). Statistical propert¢she number of recombination events in the
history of a sample of DNA sequencé&3enetics111, 147-164.

Hudson, R.R. & Turelli, M. (2003). Stochasticity overruteg "three-times rule": genetic drift, genetic

draft, and coalescence times for nuclear loci versus mitodhial DNA. Evolution 57(1), 182-190.

Hurst, G.D.D. & Jiggins, F.M. (2005). Problems with mitociuial DNA as a marker in population,
phylogeographic and phylogenetic studies: the effectsbéiited symbionts.Proceedings of the
Royal Society B: Biological Scienc&¥2(1572), 1525-1534.

Innan, H., Zhang, K., Marjoram, P., Tavaré, S. & Rosenberd,. \2005). Statistical tests of the co-
alescent model based on the haplotype frequency diswiband the number of segregating sites.
Genetics169(3), 1763-1777.

Irwin, D.E. (2002). Phylogeographic breaks without gepdia barriers to gene flovievolution 56(12),
2383-2394.

Jackli, H. (1970). Die Schweiz zur letzten Eiszétidgendssische Landestopographie

Janetschek, H. (1956). Das Problem der inneralpinen Higmsidauerung durch TiereZoologische
Jahrbicher. Abteilung fur Systematik, Geographie unddgjigl der Tiere 70(177-226).

Jeannel, R. (1927). Monographie des Trechinae. morpt®loginparee et distribution geographique
d’une group des coleopters’Abeille, 32, 1-992.

Jennings, W.B. & Edwards, S.V. (2005). Speciational histoir Australian grass finche$2¢ephilg
inferred from thirty gene treegvolution 59(9), 2033-2047.

Jesus, F.F., Wilkins, J.F., Solferini, V.N. & Wakeley, JO0B). Expected coalescence times and segregat-

ing sites in a model of glacial cycle&enetics and Molecular Researd@(3), 466—474.
Jordan, S.D. (1905). The origin of species through isafat®cience22, 545-562.

Juste, J., Ibafiez, C., Mufioz, J., Trujillo, D., Benda, Praikas, A. & Ruedi, M. (2004). Mitochondrial
phylogeography of the long-eared ba®@$gcotud in the mediterranean Palaearctic and Atlantic islands.
Molecular Phylogenetics and Evolutip®1(3), 1114-1126.

Kalendar, R., Lee, D. & Schulman, A.H. (2009). FastPCR saferfor PCR primer and probe design and

repeat searchzenes, Genomes and Genom&@).

126



Kass, R.E. & Raftery, A.E. (1995). Bayes factordournal of the American Statistical Associatjon
90(430), 773-795.

Keightley, P.D., Trivedi, U., Thomson, M., Oliver, F., Kum&. & Blaxter, M.L. (2009). Analysis
of the genome sequences of three drosophila melanogastaiasous mutation accumulation lines.

Genome Research9(7), 1195-1201.

Kimura, M. (1969). The number of heterozygous nucleotitiessmaintained in a finite population due
to the steady flux of mutation&enetics61, 893-903.

Kingman, J.F.C. (1982). The coalesceBtochastic Processes and their Applicatioh®, 235—-248.

Kliman, R.M., Andolfatto, P., Coyne, J.A., Depaulis, F.gifman, M., Berry, A.J., McCarter, J., Wakeley,
J. & Hey, J. (2000). The population genetics of the origin divérgence of th®rosophila simulans
complex speciesGenetics156(4), 1913-1931.

Klinka, J. & Zink, R.M. (1997). The importance of recent icgea in speciation: a failed paradigm.
Science277(5332), 1666—1669.

Knowles, L.L. (2001). Did the Pleistocene glaciations podendivergence? tests of explicit refugial

models in montane grasshoppreviolecular Ecology10(3), 691-701.
Knowles, L.L. (2002). Statistical phylogeograpiWolecular Ecology11, 2623-2635.

Knowles, L.L. (2004). The burgeoning field of statisticalyfdgeography. Journal of Evolutionary
Biology, 17(1), 1-10.

Knowles, L.L. (2008). Why does a method that fails contirmbé usedEvolution 62, 2713-2717.

Knowles, L.L. (2009). Statistical phylogeograpBynual Review of Ecology, Evolution, and Systematics
40(1), 593-612.

Koch, M.A., Kiefer, C. & Ehrlich, D. (2006). Three times out Asia Minor: the phylogeography of
Arabis alpinal. (BrassicaceaeMolecular Ecology 15, 825-839.

Kubatko, L.S., Carstens, B.C. & Knowles, L.L. (2009). STE§pecies tree estimation using maximum

likelihood for gene trees under coalescerBminformatics 25(7), 971-973.

Kuhner, M.K., Yamato, J. & Felsenstein, J. (1995). Estimgagffective population size and mutation
rate from sequence data using Metropolis-Hastings sampBenetics140(4), 1421-1430.

127



Kuo, C.H. & Avise, J. (2005). Phylogeographic breaks in Idispersal species: the emergence of con-
cordance across gene tre€enetica124(2), 179-186.

Kuo, L. & Mallick, B. (1998). Variable selection for regrése models.Sankhya: The Indian Journal of
Statistics, Series,B0(1), 65-81.

Lamm, K.S. & Redelings, Benjamin, D. (2009). Reconstrugancestral ranges in historical biogeogra-

phy: properties and prospectkurnal of Systematics and Evolutictv (5), 369-382.

Lee, J.Y., Edwards, S.V. & Webster, M. (2009). Divergencmss Australia’s Carpentarian barrier:
statistical phylogeography of the red-backed fairy widal{irus melanocephal)isEvolution 62(12),
3117-3134.

Lemey, P., Rambaut, A., Drummond, A.J. & Suchard, M.A. (20@ayesian phylogeography finds its
roots. PLoS Computational Biolog(9), €1000520.

Lennartsson, T. (2002). Extinction thresholds and digdmtiant-pollinator interactions in fragmented

plant populationsEcology 83, 3060-3072.

Lessa, E.P. (1992). Rapid surveying of DNA sequence variati natural populationd/olecular Biology
and Evolution9(2), 323-330.

Leys, R., Cooper, S.J.B. & Schwarz, M.P. (2002). Moleculaylpgeny and historical biogeography of
the large carpenter bees, genydocopa(Hymenoptera: Apidae)Biological Journal of the Linnean
Society 77(2), 249-266.

Li, Y.J., Satta, Y. & Takahata, N. (1999). Paleo-demograpiiyre Drosophila melanogastesubgroup:
application of the maximum likelihood metho@enes & Genetic Systen®i(4), 117-127.

Liu, L. & Pearl, D.K. (2007). Species trees from gene treexonstructing bayesian posterior distri-
butions of a species phylogeny using estimated gene tréxbditons. Systematic Biology56(3),
504-514.

Lohse, K. (2009). Can mtDNA barcodes be used to delimit §3€CiA response to Pons et al. (2006).
Systematic Biologyb8(4), 439-442.

Lompe, A. (2004). Trechini. In H. Freude, K.W. Harde, G.AHse & B. Klausnitzer, editor®ie Kafer
Mitteleuropas, Vol. 2pages 108—-149. Spectrum Verlag, Heidelberg/Berlin.

128



Lopez-Vaamonde, C., Rasplus, Y.J., Weiblen, G. & Cook, J2001). Molecular phylogenies of fig
wasps: partial co-cladogenesis of pollinators and passitiolecular Phylogenetics and Evolutipn

21, 55-71.

Machado, C.A., Robbins, N., Gilbert, M.T.P. & Herre, E.AO(5). Critical review of host specificity and
its coevolutionary implications in the fig/fig-wasp mutsati. Proceedings of the National Academy of
Sciences of the United States of Amerit@2(Suppl 1), 6558-6565.

Maddison, W.P. (1997). Gene trees in species tr8gstematic Biology6(3), 523-536.

Maddison, W.P. & Knowles, L.L. (2006). Inferring phylogedgspite incomplete lineage sortingys-
tematic Biology55(1), 21-30.

Malécot, G. (1969)The Mathematics of HeredityVF Freeman, San Francisco.

Margraf, N., Verdon, A., Rahier, M. & Naisbit, R.E. (2007)laBial survival and local adaptation in an
alpine leaf beetleMolecular Ecology16(11), 2333—-2343.

Matsen, F.A. & Wakeley, J. (2006). Convergence to the islamdiel coalescent in populations with
restricted migrationGenetics172(1), 701-708.

Mena-Correa, J., Sivinski, J., Anzures-Dadda, A., RamiRemero, R., Gates, M. & Aluja, M. (2009).
Consideration oEurytoma sivinski{Gates and Grissell), a eurytomid (Hymenoptera) with ualisu
foraging behaviors, as a hiological control agent of tegh(Diptera) fruit flies. Biological Control|
53(1), 9-17.

Michaux, J., Libois, R., E., P. & M.-G., F. (2004). Phylogeaghic history of the yellow-necked field-
mouse Apodemus flavicolljsin Europe and in the Near and Middle Easflolecular Phylogenetics
and Evolution 32, 788-798.

Moya, O., Contreras-Diaz, H.G., Oromi, P. & Juan, C. (20@8netic structure, phylogeography and de-
mography of two ground-beetle species endemic to the Terlatirel forest (Canary Islanddylolec-

ular Ecology 13(10), 3153-3167.

Muster, C., Maddison, W.P., Uhlman, S., Berendonk, T.U. &Mo, A.P. (2009). Arctic-alpine distribu-

tions - metapopulations on a continental scalé® American NaturalistL73(3), 313—326.

Nee, S., Holmes, E.C., Rambaut, A. & Harvey, P.H. (1995)erifig population history from molecular
phylogeniesPhilosophical Transactions of the Royal Society of LondeneS B 349(25-31).

129



Nei, M. & Gojobori, T. (1986). Simple methods for estimatithg numbers of synonymous and nonsyn-

onymous nucleotide substitutionglolecular Biology and Evolutior3, 418-426.

Nei, M. & Kumar, S. (2000).Molecular Evolution and Phylogenetic©xford University Press, New
York.

Nepokroeff, M., Sytsma, K.J., Wagner, W.L. & Zimmer, E.AO3). Reconstructing ancestral patterns of
colonization and dispersal in the Hawaiian understorygeaisPsychotria Rubiaceae): a comparison

of parsimony and likelihood approach&ystematic Biologyb2(6), 820—838.

Nicholls, J.A., Preuss, S., Hayward, A., Melika, G., Csofa, Nieves-Aldrey, J.L., Askew, R.R.,
Tavakoli, M., Schoénrogge, K. & Stone, G.N. (2010). Concartdahylogeography and cryptic spe-
ciation in two western Palaearctic oak gall parasitoid ®secomplexes.Molecular Ecology 19,
592-609.

Nichols, R. (2001). Gene trees and species trees are ndirtine $rends in Ecology & Evolutionl6(7),
358-364.

Nielsen, R. & Beaumont, M.A. (2009). Statistical inferesde phylogeographyMolecular Ecology
18(6), 1034-1047.

Nielsen, R. & Wakeley, J. (2001). Distinguishing migratfoom isolation: a Markov chain Monte Carlo
approachGenetics 158, 885-896.

Nordborg, M. (1998). On the probability of Neanderthal aine American Journal of Human Genetjcs
63(4), 1237-40.

Obbard, D.J., Welch, J.J., Kim, K.W. & Jiggins, F.M. (2009QQuantifying adaptive evolution in the
Drosophilaimmune systemPL0S Genet5, e1000698.

Ochman, H. & Wilson, A.C. (1987). Evolution in bacteria - @@nhce for a universal substition rate in

cellular genomeslournal of Molecular Evolution26, 74—86.

Oliveira, D.C.S.G., Raychoudhury, R., Lavrov, D.V. & Wamrel.H. (2008). Rapidly evolving mito-
chondrial genome and directional selection in mitochaaldyénes in the parasitic wadfasonia(Hy-

menoptera: Pteromalidadylolecular Biology and Evolutior25(10), 2167-2180.

Ometto, L., Glinka, S., De Lorenzo, D. & Stephan, W. (200%etring the effects of demography and
selection orDrosophila melanogastguopulations from a chromosome-wide scan of DNA variation.
Molecular Biology and Evolutior22(10), 2119-2130.

130



Pagel, M., Meade, A. & Barker, D. (2004). Bayesian estinratibancestral character states on phyloge-
nies. Systematic Biologyp3(5), 673—684.

Palumbi, S.R. & S., B.C. (1994). Contasting populationdtite from nuclear intron sequence and
mtDNA of humpback whalesviolecular Biology and Evolution1(3), 426-435.

Pamilo, P. & Nei, M. (1988). Relationships between genestegal species treelolecular Biology and
Evolution 5(5), 568-583.

Panchal, M. & Beaumont, M.A. (2007). The automation anduaiidn of nested clade analysBvolu-
tion, 61, 1466-1480.

Papanicolaou, A., Joron, M., Mcmillan, W.O., Blaxter, M& Jiggins, C.D. (2005). Genomic tools and
cDNA derived markers for butterflied4olecular Ecology14(9), 2883-2897.

Parker, S.R. (1997). Sequence navigator. multiple sequalignment softwareMethods in Molecular
Biology, 70, 145-54.

Patterson, N., Richter, D.J., Gnerre, S., Lander, E.S. &lRd). (2006). Genetic evidence for complex
speciation of humans and chimpanzesature 441(7097), 1103-1108.

Pauls, S.U., Lumbsch, H.T. & Haase, P. (2006). Phylogedyrapthe montane caddisf®rusus dis-

color: evidence for multiple refugia and periglacial survivisllolecular Ecology15(8), 2153-2169.
Pauw, A. (2007). Collapse of a pollination web in small camagon areasEcology 88, 1759-1769.

Peters, J.L., Zhuravlev, Y.N., Fefelov, I., Humphries, E&Omland, K.E. (2008). Multilocus phylo-
geography of a holarctic duck: colonization of North Amaritom Eurasia by gadwallpas streperp
Evolution 62(6), 1469-1483.

Pluzhnikov, A., Di Rienzo, A. & Hudson, R.R. (2002). Infecars about human demography based on
multilocus analyses of noncoding sequendasnetics161(3), 1209-1218.

Pollard, D.A., lyer, V.N., Moses, A.M. & Eisen, M.B. (2006)idespread discordance of gene trees with

species tree iDrosophila evidence for incomplete lineage sortigl.oS Genetic2(10), e173.

Pulquério, M. & Nicholls, R.A. (2007). Dates from the moléuclock: how wrong can we bePrends
in Ecology & Evolution22(4).

Pybus, O.G., Rambaut, A., Holmes, E.C. & Harvey, P.H. (2008w inferences from tree shape: num-
bers of missing taxa and population growth rat@gstematic Biologyb1(6), 881—-888.

131



Rambaut, A. & Drummond, A.J. (2007). Tracer v1.4.

Ramirez-Soriano, A., Ramos-Onsins, S.E., Rozas, J., €&klaf& Navarro, A. (2008). Statistical power
analysis of neutrality tests under demographic expanscmmgractions and bottlenecks with recombi-
nation.Genetics179(1), 555-567.

Ramos-Onsins, S.E., Mousset, T., Mitchell-Olds, T. & SwphV. (2007). Population genetic inference

using a fixed number of segregating sites: a reassessf@enttical Reseragt39, 231-244.

Ramos-Onsins, S.E. & Rozas, J. (2002). Statistical priagsesf new neutrality tests against population
growth. Molecular Biology and Evolutioril9(12), 2092—2100.

Rannala, B. & Yang, Z. (2003). Bayes estimation of speciesrdence times and ancestral population

sizes using DNA sequences from multiple loGienetics164(4), 1645—-1656.

Raychoudhury, R., Baldo, L., Oliveira, D.C.S.G., Werrehl. & Wayne, M. (2009). Modes of aquisition
of Wolbachia horizontal transfer, hybrid introgression and codiveigein theNasoniacomplex.
Evolution 63(1), 165-183.

Reich, D., Feldman, M. & Goldstein, D. (1999). Statisticabperties of two tests that use multilocus
data sets to detect population expansidvislecular Biology and Evolutionl6(4), 453—466.

Reitter (1908). Fauna Germanica - Die Kéafer des deutschen Reickielkime 1. K. G. Lutz Verlag,
Stuttgart.

Rokas, A., Atkinson, R., Brown, G., West, S.A. & Stone, G.RD@1). Understanding patterns of genetic
diversity in the oak gallwasBiorhiza pallida demographic history or ®olbachiaselective sweep?
Heredity, 87, 294-305.

Rokas, A., Nylander, J.A., Ronquist, F. & Stone, G.N. (2002 maximum-likelihood analysis of eight
phylogenetic markers in gallwasps (Hymenoptera: Cynigidamplications for insect phylogenetic
studies.Molecular Phylogenetics and Evolutiph2, 1055-7903.

Rokas, A., Atkinson, R.J., Webster, L., Csoéka, G. & Stondy.G2003). Out of Anatolia: longitudi-
nal gradients in genetic diversity support an eastern offigi a circum-mediterranean oak gallwasp

Andricus quercustoza®lolecular Ecology12(8), 2153-2174.

Ronquist, F. (2004). Bayesian inference of character ¢éioslu Trends in Ecology & Evolution19(9),
475-481.

132



Rosenberg, N. (2002). The probability of topological caemce of gene trees and species trééso-
retical Population Biology61, 225-247.

Rozas, J. & Rozas, R. (1995). DNAsp, DNA sequence polymermphian interactive program for es-
timating population genetics parameteres from DNA segeetata. Computer Applications in the
Biosciencesll, 621-625.

Rozas, J., Sanchez-DelBarrio, J.C., Messeguer, X. & Rdza003). DNAsp, DNA polymorphism
analyses by the coalescent and other methBasnformatics 19(18), 2496—2497.

Rozen, S. & Skaletsky, H.J. (2000). Primer3 on the WWW foregahusers and biologist programmers.
In S. Krawetz & S. Misener, editor8ioinformatics Methods and Protocols: Methods in Molecula

Biology, pages 365-386. Humana Press, NJ.

Saitou, N. & Nei, M. (1986). The number of nucleotides regdito determine the branching order of
three species, with special reference to the human-chirggagorilla divergencelournal of Molecu-

lar Evolution 24(1), 189-204.

Satta, Y., Klein, J. & Takahata, N. (2000). DNA archives andmearest relative: the trichotomy problem
revisited.Molecular Phylogenetics and Evolutipb4(2), 259-275.

Saunders, I.W., Tavaré, S. & Watterson, G.A. (1984). On #aeeglogy of nested subsamples from a
haploid populationAdvances in Applied Probabilityt 6, 471-491.

Schaeffer, S.W. (2002). Molecular population geneticsegfugnce length diversity in the Adh region of
Drosophila melanogasteGenetical Reseragi80, 163—-175.

Schierup, M.H. & Hein, J. (2000). Consequences of recontisinan traditional phylogenetic analysis.
Genetics156(2), 879-891.

Schmitt, T. (2009). Biogeographical and evolutionary imgnce of the European high mountain systems.

Frontiers in Zoology6(1), 9.

Schmitt, T. & Hewitt, G. (2006). Disjunct distributions dng glacial and intergalcial periods in mountain

butterflies:Erebia epiphroras an examplelournal of Evolutionary Biology19(1), 108-113.

Schmolzer, K. (1962). Die Kleintierwelt der Nunatakker Zksugen einer Eiszeitiberdaueruniglit-
teilungen des Zoologischen Museums in Be@i8(2), 172—-400.

133



Schneider, S., Roessli, D. & Excoffier, L. (2000\rlequin: a software for population genetics data

analysis. Ver 2.000Genetics and Biometry Lab, Dept. of Anthropology, Univisrsf Geneva, Geneva.

Schneider, S. & Excoffier, L. (1999). Estimation of past dgnaphic parameters from the distribution
of pairwise differences when the mutation rates vary amderg:sapplication to human mitochondrial
DNA. Genetics152(3), 1079-1089.

Schénmann, R. (1937). Die Artsystematik und Verbreitunghdehalpinen Trechini der Ostalpedo-
ologische Jahrbiicher. Abteilung fur Systematik, Geogieaphd Biologie der Tiere70, 178-226.

Schoénrogge, K., Stone, G.N. & Crawley, M.J. (1996a). Aburtggpatterns and species richness of the
parasitoids and inquilines of the alien gall-forrerdricus quercuscalicifHymenoptera: Cynipidae).
Oikos 77(3), 507-518.

Schénrogge, K., Stone, G.N. & Crawley, M.J. (1995). Spatial temporal variation in guild structure:
parasitoids and inquilines éfndricus quercuscalicitHymenoptera: Cynipidae) in its native and alien

rangesOikos 72(1), 51-60.

Schénrogge, K., Stone, G.N. & Crawley, M.J. (1996b). Alienldivores and native parasitoids: rapid de-
velopment of guild structure in an invading gall wagmdricus quercuscalicitHymenoptera: Cynip-
idae). Ecological Entomology?1, 71-80.

Schoénrogge, K., Walker, P. & Crawley, M.J. (1998). Invadershe move: parasitism in the galls of four
alien gall wasps in Britain (Hymenoptera, CynipidaBjoceedings of the Royal Society B: Biological
Sciences256, 1643-1650.

Schoénswetter, P., Stehlik, I., Holderegger, R. & Tribsch(2005). Molecular evidence for glacial refugia
of mountain plants in the European Algdolecular Ecology14(11), 3547-3555.

Schonswetter, P., Tribsch, A., Barfuss, M. & Niklfeld, HO@). Several Pleistocene refugia detected in
the high alpine planPhyteuma globulariifoliunsternb. & Hoppe (Campanulaceae) in the European

Alps. Molecular Ecology11(12), 2637—2647.

Schweiger, H. (1969). Gebirgssysteme als Zentren der Bitthmg. Deutsche Entomologische
Zeitschrift 16, 159-174.

Sha, Z.L., Zhu, C.D., Murphy, R.W. & Huang, D.W. (2007Diglyphus isaea(Hymenoptera: Eu-
lophidae): a probable complex of cryptic species that foamsmportant biological control agent of

agromyzid leaf minerslournal of Zoological Systematics and Evolutionary Restea5(2), 128—-135.

134



Sharanowski, B.J., Robbertse, B., Walker, J., Voss, S.Bdel S.R., Spatafora, J. & Sharkey, M.J.
(2010). Expressed sequence tags reveal Proctotrupom@nirinas Chalcidoidea) as sister to Aculeata

(Hymenoptera: InsectaMolecular Phylogenetics and Evolutipaccepted

Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H. &6k, P. (1994). Evolution, weighting and
phylogenetic utility of mitochondrial gene sequences aodrapilation of conserved polymerase chain

reaction primersAnnals of the Entomological Society of Ameri8@, 651-701.

Simonsen, K.L., Churchill, G.A. & Aquadro, C.F. (1995). Pesties of statistical tests of neutrality for
DNA polymorphism dataGenetics141(1), 413-429.

Slatkin, M. (1991). Inbreeding coefficients and coalesedimes.Genetical Research8, 167-75.

Slatkin, M. & Hudson, R.R. (1991). Pairwise comparisons dbohondrial DNA sequences in stable
and exponentially growing populationGenetics 129(2), 555-562.

Slatkin, M. & Maddison, W.P. (1998). A cladistic measure ehg flow inferred from the phylogenies of
alleles.Genetics123, 603—-613.

Slatkin, M. & Pollack, J.L. (2006). The concordance of geres$ and species trees at two linked loci.
Genetics172(3), 1979-1984.

Slatkin, M. & Pollack, J.L. (2008). Subdivision in an ancasspecies creates asymmetry in gene trees.
Molecular Biology and Evolutior25(10), 2241-2246.

Sota, T. & Vogler, A.P. (2001). Incongruence of mitochoatlend nuclear gene trees in the carabid
beetlesOhomopterusSystematic Biologyp0(1), 39-59.

Stehlik, 1., Blattner, F.R., Holderegger, R. & Bachmann(R002). Nunatak survival of the high alpine
plantEritrichium nanun(l.) Gaudin in the central Alps during the ice ag®®lecular Ecology11(10),
2027-2036.

Stephan, W. & Li, H. (2006). The recent demographic and adaptstory ofDrosophila melanogaster
Heredity, 98(2), 65—68.

Stone, G.N., Atkinson, R., Rokas, A., Csoka, G. & Nieves#&jd J.L. (2001). Differential success in
northwards range expansion between ecotypes of the maatheagpAndricus kollari a tale of two

lifecycles. Molecular Ecology 10, 761-778.

135



Stone, G.N., Challis, R.J., Atkinson, R.J., Cs6ka, G., HaygwA., Melika, G., Mutun, S., Preuss, S.,
Rokas, A., Sadeghi, E. & Schénrogge, K. (2007). The phylgggohical clade trade: tracing the im-
pact of human-mediated dispersal on the colonization dheon Europe by the oak gallwagmdricus

kollari. Molecular Ecology16, 2768-2781.

Stone, G.N., Hernandez-Lopez, A., Nicholls, J.A., di RigE., Pujade-Villar, J., Melika, G., Cook, J.M.
& Abbot, P. (2009). Extreme host plant conservatism duringpast 20 million years of host plant
pursuit by oak gallwaspg£volution 63(4), 854-869.

Stone, G.N. & Sunnucks, P. (1993). Genetic consequenceasiofasion through a patchy environment
- the cynipid gallwasAndricus quercuscalicitHymenoptera: CynipidaeMolecular Ecology2(4),
251-268.

Stone, G.N., van der Ham, R.W.J.M. & Brewer, J.G. (2008)skask galls preserve ancient multitrophic
interactions.Proceedings of the Royal Society B: Biological Scien2@&5(1648), 2213-2219.

Strasburg, J.L. & Riesenber, L.H. (2009). How robust artatsan with migration analysies to violations
of the IM model? a simulation studiolecular Biology and Evolutior27(2), 297-310.

Suchard, M., Weis, Robert, E. & Sinsheimer, J.S. (2001).eBmmn selection of continuous-time Markov
chain evolutionary modeldviolecular Biology and Evolution8, 1001-1013.

Sunnucks, P., Blacket, M., Taylor, J., C.J., S., Ciavad@iaGarrick, R., Tait, N. & Pavlova, A. (2006).
A tale of two flatties: different responses to past environtakfluctuations at Tallaganda in montane

southeastern Australidlolecular Ecology15, 4513-4531.

Swofford, D.L. (2001). Paup*. phylogenetic analysis ugdagsimony (*and other methods). version 4.1.

Sinauer Associates, Sunderland, Massachusetts.

Taberlet, P., Fumagalli, L., Wust-Saucy, A.G. & Cosson, (ILB98). Comparative phylogeography and

postglacial colonization routes in Europdolecular Ecology7, 453-464.

Tajima, F. (1989). Statistical method for testing the nalutrutation hypothesis by DNA polymorphism.
Genetics123(3), 585-595.

Tajima, F. (1983). Evolutionary relationships of DNA seqaes in finite populationsGenetics105(2),
437-460.

Tajima, F. (1993). Simple methods for testing the molecalarutionary clock hypothesisGenetics
135, 599-607.

136



Takahata, N. & Nei, M. (1985). Gene genealogy and variangg&efpopulational nucleotide differences.
Genetics110(2), 325-344.

Takahata, N., Satta, Y. & Klein, J. (1995). Divergence timd population size in the lineage leading to
modern humansTheoretical Population Biology8, 198—221.

Tamura, K., Dudley, J., Nei, M. & Kumar, S. (2007). MEGA4: Macllar evolutionary genetics analysis
(MEGA) software version 4.0Molecular Biology and Evolutior24, 1596—1599.

Tamura, K., Subramanian, S. & Kumar, S. (2004). Tempordepas of fruit fly Orosophilg evolution
revealed by mutation clock#/olecular Biology and Evolutior21(1), 36—44.

Tanabe, K., Mita, T., Jombart, T., Eriksson, A., Horibe,Balacpac, N., Ranford-Cartwright, L., Sawali,
H., Sakihama, N., Ohmae, H., Nakamura, M., Ferreira, M.dcatante, A.A., Prugnolle, F., Bjork-
man, A., Farnert, A., Kaneko, A., Horii, T., Manica, A., Kisl, H. & Balloux, F. (2010)Plasmodium

falciparumaccompanied the human expansion out of AfriCarrent Biology in press

Tavaré, S. (1984). Lines-of-descentand genealogicabss®s and their application in population genetic
models.Theoretical Population Biology6, 119-164.

Templeton, A.R. (2010). Coalescent-based, maximum hkeld inference in phylogeograptolecular

Ecology 19(3), 431-446.

Templeton, A.R., Routman, E. & Phillips, C.A. (1995). Segiarg population structure from population
history: a cladistic analysis of the geographical disttitou of mitochondrial DNA haplotypes in the
tiger salamandeAmbystoma tigrinumGenetics140(2), 767—782.

Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994). Cliwtainproving the sensitivity of progressive
multiple sequence alignment through sequence weightiogjtipn specific gap-penalities and weight

matrix choice.Nucleic Acids ResearcR2, 4673-4680.

Thornton, K. & Andolfatto, P. (2006). Approximate Bayesiafierence reveals evidence for a recent,
severe bottleneck in a Netherlands populatioafsophila melanogasterGenetics 172(3), 1607—
1619.

Untergasser, A., Nijveen, H., Xiangyu, R., Bisseling, Teu&s, R. & Leunissen, J.A.M. (2007).
Primer3Plus, an enhanced web interface to primBi&leic Acids ResearcB5, W71-W74.

Uyenoyama, M.K. (1997). Genealogical structure amongdealeegulating self-incompatibility in natural

populations of flowering plantsGenetics147(3), 1389—-1400.

137



van der Ham, R.W.J.M., Kuijper, W.J., Kortselius, M.J.Hanwder Burgh, J., Stone, G.N. & Brewer, J.G.
(2008). Plant remains from the Kreftenheye formation (Eemhat Raalte, the Netherlandegetation
History and Archaeobotanyt7, 127-144.

Velichko, A.A., Novenko, E.Y., Pisareva, V.V., ZeliksonNE, Boettger, T. & Junge, F.W. (2005). Veg-
etation and climate changes during the Eemian interglat@@ntral and eastern Europe: comparative
analysis of pollen dateBoreas 34(2), 207—-219.

Villablanca, F.X., Roderick, G.K. & Palumbi, S.R. (1998jhvasion genetics of the mediterranean fruit

fly: variation in multiple nuclear introndviolecular Ecology7(5), 547-560.

Wakeley, J. (1996). Pairwise differences under a generaetaf subdivision. Journal of Genetics
75(1), 81-89.

Wakeley, J. (1998). Segregating sites in Wright's islandiedloTheoretical Population Biologys3(2),
166-174.

Wakeley, J. (1999). Nonequilibrium migration in human bigt Genetics153, 1863-1871.

Wakeley, J. (2001). The coalescent in an island model of fagipn subdivision with variation among

demes.Theoretical Population Biologyp9(2), 133-144.
Wakeley, J. (2004a). Metapopulation models for histoiiit@rence Molecular Ecology13(4), 865-875.

Wakeley, J. (2004b). Recent trends in population genetitste data! more math! simple models?
Heredity, 95(5), 397—-405.

Wakeley, J. (2008). Complex speciation of humans and chiMapure 452, E3—E4.

Wakeley, J. (2009)Coalescent theoryRoberts & Company Publishers, Greenwood Village, Colorad
Wakeley, J. & Aliacar, N. (2001). Gene genealogies in a nogiafation.Genetics 159, 893-905.

Wall, J.D. (2003). Estimating ancestral population sizebsdivergence time$enetics163(1), 395-404.

Wallace, A.R. (1876)The geographic distributions of animals, with a study ofrédations of living and

extinct faunas as elucidating the past changes of the Easliwface Harper and Brothers, New York.

Wang, Y. & Hey, J. (2010). Estimating divergence parametstts small samples from a large number
of loci. Genetics184, 363-373.

138



Watterson, G.A. (1975). On the number of segregating sitgenetical models without recombination.

Theoretical Population Biology/, 239-276.
Weiblen, G.D. (2002). How to be a fig waspnnual Review of Entomologg7(1), 299-330.

Weinert, L.A., Werren, J.H., Aebi, A., Stone, G.N. & JiggifsM. (2009). Evolution and diversity of
Rickettsiabacteria.BMC Biology 7(1), 6.

Weiss, G.H. & Kimura, M. (1965). A mathematical analysis bé tstepping stone model of genetic
correlation.Journal of Applied Probability2, 129—49.

Whitlock, M.C. & Barton, N. (1997). The effective size of alglivided population. Genetics 146,
427-441.

Whitlock, M.C. & McCauley, D.E. (1999). Indirect measurdgjene flow and migration: FST not equal
to 1/(4Nm+1).Heredity, 82(2), 117-125.

Wild, A.L. & Maddison, D.R. (2008). Evaluating nuclear peot-coding genes for phylogenetic utility
in beetles.Molecular Phylogenetics and Evolutipf8(3), 877—891.

Wilder, J.A. & Hollocher, H. (2003). Recent radion of enden@iaribbearDrosophila of the dunni
subgroup inferred from mutlilocus DNA sequence variatiBxolution 57(11), 2566—2579.

Wilkins, J.F. (2004). A separation-of-timescales apphoacthe coalescent in a continuous population.
Genetics168(4), 2227-2244.

Wilkinson-Herbots, H.M. (2008). The distribution of theatescence time and the number of pairwise
nucleotide differences in the "isolation with migrationbdel. Theoretical Population Biology/3(2),
277-288.

Won, Y.J., Sivasundar, Y., Wang, Y. & Hey, J. (2005). On thigiarof lake Malawi chilcid species: a
population genetic analysis of divergenderoceedings of the National Academy of Sciences of the
United States of Ameri¢cd02, 6581-6586.

Wright, S. (1931). Evolution in Mendelian populatior@enetics 16, 97—-159.
Wright, S. (1943). Isolation by distanc&enetics28(2), 114-138.

Wright, S. (1951). The genetic structure of populatiofisnals of Eugenicd 5, 323-354.

139



Yang, Z. (2002). Likelihood and Bayes estimation of an@gtopulation sizes in hominoids using data
from multiple loci. Genetics162(4), 1811-1823.

Yang, Z. (2010). A likelihood ratio test of speciation witarge flow using genomic dat&enome Biology
and Evolution 2, 200-211.

Zhang, D.X. & Hewitt, G.M. (2003). Nuclear DNA analyses imgtic studies of populations: practice,
problems and prospectslolecular Ecology12(3), 563-584.

Zhou, R., Zeng, K., Wu, W., Chen, X., Yang, Z., Shi, S. & Wu,.G2007). Population genetics of
speciation in nonmodel organisms: |. ancestral polymamphin mangrovesMolecular Biology and

Evolution 24(12), 2746—-2754.

140



Genet. Res., Camb. (2009), 91, pp. 281-292.
doi:10.1017/S0016672309990139  Printed in the United Kingdom

© Cambridge University Press 2009 281

Measuring the degree of starshape in genealogies — summary
statistics and demographic inference

KONRAD LOHSE* aAxp JEROME KELLEHER
Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK

(Received 27 August 2008 and in revised form 4 February 2009)

Summary

The degree of starshape of a genealogy is readily detectable using summary statistics and can be
taken as a surrogate for the effect of past demography and other non-neutral forces. Summary
statistics such as Tajima’s D and related measures are commonly used for this. However, it is well
known that because of their neglect of the genealogy underlying a sample such neutrality tests are
far from ideal. Here, we investigate the properties of two types of summary statistics that are derived
by considering the genealogy: (i) genealogical ratios based on the number of mutations on the
rootward branches, which can be inferred from sequence data using a simple algorithm and

(i1) summary statistics that use properties of a perfectly star-shaped genealogy. The power of these
measures to detect a history of exponential growth is compared with that of standard summary
statistics and a likelihood method for the single and multi-locus case. Statistics that depend on
pairwise measures such as Tajima’s D have comparatively low power, being sensitive to the random
topology of the underlying genealogy. When analysing multi-locus data, we find that the
genealogical measures are most powerful. Provided reliable outgroup information is available they
may constitute a useful alternative to full likelihood estimation and standard tests of neutrality.

1. Introduction

The motivation for studying the impact of past de-
mography on sequence data is two-fold. Firstly,
changes in population size are interesting in their own
right, being intimately linked to processes such as
speciation or geographic range shifts. Secondly, the
standard neutral model (SNM) of a randomly mating
Wright-Fisher population of constant size and dis-
crete generations, hardly ever describes the patterns of
diversity found in natural populations. Thus, studies
aiming to detect loci under selection are faced with the
considerable challenge of fitting realistic demographic
models against which selection can be tested e.g.
Glinka ez al. (2003), Hamblin et al. (2004), Haddrill
et al. (2005), Ometto et al. (2005) and Thornton &
Andolfatto (2006). Since the rate of coalescence is in-
versely proportional to the effective population size,
it is clear that demographic changes must leave a de-
tectable signature in genealogies (Felsenstein, 1992).
In general, positive population growth distorts
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genealogies towards a starshape with shorter internal
branches, resulting in more low frequency variants
and a unimodal rather than multi-peaked mismatch
distribution (Slatkin & Hudson, 1991; Harpending,
1994; Schneider & Excoffier, 1999). In contrast to
selective processes that act on single genetic variants,
demography affects the whole genome, so one expects
to find a concordant signature across loci (Tajima,
1989; Galtier et al., 2000).

Approaches to demographic inference fall into
three broad categories; for a review see Emerson ef al.
(2001). Firstly, likelihood methods, which are avail-
able for bottleneck and exponential growth models,
make use of all the information in a sample by inte-
grating over a large set of likely genealogies (Griffiths
& Tavaré, 1994; Kuhner et al., 1995). Although opti-
mal in terms of statistical power and accuracy, likeli-
hood estimation is computationally intensive and
requires a fully specified alternative model. Therefore
realistic growth histories often remain analytically in-
tractable. Secondly, there are tree-based methods,
which take the branch length information of a re-
constructed tree as their starting point. Assuming that
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sequence evolution is clock-like, the number of lin-
eages can be plotted against time and the shape of this
trajectory compared with its neutral expectation (Nee
et al., 1995; Pybus et al., 2002). Despite their con-
ceptual appeal, these methods neglect any uncertainty
in tree topology and are thus only as good as the
reconstructed tree they are based on. Furthermore
they cannot deal with recombination by definition.
Finally, there are classical neutrality tests, most of
which do not explicitly consider the genealogy but
instead use more immediate aspects of the data such
as the frequency spectrum of mutations, e.g. Tajima’s
D (Tajima, 1989) and Fu & Li’s D (hereafter referred
to as D,) (Fu & Li, 1993), the haplotype distribution,
e.g. Fu’s Fg (Fu, 1996; Innan et al., 2005), or the
mismatch distribution, e.g. the raggedness statistic
(Slatkin & Hudson, 1991). Compared with likelihood
estimation, summary statistics are straightforward
to calculate and their distribution can be simulated
under almost any growth model.

Considering the zoo of statistics available and their
wide use, there are surprisingly few studies that sys-
tematically compare their power, and those that
do mainly consider bottlenecks and single locus data
(Simonsen et al., 1995; Fu, 1996; Ramos-Onsins &
Rozas, 2002; Depaulis et al., 2003 ; Ramirez-Soriano
et al., 2008). However, joint analysis of multiple loci is
not only necessary to distinguish between selective
and demographic events (Galtier et /., 2000) but also
potentially far more powerful than inferences based
on a single locus. An added advantage of multi-locus
analysis is that both means and variances of summary
statistics can be used for testing. Variance based tests
were first developed for microsatellite data (Di Rienzo
et al., 1998 ; Reich et al., 1999) but are now routinely
used to analyse sequence data from multiple loci
(Pluzhnikov et al., 2002; Haddrill et al., 2005;
Heuertz et al., 2006) or even species (Hickerson et al.,
20006).

A general conclusion that has emerged from simu-
lation studies is that tests based on the number and
distribution of haplotypes have more power to detect
bottlenecks than statistics based on s, in particular
Tajima’s D (Ramos-Onsins & Rozas, 2002; Innan
et al., 2005; Ramirez-Soriano et al., 2008). Earlier,
Felsenstein made a theoretical argument for the in-
feriority of pairwise measures (Felsenstein, 1992).
Their large variance under neutrality arises both from
their sensitivity to the last coalescence event and the
random genealogical topology (Tajima, 1983). Under
the SNM more symmetric genealogies are on average
associated with higher ;7 and more ragged mismatch
distributions than asymmetric genealogies. It is im-
portant to realize that this topological variance is in-
dependent of the already large variance in coalescence
times inherent in the genealogical process. In other
words ‘despite their aura of robustness’ (Felsenstein,
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1992), statistics based on 7 suffer from an unnecess-
arily large variance under neutrality, and hence have
comparatively low power. Despite these results, D
and mismatch distributions continue to be the meth-
ods of choice for demographic inferences in popu-
lation genetics and phylogeography, respectively.

Following Felsenstein’s recommendation that
‘there is much to gain from explicitly taking the
genealogical relationship of a sample into account’
(Felsenstein, 1992), the aim of this study is to consider
how genealogical information can be used for demo-
graphic inference in a summary statistics framework.
Our premise here is that the mutation rate is suf-
ficiently high relative to the per site recombination rate
such that non-recombining blocks of sequences can be
easily identified and treated as independent loci.

Given that there is usually not enough information
in within-species sequences data to infer the full top-
ology unambiguously it seems important to ask which
part of the topology yields most information. The first
part of the paper introduces some simple measures
of starshape, which are based on the properties of a
rooted genealogy. Using simulations, their power to
detect a history of exponential growth is compared
with standard neutrality tests for both the single and
multi-locus cases. We focus on the exponential growth
model for two reasons. Firstly, although it is a fre-
quently used demographic model, the power of sum-
mary statistics to detect exponential growth has been
little investigated. Secondly, likelihood methods are
available, which can be taken as an absolute ‘upper
bound’ of power for comparison. Such a direct com-
parison between summary statistics and the optimal
likelihood methods is lacking so far.

2. Summary statistics

Several neutrality tests compare two different esti-
mators of the scaled mutation rate (Fu & Li, 1993;
Tajima, 1989; Fay & Wu, 2000) 6 =4N,.u, where u is
the mutation rate and N, the effective population size,
which capture different aspects of the data. Most
prominently, Tajima’s D is defined as the difference
between 6 estimated as 7, and 6,,= S/a, (Watterson’s
0, where a, =Z;:11 L n is the sample size and S the
total number of polymorphic sites in the sample),
normalized by the standard deviation of this differ-
ence. Genealogies from growing populations typically
have relatively more low frequency variants and hence
tend to have a negative D.

While neutrality tests are commonly based on the
frequency spectrum and s, it is instructive to consider
departures from the SNM in terms of their effect
on the genealogy. Such tree-thinking necessarily
underlies summaries that make use of outgroup in-
formation, e.g. D, has a straightforward genealogical
interpretation. Below two different ways of employing
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Fig. 1. Random genealogy of a sample of 20 sequences.
The root partitions the sample into two subclades of size
3 and 7. Rootward branches are shown as bold, terminal
branches as dotted lines, mutations are represented as
crosses. The time interval until the last coalescence event,
T,, is shorter than average under the SNM. In this
example S=30, 7g="7, N gmin =2 and 5. =14.

genealogical information in the construction of sum-
mary statistics are considered.

(1) Genealogical ratios

The rationale behind D, is to distinguish between
two classes of mutations: those found on terminal
branches, 7. and those on internal branches, #; (Fig. 1)
(Fu & Li, 1993). Suppose that some limited topologi-
cal information can be inferred from the data. In
particular, we will for now assume that the placement
of the root is known. It is then possible to distinguish
mutations found on the two rootward branches,
which we shall denote 1. Under the infinite sites as-
sumption, these are all derived mutations that are
shared by all individuals in either of the two sub-clades
defined by the root. The advantage of considering the
proximity of mutations to the root rather than the tips
is twofold: firstly, rootward branches cover a greater
proportion of the time to the most recent common
ancestor of the sample (Tyrca) and should, in gen-
eral, be more informative about past changes in popu-
lation size. Under the SNM, on average half of the
Tmrea 1s taken up by the coalescence of the last two
lineages (73) (Fig. 1), whereas in a growing popu-
lation, the smaller population size in the past forces
the last two lineages to coalescence much more
rapidly. Secondly, the average length of a branch
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connected to the root is less dependent on the sample
size than the average length of a terminal branch.

Ideally, one wants to know the total number of
mutations that have occurred during T, rather than
the number of mutations on both rootward branches,
nr which is larger and depends on the topology,
i.e. the order of the first node on the longer of the two
branches (Uyenoyama, 1997, Appendix).

One possibility is to only consider the shorter of the
two rootward branches that has exactly length Ts.
Thus the number of mutations found on this branch,
7 rmin, OVEr Ow constitutes a very simple measure of
starshape.

7] Rmin

r= 0, M
Such genealogical ratios have first been employed
to study the effect of balancing selection on plant in-
compatibility loci (Uyenoyama, 1997). Being based
on a single random event, X clearly neglects much of
the information contained in the genealogy. Its power
is limited by the probability of observing #gmin=0
under neutrality. In other words, X is unlikely to be of
much use in the case of a single locus.

Alternatively, one can ignore the uncertainty in
node order and take the number of mutations found
on both rootward branches relative to 6,,:

X, = g— ®)

It is possible of course to construct various composite
measures from the number of mutations found on
different parts of the genealogy. Here, we only con-
sider one additional statistic, the relative difference
between rootward and terminal mutations:

X2 _ 7]R6_ e ) (3)
w

The X statistics assume some knowledge of the tree
topology that is usually unknown. Of course one
could use some standard method of tree reconstruc-
tion and infer 5z and Hgmi, from the most likely
topology. However, not only is it inefficient to re-
construct the full topology when all that is required
is the placement of the root, conditioning on a single
tree also ignores any topological uncertainty. We have
therefore developed a simple scheme of inferring the
root in a sample of polarized sequences that circum-
vents these problems.

Under the infinite sites assumption, a necessary
criterion for the root-node is that no mutations are
shared between the two subsets on either side. One
can show that if both branches connected to the root
carry mutations, i.e. 1 gmin > 0 there exists exactly one
bipartition of the sample with no mutational overlap.
If however one or both of the rootward branches of
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the genealogy carry no mutations there may be mul-
tiple bipartitions that meet this criterion. In this case
Nrmin=0 and the tree reconstructed from such a
sample would have an unresolved polytomy at its
base. To incorporate the topological uncertainty
about the placement of the root, we compute the
average value of np over all partitions that are com-
patible with the criterion of no mutational overlap.
Note that in contrast to most tree reconstruction
algorithms that join similar sequences (i.c. start from
the tips down the tree), our scheme is divisive (i.e. it
starts from the root). To avoid having to consider all
possible bipartitions of the sample (2"'—1), we
make use of the fact that any sequences that share
mutations have to be on the same side of the root.
By first binning sequences that share at least one
mutation, we can directly calculate 7z and the num-
ber of possible partitions.

(i) Starting from the limiting case

A different approach is to construct summaries that
measure departures from the limiting case of a per-
fectly star-shaped genealogy. Star-shaped genealogies
have some convenient properties that can be used for
this. Assuming that outgroup information is available,
one can record the number of terminal mutations in
each sequence i (because lineages are exchangeable,
the labelling is arbitrary), V;. In a perfectly star-
shaped genealogy, all mutations must fall onto ter-
minal branches by definition. Thus one expects the
number of derived mutations in a sequence to be half
the average pairwise diversity, i.e. E[V]=m/2. The
statistic Ry proposed by Ramos-Onsins and Rozas
measures the average departure from this expec-
tation:

(221:1 (Vi —%)Z/n) 1/2
S

(Ramos-Onsins & Rozas, 2002, eqn (2)). R,z has
proven superior to a wide range of summary statistics
in detecting histories of bottlenecks (Ramos-Onsins &
Rozas, 2002). However, because of its dependence
on 7, one may suspect it to suffer from a large vari-
ance under neutrality. We therefore consider a similar
statistic that uses the observed S rather than 7 to
assess the degree of starshape. Consider the total
number of derived mutations in each sequence, D,.
Note that Y D,;=Y"""i&, in terms of the unfolded
frequency spectrum, where &; denotes derived mu-
tations that occur i times in the sample. Using the fact
that E[D;]=S/n in a star-shaped genealogy we can
define a new statistic:

(27:1 (Di —g)z/n) 1/2
S .

Ryp= “4)

Rs= ®)
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Since under neutrality a large proportion of mu-
tations will be found on inner branches, i.e. be shared
by many sequences, E[D;]=S/n. In other words, Rg is
such that smaller values are expected under a history
of growth.

3. Methods
(1) Summary statistics and demographic model

We carried out coalescent simulations in ms (Hudson,
2002) to compare the power of a range of summary
statistics to distinguish between the SNM and a his-
tory of exponential growth. In addition to D, D,, R,g
and the new statistics defined above, Fg, (Fu, 1996)
and H (Fay & Wu, 2000) were considered. F is based
on the number of haplotypes in the sample and has
previously been found to be more powerful than
statistics based on the frequency distribution (Fu,
1996; Ramos-Onsins & Rozas, 2002). H was con-
ceived as a test for the effect of selection on linked
neutral sites (Fay & Wu, 2000) and is not expected to
have power to detect continuous growth. However,
other demographic scenarios such as moderate bottle-
necks may perturb genealogies in ways similar to
genetic hitchhiking resulting in significant values of
H. We assume that the population size has grown
exponentially with rate a to its current size Ny:

N(t)=Ny e~ ™. (6)

Following standard practice, this exponential growth
is incorporated through a re-scaling of time (Slatkin &
Hudson, 1991). We define a rescaled time 7T,,, rel-
ative to Ny and a:

r eat (eaz_ 1)
Teoa1 = dt=——. 7
coal /0 2N0 2N0a ( )

This represents the total amount of genetic drift that
has occurred. It is convenient to define a growth rate
relative to Ny as 4 =2N,a, which gives:

eA’/ZN., -1

Tcoal = A

®)

(ii) Power test

Critical values of 5% confidence for each statistic
were determined from 10000 replicate genealogies
simulated under the SNM for each of a wide range of
S values (1-250) (Hudson, 1993; Braverman et al.,
1995; Ramos-Onsins et al., 2007). Genealogies from
growing populations were simulated conditional on 6.
For each replicate the alternative hypothesis of posi-
tive growth was tested by comparing the observed
value of a statistic to the critical value given the ob-
served S. Power was estimated as the proportion of
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10000 replicate genealogies for which a statistic was
below its critical value in a one-tailed test. Power to
reject the SNM was recorded for a large range
of parameter combinations. We compared the per-
formance of statistics for different growth rates,
(0 < 4 <50), sample sizes (n=10, 50) and values of 6
(5-50). When varying 0, we chose a fixed value of
A=38. This seems compatible with growth rates esti-
mated from empirical data. For example, variation at
silent sites in the Adhr region and X-linked genes in
Drosophila pseudoobscura is consistent with A4 =7
(Schaeffer, 2002). While 0 can be arbitrarily high for
mitochondrial data, =20 may be unrealistic for
nuclear loci in out-crossing species. Therefore, power
was evaluated for a range of 6 values (5-50) again
keeping the growth rate fixed at 4 =8.

When using means and variances of summary stat-
istics across loci, power was determined analogously
to the single locus case. Critical values of 5% con-
fidence of means and variances of statistics were
determined from 10000 replicate sets of loci with the
exact same combination of S values. Although com-
putationally expensive, this avoids making any as-
sumptions about the distribution of mutation rates
between loci. However, given that mutation rates vary
along the genome assuming the same 6 for all loci
to simulate the alternative history of growth seems
unrealistic and may lead to overestimation of power.
We checked for the influence of heterogeneity in
mutation rates on power by repeating the multilocus
power tests with 6 values drawn from a gamma dis-
tribution with a=2 (Pluzhnikov et al., 2002) and a
scale parameter equivalent to a mean of 8=20. This
combination of growth and mutation rates is roughly
comparable to mutation rate estimates for nuclear
loci in Drosophila melanogaster (Galtier et al., 2000).
As before we assumed no recombination within
loci as well as absence of linkage between loci, i.e.
replicate genealogies were simply treated as multiple
loci.

(iii) Likelihood method

In practice, both 6 and 4 are unknown, and their
likelihood should, in principle, be estimated jointly.
However, because of the non-independence of these
two parameters, this is not a practical option. Follow-
ing standard practice we alternated between maxi-
mum likelihood estimation of 4 and 6 (Griffiths &
Tavaré, 1994). First a maximum likelihood estimate
(MLE) for 6 under the SNM was estimated using the
program GENETREE (http://www.stats.ox.ac.uk/
griff/software.htm). In a second step, this MLE for 6
was fixed to run a likelihood surface for A. Finally,
the MLE value for 4 was used to re-evaluate 0. This
scheme yields two MLE:s for 8 for each replicate, one
under the assumption of no growth and one given the
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most likely growth rate, which were compared in a
likelihood ratio test (LRT). We did not find that the
MLE estimates for 4 and 6 improved upon repeated
re-evaluation suggesting that a single round of esti-
mation is sufficient for this moderate growth scenario.
100,000 runs were performed for each likelihood
surface evaluation. Again, the proportion of replicate
genealogies for which the null hypothesis could be
rejected was taken as a measure of statistical power.
Due to the long computing time, 100 replicates per
parameter combination were used.

4. Results
(1) Single locus

In general, both the likelihood method and summary
statistics have low power to detect a history of
moderate (4<8) exponential growth for n=10
(Fig. 2). As expected, the likelihood method is most
powerful overall, although its superiority is sur-
prisingly small. For example, based on the LRT the
SNM is rejected for 30% of genealogies simulated
under exponential growth of 4 =4. In comparison, Rg
and R, detect this history of growth in 23 % of cases
(Fig. 2).

Consistent with previous results, Fg, Ryr, and the
new measure Rg, are considerably more powerful
than both D and D, (Ramos-Onsins & Rozas, 2002;
Ramirez-Soriano et al., 2008). For 6 =20, Fg is the
most powerful statistic. The new measure Rg has
consistently higher power than R,z. As expected,
H and X have no power to distinguish between the
SNM and the growth case (not shown). However, the
other two genealogical ratios perform surprisingly
well. X; has higher power than D, and the power of
X, is between that of R,z and Rg (Fig. 2). The com-
plete lack of power of D for n=10 is somewhat sur-
prising. Comparison with the result for n =150 (Fig. 3)
reveals that its performance is strongly dependent on
sample size. We ran additional simulations (not
shown) and found that for n <15 extremely negative
values of D are more likely under neutrality than un-
der growth resulting in a rejection rate of the SNM of
less than 5%. In other words, when # is small, the
variance of D under neutrality is too large to detect
exponential growth.

In general, all statistics have considerably higher
power for n=50 (Fig. 3). Interestingly, it never
reaches 100 % even when growth is extreme (A = 50).
However, the relative effect of the sample size on
power differs between statistics. For instance, X; im-
proves relatively little in comparison to other meas-
ures. This is to be expected given that even small
samples are likely to include the deepest split in the
genealogy of the whole population (Saunders et al.,
1984). For n=10, the power of all statistics decreases
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Fig. 2. Power of summary statistics and likelihood method against exponential growth rate 4 =0-50. n=10, 6 =20.
Each point is based on 10000 replicate simulations. The power of the likelihood method was estimated from 100 replicates

(see large filled circles and error bars).

for histories of extreme growth (A4 >25) (Fig. 2). This
is due to the overall shortening of genealogies under
rapid growth.

The mutation rate has a relatively small influence
on power. In general, the power of all measures
increases with 6 (Fig. 4). However, the trajectories X;
and Fg level off while the power of the other statistics
continues to improve with increasing values of 6. The
power of Fg is limited by the number of haplotypes
(which cannot exceed n).

To check how statistics are affected by the topo-
logical variance, genealogies simulated under the
alternative history of growth were sorted according to
the bipartition by the root and the proportion of sig-
nificant values determined for each topology class.
Figure 5 clearly shows that the two statistics based on
7, D and Ry as well as D, are sensitive to asymmetric
topologies. The chance of observing a significant
value increases markedly with topological asymmetry.
This effect is most pronounced for D, which has no

‘power’ to reject the SNM unless genealogies are
very asymmetric and growth is weak. In contrast, the
dependency of X; on the rootward partition is rela-
tively slight and in the opposite direction, i.e. the
chance of rejecting the SNM is smaller for asymmetric
genealogies (Fig. 5).

(i1) Multiple loci

Compared with the relatively subtle effect both 6 and
n have on statistical power, increasing the number of
loci improves power dramatically. In the mean-based
test, all statistics apart from D have a power of close
to 100 % to detect a history of moderate exponential
growth (4 =28) for 10 loci. However, the relative per-
formance of statistics changes slightly compared with
the single locus case. Notably, X, has higher power
than all other summary statistics (Fig. 6). The power
of X is slightly lower than that of X; (not shown).
Analogously to the results for a single locus, power
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Fig. 3. Power of summary statistics against exponential growth rate 4 =0-50. n=>50, 6=20. Note the different range

(0-1) on the y-axis compared with Fig. 2.

increases both with more extreme growth scenarios
and larger n (not shown).

As one may suspect, the increase in power with the
number of loci is slower for the variance test. More
importantly, the relative performance of statistics is
very different. By far the most powerful statistic in the
variance test is X; followed by D and X (Fig. 7). This
indicates a general trade-off. Statistics with a high
variance under the SNM have comparatively low
power in the single-locus case and the mean test, but
high power in the variance test and vice versa.

Allowing for heterogeneity in mutation rates be-
tween loci affects both the relative performance of
summary statistics and their overall power. As one
may expect, heterogeneity in 6 generally results in a
decrease in power. In the mean-based test, the three X
statistics are most affected. However, in the variance
test the performance of X is little affected. This stat-
istic even has slightly higher power when mutation
rates vary between loci. This appears to be due to the

non-normal distribution of X; under growth.
Genealogies with more than one possible root-
partition generally have a very low value of X, since
we take an average over all possible partitions most of
which will be associated with X;=0.

5. Discussion

It is important to distinguish between the general
limitations that genealogical and mutational stoch-
asticity impose on demographic inference from gen-
etic data and problems associated with particular
methods. Two main conclusions emerge from com-
paring the performance of the new °‘genealogical
statistics’ to classical neutrality tests and the LRT.

(1) General limits to demographic inference

The signatures that changes in population size leave in
genealogies are typically subtle compared with the
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Fig. 4. Power of summary statistics to detect a history of exponential growth (4 =8) against 6.
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Fig. 5. The effect of topological asymmetry on statistical power (simulation parameters as in 2). Genealogies of Fig. 2
were sorted according to the partition by the root (shown above plot). Only the most asymmetrical partition (9, 1)

(a) and one other case (7, 3) (b) are shown. Results for the other three partitions were very similar to (b). Note that since
lineages are exchangeable all asymmetrical partitions have the same probability P,=2/(n—1) (Tajima, 1983, eqn (2)).

randomness of the ancestral process. Thus all meth-
ods have low power to distinguish between the SNM
and histories of moderate growth in the single locus
case. A surprising finding of this study was that the
full likelihood method only works marginally better
than the most powerful summary statistics. Changes
in N, disproportionally affect the length of the basal
branches of a genealogy. However, because these
rootward branches also contribute most to the vari-
ance in total tree length, inferences based on a single
locus will be weak at best. It is telling that the X stat-
istics which only considers the last coalescence events
in the history, outperform standard neutrality tests
in the variance test when multiple realizations of
this event, i.e. loci, are available. As has been argued
before, most statistical power can be gained by

increasing the number loci, which represent indepen-
dent realizations of the ancestral process, rather than
the sample size or the length of sequence (Felsenstein,
1992 ; Kliman et al., 2000; Wakeley, 2004).

(ii) Pairwise measures

Independent of the general limits to demographic in-
ference, pairwise measures such as D have particularly
low power to infer demography. This has been found
in previous simulation studies, which consider other
demographic scenarios such as strong bottlenecks and
rapid logistic growth (Fu, 1996; Ramos-Onsins &
Rozas, 2002; Ramirez-Soriano et al., 2008). The
fundamental flaw of pairwise measures can be best
understood in terms of the underlying genealogy.
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Fig. 6. Power of summary statistics to detect a history of growth 4 =8 using the mean across multiple loci against
the number of loci, n=10 (A) and =20 (B). Assuming mutational rate heterogeneity (6 gamma distributed with a =2

and E[6]=20).

In contrast to selection and population structure,
changesin N, on their own only alter the distribution of
branch lengths without affecting the topology, which
can be regarded as a random nuisance parameter.
While the full topology can rarely be reconstructed,
there is potentially a lot of topological information in
sequence data. Thus, the challenge that any efficient
inference method has to meet is to separate this top-
ological information from the relevant branch length
information while taking topological uncertainty into
account. Tree-based methods such as lineage-through
time plots clearly fall short of the latter because they
rely on a fully resolved topology. Pairwise measures
on the other hand simply ignore the confounding ef-
fect of the topology (Felsenstein, 1992). It is thus easy
to see why D has power only when sample sizes are
large. While increasing sample size adds increasingly

shorter external branches and therefore little ad-
ditional information, it does reduce the chance of
extremely asymmetric bipartitions by the root which
are responsible for much of the variance in 7 and
hence D.

Perhaps worryingly, this sensitivity to the topology
not only translates into a loss of statistical power but
also means that negative D values may in fact be more
informative about the topological asymmetry of the
genealogy (which may be caused by other non-neutral
forces, e.g. selection) underlying the sample than
about past growth. In order to distinguish between
the effects of selection and demography, topology
needs to be separated from branch length information.
One approach is to explicitly account for the topology
information if possible. For instance, one could de-
termine confidence intervals of statistics conditional
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Fig. 7. Power of summary statistics in the variance-based tests across multiple loci for three different growth rates
(from left to right 4 =2, 4, 8). (A) 6§ =20. (B) Assuming mutational rate heterogeneity (6 gamma distributed with a =2

and E[6]=20).

on the bipartition by the root if this is known. Not
surprisingly, this improves the power of D, but has
little effect on statistics that are not based on 7 (not
shown). The alternative is to use measures that are
less sensitive to the topology. Fg and other haplotype
statistics have previously been shown to be more
powerful than frequency spectrum statistics for this
very reason (Depaulis et al., 2003 ; Innan et al., 2005).
However, it has also been noted that Fg sometimes
behaves erratically (Fu & Li, 1993; Ramos-Onsins &
Rozas, 2002). As mentioned earlier, its power levels
off with increasing 6 (Fig. 4), because the sample size
sets an upper bound to the number of haplotypes.

(iii) Recombination and topological uncertainty

The X statistics presented here fall somewhere in be-
tween tree-based methods and classical summary stat-
istics. They exploit the fact that changes in population

size disproportionally affect the relative length of the
deepest branches in the genealogy and make use of
topological information, without sacrificing the sim-
plicity of the summary statistics framework. Given
their high power in the multilocus case, how useful are
such genealogical ratios in practice?

Recombination presents a fundamental problem to
tree-based methods like the X statistics, which are de-
fined only for non-recombining sequences. Similarly,
likelihood methods that can deal with recombination
are currently not available. To wrongly reconstruct
trees from recombining data can potentially be
severely misleading especially in the context of demo-
graphic inference. In fact, genealogical ratios similar
to the ones presented here have been used to show
that recombination can mimic the effect population
growth has on the shape of inferred genealogies.
Internal branches will appear relatively shorter and
the tree overall more star-shaped (Schierup & Hein,
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2000; Ramirez-Soriano et al., 2008). Ideally one
would like to model recombination explicitly when
making demographic inferences. However estimates
of recombination rates are usually associated with
a large uncertainty. Furthermore, it is notoriously
difficult to distinguish between recombination and
back-mutations.

One approach to circumvent these problems is to
test for recombination beforehand (e.g. using the four
gamete test) and exclude recombinant regions from
the analysis if necessary. One can then both condition
on there being no within-locus recombination and
afford to use more powerful statistics such as the ones
presented here. This strategy of identifying non-
recombining stretches of sequence is increasingly used
to analyse multilocus data, e.g. Galtier et al. (2000) or
Jennings & Edwards (2005). Fortunately, many or-
ganisms appear to have lower recombination rates
than model species such as Drosophila. For instance
in a recent study on Australian birds only 6 out of 30
loci of intergenic sequence showed evidence for re-
combination (Jennings & Edwards, 2005). How prof-
itable this scheme is ultimately depends on the relative
magnitude and distribution of recombination and
mutation rates. Before the genealogical ratios can be
used on multiple loci, which have been pruned to ex-
clude recombinant stretches, both the potential bias
of such pruning and the effect of undetected re-
combination events on the genealogical ratios need to
be properly evaluated. Interestingly, our method of
inferring the root does in itself constitute a test for
recombination and may help to focus on those re-
combination events that matter to the statistical test.

A related problem concerns the infinite sites as-
sumption. Although the algorithm we have developed
to compute the X statistics takes topological uncer-
tainty into account, ignoring the possibility of back-
mutations may underestimate the length of basal
branches (Baudry & Depaulis, 2003). Although this
source of error has been ignored here it should in
principle be possible to account for back-mutations
considering that they are independent of the assump-
tions of the genealogical process. In fact, any muta-
tional model can be used to define statistics analogous
to the genealogical ratios presented here. The problem
with more complicated mutation models is in esti-
mating the basal topology needed to calculate these
measures.

(iv) Conclusions

In summary, the results confirm that only the most
extreme demographic events leave a sufficient signa-
ture to be detectable in single locus data. Still, instead
of the excessive and often non-quantitative em-
ployment of mismatch distributions, phylogeographic
studies could benefit from using more powerful
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statistics such as Rg and Ryg to test demographic hy-
potheses. Conversely, population genetics studies of
sequence data from multiple, unlinked loci could ben-
efit from using summary statistics that incorporate
genealogical information explicitly. When outgroup
information is available and the assumptions of no
within-locus recombination and infinite sites muta-
tions can be justified, simple genealogical ratios are
potentially more powerful than standard statistics. In
taking the relative number of mutations found on
specific parts of the genealogy as a measure of the
degree of starshape, the demographic signal can be
separated from irrelevant and confounding topologi-
cal information. Extensions of this approach are feas-
ible. For instance, one could consider the covariance
between the number of basal and terminal mutations.
Such simple statistics may be profitable for approxi-
mate likelihood or Bayesian approaches (Thornton &
Andolfatto, 2006). There remains a need to under-
stand the effect of pruning and undetected recom-
bination events on tree reconstruction in general and
tree-based measures such as the X statistics presented
here in particular.
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manuscript greatly improved this work. K.L. is funded by a
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The longitudinal spread of temperate organisms into refugial populations in Southern Europe is generally assumed to predate
the last interglacial. However, few studies have attempted to quantify this process in nonmodel organisms using explicit models
and multilocus data. We used sequence data for 20 intron-spanning loci (12 kb per individual) to resolve the history of refugial
populations of a widespread western Palaearctic oak gall parasitoid Cecidostiba fungosa (Pteromalidae). Using maximum likelihood
and Bayesian methods we assess alternative population tree topologies and estimate divergence times and ancestral population
sizes under a model of divergence between three refugia (Middle East, Balkans and Iberia). Both methods support an “Out of
the East” history for C. fungosa, matching the pattern previously inferred for their gallwasp hosts. However, coalescent-based
estimates of the ages of population divides are much more recent (coinciding with the Eemian interglacial) than nodal ages of single
gene trees for C. fungosa and other species. We also find that increasing the sample size from one haploid sequence per refugial
population to three only marginally improves parameter estimates. Our results suggest that there is significant information in the
minimal samples currently analyzable with maximum likelihood methods, and that similar methods could be applied to multiple

species to test alternative models of assemblage evolution.

KEY WORDS: Ancestral population size, coalescent theory, parasitoid assemblages, population divergence times, statistical

phylogeography.

Many western palaearctic taxa have their current centers of genetic
diversity to the east of Europe, suggesting that refugial popula-
tions around the Mediterranean basin are ultimately derived from a
more eastern source (Din et al. 1996; Rokas et al. 2003; Juste et al.
2004; Michaux et al. 2004; Culling et al. 2006; Koch et al. 2006;
Challis et al. 2007; Stone et al. 2007). Westwards dispersal of such
taxa into southern European refugia is often thought to have oc-
curred in the early Pleistocene, if not before (Taberlet et al. 1998;
Rokas et al. 2003; Juste et al. 2004; Culling et al. 2006; Challis
etal. 2007) and of necessity must predate the well-documented lat-
itudinal range shifts associated with the last ice age (Taberlet et al.

© 2010 The Author(s).
1 Evolution

1998; Hewitt 1999) by at least one glacial cycle. However, the few
studies that have attempted to estimate the age of this older lon-
gitudinal dispersal are largely qualitative, being based on a small
set of (primarily mitochondrial) gene trees (e.g., Taberlet et al.
1998; Hewitt 1999; Nichols 2001; Rokas et al. 2003; Juste et al.
2004; Culling et al. 2006; Challis et al. 2007). It has been noted
that species differ considerably in their mitochondrial divergence
between refugia and this has been attributed to species-specific re-
sponses to Pleistocene climate cycles (Taberlet et al. 1998). How-
ever, an obvious alternative explanation for the observed lack of
interspecific temporal congruence is that mitochondrial gene trees
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are dominated by incomplete lineage sorting, the extent of which
may be large in general and/or different between species (Nichols
2001).

Because polymorphism within ancestral populations must
originate before daughter populations diverge, branches of gene
trees are necessarily longer than those of population trees and
a naive interpretation of node ages may severely overestimate
population divergence (Pamilo and Nei 1988; Maddison 1997).
Similarly, gene tree topologies may be incongruent with the order
of population divergence (Tajima 1983; Pamilo and Nei 1988;
Rosenberg 2002). Because the magnitude of both these effects
depends on the size and stability of the ancestral populations
(Tajima 1983; Maddison 1997; Nichols 2001), they are likely to
be exaggerated when resolving the origins of—and relationships
among—refugial populations, which are stable by their very na-
ture (Hewitt 1999). Thus, assessing the generality of an “Out of
the East” pattern ideally requires replication both at the level of
species and loci.

Assemblages of parasitoids associated with oak cynipid galls
offer unmatched replication at the species level. In the Western
Palaearctic, an estimated 120 species of chalcidoid wasps are
obligate natural enemies of the inhabitants of oak cynipid galls
(Csoka et al. 2005; Hayward and Stone 2005). Phylogeographic
studies on Western Palaearctic oak gallwasps show their popu-
lations to be divided into three major refugial areas: the Iberian
Peninsula in the west, Central Europe and the Balkans in the
center, and Asia Minor and Iran in the east (Rokas et al. 2001,
2003; Stone et al. 2001, 2008; Challis et al. 2007), broadly par-
alleling patterns seen in oak phylogeography (Dumolin-Lapegue
et al. 1997). In the gallwasps, allele frequency data for multi-
ple nuclear markers support the conclusion that there has been
very little subsequent gene flow between these regions (Rokas
et al. 2001, 2003; Stone et al. 2001, 2008; Challis et al. 2007).
Oak gallwasps are thought to have diversified in regions to the
east of Europe prior to the Pleistocene (Stone et al. 2009), and
pre-Pleistocene or early Pleistocene westwards range expansion
across Europe has been suggested by patterns of genetic variation
in several widespread species (Rokas et al. 2001, 2003; Challis
et al. 2007). An obvious question is whether gall-associated par-
asitoids have pursued their hosts from the east. At least two of
them, the torymids Megastigmus stigmatizans and M. dorsalis,
appear to have done so (Rokas et al. 2003; Hayward and Stone
2006; Nicholls et al. 2010). The challenge now is to reconstruct
longitudinal colonization processes in the Western Palaearctic for
a broader taxonomic spread of oak gall-associated parasitoids,
to assess the generality of an “Out of the East” pattern, and to
determine whether parasitoids dispersed over a similar timescale
to their hosts, or after a delay—so allowing their hosts a measure
of “enemy-free space” (Hayward and Stone 2006). One reason
for caring which of these scenarios is true is that close phylo-
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Figure 1. Model of successive population divergence between
major Palearctic refugia from East to West: Asia Minor and Iran (E)
Balkans and Central Europe (C), Iberia (W). With minimal sampling
of one individual per population, topological probabilities of gene
trees are determined by only two model parameters, the time
between population divergences (tg;c;w — tc;w) and the effective
sizes of the ancestral population during this time (N¢,w).

geographic concordance increases the potential for coevolution
among community members, and such communities are inher-
ently sensitive to disturbance by species gain (Stone and Sunnucks
1993; Schonrogge et al. 1996b, 1998) or loss (Lennartsson 2002;
Pauw 2007).

Here, we use sequence data from 20 intronic loci to study
the history of refugial populations in the pteromalid parasitoid
Cecidostiba fungosa, a widespread species in oak gall communi-
ties (Askew 1961; Schonrogge et al. 1996a; Bailey et al. 2009).
The three-refuge phylogeographic pattern of oak gallwasp com-
munities allows us to compare two analytical methods—a maxi-
mum likelihood (ML) approach (Yang 2002), and an analogous,
Bayesian approach (Rannala and Yang 2003). Both estimate an-
cestral population parameters (population sizes and divergence
times) directly from patterns of polymorphism in sequence data
(rather than from gene trees inferred for each locus) and assume
a model of divergence between three populations (Fig. 1). The
order of population divergence or the topology of the popula-
tion tree can be viewed as an additional model parameter and the
likelihoods in both methods can be used to compare statistical
support for different topologies. We address the following, spe-
cific questions: (1) Do data for C. fungosa support an “Out of
the East” population history, such that refugial populations in the
center and west of Europe are derived from a shared ancestral
population in the center which in turn is derived from a common
ancestral population further east (Fig. 1)? (2) When did refugial
populations split from each other, and how large were their an-
cestral populations? (3) How different are multilocus estimates
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of population divergence times from gene divergence times (both
nuclear and mitochondrial)?

A strategy of sampling many loci from a single individual
per taxon has been used extensively to study divergence between
closely related species, in particular the Great Apes (Yang 2002;
Jennings and Edwards 2005; Patterson et al. 2006). There are two
reasons why such minimal sampling is of interest. First, going
backwards in time, only lineages that persist into the ancestral
species/population contribute to estimates of ancestral population
parameters. Coalescent theory shows that samples taken from the
same species or population quickly coalesce down to a small
number of lineages (Griffiths 1981; Tavaré 1984; Norborg 1998)
(Fig. 2). This means that even if divergence is relatively recent,
that is, less than N, generations ago, the power gained by increas-
ing within-population sampling levels off relatively rapidly. In
contrast, each additional sampled locus provides an independent
replicate of the coalescent process in the ancestral population ir-
respective of the divergence time (Wakeley 2004). So if the total
cost of sampling is number of loci x number of sampled indi-
viduals, the optimal sampling scheme is one of few individuals
sequenced at a large number of loci. Second, minimal sampling is
currently the only sampling scheme for which a statistically op-
timal likelihood method allowing parameter estimation directly
from site patterns exists (Yang 2002). In contrast, Bayesian ap-
proaches (Rannala and Yang 2003) or gene tree—species tree meth-
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Figure 2. The expected mean number of lineages surviving coa-
lescence into an ancestral population (Tavaré 1984, equation 5.5)
plotted against divergence time (T) in coalescence units (2N, gen-
erations) for four different sampling sizes (from top to bottom,
n =20, 10, 5, 3). Because only surviving lineages contribute to the
estimation of ancestral parameters and their number decreases
rapidly, the expected gain in power from increasing sample size is
limited even if divergence is relatively recent (T < 0.5). The solid
lines show the divergence time estimates (scaled by twice the
mean of population sizes Ng, N¢, and Nyy) obtained for C. fungosa
in this study (priors a).

ods (Degnan and Salter 1995; Maddison and Knowles 2006; Liu
and Pearl 2007; Degnan and Rosenberg 2009; Kubatko et al. 2009)
have the advantage that they can deal with arbitrary sample sizes
and numbers of populations. However, this comes at the poten-
tial cost of prior assumptions and/or difficulty in integration over
topological uncertainty in the gene trees.

These issues are relevant in selecting an appropriate study
design in systems in which there is a trade off between sam-
pling multiple individuals and generating data for multiple loci
or species. Ability to obtain informative population parameters
from small numbers of individuals is likely to be particularly
important in comparative studies of communities, such as the
oak gall system, in which some taxa are rare enough that in-
creasing sample size is not an option. It is therefore useful to
ask how much information about ancestral population parame-
ters over phylogeographic timescales can be obtained with min-
imal sampling. To investigate the influence of sample size, we
compared minimal sampling of a single individual per popula-
tion with an extended sample of three individuals per population.
We then use theoretical expectations for the number of surviv-
ing lineages given the estimated divergence history (Fig. 2) to
consider the likely gain in power for larger sample sizes in our
Discussion.

Methods

CHOICE OF LOCI

We obtained sequences for 20 newly developed intronic loci for C.
fungosa (Table 1) and the closely related species Caenacis lauta,
which was used as an outgroup in some analyses. These loci in-
cluded 12 ribosomal protein genes (RpL10ab, RpL13a, RpLlS5,
RpL27a, RpL37, RpL37a, RpL39, RpS15, RpS18, RpS23, RpS4,
RpS8) and eight regulatory genes (AntSesB, bellwether, nAcRbeta-
64B, Rackl, Ran, sansfille, SUI, Tctp) (for primer sequences and
CG indentifiers see Table S1), all of which are thought to be single
copy genes with no known paralogs in insects. Primer develop-
ment and testing will be described in detail elsewhere (K. Lohse,
B. Sharanowski, M. Blaxter, and G. Stone, unpubl. ms.). In short,
primers were designed using alignments of Hymenoptera EST
data (Sharanowski et al. 2010) and insect sequences from public
databases (NCBI). No or little polymorphism at a particular locus
may arise either as a result of a low mutation rate (so limiting
signal), or a recent coalescent event (and so important to demo-
graphic inference), or both. Excluding loci that are invariant in C.
fungosa results in an upward bias in estimates of population diver-
gence time. To avoid such bias, we used all nuclear loci available
for C. fungosa (K. Lohse, B. Sharanowski, M. Blaxter, and G.
Stone, unpubl. ms.) and tested whether accounting for differences
in mutation rate between loci influenced our estimates.
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Table 1. Summary statistics of nuclear loci used in the analysis. Loci for which a larger sample of three individuals per population was
obtained are shown in bold. Diversity in the minimal single individual sample and divergence to C. lauta were calculated for introns
(®introns Kintron) @and synonymous exon sites (ws, Ks) separately. Also shown are the number of introns (#In) and the total number of

polymorphic sites (S) for the single individual samples and locus-specific mutation rate (). The normalized product of i and the total
locus length can be taken as a measure of information content (Info). The last column (rec) gives the number of bases that were excluded
to trim each locus to the largest nonrecombining fragment according to the four-gamete tests.

. Length (bp) Diversity Divergence/mutation rate
Locus primers
Total Intron Exon T Tlton O K Kintron W Info  rec (bp)
AntSesB 40fb, 40rb 2 606 171 435 0.000 0.008 2 0076 0.148 0.984 0.981 0
bellwether  33fb, 33rb 1 549 214 335 0.000 0.003 2 nla n/a n/a n/a 0
nAcRbeta- 39f, 39r, 39fb, 2 728 113 615 0.004 0.000 1 0371 0227 1.703 2.039 0
64B 39rb
Rackl 18fb, 18rb 2 560 304 256 0.000 0.007 3 0087 0.052 0.627 0.578 0
Ran 32f, 32r 1 499 202 297 0.011  0.003 2 009 0.091 0.802 0.659 0
RpL10ab 191, 19r 2 955 807 29 0.000 0.003 3 0072 0.043 0.641 1.001 0
RpL13a 6f, 6r 2 849 718 131 0.000 0.019 21 0.000 0.097 1414 1975 0
RpL15 21b, 2rb 2 618 412 206 0.000 0.002 2 0233 0.056 1.047 1.065 16
RpL27a 28fb, 28r 2 501 332 169 0.017 0.030 16 0.155 0.101 1309 1.078 0
RpL37 271, 27r 1 866 785 81 0.033 0.020 24 0.017 0.123 1.882 2.681 0
RpL37a 36f, 36r 1 220 91 129 0.000  0.000 0 0408 0069 1.203 0.436 0
RpL39 16f, 16r 1 463 442 21 0.000 0.000 0 0.000 0.086 1.386 1.055 0
RpS15 20fb, 20rb 1 739 476 263 0.058 0.035 30 0.073 0.091 1.076 1.308 0
RpS18 22f, 22r 1 812 658 154 0.020 0.005 6 0072 0.052 0.757 1.011 132
RpS23 21f, 21r 1 268 79 189 0.016  0.042 6 0.119 0.127 0.926 0.408 0
RpS4 11f, 11r 1 754 483 271 0.000 0.000 1 0094 0083 1.040 1.290 117
RpS8 5f, 5r 1 422 242 180 0.029  0.008 6 0060 0.034 0447 0.311 0
sans_fille 35f, 35r 1 446 84 362 0.017 0.000 2 0.140 0.037 0.501 0.367 0
SUI 24f, 24r 1 823 636 186 0.000  0.006 6 n/a n/a n/a n/a 0
Tctp 25f, 25r 2 493 148 345 0.000 0.014 3 0.134 0.088 0.826 0.670 0
Total 28 12171 7397 4774 136 265
MEAN per locus 608.5 369.9 238.6 0.0092 0.0105 6.8 0.1387 0.0727
Cox1 pF2/C2413d n/a 698 n/a 0.090 n/a 24 0.353

MOLECULAR METHODS
Whole genomic DNA was extracted from specimens stored
in 98% ethanol in 50 pl of extraction buffer containing 5%
Chelex™100 resin (Bio-Rad, Hercules, CA). To allow for di-
rect sequencing of PCR products without the need to discriminate
between haplotypes in heterozygotes, we used males, which are
haploid in Hymenoptera, whenever possible. The exceptions were
three female C. fungosa, for which haplotypes were distinguished
by cloning of PCR products as necessary (see below).

Polymerase chain reactions (PCRs) were performed in 20 1
reactions using the following mix for all primer combinations:
2.0 mL 10x Bioline PCR buffer, 2.0 1 bovine serum albumin
(10 mg/mL), 0.8 nl MgCl, (50 mM), 0.16 nl ANTPs (25 mM
each), 0.1 ul Taq Polymerase (5 U/ul, Bioline), 0.2 pl of each
primer (20 uM), and 1 w1l DNA template.

A generic touchdown PCR protocol was used for all loci:
94°C for 3 min, followed by cycles of 94°C for 15 sec, an
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annealing step of 40 sec, 72°C for 3 min, and a final step at
72°C for 10 min. The annealing temperature was varied as fol-
lows: The first 10 cycles decreased in 1°C increments from 65°C
to 55°C, followed by 30 cycles each with an annealing step
at 55°C.

To allow comparison of information content in the nuclear
loci with a frequently used mitochondrial locus, we also se-
quenced a 689 bp region of the cytochrome c¢ subunit 1 gene
(Cox1) using primers COI_pF2 and COI_2413d, a modified ver-
sion of C1-J-2441 (Simon et al. 1994, Table S1). These primers
were designed to amplify a fragment largely overlapping the
LCO/HCO region of CoxI (Folmer et al. 1994), but excluding a
poly-T repeat at its 5’ end present in Chalcidoidea, which causes
slippage during PCR resulting in uninterpretable sequence.

All PCR products showing single amplified bands were se-
quenced directly in both directions using ABI BigDye chem-
istry (Perkin Elmer Biosystems, Waltham, MA) on ABI 3700 and
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3730 sequencers in the GenePool Edinburgh. Chromatograms
were checked by eye and complimentary reads aligned using Se-
quencher version 4.8.

For five loci (RpS4, RpL27a, RpL37, RpL15b, nAcRbeta) se-
quences from female individuals of C. fungosa contained putative
heterozygous sites or were not readable due to indels. These PCR
products were cloned using a mini-Prep kit (Qiagen, Valencia,
CA). Five clones were sequenced per locus and individual, one of
which was chosen at random for subsequent coalescent analyses.
In one case (sample C3, locus RpS4) none of the sequenced clones
matched the expected product. This sample was excluded from
the analysis.

MODEL OF POPULATION DIVERGENCE AND
POPULATION SAMPLING STRATEGIES

We consider a simple model of divergence between three putative
refugial populations of C. fungosa: Asia Minor and Iran (east,
E), Balkans and Central Europe (center, C), and Iberia (west,
W). This is analogous to a model of divergence between three
species (Takahata et al. 1995; Yang 2002) that has been used
to estimate divergence times and ancestral population sizes in
Great Apes (Rannala and Yang 2003; Patterson et al. 2006), fruit
flies (Villablanca et al. 1998; Li et al. 1999), birds (Jennings
and Edwards 2005), and plants (Zhou et al. 2007). The model
makes the standard population genetics assumptions of random
mating within each population, fixed population sizes between
divergence events, and no migration after divergence. The first
and last assumptions at least are supported by multilocus allele
frequency data for the gallwasp hosts in this system (Stone and
Sunnucks 1993; Rokas et al. 2003; Stone et al. 2008).

Following recent studies on Hominids and model organ-
isms (Chen and Li 2001; Takahata et al. 1995; Li et al. 1999;
Rannala and Yang 2003; Patterson et al. 2006; but see Jennings and
Edwards 2005), we initially adopted a sampling scheme that max-
imizes the number of loci available by using only a single haploid
male from each of the three refugial populations listed above.
To examine the impact of increased sampling within populations,
we generated an extended dataset, comprising three haploid se-
quences per population for 13 loci and a single sequence per
population for the remaining seven loci as before (Table 1 and
Table S2). Impacts of further increases in sample size will be
considered based on the theoretical expectation of the number of
surviving lineages (Fig. 2).

We used ML (Yang 2002) and Bayesian approaches (Rannala
and Yang 2003) (described below) (1) to test whether the most
likely order of population divergence is compatible with an “Out
of the East” scenario, and (2) to estimate divergence times and
ancestral population sizes under this scenario using the sin-
gle individual per population sampling. To investigate the im-
pact of sample size on parameter estimation, Bayesian analy-

ses were repeated using the extended dataset as defined above
(Table S2).

ALIGNMENT AND MUTATION RATE

Cecidostiba fungosa and C. lauta sequences were aligned in
ClustalW and checked by eye (GenBank accession numbers
HM208872-HM209026). Exonic regions were assigned by com-
parison with D. melanogaster protein sequences and checked for
an open reading frame. Indels in the alignment were treated as
missing data.

In the ML and Bayesian analyses, all model parameters are
scaled by the per site mutation rate, L. Conversion of the scaled
time between divergence events (y) into real times (t), and of
the scaled mutation rate (0) into effective population sizes (V,),
therefore requires an estimate of | and its incorporation into the
relationships y = tw and 6 = 4N,g, where g is the average
generation time in years. Note that for haplodiploids N, ,; =
(ONyN,)/(2Nf + N,,), where Ny and N,, are the number of males
and females, respectively, in a randomly mating population. As-
suming equal sex ratio and variance in fitness between sexes,
N, a1 0.75 N,_4 (Hedrick and Parker 2003).

To calculate a mean estimate of . for our loci, we first esti-
mated a synonymous genome-wide mutation rate for the closely
related pteromalid wasp genus Nasonia, using a divergence time
of 0.4 million years ago (mya) between N. giraulti and N. longi-
cornis (Campbell et al. 1993; Oliveira et al. 2008; Raychoudhury
et al. 2009) and a nuclear genome-wide distance at synonymous
sites (K;) of 0.011 between these species (Oliveira et al. 2008).
With . = K,/2t, these values give i = 1.375 1078 b/yr. The Na-
sonia divergence time was derived by applying observed bacterial
mutation rates to Wolbachia symbionts infecting the two Naso-
nia species (Raychoudhury et al. 2009). However, the resulting
mutation rate estimate is also remarkably consistent with the few
other molecular clock calibrations that exist for insects, such as
the calibration of 1.11 x 107® b/yr for Hawaiian Drosophilids
using island ages (Tamura et al. 2004).

To apply the Nasonia mutation rate to our intron-rich (and
so partially noncoding) sequences, we scaled it by the ratio of the
observed average divergence between C. fungosa and C. lauta at
synonymous sites, K over the average divergence across all sites
Kotar- This yields a factor of 0.478, so the total average mutation
rate for our loci is p = 1.375 1078 x 0.478 = 6.27 10~ b/yr.
Note that because this is an average across all sites, it is lower than
the mutation rate for synonymous coding sites. This calculation
incorporates any mutational constraints on introns and coding
sites in C. fungosa without making a priori assumptions about
intron evolution. We estimated a relative mutation rate for each
locus as the observed Ko at each locus over the average Kot
(Chen and Li 2001; Yang 2002; Jennings and Edwards 2005),
shown in Table 1.
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To calculate ancestral effective population sizes, we assumed
an average generation time of g = 0.5 years for Nasonia and
C. fungosa. This is reasonable for C. fungosa, which attacks
both sexual spring galls and asexual autumn galls (Askew 1961;
Schonrogge et al. 1995, 1996a) (as synonyms C. adana and C. hi-
laris), and for temperate populations of Nasonia. For comparison
with mitochondrial node ages, we calculated a mutation rate for
CoxI using the Jukes-Cantor-corrected distance between N. gi-
raulti and N. longicornis at this locus and a divergence time of 0.4
mya as before. This gives 22.3% (Oliveira et al. 2008) divergence
per site and million years. We compared this locally calibrated
clock with estimates obtained in previous studies using the com-
monly assumed arthropod mitochondrial clock of 2.3% per site
and million years (Brower 1994). Despite the obvious shortcom-
ings of the “Brower clock,” comparison of relative node ages in
this way is valid as long as the same calibration is used across
taxa, and a molecular clock assumption is tested and supported in
each taxon, as here.

RECOMBINATION TESTS AND GENE TREE
RECONSTRUCTION

Both phylogenetic reconstruction and the coalescent analyses de-
scribed below make the crucial assumption of no recombination
within loci. We determined the minimum number of recombina-
tion events using a four-gamete test in DNAsp (Rozas and Rozas
1995) on the largest alignment of each locus. Three loci (RpS4,
RpS18, RpL15) showed evidence for recombination and were
trimmed to the largest nonrecombining block (Galtier et al. 2000;
Jennings and Edwards 2005) (shown in Table 1).

Although both the ML and Bayesian approaches described
below use site patterns directly and do not rely on estimated
gene trees, we reconstructed trees to visualize the data and to
test the molecular clock hypothesis that is implicit in both ap-
proaches. ML trees were reconstructed for each locus in PAUP*
(Swofford 2001). For single individual alignments (triplets), this
was done using exact searches, whereas for the three individ-
ual per population alignments branch and bound searches were
used. Loci varied considerably in relative intron length and hence
in base composition. We therefore assumed a single substitu-
tion rate but unequal base frequencies (Felsenstein 1981). To
test the support for internal nodes in each triplet gene tree, 1000
bootstrap replicates were performed taking a bootstrap value of
>70% to indicate strong nodal support (Hillis and Bull 1993). We
compared rooting with a strict molecular clock to rooting with
C. lauta for the triplet gene trees (Tajima 1993; Jennings and
Edwards 2005; Tamura et al. 2007). To further test the validity
of the molecular clock assumption, we performed Tajima’s 1 —
degree of freedom test on each triplet (Tajima 1993; Jennings
and Edwards 2005; Tamura et al. 2007). This nonparametric
test is designed for triplet samples given a known species topol-
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ogy and is simpler and more powerful than similar model-based
tests (Tajima 1993; Nei and Kumar 2000; Jennings and Edwards
2005).

MAXIMUM LIKELIHOOD ANALYSIS

For minimal sampling, only four parameters in the three-
population divergence model matter: the two divergence times
Tcyw and tg/cyw and the sizes of the two ancestral populations
Nc¢yw and Ng,c,w (Fig. 1) and an exact likelihood approach to
inference is possible. The program Ne3sML numerically max-
imizes the likelihood for a given population/species topology
(Yang 2002). By default the method assumes an infinite sites
mutation model and a molecular clock. Given the level of poly-
morphism observed in C. fungosa (Table 1), this simple model of
sequence evolution seems appropriate. For example, if diversity at
silent sites (synonymous exon sites and introns) is 0.01 (Table 1),
the chance of a back mutation is 10™* per site. Because we are
analyzing slightly fewer than 10 silent sites in total, we expect
to see at most a single back-mutation in the entire dataset and can
safely ignore more complicated mutation models.

The likelihood approach of Yang (2002) differs crucially
from methods that estimate a species tree conditional on a set
of reconstructed gene trees (Degnan and Salter 1995; Maddison
and Knowles 2006; Carstens and Knowles 2007; Liu and Pearl
2007; Degnan and Rosenberg 2009; Kubatko et al. 2009) in that
it uses the site information directly. The method integrates over
all possible gene tree topologies and branch lengths at each lo-
cus and computes the joint log likelihood for a given popula-
tion history (topology and parameter estimates) as the sum over
the log likelihoods of individual loci (Yang 2002; Rannala and
Yang 2003). The advantage of this is that in contrast to gene
tree species tree approaches (Liu and Pearl 2007; Degnan and
Rosenberg 2009; Kubatko et al. 2009), information from unre-
solved or poorly resolved loci is incorporated automatically. This
is particularly important in recently diverged populations. For ex-
ample, a monomorphic locus resulting from a recent coalescence
event would be excluded from analyses conditional on gene tree
reconstruction as uninformative, resulting in upwardly biased es-
timates of divergence time.

We first compared the likelihood of all three possible pop-
ulation tree topologies. Although assessing the statistical signif-
icance of nonnested models is difficult in a likelihood setting,
models may be ranked by their likelihood (Carstens et al. 2009).
Under the “Out of the East” scenario, central and western popula-
tions are derived from a shared ancestral population in the center,
which in turn split from a common ancestral population in the
east, that is, the population tree topology is (E, (C, W)) (Fig. 1).
The two alternative topologies are (W, (C, E)), which corresponds
to an “Out of the West” scenario, and (C, (E, W)) which is difficult
to interpret in the geographic context of C. fungosa populations,
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because it is unclear where the two ancestral populations would
be located.

ML analyses under the most likely population history were
performed for two different mutational models. The simplest
model assumes a single mutation rate across all loci. We reran
this analysis using the relative rates calculated for each locus as
described above (Table 1), thereby accounting for possible rate
heterogeneity (Table 3).

BAYESIAN ESTIMATION OF DIVERGENCE TIMES

AND ANCESTRAL POPULATION SIZES

MCMCcoal (Rannala and Yang 2003) is the Bayesian equiv-
alent of the ML approach described above. The program uses
Markov chain Monte Carlo (MCMC) sampling to estimate pos-
terior probabilities for all model parameters conditional on prior
distributions. If multiple individuals per population are sampled,
the three population sizes between the present and the most re-
cent divergence event (i.e., Ng, N¢, Ny) (Fig. 1) are modeled as
additional parameters. Note that the parameterization in MCMC-
coal differs slightly from Ne3sML, as the former uses divergence
times rather than internode intervals.

In a Bayesian framework, support for alternative but
nonnested models can be compared using Bayes factors (Kass
and Raftery 1995). Natural logarithms (In) of harmonic mean
likelihoods (HML) were calculated for each population tree topol-
ogy (using prior means in analysis a described below) to test
support for the “Out of the East” scenario. Following Kass
and Raftery (1995), values of twice the difference in InHML
(2AInHML) of 2-6, 6-10, and > 10 represent, respectively, pos-
itive, strong, and very strong support for the model with higher
likelihood.

Because in the case of C. fungosa we have no prior knowl-
edge of the model parameters, we used exponentially distributed
priors (shape parameter oo = 1) for all parameters (Jennings and
Edwards 2005). To check how sensitive posterior estimates are to
prior settings, all analyses were performed twice using different
prior means by adjusting B, the scale parameter of the gamma
distribution (Table 4). In the first analysis (a), we set prior means
to ~0.150 mya and ~0.050 mya for tg;c/w and tc,w, respec-
tively (B = 380) and ~215,000 for both ancestral population
sizes (B = 1520). In the second analysis (), the prior means
for all parameters were increased by an order of magnitude (i.e.,
changing B to 38 and 152) (Table 4). Although the individual
parameter values are arbitrary, these two sets of priors should
be different enough to assess the robustness of the Bayesian es-
timation (Jennings and Edwards 2005). Given that incorporat-
ing relative mutation rates did not improve estimation using the
ML method (see Results), for simplicity all Bayesian analyses
were performed assuming a single mutation rate across all loci.
Runs were continued for 10° generations with a burn-in of 103

and repeated using different random number seeds to check for
convergence.

Results

GENE TREES

When only a single individual was sampled from each refugial
population, phylogenetic reconstructions for eight of the 18 poly-
morphic nuclear loci supported the “Out of the East” topology (E,
(C, W)) (Fig. 3A), as did the mitochondrial locus CoxI (Fig. 2D).
Of the remaining loci, two supported each of the two incongruent
topologies (Fig. 2B, C) and six showed an unresolved topol-
ogy (RpL15, RACK]I, ran, Tctp, sansfille, SUI). Clock-rooted and
outgroup-rooted topologies agreed for all resolved loci, but boot-
strap support was generally weaker for outgroup rooting (Fig. 3).
Although this is not a formal test, the majority of resolved gene
trees thus support the “Out of the East” hypothesis (Fig. 1).
Tajima’s 1 — D test rejected a strict molecular clock for only
two of 20 loci (RpS15, RpL 37). Thus the majority of loci meet
the clock assumption implicit in the ML and Bayesian approaches
used here.

Increasing sample size to three individuals from each refu-
gial population resulted in increased variation in gene tree topol-
ogy (Fig. 4). Despite the many unresolved nodes in some trees,
Figure 4 reveals extensive incomplete lineage sorting between C.
fungosa populations, resulting in a “forest” of largely incongruent
gene trees.

MAXIMUM LIKELIHOOD ANALYSES

The population tree topology (E, (C, W)) had a higher likeli-
hood than either of the two alternative topologies (C, (E, W))
and (W, (C, E)), consistent with the “Out of the East” hypothesis
(Table 2). The maximum likelihood estimates (MLEs) of model
parameters are broadly consistent between the variable rate (18
loci) and single rate mutational models (using the same 18 loci).
However, because the variable rates model has a lower log like-
lihood, the simpler single rate model was used in all subsequent
analyses including the Bayesian runs (Table 3). This also allowed
the loci SUI and bellwether, for which no outgroup sequences
could be obtained, to be included in the analyses, giving a total of
20 loci.

Under the “Out of the East” topology (E, (C, W)), the MLE
for the older population splitting time between the Iranian pop-
ulation and the ancestor of Hungary and Spain, tg/c/w, is esti-
mated as 0.110 mya (Table 3). The MLE for 6g/c,w corresponds
to an ancestral population with an effective size of 614,000 be-
fore this first split. However, both the MLE for the time be-
tween the two population splits, tz/c;w — Tcyw and the popu-
lation size during that time, N¢,w are close to zero, suggesting
that Iberian and Hungarian populations may have split almost

EVOLUTION 2010 7
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Figure 3. ML trees reconstructed for nuclear loci and Cox7 assuming a strict molecular clock. Bootstrap proportions for the internal
node are shown next to each tree. Loci with unresolved topologies (<50% bootstrap support) are not shown. Eight loci have a topology
congruent with the “Out of the East” hypothesis (E, (C, W)) (A), two each have topology (W, (C, E)) (B) and (C, (E, W)) (C). The mitochondrial
locus Cox1 is also congruent with “Out of the East” (D). Bootstrap support using rooting with C. lauta is indicated with asterisks (* > 50%,

** 5 70%) below each tree.

immediately after the initial divergence from the ancestral Eastern
population (Table 3).

BAYESIAN ESTIMATION OF DIVERGENCE TIMES

AND ANCESTRAL POPULATION SIZES

Minimal sampling

Bayes factor comparison of InHML (Table 2) shows that the “Out
of the East” model fits the data significantly better than either of
the alternative population tree topologies. The contrasting sets of
priors a and b had little impact on posterior estimates of three
of the four model parameters (Table 4, Fig. 5A, B, D). Poste-
rior mean ages for the split between eastern populations and the
common ancestor of central and western populations tz,c;w were
0.118 mya and 0.134 mya in analyses a and b respectively, with
values of 0.043 mya and 0.046 mya for the divide between cen-
tral and western populations t¢/w (Table 4). This comparatively
long interval between the two divergence times (tg;c/w — Tcyw)
is in apparent contrast to the results of the ML analysis. How-
ever, the 95% confidence intervals for the two divergence times
overlap in both prior settings a and b, such that the lower confi-
dence interval for Tg/c/w — Tc/w includes zero, compatible with
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divergence between western and central populations occurring
immediately after the initial split from the ancestral eastern pop-
ulation. Likewise, the posterior estimate for the effective size of
the population ancestral to all three refugial populations (Ng,c/w)
was minimally influenced by the prior (Table 4, Fig. 5D) (551,000
for a and 585,000 for b).

In contrast, posterior distributions for the effective size of the
population ancestral to central and western populations, N¢,w,
differed considerably between prior settings a and b (197,000 and
698,000) (Table 4, Fig. 5C). N¢,w was also the parameter with the
largest variance, the 95% confidence interval spanning two orders
of magnitude (priors b, Table 4). Notably, with both prior settings,
posterior distributions of N¢,w peak at the origin (Fig. 5C). This
suggests that there is little information about N¢,w in the data,
with posterior distributions largely reconstructing the prior.

To investigate whether the uncertainty in N¢,w can account
for the apparent difference in ML and Bayesian estimates of the
interval between population splits (tz,c/w — Tc;w), We carried out
athird MCMCcoal run (Table 4, priors ¢). When the prior mean for
Ncw is set to a very low value (2100), the posterior distribution
for t¢,w shifts markedly toward the right (Fig. SA) such that the
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Figure 4. ML trees for the extended sampling of three individuals (labeled 1-3) per population for 12 nuclear loci and Cox1 rooted using
C. lauta. RpL37a is monomorphic and not shown. Although on average samples from the same population are more closely related than
those from different populations, there is extensive lineage sorting, resulting in a “forest” of partially incongruent gene trees.

two divergence events are estimated to have happened in close
succession (0.091 and 0.089 mya) in agreement with the ML
results (Table 3).

Extended (three individual) sampling

MCMCcoal analyses of the extended (three individual per popula-
tion) dataset again gave strongest support to the “Out of the East”
scenario (Table 2). Although Bayes factor comparison strongly

rejects the “Out of the West” topology (W, (C, E)), the second
alternative topology (C, (E, W)) does not provide a significantly
worse fit to the data (Table 2).

Parameter estimates agree well with those obtained when
only a single individual per population was sampled (Table S3
and Fig. S1). However, increased sampling does have some influ-
ence on parameter estimation. First, estimates of N¢,w, are larger
and less sensitive to prior settings when three individuals per
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Table 2. Comparison of support for alternative population tree topologies, using the InL of the maximum likelihood estimation (NeML3s)
and the harmonic mean likelihood (InHML) in the Bayesian analyses. In each case the “Out of the East” topology has the highest likelihood
(in bold). Values in parentheses show the In Bayes factor (2AInHML) of the “Out of the East” hypothesis relative to alternatives. Topologies
that fit significantly worse than the “Out of the East” hypothesis are indicated with asterisks, using a In Bayes factor of 2-6 to indicate
positive support (*), 6-10 to indicate strong support (**), and >10 to indicate very strong support (***), following Kass and Raftery (1995).

Population tree topology

Out of the East Out of the West (C, (E,W))

(E, (C,W)) (W, (C,E))
NeML3s (single triplet) InL -796.94 —799.06 —799.05
MCMCcoal (a, single triplet) In(har.mean) —19100.692 —19103.820 (InBF=6.25)** —19103.060 (InBF=4.73)*
MCMCcoal (a, extd. triplet) In(har.mean) —19558.237 —19563.899 (InBF=11.324)*** —19558.997 (InBF=0.76)

population are sampled for both prior sets a and b (Table S3). Sec-
ond, the posterior distributions for t¢,w are now unimodal, rather
than L-shaped with a maximum at the origin (Fig. S1). However,
this has little impact on the variance of the posterior. For example,
the 95% confidence interval for t¢,w is 0.005-0.136 mya (priors
a) in the analysis of the extended samples of three individuals
per population, compared with 0.002-0.121 mya when sampling
a single individual (Table 4). Taken together this suggests that
increasing sample size per population to three haploid individu-
als adds some, but not much, power to the estimation of model
parameters.

Sampling multiple individuals per population we can also
estimate the effective sizes of the three sampled populations be-
tween the present and the first divergence events, Ng, N¢, Ny.
(Table S3). Although estimates of these parameters had fairly
wide confidence intervals and were sensitive to prior settings,
their relative magnitude was consistent across analyses. Nc was
always the largest followed by Ng and Ny . It is also noteworthy
that all three estimates were smaller than those obtained for ances-
tral populations, paralleling the findings of Jennings and Edwards
(2005) and previous results in Great Ape studies (Chen and Li
2001; Yang 2002; Patterson et al. 2006).

GENE DIVERGENCE TIMES
Following Jennings and Edwards (2005), we calculated Jukes
Cantor distances (D) to estimate coalescence times for each di-

vergence event (D/2) and compared the average distance across
loci with the estimated population divergence time and the mito-
chondrial (Cox1) node ages for both single and three individual
samples. In both cases, nuclear genes sampled from central and
western populations diverged on average almost 0.4 million years
(or three glacial periods) prior to the estimated population diver-
gence (Fig. 6). Coalescence times estimated for Cox/ depend on
the assumed mutation rate. Applying the calibration by Oliveira
et al. (2008), both coalescence times for Cox/ (0.013 MY and
0.145 MY respectively) are younger than the average coalescence
at nuclear genes but are well within the 95% of the estimated pop-
ulation divergence (Table 4). Using Brower (1994), mitochon-
drial coalescence between the ancestor of central and western
samples and the eastern sample (1.433 mya) predates the aver-
age coalescence times for nuclear genes (0.714 mya), whereas
the mitochondrial coalescence time between central and western
samples (0.125 mya) is still more recent than that for nuclear
genes (0.467 mya) (Fig. 6).

Discussion

We analyzed a large multilocus dataset under the simplest possible
model of divergence between three populations to make quanti-
tative inferences about the longitudinal history of C. fungosa.
Reconstructing the genealogical histories of individual loci leads
to a “forest” of largely incongruent and often poorly resolved

Table 3. Maximum Likelihood estimates (MLEs) of ancestral population sizes and population divergence times for refugial populations
of C. fungosa assuming a population tree topology (E, (C, W)). Corresponding Ne and < values are shown in bold in brackets. The simplest
mutational model assumes a single rate for all loci. In the variable rates analysis, a relative mutation rate was computed for each locus
from divergence to C. lauta.

MLE, single rate (20 loci) MLE, single rate (18 loci) MLE, variable rates (18 loci)

Oe/cyw (NEjcyw) 0.0076979 (614,000) 0.007995 (637,000) 0.008933 (712,000)
Oc/w Ncyw) 0.000008 (<1000) 0.000002 (<1000) 0.000003 (<1000)
Ye/cyw—Ycyw (Tg/cyw in my) 0.0000032 (<0.001) 0.000001 (<0.001) 0.000001 (<0.001)
Yc/w Tcyw in my 0.0006924 (0.110) 0.000712 (0.114) 0.000756 (0.121)
InL —853.486 —794.948 —796.913
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Table 4. Prior and posterior means and 95% confidence intervals for divergence times and ancestral population sizes in Bayesian

analyses using minimal sampling of a single individual per population and assuming an “Out of the East” population tree topology (E,
(C, W)). Corresponding Ne and < values are shown in bold below. All analyses (a—c) assumed exponentially distributed priors («=1), but
differed in their prior means. The population size in between the two divergence events N¢, is the parameter most sensitive to prior

choice and has the widest confidence interval.

Parameter (a, B) Prior mean Posterior mean
(95% confidence interval) (95% confidence interval)
priors a
Oe/c/w (1, 380) 0.00271 (0.00011, 0.00968) 0.00691 (0.00239, 0.01830)
Ngjciw 216,000 (10,000, 772,000) 551,000 (190,000, 1,459,000)
Oc/w (1, 380) 0.00267 (0.00009, 0.00982) 0.002477 (0.00033, 0.00727)
Nciw 213,000 (8,000, 783,000) 197,000 (26,000, 580,000)
YE/C/W (1, 1519) 0.00095 (0.00012, 0.00276) 0.00074 (0.00019, 0.00139)
TE/C/W 0.151 my (0.019 my, 0.440 my) 0.118 my, (0.030 my, 0.221 my)
Yerw (1, 1519) 0.000329 (0.00001, 0.00119) 0.00027 (0.00001, 0.00076)
Tc/w 0.052 my, (0.002 my, 0.189 my) 0.043 my, (0.002 my, 0.121 my)
priors b
O c/w (1, 38) 0.02664 (0.00083, 0.09691) 0.00734 (0.00464, 0.01121)
NEejcjw 2,124,000, (66,000, 7,726,000) 585,000 (370,000, 894,000)
Oc/w (1, 38) 0.02639 (0.00064, 0.09669) 0.00875 (0.00050, 0.05260)
Nciw 2,104,000 (51,000, 7,709,000) 698,000 (40,000, 4,141,000)
YE/C/W (1, 152) 0.00980 (0.00113, 0.02918) 0.00084 (0.00023, 0.00156)
TE/C/W 1.563 my (0.180 my, 4.653 my) 0.134 my (0.037 my, 0.249 my)
Yerw (1, 152) 0.00326 (0.00008, 0.01198) 0.00029 (0.00001, 0.00084)
Tc/w 0.520 my (0.131 my, 1.910 my) 0.046 my (0.002 my, 0.134 my)
priors ¢
Oc/c/w (1, 380) 0.00257 (0.00004, 0.00961) 0.00741 (0.00485, 0.01088)
Nejciw 205,000 (3,000, 766,000) 591,000, (387,000, 868,000)
Oc/w (1, 38000) 0.00003 (<0.00001, 0.00009) 0.00005 (0.00001, 0.00015)
Ncw 2,100 (<1000, 7,000) 5,000, (<1,000, 13,000)
YE/C/W (1, 1519) 0.00096 (0.00011, 0.00277) 0.00057 (0.00011, 0.00111)
TE/C/W 0.153 my (0.017 my, 0.442 my) 0.091 my (0.018 my, 0.177 my)
Yerw (1, 1519) 0.00033 (0.00001, 0.00122) 0.00056 (0.00011, 0.00108)
Tc/w 0.053 my (0.013 my, 0.195 my) 0.089 my (0.018 my, 0.172 my)

gene trees (Fig. 4), which individually contain little information
about the underlying population history. However, analyzing these
data jointly in a coalescent framework, the relationship between
major refugial populations of C. fungosa can be described as
a quantified population tree, which includes relevant population
genetic parameters (Fig. 7). This is a considerable improvement
over previous phylogeographic studies in this system, which have
largely been based on mitochondrial sequence data and allozymes
(Rokas et al. 2001, 2003; Stone et al. 2001; Challis et al. 2007,
Stone et al. 2009) and allows us to quantify important aspects of
the phylogeographic history of C. fungosa.

First, both likelihood and Bayes factor comparisons of pop-
ulation tree topologies (Table 2) support the “Out of the East”
scenario for C. fungosa.

Second, both ML and Bayesian estimates for the time of
the first population split between the eastern population and the
common ancestral population of central and western populations

t¢/c;w fall well within the late Pleistocene. Likewise, both meth-
ods suggest that the more recent divergence between central and
western populations (t¢;w) occurred either during the last inter-
glacial or glacial period. However, because the MLE for the time
between population splits (tg/c;w — Tcyw) is effectively zero and
the 95% confidence intervals for the two divergence times overlap
in all Bayesian analyses, we cannot exclude the possibility that
the two population splits happened in close succession.

Finally, the present coalescent analyses provide information
about the effective sizes of ancestral and present populations.
Although our estimates of both ancestral population sizes, in par-
ticular N¢,w, have large confidence intervals and, in the case of
Nc,w, are sensitive to prior settings (discussed below), they pro-
vide an important comparison with model organisms. For example
the observed diversity in C. fungosa (g = 0.92%, Table 1) is com-
parable with that in non-African populations of D. melanogaster
(s =1.33%) (e.g., Andolfatto 2001, Table 3). Similarly, estimates
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Figure 5. Prior and posterior distributions of parameters under the “Out of the East” model of population divergence using minimal
sampling of a single individual per population. Prior distributions for the first two MCMCcoal analyses are shown as dashed lines (a,
mixed long and short dashes between blue symbols; b, long dashes between red symbols), posterior distributions for the single triplet
analysis are in color (a, red; b, blue; c, black). Whereas tg,c;w (B) and Ng,c,w (D) are little influenced by the prior means, Nc,w (C) is
extremely sensitive. This parameter is also confounded with t¢,v. When setting a low prior mean for N¢,v (analysis c) the posterior
distribution for tc,w shifts markedly toward the right (see black line in A). Note that despite « = 1 for all model parameters, the prior
distribution for tg,c;,w (B) is not exponential because of the constraint t¢;c;w > tc/w.

for the effective population sizes of D. melanogaster of 10°
(Andolfatto and Przeworski 2000) and for effective size of the
ancestor of D. melanogaster and D. simulans of Ng = 3.9 x 10
(Li et al. 1999) agree with our results for C. fungosa in order
of magnitude. If effective population sizes of 10° are the rule
in insect parasitoids, their longitudinal histories will inevitably
involve extensive incomplete lineage sorting, strengthening the
case for multilocus approaches for meaningful phylogeographic
inferences.

How do these results compare with those obtained from sin-
gle gene trees both in C. fungosa and in other codistributed oak
gall parasitoids and their hosts? In C. fungosa, the topology of the
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inferred population tree (Fig. 7) is congruent with both the ma-
jority of resolved nuclear gene trees as well as the mitochondrial
gene tree when a single individual per refugial population was
sampled (Fig. 3). More generally, the eastern origin of C. fungosa
is consistent with the mitochondrial gene tree for another oak gall
parasitoid, M. stigmatizans (Hayward and Stone 2006), with mi-
tochondrial and nuclear gene trees in the parasitoid M. dorsalis
(Nicholls et al. 2010) and three species of host gall wasps (Rokas
et al. 2003; Challis et al. 2007; Stone et al. 2007, 2009).
Although by definition gene divergence must predate the di-
vergence of populations, our results suggest that the magnitude
of this difference is considerable in C. fungosa and very relevant
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Figure 6. Divergence times for the two splits in the Out of the East model (C vs. W left and (C,W) vs. E right). The figure shows that
Bayesian estimates (prior settings a) of population divergence times for both single and extended triplet samples (columns 4 and 5 in
each figure, respectively) are more recent than the mean coalescence time across nuclear loci for both sampling schemes (columns 2 and
3 in each figure). Mitochondrial divergence (column 1) was calculated from node ages in the single triplet tree using both Oliveira et al.’s
(2008) rate calibrated from Nasonia sister species (lower estimates, bold bars in column 1) and the widely applied rate estimate of Brower
(1994) (higher estimates, column 1). Error bars show +95% confidence limits.

for our interpretation of its Pleistocene history. It is notewor- the definition of glacial refugia). We know from the fossil record
thy that the estimates for tz/c;w coincide with the last (Eemian) that both oaks (Velichko et al. 2005) and associated gall wasp
interglacial, 0.130-0.115 mya, which suggests that divergence be- species (Stone et al. 2008; van der Ham et al. 2008) known to
tween refugial populations is as recent as it possibly can be (given be attacked by Cecidostiba expanded their range in Central and
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Figure 7. Population tree for Western Palearctic C. fungosa inferred from 20 genetrees. Means of posterior distributions of model
parameters were obtained from the Bayesian analysis (priors a, extended sampling of three sequences per population, Table S3 and
figure S4). The widths of blocks correspond to effective population sizes (scale at top). Divergence times are shown on two different
scales: t in MY (right-hand scale), and t = t/(2Ng,c,w) generations assuming two generations per year, that is, g = 0.5 (left-hand scale).
Note that all blocks have a greater width than height such that pairs of lineages sampled from the same population are more likely to
coalesce in their ancestral population.
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Northern Europe during this period. It is thus plausible for popu-
lation divergences associated with westward range expansions of
C. fungosa to have occurred over a similar timescale.

Although the unknown error in the mitochondrial clock
and the large discrepancy between different calibrations (Brower
1994; Oliveira et al. 2008) make a direct comparison with mito-
chondrial dates problematic, it is nevertheless reassuring that the
mitochondrial ages obtained for C. fungosa fall within the 95%
confidence interval of (Oliveira et al. 2008) or predate (Brower
1994) the estimated time of population divergence (Fig. 6), as they
should. A mitochondrial divergence more recent than that inferred
for the population would be inconsistent with the assumed model,
and require gene flow between populations. However, it is note-
worthy that regardless of the mitochondrial mutation rate used,
the CoxI divergence times are very different from the average
divergence times at nuclear genes (Fig. 6). This demonstrates
the extremely large variance in coalescence times and highlights
the danger of over-interpreting node ages of single gene trees.
An additional problem with mitochondrial mutation rate calibra-
tions is that they are likely to be confounded by the selective
dynamics of bacterial endosymbionts (Oliveira et al. 2008), the
prevalence of which is known to differ both between populations
and closely related species of Pteromalids (Weinert et al. 2009,
A. Aebi, unpubl. data). It is therefore not clear to what extent the
Nasonia rate applies to C. fungosa. In contrast, the nuclear esti-
mates for Nasonia are broadly consistent with those obtained for
other insects.

The fact that divergence at a single locus can only pro-
vide an upper bound of the population divergence time may
well explain why mitochondrial dates found in previous stud-
ies on other species of European gall parasitoids and their gall
wasp hosts (Hayward and Stone 2006) are considerably older
than the population divergence estimates for C. fungosa obtained
here. For instance, mitochondrial divergence between Central
European and Iberian clades of the parasitoid M. stigmatizans
has been estimated at 0.264 mya (Hayward and Stone 2006).
Mitochondrial divergence estimates between Central Europe and
Iberia for gall wasp host species are still older; for example,
0.383 mya in Andricus kollari (Hayward and Stone 2006) and
1.6 mya in Andricus coriarius sensu stricto (Challis et al. 2007).
Analyses of multilocus datasets are clearly required to pro-
vide better estimates of population divergence times in these
species. As our results show, the fact that the variance in coa-
lescence time is lower for mitochondrial loci given their smaller
N, may reduce but does not alleviate this problem. This un-
derlines the possibility raised by Nichols (2001) that between-
taxon variation in mtDNA-inferred dates of divergence between
glacial refugia may well be attributable to coalescent variance
rather than taxon-specific differences in postglacial dispersal.
Rigorous testing of the hypothesis of taxon-specific variation
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in divergence times requires broader application of multilocus
approaches.

ANCESTRAL N, AND SAMPLING

The results of the Bayesian analyses show that estimates of t¢,w,
or rather the time between the population splits (tg/c/w — Tc/w)
and the population size during that time, N¢,w, are confounded.
Considering that it is the ratio of the two parameters which de-
termines the chance of coalescence between population splits
(Hudson 1983; Saitou and Nei 1986; Yang 2002), this makes in-
tuitive sense and may explain the poor ability to estimate N¢,w
independently. A large variance in ancestral N, has also been re-
ported by most earlier multilocus analyses of divergence models
(Chen and Li 2001; Yang 2002; Rannala and Yang 2003). In gen-
eral, explanations for the low power to estimate this parameter
fall into two categories: (1) violations of the model assumptions;
and (2) limited signal in the data.

Ignoring within-locus recombination and mutational rate het-
erogeneity, for example, can in principle overestimate ancestral
population sizes (Satta et al. 2000; Yang 2002; Wall 2003). How-
ever, the few studies that have incorporated these factors suggest
that they have little influence on estimates of ancestral N, (Satta
et al. 2000; Yang 2002; Wall 2003). Similarly, the fact that our
ML results for the variable mutation model are in agreement with
those assuming a single rate despite large differences in relative
mutation rates (Table 1) suggests that any impact of mutational
heterogeneity between loci is greatly outweighed by coalescence
and mutational variance and therefore an unlikely explanation for
the low power to estimate Nc¢,w.

In general, there are two factors that determine statistical
power to infer ancestral parameters; (1) the number of lineages
that contribute to the estimate (Fig. 2) and (2) the mutational infor-
mation available to infer their relationships. Both clearly depend
on the timescale of divergence. Relating the estimated population
divergence times (scaled by the mean of current population sizes)
for C. fungosa to the theoretical expectation for the number of
surviving lineages, we can ask how much power could poten-
tially be gained by further increasing sample sizes. For example,
Figure 2 shows that sampling three instead of a single individual
per population roughly doubles the expected number of east-
ern lineages that survive into the common ancestral population,
whereas 16 more individuals are required for a further twofold
increase. For the more recent divergence at t¢,w, the increase in
the number of surviving lineages from additional samples is of
course more substantial (Fig. 2). However, if our analysis was
limited by sample size, we would expect to see an improvement
in parameter estimation proportional to the increase in the num-
ber of surviving lineages when sampling three individuals. The
fact that this is not the case (i.e., the variance in the estimates of
three of the four model parameters is little affected despite the
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doubling of surviving lineages) suggests that the power to infer
ancestral parameters is largely limited by the mutational variation
available rather than the sample size. However, our finding of
a markedly higher posterior mean N¢,w for the three individual
sampling suggests that the estimation of this parameter may in-
deed be sensitive to the sample size. This makes intuitive sense if
we extend the “number of surviving lineage” argument above and
consider that only lineages that survive into N¢,w and coalesce
before they reach Ng,c,w contribute to the estimate of N¢,w. One
would therefore expect increased power to estimate this param-
eter with increasing sample sizes both in C. fungosa and in the
bird divergence studied by Jennings and Edwards (2005). Thor-
ough investigation of the effect of sampling on statistical power
in divergence models both theoretically and using empirical data
is required to inform sample designs of future population genetic
and phylogeographic studies. In particular, disentangling the ef-
fects of mutational limitation and those of sample size (both the
number of sampled loci and individuals) would be useful. If muta-
tional information is not limiting, gene tree species tree methods
(Degnan and Salter 1995; Maddison and Knowles 2006; Liu and
Pearl 2007; Degnan and Rosenberg 2009; Kubatko et al. 2009)
should converge to the same answer as the inference methods
used here.

Another way to improve power may be to use outgroup in-
formation in the likelihood calculation. At present Ne3sML and
MCMCcoal rely on clock rooting (Yang 2002), which, given the
small number of polymorphic sites in some loci, results in large
topological uncertainty. Being able to distinguish between par-
simony informative sites and singleton mutations by reference
to an outgroup should in principle enhance the power of both
approaches.

ASSUMPTIONS AND EXTENSIONS OF THE MODEL
Considering the large confidence intervals in parameter estimates,
it is clear that quantitative inference of population history is a
data-hungry problem, particularly if divergence is recent. It is
therefore questionable how much scope there is to probe more
realistic models without increasing the amount of data drastically.
In general, inferences of ancestral population parameters are likely
to be much more sensitive to violations of the divergence model
than they are to violations of the model of sequence evolution.
Because there are key population processes omitted from the
present analyses that render population history less tree-like, one
could argue that the notion of a “population tree” as such is an
unrealistic description of phylogeographic history.

First, the model assumes that there is no migration after
divergence. Although at least in the host gallwasps, allele fre-
quency data support this assumption (Rokas et al. 2001, 2003;
Stone et al. 2001, 2008; Challis et al. 2007), we cannot exclude
the possibility of migration after divergence for C. fungosa. It

would therefore be interesting to relax this assumption and IMa,
which uses the algorithm of MCMCcoal, has recently been ex-
tended to estimate divergence with migration for more than two
populations (Hey 2010). However, modeling migration explicitly
in a three-population model introduces six additional parameters.
Considering the low divergence between C. fungosa populations
for our loci, there would appear to be little power in the data to
distinguish between a divergence model with a very recent split as
inferred here and more complicated models involving both diver-
gence and subsequent gene flow. Clearly, much larger amounts
of data are needed to successfully explore such models. An ad-
ditional problem with analyzing models of migration is that, in
contrast to strict divergence models, they are sensitive to unsam-
pled populations (Wilkinson-Herbots 2008; Lohse 2009). With
the advent of nextgen sequencing technologies, the volumes of
data required to explore divergence with gene flow on such recent
timescales should soon be available.

Second, the model assumes constant population sizes be-
tween divergence events. Again, allowing for changes in popula-
tion size opens up a myriad of possible historical scenarios and
potentially increases the number of parameters dramatically.

Fortunately however, the C. fungosa data allow us to at least
exclude drastic demographic events. For instance, under a model
of colonization through extreme founder events (without subse-
quent migration), widespread incongruence between gene trees
and population trees would not be expected. Thus the mere pres-
ence of all possible gene tree topologies in our data allows us to
reject this scenario for C. fungosa.

And finally, the model assumes panmixia within populations,
which may be unrealistic over short timescales and large geo-
graphic areas. Recent theoretical work (Slatkin and Pollack 2008)
and simulations (Becquet and Przeworski 2009) have demon-
strated that subdivision in ancestral populations can lead to mis-
inference under simple divergence models.

In general, any model-based analysis faces the challenge of
choosing models that contain sufficient realism to capture key
features in the data while being simple enough to be useful. We
have shown that in the case of C. fungosa a simple divergence
model between three populations can explain the observed gen-
etree incongruence and be used to estimate both the origin and
divergence time of refugial populations despite the recency of
this history. We hope that this study motivates similar analyses of
more realistic models.

TOWARD A MULTILOCUS APPROACH
TO COMMUNITY PHYLOGEOGRAPHY
The close ecological dependence of oak gall parasitoids on their
hosts and the large number of species involved make this and
similar host—parasitoid communities valuable systems in which
to study the evolution of ecological interactions (Schonrogge
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et al. 1995; Hayward and Stone 2005). Unlike most organisms for
which similar multilocus analyses have been conducted (Li et al.
1999; Rannala and Yang 2003; Jennings and Edwards 2005), the
ecology of chalcidoid parasitoids involves intricate interactions
with codistributed species at different trophic levels. Linking the
extensive information on species composition and food web struc-
ture for these communities (Schonrogge et al. 1995, 1996a; Bailey
et al. 2009) with population genetic and phylogeographic infer-
ences at the species level opens up an exciting opportunity to
address novel and general questions about coevolution and assem-
bly of communities. For instance, do particular lineages or guilds
within trophic levels show earlier longitudinal range expansion
than others? And if so, what are the ecological properties of such
species? For example, are they generalists rather than specialists,
and so less likely to go locally extinct (Hayward and Stone 2006)?
Further questions arise when considering multiple trophic levels.
How correlated are phylogeographic histories between hosts and
parasitoids? Is there a general lag between the arrival of gallwasp
(or other herbivore) hosts and associated parasitoids such that
herbivores experience periods of enemy-free space (Hayward and
Stone 2006)? We are currently working on obtaining multilocus
data for codistributed chalcidoid parasitoid species and their gall-
wasp hosts to address these questions in a quantitative framework.
The rarity of many of the species involved (e.g., Schonrogge et al.
1995; Stone et al. 1995; Schonrogge et al., 1996a,b, 1998; Stone
et al. 1995) means that we will have to make the most of small
sample sizes.
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The question of how DNA barcodes can and should
be used in taxonomy has been debated for some time
(Lipscomb et al. 2003; Tautz et al. 2003; Blaxter 2004;
Vogler and Monaghan 2007; Wiens 2007). Although few
doubt that they are a valuable molecular tool for match-
ing unidentified specimens to described taxa, this has
little to do with the question of whether barcodes can be
used to delimit species in the first place. The most radi-
cal turn in this debate has been the plea for a DNA-based
taxonomy (Tautz et al. 2003; Blaxter 2004; Pons et al.
2006; Vogler and Monaghan 2007). Its proponents ar-
gue that “the vast majority of sequence variation in na-
ture is partitioned into clearly defined clusters” (Vogler
and Monaghan 2007, p. 4), which “ [...] broadly mirror
the species category” (Papadopoulou et al. 2008, p. 1)
and could thus serve as basic taxonomic units. Initial
attempts to employ this “barcoding gap” have relied
on defining cutoff values of sequence divergence a pri-
ori (e.g., Blaxter 2004). Considering that the amount of
genetic diversity within species can vary by orders of
magnitude, it is clear that such an approach is arbi-
trary at best. Pons et al. (2006) have recently proposed
a likelihood method that circumvents this problem by
testing for clustering in ultrametric trees. They argue
that “these new quantitative approaches can infer the
elusive species boundary directly from the transition
in branching rate and constitute an exciting possibility
to define species from sequence variation [...]” (Vogler
and Monaghan 2007, p. 6). Given such claims, it is not
surprising that this method enjoys increasing popular-
ity, having been applied to a number of mitochondrial
DNA (mtDNA) data sets (e.g., Pons et al. 2006; Ahrens
et al. 2007; Fontaneto et al. 2007; Papadopoulou et al.
2008).

MODELS AND METHODS

In essence, the Mixed-Yule-Coalescent model (MYC)
of Pons et al. (2006) splices together the classical null
models of macroevolution and microevolution. Unlike
standard models of divergence that view the genealog-
ical process as nested within the species tree, the MYC
model assumes a single transition time T at which lin-

eage sorting happens instantaneously and the branch-
ing of species clades is replaced by multiple indepen-
dent coalescences occurring within them (Pons et al.
2006). Assuming T to be a particular node in the tree,
Pons et al. (2006) use the internode intervals to find
the maximum likelihood solution for T under the MYC
model and compare this to the likelihood under a null
model of a single neutral coalescent process. Although
it has been pointed out that this and similar schemes re-
lying on single locus data cannot deal with lineage sort-
ing and thus necessarily fail to detect recently diverged
lineages (Hudson and Coyne 2002; Pons et al. 2006), the
potential problems arising from population structure
have so far largely been ignored.

In a recent paper, Papadopoulou et al. (2008) have
tested the MYC method on genealogies simulated un-
der a symmetric island model, which assumes a popu-
lation divided into multiple demes or subpopulations
that are connected to all other such demes through
migration occurring at rate m (Wright 1931). Such popu-
lation structure tends to produce clustering, very similar
to that expected under the MYC model, simply be-
cause lineages residing in the same deme coalesce more
rapidly on average than those in different demes (Fig. 1).
In this setting, the genealogy of a sample may be related
to the demic structure in 3 different ways:

1. If gene flow is very low, clusters may correspond
well to demes and may thus constitute meaning-
ful taxonomic units in the broadest sense (leaving
aside the question how species should be defined).

2. If gene flow is high, clustering may be weak or
nonexistent.

3. Clusters may be essentially random, that is, only
partially corresponding to demes.

In their simulations, Papadopoulou et al. (2008) assume
an extreme sampling scheme where samples are taken
from all demes. They find that clustering under the MYC
model is only significant when migration rates are ex-
tremely low (Nm < 107%) in which case clusters cor-
respond very well to demes (Case 1) (Papadopoulou
et al. 2008, figure 3). Once migration is above a certain
threshold value, clustering disappears rapidly and is not
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FIGURE 1. Genealogy of a sample taken from two demes B and C
in an island model. Coalescence within demes happens rapidly com-
pared with coalescence of lineages from different demes, which have
to be preceded by migration events (dashed arrows). In this case, three
“clusters” are produced because a lineage from B escapes within-deme
coalescence through migration into an unsampled deme A and has to
wait a long time until it finds itself in the same deme as the remaining
lineage.

detected by the MYC method (Case 2). The authors con-
clude that “the MYC approach appears to be conserva-
tive, only detecting the products of population isolation
when the levels of gene flow are much lower than those
traditionally regarded as sufficient for neutral popula-
tion divergence” (Papadopoulou et al. 2008, p. 8).

It is worthwhile to recall some basic properties of
the coalescent for samples in an island population here.
Going backwards in time, lineages have a probability
m per generation of escaping coalescence in their local
deme. The number of sampled demes over the total
number of demes, d/D, is crucial in determining the fate
of such escaping lineages. The first migrating lineage
has probability d/D of landing in a sampled deme in
which it may coalesce. Alternatively, with probability
1 —d/D, it lands in an unsampled deme and its coa-
lescence has to be preceded by at least one additional
migration event. Realizing the pivotal role of the sam-
pling scheme, Wakeley (1998, 2008) has developed an
elegant approximation for the coalescent in an island
model. If the number of unsampled demes is large, d/D
tends to zero and the ancestral process can be split into
two phases occurring on different timescales (large D-
approximation). Initially, lineages may either coalesce
in their local deme or spread out into unsampled demes
(scattering phase) (Fig.1). Once every lineage resides
in a separate deme, the ancestral process is a neutral
coalescent with a rate dependent on the total number
of demes, D, their size, N, and m (collecting phase).
This separation of timescales and the strong pattern of
sequence clusters resulting from it may superficially
resemble the two phases in the MYC model. However,
there are two important differences. First, there is no
branching process in the structured coalescent. Instead,
the collecting phase is another, although much slower,
neutral coalescent. Thus, theoretically, one could ex-
tend the likelihood approach of Pons et al. (2006) to
distinguish between the two models. Second and more

importantly, clusters in the structured coalescent may
be the result of migration events into unsampled demes
during the scattering phase and are thus fundamentally
random (Case 3). One would therefore expect the sam-
pling scheme to have a major impact on the performance
of the MYC method.

To investigate this, I repeated the simulations of
Papadopoulou et al. (2008) for varying d/D. Genealo-
gies were simulated in MS (Hudson 2002). The effect
of the mutational variance on tree reconstruction was
ignored, that is, the method was applied directly to sim-
ulated genealogies. Likelihoods under both the MYC
and a single neutral coalescent were calculated us-
ing the genealogy package in Mathematica (available
from www.biology.ed.ac.uk/research/institutes/ evo-
lution/software/barton/index.html). For each repli-
cate, the two models were compared in a likelihood
ratio test and the number of inferred clusters recorded
(Papadopoulou et al. 2008). To investigate the region
of the parameter space for which the MYC method
breaks down, the following sampling scheme was used.
Genealogies were simulated for a total of 100 samples
taken evenly from 10 demes. Both Nm (0.001, 0.002,
0.004, 0.008, 0.016, 0.032, 0.064, 0.128) and 4/D (1, 0.5,
0.2, 0.1, 0.05) were varied and 100 replicates simulated
for each parameter combination.

RESULTS

The results agree with those of Papadopoulou
et al. (2008) in general, in that the chance of detecting
significant clustering under the MYC model declines
with increasing migration rates. However, inspection
of Figure 2a shows that the robustness of the MYC
method depends significantly on the sampling scheme.
With decreasing d/D, the chance of detecting significant
clustering in the face of high migration rates increases
drastically (Fig. 2a). The main effect of migration at the
beginning of the coalescent process is then to randomly
move lineages into unsampled demes, thereby creating
additional clusters and increasing the support of the
MYC model. For instance, if only every 20th deme is
sampled and Nm = 0.064, the chance of detecting signif-
icant clustering is still >0.8 (Fig. 2a). The overall excess
of clusters detected by the MYC method matches the
theoretical prediction for the number of lineages escap-
ing coalescence in their local deme (Fig. 2b) (Wakeley
1998, equation 32). As expected, the fit to the prediction
(which neglects the chance of migration to a sampled
deme during the scattering phase) increases with de-
creasing d/D. In the extreme case of complete sampling
(d/D = 1), the number of inferred clusters is slightly
lower than the number of demes (the gray dashed line
in Fig. 2b) because escaping lineages necessarily land in
sampled demes. The results agree both with intuition
gained from the separation-of-timescales arguments as
well as earlier simulations (Wakeley 1998) in that d/D
does not have to be very small for strong clustering to
emerge in the face of migration.
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FIGURE 2. a) The proportion of genealogies with significant (P < 0.05) clustering under the MYC model plotted against the scaled migration
rate. Different colors correspond to different sampling schemes, that is, proportions of sampled demes, d/D: Orange = 1, red = 0.5, green = 0.2,
blue = 0.1, and black = 0.05. In each case, genealogies were simulated for a total of 100 sequences. 10 samples were taken from each of 10 demes.
Each point is based on 100 replicates. The orange line corresponds to the complete sampling scheme assumed by Papadopoulou et al. (2008). b)
The average number of clusters inferred by the MYC method for different sampling schemes. The upper dotted line is the theoretical prediction
for the number of lineages at the end of the scattering phase in the limit when d/D tends to zero.

Di1SCUSSION

Given the large effect of the sampling scheme, how
realistic is the assumption of incomplete sampling?
First, geographic sampling is hardly ever complete
in practice. This is true in particular for most barcod-
ing data which are rarely collected with a particular
sampling scheme in mind (but see Pons et al. 2006; Pa-
padopoulou et al. 2008), and it has been argued before
that the “barcoding gap” may in part result from in-
complete spatial sampling (Moritz and Cicero 2004).
Second, there are biological reasons why the kind of
completeness required for the MYC method to be re-
liable may be impossible to achieve in practice. What
governs the formation of clusters is not the population
structure at the time of sampling but rather the sum of
population structures that have affected the ancestral
process of the sample in the past. The symmetric island
model considered here is the simplest possible model
of structure. In more realistic metapopulation models,
demes are transient so that lineages may spend the ma-
jority of their history in demes that have subsequently
gone extinct and can therefore not be sampled. Thus,
increasing the geographic scale of sampling does not
necessarily get around the problem. Considering that
separation of timescales have been applied to a variety
of models of structures (Wakeley 2004; Wilkins 2004;
Matsen and Wakeley 2006), the main result is likely to
hold in general. For instance, an analogous argument
can be made for samples from a population in a con-
tinuous 2-dimensional habitat (Wilkins 2004). In this
model, there is no discrete underlying structure at all so
any observed clustering must be spurious. However, if
a sample is taken from a set of random locations, one
would expect a pattern similar to that observed in the
island model. At the beginning, lineages either coalesce
quickly in their neighborhood or escape by chance, in
which case coalescence takes a much longer time on
average. Again, the resulting clusters would only partly

correspond to sampling locations with additional clus-
ters being created by migration during the scattering
phase (see Wilkins 2004, figure 4).

In conclusion, the method of Pons et al. (2006) delim-
its essentially random clusters when applied to samples
from a single island model population if d/D is low.
Similar behavior is expected under any model of geo-
graphic structure as long as there is a considerable frac-
tion of unsampled space and a separation-of-timescales
exists. This is particularly worrisome considering the
envisioned application of the MYC method to high-
throughput mtDNA profiles (Pons et al. 2006).
Such mass samples are likely to contain both individ-
uals from truly isolated clades or species and struc-
tured populations connected by gene flow, making it
even harder to distinguish between the two types of
clusters.

Taken together, the results cast serious doubts on
the usefulness of mtDNA barcodes as a scaffold for
an automated DNA taxonomy (Pons et al. 2006). The
stochastic nature of both migration and lineage sorting
requires multilocus data, exhaustive geographic sam-
pling, and realistic models, which can deal with the
expected incongruence between gene genealogies to de-
limit meaningful taxonomic units from sequence data
(Edwards 2009). However, this remains a difficult task
even for a very modest number of taxa (e.g., Knowles
and Carstens 2007) and is incompatible with the notion
of a DNA taxonomy based on a single locus. Given the
ubiquity of population structure in nature, the number
of potentially detectable clusters in mitochondrial bar-
code data is likely to vastly exceed that of meaningful
taxonomic units.
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