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Abstract

This thesis investigates a range of genealogical approaches to making quantitative inferences about the

spatial and demographic history of populations with application to two insect systems: A local radiation

of high alpine ground beetles (Carabidae) in the genusTrechusand major refugial populations of the oak

gall parasitoidCecidostiba fungosa(Pteromalidae).

i) Summary statistics, which make explicit use of genealogical information are developed. Using simu-

lations their power to detect a history of population growthis shown to be higher than that of standard

measures such as Tajima’sD for single and multilocus data. The improvement arises fromthe fact

that in contrast to pairwise measures, the new statistics are minimally confounded with the topology.

ii) A Bayesian method to reconstructing character states isused to infer the Pleistocene history of popu-

lations of high alpineTrechussampled along a single mountain range from mitochondrial and nuclear

data. Despite evidence for some incomplete lineage sorting, a simple model of a series of extreme

founder events out of two refugia during or before the last glacial maximum provides a good fit to

the data.

iii) A large set of exon-primed, intron-spanning (EPIC) loci is developed for Hymenoptera from EST

and genomic data. Amplification success is screened on a range of Hymenopteran species associated

with two insect-plant interactions: Oak galls and figs.

iv) Borrowing model-based approaches developed to quantify species divergence, the new EPIC loci are

used to investigate the relationships between three major European refugia in the oak gall parasitoid

C. fungosa. These analyses reveal strong support for an eastern origin, effective ancestral population

sizes comparable to insect model species and evidence for recent population divergence during the

last interglacial. The results also suggest that there is significant information in minimal samples

provided a large number of loci are available.

v) Results for the probability of gene tree topologies are derived for a model of divergence with gene

flow between three populations. I outline how the asymmetries in the frequency of gene tree topolo-

gies may be used to distinguish incomplete lineage sorting from migration and discuss the results in

the context of next generation sequence data fromD. melanogasterand humans and Neanderthals.



Chapter 1

Introduction

Understanding the spatial and demographic history of populations and species has been central to evolu-

tionary theory from its very beginning. In fact, geographicdistribution is the only topic to which Darwin

devotes two entire chapters in the Origin of Species (Darwin, 1859). This initial work is either theoret-

ical or based on comparisons of species distributions and considers the implications of geography for

the process of speciation and the factors shaping the composition of regional faunas and floras (Darwin,

1859; Wallace, 1876; Jordan, 1905; Holdhaus, 1954). Molecular data provide an independent source of

information about the history of species that has enabled researchers to put many of those early ideas to

the test. For instance, evolutionary biologists have used sequence data to ask whether particular climate

episodes have acted as drivers of speciation (e.g. Klinka & Zink, 1997; Knowles, 2001) or to what extent

ecologically linked taxa share spatial histories (e.g. DeChaine & Martin, 2006; Hayward & Stone, 2006).

In other cases, such as our own species and its diseases, being able to make historical inference from

sequence data is obviously of direct cultural and medical relevance (e.g. Lemeyet al., 2009; Greenet al.,

2010). Alternatively, studies aiming at identifying genesunder selection may not be directly interested

in population history, but nevertheless rely on realistic null models against which the signature of past

selection acting on particular genes can be tested.

Given this broad and varied interest in spatial and demographic history and the difficulty in choos-

ing between the potentially infinite number of histories, itis is perhaps not surprising that the study of

structured populations is a historically divided field (Hey& Machado, 2003). This division has — at

least in the past — been a practical one between the study of model organisms and humans, for which

genetic tools and data are abundant, and non-model organisms, which may have very interesting histories

but few available genetic resources to infer them. However,there is a deeper, conceptual divide between
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phylogeography, which emphasizes the information contained in genealogies, and population genetics,

which sees genealogies as essentially random outcomes of genetic drift.

Although the composition of this thesis does by necessity reflect these different traditions, a general

goal throughout has been to bridge the gap between them by investigating how genealogical approaches

can be used to improve population genetics inferences and,vice versa, how population genetics methods

and sampling schemes may be applied to make robust phylogeographic inferences in non-model sys-

tems. While each chapter includes its own specific introduction, the general introduction below outlines

the conceptual differences between population genetics and phylogeography. It will become clear that

coalescent theory provides an elegant quantitative framework that naturally encompasses both the “tree-

thinking” of phylogeography and the sound, population genetics view of genetic drift. The large number

of recent reviews on this topic (Maddison, 1997; Nichols, 2001; Hey & Machado, 2003; Knowles, 2004,

2009; Machadoet al., 2005; Degnan & Rosenberg, 2009; Edwards, 2009; Nielsen & Beaumont, 2009;

Hickersonet al., 2010) bear witness to the fact that this synthesis is now well under way.

1.1 Classic models of population structure

Classic population genetics theory studies the effects of mutation, drift, selection, recombination and

dispersal on allele frequencies. In the simplest case of a large, randomly mating population of constant

size with discrete, non-overlapping generations, drift can be described by a single quantity, the effective

population sizeNe (Fisher, 1930; Wright, 1931); for example the variance in allele frequency of two

alleles with frequencyp andq, increases at ratepq/2Ne per generation (the factor of 2 enters because it

is standard to assume a diploid population). Furthermore, arandomly chosen gene copy has chance of

1/2Ne of going to fixation in the population and, if it does so, takeson average4Ne generations. This

null model, also known as the Wright-Fisher model was extended early on to investigate the effects of

population structure. Perhaps the simplest model of structure is the symmetric island model, a set of

subpopulations or demes which are connected to each other through migration occurring at ratem per

generation. Sewall Wright (1931) derived results for the distribution of allele frequencies under this model

showing that the between population component of the variance of allele frequencies (FST ) is inversely

proportional to the scaled migration rateM = 2Nem. Wright’s famous equilibrium solution forFST , a

measure of genetic differentiation between populations (Wright, 1951), has been widely used and abused

(Whitlock & McCauley, 1999) to estimate the number of migrants from allozyme and microsatellite data.

Because the symmetric island model assumes that demes are statistically exchangeable (in other words

migrants are equally likely to disperse into any deme), it does not contain any measure of geographic
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distance. More realistic models that capture spatial structure include models of stepping stone migration

(Wright, 1943; Weiss & Kimura, 1965; Malécot, 1969) and continuously distributed populations (Wright,

1943). In both cases, migration and hence reproduction are more likely to occur between individuals

from neighboring demes (stepping stone model) or nearby locations (geographic continuum), leading to

a pattern of isolation by distance (Wright, 1943). Importantly, classic population genetics results for these

models are phrased in terms of allele frequencies as the population evolves forwards in time.

1.2 Phylogeography

In contrast, the field of phylogenetics, which seeks to reconstruct the evolutionary relationships between

species and has its roots in systematics, is fundamentally backwards-looking. In a seminal paper Avise

(1987) proposed that mitochondrial DNA sequences sampled at different locations within species could

be used to reconstruct genealogies, which in turn should be informative about the underlying geographic

history. Avise’s paper marks the beginning of the field of phylogeographyand features an illuminating fig-

ure depicting the fundamental connection between deep level phylogenies and population level pedigrees

through a series of increasing magnifications (Avise, 1987,figure 1). Although Avise’s expressed hope

was that phylogeography could bridge the gap between systematics and population genetics, the field ini-

tially developed largely in isolation from population genetics. Phylogeography’s focus on mitochondrial

DNA and its embrace of cladistic methods, which seemed to provide the obvious tools for the analysis

of trees, if anything deepened the divide. While the emphasis on the information contained in genealo-

gies and the adoption of phylogenetic methods (Nei & Kumar, 2000) to reconstruct them, constituted an

important step, the phylogeographic inference of historical scenarios itself remained a largely descriptive

exercise. Attempts to formalize this inference include Templeton’s nested-clade phylogeographicanalysis

(NCPA), a method that relies on summary statistics to measure the spatial spread of clades in a genealogy

(Templetonet al., 1995). While the significance of the correlation between genealogy and geography is

assessed using randomization tests, likely historical scenarios are inferred qualitatively and clade by clade

through an inference key, in a process similar to key-based taxonomic identification (Knowles, 2002).

1.3 The neutral coalescent

A few years before the field of phylogeography took off, population geneticists underwent a crucial shift

from thinking in terms of allele frequencies forwards in time to considering the ancestry of samples back-

wards in time. This focus on the ancestry of samples, which has important precursors in Malécot’s notion
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of identity by descent (Malécot, 1969), was driven by the increasing availability of genetic data. Ewens’

sampling formula, describing the frequency distribution of allelic types in a sample under the infinite

alleles mutation model (Ewens, 1972), marks the first step towards viewing genetic drift backwards in

time. The formulation of the neutral coalescent by Kingman (1982) and Hudson (1983) as the mathe-

matical description of the ancestral process of a sample from a Wright-Fisher population completes this

transition. In the words of Wakeley (2008), “The demonstration that a relatively simple ancestral process

exists for a sample was a major advance in population genetics.” The elegance and simplicity of the

neutral coalescent is indeed striking. For a sample ofn lineages, the chance that a pair shares a common

ancestor (i.e. coalesces), in any generation is given by thenumber of possible pairs
(

n
2

)

= n(n − 1)/2

and the effective population sizeNe. More precisely, the rate of coalescence isλ =
(

n
2

)

/2Ne. Scaling

time in units of2Ne generations, the times between successive coalescence events (Ti), wherei denotes

the number of lineages in each interval, have the following probability density function:

f(Ti) =

(

i

2

)

e−
(

i

2

)

t (1.1)

The fundamental property of the neutral coalescent is that genealogies are highly random both in

topology and branch lengths. In fact, since the Wright-Fisher model assumes random mating, all lineages

are equally likely to coalesce and thus all topologies are equally probable. Similarly, the variance in

the time between successive coalescence events, which determine the branch lengths of the genealogy,

is considerable. The variance of an exponentially distributed variable is1/λ2, so the time until the last

coalescent event has variance2N2
e . Furthermore, the cumulative distribution function off(Ti) is very

wide. For example, there is a 5% chance in total that the coalescence of the last pair of lineages takes less

than0.025× 2Ne or more than3.7 × 2Ne generations.

The power and great success of the coalescent is threefold. Firstly, it provides a convenient null model

against which patterns observed in sequence data can be tested. In particular, it is straightforward to derive

the full distribution of two basic measures of the size of a genealogy: the time to the most recent common

ancestor of the sample (Tavaré, 1984; Takahata & Nei, 1985);and the total size of a genealogy (Tavaré,

1984). The latter, in turn, leads to an expression for the distribution of the number of segregating sites

under the infinite sites mutation model (Kimura, 1969; Watterson, 1975; Tavaré, 1984; Wakeley, 2009).

Secondly, separating the ancestral process from the occurrence of mutations and focusing on the history

of a sample rather than the entire population, makes it extremely efficient to simulate sequence data under

arbitrary histories and mutation models (Hudson, 1993, 2002). Finally, analytical work has extended the

coalescent to more realistic population histories including equilibrium and non-equilibrium models of
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structure and changes in population size (Griffiths & Tavaré, 1994). In fact, many classic population

genetic results can be easily and perhaps more intuitively understood in the language of the coalescent

theory. For instanceFST can be defined as the relative difference in expected coalescence time between

a pair of genes sampled at random from the population as a wholeTT and a pair sampled from the same

demeT0 (Hudsonet al., 1992; Charlesworthet al., 2003),

FST =
TT − T0

TT
(1.2)

For the symmetric island model the expected coalescence time of a pair sampled from the same deme

is given by the total effective population size, i.e.T0 = 2dNe, whered is the number of demes (Slatkin,

1991). The time to coalescence for a pair sampled from the whole population is increased by the time it

takes them to find themselves in the same deme, i.e.TT = T0 + (d − 1)2/2dm. Substituting into eq. 1.2

yields Wrigth’s solution in the limit of large deme numbers (Charlesworthet al., 2003).

The main result of extending the coalescent to models of population structure is the demonstration

that the process is remarkably robust to a variety of complications and — in many cases — can be

recovered through simple approximations and rescaling. Wakeley (1998, 1999) showed that given a large

number of demes, the ancestry of a sample from a symmetric island model can be separated into two

phases: An initial, instantaneous phase of coalescence andmigration (termed the scattering phase); and

a later phase during which the ancestry follows the neutral coalescent with a rate that is given by the

number and size of demes and is inversely proportional to therate of migration between them (collecting

phase). While the effect of island-model population structure is to increase the effective population

size, more realistic types of structure, in particular those involving fluctuations in deme size and local

extinctions, tend to decreaseNe (Whitlock & Barton, 1997; Wakeley & Aliacar, 2001; Charlesworthet al.,

2003). Similar separations of time-scale have been appliedto more general variants of the island model

(Wakeley, 1999, 2001; Matsen & Wakeley, 2006), metapopulation models (Wakeley & Aliacar, 2001;

Wakeley, 2004a, 2009) and models of populations in a two-dimensional continuum (Wilkins, 2004). A

basic result of this theoretical work is that even under models in which lineages are most likely to coalesce

in their neighborhood, the majority of the ancestry of a sample, and hence the backbone of a reconstructed

genealogy, is highly random both in terms of its topology andbranch length. Irwin (2002) used coalescent

simulations to show that in species distributed along a linear habitat such as a shore line or a mountain

range, deep phylogeographic breaks can arise at random locations without barriers to dispersal. This is

particularly worriesome for traditional phylogeographicinference, which readily interprets such breaks

in mitochondrial genealogies as evidence for past historical events or barriers to gene flow. In general,
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the basic insight of coalescent theory, that the same history can lead to very different genealogies andvice

versa, implies that large numbers of genealogies are required to make robust inferences about population

history. The statistical power of analysing a large number of loci is illustrated by the detailed inferences

about human history that can be made from just a few complete genomes (Chen & Li, 2001; Yang, 2002;

Rannala & Yang, 2003; Pattersonet al., 2006; Ebersbergeret al., 2007), most strikingly from the recent

Neanderthal sequences (Greenet al., 2010).

1.4 Inference methods

Despite the advances in coalescent theory outlined above, deriving results which can be used to analyse

phylogeographic data under realistic models of structure has been hampered in two ways. Firstly, formu-

lating a model that captures the movement of individuals in continuous space in a way that is consistent

forwards and backwards in time and ensures some form of density regulation (Felsenstein, 1975), has

proven to be a major challenge (Barton & Wilson, 1995; Bartonet al., 2002; Wilkins, 2004), although

progress has been made recently (Bartonet al., 2010). Secondly, even without a full description of ge-

ography, finding the joint distribution of coalescent timesand topology is difficult simply because of the

vast number of possible tree topologies even for moderate samples. The total number of possible coa-

lescent histories (i.e. trees with time-ordered nodes) is given by the product over the number of possible

coalescence events at each time interval, i.e.
∏n

i=2

(

n
2

)

(Wakeley, 2008) and thus grows much faster than

exponentially with sample size. For instance, a sample of size 10, may have 2,571,912,000 possible

histories. Coalescent results for models of population structure are therefore commonly restricted to sam-

ples of size two and even then, analysis can be challenging inparticular for non-equlibrium models. For

example, the full distribution of pairwise coalescence times under the non-equilibrium analog of the sym-

metric island model (i.e. a panmictic population which has become subdivided into a set of island-model

demes at some recent time and not reached migration-drift equilibrium) has only been found recently

(Wilkinson-Herbots, 2008). While numerical likelihood methods to estimate parameters under models of

divergence from minimal samples exist (Yang, 2002; Wilkinson-Herbots, 2008; Wang & Hey, 2010), the

integration over the large number of possible genealogies for larger samples is not tractable analytically

(Felsenstein, 1988; Hey & Nielsen, 2007) and is generally achieved using approximate methods such

as Markov chain Monte Carlo simulations (Kuhneret al., 1995; Nielsen & Wakeley, 2001; Rannala &

Yang, 2003; Hey & Nielsen, 2004), importance sampling (Griffiths & Tavaré, 1994), or summary statis-

tics (Becquet & Przeworski, 2007; Hickersonet al., 2007). While these approaches are powerful and

have been successfully applied to make historical inferences in a wide range of organisms (e.g. Kliman
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et al., 2000; Jennings & Edwards, 2005; Wonet al., 2005; Hickersonet al., 2006; Becquet & Przeworski,

2007; Carstenset al., 2009; Musteret al., 2009; Hey, 2010a) including our own species (Rannala & Yang,

2003; Hey, 2005), they are often computationally intensiveand the complexity of the algorithms involved

makes it difficult to fathom which features of the data are informative about past processes. The situation

is perhaps worst for approximate Bayesian methods (Beaumont et al., 2002), which rely on summary

statistics to compare the fit of observed data to simulationsand, ultimately, to estimate the posterior dis-

tribution of model parameters. Because statistics are chosen empirically and arbitrary cut-offs are used

both to decide which simulation replicates are informativeabout the fitted model, and to restrict priors, it

can be very difficult to assess how much information about a particular model there is in the data.

These theoretical difficulties may in part explain the slow uptake of coalescent theory by phylogeog-

raphy, despite its obvious implications for the interpretation of genealogies. Inference methods for the

analysis of spatial samples under realistic models of structure simply do not exist and rejecting an unre-

alistic null model such as that of a panmictic Wright-Fisherpopulation hardly yields much insight into

population history. Moreover, the spatial processes phylogeography seeks to understand (e.g. range ex-

pansions and local extinctions) implicitly assume correlations across loci, something that is not captured

by standard coalescent models. Perhaps an equally serious obstacle has been the practical difficulty of

obtaining sequence data for multiple nuclear loci in most organisms. However, progress has been made

in two ways. Firstly, the fact that genealogies differ from the population or species history, even if this

is tree-like itself, has now been absorbed into phylogenetics and phylogeography (Pamilo & Nei, 1988;

Maddison, 1997; Nichols, 2001; Edwards, 2009). Species trees include as an additional dimension the

effective sizes of all populations involved. This crucial set of parameters, which determines the rate of

coalescence of genealogies nested within the species tree and thus the probability of gene tree - species

tree incongruence was missing from Avise’s original figure (Avise, 1987, figure 1). By making simplify-

ing assumptions about the ancestralNes, it is possible to infer properties of the underlying species tree

from a set of time-measured gene trees (Degnan & Salter, 1995; Degnan & Rosenberg, 2009; Maddison

& Knowles, 2006; Liu & Pearl, 2007; Kubatkoet al., 2009) or from sequence data directly (Yang, 2002;

Rannala & Yang, 2003; Heled & Drummond, 2009). Secondly, phylogeographers now routinely use

coalescent simulations to assess the fit of observed genealogies to simplea priori models, such as con-

trasting models of population divergence (Knowles, 2001).The sobering conclusion of most statistical

phylogeographic studies is that the power to distinguish even between very simple models is limited (e.g.

Knowles, 2001; DeChaine & Martin, 2006). Finally, rigorousevaluation of the performance of nested-

clade phylogeographic analysis (NCPA) using coalescent simulations demonstrated a high frequency of

false positives (Knowles, 2002; Panchal & Beaumont, 2007; Knowles, 2008). This together with the
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realisation that NCPA lacks any quantitative basis (Knowles, 2002) has led to its abandonment by phylo-

geographers, despite Templeton’s attempt to rebrand NCPA as a “coalescent-based method of statistical

inference” (Templeton, 2010).

Nielsen and Beaumont (2009) point out a more subtle but equally serious problem with NCPA: The

inference key often suggest multiple rather vague answers.Faced with this subjective choice, researchers

tend to inadvertently settle on scenarios that match their prior expectations thereby over-interpreting the

data. This phenomenon, which is known in psychology as the Forer effect (Forer, 1949), may explain why

some studies have found such striking congruence between quantitative inferences made using coalescent

methods and results obtained from NCPA (Sunnuckset al., 2006; Nielsen & Beaumont, 2009). However,

the use of quantitative inference methodsper seby no means safeguards against the self-delusiona la

Forer. This is illustrated by a recent study by Tanabeet al. (2010) which uses approximate Bayesian

Computation to investigate the demographic history of a setof seven populations of malaria parasite

(Plasmodium falciparum) sampled from Africa and Asia. Tanabeet al. (2010) simulate expansion his-

tories under a one-dimensional stepping stone model and useθπ, the average pairwise diversity within

populations, as a summary statistic to estimate the origin and timing of the expansion. They assume a

uniform prior (with bounds set at 1,000 and 100,000 years) for the onset of this expansion and test the

effect of three different mutation rates (assuming a divergence time betweenP. falciparumand its closest

relative the chimpanzee malaria parasiteP. reichenowiof 10,000 years, 2.5 MY and 6 MY). Finding that

the highest mutation rate leads to a very poor fit to the data, the authors conclude that “P. falciparumhad

already infected humans before the out-of-Africa expansion.” However, in reality there is no information

to separately estimate mutation rate and expansion time in these data and the poor fit to the high mutation

rate scenario can be entirely explained from the lower priorbound chosen for the expansion time. Thus,

apart from choosing to exclusively focus on a one-dimensional stepping stone model, subjective choices

are made at various steps in the analysis including the summary statistic, the cut-offs on the (supposedly

uninformative) priors of model parameters, the acceptancecriterion and the three particular mutation rates

investigated. While some of these choices may be justifiablegiven prior knowledge of the system, others

are clearly arbitrary. Thus, any model based analysis facesthe difficulty of deciding on a set of plausible

models (Carstenset al., 2009), which are simple enough to be distinguishable usingthe data at hand, but

nevertheless capture relevant aspects of the underlying history.

The above overview is necessarily incomplete and omits manyof the historical twist and turns in

the development of spatial and demographic inference methods. Such more arcane history-of-the-field

reasons for the popularity of particular methods can be surprisingly long-lived despite their arbitrariness

and may be solely driven by the availability of bioinformatics software. For example, phylogeographic
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Figure 1.1: A literature search on Web Of Science returned 68studies that use summary statistics for de-
mographic inference. The search criterion was any pairwisecombination from the following sets of key
words: i) Demography, demographic history/inference, population growth/expansion and ii) summary
statistics, neutrality tests. Studies were classed as population genetic (dark grey bars) or phylogeographic
(light grey bars) depending on whether they featured a reconstructed genealogy and the summary statis-
tics used for demographic inference were recorded: From left to right, Tajima’sD (Tajima, 1989),H
(Fay & Wu, 2000),D2 (Fu & Li, 1993),FS (Fu, 1996) and the mismatch distribution (Slatkin & Hudson,
1991). Population genetics and phylogeographic studies differ both with regard to the sampling scheme
and statistics used: Population genetics studies (22), mainly onDrosophilaand human populations, typi-
cally have relatively small sample sizes (N=10-30), but analyse data from multiple loci and use Tajima’s
D andD2 to evaluate demographic models. Phylogeographic studies (46), are mostly based on a sin-
gle mitochondrial gene sampled for a large number of individuals and most frequently (34) use "visual
inspection of mismatch distributions" or Fu’sFS to assess population growth.

and population genetic studies generally use different summary statistics to test for population growth.

While population geneticists prefer statistics that considering properties of the underlying genealogy

such as Fu & Li’sD (Fu & Li, 1993), phylogeographers are fond of pairwise mismatch distributions

(Fig. 1.1). This is ironic not only because summary statistics based on pairwise measures are among the

least powerful, but also because they most fundamentally ignore the underlying genealogy (Felsenstein,

1992), a fact which is discussed at length in the original paper introducing mismatch distributions (Slatkin

& Hudson, 1991). The only explanation for this odd preference is that mismatch distributions were first

applied to mitochondrial data (Slatkin & Hudson, 1991; Harpending, 1994; Schneider & Excoffier, 1999)

and that convenient software is available to perform simulations (Schneideret al., 2000). Thus, while

coalescent theory has achieved much in terms of integratingphylogeographic and population genetics

approaches to historical inference, this synthesis is clearly far from complete.
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1.5 Thesis outline and aims

This thesis considers the use of genealogies for historicalinference from a variety of angles and applies

model-based phylogeographic analysis to two contrasting insect systems: a local radiation of dispersal-

limited, high alpine ground beetles (Carabidae, genusTrechus) sampled from a single mountain range

in the Southern Alps; and three major refugial populations of the highly dispersive waspCecidostiba

fungosa(Pteromalidae) parasitizing oak galls.

Chapter 2 focuses on the simplest case of a panmictic population and asks how past population growth,

which distorts genealogies towards a starshape can be inferred most efficiently from sequence data using

summary statistics. Felsenstein (1992) pointed out that pairwise measures, which underly many com-

monly used neutrality tests such as Tajima’sD (Tajima, 1989), are inefficient because of their inherent

sensitivity to the topology of the underlying genealogy, which in a panmictic population is entirely ran-

dom. The challenge therefore is to construct summaries thatseparate effects of the topology from relevant

branch length information. Using coalescent simulations under a history of exponential growth, the power

of standard summary statistics is compared to that of two types of new measures which are derived by ex-

plicitly considering the underlying genealogy: i) genealogical ratios based on the number of mutations on

the rootward branches, which, given an outgroup sequence can be inferred using a simple algorithm; and

ii) statistics that use properties of a perfectly starshaped genealogy. A likelihood-based method (Griffiths

& Tavaré, 1994) is taken as an upper bound of statistical power for comparison.

Chapter 3 is in many ways a traditional phylogeographic study. Twelve populations of high alpine

carabid beetles (genusTrechus) were sampled from the Orobian Alps in Northern Italy. Whilesummits

along the northern ridge of this mountain range were surrounded by the icesheet as small ice-free islands

of habitat, so-called sky-islands or nunataks during the last glacial maximum, southern areas remained

unglaciated. The aim was to consider how mitochondrial (Cox1andCox2) and nuclear (PEPCK) se-

quence data can be used to infer the spatial history of this local radiation. Rather than drawing qualitative

inferences from the reconstructed genealogies of the two loci, the fit to two simplea priori models of

population history is assessed: prolonged survival of Northern populationsin situ; and recent recolonisa-

tion from Southern populations. Extreme versions of these scenarios make alternative predictions about

the topology of genealogies. While isolation eventually leads to reciprocal monophyly of populations,

a series of extreme founder events results in a pattern of nested paraphyly, which is informative about

the order of population founding. Bayesian inference methods are used in two ways. Firstly, directional

location state changes in the genealogy are modeled to find the most likely sequence of putative founder

events under the recolonisation model. Secondly, the fit of the data to the two scenarios is quantified by
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testing the expected mono and paraphyly constraints. Because location states are inferred jointly with the

genealogy and mutational parameters, the analysis takes genealogical uncertainty into account. It also

allows us to assess the contribution of incomplete lineage sorting and migration.

Realizing the power of jointly analysing data from a large number of loci in a model-based frame-

work motivated the development of intron-spanning primersfor Hymenoptera (where intronic regions

can be sequenced straightforwardly in haploid males). Chapter 4 describes how 40 conserved genes,

mainly ribosomal proteins, were chosen from Hymenopteran and insect EST data to develop degenerate

primers. The aim was to find loci suitable for comparative multispecies studies of natural Hymenopteran

communities, i.e. which amplify across a wide taxonomic range. Amplification success was assessed in

two communities; gall wasps (Cynipidae) and their associated Chalcid parasitoids; and tropical fig wasps

(Aagonidae) and their associated non-pollinating wasps (Pteromalidea). Taxa were chosen at increasing

distance fromNasoniawhich was used for primer design, i) within Pteromalidae, ii) within Chalcidoidae

(Eupelmidae, Eulophidae, Eurytomidae, Ormyridae, Torymidae), and iii) for a selection of distantly re-

lated gall and fig wasp hosts. To assess the usefulness of these loci for phylogeographic studies, genetic

diversity between major Palearctic refugia was estimated for two species of oak gall parasitoids;C. fun-

gosaandMesopolobus amaenus(Pteromalidae).

In chapter 5, 20 of the new EPIC loci are used to quantify the Pleistocene history of the oak gall par-

asitoidC. fungosa. The longitudinal spread of temperate organisms into refugial populations in Southern

Europe is generally assumed to predate the last interglacial. However few studies have attempted to quan-

tify this process using explicit models and multilocus data. Maximum likelihood and Bayesian methods

methods originally developed to quantify species divergence are used to infer the order of population

splitting and estimate divergence times and ancestral population sizes for three major refugial popula-

tions (Middle East, the Balkans and Iberia). To determine how quantitative inferences can be made most

efficiently from multilocus data, the power of minimal sampling (a single haploid male per population) is

compared with that of more extensive samples of three individuals per population.

The fundamental symmetry in the two incongruent histories under the three population divergence

model translates into symmetries in the expected frequencyof site counts which can be easily tested in

genome wide alignments. Chapter 6 extends the three population divergence model analytically to include

gene flow involving the older population. Slatkin & Pollack (2008) showed previously that ancestral

population structure in divergence models can lead to asymmetries in the frequency of triplet topologies.

Using an analogous matrix approach, the probabilities of triplet topologies are derived for the case of

symmetric and asymmetric migration. Potential applications of these results for the analysis of genomic

data fromDrososphila melanogaster(Obbardet al., 2009) and a recent study on Neanderthal-human
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divergence (Greenet al., 2010) using this model are discussed.
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Chapter 2

Measuring the degree of starshape in

genealogies — Summary statistics and

demographic inference

Published as: Lohse, K. Kelleher, J. (2009).

Genetics Research, 91 (281–292)

The motivation for studying the impact of past demography onsequence data is two-fold. Firstly,

changes in population size are interesting in their own right, being intimately linked to processes such

as speciation or geographic range shifts. Secondly, the standard neutral model (SNM) of a randomly

mating Wright-Fisher population of constant size and discrete generations, hardly ever describes the

patterns of diversity found in natural populations. Thus, studies aiming to detect loci under selection

are faced with the considerable challenge of fitting realistic demographic models against which selection

can be tested (e.g. Glinkaet al., 2003; Hamblinet al., 2004; Haddrillet al., 2005; Omettoet al., 2005;

Thornton & Andolfatto, 2006). Since the rate of coalescenceis inversely proportional to the effective

population size, it is clear that demographic changes must leave a detectable signature in genealogies

(Felsenstein, 1992). In general, positive population growth distorts genealogies towards a starshape with

shorter internal branches, resulting in more low frequencyvariants and a unimodal rather than multi-

peaked mismatch distribution (Slatkin & Hudson, 1991; Harpending, 1994; Schneider & Excoffier, 1999).

In contrast to selective processes which act on single genetic variants, demography affects the whole
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genome, so one expects to find a concordant signature across loci (Tajima, 1989; Galtieret al., 2000).

Approaches to demographic inference fall into three broad categories; (for a review see Emerson

et al., 2001). Firstly, likelihood methods, which are available for bottleneck and exponential growth

models, make use of all the information in a sample by integrating over a large set of likely genealogies

(Griffiths & Tavaré, 1994; Kuhneret al., 1995). Although optimal in terms of statistical power and accu-

racy, likelihood estimation is computationally intensiveand requires a fully specified alternative model.

Therefore realistic growth histories often remain analytically intractable. Secondly, there are tree-based

methods, which take the branch length information of a reconstructed tree as their starting point. Assum-

ing that sequence evolution is clock-like, the number of lineages can be plotted against time and the shape

of this trajectory compared to its neutral expectation (Neeet al., 1995; Pybuset al., 2002). Despite their

conceptual appeal, these methods neglect any uncertainty in tree topology and are thus only as good as

the reconstructed tree they are based on. Furthermore they cannot deal with recombination by definition.

Finally, there are classical neutrality tests, most of which do not explicitly consider the genealogy but in-

stead use more immediate aspects of the data such as the frequency spectrum of mutations, e.g. Tajima’s

D (Tajima, 1989) and Fu& Li’s D (hereafter referred to asD2) (Fu & Li, 1993), the haplotype distribu-

tion, e.g. Fu’sFS (Fu, 1996; Innanet al., 2005), or the mismatch distribution, e.g. the raggedness statistic

(Slatkin & Hudson, 1991). Compared to likelihood estimation, summary statistics are straightforward to

calculate and their distribution can be simulated under almost any growth model.

Considering the zoo of statistics available and their wide use, there are surprisingly few studies that

systematically compare their power, and those that do mainly consider bottlenecks and single locus data

(Simonsenet al., 1995; Fu, 1996; Ramos-Onsins & Rozas, 2002; Depauliset al., 2003; Ramirez-Soriano

et al., 2008). However, joint analysis of multiple loci is not onlynecessary to distinguish between selec-

tive and demographic events (Galtieret al., 2000) but also potentially far more powerful than inferences

based on a single locus. An added advantage of multi-locus analysis is that both means and variances of

summary statistics can be used for testing. Variance based tests were first developed for microsatellite

data (Di Rienzoet al., 1998; Reichet al., 1999) but are now routinely used to analyse sequence data

from multiple loci (Pluzhnikovet al., 2002; Haddrillet al., 2005; Heuertzet al., 2006) or even species

(Hickersonet al., 2006).

A general conclusion that has emerged from simulation studies is that tests based on the number

and distribution of haplotypes have more power to detect bottlenecks than statistics based on the aver-

age pairwise diversity (π), in particular Tajima’sD (Ramos-Onsins & Rozas, 2002; Innanet al., 2005;

Ramirez-Sorianoet al., 2008). Earlier, Felsenstein made a theoretical argument for the inferiority of pair-

wise measures (Felsenstein, 1992). Their large variance under neutrality arises both from their sensitivity
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to the last coalescence event and the random genealogical topology (Tajima, 1983). Under the SNM more

symmetric genealogies are on average associated with higher π and more ragged mismatch distributions

than asymmetric genealogies. It is important to realise that this topological variance is independent of the

already large variance in coalescence times inherent in thegenealogical process. In other words "despite

their aura of robustness" (Felsenstein, 1992), statisticsbased onπ suffer from an unnecessarily large vari-

ance under neutrality, and hence have comparatively low power. Despite these results,D and mismatch

distributions continue to be the methods of choice for demographic inferences in population genetics and

phylogeography respectively.

Following Felsenstein’s recommendation that "there is much to gain from explicitly taking the ge-

nealogical relationship of a sample into account" (Felsenstein, 1992), the aim of this study is to consider

how genealogical information can be used for demographic inference in a summary statistics framework.

Our premise here is that the mutation rate is sufficiently high relative to the per site recombination rate

such that non-recombining blocks of sequences can be easilyidentified and treated as independent loci.

Given that there is usually not enough information in within-species sequence data to infer the full

topology unambiguously it seems important to ask which partof the topology yields most information.

The first part of the paper introduces some simple measures ofstarshape which are based on the properties

of a rooted genealogy. Using simulations their power to detect a history of exponential growth is com-

pared to standard neutrality tests for both the single and multi-locus case. We focus on the exponential

growth model for two reasons. Firstly, although it is a frequently used demographic model, the power of

summary statistics to detect exponential growth has been little investigated. Secondly, likelihood methods

are available, which can be taken as an absolute "upper bound" of power for comparison. Such a direct

comparison between summary statistics and the optimal likelihood methods is lacking so far.

2.1 Summary Statistics

Several neutrality tests compare two different estimatorsof the scaled mutation rate (Tajima, 1989; Fu &

Li, 1993; Fay & Wu, 2000)θ = 4Neµ, whereµ is the mutation rate andNe the effective population size,

which capture different aspects of the data . Most prominently, Tajima’s D is defined as the difference

betweenθ estimated asπ, andθw = S/an (Watterson’sθ, wherean =
∑n−1

i=1
1
i , n is the sample size

andS the total number of polymorphic sites in the sample), normalized by the standard deviation of this

difference. Genealogies from growing populations typically have relatively more low frequency variants

and hence tend to have a negativeD.

While neutrality tests are commonly based on the frequency spectrum andπ, it is instructive to con-
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sider departures from the SNM in terms of their effect on the genealogy. Such tree-thinking necessarily

underlies summaries that make use of outgroup information,e.g.D2 has a straightforward genealogical

interpretation. Below two different ways of employing genealogical information in the construction of

summary statistics are considered.

2.1.1 Genealogical ratios

The rationale behindD2 is to distinguish between two classes of mutations: Those found on terminal

branches,ηe and those on internal branches,ηi (Fig. 2.1) (Fu & Li, 1993). Suppose that some limited

topological information can be inferred from the data. In particular we will for now assume that the place-

ment of the root is known. It is then possible to distinguish mutations found on the two rootward branches,

which we shall denoteηR. Under the infinite sites assumption these are all derived mutations which are

shared by all individuals in either of the two sub-clades defined by the root. The advantage of considering

the proximity of mutations to the root rather than the tips istwofold: Firstly, rootward branches cover a

greater proportion of the time to the most recent common ancestor of the sample (TMRCA) and should in

general be more informative about past changes in population size. Under the SNM, on average half of

theTMRCA is taken up by the coalescence of the last two lineages (T2) (Fig. 2.1), whereas in a growing

population, the smaller population size in the past forces the last two lineages to coalescence much more

rapidly. Secondly, the average length of a branch connectedto the root is less dependent on the sample

size than the average length of a terminal branch.

Ideally, one wants to know the total number of mutations thathave occurred duringT2, rather than

the number of mutations on both rootward branches,ηR which is larger and depends on the topology, i.e.

the order of the first node on the longer of the two branches (Uyenoyama, 1997, Appendix).

One possibility is to only consider the shorter of the two rootward branches which has exactly length

T2. Thus the number of mutations found on this branch,ηRmin, overθw constitutes a very simple measure

of starshape.

X =
ηRmin

θw
(2.1)

Such genealogical ratios have first been employed to study the effect of balancing selection on plant

incompatibility loci (Uyenoyama, 1997). Being based on a single random event,X clearly neglects

much of the information contained in the genealogy. Its power is limited by the probability of observing

ηRmin = 0 under neutrality. In other words,X is unlikely to be of much use in the case of a single locus.

Alternatively, one can ignore the uncertainty in node orderand take the number of mutations found
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T2

TMRCA

Figure 2.1: Random genealogy of a sample of 10 sequences. Theroot partitions the sample into two
subclades of size 3 and 7. Rootward branches are shown as bold, terminal branches as dotted lines,
mutations are represented as crosses. The time interval until the last coalescence event,T2, is shorter than
average under the SNM. In this exampleS = 30, ηR = 7, ηRmin = 2 andηe = 14.

on both rootward branches relative toθw.

X1 =
ηR

θw
(2.2)

It is possible to construct various composite measures fromthe number of mutations found on different

parts of the genealogy. Here we only consider one additionalstatistic, the relative difference between

rootward and terminal mutations.

X2 =
ηR − ηe

θw
(2.3)

The X statistics assume some knowledge of the tree topology which is usually unknown. Of course

one could use some standard method of tree reconstruction and inferηR andηRmin from the most likely

topology. However, not only is it inefficient to reconstructthe full topology when all that is required

is the placement of the root, conditioning on a single tree also ignores any topological uncertainty. We

have therefore developed a simple scheme of inferring the root in a sample of polarized sequences that

circumvents these problems.

Under the infinite sites assumption a necessary criterion for the root-node is that no mutations are

shared between the two subsets on either side. One can show that if both branches connected to the root

carry mutations, i.e.ηRmin > 0 there exists exactly one bipartition of the sample with no mutational
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overlap. If however one or both of the rootward branches of the genealogy carry no mutations there may

be multiple bipartitions that meet this criterion. In this caseηRmin = 0 and the tree reconstructed from

such a sample would have an unresolved polytomy at its base. To incorporate the topological uncertainty

about the placement of the root we compute the average value of ηR over all partitions that are compatible

with the criterion of no mutational overlap. Note that in contrast to most tree reconstruction algorithms

which join similar sequences (i.e. start from the tips down the tree) our scheme is divisive (i.e. it starts

from the root). To avoid having to considering all possible bipartitions of the sample (2n−1 − 1), we

make use of the fact that any sequences that share mutations have to be on the same side of the root. By

first binning sequences that share at least one mutation, we can directly calculateηR and the number of

possible partitions.

2.1.2 Starting from the limiting case

A different approach is to construct summaries which measure departures from the limiting case of a

perfectly star-shaped genealogy. Star-shaped genealogies have some convenient properties which can be

used for this. Assuming that outgroup information is available, one can record the number of terminal

mutations in each sequencei (because lineages are exchangeable, the labeling is arbitrary), Vi. In a

perfectly star-shaped genealogy all mutations must fall onto terminal branches by definition. Thus one

expects the number of derived mutations in a sequence to be half the average pairwise diversity, i.e.

E[Vi] = π/2. The statisticR2E proposed by Ramos-Onsins and Rozas measures the average departure

from this expectation.

R2E =
(
∑n

i=1 (Vi −
π
2 )2/n)1/2

S
(2.4)

(Ramos-Onsins & Rozas, 2002, eq. 2).R2E has proven superior to a wide range of summary statistics in

detecting histories of bottlenecks (Ramos-Onsins & Rozas,2002). However, because of its dependence

onπ, one may suspect it to suffer from a large variance under neutrality. We therefore consider a similar

statistic which uses the observedS rather thanπ to assess the degree of starshape. Consider the total

number of derived mutations in each sequence,Di. Given that previous summary statistics such asH

(Fay & Wu, 2000) have been derived from the unfolded site frequency spectrum, it may be helpful to note

the connection betweenDi andξi, the number of derived mutations that occuri times in the sample here:
∑n

i=1 Di =
∑n−1

i=1 iξi. Using the fact thatE[Di] = S/n in a star-shaped genealogy we can define a new

statistic.

RS =
(
∑n

i=1 (Di −
S
n )2/n)1/2

S
(2.5)
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Since under neutrality a large proportion of mutations willbe found on inner branches, i.e. be shared by

many sequences,E[Di] > S/n. In other words,RS is such that smaller values are expected under a

history of growth.

2.2 Methods

2.2.1 Summary statistics and demographic model

We carried out coalescent simulations inms (Hudson, 2002) to compare the power of a range of summary

statistics to distinguish between the SNM and a history of exponential growth. In addition toD, D2, R2E

and the new statistics defined above,FS , (Fu, 1996) andH (Fay & Wu, 2000) were considered.FS is

based on the number of haplotypes in the sample and has previously been found to be more powerful than

statistics based on the frequency distribution (Fu, 1996; Ramos-Onsins & Rozas, 2002).H was conceived

as a test for the effect of selection on linked neutral sites (Fay & Wu, 2000) and is not expected to have

power to detect continuous growth. However, other demographic scenarios such as moderate bottlenecks

may perturb genealogies in ways similar to genetic hitchhiking resulting in significant values ofH .

We assume that the population size has grown exponentially with rateα to its current sizeN0.

N(t) = N0e
−αt (2.6)

Following standard practice, this exponential growth is incorporated through a re-scaling of time (Slatkin

& Hudson, 1991). We define a rescaled timeTcoal relative toN0 andα:

Tcoal =

∫ t

0

eαt

2N0
dt =

(eαt − 1)

2N0α
(2.7)

This represents the total amount of genetic drift that has occurred. It is convenient to define a growth rate

relative toN0 asA = 2N0α, which gives:

Tcoal =
e

At

2N0 − 1

A
(2.8)

2.2.2 Power test

Critical values corresponding top = 5% for each statistic were determined from 10 000 replicate genealo-

gies simulated under the SNM for each of a wide range ofS values (1-250) (Hudson, 1993; Braverman

et al., 1995; Ramos-Onsinset al., 2007). Genealogies from growing populations were simulated con-
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ditional onθ. For each replicate the alternative hypothesis of positivegrowth was tested by comparing

the observed value of a statistic to the critical value giventhe observedS. Power was estimated as the

proportion of 10 000 replicate genealogies for which a statistic was below its critical value in a one-tailed

test. Power to reject the SNM was recorded for a large range ofparameter combinations. We compared

the performance of statistics for different growth rates, (0 < A < 50), sample sizes (n = 10, 50) and

values ofθ (5-50). When varyingθ, we chose a fixed value ofA = 8. This seems compatible with growth

rates estimated from empirical data. For example, variation at silent sites in theAdhregion and X-linked

genes inD. pseudoobscurais consistent withA = 7 (Schaeffer, 2002). Whileθ can be arbitrarily high for

mitochondrial data,θ = 20 may be unrealistic for nuclear loci in out-crossing species. Therefore, power

was evaluated for a range ofθ values (5 − 50) again keeping the growth rate fixed atA = 8.

When using means and variances of summary statistics acrossloci, power was determined analo-

gously to the single locus case. Critical values of 5% confidence of means and variances of statistics were

determined from 10 000 replicate sets of loci with the exact same combination ofS values. Although

computationally expensive, this avoids making any assumptions about the distribution of mutation rates

between loci. However, given that mutation rates vary alongthe genome, assuming the sameθ for all

loci to simulate the alternative history of growth seems unrealistic and may lead to overestimation of

power. We checked for the influence of heterogeneity in mutation rates on power by repeating the mul-

tilocus power tests withθ values drawn from a gamma distribution withα = 2 (Pluzhnikovet al., 2002)

and a scale parameter equivalent to a mean ofθ = 20. This combination of growth and mutation rates is

roughly comparable to mutation rate estimates for nuclear loci in Drosophila melanogaster(Galtieret al.,

2000). As before we assumed no recombination within loci as well as absence of linkage between loci,

i.e. replicate genealogies were simply treated as multipleloci.

2.2.3 Likelihood method

In practice, bothθ andA are unknown, and their likelihood should, in principle, be estimated jointly.

However, because of the non-independence of these two parameters, this is not a practical option. Fol-

lowing standard practice we alternated between maximum likelihood estimation ofA andθ (Griffiths &

Tavaré, 1994). First a maximum likelihood estimate (MLE) for θ under the SNM was estimated using

the program GENETREE (http://www.stats.ox.ac.uk/griff/software.htm). In a second step this MLE forθ

was fixed to run a likelihood surface forA. Finally, the MLE value forA was used to re-evaluateθ. This

scheme yields two MLEs forθ for each replicate, one under the assumption of no growth andone given

the most likely growth rate which were compared in a likelihood ratio test (LRT). We did not find that the

MLE estimates forA andθ improved upon repeated reevaluation suggesting that a single round of esti-
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mation is sufficient for this moderate growth scenario. 100 000 runs were performed for each likelihood

surface evaluation. Again, the proportion of replicate genealogies for which the null hypothesis could be

rejected was taken as a measure of statistical power. Due to the long computing time, 100 replicates per

parameter combination were used.

2.3 Results

2.3.1 Single locus

In general, both the likelihood method and summary statistics have low power to detect a history of

moderate (A < 8) exponential growth forn = 10 (Fig. 2.2). As expected, the likelihood method is most

powerful overall, although its superiority is surprisingly small. For example, based on the LRT the SNM

is rejected for30% of genealogies simulated under exponential growth ofA = 4. In comparison,RS and

R2E detect this history of growth in 23% of cases (Fig. 2.2).

Consistent with previous results,FS , R2E , and the new measureRS , are considerably more powerful

than bothD andD2 (Ramos-Onsins & Rozas, 2002; Ramirez-Sorianoet al., 2008). Forθ = 20, FS is

the most powerful statistic. The new measureRS has consistently higher power thanR2E . As expected,

H andX have no power to distinguish between the SNM and the growth case (not shown). However, the

other two genealogical ratios perform surprisingly well.X1 has higher power thanD2 and the power of

X2 is between that ofR2E andRS (Fig. 2.2). The complete lack of power ofD for n = 10 is somewhat

surprising. Comparison with the result forn = 50 (Fig. 2.3) reveals that its performance is strongly de-

pendent on sample size. We ran additional simulations (not shown) and found that forn < 15 extremely

negative values ofD are more likely under neutrality than under growth resulting in a rejection rate of

the SNM of less than5%. In other words, whenn is small, the variance ofD under neutrality is too large

to detect exponential growth.

In general, all statistics have considerably higher power for n = 50 (Fig. 2.3). Interestingly, it never

reaches 100% even when growth is extreme (A = 50). However, the relative effect of the sample size

on power differs between statistics. For instance,X1 improves relatively little in comparison to other

measures. This is to be expected given that even small samples are likely to include the deepest split in

the genealogy of the whole population (Saunderset al., 1984). Forn = 10, the power of all statistics

decreases for histories of extreme growth (A > 25) (Fig. 2.2). This is due to the overall shortening of

genealogies under rapid growth.
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Figure 2.2: Power of summary statistics and likelihood method against exponential growth rateA =
0− 50. n = 10, θ = 20. Each point is based on10000 replicate simulations. The power of the likelihood
method was estimated from 100 replicates (see large filled circles and error bars)
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Figure 2.5: The effect of topological asymmetry on statistical power (simulation parameters as in 2.2).
Genealogies of Fig. 2.2 were sorted according to the partition by the root (shown above plot). Only the
most asymmetrical partition (9, 1) (a) and one other case (7,3) (b) are shown. Results for the other three
partitions were very similar to (B). Note that since lineages are exchangeable all asymmetrical partitions
have the same probabilityPa = 2/(n− 1) (Tajima, 1983, eq. 2).

The mutation rate has a relatively small influence on power. In general the power of all measures

increases withθ (Fig. 2.4). However, the trajectories ofX1 andFS level off while the power of the other

statistics continues to improve with increasing values ofθ. The power ofFS is limited by the number of

haplotypes (which cannot exceedn).

To check how statistics are affected by the topological variance, genealogies simulated under the

alternative history of growth were sorted according to the bipartition by the root and the proportion of

significant values determined for each topology class. Figure 2.5 clearly shows that the two statistics

based onπ, D andR2E as well asD2 are sensitive to asymmetric topologies. The chance of observing a

significant value increases markedly with topological asymmetry. This effect is most pronounced forD,

which has no "power" to reject the SNM unless genealogies arevery asymmetric and growth is weak. In

contrast, the dependency ofX1 on the rootward partition is relatively slight and in the opposite direction,

i.e. the chance of rejecting the SNM is smaller for asymmetric genealogies (Fig. 2.5).

2.3.2 Multiple loci

Compared to the relatively subtle effect bothθ andn have on statistical power, increasing the number

of loci improves power dramatically. In the mean based test all statistics apart fromD have a power of

close to100% to detect a history of moderate exponential growth (A = 8) for 10 loci. However, the

relative performance of statistics changes slightly compared to the single locus case. Notably,X2 has

higher power than all other summary statistics (Fig. 2.6). The power ofX is slightly lower than that of
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X1 (not shown). Analogously to the results for a single locus, power increases both with more extreme

growth scenarios and largern (not shown).

As one may suspect, the increase in power with the number of loci is weaker for the variance test.

More importantly, the relative performance of statistics is very different. By far the most powerful statistic

in the variance test isX1 followed byD andX (Fig. 2.7). This indicates a general trade-off. Statistics

with a high variance under the SNM have comparatively low power in the single-locus case and the mean

test, but high power in the variance test andvice versa.

Allowing for heterogeneity in mutation rates between loci affects both the relative performance of

summary statistics and their overall power. As one may expect, heterogeneity inθ generally results in

a decrease in power. In the mean based test the threeX statistics are most affected. However, in the

variance test the performance ofX1 is little affected. This statistic even has slightly higherpower when

mutation rates vary between loci. This appears to be due to the non-normal distribution ofX1 under

growth. Genealogies with more than one possible root-partition generally have a very low value ofX1,

since we take an average over all possible partitions most ofwhich will be associated withX1 = 0.

2.4 Discussion

It is important to distinguish between the general limitations that genealogical and mutational stochastic-

ity impose on demographic inference from genetic data and problems associated with particular methods.

Two main conclusions emerge from comparing the performanceof the new "genealogical statistics" to

classical neutrality tests and the LRT.

2.4.1 General limits to demographic inference

The signatures that changes in population size leave in genealogies are typically subtle compared to the

randomness of the ancestral process. Thus all methods have low power to distinguish between the SNM

and histories of moderate growth in the single locus case. A surprising finding of this study was that the

full likelihood method only works marginally better than the most powerful summary statistics. Changes

in Ne disproportionally affect the length of the basal branches of a genealogy. However, because these

rootward branches also contribute most to the variance in total tree length, inferences based on a single

locus will be weak at best. It is telling that theX statistics which only consider the last coalescence

events in the history, outperform standard neutrality tests in the variance test when multiple realisations

of this event, i.e. loci, are available. As has been argued before, most statistical power can be gained by
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increasing the number of loci, which represent independentrealizations of the ancestral process, rather

than the sample size or the length of sequence (Felsenstein,1992; Klimanet al., 2000; Wakeley, 2004b).

2.4.2 Pairwise measures

Independent of the general limits to demographic inference, pairwise measures such asD have particu-

larly low power to infer demography. This has been found in previous simulation studies, which consider

other demographic scenarios such as strong bottlenecks andrapid logistic growth (Fu, 1996; Ramos-

Onsins & Rozas, 2002; Ramirez-Sorianoet al., 2008). The fundamental flaw of pairwise measures can

be best understood in terms of the underlying genealogy. In contrast to selection and population structure,

changes inNe on their own only alter the distribution of branch lengths without affecting the topology,

which can be regarded as a random nuisance parameter. While the full topology can rarely be recon-

structed, there is potentially a lot of topological information in sequence data. Thus the challenge that

any efficient inference method has to meet is to separate thistopological information from the relevant

branch length information whilst taking topological uncertainty into account. Tree-based methods such

as lineage-through time plots clearly fall short of the latter because they rely on a fully resolved topology.

Pairwise measures on the other hand simply ignore the confounding effect of the topology (Felsenstein,

1992). It is thus easy to see whyD has power only when sample sizes are large. While increasingsam-

ple size adds increasingly shorter external branches and therefore little additional information, it does

reduce the chance of extremely asymmetric bipartitions by the root which are responsible for much of the

variance inπ and henceD.

Perhaps worryingly, this sensitivity to the topology not only translates into a loss of statistical power,

but also means that negativeD values may in fact be more informative about the topologicalasymmetry

of the genealogy (which may be caused by other non-neutral forces, e.g. selection) underlying the sample

than about past growth. In order to distinguish between the effects of selection and demography, topology

needs to be separated from branch length information. One approach is to explicitly account for the

topology information if possible. For instance one could determine confidence intervals of statistics

conditional on the bipartition by the root if this is known. Not surprisingly, this improves the power ofD,

but has little effect on statistics that are not based onπ (not shown). The alternative is to use measures

which are less sensitive to the topology.FS and other haplotype statistics have previously been shown

to be more powerful than frequency spectrum statistics for this very reason (Depauliset al., 2003; Innan

et al., 2005). However, it has also been noted thatFS sometimes behaves erratically (Fu & Li, 1993;

Ramos-Onsins & Rozas, 2002). As mentioned earlier, its power levels off with increasingθ (Fig. 2.4),

because the sample size sets an upper bound to the number of haplotypes.
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2.4.3 Recombination and topological uncertainty

TheX statistics presented here fall somewhere between tree based methods and classical summary statis-

tics. They exploit the fact that changes in population size disproportionally affect the relative length of

the deepest branches in the genealogy and make use of topological information, without sacrificing the

simplicity of the summary statistics framework. Given their high power in the multilocus case, how useful

are such genealogical ratios in practice?

Recombination presents a fundamental problem to tree-based methods like theX statistics, which are

defined only for non-recombining sequences. Similarly, likelihood methods which can deal with recom-

bination are currently not available. To wrongly reconstruct trees from recombining data can potentially

be severely misleading especially in the context of demographic inference. In fact, genealogical ratios

similar to the ones presented here have been used to show thatrecombination can mimic the effect pop-

ulation growth has on the shape of inferred genealogies. Internal branches will appear relatively shorter

and the tree overall more star-shaped (Schierup & Hein, 2000; Ramirez-Sorianoet al., 2008). Ideally one

would like to model recombination explicitly when making demographic inferences. However estimates

of recombination rates are usually associated with a large uncertainty. Furthermore, it is notoriously

difficult to distinguish between recombination and back-mutations.

One approach to circumvent these problems is to test for recombination beforehand (e.g. using the

four gamete test) and exclude recombinant regions from the analysis if necessary. One can then both con-

dition on there being no within-locus recombination and afford to use more powerful statistics such as the

ones presented here. This strategy of identifying non-recombining stretches of sequence is increasingly

used to analyse multilocus data, (e.g. Galtieret al., 2000; Jennings & Edwards, 2005). Fortunately, many

organisms appear to have lower recombination rates than model species such asDrosophila. For instance

in a recent study on Australian birds only six out of thirty loci of intergenic sequence showed evidence

for recombination (Jennings & Edwards, 2005). How profitable this scheme is ultimately depends on the

relative magnitude and distribution of recombination and mutation rates. Before the genealogical ratios

can be used on multiple loci which have been pruned to excluderecombinant stretches, both the potential

bias of such pruning and the effect of undetected recombination events on the genealogical ratios need

to be properly evaluated. Interestingly, our method of inferring the root does in itself constitute a test for

recombination and may help to focus on those recombination events that matter to the statistical test.

A related problem concerns the infinite sites assumption. Although the algorithm we have developed

to compute theX statistics takes topological uncertainty into account, ignoring the possibility of back-

mutations may underestimate the length of basal branches (Baudry & Depaulis, 2003). Although this
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source of error has been ignored here it should in principle be possible to account for back-mutations

considering that they are independent of the assumptions ofthe genealogical process. In fact, any mu-

tational model can be used to define statistics analogous to the genealogical ratios presented here. The

problem with more complicated mutation models is in estimating the basal topology needed to calculate

these measures.

2.4.4 Conclusions

In summary, the results confirm that only the most extreme demographic events leave a sufficient sig-

nature to be detectable in single locus data. Still, insteadof the excessive and often non-quantitative

employment of mismatch distributions, phylogeographic studies could benefit from using more powerful

statistics such asRS andR2E to test demographic hypotheses. Conversely, population genetics studies of

sequence data from multiple, unlinked loci could benefit from using summary statistics that incorporate

genealogical information explicitly. When outgroup information is available and the assumptions of no

within-locus recombination and infinite sites mutations can be justified, simple genealogical ratios are

potentially more powerful than standard statistics. In taking the relative number of mutations found on

specific parts of the genealogy as a measure of the degree of starshape, the demographic signal can be

separated from irrelevant and confounding topological information. Extensions of this approach are feasi-

ble. For instance, one could consider the covariance between the number of basal and terminal mutations.

Such simple statistics may be profitable for approximate likelihood or Bayesian approaches (Thornton &

Andolfatto, 2006). There remains a need to understand the effect of pruning and undetected recombina-

tion events on tree reconstruction in general and tree-based measures such as theX statistics presented

here in particular.
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Chapter 3

Inferring the colonisation of a

mountain range - refugia vs. nunatak

survival in high alpine ground beetles

Published as: Lohse, K., Nicholls, J.A., Stone,

N.G. (2010).Molecular Ecology, in press

Molecular phylogeographic studies have amply demonstrated the profound role of Pleistocene cli-

mate cycles in shaping the history of the fauna and flora in Europe (Hewitt, 2000). In general, temperate

organisms survived glacial maxima in refugia south of the Pyrenees, Alps and Carpathians from which

they recolonised more northern areas during interglacials. In contrast, it is less clear how cold-adapted,

alpine organisms responded to Pleistocene climate change.Startled by the similarity of alpine species on

different European mountain ranges, Darwin (1859) speculated, “By the time that the cold had reached

its maximum we should have a uniform arctic fauna and flora, covering the central parts of Europe.” It

is certainly tempting to assume that the Pleistocene history of alpine organisms is simply a reversal of

the refugia/expansion dichotomy seen in temperate organisms, with range contractions into alpine refu-

gia during interglacials followed by recolonisation of lower altitudes and latitudes during glacial periods.

However, there are good arguments against such a simplisticscenario. Firstly, many alpine taxa are lo-

cal endemics with poor dispersal abilities. For example, high alpine insects in otherwise winged taxa

are often flightless (Hodkinson, 2005; Margrafet al., 2007; Schmitt, 2009), which should greatly reduce
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their ability to undergo rapid range shifts. Secondly, current conditions in high alpine environments are

not necessarily similar to those prevailing in the lowlandsduring glacial maxima. For instance, water

is a limiting resource for many high alpine specialists and the dry conditions of the surrounding tundra

during glacial maxima may have prevented large scale colonisation by alpine elements (Schmitt & He-

witt, 2006). Finally, glacial maxima lasted much longer than interglacials, so if extensive admixture of

alpine organisms had occurred during the ice ages, their species diversity and geographic structure should

generally be lower than that of temperate organisms, a pattern for which there is no evidence.

Two opposing views on the Pleistocene history of alpine biota emerged early in the development of

the field of biogeography. The massif de refuge hypothesis holds that glacial survival of alpine species

was restricted to large refugial areas at the periphery of the European Alps (Holdhaus, 1954), while

the nunatak hypothesis proposesin situ survival on small ice-free islands of habitat surrounded bythe

ice-sheet, so-called nunataks or sky islands (Janetschek,1956; Schmölzer, 1962). Early biogeographic

studies have interpreted distribution patterns of high alpine species both in terms of the massif de refuge

and the nunatak hypotheses. For instance, the absence of a number of high alpine groups from the Central

Alps has been taken as evidence for very slow and incomplete postglacial recolonization originating from

massifs de refuge at the periphery (Schweiger, 1969). In contrast, the extremely insular distributions of

some small soil arthropods in the Central Alps are difficult to explain without invoking nunatak survival

(Janetschek, 1956).

These two hypotheses also make contrasting predictions about patterns of genetic diversity within

species. Under the nunatak hypothesis, ancestral variation should be more or less sorted into nunatak-

specific lineages (Knowles, 2001). The rate of this process depends on effective population sizes and

the time since isolation, the eventual endpoint being reciprocal monophyly (Fig. 3.1A). Furthermore, the

nunatak hypothesis predicts that genetic diversity shouldbe highest in previously glaciated areas. In

contrast, under the massifs de refuge hypothesis, glaciated regions including nunataks were colonised

during the current interglacial and, in general, genetic diversity should reflect refugial origin and decrease

with distance from the massif de refuge (Fig. 3.1B).

Molecular studies, particularly on high alpine plants, have so far found patterns consistent with both

massif de refuge and nunatak survival, although the majority of studies support the former. A meta-

analysis of allozyme variation in twelve alpine plant species identified multiple, large massifs de refuge

at the periphery of the Alps (Fig. 3.3A) (Schönswetteret al., 2002, 2005) as well as putative nunatak

survival in the Central Alps in a few species (Stehliket al., 2002). Similarly, the few molecular studies

on high alpine insects in the European Alps to date (Margrafet al., 2007; Paulset al., 2006; Schmitt &

Hewitt, 2006) have mainly revealed genetic patterns in support of glacial survival in large and peripheral
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Figure 3.1: Schematic diagram of extreme population histories (above) leading to monophyletic or pa-
raphyletic gene trees (below). A) If populations persist onmultiple nunataks (1-4) and isolation is long
and/or population sizes are sufficiently small, ancestral variation is sorted and populations in the gene tree
are monophyletic. B) If populations are recolonized postglacially from a massif de refuge (1) through a
succession of extreme founder events, populations form nested, paraphyletic clades in the gene tree. Note
that in both A) and B) each location state in the genetree only‘evolves’ once.
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massifs de refuge, in most cases overlapping with those found in plants (Schönswetteret al., 2005).

The balance of evidence for nunatak and massif de refuge scenarios is not only important in under-

standing the history of alpine species, it also has implications for their potential to adapt to local envi-

ronments and to each other (Margrafet al., 2007). For instance, long-termin situ survival on nunataks

should increase local adapation and may ultimately lead to the formation of new species and communities

(DeChaine & Martin, 2006). While molecular studies of high alpine taxa to date have generally aimed at

resolving large-scale patterns and focused on widespread species (Paulset al., 2006; Schmitt & Hewitt,

2006; Margrafet al., 2007), investigating the phylogeographic history of alpine specialists with more

restricted ranges should add important resolution about the underlying processes. For example, given

the complex topology of mountainous areas, it may be easier to identify which geographic features have

acted as barriers to or corridors of dispersal over local scales.

Carabid beetles in the genusTrechusare small (2-5mm), generalist predators (Fig. 3.2) that offer

ample opportunity to examine phylogeographic patterns over local scales. The genus contains more than

1000 currently described species worldwide and both species diversity and levels of endemism peak in

mountainous regions (Barr, 1985; Lompe, 2004). The majority of the 60 or so Central European species

are alpine or high alpine endemics with restricted ranges onthe southern and northern slopes of the Alps

(Jeannel, 1927; Schönmann, 1937; Focarile, 1949, 1950; Lompe, 2004).

Here we focus on a radiation ofTrechusin the pertyi group in the Orobian Alps in Northern Italy

(Figs. 3.3, 3.2) (Focarile, 1949, 1950). This local radiation of wingless, high alpine specialists provides

an excellent test case for the nunatak and the massif de refuge hypotheses on a local scale. Firstly,

the Orobian Alps constitute a geographically well-defined mountain range with sensible natural limits

for a local sampling scheme: the Lago di Como in the West, the Camonica valley in the East and the

Adda valley in the North (Fig. 3.3B). Secondly, the Orobian Alps are of particular interest for alpine

biogeography because the maximal extent of the last glacialice-sheet roughly divides the area in half

(Jäckli, 1970) (Fig. 3.3B). Thus, while summits along the northern ridge of the Orobian Alps (pop. 2-11

Fig. 3.3B) were surrounded by the icesheet and isolated fromeach other as nunataks, southern summits

such as Grignetta (pop. 1) and Pizzo Presolana (pop. 12) (Fig. 3.3B) remained ice-free (Jäckli, 1970)

and could potentially have served as refugia during glacialmaxima. Currently, high alpineTrechuscan

be found above 1800m around glacial lakes (Jeannel, 1927; Schönmann, 1937) throughout the entire

Orobian Alps. In essence, this geographic set-up can be viewed as a miniature version of the pattern of

nunataks and peripheral refugia in the Alps at large.

Reciprocal monophyly and polyphyly of populations are extremes in a continuum (Rosenberg, 2002).

Basic coalescent theory shows that the time required for monophyly to arise after divergence depends on
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2mm

Figure 3.2:Trechus brembanusfrom Lago Verrobbio (pop. 5 in Fig. 3.3) in the western part ofthe Orobian
Alps.

the long-term effective population size and has a very largevariance (Tavaré, 1984; Hudson & Turelli,

2003). Thus if populations are large and/or stable, lineagesorting may take multiple ice ages or even

predate the Pleistocene (Knowles, 2001). However, populations of OrobianTrechusare centred around

small glacial lakes and it is difficult to imagine their effective sizes exceeding a few thousand females.

In this case, the chance of monophyly as expected under the nunatak hypothesis is > 90% even after

isolation for just a single glacial cycle (Hudson & Turelli,2003) (Fig. 3.1A). Alternatively, lineage sorting

can occur on a more recent time scale during a range expansionunder the massif de refuge hypothesis

if founder events are involved. In the simplest such case, each population is founded by just a single

lineage without further gene flow between populations leading to a nested series of paraphyletic clades

(Fig. 3.1B).

We sequenced two fragments of mitochondrial DNA (a total of 1431 bp) and 530 bp of nuclear

sequence for a densely sampled set of populations in the Orobian Alps. We applied a recently devel-

oped Bayesian approach (Lemeyet al., 2009) that models directional location state changes (LSC) in

gene trees. This approach, which was originally used to estimate migration rates from viral phylogenies

(Lemeyet al., 2009; Ceiridwenet al., 2010) was adopted to infer the most parsimonious set of LSC

parameters connecting each population to one putative founder. Under a model of a series of extreme

founder events, this set of LSC parameters determines the order of population recolonisation and thus the
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Figure 3.3: A) Main peripheral massifs de refuge (I-III) in the Western Alps inferred from a meta-analysis
of genetic diversity in alpine plants are shown in purple (from Schönswetteret al., 2005); breaks between
refugia are indicated as dotted lines. The Orobian Alps are situated on the western edge of refugium
III. Sampling localities of the geographic outgroups are indicated in red (outA= Passo di Spluga, outB =
Adamello). B) Sampling localities of Trechus in the OrobianAlps. Watercourses are indicated in blue,
ridges by thin dashed lines. With the exception of pop. 1 and 6, all localities are glacial lakes. The
southern limit of the last glaciation (Jäckli, 1970) is indicated as a thick dashed line.
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expected nesting of paraphyletic clades in the gene tree (Fig. 3.1B). Although this admittedly represents

an extreme and simplistic cartoon of history, it does capture the directional aspect of recolonisation out of

a massif de refuge. The great advantage of both the nunatak model and the extreme founder event model

is that the expected monophyly and paraphyly in the gene treecan be tested explicitly to assess the impor-

tance of incomplete lineage sorting and/or migration (bothof which lead to polyphyly). We first tested

these constraints jointly for all populations and then individually for each population. Finally, we used a

Trechus-specific, mutation rate estimate to date the age of the mitochondrial clades compatible with the

extreme founder event model. This stepwise analysis allowsus to address the following questions:

i) To what extent are populations on the northern ridge either reciprocally monophyletic as expected af-

ter prolonged isolation on nunataks, or paraphyletic as expected after a process of successive founder

events out of one or multiple massifs de refuge?

ii) Is there evidence for incomplete lineage sorting and/ormigration in the form of polyphyly?

iii) Do node ages of clades that meet the respective mono or paraphyly criteria under i) predate the last

ice age as expected under the nunatak hypothesis, or are theypostglacial as expected under the massif

de refuge hypothesis?

3.1 Materials and Methods

3.1.1 Sampling

A total of 11 species in thepertyi-group have been described from the Orobian Alps, and most have

allopatric distributions restricted to one or a few neighbouring mountain tops (Daniel & Daniel, 1898;

Jeannel, 1927; Focarile, 1949, 1950). Their taxonomy is based on subtle differences in male genital

morphology, a potentially unreliable set of traits that have been shown to vary even within populations

(Faccini & Sciaky, 2002). Much of the taxonomic work on this group is linked with debates on alpine

biogeography, making it difficult to gauge the extent to which species delimitations were based on vicari-

ance hypotheses rather than morphological characters in the first place (Jeannel, 1927; Focarile, 1949,

1950). As a result, rather than sampling particular species, the aim of our sampling scheme was to pro-

vide exhaustive coverage of the Orobian Alps. We sampled a string of ten populations covering the entire

length of the northern ridge as well as two populations in thesouth of the area: Grignetta in the south-

west and Pizzo Presolana in the southeast (Fig. 3.3B, Table 3.1). Additionally, samples from two nearby
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Table 3.1: Sampling localities, sample sizes (Nmt = number of individuals sequenced forCox1andCox2,
Nnuc = number of individuals sequenced forPEPCK) and species namessensuFocarile (1950).

Code Population Latitude Longitude Alt. species Nmt Nnuc

outA Passo Spluga 46°30’16"N 9°19’50"E 2115mT. schaumii 11 1
1 Grignetta 45°55’21"N 9°23’22"E 2170m T. pygmaeus 5 2
2 L. Rotondo 46°1’6"N 9°32’17"E 2256m T. brembanus 11 2
3 L. Piazotti 46°1’19"N 9°33’32"E 2224m T. brembanus 9 2
4 L. Ponteranica 46°1’26"N 9°35’36"E 2150mT. brembanus 9 2
5 L. Verobbio 46°2’19"N 9°35’59"E 2026m T. brembanus 12 2
6 Passo S. Marco 46°2’50"N 9°37’22"E 1985mT. brembanus 11 2
7 L. Porcile 46°3’42"N 9°43’55"E 2095m T. intrusus 10 2
8 L. Curiosi 46°0’51"N 9°52’31"E 2112m T. insubricus 11 2
9 L. Diavolo 46°2’28"N 9°53’31"E 2141m T. insubricus 11 2
10 L. Cocca 46°3’46"N 10°0’4"E 2108m T. insubricus 11 2
11 L. Cerviera 46°3’34"N 10°3’47"E 2326m T. insubricus 12 2
12 Pizzo Presolana 45°57’26"N 10°4’14"E 2521mT. barii 12 3
12 Pizzo Presolana 45°57’26"N 10°4’14"E 2521mT. magistretti 12 3
outB Adamelllo (L. Avolo) 46°3’31"N 10°29’50"E 2393m T. tristiculus 3 1

mountain ranges were included as geographic outgroups:T. schaumiifrom Passo di Spluga 40 km north

of the Orobian Alps (outA), andT. tristiculusfrom the Adamello range 30 km to the west (outB) (Table

3.1, Fig. 3.3A). Adult specimens were collected by hand and stored in 98% ethanol.

3.1.2 Molecular work

A total of 150 individuals were sequenced for two mitochondrial DNA loci (Table 3.1). Whole genomic

DNA was extracted using a simple Chelex protocol (Lopez-Vaamondeet al., 2001; Nichollset al., 2010).

Primers C1-J-2792a (Bogdanowitczet al., 1993) and C2B-605 (Simonet al., 1994) were used to amplify

a 773 bp fragment of mitochondrial DNA which includes 180 bp of cytochrome c oxidase I (Cox1), 531

bp of cytochrome c oxidase II (Cox2) and 62 bp of tRNA leucine (Contreras-Diazet al., 2007). PCR

conditions followed Moyaet al. (2004). Additionally, the non-overlapping 658 bp ‘barcode’ fragment of

Cox1was amplified using primers HCO/LCO and standard PCR conditions (Folmeret al., 1994).

A subset of 30 individuals was sequenced for a coding region of the nuclear locus Phosphoenolpyru-

vate carboxykinase (PEPCK; Table 3.1). This gene has no known paralogs and has proven useful for

phylogeographic studies of carabid beetles (Sota & Vogler,2001; Wild & Maddison, 2008). Primers

Pepck19.5 and Pepck22.5, originally developed for bees (Leyset al., 2002), amplified a PCR product in

some individuals. This product was sequenced and used to design the following internal,Trechus-specific,

primer pair in Primer3plus (Rozen & Skaletsky, 2000): PepckF (5’ CGATCAAAACGGTCAACTTCC
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3’) and PepckR (5’ AGGTTTTGGGAACGGT TCTT 3’). We used PCR conditions given by Leyset al.

(2002) with an increased annealing temperature of 57 °C. PCRproducts were sequenced in both direc-

tions on an ABI 3730 automated sequencer using BigDye v3.1 chemistry.

3.1.3 Phylogenetic analysis

Complementary ABI traces were aligned in SequenceNavigator (Parker, 1997) and checked by eye. Only

unambiguous consensus sequences with an open reading framewere included in the analysis and all

singleton mutations were double checked in the ABI traces. Final alignments were created using the

Clustal W algorithm (Higgins & Sharp, 1988). Alignment of both mitochondrial genes andPEPCKwas

straightforward. Since the mitochondrion constitutes a single, non-recombining locus the two mitochon-

drial fragments were concatenated for all analyses. For simplicity, the tRNA leucine region, which only

contained a single, uninformative polymorphic site, was excluded resulting in a final alignment of 1366

bases for 150 individuals from 12 populations. We tested forevidence of recombination inPEPCKby

performing a four-gamete test (Hudson & Kaplan, 1985) in DnaSP v.4.1 (Rozaset al., 2003).

Mitochondrial sequences and nuclear alignments were analyzed separately. Before implementing

phylogeographic models we obtained a minimally parameterized mutation model through successive

model simplification and Bayes factor comparisons in BEAST v.1.5.3 (Suchardet al., 2001; Drummond

& Rambaut, 2007; Stoneet al., 2009). We began by considering the most complex models of sequence

evolution possible given the sequence diversity present ineach sampled locus. These were HKY+I+G

for a combined partition of 1st and 2nd codon positions and GTR+I+G for 3rd codon positions within the

mitochondrial data and GTR+I+G without partitioning forPEPCK. Standard demographic models imple-

mented in BEAST either assume panmixia (e.g. exponential growth) or complete isolation (birth-death),

both of which do not apply to structured populations. To avoid any errors resulting from model misspeci-

fication, we used a Bayesian skyline plot, which indirectly incorporates the effects of population structure

by allowing for arbitrary variation in effective population size. We also tested the support for a constant

versus relaxed mutation rate model (Table 3.2). We applied aTrechus-specific mitochondrial mutation

rate estimate of a mean of 0.0152 substitutions per site per MY (equivalent to 3.04% divergence/MY)

calculated for Canary IslandTrechusspecies using island ages (Contreras-Diazet al., 2007). Mitochon-

drial analyses were run for 30 million generations with a burn-in of 20 million, repeated using different

random number seeds and checked for convergence using Tracer v1.4 (Rambaut & Drummond, 2007),

while PEPCK analyses were run for 3 million generations witha burn-in of 2 million generations.
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3.1.4 Bayesian inference of relationships among populations

We used a recently developed Bayesian framework implemented in BEAST v 1.5.3, described in detail

by Lemeyet al. (2009), to reconstruct the colonization history ofTrechusin the Orobian Alps. This ap-

proach models geographic locations as discrete character states ‘evolving’ along a rooted, time-measured

phylogeny. Rates for location state changes (LSC) and ancestral location states in the gene tree are es-

timated simultaneously with phylogenetic model parameters using Markov chain Monte-Carlo (MCMC)

sampling. In contrast to maximum parsimony, this method incorporates branch length information as

well as uncertainty in gene tree topology (Pagelet al., 2004; Ronquist, 2004). While the original imple-

mentation is limited to reversible LSCs, a recent extensionallows the modelling of non-reversible, i.e.

directional LSCs (Ceiridwenet al., 2010). Location states were modeled for both data sets but only the

mitochondrial DNA data contained enough information to infer a putative sequence of extreme founder

events with any confidence.

For a sample ofn locations, there aren(n-1)possible directional LSCs. In practice, however, many of

these may not occur in a particular gene tree and the full model is drastically over-parameterized. Lemey

et al.(2009) proposed the use of Bayesian stochastic search variable selection (BSSVS) to find a minimal

set of LSC parameters. This approach has been introduced in regression problems as a way of finding

a subset of potential predictors that optimally explains the variance in an multi-dimensional outcome

variable (Kuo & Mallick, 1998), as deterministic model search strategies tend not to find the optimal

solution unless all possible subsets are explored which is generally computationally impractical. BSSVS

achieves model selection by assigning a binary indicator variable to each parameter. Each LSC parameter

has an equal prior probability of being zero, which is given by a prior distribution on the total number

of nonzero rates. Following Lemeyet al. (2009), we used a truncated Poisson prior for the number of

nonzero rates initially with a mean ofln2 and an offset corresponding to the minimal possible number

of rates (n − 1 = 13). This puts 50% prior probability on the minimal rate configuration, i.e. the model

strongly favours reduced parameterisation. To assess the influence of this prior choice, we performed a

sensitivity analysis by rerunning the BSSVS for larger prior means (Table 3.3).

We used Bayes factors constructed as posterior over prior odds ratios of indicators (Kass & Raftery,

1995) to assess the support for individual LSC parameters retained in the BSSVS (Lemeyet al., 2009)

and infer the most parsimonious sequence of putative founder events using a cut-off of 3 to indicate

positive support. The prior odds ratio for each LSC parameter is given by the total number of possible

directional LSCs,n(n-1); the posterior odds ratio is simply the proportion of generations of the MCMC

during which the associated binary indicator is 1, i.e. the LSC parameter is ‘switched on’. Importantly,

41



Table 3.2: Summary of models of sequence evolution evaluated for Cox1/Cox2and PEPCK using
BEAST. The models with the highest logarithm of the harmonicmean of sampled likelihoods are in-
dicated with an asterisk.

Cox1/Cox2

1st and 2nd 3rd Clock ln(HML)

HKY+I+G GTR+I+G strict -3248.10
HKY+I GTR+I+G strict -3194.98
HKY+G GTR+I+G strict -3207.80
HKY+I+G GTR+I+G relaxed -3256.52
HKY+I GTR+I+G relaxed -3184.67 *
HKY+G GTR+I+G relaxed -3190.98

PEPCK

all partitions Clock ln(HML)

GTR+I+G strict -945.54
GTR+G strict -941.70
GTR+I strict -940.93
GTR strict -940.56*
GTR+I relaxed -942.49

by assigning equal prior probability to each LSC parameter,BSSVS avoids making any assumptions

about the genetic relationship of populations based on their location. Instead, genealogical relationships

can be used to make inferences about likely founder events. For example, if colonisation occurs in a

stepping stone fashion, most posterior probability mass inthe BSSVS should be on LSC parameters

between neighbouring populations and the most basal population in the set corresponds to the origin of

the colonisation process. We chose the population associated with the highest posterior indicator in the

BSSVS as the most likely founder of each population. The resulting set was taken as the most likely

series of putative founder events for further analyses.

3.1.5 Testing topological constraints

One benefit of focusing on the two extreme histories of prolonged nunatak survival and the founder

event model is that deviations from the monophyly and paraphyly criteria implicit in these models can

be easily tested. Another advantage is that in both cases thetime to the most recent common ancestor

(TMRCA) of each population gives a lower estimate of the relevant population genetic event (divergence

and founder event respectively). Using BEAST we compared a topologically unconstrained model with

models enforcing, i) reciprocal monophyly for all populations (prolonged nunatak survival), and ii) all

paraphyly constraints given the putative sequence of founder events inferred by BSSVS (recolonisation
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out of a massif de refuge). We also performed constrained analyses for each population individually. In

these cases we either only constrained a particular population sample to be monophyletic, or imposed

monophyly of a population and all populations founded from it under the founder event model. The

harmonic mean of the model likelihood (HML) was taken as an estimate of the marginal likelihood

and used to compare topologically constrained models with the unconstrained model. We used a more

conservative cut-off than Kass & Raftery (1995) of 2∆lnHML= -20 to indicate strong evidence against a

particular constraint.

3.2 Results

3.2.1 Phylogenetic analysis

The concatenated mitochondrial alignment (Cox1andCox2) contained 139 polymorphic sites, 121 of

which were parsimony informative. The best model of sequence evolution was HKY+I for 1st and 2nd

codon positions combined and GTR+I+G for 3rd positions with a relaxed rate mutation model (Table 3.2).

The alignment ofPEPCKcontained 25 polymorphic sites, 17 of which were parsimony informative. Two

individuals were heterozygous at a single site and four individuals were heterozygous at three sites. In all

cases it was possible to infer the haplotype phase from the different homozygotes present in the data. We

found no evidence for recombination inPEPCK. The best model of sequence evolution forPEPCKwas

GTR for all sites and a constant mutation rate (Table 3.2).

3.2.2 Bayesian inference of relationships among populations

Using a prior mean on the number of non-zero rates ofln2, BSSVS on the mitochondrial data identified

a set of 16 LSC parameters with a Bayes Factor > 3 among the 12 populations in the Orobian Alps

(Fig. 3.4A, Fig. 3.5). Thirteen of these were between adjacent population pairs or those with only one

intervening population. Given that all LSC parameters wereassigned equal prior probability, that is, the

prior did not incorporate information about geographic distance, this provides support for a stepping stone

model of colonisation. However, BSSVS revealed a marked phylogeographic divide across the sampled

area with two clusters of populations at the western and eastern end of the mountain range (Fig. 3.5).

Although the number of LSC parameters supported by the data exceeded the minimum of 11 required

to connect all ingroup populations, a cluster of three populations (L. Verrobio (pop. 5), Passo S. Marco

(pop. 6) and L. Porcile (pop. 7)) in the centre of the northernridge remain without a putative founder.

To identify a minimal, connected set of founder events, we chose the population with the largest value
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Figure 3.4: Matrices indicating posterior support for directional location state change (LSC) parameters
among 12Trechuspopulations in the Orobian Alps. Support for each parameterwas assessed using
Bayesian stochastic search variable selection (BSVSS) on the combined mitochondrial dataCox1/Cox2.
Posterior support for each possible LSC parameter is indicated by the strength of the shading in the matrix
(locations are ordered from west to east). LSC parameters with a Bayes Factor > 3 are indicated by an
asterisk. Most posterior probability is on LSC parameters between adjacent populations (cells just below
or above the diagonal). This is true regardless of whether the number of non-zero rates in the BSSVS is
assumed to be close to the minimum ofn−1 by choosing a prior mean of ln2 (A), or allowing for a much
larger number of rates using a prior mean of 15 (B). Similarly, the minimal set of putative founder events
(cells with thick borders) is insensitive to this parameter.

44



N

Brembo R.

Serio R.

Adda R.

L. Como

10 km

1 = Grignetta
2 = Rotondo
3 = Piazzotti
4 = Ponteranica

6 = Passo S. Marco
7 = Porcile

5 = Verrobbio

8 = Curiosi

  9 = Diavolo 
10 = Coca

12 = Pizzo Presolana
11 = Cerviera

1

4

6 7

8

9

10
11

12

2 3

5

N o r t h e r n       r i d g e

Figure 3.5: Location state change (LSC) parameters among 12Trechuspopulations in the Orobian Alps
inferred from mt genesCox1/Cox2using BSSVS represented as arrows. Shown in red is the most par-
simonious minimal set, which can be interpreted as a minimalmodel of phylogeography of sequential
founder events. The putative founder event connecting populations 1 and 6 (dotted arrow) was the only
LSC parameter with a Bayes Factor < 3. Additional LSC parameters with high support (BF > 3) in the
BSSVS are shown as black arrows. Note that the most basal founder event (pop. 12 to 1) connecting the
two clusters in the East and West of the Orobian Alps is not shown for clarity. The southern limit of the
last glaciation (Jäckli, 1970) is indicated as a thick dashed line.
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Table 3.3: A sensitivity analysis to investigate the impactof the prior on the number of nonzero rates in
the BSSVS was carried out for the mitochondrial alignment (Cox1/Cox2).

Cox1/Cox2

Prior mean Post Median BCI ln(HML)

ln2 15 14,18 -3283.55
1 16 13,18 -3270.81
5 21 16,25 -3274.31
10 26 20,32 -3279.82
15 31 24,38 -3276.36*

in the corresponding row of the matrix of posterior indicators (Fig.3.5) as the most likely source of each

population (red arrows in figure 4). Enforcing this reversesthe connection between Grignetta (pop. 1) to

Passo S. Marco (pop. 6). All other LSC parameters in the minimal set of the founder event model had a

Bayes Factor > 3.

Rerunning the BSSVS with larger prior means on the number of nonzero rates either had no effect

on our estimate of the marginal likelihood ( ln(HML)) or increased it, with changes in the posterior

median value mirroring increases in the prior (Table 3.3). We interpret this as a reconstruction of the

prior resulting from the limited topological information in the data. This is confirmed by inspection of

the matrix of posterior means of indicators (Fig. 3.4), as increasing the prior mean on the number of

nonzero rates uniformly increased the posterior support for all LSCs, reflected by the darker background

in figure 3.4B. However, the set of putative founder events inferred for the 12 ingroup populations was

not affected by the prior.

3.2.3 Testing topological constraints

Constraining all populations to be monophyletic (prolonged isolation on nunataks) resulted in a drastic

reduction in marginal likelihood for the mitochondrial data (2∆lnHML= -220, Table 3.4). Similarly, im-

posing the full set of paraphyly constraints inferred underthe founder event model also decreased the

overall likelihood (2∆lnHML= -115, Table 3.4). This indicates that neither a strict nunatak model nor an

extreme founder event model is supported by the data. Evaluating constraints for individual populations,

we found strong evidence against monophyly for five populations and moderate evidence for one popu-

lation (Table 3.4). In contrast, only two populations (L. Piazotti (pop. 3), L. Curiosi (pop. 9)) and one

population (L. Rotondo (pop. 2)) showed strong or moderate evidence respectively against the paraphyly

constraints of the founder event model. This suggests that i) the extreme founder event model provides a

better fit to the data; and ii) some incomplete lineage sorting and/or migration are required to fully explain
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genealogical relationships.

Although our approach removes the need for qualitative interpretations of gene tree topologies, many

but not all of the putative founder events inferred using BSSVS are easily confirmed by visual inspec-

tion of the gene trees. Inferred ancestral location states were summarized by computing the maximum

clade credibility tree for each locus (Fig. 3.6). Both mitochondrial genes andPEPCK unambiguously

separated the sample, including the geographic outgroups,into deep western and eastern clades, which

is in agreement with the founding of Grignetta (pop. 1) from Pizzo Presolana (pop. 12) being the most

basal founder event. Similarly, several of the inferred putative founder events for the eastern popula-

tions clearly correspond to single transitions in ancestral location state at well supported clades in the

Cox1/Cox2maximum clade credibility tree (e.g. from pop. 12 to 9 and from 10 to 11). In contrast, the

series of putative founder events inferred by BSSVS for the western populations, in particular the basal

status of Grignetta (pop. 1), are less obvious from this tree. Finally, the three populations that violated

the paraphyly criterion under the founder event model were polyphyletic in theCox1/Cox2maximum

clade credibility tree, as expected. Samples from L. Curiosi (pop. 9) and L. Rotondo (pop. 2) occurred

in multiple deeply divergent clades, which most likely reflects incomplete lineage sorting. In contrast,

only a single individual from the population at L. Piazotti (pop. 3) was placed away from the majority of

samples from this population into a clade of L. Rotondo (pop.2) sequences (Fig. 3.6). Given the close

proximity of the two locations (L. Rotondo is situated just 300m uphill from L. Piazotti) this may reflect

a recent migration event into the L. Piazottti population. We expect LSCs that occur multiple times in the

gene tree to be associated with higher posterior mean indicator values in the BSSVS, and this was indeed

the case (see LSCs from pop. 9 to 8 and from 2 to 3 in Fig. 3.4, Fig. 3.6).

Under a model of extreme founder events, the TMRCA of each resulting clade can be taken as a lower

estimate of the time of the founder event itself. Median estimates for the TMRCA of the seven northern

ridge populations that were compatible with the implicit paraphyly criterion ranged from 36 KY (17 - 80

KY 95% highest posterior density) at L. Ponteranica (pop. 4)to 569KY (238 - 1,087 KY 95% highest

posterior density) at L. Diavolo (pop. 8) (Table 3.4). In allcases, the lower 95% highest posterior density

bound predates the onset of deglaciation at the end of the last iceage 14.5-15 KY ago, suggesting that

Trechuswere present on the northern ridge for at least part of the last ice age, if not before.

3.3 Discussion

We used a parameter-rich Bayesian approach to infer the phylogeographic history of a local radiation of

high alpine ground beetles. We have deliberately focused ontwo extreme models of population history,
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Table 3.4: Estimates of TMRCA (median and lower and upper 95% posterior density in KY) forTrechus
populations in the Orobian Alps under a model of sequential founder events (see red arrows in Fig.
3.5). We tested for reciprocal monophyly under the nunatak model and the monophyly implicated by
the founder event model for all populations (last row) and each population separately in BEAST. Given
are 2∆lnHML (relative to the unconstrained model) combined from the two constrained runs for each
populations (* indicates moderate support, ** strong support against the respective mono or paraphyly
constraint) and the TMRCA (median and highest posterior density (HPD) intervals) of each population
obtained without imposing constraints.

Population 2∆lnHML 2∆lnHML median lower 95% upper 95%HP
founder event nunatak TMRCA HPD HP

Passo Spluga (outA) n/a -4.6 73 19 232
Grignetta (1) 3.1 -6.9 249 58 580
L. Rotondo(2) -19.4* -41.8** 205 73 394
L. Piazotti (3) -27.8** -27.8** 123 31 285
L. Ponteranica (4) -0.5 -0.5 36 17 80
L. Verobbio (5) 0.3 0.3 111 29 274
Passo S. Marco (6) 5.3 -27.4** 208 65 404
L. Porcile (7) -6.7 -6.7 41 16 88
L. Diavolo (8) -7.8 -116.4** 569 238 1,087
L. Curiosi (9) -133.6** -133.6** 569 238 1,087
L. Cocca (10) -4.5 -18.8* 103 39 207
L. Cerviera (11) - 1.2 - 1.2 47 19 91
Pizzo Presolana (12) root -7.3 1,245 626 2,293
L. Avolo n/a -2.1 17 < 1 45
all - 115.0** -220.4** n/a n/a n/a
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prolonged isolation on nunataks and extreme founder eventsoriginating from a massif de refuge. While

these are admittedly simplistic cartoons of history, theiradvantage is that they make explicit predictions

about the mono- or paraphyly relationships which can be tested for individual populations and gene trees.

Our results suggest a mixture of nunatak and massif de refugepatterns. On the one hand, half of the

Orobian populations are reciprocally monophyletic as expected after prolongedin situ survival on small

nunataks and – more importantly – the ages of the corresponding mitochondrial clades would suggest

that northern ridge populations diverged either before or during the last ice-age, but not afterwards. On

the other hand, there are multiple lines of evidence for directional recolonisation originating from two

separate massifs de refuge. Firstly, the data are incompatible with only three of the eleven paraphyly

constraints under the founder event model. This suggests that, although genealogical relationships are

complicated to some extent by incomplete lineage sorting and/or migration (see discussion below), the

founder event model provides a reasonable fit to the data. Without information from additional loci it is

impossible to tell whether polyphyly for a particular population in the mitochondrial tree is due to some

process specific to these populations (e.g. large effectivepopulation size or migration) or simply due to

the randomness of genetic drift. The fact that the only polyphyly observed in the PEPCK maximum clade

credibility tree involves L. Cerviera (pop. 11), a population that is monophyletic in the mitochondrial tree

(Fig. 3.6), points to the latter. Secondly, the data show a clear directional signal, the most likely founder

of most populations being a directly adjacent population. Finally, we found a deep congruent break in

the centre of the Orobian ridge in both mitochondrial and nuclear data. Pizzo Presolana (pop. 12), one of

the populations in the unglaciated south, is ancestral bothin the inferred sequence of founder events (Fig.

3.5) and in the eastern clade of the two gene trees (Fig. 3.6) and thus constitutes a likely massif de refuge.

In contrast, the ancestral location of the western clade is less well resolved. While Grignetta (pop. 1) is

ancestral both in the inferred series of founder events and the western clade of the mitochondrial tree,

Passo S. Marco (pop. 6) is the ancestral location in thePEPCK tree (Fig. 3.6).

Taken together, these findings suggests that a model of stepping-stone type recolonisation originating

from two putative massifs de refuge, although not supportedfor all populations, provides at least a useful

approximation to the history of OrobianTrechus.

How can this apparent signature of directional recolonisation be reconciled with the estimates of the

TMRCA of the clades on the Northern ridge all of which are older thanthe current interglacial (Table

3.4)? Since the founder event must predate the corresponding TMRCA, the results would be compatible

with recolonisation during a previous interglacial (0.130- 0.115 MYA). Such prolonged persistence of

populations in isolation could potentially result in adaptation to local environments which in turn has im-

plication for the conservation status ofTrechuspopulations. Alternatively, our molecular clock calibration
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may be wrong. Recently Hoet al.(2005) have shown that estimates of molecular rates are time-dependent

and have attributed this effect to purifying selection, sequencing error and saturation. Consequently, cal-

ibrations based on old events such as the age of the Canary Islands inTrechusmay lead to considerable

overestimate of recent node ages. However, in the present case the short-term substitution rate would

have to be an order of magnitude higher to affect our conclusion that Northern ridge populations were

seeded before the current interglacial. Another potentialcause for acceleration in substitution rates is pos-

itive selection on mitochondria. Although bacterial endosymbionts such asWobachiahave been shown to

cause selective sweeps in mitochondria in many arthropods (Hurst & Jiggins, 2005), they are not known

from Carabid beetles. However, there may be other selectionpressures, in particular the need to adapt to

changing temperatures (Dowlinget al., 2008) acting on mitochondrial genes. Without more informative

data from nuclear loci and mutation rate estimates for them,we cannot rule out this possibility for high

alpineTrechus.

3.3.1 Patterns and causes of phylogeographic structure

The extent of phylogeographic structure on this small scaleis in stark contrast to the complete lack of

structure in more dispersive, winged insects over similar or greater scales (e.g. Nichollset al., 2010; Stone

& Sunnucks, 1993). It also contrasts with mitochondrial genealogies of other high alpine radiations in

which incomplete lineage sorting appears to be much more widespread (Knowles, 2001). Similar levels

of genetic structure over scales of 50 km or less have to date only been found in giant springtails (Garrick

et al., 2009) suggesting that high alpineTrechusrepresent an extreme case of dispersal limitation and/or

small population sizes.

An unexpected finding of this study was the deep phylogeographic break in the centre of the Orobian

Alps supported by both mitochondrial DNA and nuclear gene trees. Simulation studies have shown that

in one-dimensional habitats, such as mountain ranges, phylogeographic breaks can arise by chance with-

out barriers to dispersal (Irwin, 2002). Furthermore, suchbreaks are more likely to occur in the centre

of the range as is the case for OrobianTrechuspopulations. However, given the number of sampled in-

dividuals and populations it is improbable for a random phylogeographic break to occur congruently in

two independently segregating loci (Kuo & Avise, 2005). Thus the east/west break in OrobianTrechus

most likely reflects a true historic barrier to gene flow. Interestingly, the break coincides both with mor-

phological species delimitations (T. brembanusandT. intrususin the west andT. insubricusin the east)

and the watershed between the two main rivers draining the Orobian Alps, the Serio and Brembo (Fig.

3.3). We therefore hypothesise that glacial range shifts and colonisation of the northern ridge proceeded

along those watercourses and ultimately originated from two distinct southern refugia. This seems plau-
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sible, given the strong preference of high alpineTrechusfor moist, glacial lake microhabitats. Moreover,

genetic structure congruent with water catchment areas haspreviously been found in other dispersal-

limited taxa (Garricket al., 2009). While passive dispersal of high alpineTrechusover large distances is

frequently observed during flooding of alpine streams (Reitter, 1908), the present analysis suggests that

active movement upstream and along mountain chains is slow.It is interesting that mitochondrial dates

of most populations on the northern ridge are compatible with colonisation during or before the last ice

age. In all cases, the lower 95% posterior density bound predates the onset of the current interglacial.

Note that applying a mutation rate estimate from a temperatespecies is conservative, since one would

expect high alpine specialists to have longer generation times and thus slower mutation rates than their

temperate relatives, which, if anything, would push back inferred node ages.

The deep phylogeographic break observed in OrobianTrechusis in stark contrast to the large-scale

refugia identified in plants (Schönswetteret al., 2005) and suggests that patterns of vicariance and Pleis-

tocene range shifts in alpine organisms may be highly dependent on dispersal ability and life history. It

highlights the value of studying dispersal-limited alpinetaxa, which are likely to preserve a signature of

processes operating over local scales.

3.3.2 Locations as states in gene trees

Treating locations as discrete states in gene trees avoids many of the problems of fully parameterized

population genetic models of divergence and population structure (Hey & Machado, 2003; Knowles,

2004; Wakeley, 2004b). The method is computationally tractable and LSCs inferred from gene trees

can be superimposed onto the geographical map much more readily than the gene trees themselves (Fig.

3.5). The obvious drawback is that the method, if used on its own, lacks a population genetic basis

and thus cannot distinguish between different processes acting at the population level. This is clearly

not a problem when studying asexual organisms such as viruses whose histories can be described by a

single phylogeny or - if there is reassortment - a small set ofphylogenies (Lemeyet al., 2009). In this

context directional LSC parameters can be straightforwardly interpreted as migration rates in real time

(Lemeyet al., 2009). However, in sexual organisms gene trees and species/population trees are clearly

different entities (Tajima, 1983; Pamilo & Nei, 1988) and studying the history of individual genes is only

indirectly useful for making inferences about the underlying species history (Hey & Machado, 2003;

Knowles, 2004). Crucially, different features of the species tree may lead to a LSC in the gene tree. For

example, a particular LSC may either be associated with i)in situdivergence of populations, ii) the sorting

of ancestral polymorphism resulting from such divergence or iii) migration of individuals between them.

It is therefore problematic to equate LSC parameters as inferred by BSSVS with any one of the above
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processes without further testing despite multiple studies doing so (Nepokroeffet al., 2003; Allanet al.,

2004; Lamm & Redelings, 2009). While a clear correspondencebetween LSCs and migration rates in

the population genetic sense has been established for the symmetric island model (Slatkin & Maddison,

1998), the relationship between population genetic parameters and LSCs remains to be evaluated for more

realistic, non-equilibrium models of structure.

How then can we use estimates of LSCs in gene trees to study population histories? Although desir-

able, analysing fully specified models is currently feasible only for small numbers of populations/species,

and methods incorporating migration and incomplete lineage sorting are often restricted to pairs of popu-

lations (Hey & Nielsen, 2004; Becquet & Przeworski, 2007). The alternative is to use summary statistics

and simulations to distinguish between at least some extreme alternative scenarios (DeChaine & Martin,

2006; Knowles, 2001). However, this requires making difficult choices about the range of models and pa-

rameters to be evaluated and may result in a considerable loss of information. For example, the summary

statisticS, the total number of LSCs in the consensus tree (Slatkin & Maddison, 1998), which has been

used to compare phylogeographic models (Knowles, 2001; DeChaine & Martin, 2006), is not informative

about which changes have actually occurred. In other words,any information about the directionality of

colonisation or migration is lost.

Given that a major challenge in statistical phylogeographyis to identify a set of relevant models

of history in the first place (Carstenset al., 2009; Knowles, 2009), BSSVS should be a useful tool for

reconstructing plausible population relationships that can serve as a starting point for further, model-

based evaluation. It formalizes many of the qualitative inferences that researchers commonly make from

’eyeballing’ gene trees and potentially also provides a wayof averaging phylogeographic signal across

multiple loci. Given that BSSVS is highly sensitive to LSCs that occur multiple times in the gene tree (as

would be expected from lineage sorting or migration), the approach is conservative when used to infer

a putative sequence of extreme founder events, which correspond to unique LSCs in the gene tree. The

downside of this is an increased sensitivity to topologicaluncertainty. For instance, the low power to

infer a founder for the cluster of populations 5-7 and the western population in general is most likely a

result of topological uncertainty. Likewise, the power to assess monophyly or paraphyly decreases with

topological uncertainty. Thus despite the use of BSSVS to provide a statistical basis for phylogeographic

inference, resolving population histories in detail ideally requires additional data from multiple, indepen-

dent loci and more realistic population genetic models. Given the surprising extent of phylogeographic

structure within a single mountain range revealed by this study and the potential insights about the effect

of Pleistocene climate history on alpine diversity, further development of loci and models would be a

worthwhile endeavour forTrechusand other high alpine specialists.
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Chapter 4

Developing EPIC primers for chalcid

Hymenoptera from EST and genomic

data

Submitted as: Lohse, K., Sharanowski, B.,

Blaxter, M., Stone, N.G. (2010).Molecular

Ecology Resources

Despite the increasing realisation that multilocus data are required to adequately resolve histories at

or below the species level (Zhang & Hewitt, 2003; Jennings & Edwards, 2005; Carstens & Knowles,

2007b), the majority of phylogeographic analyses of non-model organisms are still primarily based on

mitochondrial DNA. Rather than being analysed jointly in a model-based framework, nuclear data are

often presented as an add-on used to ‘corroborate’ qualitative inferences made from mitochondrial ge-

nealogies. One reason for the relatively slow uptake of model-based approaches by phylogeographers is

that obtaining a sufficient number of informative loci is a considerable effort for non-model organisms.

A recent study using multiple loci to estimate divergence and migration across a phylogeographic barrier

(Leeet al., 2009) in a quantitative framework (Nielsen & Wakeley, 2001; Hey & Nielsen, 2004) found

that stable parameter estimation requires a minimum of five nuclear loci. The general challenge is to

identify enough loci that have a mutation rate high enough togenerate a detectable signal of population

level processes, whose evolution is at least approximatelyclock-like, and for which phylogeographic
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signal has not been overwritten by the effects of recombination. Additionally, on a practical level, am-

plification across related taxa is desirable both to reduce the cost of primer development and to facilitate

comparisons across multiple species. In many ways this contradicts the requirement of high levels of in-

traspecific variation. For example, most of the loci commonly used in phylogenetic analyses or for DNA

barcoding (Folmeret al., 1994), such as the D2 region of the 28S ribosomal RNA gene, amplify readily

across a wide range of insects (Cooket al., 2002; Rokaset al., 2002; Stoneet al., 2009), but show little

or no genetic diversity below the species level (Stoneet al., 2007). Conversely, anonymous loci generally

provide good resolution in the target species but generallydo not cross-amplify well at all (Jennings &

Edwards, 2005; Carstens & Knowles, 2007a; Leeet al., 2009).

Introns in single-copy nuclear genes offer a potential escape from this conundrum (Creer, 2007).

They evolve faster than coding regions and so are likely to contain sufficient intraspecific diversity to

reconstruct genealogies, but are flanked by conserved exons(hence the term EPIC - exon-primed, intron-

crossing - for such loci), which can be used as priming sites ensuring amplification across a reasonable

taxonomic range (Lessa, 1992; Palumbi & S., 1994; Creer, 2007). Although intron sequences have been

used in phylogeographic analyses of vertebrates (Gifford &Larson, 2008; Peterset al., 2008; Leeet al.,

2009) and fruit flies (Wilder & Hollocher, 2003; Daset al., 2004), their use in non-model taxa is still rare

and their potential for comparative multispecies studies remains to be explored.

Here we develop EPIC loci for phylogeographic inference in chalcidoid parasitoid wasps (Hymenoptera:

Chalcidoidea), species-rich components in most terrestrial communities and dominant natural enemies of

many insect herbivores (Askew, 1980; Godfray, 1994; Baileyet al., 2009). The complications of length

variation in introns, which in diploid organisms often necessitates a time-consuming cloning step, can

be avoided in Hymenoptera simply by using haploid males for which sequences can be obtained directly.

Our aim was to identify loci that provide resolution at and below the species level whilst amplifying across

a taxonomically diverse set of Chalcidoid taxa, allowing multilocus, multispecies analyses of natural par-

asitoid communities. To avoid having to design and optimizeprimers for each species individually, we

took a large scale, genomic approach. The strategy was to develop primers for a large number of highly

conserved genes using alignments of expressed sequence tags (ESTs) and publicly available genomic data

from Hymenoptera (including the Chalcidoid,Nasonia vitripennis)and other insects. If transcripts have

abundant conserved sites across a wide range of taxa, there should be ample non-degenerate priming sites

to amplify from disparate taxa.

Amplification success of candidate loci was assessed in two diverse and well-studied, natural com-

munities; herbivorous gall wasps (Hymenoptera; Cynipidae) on oak (Quercus) (Hayward & Stone, 2005)

and fig wasps (Hymenoptera; Aagonidae) (Weiblen, 2002; Machadoet al., 2005). Primers were screened
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at increasing taxonomic distance fromNasonia(Pteromalidae); i) in different genera of Pteromalidae,

ii) in different families of Chalcidoidae (Eulophidae, Eupelmidae, Eurytomidae, Ormyridae, Torymidae)

and iii) for a selection of host taxa in both systems (Cynipidae and Aagonidae respectively). In total this

screening set encompasses a diverse set of taxa including both pest species (Aebiet al., 2006) as well as

groups frequently used as biological control agents (Shaet al., 2007; Mena-Correaet al., 2009).

The rationale of having a large set of nuclear loci, which at least partially co-amplify across these

assemblages, is to maximise overlap of loci used in future multispecies comparisons and to minimise

potential ascertainment bias that species-specific choices of loci may introduce. To assess the potential of

these loci for phylogeographic inference, we measured genetic diversity between major Palearctic refugia

for two widespread Pteromalid parasitoids of oak galls,Cecidostiba fungosaandMesopolobus amaenus.

4.1 Methods

4.1.1 Choice of nuclear loci and EST libraries

Putative orthologous gene alignments, developed for a separate phylogenomic study of Hymenoptera

(Sharanowskiet al., 2010) were used to develop primers. EST alignments were constructed from cDNA

libraries for six hymenopteran taxa:Neodiprion sertifer(Diprionidae),Campoletis sonorensis(Ichneu-

monidae),Pelecinus polyturator(Pelecinidae),Pristaulacus strangliae(Aulacidae), an unidentified cer-

aphronid (Ceraphronidae), and an unidentified eucoiliine (Figitidae). Sequences were also obtained from

public databases (NCBI) from the following taxa:Nasonia vitripennis(Hymenoptera: Pteromalidae),

Solenopsis invicta(Hymenoptera: Formicidae),Lysiphlebus testacipes(Hymenoptera: Braconidae),Tri-

bolium castaneum(Coleoptera: Tenebrionidae),Myzus persicae(Hemiptera: Aphididae),Acyrthosiphon

pisum(Hemiptera: Aphididae), andLocusta migratoria(Orthoptera: Acrididae). All sequences were

compared against three annotated model genomes;Drosophila melanogaster(Diptera: Drosophilidae),

Bombyx mori(Lepidoptera: Bombycidae), andApis mellifera(Hymenoptera: Apidae). For details on

cDNA library construction, contig assemblies, orthology determination, and alignment protocols, see

methods in Sharanowskiet al. (2010).

EST alignments for 76 genes meeting the orthology criterion(Sharanowskiet al., 2010) were filtered

to include at least four hymenopteran taxa. Additionally, only alignments with less than 25% average

difference at non-synonymous sites across all hymenopterans were utilized. Although this is an arbitrary

cut-off, restricting the number of non-synonymous changeswas intended to aid primer design by decreas-

ing the amount of degeneracy required to achieve amplification across a broad range of taxa. The average
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numbers of non-synonymous sites for alignments were calculated using the Nei-Gojobori method (Nei &

Gojobori, 1986) in MEGA 4 (Tamuraet al., 2007).

Of the 40 EST alignments meeting the above criteria, 27 were ribosomal proteins (RPs). We focused

primarily on introns in ribosomal protein (RP) genes for three reasons: (i) RP genes are typically con-

served across eukaryotes; (ii) most RP genes do generally not occur in multiple copies; and (iii) there

is no evidence to suggest genetic linkage. We also designed primers spanning introns in 13 conserved

regulatory genes that met the above criteria:RACK1, SUI, Tctp, Mp20, myofilin, NIp ran, bellwether,

AntSesB, nAcRbeta, magonashi, sansfille, pros25(Table 4.1).

4.1.2 Primer design

EST andDrosophila genomic sequences were aligned in BioEdit using ClustalW (Thompsonet al.,

1994) and checked by eye. Primers were anchored in coding exon regions flanking known introns inD.

melanogaster. We chose priming sites that were conserved across Hymenoptera and, whenever possible,

across other insect sequences in the alignment. Starting with the priming sequence forN. vitripennis, the

only Chalcid in the set, primer degeneracy incorporating observed nucleotide substitutions at increasing

taxonomic distance was built in by eye to increase amplification success. We set an upper limit of 54-fold

degeneracy and attempted to choose priming sites for which all substitutions observed in the alignment

could be built into the degeneracy. If this was not possible,we prioritised on degeneracy in positions near

the 3’ end. Sequences from the braconid waspL. testacipesfrequently proved too diverged to be included

in the primer degeneracy. If possible multiple, often nested primers were designed for each locus (Table

4.1).

Standard primer characteristics (annealing temperature,scores for dimer formation, self annealing

and 3’ stability) were checked in FastPCR (Kalendaret al., 2009) and Primer3 (Untergasseret al., 2007)

using default settings.

4.1.3 Screening amplification success

Whole genomic DNA was extracted from specimens stored in 98%ethanol in 50µl of extraction buffer

containing 5% ChelexTM100 resin (Bio-Rad, Hercules, CA). Primers were tested on three species of

Pteromalid parasitoids associated with oak galls (C. fungosa, M. amaenus, Caenacis lauta)and three non-

pollinating, parasitic Pteromalid figwasps (Sycoscapter sp., Philotrypesis, Walkerella sp.). N. vitripennis,

the only chalcidoid sequence included in the EST alignments, was used as a positive control. We also

tested all primers on one species from each of the remaining five Chalcidoid families parasitising oak
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galls in the Palearctic:Torymus affinis(Torymidae),Omyrus nitidulus(Ormyridae),Eupelmus annulatus

(Eupelmidae),Baryscapus pallidae(Eulophidae) andEurytoma brunniventris(Eurytomidae) (Table 4.2).

However, these families are associated with foodwebs centred on many insect herbivores (Askew, 1980).

Finally, primers were tested on six species of gall wasps (Cynipidae) and three species of pollinating fig

wasp hosts (Aagonidae) (Table 4.2).

Polymerase chain reactions (PCR) were performed in 20µl reactions using the following mix for all

primer combinations: 2.0 ml 10x Bioline PCR buffer, 2.0 ul bovine serum albumin (10 mg/ml), 0.8 ul

MgCl2 (50 mM), 0.16 ul dNTPs (25 mM each), 0.1 ul Taq Polymerase (5 U/ul, Bioline), 0.2 ul of each

primer (20 uM) and 1 ul DNA template.

A generic touchdown PCR protocol was used for all loci: 94 °C for 3 min, followed by cycles of 94

°C for 15 s, an annealing step of 40 s, 72 °C for 3 min and a final step at 72 °C for 10 min. The annealing

temperature was varied as follows: The first 10 cycles decreased in 1 °C increments from 65 °C to 55 °C,

followed by 30 cycles each with an annealing step at 55 °C.

4.1.4 Divergence, diversity and information content

To assess the utility of the new EPIC loci for intraspecific studies we obtained sequences for two Ptero-

malid taxa (C. fungosaandM. amaenus). In each species three male individuals, one each from different

Pleistocene refugium in southern Europe (Iberia, the Balkans and Asia Minor), were sequenced for all

loci that amplified in the initial screen. Sequences were also obtained from a single male ofC. lauta,

a species closely related toC. fungosa. PCR products were sequenced directly in both directions using

ABI BigDye chemistry (Perkin Elmer Biosystems, Waltham, MA) on ABI 3700 and 3730 sequencers

in the GenePool Edinburgh. Chromatograms were checked by eye and complimentary reads aligned us-

ing Sequencher v. 4.8.C. fungosa, M. amaenusandC. lautasequences were aligned in ClustalW and

checked by eye. Exonic regions were assigned by comparison with D. melanogasterprotein sequences

and checked for an open reading frame. To allow comparison with a frequently used mitochondrial lo-

cus, we sequenced a 689 bp region of the cytochromec subunit 1 gene (Cox1) for the above samples

using primers COI_pF2 and COI_2413d, a modified version of C1-J-2441 (Simonet al., 1994) (Table

4.1). These primers amplify a fragment largely overlappingthe LCO/HCO region ofCox1(Folmeret al.,

1994), but excluding a poly-T repeat at its 5’ end present in Chalcidoidea which causes slippage during

PCR resulting in uninterpretable sequence.

The final dataset forC. fungosaandM. amaenusconsisted of alignments for all loci that amplified

in those species. For each locus average pairwise diversity(π) in Europe (both inC. fungosaandM.

amaenus) and divergence (K) betweenC. fungosaand the closely related outgroupC. lautawas computed
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Table 4.1: Primer sequence, CG identifier, annealing temperature (Co) for 26 nuclear loci which amplified a product in at least one of the focal taxa
(Table 4.2) andCox1. Degeneracy codes used are standard: N = A, G, C or T; R = A or G; Y= C or T; M = A or C; S =ÊG or C; W = A or T; K = G
or T; V = Not T, D = Not C, H = Not G, B = Not A.

Locus primer CG Forw Co Rev Co

Ant_sesB 40Fb/Rb 16944 GCCAAYGTYATCMGDTACTTC 61.8 TACKGTRTCRAAKGGATAGGA 61.7
bellwether 33Fb/Rb 3612 GAAGAGGAAGTWYGARTTRGGWC 57.5 TTCRTACCAYTGBCTGAADGG 57.9
magonashi 38F/R 9401 CTACGTCGGHCACAARGGHAART 61.5 TCTTGAACDAGRTARTAAAARCATC 60.2
nAcRbeta 39F/R 11348 GAGACBGACATCACBTTCTACAT 59.5 AGNAGATAYTTGGCRATGAGY 61.8
nAcRbeta 39Fb/Rb 11348 ATYATGAARTCRAACGTHTGG 60.1 ATGTAGAAVGTGATGTCVGTCTC 59.5
NIp 31F/R 7917 CTYTTRGGWCCAGARGCYAA 59.4 GTDSCAAGDAGATKGTGTCC 60.5
pros25 26F/R 5266 GAATATGCYTTRGCHGCNGT 60.2 GTAKGCDCCVGADGGATCAC 62.6
RACK1 18Fb/Rb 7111 GATGGGTYACBCAAATYG 61.9 ATACCTTGACDACNCGRTCC 60
ran 32F/R 1404 TAYATTCARGGMCARTGYGC 61.2 GGRTCCATTGTRACTTCTGG 60.4
RpL10ab 19F/R 7283 TAYGATCCVCARAAGGACAARC 62.5 AGGAGHCCAGGRAATTTRCCR 61.5
RpL12 10F/R 7939 GTGTACAGRCCDAMRATCGT 60 AADCCAGTTGGNARCATRTG 61
RpL13a 6F/R 1475 ATGACKGGCTTCAGYRAWAAG 57.1 GACATRAACTTYADCTTGTTCCTG 59.4
RpL15 2F/R 17420 GGGTGCNACTTAYGGHAARC 62.8 GCGMAGYTCACGRTGYTTDTG 62.8
RpL27a 28Fb/R 15442 CAAYTTYGACAARTACCATCCWG 58.7 CCYTTKCCYARRAGTTTGTA 60
RpL37 27F/R 9091 GAARGGTACNTCVAGYTTTGG 60.1 GACCRGTDCCRGTRGTCTTCCT 59.5
RpL37a 36F/R 5827 CGHACVAAGAAGGTTGGAATCAC 59.9 GTYCTYTTGCAYCGYTTGC 62.1
RpL39 16F/R 3997 ATGTCGGCHCAYAARACKTT 61.8 CTTBARCTTGGTTCKYCTCCA 58.6
RpS12 23F/R 11271 ATGGATGTSAAYACMGCMCTS 58.6 AGGGGTHTCHTCACCRAART 60
RpS15 20Fb/R 8332 GAYCARCTYCTDGAYATGC 61.9 CKACCRTGYTTWACAGGYTT 62.5
RpS17 34Fb/Rb 3922 CGCTATYATTCCWASCAARC 60.9 CAATRATRTCRTGYTCCARAGC 61.9
RpS18 22F/R 8900 GTYATGTTYGCYATGACNGC 60.1 KRAGRCCCCAGTARTGWCG 62.3
RpS23 21F/R 8415 ACVMGVTGGAAGGCYAATCC 58.2 ATGACCYTTACGHCCRAATCC 58.9
RpS4 11F/R 11276 BAARGCATGGATGTTRGACA 62.9 GGTCWGGRTADCGRATRGT 59.6
RpS8 5F/R 7808 GAAGAGGAAGTWYGARTTRGGWC 57.5 TTCRTACCAYTGBCTGAADGG 57.9
sansfille 35F/R 4528 CHWTVAAAATGCGTGGWCAAG 60.8 CDGGGAAYTGATTRAACARCAT 61.2
SUI 24F/R 17737 CCTTTGCWGATGCAATCAAG 59.4 CCGTGVACCTTSAGYTGDTC 60.5
Tctp 25F/R 4800 AYGAGATGTTCTCNGAYAC 60.1 GATRTCCATDGATTCNCCRGT 58.8
Cox1 pF2/ 2413d n/a ACCIGTDATRATRGGDGGITTYGGDAA GCTADYCAICTAAAAATYTTRATW CCD GT n/a
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using DNAsp (Rozas and Rozas 1995) (Table 4.3, forC. fungosaindividuals E1, C1, and W1 were used).

These summaries were calculated separately for each locus and for intron (Kin, πin) and synonymous

exon (Ks, πs) sites.

When choosing loci for intraspecific studies it is crucial toavoid ascertainment bias. Selecting loci

based on their diversity in the focal taxon potentially confounds coalescence variance with differences in

mutation rate between loci. Thus, to obtain a measure of information content based on divergence, we

computed the number of divergent sites betweenC. fungosaandC. lautaat each locus normalized by

the mean across loci. BothbellwetherandSUI failed to amplify inC. lauta, leaving 18 loci for which

divergence and information content could be computed.

4.2 Results

4.2.1 Screening amplification success

Of the 40 loci tested, 32 successfully amplified a product in the positive control,N. vitripennisand of these

26 yielded a PCR product in at least one other chalcid taxon (Table 4.2). Amplification success differed

markedly both between different Pteromalid taxa and between Chalcidoid families. For example, fewer

loci amplified in the fig-associated Pteromalids compared with the species attacking oak galls. Similarly,

only 13 loci amplified inE. annulatus(Eupelmidae), whereas amplification success inE. brunniventris

(Eurytomidae) (24 loci) andOrmyrus nitidulus(Ormyridae) (22 loci) was comparable to that in the three

oak gall associated Pteromalid species. Only nine loci (AntSesB, bellwether, RACK1, ran, RpL15, RpL37,

RpL37a, RpS23, RpS4) cross-amplified a product in all six Chalcidoid families associated with oak galls.

Amplification success was considerably lower both in the Cynipidae and Aagonidae compared to any

of the Chalcidoid parasitoids, which is expected given thatthe former are taxonomically much more

distantly related toNasonia(Table 4.2).

Product length varied widely both between Chalcidoid species with some combinations of primer

pairs and taxa yielding PCR products in excess of 1000 bp, toolong for direct sequencing (Table 4.2).

Similarly, some fragments (AntSesBand SUI) were consistently larger in Cynipids than in Chalcids.

Whether this variation is random or reflects genome wide differences in intron length or indeed genome

size itself between hymenopteran taxa remains to be explored. The fact that the majority of the loci which

amplified inT. affiniswere longer in this species and in other Torymid species (notshown) than in any of

the other 5 Chalcidoids, does suggest some general genome-wide difference between chalcid families.
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Table 4.2: Amplification success and product sizes of primers developed from hymenopteran EST libraries tested on Hymenopteran taxa from two
natural communities. Locus names are from FLYBASE according to theD. melanogastergenomic region used in the alignment for primer design.
Only primer pairs that amplified in at least one of the test species are shown. Primer pairs that failed to amplified a PCR product in a particular
species are indicated by 0; combinations resulting in multiple bands by D. Sequencing was only attempted in Chalcidoidae associated with oak galls
(first three species in Ptermoalidae and second column). If the exact product size could not be determined due to messy sequence at the ends, only
the length of the readable sequence is shown (in bold). Product sizes in the other taxa were estimated on Agarose gels.
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AntSesB 40Fb/Rb 728 612 592 700 700 750 622 639 1257 910 754 850 1500 1500 1500 0 750 0 0 850
bellwether 33Fb/Rb 576 D 595 D 600 D D 444 D D 593 D D 0 0 D 0 D D
magonashi 38F/R 350 - - - - - 309 0 0 0 1500 - - - - - - - - -
nAcRbeta 39F/R 289 279 279 350 350 350 546 0 0 283 618 0 0 0 0 0 0 1500 0 350
nAcRbeta 39Fb/Rb 488 485 - 600 600 600 502 800 0 0 944 0 0 0 0 0 0 0 1100 850
Nlp 31F/R 0 - - - - - 0 499 544 372 400 - - - - - - - - -
pros25 26F/R 470 472 0 500 500 550 658 445 0 0 500 0 1000 D 0 0 0 0 0 0
Rack1 18Fb/Rb 862 566 825 850 0 850 1086 882 907 950 892 0 0 0 0 900 0 0 0 0
Ran 32F/R 499 499 469 600 600 600 485 491 546 515 573 550 1000 500 900 600 1000 600 450 650
RpL10ab 19F/R 968 1028 987 1000 1000 1000 473 972 1025 0 930 1000 1000 0 1000 1000 1000 0 0 0
RpL12 10F/R D - 0 0 0 0 404 D 0 0 D 750 0 0 0 0 0 0 0 0
RpL13a 6F/R 864 933 0 0 0 0 962 0 0 0 0 0 0 0 0 0 0 0 0 0
RpL15 2Fb/Rb 652 628 642 700 700 0 527 488 511 525 488 0 700 700 0 700 850 700 0 0
RpL27a 28Fb/R 609 554 583 800 650 700 603 588 0 0 593 0 0 0 1500 800 800 0 0 0
RpL37 27F/R 903 952 628 650 650 650 D 613 942 546 504 350 400 400 400 D 600 900 650 600
RpL37a 36F/R 220 222 232 250 250 250 211 226 223 222 250 750 0 0 0 0 0 250 250 250
RpL39 16F/R 585 564 592 0 0 0 663 589 685 0 625 0 600 0 0 0 0 600 0 0
RpS12 23F/R 800 - - - - - 0 800 0 0 765 - - - - - - - - -
RpS15 20Fb/R 761 765 800 0 650 800 514 0 0 0 0 0 0 0 0 650 800 0 0 0
RpS17 34Fb/Rb 861 900 0 900 600 800 616 0 0 0 0 0 1000 0 1500 0 650 0 0 0
RpS18 22F/R 819 843 836 900 1000 1000 1000 1000 0 1500 0 900 D 1000 1000 1000 1500 1500 0 0
RpS23 21F/R 268 268 268 300 300 300 264 260 303 263 229 350 0 D 0 0 300 300 300 300
RpS4 11F/R 782 769 761 800 800 800 806 764 817 844 D 800 0 0 0 0 0 0 800 0
RpS8 5F/R 446 454 460 550 550 0 492 472 477 466 0 700 700 0 700 800 0 550 0 0
sansfille 35F/R 447 450 434 0 0 0 0 0 0 0 472 0 0 0 0 0 0 0 0 0
SUI 24F/R 887 0 831 0 900 0 825 797 884 0 821 1500 1500 0 1500 1500 1500 0 900 900
Tctp 25F/R 494 498 462 0 0 0 611 507 0 0 500 1000 0 0 0 0 0 0 0 0

Total(*) 26 22 19 17 18 16 24 21 14 13 22 13 12 7 9 10 12 9 8 9
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Table 4.3: Sampling and rearing information of individualsused for sequencing.

species code sex host country locality col. date oak host

out Caenacis lauta Clau32 m Cynips korsakovi Iran Azerbaijan, Ardabil For. 7/10/04 Q. macranthera

C1 Cecidostiba fungosa Cfun0070 m Callirhytis glandium Hungary Szentkut 3/5/02 Q. cerris
C2 Cfun0071 m Andric caputmedusae Hungary Matrafured 30/6/02 Q. pubescens
C3 Cfun0079 f Andricus burgundus Hungary Godollo 8/7/01 Q. cerris
W1 Cfun0139 m Andricus quercustozae Spain vila, Puerto de Villatoro 2/3/06 Q. pyrenaica
W2 Cfun0140 f Andricus quercustozae Spain vila, Puerto de Villatoro 2/3/06 Q. pyrenaica
W3 Cfun0144 f Andricus quercustozae Spain vila, Puerto de Villatoro 2/3/06 Q. pyrenaica
E1 Cfun0088 m Andricus lucidus Iran Lorestan, Piran Shahr Oct-04 Q. infectoria
E2 Cfun3510 m Andricus polycerus Iran Kordestan, Marivan 2005 Q. infectoria
E3 Cfun3511 m Andricus insana Iran Kordestan, Marivan 2005 Q. infectoria

Mesopolobus amaenusMama50 m Pseudoneuroterus macropterusIran Mazandaran Oct-04 Q. castaneifolii
Mama51 m Andricus grossulariae Hungary Vitnyéd 10/05/08 C. cerris
Mama55 m Andricus burgundus Spain Caldes de Malavella 7/6 Q. suber
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4.2.2 Divergence, diversity and information content

Taken across loci, mean per site divergence betweenC. fungosaandC. lautawas higher at synonymous

exon sites (Ks =12.4%) than in introns (Kin= 6.7%). In contrast, average per site diversity was simi-

lar between synonymous sites (πs = 0.9%, 1.1%) and introns (πin = 1.0%, 1.0%) inC. fungosaandM.

amaenusrespectively (Table 4.4). Loci differed considerably in their overall information content (Table

4.4). In C. fungosathe most informative loci includeRpL37, nAcRbeta, RpL13a, RpS15. Perhaps not

surprisingly, those also tended to have rather high diversity in the introns (πin), which in some cases was

comparable to synonymous site diversity inCox1. Conversely, the two loci with the lowest diversity in

eitherC. fungosa (RpL39, RpL37a) or M. amaenus(RpS23andRpS8) had low or average information

content (Table 4.4). Generally, averageKs was about three times lower for nuclear loci thanCox1and

levels of intraspecific diversity both inC. fungosaandM. amaenuswere much lower than synonymous

diversity in Cox1. Levels of diversity observed at individual loci differed considerably betweenC. fun-

gosaandM. amaenustriplets, despite the fact that the mean values were similarfor the two species.

For exampleRpL39, which is monomorphic inC. fungosa, had above average diversity (S = 7) in M.

amaenusand — on a similar spatial scale — has proven to be informativein the TorymidMegastigmus

stigmatizans(Nichollset al., 2010). This is expected because genetic diversity at a particular locus is not

only determined by its mutation rate but also has a large stochastic component, due to genetic drift.

4.3 Discussion

We have shown that EPIC markers can be developed relatively easily for non-model organisms using

publicly available EST and genomic data. Our strategy of testing a large number of degenerate primers on

a set of focal taxa avoids time-consuming, species-specificPCR optimization, and efficiently identified

a set of loci of likely value across six families of chalcidoid parasitoids and beyond. We emphasize

that numbers of loci available in candidate species within these families could probably be increased

by further taxon-specific PCR optimization or an additionalcloning step. Although nuclear mutation

rates are on average lower than those of mitochondria, this and previous studies (Leeet al., 2009) show

that, because of coalescent and mutational variance, the same does not necessarily hold for levels of

diversity observed at individual loci. We also do not find thedramatic difference between mitochondrial

and nuclear divergence which has been reported forNasoniasister species and attributed toWolbachia-

induced sweeps (Oliveiraet al., 2008). Thus, despite their lower per site mutation rate, multiple EPIC loci

such as the ones developed here, if analyzed jointly, shouldbe far more informative about within-species

phylogeographic history than mitochondrial data (see chapter 5).
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Table 4.4: Basic properties of nuclear loci inC. fungosaandM. amaenus. Length values exclude indels in theC. fungosa alignment. Diversity
across three major Pleistocene refugia and divergence betweenC. fungosaandC. lautawere calculated for introns (πin, Kin) and synonymous exon
sites (πs, Ks) separately. Also shown are the number of introns (#In), thetotal number of polymorphic sites (S) in the single triplets and, forC.
fungosa/C. lauta, the relative mutation rateµ and information content (Info). Loci for which larger samples forC. fungosawere obtained for the
Bayesian analyses presented in chapter 5 are shown in bold.

Length C. fungosa / C. lauta Diversity (C. fungosa) Diversity (M. amaenus)

LOCUS primers #In Total Intron Ks Kin µ Info πs πin S πs πin S

AntSesB 40fb, 40rb 2 728 156 0.076 0.148 0.984 0.981 0.000 0.008 2 0.000 0.024 7
bellwether 33fb, 33rb 1 550 216 n/a n/a n/a n/a 0.000 0.003 2 n/a n/a n/a
nAcRbeta-64B 39f, 39r, 39fb, 39rb 2 728 113 0.371 0.227 1.703 2.039 0.004 0.000 1 0.000 0.044 10
Rack1 18fb, 18rb 2 560 304 0.087 0.052 0.627 0.578 0.000 0.007 3 0.021 0.010 10
Ran 32f, 32r 1 496 202 0.090 0.091 0.802 0.659 0.011 0.003 2 0.000 0.009 3
RpL10ab 19f, 19r 2 955 807 0.072 0.043 0.641 1.001 0.000 0.003 3 0.044 0.006 9
RpL13a 6f, 6r 2 851 720 0.000 0.097 1.414 1.975 0.000 0.019 21 n/a n/a n/a
RpL15 2fb, 2rb 2 617 412 0.233 0.056 1.047 1.065 0.000 0.002 2 0.000 0.011 7
RpL27a 28fb, 28r 2 549 338 0.155 0.101 1.309 1.078 0.017 0.030 16 0.000 0.007 4
RpL37 27f, 27r 1 869 788 0.017 0.123 1.882 2.681 0.033 0.020 24 0.000 0.016 13
RpL37a 36f, 36r 1 220 91 0.408 0.069 1.203 0.436 0.000 0.000 0 0.000 0.013 2
RpL39 16f, 16r 1 465 444 0.000 0.086 1.386 1.055 0.000 0.000 0 0.000 0.009 7
RpS15 20fb, 20rb 1 756 475 0.073 0.091 1.076 1.308 0.058 0.035 30 n/a n/a n/a
RpS18 22f, 22r 2 813 562 0.072 0.052 0.757 1.011 0.020 0.005 6 n/a n/a n/a
RpS23 21f, 21r 1 247 79 0.119 0.127 0.926 0.408 0.016 0.042 6 0.016 0 1
RpS4 11f, 11r 2 745 431 0.094 0.083 1.040 1.290 0.000 0.000 1 0.000 0.008 7
RpS8 5f, 5r 1 458 242 0.060 0.034 0.447 0.311 0.029 0.008 6 0.000 0.003 1
sans_fille 35f, 35r 1 446 84 0.140 0.037 0.501 0.367 0.017 0.000 2 0.017 0.000 2
SUI 24f. 24r 1 823 636 n/a n/a n/a n/a 0.000 0.006 6 0.000 0.006 6
Tctp 25f, 25r 2 493 148 0.134 0.088 0.826 0.670 0.000 0.014 3 0.040 0.018 8

Total 30 12232 7249 136 97

MEAN 611.6 362.9 0.139 0.073 0.009 0.010 6.8 0.011 0.010 6.1

COI n/a 698 n/a 0.353 0.090 24 0.209 54
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If patterns of divergence across loci inC. fungosaandC. lautaare at all representative, the most infor-

mative loci for within-species historical inferences in Chalcidoids are likely to includeRpL37, nAcRbeta,

RpL13a, RpS15, RpS4andAntSesB. If, as recent power analyses suggest, between five and a dozen loci

are sufficient to reliably infer ancestral population parameters in divergence models (Jennings & Edwards,

2005), these EPIC loci should allow multilocus phylogeographic analysis across a broad taxonomic range

of chalcidoid parasitoids, and in turn, facilitate comparative phylogeographic analysis of natural chalci-

doid assemblages. The observed variation in amplification success between families would suggest that

it may be impossible to use a standard set of loci across taxa even if this may be desirable to avoid con-

founding true differences in species histories with locus-specific effects. However, as long as enough loci

per species are sampled to capture the variance in genealogical history and outgroup comparisons are

used to account for heterogeneity in mutation rates across loci, there is noa priori reason against using

only partially overlapping sets of loci in multi-species comparisons. Given that the primers developed

here are anchored in highly conserved coding regions and at least partially amplify across a large taxo-

nomic range, they may also prove useful as genomic tools morebroadly in the Hymenoptera and other

Insects. For example, some of the loci employed in this study(e.g.RpL15, RpL27a, ran) have previously

been used as markers for QTL mapping in Lepidoptera (Papanicolaouet al., 2005).

An important question is to what extent introns in highly conserved genes evolve neutrally. Generally,

our finding of lower levels of divergence in introns comparedto synonymous sites inC. fungosais con-

sistent with previous results from genome wide studies inDrosophilasuggesting that introns are under

purifying selection, which may be particularly strong in highly conserved genes (Haddrillet al., 2005;

Halligan & Keightley, 2006). Similarly, negative correlations between intron length and divergence have

been interpreted as evidence for selective constraints on regulatory elements present in long introns (Hal-

ligan & Keightley, 2006). We tested for this inC. fungosaand found a negative but non-significant trend

between intron length andKin (r = -0.265,p = 0.189). This suggests that any correlation between intron

length and selective constraint, if present inC. fungosa, is likely to be weak. Thus, it may be difficult

to avoid potential biases arising from selective constraints by selecting short introns. On the contrary,

since information content is a function of both intron length andKin, the most informative loci in the

present set are those containing long introns (Table 4.4). However, while selective constraints on introns

or linked exons should not lead to systematic biases in estimates of ancestral population parameters, they

may result in lower information content than that expected in selectively neutral regions. This has been

demonstrated previously in a study on birds (Leeet al., 2009) which found per site diversity in anony-

mous loci, presumably intergenic DNA, to exceed those in introns. On the other hand, using EPIC loci
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with known orthology and function for phylogeographic inference can be viewed as an improvement over

anonymous loci for which orthology and function are generally unknown (Jennings & Edwards, 2005). In

general, with the increasing volumes of publicly availablegenome data making primer development for

non-model organisms straightforward, multilocus nuclearsequence data will surely become the standard

in studies of population history and phylogeography ratherthan the exception.
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Chapter 5

Quantifying the Pleistocene history of

the oak gall parasitoid Cecidostiba

fungosa using twenty intron loci

Published in slightly modified form as: Lohse,

K., Sharanowski, B., Stone, N.G. (2010).

Evolution, in press

Many western palaearctic taxa have their current centres ofgenetic diversity to the east of Europe,

suggesting that refugial populations around the Mediterranean basin are ultimately derived from a more

eastern source (Dinet al., 1996; Rokaset al., 2003; Justeet al., 2004; Michauxet al., 2004; Culling

et al., 2006; Kochet al., 2006; Challiset al., 2007; Stoneet al., 2007). Westwards dispersal of such taxa

into southern European refugia is often thought to have occurred in the early Pleistocene, if not before

(e.g. Taberletet al., 1998; Rokaset al., 2003; Justeet al., 2004; Cullinget al., 2006; Challiset al., 2007)

and of necessity must predate the well-documented latitudinal range shifts associated with the last iceage

(Taberletet al., 1998; Hewitt, 1999) by at least one glacial cycle. However,the few studies that have

attempted to estimate the age of this older longitudinal dispersal are largely qualitative, being based on

a small set of (primarily mitochondrial) gene trees (e.g. Taberletet al., 1998; Hewitt, 1999; Rokaset al.,

2003; Justeet al., 2004; Cullinget al., 2006; Challiset al., 2007). It has been noted that species differ

considerably in their mitochondrial divergence between refugia and this has been attributed to species-
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specific responses to Pleistocene climate cycles (Taberletet al., 1998). However, an obvious alternative

explanation for the observed lack of interspecific temporalcongruence is that mitochondrial gene trees

are dominated by incomplete lineage sorting, the extent of which may be large in general and/or different

between species (Nichols, 2001).

Because polymorphism within ancestral populations must originate before daughter populations di-

verge, branches of gene trees are necessarily longer than those of population trees and a naïve inter-

pretation of node ages may severely overestimate population divergence (Pamilo & Nei, 1988; Maddi-

son, 1997). Similarly, gene tree topologies may be incongruent with the order of population divergence

(Tajima, 1983; Pamilo & Nei, 1988; Rosenberg, 2002). Since the magnitude of both these effects depends

on the size and stability of the ancestral populations (Tajima, 1983; Maddison, 1997; Nichols, 2001), they

are likely to be exaggerated when resolving the origins of - and relationships among - refugial popula-

tions, which are stable by their very nature (Hewitt, 1999).Thus, assessing the generality of an ‘Out of

the East’ pattern ideally requires replication both at the level of species and loci.

Assemblages of parasitoids associated with oak cynipid galls offer unmatched replication at the

species level. In the Western Palaearctic, an estimated 120species of chalcidoid wasps are obligate

natural enemies of the inhabitants of oak cynipid galls (Csóka et al., 2005; Hayward & Stone, 2005).

Phylogeographic studies on Western Palaearctic oak gallwasps show their populations to be divided into

three major refugial areas: the Iberian Peninsula in the west, Central Europe and the Balkans in the center,

and Asia Minor and Iran in the east (Rokaset al., 2001, 2003; Stoneet al., 2001; Challiset al., 2007;

Stoneet al., 2008), broadly paralleling patterns seen in oak phylogeography (Dumolin-Lapegueet al.,

1997). In the gallwasps, allele frequency data for multiplenuclear markers support the conclusion that

there has been very little subsequent gene flow between theseregions (Rokaset al., 2001; Stoneet al.,

2001; Rokaset al., 2003; Challiset al., 2007; Stoneet al., 2008). Oak gallwasps are thought to have di-

versified in regions to the east of Europe prior to the Pleistocene (Stoneet al., 2009), and pre-Pleistocene

or early Pleistocene westwards range expansion across Europe has been suggested by patterns of genetic

variation in several widespread species (Rokaset al., 2001, 2003; Challiset al., 2007). An obvious ques-

tion is whether gall-associated parasitoids have pursued their hosts from the east. At least two of them, the

torymidsMegastigmus stigmatizansandM. dorsalis, appear to have done so (Hayward & Stone, 2006;

Nichollset al., 2010). The challenge now is to reconstruct longitudinal colonisation processes in the West-

ern Palaearctic for a broader taxonomic spread of oak gall-associated parasitoids, to assess the generality

of an ‘Out of the East’ pattern, and to determine whether parasitoids dispersed over a similar timescale to

their hosts, or after a delay – so allowing their hosts a measure of ‘enemy free space’ (Hayward & Stone,

2006). One reason for caring which of these scenarios is trueis that close phylogeographic concordance
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Figure 5.1: Model of successive population divergence between major Palearctic refugia from East to
West: Asia Minor and Iran (E) Balkans and Central Europe (C),Iberia (W). With minimal sampling
of one individual per population, topological probabilities of gene trees are determined by only 2 model
parameters, the time between population divergences (τE/C/W-τC/W) and the effective sizes of the ancestral
population during this time (NC/W).

increases the potential for coevolution among community members, and such communities are inherently

sensitive to disturbance by species gain (Stone & Sunnucks,1993; Schönroggeet al., 1996a, 1998) or

loss (Lennartsson, 2002; Pauw, 2007).

Here, we use sequence data from 20 intronic loci to study the history of refugial populations in the

pteromalid parasitoidCecidostiba fungosa, a widespread species in oak gall communities (Askew, 1961;

Schönroggeet al., 1996a; Baileyet al., 2009). The three-refuge phylogeographic pattern of oak gallwasp

communities allows us to compare two analytical methods - a maximum likelihood (ML) approach (Yang,

2002), and an analogous, Bayesian approach (Rannala & Yang,2003). Both estimate ancestral population

parameters (population sizes and divergence times) directly from patterns of polymorphism in sequence

data (rather than from gene trees inferred for each locus) and assume a model of divergence between three

populations (Fig. 5.1). The order of population divergenceor the topology of the population tree can be

viewed as an additional model parameter and the likelihoodsin both methods can be used to compare

statistical support for different topologies. We address the following, specific questions:

i) Do data forC. fungosasupport an ‘Out of the East’ population history, such that refugial populations
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in the centre and west of Europe are derived from a shared ancestral population in the centre which

in turn is derived from a common ancestral population further east (Fig. 5.1)?

ii) When did refugial populations split from each other, andhow large were their ancestral populations?

iii) How different are multilocus estimates of population divergence times from gene divergence times

(both nuclear and mitochondrial)?

A strategy of sampling many loci from a single individual pertaxon has been used extensively to

study divergence between closely related species, in particular the Great Apes (Yang, 2002; Jennings

& Edwards, 2005; Pattersonet al., 2006). There are two reasons why such minimal sampling is of

interest. Firstly, going backwards in time, only lineages that persist into the ancestral species/population

contribute to estimates of ancestral population parameters. Coalescent theory shows that samples taken

from the same species or population quickly coalesce down toa small number of lineages (Griffiths, 1981;

Tavaré, 1984; Nordborg, 1998) (Fig. 5.2). This means that even if divergence is relatively recent, i.e. less

thanNe generations ago, the power gained by increasing within population sampling levels off relatively

rapidly. In contrast, each additional sampled locus provides an independent replicate of the coalescent

process in the ancestral population irrespective of the divergence time (Wakeley, 2004b). So if the total

cost of sampling is number of loci x number of sampled individuals, the optimal sampling scheme is

one of few individuals sequenced at a large number of loci. Secondly, minimal sampling is currently the

only sampling scheme for which a statistically optimal likelihood method allowing parameter estimation

directly from site patterns exists (Yang, 2002). In contrast, Bayesian approaches (Rannala & Yang, 2003)

or gene tree - species tree methods (Degnan & Salter, 1995; Degnan & Rosenberg, 2009; Maddison &

Knowles, 2006; Liu & Pearl, 2007; Kubatkoet al., 2009) have the advantage that they can deal with

arbitrary sample sizes and numbers of populations. However, this comes at the potential cost of prior

assumptions and/or difficulty in integration over topological uncertainty in the gene trees.

These issues are relevant in selecting an appropriate studydesign in systems where there is a trade off

between sampling multiple individuals and generating datafor multiple loci or species. Ability to obtain

informative population parameters from small numbers of individuals is likely to be particularly important

in comparative studies of communities, such as the oak gall system, in which some taxa are rare enough

that increasing sample size is not an option. It is thereforeuseful to ask how much information about an-

cestral population parameters over phylogeographic timescales can be obtained with minimal sampling.

To investigate the influence of sample size, we compared minimal sampling of a single individual per

population with an extended sample of three individuals perpopulation. We then use theoretical expec-
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Figure 5.2: The expected mean number of lineages surviving coalescence into an ancestral population
(Tavaré, 1984, equation 5.5) plotted against divergence time (T) in coalescence units (2Ne generations)
for 4 different sample sizes (from top to bottom, n = 20, 10, 5,3). Since only surviving lineages contribute
to the estimation of ancestral parameters and their number decreases rapidly, the expected gain in power
from increasing sample size is limited even if divergence isrelatively recent (T < 0.5). The solid lines
show the divergence time estimates (scaled by twice the meanof population sizesNE, NC and NW

obtained forC. fungosain this study (priors a).

tations for the number of surviving lineages given the estimated divergence history (Fig. 5.2) to consider

the likely gain in power for larger sample sizes in our Discussion.

5.1 Methods

5.1.1 Choice of loci

We obtained sequences for 20 newly developed intronic loci for C. fungosaand the closely related species

Caenacis lauta, which was used as an outgroup in some analyses. These loci included twelve ribosomal

protein genes (RpL10ab, RpL13a, RpL15, RpL27a, RpL37, RpL37a, RpL39, RpS15, RpS18, RpS23, RpS4,

RpS8) and eight regulatory genes (AntSesB, bellwether, nAcRbeta-64B, Rack1, Ran, sansfille,SUI, Tctp)

(Table 4.1, 4.4), all of which are thought to be single copy genes with no known paralogs in insects. Primer

development and testing is described in detail in chapter 4.No or little polymorphism at a particular locus

may arise either as a result of a low mutation rate (so limiting signal), or a recent coalescent event (and

so important to demographic inference), or both. Excludingloci that are invariant inC. fungosaresults

in an upward bias in estimates of population divergence time. To avoid such bias, we used all nuclear

loci available forC. fungosa(Table 4.4) and tested whether accounting for differences in mutation rate
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between loci influenced our estimates. To allow comparison of information content in the nuclear loci

with a frequently used mitochondrial locus, we sequenced a 689 bp region of the cytochromec subunit 1

gene (Cox1) using primers COI_pF2 and COI_2413d (Table 4.1).

5.1.2 Molecular methods

Whole genomic DNA was extracted from specimens stored in 98%ethanol in 50µl of extraction buffer

containing 5% ChelexTM100 resin (Bio-Rad, Hercules, CA). To allow for direct sequencing of PCR

products without the need to discriminate between haplotypes in heterozygotes, we used males, which

are haploid in Hymenoptera, whenever possible. The exceptions were three femaleC. fungosa, for which

haplotypes were distinguished by cloning of PCR products asnecessary (see below). PCR mixes and

conditions used were as described in chapter 4.

All PCR products showing single amplified bands were sequenced directly in both directions using

ABI BigDye chemistry (Perkin Elmer Biosystems, Waltham, MA) on ABI 3700 and 3730 sequencers in

the GenePool Edinburgh. Chromatograms were checked by eye and complimentary reads aligned using

Sequencher v. 4.8.

For five loci (RpS4, RpL27a, RpL37, RpL15b, nAcRbeta) sequences from female individuals ofC.

fungosacontained putative heterozygous sites or were not readabledue to indels. These PCR products

were cloned using a mini-Prep kit (Qiagen, Valencia, CA). Five clones were sequenced per locus and

individual, one of which was chosen at random for subsequentcoalescent analyses. In one case (sample

C3, locusRpS4) none of the sequenced clones matched the expected product.This sample was excluded

from the analysis.

5.1.3 Model of population divergence and population sampling strategies

We consider a simple model of divergence between three putative refugial populations ofC. fungosa: Asia

Minor and Iran (east, E), Balkans and Central Europe (centre, C), and Iberia (west, W).This is analogous

to a model of divergence between three species (Takahataet al., 1995; Yang, 2002) that has been used to

estimate divergence times and ancestral population sizes in Great Apes (Rannala & Yang, 2003; Patterson

et al., 2006), fruit flies (Villablancaet al., 1998; Liet al., 1999), birds (Jennings & Edwards, 2005) and

plants (Zhouet al., 2007). The model makes the standard population genetics assumptions of random

mating within each population, fixed population sizes between divergence events, and no migration after

divergence. The first and last assumptions at least are supported by multilocus allele frequency data for

the gallwasp hosts in this system (Stone & Sunnucks, 1993; Rokaset al., 2003; Stoneet al., 2008).
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Following recent studies on Hominids and model organisms (Takahataet al., 1995; Li et al., 1999;

Chen & Li, 2001; Rannala & Yang, 2003; Jennings & Edwards, 2005; Pattersonet al., 2006), we ini-

tially adopted a sampling scheme that maximises the number of loci available by using only a single

haploid male from each of the three refugial populations listed above (Table 4.1). To examine the impact

of increased sampling within populations, we generated an extended dataset, comprising three haploid

sequences per population for 13 loci (names shown in bold in Table 4.4) and a single sequence per

population for the remaining seven loci as before. Impacts of further increases in sample size will be

considered based on the theoretical expectation of the number of surviving lineages (Fig. 5.2).

We used ML (Yang, 2002) and Bayesian approaches (Rannala & Yang, 2003) (described below) to

i) test whether the most likely order of population divergence is compatible with an ‘Out of the East’

scenario and

ii) estimate divergence times and ancestral population sizes under this scenario using the single individ-

ual per population sampling.

To investigate the impact of sample size on parameter estimation, Bayesian analyses were repeated using

the extended dataset as defined above.

5.1.4 Alignment and mutation rate

C. fungosaandC. lautasequences were aligned in ClustalW and checked by eye (Genbank accession nos.

HM208872-HM209026). Exonic regions were assigned by comparison with D. melanogasterprotein

sequences and checked for an open reading frame. Indels in the alignment were treated as missing data.

In the ML and Bayesian analyses all model parameters are scaled by the per site mutation rate,µ.

Conversion of the scaled time between divergence events (γ) into real times (τ ), and of the scaled mutation

rate (θ) into effective population sizes (Ne), therefore requires an estimate ofµ and its incorporation into

the relationshipsγ = τµ andθ = 4Neµg, whereg is the average generation time in years. Note that

for haplodiploidsNe_hd = (9NfNm)/(2Nf + Nm), whereNf andNm are the number of males and

females respectively in a randomly mating population. Assuming equal sex ratio and variance in fitness

between sexes,Ne_hd is 0.75Ne_d (Hedrick & Parker, 2003).

To calculate a mean estimate ofµ for our loci we first estimated a synonymous genome-wide mutation

rate for the closely related pteromalid wasp genusNasonia,using a divergence time of 0.4 MYA between

N. giraulti andN. longicornis(Campbellet al., 1993; Oliveiraet al., 2008; Raychoudhuryet al., 2009)

and a nuclear genome-wide distance at synonymous sites (Ks) of 0.011 between these species (Oliveira
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et al., 2008). Withµ = Ks/2t these values give1.375 × 10−8 b/yr. TheNasoniadivergence time was

derived by applying estimates of bacterial silent sites substitution rates (Ochman & Wilson, 1987) to

Wolbachiasymbionts infecting the twoNasoniaspecies(Raychoudhuryet al., 2009). Although such esti-

mates may have a substantial error (Hoet al., 2005; Pulquério & Nicholls, 2007), it should be noted that

the resulting nuclear substitution rate forNasoniais roughly similar not only to the few other molecular

clock calibrations that exist for insects, e.g.1.11× 10−8 b/yr for Hawaiian Drosophilids (calibrated from

island ages (Tamuraet al., 2004)), but also agrees with rate estimates derived from mutation accumulation

experiments by order of magnitude (Keightleyet al., 2009).

To apply theNasoniamutation rate to our intron-rich (and so partially non-coding) sequences, we

scaled it by the ratio of the observed average divergence betweenC. fungosaandC. lautaat synonymous

sites,Ks over the average divergence across all sitesKTotal. This yields a factor of 0.478, so the total

average substitution rate for our loci isµ = 1.375 × 10−8 × 0.478 = 6.27 × 10−9 b/yr. Note that

since this is an average across all sites, it is lower than thesubstitution rate for synonymous coding sites.

This calculation incorporates any mutational constraintson introns and coding sites inC. fungosawithout

makinga priori assumptions about intron evolution. We estimated a relative mutation rate for each locus

as the observedKTotal at each locus over the averageKTotal (Chen & Li, 2001; Yang, 2002; Jennings &

Edwards, 2005), shown in Table 4.4.

To calculate ancestral effective population sizes we assumed an average generation time ofg = 0.5

years forNasoniaandC. fungosa. This is reasonable forC. fungosa, which attacks both sexual spring

galls and asexual autumn galls (Askew, 1961; Schönroggeet al., 1995, 1996a) (as synonymsC. adana

andC. hilaris), and for temperate populations ofNasonia. For comparison with mitochondrial node ages

we calculated a mutation rate forCox1using the Jukes-Cantor corrected distance betweenN. giraulti and

N. longicornisat this locus and a divergence time of 0.4 MYA as before. This gives 22.3% (Oliveira

et al., 2008) divergence per site and per million years. We compared this locally calibrated clock with

estimates obtained in previous studies using the commonly assumed arthropod mitochondrial clock of

2.3 % per site and per million years (Brower, 1994). Despite the obvious shortcomings of the ‘Brower

clock’, comparison of relative node ages in this way is validas long as the same calibration is used across

taxa, and a molecular clock assumption is tested and supported in each taxon, as here.

5.1.5 Recombination tests and gene tree reconstruction

Both phylogenetic reconstruction and the coalescent analyses described below make the crucial assump-

tion of no recombination within loci. We determined the minimum number of recombination events

using a four-gamete test in DNAsp (Rozas & Rozas, 1995) on thelargest alignment of each locus. Three
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loci (RpS4, RpS18, RpL15) showed evidence for recombination and were trimmed to the largest non-

recombining block (Galtieret al., 2000; Jennings & Edwards, 2005). Alignments for these lociwere

shortened by 117, 16 and 132 bases respectively as a result.

Although both the ML and Bayesian approaches described below use site patterns directly and do not

rely on estimated gene trees, we reconstructed trees to visualize the data and to test the molecular clock

hypothesis which is implicit in both approaches. ML trees were reconstructed for each locus in PAUP*

(Swofford, 2001). For single individual alignments (triplets) this was done using exact searches, while

for the three individual per population alignments branch and bound searches were used. Loci varied

considerably in relative intron length and hence in base composition. We therefore assumed a single

substitution rate but unequal base frequencies (Felsenstein, 1981). To test the support for internal nodes

in each triplet gene tree, 1000 bootstrap replicates were performed taking a bootstrap value of 70% to

indicate strong nodal support (Hillis & Bull, 1993). We compared rooting with a strict molecular clock to

rooting withC. lautafor the triplet gene trees (Jennings & Edwards, 2005). To further test the validity of

the molecular clock assumption, we performed Tajima’s 1-degree of freedom test on each triplet (Tajima,

1993; Jennings & Edwards, 2005; Tamuraet al., 2007). This nonparametric test is designed for triplet

samples given a known species topology and is simpler and more powerful than similar model-based tests

(Tajima, 1993; Nei & Kumar, 2000; Jennings & Edwards, 2005).

5.1.6 Maximum Likelihood analysis

For minimal sampling, only four parameters in the three-population divergence model matter: the two di-

vergence timesτC/W andτE/C/W and the sizes of the two ancestral populationsNC/W andNE/C/W (Fig. 5.1)

and an exact likelihood approach to inference is possible. The program Ne3sML numerically maximises

the likelihood for a given population/species topology (Yang, 2002). By default the method assumes an

infinite sites mutation model and a molecular clock. Given the level of polymorphism observed inC. fun-

gosa(Table 4.4), this simple model of sequence evolution seems appropriate. For example, if diversity at

silent sites (synonymous exon sites and introns) is 0.01(Table 4.4), the chance of a back mutation is10−4

per site. Since we are analysing slightly fewer than104 silent sites in total, we expect to see at most a

single backmutation in the entire dataset and can safely ignore more complicated mutation models.

The likelihood approach of Yang 2002 differs crucially frommethods which estimate a species tree

conditional on a set of reconstructed gene trees(Degnan & Salter, 1995; Degnan & Rosenberg, 2009;

Maddison & Knowles, 2006; Carstens & Knowles, 2007a; Liu & Pearl, 2007; Kubatkoet al., 2009) in

that it uses the site information directly. The method integrates over all possible gene tree topologies

and branch lengths at each locus and computes the joint log likelihood for a given population history
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(topology and parameter estimates) as the sum over the log likelihoods of individual loci (Yang, 2002;

Rannala & Yang, 2003). The advantage of this is that in contrast to gene tree species tree approaches

(Liu & Pearl, 2007; Degnan & Rosenberg, 2009; Kubatkoet al., 2009), information from unresolved

or poorly resolved loci is incorporated automatically. This is particularly important in recently diverged

populations. For example, a monomorphic locus resulting from a recent coalescence event would be

excluded from analyses conditional on gene tree reconstruction as uninformative, resulting in upwardly

biased estimates of divergence time.

We first compared the likelihood of all three possible population tree topologies. Although assessing

the statistical significance of non-nested models is difficult in a likelihood setting, models may be ranked

by their likelihood (Carstenset al., 2009). Under the ‘Out of the East’ scenario, central and western pop-

ulations are derived from a shared ancestral population in the centre, which in turn split from a common

ancestral population in the east, i.e. the population tree topology is (E, (C, W)) (Fig. 5.1). The two alter-

native topologies are (W, (C, E)), which corresponds to an ‘Out of the West’ scenario, and (C, (E, W),

which is difficult to interpret in the geographic context ofC. fungosapopulations, because it is unclear

where the two ancestral populations would be located.

ML analyses under the most likely population history were performed for two different mutational

models. The simplest model assumes a single mutation rate across all loci. We reran this analysis using

the relative rates calculated for each locus as described above (Table 4.4), thereby accounting for possible

rate heterogeneity (Table 5.2).

5.1.7 Bayesian estimation of divergence times and ancestral population sizes

MCMCcoal (Rannala & Yang, 2003) is the Bayesian equivalent of the ML approach described above.

The program uses Markov chain Monte-Carlo sampling (MCMC) to estimate posterior probabilities for

all model parameters conditional on prior distributions. If multiple individuals per population are sampled

the three population sizes between the present and the most recent divergence event (i.e.NE, NC, NW)

(Fig. 5.1) are modelled as additional parameters. Note thatthe parameterization in MCMCcoal differs

slightly from Ne3sML, as the former uses divergence times rather than internode intervals.

In a Bayesian framework support for alternative but non-nested models can be compared using Bayes

factors (Kass & Raftery, 1995). Natural logarithms (ln) of the harmonic mean of sampled likelihoods

(HML) were used to estimate the marginal likelihood of each population tree topology (using prior means

in analysisa described below) and to test support for the ‘Out of the East’scenario. Following Kass

and Raftery 1995, values of twice the difference in lnHML(2∆lnHML) of 2-6, 6-10 and >10 represent

respectively positive, strong and very strong support for the model with higher marginal likelihood.
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Since in the case ofC. fungosawe have no prior knowledge of the model parameters, we used ex-

ponentially distributed priors (shape parameterα = 1) for all parameters (Jennings & Edwards, 2005).

To check how sensitive posterior estimates are to prior settings, all analyses were performed twice using

different prior means, by adjustingβ, the scale parameter of the gamma distribution (Table 5.3).In the

first analysis (a), we set prior means to 0.150 MYA and 0.050 MYA forτE/C/W andτC/W respectively

(β = 380) and 215,000 for both ancestral population sizes (β = 1520). In the second analysis (b), the

prior means for all parameters were increased by an order of magnitude (i.e. changingβ to 38 and 152)

(Table 5.3). Although the individual parameter values are arbitrary these two sets of priors should be

different enough to assess the robustness of the Bayesian estimation (Jennings & Edwards, 2005). Given

that incorporating relative mutation rates did not improveestimation using the ML method (see Results),

for simplicity all Bayesian analyses were performed assuming a single mutation rate across all loci. Runs

were continued for106 generations with a burn-in of105 and repeated using different random number

seeds to check for convergence.

5.2 Results

5.2.1 Gene trees

When only a single individual was sampled from each refugialpopulation, phylogenetic reconstructions

for eight of the 18 polymorphic nuclear loci supported the ‘Out of the East’ topology (E, (C, W)) (Fig.

5.3A), as did the mitochondrial locusCox1 (Fig. 5.2D). Of the remaining loci, two supported each of

the two incongruent topologies (Fig. 5.2B, C) and six showedan unresolved topology (RpL15, RACK1,

ran, Tctp, sansfille, SUI). Clock-rooted and outgroup-rooted topologies agreed forall resolved loci, but

bootstrap support was generally weaker for outgroup rooting (Fig. 5.3). Though this is not a formal test,

the majority of resolved gene trees thus support the ‘Out of the East’ hypothesis (Fig. 5.1). Tajima’s 1-D

test rejected a strict molecular clock for only two out of 20 loci (RpS15, RpL 37). Thus the majority of

loci meet the clock assumption implicit in the ML and Bayesian approaches used here.

Increasing sample size to three individuals from each refugial population resulted in increased varia-

tion in gene tree topology (Fig. 5.4). Despite the many unresolved nodes in some trees, figure 5.4 reveals

extensive incomplete lineage sorting betweenC. fungosapopulations, resulting in a ‘forest’ of largely

incongruent gene trees.
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Figure 5.3: ML trees reconstructed for nuclear loci andCox1assuming a strict molecular clock. Boot-
strap proportions for the internal node are shown next to each tree. Loci with unresolved topologies (< 50
% bootstrap support) are not shown. Eight loci have a topology congruent with the ‘Out of the East’ hy-
pothesis (E, (C, W)) (A), two each have topology (W, (C, E)) (B) and (C, (E, W)) (C). The mitochondrial
locusCox1is also congruent with ‘Out of the East’ (D). Bootstrap support using rooting withC. lautais
indicated with asterisks (* > 50%, ** >70%) below each tree.
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Table 5.1: Comparison of support for alternative population tree topologies, using the lnL of the maxi-
mum likelihood estimation (NeML3s) and the harmonic mean likelihood (lnHML) in the Bayesian analy-
ses. In each case the ‘Out of the East’ topology has the highest likelihood (in bold). Values in parentheses
show the ln Bayes factor (2∆lnHML) of the ‘Out of the East’ hypothesis relative to alternatives. Topolo-
gies which fit significantly worse than the ‘Out of the East’ hypothesis are indicated with asterisks, using
a ln Bayes factor (lnBF) of 2-6 to indicate positive support (*), 6-10 to indicate strong support (**), and
>10 to indicate very strong support (***), following Kass & Raftery (1995).

Out-of-the-East Out-of-the-West
(E, (C, W)) (W, (C, E)) (C, (E, W))

NeML3s (single triplet) lnL -796.94 -799.06 -799.05
MCMCcoal (single triplet) lnHML(lnBF) -19100.69 -19103.82 (6.25)** -19103.06 (4.73)*
MCMCcoal (extd. triplet) lnHML(lnBF) -19558.24 -19563.90(11.324)*** -19559.00(0.76)

5.2.2 Maximum likelihood analyses

The population tree topology (E, (C, W)) had a higher likelihood than either of the two alternative topolo-

gies (C, (E, W)) and (W, (C, E)), consistent with the ‘Out of the East’ hypothesis (Table 5.1). The

maximum likelihood estimates (MLEs) of model parameters are broadly consistent between the variable

rate (18 loci) and single rate mutational models (using the same 18 loci). However, because the variable

rates model has a lower log likelihood, the simpler single rate model was used in all subsequent analy-

ses including the Bayesian runs. This also allowed the lociSUI andbellwether,for which no outgroup

sequences could be obtained, to be included in the analyses,giving a total of 20 loci.

Under the ‘Out of the East’ topology (E, (C, W)), the MLE for the older population splitting time

between the Iranian population and the ancestor of Hungary and Spain,τE/C/W, is estimated as 0.110

million years ago (MYA; Table 5.2). The MLE forθE/C/W corresponds to an ancestral population with

an effective size of 614,000 before this first split. However, both the MLE for the time between the

two population splits,τE/C/W - τC/W and the population size during that time,NC/W are close to zero,

suggesting that Iberian and Hungarian populations may havesplit almost immediately after the initial

divergence from the ancestral eastern population (Table 5.2).

5.2.3 Bayesian estimation of divergence times and ancestral population sizes

Minimal sampling

Bayes factor comparison of lnHML (Table 5.1) shows that the ‘Out of the East’ model fits the data

significantly better then either of the alternative population tree topologies. The contrasting sets of priors

a andb had little impact on posterior estimates of three of the fourmodel parameters (Table 5.3, Fig.
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Figure 5.4: ML trees for the extended sampling of three individuals (labeled 1-3) per population for
twelve nuclear loci andCox1rooted usingC. lauta. RpL37ais monomorphic and not shown. Although on
average, samples from the same population are more closely related than those from different populations,
there is extensive lineages sorting, resulting in a ‘forest’ of partially incongruent gene trees.
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Table 5.2: Maximum Likelihood estimates (MLEs) of ancestral population sizes and population diver-
gence times for refugial populations ofC. fungosaassuming a population tree topology (E, (C, W)).
CorrespondingNe andτ values are shown in brackets. The simplest mutational modelassumes a single
rate for all loci. In the variable rates analysis a relative mutation rate was computed for each locus from
divergence toC. lauta.

single rate (20 loci) single rate (18 loci) variable rates (18 loci)

θE/C/W (NE/C/W) 0.0076979 (614,000) 0.007995 (637,000) 0.008933 (712,000)
θC/W (NC/W) 0.000008 (1000) 0.000002 (1000) 0.000003 (1000)
γE/C/W-γC/W (τE/C/W-τC/W) 0.0000032 (0.001) 0.000001 (0.001) 0.000001 (0.001)
γC/W (τC/W) 0.0006924 (0.110) 0.000712 (0.114) 0.000756 (0.121)
lnL -853.486 -794.948 -796.913

5.5A, B and D). Posterior mean ages for the split between eastern populations and the common ancestor of

central and western populationsτE/C/W were 0.118 MYA and 0.134 MYA in analysesa andb respectively,

with values of 0.043 MYA and 0.046 MYA for the divide between central and western populationsτC/W

(Table 5.3). This comparatively long interval between the two divergence times (τE/C/W - τC/W) is in

apparent contrast to the results of the ML analysis. However, the 95% credibility intervals for the two

divergence times overlap in both prior settingsa andb, such that the lower confidence interval forτE/C/W

- τC/W includes zero, compatible with divergence between westernand central populations occurring

immediately after the initial split from the ancestral eastern population. Likewise, the posterior estimate

for the effective size of the population ancestral to all three refugial populations (NE/C/W) was minimally

influenced by the prior (Table 5.3, Fig. 5.5D) (551,000 fora and 585,000 forb).

In contrast, posterior distributions for the effective size of the population ancestral to central and

western populations,NC/W, differed considerably between prior settingsa andb (197,000 and 698,000)

(Table 5.3, Fig. 5.5C).NC/W was also the parameter with the largest variance, the 95% credibility interval

spanning two orders of magnitude (priorsb, Table 5.3). Notably, with both prior settings, posterior

distributions ofNC/W peak at the origin (Fig. 5.5C). This suggests that there is little information about

NC/W in the data, with posterior distributions largely reconstructing the prior.

To investigate to what extentNC/W and the interval between population splits (τE/C/W - τC/W) are

confounded and whether this could account for the apparent difference in ML and Bayesian estimates of

these parameters, we carried out a third MCMCcoal run (Table5.3, priorsc). When the prior mean for

NC/W is set to a very low value (2100), the posterior distributionfor τC/W shifts markedly towards the

right (Fig. 5.5A) such that the two divergence events are estimated to have happened in close succession

(0.091 and 0.089 MYA) in agreement with the ML results (Table5.2).
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Table 5.3: Prior and posterior means and 95% credibility intervals (CI) for divergence times and ancestral
population sizes in Bayesian analyses using minimal sampling of a single individual per population and
assuming an ‘Out of the East’ population tree topology (E, (C, W)). CorrespondingNe andτ values are
shown in bold below. All analyses (a-c) assumed exponentially distributed priors (α = 1), but differed in
their prior means .The population size inbetween the two divergence events,NC/W is the parameter most
sensitive to prior choice and has the widest confidence interval.

Parameter (α, β) Prior Mean (95% CI) Posterior Mean (95% CI)

priors a

θE/C/W (1, 380) 0.00271 (0.00011, 0.00968) 0.00691 (0.00239, 0.01830)
NE/C/W 216,000 (10,000, 772,000) 551,000 (190,000, 1,459,000)
θC/W (1, 380) 0.00267 (0.00009, 0.00982) 0.002477 (0.00033, 0.00727)
NC/W 213,000 (8,000, 783,000) 197,000 (26,000, 580,000)
γE/C/W (1, 1519) 0.00095 (0.00012, 0.00276) 0.00074 (0.00019, 0.00139)
τE/C/W 0.151 my (0.019 my, 0.440 my) 0.118 my, (0.030 my, 0.221 my)
γC/W (1, 1519) 0.000329 (0.00001, 0.00119) 0.00027 (0.00001, 0.00076)
τC/W 0.052 my, (0.002 my, 0.189 my) 0.043 my, (0.002 my, 0.121 my)

priors b

θE/C/W (1, 38) 0.02664 (0.00083, 0.09691) 0.00734 (0.00464, 0.01121)
NE/C/W 2,124,000, (66,000, 7,726,000) 585,000 (370,000, 894,000)
θC/W (1, 38) 0.02639 (0.00064, 0.09669) 0.00875 (0.00050, 0.05260)
NC/W 2,104,000 (51,000, 7,709,000) 698,000 (40,000, 4,141,000)
γE/C/W (1, 152) 0.00980 (0.00113, 0.02918) 0.00084 (0.00023, 0.00156)
τE/C/W 1.563 (0.180, 4.653) my 0.134 (0.037, 0.249) my
γC/W (1, 152) 0.00326 (0.00008, 0.01198) 0.00029 (0.00001, 0.00084)
τC/W 0.520 (0.131, 1.910) my 0.046 (0.002, 0.134) my

priors c

θE/C/W (1, 380) 0.00257 (0.00004, 0.00961) 0.00741 (0.00485, 0.01088)
NE/C/W 205,000 (3,000, 766,000) 591,000, (387,000, 868,000)
θC/W (1, 38000) 0.00003 (0.00001, 0.00009 0.00005 (0.00001, 0.00015)
NC/W 2,100 (1000, 7,000) 5,000, (1,000, 13,000)
γE/C/W (1, 1519) 0.00096 (0.00011, 0.00277) 0.00057 (0.00011, 0.00111)
τE/C/W 0.153 (0.017, 0.442) my 0.091 (0.018, 0.177) my
γC/W (1, 1519) 0.00033 (0.00001, 0.00122) 0.00056 (0.00011, 0.00108)
τC/W 0.053 (0.013, 0.195) my 0.089 (0.018, 0.172) my
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Table 5.4: Prior and posterior means and 95% credibility intervals (CI) for divergence times and ancestral
population sizes in Bayesian analyses of extended sampling(20 loci, 13 sampled for three individuals
per population) assuming an ‘Out of the East’ population tree topology (E, (C, W)). All analyses (a-c)
assumed exponentially distributed priors (α =1), but differed in their prior means.

Parameter (α, β) Prior Mean (95% CI) Posterior Mean (95% CI)

priors a

θE/C/W (1, 380) 0.00263 (0.00007, 0.00968) 0.00793 (0.00552, 0.01089)
NE/C/W 210,000 (6,000, 772,000) 632,000 (440,000, 867,000)
θC/W (1, 380) 0.00260 (0.00008, 0.00963) 0.00688 (0.00113, 0.01520)
NC/W 207,000 (7,000, 768,000) 579,000 (95,000, 1,280,000)
γE/C/W (1, 1519) 0.00098 (0.00011, 0.00287) 0.00084 (0.00040, 0.00136)
τE/C/W 0.156 (0.018, 0.458) my 0.134 (0.064, 0.217) my
γC/W (1, 1519) 0.00032 (0.00001, 0.00117) 0.00035 (0.00003, 0.00085)
τC/W 0.051 (0.002, 0.187) my 0.056 (0.005, 0.136) my
θE (1, 380) 0.00267 (0.00010, 0.00973) 0.00481 (0.00203, 0.00979)
NE 213,000 (8,000, 776,000) 383,000 (162,000, 772,000)
θC (1, 380) 0.00265 (0.00008, 0.00966) 0.00597 (0.00138, 0.0140)
NC 212,000 (7,000, 770,000) 476,000 (110,000, 1,116,000)
θW (1, 380) 0.00267 (0.00008, 0.00974) 0.00226 (0.00027, 0.00615)
NW 2113,000 (7,000, 776,000) 180,000 (22,000, 490,000)

priors b

θE/C/W (1, 38) 0.02693 (0.00082, 0.09876) 0.00771 (0.00533, 0.01071)
NE/C/W 2,148,000, 65,000, 7,875,000) 615,000 (425,000, 845,000)
θC/W (1, 38) 0.02652 (0.00071, 0.09822) 0.01766 (0.00233, 0.06712)
NC/W 2,115,000 (56,000, 7,832,000) 1,416,000 (186,000, 5,351,000)
γE/C/W (1, 152) 0.00974 (0.00101, 0.02864) 0.00101 (0.00054, 0.00154)
τE/C/W 0.155 (0.016, 0.457) my 0.161 (0.086, 0.246) my
γC/W (1, 152) 0.00332 (0.00008, 0.01208) 0.00044 (0.00006, 0.00096)
τC/W 0.053 (0.013, 0.193) my 0.070 (0.009, 0.154) my
θE (1, 380) 0.02653 (0.00058, 0.09794) 0.00872 (0.00282, 0.02646)
NE 2,115,000 (46,000, 7,810,000) 695,000 (225,000, 2,110,000)
θC (1, 380) 0.02588 (0.00059, 0.09664) 0.02986 (0.00394, 0.09791)
NC 2,064,000 (47,000, 7,706,000) 2,380,000 (314,000, 7,530,000)
θW (1, 380) 0.02642 (0.00081, 0.09737) 0.00433 (0.00046, 0.01911)
NW 2,107,000 (65,00, 7,765,000) 345,000 (37,000, 1,524,000)

priors c

θE/C/W (1, 380) 0.00257 (0.00004, 0.00961) 0.00832 (0.00592, 0.01129)
NE/C/W 205,000 (3,000, 766,000) 663,000 (472,000, 901,000)
θC/W (1, 38000) 0.00003 ( 0.00001, 0.00009) 0.00005 (0.00001, 0.00015)
NC/W 2,000 ( 1000, 8,000) 4,000, ( 1000, 12,000)
γE/C/W (1, 1519) 0.00096 (0.00011, 0.00277) 0.00069 (0.00032, 0.00110)
τE/C/W 0.153 (0.017, 0.442) my 0.110 (0.051, 0.175) my
γC/W (1, 1519) 0.00033 (0.00001, 0.00122) 0.00068 (0.00032, 0.00109)
τC/W 0.053 (0.013, 0.195) my 0.108 (0.051, 0.174) my
θE (1, 380) 0.00266 (0.00009, 0.00975) 0.00444 (0.00179, 0.00939)
NE 212,000 (8,000, 778,000) 354,000 (142,000, 749,000)
θC (1, 380) 0.00265 (0.00008, 0.00969) 0.00739 (0.00286, 0.01552)
NC 212,000 (7,000, 773,000) 590,000 (228,000, 1,237,000)
θW (1, 380) 0.00267 (0.00008, 0.00971) 0.00343 (0.00130, 0.00755)
NW 213,000 (7,000, 774,000) 274,000 (78,000, 602,000)
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Figure 5.5: Prior and posterior distributions of parameters under the ‘Out of the East‘ model of population
divergence using minimal sampling of a single individual per population. Prior distributions for the first
two MCMCcoal analyses are shown as dashed lines (a = mixed long and short dashes between blue
symbols, b = long dashes between red symbols), posterior distributions for the single triplet analysis are
in colour (a = red, b = blue and c = black). WhereasτE/C/W (B) andNE/C/W (D) are little influenced by
the prior means,NC/W (C) is extremely sensitive. This parameter is also confounded with τC/W. When
setting a low prior mean forNC/W (analysis c) the posterior distribution forτC/W shifts markedly towards
the right (see black line in A). Note that despiteα = 1 for all model parameters, the prior distribution for
τE/C/W (B) is not exponential because of the constraintτE/C/W > τC/W.
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Extended (three individual) sampling

MCMCcoal analyses of the extended (three individual per population) dataset again gave strongest sup-

port to the ‘Out of the East’ scenario (Table 5.1). While Bayes factor comparison strongly rejects the

‘Out of the West’ topology (W, (C, E)), the second alternative topology (C, (E, W)) does not provide a

significantly worse fit to the data (Table 5.1).

Parameter estimates agree well with those obtained when only a single individual per population was

sampled (Table 5.4 and Fig. 5.6). However, increased sampling does have some influence on parameter

estimation. First, estimates ofNC/W, are larger and less sensitive to prior settings when three individuals

per population are sampled for both prior setsa andb (Supporting Information Table S3). Second, the

posterior distributions forτC/W are now unimodal, rather than L-shaped with a maximum at the origin

(Fig. 5.6). However, this has little impact on the variance of the posterior. For example, the 95% credi-

bility interval for τC/W is 0.005 - 0.136 MYA (priorsa) in the analysis of the extended samples of three

individuals per population, compared with 0.002 - 0.121 MYAwhen sampling a single individual (Table

5.3).Taken together this suggests that increasing sample size per population to three haploid individuals

adds some, but not much, power to the estimation of model parameters.

Sampling multiple individuals per population we can also estimate the effective sizes of the three

sampled populations between the present and the first divergence events,NE, NC, NW. (Table 5.4).

Although estimates of these parameters had fairly wide confidence intervals and were sensitive to prior

settings, their relative magnitude was consistent across analyses.NC was always the largest followed by

NE andNW. It is also noteworthy that all three estimates were smallerthan those obtained for ancestral

populations, paralleling the findings of Jennings and Edwards 2005 and previous results in Great Ape

studies (Chen & Li, 2001; Yang, 2002; Pattersonet al., 2006).

5.2.4 Gene divergence times

Following Jennings & Edwards (2005), we calculated Jukes Cantor distances (D) to estimate coalescence

times for each divergence event (D/2) and compared the average distance across loci with the estimated

population divergence time and the mitochondrial (Cox1) node ages for both single and three individual

samples. In both cases nuclear genes sampled from central and western populations diverged on average

almost 0.4 million years (or three glacial periods) prior tothe estimated population divergence (Fig. 5.7).

Coalescence times estimated forCox1depend on the assumed mutation rate. Applying the calibration

by Oliveira et al. (2008) both coalescence times forCox1 (0.013 MY and 0.145 MY respectively) are

younger than the average coalescence at nuclear genes but are well within the 95% credibility interval
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Figure 5.6: Prior and posterior distributions of model parameters under the ‘Out of the East’ scenario
of population history obtained for the extended sampling (20 loci, 13 sampled for three individuals per
population). Prior distributions a and b are shown as dashedlines (a = narrow, b = wide), posterior
distributions are in colour (a = red, b = blue and c = black). Both τC/W (A) and τE/C/W (B) are little
influenced by the prior means. Note that in comparison with figure 4, the maxima for the posterior
distributions forNC/W are > 0.
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of the estimated population divergence (Table 5.3). Using Brower (1994), mitochondrial coalescence

between the ancestor of central and western samples and the eastern sample (1.433 MYA) predates the

average coalescence times for nuclear genes (0.714 MYA), whereas the mitochondrial coalescence time

between central and western samples (0.125 MYA) is still more recent than that for nuclear genes (0.467

MYA) (Fig. 5.7).

5.3 Discussion

We analyzed a large multilocus dataset under the simplest possible model of divergence between three

populations to make quantitative inferences about the longitudinal history ofC. fungosa. Reconstructing

the genealogical histories of individual loci leads to a ‘forest’ of largely incongruent and often poorly

resolved gene trees (Fig. 5.4), which individually containlittle information about the underlying popula-

tion history. However, analyzing these data jointly in a coalescent framework, the relationship between

major refugial populations ofC. fungosacan be described as a quantified population tree, which includes

relevant population genetic parameters (Fig. 5.8). This isa considerable improvement over previous phy-

logeographic studies in this system, which have largely been based on mitochondrial sequence data and

allozymes (Rokaset al., 2001, 2003; Stoneet al., 2001; Challiset al., 2007; Stoneet al., 2009) and allows

us to quantify important aspects of the phylogeographic history of C. fungosa.

First, both likelihood and Bayes factor comparisons of population tree topologies (Table 5.1) support

the ‘Out of the East’ scenario forC. fungosa.

Second, both ML and Bayesian estimates for the time of the first population split between the east-

ern population and the common ancestral population of central and western populationsτE/C/W fall well

within the late Pleistocene. Likewise, both methods suggest that the more recent divergence between

central and western populations (τC/W) occurred either during the last interglacial or glacial period. How-

ever, since the MLE for the time between population splits (τE/C/W -τC/W) is effectively zero and the 95%

credibility intervals for the two divergence times overlapin all Bayesian analyses, we cannot exclude the

possibility that the two population splits happened in close succession.

Finally, the present coalescent analyses provide information about the effective sizes of ancestral and

present populations. Although our estimates of both ancestral population sizes, in particularNC/W, have

large confidence intervals and, in the case ofNC/W, are sensitive to prior settings (discussed below),

they provide an important comparison with model organisms.For example the observed diversity inC.

fungosaπs = 0.92%, Table 4.3) is comparable with that in non-African populations ofD. melanogaster

(πs = 1.33%) (e.g. Andolfatto, 2001, Table 3). Similarly, estimates for the effective population sizes

87



1 2 3 4 5 1 2 3 4 5

Figure 5.7: Divergence times for the two splits in the ‘Out ofthe East’ model (C vs. W left and (C,W)
vs. E right). The figure shows that Bayesian estimates (priorsettings a) of population divergence times
for both single and extended triplet samples (columns 4 and 5in each figure respectively) are more recent
than the mean coalescence time across nuclear loci for both sampling schemes (columns 2 and 3 in each
figure). Mitochondrial divergence (column 1) was calculated from node ages in the single triplet tree
using both the rate of Oliveiraet al. (2008) rate calibrated from Nasonia sister species (lower estimates,
bold bars in column 1) and the widely applied rate estimate ofBrower (1994) (higher estimates, column
1). Error bars show 95% confidence limits.
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Figure 5.8: Population tree for Western PalearcticC. fungosainferred from 20 genetrees. Means of
posterior distributions of model parameters were obtainedfrom the Bayesian analysis (priors a, extended
sampling of three sequences per population,Table 5.4 and figure 5.6). The widths of blocks correspond
to effective population sizes (scale at top). Divergence times are shown on two different scales:τ in MY
(right hand scale), andt = τ/2NE/C/W generations assuming two generations/yr, i.e.g = 0.5 (left hand
scale). Note that all blocks have a greater width than heightsuch that pairs of lineages sampled from the
same population are more likely to coalesce in their ancestral population.

of D. melanogasterof 106 (Andolfatto & Przeworski, 2000) and for effective size of the ancestor of

D. melanogasterandD. simulansof Ng = 3.9 × 105 (Li et al., 1999) agree with our results forC.

fungosain order of magnitude. If effective population sizes of106 are the rule in insect parasitoids, their

longitudinal histories will inevitably involve extensiveincomplete lineage sorting, strengthening the case

for multilocus approaches for meaningful phylogeographicinferences.

How do these results compare with those obtained from singlegene trees both inC. fungosaand

in other co-distributed oak gall parasitoids and their hosts? InC. fungosathe topology of the inferred

population tree (Fig. 5.8) is congruent with both the majority of resolved nuclear gene trees as well as the

mitochondrial gene tree when a single individual per refugial population was sampled (Fig. 5.3). More

generally, the eastern origin ofC. fungosais consistent with the mitochondrial gene tree for another oak

gall parasitoid,Megastigmus stigmatizans(Hayward & Stone, 2006), with mitochondrial and nuclear

gene trees in the parasitoidMegastigmus dorsalis(Nicholls et al., 2010) and three species of host gall

wasps (Rokaset al., 2003; Challiset al., 2007; Stoneet al., 2007, 2009).

While by definition gene divergence must predate the divergence of populations, our results suggest

that the magnitude of this difference is considerable inC. fungosaand very relevant for our interpretation

of its Pleistocene history. It is noteworthy that the estimates forτE/C/W coincide with the last (Eemian)

89



interglacial 0.130 - 0.115 MYA, which suggests that divergence between refugial populations is as recent

as it possibly can be (given the definition of glacial refugia). We know from the fossil record that both

oaks (Velichkoet al., 2005) and associated gall wasps species (van der Hamet al., 2008; Stoneet al.,

2008) known to be attacked byCecidostibaexpanded their range in Central and Northern Europe during

this period. It is thus plausible for population divergences associated with westward range expansions of

C. fungosato have occurred over a similar timescale.

Although the unknown error in the mitochondrial clock and the large discrepancy between different

calibrations (Brower, 1994; Oliveiraet al., 2008) make a direct comparison with mitochondrial dates

problematic, it is nevertheless reassuring that the mitochondrial ages obtained forC. fungosafall within

the 95% credibility interval of (Oliveiraet al., 2008) or predate (Brower, 1994) the estimated time of

population divergence (Fig. 5.7), as they should. A mitochondrial divergence more recent than that

inferred for the population would be inconsistent with the assumed model, and require gene flow be-

tween populations. However, it is noteworthy that regardless of the mitochondrial mutation rate used,

the Cox1divergence times are very different from the average divergence times at nuclear genes (Fig.

5.7). This demonstrates the extremely large variance in coalescence times and highlights the danger of

over-interpreting node ages of single gene trees. An additional problem with mitochondrial mutation rate

calibrations is that they are likely to be confounded by the selective dynamics of bacterial endosymbionts

(Oliveira et al., 2008), the prevalence of which is known to differ both between populations and closely

related species of Pteromalids (Weinertet al., 2009). It is therefore not clear to what extent theNasonia

rate applies toC. fungosa. In contrast, the nuclear estimates forNasoniaare broadly consistent with those

obtained for other Insects.

The fact that divergence at a single locus can only provide anupper bound of the population di-

vergence time may well explain why mitochondrial dates found in previous studies on other species of

European gall parasitoids and their gall wasp hosts (Hayward & Stone, 2006) are considerably older than

the population divergence estimates forC. fungosaobtained here. For instance, mitochondrial divergence

between Central European and Iberian clades of the parasitoid Megastigmus stigmatizanshas been es-

timated at 0.264 MYA (Hayward & Stone, 2006). Mitochondrialdivergence estimates between Central

Europe and Iberia for gall wasp host species are still older;e.g. 0.383 MYA inAndricus kollari(Hayward

& Stone, 2006) and 1.6 MYA inAndricus coriarius sensu stricto(Challiset al., 2007). Analyses of mul-

tilocus datasets are clearly required to provide better estimates of population divergence times in these

species. As our results show, the fact that the variance in coalescence time is lower for mitochondrial loci

given their smallerNe may reduce but does not alleviate this problem. This underlines the possibility

raised by Nichols (2001) that between-taxon variation in mtDNA-inferred dates of divergence between
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glacial refugia may well be attributable to coalescent variance rather than taxon-specific differences in

post-glacial dispersal. Rigorous testing of the hypothesis of taxon-specific variation in divergence times

requires broader application of multilocus approaches.

5.3.1 AncestralN
e

and sampling

The results of the Bayesian analyses show that estimates ofτC/W, or rather the time between the popu-

lation splits (τE/C/W-τC/W) and the population size during that time,NC/W, are confounded. Considering

that it is the ratio of the two parameters which determines the chance of coalescence between population

splits (Hudson, 1983; Saitou & Nei, 1986; Yang, 2002), this makes intuitive sense and may explain the

poor ability to estimateNC/W independently. A large variance in ancestralNe has also been reported by

most earlier multilocus analyses of divergence models (Chen & Li, 2001; Yang, 2002; Rannala & Yang,

2003). In general, explanations for the low power to estimate this parameter fall into two categories:

violations of the model assumptions; and limited signal in the data.

Ignoring within-locus recombination and mutational rate heterogeneity, for example, can in principle

overestimate ancestral population sizes (Sattaet al., 2000; Yang, 2002; Wall, 2003). However, the few

studies that have incorporated these factors suggest that they have little influence on estimates of ancestral

Ne (Sattaet al., 2000; Yang, 2002; Wall, 2003). Similarly, the fact that ourML results for the variable

mutation model are in agreement with those assuming a singlerate despite large differences in relative

mutation rates (Table 4.4) suggests that any impact of mutational heterogeneity between loci is greatly

outweighed by coalescence and mutational variance and therefore an unlikely explanation for the low

power to estimateNC/W.

In general, there are two factors that determine statistical power to infer ancestral parameters; i) the

number of lineages that contribute to the estimate (Fig. 5.2) and ii) the mutational information available

to infer their relationships. Both clearly depend on the timescale of divergence. Relating the estimated

population divergence times (scaled by the mean of current population sizes) forC. fungosato the theo-

retical expectation for the number of surviving lineages, we can ask how much power could potentially be

gained by further increasing sample sizes. For example, figure 5.2 shows that sampling three instead of a

single individual per population roughly doubles the expected number of eastern lineages that survive into

the common ancestral population, while 16 more individualsare required for a further twofold increase.

For the more recent divergence atτC/W, the increase in the number of surviving lineages from additional

samples is of course more substantial (Fig. 5.2). However, if our analysis was limited by sample size, we

would expect to see an improvement in parameter estimation proportional to the increase in the number of

surviving lineages when sampling three individuals. The fact that this is not the case (i.e. the variance in
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the estimates of three of the four model parameters is littleaffected despite the doubling of surviving lin-

eages) suggests that the power to infer ancestral parameters is largely limited by the mutational variation

available rather than the sample size. However, our finding of a markedly higher posterior meanNC/W

for the three individual sampling suggests that the estimation of this parameter may indeed be sensitive

to the sample size. This makes intuitive sense if we extend the ‘number of surviving lineages’ argument

above and consider that only lineages which survive intoNC/W and coalesce before they reachNE/C/W

contribute to the estimate ofNC/W. One would therefore expect increased power to estimate this param-

eter with increasing sample sizes both inC. fungosaand in the bird divergence studied by Jennings and

Edwards 2005. Thorough investigation of the effect of sampling on statistical power in divergence mod-

els both theoretically and using empirical data is requiredto inform sample designs of future population

genetic and phylogeographic studies. In particular disentangling the effects of mutational limitation and

those of sample size (both the number of sampled loci and individuals) would be useful. If mutational

information is not limiting, gene tree - species tree methods (Degnan & Salter, 1995; Degnan & Rosen-

berg, 2009; Maddison & Knowles, 2006; Liu & Pearl, 2007; Kubatko et al., 2009) should converge to the

same answer as the inference methods used here.

Another way to improve power may be to use outgroup information in the likelihood calculation. At

present Ne3sML and MCMCcoal rely on clock rooting (Yang, 2002), which, given the small number of

polymorphic sites in some loci, results in large topological uncertainty. Being able to distinguish between

parsimony informative sites and singleton mutations by reference to an outgroup should in principle

enhance the power of both approaches.

5.3.2 Assumptions and extensions of the model

Considering the large confidence intervals in parameter estimates, it is clear that quantitative inference

of population history is a data-hungry problem, particularly if divergence is recent. It is therefore ques-

tionable how much scope there is to probe more realistic models without increasing the amount of data

drastically. In general, inferences of ancestral population parameters are likely to be much more sensi-

tive to violations of the divergence model than they are to violations of the model of sequence evolution.

Since there are key population processes omitted from the present analyses that render population history

less tree-like, one could argue that the notion of a ‘population tree’ as such is an unrealistic description

of phylogeographic history.

Firstly, the model assumes that there is no migration after divergence. While at least in the host gall-

wasps, allele frequency data support this assumption (Rokaset al., 2001, 2003; Stoneet al., 2001, 2008;

Challis et al., 2007), we cannot exclude the possibility of migration after divergence forC. fungosa. It
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would therefore be interesting to relax this assumption andIMa, which uses the algorithm of MCMCcoal,

has recently been extended to estimate divergence with migration for more than two populations (Hey,

2010b). However, modelling migration explicitly in a three-population model introduces six additional

parameters. Considering the low divergence betweenC. fungosapopulations for our loci, there would

appear to be little power in the data to distinguish between adivergence model with a very recent split as

inferred here and more complicated models involving both divergence and subsequent gene flow. Clearly,

much larger amounts of data are needed to successfully explore such models. An additional problem

with analysing models of migration is that, in contrast to strict divergence models, they are sensitive to

unsampled populations (Wilkinson-Herbots, 2008; Lohse, 2009). With the advent of nextgen sequencing

technologies, the volumes of data required to explore divergence with gene flow on such recent timescales

should soon be available.

Secondly, the model assumes constant population sizes between divergence events. Again, allowing

for changes in population size opens up a myriad of possible historical scenarios and potentially increases

the number of parameters dramatically. Fortunately however, the C. fungosadata allow us to at least

exclude drastic demographic events. For instance, under a model of colonization through extreme founder

events (without subsequent migration), widespread incongruence between gene trees and population trees

would not be expected. Thus the mere presence of all possiblegene tree topologies in our data allows us

to reject this scenario forC. fungosa.

And finally, the model assumes panmixia within populations,which may be unrealistic over short

timescales and large geographic areas. Recent theoreticalwork (Slatkin & Pollack, 2008) and simulations

(Becquet & Przeworski, 2009) have demonstrated that subdivision in ancestral populations can lead to

mis-inference under simple divergence models.

In general, any model-based analysis faces the challenge ofchoosing models that contain sufficient

realism to capture key features in the data whilst being simple enough to be useful. We have shown that

in the case ofC. fungosaa simple divergence model between three populations can explain the observed

genetree incongruence and be used to estimate both the origin and divergence time of refugial populations

despite the recency of this history. We hope that this study motivates similar analyses of more realistic

models.

5.3.3 Towards a multilocus approach to community phylogeography

The close ecological dependence of oak gall parasitoids on their hosts and the large number of species

involved make this and similar host-parasitoid communities valuable systems in which to study the evo-

lution of ecological interactions (Schönroggeet al., 1995; Hayward & Stone, 2005). Unlike most organ-
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isms for which similar multilocus analyses have been conducted (Li et al., 1999; Rannala & Yang, 2003;

Jennings & Edwards, 2005), the ecology of chalcidoid parasitoids involves intricate interactions with co-

distributed species at different trophic levels. Linking the extensive information on species composition

and food web structure for these communities (Schönroggeet al., 1995, 1996a; Baileyet al., 2009) with

population genetic and phylogeographic inferences at the species level opens up an exciting opportunity

to address novel and general questions about co-evolution and assembly of communities. For instance, do

particular lineages or guilds within trophic levels show earlier longitudinal range expansion than others?

And if so, what are the ecological properties of such species? For example, are they generalists rather

than specialists, and so less likely to go locally extinct (Hayward & Stone, 2006)? Further questions arise

when considering multiple trophic levels. How correlated are phylogeographic histories between hosts

and parasitoids? Is there a general lag between the arrival of gallwasp (or other herbivore) hosts and

associated parasitoids such that herbivores experience periods of enemy-free space (Hayward & Stone,

2006)? We are currently working on obtaining multilocus data for co-distributed chalcidoid parasitoid

species and their gallwasp hosts to address these questionsin a quantitative framework. The rarity of

many of the species involved (Schönroggeet al., 1995, 1996a,b, 1998) means that we will have to make

the most of small sample sizes.
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Chapter 6

Topological probabilities in models of

divergence with gene flow

It s well known that the topology of a neutral locus sampled from closely related populations or species

may be incongruent with the order of divergence of those populations (Hudson, 1983; Tajima, 1983;

Nichols, 2001; Pamilo & Nei, 1988). In the simplest case of divergence between three species or popula-

tions (A, B, C) with population tree topology (A(B,C), and divergence atτ1 andτ1 + τ0 (i.e. the model

analysed in the previous chapter), the genealogy of a triplet sample (i.e. a single individual taken from

each population), may have three possible topologies(a(bc)), (c(ab)) and(b(ac)) (Fig. 6.1a). Their prob-

abilities depend on the interval between population splitson the coalescence time scale (Hudson, 1983;

Tajima, 1983; Takahataet al., 1995), i.e.T0 = τ0/(2Ne). This is because incongruent topologies are only

possible if theb andc lineage survive intervalτ0 without coalescence the chance of which ise−T0 . Once

all lineages find themselves in the common ancestral population, each topology has the same chance1/3.

Therefore:

P(c(ab)) = P(b(ac)) =
1

3
e−T0 (6.1)

Full results for the joint probability of topologies and branch lengths under this simple divergence

model have been derived by Yang (2002) and, assuming infinitesites mutations (Kimura, 1969), can be

used to calculate the marginal likelihood of model parameters from patterns of sequence polymorphism

in a set of loci (see chapter 5). Because this assumes free recombination between loci but lack of recom-

bination within them and computation time increases linearly with the number of loci, analyses using this
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full theory are usually restricted to moderate numbers of loci of relatively short length. Alternatively,

model parameters may be estimated from patterns of diversity on a genome wide scale. In particular, the

product of the probability of a topology and its expected internal branch length leads to an expression

for the expected number of shared derived mutations (or parsimony informative sites) corresponding to

it which in turn can be used to compute point estimates of ancestral parameters from genomic triplet

alignments. The idea of using genome wide site counts to estimate divergence times and ancestral popu-

lation sizes was first put forward by Pattersonet al. (2006) who studied the divergence between humans,

chimpanzees and gorillas.

A key feature of the three population divergence model is thesymmetry of the two incongruent his-

tories. Because incongruences can only arise if lineages survive into the common ancestral population

which is assumed to be panmictic, the two possible incongruent topologies must be equiprobable and

hence their expected frequencies are the same (eq. 6.1). This symmetry is a consequence only of the

assumed exchangeability of lineages in the ancestral populations and is independent of their effective

population sizes. Furthermore, the symmetry extends to thebranch length distributions, which also is the

same for(c(ab)) and(b(ac)) genealogies. Thus, in polarized (outgroup rooted) tripletalignments, de-

rived mutations shared bya andb (ab sites) anda andc (ac sites), i.e. those corresponding to the internal

branches of the two incongruent topologies, have the same expected frequency.

Perhaps surprisingly, the two studies that have explicitlyinvestigated genome wide frequencies of

either site counts and/or gene tree topologies in interspecific triplets, have both found significant asym-

metries (Pattersonet al., 2006; Pollardet al., 2006). Pattersonet al. (2006) have counted site-types in

genomic data of human, chimpanzee and gorilla (rooted with orang-utan). While they observed no sig-

nificant difference in the number of derived mutations shared by human and gorilla (HG) compared to

chimpanzee-gorilla (CG) sites on the autosome, they found aslight excess of HG over CG sites (3,074 ,

26.2% vs. 2544, 21.8%) in a 964 kb region on the X-chromosome.Similarly, Pollardet al.(2006) studied

topologies of close to 10 000 genes in a triplet of closely related species ofDrosophila: D. melanoaster, D.

erectaandD. yakubaand found a significant excess of (Dmel,Dere) (23.5%) over (Dmel,Dyak) (18.7%)

gene tree topologies. Moreover this asymmetry is particularly convincing, given that it is found in other

character types, in particular indels, nucleotide and amino acid replacements (Pollardet al., 2006, Fig. 2).

These findings beg the question how such asymmetries can arise. Firstly, it is important to note

that assessing the significance of asymmetries in genome-wide data involves making assumptions about

genetic linkage, which tends to increase the variance in topological frequency (Pollardet al., 2006).

Two possible causes have been suggested: i) Sequencing error (Burgess & Yang, 2008); and, perhaps

biologically more interesting, ii) violations of the simple divergence model.
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Slatkin & Pollack (2008) have shown that certain types of structure in the ancestral population can

create asymmetries in the frequency of the two incongruent topologies. They propose a divergence model

with a barrier that persists from the common ancestral population until the most recent population split

and coincides with the diverging populations (Slatkin & Pollack, 2008, Fig. 1) and derive the topological

probabilities under this model. Using results for the expected coalescence times for the two incongruent

topologies, they show that the asymmetries in topological frequencies observed by Pollardet al. (2006)

can be explained by a very weak barrier with migration at rate2Nm = 9.4 across it. However, an obvious

alternative mechanism by which topological asymmetries can arise is migration between the populations

themselves. The aim of this chapter is to investigate the effect such gene flow after divergence has on

topological probabilities.

6.1 Model and derivation

In the following, the basic model of divergence between three populations is extended by allowing for

gene flow (at ratem per generation) between the older population (A) and one of the more recently

diverged populations (B and C) (it is intuitively clear thatgene flow involving B and C cannot create

asymmetries) (Fig. 6.1). Although this model arguably represents a special case, it is the simplest di-

vergence model in which topological asymmetries due to geneflow can arise. It also applies to some

datasets of particular interest. For example, on an intraspecific scale, unidirectional gene flow may be a

realistic scenario for many European taxa such asC. fungosawhich have colonised major Southern refu-

gia in a process of longitudinal range expansions possibly followed by continued gene flow from their

eastern centres of diversity (chapter 5). The model may alsobe used to describe hybridization between

EuropeanHomo sapiensand Neanderthals in Europe and/or Asia (with AfricanH. sapienspopulations

as the ingroup) (Greenet al., 2010).

The aim is to derive the probabilities of the three genealogical topologiesP(c(ab)), P(b(ac)) andP(a(bc))

under this model. To keep the number of parameters at a minimum, we will assume that population sizes

are equal and constant at all times. Furthermore we make all the standard simplifying assumptions of

the neutral coalescent, namely large effective populationsizes and panmixis and focus on two simple

scenarios i) migration in one direction (fromA to B) only and ii) symmetric migration (Fig. 6.1b and c).

Following Slatkin & Pollack (2008), the ancestry of a samplebetween population divergence events

can be described as a discrete time Markov chain with state transitions occurring either due to migration

of lineages between populations (at ratem) or coalescence of pairs of lineages (at rateλ = 1/2Ne)

per generation. The divergence of populations can be modeled as a sudden change in state space. An
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Figure 6.1: Under a simple model of divergence between threepopulationsA, B, C with a topology
(A(BC)) (a), incongruent genealogies (shown in grey) can arise due to incomplete lineage sorting in
the common ancestral population prior to (τ1 + τ0). With unidirectional (b) or symmetric (c) migration
between A an B the probability of incongruent genealogies with topology(c(ab)) is increased. In both
cases, the asymmetry in the probability of the two incongruent topologies arises as a result of a migration
event duringτ1 only. Note that(c(ab)) genealogies are expected to be much shorter in c) than in b).

analogous approach has previously been used to find the probability of topologies for a pair of linked loci

in a three population model without migration (Slatkin & Pollack, 2006).

6.1.1 Asymmetric migration

Below we consider the case of migration fromA to B (Fig. 6.1b). Note that a model of migration in the

opposite direction (fromB to A) is slightly simpler, since any migration event prior toτ1 brings all three

lineages into the same deme. In the context of directional population founding (chapter 5), secondary

gene flow from the ancestral to the derived populations (A into B or C) is more relevant than migration

in the reverse direction. However, the basic results apply to both cases.

We need a notation that keeps track of both the origin and the locations of lineages. Denoting lineages

by their sampling location(a, b, c) and keeping the order of populations fixed, the three possible states

between the present andτ1 are: ((a), (b), (c)), ((ab), (), (c)) and coalab, the latter corresponding to

coalescence of thea andb lineage. Going backwards in time, the lineage in populationC cannot migrate

or coalesce during the first time interval, but there is a chance that the lineage sampled inB jumps to

A duringτ1 (which corresponds to a migration event in the opposite direction forwards in time) and, if

it does, that it coalesces with the resident lineage resulting in a gene tree topology(c(ab)). The starting

configuration at the time of sampling isPstart = (1, 0, 0). We only need to follow the process until the
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first coalescence event, i.e. the state,coalab is absorbing.

The transition probabilities from the present toτ1 are:

M1 =











1 − m 0 0

m 1 − λ 0

0 λ 1











The resulting state probabilities at timeτ1 are:

Pτ1
= Mτ1

1 .Pstart (6.2)

Looking into the past, populationsB andC merge instantaneously at timeτ1. During the following

time intervalτ0, the ancestral process can again be described as a Markov chain which now has 7 states:

S1 = ((a), (bc)), S2 = ((ab), (c)), S3 = ((ac), (b)), S4 = coalab, S5 = coalac, S6 = coalbc and

S7 = all, the latter corresponding to the case where all 3 lineages find themselves in the same deme.

As in the previous interval, coalescence events(S4, S5, S6) are absorbing states. Because lineages are

exchangeable and all topologies have the same probability of 1/3 once(S7) is reached, this state is also

absorbing. The matrix of transition probabilities is:

M0 =



































1 − 2m − λ 0 0 0 0 0 0

m 1 − m − λ 0 0 0 0 0

m 0 1 − m − λ 0 0 0 0

0 λ 0 1 0 0 0

0 0 λ 0 1 0 0

λ 0 0 0 0 1 0

0 m m 0 0 0 1



































As in the previous interval, the state probabilities at the end timeτ1 + τ0 are given by taking theτ0 th

power ofM0 and multiplying on the right with the state probabilities after the previous interval,Pτ1
.

Pτ0
= M τ0

0 .Pτ1
(6.3)

We can substitute 6.2 into the above and solve to get the totalprobabilities of the various states at time

τ1+τ0, PS1, PS2...PS7. It is straightforward to get from this to the topological probabilities. Consider first

all states at which topologies are equiprobable. Because atτ1 + τ0 all remaining lineages automatically

find themselves in the common ancestral deme, the total probability of reaching exchangeability,Peq is:
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Peq = PS1 + PS2 + PS3 + PS7 (6.4)

Evaluating the above using the matrix power function inMathematicaand simplifying gives:

Peq =
1

(m − λ)(m + λ)(2m + λ)
(2m3(1 − λ)τ1

−3(1 − m)τ1m2λ + m2(1 − λ)τ1λ − (1 − m)τ1m2(1 − 2m − λ)τ0λ

+(1 − m)τ1(1 − 2m − λ)τ0λ3 + ((1 − m)τ1(m − 2λ) + m(1 − λ)τ1)(1 − m − λ)τ0λ(2m + λ))

We can scale model parameters by2Ne so that coalescence happens at rate 1, i.e.M = 2Nem,

Ti = τi/2Ne. Transforming to continuous time simplifies things slightly.

Peq =
1

(M − 1)(M + 1)(2M + 1)
(2M3e−T1 − 3e−MT1M2 + M2e−T1 − e−MT1M2e−(2M+1)T0 +

e−MT1e−(2M+1)T0 + (e−MT1 (M − 2) + Me−T1)e−(M+1)T0(2M + 1))

The probabilities of the three topologies are given as the sum of 1/3Peq and the state corresponding

to the respective coalescent event:

P(c(ab)) = PS4 + 1/3Pequ =

=
1

3(M − 1)(M + 1)(2M + 1)
(6M3 − 4M3e−T1 + 3M2 − 2M2e−MT1e−(1+2M)T0 − 6M

+3Me−MT1 − 3 + 3e−MT1 − 2e−MT1e−(1+2M)T0 + e−(1+M)T0(2M + 1)(−2Me−MT1

+e−MT1(M + 1)))

P(b(ac)) = PS5 + 1/3Pequ =

=
1

3(M − 1)(M + 1)(2M + 1)
(2M3e−T1 + M2e−T1 + 2M2e−MT1e−(1+2M)T0

−2e−MT1e−(1+2M)T0 − 3Me−MT1 + e−(M+1)T0(2M + 1)(Me−T1 + e−MT1(−2M + 1)))
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P(a(bc)) = PS6 + 1/3Pequ =

1

3(M − 1)(M + 1)(2M + 1)
(2M3e−T1 + M2e−T1 − 4M2e−T1e−(1+2M)T0 − 3e−MT1

+4e−T1e−(1+2M)T0 + (e−MT1(M − 2) + Me−T1)e−(1+M)T0(2M+1))

In the limit of M → 0, these reduce to the results for the standard divergence model without gene

flow (eq. 6.1). As in the case of structure in the ancestral population (Slatkin & Pollack, 2008), these

analytical solutions are somewhat cumbersome and probablyof limited use analytically. For instance, it

is not possible to get an easy solution for M from the above expressions which could be used to estimate

this parameter from observed topological frequencies. However, plotting the probabilities of the three

topologies against the model parameters immediately givesa feeling for the properties of the model. As

shown in figure 6.2a,P(c(ab)) increases rapidly withM at the expense ofP(a(bc)) and(c(ab)) becomes

the most likely topology forM > 0.5. T1 has a similar effect on topological probabilities (Fig. 6.2b).

P(c(ab)) increases with larger values ofT1. However, in this case, bothP(a(bc)) andP(b(ac)) go to0. In

contrast, the dependence of topological probabilities onT0 is rather weak (Fig. 6.2c). It may therefore be

useful to investigate topological probabilities in the limits of T0.

T0 → ∞, P(c(ab)) →
e−(1+M)T13eT1(1 + M) + eMT1(1 + 2M)(−2M2 + 3eT1(M2 − 1))

3(M − 1)(M + 1)(2M + 1)

P(b(ac)) →
e−(1+M)T1M(−3eT1 + eMT1M(1 + 2M))

3(M − 1)(M + 1)(2M + 1)

P(a(bc)) →
e−(1+M)T1(−3eT1 + eMT1M2(1 + 2M))

3(M − 1)(M + 1)(2M + 1)

and,

T0 → 0, P(c(ab)) →
3 − e−2MT1 − eT12M − 3M

3 − 3M

P(b(ac)) →
e−MT1 − eT1M

3 − 3M

P(a(bc)) →
e−MT1 − eT1M

3 − 3M

Perhaps unsurprisingly, the upper limit agrees well with the exact solution in the parameter range

where(c(ab)) is the most likely topology (Fig. 6.2a and b).
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Figure 6.2: Analytical solutions (thick lines) for the probabilities of the three genealogical topologies (red
= (a(bc)), green= (c(ab)), blue=(b(ac))) for the case of asymmetric migration from A to B (Fig. 6.2b)
plotted against the three scaled model parameters:M (a),T1 (b) andT0 (c). In each case the other two
model parameters respectively are held constant atT1 = 1, T0 = 1 andM = 0.5. For a and b the limits
of T0 → ∞ are shown as thin lines.

6.1.2 Limit cases

Since we are primarily interested in the emergence of asymmetry rather than the topological probabilities

as such, it may be illuminating to consider the difference between the probability of the two incongruent

topologies, i.e.D = P(c(ab)) − P(b(ac)).

Substituting and simplifying yields:

D = PS4 − PS5 =
−M2(e−T1 − 1) + Me−(1+M)T0(e−MT1 − e−T1) + (e−MT1 − 1)

M2 − 1
(6.5)

In the limit of T0 → ∞,

D →
1 − e−MT1 − M2 − e−T1M2

1 − M2
(6.6)

in the alternative limit ofT0 → 0,

D →
1 − e−MT1 − M − e−T1M

1 − M
(6.7)

As can be see from the equations above the two limits differ only in the wayM enters (quadratically

for T0 → ∞ and linearly forT0 → 0). In general, the upper limit agrees with the exact solution

surprisingly well (Fig. 6.3).
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Figure 6.3: The difference in probability between the two incongruent topologies,P(c(ab)) − P(b(ac)),
plotted against the scaled migration rate,M for T1 = T0 = 1 (thick line). Also shown are solutions for
the two limitsT0 → 0 (wide dash below) andT0 → ∞ (narrow dash above).

6.1.3 Symmetric migration

Analogous derivations can be made for the case of symmetric migration between populationA andB

(Fig. 6.1). It is straightforeward to set up the matrices of transition probabilities forτ1 andτ0. Dur-

ing τ1 the ancestral process is described by a 5x5 matrix. The states are((a), (b), (c)), ((b), (a), (c)),

((ab), (), (c)), ((), (ab), (c)) andcoalab with starting statePstart = (1, 0, 0, 0, 0)

M1 =























1 − 2m 0 m m 0

0 1 − 2m m m 0

m m 1 − 2m − λ 0 0

m m 0 1 − 2m − λ 0

0 0 λ λ 1























(6.8)

Because migration is symmetric, we do not need to keep track of the locations of lineages duringτ0.

All that matters is which pair of lineages finds itself in the same deme and coalesces first. Thus there are

7 possible states duringτ0, which can be denoted by a single bracket;S1 = (bc), S2 = (ab), S3 = (ac),

S4 = coalab, S5 = coalac, S6 = coalbc andS7 = all.
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M0 =



































1 − 3m − λ m m 0 0 0 0

m 1 − 3m − λ m 0 0 0 0

m m 1 − 3m − λ 0 0 0 0

0 λ 0 1 0 0 0

0 0 λ 0 1 0 0

λ 0 0 0 0 1 0

m m m 0 0 0 1



































(6.9)

Unlike in the asymmetric case,M0 andM1 are not upper triangular matrices, so the resulting topolog-

ical probabilities are more cumbersome. Substituting intoequations 6.2, 6.3 and 6.4 and solving gives:

P(c(ab)) =
1

3(4m + λ)a
(2−(2+τ1)(64m2(bτ1 − cτ1) + 4m((dτ1 − 9)λ(cτ1 − bτ1) − 4a(bτ1 + cτ1 − 32τ1))

+λ(32(1+τ1)(2 − (1 − 2m)τ1 + (1 − 2m)τ1dτ0)a − (3 + dτ0)(λ(cτ1 − bτ1) + a(bτ1 + cτ1)))))

P(b(ac)) =
1

3(4m + λ)a
(2−(2+τ1)(4mabτ1 + dτ0λabτ1 − (dτ0λ(λ − 4m) + (4m + 3λ))bτ1

+4macτ1 + dτ0λacτ1 + (dτ0λ(λ − 4m) + (4m + 3λ))cτ1))

P(a(bc)) =
1

3(4m + λ)a
(2−(1+τ1)(−32m2bτ1 + (dτ0 − 3)λ2(bτ1 − cτ1) + 8m(abτ1 + (4m + a)cτ1)

+λ(−32(1+τ1)(1 − 2m)τ1(dτ0 − 1)a + 4m(3 + dτ0)(cτ1 − bτ1) − (dτ0 − 3)a(bτ1 + cτ1)))

wherea =
√

16m2 + λ2, b = 2 − 4m − λ − a, c = 2 − 4m − λ + 4 andd = (1 − 4m− λ).

A comparison between figures 6.4 and 6.2, shows that migration has a very similar qualitative effect

to that in the simpler asymmetric migration model.P(c(ab)) increases withM at the expense of the

probability of the congruent topologyP(a(bc)) and, to a lesser extent,P(b(ac)) (Fig. 6.4a). As before

asymmetries can only arise duringτ1 and the dependency onτ0 is weak (Fig. 6.4c), even more so than in

the asymmetric migration scenario (Fig. 6.2c). Interestingly, for M → ∞ the difference in the probability

of the incongruent topologiesD is approximately halved in the symmetric case. Although this may seem

counterintuitive, since one would think that the increasedpossibility for migration also increases the

104



0.0005 0.001 0.0015 0.002 0.0025 0.003

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1000 2000 3000 4000 5000 6000

0.2

0.4

0.6

0.8

1

1000 2000 3000 4000 5000 6000

0.2

0.4

0.6

0.8

1

0m 1

a) b) c)

τ τ

Figure 6.4: Analytical solutions (thick lines) for the probabilities of the three genealogical topologies
(red = (a(bc)), green= (c(ab)), blue=(b(ac))) for the case of symmetric migration between A and B
(Fig. 6.1c) plotted against the three model parameters:m (a), τ1 (b) andτ0 (c). In each case the other
two model parameters respectively are held constant atτ1 = 1000, τ1 = 1000 andm = 0.0005. These
parameter ranges correspond to those shown in figure 6.2 on the coalescence time scale.

chance that lineages fromA andB coalesce duringτ1, it can be easily understood considering the events

possible duringτ1. In the asymmetric case, coalescence duringτ1 must be preceded by the only possible

migration event (backwards in time the lineage sampled in B jumps into A), so the chance of topology

(c(ab))) increases with the rate of migration until, with very high migration rates, this jump fromB to

A occurs almost instantaneously. In contrast, with symmetric migration, lineages will jump back and

forth between the two demes and in the limit of high migration, the effective population size duringτ1 is

effectively doubled.

6.2 Discussion

The main motivation for this analysis was to understand the influence of gene flow on topological proba-

bilities. Compared to the special types of population structure required to produce asymmetries (Slatkin

& Pollack, 2008), gene flow after initial divergence seems a biologically more relevant mechanism at

least for populations of the same or closely related species. While, as in the case of population structure

(Slatkin & Pollack, 2008), the analytical results are cumbersome, important insights can be gained simply

by plotting topological probabilities against the three model parameters (Figs. 6.2, 6.4) and investigating

the relevant limits. Firstly, asymmetries in topological probabilities can arise as a result of a small amount

of gene flow, but only if the older species/population is involved and only if migration occurs after the

more recent divergence. This makes intuitive sense given that migration before the more recent diver-
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gence event affects bothb andc lineages equally. Gene flow therefore is an unlikely explanation for the

topological asymmetries that have been reported from species triplets such as the human-chimp-gorilla

case (Pattersonet al., 2006) or theDrosophilatriplet considered by Pollardet al.(2006). Secondly, a sim-

ple expression can be derived for the difference between theprobability of the two incongruent topologies

in the case of asymmetric migration (eq. 6.5). This result could, at least in principle, be used to estimate

migration rates from topological frequencies of intraspecific triplets.

However, the usefulness of such theory obviously depends onhow common asymmetries actually

are in intraspecific triplets. To explore this, I tested for asymmetries in genomic data from threeD.

melanogasterpopulations (Africa, Europe and North America) (Obbardet al., 2009). D. melanogaster

is a commensal species which broadly shares our own Out of Africa history. However, the colonisation

of North America is thought to have occurred only a few hundred years ago (Stephan & Li, 2006). Two

plausible migration scenarios would result in asymmetriesin site counts in opposite directions. Secondary

gene flow between Africa and Europe would lead to an excess of polymorphic sites shared between Africa

and Europe, and likewise, migration between Africa and North America would increase the frequency

of polymorphic sites shared by those populations. Both scenarios are possible given Human trading

routes. The raw data (kindly provided by D. Obbard) consisted of polymorphism information (both

coding and non-coding sequence) for 287 control genes. Extractions from 8 individuals per population

were pooled and SOLEXA sequenced to 100x coverage each (for detailed methods see Obbardet al.

(2009)). To produce triplet site counts, a single nucleotide per population and polymorphic site was

sampled at random using the observed frequency of the segregating sites in the sequence pool.

Table 6.1 shows a slight, excess of mutations shared by African and European populations compared

to sites shared between Africa and N. America (Tab. 6.1). Given the large distance between genes and

the fact that linkage disequilibrium does not extend over a few hundred bases inDrosophila, one may

for simplicity assume that each polymorphic site has a unique genealogy. However, even when ignoring

linkage of nearby polymorphic sites, the observed difference is not significant (χ2 = 0.731, p = 0.392).

In other words, although the data are consistent with low levels of migration between Africa and Europe

following the divergence of the N. American population, they also fit a null model of divergence without

subsequent migration.

The above example illustrates the limited power of detecting migration from topological asymmetries

alone even with a relatively large number of loci sampled across the genome. In general, genome wide

site counts in triplet alignments, are a rather inefficient way to extract information about gene flow for

two reasons. Firstly, the presented analysis only deals with topologies which are of course not observed

directly but rather inferred from the sequence information. Even if each site in the genome had its own
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Table 6.1: Counts of mutations shared between population pairs of D. melanogaster.

Population pair site counts

Europe/N. America 3215
Africa/Europe 1889
Africa/N. America 1836

genealogy, the chance of a mutation occurring would still depend both on the topology and the branch

lengths of that genealogy. Therefore the expected coalescence times for pairs of sequences are more

immediately useful for the analysis of genome wide site counts. Although these can been derived for the

present model using existing results for the isolation withmigration model (Wakeley, 1996; Wilkinson-

Herbots, 2008), the results (not shown) do not lead to a simple expression forM as in the case of migration

across a barrier within the ancestral populations (Slatkin& Pollack, 2008, eq. 9). It is easy to see that

much of the signal about the relative magnitude of incomplete lineage sorting vs. migration is contained

in the joint distribution of branch lengths and topologies.For example, as shown in figure 6.1b, in the case

of asymmetric gene flow, genealogies affected by migration have on average a longer internal branch than

those involving incomplete lineage sorting with a most recent common ancestor> τ0 +τ1. This increases

the number of derived mutations shared bya andb. Secondly, in most cases we do not have independent

information about the topology of the population tree whichis usually inferred from the sequence data

as well. This means that if migration rates are high (M > 0.5 in figure 6.2) so that the ‘incongruent

topology’ becomes the most likely history, the population topology would automatically be mis-inferred,

no matter whether one uses site counts, likelihood methods which assume no migration (Yang, 2002) or

more realistic approximate methods to fit models of migration and divergence (Hey, 2010b).

However, despite these difficulties, the usefulness of fullanalytical results for divergence with mi-

gration models is illustrated by a recent genomic study on the history of our own species. Greenet al.

(2010) use a measure of asymmetry very similar to theD considered above to compare the recently

sequenced Neanderthal genome to human genomes sampled fromdifferent populations. They find a sig-

nificant excess of 4% of derived sites shared by Neanderthalsand EurasianHomo sapienscompared to

sites shared by Neanderthals and AfricanH. sapienswhich they interpret as evidence for hybridisation

between Neanderthals and ancientH. sapiensoutside Africa (Greenet al., 2010, SOM 15). However,

the authors do admit that this signal could equally be explained by ancestral population structure prior

to the expansion of modern Humans out of Africa. Without fullanalytical results for both models it

remains impossible to evaluate to what extent these two models can be distinguished and estimate the

rate of hybridisation required to explain the data. Presumably, the comparatively brief period of Human-
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Neanderthal coexistence implies that any hybridisation scenario would have to invoke rather high levels

of gene flow compared to the very weak barriers in ancestral populations that can lead to asymmetries

(Pollardet al., 2006) provided such structure in our African ancestor persisted over a long timescale.
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Chapter 7

Discussion

Each of the preceding chapters contains its own, extensive discussion. Below, I first give a brief summary

of the main findings of the individual chapters and then discuss two general issues that emerge from this

work: The effects of sampling and recombination on historical inference. Given that coalescent theory

has always been driven by the availability of genetic data, it seems appropriate to view these in the light

of the current revolution in sequencing technology.

7.1 Conclusions

7.1.1 Chapter 2

Chapter 2 shows that the degree of starshape of a genealogy isreadily detectable using summary statistics

and can be taken as a surrogate for the effect of past demography and other non-neutral forces. Although

summary statistics such as Tajima’sD (Tajima, 1989) and related measures are commonly used for this

they are far from ideal (Felsenstein, 1992). Two types of simple new statistics are derived, which are

based on the number of mutations on the rootward branches as inferred from polarized alignments by

a straightforward algorithm or the properties of a perfectly starshaped genealogy respectively. Power

analyses on data simulated under a history of exponential growth show that these measures are equal or

superior to standard neutrality tests. In particular, thiscomparison reveals that genealogical ratios out-

perform standard summary statistics in tests based on the mean and variance across multiple unlinked

loci. By grouping genealogies according to their (random) topology, it becomes clear that statistics which

depend on pairwise measures such as Tajima’sD are most severely confounded with the topology which

explains their comparatively low power and dependence on large sample sizes. In contrast, genealogical
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ratios efficiently extract information from small numbers of individuals. Provided reliable outgroup in-

formation is available these statistics may constitute a useful alternative to full likelihood estimation and

standard tests of neutrality and could form the basis for approximate methods of demographic inference.

7.1.2 Chapter 3

Chapter 3 investigates the phylogeographic history of a radiation of high alpine ground beetles (genus

Trechus) on a single mountain range, the Orobian Alps in Northern Italy using sequence data from two

loci. Bayesian stochastic search variable selection (BSSVS) (Lemeyet al., 2009; Ceiridwenet al., 2010)

is used to infer the most parsimonious set of directional location state changes together with standard

mutational parameters and genealogies. While this inference is entirely based on the genealogy and as

such blind to the underlying population level processes, a minimal set of location state changes which

connects all populations has a straightforward and testable interpretation under a model of successive

founder events originating from a refugium. Given the minimal set of location state changes which de-

termines the order of population founding, the paraphyly constraints implicit in this model can be tested.

Only three of the 12 sampledTrechuspopulations are incompatible with this scenario. This is remarkable

given that the BSSVS approach is highly sensitive to location state changes which occur multiple times

in the genealogy as expected from incomplete lineage sorting or migration but not under the founder

event model. It also contrasts with previous phylogeographic studies on alpine insects, which have found

extensive incomplete lineage sorting (Knowles, 2001; Carstens & Knowles, 2007a). Furthermore both

mitochondrial and nuclear genealogies support separate refugial origins for populations on the western

and eastern ends of the Orobian Alps, and mitochondrial nodeages suggest persistence on the northern

ridge for at least part of the last ice age. The deep phylogeographic structure within OrobianTrechusis in

stark contrast to previous larger-scale phylogeographic studies particularly on high alpine plants (Schön-

swetteret al., 2005) and suggests that dispersal-limited, high alpine arthropods may have quite different

histories than the more dispersive alpine taxa previously studied. While BSSVS offers a quantitative way

to extract directional information, the analysis also demonstrates the limited power of phylogeographic

sampling schemes of small numbers of loci sampled for many individuals. In particular, it is not possible

to distinguish between incomplete lineage sorting and migration.

7.1.3 Chapter 4

Chapter 4 describes how exon-primed, intron-crossing (EPIC) loci can be developed relatively straight-

forwardly for highly conserved genes using publicly available genomic data and expressed sequence tags
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(ESTs). Amplification success of degenerate primers developed for 40 loci was scored on a diverse panel

of Hymenoptera associated with oak galls and figs. Although amplification success declines with taxo-

nomic distance from the species used for primer design (Nasonia), considerable numbers of loci amplify

even in the gall and fig wasp hosts which are very distantly related toNasonia. Estimates of divergence

and diversity within Europe obtained for two Pteromalid parasitoidsC. fungosaandM. amaenussuggest

that these loci contain information about their phylogeographic history. Focusing on highly conserved

genes for which degenerate primers can be built circumventsthe need for species specific primer design

or PCR optimisation (Papanicolaouet al., 2005) required by alternative markers, in particular anony-

mous loci (Jennings & Edwards, 2005). Furthermore, these loci should make it possible in the future to

investigate the history of entire natural communities in a quantitative framework.

7.1.4 Chapter 5

In chapter 5 sequence data from 20 of the newly developed nuclear loci are used to infer the historical

relationships of three refugial populations (Middle East,the Balkans and Iberia) of the oak gall parasitoid

C. fungosa. Previous studies on gall wasps (Rokaset al., 2003; Challiset al., 2007), their oak hosts

(Dumolin-Lapegueet al., 1997) and their chalcid parasitoids (Hayward & Stone, 2005; Nicholls et al.,

2010) as well as other temperate taxa (Michauxet al., 2004; Cullinget al., 2006; Kochet al., 2006) have

found patterns of genetic diversity consistent with an eastern origin of refugial populations in southern

Europe. This westwards expansion has been estimated to havebegun in the early Pleistocene or before.

Comparing the support for all possible population tree topologies using likelihood and Bayesian meth-

ods also suggests an ‘Out of the East’ history forC. fungosa. However, the estimated divergence times

between refugial populations are surprisingly recent, coinciding with the last (Eemian) interglacial. The

difference between population divergence times derived from model-based analyses and naïve interpreta-

tions of mitochondrial node ages can be entirely explained by the large ancestral population sizes inferred

for C. fungosa. Given that most previous phylogeographic studies investigating the longitudinal history of

temperate taxa have ignored this ancestral variation, the refugial populations of temperate taxa in Europe

are likely to be younger than previously assumed in general.

The comparison of the two sampling schemes shows that there is significant information about popu-

lation divergence in minimal samples. This is encouraging in two ways. In theory, full likelihood methods

(Yang, 2002, 2010; Wang & Hey, 2010) are only tractable for minimal samples. In practice community

wide studies are limited by their ability to include rare species, so the fact that single specimens are suffi-

cient, provided a large number of loci is sampled, means thatthese methods can be used to test alternative

models of parasitoid assemblage evolution in the future.

111



A problem with the assumed model of divergence is that it ignores migration between populations, an

obvious possibility for refugial populations. However, the recency of the divergence time estimated forC.

fungosaand the limited power to estimate ancestralNe, suggest that much larger numbers of loci would

be needed to fit more parameter-rich isolation with migration models (Nielsen & Wakeley, 2001; Hey &

Nielsen, 2004). An interesting alternative history involving migration is a model of repeated episodes

of gene flow occurring during interglacials (Jesuset al., 2006). Although this model is of immediate

interest given the Pleistocene climate cycles, it may be difficult to distinguish from a simpler history of

recent divergence without migration. This is because a single episode of strong migration rapidly erases

any signature of previous historical events. However, the two scenarios can potentially be distinguished

on a community-wide scale by comparing species with different dispersal abilities. If geneflow during

interglacials is important, one would expect to see more recent coalescence times in species with good

dispersal abilities compared to poor dispersers.

7.1.5 Chapter 6

In chapter 6 the three population model used in the previous chapter is extended analytically by allow-

ing for migration between the older population and one of themore recently diverged populations. The

probabilities of genealogical topologies are derived for minimal triplet samples using a discrete time

Markov-Chain. Plotting topological frequencies against model parameters gives a clear understanding

of the effects of migration. As would be expected intuitively, migration disproportionally increases the

probability and expected frequency of one of the two incongruent topologies ((c(ab)) in Fig. 6.1). This

asymmetry in topological probabilities arises solely frommigration after the more recent divergence

event. The analysis illustrates the difficulty of obtainingeven simple results for realistic, non-equilibrium

models. The analytical difficulty arises directly from the lack of symmetry in the migration model which

makes it necessary to consider all possible combinations ofmigration and coalescence events. Thus

increasing the realism of these models (for example by relaxing the simplifying assumption of equal pop-

ulation size for all populations) introduces additional asymmetries which will further complicate analysis.

However, since the main motivation for such theoretical work is the development of computational meth-

ods for the analysis of sequence data, complexity may not matter. For example, if expressions for the

probability of full data patterns could be generated automatically (either by using a Matrix approach or

by finding recursions for the moment generating function), they would be immediately useful even if they

are complex.
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7.2 Outlook

A common theme throughout this thesis has been the effect of sampling on statistical power. In chapter

2, the gain in power to infer past demography was shown to diminish rapidly with sample size. Similarly,

the comparison of the two sampling schemes in chapter 4 and basic coalescent theory (Takahataet al.,

1995) suggests that the most efficient sampling scheme is oneof a single individual sampled at a great

number of loci. Although the importance of replicating across loci has been pointed out by many (e.g.

Felsenstein, 1992, 2006; Wakeley, 2004b; Wang & Hey, 2010),there are surprisingly few thorough inves-

tigations of the effect of sampling. Felsenstein (2006) showed that the accuracy in estimating the scaled

mutation rate in the neutral Wright-Fisher model only increases logarithmically with sample size, but is

proportional to the number of loci. However, he points out that the optimal sampling schemes may differ

between models and recommends that for histories involvingmigration “one would want to have larger

sample sizes in each population to detect recent migration”(Felsenstein, 2006). In contrast, Wang &

Hey (2010) conclude that Felsenstein’s reasoning for a single population essentially extends to isolation

with migration (IM) models. Knowing the optimal sampling scheme for parameter estimation under a

particular model matters in two ways. Firstly, sequencing studies now face a genuine choice between se-

quencing a few moderately-sized genomes using next generation sequencing or obtaining sequences for a

large number of individuals at a handful of selected loci using Sanger technology. If historical signal can

be most efficiently extracted from a very large number of locisequenced for a few individuals, even the

most fragmented genome assemblies for two or three individuals contain vastly more information than

traditional phylogeographic samples. Secondly, many of the theoretical complications that limit current

inference methods disappear for small samples. In particular, likelihood methods which integrate over

all possible histories and thus break down for moderate sample sizes are tractable for pairs and triplets

(Wang & Hey, 2010; Yang, 2010). With the increasing availability of genomic data, such exact methods

of historical inference will undoubtedly become more important in the future, not least because they are

computationally more efficient than schemes based on simulations.

However, the analysis of genomic data comes with new challenges. In particular, recombination

presents a conundrum for historical inference. On the one hand, it generates crucial replication by un-

coupling the genealogical histories of nearby genomic regions. On the other hand, in practice linkage

patterns can only be inferred incompletely and indirectly from polymorphism information, making it dif-

ficult to define blocks of shared ancestry. Almost all methodsof historical inference assume that the

history of a given locus can be described by a single bifurcating genealogy (Nielsen & Wakeley, 2001;

Yang, 2002; Rannala & Yang, 2003; Hey & Nielsen, 2004). In other words, it is assumed that there is
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no recombination within, but free recombination between loci. Given that the rate of recombination is of

the same order as the mutation rate in some organisms, this isobviously a gross oversimplification which

is clearly violated when dealing with large continuous blocks of sequence. The ancestry of a sample

of recombining sequences can be described as a graph (Griffiths, 1991; Wakeley, 2008). Unfortunately,

results for divergence and/or migration models based on theancestral recombination graph are not avail-

able. Thus in practice, the complications of recombinationare avoided by trimming data into supposedly

non-recombining segments (chapters 3,5) based on the four-gamete test (Hudson & Kaplan, 1985). How-

ever, what effects this has on inference is poorly understood. A recent simulation study (Strasburg &

Riesenber, 2009) found no bias in parameter estimates underthe IM model even for substantial amounts

of recombination as long as loci were trimmed. However, thisobviously throws information away in

two ways. Firstly, shortening sequences reduces the mutational information available to infer genealo-

gies. Secondly, the pattern of recombination itself contains information about the underlying history. In

particular, the rate of recombination along a genealogy is proportional to its length and so the scale of

correlation along the genome gives a clock that is independent of the mutation rate. Surprisingly perhaps,

no current IM model uses linkage information. However, a powerful Hidden-Markov framework, which

approximates the coalescent with recombination and uses information from linked sites to infer changes

in topology along the genealogy has been developed for divergence models (Hobolthet al., 2007). Simi-

larly, Hellenthalet al. (2008) have developed a scheme to use recombination to fit a model of population

founding in humans. In the Neanderthal case (Greenet al., 2010), recent hybridisation should be distin-

guishable from ancient population structure from the length of sequence blocks shared by Neanderthals

and Humans.

To conclude, coalescent theory has become indispensable for the analysis of sequence data. It pro-

vides a sound quantitative description of the histories of samples and the population genetics processes

shaping them which has made the historical divide between tree-based phylogeography and frequency

based population genetics obsolete. Thinking in term of genealogies does indeed provide a deeper un-

derstanding of the historical signal in genetic data and ideally leads to new and more powerful ways to

extract this information. However, we have only just begun to realise the full potential of the coales-

cent for historical inference. Massively parallel sequencing technologies are rapidly closing the practical

gap between the study of model and non-model organisms. While these genomic datasets promise ever

greater power for historical inferences, the limiting factor is now the availability of appropriate theory

and efficient computational methods. This means that improving existing and developing new analytical

methods based on the coalescent will remain a central task ofpopulation genetics for decades to come.
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This work will undoubtedly have to tackle many difficult challenges, some new but many old. How-

ever, the potential rewards are immense. Improving our ability to see into the past opens up exciting

possibilities for the study of community assembly and will shed new light on our own evolutionary jour-

ney.
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Summary

The degree of starshape of a genealogy is readily detectable using summary statistics and can be
taken as a surrogate for the effect of past demography and other non-neutral forces. Summary
statistics such as Tajima’s D and related measures are commonly used for this. However, it is well
known that because of their neglect of the genealogy underlying a sample such neutrality tests are
far from ideal. Here, we investigate the properties of two types of summary statistics that are derived
by considering the genealogy: (i) genealogical ratios based on the number of mutations on the
rootward branches, which can be inferred from sequence data using a simple algorithm and
(ii) summary statistics that use properties of a perfectly star-shaped genealogy. The power of these
measures to detect a history of exponential growth is compared with that of standard summary
statistics and a likelihood method for the single and multi-locus case. Statistics that depend on
pairwise measures such as Tajima’s D have comparatively low power, being sensitive to the random
topology of the underlying genealogy. When analysing multi-locus data, we find that the
genealogical measures are most powerful. Provided reliable outgroup information is available they
may constitute a useful alternative to full likelihood estimation and standard tests of neutrality.

1. Introduction

The motivation for studying the impact of past de-
mography on sequence data is two-fold. Firstly,
changes in population size are interesting in their own
right, being intimately linked to processes such as
speciation or geographic range shifts. Secondly, the
standard neutral model (SNM) of a randomly mating
Wright–Fisher population of constant size and dis-
crete generations, hardly ever describes the patterns of
diversity found in natural populations. Thus, studies
aiming to detect loci under selection are faced with the
considerable challenge of fitting realistic demographic
models against which selection can be tested e.g.
Glinka et al. (2003), Hamblin et al. (2004), Haddrill
et al. (2005), Ometto et al. (2005) and Thornton &
Andolfatto (2006). Since the rate of coalescence is in-
versely proportional to the effective population size,
it is clear that demographic changes must leave a de-
tectable signature in genealogies (Felsenstein, 1992).
In general, positive population growth distorts

genealogies towards a starshape with shorter internal
branches, resulting in more low frequency variants
and a unimodal rather than multi-peaked mismatch
distribution (Slatkin & Hudson, 1991; Harpending,
1994; Schneider & Excoffier, 1999). In contrast to
selective processes that act on single genetic variants,
demography affects the whole genome, so one expects
to find a concordant signature across loci (Tajima,
1989; Galtier et al., 2000).

Approaches to demographic inference fall into
three broad categories ; for a review see Emerson et al.
(2001). Firstly, likelihood methods, which are avail-
able for bottleneck and exponential growth models,
make use of all the information in a sample by inte-
grating over a large set of likely genealogies (Griffiths
& Tavaré, 1994; Kuhner et al., 1995). Although opti-
mal in terms of statistical power and accuracy, likeli-
hood estimation is computationally intensive and
requires a fully specified alternative model. Therefore
realistic growth histories often remain analytically in-
tractable. Secondly, there are tree-based methods,
which take the branch length information of a re-
constructed tree as their starting point. Assuming that
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sequence evolution is clock-like, the number of lin-
eages can be plotted against time and the shape of this
trajectory compared with its neutral expectation (Nee
et al., 1995; Pybus et al., 2002). Despite their con-
ceptual appeal, these methods neglect any uncertainty
in tree topology and are thus only as good as the
reconstructed tree they are based on. Furthermore
they cannot deal with recombination by definition.
Finally, there are classical neutrality tests, most of
which do not explicitly consider the genealogy but
instead use more immediate aspects of the data such
as the frequency spectrum of mutations, e.g. Tajima’s
D (Tajima, 1989) and Fu & Li’s D (hereafter referred
to as D2) (Fu & Li, 1993), the haplotype distribution,
e.g. Fu’s FS (Fu, 1996; Innan et al., 2005), or the
mismatch distribution, e.g. the raggedness statistic
(Slatkin & Hudson, 1991). Compared with likelihood
estimation, summary statistics are straightforward
to calculate and their distribution can be simulated
under almost any growth model.

Considering the zoo of statistics available and their
wide use, there are surprisingly few studies that sys-
tematically compare their power, and those that
do mainly consider bottlenecks and single locus data
(Simonsen et al., 1995; Fu, 1996; Ramos-Onsins &
Rozas, 2002; Depaulis et al., 2003; Ramirez-Soriano
et al., 2008). However, joint analysis of multiple loci is
not only necessary to distinguish between selective
and demographic events (Galtier et al., 2000) but also
potentially far more powerful than inferences based
on a single locus. An added advantage of multi-locus
analysis is that both means and variances of summary
statistics can be used for testing. Variance based tests
were first developed for microsatellite data (Di Rienzo
et al., 1998; Reich et al., 1999) but are now routinely
used to analyse sequence data from multiple loci
(Pluzhnikov et al., 2002; Haddrill et al., 2005;
Heuertz et al., 2006) or even species (Hickerson et al.,
2006).

A general conclusion that has emerged from simu-
lation studies is that tests based on the number and
distribution of haplotypes have more power to detect
bottlenecks than statistics based on p, in particular
Tajima’s D (Ramos-Onsins & Rozas, 2002; Innan
et al., 2005; Ramirez-Soriano et al., 2008). Earlier,
Felsenstein made a theoretical argument for the in-
feriority of pairwise measures (Felsenstein, 1992).
Their large variance under neutrality arises both from
their sensitivity to the last coalescence event and the
random genealogical topology (Tajima, 1983). Under
the SNM more symmetric genealogies are on average
associated with higher p and more ragged mismatch
distributions than asymmetric genealogies. It is im-
portant to realize that this topological variance is in-
dependent of the already large variance in coalescence
times inherent in the genealogical process. In other
words ‘despite their aura of robustness ’ (Felsenstein,

1992), statistics based on p suffer from an unnecess-
arily large variance under neutrality, and hence have
comparatively low power. Despite these results, D
and mismatch distributions continue to be the meth-
ods of choice for demographic inferences in popu-
lation genetics and phylogeography, respectively.

Following Felsenstein’s recommendation that
‘ there is much to gain from explicitly taking the
genealogical relationship of a sample into account’
(Felsenstein, 1992), the aim of this study is to consider
how genealogical information can be used for demo-
graphic inference in a summary statistics framework.
Our premise here is that the mutation rate is suf-
ficiently high relative to the per site recombination rate
such that non-recombining blocks of sequences can be
easily identified and treated as independent loci.

Given that there is usually not enough information
in within-species sequences data to infer the full top-
ology unambiguously it seems important to ask which
part of the topology yields most information. The first
part of the paper introduces some simple measures
of starshape, which are based on the properties of a
rooted genealogy. Using simulations, their power to
detect a history of exponential growth is compared
with standard neutrality tests for both the single and
multi-locus cases. We focus on the exponential growth
model for two reasons. Firstly, although it is a fre-
quently used demographic model, the power of sum-
mary statistics to detect exponential growth has been
little investigated. Secondly, likelihood methods are
available, which can be taken as an absolute ‘upper
bound’ of power for comparison. Such a direct com-
parison between summary statistics and the optimal
likelihood methods is lacking so far.

2. Summary statistics

Several neutrality tests compare two different esti-
mators of the scaled mutation rate (Fu & Li, 1993;
Tajima, 1989; Fay & Wu, 2000) h=4Nem, where m is
the mutation rate and Ne the effective population size,
which capture different aspects of the data. Most
prominently, Tajima’s D is defined as the difference
between h estimated as p, and hw=S/an (Watterson’s
h, where an=gnx1

i=1
1
i
, n is the sample size and S the

total number of polymorphic sites in the sample),
normalized by the standard deviation of this differ-
ence. Genealogies from growing populations typically
have relatively more low frequency variants and hence
tend to have a negative D.

While neutrality tests are commonly based on the
frequency spectrum and p, it is instructive to consider
departures from the SNM in terms of their effect
on the genealogy. Such tree-thinking necessarily
underlies summaries that make use of outgroup in-
formation, e.g. D2 has a straightforward genealogical
interpretation. Below two different ways of employing
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genealogical information in the construction of sum-
mary statistics are considered.

(i) Genealogical ratios

The rationale behind D2 is to distinguish between
two classes of mutations : those found on terminal
branches, ge and those on internal branches, gi (Fig. 1)
(Fu & Li, 1993). Suppose that some limited topologi-
cal information can be inferred from the data. In
particular, we will for now assume that the placement
of the root is known. It is then possible to distinguish
mutations found on the two rootward branches,
which we shall denote gR. Under the infinite sites as-
sumption, these are all derived mutations that are
shared by all individuals in either of the two sub-clades
defined by the root. The advantage of considering the
proximity of mutations to the root rather than the tips
is twofold: firstly, rootward branches cover a greater
proportion of the time to the most recent common
ancestor of the sample (TMRCA) and should, in gen-
eral, be more informative about past changes in popu-
lation size. Under the SNM, on average half of the
TMRCA is taken up by the coalescence of the last two
lineages (T2) (Fig. 1), whereas in a growing popu-
lation, the smaller population size in the past forces
the last two lineages to coalescence much more
rapidly. Secondly, the average length of a branch

connected to the root is less dependent on the sample
size than the average length of a terminal branch.

Ideally, one wants to know the total number of
mutations that have occurred during T2, rather than
the number of mutations on both rootward branches,
gR which is larger and depends on the topology,
i.e. the order of the first node on the longer of the two
branches (Uyenoyama, 1997, Appendix).

One possibility is to only consider the shorter of the
two rootward branches that has exactly length T2.
Thus the number of mutations found on this branch,
gRmin, over hw constitutes a very simple measure of
starshape.

X=
gRmin

hw

: (1)

Such genealogical ratios have first been employed
to study the effect of balancing selection on plant in-
compatibility loci (Uyenoyama, 1997). Being based
on a single random event, X clearly neglects much of
the information contained in the genealogy. Its power
is limited by the probability of observing gRmin=0
under neutrality. In other words, X is unlikely to be of
much use in the case of a single locus.

Alternatively, one can ignore the uncertainty in
node order and take the number of mutations found
on both rootward branches relative to hw :

X1=
gR

hw

: (2)

It is possible of course to construct various composite
measures from the number of mutations found on
different parts of the genealogy. Here, we only con-
sider one additional statistic, the relative difference
between rootward and terminal mutations :

X2=
gRxge

hw

: (3)

The X statistics assume some knowledge of the tree
topology that is usually unknown. Of course one
could use some standard method of tree reconstruc-
tion and infer gR and gRmin from the most likely
topology. However, not only is it inefficient to re-
construct the full topology when all that is required
is the placement of the root, conditioning on a single
tree also ignores any topological uncertainty. We have
therefore developed a simple scheme of inferring the
root in a sample of polarized sequences that circum-
vents these problems.

Under the infinite sites assumption, a necessary
criterion for the root-node is that no mutations are
shared between the two subsets on either side. One
can show that if both branches connected to the root
carry mutations, i.e. gRmin>0 there exists exactly one
bipartition of the sample with no mutational overlap.
If however one or both of the rootward branches of

T2

TMRCA

Fig. 1. Random genealogy of a sample of 20 sequences.
The root partitions the sample into two subclades of size
3 and 7. Rootward branches are shown as bold, terminal
branches as dotted lines, mutations are represented as
crosses. The time interval until the last coalescence event,
T2, is shorter than average under the SNM. In this
example S=30, gR=7, gRmin=2 and ge=14.

Genealogical summaries and demographic inference 283



the genealogy carry no mutations there may be mul-
tiple bipartitions that meet this criterion. In this case
gRmin=0 and the tree reconstructed from such a
sample would have an unresolved polytomy at its
base. To incorporate the topological uncertainty
about the placement of the root, we compute the
average value of gR over all partitions that are com-
patible with the criterion of no mutational overlap.
Note that in contrast to most tree reconstruction
algorithms that join similar sequences (i.e. start from
the tips down the tree), our scheme is divisive (i.e. it
starts from the root). To avoid having to consider all
possible bipartitions of the sample (2nx1x1), we
make use of the fact that any sequences that share
mutations have to be on the same side of the root.
By first binning sequences that share at least one
mutation, we can directly calculate gR and the num-
ber of possible partitions.

(ii) Starting from the limiting case

A different approach is to construct summaries that
measure departures from the limiting case of a per-
fectly star-shaped genealogy. Star-shaped genealogies
have some convenient properties that can be used for
this. Assuming that outgroup information is available,
one can record the number of terminal mutations in
each sequence i (because lineages are exchangeable,
the labelling is arbitrary), Vi. In a perfectly star-
shaped genealogy, all mutations must fall onto ter-
minal branches by definition. Thus one expects the
number of derived mutations in a sequence to be half
the average pairwise diversity, i.e. E[Vi]=p/2. The
statistic R2E proposed by Ramos-Onsins and Rozas
measures the average departure from this expec-
tation:

R2E=
gn

i=1 Vixp
2

� �2
=n

� �1=2

S
(4)

(Ramos-Onsins & Rozas, 2002, eqn (2)). R2E has
proven superior to a wide range of summary statistics
in detecting histories of bottlenecks (Ramos-Onsins &
Rozas, 2002). However, because of its dependence
on p, one may suspect it to suffer from a large vari-
ance under neutrality. We therefore consider a similar
statistic that uses the observed S rather than p to
assess the degree of starshape. Consider the total
number of derived mutations in each sequence, Di.
Note that gn

i=1 Di=gnx1
i=1 iji, in terms of the unfolded

frequency spectrum, where ji denotes derived mu-
tations that occur i times in the sample. Using the fact
that E[Di]=S/n in a star-shaped genealogy we can
define a new statistic :

RS=
gn

i=1 DixS
n

� �2
=n

� �1=2

S
: (5)

Since under neutrality a large proportion of mu-
tations will be found on inner branches, i.e. be shared
by many sequences, E[Di]=S/n. In other words, RS is
such that smaller values are expected under a history
of growth.

3. Methods

(i) Summary statistics and demographic model

We carried out coalescent simulations in ms (Hudson,
2002) to compare the power of a range of summary
statistics to distinguish between the SNM and a his-
tory of exponential growth. In addition to D, D2, R2E

and the new statistics defined above, FS, (Fu, 1996)
andH (Fay & Wu, 2000) were considered. FS is based
on the number of haplotypes in the sample and has
previously been found to be more powerful than
statistics based on the frequency distribution (Fu,
1996; Ramos-Onsins & Rozas, 2002). H was con-
ceived as a test for the effect of selection on linked
neutral sites (Fay & Wu, 2000) and is not expected to
have power to detect continuous growth. However,
other demographic scenarios such as moderate bottle-
necks may perturb genealogies in ways similar to
genetic hitchhiking resulting in significant values of
H. We assume that the population size has grown
exponentially with rate a to its current size N0 :

N(t)=N0 e
xat: (6)

Following standard practice, this exponential growth
is incorporated through a re-scaling of time (Slatkin &
Hudson, 1991). We define a rescaled time Tcoal rel-
ative to N0 and a :

Tcoal=
Z t

0

eat

2N0
dt=

(eatx1)

2N0a
: (7)

This represents the total amount of genetic drift that
has occurred. It is convenient to define a growth rate
relative to N0 as A=2N0a, which gives :

Tcoal=
eA

t=2N0x1

A
: (8)

(ii) Power test

Critical values of 5% confidence for each statistic
were determined from 10 000 replicate genealogies
simulated under the SNM for each of a wide range of
S values (1–250) (Hudson, 1993; Braverman et al.,
1995; Ramos-Onsins et al., 2007). Genealogies from
growing populations were simulated conditional on h.
For each replicate the alternative hypothesis of posi-
tive growth was tested by comparing the observed
value of a statistic to the critical value given the ob-
served S. Power was estimated as the proportion of
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10 000 replicate genealogies for which a statistic was
below its critical value in a one-tailed test. Power to
reject the SNM was recorded for a large range
of parameter combinations. We compared the per-
formance of statistics for different growth rates,
(0<A<50), sample sizes (n=10, 50) and values of h
(5–50). When varying h, we chose a fixed value of
A=8. This seems compatible with growth rates esti-
mated from empirical data. For example, variation at
silent sites in the Adhr region and X-linked genes in
Drosophila pseudoobscura is consistent with A=7
(Schaeffer, 2002). While h can be arbitrarily high for
mitochondrial data, h=20 may be unrealistic for
nuclear loci in out-crossing species. Therefore, power
was evaluated for a range of h values (5–50) again
keeping the growth rate fixed at A=8.

When using means and variances of summary stat-
istics across loci, power was determined analogously
to the single locus case. Critical values of 5% con-
fidence of means and variances of statistics were
determined from 10 000 replicate sets of loci with the
exact same combination of S values. Although com-
putationally expensive, this avoids making any as-
sumptions about the distribution of mutation rates
between loci. However, given that mutation rates vary
along the genome assuming the same h for all loci
to simulate the alternative history of growth seems
unrealistic and may lead to overestimation of power.
We checked for the influence of heterogeneity in
mutation rates on power by repeating the multilocus
power tests with h values drawn from a gamma dis-
tribution with a=2 (Pluzhnikov et al., 2002) and a
scale parameter equivalent to a mean of h=20. This
combination of growth and mutation rates is roughly
comparable to mutation rate estimates for nuclear
loci in Drosophila melanogaster (Galtier et al., 2000).
As before we assumed no recombination within
loci as well as absence of linkage between loci, i.e.
replicate genealogies were simply treated as multiple
loci.

(iii) Likelihood method

In practice, both h and A are unknown, and their
likelihood should, in principle, be estimated jointly.
However, because of the non-independence of these
two parameters, this is not a practical option. Follow-
ing standard practice we alternated between maxi-
mum likelihood estimation of A and h (Griffiths &
Tavaré, 1994). First a maximum likelihood estimate
(MLE) for h under the SNM was estimated using the
program GENETREE (http://www.stats.ox.ac.uk/
griff/software.htm). In a second step, this MLE for h
was fixed to run a likelihood surface for A. Finally,
the MLE value for A was used to re-evaluate h. This
scheme yields two MLEs for h for each replicate, one
under the assumption of no growth and one given the

most likely growth rate, which were compared in a
likelihood ratio test (LRT). We did not find that the
MLE estimates for A and h improved upon repeated
re-evaluation suggesting that a single round of esti-
mation is sufficient for this moderate growth scenario.
100,000 runs were performed for each likelihood
surface evaluation. Again, the proportion of replicate
genealogies for which the null hypothesis could be
rejected was taken as a measure of statistical power.
Due to the long computing time, 100 replicates per
parameter combination were used.

4. Results

(i) Single locus

In general, both the likelihood method and summary
statistics have low power to detect a history of
moderate (A<8) exponential growth for n=10
(Fig. 2). As expected, the likelihood method is most
powerful overall, although its superiority is sur-
prisingly small. For example, based on the LRT the
SNM is rejected for 30% of genealogies simulated
under exponential growth of A=4. In comparison,RS

and R2E detect this history of growth in 23% of cases
(Fig. 2).

Consistent with previous results, FS, R2E, and the
new measure RS, are considerably more powerful
than both D and D2 (Ramos-Onsins & Rozas, 2002;
Ramirez-Soriano et al., 2008). For h=20, FS is the
most powerful statistic. The new measure RS has
consistently higher power than R2E. As expected,
H and X have no power to distinguish between the
SNM and the growth case (not shown). However, the
other two genealogical ratios perform surprisingly
well. X1 has higher power than D2 and the power of
X2 is between that of R2E and RS (Fig. 2). The com-
plete lack of power of D for n=10 is somewhat sur-
prising. Comparison with the result for n=50 (Fig. 3)
reveals that its performance is strongly dependent on
sample size. We ran additional simulations (not
shown) and found that for n<15 extremely negative
values of D are more likely under neutrality than un-
der growth resulting in a rejection rate of the SNM of
less than 5%. In other words, when n is small, the
variance of D under neutrality is too large to detect
exponential growth.

In general, all statistics have considerably higher
power for n=50 (Fig. 3). Interestingly, it never
reaches 100% even when growth is extreme (A=50).
However, the relative effect of the sample size on
power differs between statistics. For instance, X1 im-
proves relatively little in comparison to other meas-
ures. This is to be expected given that even small
samples are likely to include the deepest split in the
genealogy of the whole population (Saunders et al.,
1984). For n=10, the power of all statistics decreases
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for histories of extreme growth (A>25) (Fig. 2). This
is due to the overall shortening of genealogies under
rapid growth.

The mutation rate has a relatively small influence
on power. In general, the power of all measures
increases with h (Fig. 4). However, the trajectories X1

and FS level off while the power of the other statistics
continues to improve with increasing values of h. The
power of FS is limited by the number of haplotypes
(which cannot exceed n).

To check how statistics are affected by the topo-
logical variance, genealogies simulated under the
alternative history of growth were sorted according to
the bipartition by the root and the proportion of sig-
nificant values determined for each topology class.
Figure 5 clearly shows that the two statistics based on
p, D and R2E as well as D2 are sensitive to asymmetric
topologies. The chance of observing a significant
value increases markedly with topological asymmetry.
This effect is most pronounced for D, which has no

‘power’ to reject the SNM unless genealogies are
very asymmetric and growth is weak. In contrast, the
dependency of X1 on the rootward partition is rela-
tively slight and in the opposite direction, i.e. the
chance of rejecting the SNM is smaller for asymmetric
genealogies (Fig. 5).

(ii) Multiple loci

Compared with the relatively subtle effect both h and
n have on statistical power, increasing the number of
loci improves power dramatically. In the mean-based
test, all statistics apart from D have a power of close
to 100% to detect a history of moderate exponential
growth (A=8) for 10 loci. However, the relative per-
formance of statistics changes slightly compared with
the single locus case. Notably, X2 has higher power
than all other summary statistics (Fig. 6). The power
of X is slightly lower than that of X1 (not shown).
Analogously to the results for a single locus, power
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Fig. 2. Power of summary statistics and likelihood method against exponential growth rate A=0–50. n=10, h=20.
Each point is based on 10 000 replicate simulations. The power of the likelihood method was estimated from 100 replicates
(see large filled circles and error bars).
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increases both with more extreme growth scenarios
and larger n (not shown).

As one may suspect, the increase in power with the
number of loci is slower for the variance test. More
importantly, the relative performance of statistics is
very different. By far the most powerful statistic in the
variance test is X1 followed by D and X (Fig. 7). This
indicates a general trade-off. Statistics with a high
variance under the SNM have comparatively low
power in the single-locus case and the mean test, but
high power in the variance test and vice versa.

Allowing for heterogeneity in mutation rates be-
tween loci affects both the relative performance of
summary statistics and their overall power. As one
may expect, heterogeneity in h generally results in a
decrease in power. In the mean-based test, the three X
statistics are most affected. However, in the variance
test the performance of X1 is little affected. This stat-
istic even has slightly higher power when mutation
rates vary between loci. This appears to be due to the

non-normal distribution of X1 under growth.
Genealogies with more than one possible root-
partition generally have a very low value of X1, since
we take an average over all possible partitions most of
which will be associated with X1=0.

5. Discussion

It is important to distinguish between the general
limitations that genealogical and mutational stoch-
asticity impose on demographic inference from gen-
etic data and problems associated with particular
methods. Two main conclusions emerge from com-
paring the performance of the new ‘genealogical
statistics ’ to classical neutrality tests and the LRT.

(i) General limits to demographic inference

The signatures that changes in population size leave in
genealogies are typically subtle compared with the
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Fig. 3. Power of summary statistics against exponential growth rate A=0–50. n=50, h=20. Note the different range
(0–1) on the y-axis compared with Fig. 2.
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randomness of the ancestral process. Thus all meth-
ods have low power to distinguish between the SNM
and histories of moderate growth in the single locus
case. A surprising finding of this study was that the
full likelihood method only works marginally better
than the most powerful summary statistics. Changes
in Ne disproportionally affect the length of the basal
branches of a genealogy. However, because these
rootward branches also contribute most to the vari-
ance in total tree length, inferences based on a single
locus will be weak at best. It is telling that the X stat-
istics which only considers the last coalescence events
in the history, outperform standard neutrality tests
in the variance test when multiple realizations of
this event, i.e. loci, are available. As has been argued
before, most statistical power can be gained by

increasing the number loci, which represent indepen-
dent realizations of the ancestral process, rather than
the sample size or the length of sequence (Felsenstein,
1992; Kliman et al., 2000; Wakeley, 2004).

(ii) Pairwise measures

Independent of the general limits to demographic in-
ference, pairwise measures such asD have particularly
low power to infer demography. This has been found
in previous simulation studies, which consider other
demographic scenarios such as strong bottlenecks and
rapid logistic growth (Fu, 1996; Ramos-Onsins &
Rozas, 2002; Ramirez-Soriano et al., 2008). The
fundamental flaw of pairwise measures can be best
understood in terms of the underlying genealogy.
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Fig. 5. The effect of topological asymmetry on statistical power (simulation parameters as in 2). Genealogies of Fig. 2
were sorted according to the partition by the root (shown above plot). Only the most asymmetrical partition (9, 1)
(a) and one other case (7, 3) (b) are shown. Results for the other three partitions were very similar to (b). Note that since
lineages are exchangeable all asymmetrical partitions have the same probability Pa=2/(nx1) (Tajima, 1983, eqn (2)).
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Fig. 4. Power of summary statistics to detect a history of exponential growth (A=8) against h.
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In contrast to selection and population structure,
changes inNe on their ownonly alter the distributionof
branch lengths without affecting the topology, which
can be regarded as a random nuisance parameter.
While the full topology can rarely be reconstructed,
there is potentially a lot of topological information in
sequence data. Thus, the challenge that any efficient
inference method has to meet is to separate this top-
ological information from the relevant branch length
information while taking topological uncertainty into
account. Tree-based methods such as lineage-through
time plots clearly fall short of the latter because they
rely on a fully resolved topology. Pairwise measures
on the other hand simply ignore the confounding ef-
fect of the topology (Felsenstein, 1992). It is thus easy
to see why D has power only when sample sizes are
large. While increasing sample size adds increasingly

shorter external branches and therefore little ad-
ditional information, it does reduce the chance of
extremely asymmetric bipartitions by the root which
are responsible for much of the variance in p and
hence D.

Perhaps worryingly, this sensitivity to the topology
not only translates into a loss of statistical power but
also means that negativeD values may in fact be more
informative about the topological asymmetry of the
genealogy (which may be caused by other non-neutral
forces, e.g. selection) underlying the sample than
about past growth. In order to distinguish between
the effects of selection and demography, topology
needs to be separated from branch length information.
One approach is to explicitly account for the topology
information if possible. For instance, one could de-
termine confidence intervals of statistics conditional
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on the bipartition by the root if this is known. Not
surprisingly, this improves the power of D, but has
little effect on statistics that are not based on p (not
shown). The alternative is to use measures that are
less sensitive to the topology. FS and other haplotype
statistics have previously been shown to be more
powerful than frequency spectrum statistics for this
very reason (Depaulis et al., 2003; Innan et al., 2005).
However, it has also been noted that FS sometimes
behaves erratically (Fu & Li, 1993; Ramos-Onsins &
Rozas, 2002). As mentioned earlier, its power levels
off with increasing h (Fig. 4), because the sample size
sets an upper bound to the number of haplotypes.

(iii) Recombination and topological uncertainty

The X statistics presented here fall somewhere in be-
tween tree-based methods and classical summary stat-
istics. They exploit the fact that changes in population

size disproportionally affect the relative length of the
deepest branches in the genealogy and make use of
topological information, without sacrificing the sim-
plicity of the summary statistics framework. Given
their high power in the multilocus case, how useful are
such genealogical ratios in practice?

Recombination presents a fundamental problem to
tree-based methods like the X statistics, which are de-
fined only for non-recombining sequences. Similarly,
likelihood methods that can deal with recombination
are currently not available. To wrongly reconstruct
trees from recombining data can potentially be
severely misleading especially in the context of demo-
graphic inference. In fact, genealogical ratios similar
to the ones presented here have been used to show
that recombination can mimic the effect population
growth has on the shape of inferred genealogies.
Internal branches will appear relatively shorter and
the tree overall more star-shaped (Schierup & Hein,
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2000; Ramirez-Soriano et al., 2008). Ideally one
would like to model recombination explicitly when
making demographic inferences. However estimates
of recombination rates are usually associated with
a large uncertainty. Furthermore, it is notoriously
difficult to distinguish between recombination and
back-mutations.

One approach to circumvent these problems is to
test for recombination beforehand (e.g. using the four
gamete test) and exclude recombinant regions from
the analysis if necessary. One can then both condition
on there being no within-locus recombination and
afford to use more powerful statistics such as the ones
presented here. This strategy of identifying non-
recombining stretches of sequence is increasingly used
to analyse multilocus data, e.g. Galtier et al. (2000) or
Jennings & Edwards (2005). Fortunately, many or-
ganisms appear to have lower recombination rates
than model species such as Drosophila. For instance
in a recent study on Australian birds only 6 out of 30
loci of intergenic sequence showed evidence for re-
combination (Jennings & Edwards, 2005). How prof-
itable this scheme is ultimately depends on the relative
magnitude and distribution of recombination and
mutation rates. Before the genealogical ratios can be
used on multiple loci, which have been pruned to ex-
clude recombinant stretches, both the potential bias
of such pruning and the effect of undetected re-
combination events on the genealogical ratios need to
be properly evaluated. Interestingly, our method of
inferring the root does in itself constitute a test for
recombination and may help to focus on those re-
combination events that matter to the statistical test.

A related problem concerns the infinite sites as-
sumption. Although the algorithm we have developed
to compute the X statistics takes topological uncer-
tainty into account, ignoring the possibility of back-
mutations may underestimate the length of basal
branches (Baudry & Depaulis, 2003). Although this
source of error has been ignored here it should in
principle be possible to account for back-mutations
considering that they are independent of the assump-
tions of the genealogical process. In fact, any muta-
tional model can be used to define statistics analogous
to the genealogical ratios presented here. The problem
with more complicated mutation models is in esti-
mating the basal topology needed to calculate these
measures.

(iv) Conclusions

In summary, the results confirm that only the most
extreme demographic events leave a sufficient signa-
ture to be detectable in single locus data. Still, instead
of the excessive and often non-quantitative em-
ployment of mismatch distributions, phylogeographic
studies could benefit from using more powerful

statistics such as RS and R2E to test demographic hy-
potheses. Conversely, population genetics studies of
sequence data from multiple, unlinked loci could ben-
efit from using summary statistics that incorporate
genealogical information explicitly. When outgroup
information is available and the assumptions of no
within-locus recombination and infinite sites muta-
tions can be justified, simple genealogical ratios are
potentially more powerful than standard statistics. In
taking the relative number of mutations found on
specific parts of the genealogy as a measure of the
degree of starshape, the demographic signal can be
separated from irrelevant and confounding topologi-
cal information. Extensions of this approach are feas-
ible. For instance, one could consider the covariance
between the number of basal and terminal mutations.
Such simple statistics may be profitable for approxi-
mate likelihood or Bayesian approaches (Thornton &
Andolfatto, 2006). There remains a need to under-
stand the effect of pruning and undetected recom-
bination events on tree reconstruction in general and
tree-based measures such as the X statistics presented
here in particular.

Many thanks to N. Barton, P. Haddrill, J. Polechova,
D. Charlesworth, Kai Zeng and D. Obbard for helpful ad-
vice and discussion. Thanks also to Kelly Dyer for help with
Genetree. Detailed comments and valuable suggestions
from two anonymous reviewers on an earlier version of this
manuscript greatly improved this work. K.L. is funded by a
studentship from the Biotechnology and Biological Sciences
Research Council. J.K. is funded by EPSRC.
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The longitudinal spread of temperate organisms into refugial populations in Southern Europe is generally assumed to predate

the last interglacial. However, few studies have attempted to quantify this process in nonmodel organisms using explicit models

and multilocus data. We used sequence data for 20 intron-spanning loci (12 kb per individual) to resolve the history of refugial

populations of a widespread western Palaearctic oak gall parasitoid Cecidostiba fungosa (Pteromalidae). Using maximum likelihood

and Bayesian methods we assess alternative population tree topologies and estimate divergence times and ancestral population

sizes under a model of divergence between three refugia (Middle East, Balkans and Iberia). Both methods support an “Out of

the East” history for C. fungosa, matching the pattern previously inferred for their gallwasp hosts. However, coalescent-based

estimates of the ages of population divides are much more recent (coinciding with the Eemian interglacial) than nodal ages of single

gene trees for C. fungosa and other species. We also find that increasing the sample size from one haploid sequence per refugial

population to three only marginally improves parameter estimates. Our results suggest that there is significant information in the

minimal samples currently analyzable with maximum likelihood methods, and that similar methods could be applied to multiple

species to test alternative models of assemblage evolution.

KEY WORDS: Ancestral population size, coalescent theory, parasitoid assemblages, population divergence times, statistical

phylogeography.

Many western palaearctic taxa have their current centers of genetic

diversity to the east of Europe, suggesting that refugial popula-

tions around the Mediterranean basin are ultimately derived from a

more eastern source (Din et al. 1996; Rokas et al. 2003; Juste et al.

2004; Michaux et al. 2004; Culling et al. 2006; Koch et al. 2006;

Challis et al. 2007; Stone et al. 2007). Westwards dispersal of such

taxa into southern European refugia is often thought to have oc-

curred in the early Pleistocene, if not before (Taberlet et al. 1998;

Rokas et al. 2003; Juste et al. 2004; Culling et al. 2006; Challis

et al. 2007) and of necessity must predate the well-documented lat-

itudinal range shifts associated with the last ice age (Taberlet et al.

1998; Hewitt 1999) by at least one glacial cycle. However, the few

studies that have attempted to estimate the age of this older lon-

gitudinal dispersal are largely qualitative, being based on a small

set of (primarily mitochondrial) gene trees (e.g., Taberlet et al.

1998; Hewitt 1999; Nichols 2001; Rokas et al. 2003; Juste et al.

2004; Culling et al. 2006; Challis et al. 2007). It has been noted

that species differ considerably in their mitochondrial divergence

between refugia and this has been attributed to species-specific re-

sponses to Pleistocene climate cycles (Taberlet et al. 1998). How-

ever, an obvious alternative explanation for the observed lack of

interspecific temporal congruence is that mitochondrial gene trees

1
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are dominated by incomplete lineage sorting, the extent of which

may be large in general and/or different between species (Nichols

2001).

Because polymorphism within ancestral populations must

originate before daughter populations diverge, branches of gene

trees are necessarily longer than those of population trees and

a naı̈ve interpretation of node ages may severely overestimate

population divergence (Pamilo and Nei 1988; Maddison 1997).

Similarly, gene tree topologies may be incongruent with the order

of population divergence (Tajima 1983; Pamilo and Nei 1988;

Rosenberg 2002). Because the magnitude of both these effects

depends on the size and stability of the ancestral populations

(Tajima 1983; Maddison 1997; Nichols 2001), they are likely to

be exaggerated when resolving the origins of—and relationships

among—refugial populations, which are stable by their very na-

ture (Hewitt 1999). Thus, assessing the generality of an “Out of

the East” pattern ideally requires replication both at the level of

species and loci.

Assemblages of parasitoids associated with oak cynipid galls

offer unmatched replication at the species level. In the Western

Palaearctic, an estimated 120 species of chalcidoid wasps are

obligate natural enemies of the inhabitants of oak cynipid galls

(Csóka et al. 2005; Hayward and Stone 2005). Phylogeographic

studies on Western Palaearctic oak gallwasps show their popu-

lations to be divided into three major refugial areas: the Iberian

Peninsula in the west, Central Europe and the Balkans in the

center, and Asia Minor and Iran in the east (Rokas et al. 2001,

2003; Stone et al. 2001, 2008; Challis et al. 2007), broadly par-

alleling patterns seen in oak phylogeography (Dumolin-Lapegue

et al. 1997). In the gallwasps, allele frequency data for multi-

ple nuclear markers support the conclusion that there has been

very little subsequent gene flow between these regions (Rokas

et al. 2001, 2003; Stone et al. 2001, 2008; Challis et al. 2007).

Oak gallwasps are thought to have diversified in regions to the

east of Europe prior to the Pleistocene (Stone et al. 2009), and

pre-Pleistocene or early Pleistocene westwards range expansion

across Europe has been suggested by patterns of genetic variation

in several widespread species (Rokas et al. 2001, 2003; Challis

et al. 2007). An obvious question is whether gall-associated par-

asitoids have pursued their hosts from the east. At least two of

them, the torymids Megastigmus stigmatizans and M. dorsalis,

appear to have done so (Rokas et al. 2003; Hayward and Stone

2006; Nicholls et al. 2010). The challenge now is to reconstruct

longitudinal colonization processes in the Western Palaearctic for

a broader taxonomic spread of oak gall-associated parasitoids,

to assess the generality of an “Out of the East” pattern, and to

determine whether parasitoids dispersed over a similar timescale

to their hosts, or after a delay—so allowing their hosts a measure

of “enemy-free space” (Hayward and Stone 2006). One reason

for caring which of these scenarios is true is that close phylo-

Figure 1. Model of successive population divergence between

major Palearctic refugia from East to West: Asia Minor and Iran (E)

Balkans and Central Europe (C), Iberia (W). With minimal sampling

of one individual per population, topological probabilities of gene

trees are determined by only two model parameters, the time

between population divergences (τE/C/W − τC/W ) and the effective

sizes of the ancestral population during this time (NC/W ).

geographic concordance increases the potential for coevolution

among community members, and such communities are inher-

ently sensitive to disturbance by species gain (Stone and Sunnucks

1993; Schönrogge et al. 1996b, 1998) or loss (Lennartsson 2002;

Pauw 2007).

Here, we use sequence data from 20 intronic loci to study

the history of refugial populations in the pteromalid parasitoid

Cecidostiba fungosa, a widespread species in oak gall communi-

ties (Askew 1961; Schönrogge et al. 1996a; Bailey et al. 2009).

The three-refuge phylogeographic pattern of oak gallwasp com-

munities allows us to compare two analytical methods—a maxi-

mum likelihood (ML) approach (Yang 2002), and an analogous,

Bayesian approach (Rannala and Yang 2003). Both estimate an-

cestral population parameters (population sizes and divergence

times) directly from patterns of polymorphism in sequence data

(rather than from gene trees inferred for each locus) and assume

a model of divergence between three populations (Fig. 1). The

order of population divergence or the topology of the popula-

tion tree can be viewed as an additional model parameter and the

likelihoods in both methods can be used to compare statistical

support for different topologies. We address the following, spe-

cific questions: (1) Do data for C. fungosa support an “Out of

the East” population history, such that refugial populations in the

center and west of Europe are derived from a shared ancestral

population in the center which in turn is derived from a common

ancestral population further east (Fig. 1)? (2) When did refugial

populations split from each other, and how large were their an-

cestral populations? (3) How different are multilocus estimates
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of population divergence times from gene divergence times (both

nuclear and mitochondrial)?

A strategy of sampling many loci from a single individual

per taxon has been used extensively to study divergence between

closely related species, in particular the Great Apes (Yang 2002;

Jennings and Edwards 2005; Patterson et al. 2006). There are two

reasons why such minimal sampling is of interest. First, going

backwards in time, only lineages that persist into the ancestral

species/population contribute to estimates of ancestral population

parameters. Coalescent theory shows that samples taken from the

same species or population quickly coalesce down to a small

number of lineages (Griffiths 1981; Tavaré 1984; Norborg 1998)

(Fig. 2). This means that even if divergence is relatively recent,

that is, less than Ne generations ago, the power gained by increas-

ing within-population sampling levels off relatively rapidly. In

contrast, each additional sampled locus provides an independent

replicate of the coalescent process in the ancestral population ir-

respective of the divergence time (Wakeley 2004). So if the total

cost of sampling is number of loci × number of sampled indi-

viduals, the optimal sampling scheme is one of few individuals

sequenced at a large number of loci. Second, minimal sampling is

currently the only sampling scheme for which a statistically op-

timal likelihood method allowing parameter estimation directly

from site patterns exists (Yang 2002). In contrast, Bayesian ap-

proaches (Rannala and Yang 2003) or gene tree–species tree meth-

Figure 2. The expected mean number of lineages surviving coa-

lescence into an ancestral population (Tavaré 1984, equation 5.5)

plotted against divergence time (T) in coalescence units (2Ne gen-

erations) for four different sampling sizes (from top to bottom,

n = 20, 10, 5, 3). Because only surviving lineages contribute to the

estimation of ancestral parameters and their number decreases

rapidly, the expected gain in power from increasing sample size is

limited even if divergence is relatively recent (T < 0.5). The solid

lines show the divergence time estimates (scaled by twice the

mean of population sizes NE, NC, and NW ) obtained for C. fungosa

in this study (priors a).

ods (Degnan and Salter 1995; Maddison and Knowles 2006; Liu

and Pearl 2007; Degnan and Rosenberg 2009; Kubatko et al. 2009)

have the advantage that they can deal with arbitrary sample sizes

and numbers of populations. However, this comes at the poten-

tial cost of prior assumptions and/or difficulty in integration over

topological uncertainty in the gene trees.

These issues are relevant in selecting an appropriate study

design in systems in which there is a trade off between sam-

pling multiple individuals and generating data for multiple loci

or species. Ability to obtain informative population parameters

from small numbers of individuals is likely to be particularly

important in comparative studies of communities, such as the

oak gall system, in which some taxa are rare enough that in-

creasing sample size is not an option. It is therefore useful to

ask how much information about ancestral population parame-

ters over phylogeographic timescales can be obtained with min-

imal sampling. To investigate the influence of sample size, we

compared minimal sampling of a single individual per popula-

tion with an extended sample of three individuals per population.

We then use theoretical expectations for the number of surviv-

ing lineages given the estimated divergence history (Fig. 2) to

consider the likely gain in power for larger sample sizes in our

Discussion.

Methods
CHOICE OF LOCI

We obtained sequences for 20 newly developed intronic loci for C.

fungosa (Table 1) and the closely related species Caenacis lauta,

which was used as an outgroup in some analyses. These loci in-

cluded 12 ribosomal protein genes (RpL10ab, RpL13a, RpL15,

RpL27a, RpL37, RpL37a, RpL39, RpS15, RpS18, RpS23, RpS4,

RpS8) and eight regulatory genes (AntSesB, bellwether, nAcRbeta-

64B, Rack1, Ran, sansfille, SUI, Tctp) (for primer sequences and

CG indentifiers see Table S1), all of which are thought to be single

copy genes with no known paralogs in insects. Primer develop-

ment and testing will be described in detail elsewhere (K. Lohse,

B. Sharanowski, M. Blaxter, and G. Stone, unpubl. ms.). In short,

primers were designed using alignments of Hymenoptera EST

data (Sharanowski et al. 2010) and insect sequences from public

databases (NCBI). No or little polymorphism at a particular locus

may arise either as a result of a low mutation rate (so limiting

signal), or a recent coalescent event (and so important to demo-

graphic inference), or both. Excluding loci that are invariant in C.

fungosa results in an upward bias in estimates of population diver-

gence time. To avoid such bias, we used all nuclear loci available

for C. fungosa (K. Lohse, B. Sharanowski, M. Blaxter, and G.

Stone, unpubl. ms.) and tested whether accounting for differences

in mutation rate between loci influenced our estimates.

EVOLUTION 2010 3
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Table 1. Summary statistics of nuclear loci used in the analysis. Loci for which a larger sample of three individuals per population was

obtained are shown in bold. Diversity in the minimal single individual sample and divergence to C. lauta were calculated for introns

(πIntron, KIntron) and synonymous exon sites (πS, KS) separately. Also shown are the number of introns (#In) and the total number of

polymorphic sites (S) for the single individual samples and locus-specific mutation rate (μ). The normalized product of μ and the total

locus length can be taken as a measure of information content (Info). The last column (rec) gives the number of bases that were excluded

to trim each locus to the largest nonrecombining fragment according to the four-gamete tests.

Length (bp) Diversity Divergence/mutation rate
Locus primers #In

Total Intron Exon πs πIntron S Ks KIntron μ Info rec (bp)

AntSesB 40fb, 40rb 2 606 171 435 0.000 0.008 2 0.076 0.148 0.984 0.981 0
bellwether 33fb, 33rb 1 549 214 335 0.000 0.003 2 n/a n/a n/a n/a 0
nAcRbeta- 39f, 39r, 39fb, 2 728 113 615 0.004 0.000 1 0.371 0.227 1.703 2.039 0

64B 39rb
Rack1 18fb, 18rb 2 560 304 256 0.000 0.007 3 0.087 0.052 0.627 0.578 0
Ran 32f, 32r 1 499 202 297 0.011 0.003 2 0.090 0.091 0.802 0.659 0
RpL10ab 19f, 19r 2 955 807 29 0.000 0.003 3 0.072 0.043 0.641 1.001 0
RpL13a 6f, 6r 2 849 718 131 0.000 0.019 21 0.000 0.097 1.414 1.975 0
RpL15 2fb, 2rb 2 618 412 206 0.000 0.002 2 0.233 0.056 1.047 1.065 16
RpL27a 28fb, 28r 2 501 332 169 0.017 0.030 16 0.155 0.101 1.309 1.078 0
RpL37 27f, 27r 1 866 785 81 0.033 0.020 24 0.017 0.123 1.882 2.681 0
RpL37a 36f, 36r 1 220 91 129 0.000 0.000 0 0.408 0.069 1.203 0.436 0
RpL39 16f, 16r 1 463 442 21 0.000 0.000 0 0.000 0.086 1.386 1.055 0
RpS15 20fb, 20rb 1 739 476 263 0.058 0.035 30 0.073 0.091 1.076 1.308 0
RpS18 22f, 22r 1 812 658 154 0.020 0.005 6 0.072 0.052 0.757 1.011 132
RpS23 21f, 21r 1 268 79 189 0.016 0.042 6 0.119 0.127 0.926 0.408 0
RpS4 11f, 11r 1 754 483 271 0.000 0.000 1 0.094 0.083 1.040 1.290 117
RpS8 5f, 5r 1 422 242 180 0.029 0.008 6 0.060 0.034 0.447 0.311 0
sans_fille 35f, 35r 1 446 84 362 0.017 0.000 2 0.140 0.037 0.501 0.367 0
SUI 24f, 24r 1 823 636 186 0.000 0.006 6 n/a n/a n/a n/a 0
Tctp 25f, 25r 2 493 148 345 0.000 0.014 3 0.134 0.088 0.826 0.670 0

Total 28 12171 7397 4774 136 265
MEAN per locus 608.5 369.9 238.6 0.0092 0.0105 6.8 0.1387 0.0727
Cox1 pF2/C2413d n/a 698 n/a 0.090 n/a 24 0.353

MOLECULAR METHODS

Whole genomic DNA was extracted from specimens stored

in 98% ethanol in 50 μl of extraction buffer containing 5%

ChelexTM100 resin (Bio-Rad, Hercules, CA). To allow for di-

rect sequencing of PCR products without the need to discriminate

between haplotypes in heterozygotes, we used males, which are

haploid in Hymenoptera, whenever possible. The exceptions were

three female C. fungosa, for which haplotypes were distinguished

by cloning of PCR products as necessary (see below).

Polymerase chain reactions (PCRs) were performed in 20 μl

reactions using the following mix for all primer combinations:

2.0 mL 10× Bioline PCR buffer, 2.0 μl bovine serum albumin

(10 mg/mL), 0.8 μl MgCl2 (50 mM), 0.16 μl dNTPs (25 mM

each), 0.1 μl Taq Polymerase (5 U/μl, Bioline), 0.2 μl of each

primer (20 uM), and 1 μl DNA template.

A generic touchdown PCR protocol was used for all loci:

94◦C for 3 min, followed by cycles of 94◦C for 15 sec, an

annealing step of 40 sec, 72◦C for 3 min, and a final step at

72◦C for 10 min. The annealing temperature was varied as fol-

lows: The first 10 cycles decreased in 1◦C increments from 65◦C

to 55◦C, followed by 30 cycles each with an annealing step

at 55◦C.

To allow comparison of information content in the nuclear

loci with a frequently used mitochondrial locus, we also se-

quenced a 689 bp region of the cytochrome c subunit 1 gene

(Cox1) using primers COI_pF2 and COI_2413d, a modified ver-

sion of C1-J-2441 (Simon et al. 1994, Table S1). These primers

were designed to amplify a fragment largely overlapping the

LCO/HCO region of Cox1 (Folmer et al. 1994), but excluding a

poly-T repeat at its 5′ end present in Chalcidoidea, which causes

slippage during PCR resulting in uninterpretable sequence.

All PCR products showing single amplified bands were se-

quenced directly in both directions using ABI BigDye chem-

istry (Perkin Elmer Biosystems, Waltham, MA) on ABI 3700 and
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3730 sequencers in the GenePool Edinburgh. Chromatograms

were checked by eye and complimentary reads aligned using Se-

quencher version 4.8.

For five loci (RpS4, RpL27a, RpL37, RpL15b, nAcRbeta) se-

quences from female individuals of C. fungosa contained putative

heterozygous sites or were not readable due to indels. These PCR

products were cloned using a mini-Prep kit (Qiagen, Valencia,

CA). Five clones were sequenced per locus and individual, one of

which was chosen at random for subsequent coalescent analyses.

In one case (sample C3, locus RpS4) none of the sequenced clones

matched the expected product. This sample was excluded from

the analysis.

MODEL OF POPULATION DIVERGENCE AND

POPULATION SAMPLING STRATEGIES

We consider a simple model of divergence between three putative

refugial populations of C. fungosa: Asia Minor and Iran (east,

E), Balkans and Central Europe (center, C), and Iberia (west,

W). This is analogous to a model of divergence between three

species (Takahata et al. 1995; Yang 2002) that has been used

to estimate divergence times and ancestral population sizes in

Great Apes (Rannala and Yang 2003; Patterson et al. 2006), fruit

flies (Villablanca et al. 1998; Li et al. 1999), birds (Jennings

and Edwards 2005), and plants (Zhou et al. 2007). The model

makes the standard population genetics assumptions of random

mating within each population, fixed population sizes between

divergence events, and no migration after divergence. The first

and last assumptions at least are supported by multilocus allele

frequency data for the gallwasp hosts in this system (Stone and

Sunnucks 1993; Rokas et al. 2003; Stone et al. 2008).

Following recent studies on Hominids and model organ-

isms (Chen and Li 2001; Takahata et al. 1995; Li et al. 1999;

Rannala and Yang 2003; Patterson et al. 2006; but see Jennings and

Edwards 2005), we initially adopted a sampling scheme that max-

imizes the number of loci available by using only a single haploid

male from each of the three refugial populations listed above.

To examine the impact of increased sampling within populations,

we generated an extended dataset, comprising three haploid se-

quences per population for 13 loci and a single sequence per

population for the remaining seven loci as before (Table 1 and

Table S2). Impacts of further increases in sample size will be

considered based on the theoretical expectation of the number of

surviving lineages (Fig. 2).

We used ML (Yang 2002) and Bayesian approaches (Rannala

and Yang 2003) (described below) (1) to test whether the most

likely order of population divergence is compatible with an “Out

of the East” scenario, and (2) to estimate divergence times and

ancestral population sizes under this scenario using the sin-

gle individual per population sampling. To investigate the im-

pact of sample size on parameter estimation, Bayesian analy-

ses were repeated using the extended dataset as defined above

(Table S2).

ALIGNMENT AND MUTATION RATE

Cecidostiba fungosa and C. lauta sequences were aligned in

ClustalW and checked by eye (GenBank accession numbers

HM208872-HM209026). Exonic regions were assigned by com-

parison with D. melanogaster protein sequences and checked for

an open reading frame. Indels in the alignment were treated as

missing data.

In the ML and Bayesian analyses, all model parameters are

scaled by the per site mutation rate, μ. Conversion of the scaled

time between divergence events (γ) into real times (τ), and of

the scaled mutation rate (θ) into effective population sizes (Ne),

therefore requires an estimate of μ and its incorporation into the

relationships γ = τμ and θ = 4Neμg, where g is the average

generation time in years. Note that for haplodiploids Ne hd =
(9Nf Nm)/(2Nf + Nm), where Nf and Nm are the number of males

and females, respectively, in a randomly mating population. As-

suming equal sex ratio and variance in fitness between sexes,

Ne hd is 0.75 Ne d (Hedrick and Parker 2003).

To calculate a mean estimate of μ for our loci, we first esti-

mated a synonymous genome-wide mutation rate for the closely

related pteromalid wasp genus Nasonia, using a divergence time

of 0.4 million years ago (mya) between N. giraulti and N. longi-

cornis (Campbell et al. 1993; Oliveira et al. 2008; Raychoudhury

et al. 2009) and a nuclear genome-wide distance at synonymous

sites (Ks) of 0.011 between these species (Oliveira et al. 2008).

With μ = Ks/2t, these values give μ = 1.375 10−8 b/yr. The Na-

sonia divergence time was derived by applying observed bacterial

mutation rates to Wolbachia symbionts infecting the two Naso-

nia species (Raychoudhury et al. 2009). However, the resulting

mutation rate estimate is also remarkably consistent with the few

other molecular clock calibrations that exist for insects, such as

the calibration of 1.11 × 10−8 b/yr for Hawaiian Drosophilids

using island ages (Tamura et al. 2004).

To apply the Nasonia mutation rate to our intron-rich (and

so partially noncoding) sequences, we scaled it by the ratio of the

observed average divergence between C. fungosa and C. lauta at

synonymous sites, Ks over the average divergence across all sites

KTotal. This yields a factor of 0.478, so the total average mutation

rate for our loci is μ = 1.375 10−8 × 0.478 = 6.27 10−9 b/yr.

Note that because this is an average across all sites, it is lower than

the mutation rate for synonymous coding sites. This calculation

incorporates any mutational constraints on introns and coding

sites in C. fungosa without making a priori assumptions about

intron evolution. We estimated a relative mutation rate for each

locus as the observed KTotal at each locus over the average KTotal

(Chen and Li 2001; Yang 2002; Jennings and Edwards 2005),

shown in Table 1.
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To calculate ancestral effective population sizes, we assumed

an average generation time of g = 0.5 years for Nasonia and

C. fungosa. This is reasonable for C. fungosa, which attacks

both sexual spring galls and asexual autumn galls (Askew 1961;

Schönrogge et al. 1995, 1996a) (as synonyms C. adana and C. hi-

laris), and for temperate populations of Nasonia. For comparison

with mitochondrial node ages, we calculated a mutation rate for

Cox1 using the Jukes-Cantor-corrected distance between N. gi-

raulti and N. longicornis at this locus and a divergence time of 0.4

mya as before. This gives 22.3% (Oliveira et al. 2008) divergence

per site and million years. We compared this locally calibrated

clock with estimates obtained in previous studies using the com-

monly assumed arthropod mitochondrial clock of 2.3% per site

and million years (Brower 1994). Despite the obvious shortcom-

ings of the “Brower clock,” comparison of relative node ages in

this way is valid as long as the same calibration is used across

taxa, and a molecular clock assumption is tested and supported in

each taxon, as here.

RECOMBINATION TESTS AND GENE TREE

RECONSTRUCTION

Both phylogenetic reconstruction and the coalescent analyses de-

scribed below make the crucial assumption of no recombination

within loci. We determined the minimum number of recombina-

tion events using a four-gamete test in DNAsp (Rozas and Rozas

1995) on the largest alignment of each locus. Three loci (RpS4,

RpS18, RpL15) showed evidence for recombination and were

trimmed to the largest nonrecombining block (Galtier et al. 2000;

Jennings and Edwards 2005) (shown in Table 1).

Although both the ML and Bayesian approaches described

below use site patterns directly and do not rely on estimated

gene trees, we reconstructed trees to visualize the data and to

test the molecular clock hypothesis that is implicit in both ap-

proaches. ML trees were reconstructed for each locus in PAUP∗

(Swofford 2001). For single individual alignments (triplets), this

was done using exact searches, whereas for the three individ-

ual per population alignments branch and bound searches were

used. Loci varied considerably in relative intron length and hence

in base composition. We therefore assumed a single substitu-

tion rate but unequal base frequencies (Felsenstein 1981). To

test the support for internal nodes in each triplet gene tree, 1000

bootstrap replicates were performed taking a bootstrap value of

>70% to indicate strong nodal support (Hillis and Bull 1993). We

compared rooting with a strict molecular clock to rooting with

C. lauta for the triplet gene trees (Tajima 1993; Jennings and

Edwards 2005; Tamura et al. 2007). To further test the validity

of the molecular clock assumption, we performed Tajima’s 1 −
degree of freedom test on each triplet (Tajima 1993; Jennings

and Edwards 2005; Tamura et al. 2007). This nonparametric

test is designed for triplet samples given a known species topol-

ogy and is simpler and more powerful than similar model-based

tests (Tajima 1993; Nei and Kumar 2000; Jennings and Edwards

2005).

MAXIMUM LIKELIHOOD ANALYSIS

For minimal sampling, only four parameters in the three-

population divergence model matter: the two divergence times

τC/W and τE/C/W and the sizes of the two ancestral populations

NC/W and NE/C/W (Fig. 1) and an exact likelihood approach to

inference is possible. The program Ne3sML numerically max-

imizes the likelihood for a given population/species topology

(Yang 2002). By default the method assumes an infinite sites

mutation model and a molecular clock. Given the level of poly-

morphism observed in C. fungosa (Table 1), this simple model of

sequence evolution seems appropriate. For example, if diversity at

silent sites (synonymous exon sites and introns) is 0.01 (Table 1),

the chance of a back mutation is 10−4 per site. Because we are

analyzing slightly fewer than 104 silent sites in total, we expect

to see at most a single back-mutation in the entire dataset and can

safely ignore more complicated mutation models.

The likelihood approach of Yang (2002) differs crucially

from methods that estimate a species tree conditional on a set

of reconstructed gene trees (Degnan and Salter 1995; Maddison

and Knowles 2006; Carstens and Knowles 2007; Liu and Pearl

2007; Degnan and Rosenberg 2009; Kubatko et al. 2009) in that

it uses the site information directly. The method integrates over

all possible gene tree topologies and branch lengths at each lo-

cus and computes the joint log likelihood for a given popula-

tion history (topology and parameter estimates) as the sum over

the log likelihoods of individual loci (Yang 2002; Rannala and

Yang 2003). The advantage of this is that in contrast to gene

tree species tree approaches (Liu and Pearl 2007; Degnan and

Rosenberg 2009; Kubatko et al. 2009), information from unre-

solved or poorly resolved loci is incorporated automatically. This

is particularly important in recently diverged populations. For ex-

ample, a monomorphic locus resulting from a recent coalescence

event would be excluded from analyses conditional on gene tree

reconstruction as uninformative, resulting in upwardly biased es-

timates of divergence time.

We first compared the likelihood of all three possible pop-

ulation tree topologies. Although assessing the statistical signif-

icance of nonnested models is difficult in a likelihood setting,

models may be ranked by their likelihood (Carstens et al. 2009).

Under the “Out of the East” scenario, central and western popula-

tions are derived from a shared ancestral population in the center,

which in turn split from a common ancestral population in the

east, that is, the population tree topology is (E, (C, W)) (Fig. 1).

The two alternative topologies are (W, (C, E)), which corresponds

to an “Out of the West” scenario, and (C, (E, W)) which is difficult

to interpret in the geographic context of C. fungosa populations,
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because it is unclear where the two ancestral populations would

be located.

ML analyses under the most likely population history were

performed for two different mutational models. The simplest

model assumes a single mutation rate across all loci. We reran

this analysis using the relative rates calculated for each locus as

described above (Table 1), thereby accounting for possible rate

heterogeneity (Table 3).

BAYESIAN ESTIMATION OF DIVERGENCE TIMES

AND ANCESTRAL POPULATION SIZES

MCMCcoal (Rannala and Yang 2003) is the Bayesian equiv-

alent of the ML approach described above. The program uses

Markov chain Monte Carlo (MCMC) sampling to estimate pos-

terior probabilities for all model parameters conditional on prior

distributions. If multiple individuals per population are sampled,

the three population sizes between the present and the most re-

cent divergence event (i.e., NE, NC, NW ) (Fig. 1) are modeled as

additional parameters. Note that the parameterization in MCMC-

coal differs slightly from Ne3sML, as the former uses divergence

times rather than internode intervals.

In a Bayesian framework, support for alternative but

nonnested models can be compared using Bayes factors (Kass

and Raftery 1995). Natural logarithms (ln) of harmonic mean

likelihoods (HML) were calculated for each population tree topol-

ogy (using prior means in analysis a described below) to test

support for the “Out of the East” scenario. Following Kass

and Raftery (1995), values of twice the difference in lnHML

(2�lnHML) of 2–6, 6–10, and >10 represent, respectively, pos-

itive, strong, and very strong support for the model with higher

likelihood.

Because in the case of C. fungosa we have no prior knowl-

edge of the model parameters, we used exponentially distributed

priors (shape parameter α = 1) for all parameters (Jennings and

Edwards 2005). To check how sensitive posterior estimates are to

prior settings, all analyses were performed twice using different

prior means by adjusting β, the scale parameter of the gamma

distribution (Table 4). In the first analysis (a), we set prior means

to ∼0.150 mya and ∼0.050 mya for τE/C/W and τC/W , respec-

tively (β = 380) and ∼215,000 for both ancestral population

sizes (β = 1520). In the second analysis (b), the prior means

for all parameters were increased by an order of magnitude (i.e.,

changing β to 38 and 152) (Table 4). Although the individual

parameter values are arbitrary, these two sets of priors should

be different enough to assess the robustness of the Bayesian es-

timation (Jennings and Edwards 2005). Given that incorporat-

ing relative mutation rates did not improve estimation using the

ML method (see Results), for simplicity all Bayesian analyses

were performed assuming a single mutation rate across all loci.

Runs were continued for 106 generations with a burn-in of 105

and repeated using different random number seeds to check for

convergence.

Results
GENE TREES

When only a single individual was sampled from each refugial

population, phylogenetic reconstructions for eight of the 18 poly-

morphic nuclear loci supported the “Out of the East” topology (E,

(C, W)) (Fig. 3A), as did the mitochondrial locus Cox1 (Fig. 2D).

Of the remaining loci, two supported each of the two incongruent

topologies (Fig. 2B, C) and six showed an unresolved topol-

ogy (RpL15, RACK1, ran, Tctp, sansfille, SUI). Clock-rooted and

outgroup-rooted topologies agreed for all resolved loci, but boot-

strap support was generally weaker for outgroup rooting (Fig. 3).

Although this is not a formal test, the majority of resolved gene

trees thus support the “Out of the East” hypothesis (Fig. 1).

Tajima’s 1 − D test rejected a strict molecular clock for only

two of 20 loci (RpS15, RpL 37). Thus the majority of loci meet

the clock assumption implicit in the ML and Bayesian approaches

used here.

Increasing sample size to three individuals from each refu-

gial population resulted in increased variation in gene tree topol-

ogy (Fig. 4). Despite the many unresolved nodes in some trees,

Figure 4 reveals extensive incomplete lineage sorting between C.

fungosa populations, resulting in a “forest” of largely incongruent

gene trees.

MAXIMUM LIKELIHOOD ANALYSES

The population tree topology (E, (C, W)) had a higher likeli-

hood than either of the two alternative topologies (C, (E, W))

and (W, (C, E)), consistent with the “Out of the East” hypothesis

(Table 2). The maximum likelihood estimates (MLEs) of model

parameters are broadly consistent between the variable rate (18

loci) and single rate mutational models (using the same 18 loci).

However, because the variable rates model has a lower log like-

lihood, the simpler single rate model was used in all subsequent

analyses including the Bayesian runs (Table 3). This also allowed

the loci SUI and bellwether, for which no outgroup sequences

could be obtained, to be included in the analyses, giving a total of

20 loci.

Under the “Out of the East” topology (E, (C, W)), the MLE

for the older population splitting time between the Iranian pop-

ulation and the ancestor of Hungary and Spain, τE/C/W , is esti-

mated as 0.110 mya (Table 3). The MLE for θE/C/W corresponds

to an ancestral population with an effective size of 614,000 be-

fore this first split. However, both the MLE for the time be-

tween the two population splits, τE/C/W − τC/W and the popu-

lation size during that time, NC/W are close to zero, suggesting

that Iberian and Hungarian populations may have split almost
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Figure 3. ML trees reconstructed for nuclear loci and Cox1 assuming a strict molecular clock. Bootstrap proportions for the internal

node are shown next to each tree. Loci with unresolved topologies (<50% bootstrap support) are not shown. Eight loci have a topology

congruent with the “Out of the East” hypothesis (E, (C, W)) (A), two each have topology (W, (C, E)) (B) and (C, (E, W)) (C). The mitochondrial

locus Cox1 is also congruent with “Out of the East” (D). Bootstrap support using rooting with C. lauta is indicated with asterisks (∗ > 50%,
∗∗ > 70%) below each tree.

immediately after the initial divergence from the ancestral Eastern

population (Table 3).

BAYESIAN ESTIMATION OF DIVERGENCE TIMES

AND ANCESTRAL POPULATION SIZES

Minimal sampling
Bayes factor comparison of lnHML (Table 2) shows that the “Out

of the East” model fits the data significantly better than either of

the alternative population tree topologies. The contrasting sets of

priors a and b had little impact on posterior estimates of three

of the four model parameters (Table 4, Fig. 5A, B, D). Poste-

rior mean ages for the split between eastern populations and the

common ancestor of central and western populations τE/C/W were

0.118 mya and 0.134 mya in analyses a and b respectively, with

values of 0.043 mya and 0.046 mya for the divide between cen-

tral and western populations τC/W (Table 4). This comparatively

long interval between the two divergence times (τE/C/W − τC/W )

is in apparent contrast to the results of the ML analysis. How-

ever, the 95% confidence intervals for the two divergence times

overlap in both prior settings a and b, such that the lower confi-

dence interval for τE/C/W − τC/W includes zero, compatible with

divergence between western and central populations occurring

immediately after the initial split from the ancestral eastern pop-

ulation. Likewise, the posterior estimate for the effective size of

the population ancestral to all three refugial populations (NE/C/W )

was minimally influenced by the prior (Table 4, Fig. 5D) (551,000

for a and 585,000 for b).

In contrast, posterior distributions for the effective size of the

population ancestral to central and western populations, NC/W ,

differed considerably between prior settings a and b (197,000 and

698,000) (Table 4, Fig. 5C). NC/W was also the parameter with the

largest variance, the 95% confidence interval spanning two orders

of magnitude (priors b, Table 4). Notably, with both prior settings,

posterior distributions of NC/W peak at the origin (Fig. 5C). This

suggests that there is little information about NC/W in the data,

with posterior distributions largely reconstructing the prior.

To investigate whether the uncertainty in NC/W can account

for the apparent difference in ML and Bayesian estimates of the

interval between population splits (τE/C/W − τC/W ), we carried out

a third MCMCcoal run (Table 4, priors c). When the prior mean for

NC/W is set to a very low value (2100), the posterior distribution

for τC/W shifts markedly toward the right (Fig. 5A) such that the
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Figure 4. ML trees for the extended sampling of three individuals (labeled 1–3) per population for 12 nuclear loci and Cox1 rooted using

C. lauta. RpL37a is monomorphic and not shown. Although on average samples from the same population are more closely related than

those from different populations, there is extensive lineage sorting, resulting in a “forest” of partially incongruent gene trees.

two divergence events are estimated to have happened in close

succession (0.091 and 0.089 mya) in agreement with the ML

results (Table 3).

Extended (three individual) sampling
MCMCcoal analyses of the extended (three individual per popula-

tion) dataset again gave strongest support to the “Out of the East”

scenario (Table 2). Although Bayes factor comparison strongly

rejects the “Out of the West” topology (W, (C, E)), the second

alternative topology (C, (E, W)) does not provide a significantly

worse fit to the data (Table 2).

Parameter estimates agree well with those obtained when

only a single individual per population was sampled (Table S3

and Fig. S1). However, increased sampling does have some influ-

ence on parameter estimation. First, estimates of NC/W , are larger

and less sensitive to prior settings when three individuals per
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Table 2. Comparison of support for alternative population tree topologies, using the lnL of the maximum likelihood estimation (NeML3s)

and the harmonic mean likelihood (lnHML) in the Bayesian analyses. In each case the “Out of the East” topology has the highest likelihood

(in bold). Values in parentheses show the ln Bayes factor (2�lnHML) of the “Out of the East” hypothesis relative to alternatives. Topologies

that fit significantly worse than the “Out of the East” hypothesis are indicated with asterisks, using a ln Bayes factor of 2–6 to indicate

positive support (∗), 6–10 to indicate strong support (∗∗), and >10 to indicate very strong support (∗∗∗), following Kass and Raftery (1995).

Population tree topology

Out of the East Out of the West (C, (E, W))
(E, (C, W)) (W, (C, E))

NeML3s (single triplet) lnL −796.94 −799.06 −799.05
MCMCcoal (a, single triplet) ln(har.mean) −19100.692 −19103.820 (lnBF=6.25)∗∗ −19103.060 (lnBF=4.73)∗

MCMCcoal (a, extd. triplet) ln(har.mean) −19558.237 −19563.899 (lnBF=11.324)∗∗∗ −19558.997 (lnBF=0.76)

population are sampled for both prior sets a and b (Table S3). Sec-

ond, the posterior distributions for τC/W are now unimodal, rather

than L-shaped with a maximum at the origin (Fig. S1). However,

this has little impact on the variance of the posterior. For example,

the 95% confidence interval for τC/W is 0.005–0.136 mya (priors

a) in the analysis of the extended samples of three individuals

per population, compared with 0.002–0.121 mya when sampling

a single individual (Table 4). Taken together this suggests that

increasing sample size per population to three haploid individu-

als adds some, but not much, power to the estimation of model

parameters.

Sampling multiple individuals per population we can also

estimate the effective sizes of the three sampled populations be-

tween the present and the first divergence events, NE, NC, NW .

(Table S3). Although estimates of these parameters had fairly

wide confidence intervals and were sensitive to prior settings,

their relative magnitude was consistent across analyses. NC was

always the largest followed by NE and NW . It is also noteworthy

that all three estimates were smaller than those obtained for ances-

tral populations, paralleling the findings of Jennings and Edwards

(2005) and previous results in Great Ape studies (Chen and Li

2001; Yang 2002; Patterson et al. 2006).

GENE DIVERGENCE TIMES

Following Jennings and Edwards (2005), we calculated Jukes

Cantor distances (D) to estimate coalescence times for each di-

vergence event (D/2) and compared the average distance across

loci with the estimated population divergence time and the mito-

chondrial (Cox1) node ages for both single and three individual

samples. In both cases, nuclear genes sampled from central and

western populations diverged on average almost 0.4 million years

(or three glacial periods) prior to the estimated population diver-

gence (Fig. 6). Coalescence times estimated for Cox1 depend on

the assumed mutation rate. Applying the calibration by Oliveira

et al. (2008), both coalescence times for Cox1 (0.013 MY and

0.145 MY respectively) are younger than the average coalescence

at nuclear genes but are well within the 95% of the estimated pop-

ulation divergence (Table 4). Using Brower (1994), mitochon-

drial coalescence between the ancestor of central and western

samples and the eastern sample (1.433 mya) predates the aver-

age coalescence times for nuclear genes (0.714 mya), whereas

the mitochondrial coalescence time between central and western

samples (0.125 mya) is still more recent than that for nuclear

genes (0.467 mya) (Fig. 6).

Discussion
We analyzed a large multilocus dataset under the simplest possible

model of divergence between three populations to make quanti-

tative inferences about the longitudinal history of C. fungosa.

Reconstructing the genealogical histories of individual loci leads

to a “forest” of largely incongruent and often poorly resolved

Table 3. Maximum Likelihood estimates (MLEs) of ancestral population sizes and population divergence times for refugial populations

of C. fungosa assuming a population tree topology (E, (C, W)). Corresponding Ne and τ values are shown in bold in brackets. The simplest

mutational model assumes a single rate for all loci. In the variable rates analysis, a relative mutation rate was computed for each locus

from divergence to C. lauta.

MLE, single rate (20 loci) MLE, single rate (18 loci) MLE, variable rates (18 loci)

θE/C/W (NE/C/W ) 0.0076979 (614,000) 0.007995 (637,000) 0.008933 (712,000)
θC/W (NC/W ) 0.000008 (<1000) 0.000002 (<1000) 0.000003 (<1000)
γE/C/W −γC/W (τE/C/W in my) 0.0000032 (<0.001) 0.000001 (<0.001) 0.000001 (<0.001)
γC/W τC/W in my 0.0006924 (0.110) 0.000712 (0.114) 0.000756 (0.121)
lnL −853.486 −794.948 −796.913
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Table 4. Prior and posterior means and 95% confidence intervals for divergence times and ancestral population sizes in Bayesian

analyses using minimal sampling of a single individual per population and assuming an “Out of the East” population tree topology (E,

(C, W)). Corresponding Ne and τ values are shown in bold below. All analyses (a–c) assumed exponentially distributed priors (α=1), but

differed in their prior means. The population size in between the two divergence events NC/W is the parameter most sensitive to prior

choice and has the widest confidence interval.

Parameter (α, β) Prior mean Posterior mean
(95% confidence interval) (95% confidence interval)

priors a
θE/C/W (1, 380) 0.00271 (0.00011, 0.00968) 0.00691 (0.00239, 0.01830)
NE/C/W 216,000 (10,000, 772,000) 551,000 (190,000, 1,459,000)
θC/W (1, 380) 0.00267 (0.00009, 0.00982) 0.002477 (0.00033, 0.00727)
NC/W 213,000 (8,000, 783,000) 197,000 (26,000, 580,000)
γE/C/W (1, 1519) 0.00095 (0.00012, 0.00276) 0.00074 (0.00019, 0.00139)
τE/C/W 0.151 my (0.019 my, 0.440 my) 0.118 my, (0.030 my, 0.221 my)
γC/W (1, 1519) 0.000329 (0.00001, 0.00119) 0.00027 (0.00001, 0.00076)
τC/W 0.052 my, (0.002 my, 0.189 my) 0.043 my, (0.002 my, 0.121 my)

priors b
θE/C/W (1, 38) 0.02664 (0.00083, 0.09691) 0.00734 (0.00464, 0.01121)
NE/C/W 2,124,000, (66,000, 7,726,000) 585,000 (370,000, 894,000)
θC/W (1, 38) 0.02639 (0.00064, 0.09669) 0.00875 (0.00050, 0.05260)
NC/W 2,104,000 (51,000, 7,709,000) 698,000 (40,000, 4,141,000)
γE/C/W (1, 152) 0.00980 (0.00113, 0.02918) 0.00084 (0.00023, 0.00156)
τE/C/W 1.563 my (0.180 my, 4.653 my) 0.134 my (0.037 my, 0.249 my)
γC/W (1, 152) 0.00326 (0.00008, 0.01198) 0.00029 (0.00001, 0.00084)
τC/W 0.520 my (0.131 my, 1.910 my) 0.046 my (0.002 my, 0.134 my)

priors c
θE/C/W (1, 380) 0.00257 (0.00004, 0.00961) 0.00741 (0.00485, 0.01088)
NE/C/W 205,000 (3,000, 766,000) 591,000, (387,000, 868,000)
θC/W (1, 38000) 0.00003 (<0.00001, 0.00009) 0.00005 (0.00001, 0.00015)
NC/W 2,100 (<1000, 7,000) 5,000, (<1,000, 13,000)
γE/C/W (1, 1519) 0.00096 (0.00011, 0.00277) 0.00057 (0.00011, 0.00111)
τE/C/W 0.153 my (0.017 my, 0.442 my) 0.091 my (0.018 my, 0.177 my)
γC/W (1, 1519) 0.00033 (0.00001, 0.00122) 0.00056 (0.00011, 0.00108)
τC/W 0.053 my (0.013 my, 0.195 my) 0.089 my (0.018 my, 0.172 my)

gene trees (Fig. 4), which individually contain little information

about the underlying population history. However, analyzing these

data jointly in a coalescent framework, the relationship between

major refugial populations of C. fungosa can be described as

a quantified population tree, which includes relevant population

genetic parameters (Fig. 7). This is a considerable improvement

over previous phylogeographic studies in this system, which have

largely been based on mitochondrial sequence data and allozymes

(Rokas et al. 2001, 2003; Stone et al. 2001; Challis et al. 2007;

Stone et al. 2009) and allows us to quantify important aspects of

the phylogeographic history of C. fungosa.

First, both likelihood and Bayes factor comparisons of pop-

ulation tree topologies (Table 2) support the “Out of the East”

scenario for C. fungosa.

Second, both ML and Bayesian estimates for the time of

the first population split between the eastern population and the

common ancestral population of central and western populations

τE/C/W fall well within the late Pleistocene. Likewise, both meth-

ods suggest that the more recent divergence between central and

western populations (τC/W ) occurred either during the last inter-

glacial or glacial period. However, because the MLE for the time

between population splits (τE/C/W − τC/W ) is effectively zero and

the 95% confidence intervals for the two divergence times overlap

in all Bayesian analyses, we cannot exclude the possibility that

the two population splits happened in close succession.

Finally, the present coalescent analyses provide information

about the effective sizes of ancestral and present populations.

Although our estimates of both ancestral population sizes, in par-

ticular NC/W , have large confidence intervals and, in the case of

NC/W , are sensitive to prior settings (discussed below), they pro-

vide an important comparison with model organisms. For example

the observed diversity in C. fungosa (πs = 0.92%, Table 1) is com-

parable with that in non-African populations of D. melanogaster

(πs = 1.33%) (e.g., Andolfatto 2001, Table 3). Similarly, estimates
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Figure 5. Prior and posterior distributions of parameters under the “Out of the East” model of population divergence using minimal

sampling of a single individual per population. Prior distributions for the first two MCMCcoal analyses are shown as dashed lines (a,

mixed long and short dashes between blue symbols; b, long dashes between red symbols), posterior distributions for the single triplet

analysis are in color (a, red; b, blue; c, black). Whereas τE/C/W (B) and NE/C /W (D) are little influenced by the prior means, NC/W (C) is

extremely sensitive. This parameter is also confounded with τC/W . When setting a low prior mean for NC/W (analysis c) the posterior

distribution for τC/W shifts markedly toward the right (see black line in A). Note that despite α = 1 for all model parameters, the prior

distribution for τE/C/W (B) is not exponential because of the constraint τE/C/W > τC/W.

for the effective population sizes of D. melanogaster of 106

(Andolfatto and Przeworski 2000) and for effective size of the

ancestor of D. melanogaster and D. simulans of Ng = 3.9 × 105

(Li et al. 1999) agree with our results for C. fungosa in order

of magnitude. If effective population sizes of 106 are the rule

in insect parasitoids, their longitudinal histories will inevitably

involve extensive incomplete lineage sorting, strengthening the

case for multilocus approaches for meaningful phylogeographic

inferences.

How do these results compare with those obtained from sin-

gle gene trees both in C. fungosa and in other codistributed oak

gall parasitoids and their hosts? In C. fungosa, the topology of the

inferred population tree (Fig. 7) is congruent with both the ma-

jority of resolved nuclear gene trees as well as the mitochondrial

gene tree when a single individual per refugial population was

sampled (Fig. 3). More generally, the eastern origin of C. fungosa

is consistent with the mitochondrial gene tree for another oak gall

parasitoid, M. stigmatizans (Hayward and Stone 2006), with mi-

tochondrial and nuclear gene trees in the parasitoid M. dorsalis

(Nicholls et al. 2010) and three species of host gall wasps (Rokas

et al. 2003; Challis et al. 2007; Stone et al. 2007, 2009).

Although by definition gene divergence must predate the di-

vergence of populations, our results suggest that the magnitude

of this difference is considerable in C. fungosa and very relevant
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Figure 6. Divergence times for the two splits in the Out of the East model (C vs. W left and (C,W) vs. E right). The figure shows that

Bayesian estimates (prior settings a) of population divergence times for both single and extended triplet samples (columns 4 and 5 in

each figure, respectively) are more recent than the mean coalescence time across nuclear loci for both sampling schemes (columns 2 and

3 in each figure). Mitochondrial divergence (column 1) was calculated from node ages in the single triplet tree using both Oliveira et al.’s

(2008) rate calibrated from Nasonia sister species (lower estimates, bold bars in column 1) and the widely applied rate estimate of Brower

(1994) (higher estimates, column 1). Error bars show ±95% confidence limits.

for our interpretation of its Pleistocene history. It is notewor-

thy that the estimates for τE/C/W coincide with the last (Eemian)

interglacial, 0.130–0.115 mya, which suggests that divergence be-

tween refugial populations is as recent as it possibly can be (given

the definition of glacial refugia). We know from the fossil record

that both oaks (Velichko et al. 2005) and associated gall wasp

species (Stone et al. 2008; van der Ham et al. 2008) known to

be attacked by Cecidostiba expanded their range in Central and

Figure 7. Population tree for Western Palearctic C. fungosa inferred from 20 genetrees. Means of posterior distributions of model

parameters were obtained from the Bayesian analysis (priors a, extended sampling of three sequences per population, Table S3 and

figure S4). The widths of blocks correspond to effective population sizes (scale at top). Divergence times are shown on two different

scales: τ in MY (right-hand scale), and t = t/(2NE/C/W ) generations assuming two generations per year, that is, g = 0.5 (left-hand scale).

Note that all blocks have a greater width than height such that pairs of lineages sampled from the same population are more likely to

coalesce in their ancestral population.
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Northern Europe during this period. It is thus plausible for popu-

lation divergences associated with westward range expansions of

C. fungosa to have occurred over a similar timescale.

Although the unknown error in the mitochondrial clock

and the large discrepancy between different calibrations (Brower

1994; Oliveira et al. 2008) make a direct comparison with mito-

chondrial dates problematic, it is nevertheless reassuring that the

mitochondrial ages obtained for C. fungosa fall within the 95%

confidence interval of (Oliveira et al. 2008) or predate (Brower

1994) the estimated time of population divergence (Fig. 6), as they

should. A mitochondrial divergence more recent than that inferred

for the population would be inconsistent with the assumed model,

and require gene flow between populations. However, it is note-

worthy that regardless of the mitochondrial mutation rate used,

the Cox1 divergence times are very different from the average

divergence times at nuclear genes (Fig. 6). This demonstrates

the extremely large variance in coalescence times and highlights

the danger of over-interpreting node ages of single gene trees.

An additional problem with mitochondrial mutation rate calibra-

tions is that they are likely to be confounded by the selective

dynamics of bacterial endosymbionts (Oliveira et al. 2008), the

prevalence of which is known to differ both between populations

and closely related species of Pteromalids (Weinert et al. 2009,

A. Aebi, unpubl. data). It is therefore not clear to what extent the

Nasonia rate applies to C. fungosa. In contrast, the nuclear esti-

mates for Nasonia are broadly consistent with those obtained for

other insects.

The fact that divergence at a single locus can only pro-

vide an upper bound of the population divergence time may

well explain why mitochondrial dates found in previous stud-

ies on other species of European gall parasitoids and their gall

wasp hosts (Hayward and Stone 2006) are considerably older

than the population divergence estimates for C. fungosa obtained

here. For instance, mitochondrial divergence between Central

European and Iberian clades of the parasitoid M. stigmatizans

has been estimated at 0.264 mya (Hayward and Stone 2006).

Mitochondrial divergence estimates between Central Europe and

Iberia for gall wasp host species are still older; for example,

0.383 mya in Andricus kollari (Hayward and Stone 2006) and

1.6 mya in Andricus coriarius sensu stricto (Challis et al. 2007).

Analyses of multilocus datasets are clearly required to pro-

vide better estimates of population divergence times in these

species. As our results show, the fact that the variance in coa-

lescence time is lower for mitochondrial loci given their smaller

Ne may reduce but does not alleviate this problem. This un-

derlines the possibility raised by Nichols (2001) that between-

taxon variation in mtDNA-inferred dates of divergence between

glacial refugia may well be attributable to coalescent variance

rather than taxon-specific differences in postglacial dispersal.

Rigorous testing of the hypothesis of taxon-specific variation

in divergence times requires broader application of multilocus

approaches.

ANCESTRAL Ne AND SAMPLING

The results of the Bayesian analyses show that estimates of τC/W ,

or rather the time between the population splits (τE/C/W − τC/W )

and the population size during that time, NC/W , are confounded.

Considering that it is the ratio of the two parameters which de-

termines the chance of coalescence between population splits

(Hudson 1983; Saitou and Nei 1986; Yang 2002), this makes in-

tuitive sense and may explain the poor ability to estimate NC/W

independently. A large variance in ancestral Ne has also been re-

ported by most earlier multilocus analyses of divergence models

(Chen and Li 2001; Yang 2002; Rannala and Yang 2003). In gen-

eral, explanations for the low power to estimate this parameter

fall into two categories: (1) violations of the model assumptions;

and (2) limited signal in the data.

Ignoring within-locus recombination and mutational rate het-

erogeneity, for example, can in principle overestimate ancestral

population sizes (Satta et al. 2000; Yang 2002; Wall 2003). How-

ever, the few studies that have incorporated these factors suggest

that they have little influence on estimates of ancestral Ne (Satta

et al. 2000; Yang 2002; Wall 2003). Similarly, the fact that our

ML results for the variable mutation model are in agreement with

those assuming a single rate despite large differences in relative

mutation rates (Table 1) suggests that any impact of mutational

heterogeneity between loci is greatly outweighed by coalescence

and mutational variance and therefore an unlikely explanation for

the low power to estimate NC/W .

In general, there are two factors that determine statistical

power to infer ancestral parameters; (1) the number of lineages

that contribute to the estimate (Fig. 2) and (2) the mutational infor-

mation available to infer their relationships. Both clearly depend

on the timescale of divergence. Relating the estimated population

divergence times (scaled by the mean of current population sizes)

for C. fungosa to the theoretical expectation for the number of

surviving lineages, we can ask how much power could poten-

tially be gained by further increasing sample sizes. For example,

Figure 2 shows that sampling three instead of a single individual

per population roughly doubles the expected number of east-

ern lineages that survive into the common ancestral population,

whereas 16 more individuals are required for a further twofold

increase. For the more recent divergence at τC/W , the increase in

the number of surviving lineages from additional samples is of

course more substantial (Fig. 2). However, if our analysis was

limited by sample size, we would expect to see an improvement

in parameter estimation proportional to the increase in the num-

ber of surviving lineages when sampling three individuals. The

fact that this is not the case (i.e., the variance in the estimates of

three of the four model parameters is little affected despite the
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doubling of surviving lineages) suggests that the power to infer

ancestral parameters is largely limited by the mutational variation

available rather than the sample size. However, our finding of

a markedly higher posterior mean NC/W for the three individual

sampling suggests that the estimation of this parameter may in-

deed be sensitive to the sample size. This makes intuitive sense if

we extend the “number of surviving lineage” argument above and

consider that only lineages that survive into NC/W and coalesce

before they reach NE/C/W contribute to the estimate of NC/W . One

would therefore expect increased power to estimate this param-

eter with increasing sample sizes both in C. fungosa and in the

bird divergence studied by Jennings and Edwards (2005). Thor-

ough investigation of the effect of sampling on statistical power

in divergence models both theoretically and using empirical data

is required to inform sample designs of future population genetic

and phylogeographic studies. In particular, disentangling the ef-

fects of mutational limitation and those of sample size (both the

number of sampled loci and individuals) would be useful. If muta-

tional information is not limiting, gene tree species tree methods

(Degnan and Salter 1995; Maddison and Knowles 2006; Liu and

Pearl 2007; Degnan and Rosenberg 2009; Kubatko et al. 2009)

should converge to the same answer as the inference methods

used here.

Another way to improve power may be to use outgroup in-

formation in the likelihood calculation. At present Ne3sML and

MCMCcoal rely on clock rooting (Yang 2002), which, given the

small number of polymorphic sites in some loci, results in large

topological uncertainty. Being able to distinguish between par-

simony informative sites and singleton mutations by reference

to an outgroup should in principle enhance the power of both

approaches.

ASSUMPTIONS AND EXTENSIONS OF THE MODEL

Considering the large confidence intervals in parameter estimates,

it is clear that quantitative inference of population history is a

data-hungry problem, particularly if divergence is recent. It is

therefore questionable how much scope there is to probe more

realistic models without increasing the amount of data drastically.

In general, inferences of ancestral population parameters are likely

to be much more sensitive to violations of the divergence model

than they are to violations of the model of sequence evolution.

Because there are key population processes omitted from the

present analyses that render population history less tree-like, one

could argue that the notion of a “population tree” as such is an

unrealistic description of phylogeographic history.

First, the model assumes that there is no migration after

divergence. Although at least in the host gallwasps, allele fre-

quency data support this assumption (Rokas et al. 2001, 2003;

Stone et al. 2001, 2008; Challis et al. 2007), we cannot exclude

the possibility of migration after divergence for C. fungosa. It

would therefore be interesting to relax this assumption and IMa,

which uses the algorithm of MCMCcoal, has recently been ex-

tended to estimate divergence with migration for more than two

populations (Hey 2010). However, modeling migration explicitly

in a three-population model introduces six additional parameters.

Considering the low divergence between C. fungosa populations

for our loci, there would appear to be little power in the data to

distinguish between a divergence model with a very recent split as

inferred here and more complicated models involving both diver-

gence and subsequent gene flow. Clearly, much larger amounts

of data are needed to successfully explore such models. An ad-

ditional problem with analyzing models of migration is that, in

contrast to strict divergence models, they are sensitive to unsam-

pled populations (Wilkinson-Herbots 2008; Lohse 2009). With

the advent of nextgen sequencing technologies, the volumes of

data required to explore divergence with gene flow on such recent

timescales should soon be available.

Second, the model assumes constant population sizes be-

tween divergence events. Again, allowing for changes in popula-

tion size opens up a myriad of possible historical scenarios and

potentially increases the number of parameters dramatically.

Fortunately however, the C. fungosa data allow us to at least

exclude drastic demographic events. For instance, under a model

of colonization through extreme founder events (without subse-

quent migration), widespread incongruence between gene trees

and population trees would not be expected. Thus the mere pres-

ence of all possible gene tree topologies in our data allows us to

reject this scenario for C. fungosa.

And finally, the model assumes panmixia within populations,

which may be unrealistic over short timescales and large geo-

graphic areas. Recent theoretical work (Slatkin and Pollack 2008)

and simulations (Becquet and Przeworski 2009) have demon-

strated that subdivision in ancestral populations can lead to mis-

inference under simple divergence models.

In general, any model-based analysis faces the challenge of

choosing models that contain sufficient realism to capture key

features in the data while being simple enough to be useful. We

have shown that in the case of C. fungosa a simple divergence

model between three populations can explain the observed gen-

etree incongruence and be used to estimate both the origin and

divergence time of refugial populations despite the recency of

this history. We hope that this study motivates similar analyses of

more realistic models.

TOWARD A MULTILOCUS APPROACH

TO COMMUNITY PHYLOGEOGRAPHY

The close ecological dependence of oak gall parasitoids on their

hosts and the large number of species involved make this and

similar host–parasitoid communities valuable systems in which

to study the evolution of ecological interactions (Schönrogge
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et al. 1995; Hayward and Stone 2005). Unlike most organisms for

which similar multilocus analyses have been conducted (Li et al.

1999; Rannala and Yang 2003; Jennings and Edwards 2005), the

ecology of chalcidoid parasitoids involves intricate interactions

with codistributed species at different trophic levels. Linking the

extensive information on species composition and food web struc-

ture for these communities (Schönrogge et al. 1995, 1996a; Bailey

et al. 2009) with population genetic and phylogeographic infer-

ences at the species level opens up an exciting opportunity to

address novel and general questions about coevolution and assem-

bly of communities. For instance, do particular lineages or guilds

within trophic levels show earlier longitudinal range expansion

than others? And if so, what are the ecological properties of such

species? For example, are they generalists rather than specialists,

and so less likely to go locally extinct (Hayward and Stone 2006)?

Further questions arise when considering multiple trophic levels.

How correlated are phylogeographic histories between hosts and

parasitoids? Is there a general lag between the arrival of gallwasp

(or other herbivore) hosts and associated parasitoids such that

herbivores experience periods of enemy-free space (Hayward and

Stone 2006)? We are currently working on obtaining multilocus

data for codistributed chalcidoid parasitoid species and their gall-

wasp hosts to address these questions in a quantitative framework.

The rarity of many of the species involved (e.g., Schönrogge et al.

1995; Stone et al. 1995; Schönrogge et al., 1996a,b, 1998; Stone

et al. 1995) means that we will have to make the most of small

sample sizes.
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The question of how DNA barcodes can and should
be used in taxonomy has been debated for some time
(Lipscomb et al. 2003; Tautz et al. 2003; Blaxter 2004;
Vogler and Monaghan 2007; Wiens 2007). Although few
doubt that they are a valuable molecular tool for match-
ing unidentified specimens to described taxa, this has
little to do with the question of whether barcodes can be
used to delimit species in the first place. The most radi-
cal turn in this debate has been the plea for a DNA-based
taxonomy (Tautz et al. 2003; Blaxter 2004; Pons et al.
2006; Vogler and Monaghan 2007). Its proponents ar-
gue that “the vast majority of sequence variation in na-
ture is partitioned into clearly defined clusters” (Vogler
and Monaghan 2007, p. 4), which “ [. . . ] broadly mirror
the species category” (Papadopoulou et al. 2008, p. 1)
and could thus serve as basic taxonomic units. Initial
attempts to employ this “barcoding gap” have relied
on defining cutoff values of sequence divergence a pri-
ori (e.g., Blaxter 2004). Considering that the amount of
genetic diversity within species can vary by orders of
magnitude, it is clear that such an approach is arbi-
trary at best. Pons et al. (2006) have recently proposed
a likelihood method that circumvents this problem by
testing for clustering in ultrametric trees. They argue
that “these new quantitative approaches can infer the
elusive species boundary directly from the transition
in branching rate and constitute an exciting possibility
to define species from sequence variation [. . . ]” (Vogler
and Monaghan 2007, p. 6). Given such claims, it is not
surprising that this method enjoys increasing popular-
ity, having been applied to a number of mitochondrial
DNA (mtDNA) data sets (e.g., Pons et al. 2006; Ahrens
et al. 2007; Fontaneto et al. 2007; Papadopoulou et al.
2008).

MODELS AND METHODS

In essence, the Mixed-Yule-Coalescent model (MYC)
of Pons et al. (2006) splices together the classical null
models of macroevolution and microevolution. Unlike
standard models of divergence that view the genealog-
ical process as nested within the species tree, the MYC
model assumes a single transition time T at which lin-

eage sorting happens instantaneously and the branch-
ing of species clades is replaced by multiple indepen-
dent coalescences occurring within them (Pons et al.
2006). Assuming T to be a particular node in the tree,
Pons et al. (2006) use the internode intervals to find
the maximum likelihood solution for T under the MYC
model and compare this to the likelihood under a null
model of a single neutral coalescent process. Although
it has been pointed out that this and similar schemes re-
lying on single locus data cannot deal with lineage sort-
ing and thus necessarily fail to detect recently diverged
lineages (Hudson and Coyne 2002; Pons et al. 2006), the
potential problems arising from population structure
have so far largely been ignored.

In a recent paper, Papadopoulou et al. (2008) have
tested the MYC method on genealogies simulated un-
der a symmetric island model, which assumes a popu-
lation divided into multiple demes or subpopulations
that are connected to all other such demes through
migration occurring at rate m (Wright 1931). Such popu-
lation structure tends to produce clustering, very similar
to that expected under the MYC model, simply be-
cause lineages residing in the same deme coalesce more
rapidly on average than those in different demes (Fig. 1).
In this setting, the genealogy of a sample may be related
to the demic structure in 3 different ways:

1. If gene flow is very low, clusters may correspond
well to demes and may thus constitute meaning-
ful taxonomic units in the broadest sense (leaving
aside the question how species should be defined).

2. If gene flow is high, clustering may be weak or
nonexistent.

3. Clusters may be essentially random, that is, only
partially corresponding to demes.

In their simulations, Papadopoulou et al. (2008) assume
an extreme sampling scheme where samples are taken
from all demes. They find that clustering under the MYC
model is only significant when migration rates are ex-
tremely low (Nm < 10−3) in which case clusters cor-
respond very well to demes (Case 1) (Papadopoulou
et al. 2008, figure 3). Once migration is above a certain
threshold value, clustering disappears rapidly and is not
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FIGURE 1. Genealogy of a sample taken from two demes B and C
in an island model. Coalescence within demes happens rapidly com-
pared with coalescence of lineages from different demes, which have
to be preceded by migration events (dashed arrows). In this case, three
“clusters” are produced because a lineage from B escapes within-deme
coalescence through migration into an unsampled deme A and has to
wait a long time until it finds itself in the same deme as the remaining
lineage.

detected by the MYC method (Case 2). The authors con-
clude that “the MYC approach appears to be conserva-
tive, only detecting the products of population isolation
when the levels of gene flow are much lower than those
traditionally regarded as sufficient for neutral popula-
tion divergence” (Papadopoulou et al. 2008, p. 8).

It is worthwhile to recall some basic properties of
the coalescent for samples in an island population here.
Going backwards in time, lineages have a probability
m per generation of escaping coalescence in their local
deme. The number of sampled demes over the total
number of demes, d/D, is crucial in determining the fate
of such escaping lineages. The first migrating lineage
has probability d/D of landing in a sampled deme in
which it may coalesce. Alternatively, with probability
1 − d/D, it lands in an unsampled deme and its coa-
lescence has to be preceded by at least one additional
migration event. Realizing the pivotal role of the sam-
pling scheme, Wakeley (1998, 2008) has developed an
elegant approximation for the coalescent in an island
model. If the number of unsampled demes is large, d/D
tends to zero and the ancestral process can be split into
two phases occurring on different timescales (large D-
approximation). Initially, lineages may either coalesce
in their local deme or spread out into unsampled demes
(scattering phase) (Fig.1). Once every lineage resides
in a separate deme, the ancestral process is a neutral
coalescent with a rate dependent on the total number
of demes, D, their size, N, and m (collecting phase).
This separation of timescales and the strong pattern of
sequence clusters resulting from it may superficially
resemble the two phases in the MYC model. However,
there are two important differences. First, there is no
branching process in the structured coalescent. Instead,
the collecting phase is another, although much slower,
neutral coalescent. Thus, theoretically, one could ex-
tend the likelihood approach of Pons et al. (2006) to
distinguish between the two models. Second and more

importantly, clusters in the structured coalescent may
be the result of migration events into unsampled demes
during the scattering phase and are thus fundamentally
random (Case 3). One would therefore expect the sam-
pling scheme to have a major impact on the performance
of the MYC method.

To investigate this, I repeated the simulations of
Papadopoulou et al. (2008) for varying d/D. Genealo-
gies were simulated in MS (Hudson 2002). The effect
of the mutational variance on tree reconstruction was
ignored, that is, the method was applied directly to sim-
ulated genealogies. Likelihoods under both the MYC
and a single neutral coalescent were calculated us-
ing the genealogy package in Mathematica (available
from www.biology.ed.ac.uk/research/institutes/ evo-
lution/software/barton/index.html). For each repli-
cate, the two models were compared in a likelihood
ratio test and the number of inferred clusters recorded
(Papadopoulou et al. 2008). To investigate the region
of the parameter space for which the MYC method
breaks down, the following sampling scheme was used.
Genealogies were simulated for a total of 100 samples
taken evenly from 10 demes. Both Nm (0.001, 0.002,
0.004, 0.008, 0.016, 0.032, 0.064, 0.128) and d/D (1, 0.5,
0.2, 0.1, 0.05) were varied and 100 replicates simulated
for each parameter combination.

RESULTS

The results agree with those of Papadopoulou
et al. (2008) in general, in that the chance of detecting
significant clustering under the MYC model declines
with increasing migration rates. However, inspection
of Figure 2a shows that the robustness of the MYC
method depends significantly on the sampling scheme.
With decreasing d/D, the chance of detecting significant
clustering in the face of high migration rates increases
drastically (Fig. 2a). The main effect of migration at the
beginning of the coalescent process is then to randomly
move lineages into unsampled demes, thereby creating
additional clusters and increasing the support of the
MYC model. For instance, if only every 20th deme is
sampled and Nm= 0.064, the chance of detecting signif-
icant clustering is still >0.8 (Fig. 2a). The overall excess
of clusters detected by the MYC method matches the
theoretical prediction for the number of lineages escap-
ing coalescence in their local deme (Fig. 2b) (Wakeley
1998, equation 32). As expected, the fit to the prediction
(which neglects the chance of migration to a sampled
deme during the scattering phase) increases with de-
creasing d/D. In the extreme case of complete sampling
(d/D = 1), the number of inferred clusters is slightly
lower than the number of demes (the gray dashed line
in Fig. 2b) because escaping lineages necessarily land in
sampled demes. The results agree both with intuition
gained from the separation-of-timescales arguments as
well as earlier simulations (Wakeley 1998) in that d/D
does not have to be very small for strong clustering to
emerge in the face of migration.
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FIGURE 2. a) The proportion of genealogies with significant (P< 0.05) clustering under the MYC model plotted against the scaled migration
rate. Different colors correspond to different sampling schemes, that is, proportions of sampled demes, d/D: Orange = 1, red = 0.5, green = 0.2,
blue = 0.1, and black = 0.05. In each case, genealogies were simulated for a total of 100 sequences. 10 samples were taken from each of 10 demes.
Each point is based on 100 replicates. The orange line corresponds to the complete sampling scheme assumed by Papadopoulou et al. (2008). b)
The average number of clusters inferred by the MYC method for different sampling schemes. The upper dotted line is the theoretical prediction
for the number of lineages at the end of the scattering phase in the limit when d/D tends to zero.

DISCUSSION

Given the large effect of the sampling scheme, how
realistic is the assumption of incomplete sampling?
First, geographic sampling is hardly ever complete
in practice. This is true in particular for most barcod-
ing data which are rarely collected with a particular
sampling scheme in mind (but see Pons et al. 2006; Pa-
padopoulou et al. 2008), and it has been argued before
that the “barcoding gap” may in part result from in-
complete spatial sampling (Moritz and Cicero 2004).
Second, there are biological reasons why the kind of
completeness required for the MYC method to be re-
liable may be impossible to achieve in practice. What
governs the formation of clusters is not the population
structure at the time of sampling but rather the sum of
population structures that have affected the ancestral
process of the sample in the past. The symmetric island
model considered here is the simplest possible model
of structure. In more realistic metapopulation models,
demes are transient so that lineages may spend the ma-
jority of their history in demes that have subsequently
gone extinct and can therefore not be sampled. Thus,
increasing the geographic scale of sampling does not
necessarily get around the problem. Considering that
separation of timescales have been applied to a variety
of models of structures (Wakeley 2004; Wilkins 2004;
Matsen and Wakeley 2006), the main result is likely to
hold in general. For instance, an analogous argument
can be made for samples from a population in a con-
tinuous 2-dimensional habitat (Wilkins 2004). In this
model, there is no discrete underlying structure at all so
any observed clustering must be spurious. However, if
a sample is taken from a set of random locations, one
would expect a pattern similar to that observed in the
island model. At the beginning, lineages either coalesce
quickly in their neighborhood or escape by chance, in
which case coalescence takes a much longer time on
average. Again, the resulting clusters would only partly

correspond to sampling locations with additional clus-
ters being created by migration during the scattering
phase (see Wilkins 2004, figure 4).

In conclusion, the method of Pons et al. (2006) delim-
its essentially random clusters when applied to samples
from a single island model population if d/D is low.
Similar behavior is expected under any model of geo-
graphic structure as long as there is a considerable frac-
tion of unsampled space and a separation-of-timescales
exists. This is particularly worrisome considering the
envisioned application of the MYC method to high-
throughput mtDNA profiles (Pons et al. 2006).
Such mass samples are likely to contain both individ-
uals from truly isolated clades or species and struc-
tured populations connected by gene flow, making it
even harder to distinguish between the two types of
clusters.

Taken together, the results cast serious doubts on
the usefulness of mtDNA barcodes as a scaffold for
an automated DNA taxonomy (Pons et al. 2006). The
stochastic nature of both migration and lineage sorting
requires multilocus data, exhaustive geographic sam-
pling, and realistic models, which can deal with the
expected incongruence between gene genealogies to de-
limit meaningful taxonomic units from sequence data
(Edwards 2009). However, this remains a difficult task
even for a very modest number of taxa (e.g., Knowles
and Carstens 2007) and is incompatible with the notion
of a DNA taxonomy based on a single locus. Given the
ubiquity of population structure in nature, the number
of potentially detectable clusters in mitochondrial bar-
code data is likely to vastly exceed that of meaningful
taxonomic units.
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