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Abstract

The inhomogeneous Poisson process is a
point process that has varying intensity
across its domain (usually time or space). For
nonparametric Bayesian modeling, the Gaus-
sian process is a useful way to place a prior
distribution on this intensity. The combina-
tion of a Poisson process and GP is known as
a Gaussian Cox process, or doubly-stochastic
Poisson process. Likelihood-based inference
in these models requires an intractable in-
tegral over an infinite-dimensional random
function. In this paper we present the
first approach to Gaussian Cox processes
in which it is possible to perform inference
without introducing approximations or finite-
dimensional proxy distributions. We call our
method the Sigmoidal Gaussian Cox Process,
which uses a generative model for Poisson
data to enable tractable inference via Markov
chain Monte Carlo. We compare our meth-
ods to competing methods on synthetic data
and apply it to several real-world data sets.

1. Introduction

The Poisson process is a widely-used model for point
data in temporal and spatial settings. The inhomo-
geneous variant of the Poisson process allows the rate
of arrivals to vary in time (or space), but typically
we do not have a preconceived idea of the appropriate
functional form for this variation. In this setting, it
is often desirable to use another stochastic process to
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describe nonparametrically the variation in the Pois-
son intensity function. This construction is called a
doubly-stochastic Poisson process, or a Cox process
(Cox, 1955), and has been applied in a variety of set-
tings, e.g. neuroscience (Cunningham et al., 2008b),
astronomy (Gregory & Loredo, 1992), and forestry
(Heikkinen & Arjas, 1999).

One variant of the Cox process is the Gaussian Cox
process, where the intensity function is a transfor-
mation of a random realization from a Gaussian pro-
cess (GP). From a modeling perspective, this is a par-
ticularly convenient way to specify general prior be-
liefs about the intensity function via a kernel, with-
out having to choose a particular functional form.
Unfortunately, however, likelihood-based inference in
this model is generally intractable, due to the need
to integrate an infinite-dimensional random function.
Various approximations have been introduced to deal
with this intractability. The classic approach of Dig-
gle (1985) uses Parzen-type kernel densities to con-
struct a nonparametric estimator, with the bandwidth
chosen via the empirical Ripley’s function (Ripley,
1977). Nonparametric Bayesian approaches to the
Gaussian Cox process have been studied in works by
Rathbun and Cressie (1994) and Møller et al. (1998),
which both introduced tractable finite-dimensional
proxy distributions via discretization. There have also
been nonparametric Bayesian approaches to inhomo-
geneous Poisson Process inference that do not use un-
derlying Gaussian processes, e.g. Dirichlet process
mixtures of Beta distributions (Kottas & Sansó, 2007).

In this paper we present the first approach to
a Gaussian Cox process model that enables fully-
nonparametric Bayesian inference via Markov chain
Monte Carlo (MCMC), without requiring either nu-
meric approximation or a finite-dimensional proxy dis-
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Figure 1. Three realizations of events from an inhomoge-
neous Poisson process in time, along with the associated
intensity function.

tribution. We achieve this tractability by extend-
ing recently-developed MCMC methods for probability
density functions (Adams et al., 2009).

2. The Model

In this section we review the Poisson process and spec-
ify our model, the Sigmoidal Gaussian Cox Process
(SGCP), which transforms a Gaussian process into
a nonparametric prior distribution on intensity func-
tions. We then show that the SGCP allows exact
simulation of Poisson data from a random infinite-
dimensional intensity function, without performing
intractable integrals. This approach is similar to
that taken for general density modeling by Adams
et al. (2009).

2.1. The Poisson Process

We consider the inhomogeneous Poisson process on a
domain S which we will take to be R

D. The Pois-
son process is parameterized by an intensity (or rate)
function λ(s) : S → R

+ where R
+ indicates the

nonnegative real numbers. The random number of
events N(T ) within a subregion T ⊂ S is Poisson-
distributed with parameter λT =

∫

T
λ(s)ds. The

number of events in disjoint subsets are independent.
Figure 1 shows an example of a one-dimensional Pois-
son intensity function along with three independently-
drawn event sequences.

2.2. A GP Prior on Poisson Intensities

We introduce a random scalar function g(s) : S → R.
This function has a Gaussian process prior, which
means that the prior distribution over any discrete set
of function values {g(sn)}Nn=1 is a multivariate Gaus-
sian distribution. These distributions can be con-

sistently defined with a positive definite covariance
function C(·, ·) : S × S → R and a mean function
m(·) : S → R. The mean and covariance functions
are parameterized by hyperparameters θ. For a more
detailed review of Gaussian processes see, e.g., Ras-
mussen and Williams (2006).

In the Sigmoidal Gaussian Cox Process, we transform
the random g(s) into a random intensity function λ(s)
via

λ(s) = λ⋆ σ(g(s)) (1)

where λ⋆ is an upper bound on λ(s) and σ(·) is
the logistic function, σ(z) = (1 + e−z)−1. Equa-
tion 1 squashes g(s) through a sigmoid function so
that each g(s) corresponds to a random function with
outputs between zero and λ⋆. In this paper we use a
logistic function as the sigmoid. The choice of λ⋆ is
part of the prior and can be included in inference, as
described in Section 3.5.

2.3. Generating Poisson Data from Random

Gaussian Process Intensities

We use the transformation of Equation 1 because it
allows us to simulate exact Poisson data from a ran-
dom intensity function drawn from the prior provided
by the Gaussian process. By exact we mean that the
data are not biased by, for example, the starting state
of a finite Markov chain. We generate these exact data
via thinning, which is a point-process variant of rejec-
tion sampling introduced by Lewis and Shedler (1979).
We extend the thinning procedure to simultaneously
sample the function g(s) from the Gaussian process.

We wish to generate a set of events {sk}
K
k=1 on some

subregion T of S which are drawn according to a Pois-
son process whose intensity function λ(s) is the re-
sult of applying Equation 1 to a random function g(s)
drawn from the GP. We do this by first simulating
a set of events {ŝj}

J
j=1 from a homogeneous Poisson

process with intensity λ⋆. If µ(·) is a measure on S,
then we first sample J , the number of events in T , by
drawing it from a Poisson distribution with parame-
ter λ⋆µ(T ). Next, the J events {ŝj}

J
j=1 are distributed

uniformly within T .

The {ŝj}
J
j=1 are now events randomly drawn from a

homogeneous Poisson process with intensity λ⋆ on T .
Next, we treat these {ŝj}

J
j=1 as input points for a

Gaussian process and sample the function g(s) at these
locations, to generate a corresponding set of function
values, denoted {g(ŝj)}

J
j=1. We now use the thinning

procedure to choose which K ≤ J points of {ŝj}
J
j=1 we

will keep so that the kept points, denoted {sk}
K
k=1, are

drawn from an inhomogeneous Poisson process with an
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Algorithm 1 Simulate data from a Poisson process on region T with random λ(s) drawn as in Equation 1

Inputs: Region T , Upper-bound λ⋆, GP functions m(s) and C(s, s′)
Outputs: Exact Poisson events E = (s1, s2, . . .)
1: V ← µ(T ) ⊲ Compute the measure of T .
2: J ∼ Poisson(V λ⋆) ⊲ Draw the number of events.
3: {ŝj}

J
j=1 ∼ Uniform(T ) ⊲ Distribute the events uniformly in T .

4: {g(ŝj)}
J
j=1 ∼ GP (C(·, ·),m(·), θ, {ŝj}

J
j=1) ⊲ Sample the function at the events from the GP.

5: E ← ∅ ⊲ Initialize the set of accepted events.
6: for j ← 1 . . . J do

7: rj ∼ Uniform(0, 1) ⊲ Draw a uniform random variate on the unit interval.
8: if rj < σ(g(ŝj)) then ⊲ Apply acceptance rule.
9: E ← E ∪ ŝj ⊲ Add ŝj to accepted events.

10: end if

11: end for

12: return E

intensity function λ(s) consistent with the {g(ŝj)}
J
j=1

we have just simulated from the Gaussian process.
We do this by generating J uniform random variates
on (0, 1), denoted {rj}

J
j=1. We only accept the events

for which rj < σ(g(ŝj)). These accepted events form
the set {sk}

K
k=1. This procedure is shown in Algo-

rithm 1 and graphically in Figure 2.

3. Inference

We have so far defined a model for generating data
from an inhomogeneous Poisson process using a GP-
based prior for the intensity function. We now address
the problem of inference: given a set of K events, de-
noted {sk}

K
k=1, within a region T , and using the SGCP

model of Section 2 as the prior, what is the posterior
distribution over λ(s)? The Poisson process likelihood
function is

p({sk}
K
k=1 |λ(s)) = exp

{

−

∫

T

ds λ(s)

} K
∏

k=1

λ(sk). (2)

For random infinite-dimensional λ(s), such as the Log
Gaussian Cox Process or the SGCP model presented
in Section 2, the integral inside the exponential cannot
be evaluated. We write Bayes’ theorem for our model,
using g to indicate the infinite-dimensional object cor-
responding to g(s):

p(g | {sk}
K
k=1) = (3)

GP (g) exp
{

−
∫

T
λ⋆σ(g(s)) ds

}
∏

kλ⋆σ(g(sk))
∫

dg GP (g) exp
{

−
∫

T
λ⋆σ(g(s)) ds

}
∏

kλ⋆σ(g(sk))
.

This posterior distribution is doubly-intractable (Mur-
ray et al., 2006), due to the presence of an intractable
integral over T in the numerator and an intractable
integral over g in the denominator. Standard Markov

chain Monte Carlo methods are unable to deal with in-
tractability in the likelihood as in Equations 2 and 3.
We also have the basic intractability that we cannot
näıvely represent the posterior distribution over the
infinite-dimensional g, even if we could perform the
integral calculations.

3.1. Tractability Via Latent Variables

Rather than performing MCMC inference directly
via the posterior in Equation 3, we augment the
posterior distribution to make the Markov chain
tractable. Specifically, we consider the Poisson data
to have been generated as in Section 2, and the ad-
ditional latent variables are 1) the total number of
“thinned” events M ; 2) the locations of the thinned
events, {s̃m}

M
m=1; 3) the values of the function g(s) at

the thinned events, denoted gM = {g(s̃m)}Mm=1; 4) the
values of the function g(s) at the observed events, de-
noted gK = {g(sk)}Kk=1. The generative procedure did
not require integrating an infinite-dimensional random
function, nor did it require knowledge of g(s) or λ(s) at
more than a finite number of locations. By considering
the procedure as a latent variable model, we inherit
these convenient properties for inference. The joint
distribution over the fixed data {sk}

K
k=1, the num-

ber of thinned events M , the location of the thinned
events {s̃m}

M
m=1, and the function value vectors gM

and gK , is

p({sk}
K
k=1,M, {s̃m}

M
m=1, gM+K |λ

⋆, T , θ) =

(λ⋆)K+M exp {−λ⋆µ(T )}
K
∏

k=1

σ(g(sk))

M
∏

m=1

σ(−g(s̃m))

× GP (gM+K | {sk}
K
k=1, {s̃m}

M
m=1, θ) (4)

where gM+K denotes a vector concatenating gM

and gK . Note that σ(−z) = 1 − σ(z), and that we
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Figure 2. This sequence of figures shows the generative
procedure for the SGCP. a) The upper-bounding inten-
sity λ⋆ is shown, along with a Poisson time series gener-
ated from it. b) At each point of the time series, a sam-
ple is drawn from the Gaussian process. This function is
squashed through the logistic function so that it is every-
where positive and upper-bounded by λ⋆. c) Variates are
drawn uniformly on (0, λ⋆) in the vertical coordinate. d) If
the uniform variates are greater than the random function,
then the corresponding events are discarded. The kept
events are drawn from the inhomogeneous Poisson process
corresponding to the random intensity λ(s).

have integrated out the vertical coordinates r that
determined acceptance and rejection. We use three
kinds of Markov transitions to sample from this joint
distribution: 1) changing M , the number of latent
thinned events, 2) changing the locations {s̃m}

M
m=1 of

the thinned events, and 3) changing the latent func-
tion vector gM+K . We also address hyperparameter
inference in Section 3.5.

3.2. Sampling the Number of Thinned Events

We use Metropolis–Hastings to sample from the num-
ber of thinned events M . We define a function
b(K,M) : N × N → (0, 1) that gives the Bernoulli
probability of proposing an insertion or a deletion. An
insertion move consists of proposing a new s̃′ drawn
uniformly from T , followed by a draw of the corre-
sponding function value g(s̃′) from the Gaussian pro-

cess, conditioned on the current state gM+K . This pro-
posal is

qins(M+1←M) =
b(K,M)

µ(T )
GP (g(s̃′) | s̃′, gM+K).

(5)

A deletion move for a latent thinned event consists of
selecting the event m to remove randomly and uni-
formly from the M events in the current state. This
proposal has density

qdel(M−1←M) =
1− b(K,M)

M
. (6)

We incorporate the joint distribution of Equation 4
to find the Metropolis–Hastings acceptance ratios of
each type of proposal, integrating out the vertical co-
ordinate r:

ains =
(1−b(K,M+1)) µ(T ) λ⋆

(M+1) b(K,M) (1+exp{g(s̃′)})
(7)

adel =
M b(K,M−1) (1+exp{g(s̃m)})

(1−b(K,M)) µ(T ) λ⋆
. (8)

The proposal probability b(K,M) can safely be set
to 1

2
. Tuning and domain knowledge can almost cer-

tainly yield better choices, however. We have not ex-
tensively explored this topic. In practice we have found
it useful to make several (≈ 10) of these transitions for
each of the transitions made in Sections 3.3 and 3.4.

3.3. Sampling the Locations of Thinned Events

Given the number of thinned events, M , we also wish
to sample from the posterior distribution on the lo-
cations of the events, {s̃m}

M
m=1. We use Metropolis–

Hastings to perform this sampling. We iterate over
each of the M thinned events and propose a new
location s̃′m via the proposal density q(s̃′m ← s̃m).
We then draw a function value g(s̃′m) from the Gaus-
sian process, conditioned on the current state gM+K .
The Metropolis–Hastings acceptance ratio for this pro-
posal, integrating out the vertical coordinate r, is

aloc =
q(s̃m ← s̃′m) (1 + exp{g(s̃m)})

q(s̃′m ← s̃m) (1 + exp{g(s̃′m)})
. (9)

Typically, perturbative proposals on the order of the
Gaussian process length scale are appropriate for these
Metropolis–Hastings steps. If the move is accepted,
the old values s̃m and g(s̃m) can safely be forgotten.

3.4. Sampling the Function

We use Hamiltonian Monte Carlo (Duane et al., 1987)
for inference of the function values gM+K , to take
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advantage of gradient information and make efficient
proposals. We perform gradient calculations in the
“whitened” space resulting from linearly transform-
ing gM+K with the inverse Cholesky decomposition of
the covariance matrix Σ, as this results in a better-
conditioned space for calculations. The log conditional
posterior distribution is

ln p(gM+K |M, {sk}
K
k=1, {sm}

M
m=1, θ) =

−
1

2
g

T
M+KΣ−1

gM+K −
K

∑

k=1

ln (1 + exp{−g(sk)})

−
M
∑

m=1

ln (1 + exp{g(s̃k)}) + const. (10)

3.5. Hyperparameter Inference

Given the data, the thinned events {s̃m}
M
m=1 and the

function values gM+K , we might also like to take ad-
vantage of hierarchical Bayesian inference to sample
from the posterior distribution on any hyperparam-
eters θ in the covariance and mean functions. This
can be performed straightforwardly using Hamiltonian
Monte Carlo.

The upper-bound parameter λ⋆ can also be inferred as
part of the MCMC procedure. Conditioned on M , K,
and the thinned event locations, the union of {sk}

K
k=1

and {sm}
M
m=1 are drawn from a homogeneous Poisson

process on T with rate λ⋆. The Gamma distribution
with shape parameter α and inverse-scale parameter β
provides a conditionally-conjugate prior for λ⋆. We
can sample from the conditional posterior distribution,
which is Gamma with parameters

αpost = α + K + M βpost = β + µ(T ).

3.6. Predictive Samples

The predictive distribution is often of interest in
Bayesian modeling. This distribution is the one arising
on sets of events, integrating out the posterior over in-
tensity functions and hyperparameters. For the SGCP
model, this corresponds to generating an entirely new
time series from the model, integrating out g(s). It
is straightforward to generate data from this distribu-
tion as a part of the MCMC inference: after any given
step in the Markov chain, run the generative procedure
of Algorithm 1, but condition on the current gM+K

when drawing from the Gaussian process. That is,
in Line 4 of Algorithm 1, condition on {sk, g(sk)}Kk=1

and {sm, g(sm)}Mm=1. This provides new time series
that are drawn from the predictive distribution.
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Figure 3. Synthetic time series and mean functions from
analyzed estimation methods. Thin solid lines show the
true intensities, the thick solid lines show the SGCP poste-
rior mean, the dot-dashed lines show the kernel estimator
(KS), and the dotted lines show the posterior mean of the
LGCP with 100 bins (LGCP100).

4. Empirical Results

We performed two types of empirical analysis of our
approach. We used synthetic data with known λ(s) to
compare the SGCP to other comparable nonparamet-
ric approaches. We also applied our method to two
real-world data sets, one temporal and one spatial.

4.1. Synthetic Data

We created three one-dimensional data sets using the
following intensity functions:

1. A sum of an exponential and a Gaussian bump:
λ1(s) = 2 exp{−s/15}+ exp{−((s− 25)/10)2}
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Table 1. The SGCP is compared with the main frequentist
kernel smoothing (KS) method and with the Log Gaus-
sian Cox Process. The LGCP requires binning and the ta-
ble shows the results with ten (LGCP10), 25 (LGCP25)
and 100 (LGCP100) bins. The comparisons were done
against time series from known intensity functions and
compared on ℓs norm to the true function and the mean
predictive log probability (lp) of ten unseen time series
from the same intensity function.

SGCP KS LGCP10 LGCP25 LGCP100

λ1(s)
ℓ2 4.20 6.65 5.96 6.12 5.44
lp -45.11 -46.41 -46.00 -46.80 -45.24

λ2(s)
ℓ2 38.38 73.71 70.34 53.27 43.51
lp 24.45 28.19 23.36 22.89 25.29

λ3(s)
ℓ2 11.41 30.56 90.76 22.14 10.79
lp -43.39 -46.47 -53.67 -52.31 -47.16

on the interval [0, 50]. 53 events.

2. A sinusoid with increasing frequency:
λ2(s) = 5 sin(s2)+6 on [0, 5]. 29 events.

3. λ3(s) is the piecewise linear function shown in Fig-
ure 3(c), on the interval [0, 100]. 235 events.

We compared the SGCP to the classical kernel smooth-
ing (KS) approach of Diggle (1985). We performed
edge-corrected kernel smoothing using a quartic kernel
and the recommended mean-square minimization tech-
nique for bandwidth selection. We also compared to
the most closely-related nonparametric Bayesian tech-
nique, the Log Gaussian Cox Process of Rathbun and
Cressie (1994) and Møller et al. (1998). To implement
this method, we used discretization to make a finite-
dimensional approximation and applied Markov chain
Monte Carlo. We ran the Log Gaussian Cox Process
method with 10 bins (LGCP10), 25 bins (LGCP25)
and 100 bins (LGCP100).

We used the squared-exponential kernel for both the
SGCP and the LGCP, and sampled from the hyperpa-
rameters for both models.

We report the numerically-estimated ℓ2 distance be-
tween the mean λ(s) provided by each method and
the known true function. We also report the mean log
predictive probability of ten additional held-out time
series generated from the same (known) λ(s). These
predictive probabilities were calculated by numerical
integrations of the functions. These results are pro-
vided in Table 1, and the resulting estimates (exclud-
ing LGCP10 and LGCP25) are shown in Figure 3.

4.2. Coal Mining Disaster Data

We ran the Markov chain Monte Carlo inference pro-
cedure on the classic coal mine disaster data of Jar-
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Figure 5. These three figures show the result of MCMC in-
ference applied to coal mine disaster data. The top figure
shows the inferred function with quartile error bars. The
bottom two figures are normalized histograms of the sam-
pled λ⋆ and the number of thinned events M .

rett (1979). These data are the dates of 191 coal mine
explosions that killed ten or more men in Britain be-
tween 15 March 1875 and 22 March 1962. Figure 5(a)
shows the events along the top, and the inferred mean
intensity function. Also shown are approximate quar-
tile error bars. In Figure 5(b) is a normalized his-
togram of the inferred upper bounding intensity, λ⋆.
Figure 5(c) is a normalized histogram of the number
of latent thinned events, M .

4.3. Redwoods Data

We used a standard data set from spatial statistics to
demonstrate the Sigmoidal Gaussian Cox Process in
two dimensions. These data are the locations of red-
wood trees studied by Ripley (1977) and others. There
are 195 points and, as in previous studies, they have
been scaled to the unit square. Figure 4(a) shows the
data along with the inferred mean intensity function.
These data are useful for examining the placement of
latent thinned events. Figure 4(b) shows a normal-
ized histogram of where the these events tended to be
located during the MCMC run. As expected, it is ap-
proximately a “negative” of the mean intensity; the
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Figure 4. The left figure shows redwood locations that have been scaled to a unit square. The mean intensity estimate
from the SGCP is also shown. The black line shows the contour at λ(s) = 150. On the right is a normalized histogram
of the locations of thinned events. This illustrates the tendency of these events to migrate to areas where λ(s) is small.

thinned events are moving to places where it is neces-
sary to “peg down” the intensity function.

5. Discussion

5.1. Computational Concerns

Gaussian processes have significant computational de-
mands: they have O(n3) time complexity for n in-
put points, and O(n2) space complexity. When per-
forming inference in the SGCP model, this means that
each MCMC step costs O((K + M)3) as the thinned
events must be included in the GP. Thus the approach
we present is infeasible for data sets that have more
than several thousand events. Generally, mixing of
the Markov chain is a potential computational con-
cern, but by using Hamiltonian Monte Carlo we have
had good results. Autocorrelation plots from the λ1(s)
inference are shown in Figure 6.

5.2. Contrasting With Other Methods

The motivation for the Gaussian Cox process is pri-
marily the ease with which one can specify prior beliefs
about the variation of the intensity function of a Pois-
son process, without specifying a particular functional
form. There have been several methods proposed for
approximation to this model, most notably the dis-
cretization method of Rathbun and Cressie (1994)
and Møller et al. (1998), to which we have compared
the SGCP. Cunningham et al. (2008a) also use a
discretization-based approximation for the Cox pro-
cess and report performance improvements on their
domain of interest. This method, however, suffers from
three deficiencies for general application: it is a finite-

dimensional proxy method, it uses the renewal-process
formalism that cannot be easily generalized beyond the
time domain, and its model is inconsistent in that it
assigns prior mass to negative intensity functions.

The Dirichlet process mixture of Beta distributions
(Kottas & Sansó, 2007) has the appealing character-
istic that it allows tractable nonparametric Bayesian
inference via relatively standard MCMC methods.
However, it is unclear how to choose the hyperpa-
rameters of an infinite mixture of fixed densities to
represent beliefs about a Poisson process intensity.
The underlying infinite-dimensional stochastic process
is the Dirichlet, and it is fixed throughout space
and/or time. Variations in the intensity only arise
out of the parametric variations in the distributions
being mixed. Also, it is straightforward to understand
the marginalization properties of the Gaussian Cox
Process if the region of interest changes, but a
mixture of Betas appears to have discontinuities when
expanding the studied region.

The Sigmoidal Gaussian Cox Process is superior to the
frequentist kernel density approach (Diggle, 1985) in
several ways. First, we obtain samples from the pos-
terior rather than a point estimate of the unknown
intensity function. Second, we are able to perform
bandwidth selection in a principled way by sampling
from the hyperparameters of the Gaussian process.
Third, we are able to incorporate arbitrary nonsta-
tionary Gaussian processes into the framework with-
out modification. Finally, our method does not suffer
from detrimental edge effects. These improvements
do, however, come at some computational cost.
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5.3. Variations on the Model

There are several ways in which the Sigmoidal Gaus-
sian Cox Process we have presented could be modified
for different modeling situations. For example, to ar-
rive at bounded random intensities we used a constant
dominating function λ⋆, but other tractable paramet-
ric forms would be suitable and potentially more effi-
cient. Also, we use the logistic function in Equation 1
to map from arbitrary functions to the bounded do-
main, but other functions could be used to achieve
different properties. For example, if σ(·) was the nor-
mal cumulative distribution function and the Gaussian
process prior was zero-mean and stationary with unit
amplitude, then the random intensities λ(s) from the
model would be marginally uniform beneath λ⋆.

5.4. Summary of Contributions

We have introduced a novel method of inference for
the Gaussian Cox process that avoids the intractabil-
ity typical of such models. Our model, the Sigmoidal
Gaussian Cox Process, uses a generative prior that al-
lows exact Poisson data to be generated from a random
intensity function drawn from a transformed Gaussian
process. With the ability to generate exact data, we
can simulate a Markov chain on the posterior distri-
bution of infinite-dimensional intensity functions with-
out approximation and with finite computational re-
sources. Our approach stands in contrast to other non-
parametric Bayesian approaches to the inhomogeneous
Poisson process in that it requires neither a crippling
of the model, nor a finite-dimensional approximation.
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