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ABSTRACT

This thesis reports the results of investigations on aspects of the pre-oviposition 

behaviour of Pieris rapae L. (Lepidoptera: Pieridae) in relation to host plant finding 

and acceptance. Investigations were carried out into various aspects of the influence 

of sensory cues on host plant finding including the effect of colour and host plant 

extracts. The results showed that the number of landings was strongly influenced by 

colour (P<0.001) and that extracts containing contact stimulants also increased the 

number of landings (P<0.05).

Volatile extracts were also tested in a wind tunnel and the results showed that the 

extracts increased the number and duration of flights as compared to the solvent 

controls (P<0.05). However, there was no evidence that the volatile extracts tested 

acted as attractants. Volatile extracts applied to non-host plants increased the 

proportion of landings as compared to the controls (P<0.05).

The role of different sensory cues (volatile extracts, colour contact stimulants), from 

three host plants with differing acceptabilities were investigated in order to assess the 

relative importance of each cue. The results showed that the variety tested had a 

significant influence on the number of landings and eggs laid. Volatile extracts from 

the three varieties were prepared and their effect on landing in a choice and no-choice 

test with model plants was carried out. The volatile extracts significantly increased 

(P<0.05) the number of landings on the treated plants as compared to the controls.

The effect of prior experience was also investigated using three host plants with 

differing acceptabilities to P. rapae. The results showed that the effect of prior 

experience (P>0.05) itself was not a significant explanatory variable for the number of 

eggs laid, however, the host plant variety used was a significant explanatory variable 

(PcO.OOl). Additionally, there was a significant interaction between these two factors 

(P<0.05). In a separate experiment, more detailed behavioural observations of the 

females were made of ovipositing females. The results once again showed that the 

prior experience treatment was not a significant explanatory variable (P>0.05) as was 

the host plant varieties used (P>0.05). The interaction between these two factors was 

statistically significant (PcO.OOl) for all of the behaviours considered. However, 

when the analysis of the data was repeated with the number of landings used as a 

covariate in the analysis, the interaction between prior experience and host plant
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variety was found to be non-significant (P>0.05) for all post-alighting behaviours. 

Therefore, it would appear that the main effect of prior experience on P. rapae is on 

the choice of landing site and other ovipositional behaviours are not affected.

Finally, an artificial life model of the pre-oviposition behaviour of P. rapae is 

proposed.
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Chapter One 
A review of the pre-oviposition 

behaviour of P. rapae (Lepidoptera: 
Pieridae)

INTRODUCTION TO THESIS

The aims o f the research presented in this thesis were twofold. The main aim o f this 

research was to develop an artificial life model o f the pre-oviposition behaviour o f 

the Small Cabbage White Butterfly (Pieris rapae L. Lepidoptera: Pieridae). In order 

to create such a model accurately, experimental work was carried out on aspects o f 

the behaviour o f this butterfly. This introduction lays out the structure that will be 

followed in this thesis and is shown diagramatically in Figure 1.1.

Figure 1.1 Organisation o f the thesis

I ___________
Thesis conclusions and fu tu re research

1 This chapter is based largely on a paper by Hem, Edwards-Jones & McKinlay, 1996a
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This chapter reviews the current literature regarding the pre-ovipositional behaviour 

of P. rapae to identify areas which require further study in order to fully develop the 

model. Chapters Two to Five present the results of these further experiments. 

Chapter Six presents an overview of the application of Alife modelling techniques 

and the type of data needed to implement such a model (Section A). The structure of 

the model is presented in sufficient detail to allow implementation at a later date 

(Section B). Chapter Six also presents the rationale for developing an artificial life 

(Alife) model of the pre-oviposition behaviour of P. rapae. The final chapter (Chapter 

Seven) discusses the findings of the current research and attempts to place them into a 

wider context.

INTRODUCTION

P. rapae is a cosmopolitan species which is distributed throughout the Northern 

hemisphere, between the Arctic Circle and the Tropic of Cancer. It is widespread 

throughout Europe, Asia and North Africa. It has been introduced into Canada, USA, 

Hawaii, Japan, Mexico and since its introduction into Australia, in 1939 (Jones, 

Gilbert, Guppy & Nealis, 1980), and New Zealand has become well established in 

Australasia (Finch & Thompson, 1992; Hill, 1987; Ohsaki & Sato, 1994). The 

number of generations per year varies according to geographical location. For 

example, in the UK., P. rapae has three full generations per year, with a partial fourth 

in some years (Richards, 1940), while in Columbia (Missouri) P. rapae can have six 

generations per year (Parker, 1970) and P. rapae crucivora can have six generations 

per year (Ohsaki, 1982). The average longevity of adults in the UK is 20 days for the 

female and 23 days for males. During this time, a female may have approximately 

450-500 eggs ripen with 350 being laid (Richards, 1940).

The damage to foliage caused by P. rapae is slight, although it can be severe in 

seasons with a high infestation of caterpillars. The pest status of this species arises 

primarily, because of the contamination of plants by its frass rendering them 

unmarketable, rather than the amount of crop consumed (Finch & Thompson, 1992). 

In the USA, the main collard crop lepidopterous pests are Trichoplusia ni (the 

cabbage Looper; Lepidoptera: Noctuidae); P. rapae and Plutella xylostella (the 

diamond back moth; Lepidoptera: Plutellidae), with their percentage occurrences
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being 71 per cent P. rapae; 28 per cent P. xylostella and T. ni 1 per cent in 1985 and 

in 1986 91 per cent P. rapae and 9 per cent P. xylostella (Stewart and Sears, 1988).

This review considers the searching behaviour of P. rapae and the sensory cues 

utilised in the decision-making process of a female when searching for ovipositional 

sites. Studies utilising other butterflies are used for comparison or to suggest possible 

proxies suitable for use in a model for P. rapae in the absence of data for this species. 

This chapter is structured according to the sequence of events characterising the host 

finding and egg laying behaviours of Pieris spp., namely generalised searching 

behaviour, specific searching behaviour and the role of visual and olfactory cues, 

post-alighting discrimination and contact chemoreception. The review considers prior 

learning and experience and finishes by identifying the areas subjected to 

experimental investigation.

The sensory cues that elicit or inhibit oviposition play an important part in the 

survival of most phytophagous insects (Renwick & Chew, 1994). This is particularly 

true for the Lepidoptera, as the larvae of most species grow and survive on a limited 

number of host plant species belonging to a single family. The newly hatched larvae 

of most species are incapable of locating a new host and are dependent on the host 

plant location 'skills' of their mothers (Feeny, Rosenberry & Carter, 1983). Singer

(1986) points out that observed larval distributions are a result of various effects 

including initial adult distribution and density; oviposition preferences and plant 

acceptability; egg survival patterns; larval movements, preference, performance and 

host plant suitability, including differential predation between host plants. The term 

preference as defined by Painter (1951) “is used to denote the group of plant 

characters and insect responses that lead to or from the use of a particular plant or 

variety, for oviposition, for food or shelter, or for a combination of the three. 

Anthropomorphic connotations should not be read into this terminology” (Painter, 

1941; 1951). Preference can be used to refer to the behaviour of an insect towards 

parts of an individual plant, particular sets of plants of the same species, or towards a 

specified set of plant species" (Singer, 1986).
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PRE-ALIGHTING BEHAVIOUR

Searching behaviour

Searching behaviour has been defined by Bell (1990) as the active movements by 

which an insect seeks a resource. As the resources utilised are usually essential to the 

survival and fecundity of the individual, an efficient searching mechanism and 

accurate assessments of located resources are deemed to be crucial to an organism's 

individual fitness. In addition, searching for a resource incurs costs over and above 

the energetic cost of locomotion, such as increased risk of predation and the time lost 

to other activities (Bell, 1990). A female's searching behaviour determines the subset 

of all possible patches which are encountered, which in combination with her 

response to these patches determines the observed egg distributions (Ives, 1978). It 

may be expected, therefore, that host plant selection is a complex process subject to 

considerable selection pressures.

A substantial quantity of work has been undertaken on the searching behaviour of 

insects, for example, Courtney (1983) and Cain (1985) have developed general 

models of herbivorous insect search mechanisms; Jones (1977); Jones et al. (1980); 

Root & Kareiva (1984); and Fahrig & Paloheimo (1987; 1988) have worked 

specifically on P. rapae. Studies of the search behaviour of other insects include 

Mac Kay's (1985) work on Euphydryas editha (the checkerspot butterfly; Lepidoptera: 

Nymphalidae); and Kareiva (1982) worked on Phyllotreta cruciferae and P. striolata 

(flea beetles; Coleoptera: Chrysomelidae).

H ost p lant density and fligh t behaviour

Pre-alighting search consists of the behaviours the female exhibits up to the moment 

of alighting on a plant, and is dominated by the requirement to locate a suitable 

habitat and then to find patches of vegetation that contain potential host plants. Pre­

alighting discrimination, defined by Mackay (1985) as "the responses of flying insects 

to habitat variation resulting in the alighting of the insect on various types of ground 

cover, with frequencies different from their abundance in the habitat, occurs as a 

result of the insect's pre-alighting search strategy". At this gross level, the behaviour 

of the insect may be affected by the spatial arrangement and density of plant patches, 

and in this situation, Cain's (1985) model for a generalised herbivore suggests that
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searching success decreases as plant density decreases, and increases as the size of 

patches increase. At high plant densities, insects locate host plants more easily when 

the plants are uniformly dispersed than when they are clumped. Increases in 

movement directionality do not alter an insect's ability to locate a host plant when 

plants are hard to find (i.e. when the radius of detection2 is low, with short-move 

lengths), but when plants are easy to find (i.e. high radius of detection and long-move 

lengths) increased movement directionality decreases insect searching success (Cain,

1985).

The predictions of the model have not been specifically tested for P. rapae, but 

extensive field work has revealed some interesting patterns in the searching behaviour 

of this species. Root & Kareiva (1984) report that unlike many insects, P. rapae does 

not alter its turning behaviour upon encountering dense concentrations of host plants; 

and in all the situations they observed, ovipositing females tended to move along 

linear flight paths. Further, the time taken by a female to approach and locate a 

suitable host plant was not influenced by collard density. However, move length was 

affected by density, and average move length decreased as collard density increased, 

but this decrease was not sufficient to concentrate eggs on collards in dense plantings. 

For example, when collard density was increased by 400 per cent, the butterfly’s 

move length decreased by 20 per cent. Consequently, increases in collard density 

resulted in a net decrease in the number of eggs each plant received (Root & Kareiva,

1984).

These results support the general conclusion of Jones (1977) who reported a 

significant negative correlation between local collard density and move length. Jones 

(1977) also reported that the direction of flight, flight length, frequency of visits to a 

plant, returns to the same plant and the number of eggs per visit varied with the 

spatial distribution, species and age of the host plants. However, the frequency 

distribution of turning angles was similar between different gardens, and a

predominance of turning angles greater than 45° was observed. This result agrees 

with the robust tendency towards linear flight reported by Root & Kareiva (1984). 

Jones (1977) reached these general conclusions despite observing that populations of

2 The radius o f  detection refers to the distance from which an insect can detect and be influenced by a plant. As 
such it m easures the ability o f an insect to perceive plant characteristics and then to act upon that information.
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Canadian and Australian P. rapae showed different movement patterns. Australian 

P. rapae turned less and had a lower frequency of returns to the same host plant than 

Canadian butterflies.

The model of P. rapae movement patterns and egg distributions developed by Jones 

(1977) was later extrapolated to predict movement over several days (Jones et al., 

1980). The directionality of P. rapae movement noted by Jones (1977) was found to 

continue, and although individuals demonstrated different directions, each individual

flew with sufficient directionality to keep within an angle of 45 0 over one kilometre. 

Each day a new direction was adopted by an individual and the overall pattern of egg 

distribution was to spread in all directions. However, occasionally there was a 

northward bias in the egg distribution. The authors postulated that the direction 

adopted by the individuals was not itself ecologically significant as such but was 

simply a mechanism for covering more ground which may be ecologically significant. 

Day-to-day movement was a random walk with a step length of 450 metres (Jones et 

al., 1980). Fahrig & Paloheimo (1987) found that the residence time of a butterfly in 

a patch was 1.3 days and out of 102 butterflies marked in a patch over 17 days, the 

percentage of butterflies not observed in that patch on days following marking was 

74.

Flight behaviour and weather

The current and immediately previous weather appears to have a major impact on the 

ovipositional behaviour of P. rapae. For example, Root & Kareiva (1984) report that, 

generally, P. rapae flies only in moderate weather conditions, restricting nectar

feeding and oviposition to sunny, warm (18-24 °C) periods and concentrating most 

egg laying in the late morning or early afternoon. Individual variations on this pattern 

were observed, with some individuals nectar feeding for uninterrupted bouts and 

ovipositing for extended periods, while other flight sequences involved frequent 

alternations between limited oviposition bouts and nectar feeding. However, the 

weather had a major impact on this pattern, and intensive oviposition bouts were most 

common following prolonged periods of cloudy or rainy weather.

In addition to influencing the apportionment of time between oviposition and feeding, 

Root & Kareiva (1984) also observed that the weather influenced the acceptance rate 

of host plants. Normally, during pre-alighting flights P. rapae females flew over
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apparently suitable host plants, often passing over more than forty collards, while 

ovipositing fewer than 10 eggs. However, following two consecutive days of rain the 

ratio of plants passed over to eggs laid was reduced, and individuals passed over 

comparatively few plants per laid egg. A similar effect was reported by Gossard & 

Jones (1977), who observed that overcast days inhibited oviposition by not allowing 

flight, but if the next day was sunny then the number of eggs laid increased by 78 per 

cent. When P. rapae was subjected to several successive cloudy days, then egg laying 

was increased further on the next sunny day.

Egg laying, patches and background vegetation

Root (1973) formulated the resource concentration hypothesis following a study of 

the insect fauna of collards in simple and complex habitats. This hypothesis suggests 

that many herbivores, especially those with a narrow host range, are more likely to 

find host plants that are concentrated in dense or 'pure' stands. Those species whose 

requirements are met in these stands will remain there the longest and reproduce. 

Conversely, those species which require a resource not found within the stand will 

migrate. P. rapae is an exception to this hypothesis because on 88 per cent of 

sampling occasions abundance was higher in perimeter rows than in pure stands 

(Root, 1973). Only during population peaks was abundance higher in the pure stands 

as compared to the perimeter rows.

Subsequent studies have confirmed this effect. For example, Maguire (1983) 

demonstrated that P. rapae lays its eggs in patches of small numbers of host plants 

rather than in a single large patch. Similarly, in a comparative study, Cromartie 

(1975) found a significant negative relationship between plot size and the number of 

P. rapae eggs per plant; regardless of plant size, time of year or background. The plot 

background exerted a significant effect on colonisation by other major collard 

herbivores, such as cabbage aphids and flea beetles. Only P. rapae invaded 

uncultivated plots to any extent; aphids and flea beetles were virtually absent. To 

exclude the possibility that this result arose from a lack of potential colonists of the 

other species, the experiment was repeated on a farm with a direct comparison 

between cultivated and uncultivated plots. Three of the four herbivores colonised the 

cultivated plots, with P. rapae again colonising uncultivated plots confirming the 

earlier result (Cromartie, 1975).

P a g e  7



Mangel (1987) postulated that clutch sizes vary with host distribution. When suitable 

hosts were likely to be encountered clutch sizes fell compared to when the probability 

of encountering suitable hosts was lower. Host deprivation led to larger clutch sizes. 

Similarly, Courtney et al. (1989) suggest that host plants are arranged in a hierarchical 

fashion with the acceptability of a host plant depending upon its ranking and the 

insect's physiological state i.e. an individual which will accept a low ranking host will 

accept all hosts with a higher ranking and a female with a high egg-load (or other 

reason for a low threshold of acceptance) should accept the first host plant she 

encounters which has an acceptability above her current behavioural (motivational) 

threshold.

These points are suggestive that clutch size may vary with host plant availability. 

When host plant deprivation occurs, the insect's motivation to oviposit rises leading to 

females becoming less discriminating in their choice of oviposition sites. 

Experimental work with P. rapae (Jones, 1977) has confirmed that a female with a 

high egg-load would lay most of her daily egg complement on the first host plant or 

group of hosts found. However, as egg-load decreases, an individual leaves hosts 

more readily as do individuals with few eggs initially.

The response of P. rapae to host plants and its general search strategy are different 

from other butterflies so far studied. Particular differences in P. rapae’s searching 

behaviour include its tendency to exhibit directional flight paths as noted by Jones 

(1977), which are responsible for the widespread distribution of eggs; the apparent 

by-passing of host plants and linked to this the finding of Fahrig and Paloheimo 

(1987) that the presence of host plants does not affect flight orientation and also the 

lack of counter-turning in a host plant patch are significant departures from the 

behaviour of other butterflies.

These differences between P. rapae's search behaviour and that of other butterflies 

result in a greater investment in ovipositional flights than if the female laid her eggs 

singly and exploited clusters of host plants. This point is important as the two major 

factors limiting butterfly populations are predation and the failure of the female to lay 

her full complement of eggs (Dempster, 1983). A central axiom of evolutionary and 

behavioural ecology is that animals optimise behavioural decisions to maximise their 

fitness. The costs and benefits of an animal’s actions are ultimately measured in
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terms of Darwinian fitness (survival and reproduction). The rationale behind this 

approach is a Darwinian one, since selection is an iterative and competitive process 

which tends to produce phenotypes which represent the best available balance of costs 

and benefits over evolutionary time scales (Krebs & Kacelnik, 1991).

The costs of P. rapae's searching behaviour are the increased metabolic costs from 

the increase in flight, increased time in oviposition bouts with a commensurate loss of 

time to spend on alternative activities and an increased risk of predation. The main 

hypothesis put forward to explain the differences in the pre-alighting behaviour of P. 

rapae as compared to other butterflies studied is Root & Kareiva's (1984) "spreading 

of risk syndrome". The advantage to P. rapae of spreading eggs is that the 

unpredictable nature of the environment is evened out by depositing eggs widely.

Courtney (1986b) has suggested that “risk spreading, although, popular amongst 

insect ecologists, is unlikely to operate in insect populations”. He proposes that 

density-dependent processes offer a better explanation of dispersal behaviours. 

However, in a reply to Courtney’s article, Root & Kareiva (1986) argue that 

“although, Courtney (1986b) raises interesting points, we believe that he misinterprets 

our original paper (Root & Kareiva, 1984)”, and they go on to defend their hypothesis 

of risk spreading as the determinant of dispersal behaviour in P. rapae. Specifically, 

Root & Kareiva (1986) argue that there is no evidence of density dependent mortality 

in P. rapae populations and that the fact that when ovipositing P. rapae does not 

avoid hosts with eggs or larvae already, and that this alone would suggest that the 

spreading of eggs does not occur as a mechanism to avoid density dependent 

mortality (Root & Kareiva, 1986).

Ohsaki and Sato (1994) have argued that P. rapae uses hosts in ephemeral habitats 

and disperses from habitats in order to avoid parasitoids, an argument not 

incompatible with Root and Kareiva (1984). Additionally, Jones (1981) reports that 

the community of parasitoids shows large variations even in a small geographic area. 

For example, Ohsaki and Sato (1990; 1994) showed that in a newly established 

population of P. rapae rates of parasitism by Apanteles glomeratus are generally low 

since A. glomeratus can usually only colonise a habitat after P. rapae, which allows 

the larvae to “escape” as the parasitoid prefers to attack the first two larval instars 

(Ohsaki & Sato, 1990). In contrast, in a permanent population of P. rapae the rate of
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attack by A. glomeratus is much higher (van Driesche, 1988; Ohsaki & Sato, 1990). 

These results would appear to suggest the dispersal of females may be an attempt to 

secure “enemy free space” which is considered by some authors to be very important 

in determining observed patterns of host use (Bernays & Graham, 1988 and 

references therein).

For example, although cabbage failed to show wound induced herbivore defence 

(Coleman, Barker & Fennman, 1996). They found weak evidence that a lower leaf 

area was consumed by P. brassicae caterpillars in herbivore damaged plants, and 

concluded “that there are few wound induced effects of herbivory in cabbage”. 

However, they went on to argue that the lack of effects in their experiments did not 

necessarily imply the absence of such effects which may simply be more subtle and 

only become apparent in conjunction with other features of the ecology of the plant- 

herbivore system. An example of such an effect has been demonstrated (Mattiaci, 

Dicke & Posthumus, 1994). It was reported that damaged brussels sprout plants are 

more attractive to Cotesia glomerata than undamaged plants. Mattiaci et al. (1994) 

showed that mechanically damaged leaves were less attractive to the parasitoid than 

those leaves damaged by herbivores or mechanically damaged leaves treated with 

larval regurgitant. Analysis of the volatiles produced by the leaves showed that if 

plants were infested with caterpillars or if caterpillar regurgitant was applied to 

damaged leaves, the emission of green leaf volatiles was enhanced (Mattiaci et al., 

1994). Therefore, we may assume that when brassica plants are attacked by 

herbivores the plants respond by emitting volatile cues which are highly attractive to 

parasitoids. This link with a higher trophic level may be of immense importance in 

the ecology of the plant-herbivore interactions.

Courtney (1986b) raises the question of whether once a female has exhausted her 

compliment of mature eggs, time spent dispersing between patches may not readily be 

counted as lost search time since no reduction in offspring number occurs (Courtney 

(1986b). Root & Kareiva (1986) also suggest that this argument does not explain the 

why P. rapae engages in straight line flights between host plant patches since it is 

more energetically efficient to stay in a host plant patch and wait for the development 

of more eggs than to engage in a prolonged flight between patches (Root & Kareiva,

1986). This argument is further developed below.
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Theoretical models of host plant utilisation suggest that the observed pattern of host 

use demonstrated by a phytophagous insect is inherently ‘plastic’, for example 

Courtney et al., 1989; Jaenike, 1978. The observed pattern of host use can be thought 

of as been a trade-off between host plant findability and host plant quality. Most 

studies of P. rapae have concerned themselves with how a female responds to a 

plentiful host supply and from the theoretical models developed and optimal foraging 

theory the answer is to use only the best hosts and then move on. On the other hand, 

when host plants are not in a plentiful supply or egg-load is high it may be 

advantageous to lay many eggs quickly. This is what is clearly observed in the field. 

Therefore, the extra costs associated with the longer flights must be weighed against 

the increased fitness of the progeny from either better host plants or from a lower rate 

of attack from parasitoids.

This point can be illustrated with a thought experiment. If a clump of hosts plants 

with equal acceptabilities are imagined, the optimal strategy for encountering all of 

these plants is area concentrated search (counter-turning). However, as the insect 

oviposits on the host plants her motivation to oviposit falls and then a straight line 

flight would 'spread the risk' while the insect's motivation increases. An analogy can 

be drawn with P. rapae's behaviour when nectar-feeding which is really a diversion 

from reproduction in the sense that it is necessary only to provide energy to search for 

hosts. During nectar-feeding, females alter their behaviour when they enter a flower 

patch, abandoning their linear flight path and exhibiting tight turning behaviour (Root 

& Kareiva, 1984). Thus when entering a small patch, they often visit every 

inflorescence in the patch, sometimes stopping at each inflorescence several times as 

they patrol through the area. In addition, nectar-feeding females visit on average 72 

per cent of the flowering stems per patch while ovipositing females by contrast land 

on only 33 per cent of the collards per patch. This type of behaviour is the most 

efficient way to maximise encounter and thereby nectar uptake. Therefore, the 

contrast between the flight patterns of ovipositing individuals of P. rapae and 

females engaged in nectar-feeding is not surprising.

As P. rapae has only a limited number of eggs to lay on any given day one 

explanation for individuals by-passing hosts is as follows. Given that a field of 

cabbages contains more suitable host plants than a female could utilise in a day, the 

most efficient way to use this resource is to lay an egg. Once laid, the motivational
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state of the female falls i.e. it becomes more discriminating. Now if the motivational 

threshold is still relatively high, then the female may oviposit again on another nearby 

host. Once the motivational threshold drops below the current acceptabilities of the 

available hosts, then P. rapae should leave this host plant patch. Once the 

motivational threshold for accepting a host plant falls the female should seek a shot 

and utilise it, and so forth. This straightforward "rule of thumb" can explain the 

apparently maladaptive behaviour of P. rapae.

Clearly, the exact reasons behind P. rapae’s dispersal behaviours are complex. 

Incomplete data and understanding of the processes of both adult and juvenile 

survival along with the possibility of a parent-offspring conflict in ovipositional 

behaviours muddy the costs and benefits of risk spreading and dispersal in P. rapae 

and prevent the identification of the true causal factors responsible. My personal 

view is that a number of factors will operate, some of which favour dispersal and 

some of which select against the dispersal of females with the observed dispersal 

behaviours occurring as a result of these complex interactions which are currently 

poorly understood.

SENSORY MODALITIES USED IN SEARCHING BEHAVIOUR

Visual cues

Vision is undoubtedly important in host plant location by phytophagous insects 

(Miller & Strickler, 1984; Prokopy & Owens, 1983) and it is unlikely that P. rapae is 

an exception to this rule. Although leaf size and shape play no role in the 

discrimination of hosts, the colour of the plant has been shown to be important in host 

plant location (Renwick & Radke, 1988). For almost all phytophagous insects, the 

preferred colour is green, or shades thereof (Moericke, 1969).

As P. rapae performed a rapid and direct flight to green objects in experiments, and 

since there is no experimental evidence of responses to host plant odours, Traynier 

(1979) concluded that vision alone was sufficient for host plant location. In 

experiments investigating the effect of plant fertilisation on the acceptability of 

cabbage plants for oviposition by P. rapae, it was found that the butterflies initially 

approached both fertilised and un-fertilised plants with the same frequency, but laid 

more eggs on fertilised plants. Three to four days later when the fertilised plants
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became greener females were more likely to approach them from a distance (Myers,

1985).

Similarly, in other experiments it was found that P. rapae preferred to lay its eggs on 

yellow-green substrates. The effect of blue and green in differing ratios was also 

investigated and higher numbers of eggs were found with mixtures of blue and green 

than either colour alone (Hovanitz & Chang, 1964). Unpublished results, referred to 

in Renwick & Radke (1988), indicate that P. rapae showed a preference for artificial 

leaves with a maximal reflectance at 550 nm.

The studies detailed above clearly show that P. rapae responds to visual cues and that 

these stimuli are central to host plant location. However, because of the great inter- 

and intra-specific variation between plants, colour and shape are unlikely to be able to 

account entirely for the discrimination of host plants. Bernays & Chapman (1994) 

suggest that olfactory cues and visual cues operate in unison to guide an insect to a 

suitable host.

Volatile odour cues

The volatile compounds emanating from plants are thought to play a major role in the 

orientation of insects to their host plants and in the avoidance of unsuitable plants. 

However, very few reports of the specific chemicals responsible for the attraction of 

gravid female insects exist. Those that do include long range orientation of Delia 

antiqua (the onion fly) to n-propyl mercapton, the attraction of D. radicum  (the 

cabbage root fly) and Phyllotreta spp. by mustard oils and allyl isothiocyanate 

respectively (Renwick, 1989; Visser, 1986).

In the Lepidoptera, host specific volatiles have been shown to cause gravid female 

insects to approach odour sources. For example, the attraction of Acrolepiopsis 

assectella (leek moth) to propylthiosulphinate and Ctenucha virginica (meadow 

caterpillars (Arctiidae)) to dihydroxydanaidal. The olfactory attraction by host plant 

extracts and host plants has been shown in: Agraulis vanillae, (gulf fritillary); 

Helicoverpa subflexa (Noctuidae); II. virescens (tobacco budworm; Noctuidae); 

Manduca sexta (tobacco hornworm); T. ni and P. xylostella (Renwick, 1989; Bemays 

& Chapman, 1994).
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The role of volatile chemical cues in host plant location by butterflies is best 

documented in the Papilionidae. Two species have been studied viz. the Citrus 

butterfly (Papilio demoleus) by Saxena & Goyal (1978) and the black swallowtail (P. 

polyxenes) by Feeny, Stadler, Ahman & Carter (1989). Female P. demoleus are 

attracted by both visual and olfactory cues. When leaves of their host plant were 

offered in a choice experiment with one set of leaves screened by glass (visual stimuli 

only) and the other unscreened (visual and olfactory cues), the unscreened leaves 

elicited a higher level of response than the glass screened leaves at the opposite end of 

the chamber. It would appear, therefore, that both olfactory and visual cues are 

important in host plant location and selection in P. demoleus (Saxena & Goyal, 1978).

Similarly, treating experimental leaves with carrot volatiles alone did not increase the 

number of eggs laid by P. polyxenes on these leaves. Flowever, the addition of both 

volatiles and contact stimulants resulted in significantly more eggs being laid on the 

treated leaves. In the presence of model plants, the number of flutter bouts, landing 

rates and eggs laid were higher in the presence of volatiles (Feeny et al., 1989).

Although there is no evidence to suggest that volatile chemicals play any role in the 

orientation of P. rapae to its host plant (Renwick & Radke, 1983), there is 

circumstantial evidence for a role of volatiles influencing host plant location in 

Pierids. Mathania leucothea (Lepidoptera: Pieridae) appears to examine rosaceous 

shrubs for its host plants, parasitic Loranthacea spp. (mistletoes), which grow deep 

within the shrubs foliage and are, therefore, not readily detected using visual stimuli. 

Females spend longer searching shrubs with mistletoes than those without even 

though it may be 90 seconds or more before they contact the host. Similar 

observations of P. napi (the Green Veined White) in England revealed that females 

were able to detect a host plant growing in an isolated position completely overtopped 

by dense bracken in heath land, an unusual habitat for this butterfly. The female’s 

behaviour was observed as they crossed the heath with rapid flight, arrested in the 

vicinity of the patch and began searching with the slow flight, and high wing beat 

amplitude, typical of ovipositing females (Courtney, 1986a). Similarly, Mitchell 

(1977) reports results which may be interpreted as circumstantial evidence for the role 

of volatile compounds, particularly allyl nitrile, a sinigrin derivative, emanating from 

cabbage attracting P. brassicae.
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Volatile chemicals from macerated cabbage have been shown to deter oviposition by 

P. rapae (Renwick & Radke, 1983). Non-host volatiles can act as oviposition 

deterrents when applied to cabbage plants by decreasing the frequency of alightings 

(Tabashnik, 1987). Therefore, it may be concluded from studies investigating 

behaviour and egg distributions that the role of olfaction is limited to the avoidance of 

non-host plants (Renwick & Radke, 1988).

POST-ALIGHTING DISCRIMINATION

Once a female has alighted on a plant, the chemistry of that plant is probably central 

to acceptance and oviposition (Jones, 1991; Schultz, 1988), although other factors 

such as predators and parasitoids may well affect a plant's overall acceptability 

(Bernays & Graham, 1988; Ohsaki & Sato, 1994).

Contact chemoreception

Studies on the effect of host plant chemistry and host plant acceptability for 

oviposition in P. rapae have been of two kinds: either investigations of the effect of 

host plant chemistry in stimulating oviposition (for example, Traynier & Truscott, 

1991; Renwick Radke, Sachdev-Gupta & Stadler, 1992) or of chemicals which act as 

deterrents to oviposition (for example, Tabashnik, 1987; Sachdev-Gupta, Renwick & 

Radke, 1990; Dimock & Renwick, 1991; Renwick & Radke, 1985). The effect of 

oviposition stimulants and deterrents in mediating host plant selection have also been 

studied by Huang & Renwick (1993).

Ovipositional stimulants

A common experimental design for investigating the influence of host plant 

chemicals on oviposition by P. rapae utilises a green card bioassay. Here the 

different chemical(s) or concentrations are offered to the butterflies singly or in 

tandem, and the number of eggs laid is assumed to reflect the acceptability of the 

chemical. One study which utilised this approach found that, when offered a choice 

between ether and water extracts of cabbage at two concentrations of 1 g/ml and 5 

g/ml, the water extracts were preferred (Renwick & Radke, 1983).
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The effect of the concentration of the water extract was investigated over the range 

0.01-10 g/ml. P. rapae could not distinguish between cards treated with the 0.01 or 

0.1 g/ml with the same number of eggs being laid at each concentration. However, 

when 0.1 g/ml and 1.0 g/ml were offered simultaneously, there was an order of 

magnitude difference between the number of eggs laid, which were 30 and 311 

respectively. Similar results were obtained when 0.1 g/ml was compared with 10 

g/ml with 45 and 412 eggs respectively. When 1.0 and 10 g/ml were compared, the 

ability of the butterflies to distinguish between these two high concentrations 

appeared to be lowered with the number of eggs laid being 104 and 210 respectively 

(Renwick & Radke, 1983). Following these experiments, Renwick & Radke (1983) 

concluded that the ovipositional stimulants are polar and the effect is concentration 

dependent.

The same experiment also tested the role of sinigrin as an oviposition stimulant; and 

when compared with 5 g/ml extract of cabbage, sinigrin at 1 mg/ml was less active. 

When two concentrations of sinigrin were compared simultaneously, the higher 

concentration was always preferred (Renwick & Radke, 1983).

The leaf surface oviposition stimulants to P. rapae in cabbage plants have been 

investigated. Chromatography showed that the oviposition stimulants were found in a 

limited number of fractions in which the major glucosinolates were glucobrassicin, 

sinigrin and glucoiberin. The results of comparative bioassays of these glucosinolates 

with a crude extract of cabbage showed that at concentrations physiologically 

relevant, i.e. similar to the concentration found in plants of 0.2 mg/plant 

glucobrassicin, oviposition was higher than an equivalent amount of cabbage extract 

with the number of eggs laid being 1576 and 493 respectively. The activity of 

sinigrin was lower than glucobrassicin, even at concentrations higher than those found 

in plants. Glucoiberin was inactive as a stimulant (Renwick et al., 1992), therefore, 

they concluded that glucobrassicin alone could account for the stimulation of P. rapae 

to oviposit on cabbage.

Further research into the activities of different chemical classes of glucosinolates has 

shown that, in general, aromatic glucosinolates are more stimulatory than a post­
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butanol cabbage extract3 (Huang & Renwick, 1994). However, the post-butanol 

cabbage extract was more stimulatory than all of the aliphatic glucosinolates tested 

(sinigrin, glucocapparin, glucoerucin and glucoiberin). Of these four, the least 

stimulatory were glucoerucin and glucoiberin which have a sulphur atom in the side 

chain.

Therefore, all glucosinolates are not equally effective in stimulating oviposition by P. 

rapae and the identification of glucobrassicin as the most active stimulatory 

compound in cabbage indicated that this indole glucosinolate could account for the 

recognition/acceptance of cabbage by P. rapae (Renwick et al., 1992). Later studies 

have, however, shown other aromatic glucosinolates to be as stimulatory as 

glucobrassicin (Huang & Renwick, 1994).

These results contrast with the findings of Feeny et al. (1983) who found that for 

swallow tail butterflies, mixtures of plant constituents are necessary to stimulate 

oviposition and single compounds or fractions of a plant extract are less stimulatory 

than the whole or a blend of plant extracts. Furthermore, the concentration of the 

glucosinolate also affects its activity as an ovipositional stimulant. Each 

glucosinolate has an optimal concentration at which the stimulation of oviposition is 

greatest, above this concentration there is either no further increase or a decline in 

oviposition (Huang & Renwick, 1994,).

Oviposition deterrents

Tabashnik (1987) studied the effect of the application of non-host phyto-chemicals, 

coumarin and rutin, to cabbage plants on P. rapae oviposition . Coumarin is present 

in several plant families (including, the Compositae, Lauraceae, Leguminosae and 

Umbelliferae) as the major aromatic constituent, but does not occur in crucifers at 

substantial concentrations. Rutin is a non-volatile flavonoid pigment found in many 

plant families. In choice tests with coumarin at concentrations of 0.1 M and 0.01 M, 

both concentrations acted as oviposition deterrents. Although rutin deterred 

oviposition at a concentration of 0.1 M, at a concentration of 0.01 M there was no 

significant effect.

3 The post-butanol extract is prepared by boiling leaves in ethanol and hom ogenising the leaves. The hom ogenate 
is filtered and the filtrate is evaporated to dryness. The residue is dissolved in water and extracted in butanol. The 
post-butanol fraction is the rem ainder o f the extract after partitioning in butanol.
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Both compounds acted as ovipositional deterrents by affecting the pre-alighting rather 

than the post-alighting behaviour of P. rapae through a decrease in the number of 

contacts with plants (Tabashnik, 1987). Although once alighted, females were less 

likely to oviposit on treated as compared to untreated plants, this effect was small. 

The mechanism by which these two chemicals decrease the number of alightings on 

plants appears to differ and while the action of coumarin is thought to be primarily 

olfactory, rutin, a non-volatile pigment, was postulated to deter alighting by altering 

the visual stimuli emanating from the plant, presumably by the absorption of light by 

the pigment, thereby altering the reflectance of the substrate.

The effect of 0.1 M rutin in a no choice test depended upon the length of the test. The 

deterrent effect was strongest in a five minute test and intermediate in 15 and 60 

minute tests and in a 24 hour test the deterrence was weakest. Furthermore, in this 

situation there was no significant difference in the rate of oviposition between an 

untreated plant with no eggs and an untreated plant with eggs (Tabashnik, 1987).

Therefore, the increased acceptability of rutin-treated plants with time may have 

occurred because the females were deprived of the opportunity to oviposit on 

untreated plants. The time available for oviposition may be a limiting factor for 

butterflies which lay their eggs singly. As the time between ovipositions increases, 

they may then accept non-host plants, or less acceptable host plants, more readily than 

butterflies that lay their eggs in clusters (Tabashnik, 1983). Thus it would appear 

from these results that the discrimination phase of P. rapae to the plants utilised and 

treated in this experiment is between 5 and 15 minutes (Tabashnik, 1987). The 

results described above show that non-host plant chemicals deter oviposition by P. 

rapae. However, the deterrence is not absolute and the application of the negative 

stimuli does not completely mask the positive stimuli of the treated cabbage but 

merely lowers its acceptability.

A different approach to investigating the role of oviposition deterrents was taken by 

Renwick & Radke (1985) who found that the application of macerated cabbage, an 

ether extract of cabbage leaves and non-polar extracts (hexane) of acceptable 

cruciferous host plants deterred oviposition by P. rapae. Similarly, non-polar extracts 

of the non-acceptable crucifers Capsella bursa-pastoris (shepherd's purse) and 

Erysimum cheiranthoides (treacle mustard) and the non-acceptable non-crucifers
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Lycopersicon esculentum  (tomato); Solarium tuberosum  (potato) and Glycine max 

(Soya bean) deterred oviposition. The water extracts of non-acceptable crucifers and 

non-crucifers were all highly deterrent, whilst water extracts of acceptable crucifers 

had very little impact on oviposition, exhibiting slight deterrence. However, Brassica 

júncea  (mustard) had a small stimulatory effect (Renwick & Radke, 1985) and this 

was also noted in a series of experiments in which P. rapae was offered a choice 

between cabbage and plants belonging to the families Cruciferae, Capparidaceae and 

Tropaeolaceae. P. rapae laid significantly more eggs on cabbage than Alyssum  

saxatile', yellow alison, Cruciferae, E. cheiranthoides', Cruciferae, Iberis amara', wild 

candy tuft, Cruciferae, and Lunaria annua; honesty, Cruciferae. Similar numbers of 

eggs were laid on cabbage as compared to Isatis tinctoria; woad, Cruciferae, 

Tropaeolum majus; nasturtium, Tropaeolaceae, Conringia orientalis; hares ear 

cabbage, Cruciferae, and Cleome spinosa', spider flower, Capparidaceae. The only 

stimulatory plant as compared to cabbage was B. júncea  (Huang & Renwick, 1993).

Butanol extracts of these plants were prepared and their effect on oviposition by P. 

rapae tested. The butanol extracts from A. saxatile, B. olerácea, C. spinosa and C. 

orientalis had no significant effect on oviposition. The other butanol extracts all had 

a significant deterrent effect on oviposition as compared to the methanol control, 

except B. júncea  which stimulated oviposition by P. rapae, resulting in 223 eggs 

being laid on the treated plant and 116 on the control plant (Huang & Renwick, 

1993).

In a comparison of the post-butanol extracts of these plants and a cabbage post­

butanol extract, the effects varied. For example, I. tinctoria, B. júncea, I. amara and 

C. orientalis all stimulated oviposition to a greater extent than the cabbage extract 

whilst L. annua was slightly less stimulating and C. bursa-pastoris and E. 

cheiranthoides exhibited low stimulatory activity receiving 4 and 12 per cent of the 

number of eggs laid as compared to the cabbage extracts. T. majus, C. spinosa and A. 

saxatile showed no significant difference from the cabbage extract (Huang & 

Renwick, 1993).

In a study of the influence of oviposition stimulants and deterrents from the non- 

acceptable host plants, C. bursa-pastoris and E. cheiranthoides, Renwick & Radke 

(1987) found that E. cheiranthoides, as well as containing oviposition deterrents, also
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contained oviposition stimulants. However, these fractions were less stimulating than 

the corresponding extracts of cabbage, whilst those of C. bursa-pastoris showed no 

significant stimulatory activity (Renwick & Radke, 1987).

These results suggest that the chemical basis for the avoidance of these two Crucifers 

is different. As C. bursa-pastoris extracts are non-stimulatory to P. rapae, this 

evidence suffices as an explanation for the non-acceptability of this plant. However, 

as E. cheiranthoides contains compounds which stimulate oviposition, this plant 

would be acceptable for oviposition if it were not for the negative stimuli from the 

oviposition deterrents which effectively mask the positive stimuli of the ovipositional 

stimulants (Renwick & Radke, 1987).

The ovipositional deterrents of E. cheiranthoides to P. rapae have been further 

studied by Renwick, Radke & Sachdev-Gupta (1989); Sachdev-Gupta et al. (1990) 

and in field studies by Dimock & Renwick (1991). Extracts of the leaves of E. 

cheiranthoides were taken using n-butanol. The oviposition deterrent index4 (ODI) of 

3 gram leaf equivalent per plant was found to be 84.7. The extract was then 

fractionated and the fractions with the highest ODI's were studied further. The u.v. 

spectra of the prominent peaks in these fractions were almost identical with an 

absorption maximum at 216-219 nm typifying a butenolide ring. Further 

identification suggested that the specific compounds were cardenolides (Renwick et 

a l ,  1989).

The cardenolides reported as being the major ovipositional deterrents by Renwick et 

al. (1989) have been isolated, identified and bioassayed. The three compounds are 

erysimoside, erychroside and erycordin. These three compounds were then 

bioassayed for their effect on oviposition, along with the hydrolysis products of 

erysimoside and erychroside, helveticoside and stophanthidin respectively. The 

results of the assays indicated that the diglycosides of stophanthidin containing a 2,6,- 

dideoxy sugar are deterrents; i.e. erysimoside (ODI 53.9) and erychroside (ODI 55). 

However erycordin, which is a diglycoside of cannogenol and lacks a 2,6,-dideoxy

4 The oviposition deterrent index (ODI) is a useful and robust measure o f  the effect o f  different treatm ents on the 
acceptability o f  an ovipositional substrate and is calculated by (C-T/C+T) x 100, where C and T  are the num ber o f  
eggs laid on control and treated plants respectively. An ODI rating o f 100 indicates that the treatm ent acts as a 
com plete deterrent to oviposition, i.e. all o f the eggs were laid on the control treatment; an ODI o f  0 indicates that 
there is no difference betw een the treatm ent and the control whilst a negative ODI indicates that the treatm ent is 
an ovipositional stim ulant as com pared to the control.
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sugar, is relatively inactive (ODI 19). The hydrolysis products helveticoside, and 

stophanthidin, are inactive as oviposition deterrents (Sachdev-Gupta et al., 1990).

The effect of applying butanol extracts of E. cheiranthoides to cabbage plants on 

oviposition by P. rapae in a field experiment showed that the extracts had a 

significant effect on oviposition. However, the effect was not uniform for all spray 

periods. Fewer eggs were found on plants in treated plots than in control plots 24 

hours after spray application. Similarly, in field cage experiments, 85 per cent or more 

of the total number of eggs laid were laid on untreated plants as compared to treated 

plants. However, in the field experiments, on subsequent sampling occasions, both 

the total number of eggs and the difference in the egg counts between treated and 

untreated plots decreased (Dimock & Renwick, 1991).

Thus, it would appear that ultimately host plant acceptability is mediated by a balance 

of sensory inputs from both negative and positive stimuli in the plant as outlined by 

Dethier (1982) and further expanded into the "rolling fulcrum" model of host plant 

selection suggested by Miller & Strickler (1984).

In this model, as in Dethier's, there is a balance between the external excitatory and 

inhibitory inputs from the peripheral receptors of an insect, including visual, olfactory 

and mechanical receptors (Miller & Strickler, 1984). For example, the relative 

concentrations and activities of oviposition stimulants and deterrents in a potential 

host plant interact to produce the plant’s overall chemical acceptability to the insect. 

However, the relative balance between these opposing cues is weighted by the 

internal state of the insect. This internal state weighting is derived from the balance 

between internal excitatory and inhibitory inputs. This balance reflects an insect's 

'motivational threshold' and thereby, takes into account the changes in host 

acceptability depending upon the individual's physiological state (Miller & Strickler,

1984), such as egg-load (Minkenberg et al., 1992; Jones, 1977).
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Oviposition Deterring Pheromones

Rothschild & Schoonhoven (1977) reported that the eggs of P. brassicae lowered the 

acceptability of host plants for oviposition by P. rapae and that, in choice 

experiments, P. rapae discriminated against cabbage leaves which had had P. rapae 

eggs removed from them as compared to control leaves which had not had P. rapae 

eggs. Following these experiments, Rothschild & Schoonhoven (1977) concluded 

that a mechanism exists in this species to prevent the overloading of host plants and 

that the mechanism involves detection of an oviposition deterring pheromone which 

is detected by the ovipositor of P. rapae.

However, in field experiments which utilised butterflies from both Australia and 

Canada, neither type of butterfly discriminated between leaves with and without eggs. 

In fact, leaves with eggs already present were more likely to receive more eggs than 

leaves without eggs. This result was considered to be a response to particular leaves 

rather than to the eggs per se (Ives, 1978). Similarly, in laboratory studies of the 

response of both naive and experienced P. rapae females to the presence of eggs on 

test discs, no difference was found between the numbers of eggs laid on discs with 

eggs and those without eggs for both naive and experienced females (Traynier, 1979).

In common with Ives (1978), Klijnstra (1985) showed that the presence of P. rapae 

eggs on cabbage leaves (250 egg equivalents in 1 ml methanol to each side of the leaf) 

was not a deterrent to ovipositing females. Females laid 2289 eggs on control leaves 

and 1702 eggs on treated leaves resulting in a per cent deterrence (calculated by the 

same formulae as for the oviposition deterrent index, page 26) by a putative 

oviposition deterring pheromone of 14.7 per cent. However, the response of P. rapae 

to the oviposition deterring pheromone of P. brassicae is a decrease in the number of 

eggs laid on treated as compared to control leaves, the mean number of eggs being 54 

on the treated leaves (250 egg equivalents in 1 ml methanol per side of leaf) and 616 

on control leaves (Klijnstra, 1985). Therefore, it would appear that P. rapae 

oviposition is not seriously affected by its own oviposition deterring pheromone 

whilst that of P. brassicae is highly deterrent to P. rapae.

Klijnstra (1985) suggests that the oviposition deterring pheromone of P. brassicae 

reduces the level of both intra and inter-specific competition, as females of P. rapae, 

detecting the infochemical, become informed of the degree of occupation of a
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potential host plant by the eggs of P. brassicae. Therefore, the ensuing reduction of 

inter specific competition between the larvae of P. brassicae and P. rapae may favour 

both species, however, the major advantage probably accrues to P. rapae (Klijnstra,

1985).

Thus it appears that although P. rapae can certainly perceive its own oviposition 

deterring pheromone, with tarsal and antennal sensilla (Schoonhoven, Beerling, 

Braaksma & van Vught, 1990), and thereby the degree of occupation of a host plant 

by its own eggs, the role of its own oviposition deterring pheromone is of minor 

importance in the overall decision to accept or reject a host plant.

Plant N utrient Status

The importance of nitrogen in insect plant interactions and host plant suitability is 

well known. A survey of the literature of the last fifty years, carried out by Scriber 

(1984) showed that over 70 per cent of studies indicated that insect damage, growth, 

fecundity or abundance increases with increasing plant nitrogen.

Jansson, Leibee, Sanchez & Lecrone (1991) reported that the abundance of 

lepidopterous pests on crucifers was significantly and positively correlated with the 

rate of nitrogen applied to the plant as fertiliser, hi similar experiments investigating 

the effect of fertiliser on the oviposition of P. rapae, Wolfson (1980) reported a clear 

preference for heavily fertilised plants over those fertilised with a lower nitrogen 

concentration and a lower overall dose of fertiliser. However, no difference was 

found between plants receiving varying amounts of sulphur as fertiliser. In addition 

to changing the relative ovipositional preference between plants, added fertiliser also 

altered the distribution of eggs within a plant. On those plants receiving a low 

fertiliser dose, the egg distribution shifted from a pattern where densities were highest 

on fully expanded middle aged leaves, and lowest on very young and old leaves, to 

one where the very young leaves received over 25 per cent of the total number of 

eggs.

In a study of the effect of nitrogen fertilisation on oviposition by P. rapae using 

potted kale, the mean number of eggs laid was higher on fertilised plants by two 

orders of magnitude reflecting differences in fertiliser treatments; leaf nitrogen 

concentration explained over 90 per cent of the variation in oviposition rate 

(Letourneau & Fox, 1989).
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Myers (1985) found that, not only do fertilised cabbage plants receive significantly 

more eggs than unfertilised plants, but the application of fertiliser affects several 

physiological parameters of the plant. A significant correlation between per cent 

nitrogen of the foliage and the colour of the plant was found; plants receiving more 

fertiliser were greener (as measured by the ratio of red to infra red reflectance). The 

greenness of the plants was also significantly correlated with the number of eggs a 

plant received. There was a consistent trend for fertilised plants to have higher 

transpiration rates. Higher transpiration rates also tended to increase the number of 

eggs a plant received. Fertilisation increased the concentration of nitrogen and 

phosphorus in the cabbage plants after the first day.

Effects o f  prior experience and learning

Learning has been shown to occur in P. rapae (Traynier 1984; 1986; and Lewis,

1986). Traynier (1984; 1986) and Traynier & Truscott (1991) have shown that P. 

rapae can associate the colour of a disc with the presence of host phytochemicals 

(sinigrin or glucobrassicin). In addition, a preference was observed in subsequent 

tests for the visual stimuli (colour) learnt by association. However, Traynier (1987) 

reported that from preliminary experiments of 24 hours duration, P. rapae did not 

associate leaf shape characteristics with the presence of sinigrin.

Furthermore, P. rapae is unable to learn to associate negative stimuli with colour. 

Traynier (1987) conducted experiments in which P. rapae was offered a choice 

between six white discs for oviposition, on three different occasions. In the first and 

third tests, two discs were treated with sinigrin solution and the remainder with water, 

while in the second test two discs were treated with water, two with sinigrin solution 

and two with chiorogenic acid (a polyphenol found in many plant families). The egg 

distributions from the first and third trials were similar with most eggs laid on 

sinigrin-treated discs and the remainder evenly distributed on water discs. In the 

second test, the chlorogenic acid discs failed to elicit oviposition, receiving very few 

eggs, whereas, the water and sinigrin discs both received eggs. Therefore, Traynier

(1987) concluded that chlorogenic acid influenced behaviour only instantaneously as 

a deterrent and failed to influence learning.
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Population differences

In comparative studies of the pre-oviposition behaviour of P. rapae from different 

countries, the populations of P. rapae in Canada and Australia share preferences for 

age, size and species of host plant (Jones & Ives, 1979). For example, when offered 

cultivars of B. oleracea, radish and species of wild mustard, they preferred cabbage to 

other varieties for both landing and oviposition. They were more likely to alight on a 

large host plant than a small one, but once alighted they were more likely to oviposit 

on a young plant, resulting in well grown middle aged plants receiving most eggs. 

The Australian butterflies spread their eggs over a larger area and produce a less 

aggregated egg distribution, both plant to plant and patch to patch than Canadian 

butterflies.

In a similar comparison of the oviposition behaviour of P. rapae from the UK and 

Australia, it was found that UK females were more likely to resettle on the same host 

plant, rather than a new one; they made more alightings per minute; during an 

alighting, a UK female was more likely to oviposit; a UK female was less likely to 

alight on a non-host plant and was less likely to visit a small host plant (Jones, 1987). 

The result of this behavioural pattern is that UK females laid their eggs much more 

rapidly but utilised a smaller subset of available host plants. In these respects, they 

are similar to Canadian P. rapae females previously studied by Jones (1977).

These differences in the behaviour of P. rapae populations from different 

geographical localities indicate that there is a high degree of inherent plasticity in the 

insect's host plant finding behaviour on which selection may act to optimise the 

overall strategy employed in different biogeographic regions.

CONCLUSIONS AND AREAS FOR RESEARCH IN THIS THESIS

This review has demonstrated that host plant chemistry is considered to be central to 

the ovipositional decisions made by female P. rapae in rejecting or accepting host 

plants. However, the importance of other factors in mediating the decision-making 

process cannot be ignored, neither can the role of the insect's internal physiological 

state. The behaviour of an insect with respect to a host plant is obviously more 

complex than a simple chemically-mediated interaction. The evolutionary process
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shaping this interaction reflects a balance between host and insect herbivore; natural 

enemies may also influence this interaction.

The major knowledge gaps which have been identified in this review and which 

therefore, have been chosen as areas for experimental investigation are shown below:

Role of volatile odour cues in oviposition behaviour.

Role of colour in landing behaviour.

Integration of sensory modalities in the decision making process.

Influence of pre-and post alighting discrimination in host plant acceptance.

The role of prior experience in influencing host plant choice and pre-ovipositional 

behaviours.

The role of olfaction in host plant location in P. rapae has not been well investigated; 

no published systematic studies of the role of olfaction in host plant location in any 

Pierid exist. The circumstantial evidence cited and the role of volatiles in other 

species indicate that it is likely that P. rapae makes use of volatile cues emanating 

from host plants to aid their location. This is probably the major knowledge gap in 

the ovipositional behaviour of P. rapae.

The effect of colour has been investigated and statistical relationships between 

wavelengths reflected and oviposition have been recorded (Myers, 1985). The aim of 

this research is to further elucidate how spectral reflectance affects landing and which 

areas of the spectrum are most important.

At present most research on the cues utilised by females in selecting plants for 

oviposition have been studied independently. This type of research reveals very little 

about the relative importance of each sensory modality or any interactions between 

them. The models of host plant selection developed suggest that the balance of 

sensory inputs is critical in decision-making. However, there is little evidence to 

suggest the relative importance of the different sensory modalities.

An equally important and challenging area is to investigate the role of prior 

experience on the ovipositional choices and preferences of females. Learning has 

been shown to increase the searching efficiency of phytophagous insects. This may
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be a major factor in influencing a female's alighting preferences during an 

ovipositional bout.

Overall, the factors affecting oviposition for P. rapae have been investigated in some 

detail. However, areas have been neglected resulting in a bias of the understanding of 

the full oviposition behaviour of P. rapae, e.g. the role of volatiles, host plant 

physiology and insect learning are under-represented in the literature. By 

concentrating this research on the factors which affect pre-alighting discrimination 

such as the role of plant volatiles in host plant selection, the pre-dominance of 

research in post-alighting discrimination may be redressed.
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Chapter Two 
Effect of host plant volatiles on the 

pre-oviposition behaviour of P. rapae.

INTRODUCTION

Volatile compounds leaving plant surfaces spread through the air by diffusion. The 

olfactory receptor systems of phytophagous insects are able to perceive some of these 

compounds enabling them to act as chemical messengers (Visser, 1988). Host plant 

volatiles have been shown to be important olfactory cues affecting the orientation of 

many phytophagous insects (Renwick, 1989; Visser, 1986).

For P. rapae, electroantennography (EAG) indicates that the perception of volatile 

compounds, including general plant odours and isothiocyanates by P. rapae occurs 

(van Loon, Frentz & van Eeuwijk, 1992; Topazzini, Mazza, & Pelosi, 1990). The 

results of these studies indicate that the compounds producing the greatest effect were 

fatty acid derivatives, linalool, terpinol, l-octen-3-ol, 1-phenylethanol and r-cresol, 

benzaldehyde and eugenol. Of the crucifer-specific compounds tested, phenyl- 

acetonitrile elicited a higher response than allyl isothiocyanate, benzyl isothiocyanate 

and 2-phenylethyl isothiocyanate (van Loon et al., 1992; Topazzini et al., 1990). 

Allyl isothiocyanate showed a difference in the strength of the EAG response between 

male and female preparations, with the relative response being 2.5 % and 15 % for 

males and females respectively (van Loon et al., 1992). EAG is considered a useful 

technique in the examination of volatile stimuli for biological activity. The 

technique, which has been widely used assumes that volatile stimuli which elicit a 

strong electrophysiological response are more likely to be active elicitors of 

behavioural responses by the insect than compounds which produce a lower response 

(Marion-Poll & Thiery, 1996). However, it should be noted that since the EAG 

measures the response of an insect's olfactory sense cells located on the antennae to 

test odours, a response to an odour does not constitute evidence that the compound is 

behaviourally active, but merely demonstrates perception of that compound by the 

insect (Hern et al., 1996a).
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Evidence of behavioural effects on the Lepidoptera by volatile compounds is 

available (Ramasamy, 1988; Renwick, 1989; Bernays & Chapman, 1994; Saxena & 

Goyal, 1978; Feeny et al., 1989). For P. rapae, it has been shown that volatile 

chemicals from macerated cabbage deterred oviposition by P. rapae (Renwick & 

Radke, 1983). In a review of the sensory inputs involved in oviposition behaviour 

Renwick & Radke (1988) concluded that the role of olfaction is limited to the 

avoidance of non-host plants. Similarly, Fahrig and Paloheimo (1987) concluded that 

as P. rapae's flight orientation was not affected by the presence of cabbage it is 

"unlikely that females can use olfactory detection to find host plants". However, 

Traynier (1979) was more circumspect in his assertion that vision alone could account 

for host plant location and warned against concluding that olfaction plays no part in 

host location by P. rapae.

The role of volatiles in host plant selection is unclear (Chew & Renwick, 1995) with 

some circumstantial evidence suggesting that such cues may be important to some 

species, for example, Pieris napi L. (Courtney, 1986a) and Pieris brassicae L. 

(Mitchell, 1977).

Given this incomplete understanding of the role of volatiles in the pre-oviposition 

behaviour of P. rapae, the overall aim of the work reported in this chapter was to 

experimentally investigate the role host plant volatiles play in P. rapae’s host plant 

finding behaviour in order to test for any behavioural effect of volatiles in pre- 

ovipositional behaviours.

In order to assess whether or not volatiles affected the search for host plant patches, 

the effect of host plant volatiles on the number and duration of flight behaviours of P. 

rapae in a wind tunnel was investigated (Section A). In addition, the position of the 

butterflies in the wind tunnel relative to the odour sources was noted. To investigate 

whether or not volatiles may play a role in pre-alighting discrimination the effect of 

baiting non-host plant with host plant derived volatile cues on the decision to alight 

on such plants by P. rapae was carried out (Section B).
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SECTION A 

THE EFFECT OF VOLATILES ON THE FLIGHT BEHAVIOUR 

OF P. RAPAE FEMALES 

METHODS

Wind tunnel description

The wind tunnel was comprised of four main sections; the transition section, the 

settling chamber and the test section which also incoiporated the experimental area 

(Figure 2.1). The transition section consisted of a wide angle diffuser fitted with a 

combination of adjustable air splitters and guide vanes to control the boundary layer. 

The settling chamber, was fed by a non-overloading centrifugal blower fan, with 

minimum disturbance to airflow. The settling chamber contained a combination of 

screens and honeycombs to provide a laminar air flow to the entrance of the test 

section (P. J. Bowden, unpublished).

Figure 2.1 Diagrammatic representation of the wind tunnel used in 
these experiments.

T ra n s itio n  S e ttlin g  C h a m b e r E x p er im e n ta l A rea
S ec tio n

The wind tunnel experimental area was 2.0 metres wide, 1.75 metres in length and 1 

metre high. The airflow within this section of the windtunnel has previously shown 

to be laminar (P.J. Bowden unpublished). Lighting was provided by eight evenly 

spaced fluorescent tubes (Sylvania Activa 172 professional 58 watt; supplier Lightbox 

Scotland ltd., Glasgow, UK) providing full spectrum light with an emission spectrum 

close to that of daylight with additional reflectance in the ultra violet. The wind
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tunnel showed variation in the levels of light reaching the floor and this is illustrated 

in Figure 2.2. Ambient air is drawn from outside and electric heaters provide heating 

to 22 °C for experiments (P. J. Bowden unpublished).

Figure 2.2 Variation in light intensity within the wind tunnel 
experimental area.

1.8

Length 

(m etres)

Butterflies

All experiments utilised captive bred P. rapae. The culture used was started from 

eggs obtained from a culture maintained at FIRI (Wellesbourne, UK). This culture 

has been continuously reared since the I960’s. The larvae were caged in mesh 

covered cages (size 50 x 50 x 50 cm). Larvae were fed on whole plants and when a 

plant had been eaten it was removed from the cage and replaced. Any larvae still 

present on the plant were carefully removed with either a paintbrush (mostly instars I 

& II) or with a pair of fine forceps (instars m , IV & V). Any pupae present were 

removed from the plant and carefully placed onto the floor of the cage. The adult

butterflies were raised at a temperature of 22 °C  with a light-dark photoperiod of 18:6 

hours respectively. Lighting was provided by full spectrum fluorescent tubes 

(Sylvania Activa 172 professional 58 watt; supplier Lightbox Scotland ltd., Glasgow, 

UK). The plants used for larval rearing and adult oviposition were glasshouse grown 

without the use of pesticides. Upon eclosion from the pupae, butterflies were 

transferred to another cage (usually 95 x 50 x 50 cm) with a host plant. An artificial 

nectar solution (15 per cent (w/v) sucrose with a dash of egg-yellow food colouring) 

was provided in a ‘feeder’. The ‘feeder’ comprised a white perspex sheet (15 x 15 

cm) with six vials attached by silicon sealer (non-toxic aquarium type). In between 

generations the cages were washed thoroughly with Decon solution (5 per cent) and

W idth (M etres)
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wiped with a 70 per cent ethanol solution. This was done to minimise the risk of 

infection from microbial pathogens (particularly viral and fungal pathogens). The 

host plants used for rearing and oviposition was as follows Spring Cabbage var. 

Golden Acre Primo (II).

Group Assay

Groups consisting of ten adult females (5-6 days old) were treated as one trial. Three 

trials were carried out in total. Different groups of butterflies were used for each trial. 

Females were introduced into the wind tunnel and allowed to acclimatise for 30 

minutes. Three vials of test chemical with a wick (ether or 1.0 gram leaf equivalents 

(gle5) host plant volatiles (volume 60 ml)) were placed 0.5 m apart across the width of 

the tunnel. A 20 % per cent (w/v) sucrose solution was positioned at the rear of the 

wind tunnel to allow nectar feeding. The vials were introduced 25 minutes into the 

acclimatisation period. After the full 30 minutes of the acclimatisation period was 

complete, behaviours were recorded at 10 min intervals for 90 min duration. The 

wind tunnel was split into three arbitrary sections lengthways (see Figure 2.3 for 

details of the layout of the windtunnel during these experiments) with the distance 

being the distance from the odour source, i.e. section 1 (0-0.58 m); section 2 (0.58- 

1.16 m) and section 3 (1.16-1.75 m). The activity and position of the butterfly was 

recorded as either flying, resting or feeding (nectar feeding on the sucrose solution) in 

each of the three sections.

Wind speed and temperature were recorded at each sampling interval using a low 

velocity flow analyser (DISA 54N50) with a combined wind speed and temperature 

probe (Dantec 9054R0102). The wind speed and temperature were recorded over a 

three minute period prior to each sampling time and expressed as the mean speed and 

temperature over the three minute period. The average and S.E. of the wind speed 

and temperature measurements for the treatments were calculated. For ether, the

mean wind speed was 1.01 m/s (S.E. 0.0024) and the mean temperature was 21.9 °C

5 Gram leaf equivalent is the amount o f extract expressed in terms of the amount o f leaf tissue extracted and the 
am ount o f  solvent used. For example, 50 grams o f leaf extracted in 50 ml o f solvent would be expressed as 1 
gle/ml or 50 grams o f leaf in 25 ml o f solvent would be 2 gle/ml. Therefore, to calculate the gle the am ount of 
tissue extracted is divided by the amount o f solvent in the final extract.
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(S.E. 0.1). For volatiles the mean wind speed was 1.01 m/s (S.E. 0.004) and the mean 

temperature was 22.2 °C  (S.E. 0.1).

Figure 2.3 Layout of the windtunnel experimental area for the group 
assay experiments.

Individual Assay

Individual females (5-6 days old) were marked (with a two dot code with permanent 

markers) and exposed to either a single vial of 1.0 gle host plant volatiles or to ether 

with a wick (see Figure 2.4). The number, duration of flights and resting periods 

were recorded. In addition, the position of flight activities of individuals were 

recorded (as above) along with the positions and duration of resting. A 20 % per cent 

(w/v) sucrose solution was positioned at the rear of the wind tunnel to allow nectar 

feeding. The female was introduced into the wind tunnel and given a 15 minute 

acclimatisation period. Behaviour was recorded for 15 minutes. Five females were 

used in each trial and a total of three trials was carried out. Behaviours were recorded 

using the Observer software package, version 3.0 (Noldus Information Technology, 

Wageningen. The Netherlands). Upon completion of the assay butterflies were placed 

into polythene bags and placed in freezer (-20 0 C for twenty minutes to kill the
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butterflies) after which the wing length of the female was measured as described by 

Jones, Hart & Bull (1982).

Figure 2.4 Layout of the wind tunnel experimental area for the 
individual assay.

Sucrose
solution

W ind speed and temperature were recorded for each butterfly at the end of each assay. 

The wind speed and temperature were recorded over a three minute period and 

expressed as the mean speed and temperature over the three minute period. The 

average and S.E. of the wind speed and temperature measurements for the treatments 

were calculated. For ether, the mean wind speed was 1.06 m/s (S.E. 0.018) and the

mean temperature was 22.1 °C (S.E. 0.19). For volatiles, the mean wind speed was

1.07 m/s (S.E. 0.01) and the mean temperature was 22.8 °C (S.E. 0.22).

Collection o f  volatiles

Cabbage volatiles (var. Golden Acre Primo (II)) were collected by dynamic headspace 

analysis using a laboratory entrainment system. The equipment used is similar to that 

described by Robertson et al. (1993). The major difference in the two systems is that 

in the present system air was pulled through the system rather than pushed as in the 

system of Robertson et al. (1993). The construction of the system was glass, stainless 

steel and PTFE tubing. All joints were wrapped in PTFE tape to provide an airtight 

seal. Excised leaves were placed in a 2 litre glass container. Air entering the system 

was filtered through activated charcoal and dried before entering the container with 

the excised leaves. Air was drawn over the leaves for 20 hours and the volatiles were

Section 1 X  Ç p p t i n n  0Section 2 ^  ^  Section 3

A A 0-0.58 M 0.59-1.16 M 1.17-1.75 M

2.0 M U
A

Position o f  odour source a 4 -

▼ ▼
1.75 M

Experim ental A rea
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trapped onto Tenax-Ta. The polymer was contained in a glass tube. All glassware 

was cleaned in distilled water and methanol and oven baked prior to use.

The Tenax-Ta ((mesh size 60-80) Alltech Associates, Lancashire, UK) was 

conditioned prior to the collection of volatiles. 3.5 ml of diethyl ether (HPLC grade) 

were passed through the column of Tenax. The column was then dried by passing a 

stream of filtered ambient air through the column. The final stage of conditioning 

was done by passing a stream of helium (BOC Grade A) through the column (flow 

rate 20 ml/min) while the column was heated to 180 °C (heating rate 8 °C  per 

minute) and held at this temperature for three hours. 0.3 g of Tenax-Ta was used in 

each collection. Volatiles were collected over 20 hours at a temperature of 18 °C 

from excised leaves at a flow rate not exceeding 200 ml/min. Leaves used were from 

12 week old plants, with between 30 and 50 grams of leaf material per collection. 

The plants were treated with systemic insecticide granules at sowing (Temik 1 granule 

per square inch of compost surface Rhone-Poulenc Agriculture, Ongar Essex UK) in 

an attempt to limit the damage caused by herbivorous insects and any subsequent 

effect this damage may have had on the volatiles released from the leaves. Elution of 

volatiles was achieved with 3.5 ml of diethyl ether into a glass sample tube in a bath 

of ice/methanol. Further dilution to 1.0 gle was undertaken prior to use with diethyl 

ether.

RESULTS

Group Assay

The data from this assay was analysed with a generalised model using the GLIM 

command in Minitab for Windows (Release 11.1). Prior to analysis, the data for each 

treatment (ether and volatiles) was combined and tested for normality using a Ryan- 

Joiner test (Shapiro-Wilk). If the data was not normally distributed (P<0.05), the data 

was transformed by Logi0(data+1) (Table 2.1). This transformation was carried out to 

improve the additivity of the model and the normality of the residuals and thus more 

closely satisfy the assumptions of the analysis of variance with its significance tests. 

The results of this analysis are shown in Table 2.2. As can be seen sampling time was 

not a significant factor for any of the behaviours (p>0.05).
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Table 2.1. The result o f Ryan-Joiner tests for normality on the data for 
each behavioural class, data from volatile and ether treatments 
combined. (P>0.05 indicates that the data follow a normal 
distribution).

Behavioural class Mean Standard
Deviation

N

W-test for 
normality

R P-value Data normally 

distributed

Data transformed 

for

GLIM analysis

Flying section 1 0.9 0.97 60 0.996 0.1 Yes No

Flying section 2 1.35 1.23 60 0.994 0.1 Yes No

Flying section 3 0.63 0.78 60 0.998 0.1 Yes No

Resting section 1 1.8 1.11 60 0.998 0.1 Yes No

Resting section 2 3.53 2.02 60 0.979 0.044 No Log10(data+1)

Resting section 3 1.533 1.10 60 0.995 0.1 Yes No

Feeding Behaviours 0.25 0.47 60 0.999 0.1 Yes No

Figure 2.5 . Mean number o f P. rapae females in a group o f ten
exhibiting each type o f behaviour when exposed to volatiles and ether 
over 90 minutes. Behaviours were recorded at 10 minute intervals 
(Mean and standard error o f the mean shown are from three trials). 
Columns with different letters in the volatile and ether groups are 
significantly different from each other. n=30 (10 measurements per 
trial x 3 trials).
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Table 2.2. Summary of Generalised linear model for the effect of 
volatiles on various behaviours with sampling time and chemical 
treatment as factors.

Factor Levels Values 

Chemical 2 (volatile ether)

Time 10 (0 10 20 30 40 50 60 70 80 90)

Analysis of Variance for Feeding behaviours

Source DF Seq. SS Adj. SS Adj. MS F P

Chemical 1 0.0167 0.0167 0.0167 0.08 0.778

Time 9 3.0833 3.0833 0.3426 1.65 0.126

Error 49 10.1500 10.1500 0.2071

Total 59 13.2500

Analysis of Variance for Flying-section 1

Source DF Seq. SS Adj. SS Adj. MS F P

Chemical 1 13.0667 13.0667 13.0667 15.90 0.001

Time 9 2.0667 2.0667 0.2296 0.28 0.977

Error 49 40.2667 40.2667 0.8218

Total 59 55.4000

Analysis of Variance for Flying-section 2

Source DF Seq. SS Adj. SS Adj. MS F P

Chemical 1 8.817 8.817 8.817 6.20 0.016

Time 9 11.150 11.150 1.239 0.87 0.557

Error 49 69.683 69.683 1.422

Total 59 89.650

Analysis of Variance for Flying-section 3

Source DF Seq. SS Adj. SS Adj. MS F P

Chemical 1 4.2667 4.2667 4.2667 8.93 0.004

Time 9 8.2667 8.2667 0.9185 1.92 0.070

Error 49 23.4000 23.4000 0.4776

Total 59 35.9333

Analysis of Variance for Resting-section 1

Source DF Seq. SS Adj. SS Adj. MS F P

Chemical 1 0.600 0.600 0.600 0.43 0.516

Time 9 4.267 4.267 0.474 0.34 0.958

Error 49 68.733 68.733 1.403

Total 59 73.600
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Analysis of Variance for Log]0(data+1) Resting-section 2 

Source DF Seq. SS Adj. SS Adj. MS F P

Chemical 1 0.49302 0.49302 0.49302 17.97 0.001

Source

Time 9 0.49405 0.49405 0.05489 2.00 0.059

49 1.34450 1.34450 0.02744

59 2.33157

Error

Total

Analysis of Variance for Resting-section 3

Source DF Seq. SS Adj. SS Adj. MS F P

1 5.400 5.400 5.400 4.57 0.038Chemical

Time 9 7.600 7.600 0.844 0.71 0.693

Error 49 57.933 57.933 1.182

Total 59 70.933

Figure 2.5. shows the mean number of the behaviours observed, when exposed to the 

volatile extract, the number of females in flight in all three sections of the wind tunnel 

(section 1, section 2 and section 3) was significantly higher than the ether control 

(p<0.001; p<0.01; p<0.01; for section 1, section 2 and section 3 of the wind tunnel 

respectively). For resting behaviours, the number of females resting in section 2 and 

3 of the wind tunnel was significantly lower when exposed to the volatile extract as 

compared to ether (p<0.001 and p<0.05 respectively). No other statistically 

significant differences between experimental and control groups were found (Table

Individual Assay

The data from this assay was analysed as for the group assay except that the factors 

used in the Glim analysis were chemical treatment (volatile or ether) and the 

individual butterflies wing length. The results of the normality tests are shown in

2.2.).

Table 2.3.
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Table 2.3. The result o f Ryan-Joiner tests for normality on the data for 
each behavioural class for the individual assay, data from volatile and 
ether treatments combined. (P>0.05 indicates that the data follow a 
normal distribution).

W-test for normality

Behavioural class Mean Standard
Deviation

N R P-value Data normally 

distributed

Data transformed 

for GLIM analysis

Number of flights 2.83 3.19 30 0.815 0.01 No Log10(data+1)

Duration of flights 174 194.6 30 0.904 0.01 No Log10(data+1)

Number of resting 2.5 
periods

1.2 30 0.978 0.1 Yes No

Duration of 
resting periods

719 196.9 30 0.904 0.01 No Log10(data+1)

Figure 2.6. The mean number o f flights exhibited by female Pieris 
rapae on exposure to a volatile extract or ether. Error bars indicate the 
standard deviation. Columns with different letters are significantly 
different from each other. N=15
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Table 2.4. Summary of Generalised linear model for the effect of 
volatiles on the various behaviours with female wing length and 
chemical treatment as factors.

General Linear Model

Factor Levels Values

Treatment 2 (Volatile Ether)

Female wing length 5 (18 20 21 22 23)

Analysis of Variance for Logl0 (data+1) number of flights 

Source DF Seq. SS Adj. SS Adj. MS F P

Treatment 1 0.44837 0.44837 0.44837 11.45 0.002

Wing length 4 0.46058 0.46058 0.11514 2.94 0.041

Error 24 0.93957 0.93957 0.03915

Total 29 1.84851

Analysis of Variance for Log10 (data+1) duration of flights 

Source DF Seq. SS Adj. SS Adj. MS F P

Treatment 1 3.7531 3.7531 3.7531 10.16 0.004

Wing length 4 1.7460 1.7460 0.4365 1.18 0.344

Error 24 8.8657 8.8657 0.3694

Total 29 14.3649

Analysis of Variance for number of resting periods 

Source DF Seq. SS Adj. SS Adj. MS F P

Wing length 4 1.833 1.833 0.458 0.31 0.869

Treatment 1 4.033 4.033 4.033 2.72 0.112

Error 24 35.633 35.633 1.485

Total 29 41.500

Analysis of Variance for Logio (data+1) duration of resting periods 

Source DF Seq. SS Adj. SS Adj. MS F P

Wing length 4 0.03381 0.03381 0.00845 0.40 0.804

Treatment 1 0.06159 0.06159 0.06159 2.94 0.099

Error 24 0.50313 0.50313 0.02096

Total 29 0.59853

Figure 2.6. & 2.7. shows the mean number of the flights and the duration of the flights 

respectively. As can be seen there was a significant increase in both the number and 

duration of flights when females were exposed to the volatile extract as compared to 

the ether control (P<0.01 for both behaviours Table 2.4.).

Wing length was measured and used as a factor in the statistical analysis of this data 

because Jones et al. (1982) have shown that the size of a female can be used as a
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proxy for its lifetime fecundity. This arises as a consequence o f the fact that pupal 

weight is a strong determinant o f female size and larger pupae also have a larger 

number o f eggs. Female wing length exhibited a significant effect on the number of 

flights made by females (p <0.05) (Table 2.4.), and the effect o f female wing length 

on the number o f flights is illustrated in Figure 2.8.

Figure 2.8. Effect o f wing length on the number o f flights made by 
Pier is rapae females (mean o f volatile and ether treatments 
combined). N=30.
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In order to investigate whether the volatile extract acted as an attractant to P. rapae 

females the flights recorded, were classified as resulting in a net movement upwind 

or downwind, or in no net change o f position. The data from this classification was 

analysed using the Glim command in Minitab for Windows (release 11.1). Prior to 

analysis the data was tested for normality as before and was found to be not normally 

distributed W-test for normality (R 0.8057; P<0.01). To improve the normality of 

the data a Log10 (data+1) transformation was carried out which resulted in a normal 

distribution for the data (R 0.9896; P>0.05).

The results o f this analysis indicate that chemical treatment, volatile extract or ether 

had a significant effect on the number o f flights made (P<0.01). Similarly, the net- 

movement o f the flights also showed significant differences (P<0.01)(Figure 2.9.). 

However, there was no evidence to suggest that in the presence o f volatiles the 

number o f upwind flights was significantly increased as compared to ether 

(P>0.05)(Figure 2.10.). Therefore, it would appear that volatile extracts do not act. as 

attractants to P. rapae females, as defined by Dethier, Barton-Browne & Smith 

(1960) who defined attraction as “drawing from a distance”. If  the volatile extracts 

tested in these experiments were acting as attractants to the females it would be 

expected that there would be a significant increase in the number o f flights which
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resulted in a net-movement upwind as when exposed to volatile extracts as compared 

to ether.

Figure 2.9. Mean number o f flights made by female Pieris rapae in 
each classification o f net-movement from the beginning to the end o f 
the flight. Error bars indicate standard deviation and letters with 
different letters are significantly different from each other. Mean of 
all flights made by 15 individuals for both volatile extracts and ether.
(N=77 flights made in total).
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Figure 2.10. Mean number o f flights made by female Pieris rapae for 
the volatile extract and ether treatments in each classification o f net- 
movement from the beginning to end o f the flight. Error bars indicate 
standard deviation and letters with different letters are significantly 
different from each other. Mean o f all flights made by 15 individuals. 
(N=77 flights made in total).
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Table 2.5. The results of a Generalised linear model analysis on the 
number of flights made by Pieris rapae females resulting in an 
upwind, downwind or no change in the position of the female at the 
end of the flight. As female wing length was previously showed to be 
important in affecting the number of flights made by females this 
variable was included as a covariate in the Glim analysis.

General Linear Model

Factor Levels Values

Chemical 2 Volatile Ether

Net-movement 3 Upwind Downwind No change

Analysis of Variance for Logio (data+1) number of flights

Source DF' Seq. SS Adj. SS Adj. MS F P

Wing length 1 0.17602 0.17602, 0.17602 4.41 0.039

Chemical 1 0.32219 0.322191 0.32219 8.06 0.006

Net-movement 2 0.52215 0.52215 0.26107 6.53 0.002

Chemical * Net-movement 2 0.06542 0.06542 0.03271 0.82 0.445

Error 83 3.31629 3.31629 0.03996

Total 89 4.40207

Table 2.6. Mean and standard error of the mean for the number and 
duration of behaviours observed over a fifteen minute period when 
individual P. rapae were tested for the effects of volatiles and ether on 
flight behaviours (Mean of three trials; five butterflies per trial). P 
values refer to analysis of variance (data Logio (data+1) transformed) 
for effect of chemical treatment from the Generalised Linear model 
analysis. N=15 for each treatment.

Frequency Total duration (seconds)

Behavioural class Volatile Ether P Volatile Ether P

Flight section 1 12.07 4.73 <0.01 36.60 19.13 <0.01

±SE 2.70 2.20 8.70 8.80

Flight section 2 22.47 14.07 <0.01 168.10 97.30 <0.05

±SE 4.00 4.90 41.40 40.60

Flight section 3 12.40 8.53 <0.05 41.30 28.30 <0.05

±SE 2.20 3.00 10.70 11.40

Rest section 1 0.60 0.27 >0.05 114.50 73.30 >0.05

±SE 0.16 0.12 56.50 49.80

Rest section 2 1.64 1.53 >0.05 320.30 417.50 >0.05

±SE 0.30 0.27 82.00 93.40

Rest section 3 0.73 0.60 >0.05 221.40 260.90 >0.05

±SE 0.30 0.20 75.90 91.80
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In addition to the number and duration of flights being recorded the section of the 

wind tunnel in which each flight passed was recorded. The data is summarised in 

Table 2.6. Prior to analysis the data were tested for normality as before and the result 

of this analysis is summarised in Table 2.7. a & b.

Table 2.7a. The result of Ryan-Joiner tests for normality on the data 
for the frequency of behavioural events for each behavioural class, data 
from volatile and ether treatments combined. (P>0.05 indicates data is 
normally distributed.

W-test for normality

Behavioural class Mean Standard
deviation

N R P-value Data
normally
distributed

Transformation
used

Flying section 1 8.4 9.95 30 0.91 0.01 No Log10 (data +1)

Flying section 2 18.3 17.6 30 0.94 0.01 No Logio (data +1)

Flying section 3 10.5 10.2 30 0.93 0.01 No Logi0 (data +1)

Resting section 1 0.43 0.57 30 1 0.1 Yes None

resting section 2 1.53 1.1 30 0.99 0.1 Yes None

resting section 3 0.67 0.88 30 0.98 0.1 Yes None

Table 2.7b. The result of Ryan-Joiner tests for normality on the data 
for the duration (seconds) of behavioural events for each behavioural 
class, data from volatile and ether treatments combined. (P>0.05 
indicates data is normally distributed.

W-test for normality

Behavioural class Mean Standard
deviation

N R P-value Data
normally
distributed

Transformation
used

Flying section 1 27.8 34.4 30 0.9 0.01 No Logio (data +1)

Flying section 2 132.7 160.2 30 0.9 0.01 No Log io (data +1)

Flying section 3 34.8 42.7 30 0.85 0.01 No Log10 (data +1)

Resting section 1 93.9 203.6 30 0.84 0.01 No Logio (data +1)

Resting section 2 368.9 338.2 30 0.96 0.045 No Logio (data+1)

Resting section 3 241.1 321.2 30 0.97 0.1 Yes None
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Table 2.8. Summary of the generalised linear model analysis for the 
effect of chemical treatment and the females wing length on 
behaviours exhibited in each section of the wind tunnel.

General Linear Model

Factor Levels Values

Chemical 2 Volatile Ether

Wing length 5 18 20 21 22 23

Analysis of Variance for Log10 (data+1) number of flights in section 1 of the wind tunnel

Source DF Seq. SS Adj. SS Adj. MS F P

Chemical 1 2.0210 2.0210 2.0210 11.46 0.002

Wing length 4 0.6852 0.6852 0.1713 0.97 0.441

Error 24 4.2321 4.2321 0.1763

Total 29 6.9383

Analysis of Variance for Logi0 (data+1) number of flights in section 2 of the wind tunnel

Source DF Seq. SS Adj. SS Adj. MS F P

Chemical 1 1.2454 1.2454 1.2454 5.80 0.024

Wing length 4 1.2944 1.2944 0.3236 1.51 0.232

Error 24 5.1536 5.1536 0.2147

Total 29 7.6934

Analysis of Variance for Logio (data+1) number of flights in section 3 of the wind tunnel

Source DF Seq. SS Adj. SS Adj. MS F P

Chemical 1 0.7469 0.7469 0.7469 5.48 0.028

Wing length 4 1.0150 1.0150 0.2538 1.86 0.150

Error 24 3.2687 3.2687 0.1362

Total 29 5.0306

Analysis of Variance for the number of resting periods in section 1 of the wind tunnel.

Source DF Seq. SS Adj. SS Adj. MS F P

Chemical 1 0.8333 0.8333 0.8333 2.76 0.110

Wing length 4 1.2833 1.2833 0.3208 1.06 0.397

Error 24 7.2500 7.2500 0.3021

Total 29 9.3667

Analysis of Variance for the number of resting periods in section 2 of the wind tunnel.

Source DF Seq. SS Adj. SS Adj. MS F P

Chemical 1 0.000 0.000 0.000 0.00 1.000

Wing length 4 3.383 3.383 0.846 0.63 0.644

Error 24 32.083 32.083 1.337

Total 29 35.467

P a g e  45



Analysis of Variance for the number of resting periods in section 3 of the wind tunnel.

Source DF Seq. SS Adj. SS Adj. MS F P

Chemical 1 0.1333 0.1333 0.1333 0.15 0.699

Wing length 4 1.6667 1.6667 0.4167 0.48 0.751

Error 24 20.8667 20.8667 0.8694

Total 29 22.6667

Analysis of Variance for log 10 (data+1) duration of flights in section 1 of the wind tunnel

Source DF Seq. SS Adj. SS Adj. MS F P

Chemical 1 2.9174 2.9174 2.9174 8.59 0.007

Wing length 4 2.3196 2.3196 0.5799 1.71 0.181

Error 24 8.1508 8.1508 0.3396

Total 29 13.3877

Analysis of Variance for log 10 (data+1) duration of flights in section 2 of the wind tunnel

Source DF Seq. SS Adj. SS Adj. MS F P

Chemical 1 2.6485 2.6485 2.6485 4.88 0.037

Wing length 4 3.2209 3.2209 0.8052 1.48 0.238

Error 24 13.0267 13.0267 0.5428

Total 29 18.8962

Analysis of Variance for log 10 (data+1) duration of flights in section 3 of the wind tunnel

Source DF Seq. SS Adj. SS Adj. MS F P

Chemical 1 1.0701 1.0701 1.0701 4.92 0.036

Wing length 4 1.6293 1.6293 0.4073 1.87 0.148

Error 24 5.2238 5.2238 0.2177

Total 29 7.9232

Analysis of Variance for log 10 (data+1) duration of resting periods in section 1 of the wind

Source DF Seq. SS Adj. SS Adj. MS F P

Chemical 1 1.477 1.477 1.477 1.32 0.261

Wing length 4 3.337 3.337 0.834 0.75 0.569

Error 24 26.787 26.787 1.116

Total 29 31.601

Analysis of Variance for log 10 (data+1) duration of resting periods in section 2 of the wind i

Source DF Seq. SS Adj. SS Adj. MS F P

Chemical 1 0.855 0.855 0.855 0.52 0.479

Wing length 4 1.588 1.588 0.397 0.24 0.913

Error 24 39.631 39.631 1.651

Total 29 42.075
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Analysis of Variance for duration of resting periods in section 3 of the wind tunnel

Source DF Seq. SS Adj. SS Adj. MS F P

Chemical 1 11682 11682 11682 0.10 0.751

Wing length 4 263819 263819 65955 0.58 0.678

Error 24 2716100 2716100 113171

Total 29 2991601

Table 2.6. shows the mean number of the behaviours observed and the standard error 

of the mean for the three trials. In the presence of volatiles females flew significantly 

more often in sections 1, 2 & 3 of the wind tunnel as compared to the ether control 

(section 1: p<0.01; section 2: p<0.01; section 3: p<0.05 respectively)(Table 2.8.). 

There were no significant differences in the number of resting behaviours between 

host plant volatile and control samples (Table 2.8.). Additionally, females spent 

significantly longer periods of time in flight in sections 1, 2 & 3 of the wind tunnel 

when exposed to host plant volatile extracts as compared to the ether control (section 

1: p<0.01; section 2: p<0.05; section 3: p<0.05)(Table 2.8.).

SECTION B 

METHODS

Windtunnel description 

See Section A 

Butterflies 

See Section A 

No-choice assay

16, eight week old Iceberg lettuce plants were used in each test. The lettuce plants 

were grown without the use of pesticides in a greenhouse under natural lighting 

conditions. The plants were sprayed with either 2.5 gle volatile extract or mineral oil 

on both sides of all of the leaves using an air brush. The 16 plants were then 

arranged in a 4 x 4 grid in the wind tunnel with a 20 cm gap between plants, see 

Figure 2.11. 10 butterflies were introduced into the wind tunnel and left to

acclimatise for 15 minutes and after this period the butterflies behaviours were 

recorded for three one hour periods, with a five minute interval between each sample.
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Behaviours recorded were the frequencies of flights and alightings. Two trials of this 

experiment were carried out.

Figure 2.11. Diagrammatic representation of the wind tunnel used in 
these experiments, x = position of plants.

<  ►
Experimental Area

Wind speed and temperature were recorded at each sampling interval. The wind 

speed and temperature were recorded over a three minute period at the end of each 

sampling time and expressed as the mean speed and temperature over the three 

minute period. The average and S.E. of the wind speed and temperature 

measurements for the treatments were calculated. For oil, the mean wind speed was

1.04 m/s (S.E. 0.004) and the mean temperature was 21.8 °C  (S.E. 0.37). For 

volatiles, the mean wind speed was 1.05 m/s (S.E. 0.007) and the mean temperature

was 22.5 °C  (S.E. 0.3).

Choice assay

The experimental procedure was as above except the 16 lettuce plants used in each 

test were randomly split into two groups of 8. One group of 8 was sprayed with 

mineral oil and the other group of 8 plants was sprayed with 2.5 gle volatile extract. 

The 16 plants were then arranged randomly in a 4 x 4  grid, see figure 2.11. 10

butterflies were introduced into the wind tunnel and left to acclimatise for 15 minutes 

and after this period the butterflies behaviours were recorded for three one hour 

periods, with a five minute interval between each sample. The frequencies of flights 

and alightings was recorded. Two trials of this experiment were carried out.
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The mean wind speed was 1.07 m/s (S.E. 0.004) and the mean temperature was 22.8 

°C  (S.E. 0.34).

Collection o fvo la tiles

In order to avoid damaging the leaves of the lettuce plants with solvent an alternative 

method of volatile collection was used in preference to entrainment. This method of 

volatile collection relies on chemical extraction with dichloromethane and is 

described in detail by Feeny et al. (1989). Volatiles were extracted by dipping 

bunches of freshly excised leaves into dichloromethane (250 g per 750 ml of 

dichloromethane), twice for 60 seconds. The extract was then filtered and 

concentrated under reduced pressure in a rotary evaporator. The residue was 

dissolved in mineral oil (Sigma Chemical Company) to a concentration of 2.5 gle.

Leaves used were from 12 week old plants, Cabbage var. Golden Acre Primo (II). 

The plants were treated with systemic insecticide granules at sowing (Temik 1 granule 

per square inch of compost surface Rhone-Poulenc Agriculture, Ongar Essex UK) in 

an attempt to limit the damage caused by herbivorous insects and any subsequent 

effect this damage may have had on the volatiles released from the leaves.

RESULTS

No-Choice Assay

The data from this assay was analysed using the GLIM command with chemical 

treatment as a factor. Prior to the analysis the data was transformed using an arcsine 

squareroot on the proportion of behaviours for volatile and oil. The results of this 

assay are shown in Table 2.9.

Table 2.9. Mean number of flights and alightings per trial made on 
non-host plants baited with volatiles or oil in a no-choice test in each 
sampling period by P. rapae (mean of 2 trials; 10 females per trial).
N=2.

Time Flights Alightings

(Min) Volatile Oil Volatile Oil

0 48 ± 14 33 + 8 31.5 ±7.5 15 ± 5

60 69.5 ± 11.5 62.5 ±28.5 49.5 ± 7.5 30 ± 16

120 105 ± 4 2  88 ±11 70 ±23 49 ± 2
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There was no significant increase in the number of flights in the presence of lettuce 

plants baited with volatiles as compared to the number of flights in the presence of 

plants baited with mineral oil (p>0.05; Table 2.10.). However, there was a significant 

increase in the number of alightings on lettuce plants baited with volatiles as 

compared to the oil controls (p<0.05; Table 2.10.).

Table 2.10. Summary of output from the GLIM analysis for the effect 
of volatiles on the number of flights and alightings made by P. rapae 
females in the presence of lettuce plants baited with either volatiles or 
oil.

Factor Levels Values

Treatment 2 Volatile Oil

Analysis of Variance for the number of Flights made in the presence of lettuce plants baited with
volatile or oil. 

Source DF Seq. SS Adj. SS Adj. MS F P

Treatment 1 0.02175 0.02175 0.02175 1.67 0.226

Error 10 0.13054 0.13054 0.01305

Total 11 0.15230

Analysis of Variance for the number of alightings made in the presence of lettuce plants baited with
volatile or oil.

Source DF Seq. SS Adj. SS

Treatment 1 0.14052 0.14052

Error 10 0.15464 0.15464

Total 11 0.29516

Choice Assay

Table 2.11. Mean number of flights and alightings per trial made on 
non-host plants baited with volatiles or oil in a choice test in each 
sampling period by P. rapae (mean of 2 trials; 10 females per trial). 
N=2.

Time Flight Alightings

(Min) Volatile Oil

0-60 23 + 20 15 ± 14 5.5 ±4.5

60-120 48 ± 36 24.5 ± 20.5 9.5 ±8.5

120-180 68.5 ±30.5 26.5+4.5 20 ± 13
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The results of the choice assay for lettuce plants baited with oil or volatiles are shown 

in Table 2.11. There was a significant increase in the number of alightings on plants 

baited with volatiles as compared to oil (p>0.01 Table 2.12.).

Table 2.12. Summary of output from the GLIM analysis for the effect 
of volatiles on the number of alightings made by P. rapae females in 
the presence of lettuce plants baited with volatiles or oil.

Factor Levels Values

Treatment 2 Volatile Oil

Analysis of Variance for Alighting

Source DF Seq. SS Adj. SS Adj. MS

Treatment 1 0.23520 0.23520 0.23520

Error 10 0.13790 0.13790 0.01379

Total 11 0.37310

The effect o f  sampling time on the behaviours recorded in the choice and  

no-choice tests.

The effect of sampling time (data shown in Tables 2.9., no-choice assay; and 2.11. 

choice assay) was analysed using linear regressions in Minitab for windows (Release

11.1). For all of the behaviours there was a significant linear regression between 

sampling time and the number of behaviours observed (ANOVA DF1,6, P>0.05; 

Table 2.13.). Line fit plots for each behaviour are shown in figures 2.12.-2.15.

Table 2.13. Summary of output from regression analysis of the effect 
of sampling time on the number of behaviours observed in the choice 
and no-choice assays.

Number of flights made in the choice test

Source DF SS MS F-Value P

Regression 1 15043 15043 14.3 0.013

Error 5 5260 1052

Total 6 20303
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Num ber o f Volatile Alightings made in the choice test

Source DF SS MS F-Value P

Regression 1 2941.8 2941.8 10.61 0.023

Error 5 1386.3 277.3

Total 6 4328

Number of Oil Alightings made in the choice test

Source DF SS MS F-Value P

Regression 1 1020 1020 9.38 0.028

Error 5 544 108.8

Total 6 1564

Number of Volatile Flights made in the no-choice test

Source DF SS MS F-Value P

Regression 1 36001 36001 39.98 0.001

Error 5 4502 900

Total 6 40503

Number of Oil Flights made in the no-choice test

Source DF SS MS F-Value P

Regression 1 25441 25441 62.59 0.001

Error 5 2032 406

Total 6 27473

Number of Volatile Alightings made in the no-choice test

Source DF SS MS F-Value P

Regression 1 16563 16563 58.94 0.001

Error 5 1405 281

Total 6 17968

Number of Oil Alightings made in the no-choice test

Source DF SS MS F-Value P

Regression 1 7040.6 7040.6 60.55 0.001

Error 5 581.4 116.3

Total 6 7622
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Figure 2.12. Line fit plot o f the observed and predicted, from 
regression, number o f flights made by ten female P. rapae in the 
presence o f lettuce plants baited with a volatile extract or oil in a 
choice test, Original data in table 2.11.
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Figure 2.13. Line fit plot o f the observed and predicted, from 
regression equation, number o f alightings made by ten female P. 
rapae in the presence o f lettuce plants baited with a volatile extract or 
oil in a choice test, original data in Table 2.11.
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Figure 2.14. Line fit plot o f the observed and predicted number, from 
regression equation, o f flights made by ten female P. rapae in the 
presence o f lettuce plants baited with a volatile extract or oil in a no­
choice test, original data in Table 2.9.

ap
s
o
S-h<L>

, -Qs3

60 90

Time (minutes)

4 Volatile Flight 

- m —  Predicted Volatile Flights 

Oil Flights 

Predicted Oil Flights

120

Figure 2.15. Line fit plot o f the observed and predicted, from 
regression equation, number o f alightings made by ten female P. 
rapae in the presence o f lettuce plants baited with a volatile extract or 
oil in a no-choice test, original data in Table 2.9.
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DISCUSSION

The results o f the group assay show that for the duration o f the experiments there was 

a greater number o f P. rapae females engaging in flights in the presence o f host plant 

volatile extracts as compared to the solvent controls. This effect may be due to either
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an increase in the number of flights made or the number of flights may be the same 

for volatiles and ether treatments but the duration of flights in volatiles was longer. 

As the behaviour of the butterflies was sampled at intervals it is impossible to say 

from these results which of these two factors cause the increases observed.

This led to the measurement of the flight behaviour of P. rapae females being made 

individually in which the number of flights was recorded. Additionally, the duration 

and positioning of the butterfly in the wind tunnel was recorded. These results clearly 

indicate that in fact, volatile cues not only lead to an increase in the number of flights 

made by a female but there is also a significant increase in the duration of such 

flights. Therefore, host plant volatiles are effective in not only stimulating flight by 

P. rapae females but also prolong flights as compared to solvent controls. However, 

volatiles did not act as attractants, as defined by Dethier el al. (1960), to female P. 

rapae.

It may be argued that the results from these experiments are due to the suppression of 

the butterflies behaviour by ether, however, this ignores the fact that the volatile 

extracts were extracted in ether. Therefore, even if the behaviours observed are 

suppressed by ether, then the volatile extracts present also must also be acting as 

stimulants. Therefore, the conclusions, in my opinion, remain valid, that is volatile 

extracts cause an increase in both the number and duration of flights made by P. 

rapae females.

Overall, these results are largely in agreement with the findings of Aluja, Prokopy, 

Bounaccorsi & Carde (1993) for Rhagoletis pomenella Walsh, which flew more often 

in air permeated with host plant volatiles. However, Evans (1991) noted an upwind 

movement with significantly fewer Dasineura brassicae Winn, and Ceutorhynchus 

assimilis Payk. being found in the downwind section of the wind tunnel as compared 

to the upwind sections. This pattern was not observed in this study. However, odour 

cues have been observed to induce random movement in a number of species 

including Cydia pomonella (Wearing, Connor & Ambler, 1973) and in D. radicum  

(Traynier, 1967). For D. radicum  host plant odour increased the activity of the 

females but no directed responses to the odour were observed (Traynier, 1967) and 

Wearing et al. (1973) suggested that this type of increase in random flight (i.e. non­
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directed) may increase the chances of an insect contacting the source of the volatile 

odour.

The flight patterns observed in this study were random, that is, there was no evidence 

of either attraction or repulsion in the presence of volatile extracts. This result may be 

an accurate reflection of the behaviour of P. rapae. Alternatively, it may be due to 

either an inappropriate dosage of volatiles, either too high or too low, or may be a 

reflection of the constraints imposed on the flight behaviour of this insect in the 

confined area of the windtunnel. Clearly, it is not possible with the present data to 

attribute the causal factor underlying this result.

In the choice and no-choice assay, there was a significant increase in the number of 

alightings made on volatile treated plants as compared to the control plants. This 

suggests that volatile cues play a role, not only in the orientation phase of a female’s 

host plant finding behaviour, but also in the acceptance phase of pre-alighting search 

behaviour.

An interpretation of the significant linear regressions between behaviour and time 

may be sought in the effect that the physiological state of the insect has on 

ovipositional behaviours. The physiological state of an insect is an important 

component in host acceptance behaviour (Miller & Strickler, 1984; Dethier, 1982). It 

is assumed that the insect’s behavioural responses are triggered when the stimuli 

perceived from a potential host exceed some threshold. The threshold is variable and 

declines, for example as searching time for an oviposition site and current egg-load 

increase (Jaenike, 1990; Renwick & Chew, 1994). In conceptualised models, the 

decision to accept a plant is mediated by the balance of sensory inputs the insect 

receives from a potential host plant, some of which have a positive and others have 

negative impact on ovipositional behaviours (Dethier, 1982; Miller & Strickler, 

1984). The conceptual models of Miller & Strickler (1984) and Dethier (1982) share 

the idea that the decision made by a female in response to sensory inputs is modified 

by its current motivational state. This internal state weighting is derived from the 

balance between internal excitatory and inhibitory inputs. This balance reflects an 

insect's 'motivational threshold' and takes into account the changes in host 

acceptability depending upon the individual's physiological state (Miller & Strickler, 

1984). The current egg-load of a female is known to influence host acceptance
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thresholds and a high egg-load acts centrally to increase the tendency to accept any 

host (Courtney et al., 1989). Therefore, when host deprivation occurs, the insect's 

motivational state rises leading to females becoming less discriminating. 

Experimental work with P. rapae (Jones, 1977; Gossard & Jones, 1977; Root & 

Kareiva, 1984) has confirmed that a female with a high egg-load would lay most of 

her daily egg complement on the first host plant or group of hosts found. As egg-load 

declines, an individual leaves hosts more readily, as do individuals with a lower initial 

egg-load.

We may assume that at the beginning of these experiments, each female’s 

motivational state was low since it had access to host plants suitable for oviposition. 

As the experiments progressed, the motivational state may have risen as there was no 

oviposition on the baited plants. During the experiments, there was an increase in the 

number of behaviours with time i.e. females not only searched (as measured by the 

number of flights made) more intensively, they also alighted more often in the no­

choice test. The influence the motivational state exerts on searching behaviours has 

not been investigated for P. rapae, but if the initial assumption that the motivational 

state increased over time were true, then there would appear to be a relationship 

between motivation and number of behaviours. From these results, it may be deduced 

that the main effect of increasing host plant deprivation on the responsiveness appears 

to be an increase in both the number of flights and the number of alightings. The 

linear relationship between the number of alightings made and the sampling period 

add credence to the proposition that as the motivational state of P. rapae increases 

there is an increase in the number of searching behaviours.

The use of the motivational state as discussed provides a convenient conceptual 

framework for integrating the effect of host plant deprivation described in these 

experiments into a coherent theoretical framework. However, the evidence presented 

here for such an effect is at best circumstantial and should be treated with caution.

Overall, these experiments have shown that volatile chemicals emanating from host 

plants influence the searching behaviour of female P. rapae and during the pre­

alighting search for hosts it would appear that olfactory cues are utilised. However, 

the results from previous studies suggest that the prominent cue involved in searching 

behaviour is probably visual, with other studies clearly demonstrating that P. rapae
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responds to visual cues alone (Renwick & Radke 1988; Traynier, 1979). As plants 

show great inter-and intra-specific variation between plants, colour and shape are 

unlikely to be able to account entirely for the discrimination of host plants. Bernays 

& Chapman (1994) suggest that olfactory and visual cues operate in unison to guide 

an insect to a suitable host. Volatile cues may act at a greater distance and bring the 

female within visual range of the host plants. Therefore, it may be that volatiles act as 

a host recognition cue and that the discrimination of host plants is dominated by 

visual cues particularly colour.

CONCLUSIONS

This study has clearly shown that P. rapae responds to host plant derived volatile cues 

with an increase in the number of flight and a total duration of time spent in flight. 

When exposed to plants treated with volatiles there was an increase in the number of 

alightings on such plants as compared to controls.
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Chapter Three 
The effect of colour and host plant 
chemicals on landing in P. rapae

INTRODUCTION

Visual cues are important in host plant location by phytophagous insects (Miller & 

Strickler, 1984; Prokopy & Owens, 1983). However, the visual aspects o f host plant 

finding behaviour have not been as extensively studied and consequently our 

understanding o f the process is not as well developed as for those aspects pertaining 

to chemical factors (Prokopy & Owens, 1983). The ability o f insects to discriminate 

between different colours was established beyond doubt around 1910. For example, 

von Hess (1913) (cited in Burkhardt, 1964) claimed that all invertebrates showed 

responses to different colours on the basis o f the relative brightness and not the 

wavelength and therefore, could not distinguished colour per se (Burkhardt, 1964). 

However, Friedrich (1933) (cited in Burkhardt, 1964) showed that crabs could 

distinguish between colours o f equal brightness. Ilse (1940) demonstrated that for P. 

brcissiccie egg laying behaviour was elicited in response to cards coloured between 

green and blue, in preference to other colours offered.

More detailed experiments have been carried out since these pioneering studies, and 

in general the results indicate that specific colours are involved in eliciting 

behavioural responses o f insects. For almost all phytophagous insects, the preferred 

colour for oviposition and landing is green or shades thereof (Moericke, 1969). 

Clearly if  plants are all a similar colour (Bernays & Chapman, 1994), then the ability 

o f an insect to discriminate solely using a the colour o f a plant will be limited, leaf 

shape may provide additional information to limit encounters with non-host plants, 

but the main cue likely to be involved in pre-alighting discrimination is olfaction 

which when used in conjunction with visual cues could allow host plant recognition.

Before entering into a detailed discussion o f the results of previous studies it is 

appropriate to have a brief explanation o f some o f the terms involved in the study o f 

colour and insect behaviour. Burkhardt (1964) gives a more thorough review, and
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the following is a précis o f the definitions giving in Burkhardt (1964). A colour is 

defined by three parameters namely; the hue (wavelength in the spectrum); the tint 

(the amount o f white added to the hue) and intensity (% reflectivity o f the peak o f the 

curve as compared to the white standard or more exactly the total area under the 

reflective curve) (Moericke, 1969).

•  Intensity o f light: This term applies to the physical energy content o f light and is 

usually quantified in terms energy or number o f quanta (Burkhardt, 1964).

•  Brightness: The brightness o f a stimuli can be distinguished from the intensity o f a 

given stimuli and is generally measured in terms o f the animal’s reaction. The 

relationship between brightness and response is generally logarithmic and positive 

(Burkhardt, 1964).

•  Wavelength content: The wavelength content o f a stimulus describes the physical 

nature o f the stimulus applied and is distinct from colour which is usually judged 

by response. For example, a pure spectral light at 580 nm appears equally yellow 

as an appropriate mixture o f 520 and 640 nm (Burkhardt, 1964).

•  Spectral efficiency or action spectrum: This term is described by plotting the size 

o f response against wavelengths (of equal energy or quanta). The term spectral 

sensitivity refers to the curve obtained by plotting constant response the reciprocal 

o f the intensity to obtain the given response against the wavelengths used 

(Burkhardt, 1964).

The visual receptors o f insects are able to perceive a broad range o f wavelengths 

extending from ultraviolet (300-400 nm) through blue (400-500 nm), green (500-560 

nm), yellow (560-590 nm), orange (590-630 nm) and terminating in red (ca 650 nm). 

The spectral reflectance curves o f foliage are similar over a wide range o f plant 

species due to the absorption o f light by chlorophyll which is responsible for the 

dominant foliar reflectance hue o f 500-580 nm. However, other plant visual 

characteristics (for example size and shape) are far more variable than the diffuse 

spectral quality o f foliage. It follows, therefore, that for many herbivorous insects the 

principal visual stimulus eliciting landing is the spectral quality particularly hue and 

intensity, as these characteristics facilitate the discrimination o f a plant from other 

objects (Prokopy & Owens, 1983). Prokopy, Collier & Finch (1983) have
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demonstrated that once odour cues have brought a female cabbage fly into the 

vicinity o f a host plant (25 cm) the final choice o f landing site was based entirely on 

visual cues.

Similarly, Vaishampayan, Kogan, Waldbauer & Wooley (1975) have shown that the 

whitefly (Trialeurodes vaporciriorum) exhibited a strong positive response to colours 

with maximum reflectance at wavelengths 520-610 nm and a more moderate 

response to UV light (<400 nm). Blue-violet and the red regions o f the spectrum 

appeared to be inhibitory.

Judd, Borden & Wynne (1988) have demonstrated that the number o f Delia anti qua 

captured on traps can be explained by the reflectance o f light in the UV (350 nm), 

blue (450 nm) and green (560 nm) parts o f the spectrum. A multiple regression 

equation using these three variables was able to explain over 90 per cent o f the 

variation in the data (Judd et al., 1988).

The use o f a monochromatic light source to study the effects o f different wavelengths 

o f light as elicitors o f behaviour is a widely used technique (Kolb & Scherer, 1982; 

Scherer & Kolb 1987a, 1987b; Coombe 1981). The experimental technique involved 

in these experiments is to expose the insects to a monochromatic light o f the same 

intensity at different wavelengths and observe the responses o f the insects. By 

plotting the resulting behaviour against wavelength, it is possible to establish which 

wavelengths o f light elicit or deter the observed behaviours.

The effect o f different wavelengths o f monochromatic light has not been studied in P. 

rapae but data on its effects are available in other species o f Lepidoptera. The results 

indicate that species from different families elicit similar behavioural responses to 

specific wavelengths. For example, the open space reaction is elicited by 

wavelengths o f light in the UV and violet region o f the spectrum (ca 320-420 nm) for 

both P. brassicae and Pararge aegeria (Lepidoptera: Satyridae). The feeding 

reaction was stimulated by the blue and orange red regions o f the spectrum for P. 

brassicae (ca 420-500 nm and 590-610 nm respectively) and for P. aegeria blue and 

orange-red light (ca 420-500 nm and 570-670 nm). For Aglais urticae (Lepidoptera: 

Nymphalidae) blue and yellow light elicited the feeding reaction (ca 420-500 nm and 

550-590 nm) (Scherer & Kolb, 1987a; 1987b). For P. brassicae the effect of
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drumming and oviposition are elicited in response to specific wavelengths of light. 

The wavelengths of light initiating drumming and oviposition lie in the range 497 to 

578 nm, with the most stimulatory wavelength being 548 nm for P. brassicae.

For Pieris rapae the size and shape of leaves are not deemed important in host plant 

discrimination (Renwick & Radke, 1988), the colour of the plant is an important cue 

(Myers, 1985). Unpublished results, referred to in Renwick & Radke (1988), 

indicate that P. rapae showed a preference for landing on artificial leaves with 

maximal reflectance at 550 nm.

However, Aluja & Prokopy (1993) have argued that the results of many studies have 

shown the importance of stimuli interactions in the process of finding and acceptance 

of host plants by phytophagous insects (Aluja & Prokopy 1993 and references 

therein). During certain stages of the host plant finding process particular stimuli may 

play a singular role, however, it is apparent that for many herbivorous insects, 

behaviours are evoked by the gestalt of the plant (Aluja & Prokopy, 1993).

In this study, the effect of different combinations of potential sensory cues:- a wax 

coating, host plant volatiles and contact stimulants on landing frequencies in a 

behavioural assays with a choice of six different colours of card (white and five 

shades of green) was investigated. In contrast to most studies of P. rapae behaviour 

which concentrate on oviposition, I investigated the effect of the various treatments 

on the frequency of landings. The spectral profiles of the cards used were determined 

using spectrophotometery in an attempt to establish statistical relationships between 

observed behaviour and the relative number of quanta of light reflected at different 

wavelengths.

Methods
Butterflies

All experiments utilised captive bred P. rapae. The culture used was started from 

eggs obtained from a culture maintained at HRI (Wellesbourne). This culture has 

been continuously reared since the 1960’s. The larvae were caged in mesh covered 

cages (size 50 x 50 x 50 cm). Larvae were fed on whole plants and when a plant had 

been eaten it was removed from the cage and replaced. Any larvae still present on the 

plant were carefully removed with either a paintbrush (mostly instars I & II) or with a
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pair of fine forceps (instars m , IV & V). Any pupae present were removed from the 

plant and carefully placed onto the floor of the cage. The adult butterflies were raised 

at a temperature of 22 °C  with a light-dark photoperiod of 18:6 hours respectively. 

Lighting was provided by full spectrum fluorescent tubes (Sylvania Activa 172 

professional 58 watt; supplier Lightbox Scotland ltd., Glasgow, UK). The plants used 

for larval rearing and adult oviposition were glasshouse grown without the use of 

pesticides. Upon eclosion from the pupae, butterflies were transferred to another cage 

(usually 95 x 50 x 50 cm) with a host plant. An artificial nectar solution (15 per cent 

(w/v) sucrose with a dash of egg-yellow food colouring) was provided in a ‘feeder’. 

The ‘feeder’ comprised a white perspex sheet (15 x 15 cm) with six vials attached by 

silicon sealer (non-toxic aquarium type). In between generations the cages were 

washed thoroughly with Decon solution (5 per cent) and wiped with a 70 per cent 

ethanol solution. This was done to minimise the risk of infection from microbial 

pathogens (particularly viral and fungal pathogens). The host plant used for rearing 

and oviposition was Spring Cabbage var. Golden Acre Primo (II).

Optical reflectance o f  card

The samples were analysed using a computer controlled spectrophotometer, 

incorporating an integrating sphere to measure diffuse reflectance. Scans were taken 

from wavelengths of 350 to 800 nm with a resolution of 1 nm, relative to a white tile 

standard (Spectralon™). The spectrophotometer and associated equipment was 

supplied by Rees Instruments Ltd (catalogue numbers in brackets) and comprised a 

system controller (6800) fitted with a monochromatic control module (6810) and a 

acquisition module ((6811) 1 MHz 12 bit ADC)) and a Helium-neon calibration laser 

(632.8 nm). A monochromator (6107) was used with a wavelength span of 200-850 

nm with a silicon detector (6111(0.45 nm slit resolution 3.4 nm)). The light source 

used was a Tungsten halogen lamp (FOT 150), connected by a bifurcated cable (BK7 

optical glass). The software used was spectral analysis (6850) running on a desk top 

computer (DX386).
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Analysis o f  spectral profile data

The data from the spectral analysis o f the cards was corrected to the relative number 

o f quanta for each card (waxed and unwaxed at 10 nm intervals). The methodology 

employed to carry out this correction has been described in detail by Kolb & Scherer, 

1982; Harris Rose & Malsch, 1993 and Harris et ah, 1995).

A brief summary is given here for completeness. The reflectance o f the card was 

corrected at 10 nm intervals, in the range 400-800 nm, with reference to the emission 

spectrum o f the lights (relative energy scale 0-1) (Figure 3.1) used in the 

experiments. The corrected reflectance curves were used to calculate the relative 

number o f quanta reflected by the cards. In order to account for the differences in the 

energy o f the different wavelengths (the energy o f a single quantum is inversely 

proportional to its wavelength). The scale used was for this conversion was as 

described in Harris et al., 1993 with the value assigned to 400 nm being 0.67 and to 

800 nm 1.33. The resulting value was multiplied by 2.7 for graphing purposes 

(Harris et ah, 1993). To obtain the relative number o f quanta (RNQ) in a particular 

spectral region the values obtained from the above correction was added to the values 

for that range. The corrected spectral profde o f the waxed and unwaxed cards are 

shown in Figure 3.2.(A & B) respectively.

Figure 3.1 Emission spectrum of the natural daylight fluorescent tubes 
(Sylvania Activa 172 professional 58 watt) used in this study to 
illuminate the cards used in the bioassays (data provided by 
manufacturer).
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Figure 3.2A. The relative number o f quanta reflected in the 
wavelength band 400-800 nm from each o f the waxed cards used in 
this study.
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Figure 3.2B. The relative number o f quanta reflected in the 
wavelength band 400-800 nm from each o f the unwaxed cards used in 
this study.
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Bioassay

Each bioassay was carried out in a cage (0.95 m long x 0.5 m wide x 0.5 m high) 

with white nylon mesh (0.3 mm) and a steel frame. The cage was washed after each 

assay using a 5 % solution o f Decon™. Ten female butterflies were introduced into 

the cage and left for fifteen minutes to acclimatise. They were subsequently offered a 

choice between the six colours o f card (card size 15 cm x 15 cm, total area 225 cm2) 

arranged in a 3 x 2 grid configuration 10 cm apart (centre to centre). The cards were 

supported by an upturned brown plastic 3 inch plant pot and held in an upright 

position with a fibre glass rod and two paper clips. The colours used were white 

(Winsor and Newton Art Media Paper; Catalogue number 6437684); lime (6437664); 

cypress (6437657), emerald (6437658); olive (6437668) and linden green (6437665).
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There were nine treatments in all for each group o f cards waxed and unwaxed: blank, 

distilled water, contact stimulants, volatiles + contact stimulants, contact stimulants + 

ether, volatiles, volatiles + water, ether + water and ether. The ether and volatile 

treatments were placed in micro-centrifuge tubes 2 cm away from the card. The wax 

treatment group used identical card dipped into molten paraffin wax. The same ten 

butterflies were used for the eighteen bioassays constituting a trial and three separate 

trials were carried out. The behaviour measured was the frequency o f landing on 

each colour o f card.

Each assay lasted one hour and each o f the six surrogate plants were moved in the 

grid every ten minutes to minimise any potential position effects in the cage. The 

cards were moved by hand and rotated around the grid. The initial position o f each 

colour o f card was random. The experiments were carried out at 22 0 C and at 

ambient relative humidity. Lighting was provided by two full spectrum fluorescent 

tubes to mimic natural daylight suspended above the cage. A 20 per cent sucrose 

(w/v) solution was provided at either end o f the cage throughout the bioassay. 

Between assays, the butterflies were given access to a host plant (cabbage var. 

Golden Acre Primo (II)) to ensure that egg-loads were not driven artificially high and 

in an attempt to prevent any learning with contact stimulants affecting subsequent 

assays.

Cabbage lea f extract

The cabbage leaf extract used as contact stimulants was prepared as described by 

Renwick & Radke (1983). For completeness a summary o f the method is given here. 

Freshly excised cabbage leaves (100g/100 ml ethanol) were added to boiling ethanol, 

and after 5 minutes the mixture was cooled and homogenised in a blender. The 

homogenate was filtered under vacuum through glass wool. The resulting filtrate 

was evaporated to dryness under reduced pressure in a rotary evaporator. The residue 

was first extracted in Di ethyl ether and then distilled water, the Di ethyl ether 

fraction was discarded and the water fraction was filtered. Prior to use the water 

fraction was stored at -20 0 C.

The water fraction was used at a concentration o f 2.5 gram leaf equivalent and was 

sprayed onto the card using an airbrush. The plants used for the extractions were
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cabbage (var. Golden Acre Primo (II)) which were grown in a greenhouse and when 

12 weeks old harvested and extracted on the same day. The plants were grown 

without the use o f pesticides under sodium lights with a 14 hour day length.

Collection o f  host plant volatiles

Cabbage volatiles (var. Golden Acre Primo (II)) were collected by dynamic 

headspace analysis using a laboratory entrainment system. The equipment used is 

similar to that described by Robertson et al. (1993). The major difference between 

the two systems is that in the present system air was pulled through the apparatus 

rather than pushed as in the apparatus o f Robertson et al. (1993). The construction o f 

the system was glass, stainless steel and PTFE tubing. All joints were wrapped in 

PTFE tape to provide an airtight seal. Excised leaves were placed in a 2 litre glass 

container. Air entering the system was filtered through activated charcoal and dried 

before entering the container with the excised leaves. Air was drawn over the leaves 

for 20 hours and the volatiles were trapped onto Tenax-Ta. The polymer was 

contained in a glass tube. All glassware was cleaned in distilled water and methanol 

and oven baked prior to use.

The Tenax-Ta ((mesh size 60-80) Alltech Associates, Lancashire, UK) was 

conditioned prior to the collection o f volatiles. 3.5 ml o f diethyl ether (HPLC grade) 

were passed through the column o f Tenax. The column was then dried by passing a 

stream o f filtered ambient air through the column. The final stage o f conditioning 

was done by passing a stream o f helium (BOC Grade A) through the column (flow 

rate 20 ml/min) while the column was heated to 180 °C (heating rate 8 °C  per 

minute) and held at this temperature for three hours. 0.3 g o f Tenax-Ta was used in

each collection. Volatiles were collected over 20 hours at a temperature o f 18 °C 

from excised leaves at a flow rate not exceeding 200 ml/min. Leaves used were from 

12 week old plants, with between 30 and 50 grams o f leaf material per collection. 

The plants were treated with systemic insecticide granules at sowing (Temik 1 

granule per square inch o f compost surface Rhone-Poulenc Agriculture, Ongar Essex 

UK) in an attempt to limit the damage caused by herbivorous insects and any 

subsequent effect this damage may have had on the volatiles released from the leaves. 

Elution o f volatiles was achieved with 3.5 ml o f diethyl ether into a glass sample tube
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in a bath o f ice/methanol. Further dilution to 1.0 gle was undertaken prior to use 

with diethyl ether.

Statistical Analyses

The data from the assays was analysed using the Glim command in Minitab for 

Windows (release 11.1), with the colour o f the card, waxing, and chemical treatments 

(volatile, ether, water, contacts as present or absent). The data from the bioassays 

was tested for normality using a Ryan Joiner test (Shapiro-Wilk) (Minitab for 

Windows; Release 11.1). The results o f this test indicated that the data did not follow 

a normal distribution (Result o f w-test for normality: R-value 0.9037; P<0.01). 

Therefore, the data was subjected to a Log10 (data +1) transformation to improve the 

normality o f the distribution. This transformation was carried out to improve the 

additivity o f the model and the normality o f the residuals and thus more closely 

satisfy the assumptions o f the analysis o f variance with its significance tests. 

Following the Log10 (data +1) transformation the data was again subjected to a Ryan- 

Joiner test for normality and was found to be normally distributed (Result o f W-test 

for normality R-value 0.9963; P>0.1).

Regression analysis was used to investigate the effect o f the RNQ from the cards on 

the number o f landings. The RNQ data from the waxed and unwaxed cards were 

combined to carry out linear regression on the total number o f landings 

(untransformed) made on each colour o f card against the RNQ at 550 nm and the 

ratio o f red (675 nm) to infrared (800 nm) RNQ. The rationale behind these choices 

o f wavelengths were the finding o f Renwick & Radke (unpubl) (referred to in 

Renwick & Radke, 1988) that P. rapae showed a preference for landing on substrates 

with maximal reflectance at 550 nm. The ratio o f red to infrared reflectance was also 

used because Myers (1985) showed that a significant linear relationship existed for P. 

rapae between the number o f eggs laid on a plant and the ratio o f red to infrared 

reflectance.

Additionally, linear regressions were carried out between the range 400-750 nm at 10 

nm intervals to identify areas within the spectral range, which show a statistical 

relationship between reflectance and behaviour (similar to Judd et al., 1988).
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RESULTS

The results o f the analysis o f the number o f landings is summarised in Table 3.1. 

Colour had a highly significant effect on the number o f landings, see Figure 3.3. 

(ANOVA; DF 5,323; F-value 92.13 P<0.001). The presence o f contact stimulants 

significantly increased the number o f landings made (ANOVA; DF 1,323; F-value 

5.19 P<0.05 ). Flowever, the presence o f volatile extracts in ether or ether alone 

decreased the number o f landings made (ANOVA; DF1,323; F-value 4.03 P<0.05; 

ANOVA; DF1,323; F-value 6.57 P<0.05 respectively).

For completeness the data for all o f the colours tested and chemical treatments are 

shown in Table 3.2. The effect o f colour on the number o f landings is illustrated in 

Figure 3.3. Based on the number o f landings, the colours tested fall into three groups 

with white and lime forming one group and linden, olive and cypress forming another 

with emerald receiving an intermediate number o f landings.

Figure 3.4. shows the effect that the chemical treatments had on the number of 

landings. As can be seen, the presence o f contact stimulants greatly increased the 

number o f landings, whilst for ether and the volatile extract (in ether) the number of 

landings was decreased.

Figure 3.3. Mean number (Log10 (data+1) for each o f the six colours 
tested. Mean o f all chemical treatments and waxing. Error bars give 
standard deviation. (N=108, 36 treatments x 3 trials)
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Table 3.1. A summary o f the results o f the generalised linear 
modelling analysis carried out on Log10 (data +1) number o f landings 
on each colour and chemical treatment.

General Linear Model

Factor Levels Values

Colour 6 White; Lime; Emerald; Li

Wax 2 Waxed or Unwaxed

Contacts 2 Present or Absent

Water 2 Present or Absent

Ether 2 Present or Absent

Volatile 2 Present or Absent

Analysis of Variance for LoglO (data +1) number of landings

Source DF Seq. SS Adj. SS Adj. MS F P

Colour 5 26.683 26.683 5.337 92.13 0.001

Wax 1 0.203 0.203 0.203 3.50 0.062

Contacts 1 0.420 0.301 0.301 5.19 0.023

Water 1 0.001 0.001 0.001 0.01 0.916

Ether 1 0.188 0.380 0.380 6.57 0.011

Volatile 1 0.234 0.234 0.234 4.03 0.046

Error 313 18.130 18.130 0.058

Total 323 45.857

Figure 3.4. Effect o f contact stimulants, volatile extracts and ether on 
Log10 (data+1) mean number o f landings by Pieris rapae females. 
Mean o f all colours, wax and unwaxed. (N=36 mean o f six colours x 
wax treatment x 3 trials)
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Behaviour stimulant indexes (BSI), which is equivalent to the more widely used 

oviposition stimulant indexes (OSI), as described by Huang & Renwick (1993), were 

calculated for each o f these treatments (Figure 3.5.), using the number o f landings
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made on each treatment. Such indices are a robust and useful measure o f the effect 

o f different chemical treatments on the acceptability o f an ovipositional substrate 

(Hern el al., 1996a). The index is calculated by the formula ((T-C/C+T) x 100), 

where C and T were the number o f landings made on the untreated and treated cards 

respectively. A high positive value indicates that the treatment applied greatly 

increases the behavioural response, conversely a high negative value indicates that 

the treatment greatly decreases the behavioural response with a value around zero 

indicating that the treatment has very little effect on the insect’s behavioural 

responsiveness.

Figure 3.5. Behavioural stimulant indexes for each o f the chemical
treatments applied in these experiments.
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The index for contact stimulants was 4.4 indicating that the presence o f contact 

stimulants increases the number o f landings. For the volatile extract (in ether) and 

the ether treatments the index was -3.9 and -5.0 respectively, indicating that both o f 

these treatments cause a decrease in the number o f landings. O f note is the fact that 

the index for the volatile extract (in ether) is higher than the ether treatment itself.
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The relative RNQ at 10 nm intervals were subjected to a linear regression analysis, to 

compare the ‘active spectral region’ for the contact stimulants and water treatments 

and volatile extract and ether treatments. Figures 3.6. & 3.7. show the results o f this 

analysis. The R-squared values from each regression were subjected to a Glim 

analysis to investigate if the chemical treatment (host plant extract or solvent) or the 

wavelength o f light analysed could be used as explanatory variables in the differences 

in the R-squared values. A summary o f the Glim analyses is provided in Table 3.3.

Figure 3.6. A comparison o f the R-squared values obtained from 
single linear analyses at 10 nm intervals between the RNQ at each 
wavelength and the mean number o f landings for the Contact stimulant 
and water treatments. Lines for P values are to provide an indication 
only (analysis o f  variance 1,11 degrees o f freedom).
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Figure 3.7. A comparison o f the R-squared values obtained from 
single linear analyses at 10 nm intervals between the RNQ at each 
wavelength and the mean number o f landings for the volatile extract 
and ether treatments. Lines for P values are to provide an indication 
only (analysis o f variance 1,11 degrees o f freedom).
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As can be seen the R-squared values showed variations across the spectral region 

examined (400-800 nm) and between the chemical treatments. For both the volatile
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extract and contact stimulants the R-squared values were significantly lower as 

compared to the respective solvents (ether and water) (PcO.OOl and PcO.OOl 

respectively). This result indicates that host plant chemicals have an effect on the 

relationship between light reflected and behaviour, which reduces the linearity of the 

relationship between the amount of light reflected and number of landings. The 

curves across the spectrum are similarly shaped for the solvent and host plant extracts 

in both analyses. However, the R-squared values at each wavelengths show 

significant variations (PcO.OOl for contacts stimulants and water and PcO.OOl for 

volatile extract and ether respectively). This indicates that not all regions of the 

spectrum are equally effective in eliciting landing behaviour.

Table 3.3. Summary output from the Glim analysis performed on the 
R-square values obtained from the linear regressions between mean 
number of landings and RNQ at each wavelength in the region 400-750 
nm.

General Linear Model

Factor Levels Values

Wavelength 36 400; 410; 420; 430; 440; 450; 460; 470; 480; 490; 500; 510; 520; 530; 540;
550; 560; 570; 580; 590; 600; 610; 620; 630; 640; 650; 660; 670; 680; 690; 700;
710; 720; 730; 740; 750.

Chemical 2 Present Absent

Analysis of Variance for Contacts

Source DF Seq. SS Adj. SS Adj. MS F P

Wavelength 35 17414.15 17414.15 497.55 66.82 0.001

Chemical 1 3036.80 3036.80 3036.80 407.83 0.001

Error 35 260.62 260.62 7.45

Total 71 20711.57

Analysis of Variance for Volatile

Source DF Seq. SS Adj. SS Adj. MS F P

Wavelength 35 17228.19 17228.19 492.23 75.11 0.001

Chemical 1 6410.89 6410.89 6410.89 978.18 0.001

Error 35 229.39 229.39 6.55

Total 71 23868.47

Following this result a comparison was made of the R-squared values obtained for 

contact stimulants and volatiles (Table 3.4.). The results of this GLIM analysis 

indicate that once again the R-Squared values showed significant variation across the
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indicate that once again the R-Squared values showed significant variation across the 

wavelengths tested (P<0.001). However, the differences in the R-squared values for 

the contact stimulants and volatile extracts were non-significant (P>0.05) indicating 

that strength o f the linearity between behaviour and wavelengths for each o f these 

host plant extracts was the same.

Table 3.4. Summary output from the Glim analysis performed on the 
R-square values obtained form the linear regressions between mean 
number o f landings and RNQ at each wavelength in the region 400- 
750 nm.

General Linear Model

Factor Levels Values

Wavelength 36 400; 410; 420; 430; 440; 450; 460; 470; 480; 490; 500; 510; 520; 530; 540;
550; 560; 570; 580; 590; 600; 610; 620; 630; 640; 650; 660; 670; 680; 690; 700;
710; 720; 730; 740; 750.

Chemical 2 Contacts Volatiles

Analysis o f Variance for R-squared values

Source DF Seq. SS Adj. SS Adj. MS F P

Wavelength 35 19360.52 19360.52 553.16 113.67 0.001

Chemical 1 1.80 1.80 1.80 0.37 0.546

Error 35 170.32 170.32 4.87

Total 71 19532.64

In addition, to the above analyses other parts o f the spectrum were examined for the 

effect that the RNQ had on the observed number o f behaviours for the blank 

treatment and contact stimulants and volatile extract only. These treatments were 

chosen for the further analyses because o f the significant effect the volatile extract 

and contact stimulants had on the number o f landings and the blank card is for 

comparative purposes.

The RNQ data from the waxed and unwaxed cards were combined to carry out linear 

regression on the total number o f landings (untransformed) made on each colour of 

card against the RNQ at 550 nm and the ratio of red (675 nm) to infrared (800 nm) 

RNQ.

A summary o f the results o f these analyses are shown in Table 3.5. As can be seen, 

for blank and volatile extract treated cards both measures o f reflectance yielded 

significant linear regressions indicating that the relationship between reflectance and
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the number o f behaviours is linear. However, for contact stimulants only the 

reflectance at 550 nm yielded a significant linear regression.

Table 3.5. summary o f linear regression analyses on the relative 
number o f quanta reflected at 550 nm and the ratio o f 775:800 nm for 
blank, volatile extract and contact stimulant treated card, (data from 
waxed and unwaxed cards combined). P values refer to analysis of 
variance o f the regression, in all cases degrees o f freedom were 1,11.

Treatment Reflectance at 550 nm Ratio o f reflectance at (¿75/800 nm)
R-sq P R-sq P

Plaide 84.00 0.001 55.70 0.05
Contacts 58.60 0.004 10.30 0.309
Volatiles 54.60 0.006 50.00 0.01

Figures 3.8. & 3.9. show line fit plots for the above regressions between the 

reflectance data and the mean number o f landings.

Figure 3.8. Line fit plot for the regression equation between the mean 
number o f landings and the relative number o f quanta reflected at 550 
nm.

120

100V3WD
I  80 
&

Ì  60 
«
|  40

*  20

200

Relative number of quanta (RNQ) 
reflectance at 550 nm

Observed volatile landings 
B Observed blank landings 

Obseived contact landings
 Predicted volatile alightings
. .  Predicted blank landings
, » Predicted contact landings

P a g e  76



Figure 3.9. Line fit plot for the regression equation between the mean 
number o f landings and the relative number o f quanta reflected for the 
ratio o f red to infrared reflectance (775:800 nm).
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However, these two variables, the reflectance at 550 nm and the ratio o f red to 

infrared reflectance show a significant correlation (r-squared value 0.822 df= 11 

PC0.001).

The total RNQ reflected between 400-800 nm for the three treatments also yielded 

significant linear relationships between reflectance and the number o f landings (Table 

3.6.). As before, the R-squared values from the blank card were higher than those 

obtained from the host plant chemical treatments.

The findings o f Shimohigashi & Tominaga (1991) showed that Pieris rapae 

crucivora there are five receptors with spectral sensitivity at the following 

wavelengths 340 nm; 380 nm; 480 nm; 560 nm and 620 nm. Four o f these receptors, 

380 nm; 480; 560 and 620 nm where used to model the visual response o f P. rapae 

(Judd, Borden & Wynne, 1988). The regression carried out using all four o f the 

wavelengths for the number o f landings made on each colour o f card treated with 

contacts stimulants yielded a significant regression: P<0.001; DF 4,11 R-sq. adjusted 

91.7 (Regression equation: number o f landings = 19.1 - (7.98 x 380 nm) + (17. i x 

480 nm) + (14.2 x 560 nm) - (10.8 x 620 nm)). For cards treated with volatile 

extracts the four wavelengths yielded a significant regression, Volatile extract: 

P<0.01; DF=4,11 R-sq. (adjusted) 76.9) (Regression equation: number o f landings =

P a g e  77



9.89 - (2.7 x 380 nm) - (7.9 x 480 nm) + (1.92 x 560 nm) + (7.05 x 620 nm)). For 

blank cards the number o f landings made on each colour o f card also yielded a 

significant regression: PO.OOl; DF 4,11 R-sq. adjusted 93.2 (Regression equation 

number o f landings = 6.54 + (1.06 x 380 nm) + (4.37 x 480 nm) + (10.6 x 560 nm) - 

(10.8 x 620 nm)).

Table 3.6. Regression analysis between relative number o f quanta in 
wavelength bands for blank card, contact stimulants and volatile 
extract, waxed and unwaxed card combined. P-values refer to analysis 
o f variance from the regression with 1, 11 degrees o f freedom, ns = 
non-significant (P>0.05)

Treatment Blank Contact stimulants Volatile extract

Total RNQ R-squared 70.1 39.7 39.5

P< 0.001 0.05 0.05

400-500 R-squared 46.6 16.3 16.8

P< 0.05 ns ns

510-600 R-squared 81.4 54.8 51.8

P< 0.001 0.01 0.01

610-700 R-squared 63.9 34.4 37.2

P< 0.01 0.05 0.05

710-800 R-squared 73.1 52.5 52

P< 0.001 0.01 0.01

DISCUSSION

The results o f this assay clearly show that females preferred white and Lime cards 

when offered in a choice test and, although, the host plant chemical treatments tested 

had a significant influence on the number o f landings made by P. rapae females, the 

overall effect on the choice o f card did not change; i.e. the number o f landings made 

by females increased (contact stimulants) or decreased (host plant volatiles) but the 

colour preferences o f the females did not change. Therefore, this study has clearly 

demonstrated that visual cues are dominant in determining the number o f landings 

made on each card irrespective o f chemical treatment.
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The regression analysis across the wavelength band 400-750 nm indicates that when 

host plant chemicals are present a shorter wavelength band exhibits a significant 

relationship with the number o f landings, for contact stimulants this band covers the 

wavelengths 480-670 nm and 690-750 nm inclusive. For host plant volatile extracts 

the active region o f the spectrum is 490-750 nm inclusive. This result indicates that 

although, the number o f alightings remains the same the regions o f the spectrum 

which are eliciting landing may be different. However, it should be borne in mind 

that the results are indicative o f a statistical relationship and may therefore, not be due 

to wavelength specific behaviour (Coombe 1981, Kolb & Scherer, 1982 Scherer & 

Kolb, 1987a; 1987b). However, the fact that these results are similar to those o f Kolb 

& Scherer (1982) and Scherer & Kolb (1987a) for P. brassicae may indicate that, in 

general, for all Pieris sp. the wavelength band ca 500-580 nm is most active in 

eliciting ovipositional behaviours. Additionally, this result may be viewed as an 

example o f Kennedy’s (1965) concept in which the cues which are sampled during 

the catenary process o f host plant finding in which the cue just sampled not only 

allows the insect to proceed to the next cue but the preceding cue may also prepare 

the insect for the next cue to be sampled. Therefore, host plant chemicals may 

narrow the responsiveness o f the female to those wavelengths which elicit 

ovipositional behaviours.

The high number o f landings on the white card was surprising. For P. brassicae, 

white light failed to elicit a response (Kolb & Scherer, 1982). It would appear, 

therefore, that the pattern o f spectral reflectance emanating from the card and not its 

colour (as it appears to human vision) per se determines the number o f landings.

The regression models developed show that an increase in the relative reflectance o f 

either 550 nm or the ratio o f red to infrared reflectance would lead to an increase in 

the number o f landings made on that substrate. Furthermore, as the r-square values 

are higher for the regressions at 550 nm than those o f the ratio o f red to infrared 

reflectance, the relative reflectance at 550 nm is a more useful predictor o f the 

number o f landings made on each colour o f card than the ratio o f red to infrared 

reflectance.
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Together these findings corroborate the unpublished results referred to in Renwick & 

Radke (1988) which found P. rapae alighted more often on substrates with maximal 

reflectance at 550 nm. Similarly, M yers’s (1985) results which report a significant 

relationship between the ratio o f red to infrared reflectance and the number o f eggs 

laid on cabbage plants. The index o f greenness developed by Myers (1985) also 

showed a strong relationship with the nitrogen content o f the cabbage plant. As the 

two measures show a high degree o f correlation, it would appear that the butterfly 

gains the same information about the quality o f a host. Therefore, the butterflies may 

actually be selecting the cards on the basis o f host plant quality rather than colour per  

se. Clearly then these results would strongly suggest that the colour o f a substrate has 

a strong influence on its attractiveness to P. rapae, However, it should be borne in 

mind that these results were obtained with cards and not plants and the usefulness o f 

the measures for predicting landings in whole plants may not be generally applicable.

However, the results o f the multiple regressions would indicate that as the R-squared6 

(adjusted values) values were higher than those o f the single wavelength models, the 

multiple regression models developed for contact stimulants and volatile extracts are 

more useful in predicting the number o f landings made on each o f the colour o f cards 

than the single wavelength models o f Table 4.5 & 4.6. Therefore, it could be argued 

that based on these results and the statistical analyses a number o f spectral regions are 

involved in determining the choice o f a card for landing in P. rapae females.

In the present study, the significant decrease in the number o f landings on cards 

treated with volatile extracts is in stark contrast to the findings o f Feeny et al. (1989) 

for Papilio polyxenes Stoll. (Lepidoptera: Papillionidae) who found that for female 

butterflies treating experimental leaves with carrot volatiles increased the frequency 

of landings as compared to controls. Similarly, the plants (Chapter Two; Section B) 

treated with volatile extracts caused an increase in the number o f landings made on 

those plants treated with volatiles as compared to the controls. This depression in the

6 The R-squared value is a measure of the linearity of the relationship between variables in a regression 
analysis. However, when more than one variable is used in a regression analysis, the adjusted R-squared value 
is preferred as this value is adjusted to account for tire effect of the number of degrees of freedom in the 
regression model, hi effect the increased number of variables.
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number o f landings on cards treated with volatile extracts may be due to the 

depressive effect o f ether on the behaviour o f P. rapae, especially as the BSI o f 

volatile extracts was lower than that o f the ether solvent.

The increase in the number o f landings made on cards treated with contact stimulants 

was surprising. This increase may be due to either a post-alighting effect or volatile 

constituents in the extract attracted the females. The post-alighting effect can be 

thought o f as occurring in the following manner. Once the female has landed and 

detected the contact stimulant extract, it may lead to a change in behavioural 

responsiveness which causes the female to land more often, basically the female 

exhibits area restricted searching. Alternatively, the pre-alighting effect may be due 

to volatiles present in the extract. The extract was prepared by extracting leaves in 

ethanol (a moderately polar solvent) and then extracting the residue in ether (very 

non-polar solvent) and then water (highly polar solvent). Now if the active volatiles 

which “attract” P. rapae are polar or semi-polar then some o f these compounds are 

likely to have been present in the contact stimulant extract, and these chemicals are 

responsible for the increase in the number o f landings. It is impossible to resolve 

which effect or combination o f the effects caused this result.

CONCLUSIONS

The results from this study suggest that for P. rapae the dominant cue in host plant 

finding is probably visual, with chemical cues having no effect on the frequency of 

landings in this study. The effect o f colour on landing was further investigated using 

a regression analysis o f the spectral profiles o f the coloured cards. This analysis 

indicated that the frequency o f landings on each colour o f card could be predicted, in 

most cases by the relative reflectance at 550 nm or by the ratio o f red to infrared 

reflectance. Furthermore, it may be that the relative reflectance at 550 nm and the 

ratio o f red to infrared relative reflectance are proxies for the suitability o f a host for 

larval development. However, the multiple regression models developed explain a far 

greater degree o f the variability associated with the data from the choice experiments 

and as such may show that a number o f regions o f spectral reflectance are important 

in determining the selection o f substrate based on its pattern o f spectral reflectance.
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Chapter Four 
Influence of pre and post-alighting 

discrimination of host plants by Pieris
rapae

INTRODUCTION

The discrimination o f host plants by phytophagous insects is conceptualised as having 

two components, namely pre- and post-alighting discrimination. Visser (1988) has 

argued that host plant selection can be viewed as a “choice behaviour” with two 

extremes. The first extreme implies that plants are selected following contact and is 

usually termed post alighting discrimination. This results in the number o f landings 

on plants being proportional to their abundance in the habitat. The other extreme 

implies that plants characteristics are perceived at a distance and the choice o f plant is 

affected by these characteristics (pre-alighting discrimination). Pre-alighting 

discrimination has being defined by MacKay (1985) as “the responses o f flying 

insects to habitat variation resulting in the alighting o f the insect on various types o f 

ground cover, with frequencies different from their abundance in the habitat” . Pre­

alighting discrimination is thought to rely on visual and olfactory cues and post­

alighting discrimination relies upon the plants physical and chemical characteristics. 

Host plant acceptance by insects has been interpreted as a sign o f recognition in 

which the chemistry o f the plant is encoded by gustatory receptors into a neural 

message. Acceptance occurs when the message’s code matches a hypothetical 

template in the brain o f the insect (van Loon, 1996). However, a complete 

description o f host plant finding by phytophagous insects should include both plant 

characteristics perceived by insects and the insects subsequent behavioural response to 

those characteristics (Visser, 1988). That is, the behavioural response o f the insect to 

a sensory cue is not only dependant upon the nature o f the cue but also on the insects 

internal state (Miller & Strickler, 1984).
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When searching in a habitat for a potential host plant phytophagous insects are 

confronted by an array o f sensory cues both positive and negative which may 

influence their acceptance or rejection o f a potential host plant. The effect o f sensory 

information emanating from a plant is thought to influence a insect’s behaviour via a 

catenary chain (Kennedy, 1965), stimuli evoke responses which lead on to subsequent 

cues in the chain (Courtney, 1986a) and a view o f this process is shown in Figure 4.1.

Figure 4.1. An example o f the catenary chain o f events and sensory 
information utilised by a female Pieris rapae in finding and accepting 
a host plant for oviposition (Courtney, 1986a; Renwick & Huang 
1994).
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The effect o f colour on landing preference has been investigated and is known to be 

an important sensory cue for P. rapae (Myers, 1985; Renwick & Radke, 1988; 

Traynier, 1979). The results o f Chapter Three would also provide evidence for a 

strong effect o f visual stimuli on the host plant finding process. Volatile odours also 

influence the process o f host plant selection in P. rapae (Hern, McKinlay & Edwards- 

Jones, 1996b).

The mechanisms insects use to orientate to a source o f odour have received much 

attention (Bell, Kipp & Collins, 1996; David, 1986; Kennedy, 1983; 1986; Murlis,
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Elkingotn & Carde, 1992; Visser, 1986; 1988). Chemo-orientation requires the 

integration o f external and internal factors to generate a search strategy. Searching 

strategies comprise a series o f tactics which may be summarised as (Bell et al. , 1996):

• Initiation.

• Orientation.

• Arrestment (stopping or landing).

• Closure (achieving the final approach to a resource after arrestment).

Many insects have been shown to respond to wind borne odours by approaching the 

point source by making a succession o f alternate left and right turns; this is termed 

counter-turning. Counter-turning can be further refined into two categories 

(Kennedy, 1983):

• Casting which is movement across wind.

• Zigzagging which is movement upwind.

The control o f  orientation is thought to be due to ideothetic (internal) and alleleothetic 

(external) information sources. Clearly the resultant orientation pattern is due to the 

interaction o f these two sources o f information (Visser, 1988). The functional 

significance o f counter-turning is to regain contact with the wind borne odour 

(Kennedy, 1983).

Host plant chemistry has been investigated as a factor mediating ovipositional 

decisions by P. rapae. Host plants contain different compounds which either 

stimulate or deter oviposition, with the decision to accept or reject a host being based 

on the relative degree o f stimulation and deterrence by these chemicals (Huang & 

Renwick, 1993; Huang, Renwick & Chew, 1995; R.enwick & Chew, 1996; Renwick 

& Huang, 1994).

The aim o f the present study was to investigate host plant choice by P. rapae in two 

varieties o f cabbage (vars. Golden Acre Primo (II) and Greyhound) and nasturtium 

(Tropaeolum majus, var. Salmon Pink) using whole plants. The effects o f sensory 

information emanating from these hosts was investigated in an attempt to establish 

which points in the catenary chain supply information utilised in the processes o f host
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plant finding and discrimination by P. rapae. I also investigated the effect that these 

volatile extracts had on the counter-turning behaviour o f P. rapae.

METHODS

Butterflies

All experiments utilised captive bred P. rapae. The culture used was started from 

eggs obtained from a culture maintained at HRI (Wellesbourne, UK). This culture 

has been continuously reared since the I960’s. The larvae were caged in mesh 

covered cages (size 50 x 50 x 50 cm). Larvae were fed on whole plants and when a 

plant had been eaten it was removed from the cage and replaced. Any larvae still 

present on the plant were carefully removed with either a paintbrush (mostly instars I 

& II) or with a pair o f fine forceps (instars III, IV & V). Any pupae present were 

removed from the plant and carefully placed onto the floor o f the cage. The adult

butterflies were raised at a temperature o f 22 °C  with a light-dark photoperiod o f 18:6 

hours respectively. Lighting was provided by full spectrum fluorescent tubes 

(Sylvania Activa 172 professional 58 watt; supplier Lightbox Scotland ltd., Glasgow, 

UK). The plants used for larval rearing and adult oviposition were glasshouse grown 

without the use o f pesticides. Upon eclosion from the pupae, butterflies were 

transferred to another cage (usually 95 x 50 x 50 cm) with a host plant. An artificial 

nectar solution (15 per cent (w/v) sucrose with a dash o f egg-yellow food colouring) 

was provided in a ‘feeder’. The ‘feeder’ comprised a white perspex sheet (15 x 15 

cm) with six vials attached by silicon sealer (non-toxic aquarium type). In between 

generations the cages were washed thoroughly with Decon solution (5 per cent) and 

wiped with a 70 per cent ethanol solution. This was done to minimise the risk o f 

infection from microbial pathogens (particularly viral and fungal pathogens). The 

host plants used for rearing and oviposition was Spring Cabbage var. April.

Choice test using whole plants 

Assay procedure

These experiments were carried out to determine the response o f female P. rapae to 

three different host plants, two cabbage varieties and nasturtium were used.
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A single butterfly was released into an enclosure 2.0 Metres wide 1.75 in length and 

1.0 Metres high. Illumination was provided by eight evenly spaced fluorescent tubes 

(Sylvania Activa 172 professional 58 watt; supplier Lightbox Scotland Ltd., Glasgow, 

UK) providing full spectrum light with an emission spectrum close to that o f daylight 

but with additional reflectance in the ultra violet. Three plants o f each host plant type 

(Golden Acre Primo (II), Greyhound and Nasturtium) were randomly arranged in the 

arena in a 3 x 3 grid configuration, which was evenly spaced. Individual females 

were introduced and their behaviours (landing and oviposition) recorded on each host 

type for 30 minutes. 24 Butterflies were tested in total. The individual butterflies 

were tested in groups o f eight on three separate occasions.

The plants used in this experiment were grown in a glasshouse under natural lighting 

conditions in 6 inch pots o f compost. To minimise the impact o f herbivorous insects 

on the plants, the plants were treated with a systemic insecticide (Temik granules 1 

granule per square inch o f compost surface Rhone-Poulenc Agriculture, Ongar Essex 

UK). Experiments were carried out when plants were 10 weeks old. The treatment 

with insecticide was carried out to minimise the effect o f herbivore feeding which 

induces changes in the profiles o f volatile chemicals released by the plants (Mattiacci 

e ta l ., 1994).

Spectral analysis o f  the host plants used.

Four plants (grown as described above) from each variety were analysed as detailed 

below. The samples taken, from the adaxial surface o f a leaf, were analysed using a 

computer controlled spectrophotometer (as described in Chapter Three)

The data from the spectral analysis o f the plants was corrected to the relative number 

of quanta for each plant. The methodology employed to carry out this correction was 

that described by Kolb & Scherer, 1982; Harris et a /., 1993 and Harris et at., 1995) 

and is described in detail in Chapter Three.

Effect o f  host plant volatiles on fligh t behaviour and landing on model 

plants in a  windtunnel

The effect o f volatiles on P. rapae’s behaviour was assayed for volatile extracts from 

each o f the three host plants used (Cabbage var. Golden Acre Primo (II) and var.
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Greyhound; Nasturtium var. Salmon Pink). The assays investigated the effect o f the 

volatiles on the behavioural response o f P. rapae females to model plants treated with 

volatile extracts, and on their flight behaviour.

Wind tunnel description

The wind tunnel was comprised o f four main sections; the transition section, the 

settling chamber and the test section which also incorporated the experimental area 

(Figure 4.2.). The transition section consisted o f a wide angle diffuser fitted with a 

combination o f adjustable air splitters and guide vanes to control the boundary layer. 

The settling chamber, was fed by a non-overloading centrifugal blower fan, with 

minimum disturbance to airflow. The settling chamber contained a combination o f 

screens and honeycombs to provide a laminar air flow to the entrance o f the test 

section (P. J. Bowden, unpublished).

The wind tunnel experimental area was 2.0 metres wide, 1.75 metres in length and 1 

metre high. The airflow within this section o f the windtunnel has previously shown 

to be laminar (P.J. Bowden unpublished). Lighting was provided by eight evenly 

spaced fluorescent tubes (Sylvania Activa 172 professional 58 watt; supplier Lightbox 

Scotland ltd., Glasgow, UK) providing full spectrum light with an emission spectrum 

close to that o f daylight with additional reflectance in the ultra violet. The wind 

tunnel showed variation in the levels o f light reaching the floor and for completeness 

this is illustrated in Figure 4.3. Ambient air is drawn from outside and electric 

heaters provide heating to 22 °C for experiments (P. J. Bowden unpublished).

Figure 4.2. Diagrammatic representation o f the wind tunnel used in 
these experiments.

S e c t i o n
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Figure 4.3. Variation in light intensity within the wind tunnel
experimental area.

Flight Behaviour

In this assay, individual butterflies were exposed to a single vial of test chemical of 

either mineral oil or the test volatiles at a concentration of 2.5 gram leaf equivalents 

(gle), see Figure 4.4. The number of times females exhibited counter-turning flights 

was recorded, as was the duration of such flights. The female (5-6 days old) was 

given a 10 minute acclimatisation period and behaviours were recorded for 15 

minutes. Five females were used in each trial and three trials were carried out. 

Behaviours were recorded using the Observer software package, version 3.0 (Noldus 

Information Technology). This software package allows the recording and analysis of 

behaviours in experiments. The user defines behaviours to be recorded and general 

assay conditions, duration of the assay etc. The user observes the behaviour occurring 

and records what is seen, the software records the behaviour and the time at which it 

occurs. At a later date the behavioural records are analysed and a summary of 

behavioural events is produced.

Wind speed and temperature were recorded for each butterfly immediately prior to the 

beginning of each assay, they were recorded over a three minute period and expressed 

as the mean over that period. The mean and standard error of the mean for wind speed 

and temperature measurements for the treatments were calculated and are shown in 

Table 4.1.
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Figure 4.4. Schematic representation of the wind tunnel layout in these
experiments.

Experimental Area

Table 4.1. Mean wind speed (m/s) and Temperature (° C) for each of 
the three volatile extracts tested and the mineral oil control. N=15

Treatment Wind speed Temperature

Golden Acre Primo (II) 1.03 ±0.005 23.78 ±0.119

Greyhound 1.10 ± 0.012 24.04 ± 0.097

Salmon Pink 1.03 ±0.002 23.88 ±0.107

Mineral Oil 1.04 ± 0.004 23.91 ±0.108

Pre-cilighting discrimination Assay procedures 

Choice o f  volatile and oil

In this assay, females were offered a choice between four model plants, two of which 

were treated with a volatile extract (2.5 gle) from one of the three host plants tested 

and two of which were treated with mineral oil. The source of odour was placed 25 

cm behind the model plant (See Figure 4.5.). The position of the treatments was 

randomised, the positions are shown in Table 4.2.
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Figure 4.5. Schematic representation of the windtunnel layout in the 
investigations of pre-alighting discrimination by volatiles. The 
numbers in brackets after the position of the odour source refer to the 
position of the test odours in the trials (see Tables 4.2. and 4.3.)

Experimental Area 
x denotes position of odour source.

Table 4.2. Position of volatile and mineral oil odour sources for each 
trial and volatile extracts. (See Figure 4.5. for details of position 
within the windtunnel).

Odour Golden Acre Primo (II) Greyhound Nasturtium

position Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 

1 v o v o v v o o o

2 v v o v o v v o v  

3 o o o v v o o v v  

4 o v v o o o v v o

Ten female P. rapae (5-6 days old) were introduced into the wind tunnel and allowed 

to acclimatise for 30 minutes. After 25 minutes of the acclimatisation period the vials 

containing the test chemicals were introduced. After the full 30 minutes of the 

acclimatisation period was over the number of landings made on plants belonging to 

each treatment group was recorded for 30 minutes. Three trials were carried out. The 

mean wind speed and temperature was recorded as for the flight behaviour 

experiment. The mean wind speed for Golden Acre Primo (II) was 0.54 m/s ± 0.01 

and the mean temperature was 23.4 0 C ± 0.16. The mean wind speed for Greyhound 

was 0.51 m/s ± 0.01 and the mean temperature was 23.3 0 C ± 0.09. The mean wind 

speed for Nasturtium was 0.53 m/s ± 0.01 and the mean temperature was 22.9 0 C ± 

0.13.
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Choice between the three volatile extracts and oil

In this assay, females were offered a choice between four model plants. Each model 

plant was treated with a volatile extract from one of the host plants in question and the 

fourth plant was treated with mineral oil. The source of odour was placed 25 cm 

behind the model plant, see Figure 4.5. The position of the treatments was randomised 

(Table 4.3.). Ten female P. rapae (5-6 days old) were introduced into the wind tunnel 

and allowed to acclimatise for 30 minutes. After 25 minutes of the acclimatisation 

period the vials containing the test chemicals were introduced. After the full 30 

minutes of the acclimatisation period was over the number of landings made on plants 

belonging to each treatment group was recorded for 30 minutes. Four trials were 

carried out. The mean wind speed during the trials was 0.53 m/s ± 0.01 and the mean 

temperature was 23.1 0 C ± 0.13.

Table 4.3. Position of volatile and mineral oil odour sources for each 
trial. (See Figure 4.5. for details of position within the windtunnel).

Odour

position

Trial 1 Trial 2 Trial 3 Trial 4

1 Greyhound Greyhound Mineral oil Golden Acre Primo (II)

2 Mineral oil Golden Acre Primo (II) Nasturtium Mineral oil

3 Nasturtium Nasturtium Greyhound Greyhound

4 Golden Acre Primo (II) Mineral oil Golden Acre Primo (II) Nasturtium

Construction o f  model plants

The models were constructed using four plastic ‘leaves’ per ‘stem’. The leaves were 

made from a corrugated plastic sheet (Plasboard plastics Ltd, Montrose, UK. Colour 

green grade 2/350). Each leaf was made from an isosceles triangle 10 cm high and 20 

cm across the base. The ‘Plants’ were place 40 cm apart across the width of the wind 

tunnel. Each plant was constructed as follows. A 40 cm glass fibre rod was used as a 

stem and the four leaves were positioned at right angles to each other around the stem. 

The leaves were positioned with a vertical distance of 10 cm from the base. The 

position of the leaves around the stem was identical for each plant. The four plants
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were then held in position using a strip of softwood (2.5 cm x 2.5 cm) fastened to the 

floor of the wind tunnel.

Extraction o fvo la tiles

The extraction of volatiles was carried out as described by Feeny et al. (1989). 

Volatiles were extracted by dipping bunches of freshly excised leaves into 

dichloromethane (250 g per 750 ml of dichloromethane), twice for 60 seconds. The 

extract was then filtered and concentrated under reduced pressure in a rotary 

evaporator. The residue was dissolved in mineral oil (Sigma Chemical Company) to a 

concentration of 2.5 gle. The plants extracted were grown as described for the whole 

plant choice assay.

Effect o f  contact stimulants on host plant choice 

French Bean plants

French bean plants (Phaseolus vulgaris var. Tendergreen) were grown in a glasshouse 

as described above, with the exception that no insecticide treatment was applied and 

were presented in three inch plastic pots at the two leaf stage (Huang & Renwick, 

1993).

Assay Procedure

Assays were carried out in screen cages (50 x 50 x 50 cm) in a controlled environment 

room (22 °  C). Each cage was provided with a 20 per cent sucrose (w/v) solution to 

allow nectar feeding. 10 female P. rapae (aged 5-6 days old) were grouped as a trial. 

The females were released into a cage containing four French bean plants. Each plant 

was painted with either 5 gram leaf equivalents of one of the host plant extracts from 

the three host plant varieties or distilled water (control) and left to dry prior to the 

release of the butterflies into the cage. Lighting was provided by two full spectrum 

fluorescent lights suspended above the cage (lights are as described for the whole 

plant choice assay). Each assay lasted six hours. After which the number of eggs laid 

on each plant was counted. Three trials were carried out.

P a g e  92



Extraction o f  contact stimulants

The extraction of the leaf surface contact stimulants was as described in Huang & 

Renwick (1993). Freshly excised leaves from each variety were extracted separately, 

by boiling in ethanol for five minutes. The mixture was then cooled and homogenised 

in a blender. The homogenate was then filtered under vacuum and the filtrate was 

evaporated to dryness under reduced pressure in a rotary evaporator. The residue was 

defatted with n-hexane, and the then dissolved in water. The defatted residue was 

extracted three times in n-butanol. This butanol fraction was discarded and the water 

fraction was diluted to 5 gle and stored at -20 0 C until use. The plants extracted were 

grown as described in the whole plant choice assay.

RESULTS

Whole plan t assay

The data from this assay was tested for normality using a Ryan-Joiner test (Shapiro 

Wilk) using Minitab for Windows (Release 11.1). The results of this test indicate that 

the data for the number and duration of landings and the number of eggs laid were 

normally distributed, W-test for normality, (R 0.9530, P>0.05; R 0.9133 P>0.05; R 

0.9852 P>0.05 respectively). Following the results of these tests, the data was 

analysed using the Glim command in Minitab for Windows (Release 11.1) with the 

plant variety as a factor. For the number of eggs, the data from each of the eight 

females tested together was combined and the statistical analysis was carried out on 

the basis of per trial. This was done because of the low number of eggs laid per 

female. A summary of this analysis is included in Table 4.4.

Figure 4.6. indicates that significant differences were found in the number of landings 

made on the three plant species (P<0.05 Table 4.4), with females landing more 

frequently on the Golden Acre Primo (II) variety of cabbage varieties as compared to 

greyhound or nasturtium. There were no significant differences in the duration of 

landings on the plant species tested (P>0.05, Table 4.4.). Females also shewed 

significant differences in the number of eggs laid in each of the plant species (P<0.05, 

Table 4.4.) with the two cabbage varieties receiving more eggs than nasturtium 

(Figure 4.7.).
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Figure 4.6. Mean number o f landings made by Pieris rapae females 
on each o f the three variety o f plants tested in a choice test. Error bars 
show standard deviation o f the mean. Columns with different letters 
are significantly different from each other. N=24.
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Figure 4.7. Mean number o f eggs laid by eight Pieris rapae females on 
each o f the three variety o f plants tested in a choice test. Error bars 
show standard deviation o f the mean. Columns with different letters 
are significantly different from each other. N=3
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Table 4.4. Summary o f Glim analysis o f the data on the number and 
duration o f landings and eggs laid by Pieris rapae females on each of 
the three host plants tested.

General Linear Model 

Factor Levels Values

Plant 3 Nasturtium Golden Acre Primo (II) Greyhound

Analysis o f Variance for number of landings

Source DF Seq. SS Adj. SS Adj. MS F P

Plant 2 13.8941 13.8941 6.9471 7.50 0.023

Error 6 5.5557 5.5557 0.9259

Total 8 19.4498

Analysis of Variance for duration of landings 

Source DF Seq. SS Adj. SS Adj. MS F P

Plant 2 425178 425178 212589 4.03 0.078

Error 6 316312 316312 52719

Total 8 741490

Analysis of Variance for number of eggs laid 

Source DF Seq. SS Adj. SS Adj. MS F P

Plant 2 106.889 106.889 53.444 9.25 0.015

Error 6 34.667 34.667 5.778

Total 8 141.556

The data in Figures 4.6. and 4.7. was used to calculate the number o f eggs laid per

landing, when the data is expressed in this form it becomes clear that more eggs were

laid on Greyhound per landing than either Golden Acre Primo (II) or Salmon Pink 

(Figure 4.8.).

Figure 4.8. Mean number o f eggs laid per landing on each o f the three 
host plant varieties tested by Pieris rapae females. N=24
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Spectral analysis o f  the hosts plants used

Figure 4.9. Relative number o f quanta reflected from each plant 
variety. N=4

 Golden Acre Primo (II)
—  Greyhound 

Salmon Pink

Wavelength (nm)

The relative spectral reflectance o f each o f the three plant species is shown in figure 

4.9. The pattern o f reflectance is similar for each species. Peaks occur at c.a. 420 

(blue) and 550 nm (green) and another peak is evident at 750 and 790 nm (far red). 

The highest values for all o f the reflectance are found for Golden acre Primo (II), 

followed by Greyhound with Nasturtium having the lowest.

The effect o f  volatile emissions on pre-oviposition behaviour 

Flight behaviour

Prior to analysis the data from this assay were tested for normality as previously 

described. The results o f the Ryan-Joiner tests showed that neither the data for the 

number or duration o f counter-turning flights was normally distributed, W-test for 

normality R 0.95 and 0.97 respectively (P<0.01). The data was transformed by 

squareroot(data + 0.5). This transformation resulted in the data for both the number 

and duration o f counter-turning flights being normal, W-test for normality R-values

0.995 and 0.991 (P>0.05) respectively.

P a g e  96



Figure 4.10. Effect o f the three volatile extracts on the mean number 
o f counter-turning flights exhibited by Pier is rapae females. Error 
bars show the standard deviation. N=15
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Figure 4.11. Effect o f the three volatile extracts on the duration o f 
counter-turning flights exhibited by Pieris rapae females (seconds). 
Error bars show the standard deviation and columns with different 
letters are significantly different from each other. N=15
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The summary from this Glim analysis is shown in Table 4.5. The volatile extracts 

tested did not exhibit a significant effect on the number o f counter-turning flights 

made by the females (P>0.05; Table 4.5) Figure 4.10. Elowever, a significant effect 

on the duration o f counter-turning flights was recorded (P<0.05, Table 4.5). The 

volatile extracts from the two cabbage varieties resulted in the longest time spent in 

counter-turning flights by the females (Figure 5.11).
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Table 4.5. Summary of GLIM analysis of the effect of the three volatile 
extracts on the flight behaviour of Pieris rapae females.

General Linear Model

Factor Levels Values

Treatment 4 Oil; Golden Acre Primo (II); Greyhound; Nasturtium

Analysis of Variance for number of counter-turning flights (data transformed Squareroot (data + 0.5)

Source DF Seq.SS Adj. SS Adj. MS F P

Treatment 3 1.7093 1.7093 0.5698 1.06 0.375

Error 56 30.1829 30.1829 0.5390

Total 59 31.8922

Analysis of Variance for duration of counter-turning flights (data transformed Squareroot (data + 0.5)

Source DF Seq. SS Adj. SS Adj. MS F P

Treatment 3 593.95 593.95 197.98 3.34 0.026

Error 56 3324.34 3324.34 59.36

Total 59 3918.29

In summary, it would appear that the main effect of the volatile extracts was to 

increase the amount of time spent in counter-turning flights as compared to the 

mineral oil control. The differences between the three volatile extracts were not large 

as compared to the difference to the control but it appears that the two cabbage variety 

extracts were more stimulatory than the Salmon Pink extract.

Effect o fvo la tiles on pre-alighting discrimination 

Choice o f  volatile and oil

The data from this assay were tested for normality using a Ryan-joiner test as 

previously described, the results of which indicate that the data from all three volatile 

extracts followed a normal distribution (W-test for normality Golden Acre Primo (II) 

R:0.98; P>0.05; Greyhound R:0.97, P>0.05; Salmon Pink R:0.97, P>0.05). The 

results of this assay are shown in Figure 5.12., 5.13. & 5.14. There was a significant 

increase in the number of landings made on the model plants treated with volatiles as 

compared to mineral oil for all three of the volatile extracts (Table 4.6.).
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Figure 4.12. Mean number o f landings per trial made by 10 Female 
Pieris rapae on model plants treated with greyhound volatile extract or 
mineral oil in a choice test. Error bars give standard deviation 
columns with different letters are significantly different from each 
other. N=3

Treatment

Figure 4.13. Mean number o f landings per trial made by 10 Female 
Pieris rapae on model plants treated with Golden Acre Primo (II) 
volatile extract or mineral oil in a choice test. Error bars give standard 
deviation columns with different letters are significantly different from 
each other. N=3
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Figure 4.14. Mean number o f landings per trial made by 10 Female 
Pieris rapae on model plants treated with Salmon Pink volatile extract 
or mineral oil in a choice test. Error bars give standard deviation 
columns with different letters are significantly different from each 
other. N=3
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Table 5.4 Summary o f Glim analysis for the choice o f volatile extract 
or mineral oil for each o f the three volatile extracts.

General Linear Model

Factor Levels Values

Treatment 2 Volatile Oil

Analysis o f Variance for Greyhound

Source DF Seq. SS Adj. SS Adj. MS F P

Treatment 1 468.17 468.17 468.17 18.12 0.013

Error 4 103.33 103.33 25.83

Total 5 571.50

Analysis o f Variance for Golden Acre Prirno (II)

Source DF Seq. SS Adj. SS Adj. MS F P

Treatment 1 770.67 770.67 770.67 19.43 0.012

Error 4 158.67 158.67 39.67

Total 5 929.33

Analysis o f Variance for Salmon Pink

Source DF Seq. SS Adj. SS Adj. MS F P

Treatment 1 3408.2 3408.2 3408.2 15.84 0.016

Error 4 860.7 860.7 215.2

Total 5 4268.8

As can be seen for all three extracts tested the presence o f volatiles on a plant 

increased the number o f landings as compared to those plants treated with mineral oil. 

However, in order to compare the effect o f the three volatile extracts on the number 

of landings made an index o f behavioural stimulation (BSI) was calculated for each 

volatile extract (using means presented in Figures 4.12., 4.13. and 4.14.; as described 

in Chapter Three). The results o f these calculations are shown in Figure 4.15.

Figure 4.15. Mean behavioural stimulation index for each o f the three 
volatile extracts when Pieris rapae females were offered a choice 
between each volatile extract separately or mineral oil.
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As can be seen when each volatile was offered separately with mineral oil, the 

volatile extracts were all equally preferred in comparison to the mineral oil.

Choice between the three volatile extracts and oil

The data from this assay were tested for normality using a Ryan-joiner test as 

previously described, the results o f which indicate that the data followed a normal 

distribution, W-test for normality (R:0.96, P>0.05). The results o f this assay are 

shown in Figure 4.16. When females were offered a choice between the three 

volatiles and mineral oil simultaneously there was a significant increase in the 

frequency o f landings on the volatile extract treatments as compared to the oil control 

(P<0.05; Table 4.7.).

Figure 4.16. Mean number o f landings per trial made on each o f the 
model plants treated with volatile extracts or mineral oil in a choice 
test by Pieris rapae females. Error bars indicate standard deviation 
and columns with different letters are significantly different from each 
other. N=4
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Table 4.7. Summary o f Glim analysis for the number o f landings made 
on model plants treated with three different volatile extracts or mineral 
oil in a choice test by Pieris rapae females.

General Linear Model 

Factor Levels Values

Treatment 4 Mineral Oil Greyhound Salmon Pink Golden Acre Primo (II)

Analysis of Variance for number of landings

Source DF Seq. SS Adj. SS Adj. MS F P

Treatment 3 1398.2 1398.2 466.1 3.71 0.042

Error 12 1505.8 1505.8 125.5

Total 15 2903.9
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As can be seen, for all three extracts tested the presence o f volatiles on a plant 

increased the number o f landings as compared to those plants treated with mineral oil.

Effect o f  contact stimulants on host plant choice

The data from this assay were tested for normality prior to analysis as described 

previously. The data were found not to be normally distributed W-test for normality 

(R:0.7803; P<0.01). Prior to analysis the data was subjected to a Log10 (data+1) 

transformation before the GLIM analysis was carried out. This transformation 

resulted in a normal distribution o f the data (R0.986; P>0.05). The data were then 

analysed using the GLIM command Minitab for Windows (Release 11.1) with the 

leaf surface extract as a factor. A summary o f this analysis is shown in Table 4.8.

Figure 4.17. Mean LoglO (data+1) number o f eggs laid by Pieris 
rapae on bean plants treated with either a leaf surface extract from 
each o f the three host plant varieties or distilled water. Error bars 
indicate standard deviation and columns with different letters are 
significantly different from each other. N=3

CL
CL<D
o
5-1<L>
1 '
e
acc
CL)2
’—I+O
CLO

1.5

Lt
CD 
Oh 
T3
3  0

0.5

I
B

--
X

C C
, i l l  ,

Golden 
Acre 

Primo (II)

Greyhound Salmon
Pink

Water

Variety

As can be seen (Figure 4.17.), significant differences were found between the number 

of eggs laid on each o f the treatments (PO.OOl). Most eggs were laid on Golden 

Acre Primo (II) followed by Greyhound with Salmon Pink not being significantly 

different from the water control (Figure 4.17.). Oviposition stimulant indexes were 

calculated as described in Huang & Renwick (1993) and these are shown in Figure 

4.18. Clearly the two cabbage extracts were more stimulatory as compared to the 

Salmon Pink extract.
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Table 4.8. Summary o f GLIM analysis for the number o f eggs laid by 
Pieris rapae females on bean plants treated with the leaf surface 
extracts or distilled water.

General Linear Model

Factor Levels Values

Treatment 4 Golden Acre Primo (II) Greyhound Salmon Pink Water

Analysis o f Variance for LogI0(data+l) number of eggs laid.

Source DF Seq. SS Adj. SS Adj. MS F P

Treatment 3 3.9532 3.9532 1.3177 24.74 0.001

Error 8 0.4261 0.4261 0.0533

Total 11 4.3793

Figure 4.18. Ovipositional stimulant index for each o f the three leaf 
surface extracts tested.
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DISCUSSION

The results from the whole plant choice assay suggest that P. rapae females did 

exhibit pre-alighting discrimination as the plants tested were not equally likely to be 

landed upon. The hierarchy o f preference for landing and oviposition were similar

i.e. Golden Acre Primo (II) received the most landing and eggs; greyhound was 

intermediate and nasturtium was the least preferred for landing and oviposition. 

However, when the number o f eggs per landing was calculated this pattern changed 

and on this basis, Greyhound received the most eggs. Therefore, these results indicate 

that as well as exhibiting pre-alighting discrimination o f potential host plants, P. 

rapae females also exhibit post-alighting discrimination, as once landed, a female was 

not equally likely to oviposit on each o f the host plant varieties tested.
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The pre-alighting discrimination o f host plants by butterflies is a common occurrence 

and has been documented in a number o f species including; Euphydryas editha 

(MacKay, 1985; Rausher el al., 1981); Coliasp. eriphyle (Stanton, 1982; 1984) and 

P. rapae (Ives 1978). In addition, to the pre-alighting discrimination exhibited by E. 

editha, Rausher et al. (1981) argued that a female also actively discriminated between 

plants after alighting and did not oviposit on any plant when motivation to oviposit 

crossed some single threshold.

The demonstration o f pre-alighting discrimination is fairly straightforward in 

comparison to showing which factors are responsible for the observed pattern of 

landing. Rausher et al. (1981) argued that the differences in the number o f landings 

made on plants which differ in size may be due to either differences in the apparency7 

of the plants (Feeny, 1976) or a preference for larger plants (Rausher et al., 1981). 

However, distinguishing between these experimentally would be extremely difficult 

as it would be necessary to know what a butterfly does and does not perceive 

(Rausher et al., 1981). By analogy, therefore, the exact cues which lead to the pre­

alighting discrimination observed can never be fully elucidated. In the rest o f this 

Discussion the results o f the experiments are discussed in terms o f how they may 

provide information on the suitability o f a host plant for oviposition.

The spectral profiles o f the three hosts clearly show that the Golden Acre Primo (II) 

reflected the highest number o f quanta. The results o f Chapter Three, indicate that 

the higher the reflected number o f quanta the more attractive a substrate is for landing 

to P. rapae females within a suitable wavelength band. Similarly, Myers (1985) 

showed that fertilised cabbage plants receive significantly more eggs than unfertilised 

plants, but the application o f fertiliser affects several physiological parameters o f the 

plant. A significant correlation between % nitrogen o f the foliage and the colour o f 

the plant was found, plants receiving more fertiliser were greener (as measured by the 

ratio o f red to infra red reflectance). The greenness o f the plants was also 

significantly correlated with the number o f eggs a plant received. There was also a

7 Apparency is defined by Feeny (1976) as “visible, plainly seen, conspicuous, palpable, obvious”. Therefore, 
the vulnerability of a plant to its herbivores may then be referred to as its apparency, which is used to denote its 
susceptibility to discovery.
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consistent trend for fertilised plants to have higher transpiration rates. Higher 

transpiration rates also tended to increase the number o f eggs a plant received. 

Langan Dunleavy & Wheater (1996) have shown that the number o f eggs laid by P. 

rapae females is significantly correlated with several physiological parameters o f the 

host plant including photosynthetic rate, rate o f transpiration and stomatal 

conductivity. It is likely that these correlations are all measuring the physiological 

activity o f a host plant, especially its photosynthetic rate which is obviously related to 

the rate o f transpiration which in turn is related to the stomatal conductivity. This 

occurs because the observed photosynthetic rate o f a plant is related to gas exchange 

via the plants stomata.

Between 50 per cent (Jensen & Bahr, 1977) and 65 per cent (Ellis, 1979) o f the total 

soluble protein in a leaf is in the form o f Ribulose 1,5-bisphosphate carboxylase 

oxygenase (the enzyme responsible for carbon dioxide fixation in photosynthesis), 

assuming that leaf nitrogen concentration is positively related to the concentration o f 

this enzyme, the photosynthetic ability o f a plant is clearly related to its nutrient 

status. Therefore, it may be that although the primary cue used to assess a plant is 

colour, this is a proxy for the underlying physiological “health” o f a host plant or its 

suitability for larval growth, particularly its nitrogen content.

Similarly, Jansson et al. (1991) reported that the abundance o f lepidopterous pests on 

crucifers was significantly and positively correlated with the rate o f nitrogen applied 

to the plant as fertiliser. In a study o f the effect o f the application o f nitrogen 

fertiliser on oviposition by P. rapae using potted kale, the mean number o f eggs laid 

was higher on fertilised plants by two orders o f magnitude reflecting differences in 

fertiliser treatments; leaf nitrogen concentration explained over 90 % of the variation 

in oviposition rate. However, the effect o f nitrogen on oviposition rate was not 

repeated when a larger scale experimental design was employed (Letourneau & Fox, 

1989).

The importance o f nitrogen to P. rapae is related to the caterpillar, in an elaborate 

study o f this insect’s feeding habitats (Slansky & Feeny, 1977) found no significant 

correlation between the nitrogen content o f the plant and the larval growth rate. 

However, as plant nitrogen content increased the consumption rate o f the larvae
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declined and the efficiency o f conversion o f ingested food increased. The increase in 

the efficiency o f conversion o f ingested food was due to largely to the assimilation 

efficiency which increased as less food was ingested (Slansky & Feeny, 1977). 

Overall, it appeared that the larvae actively stabilised their accumulation o f nitrogen 

into larval biomass and the nitrogen accumulation rate is homeostatically maintained 

via changes in the consumption rate o f the food offered (Slansky & Feeny, 1977).

Loader & Damman (1991) have shown that when P. rcipcie caterpillars are fed on low 

nitrogen hosts they spend a greater time feeding and develop more slowly than did 

those on higher nitrogen plants. This increase in the amount o f time spent feeding 

may increase the rate o f  predation on the caterpillars. The importance o f growth to P. 

rapae larvae lies in the fact that a longer period o f time spent as a larva maybe 

commensurate with a higher risk o f mortality particularly from parasitoids and 

predators.

However, irrespective o f what the female is using as a cue, the colour o f the plant is 

considered to be important. To investigate whether colour alone was responsible for 

the observed number o f landings in the whole plant choice assay, data from Chapter 

Three was used to build a regression model for the number o f landings made on each 

colour o f card in the presence o f volatile and contact stimulant extracts. The 

regression was found to be statistically significant (P<0.001; R-sq. 0.72; ANOVA df 

=1,11, F-Value 25.2 (Table 4.9.). The regression equation was: the number o f 

landings = 13.49 + 0.727 x Reflectance at 550 nm. This regression was used as the 

plants in the experiments described in this Chapter contained both volatile and contact 

stimulants which the data in Chapter Three shows to be important in the visual 

behaviour o f P. rapae.

Table 4.9. The result o f a regression analysis on the total number o f 
landings and the reflectance at 550 nm for 12 colours o f cards (Data 
from Chapter Three).

ANOVA df SS MS F P

Regression 1 4770.082 4770.082 25.15974 0.001

Residual 10 1895.918 189.5918

Total 11 6666
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The expected number o f landings calculated, from the regression equation above 

using the reflectance at 550 nm from the three host plant varieties (expected values in 

Figure 4.19.), were converted to percentages o f the total number o f landings and 

compared to the percentage o f the total number o f landings obtained in the whole 

plant assay (observed values in Figure 4.19.). The results o f these calculations are 

shown in Figure 4.19.

Figure 4.19. The observed and expected (as determined by the 
regression equation between reflectance at 550 nm) percentage o f the 
total number o f landings made by female Pieris rapae in the 
experiments described in the whole plant choice experiments o f this 
Chapter.

Acre Primo (II)

Host plant 
variety

For all three host plants varieties there is a very good agreement between the observed 

and expected values. This indicates that the colour o f a plant, more specifically, its 

reflectance is the most important factor in determining the number o f landings made 

and thereby is responsible for the observed pattern o f pre-alighting discrimination o f 

host plants by P. rapae. However, there are a number o f weaknesses o f this analysis; 

the most obvious being that the data used in determining the regression equation was 

derived from a study in which model plants were used and not real plants. I would 

suggest therefore, that the conclusion that colour alone, in particular the reflectance at 

500 nm, is solely responsible for the pre-alighting discrimination exhibited by P. 

rapae should be treated with caution.
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The results o f the assay investigating the flight behaviour o f P. rapae in the presence 

of host plant volatile extracts showed that there was no significant differences in the 

number o f flights made in which counter-turning was exhibited between the four 

treatments (three volatile extracts and the solvent control). However, the duration o f 

counter-turning flights was significantly different. Therefore, it may be assumed that 

the initiation o f such flights is predominately under ideothetic control. However, a 

possibility which cannot be excluded is that the flights were initiated in response to 

plant volatiles carried into the wind tunnel with the air stream. As the wind tunnel 

used was very large (volume o f experimental chamber alone 3.5 m3) it was not 

practical to purify air entering the wind tunnel and such air can be expected to be 

permeated with a blend o f volatile odours from many plants. However, as the 

duration o f such flights showed significant differences then we may assume that the 

duration o f such flights is under the control of, or at least influenced by, alleleothetic 

information sources (or a combination o f allelethetic and idoethetic information). 

Therefore, it would appear that volatile extracts may be considered to be important in 

the initiation o f searching behaviour, even if they do not actively participate in the 

orientation phase o f the search for a host plant.

The results o f the assays with model plants treated with volatiles indicate that 

volatiles do influence which model plant will be alighted upon, all three volatile 

treatments receiving higher rates o f landing than the respective control.

Therefore, volatiles would appear to have an effect in pre-alighting discrimination; 

however, since there was no evidence that the source o f volatiles affected the number 

of landings in the no-choice test the volatile extracts may be thought o f as acting more 

as a cue for host plant recognition rather than as a cue for host plant discrimination. 

This distinction is important and may allow the avoidance o f non-host plants whilst 

engaging in pre-alighting search.

In summary, I believe that I have demonstrated that volatile odour cues are potentially 

involved in the process o f finding a host plant and in the pre-alighting discrimination 

of plants by P. rapae. However, as in two o f the three experiments the cabbage 

variety Greyhound was more “attractive” than Golden Acre Primo (II), host plant 

volatiles may not be directly involved in the pre-alighting discrimination o f a
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potential host plant by an ovipositing female. It should be borne in mind that all of 

these tests concerned only one sensory modality: olfaction, and demonstrating a 

potential effect o f olfaction in a laboratory is not the same as demonstrating that 

olfaction is an important sensory modality in the pattern o f utilisation o f host plants 

by P. rapae in the field.

The results o f this assay clearly show that the three plants contained differing 

amounts o f ovipositional stimulants. The most stimulatory plant was Golden Acre 

Primo (II), Greyhound was intermediate and the least stimulatory plant was 

Nasturtium, which was not significantly different from the control.

When the data from the whole plant choice assay was expressed in terms o f the 

number o f  eggs per landing (Figure 4.8.), then the most acceptable plant was 

Greyhound. This difference may be due to an additional factor being involved in 

post-alighting discrimination. Additionally, the assays conducted did not take into 

account the role o f ovipositional deterrents, which are known to be important in 

mediating oviposition (Huang & Renwick, 1993; Huang et al., 1995). However, as 

the pattern o f oviposition, in terms o f number o f eggs laid, followed the OSI indexes 

it may be concluded that the most important factor in mediating oviposition in P. 

rapae are the contact stimulants present in each plant. However, as well as containing 

ovipositional stimulants Nasturtium is known to contain ovipositional deterrents 

(Huang & Renwick, 1993).

These results are in general agreement with those o f Giamoustaris & Mithen (1995) 

who tested 28 lines o f oilseed rape plants (Brassica napus) with varying aliphatic 

glucosinolate concentrations. The lines were tested in field experiments to investigate 

how the glucosinolates present mediated the interaction o f herbivores with the plants. 

They found that the presence o f P. rapae larvae showed a statistically significant 

positive correlation with the concentration o f total leaf glucosinolates.

CONCLUSIONS

These experiments have clearly shown that P. rapae females exhibited both pre-and 

post alighting discrimination o f the plants tested. The sensory cues were evaluated as 

possible elicitors o f this discrimination, the results for pre-alighting discrimination
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would suggest that it is possible that both visual and olfactory cues are involved in 

pre-alighting discrimination. However, the relative contribution o f both o f these two 

sensory modalities and the effects o f interactions between them are unknown. 

However, the results o f previous studies would suggest that visual cues are dominant, 

particularly colour; with volatile odours acting as host recognition cues; that is, they 

define a plant as a potential host. Similarly, the post alighting discrimination o f the 

plants would appear to be due to the relative degree o f stimulation from these plants, 

the contribution o f deterrents to this process was not quantified but have been shown 

to be important in mediating host plant selection.
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Chapter Five 
The effect of prior experience on the 

ovipositional behaviours of Pieris rapae.

INTRODUCTION

Insect behaviour has previously been considered to be determined by genetic 

programmes, leaving little room for plasticity or any role of learning (Szentesi & 

Jermy, 1991). However, more recently learning in phytophagous insects has received 

much attention and has been shown to occur in a variety of insect orders (reviews in 

Papaj & Prokopy, 1989; Papaj & Rausher, 1983; Szentesi & Jermy, 1991). In the 

Lepidoptera, studies of the effects of learning fall into two broad categories, namely, 

with respect to nectar resources (Lewis, 1986; Lewis, 1993; Lewis & Lapani, 1991; 

Swihart & Swihart, 1970; Weiss, 1995) or ovipositional resources (Papaj 1986; 

Parmesan, Singer & Harris, 1995; Rausher, 1978; Stanton, 1984; Traynier, 1979). 

Studies on learned ovipositional preference can be classified as either sensitisation or 

associative learning. The adult evaluates a resource and then associates visual cues 

with chemical cues (Szentesi & Jermy, 1991).

The effect of learning has been studied under field conditions in butterfly species 

including Battus philenor (pipevine swallowtail) (Rausher, 1978) and Colias p. 

eriphyle (Stanton, 1984). In a study of B. philenor searching behaviour, there were 

two species, Aristolochia reticulata and A. serpentaria (Aristolochiaceae), of host 

plant in the herbaceous vegetation. These two hosts differ in leaf shape: A. reticulata 

has broad ovate leaves whereas A. serpentaria has long narrow parallel-sided leaves 

(Rausher, 1978). It was observed that B. philenor females appeared to be highly 

selective in their response to leaf shape, with females searching and alighting 

preferentially on either narrow-leaved or broad-leaved hosts but not both 

concomitantly. Females did not change their search mode during a 30 minute 

observation period. Females alighting and ovipositing on a host plant with a leaf 

shape different to that being searched for then adopted that leaf shape as their 'search 

mode1 (Rausher, 1978).
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In addition, B. philenor females responded preferentially to a particular leaf shape 

during search and had a higher rate o f encounter with that shape. Females with a 

stronger preference for a particular leaf shape discovered a greater proportion o f host 

plants with that leaf shape than did females with a weaker preference (Rausher, 

1978).

The conditioning o f B. philenor to leaf shape through association with host plant 

phytochemical cues in laboratory studies was investigated by Papaj (1986). It was 

found that the host leaf shape to which a gravid female was exposed had a marked 

effect on the leaf shapes on which she alighted. These differences in alighting 

preference were significant and contact only was necessary to train the butterflies.

The training o f B. philenor to leaf shape was easily reversed when a female exposed 

to host plants o f a particular leaf shape was exposed to host plants with a different 

leaf shape. With a single exception, all females exposed first to one host plant species 

adopted a search mode for the second host plant to which they were exposed. The 

association between the final search mode and re-training o f the insect to the host 

plant is significant (Papaj, 1986). The results o f Papaj (1986) and Rausher (1978) 

would seem to show that B. philenor can learn to search preferentially for a particular 

leaf shape by conditioning o f perception, defined by Papaj & Rausher (1983) “as any 

effect o f experience that improves the probability o f detecting a stimulus” .

Stanton (1984) has studied the foraging behaviour o f three Colias spp. (Pieridae), 

namely, C. p. eriphyle, C. meadii and C. alexandra. She found that the activity o f 

females o f all three species was split into two well defined phases o f oviposition 

search and nectar search. For females o f all three species, a host plant landing was 

more likely to be followed by another host plant landing than by a nectar landing. 

Similarly, nectar landings were predominantly followed by visits to flowers rather 

than to host plants. This segregation o f activity had been noted previously in 

butterflies by Jones (1977) for P. rapae, and in that case was attributed to the 

segregation o f P. rapae's habitat into areas with plants for oviposition and different 

areas with plants for nectaring. In the study area utilised by Stanton (1984), there was 

considerable overlap between the distribution o f these two resources.
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The proportion o f alightings on host as opposed to non-host plant foliage in an 

oviposition bout o f at least 15 uninterrupted foliage alightings was compared. It was 

found that females o f all three Colias spp. showed a significant decrease in the 

number o f error alightings (non-host foliage) in the first half o f the same oviposition 

bout as compared to the second half, implying that short-term learning can modify the 

searching behaviour o f these species under field conditions and that experience o f 

hosts leads to an increase in the accuracy o f a female’s searching behaviour. 

Similarly, the proportion o f error alightings made immediately after flower and 

legume visits showed females made significantly more error alightings when 

switching from nectaring to oviposition than those in the middle o f an oviposition 

bout (Stanton, 1984).

Therefore, if the increased accuracy in alighting seen at the end o f Colias spp. 

oviposition bouts results from conditioning o f perception then females making fewer 

error alightings should also perceive a smaller set o f legume species. In an analysis of 

the behaviour o f C. p. eriphyle, three insect behaviour/host plant interactions affecting 

the relationship between alighting diversity and alighting accuracy were identified. 

These were: the proportion o f alightings on host plants made by a female was 

significantly positively correlated with the abundance o f legumes along her flight 

path, mean host abundance sampled during a flight sequence is significantly 

negatively related to legume species diversity, and the diversity o f legume species 

visited by a female showed a significant correlation with the diversity o f species 

growing in her flight path (Stanton, 1984).

When host plant abundance was held constant, females landing on a narrow range o f 

legumes made fewer errors than those visiting a broad range o f species. Although 

these results do not show that this decreased landing diversity resulted from a 

narrowing o f perception rather than preference, the patterns are very reminiscent o f 

experimental studies on search image formation in other animals (Stanton, 1984).

Such field studies have not been carried out using P. rapae, yet associative learning 

has been shown to occur. Indeed, Lewis (1986) has shown that P. rapae uses 

previous experience to increase its efficiency when nectar feeding and it would not be 

particularly surprising to find P. rapae using some form o f learning to locate host
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plants for oviposition. For P. rapae laboratory studies have demonstrated that 

associative learning o f colour with host plant phytochemicals does occur (Traynier, 

1984; 1986; 1987 and Traynier & Truscott, 1991). However, there appears to be 

differences between the learned stimuli. P. rapae has been shown to associate colour 

with host plant phytochemistry but an association with leaf shape or size has not been 

demonstrated (Traynier, 1987), unlike Batins philenor. Furthermore, the learning 

response does not occur with respect to negative stimuli in the form o f non-host 

phytochemicals (Traynier, 1987). These results contrast with studies involving B. 

philenor which found that the butterfly learnt to associate leaf shape with host plant 

phytochemistry (Allard & Papaj, 1996; Papaj, 1986; Rausher, 1978) while Stanton 

(1984) did not attempt to investigate the sensory information on which the apparent 

learning was based.

As noted previously leaf shape is not considered an important cue in the host plant 

finding behaviours o f P. rapae (Renwick & Radke, 1988); colour is deemed to be 

important to P. rapae. Judd & Borden (1991) suggest that, in general, the most 

important cue in host plant finding by phytophagous insects is leaf shape, they note 

two exceptions to this generalisation; namely, Hylapterous pruni (an aphid) 

(Moericke, 1969) and Delia Radi cum (Finch et al., 1983). Therefore, we may assume 

that in general terms the shape o f a brassica plant is less important than its colour 

which may be considered to be more distinctive than is normally the case.

Gould (1993) has suggested that a description o f classical conditioning (in 

behavioural psychology terms) is as follows “an unconditioned stimulus (US) triggers 

an unconditional response (UR); pairing o f the US with a conditioning stimulus (CS) 

leads to an association between the two, and, eventually, the ability o f the CS to 

trigger the UR” . The relationship can be expressed as:

US —>UR; CS + UR -»  UR; then CS ->  UR. (Gould, 1993).

The terms used in this description may not be familiar and to state them in ethological 

terms can be readily achieved. In this notation “unconditioned becomes innate”, the 

US is a sign stimulus (which is a key, innately recognised feature o f an object that 

helps to trigger a response), the UR is a is a fixed reaction pattern; the CS is a learned

Pa g e  114



gestalt (the collection o f cues an animal learns to use in identifying a meaningful 

stimulus) (Gould, 1993).

From the studies o f Traynier (1984; 1986), in terms o f P. rapae's learning in 

oviposition behaviour the US is the glucosinolates which elicit oviposition, the UR is 

oviposition itself and the CS is the learning o f colour on which the glucosinolates 

were placed. This may be represented diagramitically as:

US (glucosinolates) —> UR (oviposition) —» CS (colour) + US 
(glucosinolates) —» oviposition; then colour -»  oviposition.

In this chapter, two sets o f experiments are reported. In the first (section A), 

preliminary studies were carried out in which the effect o f prior experience on the 

subsequent ovipositional behaviour o f P. rapae was quantified in terms o f 

oviposition. In section B a more detailed analysis o f the behavioural decisions prior 

to oviposition was made in order to investigate which aspects o f the pre-ovipositional 

behaviour in P. rapae engages in were affected by the prior experience.

The rationale behind this approach is briefly outlined. Sequential analyses offer 

advantages in so far as important information can be retrieved from behavioural 

sequences o f individual insects, and standard statistical techniques can be applied to 

such sequences to provide answers to ethological or ecological questions (Hopkins el 

al., 1996). Therefore, the aim o f this study was to investigate the behavioural 

sequence o f oviposition displayed by P. rapae and to compare sequences from 

butterflies with differing prior experience in order to elucidate more clearly how 

associative learning affects ovipositional decision making by analysing sequences of 

behaviour.

The behavioural sequence o f oviposition displayed by P. rapae has been described. 

The process by which a female P. rapae searches, locates and accepts a host plant is a 

catenary chain (Courtney; 1986a, Kennedy, 1965, Renwick & Huang, 1994), stimuli 

evoke responses which lead on to subsequent cues in the chain. A chain o f behaviour 

prior to oviposition by P. rapae occurs. The approach flight is hardly discernible 

from normal flight behaviour. During drumming there is an alternate tapping o f the 

fore-legs on the leaf surface. Curving o f the abdomen often begins during drumming
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and both are usually accompanied by wing fluttering. The touching o f the leaf 

surface with the extended ovipositor occurs only after drumming and wing fluttering 

have stopped (Courtney, 1986a; Klijnstra, 1985). Therefore, the behaviours which I 

have chosen to study in more detail are the number o f landings made by females, the 

number o f times females drum on the leaf surface with their fore legs, the number o f 

flutter bouts and the number o f times females engage in curving o f their abdomens 

and the number o f eggs laid.

SECTION A 

METHODS

Butterflies

Captive bred P. rapae were housed at 22 °C with a light-dark photoperiod o f 18:6 

respectively. Adults had constant access to a solution o f 20 per cent (w/v) sucrose 

and to host plants o f each variety, for training, for oviposition. Larvae were reared on 

Spring Cabbage var. April. Upon pupation pupae were removed from the rearing 

cage and placed into a clean cage. Upon emergence both males and females were 

transferred into a cage containing the appropriate host plant (either Golden Acre 

Primo (II) or Greyhound or Nasturtium) for training8. Experiments were conducted 

when females were five days old.

The plants used in this experiment were Nasturtium, var. Salmon Pink; Spring 

Cabbage vars. Golden Acre Primo (II) and Greyhound.

Bio assay

Five Females were released into a cage (98 x 50 x 50 cm), containing Greyhound, 

Golden Acre Primo (II) and Salmon Pink. The position o f the plants within the cage 

was randomised, using random number tables. The plants were spaced evenly in a 

row along the centre o f the cage. After one hour the number o f eggs laid on each host 

plant type were recorded. The assay was conducted in a controlled environment room

8 Training in these experiments was simply allowing the females to oviposit on the host plant offered. The 
training period lasted five days, from the emergence of the butterfly until immediately prior to the experiments 
taking place.
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at 22 0 C and ambient relative humidity. Three trials o f this experiment were carried 

out for each post plant variety to which the females were trained.

RESULTS

Effect o f  prior experience on host plant selection

The data from these experiments were analysed using the GLIM command in Minitab 

for windows (release 11.1) with the variety o f plant the butterflies had prior 

experience o f and the variety on which eggs laid were used as factors, interactions 

between these factors were also used in the model. Prior to analysis with the Glim 

command the data was tested for normality using a Ryan-Joiner test and was found to 

be normally distributed (W-test for normality R: 0.97; P>0.05). A summary o f the 

analysis is given in Table 5.1.

As can be seen from Figure 5.1. and Table 5.1., the prior experience itself did not 

alter the number o f eggs laid by the females in the subsequent experimental assays (F- 

value 0.97; DF 2,26 P>0.05). However, the host plant variety in the assays did show 

significant differences in the number o f eggs laid on them (F-value 12.98; DF 2,26, 

P<0.001) (Table 5.1.). As can be seen from Figure 5.2., the two cabbage varieties 

received significantly more eggs than the nasturtium plants.

Additionally, there was a significant interaction between the number o f eggs laid on 

each host plant variety and the prior experience which those butterflies had received 

(F-value 4.19; DF 3,26 P<0.05 Table 6.1). Fig 5.3 a., b. & c. illustrates the effect o f 

the interaction between the number o f eggs laid on each host plant variety and the 

prior experience host that the females were given access to.

As can be seen butterflies with prior experience o f Golden Acre Primo (II) laid 

significantly more eggs on this variety than either Greyhound or Nasturtium.
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Figure 5.1. The effect o f the prior experience host variety on the mean 
number o f eggs laid per trial by P. rapae females. (Mean o f the three 
host plant varieties, five females per trial). Error bars indicate 
standard deviation o f the mean. N=9
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Figure 5.2. Mean number o f eggs laid on each host variety by P. 
rapae females, mean o f the three prior experience host plant varieties. 
Error bars indicate the standard deviation. Columns with different 
letters are significantly different from one another. N=9
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Figure 5.3a. The effect o f prior experience host plant variety on the 
mean number o f eggs laid on Golden Acre Primo (II) by five P. rapae 
females. Error bars indicate standard deviation. Columns with 
different letters are significantly different from one another. N=3

(II)
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Figure 5.3b. The effect o f prior experience host plant variety on the 
mean number o f eggs laid on Greyhound by five P. rapae females. 
Error bars indicate standard deviation. N=3
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Figure 5.3c. The effect o f prior experience host plant variety on the 
mean number o f eggs laid on Nasturtium by five P. rapae females. 
Error bars indicate standard deviation. N=3
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Table 5.1. Summary o f the Glim analysis for the number o f eggs laid 
by Pieris rapae females on each type o f host plant and the effect o f the 
female’s prior ovipositional experience.

General Linear Model

Factor Levels Values

Prior host 3 Golden Acre Primo (II) Greyhound Nasturtium

Plant 3 Golden Acre Primo (II) Greyhound Nasturtium

Analysis o f Variance for the number of eggs laid 

Source DF Seq. SS Adj. SS Adj. MS F P

Plant 2 1746.89 1746.89 873.44 12.98 0.001

Training 2 130.67 130.67 65.33 0.97 0.398

Plant*Training 4 1127.78 1127.78 281.94 4.19 0.014

Error 18 1211.33 1211.33 67.30

Total 26 4216.67

The percentage acceptance o f each host plant variety was calculated9. The results of 

these calculations are shown in Figure 5.4. As can be seen on average, the host plant 

to which the butterflies had been given prior experience received more eggs. The 

data from the acceptance o f these hosts in Chapter Four (prior experience host plant 

April) is also included to show the percentage acceptance o f these hosts for 

comparison.

Figure 6.4. The percentage acceptance o f each host plant variety for 
each o f the prior experience regimes to which P. rapae was exposed.

April
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SECTION B 

METHODS

Butterflies

See Section A, except that butterflies were not trained to Nasturtium which was not 

sued in these experiments.

Plants

The plants used in this experiment were cabbage vars. Golden Acre Primo (II) and 

Greyhound. Plants were grown in a green house with additional lighting (18 hours 

light 6 hours dark) and were 12 weeks old when the experiments were carried out.

Bioassay

A cage (98 x 50 x 50 cm), containing Greyhound and Golden Acre Primo (II) was set 

up. Lighting was provided by two full spectrum fluorescent tubes to mimic natural 

daylight, these were suspended above the cage. The position o f the plants within the 

cage was randomised. A female was released into the cage and its behaviour 

observed and was recorded for 20 minutes. The behaviours recorded were:

• The number o f  times it landed on a plant.

• The number o f times it drummed on the leaf surface.

• The number o f times it exhibited fluttering around the plant surface

• The number o f times it curved its abdomen whilst landed on a plant

• The number o f times it oviposited on a plant.

These behaviours were recorded using the observer software package (version 3, 

using an IBM compatible computer). Measurements were made for 20 females for 

each o f the host plant varieties used in the prior experience regimes.

Statistical Analyses

The data collected was analysed using the Glim command with Minitab for Windows 

(Release 11.2), with the factors prior experience regime (either Golden Acre Primo 

(II) or Greyhound) and the host plant variety on which the behaviours were carried
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out (either Golden Acre Primo (II) or Greyhound); the interaction between these two 

factors was also considered. Prior to analysis the data (from both varieties combined) 

were analysed using a Ryan-Joiner test to test for normality. The results o f these tests 

are shown in Table 5.2. The data for the number o f ovipositions was found to be 

normally distributed and this data was analysed untransformed. For the other 

behaviours the data was not normally distributed and was transformed prior to 

analysis using the following transformation Log10 (data+1). Following this 

transformation in all cases the data for the number o f behaviours exhibited a normal 

distribution (Table 5.2.).

Table 5.2. The results o f Ryan-Joiner tests for normality for the
number o f behaviours exhibited by P. rapae females.

Behavioural Raw data transformed data
category W -I'est for normality W-Test tor normality

R-value P R-value P
Alighting 0.97 A c C 0.99 >0.05
Drumming 0.98 <0.01 0.99 >0.05
Flutter Bouts 0.93 <0.01 0.99 >0.05
Curling 0.97 <0.01 0.99 >0.05
Ovipostion 0.99 >0.05

RESULTS

Table 5.3. shows the results o f the statistical analysis carried out on this data. For all 

behaviours, the host plant variety on which the behaviour occurred was not a 

significant variable on its own (Table 5.3. P>0.05). Similarly, the prior experience 

regime was also not a significant explanatory variable o f the observed variation in the 

data set (Table 5.3. P>0.05). However, the interaction term between these two 

explanatory variables was highly significant (P<0.001) for all behavioural categories 

(Table 5.3.). For all o f the behavioural categories recorded a higher number o f 

behaviours were recorded on the host plant variety to which the butterflies had been 

given prior experience o f than the alternative host (Figure 5.5.-5.9. inclusive) 

(PXJ.OOl).
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(Log 10 (data+1) made by female P. rapae butterflies. Error bars 
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Figure 5.7. Effect o f prior experience on the mean number o f flutter 
bouts (Log 10 (data+1) made by female P. rapae butterflies. Error bars 
indicate standard deviation and columns with different letters are 
significantly different from each other. N=40
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Figure 5.8. Effect o f prior experience on the mean number o f curling 
behaviours (Log 10 (data+1) made by female P. rapae butterflies. 
Error bars indicate standard deviation and columns with different 
letters are significantly different from each other. N=40
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Table 5.3. Summary of Glim analysis for the effect of prior experience 
and host plant variety on the number of behaviours carried out be P. 
rapae females.

General Linear Model

Factor Levels Values

Prior experience 2 Golden Acre Primo (II) Greyhound

Host plant variety 2 Golden Acre Primo (II) Greyhound

Analysis of Variance for Log10 (data +1) number of alightings

Source DF Seq. SS Adj. SS Adj. MS F P

Prior experience 1 0.00559 0.00559 0.00559 0.09 0.762

Host plant variety 1 0.00657 0.00657 0.00657 0.11 0.743

Prior experience*host plant variety 1 1.97063 1.97063 1.97063 32.54 0.001

Error 76 4.60267 4.60267 0.06056

Total 79 6.58546

Analysis of Variance for Log]0 (data +1) number of drummings

Source DF Seq. SS Adj. SS Adj. MS F P

Prior experience 1 0.00412 0.00412 0.00412 0.08 0.776

Host plant variety 1 0.00849 0.00849 0.00849 0.17 0.683

Prior experience*Host plant variety 1 1.18650 1.18650 1.18650 23.45 0.001

Error 76 3.84500 3.84500 0.05059

Total 79 5.04411

Analysis of Variance for Logio (data +1) number of curving behaviours

Source DF

Prior experience 1

Host plant variety 1

Prior experience*Host plant variety 1 

Error 76

Total 79

Seq. SS Adj. SS Adj. MS F P

0.01582 0.01582 0.01582 0.42 0.521

0.00342 0.00342 0.00342 0.09 0.765

0.69223 0.69223 0.69223 18.24 0.001

2.88468 2.88468 0.03796

3.59615

Analysis of Variance for Log10 (data +1) number of flutter bouts 

Source DF Seq. SS Adj. SS Adj. MS F P

Prior experience 1 0.01568 0.01568 0.01568 0.31 0.578

Host plant variety 1 0.00968 0.00968 0.00968 0.19 0.662

Prior experience*Host plant variety 1 1.03630 1.03630 1.03630 20.64 0.001

Error 76 3.81673 3.81673 0.05022

Total 79 4.87839
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Analysis o f Variance for number of ovipositions

Source

Prior experience

DF Seq. SS Adj. SS Adj. MS F P

1 0.2000 0.2000 0.2000 0.50 0.484

Host plant variety 1 0.4500 0.4500 0.4500 1.11 0.295

Prior experience*Host plant variety 1 8.4500 8.4500 8.4500 20.92 0.001

Error 76 30.7000 30.7000 0.4039 

79 39.8000Total

The behaviours after landing in the sequence can, by definition, only occur once a 

female has landed. Therefore, it is possible that for behaviours exhibited after 

landing, the results of the statistical analysis are an artefact. If, for example, the 

tendency to land more often upon the host plant to which the females had been given 

prior experience than the alternate host occurs, then the resulting other behaviours 

could well follow this trend. That is, the proportion of subsequent behaviours would 

merely reflect the pattern in the data for landing, there being no real difference in the 

frequency of the other behaviours on the two hosts. In order to test this hypothesis 

that prior experience affects only the choice of initial landing site and the significant 

differences in the number of subsequent behaviours are due to this effect alone, the 

analysis was repeated with the number of landings as a covariate. The results of this 

Glim analysis are shown in Table 5.4. The effect of the number of landings was a 

significant covariate for all of the subsequent behaviours (P<0.001, Table 5.4). hr 

addition, once the effect of the number of landings was considered (as a covariate), the 

interaction between the host plant variety and the prior experience regime was not 

found to be significant for any of the subsequent behaviours exhibited by P. rapae. 

Therefore, it would appear that the effects of prior experience in these experiments 

was limited to the choice of initial landing site.
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Table 5.4. Summary of Glim analysis for the effect of prior experience 
and host plant variety on the number of behaviours carried out be P. 
rapae females with log 10 (data+1) number of landings used as a 
covariate in the analysis.

General Linear Model

Factor Levels Values

Prior experience 2 Golden Acre Primo (II) Greyhound

Host plant variety 2 Golden Acre Primo (II) Greyhound

Analysis of Variance for log 10 (data+1) drumming

Source DF Seq. SS Adj. SS Adj. MS F P

Log jo (data+1) landing 1 3.12925 1.95302 1.95302 77.42 0.001

Prior experience 1 0.00016 0.00024 0.00024 0.01 0.923

Host plant variety 1 0.00132 0.00154 0.00154 0.06 0.805

Prior experience*Host plant variety 1 0.02140 0.02140 0.02140 0.85 0.360

Error 75 1.89198 1.89198 0.02523

Total 79 5.04411

Term Coef StDev T P

Constant -0.01984 0.03523 -0.56 0.575

Log 10 (data+1) landing 0.65140 0.07403 8.80 0.001

Analysis of Variance for log io (data+1) curving behaviours

Source DF Seq. SS Adj. SS Adj. MS F P

Log 10 (data+1) landing 1 1.64791 0.99542 0.99542 39.52 0.001

Prior experience 1 0.02665 0.02574 0.02574 1.02 0.315

Host plant variety 1 0.00984 0.00923 0.00923 0.37 0.547

Prior experience*Host plant variety 1 0.02248 0.02248 0.02248 0.89 0.348

Error 75 1.88926 1.88926 0.02519

Total 79 3.59614

Term Coef StDev T P

Constant -0.03663 0.03520 -1.04 0.302

Log 10 (data+1) landing 0.46505 0.07398 6.29 0.001
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Analysis o f Variance for log I0 (data+1) flutter bouts

Source DF Seq. SS Adj. SS Adj. MS F P

Log 10 (data+1) landing 1 1.92324 0.98425 0.98425 26.06 0.001

Prior experience 1 0.00720 0.00821 0.00821 0.22 0.642

Host plant variety 1 0.02021 0.01843 0.01843 0.49 0.487

Prior experience*Host plant variety 1 0.09525 0.09525 0.09525 2.52 0.116

Error 75 2.83248 2.83248 0.03777

Total 79 4.87839

Term Coef StDev T P

Constant -0.03619 0.04311 -0.84 0.404

Log 10 (data+1) landing 0.46243 0.09058 5.11 0.001

Analysis o f Variance for oviposit

Source DF Seq. SS Adj. SS Adj. MS F P

Log 10 (data+1) landing 1 14.6116 7.3505 7.3505 23.61 0.001

Prior experience 1 0.3123 0.2931 0.2931 0.94 0.335

Host plant variety 1 0.6280 0.5970 0.5970 1.92 0.170

Prior experience*Host plant variety 1 0.8986 0.8986 0.8986 2.89 0.093

Error 75 23.3495 23.3495 0.3113

Total 79 39.8000

Term Coef StDev T P

Constant -0.0694 0.1238 -0.56 0.577

Log 10 (data+1) landing 1.2637 0.2601 4.86 0.001

DISCUSSION

Rosenheim (1993) has argued that learning has been applied as a proximate 

explanation for behavioural variability within and among individuals o f an insect 

population. Apart from learning there are many other explanations o f this observed 

variability including:

• Genetic effects.

• Exogenous environmental effects.

•  Host-contact.

• Availability o f key resources.

• Abiotic factors.
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•  Density o f conspecifics.

• Endogenous Environmental effects.

•  Age.

• Egg-load.

• Size.

• Maternal effects.

• Migration and diapause.

• Nutritional status.

• Other physiological factors.

• Mixed evolutionary stable strategies.

The random assignment o f treatments to experimental units in manipulative 

experiments controls for variation in many o f these variables and prevents them 

confounding the analysis (Rosenheim, 1993). Genetic effects are unlikely to 

confound the analysis o f these particular experiments as the population used has a 

high degree o f inbreeding. The culture used in these experiments was first started in 

the 1960’s and has been continuously reared since then. Under these conditions I 

would expect that genetic variability will be reduced greatly, o f course as Rosenheim 

(1993) points out inbreeding reduces genetic variability but does not eliminate it 

completely.

However, perhaps the most important factor which may confound learning effects in 

subsequent analysis are egg-load effects (discussed by Rosenheim, 1993). A pre­

requisite o f the learning experimental design is that females are given differing 

ovipositional histories and then their subsequent ovipositional choices are monitored. 

Changes in oviposition are deemed to be due to learning effects. However, 

Rosenheim (1993) points out that there are at least three ways in which individuals 

with different ovipositional histories may differ from one another. These include; 

learning-based changes to the nervous system, perception o f the density and quality o f 

hosts and egg-load effects. Rosenheim (1993) asserts that “perceived host availability 

and egg-load may have profound influences on virtually all aspects o f insect foraging
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decisions” . The importance o f these factors is “ likely to depend upon the degree to 

which different conditioning treatments generate different levels o f ovipositional 

activity” . The importance o f host quality on oviposition activity is known to be 

important (Hopkins & Ekbom, 1996). These authors showed that the female pollen 

beetle (Meligethes aeneus) exposed to high quality hosts had a higher egg-load than 

females exposed to lower quality hosts. Clearly if such an effect occurred in these 

experiments then attributing the results obtained to learning induced changes would 

be misleading and the analysis o f the data confounded. However, the fact that the 

training regime itself did not exert a significant effect on the number o f eggs laid in 

the choice tests (Section A) and was also not a significant factor in the number o f 

behaviours recorded (Section B) lessens this risk; i.e. it is more likely that the 

observed differences in behaviour are due to learning induced changes. Furthermore, 

Hopkins & Ekbom (1996) argue that the life history o f the pollen beetle allows this 

particular strategy (to allow fewer eggs to develop in the presence o f lesser quality 

hosts) to be beneficial. Specifically, they argue that this species has a relatively low 

risk o f mortality in the reproductive female as well as a long oviposition period. 

Consequently, the benefits o f delaying a commitment to reproduce may be marked. 

However, for P. rapae such arguments are reversed, the average longevity o f females 

is 20 days (Richards, 1940) and the two major factors limiting butterfly populations 

are predation and the failure o f the female to lay her full complement o f eggs 

(Dempster, 1983). Therefore, it appears likely that in these experiments that the 

influence o f egg-load on these results may be minimal. However, this is not to state 

categorically that such an effect is not at work. I have perhaps laboured the point that 

learning experiments can be confounded and would suggest that although the 

experimental design employed here was not perfect (for example, the number o f eggs 

laid during conditioning were not counted and the size o f the female was ignored) the 

interpretation that the changes in host acceptance between the treatments are due to 

effects o f the female’s prior experience are valid. Therefore, it appears that changes 

in the host plant acceptance behaviour may be attributed to changes induced by 

associative learning.

The results from section A would indicate that the degree to which host acceptance 

was altered by prior experience is influenced by the oviposition stimulant index o f the
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host plants used (data from Chapter Four), the relationship between host acceptance 

and oviposition stimulant index is illustrated in Figure 5.10. Traynier & Truscott 

(1991) found that the degree o f associative learning was higher when glucobrassicin 

was used as compared to sinigrin for the unconditioned stimuli. Work by Renwick el 

al. (1992) has shown that the activity o f sinigrin was lower than glucobrassicin, even 

at concentrations higher than those found in plants (Renwick et al., 1992). 

Therefore, the findings o f Traynier & Truscott (1991) that the strength o f the 

association between the learned stimuli (colour) and the unconditioned stimuli 

(glucosinolate) may be confirmed in plants.

Figure 5.10. The relationship between the ovipositional stimulant 
index o f the three host plants used in the learning experiments and the 
percentage host acceptance o f those plants.

Ovipostion stimulant index

The relationship appears to be non-linear. A regression was carried out using the OSI 

data from Chapter Four and the percentage host acceptance data (Log]0 transformed); 

the resulting regression was statistically significant (ANOVA F-value 705.7; DF=1,2 

P>0.05; R-sq. 0.998) (Table 6.5) and the regression equation was Log 10 (% Flost 

acceptance)= 0.12*OSI + 0.7

Table 6.5 Summary o f regression between oviposition stimulant index 
and Log10 percentage host acceptance.

d T ~ S'S MS h sign ificance t-
degression 1 0.3bS U.353 706.6/1 0.024
Residuai 1 0.001 0.001
Total 2 0.354
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These results are indicative o f the notion that the strength o f the learned relationship 

is adaptive, in that it allows the female to search for higher quality hosts.

Previous work with P. rapae has shown that associative learning occurs with colour 

and host plant chemicals, specifically glucosinolates (Traynier, 1979; Traynier, 1984; 

Traynier, 1986; Traynier & Truscott, 1991). However, the present study did not 

attempt to elucidate which factors were learnt and therefore, has not advanced our 

knowledge o f which cues can be learnt in association with host plant chemicals by P. 

rapae. It should be borne in mind that in the Lepidoptera reports exist o f associative 

learning o f odour (Landolt 8c Molina, 1996) and that the learning o f odour cues are 

common in parasitoids (Lewis & Tumlinson, 1988; see Turlings et al., 1993 for a 

review).

In a study o f the blue butterfly (Glauchopsyche lygdamus, Lycaenidae) it was 

reported that in field experiments once the butterfly had landed it would be more 

likely to lay an egg on a host plant species with which it had recent experience o f than 

one which it had not had recent experience o f (Carey, 1992 cited in Carey, 1994 and 

Bernays & Wcislo, 1994). This obviously contrasts with the results o f these 

experiments in which the only effect o f prior experience was to increase the 

probability o f landing on a host plant o f which the butterfly had prior experience. A 

number o f possibilities may explain this discrepancy, one o f which is that P. rapae 

differs in its behaviour from that o f G. lygdamus. However, it may be that because 

the two cabbage varieties were similar in their acceptabilities the butterflies did not 

discriminate after landing. In the repeated analysis in which the number o f landings 

was used as a covariate the effect o f the interaction between prior experience and host 

plant variety on oviposition was low (although not significant P<0.1), and if more 

insects were used, this effect may become significant statistically. However, it is also 

important to remember that a lack o f significance is best interpreted as an absence o f 

evidence rather than as absolute proof that the observed effect does not occur. 

Similarly, there are significant differences in the studies which are important. The 

present study was carried out in the laboratory which may have significant 

repercussions for the conclusions if they are transferred to the “field” without caution.
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In my opinion, the complexity o f vegetational communities and the time limitations 

facing insects for oviposition (Dempster, 1983), conditioning o f perception allows an 

insect to filter the stimuli emanating from a host, for example colour (Traynier,

1984), shape (Papaj, 1986; Rausher, 1978) and olfactory cues (Lewis & Tumlinson, 

1988), to improve future searching efficiency leading to a higher rate o f host 

encounters. The lack o f field studies for P. rapae in this area not only limits our 

understanding o f the host plant location behaviour o f P. rapae but also our 

understanding o f the role o f an individual's history in influencing its 'decisions’ to 

accept or reject host plants encountered.

CONCLUSIONS

The results o f these experiments have clearly shown that the prior experience o f a 

female does indeed affect subsequent ovipositional behaviour. Furthermore, the 

quality o f the host (in terms o f its stimulatory chemicals) o f which the butterflies 

have had prior experience would appear to have a large influence on the subsequent 

acceptability o f the host.

Moreover, the primary behaviour affected appears to be the choice o f landing site and 

from what is known o f the cues learned in P. rapae it appears that prior experience o f 

a host allows the females to search preferentially for that host in subsequent search 

bouts using plant colour.
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Chapter Six 
Development of an artificial life 

model of insect ovipositional behaviour 
based on P. rapae

INTRODUCTION

The behavioural mechanisms o f host plant selection in phytophagous insects have 

received much attention, theoretical models (either verbal or mathematical) and the 

simulation o f  specific species host plant utilisation patterns have been developed, for 

example, Anlhonomus grcmdis (the boll weevil) (Cate, Curry & Feldman, 1979; Jones 

et al., 1975). However, the actual behavioural chain o f events prior to host plant 

acceptance has not been simulated. Therefore, the aim o f this work is to develop a 

model simulating the behavioural decisions made by P. rapae, in the process o f 

finding and accepting host plants, with the net result o f producing egg distributions.

In this chapter, the modelling approach is outlined and the rationale behind the 

approach explained. As some o f the techniques may not be familiar, brief reviews 

and an introduction o f the use o f Individual based modelling (IBM), Object orientated 

programming (OOP) and the use o f artificial intelligence (Al) and Artificial life 

(Alife) in an ecological context are included (Section A). Following this outline o f 

the techniques to be employed, the model is outlined in Section B.

SECTION A 

INTRODUCTION

Models o f host plant utilisation have been developed previously, including the 

conceptualised models o f Jaenike (1978) and Courtney, Chen & Gardner (1989) 

which address theoretical aspects o f host plant acceptance. Theoretical simulations 

have addressed the optimal strategies of patch use (Ives, 1989); clutch size (Parker & 

Courtney, 1984) and search behaviour (Cain, 1985). The egg laying pattern o f 

specific species has also been simulated; for example P. rapae Jones (1977).
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The ovipositional behaviour o f P. rapae is reasonably well understood, information is 

available on its general biology and ecology, ovipositional preferences for plants, and 

factors controlling egg distributions. The process by which a female P. rapae 

searches, locates and accepts, i.e. oviposits on a host plant is a catenary chain 

(Courtney, 1986a; Kennedy, 1965; Thorstein, 1960), stimuli evoke responses which 

lead on to subsequent cues in the chain.

PREVIOUS MODELS OF INSECT BEHAVIOUR

This section briefly outlines previous simulations o f insect behaviour. The discussion 

of previous models here makes little distinction between insect herbivores and 

parasitoids, since the models discussed are theoretical and as such the actual decision 

making processes may be thought o f as being analogous. This analogy arises as a 

consequence o f the fact that females o f both type o f insects are utilising similar cues 

to locate hosts and the survival o f the offspring are dependant upon the same type o f 

factors.

Patterns o f insect oviposition comprise three components: where, when and how 

many eggs are laid in a single bout (Skinner, 1985). The number o f eggs laid by an 

individual on a host depends upon two factors, reproductive effort and how resources 

are divided between offspring. Lack (1947) (cited in Lessells, 1991) proposed a 

hypothesis for the evolution o f clutch size in birds. He proposed that as brood size 

increased, each o f the offspring would receive less food and therefore, would survive 

less well. As a result, an intermediate number o f offspring may produce the highest 

number o f survivors, with the optimal clutch size being determined by the trade off 

which exists between the number and fitness o f offspring (Lessells, 1991).

The Lack Clutch Size (the clutch size producing the highest number o f surviving 

offspring) can measure the value o f a host, as larger clutches should be laid on better 

host’s. The Lack Clutch Size is determined by the relationship between the fitness a 

female derives from laying a number o f eggs on a host with a resource value 

(measured in terms o f the hosts quality in terms o f the number o f ‘fit’ progeny the 

host can support). Competition between the progeny affects the Lack Clutch Size. 

Less intense competition leads to larger clutches (for equivalent hosts) (Skinner,

1985). For example, when larvae compete in scramble competition, those which do
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not complete development because the host is depleted will either be forced to 

migrate to an alternative host or die. Therefore, when no alternate host is available or 

the risk o f predation during the migration o f the larva is high, the mother will benefit 

by not laying more eggs than the host can support.

Patterns o f resource use by phytophagous insects vary, some species lay many eggs 

on a single host, while others distribute their eggs more evenly. A clumped 

distribution can cause food competition among the offspring. In order for the larvae 

to avoid starvation, many o f them will leave the original host and migrate. It is 

generally accepted that this migration is dangerous to the insect, due to the risk o f 

predation and the possibility that no other suitable host plants are available (Sjerps, 

Haccou, Meelis & van der Meijden, 1993). Much o f the theory associated with 

patterns o f resource use has been developed using optimal foraging theory as a 

framework either explicitly in the case o f most foraging models here or with the 

underlying concept that foraging behaviour is adaptive. The rational behind this 

approach relies on the assumption that foraging behaviour is optimised over 

evolutionary time. That is, the costs and benefits associated with alternative patterns 

of resource exploitation affect fitness. Therefore, animals may perceive and act upon 

cues correlated with the energy content o f a food and an animal will forage in such a 

way as to maximise fitness (Mitchell, 1981). However, the suitability o f a plant for 

larval development is a function o f many variables, including its chemical and 

physical properties, micro habitat and degree o f infestation. In addition, host plant 

suitability is subject to intra and inter-specific variations (Jaenike, 1978).

Jaenike (1978) formulated a model specifically aimed at investigating the optimal 

strategy for a phytophagous insect’s ovipositional behaviour. He argues that plants 

should be accepted in order o f decreasing suitability, with the specific time being 

determined by the suitability o f alternative hosts and the probability o f there being 

encountered. A given plant species should be accepted sooner if the probability per 

unit time o f finding that host is small. When the time available for search is short the 

discrimination phase before a host is accepted should also show a commensurate 

decrease. However, the abundance o f a plant species does affect when other species
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should be accepted; the more common it is, the greater the time for finding that host 

must be before less suitable plants are accepted by the insect (Jaenike, 1978).

Predictions from models o f the optimal clutch size o f an insect suggest that for a 

constant time spent searching, more eggs should be laid on better hosts. For hosts of 

equivalent value, the number o f eggs laid by a female should increase with increasing 

time between hosts and even if search time is infinite, there is a maximum number o f 

eggs a female should lay on a host; this is the Lack Clutch Size. For a super-parasite, 

clutch size declines with increasing time between the oviposition events; the Lack 

Clutch Size o f a super-parasite is lower than that o f the primary-parasite. However, 

the clutch size o f the secondary parasite is affected by the relative search times o f 

each parasite, the first parasites clutch size and on the time between the two 

oviposition events (Skinner, 1985).

The effect o f the probability o f encountering a host plant on the insect’s clutch size 

has been investigated (Mangel, 1987). A high probability o f encounter with a host 

plant which has a large optimum clutch size, leads to decreases in the frequency o f 

large clutches. This can be interpreted as a ‘risk spreading mechanism’. Therefore, 

when hosts which can support a large clutch size are plentiful it is advantageous to 

deposit fewer eggs per host. Similarly, host deprivation increases the number o f  large 

clutches and older insects should be less selective about where they lay their eggs 

(Mangel, 1987).

The influence o f mortality and limited egg number showed the range o f host species 

utilised for oviposition becomes narrower in richer environments with high host 

frequency, and the decision to utilise a host is independent o f the abundance o f the 

host concerned and is instead determined by the abundance o f the host with higher 

profitability. Host range is also expected to widen as egg-load increases. Conversely, 

when the egg-load is very small only the most profitable hosts are utilised (Iwasa, 

Suziki & Matsuda, 1984).

A large host plant should favour larger clutches and clutch size should decline 

throughout the insect’s life, especially as egg-load decreases. In addition, clutch size 

should increase with increased search time for new host plants i.e. females should 

dedicate a higher number o f eggs to a resource when it is harder to find. When the
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probability o f two separate females utilising the same host for oviposition is low, the 

first female should lay her normal clutch size. However, as the frequency o f double 

oviposition events increase. The first female to oviposit can gain an advantage by 

lowering her clutch size because o f the adverse affects o f the second clutch so that the 

total number o f eggs per host stays virtually constant. However, when the frequency 

of double ovipositions is low, there is a slight increase in the total number o f eggs 

(Parker & Courtney, 1984).

The effect o f the risk o f adult mortality on clutch size was also investigated by Parker 

& Courtney (1984) and they suggested that if the probability o f surviving to lay a 

second clutch is low, more eggs should be laid at clutch one, even though these eggs 

may do less well due to sibling competition. Furthermore, when egg-load is low and 

the risk is high all available eggs should be laid in the first clutch (Parker & Courtney, 

1984).

The models considered so far have dealt with the situation in which a forager utilises 

only one patch and when more than one patch is visited, the insect has to make two 

decisions. How many eggs to lay in each patch and how to distribute these eggs 

within a patch (Sjerps et al., 1993). Weisser & Houston (1993) investigated the 

optimal behaviours o f a solitary parasitoid wasp foraging in a patchy environment 

that has been previously exploited by either conspecific or heterospecific females. 

The model predicted the number o f patches visited and the number o f eggs laid 

decrease as travel time increases between patches, and the number o f previously 

parasitised hosts accepted increases with increasing travel time. Similarly, as the 

number o f unparasitised hosts in a patch decreases, the wasps accept more parasitised 

hosts for oviposition (Weisser & Houston, 1993).

The effect o f age was also considered by these authors and for a young wasp the 

optimal behaviour is to parasitise unparasitised hosts until their numbers drop to one 

and then move to a new patch. However, as the end o f the insect’s life approaches 

parasitoids adjust their policy to the time constraint and exploit the last patch visited 

in a different way. When the time left is too short to parasitise unparasitised hosts in 

a further patch, parasitoids stay in the last patch, but also accept non-self-parasitised 

hosts if there are only one or two unparasitised hosts left in the patch. Therefore,
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towards the end o f their life parasitoids expand their host range during a patch visit. 

A similar observation is made with respect to travel mortality. As travel mortality 

increased, wasps spend more time in the patch and accept more non-self-parasitised 

hosts for ovipositions (Weisser & Houston, 1993).

Sjerps & Haccou (1993) have investigated the ovipositional Evolutionary Stable 

Strategy (ESS) o f two females laying eggs on the same host and found the ESS is 

dependent on the ‘knowledge’ o f females. They found that when a female is 

constrained (i.e. cannot detect the presence o f other clutches) the optimal clutch size 

for both females is equal and can be larger or smaller depending upon the fitness gain 

per egg. For knowledgeable females, (i.e. those which can detect the presence o f 

other eggs, but cannot assess the clutch size), there are two optimal clutch sizes, one 

for the first female to oviposit and another for the second female. Depending on the 

probability o f the two females utilising the same host plant the optimal clutch size 

may increase or decrease and the second female may lay more or less eggs than the 

first female. If  the probability o f the double oviposition is one, then the ESS is the 

same as for a constrained female. For an omniscient female, (i.e. a female which can 

detect the presence o f other eggs and assess the size o f the clutch), the first female, 

knowing that the second female can assess her clutch size, can use this information to 

manipulate oviposition by the second female. In this situation, an omniscient female 

will either increase or decrease her clutch size depending on the fitness curve. 

Similarly, for an omniscient female laying her eggs second she may either decrease or 

increase her clutch size depending on the fitness curve (Sjerps & Haccou, 1993).

Similarly, Ives (1989) has developed an optimality model o f clutch size for when 

more than one female utilises a patch. In this model, females which are 

knowledgeable that is can assess accurately whether eggs have been previously laid 

on a patch and adjust their clutch sizes accordingly, omniscient in Sjerps & Haccou, 

1993 terminology. The evolutionary stable clutch sizes for both the first and second 

female increase as the average number o f females ovipositing per patch increases. 

However, the decision o f the second female to lay more or less eggs than the first 

depends on the magnitudes o f the first clutch advantage and searching time. When 

the searching time is short in comparison to handling time, patches are easy to find
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and consequently a second female is likely to benefit from withholding some o f her 

eggs, because she can easily find an empty patch on which to lay them. Therefore, 

the clutch size o f the second female decreases relative to the first when search time is 

short. Similarly, when there is a first clutch advantage the second female ovipositing 

on a patch incurs a greater cost and withholding eggs for an empty patch becomes 

more profitable. In addition, it is always optimal for the second female to lay at least 

one egg, provided that the fitness she gains through laying that egg is greater than the 

expected rate o f fitness she would gain by searching for another patch (Ives, 1989).

Rosenheim & Mangel (1994) have developed models which simulate the effect o f 

imperfect host discrimination on patch leaving rules. In the simplest general model 

developed, they show that parasitoids will leave a patch when the cost o f leaving is 

less than the product o f the level o f parasitism in the current patch and the host 

discrimination error rate. Therefore, leaving is favoured by low costs o f travelling to 

a new patch, high error rates (frequent oviposition “mistakes”) when discriminating 

previously self-parasitised hosts, and high levels o f parasitism in the currently 

occupied patch and leaving is never favoured when the error rate is zero, perfect host 

discrimination (Rosenheim & Mangel, 1994).

The preceding section has put forward the theory associated with the behavioural 

strategies employed by parasitoids or herbivorous insects. Many o f the models 

developed in order to provide useful insights must by definition remain general and 

this leads to problems in so far as the models cannot be tested. However, Driesson, 

Bernstein, van Alphen & Kacelnik (1995) have experimentally tested the model o f 

parasitoid foraging developed by Waage (1979). In this model the foraging 

behaviour o f the parasitoid Nemeritis canescetis was investigated. Driesson el al. 

(1995) found that two o f the components proposed by Waage (1979) are confirmed:-

• The responsiveness to the patch edge increases with the concentration o f contact 

kairomone, which is a function o f host density.

• The probability per unit time o f ending the patch visit increases as time in the 

patch proceeds.
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• The third o f W aage’s (1979) conclusions was not supported in this experiment as 

each successive oviposition caused a decrease in patch residence time. Whereas, 

Waage (1979) reported that oviposition caused an increase in patch residence time.

In an experimental study, Volkl & Mackauer (1990) investigated the ovipositional 

strategy o f the aphid parasitoid Ephedrus californicus. They found that females tend 

to super-parasitise at high parasitoid-to-host ratios or if the parasitoid lacked prior 

experience, i.e. have been deprived o f hosts. In addition, after eclosion, searching 

activity increases with egg-load and peaked in females at 4-5 days old and decreased 

in older females. In E. californicus conspecific super-parasitism varied with egg- 

load, which is dependent on female age. When unparasitised ‘high quality’ hosts 

were not available, wasps with a high egg-load readily accepted conspecific- 

parasitised ‘low quality’ hosts, provided the interval between the first and second 

oviposition was short. However, when egg-load was low or when unparasitised hosts 

were available, or the interval between the first and second ovipositions was long, 

wasps avoided super-parasitism. These results are clearly in line with the theoretical 

concepts outlined above.

MODELLING TECHNIQUES

Individual based modelling

Ecology deals with three levels o f the biological hierarchy, the organism, population 

o f organisms and the communities o f populations. Ecology is confronted with 

uniqueness via the number o f species and the countless numbers o f genetically unique 

individuals all o f which live and interact in a varied and ever changing world (Begon, 

Harper & Townsend, 1996). One o f the advantages o f individual based models 

(IBM) are that they may integrate different levels o f the traditional hierarchy o f 

ecological organisation (Huston, DeAngelis & Post, 1988). In order to try and better 

understand the interactions o f species and to accommodate the biological realities o f 

ecosystems the study o f systems at the individual level has been developed. The 

individual approach attempts to derive the properties o f an ecological system using 

the properties o f the individuals constituting that system and as such is essentially 

reductionism (Lomnicki, 1992).
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The use o f the individual approach in ecology seems obvious as individual organisms 

are the fundamental units o f ecosystems and underpin all aspects o f ecology, 

including ecosystem function and all species interactions. Additionally, individuals 

are easier to define than a species or ecosystem and individuals are the units of 

selection (Judson, 1994).

When building models in the ecological domain, the ‘real world’ has been drastically 

simplified to allow mathematical analysis. There is some justification to searching 

for simple explanations and including every component o f a system in a model would 

lead to obscurity (Laval, 1995). However, the application o f mathematical modelling 

requires simplifying assumptions which are not compatible with the reality o f an 

ecological system (DeAngelis & Gross, 1992).

A major conceptual shift in ecological simulation is currently occurring. Many 

Ecologists are moving away from models governed by general equations and towards 

those which ‘create’ each individual in an ecological system in order to generate the 

dynamics o f that system as a whole. The use o f IBMs in recent years has increased 

dramatically, but Judson (1994) cites an example showing that this type o f model has 

appeared sporadically for at least 40 years in the ecological literature. This paradigm 

shift has two main causal agents one o f which is increase in the power o f computers 

and software enabling meaningful IBMs to be developed and run (Judson, 1994), the 

other is the acknowledgement by ecologists that the two assumptions underlying 

traditional models are flawed:

•  Mathematical models often combine many individual organisms and assume that 

they can be described by a single variable.

•  Each individual is assumed to have an equal effect on every other individual.

These two assumptions deny each individual is different, with behaviours and 

physiology resulting from a unique combination o f genetic and environmental 

influences. Additionally, interactions between individuals are inherently local. An 

organism is affected primarily by the organisms with which it comes into contact 

(Huston ei al., 1988).
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Uchmanski & Grimm (1996) have argued that there are four appropriate criteria for 

classifying ecological models, namely:

•  The degree to which the complexity o f the individual’s life cycle is reflected in the 

model.

•  Whether the dynamics o f the resources (for example, food, space or habitat 

quality) are explicitly taken into account.

•  The use o f  real or natural numbers in representing the size o f a population.

•  The extent to which the variability o f individuals o f the same age is considered.

Therefore, genuine IBMs are those models which “describe a population made up of 

individuals that may differ from one another and take into account the complexity o f 

the individual’s life cycle, describe changes in the numbers o f individuals rather than 

in the population density and also take resource dynamics explicitly into account” 

(Unchmanski & Grimm, 1996).

There are a number o f advantages o f IBMs over traditional models the biggest o f 

which may simply be the conceptual shift from mathematical descriptions o f 

ecological processes and ecosystems to rule based specifications o f the behaviour o f 

individuals. Despite their apparent complexity IBMs are often conceptually simpler 

than more traditional models as they require fewer unreasonable assumptions. Their 

simplicity lies in the way behaviour is controlled; typically a few rules govern the 

interactions o f individuals. These rules depend upon the physiological and 

behavioural characteristics o f individual organisms and cannot be easily incorporated 

into large-scale models (Huston et al., 1988).

Artificial intelligence in ecology

A primary focus o f Artificial Intelligence (Al) research has been to develop ways to 

store and utilise information in a computer which mimics the processes in the human 

mind. A relatively small step is required to apply these techniques to the problems o f 

animal reasoning and behaviour (Stone, 1992). Al in recent years has moved from 

the laboratory to the marketplace (Loehle, 1987) and the prodigious leaps in the 

development o f hardware and software in computing have made Al methodologies
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available to non-specialists. This is clearly seen in the agricultural and ecological 

spheres as expert or knowledge based systems. The utilisation o f expert systems has 

grown and since the first report in the early 1980’s, over 300 expert systems have 

been developed, virtually all o f which are decision support tools (Edwards-Jones,

1993). Despite the success o f expert systems as decision support aids, little research 

has been published on the application o f Al techniques to ecological modelling. One 

area in which Al techniques have been successfully applied to ecological modelling is 

to simplify and improve the model building stage (Muetzelfeldt Robertson, Bundy & 

Uschold, 1989; Robertson et al. , 1991).

Artificial Life

Artificial Life (Alife) is a relatively new field which employs a synthetic approach to 

study life as it could be. Life is viewed not as a property o f the matter which is 

organised in a particular way but rather as a property o f the organisation o f matter 

(Langton, 1989).

Biology has largely concerned itself with the material basis o f life starting at the top 

and treating a living organism as a complex biochemical machine. The study o f such 

life has then worked its way down through the traditional biological hierarchy o f 

organism, organ, cell etc. Alife on the other hand treats an organism as a large 

population o f simple machines and as such starts from the bottom, synthetically 

working its way up constructing aggregates o f simple rule-governed objects which 

interact with another non-linearly in the support o f life-like global dynamics 

(Langton, 1989). Synthesis has been defined as “rather than start with the behaviour 

o f interest and attempting to analyse it into its constituent parts, we start with the 

constituent parts and put them together in the attempt to synthesise the behaviour o f 

interest” (Langton, 1989).

Alife is something o f an umbrella term and covers three principal approaches to 

studying artificial ecologies (Ray, 1994):

•  Hardware, for example, robotics and nanotechnology.

•  Software, for example replicating and evolving programs. The software approach 

can be further divided into:
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•  Alife simulations representing an advance in biological modelling.

•  Alife instantiations o f life processes. These are applications in which the 

data in the computer are not representative o f anything, but instead are 

considered to be “alive” and self-replicating in the computers memory, for 

example, Tierra (Ray, 1991; 1994).

•  Wetware, for example replicating and evolving molecules.

In this chapter I will only consider software approaches o f Alife.

In the traditional approach to modelling ecological phenomena, systems o f 

differential equations express the relationships between entities (for example, genes, 

individuals or species) in populations or communities. In Alife the bottom-up 

approach creates a population o f data structures where each instance o f the data 

structure corresponds to an entity. Rules define how individual structures interact 

with one another and their environment. Populations o f these structures interact 

according to the local rules, and the global behaviour o f the system emerges from 

these interactions (Ray, 1994). In effect, the entities created are autonomous, in so far 

as, interactions between them are dependent upon the state o f the entity and the 

simple rules specified. The medium of the interactions between entities are messages, 

which are passed between them allowing them to identify themselves and pass data. 

The information received is then processed according to the rules previously 

specified.

The Alife approach, therefore, tries to create entities in the simulation which are 

direct representations o f the entities in the real system. This approach relies heavily 

on the concepts o f Object Orientated Programming techniques (see page 149, for a 

brief review). This process o f representation allows the simulation to be developed 

more easily as the degree o f abstraction is lowered, since the entities used are 

analogous to their counterparts in the physical world. This type o f representation in 

simulation may be o f immense importance in allowing biologists, to understand more 

easily what is occurring during a simulation.

Artificial organisms which exhibit life-like processes may serve as explanatory 

models o f corresponding processes in naturally arising biological systems.
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Consideration o f the capabilities and characteristics o f artificial organisms can also to 

the development o f a broad theoretical biology (Laing, 1989).

•  Approaches to Alife can be classified as either strong or weak (Kawata & 

Toquenaga, 1994).

•  Strong Alife attempts to create life and search for the nature o f life which may or 

may not be found on earth.

•  Weak Alife attempts to simulate the life o f known existing organisms in order to 

better understand the processes o f real organisms.

The contrast between instantiation and simulation, lies in the fact that in simulations 

the data structures are representations o f biological organisms. In instantiation the 

data structures are not a representation o f an entity, they are considered to be ‘living’ 

forms in their own right and not a model o f any natural life form. These data 

structures may be considered to form the basis o f a comparative biology. Therefore, 

the aim o f the instantiation approach is to introduce the natural form and processes of 

life into an artificial medium resulting in an Alife form which is not carbon based 

(Ray, 1994). The instantiation approach is an example o f strong Alife, examples 

include Tierra (Ray, 1991; 1994) and the Computer Zoo (Skipper, 1992).

Alife attempts to study natural life by capturing the essence o f the components o f a 

living system, by endowing a collection o f artificial components with similar 

behavioural repertoires to real organisms. The aggregated artificial components 

should exhibit the same dynamic behaviour as the natural system. This is achieved by 

identifying behavioural primitives, rules governing their behaviour in response to 

local conditions are specified and the primitive behaviours are organised in a similar 

manner to their natural counterparts (Langton, 1989).

Therefore, the essential features o f an Alife model according to Langton (1989) are:

•  They consist o f simple programs or specifications.

•  No single program directs all o f the other programs.

•  Each program details the way in which a simple entity reacts to local situations in 

its environment, including other entities.
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•  No rules anywhere in the system dictate global behaviour.

•  Therefore, any behaviour at levels higher than the individual programs is 

emergent.

The best examples o f Alife programmes are those which simulate some aspects o f 

group behaviour such as flocking birds (Toquenaga, Kajitani & Hoshino, 1994); 

social insects (ants, Collins & Jefferson, 1991); fish (Terzopoulos, Tu & Grzeszczuk, 

1994) and for a general approach to group behaviour (W erner & Dyer, 1993; Mataric, 

1996). However, they have also been used to study food webs (Lindgren & Nordahl,

1994), which suggests that they are not limited to applications involving animal 

behaviour.

It is likely in the short term at least that weak Alife will become o f greater interest to 

biologists. A particular area o f interest may be in the development o f simulation tools 

for studying animal behaviour. These tools include Petworld (Coderre, 1989); RAM 

(Taylor et a l ,  1989); PolyWorld (Yaeger, 1994); Brainworks (Travers, 1989) and 

LAGER (Olson & Sequeira, 1995). The most sophisticated and flexible o f these 

simulation tools is the SWARM simulation system which has been developed at the 

Santa Fe Institute (USA). It was developed as a general purpose simulation tool for 

implementing Alife models and IBMs.

The relationship between IB M  and Alife simulations.

In a broad sense some IBMs can be regarded as Alife as they adopt the same bottom 

up approach. However, an IBM can only be regarded as an Alife implementation if it 

does not assume any global rules (Kawata & Toquenaga, 1994).

IBM and Alife are closely related, however, Alife researchers consider the essence o f 

life to be emergent and is, therefore, required to achieve Alife. However, Kawata & 

Toquenaga (1994) have suggested that the search for life by artificial systems 

including IBM can be regarded as Alife. Therefore, there is a close relationship 

between Alife and IBMs, and as by definition an Alife simulation must be an IBM it 

is appropriate to consider Alife implementations in ecology as a subgroup o f the 

wider IBM implementation as shown in Figure 6.1
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Figure 6.1. A Venn diagram illustrating the inter-relationship between 
Alife and IBM in biology.

As Alife and IBM are closely related they also share some o f the same limitations. 

These limitations include the following:

•  Mathematical analysis o f a system is a more rigorous approach than Alife or IBM, 

and assuming the model can be described by formulae and solved analytically. 

The predictions arising are likely to be more accurate. However, the limitations o f 

such mathematical analysis ignores the fact that the promise o f Alife is that 

simulations can be used to test ‘our understanding’ (that is the collective 

understanding o f the scientific community) o f the process o f interest.

•  The validity o f the program controlling the computer simulation can be difficult to 

check. Similarly, it can be difficult to tell why the observed pattern appeared.

•  For Alife simulation especially, the results obtained are difficult to predict from 

the programs and so it may not be easy to determine whether the simulation results 

are really emergent or are caused by unknown or irrelevant factors. For 

ecological applications this is a crucial point since the search for causality is 

important as ecologists are interested in whether global patterns are determined by 

local rules alone, or whether global rules exist which are responsible for the 

appearance o f global patterns (Kawata & Toquenaga, 1994).

The use o f Alife, however, does have a very large advantage in modelling ecological 

systems and arises as a consequence of the way the system is developed. One o f the 

major drawbacks in using ecological simulations for predictive purposes is the fact 

that the model’s predictions can only be considered valid over the range for which the 

variables used to construct and the test the model were considered. Once,
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extrapolation beyond this range occurs the model predictions are untested. This 

problem does not arise in Alife simulations since the model’s behaviour is caused by 

fundamental rules specifying the organism’s behaviour and so the observed behaviour 

within the model is a result o f underlying mechanisms and not limited to observed 

effects in experimental situations. This difference is crucial to the usefulness o f Alife.

The way the model is constructed and conceptualised within an Alife project is such 

that the model can be thought o f as being directly analogous to the mental 

conceptualisation o f the scientist. The model, therefore, becomes a basis for testing 

the theoretical constructs underlying the conceptualisation. This in itself represents 

an advance in ecological modelling in which the model specification is usually 

distorted to fit mathematical assumptions.

Object Orientated Programming

The immediate origin o f Object Orientated Programming (OOP) can be traced to the 

development o f Smalltalk or Simula, however, Sequeira et al., (1991) have suggested 

that the conceptual bases for such a paradigm can be traced to the notion o f the 

‘universal’ from early Greek philosophy. Very briefly, Aristotle formulated his 

theory o f universals in which a universal was defined as “that which is o f such a 

nature as to be predicated o f many subjects, by individual that which is not thus”; i.e. 

in language there are proper names and adjectives, while proper names apply to only 

one thing universals (adjectives) apply to many different things (Russell, 1961).

OOP is gaining momentum and popularity in computer science. OOP is based around 

objects. An object is a group o f data and procedures for manipulating that data within 

the programme. This differs from the traditional approach in that the data and the 

methods for manipulating the data are separate. As the data and procedures are 

collected into a single structure the style o f programming is different from traditional 

programming which is based on data structures and control structures which 

manipulate the data structure (Maley & Caswell, 1993).

The use o f OOP in simulation is relatively new, the model o f a system is viewed as a 

collection o f components which are treated as objects. These objects have knowledge 

programmed within them about their function and are activated by messages from
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other objects. The other objects do not have to know anything about the knowledge 

contained within the object to which messages are passed. The programmer in OOP 

is not concerned about how messages are passed, the OOP environment deals with 

this (McKinion, 1992). In OOP, individuals are the level o f interest. Population 

equations are inappropriate, with the characteristics o f individuals being modelled and 

the net effects o f the individuals producing effects at the population level (Stone, 

1992).

OOP languages are characterised by three properties; encapsulation, inheritance and 

polymorphism (Thomson, 1995). Encapsulation allows data and methods to be 

grouped leading to protection. Object orientated simulations require objects o f many 

kinds, and an object type can declare a previously defined object as its ancestor. The 

descendant object “inherits” the data fields and methods o f its ancestor. It can then 

add data fields and methods specific to itself. Polymorphism permits efficient 

programming as a procedure declared as manipulating a certain type o f object can 

also manipulate any o f that type’s descendants. This contrasts with traditional 

programming as separate procedures are required for the manipulation o f each type o f 

data structure (Maley & Caswell, 1993).

Rationale fo r  the Alife approach in insect behaviour

Stone (1992) has argued that the modelling strategy adopted is affected by the amount 

o f data and understanding available in the domain o f interest. The relationship 

between data and understanding lead to four basic strategies for simulation (Figure 

6.2.). Category A is suited to statistical approaches, category B to quantitative 

analysis. However, most insect problems fall into categories C & D (Stone, 1992).

Figure 6.2. suggests that in general the best approach to adopt for a particular 

application is affected by the amount o f data and understanding. When the amount of 

data available for developing a simulation is large and the process o f interest is well 

understood then the easiest approach is a mathematical analysis. Conversely, when 

the amount o f data is high but the process o f interest is poorly understood then a 

statistical approach may be most profitable. The statistical approach to simulation 

relies on the extraction o f relationships between causes and effects without implying 

the mechanism underlying the effect. Whereas, the mathematical approach implies
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that their is a relationship between two variables and the mechanism o f the interaction 

is understood and can be expressed in mathematical terms. For problems where data 

is scarce, but the process o f interest is well understood then using AI or Alife 

techniques the simulation can be developed from “first principles” . In effect the 

relationship between two variables is deduced by the mechanism which affects there 

interaction.

Figure 6.2. The relationship between the amount o f data and 
understanding in selecting an approach for modelling an ecological 
system (After Stone, 1992).
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Increasing Understanding

For P. rapae there is a considerable degree o f conceptual understanding o f the 

processes o f host plant selection but the database for developing a mathematical 

approach is less well developed. Therefore, this domain lies in category D which may 

be amenable to an AI approach (Stone, 1992).

Alternate advantages centre around the concepts o f IBMs, virtually all o f the 

simulation models developed so far in biology have treated an individual as the basis 

o f the model and then multiplied up the interactions o f that individual to obtain the 

results for a population, thereby treating populations as a group o f organisms with the 

same properties. This approach ignores the fact that populations comprise individuals 

which have differing life histories, for example, age, number o f mature eggs, 

nutritional status etc., and experiences. In addition, biological interactions between 

these individuals occur locally.

This type o f model is seen as increasingly untenable in light o f biological realities.

This is certainly true o f host plant finding behaviour, research on host plant utilisation

A B

C D
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in phytophagous insects has subtly shifted from a deterministic approach to the 

acceptance o f a more dynamic view including motivational effects and the role o f 

learning in influencing ovipositional decisions. This is seen in the conceptual models 

o f host plant acceptance in which the final decision is affected by the insect’s 

motivational state (Miller & Strickler, 1984). For example, this model has been built 

around the assumption that some aspects o f the butterfly’s behaviour are traits which 

are species specific, namely hierarchy o f host preference and perceptual abilities. 

Whereas, other aspects o f the butterfly’s behaviour are considered to be driven by 

factors which are not common to all individuals, namely, age and egg-load.

In summary, many theoretical models o f host utilisation have been developed most o f 

which have concentrated on finding the ‘optimal behaviour’ o f the insect. The 

attempt reported here differs in that no attempt is made to impose an optimal solution 

to the behaviour o f the insect. Instead, the insect is presented with an array o f hosts, 

and the decision to oviposit is left to the insect in this simulation, with the ‘rules’ 

governing oviposition being followed. This arises as a consequence o f how the model 

has been conceptualised. The initial task is to deconstruct the overall distribution o f 

eggs found in the field into discrete steps, identifying rules which when followed act 

in the same way as the a female responds to cues in the ‘real world’. The ‘rule set’ 

actuates the female into behaving on perception o f ‘cues’ from the artificial world. 

The basic rules specified are ‘weighted’ by the female to explicitly take into account 

her motivational state and any prior experience she may have had.

As such, this research represents a shift away from the traditional implementation o f 

simulations in ecology to a newer approach. This new approach promises to be o f 

considerable value. However, the usefulness o f Alife has yet to be demonstrated to be 

applicable to ecological problems outside o f the Alife community. I aim to show that 

these techniques are applicable to real ecological problems and that the approach is o f 

value in giving insights into the observed patterns o f host use by phytophagous 

insects.

The model was not developed beyond its conceptualisation as it was necessary to 

devote time to experimentation to fill knowledge gaps in the areas o f pre-alighting 

discrimination identified in the literature review (Chapter One). This experimental
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work has allowed the model to be conceptualised fully without resorting to the use o f 

data from other species.

Section B 
Model Structure

INTRODUCTION

A major influence on the conceptualisation o f the model developed in this Section is 

the hierarchy threshold model o f host plant selection developed by Courtney et a/. 

(1989). In this model, when a potential host has been encountered, a decision is made 

whether to accept or reject that host for oviposition. The probability that the insect 

will accept a particular host will then depend upon on the acceptability o f that host to 

the insect. A host with a higher intrinsic acceptability will result in it being accepted 

more readily; leading to a hierarchy o f acceptability, with potential hosts ranked in 

sequence. The hierarchy threshold model assumes that if an insect will accept a low 

ranking host it will also accept all hosts higher in the hierarchy. The current egg-load 

o f a female is known to influence host acceptance thresholds; a high egg-load should 

act centrally to increase the tendency to accept any host. The transition between the 

hosts may be abrupt and higher ranking hosts will still be acceptable (Courtney et al., 

1989).

In conceptualised models o f host plant acceptance, the decision to accept a plant at 

each stage o f the catenary process is mediated by the balance o f sensory inputs, some 

of which are positive and others negative. The overall sensory input is then compared 

to the insect's internal state and a decision is made (Dethier, 1982; Miller & Strickler, 

1984).

MODEL STRUCTURE

For the purpose o f this discussion the behaviour o f the butterfly has been split into 

discrete units. Pre-alighting behaviours are defined as all behaviours up to contact 

with a plant, and post-alighting behaviours are all behaviours exhibited after contact 

with a plant. For the purpose of explaining the model pre-alighting behaviours have 

also been categorised into:-
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• Searching Behaviour.

• Volatile Discrimination.

• Visual Discrimination.

The behavioural decisions o f the female are considered to be hierarchical and are 

shown in Figure 6.3.

Figure 6.3. The decisions made by Pieris rapae females engaging in 
ovipositional behaviours for the purpose o f this model

I
Searching

I

Pre-alighting discrimination

I  R eject | —

I

Post contact

Reject

Accept

Searching Behaviour

Animals often exhibit random search paths. However, this intrinsic randomness does 

not prevent the animals from orientating towards specific goals or aggregating in 

suitable areas o f the environment. To understand space use mechanisms (those which 

regulate the time an animal spends in a particular area o f its environment) and 

orientation mechanisms (those which regulate how an animal moves towards a 

specified goal) it is necessary to model the search path taken. Application o f the 

simple random walk model used in physics is inappropriate to represent the 

movement o f an animal as most animals have a tendency to move forwards. A first
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order correlated random walk model is able to take into account this property. 

Therefore, a search path is represented as a sequence o f steps o f varying length and 

changes o f direction (Benhamou & Bovet, 1991).

Visser (1988) has suggested that the orientation mechanism o f phytophagous insects 

is under the influence o f two control systems. These are information originating 

external to the insect (allothetic control) and internal information (ideothetic control). 

For the purposes o f this model the influence o f ideothetic control during the 

orientation o f the insect to a host is abandoned for simplicity. Flowever, ideothetic 

control is retained for initiating search. Therefore, the control o f the insect’s 

orientation occurs as shown in Figure 6.4. In allothetic control the input-output 

relationship is mediated by a feedback loop. The input is the asymmetry in the degree 

o f stimulation from the odour source as measured by the receptors located on both 

sides o f the insect’s longitudinal axis. The commands to the motor system o f the 

insect, allow the orientation o f the insect to the stimulus source by turning to the more 

stimulated side (Visser, 1988).

Figure 6.4. Schematic representation o f the control o f an insect’s
orientation mechanism using external sensory information (After
Visser, 1988).

Nervous System

Degreee or stimulation M otor command
Higher left Move lett
Higher right Move right
No difference h or ward

The butterfly’s sensory input is used to find a host plant, i.e. there are no rules 

specified for movement such as specifying a random walk with a fixed move length. 

Instead, movement occurs as a result o f a combination o f sensory input and 

motivational state which activates searching behaviour.
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M otivational State

Animals can be classified according to behavioural criteria as either autonomous 

agents or as automatons (Figure 6.5.). When an animal is considered to be an 

automaton, the motivational state o f the animal means that for a given state the animal 

follows a particular rule where some variables may have do to with physiological 

factors, the perception o f environmental cues etc. So that although the animal may 

appear to have various options with regard to behaviour the actual behaviour 

performed is entirely controlled by the state o f the animal (McFarland, 1991).

Assuming a priori, that it is notoriously difficult and somewhat anthropomorphic to 

consider such questions as to whether the observed behaviour o f an animal is due to it 

being an autonomous agent or an automaton. I would suggest that by M cFarland’s 

(1991) criteria P. rapcie is best considered an automaton. This classification also 

simplifies the model as the evaluation step is removed and the motivation to perform 

a specified behaviour is simplified to the animal’s state. Therefore, animals which are 

automatons still have a motivational state in the sense that the state influences its 

behaviour, however, the animal is not self motivating (McFarland, 1991).

Figure 6.5. The relationship between an autonomous agent and an
automaton (Redrawn from McFarland, 1991).

Automaton Autonomous agent

Follow rules Evaluates alternatives

to control must know the state and the 
rules

to control must know the state, the histoiy 
and the evaluation criteria

ENVIRONMENT.

I
I  A l
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I

STATE

M O T IV A T IO N S  MEMORY-*

E V A L U A T IO N S  VALUES 

▼
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Under these conditions, motivational processes are simply those reversible processes 

which move the animal at any particular time. They depend upon physiological 

status, environmental cues and the consequences o f current behaviour. The 

consequences o f current behaviour can influence the animal’s motivational state in 

five main ways (McFarland, 1991):-

• By altering the external perceived stimuli o f the animal and its cue state.

• By direct feedback into motivational state.

•  By altering the animal’s physiological state.

•  Preventing the animal engaging in some alternative behaviour.

• Energy expenditure.

Table 6.1. The effect o f a females age on the number o f eggs laid per 
day by Pieris rapae females (data from Renwick and Radke, 1983). 
(Cumulative percentage o f total was calculated by the following 
formula: Cumulative percentage o f total =(cumulative number o f eggs 
laid/total number o f eggs laid) x 100).

Age Number of eggs 
laid per female

Cumalitve 
number of eggs 

laid

(Jumalitive 
percentage of 

total
l 7 7 7
2 5 12 11
3 9 21 20
4 9 30 28
5 10 40 37
6 21 61 57
7 12 73 68
8 8 81 76
9 9 90 84
10 7 97 91
11 6 103 96
12 4 107 100
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The motivational state o f the insect is defined by the number o f eggs left to lay by 

that individual (Equation 1). The number o f eggs left to lay is derived from the data 

in Table 6.1, and the number laid is derived from the number o f eggs laid by the 

butterfly in the simulation. This point o f view o f motivational state is derived from 

egg-load and comes from the findings o f a number o f studies in which ovipositional 

behaviour is altered, the major factor in these studies appears to be egg-load but these 

effects can be confounded by other variables (reviewed by Minkenberg, Tatar & 

Rosenheim, 1992).

Motivational State = Number to lay Equation 1.

Eggs laid

Renwick & Radke (1983) have shown that the number o f eggs laid by a female is a 

function o f female age (Table 6.1.). There is an increase in the number o f eggs laid 

as the female ages until the maximum is reached then there is a steady decline 

(Renwick & Radke, 1983; Gossard & Jones, 1977). Therefore, motivational state in 

the model will be defined by the number of eggs a butterfly has to lay on a given day 

for its age in comparison to the number actually laid that day. Any carry over from 

previous days will also be included to create the effect o f inclement weather as found 

by Gossard & Jones (1977).

Therefore, a motivational state o f 1 or more indicates acceptability thresholds will 

become lower and a value less than one indicates acceptance thresholds will be 

higher. The egg-load effects in this model may be thought o f as affecting P. rcipcie in 

the following way. In this model, the current motivational state o f the insect will be 

high in the early part o f the day and will decline as eggs are laid. I f  eggs are not laid 

then motivational state increases. Evidence for this view comes from the observation 

that overcast days inhibited oviposition by not allowing flight, but if the next day was 

sunny then the number o f eggs laid increased by 78% (Gossard & Jones, 1977). 

These findings may be interpreted as indirect evidence that egg-load influences 

decisions upon which plants to oviposit. More direct evidence o f egg-load 

influencing searching behaviour is available in other species notably, Battus philenor.
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For example, Odendaal (1989) reports that the proportion o f time spent searching by a 

female is significantly higher when that female has a high egg-load as compared to a 

female with a lower egg-load. Odendaal & Rausher (1990) reported that B. philenor 

females increase their searching intensity, host selectivity and clutch size in response 

to egg-load or some internal factor correlated with egg-load.

As data are not currently available for the changes in motivational state due to egg- 

load, I would suggest that if the model is implemented this variable should be 

examined to investigate its effect on searching and subsequent acceptance behaviours.

H ost p lant discrimination

Host discrimination in phytophagous insects has two components pre- and post­

alighting discrimination. Pre-alighting discrimination is thought to rely on visual and 

olfactory cues and post-alighting discrimination occurs after alighting during which 

the insect gathers mechanosensory information on the plants physical and chemical 

characteristics.

Pre-al ighting discrim ination

The way in which sensory input is used by the insect in selecting a plant for alighting 

is that visual cues, more specifically, the intensity o f light reflected at 550 nm which 

exhibit a linear relationship with the number o f landings, (Chapter Three) are used by 

the insect to determine the plant’s acceptability for landing. The size class o f the 

plant is also used to calculate the acceptability o f the potential host plant. This value 

is then compared to the motivational state o f the insect and the plant is alighted upon 

if the probability o f alighting is above the current threshold.

Volatile cues have affect pre-alighting discrimination in this model. They influence 

whether a plant will be alighted upon only in terms o f host plant recognition, for 

example a plant with host plant volatile cues is more likely to be landed upon than a 

plant without host plant volatile cues.

The size o f the plant is also taken into account, once the plant has been assessed on 

the basis o f colour and volatile cues, the resulting alighting probability is adjusted for 

the size class o f the plant (as defined by Jones, 1977; Table 6.3.). The overall
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probability o f alighting is mediated by the insect’s current motivational state and a 

decision to accept or reject the plant for alighting is made.

Learning

The decision regarding on which plant to alight may also be influenced by a female's 

prior experience (Traynier, 1979) as colour is learned in association with contact 

stimulants. Therefore, it can be assumed that the effect o f learning is most important 

in terms o f influencing the decision to alight on a plant. In this model it can be 

assumed that if a plant is alighted upon then the same species is more likely to be 

alighted upon in the next encounter unless the time between encounters is large i.e. if 

a host plant o f species A has been accepted then the individuals will preferentially 

alight on species A, unless species A has not been encountered in the last ten minutes. 

This discrimination period comes from the work o f Tabashnik (1987) who found that 

the discrimination period for P. rapae in his experiments was between 10-15 minutes.

POST CONTACT DISCRIMINATION

Plant chemistry

The major factor in the post-alighting discrimination o f host plants is the plant’s 

chemical acceptability. This is mediated by the balance between stimulatory and 

deterrent compounds (Huang & Renwick, 1993). The chemical acceptability o f a 

host is dependent upon the preference hierarchy devised by Huang & Renwick (1993) 

and is shown in Table 6.2. The data in Table 6.2. is used to assign a probability of 

accepting the plant for oviposition.
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Table 6.2. The effect o f cruciferous and non-cruciferous host plants on 
oviposition by Pieris rapae (Data from Huang And Ren wick, 1993). 
A= No. o f eggs on plant/No. o f eggs on cabbage x 100.

SPECIES WHOLE PLANT (A)

A. saxatile 22

B. juncea 155

C. spinosa 100

E. cheiranthoides 0.89

I. amara 6.4

I. tinctoria 100

L. annua 7.1

T. majus 100

Plant size

For the purpose o f this model there are five plant size classes, these are as defined by 

Jones (1977). The size of a plant has also been shown to influence ovipositional 

acceptability over and above the effect o f alighting preferences (Ives, 1978). Jones 

(1977) provides data on the probability o f plants o f different size classes being 

acceptable (Table 6.3.). The probabilities in Table 6.3. are used in conjunction with 

the probabilities from host plant chemistry to give an overall probability o f 

oviposition. As in the case o f pre-alighting discrimination, this probability o f 

oviposition is compared with the insect’s motivational state and a decision to accept 

or reject the plant is made.

Table 6.3. The effect o f host plant size on alighting and oviposition
probabilities to Pieris rapae females (Data from Jones, 1977).

Plant Size Alighting probability Oviposition probability

1 0.67 0.18

2 0.18 0.13

3 0.28 0.28

4 0.36 0.43

5 0.06 0.63

’ Plant size refers to classes of sizes, the age of the plants are as follows:- (1) large old, 9-14 weeks since 
t r a n s p lan t ing ; (2) medium old, 9-14 weeks since transplanting; (3) medium medium, 6-10 weeks since 
t r an sp lan t in g; (4) Medium young, 4-8 weeks since transplanting; (5) small very young, less than 4 weeks since 
transplanting.
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Clearly this model is a simplified version o f the events and decisions made by P. 

rapae females engaged in pre-ovipositional behaviours. Simplification has been 

necessary from a conceptual point o f view to allow the implementation o f this model 

and also to maintain the tractability o f the process being simulated. In particular, the 

model is a simplified version o f pre-alighting discrimination in so far as no deterrent 

cues are incorporated into the model and it is assumed that there is no interaction 

between sensory modalities. (Table 6.4.).

Table 6.4. Summary o f the cues utilised in this model by a female
Pier is rapae.

E xperim en tal Evidence
Cues U tilised Field S tudies L a b o ra to ry  S tudies Effect

A lighting
Volatiles
H ost Derived NA Yes Increases alighting probability
Non-host derived NA Yes Decreases alighting probability
Colour Yes Yes Increases alighting probability
Size Yes NA Affects alighting probability

P ost-C on tac t
Plant chemistry Yes Yes Affects probability o f  acceptance
Size Yes NA Affects probability o f acceptance

The characteristics o f both butterflies and host plants have been split into those 

characteristics which can be construed as being species specific, i.e. the same for all 

individuals, for example the female butterfly's perceptual abilities or the host plant's 

glucosinolate profile, and others which are deemed to be individual traits; these tend 

to be variables which are determined or influenced by that individual's prior history, 

for example pupal weight is a major determinant o f egg-load (Gossard & Jones, 

1977). The preference hierarchy o f hosts in this model is assumed to be a species 

characteristic which does not vary between individuals. However, many studies have 

demonstrated that preference hierarchies are, in fact, individual characteristics which 

although repeatable for a given individual, do show variation between individuals 

(Ng, 1988; Singer, 1982). Therefore, the conceptualisation o f the model is as shown 

in Figure 6.6.
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Figure 6.6. A conceptual summary of the model as currently developed.

----------------------------------------------------------- ► H o st P lan t

In d iv id u a l C h a r a c a te r is t ic s In d iv id u a l C h a ra c ter is t ic s
A ffe c tin g  M o t iv a t io n a l S ta te D e ter m in in g  A c cep ta b ility

Age Days Eggs Present f(butterfly behaviour)
Egg load f(pupal weight)-Ovipositional history Colour f(species * nutrient status)
Last Plant Accepted Size f(age * species)
Food Reserves f(Time Since Last Feeding) Larvae Present f(butterfly behaviour * W eather)

B u tte r fly  S p e c ie s  T r a its

Hierarchy O f Preference
Perceptual Abilities In d e p e n d e n t V ar iab les S p e c ies  T ra its

Num ber & Arrangement O f Host Plants Chemistry
Volatile Cues

DISCUSSION

This chapter has developed and conceptualised a model of the pre-oviposition 

behaviour of P. rapae to the point where implementation is possible. The model can 

be construed as being individual based and also an Alife simulation as the interactions 

between the insect and the plants are not specified at any level above that of the 

individuals themselves. The usefulness of this approach will only become apparent 

after implementation when the results of the simulations are available. However, the 

value of the current exercise lies in formalising what may be considered to be the 

fundamentals of the processes by which a female finds and subsequently accepts a 

host plant. This model also, I believe, concurs with the suggestions of Hassell and 

Southwood (1978) in which they argue that models of insect foraging must be based 

upon a hierarchy of spatial scales.

In addition, I believe that this model, if implemented, as currently proposed offers the 

opportunity to make specific predictions about the pre-oviposition behaviour of P. 

rapae. These predictions can then be useful in implementing experimental 

approaches to the problem. Since this model is largely conceptualised in terms of the 

current orthodoxy of the theoretical aspects of insect plant interactions, the inteiplay 

of simulation and experimentation may offer exciting opportunities to refine the 

understanding of host plant finding behaviours of P. rapae and phytophagous insects 

in general.

The prospect of the validation of the model remains open, however, because of the 

necessary scale of field experiments and the large number of measurements on each 

individual plant and butterfly used in the experiments the model may not be validated. 

Although, this limits the usefulness of any implementation in terms of using the model
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as a simulation tool. Its usefulness remains as an aid to understanding and in the 

development of experimental approaches. It was intended that this model would be 

fully developed and tested during the course of this research, but unfortunately as time 

was limited this did not prove possible.

CONCLUSIONS

This chapter has proposed and outlined an Alife simulation based on the pre- 

oviposition behaviour of P. rapae in sufficient detail to allow implementation in an 

object orientated programming environment, for example C++, Delphi, Smalltalk etc.
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Chapter Seven 
Thesis Discussion and Future 

Research

In this discussion, I shall attempt to integrate the results from the preceding Chapters 

into a coherent argument o f the effect o f sensory cues on the searching behaviour of 

P. rapae. Clearly, it is not possible to expand this subject by a great deal as the 

appropriate place to study searching behaviour is in the field. Additionally, the types 

o f experiments conducted here have done little but to show how variations in host 

plant characteristics may affect the searching behaviour o f an insect. This discussion 

will assume that the effects o f the laboratory treatments are largely transferable to the 

field, but that interactions between them will probably occur.

The problems o f searching in a diverse environment are serious for an insect 

herbivore. Jones (1991) has suggested that, to a moving insect, a diverse plant 

community is a complicated mosaic from which the insect must pick out cues from 

plants which are potential hosts from among a large number o f non-host plants. Most 

insects are able to perceive and use cues from a distance to direct their encounters 

with host plants. Observations o f this type, inevitably lead to the question o f how 

insects manage to filter incoming sensory information to provide useful cues for host 

location.

This question has recently been addressed (Bemays, 1996; Bemays & Wcislo, 1994). 

As noted, an organism’s environment contains more sources o f sensory information 

than can be used at any one time. Additionally, an organism’s information gathering 

capacity also exceeds its capacity to process this information and to act upon it. 

Therefore, the ability to select information which is relevant is o f the utmost 

importance for regulating behaviour (Bernays, 1996; Bernays & Wcislo, 1994). 

Having behaviour largely influenced by a restricted set o f stimuli is hypothesised as 

affording three major benefits to the individual; increased accuracy, speed and 

maintenance o f specific neural processing (Bernays, 1996). This type o f economy 

and precision in the processing o f information may increase the efficiency and
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precision o f the insect’s searching behaviour and its decision-making process 

(Bernays & Wcislo, 1994).

Therefore, in the following discussion, I will attempt to outline how this concept of 

efficient searching may be used by P. rapae and how it affects the use o f sensory cues 

whilst engaging in a searching bout.

The other set o f factors which I wish to enlarge upon are that host plant selection is 

generally considered to be a hierarchical process in which the female searches for a 

suitable habitat and then a patch and finally for an individual host (Hassell & 

Southwood, 1978; Judd & Borden , 1991). The categorisations o f the levels o f the 

hierarchy have been defined by Hassell & Southwood (1978) as>

• Habitat is defined as a collection o f patches.

• Patch is defined as a spatial sub-unit o f the foraging area in which aggregations o f 

food items occur.

• Food items are defined as the individual items which the insect makes use of, for 

example the leaves on which a caterpillar feeds.

For a butterfly the gross vegetation type constitutes the habitat, and the patch is then 

the clump o f vegetation that provides the resource being searched for, for example 

oviposition plants, with the food item being the oviposition sites. Therefore, the 

searching behaviour o f a phytophagous insect may be best examined in this hierarchy. 

Additionally, the process o f host plant finding should be studied at two distinct levels, 

the first requires that the external and internal factors which influence searching 

behaviour are understood and the second requires an analysis o f the movements and 

behaviour o f individual insects under resource-stimulus and non-stimulus conditions 

(Judd & Borden, 1988).

At present some o f this data is available for P. rapae, however, the cues utilised in 

this progression from habitat to patch to individual food items are not known. 

However, for D. antiqua the process is perhaps better understood (Judd & Borden, 

1988; 1991). Visual stimuli play little part in the host plant location process at the 

habitat patch level as orientation to odour occurs at distances over 100 m, it is 

considered that long range host plant finding is almost entirely by odour. However,
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once within a patch visual cues are considered to be important in the decision to alight 

(Judd & Borden, 1991; Judd et al., 1988). Judd & Borden (1991) have argued that the 

processing of visual stimuli by the neural system occurs as follows: firstly the shape of 

the object is compared to a neural template. If the shape matches the template then 

the information is further processed at a higher level, for example spectral 

discrimination.

For P. rapae it is possible to establish a similar hierarchy for the process of host plant 

finding. At the habitat level, females may use volatile odour cues to carry out long 

range orientation. The results from Chapter Two and Four would suggest that the 

counter-turning behaviour of females and their increased number of flights made in 

response to volatile odour cues would allow them to reach the patch level. Obviously 

this does not rule out visual cues as being important but the usefulness of visual cues 

at such ranges is likely to be severely limited. Once the patch has been reached, the 

female will almost certainly discriminate on the basis of colour alone. This 

assumption rests on previous work which showed that P. rapae flies directly to green 

objects (Traynier, 1979) and on the basis that the spectral reflectance of Brassica 

plants are generally considered to be distinctive (Hahn & Muir, unpublished; Judd & 

Borden, 1991; Prokopy et al., 1983). Additionally, Renwick & Radke (1988) found 

that there was no discrimination on the basis of shape by P. rapae. The results from 

Chapter Three would indicate that a number of wavelengths may be involved in the 

discrimination of the plant.

At this stage of the host plant finding process once the visual information has been 

processed and visually assessed the plant is deemed to be acceptable, then volatile 

cues are used to establish that the plant is a host plant. Therefore, volatile cues may 

be used as aids to recognising host plants (short range attraction) but do not actively 

participate in the discovery of plants. For example, Jones (1987) found that female P. 

rapae from the UK were less likely to land on a non-host plant than females derived 

from an Australian population. The obvious cue to mediate this discrimination is 

chemical, most probably olfaction. However, the females may have “learned” the 

colour of the host and/or the Australian females may discriminate less actively; both 

of these can explain the behavioural differences observed.
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The patterns of movement P. rapae have received some attention, and as pointed out 

in Chapter One the movement of females within a patch is considered to be random 

with respect to host plants (Fahrig & Paloheimo, 1987; Jones, 1977; Kareiva & 

Shigesada, 1983; Root & Kareiva, 1984). This behaviour would add credence to the 

notion that volatiles are not particularly important directional cues at the patch level. 

However, until a satisfactory explanation of P. rapae’s searching behaviour is 

forthcoming the functional significance of this random movement in the patch is 

unknown.

Once landed the female uses contact chemicals to identify and assess the host plant, 

with the decision to oviposit being due to the relative degree of stimulation and 

deterrence from the leaf surface chemicals (Huang & Renwick, 1993; Huang et al.,

1995).

The impact of prior experience on this process is perhaps best understood by the 

arguments of Bernays (1996) and Bernays & Wcislo (1994). hi their view the process 

of host identification and the decision to land and oviposit can be simplified to one 

sensory cue, spectral reflectance, and any object matching this pattern of reflectance is 

a suitable host. This not only simplifies the process of host plant finding but also may 

increase the speed and searching efficiency of P. rapae females.

To turn now to the arguments of Bernays (1996) and Bernays & Wcislo (1994) in 

terms of the more general searching behaviour of P. rapae and the cues utilised. 

Brassica foliage is considered to have a distinctive pattern of spectral reflectance in 

comparison to other plants. This may allow the shape of the plant to be disregarded in 

terms of discrimination, and would obviously reduce the amount of information 

processed. Similarly, for D. radicum leaf parameters have been shown to be 

important but are considered to play a subordinate role (Degen & Stadler, 1996). This 

may be interpreted as a narrowing of perception for these insects and using the sensory 

modality which supplies the most information. Additionally, the lack of a response to 

volatiles during pre-alighting discrimination may also be considered in the same light. 

However, it is necessary to point out that the above discussion contains a great deal of 

speculation, and much more experimental work is required in order to test these 

hypotheses, particularly in the field.
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Therefore, in summary, the host plant finding process of P. rapae can be characterised 

as a two stage process as follows: volatiles lead females to the host plant patch and the 

decision to land on a plant is due to the pattern of spectral reflectance of the plants 

present, with the possibility that volatile cues act as a sign for host recognition. Once 

alighted host plant chemistry is central to the process of acceptance. This description 

is not very different from one which could have been written before this research was 

started and completed, in fact the only real contribution to this description is that host 

derived volatiles are somehow implicated in this process, whereas prior to this thesis, 

this would had an assumption. However, even after this contribution is accepted 

questions remain. These include; are volatiles actually involved in the attraction of 

females to host plants or more precisely are P. rapae females in any way attracted to 

host plants from a distance ? The behaviourally active constituents of the volatile 

odours need to be identified, the similar levels of activity for volatile extracts in 

Chapter Four, would suggest that such a class of compound common to crucifers is 

responsible. Additionally, are some volatiles from healthy plants repellents in the 

same way as different leaf surface compounds in a host plant act as ovipositional 

stimulants and others act as ovipositional deterrents ?

Similarly the results of Chapter Four provoke many unanswered questions. The 

finding that colour was dominant in controlling the landing behaviour has long been 

recognised with Hovanitz & Chan (1964) showing that blue green colours were the 

most preferred for oviposition and Traynier (1979) also showed that P. rapae 

performed a direct and rapid flight towards green objects. Renwick & Radke (1988) 

and Myers (1985) showed that the reflectivity at 550 nm and the ratio of red to 

infrared reflectance were important in determining the number of landings and eggs 

respectively. Therefore, the only real contribution to the study of colour in P. rapae’s 

behaviour was the finding that the narrower band of significant relationships between 

the RNQ of light reflected at different wavelengths in the presence of host plant 

phytochemicals as compared to the untreated cards. This would indicate that although 

responses are identical, the sensory perception of plant characters may be altered in 

the presence of such chemicals, and the obvious suggestion that the wavelength 

specific behaviour for drumming and oviposition demonstrated by Kolb & Scherer
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(1982) for P. brassicae also occurs for P. rapae. However, the present study in no 

way demonstrated that wavelength specific behaviour occurs in P. rapae.

Therefore, chemicals may have greater and more subtle effects on the interactions 

between a host plant and a phytophagous insect than simply eliciting or deterring 

behaviours. However, the interaction between the sensory perception of light and 

resultant behaviour needs more clarification. The obvious way of investigating this 

interaction is through the use of monochromatic light in the presence of host plant 

phytochemicals and comparing the resultant action spectrums for landing behaviour. 

Additionally, I think that field studies investigating the possible interactions between 

behaviours and visual characteristics would be valuable.

In a more positive light, the results from these experiments have clearly shown that 

host plant choice in P. rapae is more than a simply chemically mediated interaction in 

which glucosinolates stimulate oviposition and the presence of deterrents in host 

plants deter oviposition, with the choice of oviposition site resulting from the 

interaction of these two factors. This result in itself is not surprising as many authors 

have argued that insects respond to the gestalt of a plant rather than a single factor 

(Dethier, 1982; Harris & Foster; 1995; Miller & Strickler, 1984).

At present most research on the cues utilised by females in selecting plants for 

oviposition have been studied independently. This type of research reveals very little 

about the relative importance of each sensory modality or interactions between them. 

Selection of oviposition sites generally involves some interplay between sensory 

modalities, however, for most insects the understanding of this interplay is 

rudimentary (Judd & Borden, 1991).

So although the study of single sensory inputs allow the elucidation of the stimuli 

which bring about a particular behaviour, they can by their very nature show nothing 

about how the behaviour is organised in the central nervous system and what the 

causes of that behaviour are (its mechanism) rather than what elicits a behaviour. 

Additionally, the process of sensory integration is inevitable when the large number of 

sensory inputs (both internal and external) which are known to influence behaviours 

are considered (Harris & Foster, 1995).
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Therefore, Harris & Foster (1995) argue that no behaviour’s immediate cause can be 

determined by whether or not one stimulus elicits a response. Over 30 years ago 

Kennedy (1965) commented that host selection is a catenary process “ a chain o f 

behaviour made up o f different responses, usually to different stimuli ... each o f 

which is received as a result o f the insect making the previous response in the chain” . 

The weakness o f such a scheme in Kennedy’s opinion is the idea “that each response 

has one self-sufficient kind o f stimulus, as if each kind o f stimulus acted on its own”. 

Whereas, “One response not only brings in the external stimulus for the next 

following response in the chain, but may also prepare the insect for it by lowering the 

response threshold” (Kennedy, 1965). There is little experimental evidence to 

suggest the relative importance o f the different sensory modalities. However, Miller 

& Peters (unpublished) have shown that in D. antiqua the addition o f cues from 

different sensory modalities to model plants results in an increase in the number o f 

ovipositions as shown in Figure 7.1.

Figure 7.1. The relationship between the number o f sensory modalities 
and the percentage maximum ovipositions in Delia antiqua  (Data from 
Miller & Peters unpublished).
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An additional problem in the understanding o f the insect’s host finding and 

acceptance phase is the enthusiasm prevalent amongst researchers for identifying 

active compounds but not showing fully how the compounds identified are mediated 

by other factors. For example, the responsiveness o f females to oviposition sites is 

known to be affected by egg-load and host deprivation yet very few reports exist 

which have clarified how this increased responsiveness is mediated in the insect and 

its processing o f information. So although, chemical ecology has been defined in the 

broadest sense as “the study o f chemical interactions between organisms and their

- L o g  %  M a x i m u m  
O v i p o s i t i o n

P a g e I 7 i



environment, which includes other organisms” (Feeny, 1992), in practice, chemical 

ecologists have primarily concerned themselves with the roles of chemicals which act 

as mediators of recognition and resistance, ignoring the role of chemicals in nutrition 

and primary metabolism (Feeny, 1992). An example relating to P. rapae will perhaps 

explain more fully what is meant by this statement. Initially, Renwick and co-workers 

started by testing single compounds and comparing them with extracts from hosts. 

This work has been very successful, in my opinion, and demonstrates a progression 

from a simple concept of what is the effect of this compound on oviposition (for 

example Renwick & Radke, 1983), to the concepts of stimulants and deterrents 

mediating oviposition (Huang & Renwick, 1993; Huang et a l ,  1995), to the present 

state in which the effects of both glucosinolates and cardenolides on receptors has 

been correlated to their behavioural activity as stimulants or deterrents respectively 

(Stadler, Renwick, Radke & Sachdev-Gupta, 1995). Indeed, Renwick & Huang 

(1994) argued that the Pieris crucifer system could be used as a model for unravelling 

the effects of leaf surface chemicals on host plant acceptance. However, they also 

noted that they were barely scratching the surface of these complex interactions.

Overall, this research has demonstrated that for P. rapae the factors affecting 

oviposition have been investigated in some detail, both herein and by other scientists. 

Although, areas previously neglected have been studied, redressing the bias in the 

understanding of the full oviposition behaviour of P. rapae, e.g. the role of volatiles, 

learning and a more detailed appraisal of the effect of colour and its interaction with 

host plant derived chemical cues. The concentration of future research on the factors 

which affect pre-alighting discrimination such as more in-depth studies of the role of 

plant volatiles, particularly dose-response relationships and the identification of the 

behaviourally active volatile constituents, in host plant selection, the pre-dominance 

of research in post-alighting discrimination can be further redressed. However, an 

insect responds to the “gestalt” of a potential host plant and although showing 

behavioural responses to volatile extracts can be viewed as worthwhile such 

experiments add little to the overall understanding of the process of host plant finding 

and acceptance by P. rapae or of other phytophagous insects.

An equally important and challenging research area is to investigate the role of prior 

experience on the ovipositional choices and preferences of females. Learning has
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been shown to increase the searching efficiency of phytophagous insects. This may be 

a major factor in influencing a female's alighting preferences during an ovipositional 

bout. However, the role of learning in P. rapae has not been investigated in 'field 

situations'. I assume that since learning is important in the ovipositional behaviour of 

other insect species, it may also be similarly important for P. rapae. However, 

without field studies; a major gap is apparent in the searching behaviour of P. rapae 

for host plants.

I believe that the most fruitful approach, where possible, for future studies is in the 

field. A study of behaviour in the laboratory may result in findings which may not be 

generally applicable to the field. Whilst field studies are more complex and less 

controlled, thereby making it harder to manipulate variables independently with a 

commensurate loss of clarity, they do reveal more realistically the complexities of host 

plant exploitation by butterflies.

Therefore, perhaps one of the largest and most profitable areas for future research is a 

shift from the mechanistic view of the interactions between an insect and a particular 

host plant species to the wider ecological backdrop of these interactions. At present, 

virtually all of the research effort is directed towards a greater understanding of the 

factors influencing ovipositional decisions. Whilst this interaction is important and a 

greater understanding of these interactions is useful, the wider context cannot be 

ignored. W here this type of research has been attempted, some interesting patterns 

have emerged. For example, the interaction between the different trophic levels 

including other herbivorous competitors may be viewed as crucial in explaining 

observed ovipositional patterns in the field. In Europe, one can immediately think of 

the laboratory results from the oviposition deterring pheromone of P. brassicae 

affecting the ovipositional decisions of P. rapae and the fact that plants damaged by 

grazing herbivores are less acceptable for oviposition than undamaged plants.

The effect of parasitoids is probably important since they are known to utilise both 

plant and herbivore derived cues to direct their searching behaviour to encounter 

caterpillars. Therefore, in theory at least, an effect on ovipositional decisions may 

also be exposed. In this context, the searching behaviour of P. rapae may not be 

paradoxical if females do indeed reduce the impact of parasitoids on their own eggs by 

widely distributing them.
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Thesis Conclusions

The experiments carried out show that P. rapae females exhibit both pre-and post 

alighting discrimination of potential host plants. The sensory cues responsible for this 

discrimination have been evaluated, the results for pre-alighting discrimination would 

suggest that it is possible that both visual and volatile odours are involved. However, 

the relative contribution of both of these sensory modalities is unknown.

The effect of colour on landing was further investigated using a regression analysis of 

the spectral profiles of the coloured cards. This analysis indicated that the frequency 

of landings on each colour of card could be predicted, in most cases by the relative 

reflectance at 550 nm or by the ratio of red to infrared reflectance. Furthermore, it 

may be that the relative reflectance at 550 nm and the ratio of red to infrared relative 

reflectance are proxies for the suitability of a host for larval development. However, 

the multiple regression models developed explain a far greater degree of the 

variability associated with the data from the choice experiments and as such may show 

that a number of regions of spectral reflectance are important in determining the 

selection of substrate based on its pattern of spectral reflectance.

Additionally, in the presence of volatile odour cues P. rapae females exhibit an 

increase in the number of flights and the total duration of time spent in flight. When 

exposed to non-host plants treated with volatiles there was an increase in the number 

of alightings on such plants as compared to controls. However, it is postulated that 

visual cues are dominant, with volatile odours acting as host recognition cues; that is, 

they define a plant as a potential host.

A female’s prior experience affects subsequent oviposition behaviours and the quality 

of the host (in terms of its stimulatory chemicals) would appear to have a large 

influence on the subsequent acceptability of the host with which the butterflies had 

prior experience.

Furthermore, the behaviour affected appears to be the choice of landing site, and from 

what is known of the cues learned in P. rapae it appears that prior experience of a host 

allows the females to search preferentially for that host in subsequent search bouts on 

the basis of its colour.
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